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Preface 

This book has a limited aim: to make available empirical approaches to 
non-market valuation in a single location. We cover the two major areas 
of non-market valuation: stated preferences and behavioral approaches. 
The breadth and rapid expansion of methods have forced us to choose 
our coverage carefully. We have opted for depth in the more freq uently 
applied methods, wanting the book to serve as a source for the popular 
and established models of non- market valuation. We have provided a 
portal to the literature for methods that we have not covered. 

The spirit of the book is empirical modeling. We focus on how ob­
servations on behavior or responses to q uestions can be used to recover 
measures of willingness to pay. This is not a strictly econometric book. 
We provide the basics of models but space and time constraints prevent 
us following many otherwise compelling q uestions. It is not a book on 
the theory of non-market valuation either. But we think the book will 
help in both directions. 

The motivation for writing the book has come from many encounters 
with able economists and students who want to do non-market valuation, 
but have not yet been exposed to the methods. For them we hope this 
book will make some parts of the enterprise easier. Almost everything 
in the book can be found somewhere in the literature. In some cases, 
we have simply transcribed models. In other cases, we have engaged in 
simplification or exposition. 

Non-market valuation employs microeconomics, welfare economics, 
and econometrics. Readers will need some knowledge of each to profit 
from the book. Three books that are especially valuable in these areas 
are J ust, Hueth and Schmitz on welfare economics, A. Myrick Free­
man's book on valuation, and the volume edited by J oe Herriges and 
Cathy Kling, also published by Elgar. Most models applied to valua­
tion use max imum likelihood methods. For readers not familiar with 
these methods, we have provided a brief review in Appendix A. The 
books by Maddala and by Ben-Akiva and Lerman are good sources for 
the econometric issues associated with maximum likelihood estimation 
for discrete choice methods. 

While the book deals with the empirical approaches to valuation, we 
do not want to leave the impression that this role dominates. Valuation 



 

xvi Preface 

stretches from defining the problem, to formulating the economic model, 
to questionnaire design and then estimation. This books focuses princi­
pally on the last part, the estimation of models for non-market valuation. 
It will have implications for the other tasks, for it is not really correct to 
separate the components of research. Econometric model formulation is 
part of questionnaire design. This is especially true for contingent valu­
ation. One needs to be armed with a sense of good questionnaire design 
and practice, such as one can find in Mitchell and Carson's book, Using 
Surveys to Value Public Goods, Carson's paper 'Contingent Valuation: 
A User's Guide' (2000) and Carson' s forthcoming book Contingent Val­
uation: A Comprehensive Bibliography and History published by Elgar. 

The options for software for estimating maximum likelihood models 
are growing. Increasingly many researchers write their own estimation 
routines using packages like Gauss or Matlab. We develop models and 
methods principally for programs like LIMDEP and SAS. And for the 
most part, we limit our model to development to those that can be 
estimated by researchers without writing their own maximum likelihood 
routines. We write the likelihood function for each model in a way that 
should allow one to program the function. Researchers writing their 
own programs probably don't need our help. 

We have received help and encouragement from many. Kerry Smith 
wrote an encouraging review and provided his own disproportionate con­
tribution to the literature on all of the chapters. J ohn Loomis read parts 
of the contingent valuation chapters and provided the dataset used in 
Chapters 2-5. J ohn Whitehead also read parts of the early chapters 
and gave us access to several datasets. Cathy Kling read parts of the 
chapters on travel cost models. Brent Sohngen lent us a dataset used 
in Chapter 7. George Parsons provided us with the dataset for logit 
model estimation of Chapter 8. Nancy Bockstael, Chris Leggett and 
Ray Palmquist read the hedonic chapter. Part of the data for the hedo­
nic models was also provided by Nancy and Chris. Charles McCormick 
provided the other part. Virginia McConnell provided encouragement 
and a thorough reading of the first chapter. Margaret McConnell did 
extensive work on the references. Graduate students in the Department 
of Agricultural and Resource Economics at the University of Maryland 
and in the Department of Agricultural, Environmental and Development 
Economics at The Ohio State University read various draft chapters of 
the book and provided valuable comments on clarity and exposition. We 
thank them for their comments and willingness to help with data. In 
short, we thank all who helped directly as well as all contributors to the 
literature whose results we have used. And we accept full responsibility 
for the remaining errors, omissions and misuse of data. 



 

1 

"Welfare Economics for 
Non-market Valuation 

1 . 1  The Background for Valuation 

Over the last five decades, economic analysis has spread from its tradi­
tional market orientation to such esoteric areas as crime and punishment, 
family planning, the disposal of nuclear wastes, and drug use. This seem­
ing imperialistic tendency of economics is a consequence of the logic of 
resource allocation. The notion of an efficient allocation of resources that 
has emerged from economic theory is a powerful idea. Coupling this idea 
with empirical techniques, economists have devised and refined methods 
for measuring whether and to what extent resources are being allocated 
efficiently. Measurement is an essential part of the approach because it 
allows the idea of efficiency to be applied to an array of resources, and 
it serves as the basis for decisions that can improve resource allocation. 

The role of measurement in the efficient allocation of resources is espe­
cially important in cases of public goods. Markets cannot efficiently allo­
cate public goods or resources with pervasive externalities, or for which 
property rights are not clearly defined. Examples of these market fail­
ures abound. Commercial harvesters of fish have no stake in the future 
of the individual fish they catch and so they tend to harvest inefficiently 
large quantities. Automobile drivers don' t account for the negative ef­
fects of auto emissions when they make driving decisions. The market 
provision of protection against infectious diseases does not account for 
the public protection provided by each private decision. These examples 
have the characteristic that there are gains or losses that extend beyond 
the private individuals making the decisions. 

The principle that public goods and goods with externalities are not 
efficiently allocated by the market suggests the possibility of improve­
ment by public action. But whether the public action in fact yields net 
benefits requires measurement. An improvement in resource allocation 
requires that the benefits of a decision exceed its costs, which in turn 
requires the measurement of benefits and costs. Whether the issue is 
public regulation of private actions that have externalities, or the pro­
vision of public goods, measurement is the key. To meet the demands 



 

2 Introduction 

for measurement , economists have devised a variety of empirical tools 
for estimating the benefits and costs of public actions. These tools are 
typically called valuation methods, and this book deals with their imple­
mentation. For public goods and pervasive externalities, implementation 
involves data collection, model specification and econometric estimation. 
This book is concerned with the specification and estimation. 

Much legislation and many governmental practices give benefit-cost 
analysis an important role in the public sector. For the US government, 
Executive Order 12291 states that for each major federal project, the 
benefits and costs of the project must be measured. Other important 
legislation includes the Clean Water Act, the Comprehensive Environ­
mental Response, Cleanup and Liability Act (CERCLA) ,  and the Oil 
Pollution Act. In addition, benefit-cost analysis is a routine procedure 
for the approval of public projects supported by multilateral interna­
tional banks. When banks lend for environmental projects such as wa­
ter treatment systems it is critical to know whether the country has the 
aggregate willingness to pay for the project supported by the loan. 

Measurement of benefits and costs often plays a role in debates about 
resource allocation even when there is no formal requirement to mea­
sure benefits and costs. For example, the study of prairie potholes by 
Hammack and Brown measured the unforeseen costs resulting from agri­
cultural practices that removed nesting grounds for migratory waterfowl. 
Unregulated farming practices regarded only the agricultural production 
from these wetlands. Measuring the economic gains from preserving wet­
lands required valuation methods, and the measures themselves helped 
in the public debate about converting wetlands to cultivation. 

Benefit estimation plays an important role in lawsuits to compensate 
the public for private actions that injure public resources. This is its 
essential role in CERCLA and the Oil Pollution Act. For example, the 
Oil Pollution Act states 

The valuation approach requires that truste es determine the 
amount of services that must be provided to produce the 
same value lost to the public. The approach relies on the 
idea that lost value can be determined using one of a va­
riety of possible units of exchange, including units of re­
source services or dollars. The valuation approach requires 
that the value of lost services be measured explicitly and that 
the compensatory restoration alternative provide services of 
equivalent value to the public. 

The practice of measuring benefits and costs extends back at least 
five decades. In the US, the Army Corps of Engineers has a long history 
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of measuring the costs and benefits of dams. The pressure to derive 
logically consistent measures is relentless. These measures have been 
applied to national parks, oil spills, acid rain, waiting time at hospitals, 
endangered species, sewer connections in developing countries, risk of 
disease, and many other areas. Methods are constantly being developed, 
refined, tested, rejected and revised. 

This book deals with the empirical issue s  that arise in the estimation 
and calculation of benefits for public goods, environmental amenities and 
natural resources. Researchers use two basic approaches for benefit esti­
mation: indirect or behavioral methods and direct or stated preferences 
methods. With behavioral methods, the researcher observes individual 
behavior in response to changes in public goods, and from this behavior 
attempts to infer the value of changes in public goods. Stated prefer­
ences is an omnibus name for a variety of approaches. The most preva­
lent is contingent valuation. Others include contingent ranking, contin­
gent choice and conjoint analysis. In the stated preferences approach, 
researchers pose contingent or hypothetical questions to respondents, 
inducing responses that trade off improvements in public goods and ser­
vices for money. From the responses, one can infer preferences for or the 
value of changes in public goods. 

The need for statistical inference and econometrics arises because in­
dividual actions, whether behavior that is observed in quasi-market set­
tings or responses to hypothetical questions, almost never reveal pre­
cisely the economic value that a researcher wishes to measure. Such 
data are typically two steps removed from measures of benefits or will­
ingness to pay. First one infers a preference function such as a utility 
function, or behavioral relation such as a demand function, and then 
one calculates benefit measures such as willingness to pay. Randomness 
enters through uncertainty about the nature of preference functions and 
via errors in estimation. 

Stated preference methods are a more recent development than be­
havioral methods. Economists initially viewed the former, especially in 
their contingent valuation form, as inferior to behavioral methods. The 
idea that one could learn about values except from what was revealed by 
behavior had seemed foreign to economists. However, in recent years, 
stated preference techniques have become more accepted. The debate 
about valuation by stated preferences is over, with the possible exception 
of its use in eliciting existence values. Contingent valuation has proved 
to be no less reliable than behavioral methods in a variety of tests. In 
an early example, Brookshire et al. (1982) showed that contingent valu­
ation and hedonic models yielded similar magnitudes for the willingness 
to pay for improvements in air quality in Los Angeles. In more recent 
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research, Carson, Flores, Martin and Wright (1996) assembled evidence 
that contingent valuation and behavioral methods gave similar results 
across a variety of environmental improvements. As Randall (1998) has 
argued persuasively, looking for a single test of the validity of stated 
preferences is a poor research strategy. Further, there is no good reason 
to accept behavioral methods as the truth in testing stated preferences 
versus behavioral methods. Stated preferences is a class of methods 
that is generally acceptable, and one wants to know for any particu­
lar application whether the method works. We are not concerned with 
whether stated preferences work better or worse than behavioral meth­
ods, or whether stated preferences measure true values, but given that 
one has chosen an approach, how the data should be handled to ensure 
defensible valuation estimates. 

This book covers the empirical methods for estimating benefits for 
non-market goods and services. These methods include contingent valu­
ation and the related approaches of stated preferences, travel cost mod­
els, random utility models, and discrete-continuous recreation demand 
models. Our purpose is to provide guidance to the solution of empirical 
problems that arise in the estimation and calculation of benefits. This 
guidance will stem from our reading of the consensus of researchers, 
when such a consensus has been achieved. In the absence of consensus, 
we will present the issues for making an informed judgement. The em­
phasis will be on the practical use of estimation techniques rather than 
the conceptually correct concepts that have less applicability in the rou­
tine estimation benefits. We have attempted to provide guidance for the 
most commonly used methods. 

1 .  2 The Theoretical Background 

In this section we provide a brief synopsis of the results of welfare eco­
nomics that are employed in the remainder of the book. This skeletal 
presentation of the basic welfare economics serves two purposes: it can 
guide the reader back to the literature when the concepts are not clear 
and it can satisfy the informed reader that the appropriate concepts are 
employed. More complete background in the welfare economics can be 
found in Fr eeman and in Just, Hueth and Schmitz. 

1 . 2. 1  The Value of Public Goods 

The idea of a potential Pareto improvement provides the rationale for 
public intervention to increase the efficiency of resource allocation. If 
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the sum of benefits from a public action, to whomever they may occur, 
exceeds the costs of the action, it is deemed worthwhile by this criterion. 
The sum of the benefits entails two kinds of information: knowledge of 
the individual benefits and a means of expanding the benefits to the 
relevant population. Econometric practice is typically applied to obtain 
individual benefits. Knowledge of the number of individuals who benefit, 
while not necessarily inferred from econometric work, is nevertheless an 
essential ingredient in determining the benefits. 

The process of benefit estimation begins with the desired measurement 
for an individual: the net change in income that is equivalent to or 
compensates for changes in the quantity or quality of public goods. The 
process is complete when the net income changes are expanded to the 
relevant population. The theory of measurement of net income changes 
for individuals is a well developed area. (See J ust, R ueth and Schmitz, 
or Freeman.) In this section we provide a brief survey of this theory as 
a basis for the estimation that follows. 

We begin with the preference function for an individual. (For the most 
part, we ignore the distinction between household and individual. See, 
however, the recent work by Smith and van Houtven.) Let u(x, q )  be the 
individual preference function, where x = x1 . . .  Xm is the vector of private 
goods, and q = q1 . . .  qn is the vector of public goods, which may also be 
characteristics of private goods. (Throughout the book, we use bold to 
denote vectors and matrices. If there is potential for misinterpretation, 
we sp ecify whether the vector is a row or column. ) The distinction 
between x and q rests on whether the individual controls the quantity, 
not whether there is a market. Individuals choose their x but their q is 
exogenous. For example, the individual chooses xi, how much water to 
draw from a tap; the public determines qj, the quality of the water. 

The x are assumed available at parametric prices, Pl , . . . ,pm = p, 
which may or may not be market-determined. The individual maximizes 
utility subject to income y. The indirect utility function, V(p, q , y) , is 
given by 

V(p, q , y) = max{u(x, q) IP · x:::; y} . X 

The minimum expenditure function m(p, q , u) is dual to the indirect 
utility function 

m(p, q , u) = min{p · xlu(x ,q) :::= u} . 
X 

The indirect utility and the expenditure function have well known prop­
erties. The derivative of the expenditure function with respect to price 
gives the Hicksian or utility-constant demand, where the subscript indi-
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cates a parti al deri vati ve: 

xf (p, q , u) = mp, (p, q , u) . 
The negati ve of the rati o of derivati ves of the i ndi rect uti li ty functi on 
wi th respect to pri ce and i ncome gives the Marshalli an or ordi nary de­
mand curve: 

Xi (P, q ,  y) = -Vp, (p, q , y)/Vy (P, q , y) . 

Further, when u(x, q) i s  i ncreasi ng and quasi -concave i n  q , m(p, q , u) i s  
decreasi ng and convex i n  q and V (p, q ,  y )  i s  i ncreasi ng and quasi -concave 
i n  q . 

The i ndi rect uti li ty functi on and the expendi ture functi on provi de 
the theoreti cal structure for welfare esti mati on. For stated preference 
approaches, one needs the changes i n  these functi ons. Conti ngent valua­
ti on can be vi ewed as a way of esti mati ng the change i n  the expendi ture 
functi on or the change i n  the i ndi rect uti li ty functi on. For pure pub­
li c goods, such as those provi di ng exi stence value, only the expendi ture 
functi ons or the i ndi rect uti li ty functi ons are relevant. There i s  no area 
under demand curves that corresponds to the change i n  the expendi ture 
functi on. For behavi oral methods, one needs a conceptual path from 
observati ons on behavior to these constructs. Behavi oral methods lead 
to areas under demand or margi nal value curves, or to i ndi rect uti li ty 
or expendi ture functi ons from whi ch welfare measures can be di rectly 
computed. 

There are two equally vali d ways of descri bing money welfare mea­
sures: one i s  wi th the i deas of compensati ng and equi valent vari ati on 
and the other i s  wi th the i deas of wi lli ngness to pay and wi lli ngness 
to accept. They measure the same phenomenon-the i ncrement i n  i n­
come that makes a person i ndi fferent to an exogenous change, where the 
change mi ght be pri ce change, a quali ty change, or a change i n  some 
publi c good. Wi lli ngness to pay i s  the maxi mum amount of i ncome a 
person wi ll pay i n  exchange for an i mprovement i n  ci rcumstances, or the 
maxi mum amount a person wi ll pay to avoi d a decli ne i n  ci rcumstances. 
Wi lli ngness to accept i s  the mi ni mum amount of i ncome a person wi ll 
accept for a decli ne i n  ci rcumstances, or the mi ni mum amount a person 
wi ll accept to forego an i mprovement i n  ci rcumstances. Compensat­
i ng vari ati on i s  the amount of i ncome pai d  or recei ved that leaves the 
person at the i ni ti al level of well- bei ng, and equi valent vari ati on i s  the 
amount of i ncome pai d or recei ved that leaves the person at the final 
level of well-bei ng. Wi lli ngness to pay and willi ngness to accept relate 
to the ri ght to a uti li ty level, as i mpli ed by thei r nomenclature. When 
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one is required to pay to maintain current well- being or achieve a higher 
well-being, the right to that level of well-being lies elsewhere. When one 
must be paid to accept a worse situation, the right to the current level of 
well-being adheres to the individual who accepts payment . Equivalent 
and compensating variation rely on the initial versus final well-being 
for their distinction. Compensating variation decomposes in the follow­
ing way: when the final well-being is worse than the initial well-being, 
it is willingness to accept but when the final well-being is better than 
the initial well-being, it is willingness to pay. Equivalent variation is 
just the opposite: willingness to accept for situations where well-being 
is improved and willingness to pay when well- being declines. 

The relationship is shown in Table 1 . 1 .  Although the definitions are 

TABLE 1 . 1 .  The Relationships among CV, EV, WTP and WTA 

Utility Increases 
Utility Decreases 

Equivalent Variation 
WTA 
WTP 

Compensating Variation 
WTP 
WTA 

fully consistent, and the variation ideas older, recent practice has tended 
to adopt the willingness to pay and willingness to accept terms, chiefly 
because contingent valuation surveys have used this language. (Hane­
mann ( 1999a) has explored the topics of WT A and WT P at length, 
though his conclusions about the use of the concepts differ from ours 
somewhat. )  We begin by defining these more intuitive measures. We 
based the definitions on changes in q , though we could equally well 
change p. For an individual, willingness to pay (WT P) is the amount 
of income that compensates for (or is equivalent to) an increase in the 
public good: 

V(p,q* , y - WTP) = V(p,q , y) ( 1 . 1) 

when q * 2 q and increases in q are desirable ( [JV I oqi > 0). The changes 
in p can be valued by evaluating the indirect utility function at a new 
price vector p* . We can also define willingness to pay with the expen­
diture function: 

WTP = m(p,q , u) - m(p,q * , u) when u = V(p, q , y) (1 .2) 

and assuming that we start at the same place, y = m(p, q ,  u) . Willing­
ness to pay is the amount of income an individual would give up to make 
him indifferent between the original state: income at y and the public 
good at q and the revised state: income reduced to y - WT P and the 
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public good increased to q* . The WT P for a price change (let the price 
vector decline) is defined analogously: 

WTP = m(p,q , u) - m(p* ,q , u) when u = V(p, q , y) .  (1 .3 ) 

Willingness to  accept (WT A)  is the change in  income that makes an 
individual indifferent between two situations: the original public good q ,  
but income at y + WT A and the new level of the public good, q * ,  but 
income at y. It is defined implicitly in the following equality: 

V(p,q , y  + WTA) = V(p,q* , y) .  (1 .4) 

It is given explicitly by the expenditure function: 

WT A = m(p, q ,  u*) - m(p, q * ,  u*) (1 .5) 

where u* = V(p,q * , y) .  By this definition, WTA;::: 0 when q* ;::: q. 
The definitions of WT P and WT A correspond to the positive parts of 
the Hicksian measures. As Table 1 . 1  shows, WT P is the positive part 
of equivalent variation and WT A is the positive part of compensating 
variation. In practice below, we will calculate welfare measures as only 
willingness to pay. These measures will sometimes be negative, meaning 
that this is the amount that the individual would pay to prevent the 
proposed change. A positive WT P measure has the standard meaning 
of the willingness to pay rather than go without the change. 

1 . 2. 2 Willingness to Pay versus Willingness to Accept 

There is a well known empirical anomaly that has persisted over roughly 
three decades of experimental and contingent valuation research. It is 
common to find that for the same goods in the same setting, WT A ex­
ceeds WT P by an amount that seems intuitively far too much even for 
goods and services with quite small nominal values. In a summary of 45 
studies, Horowitz and McConnell find the mean ratio of WT A to WT P 
to exceed 5. The anomaly is accentuated by the empirical results ob­
tained from behavioral models, where one typically finds no meaningful 
difference between willingness to pay and willingness to accept. 

Two explanations have been offered for the experimental finding. The 
first exploits a psychological model such as prospect theory or loss aver­
sion in which individuals base their decisions on the net change relative 
to the status quo, not on their well-being before and after a change. This 
explanation abandons the neoclassical utility function as a basis of choice 
and posits the difference between willingness to pay and willingness to 
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accept as an attribute of preferences. The alternative, based on the 
neoclassical utility function and articulated most clearly by Hanemann 
(1991) ,  explains the difference between willingness to accept and will­
ingness to pay as the inability to substitute between public and private 
goods. This explanation may work for many public goods but does not 
seem to account for the divergence between WT A and WT P for such 
mundane goods as mugs and pens. Further, there is field evidence that 
the divergence declines as respondents become familiar with the process. 
List (2001) has ongoing field experiments that reach this conclusion. 

Regardless of the explanations of the anomaly, we will emphasize the 
role of willingness to pay and for the most part, ignore willingness to 
accept. Several factors motivate this decision. First, the absence of 
evidence of differences between WT A and WT P from behavioral meth­
ods, despite several decades of looking, lends support to the choice of 
WT P. Second, there is widespread belief that stated preference ap­
proaches cannot be used to measure willingness to accept because they 
are not incentive-compatible for this measure. Related support for the 
role of WT P comes from the NOAA Blue Ribbon Panel on contingent 
valuation, which recommends that researchers measure willingness to 
pay, not willingness to accept. Consequently, circumstances suggest that 
with behavioral methods, one cannot find differences between willingness 
to accept and willingness to pay, and that stated preference measures 
cannot or should not be used to measure willingness to accept. The 
reasonable path, at least where the focus is on empirical methods, is to 
concentrate on willingness to pay. 

While for most valuation issues, the changes in services are by them­
selves small enough for researchers to work with willingness to pay, one 
must avoid the temptation to think that this is always the case. In some 
individual cases, when the change from public goods or natural resources 
causes a large change in services, there may well be a difference between 
WT P and WT A. The Brookshire et al. (1985) hedonic model of earth­
quake insurance is a good example of this, because in some outcomes, 
there could be quite large differences in utility. And in very poor coun­
tries, changes in access to natural resources can induce large changes in 
income, and lead to substantial differences in WT A and WT P. 

The decision to focus on willingness to pay is a compromise, reflecting 
the unsettled state of research. But it leaves an asymmetry in the the­
oretical constructs for behavioral and stated preference approaches. In 
behavioral approaches, empirical evidence supports the idea that will­
ingness to pay equals willingness to accept, and so the logical next step 
is to adopt the most observable measure, consumer surplus. This we 
will do, and call it willingness to pay. 
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1 . 3  Theoretical Support for Behavioral Methods 

The theoretical expressions defining willingness to pay (equations 1 . 1 
and 1 .2) and willingness to accept (1 .4) are very general. They require 
only that individuals have preferences over x and q. We have assumed 
that utility is increasing in q, but it is easy to modify the theory to ac­
count for a q (such as pollution) that reduces utility. It is not necessary 
to know how behavior adjusts to apply contingent valuation, although 
most changes in q would cause people to adjust their behavior. For 
example, a decrease in pathogens in drinking water might reduce illness 
and decrease both losses in work and time spent boiling water. Some­
times changes in q cause no meaningful adjustment in behavior. For 
example, the planting of wildflowers in median strips of highways seems 
likely to induce only the slightest adjustment in driving. Yet the flowers 
themselves could be valued via stated preference approaches. (For exam­
ple, see Smith 1996.) Whether q represents wil dflowers in median strips 
or pathogens in drinking water, the theoretical constructs in equations 
( 1 . 1) and (1 .2) provide a basis of measurement that is sufficient support 
for stated preference approaches. 

However , when behavioral methods are used, it is necessary to trace 
the influence of the public good on behavior, and behavior on welfare. 
For this tracing, one must impose some structure on the preference func­
tion. There are two types of changes that lead to welfare measures: price 
changes and quality changes. Each requires some kind of restrictions. 
For price changes, we assume that the approximate measure from a Mar­
shallian demand curve equals the more exact Hicksian measure. The 
principal restriction for quality is weak complementarity, an assump­
tion about an individual' s preference function that permits the value of 
changes in public goods to be traced to private behavior. The intuitive 
content of weak complementarity links a private good and a public good 
such that, if the private good is not consumed, then the public good is 
not valued. For a detailed explanation of weak co mplementarity and its 
implications, see Smith and Banzhaf. 

To develop the theoretical basis of weak complementarity, partition 
x into x1, x_1 where x1 is the purchase of a private good and x_1 the 
remainder of the private goods, and suppose that q is a scalar. (When 
there are several commodities in the partition being analyzed, one must 
be concerned with the conditions for integrability of the incomplete sys­
tem. For the most part in this book, we will not deal with such systems. 
But see LaFrance and von Haefen for more details.) Let the price of x1 
be p and the prices of x_1 be a vector of ones. (In a slight abuse of 
notation, we now let V(p, q, y) be the indirect utility function with all 
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other prices set to  one, and m(p, q, u )  as the corresponding expenditure 
function. ) The Marshallian demand for x1, the quantity that would be 
observed, is given by Roy's identity: 

x1(p, q, y) = -Vp(p, q, y)jVy(p, q, y) ( 1.6) 

when the subscripts on the indirect utility function denote partial deriv­
atives. The Hicksian (or utility-constant) demand can be derived via the 
envelope theorem from the expenditure function: 

xf(p, q, u) = mp(p, q, u) . (1. 7) 

Let p* be the minimum price that induces zero consumption-the choke 
price: 

xf(p*, q, u) = 0. 

Then there are three equivalent ways to define weak complementarity: 

8m(p*, q, u)jaq 0 

8V (p*, q, y)j8q 0 

au(O, x-1, q)faq o. 

The first two expressions state that the expenditure function and the 
indirect utility function are constant with respect to q if th e price is so 
high that x1 is not co nsumed. The third states that direct utility does 
not change when q changes if x1 equals zero. Each makes intuitive sense. 
Suppose that x1 is drinking water from a river and q is the number 
of pathogen-free days in the river water. Then weak complementarity 
implies that the individual does not care about pathogens in the river 
when he does not drink water from the river. This is a meaningful 
restriction, because there are at least two other ways of getting utility 
from the river: swimming in the river or the altruistic value of others' 
use of the river. 

Weak complementarity implies that the value of (or willingness to pay 
for) changes in the public good equals the change in the value of access 
to the private good. By definition, the willingness to pay for a change 
in a public good is given by equation (1.2): 

WTP = m(p, q, u)- m(p, q*, u) . 

To demonstrate weak complementarity, suppose we have estimated the 
Hicksian or utility-constant demand x]'(p, q, u) = mp(p, q, u). The value 
of access to this good (an individual's willingness to pay for the right to 
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consume, given p, q, and u) is the area under the demand curve from 
the current price p to the choke price p*: 

WT P( access) 1
p* 

1
p* 

P 
xf(p' , q , u)dp' = 

P 
mp(p' , q , u)dp' (1 .8) 

m(p*, q, u) - m(p, q, u) . 

In some cases, this measure holds interest in itself. That is, one could 
seek to measure the willingness to pay for access to a public good such 
as a natural resource, where an individual must spend part of his income 
to obtain access. Researchers frequently measure willingness to pay for 
access to a recreational resource, because policy decisions may entail 
an ali -or-nothing choice between recreational and competing uses of the 
resource. 

In practice, one observes the income-constant demand curve, not the 
utility-constant demand curve, and so it is relevant to ask the connec­
tion between the two measures. Is the consumer surplus, that is, the 
area under an income-constant demand curve, substantially different 
from the area under utility constant demand curve over the same price 
change? There are three ways to address the question. The first, an 
inexact but relevant response, comes from Willig (1976) , who demon­
strates that for price changes the difference between the areas under a 
Marshallian (income-constant) and Hicksian (utility-constant) demand 
curve can be approximated with knowledge of the budget share of the 
good, the income elasticity, and the consumer surplus: 

CV - C S ryCS C S- EV 
cs � � � cs 

where ry is the income elasticity, CV is compensating variation, C S is 
consumer surplus-the area under the Marshallian demand curve, and 
EV is equivalent variation. (See J ust, Hueth and Schmitz, p. 378.) For 
recreational cases, the deviations are quite small, certainly smaller than 
the many kinds of measurement errors that confound econometric analy­
sis. For example, an income elasticity of 0.5, consumer surplus estimate 
of 200, and an income of 20000 would create a deviation of 0.0025. 
This means that we could approximate CV by (1 .0025)CS, quite an 
acceptable approximation. 

Hanemann (1980) and Hausman (1981) provide a second means to 
answer the question: use information in the Marshallian demand curve 
to derive the Hicksian demand curve. Essentially one ' integrates back' 
from the Marshallian to the expenditure function, and then uses the 
Hicksian demand curve to calculate the appropriate area. Integrating 
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back is enabled by recognizing that along an indifference curve utility is 
constant, so that (holding q constant) :  

8V(p, q , y) dp + 8V(p, q ,  y) dy = O. 
ap dt ay dt (1 .9) 

Using the implicit function theorem yields �� -;- �� = �� or expressed in 
terms of the expenditure function, �-;- 9;}f = �;. Using these relation­
ships when solving eq uation (1 .9) gives 

dm __ 8V(p, q, y)
/
8V(p, q , y) _ ( ) dp - ap ay 

- XI p, q, y 0 
The right hand side is the Marshallian demand curve. When we let 
income equal expenditure (m = y) ,  we recognize this as a first order 
differential eq uation. This eq uation can be solved when xi (p, q ,  y) is 
given suitable functional form. Subseq uent work using the integrating 
back has failed to reveal noteworthy differences between the areas under 
the Hicksian and Marshallian demand curves. The Hanemann-Hausman 
approach req uires that one specify a Marshallian demand curve that can 
be integrated back. This effectively excludes some flexible forms. 

But in the third approach, Vartia provides a numerical method that 
allows one to compute the Hicksian area given any Marshallian demand 
curve. Essentially these careful investigations have made researchers 
more comfortable in using the areas under Marshallian demand curves 
as close approximations of the more exact areas under Hicksian demand 
curves. At least for applications to the demand for recreation, the budget 
shares are small and the income elasticities are low, making the Willig 
bounds q uite tight. 

The preference restrictions for using behavioral models to measure 
the welfare effects of q uality changes are more severe than for price 
changes, but equally plausible. To employ weak complementarity, we 
ask the willingness to pay for access to XI changes when q changes. 
Suppose q increases to q* . The increase in willingness to pay for access 
IS 

1p* x¥(p' , q* , u)dp' -1p* x¥(p' , q , u)dp'. ( 1 . 10) 

This is of course just the change in the area under the utility-constant 
demand curve. Because such demand curves are derivatives of the ex­
penditure function with respect to price, by integrating we can express 
this change as 

m(p* , q* , u)- m(p, q* , u)- [m(p* , q, u) - m(p, q, u)] .  ( 1 . 11 ) 
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Weak complementarity implies that m(p* , q* , u) = m(p* , q, u) .  With a 
price of p* or higher, changes in q don' t shift the expenditure function. 
Combining equations (1 .8) , (1 . 10) and (1 . 11 )  leads to the weak comple­
mentarity result: 

lp* x�(p' , q* , u)dp' - lp* x�(p' , q, u)dp' = m(p, q , u) - m(p, q* , u) .  

( 1 . 12) 
The change in the willingness to pay for access to the private good equals 
the willingness to pay for changes in the public good. Weak complemen­
tarity offers a way of measuring willingness to pay for changes in public 
goods by estimating the demand for private goods. Note that the left 
hand side of equation (1 . 12) can be represented graphically as the change 
in areas under two demand curves. 

The development of the theoretical implications of weak complemen­
tarity assumes the knowledge of a utility-constant demand function. 
Naturally if such demand curves are availabl e, then the exact analy­
sis can be carried out. Typically, one observes only income-constant 
demand curves. One might be tempted to reason that if the area under 
a utility-constant demand curve can be approximated by the area under 
a Marshallian demand curve, then one can simply approximate twice, 
using the result in equation (1 .12) . This, however, is not true. The rea­
soning is as follows. To approximate a Hicksian area with a Marshallian 
area, both demand curves must start at the same price, quantity point, 
which they do before the quality change. However , after the quality 
change, the demands are no longer equal at the given price, unless the 
income effect is zero. 1 Once again, practice has demonstrated that the 
income effects are not big enough to create a wedge between the Hick­
sian and Marshallian areas for quality changes, despite the potential for 
differences based on duality results. 

The role of exact measures is critical when there is a difference be­
tween willingness to pay and willingness to accept. In such cases, initial 
endowments and entitlements can influence resource allocation. When 
there is negligible difference between willingness to pay and willingness 
to accept, the exact measures lose their significance. However, since we 
have limited our analysis to willingness to pay for stated choice meth­
ods, we can likewise dispense with the distinction between willingness to 
pay, willingness to accept and consumer surplus for behavioral methods. 
This modus operandi implies that we can work with the Marshallian, 
or income-constant demand curve, and calcul ate changes in the value 

1 See Bockstael and McConnell for the full analysis of this idea. 
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of access from this demand function. Empirical evidence strongly sup­
ports the idea that willingness to pay and consumer surplus differ by 
negligible amounts. However, if the circumstances suggest that there 
is a substantial difference between WT A and WT P, then one can use 
numerical methods such as Vartia's algorithm to obtain utility-constant 
demand curves and WT A and WT P. 

The assumption of weak complementarity has the added virtue of 
helping determine the extent of the market as well as characterizing the 
path from behavior to welfare effects of public goods. Extent of market 
describes a means of thinking about the number of people who would 
be willing to pay for changes in the public good. The total benefits of 
improvements of the public good are the sum across individuals with 
positive willingness to pay. The extent of the market defines households 
who may have positive willingness to pay. And when positive willingness 
to pay requires some use, the extent of the market is limited to users. 
This contrasts with valuation not necessarily connected with use. In this 
case, the extent of the market may be more difficult to determine. 

Weak complementarity, while an important assumption for behavioral 
analysis, cannot be tested with behavioral data. The assumption of weak 
complementarity would be violated if one of the three conditions could 
be proved wrong. But because the three conditions req uire stationarity 
of a value function when there is no relevant behavior, they are typically 
not testable. Especially when the relationship between the public and 
private good is limited for practical purposes to only one private good, 
there is no empirical test based on behavior of the assumption that when 
the private good is zero, changes in the public good are not valued. 
Instead, weak complementarity should be thought of as an assumption 
that makes sense in some cases but not in others. 

1 . 4  Conclusions 

There is sufficient theoretical support for the task of measuring the eco­
nomic value of non-market resources. This theory is q uite general but 
provides support for stated preference and behavioral approaches to non­
market valuation. The theory seems to imply a straightforward approach 
to valuation. However, most applications involve creative blending of 
theory with the practical problems of the immediate application. In the 
remainder of the book we engage the issues that emerge when researchers 
build the empirical models that form the basis for welfare measurement. 
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Parametric Models for 
Contingent Valuation 

2 . 1  Introduction 

In this chapter we describe the basic econometric models for responses 
to dichotomous contingent valuation (CV) questions. CV is a method 
of recovering information about preferences or willingness to pay from 
direct questions. The purpose of contingent valuation is to estimate in­
dividual willingness to pay for changes in the quantity or quality of 
goods or services, as well as the effect of covariates on willingness to 
pay. Although economists were slow to adopt the general approach of 
CV, the method is now ubiquitous. It is used on virtually any kind of 
public good or service imaginable. J ournals are filled with papers on 
CV. Carson (forthcoming) has an extensive bibliography and history 
of CV. This chapter considers parametric models of the standard dis­
crete response of CV. Chapter 3 explains the use of distribution-free 
models for analyzing CV data. Chapter 4 deals with the statistical dis­
tribution of willingness to pay estimates, while Chapter 5 investigates 
some more specialized topics that arise in the application of parametric 
models. The general approach of conjoint analysis and attribute-based 
stated preferences, covered in detail in Louviere, Hensher and Swait, is 
addressed briefly in Chapter 10. 

The lure of providing numerical results not otherwise available over­
came economists' reluctance to rely on evidence not backed by behavior, 
and hence accounts for the growth of CV. Certain classes of goods or 
services cannot be valued with behavioral methods under any circum­
stances. Passive use value, also known as existence value or non-use 
value, is the willingness to pay for the preservation or improvement of 
natural resources, without any prospect or intention of direct or in-situ 
use of the resource. Such values cannot be recovered with behavioral 
methods because by definition they do not motivate behavior and hence 
have no underlying demand curves. Even when demand curves exist in 
principle, CV methods may provide the only hope for valuing certain 
services. For example, the willingness to pay for improved water quality 
in a lake that has a long history of severe pollution probably cannot 
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be estimated with behavioral methods because the lake may not have 
had any previous use. Contingent valuation offers great flexibility com­
pared with behavioral methods. For example, the value of a government 
program to provide malaria control for children of different ages in a 
developing country is amenable to CV analysis, but would require con­
siderable resources for estimation via behavioral methods. 

The essential and most important task of CV analysis is the design of 
questionnaires and survey procedure. It is worth stating the obvious: no 
amount of careful data handling and econometric analysis can overcome 
a poorly designed questionnaire. Mitchell and Carson1 provide a thor­
ough analysis of the process and issues in the development of question­
naires and sampling. A CV question asks a respondent about monetary 
valuation of a service that is meaningful to the respondent. The service 
must be limited geographically and temporally and be defined in terms 
of characteristics that can reasonably enter a respondent 's preference 
function. For example if studying willingness to pay to avoid exposure 
to PCBs, the service should be described in terms of health risk com­
monly understood by the general public, not ambient concentrations of 
PCBs. The second element of the CV question is the method, or vehicle, 
for paying for the service that links the payment with the service such 
that without the payment , there would be no service. A common and 
natural method is to link public good services with tax payments, but 
other methods, such as payments on utility bills, are used. Acceptable 
vehicles provide a clear link, one that implies the necessity of payment 
to receive the service. Further, the time dimension of the payment must 
not be ambiguous. An immediate, one shot increase in taxes is clear 
while an increase in a periodic payment is open to several interpreta­
tions. Questions that rely on voluntary contributions are fraught with 
difficulty, because of the implicit free-riding problem. 

The final element of a CV scenario is the method of asking questions. 
This part of the questionnaire confronts the respondent with a given 
monetary amount, and one way or the other induces a response. This 
has evolved from the simple open-ended question of early studies such as 
'What is the max imum amount you would pay for. . .  ?' through bidding 
games and payment cards to dichotomous choice questions, which are 
the subject of this chapter. The literature on CV is replete with terms 
for survey practice and econometrics. Here are the basic approaches 
to asking questions that lead directly to willingness to pay or provide 

1 Mitchell and Carson ( 1989) . This book is an invaluable source for contingent val­
uation. A more recent, updated, but abbreviated companion to contingent valuation 
is Carson (2000) .  
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information to estimate preferences. 

Open Ended CV: A CV question in which the respondent is asked to 
provide the interviewer with a point estimate of his or her willing­
ness to pay. 

Bidding Game: A CV question format in which individuals are it­
eratively asked whether they would be willing to pay a certain 
amount. The amounts are raised (lowered) depending on whether 
the respondent was (was not) willing to pay the previously offered 
amount . The bidding stops when the iterations have converged to 
a point estimate of willingness to pay. 

Payment Cards: A CV question format in which individuals are asked 
to choose a willingness to pay point estimate (or a range of esti­
mates) from a list of values predetermined by the surveyors, and 
shown to the respondent on a card. 

Dichotomous or Discrete Choice CV: A CV question format in which 
respondents are asked simple yes or no questions of the stylized 
form: Would you be willing to pay $t? 

The dichotomous choice approach has become the presumptive method 
of elicitation for CV practitioners. The other three methods have been 
shown to suffer from incentive compatibility problems in which survey 
respondents can influence potential outcomes by revealing values other 
than their true willingness to pay. The dichotomous choice approach 
has become quite widely adopted, despite criticisms and doubts, in part 
because it appears to be incentive-compatible in theory.2 When respon­
dents do not give a direct estimate of their willingness to pay, they have 
diminished ability to influence the aggregate outcome. This gain in 
incentive compatibility comes at a cost however. Estimates of willing­
ness to pay are not directly revealed by respondents and as such, it is 
necessary to develop means for analyzing dichotomous choice responses. 
These methods are the focus of this and subsequent chapters. 

To execute the dichotomous choice approach, the researcher provides 
the respondent with a payment that must be made. Hence the payments, 
or bid prices, are an important part of the survey design. In this chapter 
we assume that the bid prices are given. In Chapter 5, we take up the 

2 For a debate on the incentive compatibility of dichotomous choice CV questions 
see Cummings et al. ( 1 997) ; Haab, Huang and Whitehead (1999) and Smith ( 1999) . 
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more difficult problem of choosing these prices. The design of good 
questionnaires is a skill learned from experience but requires expertise 
in survey research. Economists have learned that other social sciences, 
social psychology and sociology, frequently are better prepared for the 
design of questionnaires and survey procedures. 

A lingering controversy is whether CV provides reliable estimates for 
passive use value. This controversy stems in part from the damage set­
tlement for the Exxon Valdez oil spill. State and federal trustees of 
natural resources sued Exxon for damages to the resources. The state 
settled for damages of approximately $1 billion. This damage settlement 
was supported by a CV study of the passive use values of Alaskan nat­
ural resources.3 The size of the settlement spawned a lengthy debate 
about CV, especially its role in estimating passive use values. The initial 
debate about passive use values centered around a conflict in a simple 
version of the scientific method. Valid scientific conclusions require some 
means of disproof. A CV study that estimates the value of clean air in 
Los Angeles can in principle be disproved by a combination of behav­
ioral studies. But a CV study that estimates willingness to pay for 
preserving pristine wilderness for its own sake is not subject to disproof, 
at least through behavioral means. There are no behavioral implica­
tions of passive use value, and hence no alternative means to disprove 
CV. The basic scientific issue has not disappeared, but more knowledge 
of and confidence in the method have dampened the controversy. And 
of course, research with behavioral methods has turned out to be not 
more disprovable than CV, in large part because of the extensive se­
ries of assumptions and judgments that must be made to use behavioral 
functions. 

One consequence of the Exxon Valdez controversy was an attempt to 
determine the validity of the CV method, especially applied to non-use 
values. A series of studies critical of the method was edited by Haus­
man (1993) . This was followed by the so-called Blue Ribbon Panel. 
This group, assembled by the National Oceanic and Atmospheric Ad­
ministration (NOAA) , did not finally resolve the question of whether CV 
can be reliably used to estimate passive use values. But it performed a 
far more valuable task in essentially establishing good practices for CV. 
These practices, which almost constitute a protocol, should be carefully 
considered for every CV study. Not all of the guidelines have proved 
to be essential, but the presence of the guidelines has helped unify the 
practice of contingent valuation. 

3 See Carson, Mitchell et al. ( 1992) .  
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2. 1 . 1  NOAA Panel Guidelines for Value Elicitation 
Surveys 

The following guidelines4 are met by the best CV surveys and need to 
be present in order to assure reliability and usefulness of the information 
that is obtained. The guidelines are designed for contingent valuation 
questions to be posed after an oil spill. All parts are obviously not 
relevant for all CV settings, but the general sense of careful and thorough 
survey design and testing is relevant . 

1 .  Conservative Design: Generally, when aspects of the survey design 
and the analysis of the responses are ambiguous, the option that 
tends to underestimate willingness to pay is preferred. A conserv­
ative design increases the reliability of the estimate by eliminating 
extreme responses that can enlarge estimated values wildly and 
implausibly. 

2. Elicitation Format: The willingness to pay format should be used 
instead of the compensation required because the former is the 
conservative choice. 

3. Referendum Format: The valuation question should be posed as a 
vote on a referendum. 

4. Accurate Description of the Program or Policy: Adequate infor­
mation must be provided to respondents about the environmental 
program that is offered. It must be defined in a way that is relevant 
to damage assessment. 

5. Pretesting of Photographs: The effects of photographs on subjects 
must be carefully explored. 

6. Reminder of Substitute Commodities: Respondents must be re­
minded of substitute commodities, such as other comparable nat­
ural resources or the future state of the same natural resource. 
This reminder should be introduced forcefully and directly prior 
to the main valuation question to assure that respondents have the 
alternatives clearly in mind. 

7. Adequate Time Lapse from the Accident: The survey must be 
conducted at a time sufficiently distant from the date of the en­
vironmental insult that respondents regard the scenario of com­
plete restoration as plausible. Questions should be included to 

4 Fedeml Reg£steT, 58 ( 10) , 4601-14 January 15 ,  1993. 
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determine the state of subjects' beliefs regarding restoration prob­
abilities. This guideline is especially relevant for natural resource 
accidents but may not be relevant for many other more mundane 
types of studies. 

8. Temporal Averaging: Time dependent measurement noise should 
be reduced by averaging across independently drawn samples taken 
at different points in time. A clear and substantial time trend in 
the responses would cast doubt on the 'reliability' of the finding. 
This guideline pertains to natural resource accidents that have a 
high public awareness, such as oil spills. 

9. 'No-answer' Option: A 'no-answer' option should be explicitly al­
lowed in addition to the 'yes' and 'no' vote options on the main 
valuation (referendum) q uestion. Respondents who choose the 'no­
answer' option should be asked to explain their choice. Answers 
should be carefully coded to show the types of responses, for ex­
ample: (i) Rough indifference between a yes and a no vote; (ii) 
inability to make a decision without more time and more infor­
mation; (iii) preference for some other mechanism for making this 
decision; and (iv) bored by this survey and anxious to end it as 
q uickly as possible. Subsequent research has concluded that 'no­
answer' responses are best grouped as 'no' . 

16. Yes/no Follow-ups: Yes and no responses should be followed up 
by the open-ended q uestion: 'Why did you vote yes/no?' Answers 
should be carefully coded to show the types of responses, for ex­
ample: (i) It is (or isn' t) worth it ; (ii) Don't know; or (iii) The 
polluters should pay. 

1 1 .  Cross-tabulations: The survey should include a variety of other 
q uestions that help to interpret the responses to the primary valu­
ation q uestion. The final report should include summaries of will­
ingness to pay broken down by these categories. Among the items 
that would be helpful in interpreting the responses are: Income, 
Prior Knowledge of the Site, Prior Interest in the Site (Visitation 
Rates) , Attitudes toward the Environment , Attitudes toward Big 
Business, Distance to the Site, Understanding of the Task, Belief 
in the Scenarios, Ability /Willingness to Perform the Task. 

12. Checks on Understanding and Acceptance: The above guidelines 
must be satisfied without making the instrument so complex that 
it poses tasks that are beyond the ability or interest level of many 
participants. 



 

22 Valuing Environmental and Natural Resources 

Some of these guidelines, such as photos, adequate time lapse, etc . ,  
pertain to specific kinds of natural resource damages such as oil spills. 
But the general idea here is that one invests a substantial portion of 
one's research resources in the development of a survey instrument. And 
much of this development involves iterative revisions of questions with 
feedback from potential respondents. These guidelines were also supple­
mented by additional criteria for a good survey. One prominent criterion 
was the testing for scope effects. The idea is that a good survey will show 
that respondents are sensitive to significant and substantive differences 
in the public good. A split sample, in which different respondents are 
offered different amounts of public good, should be used to demonstrate 
scope effects. 

Example 1 Carson, Hanemann et al. (1994}' 

We illustrate the nature of a CV dichotomous choice question from 
a natural resource damage case in which trustees of marine resources 
in Southern California sued principal responsible parties for damages 
from the deposition of PCB and DDT in the Southern California bight. 
Chemicals were deposited on the ocean floor off the coast of Los Angeles 
through several outfall pipes. Very few of the thousands of CV studies 
have been carried out under the stringent control of this study. In-person 
interviews were conducted with residents of California, and the survey 
was carefully designed to comply with the NOAA guidelines. The instru­
ment includes maps and cards for illustrating different points. After an 
extensive explanation of the problem, which included reproductive dif­
ficulties with two species of fish, the instrument provides a solution in 
the form of four feet of clean sediment that would render harmless the 
residual PCBs and DDTs. This is called a speed-up program because 
it speeds up the natural process of sedimentation. Then the respondent 
is given the CV question. Here is one version of the question. It gives 
the nature of the question but not the very rich context of the interview 
(Carson, Hanemann et al. 1994, Volume II, Appendix A, pp. 15-16) . 

I mentioned earlier that the State has asked people about 
various types of new programs. We are now interviewing 
people to find out how they would vote if this program was 
on the ballot in a California election. Here's how it would 

5 See Carson, Hanemann, Kopp, Krosnick, Mitchell, Presser, Ruud and Smith 
'Prospective Interim Lost Use Value due to DDT and PCB Contamination of the 
Southern California Bight', Volumes I and II, National Oceanic and Atmospheric 
Administration, September 30, 1994. 
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be paid for. California taxpayers would pay a one time addi­
tional amount on their next year's state income tax to cover 
the cost. This is the only payment that would be required. It 
would go into a special fund that could only be used for the 
program to cover the contaminated sediment. The program 
would only be carried out if people are willing to pay this one 
time additional tax. There are reasons why you might vote 
for the speed-up program and reasons why you might vote 
against. The speed-up program would make it possible for 
the two fish species to reproduce normally in the place near 
Los Angeles 10 years earlier than if natural processes take 
their course. On the other hand, this deposit does not harm 
humans and the two fish species will recover anyway in 15  
years. Your household might prefer to spend the money to 
solve other social and environmental problems instead. Or, 
the program costs more money than your household wants 
to spend for this. At present , the program to speed up the 
covering of the contaminated sediments is estimated to cost 
your household a total of $80. Your household would pay 
this as a special one time tax added to next year's California 
income tax . If an election were being held today and the to­
tal cost to your household would be a one time additional tax 
of $80, would you vote for the program to speed up recovery 
or would you vote against it? 

23 

The respondent is given the option of voting for , against, or being 
uncertain. The yes-no response and the required payment, as well as 
questionnaire and individual, form one observation in a CV study. 

2 .2  Parametric Models for Dichotomous Choice 
Questions 

The goal of estimating parametric models from dichotomous choice CV 
responses is to calculate willingness to pay for the services described. In 
addition, parametric models allow for the incorporation of respondent 
characteristics into the willingness to pay functions. Understanding how 
willingness to pay responds to individual characteristics allows the re­
searcher to gain information on the validity and reliability of the CV 
method, and to extrapolate sample responses to more general popula­
tions. Further, a richer set of explanatory variables that conforms with 
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expectations makes the contingent valuation application more convinc­
ing. There are two distinct but linked parts to the task of estimating 
parametric models for dichotomous choice contingent valuation ques­
tions: estimating the part of the preference function that allows the cal­
culation of willingness to pay, and calculating willingness to pay given 
the estimated parameters. 

We first take up the task of parameter estimation, utilizing the random 
utility model. Estimating parametric models is not a necessary step in 
the calculation of willingness to pay. We show how to calculate non­
parametric estimates of willingness to pay in Chapter 3. The desire to 
estimate covariate effects on dichotomous responses reflects a natural 
interest in learning more about the influence of these covariates. Part of 
the impetus for covariate effects stems from testing CV. For example, 
testing for scope, price, income and other socioeconomic effects helps 
describe behavioral or preference tendencies that make intuitive sense. In 
their Exxon Valdez study, Carson, Mitchell et al. (1992) show the effects 
of fourteen socioeconomic variables on the response. Covariate effects 
sometimes help with benefit transfers because response tendencies can be 
adjusted to different populations and local conditions by estimating the 
probability of yes as a function of exogenous variables. It is not necessary 
to estimate covariate models to expand a sample mean to a population. 
But models with covariates can facilitate the expansion of a sample to 
a population if the sample is not representative of the population in a 
way that can be corrected by exogenous variables. The downside of 
parametric models lies in the risk of misspecification. If the estimated 
model differs radically from the true-but-unobservable model, then the 
covariate effects can be wrong in magnitude and size, and hypothesis 
tests will not be valid. 

2. 2. 1 The Random Utility Model 

The basic model for analyzing dichotomous CV responses is the ran­
dom utility model. Although Bishop and Heberlein employed a dichoto­
mous question for CV responses , Hanemann (1984) constructed the basic 
model. Utilizing the random utility framework that McFadden6 had de­
veloped, Hanemann rationalized responses to dichotomous CV questions, 
putting them in a framework that allows parameters to be estimated and 
interpreted. In the CV case, there are two choices or alternatives, so 

6 McFadden's work on the random utility model is published in a series of papers 
and books. See, for example, McFadden ( 1974) .  
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that indirect utility for respondent j can be written 

(2 .1 )  

where i = 1 is the state or condition that prevails when the CV program 
is implemented, that is, the final state, and i = 0 for the status quo. The 
determinants of utility are Yj, the jth respondent' s discretionary income, 
Zj, an m-dimensional vector of household characteristics and attributes 
of the choice, including questionnaire variations, and Eij, a component 
of preferences known to the individual respondent but not observed by 
the researcher. The Uij = ui(Yj, Zj, Eij ) function is written with only the 
subscript indicator i and the random component of preferences changing. 
All we know is that something has been changed from the status quo 
to the final state. It could be a measurable attribute-e.g. a quality 
indicator q could change from q0 to q1 so that utility for the status quo 
would be uoj = u(yj, Zj, q0, Eoj ) and utility in the final state would be 
Ulj = u(yj, Zj, q1, Clj ) ·  

Based on this model, respondent j answers yes to a required payment 
of tj if the utility with the CV program, net of the required payment , 
exceeds utility of the status quo 

(2.2) 

However, researchers do not know the random part of preferences and 
can only make probability statements about yes and no. The probability 
of a yes response is the probability that the respondent thinks that he 
is better off in the proposed scenario, even with the required payment , 
so that u1 > ua. For respondent j ,  this probability is 

This probability statement provides an intuitive basis for analyzing re­
sponses, and can be used as the starting point for non-parametric ap­
proaches. But it is too general for parametric estimation. Two modeling 
decisions are needed. First, the functional form of u(yj, Zj, Eij) must be 
chosen. Second the distribution of Eij must be specified. Virtually all 
approaches begin by specifying the utility function as additively separa­
ble in deterministic and stochastic preferences: 

(2.4) 

Indirect utility is the sum of a deterministic component that has the 
arguments that are important to the CV scenario and to the individual, 
and the stochastic component. The vi (Yj, Zj ) is sometimes written with 
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an explicit argument about quality or characteristics of the CV scenario: 
vi (Yj, Zj ) = v(yj, Zj, qi) ·  With the additive specification of equation 
(2.4) , the probability statement for respondent j becomes 

This probability statement is still too general for parametric estimation, 
but it leads to all of the utility-based parametric models discussed in this 
chapter. Once utility is specified as the sum of random and determinis­
tic components, the differences in the random components between the 
status quo and the CV scenario cannot be identified, and so there is no 
reason not to write the random term as cj = c1j - c0j, a single random 
term. Then let Fc; (a) be the probability that the random variable c is 
less than a. Hence the probability of a yes is 

No further progress in estimation is feasible now without specifying a 
parametric version of the preference function. Equation (2.5) represents 
the point of departure for all of the random utility described below. 
We begin with the simplest and most commonly estimated function, the 
linear utility function. 

The Random Utility Model with a Linear Utility Function 

The linear utility function results when the deterministic part of the 
preference function is linear in income and covariates 

(2.7) 

where Yi is discretionary income, Zj is an m-dimensional vector of vari­
ables related to individual j and ai an m-dimensional vector of parame­
ters, so that aizj = I:;=l aikZjk ·  A CV question induces the respon­
dent to choose between the proposed conditions at the required payment 
t ,  and the current state. The deterministic utility for the proposed CV 
scenano IS 

(2.8) 

where tj is the price offered to the lh respondent. The status quo utility 
IS 

Voj (Yj) = OoZj + {30yj . (2.9) 

The change in deterministic utility is 

(2.10) 
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A reasonable assumption is that the marginal utility of income is con­
stant between the two CV states, unless the proposed CV scenario pro­
vides a substantial change. Hence j31 = j30 and the utility difference 
becomes 

(2. 11 )  

where a =  a1 -no and azj = :L;;'=1 akZjk·  With the deterministic part 
of preferences specified, the probability of responding yes becomes 

(2 .12) 

where cj = Elj - coj as defined above. 
To proceed in estimating the parameters of the utility difference, it is 

necessary to specify the nature of the random terms. The assumption 
that the cj are independently and identically distributed (IID) with 
mean zero describes most distributions used. Given that the error is 
liD with mean zero, two widely used distributions are the normal and 
logistic. The normal distribution for the difference c = c1 - co would 
result if c1 and co are each independent normal. The logistic can be 
derived as the difference of two extreme value distributions. Both the 
normal and the logistic are symmetric, which facilitates model estimation 
from packaged programs such as SAS or LIMDEP. 

Thus the probability of yes for respondent j can be estimated as 

Pr(azj - /3tj + cj > 0) = Pr(-(azj - j3tj ) < cj ) 

1 - Pr( -(azj - j3tj ) > cj) 

Pr(cj < azj - j3tj ) ·  (2. 13) 

The last equality exploits the symmetry of the distribution. For sym­
metric distributions F(x) = 1 - F( -x). Suppose that cj "' N(O, a2 ) . 
To use typical software packages, it is necessary to convert c "'  N(O, a2 ) 
to a standard normal (N(O, 1 ) )  variable. Let e = c/a . Then e "'  N(O, 1 )  
and 

<I> _J - -t · 
(QZ .  j3 ) 

0" 0" J 
(2. 14) 

where <I>(x) is the cumulative standard normal, i.e. the probability that 
a unit normal variate is less than or equal to x. This is the probit model. 
Note that the probability is now in terms of parameters divided by an 
unknown variance. This is a fundamental characteristic of dichotomous 
dependent variables. The parameters can only be estimated up to a 
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scalar multiple, because the dependent variable, taking a value of zero 
or one, has no scale in it. 

When r:; is distributed logistic, it has mean zero and variance 7r2a-'i/3. 
Normalizing by r> L creates a logistic variable with mean zero and vari­
ance 1r2 /3. I.e. if r:; �logistic (0, 7r2r>I/3) then r::/r>L = () �logistic 
(0, 1r2 /3) .  The standard logistic has a variance 1r2 /3 times the standard 
normal and so will have parameters 1rjyf3 (� 1 .814) times the probit 
parameters. 

One of the traditional appeals of the logistic distribution is the closed 
form solution for the cumulative distribution. The probability that a 
variate distributed as a standard logit is less than or eq ual to x eq uals 
(1 + exp( -x) ) - 1 .  Then the probability that respondent j answers yes is 

(2. 15) 

This is the logit model. However, the advantage of a closed form solution 
over an iterated solution has lost any real significance with the increase 
in computing power. 

Practically, the estimation of parameters comes from the maximiza­
tion of the likelihood function. Suppose the sample size is T and let 
Ij = 1 if respondent j answers yes. The likelihood function becomes 

L(a, � ly, z, t)  � D [<�> ( ";' - �:j ) r [I - <l> ( ";' ... �:' ) (
'' 

(2. 16) 
for the probit and when the logit is estimated 

is substituted for <I> ( � - /3:; ) . 
Typically the differences between probit and logit models are slight. 

Both distributions are symmetric. The logit has thicker tails, which 
can be seen from the fact that logistic density at zero is smaller than the 
normal. The standard logistic density at zero is ( I;:' ,y = 0.25 at x = 0 
while the standard normal density at zero is (27r) -112e- &x" � 0.399. 
The densities intersect at variate values of 1 .3245 and -1 .3245. Over 
this range, 90.73% of the normal area can be found, while only 57.98% 
of the logistic area lies between the two values. Hence the probability 
that a standard logistic variate falls into one of the tails is 41 .02%, 
while a normal variate falls into these areas with a probability of 9.67%. 
Despite this fairly significant difference in the tails, the distributions 
typically yield similar ratios of parameter estimates. 
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Maximum likelihood routines use the log of the likelihood function 
to calculate the maximum likelihood estimates. Maximum likelihood 
estimation is discussed briefly in Appendix A. For the models discussed 
above, the log likelihood function is 

ln L(a, ,Biy, z, t)  

for the probit, or 

ln L(a, ,Biy, z, t) 

T [ ( QZ . ,6t . ) ] � Ij ln <[> / - -: 

[ 
( QZ · ,6t · ) ] 

+(1 - 11 ) ln 1 - <[> -;j- - -: (2. 17) 

(2.18) 

for the logit. It is well known that these functions are concave in parame­
ters. Maximization of the likelihood functions yields unique estimates 
of the parameter functions ala, -,6la. Defining a new 1 x (m + 1) para­
m�ter vector {3* = {a I a, -,6 I a} where m is the number of covariates in 
z including the constant, and a new individual-specific 1 x ( m + 1 )  data 
vector Xj = { Zj, tj } ,  the log likelihood function for the linear random 
utility probit becomes: 

T 
ln L(/3* IY, X) = L Ij ln[<P(Xj/3* )] + ( 1 - Ij) ln[1 - <P(Xj/3*)] (2. 19) 

j=l 

and for the logit model becomes: 

T 

ln L(f3* iy, X) 2::: I1 ln [(1 + e-(Xj,l3*) )-1 ] 
j=l 

Equations (2. 19) and (2.20) represent the standard forms of the probit 
and logit log likelihood functions estimated by most econometric pack­
ages. A lower bound of the variance-covariance matrix [V (/3* )] for the 
maximum likelihood parameter estimates can be found by inverting the 
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negative of the expected value of the matrix of second derivatives of the 
log likelihood function evaluated at the parameter estimates 

(2 .21) 

The maximum likelihood parameter estimates obtained by maximizing 
(2. 19) and (2.20) are asymptotically normal with expectation equal to 
the true parameter values, and variance-covariance matrix as defined in 
equation (4. 13) (see Appendix A) . A closed form for the expected value 
of the matrix of second derivatives is often not available, so the variance­
covariance matrix typically must be approximated. Standard computer 
packages typically use two methods, depending on the algorithm used 
to calculate the maximum likelihood estimates. 

Method 1 :  Invert the matrix of second derivatives evaluated at the 
maximum likelihood estimates 

Using Slutsky's theorem (see section A.3.1 in Appendix A) and the 
knowledge that under typical conditions maximum likelihood estimates 
are consistent estimates of the true parameters, one sees that evaluating 
the actual matrix of second derivatives at the maximum likelihood es­
timates provides a consistent estimate of the expectation of the matrix 
of second derivatives. The difficulty here lies in the derivation of the 
matrix of second derivatives. This matrix is often a complicated non­
linear function of the parameters and as such calculation of the matrix 
of second derivatives is time-consuming. 

Method 2: Calculate the outer product of the maximum likelihood 
gradient vector 

Because the matrix of second derivatives is difficult to calculate, many 
statistical packages will instead rely on the vector of first derivatives 
to calculate the variance-covariance matrix. The outer product of the 
vector of first derivatives of the log likelihood function represents a first 
order Taylor-series approximation to the matrix of second derivatives. 

Procedure for Estimating a Random Utility Model with Linear Utility 
Function 

1. Define the yes/no responses to the contingent valuation question 
such that yes is coded 1 and no is coded 0. 

2. Define the data matrix X so that it contains the concatenation of 
the covariate matrix z and the offered fee vector t .  
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3. Using any standard statistical software, run a probit or logit model 
with the 1/0 yes/no responses as the dependent variable, and the 
matrix X as the matrix of right hand side variables. 

4. Recover the reported parameter estimates. The coefficients on the 
variables in the matrix z represent estimates of aja. The coeffi­
cient on the offered fee is an estimate of -(3/a. 

Example 2 Estimating a Linear Random Utility Model 

To illustrate the random utility model with a linear in income utility 
function, we estimate a model from a CV study in Colorado. 7 This is 
a study of the water use in the South Platte River. The respondents 
are interviewed in person. The CV question relates to their willingness 
to pay an increment to their water bill to restore recreational services 
provided by the river. After a lengthy description of a proposal to restore 
part of the South Platte, the respondent is asked the following question. 

If the South Platte River Restoration Fund was on the bal­
lot in the next election, and it cost your household $ 
each month in a higher water bill would you vote in favor or 
against? 

The $ __ was filled in with one of the following amounts: 1 ,  2, 3, 4, 8 ,  
10, 12, 20 ,  30 ,  40, 50 ,  100. Table 2. 1 describes the independent variables 
and gives the means. The specification follows the original model,8 and 
uses the variables in this table. 

In this and following sections and chapters, we estimate various models 
using this data to illustrate the workings of different types of economet­
ric models for CV. Table 2.2 gives the parameter estimates when the 
linear random utility logit and probit models are fitted. The statistical 
properties of the estimated parameters depend on their being maximum 
likelihood estimates. The parameters are asymptotically normally dis­
tributed, with the lower bound of the variance-covariance matrix given 
by equation ( 4.13) involving the matrix of second derivatives of the log 
likelihood function. The ratio of estimated coefficient to standard error 
is asymptotically N(0,1) under the null hypothesis that the coefficient 
is zero and standard hypothesis testing applies. In Table 2.2, all of the 

7 We thank John Loomis, who generously gave us access to this very well-behaved 
dataset. 

8 See Loomis, Kent, Strange, Fausch and Covich (2000). 
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TABLE 2 . 1 .  Means of Variables for South Platte River Study 

Variable 

t 
hhinc 

unlimwat 
govtpur 

environ 
waterbil 

Description 

Increment to water bill 
Household income from all sources 
(before taxes) for 1997 
Farmers entitled to unlimited water?* 
Believes government should purchase 
land on South Platte* 
Member of a conservation group* 
Average water bill for community* 

urban Lives in a large city* 
*Equals 1 if true, 0 otherwise. 

Mean 
(n = 95) 

$ 14.78 
$54175 

0 .45 
0 .78 

0 . 19  
$35.80 
0 .75 

coefficients except the constant are significantly different from zero at 
the 95% level of confidence. 

The quantity -2 ln ( L R/ Lu) reported in the table represents a full­
model test of significance (see Appendix A) . The null hypothesis is that 
the parameters (3 and a1 to a5 are equal to zero. The test statistic is 
constructed from the value of the log likelihood functions, where the R 
indexes the restricted log likelihood function under the null hypothesis 
and U indexes the unrestricted model. Under the null hypothesis, the 
tabled Chi-squared for six degrees of freedom (the number of restric­
tions) at the 95% confidence level equals 12.59, so that the hypothesis 
is rejected. The signs on the coefficients all make intuitive sense. The 
probability of a yes declines with increases in the bid, and the household's 
water bill, and when the household supports unlimited water access for 
farmers, a proxy for opposition to river conservation. The probability of 
a yes increases when the household belongs to an environmental group, 
supports government purchases of water, and lives in an urban area. 
The last column of the table presents the ratio of the logit parameter 
estimates to the probit estimates. Because each of the parameter esti­
mates is normalized by the standard deviation of the distribution, we 
would expect the ratio of the parameter estimates to be roughly equal 
to the ratio of the standard logistic and standard normal distribution 
scales ( 1r / .J3 ::=:: 1 .814 ) .  

Calculating Willingness to  Pay with the Linear Random Utility Model 

The ultimate goal of most practical dichotomous choice CV studies is to 
calculate willingness to pay and the effects of covariates on WT P. The 
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TABLE 2 .2 .  Binary Discrete Choice Model Estimation 

Pr (B < ( ao + a1 unlimwat+a2govtpur+a3environ+ 
a4 waterbil+asurban -(3t) /a) )  

e logistic e normal ogtsttc e normal 
Parameter est. Parameter est. 
(Std. Error) (Std. Error) 

(3aja 0 .14  0.08 
1 . 8  (0 .03) (0.02) 

ao/a b2 .44 1 .41 
1 . 7  

(1 .48) (0.83) 
ada -1 .47 -0 .81  

1 . 8  
(0.74) (0.41) 

a2/a 1 . 84 1 . 1 1  
1 .7 (0 .75) (0 .44) 

a3ja 3 .37 1 . 89 
1 . 8  ( 1 . 18) (0.64) 

a4ja -0.06 -0.04 
1 . 5  

(0.03) (0.02) 
as/a 1 .82 1 . 12 

1 . 6  
(0.71) (0 .41) 

Log-likelihood -34.8 -34 .6  
-2ln(LR/ Lu ) 56.5 56.5 

aNote that this is the parameter on -t. 
bAll parameters different from zero at 99% level of confidence 
except for this parameter. 

calculation of willingness to pay uses estimated parameters, depends on 
the covariates chosen, and is also a function of the random component 
assumed for preferences. The presence of two sources of uncertainty­
parameters and preferences-and the additional source of variation, in­
dividual covariates, causes a good deal of confusion in calculating will­
ingness to pay. In general, willingness to pay is the amount of money 
that makes the respondent indifferent between the status quo and the 
proposed CV scenario. For the linear random utility model defined in 
equations (2. 1 1) and (2.12) , WTP can be defined as 

Ql Zj + f3(Yj - WTPj )  + Cjl = CXQZj + (3yj + C:jO ·  

Solving this equation for WT P yields 

(2.22) 

(2.23) 
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Here we see the two sources of randomness and the potential for variation 
across individuals. We list here briefly these three sources of variation 
in WTP, and in Chapter 4 we pay more attention to the distribution of 
willingness to pay from CV estimates, and explicitly discuss these three 
sources of variation. 

• uncertainty from randomness of preferences: E j I (3 has mean zero 
and variance cr2 I (32 , given the parameters; 

• uncertainty from randomness of parameters: because the parame­
ters are maximum likelihood estimates, they are asymptotically 
distributed: 

N(a (3· [-E82 ln L(,i3* ly, X) ] -l
) · , , 

8,13* . 8,13*' 
, 

• variation across individuals in the sample: the expression for WT P 
can be calculated for any set of independent variables, or we could 
calculate the sample mean, which would have its own measures of 
dispersion, such as the sample variance. It is important to distin­
guish between the variation across individuals in the sample with 
randomness from preference or parameter uncertainty. 

In dealing with the willingness to pay, we initially assume that the 
parameters are given, and look for measures of central tendency over 
the distribution of preference uncertainty. The literature has focused on 
two measures of central tendency with respect to preference uncertainty. 
One is the expectation of willingness to pay with respect to preference 
uncertainty (E) : 

az · 
E, (WTPj la, (3, Zj) = rf· (2.24) 

The second measure of central tendency is the median or 50th percentile 
of the distribution with respect to preference uncertainty (M d,(WT Pj ) ) .  
To solve for the median WT P ,  find the WT P that solves the expression 
that the probability that u1 > uo = 0.5. 

(2.25) 

Since E is symmetric with mean zero, this expression yields 

(2.26) 
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We introduce the notation Ee: and M de: for the mean and the median 
of the random preference term to emphasize the different sources of 
uncertainty. In the case of a linear utility function and a symmetric, 
mean zero error, the mean and median WT P with respect to random 
preferences are equal. 

If the true parameters are known, then the only uncertainty that must 
be resolved when estimating WT P is the preference uncertainty. How­
ever , because the parameters are unknown and consequently must be 
estimated, parameter uncertainty must also be resolved. In the ex­
pression for mean and median, only the ratio of parameter estimates 
is required. From Slutsky's theorem on consistency (see section A.3.1 
in Appendix A) , the probit and logit maximum likelihood estimates for 
{3* = {a.j(J, -/3/(J} are consistent estimates. A consistent estimate of 
expected willingness to pay can be found by substituting the normalized 
parameter estimates into the expression for expected willingness to pay 
(equation 2.24) : 

Ee: (WTPia., /3, zj ) = [(a/(J)/(/3/(J)] Zj . (2.27) 

The same consistency holds for the median of WT P. 
Note that in expressions (2.24) and (2.26) , the expected value and 

median of WT P with respect to preference uncertainty, the estimate 
is subscripted j .  Each respondent has an expected or median WT P 
with respect to preference uncertainty. There is also variation across the 
sample. One could calculate the sample mean of the expected WT P, the 
sample mean of the median WT P, and so forth. For sample expansion, 
an appropriate measure would be the sample mean. For the linear model 
of the CV study of the South Platte river, we calculate the expected 
willingness to pay based on the mean vector of exogenous variables. 

Ee: (WTPia., /3, z) = [(a/(J)/(/3/(J)] z) (2.28) 

For mean [(a/(]')/ (/3/(J)] z = $20.70 for the logit model and $20.40 for 
the probit model. As can be seen from the expressions for expected 
WT P, there are still major questions about the variation of WT P across 
the sample and randomness due to the randomness of parameter esti­
mates. We explore methods for understanding the dispersion of WT P 
in Chapter 4. 

The linear model is a mainstay for econometric applications to di­
chotomous choice CV questions. For most purposes it is a good ap­
proximation to any arbitrary utility specification. One drawback of the 
linear random utility model is that it eliminates income as a determi­
nant of responses by assuming the marginal utility of income is constant 
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across scenarios posed by the CV questions. In the following sections 
we discuss a variety of models that exploit differences in the marginal 
utility of income to explain responses to CV questions. 

The Random Utility Model Log Linear in Income 

Referring back to equation (2.5 ) ,  the derivation of an estimable version 
of the random utility model begins with the probability statement: 

(2.29) 

Consider a utility function of the form 

(2.30) 

This utility function relaxes the constant marginal utility of income 
across individuals implicit in the linear utility function. Differentiat­
ing with respect to income yields the individual-specific expression for 
marginal utility of income 

(2.31) 

which is decreasing in income assuming (3 > 0. Note also that this form 
of the utility function allows the marginal utility of income to vary across 
utility states as money income changes . 

Substituting the log-linear in income utility function into the random 
utility probability expression (2.29) and rearranging it, one sees that this 
form is compatible with the standard probit or logit estimation routines. 

( (y ·  - t · ) ) 
Pr (3 ln � + azj > -E:j . (2.32) 

Here a = a1 - ao , and Ej = Elj - f:Oj · Assuming E:j is distributed 
normally with mean zero and variance o-2 results in the standard normal 
probability of a yes response: 

(2.33) 
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where Xj = { Zj , ln ( Y;Y�t; ) } , and {3* = {% ,  � } .  9 The parameter vector 
{3* can be estimated by running a simple pro bit on the data matrix Xj . 

If Ej is instead assumed to be distributed logistically, then the proba­
bility of a yes response becomes 

1 
Pr(yesj ) = 1 + e-Xjf3* (2.34) 

and parameters can be estimated with a logit model on the no/yes re­
sponses with Xj = { Zj ,  ln ( Y;�t; ) }  as independent variables and {3* 
the parameters. 

Example 3 The South Platte River Study 

Continuing the previous example, we estimate probit and logit ver­
sions of the log-linear in income random utility model on the South 
Platte River dataset . The parameters are given in Table 2.3. The data 
differ from the previous example in two ways. The number of observa­
tions decreases by one because of a missing income variable. One of the 
exogenous variables changes from t ,  the bid, to ln( (y - t)/y) .  Otherwise, 
the log-linear in utility random utility model is estimated in the same 
fashion as the linear random utility model. Comparing Tables 2.2 and 
2.3, the parameter estimates for ao/a,  . . .  , as/a do not change sign or 
magnitude appreciably, but the level of significance changes. Using a 
one-tailed test, because we have expectations on the sign of the parame­
ter estimates, only three coefficients-govpur, environ, and the bid-are 
different from zero at the 95% level of confidence. The increase in vari­
ance of the parameter estimates is due to the more complicated form of 
the bid function, which includes income. 

Procedure for Estimating a Log-linear in Income Random Utility Model. 

1 .  Define the yes/no responses to the contingent valuation question 
such that yes is coded 1 and no is coded 0 .  

2. Define a data matrix X so  that it contains the concatenation of 
the covariate matrix z and the composite income term, which for 
a typical individual j is ln((Yj - tj ) /Yj ) ·  

3 .  Using any standard statistical software, run a probit or logit model 
with the 1/0 yes/no responses as the dependent variable, and the 
matrix X as the matrix of independent variables. 

9 Programs typically insert a vector of ones so that a constant is estimated. In 
writing one's own likelihood function, this vector needs to be included in X. 
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TABLE 2 .3 .  Estimation with Logarithmic Utility 

Pr(B < (ao + a1unlimwat+azgovtpur+a3environ+ 

a4waterbil+a5urban+,8 ln ( 7) )/a) )  

,6/a 

ao/a 

ada 

az/a 

a3ja 

a4/a 

a5ja 

Log-likelihood 
-2ln(LR/ Lu) 

e logistic e normal 
Parameter estimate Parameter estimate 

(Standard error) (Standard error) 
2939 .60 1546.50 
(901 .30) ( 458.00) 

1 .08 0 .61 
( 1 .24) (0 .74) 

-0 .90 -0.55 
(0.59) (0.34) 
1 .54 0 .97 

(0.66) (0.39) 
1 .96 1 .08 

( 1 .03) (0.55) 
-0.03 -0.02 
(0.03) (0 .01) 
0 .96 0 .60 

(0.64) (0.37) 

-42.90 -42 .60 
38.33 38.28 

Calculating Willingness to Pay Using the Log-Linear in Income 
Random Utility Model 

The expression for willingness to pay can be found by equating utility 
in the improved state to utility in the status quo state and solving for 
the income difference (WT P) that equates the two utilities: 

(2.35) 

Willingness to pay that satisfies this equality is 

(2.36) 

Willingness to pay in this expression depends on the same variables-the 
unobserved preference term, the estimated parameters and the exoge­
nous variables-as in the linear utility case. Since the expectation of 
WTP is taken with respect to the unobservable error, and in this case, 
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the error enters exponentially, the expected value of willingness to pay 
will depend on the distribution assumed for the error (and not simply 
rely on the mean zero assumption as in the linear models) . The ex­
pected willingness to pay will not be the same for the logit and probit 
specifications as was the case for the linear utility function specifications. 

Pro bit Model 

If Ej is assumed to be normally distributed with mean zero and unknown 
variance 1I2 then the expected value of willingness to pay is 

Q 1 1I2 
E" (WTPia, J), Zj , Yj )  = Yj - Yi exp(-

J3 
Zj + 2 

J32 
) .  (2.37) 

Because Ej is a mean 0 symmetric random variate, the 50th percentile of 
willingness to pay (median willingness to pay) is found by setting Ej = 0 
in equation (2.36) : 

Q 
Md"(WTPia ,  J) , Zj , Yi) = Yi - Yi exp( -{jzj) · (2.38) 

Returning to the South Platte River example, we find that for the sam­
ple mean individual (see Table 2. 1 ) ,  the median willingness to pay is 
estimated as 

Q Md"(WTPia, J), z, y) = y - y exp(-
J)

z) = $15.15 . 

We do not include the expected value of WT P because the ratio II I J3 
(see Table 2.3) is so small that the expected value of WT P is indistin­
guishable from the median. 

Logit Model 

If Ej is assumed to be logistically distributed with mean zero and un­
known variance 71'2:( then exp( -7}) is distributed with mean sid�:/;�)71') . 
The expected value of willingness to pay is: 

(II I J))n a 
E"(WT Pia ,  J), Zj ' Yi ) = Yi - Yi sin( (II I J))n) 

exp( -{jZj ) .  

Median willingness to pay is found by setting c j = 0: 

Q 
Mdc:(WTPia , J), zj , Yj )  = yj - yj exp(-[jzi ) · 

(2.39) 

(2.40) 

The median value of WT P for the mean individual for the logit is $15.15. 
Note that the medians are the same for different distributions of the 
unobservable error. 
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The Random Utility Model with Box-Cox Transformation of Income 

The log-linear in income utility function above assumes a specific form 
for the marginal utility of income: i.e. the marginal utility of income is 
inversely proportionate to income (see equation 2.30 ) .  Further flexibility 
in the specification of the utility function with respect to income can be 
obtained by specifying a utility function that is linear in a Box-Cox 
transformation of income. Consider the simple Box-Cox transformation 
of income: 

(2.41) 

Denoting y(>.) as the income term in the utility function, the random 
utility function becomes 

(2 .42) 

The Box-Cox transformation is a generalized functional form that has 
nested within a number of recognized forms depending upon the value 

2 
of the transformation parameter .A: when .A =  2, y(>.) = Y 21 and utility 
depends on the square of income, when .A =  1, y (>.) = y - 1  and the utility 
function is linear in income, when .A =  0, y(>.) converges to ln(y) , 10 and 
the utility function is log-linear in income, when .A =  -1 ,  y (>.) = 1 - l y 
and the utility function is linear in the inverse of income. The marginal 
utility of income in the Box-Cox income model is �� = {Jy>.-1 . The 
Box-Cox transformation introduces flexibility in modeling the effects of 
income on indirect utility. 

Assuming the Box-Cox transformation parameter is constant across 
utility states, the probability of a yes response is: 

(2.43) 

where a = o:1 - o:o and E:j = c11 - E:Oj · Assuming E:j is distributed 
normally with mean zero and variance IJ2 results in the standard normal 

10This convergence can be seen by taking the limit of y(>-) as .>, approaches 

0 I. (u"'- 1 )  A I . L'H ' " t  I '  I I " (v"' -1 ) 1· ( o<v""-1)/o>- ) : Im >. . pp ymg opi .a s ru e, Im >. = Im o>.fo>. = 
:A-+0 :A-+0 :A-+0 

lim ( y-" ln(y) ) = ln(y).  
:A -+ 0  1 
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probability of a yes response ( [ (y -t )).. -y).. ] ) j3 J J.A ' + O.Zj 
Pr(yesj) = <I>  

a 
(2 .44) 

{ (y -t Y-Y).. } * { where Xj = Zj , 1 1.A 1 , and ,B = a./a, /3/a} . For a given value 

of .>.., the parameter vector ,8* can be estimated by running a simple 
probit on the data matrix Xj . If C:j is instead assumed to be distributed 
logistically, then the probability of a yes response becomes 

1 Pr(yesj ) = 1 + e-XJf3* , 

and the parameters can be estimated by running a logit model on the 
no/yes responses with Xj as independent variables. 

This derivation assumes that the value of .>.. is either known, or has 
been pre-determined. However, the attraction of the Box-Cox model is 
its flexibility for different values of .>... Since the functional form of the 
utility function is at best an educated guess on the part of the researcher, 
it is desirable to treat .>.. as an unknown parameter. Direct estimation 
of .>.. requires a tailored likelihood function. Noting that the random 

utility difference is linear in a function of y and .>.. : (y1 -t1{-Yi ,  indirect 
estimation of .>.. can be accomplished through a one-dimensional grid­
search on .>.. . A grid-search involves choosing a vector of potential values 
for .>.. (typically restricted to the range (-1,3) , and estimating the random 
utility model for each value of the .>... The value of .>.. that maximizes the 
log likelihood function value from the models estimated is the maximum 
likelihood estimate of .>.. . The following procedure outlines the steps for 
estimating a Box-Cox random utility model. 

Procedure for Performing a One-dimensional Grid Search for the Box­
Cox Random Utility Model. 

1 .  Define the yes/no responses to the contingent valuation question 
such that yes is coded 1 and no is coded 0. 

2. Define a K dimensional vector of possible values for the Box-Cox 
transformation parameter .>.. . These values should include, but 
should not be restricted to {-1, 0, 1, 2, 3}. For completeness, non­
integer values within this range should also be considered. Index 
these values Ak where k = { 1 , 2 ,  . . .  , K} .  
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3. For the .first value of Ak , de.fine a data matrix X so that it con­
tains the concatenation of the covariate matrix z and the composite . (Yj -tj )>.k -y>.k 
zncome term >.k 1 

4. Using any standard statistical software, run a probit or logit model 
with the 1/0 yes/no responses as the dependent variable, and the 
matrix X as the matrix of independent variables. 

5. Repeat steps 3 and 4 for all values of >..k . 

6. The maximum likelihood estimates of the parameter vector {3* 
{ aj a, (3 /a} are those estimates corresponding to the value of >..k 
that maximizes the value of the log likelihood function. The asso­
ciated value of Ak is the maximum likelihood estimate of >.. . 

The Box-Cox utility function can be expanded to include transfor­
mations of other covariates. Doing so represents additional degrees of 
flexibility for the model. However, unless the transformation parameter 
is assumed to be the same for all covariates, the estimation procedure 
involves a multi-dimensional grid search: i.e. all possible combinations 
of the transformation parameters must be considered. Such a proce­
dure increases the number of models that must be estimated drastically. 
For example, if there are two transformation parameters that can each 
take on one of five values, the grid-search procedure would require the 
estimation of 25 different probit or logit models. 

Example 4 Box-Cox Transformation: The South Platte River Study 

To illustrate the Box-Cox transformation we return to the South 
Platte River study. The survey gathered household income by income 
categories. Income was then interpolated as the mid-point in the cate­
gory. The model was specified as closely to the linear model as possible, 
with the only difference being the construction of the bid and income 
variable. The model was estimated by a grid search over >.. over the 
( -1 ,  3) range. The optimal value for >.. was 0 .83 for both the logit and 
the probit models. The parameters for the exogenous variables, given 
the optimal value of >.., are in Table 2.4. 

Testing Functional Forms using the Box-Cox Model 

The maximum likelihood estimate for >.. gives the highest value of the 
likelihood function from all candidate values for >... This value may 
not , however, be statistically different from some other standard values. 
It is worthwhile to test whether the maximum likelihood value of >.. is 
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TABLE 2.4 . Model Estimation: Box-Cox Transformation 

Pr ( e < ( o:o + o:1 unlimwat+o:2govtpur+o:3environ+ 
o:4waterbil+o:5urban+,8 [(y - t)>- - y>-] jA)/a)) 

For A =  0.83 e logistic e normal 
Parameter estimate Parameter estimate 
(Standard error) (Standard error) 

,8/a 0.92 0 .53 
(0 .21) (0. 11 )  

o:o/ a 2 . 80 1 .61 
( 1. . 54) (0 .86) 

ada -1 .48 -0.81 
(0 .74) (0.41) 

0:2/0' 1 . 79 1 .08 
(0 .75) (0.44) 

0:3/0' 3.31 1 . 86 
( 1 . 18) (0 .64) 

0:4/0' -0.06 -0.04 
(0 .03) (0.02) 

0:5/ 0' 1 .69 1 .05 
(0.71) (0 .41) 

Log-likelihood -33.80 -33.70 
-2ln(LR/ Lu) 56 .39 56.74 

43 

significantly different from several strategic values of A. Two common 
strategic values are A = 1 for the linear model and A = 0 for the log­
linear utility function. The test for A = 1 is interesting because it can 
be considered a test for whether a utility-consistent income effect should 
be part of the model. The appropriate test for all such hypotheses is 
the likelihood ratio test. The general form for the likelihood ratio test 
statistic is: -2(1og likelihood value from the restricted model less the 
log likelihood value from the unrestricted model) . This test statistic is 
distributed Chi-squared with degrees of freedom equal to the number of 
restrictions placed on the restricted model. The restricted form of the 
likelihood function is obtained by estimating the standard linear or log­
linear in income models described in previous sections. Because only a 
single transformation parameter is estimated, the number of restrictions, 
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and therefore the degrees of freedom for the likelihood ratio test, is one. 1 1  
To illustrate we test the Box-Cox against the linear and log-linear 

models of the South Platte River study. Table 2.5 gives the log likelihood 
values for probit and logit models for each of the three functional forms. 

TABLE 2 .5 .  Log-likelihood Values for Strategic Functional Forms 

Functional form 
Linear A =  1 
Log-linear A =  0 
Box-Cox A = 0.83 

Log-likelihood Values 
Logit Pro bit 

-34.81 -34.65 
-42 .88 -42.91  

-33 .83 -33 .68 

The restrictions of course pertain to A. First consider the Box-Cox 
versus the log-linear. The Chi-squared values, -2(ln L)..=O - ln L)..=o.83 ) 
= 18 . 1  for the logit and 18.46 for the probit, are greater than the critical 
value with one degree of freedom at the 95% level of confidence of 3.84. 
Hence we reject the log-linear in favor of the Box-Cox parameter value 
of A = 0 .83. Next consider the Box-Cox versus the linear. The Chi­
squared values of -2(ln L)..=1 - ln L)..=O.s3) are 1 .96 for the logit and 1 .93 
for the probit. Consequently we cannot reject the linear model in favor 
of the Box-Cox, for both of the calculated Chi-squared values are less 
than the critical Chi-squared values at the 95% level of confidence. 

Procedure for Testing Functional Forms Using the Box-Cox Random 
Utility Model. 

1 .  Estimate the Box-Cox random utility model. Recover the log like­
lihood .function value. This will represent the unrestricted log like­
lihood function value for the likelihood ratio test. 

2. Estimate the random utility model under the null hypothesis. For 
the linear model the null hypothesis is A = 1 .  For the log-linear 
in income model the null hypothesis is A = 0. Recover the log 
likelihood .function value. This represents the restricted log likeli­
hood value for the likelihood ratio test. The restricted model has a 
number of restrictions equal to the number of transformation para­
meters that are being tested. For the simplest model, the number 

1 1 If .>.. were to be estimated with continuous methods rather than a grid search, we 
would have a standard error and this test could be done with a t-test. See Chapter 
9 for an example of this. 
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of restrictions is one representing the restriction on the transfor­
mation of income parameter. 

3. Calculate the likelihood ratio statistic: -2(ln L R - ln Lu) where 
ln L R is the restricted log likelihood function value and ln Lu is 
the unrestricted log likelihood function value. This test statistic is 
distributed Chi-squared with degrees of freedom equal to the number 
of restrictions in the restricted model. Compare the test-statistic 
calculated to the critical value from a Chi-squared distribution for 
the desired level of confidence. For example, the 95% critical value 
from a Chi-squared distribution with one degree of freedom is 3.84 . 

4. If the test statistic is larger than the critical value then reject the 
restricted model as a statistically accurate representation of the 
random utility model. If the test statistic is less than the critical 
value then accept the restricted model. 

Calculating Willingness to Pay Using the Box-Cox Random Utility 
Model 

The principles for calculating willingness to pay are the same as in any 
utility function. WT P satisfies the equality of utility expression 

(2.45) 

which is found by substituting the Box-Cox indirect utility function 
of equation (2.42) into the general expression for WT P from equation 
(2 .22) . Solving for WTP yields 

WT Pj (Ej ,  a, (3, ).., zj , Yj) = Yj - [yJ - >..azj/ f3 - AE:jj(3p!>.. 

where a = o.1 - o.0. In this expression WT P is a non-linear trans­
formation of the unobservable error c j so that the calculation of the 
expectation of WTP with respect to E:j can only be done analytically 
for the strategic cases of )... = 0 or 1 .  It is always possible to calculate the 
mean by using numerical methods. 12 The median is easily computed by 
recognizing that E:j is a symmetric mean zero variate and as such the 
median of lVTP occurs where E:j = 0: 

(2.46) 

1 2 That is, E,WTPj (Ej , cx , (3, zj , Yj ) j�00 (Yj- [YJ - >..cxzj /(3 -
AEj /(3] 11>-)J(Ej )dEj . With numerical methods, the integral can be approximated for 
any distribution of the error. 
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Returning once again to the South Platte River data set, for the Box­
Cox parameters in Table 2.4, and the exogenous variables taken at the 
sample means, M do: (WT Pia, ,6, ..\ = 0.83, z, y) = $22.00 for the logit 
and $21 .09 for the probit. This is quite close to the measures calculated 
for the other functional forms. In this case, the model is almost linear 
in income because ..\ is so close to one. Income has very little effect on 
willingness to pay. For example. suppose that we consider an individual 
who has the sample average independent variable values, but a much 
higher income = $75000, a $21000 increase over the mean in Table 2.4. 
Then M do: (WT Pia ,  ,6, ..\ = 0.83, z, $75000) = $22.70 for the pro bit. 

A Varying Parameter Specification 

There are two different but related reasons for wanting to incorporate 
income in random utility models. Meeting the budget constraint is one 
reason. When the term income minus the cost of the scenario is included, 
then the model ensures that the budget constraint will be met. A second 
reason is that households with considerably different incomes may an­
swer quite differently because income will be a proxy for other variables 
pertaining to economic status. When the term income minus the cost 
of the scenario is included in a linear random utility model, of course 
income drops out. When the term is included in a non-linear model, 
such as the log-linear random utility model, then the composite income 
less cost of the scenario term becomes one of the regressors. Because 
income is apt to be measured with a good deal of error, and because 
the payment is often a very small share of income, the arguments for 
including income non-linearly in the form of income minus the cost of 
the scenario are weak. For CV studies with a very low cost , it is not 
reasonable that the marginal utility of income varies with the income of 
a given respondent. A marginal utility of income that varies across in­
dividuals with different incomes is more plausible, however. One means 
of incorporating the effect of income, including allowing the marginal 
utility of income to vary across individuals, is to use income categories, 
and allow the coefficients to vary by income categories. This approach, 
illustrated below, avoids the effect of errors in the measurement of in­
come, while at the same time capturing some of the differences among 
individuals because of income differences. 

To relax the assumption of constant marginal utility of income ,8, we 
can assume that the marginal utility of income from the linear model 
for Uij = ,Bjyj + aiZj + C:ij (the utility of individual j, scenario i) varies 
across individuals such that 

(2.47) 
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where Wj is a vector of individual specific covariates and where 

6 {8o , 81 , . . .  , 8K} 
Wj {1 , W1j , . . . , WKj } · 
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Substituting into the linear utility function results in the linear utility 
function 

Uij 8oYj + 81w1jYj + . . . + 8KWKjYj + aizj + Eij 
(Owj )Yj + CXiZj + Eij · (2.48) 

This specification can give a variety of different models. We can let 
the Wj be a vector of indicator variables, telling whether income lies 
within a specified income group. That is, suppose we have a set of K 
income categories, c1 ,  . . .  , CK . Then we can classify household income Yj 
as follows: 
w1j = 1 if Yj < c1 ; 0 otherwise; 
w2j = 1 if c1 :S Yj < c2 ; 0 otherwise; 
WKj = 1 if  Yj 2': cK; 0 otherwise. 
With these categorical variables, each group has its own marginal 

utility of income. This formulation can also be modeled by including 
the constant 80 and omitting one of the income groups. 

For the general model the marginal utility of income is 

(2.49) 

By way of example, suppose we think that the marginal utility of income 
is different for individuals with income above the sample median income 
than for individuals below the sample median income. Let Wkj be the 
indicator variable defined by w1j = 1 when household income is less 
than the sample median and w2j = 1 when household income is greater 
than median income. 

(2.50) 

The estimated parameter 81 represents the marginal utility of income 
for those individuals with income below the median, and the estimate 
of 82 represents the change in the marginal utility of income for those 
individuals with income above the median. A test for the equality of 81 
and 82 is a test of the hypothesis that the marginal utility of income 
is the same across income classes. In this model the marginal utility of 
income varies across households but is constant with respect to a given 



 

48 Valuing Environmental and Natural Resources 

household's income. Further, the marginal utility of income does not 
vary between CV scenarios. Hence the income variable itself will not be 
an argument in the probability model. 

More flexible specifications can be created by refining the income cat­
egories (including more income dummies) , or by including continuous 
covariates in the varying parameter vector Wj . With this model the 
probability of a 'yes' response becomes 

Pr(blwlj (Yj - tj ) + D2w2j (Yi - tj ) + o:1zj + Elj 
> bl WljYj + D2W2jYj + O:QZj + CQj ) 

Pr[-b1w1jtj - D2w2jtj + O:Zj < Ej] > 0. (2.51) 

When the unobserved error is transformed to a unit variance error, this 
model becomes a simple logit or probit. 

Example 5 Varying Parameters Model: The South Platte River Study 

To illustrate a model with varying marginal utility of income we re­
turn to the South Platte River study. With the same specification for 
non-income variables as in the previous models, we now introduce two in­
come coefficients, one for household income less than or equal to $45000 
and one for household income greater than $45000. Table 2.6 gives the 
estimated models. 

Estimating Willingness to Pay in the Varying Parameters Model 

Equating utility in the improved state ( u1j ) to utility in the status quo 
state ( uoj ) gives an implicit expression for willingness to pay: 

c5wi (Yj - WTPj (Ej ,  o:, c5, Zj , yj ) ) + o:1zj + c1j 
c5WjYj + O:QZj + EOj · 

Solving for the willingness to pay yields 

(o:1 - o:o)zj + (clj - coj ) 
c5wj 

(2.52) 

(2.53) 

Since c1j and coj are both mean zero errors with unknown variance, 
Ej is likewise mean zero with unknown variance. The expected value of 
willingness to pay taken with respect to the random error is therefore 

(2.54) 
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TABLE 2.6 . Varying Parameters Model 

Pr(B < (ao + a1unlimwat+a2govtpur+a3environ+ 
a4waterbil+a5urban-81 w1jt - 82w2jt)jcr))*  

81 /cr 

82/cr 

ao/cr 

a1/cr 

a2/cr 

a3jcr 

a4jcr 

a5jcr 

Log-likelihood - 2ln(LR/ Lu) 

e logistic e normal 
Parameter estimate Parameter estimate 

(Standard error) (Standard error) 
-0.13 -0.08 
(0 .03) (0.02) 

-0.16 -0.09 
(0.04) (0.02) 
2.30 1 .32 
( 1 .48) (0.82) 

-1 .43 -0 .79 
(0 .74) (0 .41) 
1 . 83 1 . 10 

(0. 75) (0.44) 
3.35 1 .90 

( 1 . 17) (0.64) 
-0.06 -0.04 
(0.03) (0.02) 
1 .82 1 . 13 

(0 .71) (0.41) 

-34.40 -34.20 
57.41 56.54 

*wlj = 1 ,  income :::; $45000; 0 otherwise; W2j = 1 - Wlj 

Median willingness to pay can be found by substituting Ej = 0 

az · 
MDc(WTPia, 8 , zj , Yj )  = � ·  

UWj 
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(2.55) 

As in the other models, the parameters {a, 8} are unknown. A consis­
tent estimate for expected or median willingness to pay can be found by 
substituting consistent estimates of the parameters {a, 8} into the ex­
pressions for expected and median willingness to pay. Using the South 
Platte River estimates from Table 2.6, we find that an individual with 
the sample mean independent variables but income below the median 
has an expected willingness to pay Ec(WTPia , 8 , z, yj < median y) = 
$18.90. The same individual with income above the median would have 
expected willingness to pay Ec(WTPia, 8 , z, yj 2:: median y) = $22 .90. 
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Both of these estimates are for the probit . The absence of a large differ­
ence is consistent with the earlier finding of an income effect not different 
from zero. 

2.2. 2 The Random Willingness to Pay or Expenditure 
Difference Model 

Rather than modeling the indirect utility function and then deriving 
the appropriate willingness to pay measure, various researchers, begin­
ning with Hanemann and Cameron, have emphasized directly modeling 
the willingness to pay function for dichotomous choice CV questions. 
The basic idea is that willingness to pay is a well-defined concept by 
itself. The dichotomous CV question can be interpreted as the ques­
tion of whether willingness to pay exceeds the price that is posed to the 
respondent. The willingness to pay function is more transparent than 
the utility difference, and can lead to more plausible distributions. In 
contrast, some quite simple utility differences may imply unacceptable 
distributions of willingness to pay. Although willingness to pay does 
not need a utility function for its derivation, it is useful to show that it 
can be derived from the indirect utility function. From this derivation 
we can see that for certain functions, the models that start as random 
utility models or random willingness to pay models really are the same. 
This result holds for the dichotomous choice models but not the multi­
ple choice models that arise in conjoint analysis or site choice models. 
By the definition in equation (2.22) , the willingness to pay for the CV 
scenario relative to the status quo is defined as 

(2.56) 

WT P is the amount of income that makes the respondent indifferent 
between the status quo and the final state. Solving this equality for 
WT P defines WT P as a function of income, covariates and the unob­
served random preferences (where in general, Ej = f (c1j , Eoj ) ,  and in 
the case of additive errors, c j = c1j - Eoj ) . A respondent answers yes 
when willingness to pay exceeds the required payment: 

(2.57) 

This will be true if 

vl (Yj - tj , Zj) + Elj > Vo (Yj , Zj ) + EOj · 
If equation (2.56) defines WT P as an equality, then any amount less than 
WT P will make the left hand side of equation (2.56) greater than the 
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right hand side, because utility is increasing in income. Consequently, 
we can make the equivalent probability statements: 

Pr[WTP(yj , Zj , Ej )  > tj] = 

Pr[vl (Yj - tj , Zj ) + Elj > vo (Yj , Zj ) + Eojl · (2.58) 

Either the utility difference or the willingness to pay function provides 
the basis for modeling responses to dichotomous choice CV questions, as 
Hanemann originally recognized. However, in some situations currently, 
researchers are exploiting techniques based on conjoint analysis, in which 
the respondent chooses among more than two alternatives. In the more 
than two alternatives choice, the utility function approach offers the only 
consistent means of modeling responses. 

The connection between WT P and the utility difference can be made 
more explicit. Let b.u = b.v+E where E = c1 -Eo and b.v = v1 -v0 .  The 
probability of responding yes is modeled with a distribution function 
for E. Let Fc; be the distribution function for E, so that Fc;(x) is the 
probability that the variate E is less than the number x. Then for Fc; ( x) 
symmetric 

Pr(yes) = Pr (b.v + E > 0) = Fc; (b.v) .  (2.59) 

If we solve equation (2.56) for WTP we get (the dependence of WTP 
on y and z is suppressed for notational convenience) : 

(2.60) 

The probability statement in (2.59) can be transformed from b.v to 
WT P but we can see from (2.60) that these are equivalent only when v11 
is a linear transformation. Noting that the derivative of v11 ( v0 - c) with 
respect to utility is the same as the derivative with respect to E (except 
for sign) provides for the change of variable in integration to transform 
the change in utility expression to a willingness to pay expression in 
equation (2.59) . This derivative is the marginal cost of utility and it is 
the reciprocal of the marginal utility of income. Hence when the marginal 
utility is constant , WT P will have the same family of distributions as 
the utility difference. When v11 is a nonlinear transformation, we can 
derive the distribution of WT P applying the transformation in (2.60) , 
but the distribution will not be the same as the utility difference. And 
in the case of a nonlinear transformation, the WT P function will not be 
the sum of stochastic and deterministic parts. In fact , one will not be 
able to separate the known and deterministic parts from the unknown 
and random to the researcher parts. 
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The Linear Willingness to Pay Function 

Let the willingness to pay function be linear in attributes with an addi­
tive stochastic preference term: 

(2.61) 

where T/j is symmetric, liD with mean zero, and 1 and Zj are m­
dimensional vectors of parameters to be estimated and covariates as­
sociated with respondent j .  The respondent answers yes to a required 
price of t if willingness to pay exceeds t. The probability of a yes response 
lS 

Pr(yesj) Pr (WT P > tj) = 

Pr(/zj + T/j > tj ) = Pr(-(/zj - tj ) < Ttj ) 
Pr((/zj - tj ) > Ttj ) ·  (2.62) 

The last statement follows only for symmetric T/j · When ry is N(O, a2 ) , 
the problem can be converted to a standard probit by dividing by a. 
Then 

(2.63) 
where ei is N(O, 1). This is a dichotomous choice model where (z , t) 
are the covariates with coefficients 1 I a, -1 I a. This is the same model 
that is estimated for the linear utility function, although the estimated 
coefficients have different interpretations. Thus the linear willingness to 
pay function and the linear utility difference function yield identical 
models and identical estimates of willingness to pay. 

Procedure for Estimating a Random Willingness to Pay Model with 
Linear Willingness to Pay Function 

1. Define the yes/no responses to the contingent valuation question 
such that yes is coded 1 and no is coded 0. 

2. Define a data matrix X so that it contains the concatenation of 
the covariate matrix z and the offered fee vector t .  

3. Using any standard statistical software, run a probit or logit model 
with the 1/0 yes/no responses as the dependent variable, and the 
matrix X as the matrix of right hand side variables. 

4. Recover the reported parameter estimates. The coefficients on the 
variables in the matrix z represent estimates of 1 I a. The coeffi­
cient on the offered fee is an estimate of -11 a. 

Note that this procedure is identical to the procedure for estimating 
a random utility model with linear utility function. 



 

Parametric Models for Contingent Valuation 53 

Estimating Willingness to Pay With the Linear Willingness to Pay 
Model 

The linear willingness to pay function is once again: 

(2.64) 

Taking the expectation with respect to the unobservable error results in 
the expression for expected willingness to pay 

(2.65) 

However, ')' is unknown, and an estimate must be obtained using the 
estimates of 1 I 0' and -1 I 0' from the pro bit or logit model. A consistent 
estimate of expected willingness to pay is 

(2.66) 

Since 7] is assumed to be symmetric around zero, median willingness to 
pay can be found by setting 7] = 0: 

(2.67) 

and a consistent estimate of the median can be found by using the esti­
mates of riO' and -110': 

(2.68) 

As noted, the linear random willingness to pay model, and the linear 
random utility model produce identical parameter estimates, and iden­
tical welfare estimates. Also note that although the form of the welfare 
estimates only relies on the mean zero assumption for the error term 
and not the particular model used to estimate the parameters (probit or 
logit) , the actual estimates of welfare will depend on the model chosen 
as the estimates are functions of parameter estimates which will vary 
across assumed distributions. 

Just as it is possible to specify and estimate non-linear utility func­
tions, it is also possible to formulate non-linear willingness to pay func­
tions. But the nature of the non-linearity and the motivation for the 
models differs from the random utility specifications. In the develop­
ment of non-linear random willingness to pay functions, it is not always 
evident that the models can be derived from a utility function. Further , 
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these models are often adopted because of the implied distribution of 
willingness to pay. These models frequently imply a non-negative dis­
tribution of willingness to pay. In the following section we discuss an 
especiall:v popular willingness to pay function, the exponential. 

The Exponential Willingness to Pay Function 

This model was popularized by Cameron and James. Let willingness to 
pay be an exponential function of a linear combination of attributes and 
an additive stochastic preference term: 

(2.69) 

where 'TJj is a stochastic error with mean zero with unknown variance rJ2 . 
The probability of individual j responding 'yes' to an offered bid t1 is 
equivalent to the probability of the random willingness to pay function 
being greater than the offered bid: 

Pr(WT P1 > tj ) 
Pr(exp(rzj + 'rJj ) > tj ) 
Pr(ry1 > ln(t1 ) - 1z1 ) . (2.70) 

Normalizing by the unknown standard error , O" ,  to standardize the sto­
chastic error results in the probability of a yes response 

Pr(WTP1 > t · ) = Pr _]_ > - ln(t · ) - -z ·  ( 7]  · 1 I ) 
J (J (J J (J J 

Pr (e1 > !J ln(t1 ) - 1*z1 ) (2. 71) 

where e j = ':; ' !3  = � and I* = I I (J. The notation for the un­
known standard error rJ used here is a notation of convenience. It 
should be made clear that the variance of standard logistic distribu­
tion is a23n2 ,  which is the normalizing factor for all logit derivations. 
Drawing on the symmetry of the error term e1 , we can rewrite this 
as Pr (Bj < -/Jln(tj ) + 1*zj ) · Since this probability represents a linear 
combination of functions of covariates {ln(t1 ) , Zj } ,  assuming 'TJj is either 
normally or logistically distributed results in a model that is estimable 
with a probit or logit model. Estimation leads to the recovery of -� , 
1. 
a 
Procedure for Estimating a Random Willingness to Pay Model with 
Log-linear Willingness to Pay Function 

1. Define the yes/no responses to the contingent valuation question 
such that yes is coded 1 and no is coded 0. 
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2. Define a data matrix X so that it contains the concatenation of 
the covariate matrix z and the natural logarithm of the offered fee 
vector ln (t) .  

3 .  Using any standard statistical software, run a probit or logit model 
with the 1/0 yesjno responses as the dependent variable, and the 
matrix X as the matrix of right hand side variables. 

4. Recover the reported parameter estimates. The coefficients on the 
variables in the matrix z represent estimates of 1 I cr. The coeffi­
cient on the offered fee is an estimate of -1 I cr .  

Example 6 Exponential Willingness to  Pay Model: The South Platte 
River Study 

We illustrate the exponential willingness to pay model with the South 
Platte River study. We choose the same specification as previously 
adopted, although it is worth noting that it is now possible to introduce 
income as a separate variable. Table 2. 7 gives the estimated models. 
Although this model looks a good bit different from the linear random 
utility model, the only effective difference is the inclusion of the log of 
the bid price, rather than the bid price. Hence the parameter estimates 
on the other covariates are quite close to the linear model. 

Calculating Willingness to Pay for the Exponential Function 

The log-linear willingness to pay function is 

(2. 72) 

Taking the expectation with respect to the random preference variation 
7Jj , the expected value of WT P is 

(2.73) 

For the linear willingness to pay model, expected willingness to pay is 
independent of the assumed form for the random error as long as the 
error has zero mean. For the log-linear model, expected willingness to 
pay will be sensitive to the assumed form of the distribution for 771 . 

Probit Formulation 

If 7Jj is distributed normally with mean zero and constant variance 
cr2 , then e'1j is distributed log-normally with mean e!cr2 and variance 
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TABLE 2.7 . Estimation of Exponential Willingness to Pay 

Pr(B < (ao + et1unlimwat +a2 govtpur+ a3environ+ 
Ct4 waterbil+a5urban -log( t) )  /a) )  

-1/a 

ao/a 

ada 

a2/a 

a3ja 

a4ja 

a5ja 

Log-likelihood 
-2ln(LR/ Lu) 

e logistic e normal 
Parameter estimate* Parameter estimate 

(Standard error) (Standard error) 
-2.27 -1 .30 

(0 .51) (0.27) 
6 . 18 3.53 

(2. 18) ( 1 . 19) 
-1 .63 -0.91 
(0 .81) (0.44) 
1 .67 0 .93 

(0 .84) (0.48) 
3 . 18 1 . 83 

( 1 . 07) (0.58) 
-0.08 -0.04 
(0.04) (0.02) 
1 .77 1 .03 

(0 .81) (0.45) 

-30.20 -30.30 
65 .49 60.61 

* All coefficients different from zero at 95% level of confidence. 

e2a2 - ea2 • Substituting into the expectation of WT P yields expected 
willingness to pay from the probit model: 

(2.74) 

Because 7Jj is symmetric about zero, median willingness to pay is found 
by substituting 7lj = 0 into the WT P expressions: 

(2.75) 

Logit Formulation 

If 7Jj is distributed logistically with mean zero and constant variance 
a23n2 , then e"�i is distributed with mean --,-E....--(n ) and variance e2a2 - ea2 , Sin an 
where the unit of measure for sin(mr) is radians (see Appendix B for 
a derivation of this result) .  From Appendix B, the distribution of e"�i 
is only defined for 0 < a < 1 .  As a approaches one from below, the 
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expected value of e'1i approaches infinity. For u > 1 ,  the expected value 
of e'1i does not exist. This implies that the coefficient on the bid in equa­
tion 2. 7la (/3 = �)  must be greater than one for expected willingness 
to pay to exist (see Appendix B). Substituting into the expectation of 
WT P yields expected willingness to pay from the logit model 

E (WTPI . ) - (J1f Zj/ '7 zJ , 1 - . ( ) 
e . 

sm u1r 
(2.76) 

Median willingness to pay is found by substituting 7/j = 0 into the WT P 
expressions: 

(2. 77) 

For both the probit and the logit, the difference between median and 
mean willingness to pay can be considerable when the variance is high. 
Note that the mean willingness to pay is increasing in the variance of 
the error. Because the estimators for willingness to pay are so different 
for the mean and median and for the logit and probit, we calculate 
them all for the sample mean values of z found in Table 2 .1 .  As Table 

TABLE 2 .8 .  Mean Willingness to Pay for Exponential Model 

E1)(WTPiz , 1) 
MD'l(WTPiz, /) 

7} logistic 
19.03 
13 .51 

7} normal 
18 .15 
13.50 

2.8 shows, the observations are very well behaved. The mean increases 
about 35% over the median for distribution. The medians from the 
two distributions are quite close, as one would expect. We shall see in 
applications, where the variance of the random error is much larger, that 
the mean and median offer quite different estimates. 

2 .3  Conclusion 

In this chapter we have reviewed the basic parametric models for model 
estimation and welfare calculation for dichotomous contingent valua­
tion models. These models have been estimated on a particularly well­
behaved data set . We have not explored more complicated random 
utility models, nor problems of bid choice and welfare calculations. For 
example, it is clear from the expression for the variance of the parameter 
estimates that the bid prices influence the parameter variances, because 
the bids are part of the data. Another issue relates to the uncertainty 
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of parameters that we have ignored in calculating the willingness to pay. 
We explore these and other issues in the econometrics of dichotomous 
choice contingent calculation in the following three chapters. 



 

3 

Distribution-Free Models for 
Contingent Valuation 

3. 1 Introduction 

In the progression of contingent valuation models with discrete responses, 
researchers first developed the kinds of parametric models that were ex­
plored in the previous chapter. When the pattern of responses is well 
behaved, as in the example used throughout the previous chapter, the 
estimates of willingness to pay will not be especially sensitive to the 
choice of distribution for the unobserved random component of prefer­
ences, or for the functional form of the preference function. However, 
there are many cases when the distribution or the functional form can 
have a substantial effect on the estimates of willingness to pay. Several 
of these cases will be explored in Chapter 4. Because of the sensitivity 
of willingness to pay for some CV studies, it is useful to develop the 
least restrictive approach to estimating willingness to pay. This chapter 
develops measures of central tendency and dispersion of willingness to 
pay that rely only on the notion that when a respondent answers yes to 
a contingent valuation question, we have learned that his willingness to 
pay is not less than the offered bid price. 

3 .2  The Turnbull Estimator 

Responses to discrete choice contingent valuation questions offer the re­
searcher limited information regarding each respondent 's true willingness 
to pay. If the respondent answers yes, then willingness to pay is greater 
than or equal to the offered price, and if the answer is no, willingness to 
pay is less than the offered price. All methods for estimating sample and 
population willingness to pay and covariate effects on willingness to pay 
estimates start with this basic information. Variation in the characteris­
tics of sampled individuals and variation in the price offered respondents 
provide the information needed to estimate sample willingness to pay. 
For each respondent the researcher records the offered price, the yes/no 
response, and individual specific covariates that can include demographic 
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information from the respondent, such as education, age, income, and 
responses to other survey questions. 

Consider a random sample of T respondents each offered one of M 
distinct prices, indexed { tj IJ = 1 ,  2, . . .  , M} ,  for a project. Let WT Pi 
be individual i's willingness to pay for the proposal. If the individual 
responds yes to the question 'Are you willing to pay $tj for the project? ' ,  
then we know that WTPi 2: tj . Otherwise, WTPi < tj . Since WTP 
is unobservable to the researcher, it can be thought of as a random 
variable with a cumulative distribution function Fw(W) ,  the probability 
that willingness to pay is less than W. The probability of a randomly 
chosen respondent having willingness to pay less than $tj can therefore 
be written 

Pr(WTPi < $ti ) = Fw(ti ) · (3. 1 )  

For simplicity we will denote this probability as Fj such that 

(3.2) 

This is the probability that the respondent will say no to a price of 
tj .  The two notations, Fw(tj )  and Fj ,  will be used interchangeably as 
appropriate. For now, we assume that this probability is the same for 
different individuals offered the same price. We relax this assumption 
in section 3.6 to include individual characteristics in the analysis. 

The M offered prices now divide the full sample T into a vector of 
M sub-samples T = {T1 , T2, . . .  , TM} where the number of respondents 
in each sub-sample (Tj is the number of respondents who get the price 
tj ) sums to the total sample size: ��1 Tj = T. Similarly, the number 
of yes and no responses can be indexed according to the offered price: 
Y = {Yj iJ = 1 , 2 ,  . . .  , M} ,  and N = {Nj iJ = 1 , 2 , . . .  , M} ,  where Yj 
is the number of 'yes' responses to bid price tj and Nj the number of 
'no' responses. The summation of the number of yes's across all sub­
samples equals the total number of yes responses in the sample, and the 
summation of the no's across sub-samples equals the total number of 
no's. 

3. 2. 1 An Unrestricted Distribution-Free Estimator 

The sub-samples created by randomly assigning prices to the full sample 
can be treated as independent and the probability of a no response can be 
estimated for each sub-sample. When the bids are assigned randomly 
to the full sample, the M sub-samples can be treated as independent 
samples from the full population T, each receiving a single bid tj .  To 
estimate the probability of a yes or no response to the offered bid $tj , 
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we need information on the true distribution of WTP: Fw(tj ) · How­
ever, this is exactly the information we do not have. As was the case 
in Chapter 2 ,  we could choose a distribution for Fw(tj ) and then derive 
estimable models from the assumed distribution. But in this chapter 
the focus is on the information that can be drawn from the individual 
responses to the posed CV questions without imposing unnecessary as­
sumptions. Since the distribution of WT P is unknown, the series of 
yes/no responses from the sample represents a series of binary outcomes 
from an unknown data generating process and can be used to formulate 
an estimate of Fw(tj ) · 

To derive an estimate of Fw ( tj ) ,  define a response variable Iij = 1 
if individual i responds 'yes' to the offered bid tj , and Iij = 0 if 'no' . 
Given this limited information, the unknown probability of observing Iij 
is 

Pr(Iij iFw(tj ) )  = Fw(tj) l-I;j ( 1 - Fw(tj )l;j . (3.3) 
For a given sample of Tj independent and identical individuals each 
offered the same price tj , the probability of observing the set of sample 
yes/no response Ij = {Ilj , I2j ,  . . . , IrJJ }  is 

TJ 
IT Fw(tj ) 1-1'i ( 1 - Fw(tj ) ) 1'J 
i=l 

This probability has an intuitive interpretation for each price-partitioned 
sub-sample from a discrete choice contingent valuation question. If the 
sample is chosen randomly and the prices are assigned randomly, then 
the individual responses to each price can be interpreted as the outcome 
of individual Bernoulli trials (weighted coin flips) with probability of 
success equal to (1 - Fw(tj ) ) .  Since the individuals are randomly chosen 
and their responses are independent, the probability of observing a given 
number of yes's to price j (Yj) from a sub-sample Tj is the probability of 
}j successes in Tj independent Bernoulli trials with probability of success 

""T 1 - Fw(tj ) · Defining ui�l Iij = }j as the number of yes responses to 
$tj , and (Tj - }j)  = Nj as the number of no responses, the probability 
of observing the exact sample of responses to tj becomes 

where 

Pr(Yj jFw(tj) , Tj ) = ( � ) Fw(tj )Nj ( 1 - Fw(tj ) )YJ (3.5) 

( � )  T !  
Yj !(T; -Yj ) !  is the number of combinations of }j yes 
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responses that can occur in a random sample of T1 individuals. Because 
the responses are assumed independent, the sequence of responses does 

not matter and ( � ) simply counts the number of possible ways Y1 

yes responses could occur. Note that (3.5) is the cumulative distribu­
tion function of a binomial random variable. The total number of yes 
responses to any price t1 (Yj ) can be interpreted as a binomial random 
variable with the probability of observing a single yes response equal to 
( 1 - Fw(t1 ) ) . 

The problem of estimating the unknown probability Fw(t1 ) from the 
sample of known yes/no responses remains. Fw(t1 ) is an unknown dis­
tribution, and it is desirable to make minimal assumptions about its 
form to reduce the risk of bias due to misspecification. One possibility 
is to interpret Fw(tj ) as an unknown parameter, denoted F1 . Then 
the probability of observing Yj yes's  from T1 independent respondents 
becomes a function of F1 . For estimation of the parameters, we choose 
an estimate of F1 to maximize the likelihood of observing Yj yes's from 
T1 respondents. (See Appendix A for a brief treatment of maximum 
likelihood estimation.) The maximum likelihood estimator for F1 can 
be found by treating F1 as an unknown parameter, and Yj , N1 and T1 
as known in equation (3.5) . The likelihood function for the sub-sample 
of respondents offered price t1 becomes 

L(F· IY· N · T· ) - ( Tj ) FNj (l - F· )Yj J J >  J > J -
Yj j J . 

Because the price-partitioned sub-samples are independent (recall prices 
are assigned randomly) ,  the joint likelihood function for the full sample 
of T respondents is the product 

M 
L(Fl , . . .  , FM IYl , . . .  , YM ;  Nl , . . .  , NM) = IT  ( � ) Fj"'j (l - Fj )Yj 0 

j=l J 

The combinatorial term has no unknown constants to be estimated and 
so we drop it from the log-likelihood function. The log-likelihood function 
becomes M 

ln L = L [N1 ln(F1 )  + Yj ln(l - F1)] .  
j=l 

(3.6) 

Maximizing the log of the likelihood function with respect to F1 for all 
j yields the system of first order conditions for a maximum 

O ln L(FIY, N) 
8F1 (3.7) 
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Because the sub-samples of respondents are independent , the first-order 
condition for any Fj is independent of all other first-order conditions. 
Solving the first order conditions for Fj yields the maximum likelihood 
estimates of F: 

Fj = Nj/Tj . 
Recalling that Nj is the number of people responding no to the offered 
price tj and Tj is the total number of people offered tj , Fj is the sample 
proportion of no responses to the offered price. Intuitively, the maxi­
mum likelihood estimate of the probability that a randomly chosen re­
spondent will not be willing to pay $tj is equal to the sample proportion 
of individuals that respond no to $tj . 

Example 7 Estimating the Distribution-free Estimator 

The estimates of the parameters Fj are illustrated with a contingent 
valuation study of willingness to pay for water quality. The data are 
from a 1995 telephone survey conducted by Whitehead, Haab and Huang 
(1998) . The valuation question asked respondents if they would be will­
ing to pay a randomly assigned dollar amount for a program to restore 
water quality and services of the Albemarle and Pamlico Sounds of North 
Carolina to their 1980 levels. This is a simple example because there 
are only four prices, and they are relatively far apart. The results are 
summarized in Table 3. 1 .  

TABLE 3 . 1 .  Turnbull Estimates: Albemarle and Pamlico Sounds 

Bid Price Number offered Number of No's Fj = t;?: (tj ) (Tj )  (Nj ) J 

$100 190 98 0 .516 
$200 144 78 0 .542 
$300 166 105 0.632 
$400 154 113 0 .734 

The example in Table 3.1 suggests the need for a test of the hypothesis 
that the proportion of no's is statistically different across bids. After 
all, in column four, the proportions do not differ greatly. We could do 
pair-wise t-tests, but a likelihood ratio test is more convenient. The 
pair-wise t-tests will be independent and can be converted into the like­
lihood ratio test. A likelihood ratio test (see Appendix A) can be con­
structed as follows. The null hypothesis would be that there is an equal 
likelihood of saying yes or no, regardless of the price. Using the prin­
ciple of ignorance, the estimate of the likelihood of saying no would 



 

64 Valuing Environmental and Natural Resources 

be one-half, so that the null hypothesis would be Fj = 1/2 Vj. This 
can be used to calculate ln(LR) = T ln(0.5) by substitution into equa­
tion (3.6) . The maximum likelihood estimates can be used to calculate 
the unrestricted log-likelihood function value from equation (3.6) and 
then the likelihood ratio can be calculated. The restricted likelihood 
value ln(LR) = -453.3 and the maximized value is ln(Lu) = -429.3. 
The quantity -2 ln(LR/ Lu) = 48.0. There are four restrictions, be­
cause there are four distribution points restricted to be 0.5. Hence 
x299 (4) = 13.3; since the computed value exceeds the test statistic, 
we reject the hypothesis of equal proportions. 

This is an unusual example, because the Fj are monotonically increas­
ing as the bid price increases (although that is what we would expect, 
randomness in responses often leads to non-monotonic values of the Fj ) .  
Compare it  with an example drawn from a study of sewage treatment in 
Barbados (see McConnell and Ducci) . The households were interviewed 
in person, and asked if they would be willing to pay the given amount in 
increased water bill for the installation of a sewage system. 1 There are 
ten bid prices, and an approximately equal number of respondents for 
each price. The results are given in Table 3.2. The bid prices are given 
in 1988 $Barbadian. (In 1988, the exchange rate was about $Barbadian2 
= $US1.) 

The Barbados example differs in several ways. First , there are more 
bid prices, and hence smaller intervals between bid prices. Further, the 
total number of interviews completed in the Barbados case is less than in 
the Albemarle/Pamlico Sound case. In Table 3. 1 ,  the number of inter­
views is 654, while for Barbados, the number is 426. As a consequence, 
the number of observations per cell is much smaller in Table 3.2, increas­
ing the variance and helping to create the situation in which the portion 
of 'no' responses decreases as the bid price increases. 

From the parameter estimates of the fourth column, we see that the 
empirical distribution of willingness to pay is not monotonically increas­
ing. It tends to go up, so that a graph of this distribution would look 
reasonable if it were smoothed. But for five out of the ten bid prices, 
the probability of no goes down, not up. In retrospect , this results in 
part from having too many bid prices for the sample size, and too many 
prices at the upper end of the distribution. We discuss the problem of 

1 While the payment on part of a water bill is a good vehicle in the sense that it 
is plausible and associates payment with service, it suffers from an uncertain time 
dimension. The respondent does not know how long the payments will last . A good 
use of this vehicle would specify clearly the number of periods that the payment 
would last . 
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TABLE 3.2 .  Turnbull Estimates for Sewage Treatment in Barbados 

Bid Price (tj ) Number Number 
Fj (= Ni/Ti ) offered(Tj ) of No's (Nj ) 

20 44 15 0 .341 
60 40 31 0.775 
80 41 30 0.732 
120 47 33 0.702 
160 47 43 0.915 
200 40 36 0.900 
240 42 39 0.929 
320 43 39 0 .907 
440 42 41 0 .976 
600 40 39 0 .975 

choosing bids in Chapter 5. 
In the following section, we develop the more general case that allows 

the calculation of these parameters of the empirical distribution of will­
ingness to pay when the proportion of no's is not always increasing with 
the bid price. This is a form of smoothing pools bids conservatively. We 
also show how to use the empirical distribution to calculate the mean 
and variance of the lower bound of sample willingness to pay. 

3.2. 2 The Turnbull Estimator 

When samples are large and as the offered price increases, the propor­
tion of observed no responses to each bid should increase (Fj :::; Fj+1 ) . In 
other words, as the bid price increases, we would expect the distribution 
function to monotonically converge to one for large sample sizes. How­
ever, as the previous example shows, in practice nothing guarantees this. 
Because of random sampling, we often observe non-monotonic empirical 
distribution functions (proportions of no responses) for some of the of­
fered prices: i.e. Fj > Fj+l for some j .  In such cases we have two options. 
We can rely on the asymptotic properties of a distribution-free estimator 
and accept the small sample monotonicity problems. Or we can impose 
a monotonicity restriction on the distribution-free estimator. The sec­
ond approach has come to be known as the Turnbull distribution-free 
estimator (see Turnbull (1976), Cosslett (1982) ,  or Ayer et a/. (1955) ) .  It 
was originally used in contingent valuation by Carson, Hanemann et al. 
( 1994) and Haab and McConnell (1997). Variants of it were employed 
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by Duffield, by Kristrom (1990) and by McFadden (1994).2 
The unrestricted distribution-free estimator of the previous section 

does not guarantee that the probability of a no response will increase 
with the bid price. If a monotonically increasing distribution function 
is to be guaranteed, a monotonicity restriction (F1 :S FJ+1 IVj) must be 
imposed and the set of Fjs must be estimated simultaneously (the sub­
samples can no longer be treated as independent) .  For reference, Table 
3.3 summarizes the definitions and parameter relations that will be used 
in deriving the TUrnbull distribution-free estimator. 

TABLE 3 .3 .  Definitions and Relations for Turnbull Estimator 

Parameter 

Fo 

Definition 
Pr ($t1_1 :S WTP < $t1 ) 
Pr (WT P :S $t1 ) 
{fl , j2 , . . .  , fM+l }  
CDF at upper bound of WTP 
Typically tM+l = oo 
CDF at lower bound on WTP 
Typically to = 0 
Number of bids 
Number of yes responses to bid tj 
Number of no responses to bid tj 
Total number offered bid tj 

Relation 

F1= Li=l fi 
fJ= F1-F1-1 
FM+l= 1 

Fo= 0 

The log-likelihood function to estimate F1 , j = 1 ,  2, . . .  , M subject to 
the monotonicity restriction (Fj :S FJ+1 IVj) is 

M 
ln L(F1 , F2 , . . .  , FM IY, N, T) = L [Nj ln(Fj ) + }j ln(1 - Fj )] .  (3.8) 

j=l 

Imposing the monotonicity restriction (F1 :S FJ+1) , the log-likelihood 
maximization problem becomes 

(3.9) 

2 Carson, Hanemann et nl. ( 1994) also developed a double-bounded version of the 
model, equally conservative in its use of data, that requires iterative ML methods to 
estimate. 
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For convenience, this problem can be written in terms of the probability 
mass points {h , h, . . . , fM , fM+d rather than the distribution function 
{F1 ,  F2 , . . . , FM } ,  where fJ = Fj - Fj-l is the weight of the distribu­
tion falling between price j and the previous price. Intuitively we can 
think of the fJ as the response to price increases. They should be pos­
itive because a higher proportion of respondents should answer no at a 
higher price. In this form, Fj = L;{=1 fi , Fo = 0, and FM+l = 1. The 
vector of probabilities f = {h, h, . . .  , fM+d represents a discrete form 
of the density function. Rewriting the likelihood function in terms of 
the unknown density parameters rather than the distribution function 
parameters, the likelihood maximization problem becomes 

m/"dn L(f iY , N, T) � �(N; In (� j,) + Y; In ( 1 - t, !k > 
(3.10) 

subject to fJ 2: 0 for all j. 
The Kuhn-Tucker first-order conditions for a maximum take the form 

O ln L  
Ofi 

li 
8L fi ln 
ofi 

0. 

To find the solution to the likelihood maximization problem, the set of 
first order conditions must be solved recursively. By construction, this 
maximum likelihood problem ensures that h > 0 so long as N1 =/= 0. 
Therefore, the first order condition for h always holds with equality 
so long as at least one respondent responded no to t1 (i.e. at least one 
person has WT P less than the minimum offered price) . Assuming this 
to be the case, solve for h by assuming for the moment that h =/= 0. 
The first two first-order conditions now hold with equality and can be 
differenced to find 

8 ln L  O ln L  _ N1 Y1 _ O (3. ll )  
ah - ah - ]; - 1 - h - · 

This can be solved directly for h , 
N1 h = N1 + Y1 

If h > 0 we can subtract 8J'}3L from g� to obtain 

N2 h = Y2 + N2 -
h .  

(3.12) 
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Therefore, h is positive if 

(3.13) 

If the proportion of respondents saying 'no' to t2 is strictly greater than 
the proportion saying 'no' to t 1 ,  then the probability that WT P falls 
in the interval ( t1 , t2] is positive and equal to the difference in the pro­
portions. This pattern continues for the full vector of density estimates 
{h ,  h,  . . .  , fM , fM+d· If the proportion of no responses to each suc­
cessive offered price monotonically decreases, then the distribution-free 
maximum likelihood estimate of the density point at price j is the ob­
served proportion of no responses to price j less the sum of the density 
estimates for all previous prices: 

j-1 
N ·  iJ = / - "£ fk. 

J k=l 

By substitution, we find that the maximum likelihood estimation of the 
distribution function at each price point is 

After recursive substitution for fk , the maximum likelihood estimate for 
an arbitrary fj simplifies to 

These maximum likelihood estimates have an intuitive interpretation. 
Our best estimate of the probability of a 'no' response to price j is the 
sample proportion of 'no' responses to that price. The maximum likeli­
hood estimate for the probability that willingness to pay falls between 
two prices is therefore just the difference in the 'no' proportions between 
those prices , provided the response no proportions are monotonically in­
creasing. 

Recall that this derivation has assumed that the proportion of no 
responses to tj+l is greater than the proportion of no responses to tj 
for all j prices offered. Without loss of generality, suppose N�h < 
N�h , i.e. , the proportion of respondents saying no to t2 is less than the 
proportion of respondents saying no to t 1 .  The unconstrained maximum 
likelihood estimate of h will be negative, causing a violation of the 
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monotonicity assumption for a valid cumulative distribution function. If 
we impose the non-negativity constraint, then h = 0 and g� becomes 
irrelevant. Assuming h -I- 0, we can now subtract %t from %R with 
h = 0 to obtain the Turnbull first-order conditions 

O ln L _ a ln L 
= 

N1 + N2 _ Y1 + Y2 = O ah ah fi 1 - fi ' 

where the * superscript denotes the Turnbull estimate. 
Solving for fi : 

(3. 14) 

(3. 15) 

Therefore, the Kuhn-Tucker solution to the problem of a breakdown in 
the monotonicity of the empirical distribution function from tj to tj+l 
is to combine the jlh and (j + 1 )th sub-samples into one group and drop 
the (j + 1 )th price. Define Nj = Nj + NJ+l , �* = Yj + Yi+I , and then 
re-estimate fj as follows 

N'!' j-2 
fj = 

Y* ; N* - L fi: . 
J J k=l 

(3. 16) 

If fJ is still negative, then this process is repeated until a position fi is 
N* 

computed such that fi > 0. Then define Fj* = 7y!. .  
J 

A Procedure to Calculate the Turnbull Distribution-Free Estimator 

1 .  For bids indexed j = 1 ,  . . .  , M, calculate Fj = N
N+Y where Nj 

J J 
is the number of no responses to tj and Yj is the number of yes 
responses to the same bid, and Tj = Nj + Yj .  

2 .  Beginning with j = 1 , compare Fj and Fj+ l ·  

3 .  If FJ+ 1 > Fj then continue. 

4. If FJ+1 ::; Fj then pool cells j and j + 1 into one cell with bound-
. (t · t · l d l l t F* - N;+N;+l _ !!j_ Th t . l "  arzes 1 ,  J+2 , an ca cu a e . j - TJ+TH, - T1• . a zs, e zm-

inate bid tj+l and pool responses to bid tJ+1 with responses to bid 
tj . 

5. Continue until cells are pooled sufficiently to allow for a monoton­
ically increasing CDF. 

6. Set FAHl = 1 .  
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7. Calculate the PDF as the step difference in the final CDF: 

When these steps are taken, we arrive at a set of fi , . . .  fM· +l and 
related Fi , . . .  F;,. that have the property that the proportion of no re­
sponses declines as the bid price increases. We have done a minimal 
amount of conservative smoothing. In the remainder of the following 
exposition we assume that either the responses are monotonic from the 
start or that they have been smoothed as in this procedure. 

3.3 Variance-Covariance Matrix 

Once the estimates of the distribution function are properly pooled to 
guarantee monotonicity, the Thrnbull estimates of the cumulative dis­
tribution function can be treated as unrestricted maximum likelihood 
estimates of the empirical distribution function. In other words, once 
the monotonicity violations are removed, the inequality constraints be­
come non-binding and the maximum likelihood problem can be treated 
as unrestricted: 

max ln L(F1 , F2 , . . . , FM IY* , N* ) 
Ft ,F2 , . . .  ,FM 

(3. 17) 

M* 

L [NJ ln(Fj )  + �* ln(1 - Fi) ] , 
j=l 

and yields maximum likelihood estimates of: Fj* = !;p.,  where the M* 
J 

prices now represent the pooled price ranges. 
A lower bound on the variance of these estimates can be found by 

inverting the negative of the matrix of second derivatives of the log­
likelihood function. The matrix of second order conditions for a maxi­
mum is a diagonal matrix with 82 In L(F1 ,F

�j;2
'FM IY* ,N*) on the diagonal 

J 
and zeros off the diagonal. The negative of the inverse of the matrix 
of second derivatives is therefore a diagonal matrix with zeros off the . [ 82 ln L ] - l 

- [ Nj Yj ] -1 
- Fj* (l-Fj )  . -d1agonal and - aFJ 

- Ffi - (l-Fj )2 -
Tj* , for J -

1 ,  2, . . . , M* , on the diagonal. This implies that covariance(Fj ,Fk )  = 0 
for j =f. k. The maximum likelihood estimate of the probability of a no 
response to an arbitrary price j is therefore equal to the sample pro-
portion of no responses to that price, Fj* = �{ with a variance on the 

J 
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F* (1 - F*) V(r') = J J . J T* J 
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(3. 18) 

The Thrnbull treats the set of responses to price j as a series of indepen­
dent draws from a binomial distribution with probability of willingness 
to pay falling below the bid: F1* = !;p., and probability of willingness 

1 
to pay falling above the price equal to the complement. The variance of 
the Thrnbull estimated cumulative distribution function will be recog­
nized as the variance of (TI) draws from a binomial distribution with 
probabilities F1 and (1 - F1 ). Therefore, within a specific grouping of 
respondents, the Thrnbull treats the yes/no responses as independent 
draws from a binomial distribution. 

The variances of the fj 's are also straightforward. Since F1* and F1*_1 
have zero covariance 

F* (1 - F*) F* (1 - F* ) 
V(f":) = V(F*) + V(r' ) = 

1 1 + j-1 j-1 . (3.19) J J J-1 T* T* 

The covariance (ft , fj ) is 

cov(ft , fj) 

J J-1 

cov(Ft - Ft_1 , F1* - F/-d 
cov(F;* , F}) - cov(F;*_ 1 , F1* ) 
-cov(Ft , F1*_1) + cov(Ft_ 1 , F1*_1) { -V(Ft) j - 1 = i } 

-V(FI) i - 1  = j 
0 otherwise. 

The covariance between any two non-consecutive fi is zero. 

3.4 Lower Bounds for Mean and Median 
Willingness to Pay 

(3.20) 

Thus far we have dealt with the estimation of the distribution of will­
ingness to pay. Now we turn to the estimation of measures of central 
tendency for willingness to pay. Because the Thrnbull only uses the 
information contained in responses to provide estimates of the distrib­
ution function, any estimate of mean or median willingness to pay will 
similarly only use the minimal amount of information. 
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3.4 . 1 Median Willingness to Pay 

The Turnbull provides an estimate of the range in which median willing­
ness to pay falls. Since the no-response proportions are consistent esti­
mates of the distribution point masses at each price, the price for which 
the distribution function passes 0 .5 is the lower bound on the range of 
median WT P. The next highest price represents the upper bound on 
the range of median WT P. For example, if 30% of respondents say no 
to $10, and 55% say no to $15, then median willingness to pay will fall 
between $15-$20. The median represents the price for which the proba­
bility of a no response equals 0.5. Since the Thrnbull only gives point 
mass estimates at a discrete number of points, the median can only be 
defined within a range. 

3.4 . 2  A Lower Bound Estimate for Willingness to Pay 

A Single Price Case 

For simplicity, consider a case in which all individuals are offered the 
same price t. In this case, a conservative estimate of expected willingness 
to pay will be the product of the offered price and the probability of 
willingness to pay being above the price: t · ( 1 -F(t) ) . To see why this is 
a conservative estimate consider the general expression for the expected 
value of the random variable WT P, assumed to be distributed between 
0 and U: 

E(WTP) = lou WdFw(W) ,  (3 .21) 

where U is the upper bound on the range of WT P. By partitioning the 
range of willingness to pay into two sub-ranges according to the offered 
price [0, t ) ,  and [t , U] , the expected value of willingness to pay can be 
written 

E(WTP) = lot 
WdFw(W) + 1u WdFw(W) . (3.22) 

Because Fw(W) is a cumulative distribution function it is increasing. 
Hence replacing the variable of integration by the lower limit will result 
in an expression less than or equal to E(WTP) , that is, a lower bound 
on willingness to pay 

E(WTP) 2': lot 
OdFw(W) + 1u tdFw(W) = t · (1 - Fw(t) ) .  (3.23) 

The equality holds by assuming that Fw(U) = 1. The expression states 
that expected willingness to pay is at least as great as the offered price 
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multiplied by the probability of a yes response to the offered price. For 
example, if the offered price is $10 and the sample probability of a yes 
response is 0.25, then expected willingness to pay must be at least $2.50. 

We can identify this measure of willingness to pay as EL8 (WTP) = 
t · ( 1-Fw(t) ) , the lower bound on expected willingness to pay. Substitut­
ing in the Thrnbull estimate for Fw(t) , we obtain a consistent estimate 
of the lower bound on expected willingness to pay 

The Multiple Price Case 

y ELB (WTP) = t . r · (3.24) 

A similar procedure first employed by Carson, Hanemann et al. (1994) 
can be used to define a lower bound on willingness to pay when M* 
distinct prices are randomly assigned to respondents. (Throughout this 
section we use the notation Jj and Fl . These refer to the pooled data if 
the original data are not monotonic. Otherwise they refer to the original 
data.) Recall the definition of willingness to pay from equation (3.21) 

E(WTP) = lou WdFw(W) (3.25) 

where U is the upper bound on the range of WT P. The range of will­
ingness to pay can now be divided into M* + 1 subranges: {0 - t 1 , t1 -
t2 , . . .  , tM• - U} . Using these ranges, expected willingness to pay can be 
written as 

E(WTP) � � [f+> WdFw(W)l (3.26) 

where t0 = 0, and t M* + 1 = U. Because F w (W) is an increasing function, 
we know that ft

tH1 W dFw(W) 2: ft
tH1 tjdFw(W) . Hence we can write 

J J 

M* 
E(WTP) 2: I>j [Fw(tj+I ) - Fw(tj ) ] (3. 27) 

j=O 

where we use ft
t;+1 tjdFw(W) = tj [Fw(tJ+r ) - Fw(tj) ] . For calculating 

this sum, one needs the results Fw(O) = 0 and Fw(U) = 1 .  
Substituting in the consistent estimator for Fw(tj ) ,  and simplifying 

notation so Fw ( tj ) = Fj* , a consistent estimate of the lower bound on 
willingness to pay is 

M* 
ELB (WTP) = I>j (F]+l - Fn (3.28) 

j=O 
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where Fl = !;fJ. , F0 = 0, and FM*+l = 1 .  This lower bound estimate of 
J 

willingness to pay has an intuitive interpretation. By multiplying each 
offered price by the probability that willingness to pay falls between 
that price and the next highest price, we get a minimum estimate of 
willingness to pay. The estimated proportion of the sample that has 
willingness to pay falling between any two prices is assumed to have 
willingness to pay equal to the lower of those two prices. This estimate 
is appealing because it offers a conservative lower bound on willingness to 
pay for all non-negative distributions of WT P, independent of the true 
underlying distribution. Even though the true distribution of willingness 
to pay is unknown, ELB (WTP) will always bound expected willingness 
to pay from below as long as the true distribution of willingness to pay 
is defined only over the non-negative range. In practice, EL8 (WTP) 
represents the minimum expected willingness to pay for all distributions 
of WT P defined from zero to infinity. 

Using a similar procedure, an upper bound on willingness to pay can 
be defined as: EuB (WTP) = I:�� tj+l (Fj*+l - Fl) ·  The problem here, 
however, lies in the definition of tM*+ l · Since PM• is the highest offered 
bid it is necessary to define the upper bound on the range on willingness 
to pay using an ad hoc method. Income is a possibility, but income can 
lead to large estimates of the upper bound. Other measures are possible 
but will be difficult to defend against a charge of being arbitrary. 

One advantage of the lower bound estimate of WT P is the distribu­
tion of the estimator. Since the fj 's are normal and the tj are fixed, the 
ELB (WT P) is also normal. Normality makes its variance worth com­
puting. Rewriting the expected lower bound in terms of the probability 
mass estimates gives 

M* 
ELB(WTP) = l:)j . f]+l " j=O 

The variance of the lower bound estimate is 

M* M* M* 

Recalling that V(fj) = V(Fj )  + V(Fj*-1 ) ,  and 

{ -V(Ft) cov(ft ,  fj) = �V(Fj) j - l = i } 
i - l = j  
otherwise. 

(3.29) 
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The variance of the expected lower bound simplifies to 

V(ELB(WTP)) � Fj* ( 1 - Fn (t . - t . ) 2 L..t T* J J - 1 
j=1 J 
M* 
L: v  (Fn (t1 - t1_1 )2 . 
j=1 

75 

(3.31) 

(3.32) 

The variance can be used for constructing hypothesis tests and con­
fidence intervals about ELB (WTP) . Because ELB (WTP) is a linear 
function of the asymptotically normal maximum likelihood distribution 
function estimates fj , E LB (WT P) will be normally distributed with 
mean defined in equation (3.28) and variance defined in equation (3.31) : 

Procedure for Computing Lower Bound Willingness to Pay Prom a CV 
Survey with Multiple Prices 

1 .  Calculate the proportion of no responses to each offered price by 
dividing the number of no responses by the total number of respon­
dents offered each price. Denote this F1* .  These are derived from 
pooling if necessary. Recall that F0 = 0 and F"M.+1 = 1 . These 
represent consistent estimates of the probability of a no response 
to each offered price. 

2. Calculate fj+1 = F)\1 - F1* for each price offered. These repre­
sent consistent estimates of the probability that willingness to pay 
falls between price j and price j + 1 .  To calculate the probability 
that willingness to pay is between the highest bid ( t M) and the 
upper bound (tM+1), we define FM*+1 = 1 .  This means that no 
respondents have willingness to pay greater than the upper bound. 

3. Multiply each offered price ( t1) by the probability that willingness 
to pay falls between it and the next highest price ( t1+1) from step 2. 
We do not need to perform this calculation for the interval 0 - t1 
since it entails multiplying the probability by zero. 

4. Sum the quantities from step (3) over all prices to get an esti­
mate of the lower bound on willingness to pay: E LB (WT P) = ��0 tj (FJ+1 - FI) . In an analogy with consumer surplus, one 
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can think of this estimate as the sum of marginal values times 
quantity adjustments, or the integral over quantity in a demand 
curve. 

5. Calculate the variance of the lower bound as 

M* F* (1 - F* ) 
V(ELB(WTP) ) = L J T� J (tj - tj_ l )2 

j=l J 

Example 8 Willingness to Pay Estimates for the Turnbull 

In a test of real versus hypothetical responses to hypothetical ref­
erenda, Cummings et al. (1997) perform an experiment in which one 
random sample is offered a single hypothetical payment (t) of $10.00 to 
provide a good, and a second sample is made the same offer except told 
the payment of $10.00 is real. Their results are summarized in Table 
3.4. Because only a single bid was offered, the Turnbull estimate of 

TABLE 3.4. Hypothetical and Real Responses for a Single Price 

No 
Yes 
Total 

Hypothetical 
102 
84 
186 

Real 
73 
27 
100 

Total 
175 
1 1 1  
286 

the probability of a no response is simply the proportion of respondents 
responding no to that bid. The probability of a no response can be es­
timated as: F($10) = 102/186 = 0.548 for the hypothetical experiment , 
and F($10) = 73/100 = 0.730 for the real experiment. The respec­
tive variances are: V(F($10) ) = 0.00133 for the hypothetical responses 
and V(F($10)) = 0 .00197 for the real responses. The t-statistics for 
significant difference from zero are 15.03 , and 16 .45 respectively. The 
t-statistic for difference in means is 3 .17.3 

A lower bound estimate of willingness to pay is found by multiplying 
the offered price by the estimate of the probability of a yes (1 - F($10) ) . 
For the hypothetical data, expected willingness t o  pay is $ 10 · ( 1 -
0.548) = $4.52 with an estimated variance of 0.133. For the real data, the 
lower bound estimate of expected willingness to pay is $10 · (1 - 0.73) = 

3The test statistic for difference in means is: t = 1' -J.L2 where !-" is the relevant 
V ai+u� 

mean, a2 is the relevant variance. 
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$2.70 with an estimated variance of $0. 197. To test the significance of 
the difference between the two means the standard test for the signifi­
cance of the difference between two normally distributed variables can 
be used. The t-statistic is ($4.52 - $2.70)/J0. 133 + 0.197 = 3 .17. This 
simple test rejects the hypothesis that willingness to pay in the real and 
hypothetical experiments is equal. 

In a study with several bid prices, Duffield reports the results of a 
contingent valuation survey to value wolf recovery in Yellowstone Na­
tional Park. The recorded responses are summarized in the first three 
columns of Table 3.5. 

TABLE 3 .5 .  Turnbull Estimates with Pooling 

Unrestricted Turnbull 
tj Ni Ti Fi F* r 
5 20 54 0.370 0 .343 0 .343 
10 15 48 0 .313 Pooled back Pooled back 
25 46 81  0 .568 0 .568 0.225 
50 55 95 0 .579 0 .579 0 .011 
100 106 133 0 .797 0 .797 0 .218 
200 82 94 0.872 0.872 0 .075 
300 72 81 0 .889 0 .889 0 .017 

300+ 1 1 0 . 1 1 1  

The fourth column represents the unrestricted maximum likelihood 
estimate of the cumulative distribution function. As can be seen, the 
responses to the price of $10 violate the monotonicity assumption for 
a standard distribution function: F$10 < F$5 . Pooling the $10 and 
$5 responses results in the Thrnbull distribution and probability mass 
point estimates reported in the last two columns. Other than the $10 
responses, all other sub-samples satisfy the monotonicity assumption. 
Using the definition in equation (3.29) , we calculate ELB (WTP) 

M* I: tj ·t;+l = o . o.343 + s . o.22s + 2s . o.o1 1 + so . o.21s 
j=O 
+100 . 0.075 + 200 . 0.017 + 300 . 0 . 1 11 
$56.50. 
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The variance is given by V(ELs(WTP)) 

� Fj* ( 1 - Fn (t . - t . )2 L..t T� J J - l  
j=l J 

0.343 ° 0 .657 (5 - 0)2 0 .568 ° 0.432 (2 - )2 102 + 81 5 5 + 
0 .579 ° 0 .421 (50 - 25)2 0. 797 ° 0 .203 (100 - 50)2 95 + 133 + 
0 .872 ° 0 .128 

(200 - 100)2 0.889 ° 0 .111 (300 - 200)2 94 + 81 
$29.52. 

For this example, the mean lower bound willingness to pay is $56.50 and 
with a standard error of 5.50. The 95% confidence interval for lower 
bound WTP is 56.50±1 .96 · 5.50 ($45 .71 , $67.28) . One of the advantages 
of the E LB (WT P) is the ease of constructing a confidence interval or 
performing hypothesis tests, because of the asymptotic normality. 

3.5 A Distribution-Free Estimate of WTP 

The lower bound estimator assumes that the full mass of the distrib­
ution function falls at the lower bound of the range of prices for each 
mass point. For example, if the probability that willingness to pay falls 
between h and t2 is estimated to be 0.25, then for purposes of calculat­
ing the lower bound estimate of WT P, the full 25% of the distribution 
function is assumed to mass at t1 .  There are methods for interpolating 
between price points to describe the distribution between prices. The 
simplest of such methods is a simple linear interpolation between prices 
used by Kristrom (1990) . Instead of assuming a mass point at the lower 
end of the price range, we can assume that the distribution function is 
piece-wise linear between price points. Assuming the survivor function 
is piece-wise linear between prices makes the calculation of the area un­
der the survivor function a matter of geometry. The survivor function 
between any two prices tj and tj+1 forms a trapezoid with area equal to 

ltJ+l (1 - Fw(w))dw = (1 - F1*+1) (tj+l - tj ) 
tj 
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The right hand term in equation (3.34) shows that the piece-wise linear 
estimator for expected willingness to pay assumes that willingness to 
pay is distributed uniformly between prices with the probability of a yes 
equal to the mid-point of the estimated probabilities at the two prices. 
For example, if 25% respond 'yes' to $5 and 20% respond 'yes' to $10 
then the probability that WT P is less than any value between $5 and 
$10 is assumed to be 22.5%. 

Summing over all offered prices yields the estimate of expected will­
ingness to pay 

E(WTP) 

(3.35) 

Two problems occur in calculating expected willingness to pay in this 
manner: to = 0 and tM+l = upper bound on WTP are not offered 
prices, and as such, the survivor functions at these prices are undefined. 
If WT P is assumed to be non-negative then the survivor function (dis­
tribution function) goes to one (zero) at a price of zero. Unless one has 
some insight that WT P can be less than zero, it is sensible that the 
probability of willingness to pay being less than zero is zero. Also, by 
definition, the survivor function can be defined to go to zero at the upper 
bound on willingness to pay. However, unless a price is offered such that 
all respondents say no to the highest price, any assumed upper bound 
for willingness to pay will be arbitrary. Differentiating equation (3.35) 
with respect to t'M + 1 yields the marginal change in expected willingness 
to pay for a one unit increase in the upper bound: 

8E(WTP) 
ot'M+l 

1 - FM 
2 

(3.36) 

As the arbitrary upper bound is increased by one dollar, the measure of 
expected willingness to pay will always increase. On the other hand, the 
lower bound estimate is independent of the upper bound. A respondent 
who answers 'yes' to the highest bid is assumed to have WT P equal 
to the highest bid. Where the piece-wise linear estimate can provide 
a point estimate of expected WT P, the lower bound estimate provides 
a more conservative estimate independent of ad hoc assumptions about 
the upper tail. 
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3.6 Covariate Effects in the Turnbull Model 

The distribution-free models can provide estimates of sample willingness 
to pay while ignoring variation in willingness to pay due to variation in 
individual characteristics or variation in the characteristics of the good 
being valued. For policy purposes, or for purposes of investigating the 
properties of CV surveys it is often useful to assess changes in WT P 
due to changes in covariates. The term covariates will be assumed to 
include individual or scenario-specific characteristics. For example, the 
NOAA panel protocol states that respondents to CV surveys should be 
sensitive to the scope of the injury to the good being valued. The larger 
the injury, the more respondents should be willing to pay for restoration 
or future avoidance. To test for scope effects, split-sample CV studies 
are often designed to offer separate sub-samples different sizes of the 
same good to value. Assuming that all respondents are asked the same 
question, as is necessitated by the Turnbull estimator, undermines the 
ability to test for scope effects. 

Recall the Turnbull maximum likelihood problem from equation (3. 17) : 
max ln L(F1 , F2 , . . .  , FNJ IY* , N*) 

F1 ,F2 , . . .  ,FM 
M* 
L [Nj ln(Fj )  + Yj* ln(1 � Fj ) ] , (3.37) 
j=l 

where for current purposes it is assumed that the responses satisfy the 
monotonicity restrictions. Suppose the full sample is sub-divided into 
K classes indexed { k = 1 ,  . . . , K} .  For each price offered there are now 
K classes of respondents. The total number of responses from class k 
to price j is represented by Tjk · For example, if one group has high 
income, and another low income, then K = 2 .  Likewise the number 
of yes responses are indexed }jk ,  and the probability of a no response 
by an individual in class k to price j is Fjk · Assuming the classes are 
independent, an estimate of the probability of a no response to each 
price for each class can be found by solving the likelihood maximization 
problem 

K M* 
L L [Njk ln(Fjk) + Y/k ln(1 � Fjk)] . (3.38) 
k=l j=l 

Note however that because the classes are assumed independent, this 
likelihood maximization problem can be split into K separate likelihood 
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maximization problems: one for each class. In other words, the Turnbull 
estimator handles covariates by splitting the sample into sub-samples 
according to the desired characteristics and calculating the Thrnbull 
estimator for each sub-sample independently. Three problems arise: 

1 .  Individuals must be classified into discrete subclasses: Split-sample 
scope effect tests are straightforward since by design they randomly 
split the sample. Estimating demographic effects however requires 
grouping individuals according to their personal characteristics. 
Some demographic classifications are straightforward, such as cat­
egorical income data, or characteristics that can be turned into 
dummy variables. But, continuous covariates (such as actual in­
come data, or years of experience, or travel distances) require more 
arbitrary decisions to make them discrete. 

2. The variance of the Thrnbull distribution function estimates and 
consequently the variance of the estimated lower bound on WT P is 
inversely related to the sample size. The smaller the sample size the 
larger the variance (see equations (3.18) and (3.31) ) . The more 
classes to divide the sub-sample, the less information each sub­
sample will contain and the less accurate the estimate of WT P. 

3. The smaller the sample, the less likely that the resulting distrib­
ution function will be monotonic. Hence, there is a limit to the 
number of splits in the sample. 

In practice, testing covariate effects is likely to be limited to one or 
two discrete covariates. 

Example 9 Contingent Valuation for Sewage Treatment in Barbados 

To illustrate the use of covariates, we employ the CV study of sewage 
treatment in Barbados that was used to show the possibility of non­
monotonic willingness to pay distributions in Table 3.2. Now we inves­
tigate the effect of a dichotomous covariate on the distributions. 

Prior to the contingent valuation survey, the Barbadian government 
ran a television program that extolled the virtues of the project that the 
contingent valuation program was assessing. Did the television program 
influence the responses in the CV survey sufficiently to affect the esti­
mates of mean WT P? We demonstrate now that the answer is yes by 
splitting the sample into two groups-one group that saw the television 
program and another group that did not. In Table 3.6, we provide the 
two sets of raw data: the number of responses by bid price level and the 
number and proportion of no's, for the case where the respondent did 
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not see the television program ( CTV = 0) and for the case where the 
respondent did see the program ( CTV = 1) . 

TABLE 3 . 6 .  A Turnbull Model for Sewage Treatment in Barbados 

CTV = O  CTV = 1  
BidPrice( t1 ) Tj Ni F1 (= N1/T1 ) Ti Ni F1 (= N1jT1 ) 

20 29 9 0 .310 15 5 0.333 
60 31 24 0 .774 9 7 0.778 
80 26 19 0 .731 15 10 0.667 

120 32 21 0.656 15 12 0.800 
160 34 33 0.971 13 10 0 .769 
200 30 29 0 .967 10 9 0.900 
240 31 30 0.968 11 9 0 .818 
320 24 23 0.958 19 16 0 .842 
440 30 30 1 .000 12 11  0 .917 
600 29 29 1 .000 11 10 0 .909 

Columns two through four pertain to the CTV = 0 data and columns 
five through seven are for CTV = 1 . Reading down columns four and 
seven, one can see that while the general trend is for the probability 
of no to increase, the increase is not monotonic. Hence both sets of 
data must be pooled. The pooled results are provided in Table 3. 7. For 
CTV = 0, there are four final cells, and for CTV = 1 ,  there are five. 

TABLE 3 .7. Pooled Estimates for Covariate Effects 

CTV = O  CTV = 1  
BidPrice(t1 ) Tj Ni T· J N· J 

20 29 9 0.310 0 .310 15 5 0 .333 
60 89 64 0.719 0 .409 24 . 17 0 .708 0 .375 
120 28 22 0 .786 0 .078 
160 1 19 1 15 0.966 0 .247 
200 40 34 0 .850 0 .064 
440 59 59 1 .000 0.034 23 21 0 .913 0.063 

>440 1 .000 0 .087 a pi = N1/T1 bf1 = F1 - F1-1 

Using the formulas for the means and variances of the lower bounds on 
willingness to pay, we find that for CTV = 0, ELBWTP = $28.44 and 
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for CTV = 1, ELBWTP = $70.74. (Note that for CTV = 0, fM+l = 0 
and for CTV = 1 ,  f'M+l = 0.087.) This is a substantial difference and 
it appears that the viewing of the television program sponsored by the 
government in fact had an impact on willingness to pay. We can find 
out whether the difference in the means is statistically significant by 
exploiting the normality of the lower bound estimates. For CTV = 0, 
the variance is 9.34 and for CTV = 1 , the variance is 260.65. The sample 
means are independent because the sub-samples are separate. Therefore, 
under the null hypothesis that the difference between the means is zero, 
the statistic 

ELBWTPo - ELBWTP1 
vVo + V1 

(where the subscript 1 stands for CTV = 1 and 0 for CTV = 0) is normal 
with mean zero, variance 1 .  The calculated value for this statistic is 

70.74 - 28.44 
= 2.57. v9.34 + 260.65 

This falls in a 1% critical region for rejecting the null hypothesis. We can 
therefore conclude that the lower bounds for mean willingness to pay are 
statistically different when respondents view the government-sponsored 
program. In fact, it appeared that the government was working to im­
prove the likelihood that the sewage project would be adopted. 

3.  7 Conclusion 

In this chapter we have reviewed simple approaches to the non-parametric 
treatment of discrete choice contingent valuation methods. The advan­
tage of these approaches lies with their simplicity. Lower bounds of 
sample mean willingness to pay can be calculated from raw data without 
assuming any distribution for the unobserved component of preferences. 
The calculations can be made without resort to computers. Further, the 
transparency of the estimates gives them an especial cogency. There are, 
however, many situations where the researcher may need to estimate the 
effects of independent variables on responses or on willingness to pay. 
The non-parametric approaches allow only limited exploration of the 
effect of covariates. 



 

4 

T he Distribution of 
"W illingness to Pay 

4. 1 Introduction 

In Chapters 2 and 3 we made simplifying assumptions for tractability 
and ease in estimation in the single-bid dichotomous-choice framework. 
Functional form and distributional assumptions helped focus on models 
that can be estimated by hand or in a standard probit or logit framework. 
Many of these assumptions come at the expense of utility consistency 
of the underlying decision framework, or more simply consistency with 
real world observations of behavior. This chapter focuses on models 
that arise when some of these assumptions are relaxed. We develop 
models that conform with the economic underpinnings of preferences. 
These models, while more intuitive, are also more complicated. The 
additional complications arise in model development, estimation and 
interpretation. The topics described here and in Chapter 5 are treated 
as mutually exclusive complications that arise in the estimation of the 
dichotomous choice models. Obviously, multiple complications can arise 
at once in practice, adding another layer of complexity. 

To use the results of contingent valuation models, researchers use 
means, medians, or other measures of central tendency of willingness 
to pay. In the two previous chapters, we have emphasized the two step 
nature of empirical analysis of contingent valuation: the parameter es­
timation step and the willingness to pay calculation step. These two 
steps are sometimes in conflict. In this section, we examine criteria for 
consistency between the two steps, simple diagnostic tests for suitable 
distributions of willingness to pay, and a set of simple models that build 
in consistency between the two steps. 

4.2 Central Tendency for Willingness to Pay 

In many of the standard models that are estimated, for example, the 
linear utility function, the implied distribution of willingness to pay will 
have properties that are not apparent from the utility function. For 
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example, the linear utility function with an additive error implies that 
willingness to pay will range from minus to plus infinity. Other standard 
models have different problems. Unsatisfactory results at the calcula­
tion stage have led to a variety of 'fixes' for obtaining WTP. However , 
many of these fixes are often inconsistent with the statistical and eco­
nomic underpinnings and with the original model of choice. In previous 
work (Haab and McConnell 1998) we have suggested three criteria for 
a valid measure of WT P from dichotomous choice contingent valuation 
studies. Hanemann and Kanninen argue for similar criteria. These cri­
teria are based on the notion that the services, scenarios, public goods, 
or whatever else the contingent valuation study attempts to value do not 
provide negative utility. This assumption may sometimes be wrong, but 
when negative willingness to pay is a possibility, special care in modeling 
must be taken. 

4 .2. 1  Criteria for a Valid Measure of WTP 

It is reasonable to ask the following of measures of willingness to pay: 

1 . Willingness to pay has a non-negative lower bound and an upper 
bound not greater than income. 

2. Estimation and calculation are accomplished with no arbitrary 
truncation. 

3. There is consistency between randomness for estimation and ran­
domness for calculation. 

The rationale for each of the criteria is discussed subsequently. Of 
the traditional models discussed in Chapters 2 and 3, only the Turnbull 
estimator satisfies the three criteria. Other models that move towards 
consistency with these criteria are discussed in later sections. Not all 
models that fail to satisfy the criteria are misspecified. If the probabil­
ity that willingness to pay exceeds a bound is small enough, then the 
problem is minor. Further , when models fail to behave statistically, the 
problem in most cases is a poorly designed questionnaire, including a set 
of bids that fails to elicit responses that trace out the probability that 
an individual will pay a given amount. 

Bounds on Willingness to Pay 
In the context of valuing public goods with free disposal, WT P will be 
non-negative. As illuminated by Hanemann and Kanninen, willingness 
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to pay should be bounded above by income and in most cases, bounded 
below by zero. In the occasional case where the respondent may dislike 
the CV scenario, regardless of price, then negative willingness to pay 
(compensation demanded) , may be permissible. An example of negative 
willingness to pay appears in a study of the control of deer as pests in the 
Washington DC suburbs (see Curtis 1998). If the deer are controlled by 
hunting, the provision of the service may cause a reduction in well-being 
for respondents who are strongly sympathetic to animal rights. When 
individuals can simply ignore public goods, then negative willingness to 
pay can be ruled out. 

Conceptually, the bounds on willingness to pay come most naturally 
from the expenditure function expression for willingness to pay. In Chap­
ter 2, m( k, j, Uk ) is defined as the minimum expenditure function, the 
least amount of income needed to get respondent j to the utility provided 
by scenario k, k = 0, 1 ,  given the current utility of k = 0 , represented by 
uo . In this case, willingness to pay is defined as 

WTPj = m(O, j, uo) - m(1 , j, uo) . 
Minimum expenditure at the baseline scenario, m(O , j, uo ) ,  equals m­
come, Yi , by definition. Hence 

WT Pi = Yi - m(1,  j, uo) . 
The most advantageous scenario conceivable would reduce the minimum 
expenditure to zero: m(1, j, uo) = 0, though this is hard to conjure up 
in practice. In this case, WT Pj equals y j . When the new scenario offers 
nothing of value to the respondent, the expenditure function does not 
change, so that m(1, j, uo) = m(O, j, uo) = Yi ·  This gives a theoretical 
restriction on willingness to pay: 

0 � WTPi � Yi · 
In practice, it is unlikely that the upper bound will be constraining for 
most CV studies, with the possible exception of health risk studies of 
poor people in poor countries. However, it may be feasible to define 
disposable income or disposable income per family member, yielding a 
sensible upper bound of willingness to pay. WT P will be negative if the 
minimum expenditures necessary to achieve the current utility level at 
the new scenario exceed current income. 

For respondent j ,  willingness to pay will depend on income and the 
vector of covariates z, WT P(yj , Zj ) . This will be a random variable that 
reflects random preferences and depends on random parameters. The 
range of willingness to pay for an individual is zero to income. This 
leads to the following relevant restrictions. 



 

The Distribution of Willingness to Pay 87 

1. The measure of central tendency of WT P, for example expected 
value, for an individual will be constrained by zero and income: 

This may hold even when the range of WT P is not restricted, as 
is the case for reasonable linear utility function models. 

2. The sample mean (or sample mean of median) willingness to pay 
will be likewise constrained: 

T 

0 :S l:: EWTP(yj , Zj )/T :S y 
j=l 

when y is the sample mean income for the sample size T. Similar 
expressions would hold for the median or other measures of central 
tendency for the individual. 

In concept , WT P should be specified as a non-negative function and 
the error term should enter in a way that an infinite ranging error term 
is transformed into a zero to income support for the distribution of 
WT P. Specifying WT P to be non-negative and less than income ensures 
that the expectation of willingness to pay will be non-negative for the 
sample, and conditional expectations of willingness to pay will also be 
non-negative. If the distribution of willingness to pay is non-negative, 
then the mean will also be nonnegative. However, the converse is not 
true. A model which estimates a non-negative mean does not necessarily 
conform to theoretical restrictions and is not defensible on such grounds. 

Estimation and Calculation of WTP without Arbitrary Truncation 

Arbitrary truncation of WT P at the calculation step leads to arbitrary 
estimates of willingness to pay. Examples of truncation at the calcula­
tion stage include truncation at the maximum offered bid (Bishop and 
Heberlein; Sellar, Stoll and Chavas; Bowker and Stoll; Duffield and Pat­
terson) , and truncation at an arbitrary probability limit. For exam­
ple, Brown, Champ, Bishop and McCollum truncate the distribution of 
WTP at the value of WTP such that Fwrp(Z) = 0.01 . (Boyle and 
Bishop ( 1988) adopt a similar procedure) . Truncating at zero typically 
makes the mean increase with the dispersion of WTP. An obvious way 
to handle the arbitrary truncation is to use the information about the 
range of WT P in the estimation process. Boyle, Welsh and Bishop, 
Duffield and Patterson, and Ready and Hu estimate truncated models 
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which account for the truncation at zero in the estimation stage. This 
creates another problem because models which are truncated at zero 
tend to have a fat tail, as we discuss below. 

Consistency between Randomness for Estimation and Randomness for 
Calculation 

If the model is estimated under the assumption that E(WT P) can ex­
tend over the infinite range, then arbitrary truncation raises the awkward 
question of why this truncation information is used for calculation but 
not for estimation. But a more troublesome implication from truncating 
willingness to pay in the calculation stage stems from the inconsistency 
between the distribution used for estimation and the one used for cal­
culating WT P. If the distribution of WT P is known to have lower and 
upper bounds which are narrower than implied in the estimation stage, 
then the initial model is misspecified. In addition, the resulting mea­
sures of WT P are not expectations in the statistical sense, because they 
fail to take the expectation across the range of WT P initially assumed. 

4 .2. 2 Implications of Assuming Standard Forms 

Adopting these criteria as reasonable for willingness to pay outlines the 
difficulties that sometimes arise with some of the standard approaches 
for modeling dichotomous choice contingent valuation responses. The 
assumption of functional forms that are equivalent to linear-in-income 
utility with an additive stochastic component lead to measures of WT P 
with undesirable economic and statistical properties in some circum­
stances. 

These potential problems are briefly defined and discussed below. 

Unbounded Measures of WTP 

To see the problem of bounds on WT P note that the derivation of WT P 
typically depends upon an error term with an infinite support: typically a 
normally or logistically distributed error. Recall the definitions of WT P 
(from Chapter 2) for the linear utility function model as it depends on 
the random error and an M-dimensional vector of covariates, z 

the varying parameter model 
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and linear willingness to pay model 

WTPj = Zj/ + TJj · (4.2) 

In all three cases, the error term (c or TJ) is assumed to have a support 
range of ( -oo, oo ) . As such WT P is not bounded from above or below. 
If the good to be valued is such that WT P is bound from above or 
below, as is almost always the case, estimation of these standard models 
is inappropriate. 

The log-linear in income random utility model bounds WT P from 
above by income, but WT P is not bounded from below: 

( z · Q E: . ) 
WTPj = Yj - Yj exp - ( � + J ) . 

In this model, as E:j --t -oo, WTP --t -oo. The exponential willing­
ness to pay model 

bounds willingness to pay from below at zero but not from above. Un­
boundedness of WT P leads to difficulties when the good being valued 
has free disposal. For example, the standard utility difference model 
allows a decrease in utility from consumption even if the good is free to 
consume and free to dispose of. Because of the unrestricted error term, 
the random utility difference model may predict a utility decrease, and 
therefore a negative WT P. While there are occasions when utility would 
decline for some respondents, these are unusual and should be modeled 
explicitly. 

Diagnosing the Distribution of Willingness to Pay 

The combined effects of the distribution assumed for the error term and 
the functional form of the indirect utility function or WT P function can 
lead to estimates of expected WT P outside the realm of feasible values. 
We first look at properties of the distribution that lead mean WT P to 
be negative, and then we examine the fat tail problem that arises when 
non-negative distributions are assumed. 

Simple descriptive diagnostics can help determine whether violation 
of the upper or lower bound is serious. We look at a linear model, 
which is more likely to violate the constraints. Consider the model 
Ukj = Zjak + (3y + E:k, k = 0 for the status quo and k = 1 for the 
improved scenario, where E: = c1 - co "' N(O, a2) . With this model, the 
parameter estimates aja, (3/a (a =  a1 - a0 ) are recovered. 
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As described in Chapter 2, expected (and median) WT P for respon­
dent j is 

EWT Pj = Zja/ f3 

where the expectation is taken over the random preference term and the 
parameters are assumed to be known constants. A reasonable approach 
for simple diagnostics lies in creating the graph of one minus the cumu­
lative density function of WTP, 1 - Fwrp(x), which is the probability 
that WT P exceeds x. For the case of a normal error, the probability 
that WT P exceeds x is 

Pr(WTP > x) = 1 - Fwrp(x) = 

Pr(zja//3 + Ej//3 > x) = ell ( z:a - (3:) ( 4.3) 

where ell is the standard normal CDF. This is a convenient form, because 
parameter estimation delivers the normalized parameter ajo-, (3/o- so 
that ell can even be plotted by hand with a few values from a table of 
normal variates. When there are no covariates, ZjO. is constant, and 
there is only one graph. Otherwise graphs are conditional on the Zj 's. 

The difficulty with the linear model can be seen here. In principle, 
the probability that willingness to pay is greater than or equal to zero 
ought to equal one ( 1-Fwrp(O) = 1) . However, with the model in (4.3) , 
1 - Fwrp (O) = ell (¥) for normal error. This probability cannot in 
general equal one, and can only approach one as z1ajo- gets very large. 
For very small variances, the expression approaches zero. To show the 
influence of the negative range on WTP, write the expected value of 
WTP as 

EWTP = l�J[1 - Fwrp(x) ]dx - !
0

00 
Fwrp(x)dx. 

The mean of a variate can be calculated as the -area under one minus 
the CDF in the positive range less the area under the CDF in the neg­
ative range (see Rohatgi, p. 86) . It follows that if WTP is defined as a 
nonnegative random variable, then 

EWTP = 1
00
[1 - Fwrp(x)]dx 

and 1 - Fwrp(O) = 1 . 

( 4.4) 

If the distribution is substantially negative, then EWT P may also be 
negative. In Figure 4. 1 , if area B is greater than area A, then EWTP 
will be negative. This occurs when Pr(WT P < 0) > 0 .5. All the in-
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Pr(WTP<x) 

0 X 

FIGURE 4 . 1 .  Expected Willingness to Pay 

formation about willingness to pay can be found from this graph. First, 
it demonstrates the difficulty with the linear model. If households value 
the improvement described by the CV scenario, then they should have 
unambiguous improvements in utility when the price is zero, and the 
probability that WT P is greater than zero ought to equal one. Yet when 
t = 0, Pr(WTP > 0) = if!(zja./(3) ,  often not close to one. 

The right hand tail is less likely to cause problems. For example, the 
probability that willingness to pay exceeds income, in the normal error 
case, is 

Pr(WT Pj > Yj ) = if! ( ZjO. � (3yj ) . 
Provided (3 > 0 as expected, and Yj large, this value will be comfortably 
close to zero, or equal to zero for tabled values of if! ( · ) . 

Combining the left and right hand tail information provides an ex­
pression for the probability that WT P lies within the bounds: 

Pr(O :S WTPj :S Yj ) = FwTP(Yj ) - FwTP(O) 

which for the normal case becomes1 

If this probability is substantially less than one, and it is likely to be 
so because if! (zja.ja) is less than one, then the researchers may be con­
cerned about the range of WT P. In the more general case, the proba­
bility that WTP lies in the bounds is given by FwTP(Yj ) - FwTP(O) .  

1 This suggests the possibility of estimating a truncated model: 
Pr(yes)=Pr(a - (3t + e > 01 - a <  e < (3y). 
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Consequently, graphing the function Fwrp (x) against x is a good way 
to get a feel for the data. 

Example 10 Misuse of Non-negative Willingness to Pay 

Several studies have misinterpreted equation ( 4.4) to represent a trun­
cated mean or a method for generating a positive willingness to pay 
from models estimated on WTP defined over the positive and negative 
range. This method is often attributed to Hanemann (1984 or 1989) . 
In an attempt to demonstrate the incorrect use of equation ( 4.4) , Hane­
mann shows that if WTP is distributed as a logistic random variable 
such that Fwrp (x) = ( 1 + e-<>-!3t) , one could conceivably use equa­
tion ( 4.4) to calculate a positive expression: EWT P" = � ln (1 + e" ) . 
However, as Hanemann remarked not once but twice (Hanemann 1984, 
1989) , EWTP" is not an appropriate measure of welfare , and further , 
equation ( 4.4) is wrong if the assumed under lying willingness to pay 
is not a nonnegative variable. Hanemann (1989) states, "I was careful 
[in 1984] to add the qualification that WTP be a non-negative random 
variable, but evidently not careful enough. Several subsequent papers 
have employed the formula in [our equation (4.4)] without noting the 
qualification or have applied it to empirical models where WTP was not 
in fact constrained to be a non-negative random variable." Thus, when 
underlying WTP is defined over both the positive and negative range, 
then simply integrating under the positive range of the distribution is 
incorrect. The expression EWT P" = � ln ( 1 + e" ) will unambiguously 
overestimate true WTP based on the underlying distribution. 

The Problem of Fat Tails 

The fat tails problem typically manifests itself in unrealistically large 
estimates of expected WT P from models that bound WT P from below. 
The distribution of WT P may be theoretically restricted to lie between 
zero and income, or some other practical upper bound. Whether this is 
an effective constraint is an empirical issue. Many problems in regres­
sion analysis are subject to theoretical bounds that have no practical 
impact. For example, a regression with GNP on the left hand side could 
be modeled as a non-negative variable, but in practice the probability 
that GNP is negative is extremely close to zero, and so the estima­
tion of a truncated model gives the same parameters as a simple OLS 
model. To understand the fat tails problem, we first use an example of a 
CV dataset with a difficult response pattern to demonstrate the conse­
quences. This example provides a demonstration of why fat tails leads 
to difficult modeling decisions. We then discuss the problem in more 
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detail. 

Example 11  Diagnosing the Fat Tails Problem 

We use a dataset from a contingent valuation survey to estimate WT P 
for the construction of a waste water disposal system designed to clean 
up the beaches in Montevideo, Uruguay.2 Ten randomly assigned bids 
ranging from $US5.82 to $US145 .50 were offered to residents of a neigh­
borhood of Montevideo for the waste disposal system. Table 4.1 reports 
the response totals for each bid. 

TABLE 4 . 1 .  Response Summary: Montevideo Dataset 

Bid Number Number 
Offered No 

$5.82 130 67 
14.55 132 78 
25.45 128 84 
36.36 125 85 
54.55 123 85 
76.36 122 92 
90.91 127 100 

109 . 10 129 100 
127.30 130 103 
145 .50 130 1 1 1  

Two simple dichotomous choice models are estimated on the 1276 
responses: a simple linear WT P function with no covariates: 

and an exponential WT P function with no covariates: 

WTPe = e1+" . 

The exponential WT P function restricts WT P to be positive while the 
linear WT P can take on negative values. The errors are assumed to 
be normally distributed with mean zero and constant variance ( 0'2) .  
Table 8.5 presents the results of probit estimation of the two models. 
Estimated expected WT P for the linear WT P function model is: 

E (WT PL ) = "' = -$26.33. 

2 See McConnell and Ducci. We call this the Montevideo dataset . 
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TABLE 4.2 . WTP Function Estimates 

Variable Parameter 
constant 

Bid 

ln(Bid) 

Log-likelihood 
-2 ln(LR/ Lu ) 

:1. 
a 

_ .!. 
a 

_ .!.  
a 

Linear 
-0.158 
(0.064) 

-0.006 
(0.001) 

-741 .7 
55 .0 

Model* 
Exponential 
0 .499 

(0. 144) 

-0.277 
(0.037) 

-740 .7 
58.4 

*Standard errors in parentheses. All coefficients 
are different from zero at 99% level of confidence. 

The corresponding estimate for the exponential model is 

a2 E (WT Pe) = exp( r + 2) = $4096.49. 

The linear model allows negative values for WT P despite having no 
negative bids offered. The symmetry of the normal distribution places 
an equal mass of the distribution above and below the mean. Since there 
is a large number of no responses to the low bids in the Montevideo data, 
the linear model puts a large mass in the negative WT P region. This 
results in a negative estimate of expected WT P. On the other hand, 
the exponential WT P function skews the distribution of WT P. 

Figure 4.2 illustrates the estimated cumulative distribution functions 
for the two models. The linear WT P function CDF crosses 0 .5 in the 
negative support of WT P. Over 50% of respondents who were offered 
the lowest bid in this sample responded no, causing the mean and me­
dian to pass through 0.5 at a value lower than $5.82.3 The estimated 
distributional standard error is $166.67( = 1/0.006) , implying that over 
68% of the mass of the estimated distribution will be spread over the 
range ( -$166.67, $166.67) , because 68% of the area of a standard normal 
lies within plus or minus one standard error of the mean. The exponen-

3 In a comprehensive survey of the incentive effects of various CV formats, Carson, 
Groves and Machina argue that when respondents are faced with bids so low that 
they seem unrealistic, the respondents are likely to replace these bids with 'expected 
cost' .  This would lead to a greater proportion of no's than one would otherwise 
expect. 
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FWTP(Bid) 

- Linear WTP • • · Exponential WTP 

.-��----�---,--�4-----,----,----,----,, Bid 

-400 -300 -200 - 100 i 0 100 200 300 400 

1 -$26 .33 1 

FIGURE 4.2 . Estimated CDF's for Montevideo Example 

tial WT P function forces a large portion of the mass into the upper tail 
of the distribution. The significant underestimation of the no responses 
at the highest bid means that the exponential model is assigning too 
much weight to WT P values in the upper tail of the distribution when 
calculating expected WT P. The linear model accurately predicts the 
percentage of no responses at the highest bid. 

Sensitivity of E(WTP) to Distributional Spec�fication 

The problems with the tails of the distribution are analogous to the prob­
lems of out-of-sample prediction in a regression model. The tails of the 
distributions are defined well beyond the typical range of offered bids. 
The assumed distribution outside the range of offered bids can have a 
large impact on the estimated expected WT P. In the case of symmetric 
distributions, and infinite range on WT P, the differences between esti­
mated WT P measures across distributional assumptions are typically 
small. Estimated CDF's tend to do a good job of passing through the 
range of median WT P as defined by the responses proportions. 

Continuing the Montevideo example from above, we estimate two dif­
ferent linear models on the responses: a normal and logistic linear bid 
model and a normal and logistic log(bid) model. These are models of 
the form 

WTP = ry + c 
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for the linear model and 

WTP = exp("f + c) 

for the exponential model. These are estimated as outlined in Chapter 
2 by transforming Pr(WT P > bid) , depending on the form of WT P and 
the distribution of the error. The parameter estimates are in Table 4.3. 

TABLE 4 .3 .  Linear and Exponential WTP Functions with Probit and Logit 

Model* 
Variable Parameter Linear Exponential 

Pro bit Logit Pro bit Logit 
constant J: 

a -0. 158 -0.240 0 .499 0 .827 
(0.064) (0. 100) (0. 144) (0 .23) 

Bid _ l 
a -0.006 -0.010 

(0.001) (0.001) 
ln(Bid) _ l  -0.277 -0 .460 a 

(0.037) (0.060) 
*Standard errors in parentheses. All coefficients are different from 
zero at 99% level of confidence. 

Expected WTP = E('Y + E) = 'Y for the normal and logistic linear 
model; this comes to -$26.33 for normal linear and -$24.00 for the 
logistic linear. For the normal exponential model, expected WT P = 
E( exp('Y + E) = exp('Y + 0 .5a2) = $4096.49. For the logistic exponential 
model, expected WTP is undefined because a =  1/0 .46 = 2.17 > 1 (see 
the Exponential Logistic Distribution section in Appendix B for an ex­
planation) . The symmetric linear models produce estimates of expected 
WT P that are close compared to the exponential models. The expo­
nential model is sensitive to the assumed form of the error distribution. 

In the situation where the researcher reasonably believes that WT P 
is non-negative, but models for unrestricted WT P provide negative 
EWT P, the probable cause is questionnaire design and bid price struc­
ture. When respondents answer 'no' too frequently at low bids, the graph 
of the function, Pr(WT P < t) will fall too low on the vertical axis, and 
may lead to negative EWT P estimates. When WT P appears too high, a 
mechanical explanation is that respondents have not answered 'no' to a 
sufficient number of high bid price questions. In either case, short of redo­
ing the survey, a reasonable strategy ought to be conservative, such as es­
timating the lower bound of EWT P from a Turnbull estimator (Chapter 
3) . The lower bound of EWT P, calculated as EWT PLB = �J:o fJ+1 tj 
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from the responses in Table 4.3, equals $38.23.4 Since it is a lower bound 
on all non-negative measures of WT P, it is a reasonable statistical in­
terpretation of the data, given the CV question and interview process. 

4 .2. 3 Bound Probit and Logit Models 

Bounds on willingness to pay can be implemented in two ways. One is to 
estimate an unconstrained linear model and truncate EWT P at zero or 
income at the calculation stage. This is acceptable as long as FwrP(Yj ) ­
Fwrp(O) is close to one, because the inconsistency between estimation 
and calculation is of small consequence for estimation. Truncating at 
zero may have a considerable impact on EWT P, but typically upper 
truncations do not. The second approach is to estimate a model that 
has the correct bounds, and to impose the same bounds in the estimation 
and calculation stages. Ready and Hu estimate a model which is bound 
from below and pinched from above (that is, has an estimated upper 
bound on WT P) . In previous research, we have estimated a model 
based on the beta distribution that has a finite (zero to income) support 
for WTP (Haab and McConnell 1998). Both models require a complex 
likelihood function and in both cases convergence is difficult . 

A direct way of deriving a model that bounds willingness to pay cor­
rectly is to specify the following model: 

where 0 ::; G(zn + cj ) :S 1 and G' (zn + cj) 2: 0. The function 
G(zj"( + cj ) is willingness to pay as a proportion of income. An es­
pecially tractable version of this model is 

WTPj = Yj . 
1 + exp( -Zj"f - c) 

The error can be specified as logistic or normal. 
If c � N(O, a2 ) , then 

(Z ·"f + ln ( l!L:!) ) 
Pr(yes) = 1 - Fwrp(t) = <I>  1 a 

t ( 4.5) 

4 This calculation requires that monotonicity be imposed, because when the price 
increases from 90.91 to 109.10,  the proportion of no responses declines from 0 .787 to 
0.775. When these cells are merged as described in Chapter 3, the resulting FJ* are 
monotonic. 
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It is readily seen that the numerator on the right hand side of (4.5) is 
a linear function of Zj and ln ( Y;

t
-t ) . The parameters associated with 

the regressors are {!ICY, � } . Equation (4.5) is therefore a contribution 
to the likelihood function from a simple probit model. 

Similarly, if E "' l ogistic(O,rY2 ) ,  then 

1 Pr(yes) = 1 - Fwrp(t) = . (4.6) 
1 + exp [( -Zj/ - ln ( \-t ) )ICY] 

Equation ( 4.6) represents the contribution of a yes response to the logit 
likelihood function and therefore can be estimated as a simple logit with 
regressors { 1 ICY, � }  . The procedure for estimating this bound pro bit or 
logit model is analogous to the procedure for estimating the probit and 
logit models of Chapter 2. 

Procedure for Estimating the Bound Model 

1 .  Define the yes/no responses to the contingent valuation question 
such that yes is coded 1 and no is coded 0. 

2. Define a data matrix X so that it contains the concatenation of 
the covariate matrix z and the income/bid term: ln ( Yj 

t
-t ) . 

3. Using any standard statistical software, run a probit or logit model 
with the 1/0 yes/no responses as the dependent variable, and the 
matrix X as the matrix of right hand side variables. 

4. Recover the reported parameter estimates. The coefficients on the 
variables in the vector z represent estimates of !ICY. The coeffi-
cient on the variable ln ( Y; ;t ) is an estimate of 1 ICY. 

Measures of Central Tendency 

For the bound pro bit and logit models, expected WT P does not have a 
closed solution. Numerical procedures are necessary to integrate under 
the survival function of WT P. Because both the logistic and normal 
distributions have median equal to zero, median WT P with respect to 
the error for the bound probit or logit model is 

y · MD(WTPi ) = ( ) " 1 + exp -Zj/ 
(4.7) 

This function is easily calculated from the estimates of the parameters 
{ I l } a ' a · 
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The marginal effects on median WT P are relatively easy to calculate. 
Two marginal effects are of interest: a marginal change in a covariate 
(zkj ) and a marginal change in the upper bound (y) .  For the moment , 
assume that z is independent of the upper bound. That is, suppose 
income is not an element of z. The effect of a change in one of an 
individual's z on median WT P is5 

Dividing the marginal effect by median WT P yields 

8MD(WTPj)/MD(WTPj )  
8Zkj 

e-Zj"Y 
(1 + e-zn ) · "fk = (1 - G(zn)) · "fk 

( 4.8) 
where G(zry + cj ) at cj = 0, is the median proportion of the upper 
bound. The left hand side of equation ( 4.8) measures the percent change 
in median WT P for a marginal change in the covariate. So if median 
WT P is a small proportion of the upper bound then the parameters can 
approximately be interpreted as the percent change in median WT P for 
a unit change in the associated covariate. This is similar to a result for 
the marginal effects from the exponential model as described in Chapter 
2. The two models produce similar results as the upper bound on WT P 
gets large. They can produce very different results if WT P is a large 
portion of the upper bound. 

Example 12 The Bound Probit with a Difficult Dataset 

We illustrate the bound probit model with two examples, the first 
from the misbehaving Montevideo data, and the second from the South 
Platte River study of Chapter 2. In the Montevideo study, we estimate 
only one model, the bound probit with an upper bound of income, with 
no covariates other than the bid. Hence the estimated model is 

WTPj = 
Yj . 1 + exp(-"{ - cj ) 

The parameter estimates are given in Table 4.4. This dataset provides 
a good illustration of the effects of bounds. We have previously shown 
that the mean WT P' s for linear pro bit and logit models are -$24.00 and 
-$26.33 and $4096.49 for the lognormal. The median for the lognormal 

5 If the covariate is Yi and Yi is not an element of Zj , the marginal effect on median 
WTP is just G(Zj'l) ·  If Yj is an element of Zj , the marginal effect is yj G21y + G. 
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TABLE 4.4. Bound Probit for Montevideo Data 

Estimate 
Parameter Variable (Standard 

Error) 
Constant "'!/(} -1.91 

(0. 14) 
1 (Y;-bid) 1/(J 0.31 n bid 

(0.03) 

Log-likelihood -767.4 
-2 ln(LR/ Lu) 1 16 .7 
Parameters different from zero at 99% 
level of confidence. 

was $6.05. The estimates of willingness to pay are widely dispersed and 
in two cases, negative. 

Using the parameter estimates in Table 4.4, we find the median esti­
mate of WTP, based on equation (4.7) to be 

y MD(WTP1 )  = 
( ) 

= $9.85 1 + exp -"Y 

for mean income, y = $4410. The mean, calculated numerically equals 
$16 .15.6 These estimates are of course more plausible than the means 
from the linear models and the exponential willingness to pay models. 
But one can only regard them as a repair of a difficult dataset rather 
than well-founded estimates of WT P. 

Example 13 The Bound Probit on Well-Behaved Data 

To illustrate the bound probit in a case where the data is well-behaved, 
we turn to the South Platte River study. Table 4.5 reports the parameter 
estimates for two versions of the bound probit model. The first model 
sets the upper bound equal to household income: 

WT Pj = 
hhinc1 

1 + exp( -z11 - Ej )  

6 Numerical approximation o f  the expected WTP function i s  carried out 
by approximating the integrand of: E(WTP) J WTP(c)f(c)dc as 
I:;;:1 WTP(ct)f(ct)b.ct for points over the range of c. For example for f(c) normal, 
set m = 1 000, let c1 = - 10 and b.ct = 0.02 
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and the second specification sets the upper bound equal to the highest 
offered bid $100: 

WTP1 = 
$100 

. 
1 + exp( -Zjf - Ej ) 

The errors are assumed to be normally distributed, so that we estimate 
probits as described in the procedures above. 

TABLE 4.5 . Bound Probit Estimates: South Platte River Study 

Estimate Estimate 
Parameter Variable (Standard (Standard 

Error) Error) 
Upper Bound Upper Bound 

=hhinc =$100 
Constant 'Yo/u -7.472 -1 .848 

( 1 .635) (0.819) 
unlimwat 'Ydu * -0.620 -0.931 

(0.412) (0 .452) 
govtpur 'Y2/u 0 .853 0.973 

(0.421) (0.464) 
environ 'Y3/u 1 . 167 1 .904 

(0.538) (0 .594) 
waterbil 'Y4/u -0 .034 -0.046 

(0.018) (0 .020) 
urban 'Ys/u *0.677 1 .074 

(0.407) (0.445) 
ln ( bou�tdbid ) 1/u 0.951 1 . 1 14 

(0.203) (0 .231) 

Log-likelihood -34.4 -30.4 
-2 ln(LR/Lu) 54.4 63.8 

*All parameters except this different from zero at 95% level of confidence. 

For transparency, we calculate the median WT P for the sample aver­
age individual as reported in the Table 2.1 of Chapter 2. For the model 
with household income as the upper bound, 

MD(WTP) = $54175/(1+ exp(-zl)) = $18 .73 (4.9) 

where 1z is the inner product of the means of the covariates from Table 
2. 1 and the coefficients from Table 4.5: 

-z1/u = 7.5709. 
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Numerical approximation (see the previous footnote) of the expected 
WTP functions yields an estimated expected WTP of $31 . 55. If the 
upper bound is assumed to be equal to the highest bid ($100) , then me­
dian WT P is estimated to be $ 14.22 and expected WT P is $14.92. The 
upper bound has a much larger effect on expected WT P than median 
WTP. 

For the income as upper bound model, median WT P is 0.00035 · y. 
From equation (4.8) , the marginal effects of covariates on median WTP 
are 

aM n(wr Pj) 1M D(WT Pj) 
OZkj 

(1 - G(zn)) · "fk 

0.99965 . "fk · (4. 10) 

This implies that the parameter estimates can be interpreted as the per­
centage change in median WT P for a one unit change in the associated 
covariate. From Table 4.5 ,  a $1 increase in the monthly water bill will 
on average decrease median WT P for the South Platte River restoration 
project by 3.5% ( -0.034/0.95 = 0.035) .  

4 .2.4 WTP and the Tails of the Distribution 

Bounding WT P between zero and some upper bound tends to decrease 
the gap between median and expected WT P. Further, decreasing the 
upper bound on WT P seems to have a larger impact on mean WT P 
than median WT P. Intuitively, the maximum likelihood estimates of the 
cumulative distribution function of any WT P function will tend to pass 
through the empirical distribution function of the responses as defined by 
the bid-response proportions. The Turnbull distribution-free estimator 
of Chapter 3 is an extreme example in which the estimated CDF of WT P 
is the observed empirical distribution function adjusted for monotonicity. 
In a parametric setting, the continuity of the assumed functional forms 
and distribution functions will reduce the ability of the estimated CDF 
to fit the empirical distribution, but the fitted relationship will come 
as close as possible to fitting the observed relationship subject to the 
imposed restrictions. 

Because the median is the 50th percentile of the distribution, the esti­
mated median WT P will tend to pass closely to the bid range in which 
the observed median falls. For example, if 45% of a sample responds 'no' 
to $10 and 55% of the sample responds 'no' to $20, then it is reasonable 
to expect that any estimated median WT P will fall in the $10-20 range. 
For this reason it is typically observed that estimated median WT P is 



 

The Distribution of Willingness to Pay 103 

much less sensitive to distributional and functional form assumptions 
than mean WTP. However, if the empirical median (the 50th percentile 
of the observed distribution) falls above the highest or below the lowest 
bid then the median will be sensitive to functional form assumptions. 
The median will not be sensitive to distributional assumptions as long 
as the assumed error distributions have the same median (as is the case 
with the normal and logistic distributions) . 

Expected WT P is much more sensitive to the assumptions made 
about WT P. Because the expectation of WT P is taken across the 
full range of WT P (and not just the range of the offered bids) , the 
result will be sensitive to the assumed form of the tails of the distrib­
ution. These tails extend well beyond the upper range of the offered 
bids. Researchers typically define the offered bids based on reasonable 
expectations about the true WT P. However, if the highest offered bid 
is such that a large portion of the sample responds 'yes' to the bid, then 
the resulting estimates of expected WT P will tend to be sensitive to 
specification assumptions. 

Example 14 The Impact of the Tails 

Consider once again the two examples used in this chapter: the Mon­
tevideo dataset and the South Platte River study of Loomis et al (2000). 
Table 4.6 gives the empirical distribution function of Montevideo data 
adjusted for monotonicity (see Chapter 3) . The original data are given 
in Table 4.1 . 

TABLE 4.6 .  Empirical Distribution: Montevideo Data 

Bid Pr(WT P :::; Bid) 
$5.82 0 .52 
14.55 0 .59 
25.45 0.66 
36.36 0.68 
54.55 0 .69 
76 .36 0.75 
90.91 Pooled 

109 . 10 0 .78 
127.30 0.79 
145.50 0 .85 

The empirical median for this sample is less than the lowest bid of 
$5 .82. As stated in the previous section, it is therefore expected that 



 

104 Valuing Environmental and Natural Resources 

TABLE 4.7. Central Tendencies of WTP :  Montevideo Data 

Functional Form Distribution E(WTP) MD(WTP) 
Linear 

Normal -$26.33 -$26.33 
Logistic -$24.00 -$24.00 

Exponential 
Normal $4096.49 $6.06 
Logistic $6.03 

the estimated median will be sensitive to functional form and distribu­
tional assumptions. From the previous examples, where the parameters 
are given in Table 4.3, we calculate the estimated means and medi­
ans to demonstrate sensitivity to distribution. The median for each 
distribution is given by 'Y for the linear model and exp('Y) for the ex­
ponential function. For the exponential function, EWT P = si:(:7r) e"Y 
for the logistic function and exp('Y + 0 .5a2) for the normal. Table 4. 7 
gives the means and medians for this data. 7 The estimated medians 
of WT P for the Montevideo study range from -$26.33 to $6.06. The 
means are quite dispersed when they converge. Note that in addition 
to the 52% of the empirical distribution that falls below the lowest bid, 
an additional 15% falls above the highest bid. One consequence is the 
sensitivity of estimated expected WT P to distributional and functional 
form assumptions: -$26.33 for the linear probit, infinite (undefined) for 
the exponential logit, and $4096.49 for the exponential probit. Because 
over 67% of the empirical distribution falls outside the relevant range of 
bids, the results are quite sensitive to the assumed distribution. 

Consider now the South Platte River data. Table 4.8 gives the unad­
justed and adjusted Thrnbull empirical distribution function from Chap­
ter 3.8 

The tails of the empirical distribution are nailed down in this example. 
Because of the small sample size and large number of offered bids, a large 
number of cells had to be pooled to ensure monotonicity of the empirical 
distribution function. However, the well-defined tails lead to much less 
sensitive measures of expected and median WT P across functional forms 
and distributions. Table 4.9 summarizes the estimated mean and median 
WT P measures. Parameters for the linear and exponential models are 
in the appropriate table in Chapter 2. The bound model parameters 

7 As noted above, the expected WTP does not converge for the logistic distribu­
tion. 

8 Looking at pooled data for the Turnbull in a table can be confusing. A good 
way of dealing with pools is to realize that when monotonicity doesn't hold the price 
is thrown out and the observations are put in the cell with the lower price. 
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TABLE 4.8 . Response Summary: South Platte River 

Bid Total Offered Number Pr(WT P ::::; Bid) No 
$1  1 1  0 0 
2 9 0 0 
3 10 2 Pooled 

5 10 1 0 . 15 
8 10 5 Pooled 

10 8 5 Pooled 
12  8 3 Pooled 
20 8 4 0.50 
30 8 8 Pooled 
40 6 4 Pooled 
50 6 3 0.75 
100 1 1 1 .00 

are found in Table 4.5. The covariate means are found in the first table 
of Chapter 2. Given the many different models, the range of WTP 
measures is fairly small. Without imposing bounds, the dispersion is 
much less than the Montevideo data. Imposing bounds in this case 
actually stretches out the distribution to make it fit the upper bound of 
hhinc, and as a consequence, increases the mean in that case. Because 
the measures for the linear and exponential are so close, there is no need 
to estimate the bound models. 

TABLE 4.9. Central Tendencies of WTP :  South Platte River 

Functional Form Distribution E(WTP) MD(WTP) 
Linear 

Normal $20.40 $20.40 
Logistic $20.70 $20 .70 

Exponential 
Normal $18 .15 $13.50 
Logistic $18 .64 $13 .51 

Bound: Upper Bound 
Normal $31.55 $18.73 

=hhinc 
Bound: Upper Bound 

Normal $14.92 $14.22 =$100 
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4 .2. 5  Summary of Bounding WTP 

Bounding willingness to pay is consistent with economic underpinnings 
and leads to more reliable and plausible estimates of WT P. One prac­
tical recommendation emerging from this discussion reflects most dif­
ficulties with CV. The problems lie in questionnaire design and bid 
construction, things that are not easily remedied once the survey has 
taken place. The set of offered bids should be designed to ensure that 
the tails of the distribution are well defined. Undefined tails can lead to 
unreliable measures of central tendency for WT P and raise doubts about 
estimated marginal effects of covariates on WT P. Sensitivity to distrib­
utional and functional form assumptions can be partially eliminated by 
well placed bids in the survey design. As in most issues of contingent 
valuation, the careful assessment of central tendency of WT P is best 
handled at the questionnaire design stage, where the distribution of bids 
is determined. A conservative approach when there are concerns about 
the distribution of response data is to calculate the sample mean using 
the Thrnbull lower bound and then estimate an exponential willingness 
to pay function and calculate its median. 

4.3 The Dispersion of Willingness to Pay 

Previous sections focused on estimates of central tendency for willingness 
to pay, in particular, mean and median willingness to pay. Estimates 
of willingness to pay calculated as functions of estimated parameters 
are consistent as long as the parameter estimates themselves are derived 
from consistent estimators. This is a consequence of Slutsky's theorem 
(see Appendix A.3.1 ) . In the case of maximum likelihood parameter 
estimates, consistency of the parameter estimates is established if ( 1 )  
the distribution of WT P i s  correctly specified; (2) a global maximum 
to the likelihood function with respect to the parameter vector exists 
and is identified, and (3) the parameter space is a closed and bounded 
set. Combining these conditions with Slutsky's theorem, a willingness 
to pay estimate derived by substituting maximum likelihood parameter 
estimates into an expression for central tendency will yield a consistent 
estimate of the true population measure. 

It is frequently useful to construct confidence intervals about WT P 
measures, or to make inferences concerning the measures. One must 
proceed carefully in constructing tests for WT P. As we have empha­
sized, there are three sources of randomness or variation in a willingness 
to pay measure: randomness of preferences, randomness of estimated 
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parameters and variation across individuals in the sample. 
In constructing confidence intervals or executing hyP.othesis tests, one 

must bear in mind these sources of randomness or variation. For exam­
ple, there are several different variances that could be calculated. One 
can calculate a variance with respect to an individual's randomness of 
preferences, assuming parameters are known constants. Another vari­
ance would be the sample variance of the individual expectations of 
WT P. This variance would result from the effects of covariates across 
individuals. Further, in most cases, the willingness to pay measure is a 
non-linear function of parameters, so that when randomness of parame­
ters is investigated, the distribution of the willingness to pay measure 
will not likely be normal, so that the calculation of a variance will not 
be sufficient for the construction of confidence intervals. 

4 . 3. 1  Uncertainty from Randomness of Preferences 

A measure of dispersion of WT P due to preference uncertainty is found 
by computing the variance of WT P with respect to the assumed unob­
servable error E. In general form, we can write an expression for WT P 
as 

WT P = w (zl/3, c) 

where for the moment we will assume that there is a single individual 
in our sample and the parameter vector /3 is known with certainty. In 
this case, the distribution of WT P will depend only on the distribution 
for the unknown error term E. This error is assumed to stem from 
inherent unobservability of preferences on the part of the researcher , 
and represents a random component of WT P. Expected WT P is found 
by integrating probability weighted WT P contributions over the support 
of r::: 

Ec (WTP) = 1 w (z l/3, c) f (c) de = g (z!/3) . ( 4. 1 1 )  

The assumption of randomness for the error term leads to  a variance for 
WT P of the form: 

Vc (WTP) = 1 (w (zl/3, c) - Ec (WTP))2 f (r::) dr:: . 

The subscript E indicates that the measure of variance for WT P is with 
respect to the random preference term. In terms of randomness of pref­
erences, the variance of WT P is established through the assumptions 
made about the form of the random error term. For example, consider 
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the linear willingness to pay model of the simple form: 

WTP = zf3 + c:. 

We assume that z/3 is constant , implying that the variance of WT P is 
the variance of c; 

Vo:(WTP) = V (c:) . 

Depending on the distribution assumed for c:, the form of the variance of 
WT P with respect to random preferences will vary. As another example, 
consider the exponential WT P function 

WT P = ezf3+o: . 
Once again assuming a known parameter vector for a single individual, 
an expression for the variances of WT P with respect to c can be derived. 
Rewriting WT P as WT P = ezf3 e00, the variance of WT P is 

If c is assumed to be normally distributed with mean zero and variance 
a� , then the variance of WT P will be 

2 ( 2 ) where V (e00) = ea ea - 1 . The randomness due to preferences is 
assumed by the researcher, and the form of the distribution is also as­
sumed. This form is independent of the data and is to be distinguished 
from sampling variability and variability due to random parameters. 
This is simply the distributional variance of WT P for a given individ­
ual in the general population. By relying on Slutsky's theorem, we can 
obtain a consistent estimate of the variance of WT P with respect to 
preference uncertainty by substituting consistent parameter estimates 
into the expression for the variance. 

Variances can be used for making inferences about willingness to pay, 
or confidence intervals for willingness to pay, on the assumption that the 
component z/3 is known and constant. To investigate the full range of 
uncertainty, this assumption must be relaxed. 

4 . 3. 2  Variation across Individuals in the Sample 

Often one wishes to use a sample mean estimate of WT P to expand to 
a population estimate of central tendency for WT P. Random sampling 
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typically draws heterogeneous users with heterogeneous expected WT P. 
Calculating the sample variance can help us understand the variation 
across individuals. Assume again that the population parameters are 
known, but we observe a representative sample of WT P's from the gen­
eral population. Consider a general expression for WT P for individual 
i of the form 

(4. 12) 
Expression ( 4.11) shows that expected WT P is generally written as 
a function of the independent variables Zi and the known parameter 
vector. The sample average of the T estimates of WT P represents an 
estimate of the population average expected WT P: 

where g (zi l/3) = E6 (WTPi) . The interpretation of this quantity is 
the sample average expected WT P with respect to random preferences. 
That is, it is the sample average value of the measure of WT P found by 
taking the expectation of WT P with respect to individual randomness. 
This quantity is still a function of the parameter vector {3. This sam­
ple average measure of expected WT P has associated with it a sample 
variance. This variance is the variance in the sample average expected 
WT P caused by sampling from the general population. If another sam­
ple of T individuals were drawn from the population, we would obtain 
another sample average of expected WT P's. The relevant question now 
becomes, how much can we expect this sample average to vary from one 
sample to the next. Or another way of phrasing the question is how 
much does the sample average vary with respect to the true population 
mean WT P? The sample variance of expected WT P is 

T 2 
2: ( E6 (WTPi ) - E6 (WTPi )) 

Vr (Ec; (WT P)) = -"=-1 -----,T,.------

where the subscript T denotes the variance of expected willingness to 
pay with respect to the T sample observations. The sample variance 
of expected WT P can be used to construct confidence intervals around 
the sample average to investigate the variability in expected WT P intro­
duced by sampling from a general population. The sample average and 
sample variance of expected WT P are still a function of the parameters 
{3. The calculations for the sample mean and variance assume that the 
parameter vector is known and constant. Consistent estimates of these 
sample measures can be obtained by substituting consistent estimates 
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of {3 into the appropriate expression. However , when estimates of the 
parameter vector are used to calculate WT P measures, a third source 
of randomness is introduced. 

4 .3. 3  Uncertainty from Randomness of Parameters 

For ease in exposition, consider again the single individual measure of 
expected WT P as defined in equation ( 4. 1 1 ) : 

Ec: (WTP) = 1 w (zl/3, c ) f (c) de = g (z lf3) 

which depends on the covariate vector z and the parameter vector ,8. 
This derivation has assumed that the parameter vector is known. 

Since the parameters are estimated, they are random variables, and the 
resulting estimate of expected WT P is still a random variable. The 
expectation has been taken only with respect to preference uncertainty. 
We know from Slutsky's theorem that the estimate of expected WT P 
is a consistent estimate of true WT P. Researchers are often interested 
in making inferences or constructing confidence intervals about willing­
ness to pay, but realistically wish to incorporate the uncertainty relating 
to the parameters into the confidence intervals. However, in almost 
all cases, willingness to pay is a non-linear function of parameter. For 
example, in the simplest case, where WT P is a linear function of co­
variates WTP = zf3 + c , one estimates {3/a and 1/a, and calculates 
f)k = f)kja -:- 1/a for each of the parameters, creating a vector of non­
normalized parameters. Consequently willingness to pay will be a non­
linear function of the parameters. In this case, willingness to pay will 
not be normally distributed, even when the parameters are. And de­
pending on the algebraic formulation of willingness to pay as a function 
of parameters, willingness to pay may have a variety of different and 
unknown distributions. In this case, the best approach is to simulate 
the confidence interval. This can be done with the Krinsky and Robb 
procedure. 

The Krinsky and Robb Procedure 

The Krinsky and Robb procedure for estimating the variance of a func­
tion of estimated parameter relies on the asymptotic properties of the 
maximum likelihood parameter estimates to simulate the asymptotic 
distribution of the derived willingness to pay function. By repeatedly 
drawing from the asymptotic distribution of the parameter estimates, 
we can construct a Monte Carlo simulated distribution of the estimate 
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of WT P. This method was introduced to the economic literature in the 
context of calculating the variance of estimated elasticities by Krinsky 
and Robb. Creel and Loomis (1991a,b) and Kling (1991) adapted the 
method to the non-market valuation context. The method is intuitive, 
but can be computationally intensive. 

In general, consider a vector of maximum likelihood parameter esti­
mates /3. Under certain regularity conditions: (1) the distribution of 
WT P is correctly specified, (2) a global maximum to the likelihood 
function with respect to the parameter vector exists and is identified, 
and (3) the parameter space is a closed and bounded set , the vector of 
parameter estimates is asymptotically normally distributed with mean 
f3 (the true parameter vector) and variance-covariance matrix equal to 
the Rao-Cramer lower bound: 

V (/3) = [ -E82 ln L(/3) l - l 
8(3 . 8(3' 

( 4. 12) 

where L(/3) is the appropriate likelihood function (see Appendix A) . 
Most computer packages will provide an estimate of the variance- co­
variance matrix of the parameter estimates. 

The Krinsky-Robb procedure utilizes the asymptotic normal prop­
erty of the maximum likelihood parameter estimates, and the property 
of a normal distribution that every K-dimensional normal distribution 
N(JL, �) is a linear transformation of K independent N(O, 1) normals. 
Almost any numerical programming software permits random draws 
from an N(O, 1 )  distribution, and given the information on the asymp­
totic mean and variance of (3, the N(O, 1 )  variates can be transformed to N(/3, V (/3) ) .  To execute the Krinsky-Robb procedure, draw N obser­
vations on the parameter vector f3 from the estimated multivariate nor­
mal distribution of the parameters. At each draw, calculate the desired 
quantity (for example, expected WT P) resulting in N draws from the 
empirical distribution. The resulting N draws can be used to calculate 
the sample average value for WTP, the sample variance, or the quan­
tiles of the empirical distribution. By ranking the draws in ascending 
(or descending) order, a 95% confidence interval around the mean can 
be found by dropping the top and bottom 2.5% of the observations. The 
typical confidence interval for willingness to pay constructed this way is 
not symmetric, which reaffirms the absence of normality for willingness 
to pay (see Kling 1991 ,  and Creel and Loomis 1991a,b) . The primary 
difficulty in carrying out the Krinsky and Robb procedure is getting the 
N parameter vector draws from the multivariate normal distribution. 
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Let V (.8) represent the K x K estimated variance-covariance matrix 

for the estimated parameter vector ,B of column dimension K. Let XK be 
a K -dimensional column vector of independent draws from a standard 
normal density function. Finally let C be the K x K lower diagonal 
matrix square root of V (.B) such that CC' = V (.B) . The matrix C 

is sometimes referred to as the Cholesky decomposition matrix. Many 
software packages that have matrix algebra capabilities have Cholesky 
decomposition procedures (for example, LIMDEP and GAUSS will both 
calculate the Cholesky decomposition of a matrix) . 

A single K-vector draw from the estimated asymptotic distribution of 
the parameters /3d is 

Repeating this procedure N times produces a simulation of the full dis­
tribution of the parameter vector ,B distributed N( ,8, V (.8) ) under 
ideal asymptotic conditions. Calculating the measure of WT P of in­
terest at each draw will produce N observations from the asymptotic 
distribution of the WT P function. 

Using the Krinsky and Robb procedure 

1 .  Estimate the model of interest. 

2. Obtain the vector of parameter estimates f3 and the estimated 
variance-covariance matrix V (,B) . 

3. Calculate the Cholesky decomposition, C, of the variance-covariance 
matrix such that CC' = V (,B) . 

4. Draw N (typically 2: 5000) K -dimensional vectors of independent 
standard normal random variables x K . 

5. For each K-dimensional vector x K , calculate a new parameter vec­
tor from a multivariate normal distribution by calculating: {3d = 

,8 + C'xK . 

6. For each new parameter vector, calculate the WT P function of 
interest. This will result in N simulated values for the function. 

7. Sort the N functional values in ascending order. 

8. Calculate the empirical statistics (average, median, variance, per­
centiles) from the sorted values for the WT P function. 
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Consider the exponential WT P function from the South Platte River 
example: WT P = ezf3+c: .  Table 2. 7 provides the parameter estimates 
for a normally distributed error term. Median WT P for the sample 
average individual is estimated to be $13.45 (found by substituting the 
parameter estimates and mean covariates into the expression for median 
WTP with respect to the error term: MDc: (WTP) = ezf3 ) .  Krinsky 
and Robb estimates for median WT P were calculated using the above 
procedure for 50000 draws of the estimated parameter vector. At each of 
the draws median WT P is calculated, providing 50000 draws for median 
WT P from the empirical distribution. The approximate 95% confidence 
interval for median WT P is found by taking the 1250 and 48750 obser­
vations from the ranked median WT P draws. The Krinsky and Robb 
95% confidence interval is [$10.07, $18.93] . Note that the Krinsky and 
Robb confidence interval is not symmetric about the estimated median 
WT P, as it would be if one were to calculate a confidence interval under 
the assumption that median WT P is normally distributed. 

4.4 Conclusion 

Throughout the book we have emphasized the two steps of obtaining 
welfare measures: the estimation step in which one gets parameter esti­
mates, and the calculation step when the welfare measure is calculated, 
given the parameters. This chapter essentially covers the second step 
for WT P measures from contingent valuation. Willingness to pay when 
derived from contingent valuation studies is random for several reasons. 
Often it is a function of a random component of preferences, known to 
the respondent but not to the researcher. And when we compute TVT P 
from a CV survey, we are almost always using parameters that are esti­
mated, infusing another source of randomness. In this chapter we have 
reviewed the distribution of WT P from various estimators. And most 
often, researchers wish to estimate a sample mean WT P, because it is a 
logical step in the expansion of benefits to the population. We have in­
vestigated approaches to dealing with uncertainty from preferences and 
parameters and variation across individuals within the sample. 
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Topics in Discrete Choice 
Contingent Valuation 

5 . 1  Introduction 

Contingent valuation is not a single approach to valuation but a va­
riety of approaches that one might view as a class of methods. We 
have dealt extensively with the dichotomous choice method because of 
its popularity but it is by no means the only method. In this chapter 
we investigate several alternative stated preferences approaches. One 
area that we give relatively light treatment is the area of stated pref­
erences that has evolved from marketing and transportation literature. 
The group of methods such as paired comparisons, conjoint analysis, 
ranking methods often relies on many preference-assessing questions per 
individual. Chapter 10 discusses these methods briefly. 

5 . 2  Contingent Valuation with Follow-Up 
Questions 

The referendum model, with its apparent incentive-compatible proper­
ties, has at least one drawback. Under ideal circumstances it is inefficient 
relative to open-ended questions such as 'How much would you pay? ' .  
Assuming that the responses are incentive-compatible and unbiased for 
both mechanisms, it takes many fewer responses to achieve a given vari­
ance about the mean or median willingness to pay for the open-ended 
compared with dichotomous choice questions. The open-ended approach 
may not be biased for many respondents, but it often leads to extreme 
responses. Hence researchers have looked for questionnaire design that 
would retain the incentive properties of discrete choice but would be 
more efficient. The double-bounded model, first developed by Hane­
mann, Loomis and Kanninen, was devised with this goal in mind. The 
greater efficiency of double-bounded models is supported by empirical 
and theoretical evidence. With a given number of interviews , more in­
formation on the distribution of willingness to pay is obtained, and this 
information lowers the variance of the estimates of mean WT P. The 
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theoretical arguments for efficiency are presented in Hanemann, Loomis 
and Kanninen, who also provide some empirical evidence. Subsequent 
researchers have verified the initial findings of Hanemann, Loomis and 
Kanninen. Numerous other models have been derived as more general 
forms of the double-bounded model. We will catalogue these models as 
special cases of the general bivariate model. The bivariate model is a 
useful point of departure because in its most general form it involves the 
estimation of two separate models. 

The essence of a double-bounded model is as follows. Respondents 
are presented with initial bid prices. Following their initial responses, 
they are given new prices, lower if their initial responses were no, higher 
if the responses were yes. Double-bounded models increase efficiency 
over single dichotomous choice models in three ways. First , the an­
swer sequences yes-no or no-yes yield clear bounds on WT P. For the 
no-no pairs and the yes-yes pairs, there are also efficiency gains. These 
come because additional questions, even when they do not bound WT P 
completely, further constrain the part of the distribution where the re­
spondent's WT P can lie. Finally, the number of responses is increased, 
so that a given function is fitted with more observations. 1 

5.2. 1 The Bivariate Dichotomous Choice Model 

Double-bounded models substantially increase the complexity of the 
analysis, because now the second question may depend in some way 
on the first question. There is potential for changes in the incentive­
compatibility of the model, or at least some differences in the way re­
spondents treat the first and second questions. It is instructive to look 
at the double-bounded model in a fairly general form to understand the 
nature of efficiency gains and the attendant problems. Let t1 be the first 
bid price and t2 be the second. The bounds on WT P are 

1 .  t1 :::; WT P < t2 for the yes-no responses; 

2. t1 > WT P 2 t2 for the no-yes responses; 

3. WT P 2 t2 for the yes-yes responses; 

4. WT P < t2 for the no-no responses. 

1 Although statisitically, the number of observations is not doubled as there is. 
correlation between responses from a single individual. 
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The most general econometric model for the double-bounded data 
comes from the formulation 

where WT Pij represents the lh respondent 's willingness to pay, and 
i = 1 ,  2 represents the first and second answers. The t-t1 and t-t2 are the 
means for the first and second responses. We could make the same argu­
ments by having the means depend on individual covariates: /-Lij = Zijf3· 
This change in notation would not cause a substantive change in the 
arguments. This general model incorporates the idea that, for an in­
dividual, the first and second responses to the CV questions are dif­
ferent , perhaps motivated by different covariates, perhaps by the same 
covariates but with different response vectors, and with different random 
terms. Such a general model is not necessarily consistent with the ii;J.­
creases in efficiency that follow intuitively from the Hanemann, Loomis 
and Kanninen formulation. If respondents consult the same preferences 
for each question, then this general model would collapse to the original 
framework, as we demonstrate below. For now, we assume that mean 
WT P is the same for all individuals, but potentially varies across ques­
tion. 

To construct the likelihood function, we first derive the probability 
of observing each of the possible two-bid response sequences (yes-yes, 
yes-no, no-yes, no-no) . For illustration, the probability that respondent 
j answers yes to the first bid and no to the second is given by 

Pr(yes , no) Pr(WTP1j 2 tl , WTP2j < t2 ) 
Pr(t-t1 + Elj 2 t1 , t-t2 + E2j < t2 ) .  (5 .1 ) 

The other three response sequences can be constructed analogously. The 
lh contribution to the likelihood function becomes 

Lj (t-tlt) 
x Pr(t-t1 + Elj 
x Pr(t-t1 + Elj 
x Pr(t-t1 + Elj 

Pr(t-t1 + Elj 2 t1 , t-t2 + c2j < t2)YN 

> tl , f-L2 + E2j 2 t2 )YY 

< tl ' f-L2 + E2j < t2)N N 
< tl ' f-L2 + C2j > t2)NY (5.2) 

where YY = 1 for a yes-yes answer, 0 otherwise, NY = 1 for a no-yes 
answer, etc. This formulation is referred to as the bivariate discrete 
choice model. If the errors are assumed to be normally distributed 
with means 0 and respective variances of ar and a� then WT P1j and 
WT P2j have a bivariate normal distribution with means t-t1 and t-t2 ,  
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variances crf and cr� and correlation coefficient p. By definition, p = 
cr12/ J cri + cr� , and cr12 is the covariance between the errors for the 
two WT P functions. Given the dichotomous choice responses to each 
question, the normally distributed model is referred to as the bivariate 
probit model. The likelihood function for the bivariate probit model can 
be derived as follows. The probability that WT P1j < t1 and WT P2j < 
t2 , i.e. the probability of a no-no response, is 

where <I> 10 1 102 ( · ) is the standardized bivariate normal cumulative distribu­
tion function with zero means, unit variances and correlation coefficient 
p. Similarly, the probability of a no-yes response is 

The probability of a yes-no response is 

1 2 t1 - 111 t2 - 112 Pr(111 + E1j 2 t , 112 + E2j < t )  = <I>c:1c:2 (- --- , --- , -p) 
CT1 CT2 

and the probability of a yes-yes response is 

1 2 t1 - 111 t2 - 112 Pr(111 + Elj 2 t , 112 + E2j 2 t ) = <I>c:,c:2 ( - --- , - --- , p) . cr1 cr2 
Defining y1j = 1 if the response to the first question is yes, and 0 oth­
erwise, Y2j = 1 if the response to the second question is yes, and 0 
otherwise, d1j = 2y1j - 1 ,  and d2j = 2y2j - 1 ,  the lh contribution to 
the bivariate probit likelihood function becomes 

(5.3) 

The bivariate pro bit model is a general parametric model of two-response 
surveys. This is the model initially introduced to the contingent valu­
ation literature by Cameron and Quiggin. While the model is quite 
general, the generality creates a dilemma for CV researchers. If the 
bivariate probit model is estimated on a dichotomous choice CV ques­
tion with a follow-up, and the parameter estimates show that either the 
means, or variances or both differ between the initial bid-price and the 
follow-up, the researcher must decide which estimates to use to calculate 
the WT P measure. Also, if the means and variances differ between the 
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initial bid-offer and the follow-up can we be sure that the distributional 
form itself is not different? It is not clear whether a finding of differ­
ent means and variances across offered prices is a generalization of the 
findings in the CV literature, or an indication of an insufficiently sharp 
maintained hypothesis. 

Example 16 Bivariate Probit: AlbemarlejPamlico Sounds 

The following example comes from a study of WT P for water quality 
improvements in the Albemarle and Pamlico Sounds in eastern North 
Carolina. A full description of the data can be found in Huang, Haab 
and Whitehead. For this telephone survey, respondents were asked a 
dichotomous choice WT P question with follow-up to value water qual­
ity improvements in the Albemarle and Pamlico Sound or the Pamlico 
Sound only (respondents were offered one or the other scenario) . The 
payment mechanism is annual increases in prices and taxes. Table 5. 1 
summarizes the bids and responses to the double-bound questions. 

TABLE 5 . 1 .  Discrete Responses to Doubled-Bounded Questions 

First Second 

Question Question 

First Second # of # of # of # of 

Price Price Yes's No's Yes's No's 

tl t2 Responses to t1 Responses to t2 
$100 $50 0 133 23 110 
100 200 88 0 24 64 
200 100 0 95 29 66 
200 400 64 0 19 45 
300 150 0 119 23 96 
300 600 57 0 16 41 
400 200 0 131 25 106 
400 800 39 0 6 33 

For each initial bid offered (t1 ) there are two possible responses. The 
first row for each initial bid summarizes the no responses to that bid. 
The second row for each bid summarizes the yes responses. For example, 
an initial bid of $100 resulted in 88 yes responses and 133 no responses. 
Of the 133 no responses to t1 = $100, the follow-up bid (t2 = $50) 
resulted in 23 yes responses and 110 no responses. A total of 726 usable 
responses were obtained for this example. The average income for the 
726 responses is $31426; 54% of respondents were offered the Pamlico 
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Sound only version of the survey. The remainder were asked to value 
improvements to both the Albemarle and Pamlico Sounds. 

Table 5.2 reports the bivariate probit parameter estimates on the two 
responses. The first four rows are for the first response, the second 
four rows for the second response. The correlation coefficient is positive 

TABLE 5 .2 .  Parameter Estimates for Bivariate Probit 

Variable Estimate Standard Error 
Constant -0.07 

th -0.002 
Income/10000 0 .34 
Pamlico -0 . 1 1  
Constant* -0.82 

t2 -0.0006 
Income/10000* 0 .07 
Pamlico 0.00006 

p* 0 .21  

Log-likelihood -841 .46 

-2ln (L 8/ Lu) 361 .44 

0 .15 
0.0004 
0 .024 
0 .098 
0 . 17  
0.0005 
0.02 
0 . 1 1  
0 . 1 1  

*Different from zero at the 95% level of 
confidence. 

and significantly different from zero, indicating that there is positive 
correlation between the two responses. However, this correlation is not 
perfect. The correlation coefficient being less than one indicates that 
the random component of WT P for the first question is not perfectly 
correlated with the random component from the follow-up question. 

The virtue of the bivariate probit lies in its ability to nest and test 
other models of two-question responses. The models discussed in the 
next section represent special cases of the general bivariate probit model 
in equation (5.3) . Each of these models can be tested against the general 
bivariate model in equation (5.3) using straightforward likelihood ratio 
tests. 

Independent Probits 

Suppose there is no covariance between the error terms from the two 
dichotomous choice responses. In this case, a12 = 0 or p = 0. Because 
a bivariate normal distribution with no correlation is simply the product 
of two independent univariate normal distributions, the /h contribution 



 

120 Valuing Environmental and Natural Resources 

to the likelihood function becomes 

(5.4) 

The likelihood function for the bivariate probit with zero correlation 
between responses leads to independent probits on the first and second 
responses. If there is no correlation between responses, then joint esti­
mation provides no statistical gain relative to two independent probits 
on the responses, as long as the means differ. A test of independent 
probits versus a bivariate specification is a significance test on the cor­
relation coefficient. Assuming the correct distributional and functional 
specifications, if the hypothesis that p = 0 is rejected then estimation 
of independent probits on the two responses would result in a loss of 
efficiency relative to the bivariate probit model. An alternative to the 
independent probits that assumes the covariance is zero but that exploits 
the two bids to increase efficiency is to assume that the parameters in 
the response function are the same: p1 = p2 , or if flk = zf3k for k = 1, 2 ,  
then {31 = {32 .  

Composite Error Specification 

Consider again the formulation of the bivariate probit model 

but now suppose that the error term can be decomposed into an in­
dividual specific (cj) and individual/equation specific (Eij ) error such 
that 

Assuming Ej "' N (0, 0"2) and Eij � N (0 , O"T) , the joint distribution of 
c1j and E2j will be a bivariate normal distribution with means zero and 
correlation coefficient 

The denominator is the product of the standard errors from the mar­
ginal distributions for the errors, and the numerator is the covariance 
between the errors. Substituting in the definition of the covariance, the 
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numerator becomes 

E (c1jC2j) 
E (c:j + E1j )  (cj + E2j ) 
E (c:J) + E (c:jE1j) + E (c:jE2j ) + E (E1jE2j ) 
0"2 . 
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The first equality holds because the composite errors are mean zero, and 
the last equality holds because the individual and individual/equation 
specific errors are assumed independent. The correlation between the 
T-VT P responses is then 

0"2 
P = -Jr-(=a;c=2 =+=a""r;=) (7a:::;:::2=+=a=;§;:;:) · 

Given this formulation, the two WT P responses are distributed bivariate 
normally with means J.Li, variances aT = a2 + a7 , and correlation p 
as defined above. The composite error formulation is similar to the 
bivariate probit model in equation (5.3) . In fact , estimates of CiT and p 
from a standard bivariate probit model can be used to recover estimates 
of the composite error variances through relations 

pa1a2 
-2 0"1 - P0"10"2 
-2 -- -0"2 - P0"10"2 . 

However, as the above equations show, non-negativity of the variance 
parameters ai and a§ requires that 

1 0"1 -
;;:; 2: -=- 2: p. 
p 0"2 

(5.5) 

This restriction is not automatically satisfied in the bivariate probit. 
For practical purposes, the bivariate probit is a more general specifica­

tion of the WT P function than the composite error specification. How­
ever, if the bivariate pro bit parameter estimates satisfy the restriction in 
equation (5.5) , the errors can be given a composite error interpretation 
and the individual and equation specific variances can be derived. 

Random Effects Probit 

The composite error model is a restricted form of the bivariate probit 
model, but it allows for a panel data interpretation. There is an error 
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term specific to each response, and an error term that carries across 
responses from the same individual. This is a general form of a random 
effects model. Alberini, Kanninen and Carson were among the first to 
apply a random effects interpretation to a dichotomous choice contingent 
valuation survey with a follow-up question. 

If we restrict the mean of the composite error models to be the same 
across both responses so that fll = f12 = fl ,  and restrict the variances of 
the marginal distributions to be equal across responses at = a� , then the 
jth contribution to the likelihood function (the probability of observing 
the outcome [Ylj , Y2j] ) becomes 

(5.6) 

Equation (5.6) is a bivariate probit likelihood function (see equation 
5.3) with equal means, equal marginal variances (0: = J a2 + ar = 
J a2 + a�) and non-perfect correlation between the errors: p = t+

2 2 .  a a 1  
The random effects pro bit assumes that the marginal distributions of the 
responses for the two questions are identical, but the responses are not 
independent. Instead, the random effects probit accounts for possible 
individual specific effects that carry across the two responses. Although 
the random effects probit can be written as a restricted form of the bi­
variate probit, econometric packages typically have separate routines for 
the bivariate probit and the random effects probit. Random effects pro­
bit routines typically provide estimates of the a2 and at rather than 0: 
and p. If the correlation coefficient (or equivalently the individual spe­
cific variance) is estimated to be indistinguishable from zero, the random 
effects probit collapses to what is known as the interval data model. 

Alberini, Kanninen and Carson estimate another variant of the ran­
dom effects probit. They incorporate a fixed question effect into the ran­
dom effects model by allowing the intercept to change across questions. 
Their formulation is 

fl1 + Clj 
fl2 + 8 + f2j · (5. 7) 

In models with no covariates, they find that the 8 is significantly less 
than zero, implying there is a downward mean shift in WT P between 
the two responses. To understand this result, it is useful to look at one of 
the initial models for analyzing two-response CV questions: the interval 
data model. 
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Interval Data Model 

The interval model is the initial formulation of Hanemann, Loomis 
and Kanninen. This is the format in which the double-bounded model 
offers the greatest increase in efficiency, with the least ambiguity about 
recovered preferences. To understand the initial attraction of the interval 
data model, consider again the specification of the bivariate dichotomous 
choice likelihood function in equation (5.3) .  Now suppose that we impose 
the restriction that �t1 = �t2 = �l. In this case, we would expect a gain 
in efficiency because both answers are used to estimate the parameter 
�- Suppose also that the covariance between the two errors is zero. In 
the normal distribution case, zero covariance implies independence, so 
we can write the jth contribution to the likelihood function as 

Lj (�lt) 
x [Pr(� + Elj 

x [ Pr(�t + Elj 
X [Pr(� + Elj 

[Pr(� + E1j > t1 ) · Pr(� + E2j < t2)]YN 
> t1 ) · Pr(� + E2j > t2 )]YY 

< t1 ) · Pr(�t + c2j < t2)]NN 

< tl ) . Pr(� + E2j > t2 )]NY _ 

Here we see that estimation of � should be more efficient than a single 
bid model, because we basically double the number of observations. The 
case originally developed by Hanemann, Loomis and Kanninen assumes 
that the model in all its parts is the same for each question. That is, for 
the ;th individual 

WTPj = �l + Ej , 

so that the same error applies to each question, as well as the same 
deterministic part of preferences. Now we write the ;th contribution to 
the likelihood function as 

Lj (�lt) 
x Pr(�t + Ej 
x Pr(�t + Ej 
x Pr(� + Ej 

Pr(� + Ej > t\ � + Ej < t2 )YN 
> t\ � + Ej > t2)YY 
< t\ � + Ej < t2)NN 
< tl , � + Ej > t2)NY 

Consider the yes-yes sequence. Bayes's rule, Pr(a , b) = Pr(b la) Pr (a) , 
lets us write Pr(WTP > t1 , WTP > t2) = Pr(WTP > t1 1WTP > 
t2) · Pr (WT P > t2) = Pr(WT P > t2) when t2 > t1 because in that case 
the probability that WT P is greater than t1 , given that it is greater 
than t2 when t2 > t1 , equals one. Analogous reasoning holds for the 
no-no sequence. And with the single error, the probability of the yes-no 
and no-yes pairs is just the probability that willingness to pay falls in 
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the interval. Hence we can rewrite the lh contribution as 

Lj (JLit) Pr(t2 - J1 > Ej > t1 - JL)YN · Pr(JL + Ej > t2)YY 
x Pr(JL + Ej < t2)NN · Pr(t1 - JL > Ej > t2 - JL)NY _ (5.8) 

Written with the error as normal, this is the likelihood function that 
Hanemann, Loomis and Kanninen used to estimate their parameters. 
Under these assumptions, the efficiency gains come from restrictions 
on the range of the random preferences. As Hanemann, Loomis, and 
Kanninen's empirical results show, with the corroboration of consider­
able subsequent research, double-bounded models do provide efficiency 
gains. 

The difficulty with the double-bounded model has been some appar­
ent strategic behavior on the follow-up questions. One rather consistent 
finding with double-bounded models is that the mean WT P for the sam­
ple is smaller when the second question is introduced. This finding was 
present in the original work by Hanemann, Loomis and Kanninen and 
has been corroborated in numerous other studies. Systematic analysis 
of data from double-bounded models suggests that this tendency can be 
explained by the proclivity of the initial 'yes' respondents to answer 'no' 
to the second question, regardless of the amount. The consequence is 
that the aggregate proportion of yes's to a given bid is lower, and the 
double-bounded responses will yield a smaller mean willingness. 

Several explanations for the mixed performance of the double-bounded 
model have been suggested. For example, the respondent who initially 
answers 'yes' may feel he is being exploited when asked to pay an even 
higher amount. Alberini, Kanninen and Carson suggest that a respon­
dent who answers no may feel that the quality of the good may be low­
ered on the second question. Other interpretations are possible. But 
the fundamental problem is that the respondent's expectations have been 
changed after the first question. Initially, assuming no untoward strate­
gic behavior, the respondent has no reason to believe that the first ques­
tion will be followed by a second question. But when the second question 
is asked, the respondent may wonder whether another will follow, and 
adjust his response strategically. 

Principally, however, it is the responses that follow an initial 'yes' 
that appear to cause most of the problems. One means of gaining effi­
ciency from double-bounded questions but avoiding the apparent strate­
gic problems that arise after an initial 'yes' is to adopt a 'one and a 
half' bid approach, as suggested by Cooper, Hanemann and Signorelli. 
In this approach, the researcher uses the following responses: initial 
'yes ' ,  a 'no-yes' combination and a 'no-no' combination. This makes the 
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likelihood function look as follows: 

Li (�tit) 
X [Pr(�t + Elj 
X [Pr(�t + Elj 

[Pr(�t + Elj > t1 ) Y 
< tl ) . Pr(�t + E2j < t2)]NN 
< tl ) . Pr(�t + E2j > t2)]NY 
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In this approach, when one assumes that both follow-up questions to 
the initial 'no' response are the same, a variant of the interval model 
emerges. 

Econometrically, tests of the change in the incentive structure can be 
carried out in a variety of ways. One approach would be to test whether 
the parameter vector from the second bid price equals the parameter 
vector from the first bid price. This can be accomplished in the context 
of the bivariate probit model. By estimating both the bivariate probit 
model on both responses and the interval data model, likelihood ratio 
tests can be used to test the hypothesis that the means and variances 
are equal across questions. One of the models developed by Alberini, 
Kanninen and Carson, given in equation (5.7) , can be used test for dif­
ferences. When o < 0, all else equal the respondent is more likely to 
answer no on the second question than on the first. Perhaps the most 
convincing evidence for a change in incentives comes from comparing 
the proportion of yes responses to a given bid on the first question, and 
the proportion of yes responses to the same bid on the second question, 
given that the first answer was yes. Typically one finds that the propor­
tion of yes responses to the same bid is less for those who have already 
answered yes on a previous question. 

5.2. 2 Payment Cards 

In the early years of CV, researchers used a variety of means for deter­
mining willingness to pay. One popular approach that can be viewed as 
a predecessor of discrete choice CV was the payment card approach. In 
this method, the interviewer describes the scenario to the respondent , 
explains the need to pay, and then presents a card to the respondent with 
a list of payments, ranked from highest to lowest or lowest to highest. 
The respondent is then asked a question of willingness to pay based on 
the payment card. Four kinds of questions can be asked with a payment 
card. 

1. Pick the amount you are willing to pay. 

2. Pick the minimum amount you are willing to pay. 
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3. Pick the maximum amount you are willing to pay. 

4. Pick the range that describes the amount you are willing to pay. 

These questions may be asked in different ways. A respondent may 
be asked to point to the appropriate number, or check it off, or respond 
orally. But for computing willingness to pay, one must make sense of 
the response. For the first response, the researcher must assume that 
the number picked is the respondent's willingness to pay, because the 
question leaves no room for ambiguity. This might be acceptable if there 
were a sufficiently large number of payments on the payment card. For 
example, it would not seem satisfactory to present the respondent with 
three payments on a payment card, and accept the number picked as the 
true willingness to pay. The second question, pick the minimum amount 
you are willing to pay, should not be taken as the true willingness to pay 
either, if the number of payments is small. 

Suppose that there are K payments, t 1 , . . .  , tK , arranged in ascending 
order so that tk > tk-1. When a respondent picks payment tk , the 
probability that a respondent picks this payment is the probability that 
willingness to pay lies between tk and tk+l : 

Responses to the payment card can be treated in a parametric model 
by specifying willingness to pay as WT P = fJ + e. We assume linearity 
here for simplicity but results are generalizable to many of the models 
in Chapters 2-4. If we let c: "'  N(O, a2) , then 

which can be rewritten as 

Pr(choose tk) = <I> ( (tk+l - tJ)/a) - <I> ( (tk - tJ)/a) 

where <I> ( (tk+1 - tJ)/a) is the standard normal CDF evaluated at (tk+l ­
tJ)/a. We can then form the log-likelihood function for the responses: 

T 

ln £ = 2)n(<I> ((tk+l (i) - tJ)/a) - <I> ( (tk (i) - tJ)/a))  (5.9) 
i=l 

where individual i picks payment tk(i) .  This is a form of an interval 
model, in which every individual picks some payment. This is similar to 
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part of the interval likelihood function (equation 5.8) and it requires a 
tailored likelihood. The model estimates 1/0" as the coefficient on tk (i) 
and tk+I (i) and the constant term is JL/O". One gets EWTP by dividing 
the estimate of JL/O" by the estimate of 1/0". If there is a zero payment 
option, then one would have a discrete response that assigns zero to the 
WT P function. This would be a form of a spike model, which we explore 
below. 

Questions 3 and 4 also provide a range of WT P. In question 3, we 
simply change the likelihood function in equation (5.9) so that the in­
terval goes from tk_1 (i) to tk (i) . For question 4, we would use the 
lower and upper bound of the range that is picked for the values of tk (i) 
and tk+I (i) in the likelihood function given in equation (5.9). We can 
estimate the effect of covariates by replacing JL with zi(3. 

We can also use the Turnbull non-parametric approach of Chapter 
3 to analyze the payment card data. Let us interpret the choice of tk 
as the respondent's lower bound of his WT P. Then a payment card 
estimate of the lower bound of EWT P for the sample would be 

T 
ELB,PcWTP = Ltk (i)/T. 

i=l 
(5.10) 

This turns out to be the same as the Turnbull lower bound estimate 
from Chapter 3. To see this, we calculate the Turnbull lower bound as 

M 
ELBWTP = Ltkfk+l 

k=l 
where fk+l = Fk+1 -Fk , and Fk is the proportion that will pay less than 
tk . To calculate Fk with the payment card approach, define Tk as the 
number of respondents who pick tk . Then we define Fk+l = 1 - (TM + 
TM-l + . . .  + Tk+I ) /T. This implies that fk+l = Fk+l - Fk = TkjT. 
Now we can rewrite equation (5.10) as 

T1t1 + T2t2 + . . .  TMtM 
T 

Consequently we can just treat the payment card mechanism in the 
standard conservative way and we will be getting the Turnbull lower 
bound mean. 
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The chief difficulty with the payment card mechanism is that its incen­
tive properties are suspect. This comes in part from the cueing implicit 
in the list of payments on the payment card. Mitchell and Carson de­
scribe payment cards in detail. 

5. 2. 3 Open-Ended Questions 

The earliest contingent valuation questions were simply questions that 
asked the respondents the maximum amount they would pay rather than 
go without the scenario. There are several difficulties with the incentives 
of open-ended questions, and they have basically been abandoned as a 
mechanism. Nothing in the respondents' experience is likely to prepare 
them for plausible responses to this question. Open-ended questions are 
also subject to a variety of ambiguous responses. For example, individ­
uals protest by responding with zeros or extremely high values. 

The econometric issues with open-ended questions are limited to learn­
ing about whether the responses are systematic functions of covariates 
or sampling splitting or other aspects of the questionnaire or individual. 
Typically one would have an individual's response as WT Pi, and the 
sample mean would be L;'[=l WT Pi/T. One might want to estimate a 
model such as 

where Zi is a vector of individual covariates, including income, and a 
random element Ei · This model is estimated as a censored model because 
WT Pi 2: 0. The vector of covariates would be variables of interest to 
establish the validity of the CV approach. It could also include variables 
that helped correct for disproportionate sampling to help expand the 
estimates to the population. Estimation of such models falls under the 
rubric of continuous dependent variable models and is covered in detail 
in standard econometrics texts. 

5 . 3  Bid Design Issues 

While the focus of this book lies in the estimation of models once data 
have been collected, the previous section necessitates a discussion of one 
of the issues surrounding the design of contingent valuation experiments: 
optimal bid design. The choice of the optimal bid vector is a choice of 
the number and distribution of bids to offer. Suppose that there are 
j = 1 ,  . . , m bid levels, let tj be the /h bid level and let Tj be the 
number of respondents who receive bid tj . The bid design is completely 
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determined by the 2m values of tj , Tj , j = 1 . . . ,  m. The total number of 
bids offered, 2::;"=1 Tj depends on the budget available for sampling. It 
is clear that the distribution of bids matters in terms of the efficiency of 
estimators. The bids are obviously important for efficiency because they 
are exogenous variables that determine the variance-covariance matrix 
in the simple dichotomous discrete choice CV where the bid is the only 
regressor. The optimal bid literature is a useful point of departure, but 
one should be wary of using an optimal bid design that has not passed 
severe pragmatic tests. In fact, optimal bid design should be considered 
part of the construction of the CV instrument. The range of bids may 
be governed by the respondents' understanding of the question. For 
example, Carson, Groves and Machina suggest that respondents react 
to very low bids as unrealistic, and may substitute their guess of a mean 
instead of the very low bid. This section provides a brief introduction 
to some of the issues and points the reader to some of the literature on 
the subject. 

The need for bid designs that improve efficiency is exacerbated by 
the discrete format for CV. Single bid dichotomous choice surveys are 
inefficient relative to open-ended contingent valuation. A response to a 
question of the form 'Are you willing to pay $t?' contains considerably 
less information than a response to a question of the form 'How much 
are you willing to pay?' .  Practitioners, however , are overwhelmingly 
willing to sacrifice efficiency to forego the unreliability of open-ended 
responses. This loss of efficiency has been the motivation behind the 
development of stated preference dichotomous choice surveys in the re­
cent literature. In fact , the multiple choice attribute-based methods may 
achieve efficiency that rivals open-ended CV questions. These methods 
are discussed briefly in Chapter 10. 

Choosing the offered bid prices can improve the efficiency of dichoto­
mous choice parameter and welfare estimates. The optimal bid design 
literature chooses bids to maximize efficiency. (See Scarpa and Bateman; 
Kanninen 1993a,b; Alberini 1995a; Nyquist.) An interesting paradox 
emerges in the context of these optimal bid designs. To design an opti­
mal bid vector, the researcher must have information on the distribution 
of WT P. In the extreme, the maximum efficiency gain for estimating 
mean WT P is obtained by offering a single bid equal to the true mean of 
WT P to all respondents. The paradox arises because if true mean WT P 
is known, then there is no reason to derive an optimal bid vector (or per­
form a CV study for that matter) .  A number of studies have derived 
optimal bid design mechanisms based on limited amounts of prior in­
formation and investigate the properties of the resulting parameter and 
welfare estimates (e.g. Scarpa and Bateman, Kanninen 1993a,b, Alberini 
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1995a, Nyquist) . However, an overriding theme of each of these studies 
is that prior information is needed on the distribution of WT P before 
any optimal design mechanism can be implemented. This leads to the 
conclusion that iterative contingent valuation surveys can provide effi­
ciency gains relative to dichotomous choice surveys based on randomly 
assigned bids in a single bid dichotomous choice framework. 

This discussion begs the question: what practical advise can be derived 
from the literature on optimal bid design? The first recommendation 
is that any information available on the distribution of WT P should be 
used to help design the vector of offered bids. This information might 
come from focus groups, or pretests, but as is repeatedly pointed out 
in the literature, optimal bid designs cannot be derived without some 
information on the distribution of WT P (even if this is inaccurate or 
uncertain information) . Prior information on the distribution of WT P 
will serve to identify a preliminary estimate of the central tendency of 
WT P and also help to identify the location and size of the tails of the 
distribution. Depending on the goals of estimation, this information is 
important for identifying the optimal bid placements. For example, if 
population mean WT P is the measure of interest then more information 
is gained by offering bids close to the mean than bids in the tails of 
the distribution. If the variance of WT P is of interest, or marginal 
effects of covariates are important to estimate then one must identify 
the distribution of WT P. As is shown in Chapter 4, failure to identify 
the tails of the distribution can have significant effects on the estimation 
of parameters. A number of optimal bid design strategies exist for such a 
situation (C-optimal and D-optimal designs are described in Kanninen 
1993a, Alberini 1995a, and Scarpa and Bateman) , but in practice, all 
rely on at least a preliminary guess as to the values of the distributional 
parameters. 

If focus group or pretest information is not available, then the choice 
of bids is solely at the discretion of the researcher. Practically speaking, 
it is in the researcher's best interest to allow at least two iterations to 
the contingent valuation survey. The first iteration provides an ex-ante 
estimate of the distribution of WT P and this information can be used 
to improve the design for the second iteration of the survey. Practical 
approaches to the use of the initial information employ histograms of bid 
responses and the calculation of the Turnbull lower bound mean and its 
variance. Kanninen (1993b) discusses iterative CV designs in a formal 
sense. 
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5 .4  Spikes , Indifference and Uncertainty 

In any contingent valuation study, there is some likelihood that sur­
vey procedures will encounter respondents who do not care one way or 
the other about the scenario being described. For example, a survey of 
householders about their preferences for beach quality may find near 
universal interest in Barbados, where beaches are prominent. The anal­
ogous survey conducted with randomly selected households in the U.S. 
would be expected to encounter a significant proportion of respondents 
who have no interest in the outcome. 

In the context of utility functions, indifference to the outcome means 
the respondent receives the same utility whether the good is provided 
or not, independent of the price charged: 

(5. 1 1 )  

The subscript 1 denotes provision of the scenario and 0 denotes no provi­
sion. Indifference can arise in a survey under two conditions, depending 
on whether the researcher knows that equation (5. 1 1) holds. When it is 
known that the respondent is indifferent to the CV proposal, it is also 
known that the respondent would not be willing to pay for the services 
proposed. If equation (5. 11 )  can be known with confidence, then the 
problem with indifferent respondents is resolved. The sample average 
expected WT P is 

E(WTP) 0 x Pr (indifferent) + E(WTPinot indifferent) 
x Pr(not indifferent) . 

However , it is not always such a simple matter to determine whether 
the respondent has any interest in the CV scenario. Ideally this ques­
tion would receive significant attention in questionnaire design. Further, 
it would be more reliable when asked prior to the main CV question. 
The danger in sorting out after the yes-no CV question is that respon­
dents may engage in strategic behavior if they perceive that their initial 
responses are doubted. Further, there are datasets in which the respon­
dents are not asked whether they are indifferent, and so the indifferent 
respondents cannot be sorted from those who would prefer the scenario 
at some price. Hence there are three cases. 

1 .  Some respondents are indifferent , and they have been unambigu­
ously identified by the interview process; 

2. Some respondents have revealed that they may be indifferent, but 
there is some uncertainty about their actual indifference; 
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3. Researchers have good reason to believe that there is indifference, 
but nothing of potential indifference has been identified by the 
interview. In this case, the problem can be handled by the model 
of Haab (1999) . 

The treatment of nonrespondents may have little impact on the esti­
mate of WT P. Take the simple case in which indifferent respondents 
will always answer no if they have to pay a price for service that they 
don't want 

The impact of including indifferent respondents on the estimate of WT P 
can be seen by looking at the effect on the Turnbull lower bound of 
willingness to pay (see Chapter 3) . For simplicity, suppose all individuals 
in the sample are offered the same bid ( t) . The estimate of the lower 
bound of WT P will be bid price x Proportion of yes. For the case when 
indifference is ignored 

E(WTPLB iindifferent misclassified) = t(T - N - D) /T 

where N is the number of legitimate negative respondents, D (Don't 
care) is the number of indifferent responses and T is the total number 
of responses. The quantity T - N - D represents the total number of 
yes responses to the bid t, as the D indifferent respondents will respond 
no. If we look only at the respondents who are not indifferent and drop 
the indifferent responses, then the total number of yes responses will be 
T - N - D, but now the number of potential responses is only T - D. 
The lower bound on expected WT P for the respondents who care will 
be 

E (WTPLB irespondents not indifferent) = t(T - D - N)/(T - D) . 

We then calculate the full sample willingness to pay (including indifferent 
respondents) as: 

0 x Pr(indifferent) + E(WT PLB I not indifferent) 
x Pr(not indifferent) . 

The sample estimate of the probability of indifference is 

Pr(indifferent) = � . 
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Substitution yields 

EWTPLB D (T - D - N) (T - D) 0 T + t (T - D) T 
(T - D - N) t T . 
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This is the same as EWT PLB when the indifferent responses are not 
dropped. Misclassifying makes no difference. Whether this result holds 
for parametric models depends on the structure of bid prices. In general 
though, when indifferent responses are known, they should be dropped. 
But what is more reassuring is that including the indifferent responses 
does not have an unambiguous effect on the estimate of WT P. Drop­
ping the indifferent responses raises the conditional estimate of WT P, 
because sure no's are eliminated. But calculation of the sample mean 
WT P is lowered when zero WT P is attributed to the indifferent re­
sponses. 

When there is incomplete information that the respondent is indiffer­
ent , several strategies may be reasonable. Respondents may have some 
positive willingness to pay, and they may also have zero willingness to 
pay. Here the correct approach depends on whether willingness to pay 
is non-negative. There are circumstances for some CV scenarios where 
negative WT P is reasonable. 

5.4 . 1  A General Spike Model 

Kristrom (1990) provides a general model to allow for indifference in a 
dichotomous choice CV framework. For the moment, suppose we can 
distinguish respondents who are indifferent. We allow for both positive 
and negative WT P. As will be seen, nested within this model are many 
of the models discussed previously. Following Kristrom, but changing 
notation to remain consistent with previous models, let p- (W) repre­
sent the distribution of WT P for those with negative WT P. p- (W) 
is defined such that as W approaches negative infinity, p- (W) = 0. 
However, as W approaches zero from the negative side, p- (o- ) ____, p- . 
Similarly, we can define a function to describe those with positive WT P 
(F+ (W)) such that p+ (oo) = 1 and as W ____, 0 from the positive range, 
p+ (o+ ) ____, p+ . The distribution of WTP can be summarized as { p- (W) if W < 0 } 

P- if w ____, o-
FwrP (W) = p+ if W ____, o+ . 

p+ (W) if W > 0 
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The Kristrom model is an appealing representation of the possible dis­
tribution of WT P. It allows individuals to have negative or positive 
WT P. It allows for a different distribution of WT P between those with 
positive and those with negative WT P, and it allows for a spike or mass 
of observations at zero (measured as p+ - p- ) . Kristrom's model, how­
ever , has some drawbacks in application. It is unlikely that a negative 
bid price will be offered to respondents. As such, there is no informa­
tion to estimate the form of p- (W) . Unless both benefits and costs 
of a project are elicited in the survey instrument, the negative portion 
of WT P will not be estimable in any form other than a point mass at 
zero. 

Consider now an alternative form of the spike model. Define F(W I 
no indifference) as the conditional distribution function of WT P, given 
no indifference. The support of WT P is unbounded at this point. Note 
that it is possible that WT P = 0 even with no indifference. This is 
a counterintuitive result , but becomes clear when it is recalled that for 
any continuous distribution, the probability of observing any particular 
outcome is zero. We will consider the case when indifferent respondents 
can be identified and the case when indifferent respondents can not be 
identified. 

Indifferent Respondents Can Be Identified 
Consider the case where the survey has identified those who are not 
willing to pay anything (i.e. , those who are indifferent to the offered 
good) . Define p as the probability of indifference. In this case, the 
unconditional cumulative distribution function for WT P for W > 0 is 

Fw (W) p x F(W iindifference) + (1 - p) x F(W ino indifference) 
p + (1 - p) x F(W ino indifference) . (5.12) 

This result follows from the realization that F(W iindifference) = 1 if 
W > 0. We will not consider the case of W :::; 0 as offered bid prices 
less than or equal to zero create incentive problems in survey responses. 
In any case, a question that elicits WT P < 0 can always be rephrased 
to elicit WT P > 0 for the complementary good. 

Now suppose an individual is offered a single bid t > 0. Conditional 
on no indifference, the probability of a no response is simply: 

Pr (no) = Pr (WTP < t) = F(t lno indifference) . (5.13) 

Similarly, the probability of a yes response conditional on no indifference 
is: 

Pr (yes) = 1 - Pr (no) = (1 - F(t lno indifference) ) . (5. 14) 
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Conditional on indifference, the probability of a no response is 1 and 
the probability of a yes response is zero. The contribution of the lh 
individual to the likelihood function is: 

L1 (t) = pz ((1 - p) · Pr (N))N · ( ( 1 - p) Pr (Y) )y (5. 15) 

where Z = 1 if the respondent is indifferent and zero otherwise, N = 1 
if a no response is recorded by a non-indifferent respondent, Y = 1 if a 
yes response is recorded by a non-indifferent respondent, (1 - p) Pr (N) 
is the unconditional probability of a no response, and (1 - p) Pr (Y) is 
the unconditional probability of a yes response. Rearranging yields: 

(5. 16) 

Noting that N + Y is an indicator of positive WT P, we see that the above 
model separates into two distinct discrete choice models. The first is a 
discrete choice model on the indifference decision, and the second is a 
discrete choice model on the yes/no response. If indifferent respondents 
can be identified, the probability of indifference can be estimated sep­
arately from the yes/no response for those with positive WT P. If one 
wishes to investigate the effects of covariates on the tendency towards 
indifference, this can be done in a separate dichotomous choice model 
(probit or logit for example) . If the effects of covariates are not of in­
terest then the maximum likelihood estimate of p will be the proportion 
of indifferent respondents in the sample. 

Note that the appropriate model of yes/no responses includes only 
those who are not indifferent. It is a direct corollary to this that if 
indifferent respondents are included in the estimation without directly 
accounting for them, any parameter estimates of the WT P function will 
be inconsistent. That is, failure to account for indifference can have 
undesirable effects on the estimated parameters. 

Indifferent Respondents Cannot Be Iden#fied 
If indifferent respondents are not identified in the survey, then the model 
becomes more difficult to estimate. If Z, the indicator of indifference, is 
unobservable, then the unconditional probability of a no response to an 
offered bid t becomes: 

Pr (N) = Pr (WT P < t) = p + ( 1 - p) · F(t lno indifference) 

and the contribution to the likelihood function of a given individual 
becomes: 

L1 (t) = (p + (1 - p) Pr (N) )Nr · ( (1 - p) Pr (Y){ 
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where Nr indicates a no response for any reason (indifference or WT P < 
t ) . This model differs from the previous model in that the estimation 
of the yes/no response cannot be separated from the estimation of the 
model of indifference. At this time, standard routines do not exist for 
estimating this model. A number of recent models have been estimated 
in the literature that allow for this point mass at zero (see, for exam­
ple, McFadden 1994, An and Ayala 1996, Werner 1999, and Haab 1999) . 
Typically, the spike model is estimated on positive conditional WT P 
functions. That is, it is assumed that WT P conditional on no indiffer­
ence is positive. This gives the spike model a double-hurdle interpre­
tation similar to the Heckman selection model in continuous function 
models (see Chapter 7) . A common result in the existing literature is 
that the estimate of p (or the parameters of p if it is specified as a func­
tion of covariates) is extremely sensitive to the form of the distribution 
assumed for WT P. Because the estimate of p cannot be separately 
identified, the estimate is driven solely by the assumed form of F(Wino 
indifference) . (See Haab, 2000 for a derivation.) As such, care must 
be taken in estimating the spike model when indifferent respondents are 
not identified. 

These models leave us with a significant task for data collection. It 
is important to identify indifferent respondents in the survey design. If 
indifferent respondents are not identified, then models that attempt to 
account for indifference are sensitive to specification error. If indiffer­
ent respondents are ignored (either identified or not identified) , then the 
likelihood function is misspecified and parameter estimates will be in­
consistent. The logical conclusion is to identify indifferent respondents 
in the survey process and then estimate the dichotomous choice model 
on the non-indifferent respondents. 

5 . 5  Conclusion 

The topics explored in this chapter by no means exhaust the practical 
issues that arise in implementing discrete choice contingent valuation. 
The issues that arise in instrument design are the most significant in 
all of contingent valuation, and we have touched on these issues only in 
small ways. These issues are often peculiar to the setting, and involve 
survey design research rather than the empirical methods of economics. 



 

6 

Modeling the Demand for 
Recreation 

6. 1 Introduction 

In this and the following two chapters, we examine empirical models of 
the demand for outdoor recreation. Households spend time and money 
enjoying the natural environment. Government and private actions in­
fluence the quantity and quality of recreational sites. Our goal is to show 
how revealed preference data can be used to estimate welfare effects of 
various kinds of public actions, from eliminating access to a beach, fish­
ing site or other recreational resource, to changing the quality of the 
site such as improving fishing or reducing pollution. This requires de­
veloping behavioral models, showing how the estimation of these models 
depends on sampling, and then investigating the calculation of welfare 
effects from estimated models. 

As a method used to value non-market resources, the travel cost 
method is a good deal older than contingent valuation. It arose in 
the context of a debate over the use of public lands in western United 
States. Many of the competing uses for the land-cattle ranching, mining, 
logging-had marketable outputs. The need for a method that permitted 
a comparison of the value of market activities with the value of outdoor 
recreation led to the development of the travel cost method. In a re­
markable development, the travel cost model was suggested by Harold 
Hotelling, in an unpublished letter, who responded to Department of 
Interior officials requesting a means of evaluating the benefits of public 
lands. In one of the earliest applications, Clawson computed visitation 
rates per 100000 population to the major national parks in the US by 
cost. 

When the travel cost method is employed for measuring the benefits 
and costs of public actions, it can be used in two ways. The original 
use, and this remains important, was to determine the best use of public 
land, which might have both commercial potential in the private sector 
and recreational use in the public sector. But because recreation takes 
place outdoors, and can be substantially affected by air and water pollu­
tion, recreation models are now commonly used to measure the benefits 
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of pollution control or other changes in the policies that influence the 
quality of sites. 

The travel cost model is a model of the demand for the services of a 
recreational site. The essence of the travel cost model stems from the 
need to travel to a site to enjoy its service. A participant who chooses 
to visit a site must incur the cost of overcoming the distance. This 
characteristic is put succinctly by Burt and Brewer: 

. . .  the consumer is transported to the commodity for con­
sumption to take place, rather than vice versa. This at­
tribute of outdoor recreation is advantageous for statistical 
estimation of demand equations because the costs that must 
be incurred to consume the recreational services provide sur­
rogate prices with more variation in a sample than would 
usually be generated by market phenomena observed either 
over time or over space. (p. 813) 

All methods that use travel costs rely on the insight that differences in 
costs cause differences in quantity demanded. Sometimes the differences 
relate to different costs to different households visiting the same site, 
and sometimes the cost differences refer to different sites for the same 
household. Early approaches tended to be zonal-that is, researchers 
used as the dependent variable the number of visits per capita from a 
zone in which the distance to the site was approximately equal for all 
residents who lived in the zone. Because visits per capita equals the 
product of (visits/users) and (users/population) , these models blended 
participation rate models with models of users' demands. 

Travel cost models have developed considerably since their initial use. 
They can be used to estimate the welfare effects of the elimination of 
a recreational site or a change in the quality of the site, as outlined in 
Chapter 1 . Smith and Kaoru perform a meta-analysis of benefit esti­
mates from travel cost models, and give a good appreciation of the im­
portant issues in estimation. The broader issues of recreational demand 
modeling are surveyed in Bockstael, McConnell, and Strand (1991) . 
Thousands of applications of the travel cost methods have appeared in 
economics journals, disciplinary journals and government reports. They 
have been employed in natural resource injury cases, for example in the 
Exxon Valdez case by Hausman, Leonard and McFadden to demonstrate 
monetary damages from the injury. They have been used routinely to 
evaluate conditions of access in marine recreational fishing in the United 
States (Hicks, Steinback, Gautam and Thunberg) .  In one of the earliest 
studies using the travel cost model to value pollution control, Smith and 
Desvousges measured the economic benefits of water pollution reduction. 
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In international work, Strand has used a type of travel cost model to es­
timate the benefits of coastal zone management in Barbados. Although 
travel cost models are widely used in the United States, and to a lesser 
extent internationally, there has been less use of these models in Europe, 
where there is widespread use of contingent valuation. The scant use 
of travel cost models in the developing world is to be expected, because 
there the more pressing environmental problems relate to the health ef­
fects of pollution. This is changing in the more developed countries, as 
researchers use site choice models for analyzing policy measures. 

6.2 The Generic Travel Cost Problem 

In deciding to visit a recreational site, an individual or a household typ­
ically chooses among many alternative recreation sites, and then incurs 
the cost of travel to visit the chosen site. This decision is often, but 
not always, made a number of times per season, or per year. Hence 
individuals make decisions about whether to visit a site as well as the 
number of times to visit it. In a sample of all households that records 
visits to a large number of sites over a period of time, such as visits by 
households to the numerous lakes in Wisconsin during a year, it is typ­
ical that many households will not visit any of the sites. If we confine 
our analysis to users only, then frequently households visit only a few of 
the many sites available. Thus a common characteristic of recreational 
datasets is that the observed quantity demanded for most sites is zero. 
The various approaches of recreational demand models all confront this 
basic issue. 

Estimating models for a typical dataset requires a variety of strate­
gic modeling decisions. The two most critical choices involve the basic 
structure of the model. One may start with a preference function and 
then derive the behavioral model, or one may simply start with a be­
havioral model. The second decision concerns whether one wishes to 
model the choice among all the sites in the study area, or as few as one 
site. The demand function approach entails the writing down and es­
timation of a system of demand functions. The origin of this approach 
is the work of Burt and Brewer , who estimated demand functions for a 
small number of reservoirs using aggregate data in the form of visits per 
capita. Current versions are estimated on individual data, such as the 
count models by Shonkwiler and by von Haefen. All of these models 
are direct descendents of the Hotelling travel cost model, in which the 
individual chooses the number of times to visit a given site. A simple 
version of this approach is a single site model, which we address in the 
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following chapter. 
The alternative to the demand function approach is to begin with 

a utility function. This approach incorporates the full set of choices, 
including the choice of whether to participate at each site as well as the 
number of times to visit each site. The most general version of the utility 
function approach is the generalized corner solution model, developed by 
Phaneuf, Herriges and Kling. In this model, the recreationist chooses 
which sites to visit and how many times to visit each site, in a utility 
consistent framework. The various versions of the random utility models, 
including the repeated logit model, are less fully integrated versions of 
the demand for all sites. Herriges, Kling and Phaneuf (1999) compare 
the different approaches to modeling the demands. In general, if the 
number of sites is not large, fully integrated utility-consistent models and 
demand models are suitable substitutes. However, when the number of 
alternatives is very large, as it is in many applications, site choice models 
based on random utility have the advantage of feasibility. In Chapter 8 
we investigate the estimation of random utility models. 

6. 2. 1 The Demand for Quality 

The goal of the original models of the demand for recreation was to 
measure the willingness to pay for access to recreation sites. This allowed 
researchers to compare the recreational value of land with the value 
of competing uses. But as the awareness of pollution grew, questions 
broadened to encompass not just the best use of the site but the quality 
of the site. In a model of trips to a single site, the elementary travel cost 
model, the researcher usually cannot infer economic values of quality 
changes because all individuals face the same site quality. Without 
severe assumptions, the single site model can be used to measure the 
economic value of access to the site but not the value of changes in the 
quality of the site.1 

Improvements in the ability to measure the welfare effects of quality 
came with the recognition that the quality of recreation sites frequently 
varies across sites. And often, the consumer chooses sites with different 
qualities. Each time an individual chooses to visit a given site, he selects 

1 By allowing a single quality measure to interact with an individual-specific co­
variate, one can coax out the demand for site quality. This allocates all of the welfare 
leverage to a second order effect, however. If time-series data were available, where 
the quality variables changed over time, then a single site would provide sufficient in­
formation to estimate the effect of quality. Time-series data for recreational demand 
models has rarely been used. 
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among a larger set of sites that are differentiated not only by different 
costs but by different qualities. Using these choices in the various mul­
tiple site models such as the random utility model or the generalized 
corner solution model allows the researcher to estimate the willingness 
to pay for changes in quality. The random utility model has become the 
most popular method of approach to modeling the demand for recre­
ation sites, in part because it incorporates the effects of quality on the 
demand for sites. 

Increasingly researchers are combining contingent valuation and be­
havioral models to measure the effects of quality changes. Essentially 
one tries to estimate a model that includes a travel cost response and a 
contingent valuation response for each individual. In single site cross­
section data, it would then be feasible to deduce the effects of changes 
in quality on trips and welfare. For example, Huang, Haab and White­
head (1997) combine a travel cost model with a contingent valuation 
question valuing water quality changes in the Albemarle and Pamlico 
Sounds in North Carolina (also see Cameron (1992) , Adamowicz, Lou­
viere and Williams (1994) , and Niklitschek and Leon) . Other studies 
have combined revealed travel cost responses with planned future travel 
plans under varying hypothetical price and quality scenarios (e.g. Englin 
and Cameron (1996) , Whitehead, Haab and Huang (2000)) .  This topic 
is addressed again in Chapter 10. 

6.2. 2 Travel Cost Modeling and Contingent Valuation 

In the examples that are estimated in the following sections, the impact 
of different specifications in the demand for recreation on parameter es­
timates will be evident. The specification of the contingent valuation 
models estimated in Chapter 2 received no such depth of analysis. This 
reflects the great sensitivity of welfare estimates from the travel cost 
models to the actual specification estimated compared with the welfare 
estimates from contingent valuation, which tend not to be highly sen­
sitive to specification. Here lies a truly significant difference between 
contingent valuation and behavioral models. For CV, given the data, 
the measures of WT P are not grossly sensitive to specification and es­
timation. But CV can be very sensitive to the collection of data, in 
particular, to the formulation of scenarios and the central dichotomous 
willingness to pay questions. And while different methods of gather­
ing travel cost data, including different formulations of questions, can 
lead to different estimates of WT P, the method is severely sensitive 
to specification and estimation decisions, given the data. The differing 
sensitivities of the travel cost model and CV approaches stem from the 
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essence of the models. In the application of discrete choice contingent 
valuation, bids are chosen independently of other exogenous variables, 
so that other regressors in a discrete choice CV model are likely to have 
very low correlation with the bid. Hence the coefficient on the bid will 
not be sensitive to the set of other covariates included in the model. On 
the other hand, in travel cost models the travel cost serves as a proxy 
for price, the basis for welfare measurement. And because travel costs 
among different sites tend to be highly correlated, welfare measures from 
different model specifications will be quite different because the travel 
cost coefficient will be different. This problem is exacerbated by the 
need to account for the value of time, which also tends to be highly 
correlated with travel cost, and as we shall see, not so easy to measure. 

This interpretation of the relative reliability of CV and travel cost 
methods of valuing resources contrasts sharply with the historic debate 
about revealed versus stated preference methods. All methods have their 
strengths and weaknesses, and it is the care and quality in execution of 
the particular method rather than the method itself, that determine the 
reliability of the welfare measures. This conclusion is borne out by the 
limited empirical evidence comparing welfare measures derived from re­
vealed and stated preference approaches. Studies, including Brookshire 
et al. (1982) and Carson, Flores et al. (1996) fail to show a systematic 
difference among the welfare measures from revealed and stated prefer­
ence models. 

All models of the demand for recreation are essentially models of the 
allocation of time, and as such, must meet the individual's time con­
straint and income constraint. Thus recreational demand modeling is 
an application of Becker's model of the allocation of time. Whether the 
time and income constraints can be collapsed determines the ease with 
which time can be accounted for properly in the demand for recreation. 
And while the construction below is carried out for demand functions, 
the same logical development will hold for random utility models too. 

6 .3  Construction of Demand Models 

We begin with the construction of a demand model derived from an 
individual's allocation of time and income. This model will yield a 
generic demand function for a single site. Suppose individual i chooses 
Xij , the number of trips to site j ,  for j = 1 ,  . . .  , n where n is the number 
of sites. The round-trip travel cost is Cij · The individual also purchases 
a composite commodity bundle Zi at a price normalized to equal 1 ,  and 
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can spend no more than income, Yi · The budget constraint is therefore 
n 
L XijCij + Zi � Yi · 
j=l 

Each trip takes tij units of time, where the units of time must be mea­
sured consistently with the rest of the time constraint but otherwise do 
not matter. Individuals may receive exogenous income, but income is 
also earned by working. Initially we assume that the hours of work, de­
noted h, can be chosen. When the individual works h hours per period 
of time, the time constraint can be written: 

n 
L Xijtij + hi = Ti 
j=l 

(6. 1 ) 

where T i s  the total time available. The amount of on-site time has 
been suppressed in this construction. If we assume that the amount 
of time spent on site is the same for all recreationists, then it does not 
matter whether tij measures the total time per trip or the on-site time, 
because the difference will be the travel time. Hence we can simply 
use the travel time. But if the on-site time and the value of time vary 
across individuals, then ignoring on-site time can have an impact on the 
parameter estimates. 

The time constraint in equation ( 6.1) is the starting point for a stan­
dard Becker household model of the allocation of time. Total spendable 
income is given by 

Yi = Y? + Wihi 
where w is the after-tax wage rate and y0 is fixed income. When the 
time constraint is solved for hours of work (h) and substituted into the 
income constraint, the budget constraint emerges: 

n 
LXij (Cij + Witij ) + Zi � Yi · 
j=l 

(6.2) 

The preference function for individual i is given by u( Xi I , . . .  X in , q1 , . . .  qn , zi ) . 
Each qj is the exogenous quality for the lh site. The quantity and qual­
ity of trips to the various recreational sites yield utility, but other aspects 
of the trip, such as travel time or inputs used to produce the trip do not 
provide utility. We represent the quality as one-dimensional here, but 
there can be several dimensions. For example, in the one dimensional 
case, q1 would be a measure of the desirable quality for a site. We as­
sume a weak complementary link between the x's and the q's. If Xij is 
zero, then the marginal utility of qj is zero, as outlined in Chapter 1 . 
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From equation (6.2) , one sees that the price of a trip for individual i 
to the jth site is given by 

The individual prices for the recreational sites are now composed of a 
time element and a travel cost element. Utility maximization with inte­
rior solutions for the quantities leads to the standard demand function 
outlined in Chapter 1 : 

Xij = Ji (Pi , q, y{ ) 
where Pi = (Pil , · · ·Pin) is the vector of prices for different recreation 
sites and q = ( q1 , . . .  qn) is the vector of qualities at the different sites. 
In this setting, we have assumed that each individual faces the same site 
quality. The appropriate income in this demand equation is full income: 
y{ = Y? + wiTi . This is the amount of income that could be earned if 
the person worked all of the available time. The demand for site j is 
determined by the difference in quality and price for site j versus the 
other sites. Note that for individual i ,  the difference between the price 
for sites j and k is Cij - Cik + Wi ( tij - tik ) .  If time were to include on-site 
time as well as travel time, say tij + T, where T is the on-site time at all 
sites, then the price difference would be unchanged. 

This is the simplest version of the travel model, where the travel time 
is converted to cost by the wage rate. While the model is straightfor­
ward in concept , the estimation results can be quite sensitive to the 
measurement of independent variables. With both the cost variables 
and the quality variables, the question of whether one uses subjective 
measures or objective measures is a critical one. Randall (1994) has 
noted that there is a potential discrepancy between observed travel cost 
and the actual unobservable subjective travel price. Randall argues that 
measurable travel costs are only ordinal indicators of the actual travel 
price and as such the travel cost method can only produce ordinal rank­
ings of welfare measures. The need to calculate prices for sites that the 
recreationists do not visit, as well as the sites visited frequently leads 
researchers to settle on objectively measured prices, because attempting 
to measure subjective prices to all unvisited sites, especially for random 
utility models with many sites, creates a severe interview burden. 

The model constructed with the time constraint in equation (6.1) as­
sumes that time is completely fungible, and that time not spent recreat­
ing can be spent working, and so converted to income at the wage rate. 
The demand for individual i for site 1, with the arguments more explicit 
is 
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Note that the travel costs and the time coefficients ( Cij and tij ) have 
individual subscripts as well as site subscripts. Individuals traveling the 
same distance may have the same cost, but the most general case is that 
individuals have different costs, because their travel costs vary (for ex­
ample, because they drive cars of different sizes) . Estimating this model 
is quite demanding, given the constructed correlation among the regres­
sors, and the need for measuring costs and qualities of the substitute 
sites. The gain from estimating the demand for several sites simultane­
ously is one of efficiency, but the consequence of a specification of a single 
site model that excludes the appropriate substitute prices and qualities 
is biased coefficients. Hence while the complete specification is rarely 
estimated, researchers should be careful to construct a specification that 
does not exclude critical variables, especially prices of substitute sites. 

6. 3. 1 The Role of Time 

Models of the demand for recreation are essentially models of the al­
location of time, and so it is not surprising that they are especially 
sensitive to assumptions about the value of time. In the basic model 
outlined above, we assume that all time is fungible-that work time and 
recreation time can be substituted without limit at the wage rate. This 
model is frequently estimated, and can be considered the base case. Ca­
sual empiricism suggests these assumptions are wrong. Many people 
work jobs with fixed hours, and so cannot substitute work for leisure. 
And the after-tax wage rate is in some cases an over-estimate of the op­
portunity cost of leisure time, because of expenses associated with work 
and perhaps the marginal disutility of work. Here we present two models 
that address these two assumptions. 

A more general model has the flexibility of allowing individuals to 
be employed for a fixed time period, or to vary their hours of work 
and leisure smoothly. A model developed by Bockstael, Strand and 
Hanemann has the model developed above as a special case. The essence 
of the Bockstael et al. model is that when individuals are at a corner 
solution in the labor market-that is they work for a fixed salary and 
cannot vary their hours-then the amount of time per trip becomes a 
separate argument of the demand function, rather than a component of 
the cost of the trip. We proceed with several models, assuming that the 
number of recreation sites is two. For n = 2, the base model for site 1 
becomes 

(6.4) 

In the corner solution case the demand function for site 1 for individual 
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i has the form 
(6.5) 

The corner solution model implies that recreational time is not fungible 
with work time, and cannot be converted into a monetary cost. So 
the demand function depends on separate arguments for travel cost and 
travel time for each site. Careful attention to the constraints shows 
that full income in the different models depends on the labor market 
circumstances. Full income has salary and fixed income but no labor 
component for the corner solution case: y{ = yp. In the case where 
time is fungible, full income has the labor component y{ = yp + wiTi . 
The alternative specification for those who are at an interior solution 
in the labor market is given by equation (6.3) . Hence we can write a 
general expression for the demand for site 1 as 

Xil = h ( Cil + Oitil Wi ,C2i + 8iti2Wi , ( 1 - 8i)til ' (1 - 8i)ti2 , q, y{) .  

The indicator variable Oi equals 0 for individuals who are at a corner so­
lution in the labor market , and 1 for those who are at an interior solution. 
The question of whether an individual is at a corner or interior solution 
in the labor market is typically handled through survey questions. For 
example, a respondent might be asked whether he can work additional 
hours for additional pay. This information, when combined with some 
knowledge of occupation can lead to a classification of the respondents 
according to whether they are in or out of the labor market. This type 
of demand model can be estimated by defining the appropriate variables 
with the indicator function. 

This type of model comes from the labor supply literature, and while 
it may be a good specification for dealing with labor supply, where the 
marginal value of time is endogenous, it has its drawbacks for recreation 
demand. It is not always so clear that a particular type of job is a fixed 
salary job or flexible wage job. For example, some administrative jobs 
may have fixed salaries but working longer hours and doing a better job 
are a time-honored means of getting salary increases, so that extra time 
spent working has a monetary value. Further some spouses who work 
in the home may appear not to have a direct monetary cost. But they 
may substitute time with a spouse who works at a flexible job, and hence 
there is a monetary opportunity cost for the spouse not in the formal 
labor market. In a sense, money can usually compensate for time, and if 
the amount of time entailed in the particular resource allocation problem 
is small relative to the consumer's total time and money assets, then it 
is reasonable to assume that the rate of compensation of money for time 
is constant. 
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A simpler but more ad hoc model was proposed by McConnell and 
Strand. This model ignores the potential for corner solutions in the 
labor market. Instead it assumes that the opportunity cost of time is 
a constant proportion of the wage rate. This idea is motivated by the 
intuition that there may be some disutility from work, as well as em­
pirical evidence from travel literature that the value of time is typically 
less than the wage rate. 2 It makes additional sense when one recognizes 
that income or wages are frequently measured as before tax values. The 
model proposed works effectively only for situations in which the de­
mand for a site does not depend on the price of access to other sites. It 
assumes that the opportunity cost of time is some proportion, denoted 
k, of the monetary return to time. We would write the demand for the 
site (site 1 ) in a narrowly specified model such as 

Consider a deterministic linear model, where /3 is the parameter vector 
to be estimated: 

(We drop q because it does not vary across individuals visiting the same 
site.) This model is not well specified, because the prices for substitute 
sites are missing. If k is unknown, but to be estimated, we can rewrite 
this equation as 

where (3* = /31 k, so that with an estimate of (3* one can recover an 
estimate of k, and then calculate the price properly in welfare analysis. 
This model is useful in a pinch, but rather ad hoc. Smith, Desvousges 
and McGivney have shown that the model does not always give good 
estimates of k, which we would assume to lie between 0 and 1 . 
A more practical approach, but with some intuitive appeal, is to fix 

the parameter k at some plausible value, such as 0.4 or 0.5 . It is certainly 
reasonable to argue that the opportunity cost of time is less than the 
wage rate. There are several reasons. Tax rates are positive. Individuals 
incur expenses for work, so that the wage is gross. With fixed and 

2 Evidence in support of the idea that the opportunity cost of time is less than 
the wage rate can be found in Calfee and Winston, who use a stated preferences 
approach to arrive at an estimate of the value of time in the range of 14 to 25% of 
the wage rate. Other estimates are nearer the 50% range. 
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exogenously determined k, we would estimate 

Xil = fl (cil + kwitil , Ci2 + kwiti2 ,y{) . 

The advantage of this over the model that estimates k is that it includes 
substitute costs. And rather than estimate k directly, one could estimate 
the model for different values of k and then pick the k that maximizes 
the likelihood function. In Chapter 7 we encounter an example in which 
k is fixed. 

The importance of careful thinking about the value of time lies in its 
impact on welfare measures, not for its own sake. For many trips, the 
time costs are more important than the out of pocket travel costs, and 
overestimating the opportunity cost of time leads to overestimates of the 
welfare measures. 

The arguments we have made carry over to the random utility model, 
the subject of Chapter 8. We illustrate briefly here. Suppose that the 
individual has the time constraints as given in equation (6. 1) but now 
only one of the sites is chosen. Hence when one of the x�1s is chosen, 
the others will be zero. The indirect utility function for site j will be 
v(y{ -Pij , q1 ) .  Site j will be chosen when the utility to j is greater than 
the utility to other sites. When the indirect utility function is linear: 

v(y{ - Pij , qj ) = >.(y{ - Pij ) + f3qj 

as it typically is, then the choice of site is determined by the difference 
in arguments of the indirect utility function for individual i: 

where ).. is the marginal utility of income and (3 the marginal utility of 
quality. When time and income constraints collapse, the same kind of 
development as in the demand function holds. 

6. 3. 2 Basic Assumptions of the Travel Cost Model 

The basic model as constructed looks like a standard prices-as-parameters 
demand model. It can be estimated as the equations are laid out. To be 
confident about welfare calculations, the goal of travel cost models, the 
circumstances of recreational choice should approximate the conditions 
assumed in the model. The following conditions ought to hold to allow 
the calculated surpluses to stand for welfare measures: 

1 .  'ITavel and time cost is a proxy for the price of a recreational trip. 
This assumption would be violated if a travel cost item provided 
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utility for its own sake, such as transport cost on a ferry as part 
of a trip or the chartering of an especially nice charter boat. 

2. Travel time is neutral, providing no utility or disutility. This as­
sumption will be violated when a site is chosen over other sites 
because traveling to the site provides utility. Of course, traveling 
always provides some utility or disutility, so one needs to be aware 
of gross violations of the assumption of neutrality. This issue can 
be handled empirically by careful model specification. 

3. The decision unit is trips of equal length at the site for each house­
hold. Substantial variation of trip length across site or household 
calls for a reconsideration of the model. For example, one would 
not mix one day and two day trips to a site in the same demand 
function without further model development . Further, when house­
holds choose the amount of time on site-such as how many days 
to stay at the beach-the model needs reconstruction. 3 

4. The trips are single purpose trips, taken to the recreation site 
for the purpose of recreation. Multiple purpose trips are difficult 
to manage, especially when the trips are for multiple days. For 
example, when a family takes a week's vacation, and someone visits 
a beach several days during the vacation, the travel cost obviously 
ought to be computed for the local travel only. More difficult 
issues arise when the trip is a day trip but the individual takes a 
round-about route in order to visit several different destinations. 
Parsons and Wilson provide a systematic way of thinking about 
multiple purpose trips. 

5. The quantity consumed in the basic equation-that is, the xiris 
trips to the same site for all consumers. This assumption rules 
out models that pool trips from different sites. For example, a 
model estimated when the Xij are trips to a variety of different 
freshwater recreational sites within a geographical area, such as a 
state, in effect compounds coefficients from different site demands. 
It might look like a demand curve empirically. But this model 
cannot be used to predict demand or calculate welfare measures 
at any recreation site unless the demand for each site is identical. 
For example, if the site of interest is a particular beach on the 
Chesapeake Bay in Maryland, a travel cost study of total trips to 

3 McConnell ( 1 992) treats the problem of variation in on-site time, including the 
choice of on-site time. 



 

150 Valuing Environmental and Natural Resources 

all Chesapeake beaches will serve little to no purpose in measuring 
the welfare at the site of interest. However, if the site of interest 
is the Chesapeake Bay as a whole, then an aggregate study would 
have some value. In this case it is essential to consider issues of 
aggregation and substitution. 

When these assumptions hold reasonably well, one can make the case 
for the use of the travel cost model. When any of the assumptions fails, 
further work on the model is warranted. It is not necessary to drop the 
travel cost model, because occasionally developing it from first principles 
will save the model. 

6.4 Conclusion 

The travel cost model is a model for the demand for the services of 
recreational sites. It can be used to value the access to sites, or to value 
the characteristics of sites. There are two broad approaches to estimat­
ing the demand for recreation sites. One approach assumes a utility 
function for site services, and derives the demands. This can be done 
for the seasonal or annual demands, with the generalized corner solu­
tion model, or for a particular choice occasion, with the random utility 
model. The alternative approach is to estimate the demand functions for 
sites directly, rather than specifying a utility function. In the following 
two chapters we explore the estimation of individual demand functions 
and random utility models, and illustrate each using suitable datasets. 
a utility function. 



 

7 

Single Site Demand 
Estimation 

7. 1 Introduction 

Models of the demand for recreation currently range from the most com­
plete and complex corner solution models of Phaneuf, Herriges and Kling 
to much simpler single site models. Multiple site models that are es­
timated as demand systems, rather than site choice models, are gener­
alizations of single site models. This chapter treats the estimation of 
single site models. Chapter 8 deals with site choice models. 

Estimation of single site demand models begins with an assessment 
of the data generation process which is governed by the assumed sto-­
chastic structure of the demand functions and the sampling procedure. 
The stochastic structure of demand depends on whether the dependent 
variable, an individual's trips to a site, is assumed to be distributed 
continuously or as a count variable. The two most prevalent sampling 
schemes are a random sample of the population of individuals and an 
on-site sample of intercepted users. An example of a random sample 
of the population would be a random phone survey. In this case the 
population of interest is the total population. A typical on-site survey 
is an intercept survey, where a sample of recreational users at a site is 
chosen at random. Other types of surveys are also used that induce 
sample selection effects. For example, if one were to sample from a list 
of people with hunting licences, the sample could be considered a repre­
sentative sample of the population of hunters, but not a representative 
sample of the population of all people, because hunters have selected 
themselves onto the list. Whether there is a selection effect depends on 
the kind of sampling that takes place and the nature of the inferences 
as well as the use of the analysis. For example, if the inferences relate 
only to hunters, then the population is the list of licensees, and selection 
onto the list is not an issue. The goal of estimation is to learn about 
the behavior of individuals from the relevant population of users. In the 
hunting example, when we sample from the list of license holders, we 
gather information about the relevant population of users, which allows 
us to make inferences about the demand function for the population of 
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hunters. 
The nature of sampling is an essential component of the construction 

of the likelihood function. In the following analysis, we first investigate 
sampling from lists of population and then on-site sampling. 

7. 2 Estimation of Censored Models 

When sampling from a list or sample frame that includes users as well 
as non-users of the recreational site, one frequently finds censored data. 
The observations are censored at zero for people who take no trips. In 
a statistical sense, the censoring means that the complete distribution 
of the dependent variable may not be observable and the unobservable 
portion of the distribution is massed at zero. The sampling list can be 
large and implicit, as is the case for random digit phone calls, or the list 
can be explicit and small. An example of this would be estimating a 
model of angling behavior at a particular site from a sample of anglers 
drawn from a list of licensed anglers. In either case, the relevant popu­
lation is contained in the list, but only some of the households sampled 
from the list will have visited the recreational site. The goal in this 
kind of analysis is to estimate demand functions and the willingness to 
pay for individuals drawn from the population of interest, conditional 
on arguments in the demand functions. 

Suppose that the potential demand curve for the site for individual i 
in the population is given by 

(7. 1 ) 

where Zi i s  the row vector of M demand arguments that were derived in 
Chapter 6: 

Zi (Pij , j = 1, . . , n; qj, j = 1 ,  . . .  , n, y{ ) 
Pij Cij + Witij 

and Ei is a random term that may represent measurement error or speci­
fication error. The potential demand function is representative of under­
lying behavior of the population. It can take on any real value: positive 
or negative, integer or fractional. 

In the models for sampling from lists it is sometimes necessary to allow 
non-participants-those who are part of the list but have no plans to visit 
the site-to have different motivations and behavior. For example, when 
sampling from a list of the population with the goal of estimating the 
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demand for a particular beach, surveyors might interview respondents 
who have no interest in the beach for reasons such as health and age. 
These people would not be responsive to prices and hence ought not 
to be in the sample for demand function estimation. These models are 
dealt with later in this chapter. 

The setup for the sampling from a list model is as follows. We begin 
with the unobservable demand described in equation (7. 1 ) . The data is 
censored at zero, meaning that we have the dependent variable for all 
observations, but for some individuals, only zero is recorded. Observable 
demand (Xi) takes the form 

Xi f(zi) + Si for xi > 0 
0 for xi ::::; 0. (7.2) 

This is a model of behavior of the units of the population. The idea is 
to estimate parameters for the function f(zi) and of the distribution of 
Si . 

Let h(si ) be the probability density function for Si · The density for 
trips for individuals who take positive trips, which we denote 

h* (xi lxi > 0) , 

is constructed as the conditional probability of observing Xi given a 
positive number of trips are observed: 

The denominator normalizes the density function for positive trips to 
account for the truncation from not observing zero trips. The probability 
of observing an individual with zero trips is just Pr(f(zi) + Si ::::; 0) . We 
construct the ith contribution to the likelihood function as the product 
of the probability that trips are zero and the probability that trips are 
positive times the density of positive trips 

( ( ) ) 1-I [ ( ( ) ) h(xi - f(zi) ) 
] I. Pr f Zi + Si ::::; 0 ' · Pr f Zi + Si > 0 · Pr(f(zi) + Si > O) 

' 

where Ii = 1 when trips are positive and zero when trips are zero. 
Consequently the general likelihood for this type of problem is 

T IJ Pr(f(zi) + Si ::::; 0)1-I' · h(xi - f(zi) )I' . (7.3) 
i=l 

To proceed to the estimation stage, we need to make assumptions about 
the functional form of demand f(zi ) and the distribution of Si , h(si ) · 
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7.2. 1 Estimating Tobit Models of Recreational Demand 

The Tobit model is estimated when the specification of the individual 
demand function is given by 

where (3 is an M x 1 column vector of parameters to be estimated 
and Ei is distributed normally with mean zero, and constant variance: 
E:i '""" N(O, cr2) . We use the general form of the likelihood function equa­
tion (7.3) to construct the Tobit likelihood function. Letting <P( �) = 
r;!!a ¢(t)dt, (¢(t) being the density function for an N(O, 1) variate) we 
write 

since 

Pr(f(zi) + Ei < 0) = Pr(zif3 + Ei :::; 0) 
Pr(ci :::; -z;(3) 

c z ·,l3 1 - Pr( _: :::; -2- ) 
(T (T 

1 - <[> ( z�) . 

The third step follows from the second for distributions that are sym­
metric about zero (see Appendix B). The second term in the equation 
(7.4) , f;¢ ( x,�zd? ) , follows from the transformation from c: to an N(O, 1 ) 
variate. That is, suppose that e has density ¢(8) and e = (x- f(z) )/cr = 
g(x) . Then the density for x is ¢(g(x) )g' (x) ,  where g' (x) = 1/cr. 

Olsen has shown that the Tobit likelihood function as defined in equa­
tion (7.4) is globally concave in the transformed parameters ,13/cr and f; ,  
implying one can get maximum likelihood parameter estimates using 
standard maximization routines. 

The log-likelihood function for the Tobit model is 

ln(L(,I3, crix, z)) 
�T (z ,13) 
L...,i=l (1 - Ii) ln[1 - <[> ---;:- ] 

[ (x · - z ·(3 ) ] +Ii{ln ¢ 2 (J 2 - ln(cr) } . 
(7.5) 

The difference between OLS estimation on users only and the Tobit 
model is seen by noting that the Tobit likelihood functions has an extra 
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term: 2:::[=1 (1 - Ii ) ln[1 - <I>(zi/.3/0")] . Maddala shows the maximum 
likelihood vector of parameter estimates can be written 

where zl is the data matrix for the Xi > 0 observations, Zo is the data 
matrix for x = 0, and f3ozs is the vector of parameter estimates obtained 
by running OLS on the Xi > 0 dataset. The vector 'Yo depends on 
unknown parameters {3 but this expression shows that the ordinary least 
squares estimates fail to capture the full effect of the regressors on the 
probability of participating. 

The Tobit model can be estimated with standard iterative methods 
for maximum likelihood methods (see Appendix A). The estimation 
process usually converges quickly, unless there are many regressors and 
much collinearity. 

7.2. 2 Marginal Effects in the Tobit 

To determine the partial effects of changes in covariates, it is useful to 
write the prediction of the Tobit. The predicted value of the demand 
will also be needed in calculating welfare effects. For the censored de­
mand model, the expectation of the quantity of trips demanded for an 
individual randomly drawn from the population is 

E(x) = E(x[x* ::::; 0) · Pr(x* ::::; 0) + E(x [x* > 0) · Pr(x* > 0) . (7.6) 
� =0 

The first term on the right hand side is zero by definition. In the case 
of the Tobit when the demand has a linear form and an additive normal 
error x* = zf3+c: , the expectation of trips, conditional on the trips being 
positive E(x [x* > 0) , has the form (see Appendix B) 

E(x [x* > 0) = E(zf3 + c: [c: > -zf3) 
¢( -z/3/0") zf3 + O" <I>(z/3/0") 

(7.7) 

where <[> is the cumulative density function for the standard normal dis­
tribution and ¢ is the probability density function for the standard 
normal. The term ¢( -zf3/0")/<I>(zf3/0") is the inverse Mills ratio. Sub­
stituting equation (7. 7) into equation (7.6) , the expected number of trips 
for an individual randomly drawn from the population when the demand 
model is Tobit, is given by 

zf3 -zf3 E (x) = 1>(-)z/3 + 0"¢( - ) . 
(} (} 

(7.8) 
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The derivative of the latent demand with respect to covariate j is just 
f3j · When we take the derivative of equation (7.8) with respect to the 
lh covariate, we get1 

The covariate effect is just the probability of participation times the slope 
of the latent demand. The derivative with respect to the conditional 
demand is more complicated: 

8E(xlx* > 0) = /3 · [1 _ zf3 ¢( z: ) - ( ¢
( z: ) )2] .  OZj J u �!>(�) �!>(�) 

Elasticities are computed by multiplying by Zj/ E (x) or Zj/ E (x lx* > 0) . 
Example 17 Estimating a Tobit Model 

To illustrate the workings of a Tobit model, we draw on a dataset used 
in the study of PCB contamination in New Bedford, Massachusetts.2 
This dataset meets the criterion of being drawn from a sampling list, 
because it results from a random phone survey of households in the 
greater New Bedford area. Hence the data and the model pertain to 
the behavior of representative households. The use of this dataset will 
illustrate the estimation of demand models and the calculation of welfare 
measures from the estimated models. The dataset includes household 
trips to all the saltwater beaches in the New Bedford area for the year 
1986. The illustration relates to the demand for trips to the beach at 
Fort Phoenix, one of approximately a dozen beaches in the area. 

The model specification to be used throughout the application is 

The variables are the costs, including time cost for the beach at Fort 
Phoenix, the analogous costs for two substitutes, and the variable PFPi , 
which takes a value of one if the household has a parking pass at Fort 
Phoenix for the year. Table 7.1 gives the descriptive statistics. The 

1 See Maddala, page 160 and Appendix B for this derivative and the derivative of 
the conditional demand. This simplified form of the derivative of the unconditional 
demand stems from the convenient fact that for a standard normal 84>(a.ja)j8a. = 
a-1q;(a.ja) and 8¢(a.ja)j8a. = -a.a-2¢(a.ja). 

2 More details on the study and the data can be found in the report by McConnell 
( 1986) done with the support of Industrial Economics, Inc. 
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model is estimated using maximum likelihood methods. Many software 
packages , including SAS and LIMDEP, have routines for estimating To­
bit models. This model was estimated in LIMDEP 7.0. The parameter 
estimates are given in Table 7.2. 

TABLE 7. 1 .  Means for New Bedford Beach Trips 

Variable 

X 
Cpp 

Description 

Trips to Fort Phoenix beach in 1986 
Round-trip travel costs ($0.084 per mile) 
plus monetary value of travel time* 
to Fort Phoenix beach 
Round-trip travel costs ($0.084 per mile) 
plus monetary value of travel time 
to nearest beach 
Round-trip travel costs ($0.084 per mile) 
plus monetary value of travel time to 
next nearest beach 
1 if household has pass to Fort Phoenix; 
0 otherwise 

Mean 
n = 499 

3 . 84 

$3 . 19  

$2.92 

$3.92 

0 .026 

*The value of time is calculated by finding the wage of the 

occupational group of the household head in 1985. With the tax rates 
for Massachusetts and the US, the after-tax wage was calculated. 

See McConnell ( 1986) for details. 

The parameter estimates are significantly different from zero with the 
expected signs. The demand curve slopes downward, because the own 
price effect is negative. The two substitute prices work in the direction 
one might expect intuitively, with higher costs of substitutes increasing 
the trip demand. The purchase of a pass also increases the demand for 
trips. The test for joint significance of all the variables derives from the 
statistic -2 ln( L R/ Lu) which is distributed as a Chi-squared variable 
with the number of parameters associated with covariates as the degrees 
of freedom. LR is the likelihood function value when all parameters 
associated with covariates ({31 , . .  , {34)  equal zero. Lu is the unrestricted 
maximized likelihood function value. The tabled value of the x299 ( 4) = 
13.3, so the hypothesis that all of the coefficients are zero can be rejected. 
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TABLE 7 .2 .  Tobit Model Estimation 

Parameter Estimate* 
Standard 
Error 

f3o -7.50 3 .54 

(31 -5.48 1 . 25 

(32 2 .03 0.95 

(33 2 .03 1 . 13 

(34 16 .49 6 .21  
a 20 .80 1 . 25 

Log-likelihood -905 .72 
-2 ln(LR/ Lu ) 30.85 

*All coefficients are different from zero at the 95% 
level of confidence. 

7.3 Welfare Measurement in the Single Site 
Model 

Before dealing with calculation issues, we address the measurement of 
welfare. Two types of welfare calculations are of interest: the value of 
access to a recreational site and the value of a change in the quality of a 
site. In the single site model, the value of access to the site is typically 
the only plausible welfare calculation that can be extracted from a single 
study. To understand the difficulty of measuring the welfare effects of a 
quality change from a single site model, consider the nature of the data 
gathering enterprise. Recreational data are typically gathered from a 
survey taken over a period such as a season or a year, or shorter. A 
deterministic model might look as follows: 

where Cij is the travel cost to site j ,  Wi is the wage rate, tj is the time 
to site j ,  qj is the quality at site j ,  and y{ is a measure of full income. 
This is just the basic travel cost model described in Chapter 6. In the 
typical data gathering exercise, the different residential locations give 
rise to the cross-section variation in the c's and t's, which allows the 
price effects to be calculated. But within a survey period, there is not 
likely to be sufficient variation in quality to allow the estimation of pa­
rameters on these variables. In an econometric sense, this is a simple 
matter of collinearity between the quality variables and a constant term. 
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Researchers have tried to overcome this handicap in various ways, which 
often cause more problems than they solve. One is to use quality vari­
ables such as fish catch that appear to vary across the sample, but do 
so because of random outcomes across individuals, and so could not be 
reasonably anticipated under normal circumstances. A second way is to 
use a subjective assessment of quality, where each individual may have 
different expectations about the quality he or she expects to encounter. 
There are several difficulties with subjective measures. They are likely 
to introduce individual-specific error, and they are not subject to con­
trol through public policy. All of these approaches rely on unobserved 
random or systematic variation across individuals. So the most prudent 
strategy for single site models is to accept the shortcomings of the data, 
and limit the welfare effects to the value of access to the site. 

In Chapter 1 we proposed to calculate the value of access to the site 
as the willingness to pay rather than do without the site. This is calcu­
lated as the area under the utility-constant demand curve for the site. 
Given the typically low income effects and budget shares of recreational 
demand models, we can reasonably proceed with the area under the 
income-constant demand curve as a good estimate of the willingness to 
pay of household i for access to the site: 

c· 
WT P( access) = 1 f (p, c2 + wit2 , y{ )dp Cf 

(7.9) 

where Cf = c1 + witl and C* is the relevant choke price, that is, the 
price at which quantity demanded goes to zero. 

As with contingent valuation, the empirical process involves two steps: 
the estimation of parameters of the demand function and the calculation 
of the welfare measure, given the parameters. In practice, a number of 
issues arise in the calculation of equation (7.9) . The discussion in Chap­
ter 4 of the different sources of randomness in a contingent valuation 
setting applies also to the travel cost method. In this context, there are 
two sources of uncertainty: observed trips and estimated parameters. 
Further, as in the case of contingent valuation, one must decide how to 
handle the variation in willingness to pay across the sample. 

To understand how uncertainty from demand emerges in the calcula­
tion of willingness to pay, recall from Chapter 1 that any willingness to 
pay for access can be written as a function of the quantity demanded 
or the prices and other exogenous variables. That is, one can write 
equation (7.9) as 

xo 
WTP(access) = 1 g(x)dx - x0g(x0) = w(x0 J,6) (7. 10) 
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where g(x) is the inverse demand function: p = g(x), and x0 is the equi­
librium quantity. Expression (7. 10) will be random when the quantity 
x0 is random, as it will be when the demand for trips is estimated. Given 
the other variables in the demand function, we can calculate the area 
under the demand curve and above the price line as the total value less 
the total cost, or as in equation (7.9) . Hence expression (7. 10) can be 
written as a function of x and parameters only, expressed as w(xj,B) . 
The function w(xJ,B) calculates willingness to pay for access, given the 
parameter estimates. And in practice, this approach is commonly used 
for single site models. But even in the calculation of welfare according 
to equation (7. 10) , there remains the choice of the observed quantity, x, 
or the predicted quantity. We use the expression 

to denote the expectation of observation i's trips with respect to the 
random error of trips. Whether one uses the expectation of trips or 
observed trips depends on the interpretation of the error. As Bockstael 
and Strand show, if the error is measurement error , then the trips that 
are observed are not the true trips taken by the individual. However, if 
we regard the error as specification error, then in fact we have measured 
the true quantity of trips, and we are justified in using reported trips. 
When the error is considered measurement error, it would make sense 
to take the expectation of trips. 

In deciding how to proceed, the ultimate goal of welfare analysis must 
be kept in mind. A plausible goal is to expand the sample mean will­
ingness to pay to the population. In such a case, it would be reasonable 
to calculate the welfare for each individual in the sample and then use 
the sample mean. For a sample size of T, this would be 

T 

mean WTP(access) = L w(xi l/3)/T (7. 1 1 ) 
i=l 

where the quantity Xi may be either actual or predicted. 
Now suppose that two conditions are met: w(xil/3) is linear in Xi , i.e. , 

w(xi l/3) = Xiw(,B) and the predictions (xi) fit the mean: L,'{'=1 xdT = 
x = L,'{'=1 xi/T. Then the sample mean willingness to pay for access 
will be the same, regardless of whether one uses the observed individ­
ual quantities demanded or the predicted quantities demanded. That 
is mean WTP(access Jobserved trips) = mean WTP(access j expected 
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trips) because 

T T T 
L: w(xi i/3)/T = L xiw(/3)/T = L: w(xi i/3)/T = xw(/3) . 
i=1 i=1 i=1 
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In the applications, we calculate the sample mean willingness to pay, 
because for most applications, the purpose of demand estimation is ben­
efit calculation that requires aggregate willingness to pay. On occasion, 
we demonstrate the difference between mean WT P( access) when calcu­
lated with the actual and observed trips. In cases where the willingness 
to pay is not linear in the quantity demanded, the difference between 
WT P calculated with actual and observed trips can be substantial. 

7.3. 1 Welfare Measurement in the Tobit 

The Tobit model is almost always estimated linear in parameters and 
covariates, and this linear form leads to a measure of willingness to pay 
that is increasing and quadratic in trips. This causes some difficulty in 
the calculation stage. 

For simplicity, write the latent demand function as xt = ;J;t + ;31 cp, 
where C0 is the current own-site travel cost and JJdi is either a constant 
or a linear in parameters function of covariate other than own-site travel 
cost, plus the error term. Let 0 = JJ6 + ;31 C* determine the choke price 
that sets quantity equal to zero such that C* = -;Jt / ;31 . The individ­
ual subscript has been dropped for convenience. Integrating under the 
demand curve from the current price C0 to the choke price C* yields 
consumer surplus, which equals willingness to pay in this case: 

The following simplification holds for any C: 

2;36 JJ1 C + JJiC2 
2;31 

(JJt + JJ1C)
2 

_ (JJ6)
2 

2;31 2;31 
. 

(7. 12) 

By definition, JJ6 + ;31 C* = 0, and fJd + ;31 C0 = x+ . Upon evaluation 
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and rearranging, the equation (7. 12) becomes 

WTP = - (x+ )2
. 2/31 

Using this expression for WT P, we can now investigate the appropriate 
measure of demand to use in the calculation of welfare. 

7. 3. 2 Welfare with Measurement Error 

If the error term is assumed to be measurement error in the dependent 
variable then Bockstael and Strand show that the expected value of 
trips is a more appropriate demand measure to use in the calculation of 
welfare. For the Tobit, this is given by equation (7.8) . Note however , 
that this ignores the uncertainty in parameters, because the expectation 
has been taken only with respect to the stochastic term in the demand 
function. A consistent estimate of E ( x) ,  denoted E ( x) , is found by 
substituting consistent estimates of {3. Tobit maximum likelihood pa­
rameter estimates serve this purpose. 

With measurement error , a consistent estimate of the value of access 
from the Tobit model is 

7. 3. 3 Welfare with Specification Error 

If, on the other hand, the error term is assumed to represent specification 
error , then Bockstael and Strand show that the appropriate measure of 
trip demand is individual observed demand Xi . A consistent estimate 
of the value of site access with specification error is then: 

� x2 WTP = -�. 
2/31 

The only difference between WrP and WT P is the measure of trips 
used in the calculation of the estimate of consumer surplus. Parameter 
estimates are not affected the assumption about the source of the error. 
If observed trips are used to calculate welfar�n any individual taking 
zero trips will have zero consumer surplus: WTP (x = 0) = 0 . However , 
if the error is due to measurement , and expected trips are used to cal---
culate WT P, then all sample individuals will have a positive estimated 
consumer surplus. 
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Example 18 Welfare Measurement in a Tobit 

Recall the previous example from New Bedford, Massachusetts. The 
basic model specification is: 

The variables are given in Table B.l .  The two approaches to calculating 
welfare can be compared using the prices and quantities for a given 
observation. Willingness to pay for access is given by 

where the x can be the observed or expected trips and /31 is the own-site 
coefficient on travel cost. For the expected trips, we use the prices and 
the estimated parameters to calculate expected trips as given in equation 
(7.8) . Otherwise just the observed trip value is used. 

The most common goal is to expand the willingness to pay to the 
population. If the sample is drawn from the sampling list in a represen­
tative way, then a reasonable approach is to calculate the sample mean, 
using either the expected trips approach or the observed trips. That is, 
the WT P is calculated for each observation in the sample, and then the 
sample mean is calculated. In this particular case, we find that when 
we calculate sample mean willingness to pay for the two methods, we 
get for the expected trips 

T � 2 

L 
E (xi) I (2 · 5.48) = $2.16 . T t=l 

and for the observed trips 

� Xi2 I (2 . 5.48) = $10.77. 6 T t=l 

The difference between the two estimates is quite large. It is a conse­
quence of the convex nature of the consumer surplus function for the 
linear demand curve. In the use of the Tobit, it is perhaps more reason­
able to extrapolate to the sample using the first expression above, with 
expected trips, because the second expression may simply be squaring er­
rors in measurement in trips. But, this is a subjective decision depending 
on the survey design and confidence in data collection methods. Kling 
(1992) provides more evidence on the impact of the error measurement. 
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7.4 Count Models of Recreational Demand 

The Tobit model is appealing because it allows for a large mass of 
observations at zero. But the Tobit has embedded some unsatisfac­
tory assumptions. For example, the derivation of the Tobit is based 
on the inherent unobservability of an underlying continuous unbounded 
demand function. This implies that if demand were fully observable, 
negative trips would be possible. Count data models are intuitively 
appealing for recreational demand because they deal with non-negative 
integer valued dependent variables. For recreation, the number of trips 
is a non-negative integer. The integer characteristic is less important 
than the non-negative range of the variable. The count model specifies 
the quantity demanded, trips, as a random non-negative integer, with 
a mean that is dependent on exogenous regressors. For the Poisson 
or variants thereof, the functional form for expected demand is typi­
cally exponential, though it is easy to estimate a power function. This 
becomes another advantage of the count model, because it is hard to 
estimate anything besides a linear model in a Tobit framework. On the 
other hand, linear expected demands are more difficult to estimate in the 
count models. In fact, there is little room for flexibility in the functional 
form of recreational demand models. The class of permissible functions 
is typically determined by the distribution assumed. We are concerned 
with single site models in this section. Several researchers have esti­
mated multiple site count models. See, for example, Shonkwiler and 
von Haefen. 

The basic count model is written 

Pr(xi = n) = f(n, zi/3) ,  n = 0, 1 , 2 . . .  
In the case of sampling from lists, the demand variable x can take on 
values from 0 up to a large number. Unless the upper truncation is 
significant , there is no need to recognize the obviously finite nature of 
trips with upper truncation or censoring. We will begin with the most 
common count model, the Poisson. 

1.4 . 1  The Poisson Model 

The Poisson probability density function is given by 

e-.>., An Pr(xi = n) = --1-' , n = 0, 1 , 2, . . . n. (7. 13) 

The parameter Ai is both the mean and the variance of the distribution. 
This particular result has often been found to be violated in recreational 
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data, and will lead to a more general model below. Because it is neces­
sary that .Xi > 0, it is common to specify it as an exponential function: 

(7. 14) 

Given this specification, we can then get the likelihood function in terms 
of the parameters (3. 

The Poisson likelihood function is straightforward. We observe the 
number of trips each individual takes, and then use equation (7. 13) to 
write the probability of observing that number of trips. The sample 
likelihood function becomes 

T 

L(f3lz , x) = IT exp(- exp(zi/3); exp((zif3)xi )  
i=l x, . 

and the log-likelihood function is 
T 

ln(L(f3!z , x)) = Li=l [-ez;,i3 + Zi/3Xi - ln(xi ! )] . 

This log-likelihood function is globally concave in the parameters. Unless 
there is severe collinearity, maximum likelihood estimation converges 
quickly. 

Marginal Effects in the Poisson 
Because the conditional mean of a Poisson is >., expected trips is given 
by 

(7. 15) 
This gives us a way of understanding the parameters that are estimated 
from the Poisson. The derivative of expected trips with respect to an 
independent variable, say Zij ,  is given by 

The slope of the expected demand function varies with the expected 
number of trips, going from steep at high levels of expected trips to flat 
at low levels. The half-elasticity 

8E(xi lzif3) 1 
= f3 .  

OZij E(xi lzi/3) 1 

gives an alternate interpretation for the parameter estimates. The para­
meter estimates represent the percentage change in the dependent vari­
able for a unit change in the covariate. This half-elasticity is constant 
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for all values of the associated covariates. The full elasticity can be 
calculated by multiplying the slope by Zij/ exp(zi/3) , giving Zijf3j · The 
elasticity is a function of the covariate. 

Example 19 Estimating a Poisson Model 

We illustrate the Poisson using the same data and model specification 
used for estimating the Tobit, described in Table 7. 1 .  The conditional 
expected trip function is given by 

The parameters are estimated in LIMDEP 7.0, and are given in Table 
7.3. All of the coefficients have the expected sign (negative own-price 

TABLE 7.3. Poisson Model Estimation 

Parameter Estimate* 
Standard 
Error 

f3o 1 . 64 0.07 

(31 -0.47 0.02 

(32 0 .12  0.02 

(33 0 . 17  0.02 

(34 1 .07 0.08 

Log-likelihood -3160.60 

-2 ln(LR/ Lu) 545.41 

*All estimates different from zero at 99% level of confidence. 

effects, and positive cross-price effects) and are different from zero at a 
high level of confidence. The price coefficient implies that a one dollar 
increase in the price of a trip to Fort Phoenix results in a 4 7% decrease 
in the expected number of trips. This is large, but not surprising in 
this case given the ease in substitution among local beaches. The like­
lihood ratio statistic -2 ln(LR/ Lu) under the null hypothesis that all 
parameters associated with covariates are zero, is large compared to the 
tabled x�99 ( 4) of 13.3. The model appears reasonable from a behavioral 
perspective and statistically acceptable. 

We�fare Measurement in the Poisson 
The Poisson model can be used to calculate the willingness to pay for 
access by taking the area under the expected demand function. The 
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observed dependent variable is assumed to be a random draw from a 
Poisson distribution with mean Ai · That is, each individual has a dis­
tribution of trips from which a single draw is observed. In the Poisson 
model, all derivations are based on the expected demand function 

The value of access equals the area under the expected demand curve. 
For the exponential demand function, the choke price ( C*) is infinite. 

To see this, consider the simple demand specification: x = ef3a+J31 c where 
C is the travel cost, and (30 can be a constant or a function covariates 
other than own-price. For any finite C, x = ef3o+J31 c > 0. Defining C0 
as the current travel cost , consumer surplus for access is 

WTP(access) 
= J eJ3o+J31 CdC 

co 
[ ef3o+J31 c ] c ..... = 

(31 C=Co 
X (7.16) /31 

when /31 < 0. There is a significant difference between the WT P( access) 
for the Poisson and for the Tobit, based on the linear versus exponential 
demand function form. For the linear model, the WT P is a convex 
function of trips, while in the exponential, WT P is a linear function 
of trips. In the Poisson expression for sample mean WTP, one can 
use the mean of observed trips or mean of the expected trips. because 
the Poisson model has the property that it is mean fitting. A simple 
demonstration of this is as follows. 

The system of first-order conditions to the log-likelihood maximization 
problem are :L (xi - ..\i) Zij = 0, Vj. For the first element , Zil = 1 .  

• 
This implies that :L (xi - Ai ) = 0 and L xi/T = :L Ai/T. Because 

i i i 
WT P is linear in the number of trips, and the Poisson is mean fitting, 
sample mean consumer surplus based on expected or observed trips will 
be identical. This is not the case for the Tobit demand models. 

Example 20 We�fare in the Poisson 

To compare the welfare calculations from Poisson and Tobit models, 
we calculate sample mean consumer surplus. Using the sample mean 
results in a welfare calculation for the Poisson of WTP = 3 .83/0 .47 = 
$8. 15 . This would be a reasonable estimate to extrapolate to the pop­
ulation of users. 
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Example 21 The Poisson Model with a Power Function 

In the Poisson model, one wants to insure that expected demand is 
positive, so that the typical choice for functional form is the exponential 
function of equation (7. 14) . By taking the logarithms of the strictly 
positive arguments of demand, we can construct a power function. Let 
the expected demand be 

where z;k = log(zik )  if Zik > 0 for all k and z;k = Zik if Zik S 0 for 
any k. For example, we could replace the price by the log of the price, 
but leave a dummy variable in its zero-one form. Then the expected 
demand would be 

M+ M 

Ai = IT zfk' exp( L Zijf3j ) 
k=l j=M++l 

where the first M+ variables are transformed and the last M - M+ 

not transformed. We estimate this model for the dataset of Table 7. 1 ,  
transforming all the prices but leaving the dummy variable in its natural 
form. The parameter estimates are in Table 7.4. 

TABLE 7.4. Poisson Model with Power Function 

E(xi jzi ) = C��iC�/Ctt exp ({30+{34PFPi) 
Parameter 

Log-likelihood 

-2 ln(LR/Lu ) 

Standard 
Estimate* 

Error 

1 .54 
-0.96 

0.36 
0.26 
1 . 14  

-3181 .9  
502 . 7  

0.08 
0.06 
0 .04 
0.08 
0.08 

*All estimates different from zero at 

99% level of confidence. 

The coefficients are all of the expected sign and significant. Welfare is 
calculated with expected demand. Write the expected demand function 
as E (x) = kCf3, where k is a constant that incorporates the non-own 



 

Single Site Demand Estimation 169 

price arguments and C is the own travel cost . Then the welfare measure 
becomes: 

WT P( access) 
00 J kcf3, dc 

co 
kCf3, +1 
1 + (31 

if  1 + (31 < 0. 

If 1 + (31 2': 0, the integral3 does not converge and consumer surplus 
is not defined. Looking at the coefficients in Table 7.4, we see that 
1 + (31 = 0 .04; in effect, demand is inelastic, and consumer surplus 
is not defined. Given the functional form, it must be inelastic over the 
whole range of price, an implausible model. We will return to this model 
in the following section. 

1.4 .2  The Negative Binomial Model 

While the Poisson has some advantages over the Tobit in calculating 
willingness to pay, it is subject to the potential misspecification of as­
suming that the conditional mean and variance are equal: E (xi l zi,B) = 
V (xi l zi,B) = Ai . For recreational trip data, the variance is often greater 
than the mean, implying overdispersion in the data. One consequence 
of overdispersion is that the standard errors estimated in the Poisson 
model are underestimated, leading too frequently to the rejection of null 
hypotheses of no association. Greene (1997) reviews several types of 
tests for overdispersion. Here we look at a specific model, the negative 
binomial. 

Many versions of the negative binomial model exist. Cameron and 
Trivedi provide a detailed exposition of these models. We focus on a 
common version of the negative binomial model: a Poisson model with 
a gamma distributed error term in the mean. Suppose we write the log 
of the conditional mean from the Poisson model as the sum of zi,B and 
an unobserved error: 

where ei represents unobserved individual differences (or unobserved 
heterogeneity) .  The model provides for systematic and random variation 

[ 131+1 ]  c�oo 
3 The integral is evaluated as k�1 +1 C=Co .  If {31 +1 > 0, the term is unbounded 

from above as C increases. If {31 + 1 = 0, the term is undefined. 
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in the mean across individuals. Now we substitute the right hand side 
into the probability statement for a Poisson random variable to get the 
distribution of trips, conditional on ei : 

P ( · IB · ) _ exp(- exp(zi/3 + Bi) ) exp(zi/3 + Bi)n r x, , - 1 • Xi . (7. 17) 

If exp( Bi ) = Vi has a normalized gamma distribution, with E (vi) = 1 ,  
then the density for Vi will be given bl h(v) = r(:) exp(-av)va-1 . 
The unconditional probability function for the number of trips, Xi, is 
found by integrating out the error v. The resulting probability function 
is the negative binomial5 

r (x + 1 ) ( 1 ) i ( .A. ) x, 
P ( ·) _ i a ____Q__ __ ,_· _ r x, - 1 1 1 r (xi + 1) r (a) a + .xi a + .xi 

where Ai = exp(zi,B) . The mean of the negative binomial distribution 
is E (xi) = Ai = exp(zi/3) . However, now the variance of the dependent 
variable is V (xi ) = Ai (1 + a.A.i) . The parameter a can be interpreted 
as the overdispersion parameter. If a = 0, no overdispersion exists and 
the negative binomial distribution collapses to the Poisson distribution 
in the limit. To see this, Cameron and Trivedi show that 

For details, see Appendix B. If a > 0 then overdispersion exists and 
the Poisson model is rejected in favor of the negative binomial. In the 
rare case that a < 0, the data are underdispersed. In this case, the 
Poisson model should still be rejected in favor of the negative binomial. 
Therefore, a test of a = 0 is both a test for overdispersion and a test of 
the negative binomial model against the null hypothesis of a Poisson. 

Example 22 Estimating a Negative Binomial Model 

To illustrate the negative binomial, we return to the exponential de­
mand function estimated above, with the same specification. Parame­
ter estimates are reported in Table 7.5. The upshot of the estimation 

4 The more general expression for the gamma distribution is h(v) v "' - 1  exp( _,, / ,6) Th . f . 
{3 

. 
/{3 r(a),6"' . e expectatiOn o v IS a . By settmg a = 1 , the distribu-

tion is normalized so that the expectation of the variate is one. 
5 See Cameron and Trivedi or Greene ( 1 997) for more details. 
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TABLE 7.5.  Negative Binomial Model Estimation 

Parameter Estimate* 
Standard 
Error 

f3o 1 .62 0 .42 

/31 -0.53 0.23 
(32 0 .18  0 .17 
(33 0 . 18  0 .14 
(34 0.86 1.38 
0: 7.49 0.69 

Log-likelihood -889.3 -2 ln(LR/Lu ) 4542 .6 

*Only (30 , /31 and o: are different from zero at the 

95% level of confidence. 
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from the negative binomial is less confidence in the individual parameter 
estimates, although their magnitude does not change greatly. In par­
ticular, the null hypotheses that the substitute prices and the presence 
of a pass have no impact on the conditional mean can no longer be re­
jected at any plausible level of significance. The own price coefficient is 
still negative and significant, but the ratio of the parameter estimate to 
the standard error falls from 23.5 to 2.3. Nevertheless, if we maintain 
the hypothesis of the negative binomial, and test the hypothesis that 
/31 = /32 = /33 = /34 = 0, the quantity -2 ln(LR/ Lu ) equals 17.8, which 
exceeds the tabled x299 ( 4) of 13.3. Hence the hypothesis that these four 
parameters are simultaneously zero can be rejected. Note that the quan­
tity -2 ln(LR/ Lu ) reported in Table 7.5 refers to the hypothesis that 
/31 = /32 = /33 = /34 = o: = 0, not just that the covariate effects are zero, 
and so the high level of significance implied by the Chi-squared statistic 
relates not just to the coefficients on the covariates, but includes the 
coefficient of dispersion, which is highly significant. 

This result concerning the test of the Poisson versus the negative 
binomial is common in models of recreational demand. Recreational 
demand data are frequently too dispersed to be modeled with a Poisson. 

Concerning welfare calculations, we note that the negative binomial 
still has the property that the sample mean of the predicted value of the 
trips equals the sample mean of the observed value. Thus the sample 
mean willingness to pay for access changes only to the extent that the 
coefficient on the own-travel cost variable changes. Using the new travel 
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cost estimate and the sample mean trips yields the welfare calculation 
WTP(access ix) = 3 .83/0.53 = $7.22, compared to the estimate of $8. 15  
for the Poisson. Although the more restrictive Poisson model i s  rejected 
statistically, the models differ only slightly in their welfare estimates. 

Given the individually insignificant estimates of /32 and (33 in Table 
7.5 , we test the hypothesis that they are jointly equal to zero. The 
restriction that (32 = (33 = 0 is tested by comparing the restricted with 
the unrestricted log likelihood functions. Estimating the same model, 
leaving out C1 and C2 gives a likelihood value of -891.83 (Table 7.6) 
compared with a value of -889.3 when the variables are included (Table 
7.5) .  The quantity -2 ln(LR/ Lu) = 5 .06. This is an ambiguous test 
value. The tabled x�90(2) and x295 (2) are 4.61 and 5 .99. We cannot reject 
the hypothesis that these coefficients are both zero at the 95% level, but 
we can reject at the 90% level. Suppose that we require the significance 
level to be 95%. Then we would use the model that excludes C1 and C2 . 
This model is shown in Table 7.6 resulting in an estimate of (31 equal 
to -0.26. Using the mean value of trips of 3.83, we obtain an estimate 

TABLE 7.6. Restricted Negative Binomial 

Parameter Estimate 
Standard 
Error 

f3o *2.05 0.36 
/31 *-0.26 0 .09 
(34 1 .02 1 . 24 
a *7.65 0.71 

Log-likelihood -891 . 8  

*Different from zero at  the 95% level of  confidence. 

of mean consumer surplus: WTP(access ix, restricted specification) = 
3 .83/0.26 = $14.73. This higher estimate of WTP illustrates a common 
result from omitting the prices of other recreation sites, which most often 
work as substitutes. However, the sensible specification is to include the 
price of substitutes. 

Example 23 The Negative Binomial with a Power Function Demand 

Just as we estimated a power function in the Poisson, we can do 
the same with the negative binomial. Using the same specification as 
in Table 7.5, but with the negative binomial distribution rather than 
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Poisson, we reestimate the model. The parameters are given in Table 
7.7. 

TABLE 7.7. Negative Binomial with Power Function 

E(xi lz; ) = c��icfzcgt exp (f3o+f34PFPi) 
Parameter 

Log-likelihood 
-2 ln(LR/Lu ) 

Estimate 

* 1 .55 
*-1 .37 

0.55 
0 .44 
0.87 

*7.53 

Standard 
Error 

-889.9 
4584.0 

0.08 
0.61 
0 .45 
0 .46 
1 .47 
0 .70 

*Different from zero at 95% level of confidence. 

Here again we see that the Poisson is deceptive in giving standard 
errors that are too low. In this version of the count model, only the own 
price, constant and dispersion parameter are significantly different from 
zero. Calculating the consumer surplus with the mean value of trips 
of 3.83, we find WTP(access lx , power function) = -3.83/(1 + (31 ) = 
3 .83/0.37 = $10.35. This is considerably higher than the corresponding 
consumer surplus for the exponential function. Here unfortunately we 
run into the problem of non-nested hypothesis testing. The exponen­
tial and the power function models are not nested, so simple likelihood 
methods are not available. Intuition sometimes helps, but there is no 
strong argument for one model or the other in this case. For further 
discussion of non-nested hypothesis testing see Godfrey (1988). 

There are several lessons here. An uncritical acceptance of Poisson 
results often leads to excessive confidence in parameter estimates. Fur­
ther, when the substitute prices are omitted from the specification, the 
estimated demand function will tend to be more inelastic and imply 
higher consumer surplus for access. But one must also be wary of the 
effects of collinearity on the precision of estimates in travel cost models. 
Costs of substitute sites are often highly correlated. This correlation 
reduces the precision of estimates, making rejection of the null hypoth­
esis of no association more difficult. For example, in the case of Fort 
Phoenix, in a diagnostic regression of the own travel cost on the substi-
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tutes costs, the two substitute travel costs explain 62% of the variance of 
the own travel cost. 6 This high collinearity explains the low significance 
of the substitute sites. One may argue for their inclusion, because if they 
truly belong in the demand function, their exclusion will bias upwards 
the estimate of consumer surplus. 

7.5 Models for On-Site Sampling 

We now turn to on-site sampling. This is a frequently adopted sampling 
method because it ensures that surveys will be conducted with users. 
In many circumstances on-site sampling is cheaper than a survey of the 
population, especially when only a small proportion of the population 
engages in the site activity. If the activity were swimming at a small 
beach, then it would take a very large phone survey to discover enough 
users to make precise inferences about users' preferences. The statistical 
analysis for on-site sampling is carefully analyzed in Shaw. Englin and 
Shonkwiler apply the analysis. 

7. 5. 1 Truncation 

With an on-site sample, we observe only those individuals who take 
trips-that is only the Xi > 0. The demands for the individuals observed 
will have a truncated error, or truncated demands, because only those 
individuals with sufficiently small errors will be observed. 

Consider a general form of a demand function. For simplicity, suppose 
that g(xi) is the probability density function for trips. The probability 
that an individual will have positive trips is simply Pr[xi > 0] . The 
conditional density function for individuals with positive trips, denoted 
g (xi l xi > 0) , becomes 

(7.18) 

Normalizing by the probability of a positive observation ensures that the 
density function of the truncated model integrates to one. 

6 This comes from a regression of CFP on a constant , C1 , C2 and PFP,  with an 
R2 of 0.62. 
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7. 5. 2 Endogenous Stratification 

In studies of recreational demand, we model the behavior of individuals, 
and expand the sample results to the population of individuals. Hence 
we want the sample proportion of individuals of particular types to equal 
the population proportion. But when the sample is drawn from an on­
site survey, individuals who have a high use level are more likely to be 
drawn. We develop the models that correct for this. The basic analysis 
is done in Shaw. 

Consider a population that uses a recreational site. We divide the pop­
ulation into strata based on the number of trips taken, such that stratum 
i contains individuals who take i trips. Proportional random sampling 
occurs when the sampling proportions for a given stratum equal the 
population proportion. Stratification occurs when the proportion of 
sampled individuals systematically varies from the population propor­
tion. Endogenous stratification occurs when the systematic variation 
in the sampling proportion is dependent on the characteristics of the 
individuals in the sample. 

Consider for simplicity a homogeneous population where Nx repre­
sents the number in the population taking x trips: x E {0, 1 ,  2, . . .  } . Let 
N be the population of users. The population proportion of individuals 
taking x trips is Nx/ N. The on-site sample proportion of individuals 
taking x trips, h (x) ,will be 

h (x) = �Nx (7.19) 
2:: tNt 
t=l 

where the numerator is the total trips taken by individuals taking x trips, 
and the denominator is the total trips taken by the full population. For 
example, suppose there are two types of users in the population: 25 take 
1 trip (x = 1 ) and 75 take 2 trips (x = 2) . Hence N1 = 25 and N2 = 75. 
In aggregate there will be 175 trips, 25 by the 25 who take one trip and 
150 by those who take two trips. On average, the proportion of type-1 
individuals on-site is 

1 
7 

Likewise, the proportion of type-2 individuals on-site is 

6 -
7 

If we could pool all the trips, and draw at random, then h (2) would be 
the probability of drawing an individual with x = 2. In fact, sampling 
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takes place on a finite number of days during a recreational year, and 
we assume that the sampling proportions on those days reflect the pro­
portions that one would achieve if all the recreational trips were pooled. 

To see the problem with endogenous stratification, consider the ex­
pected number of trips from the population and from the sample. For 
the population, the expected number of trips from a randomly drawn 
individual will be CXl 

x=O 
where Px is the population proportion of individuals taking x trips. 
Continuing the example above, the expected number of trips from an 
individual in the population is 

1 ·  pl + 2 . p2 
25 75 
100 + 2 100 = 1 .75 " 

For the on-site sample, expected trips is 
CXl 

Es (x) = l:: xh (x) 

which for the above example is 

Es (x) 

x=O 

1 . h (1) + 2 . h (2) 
1 6 
7 + 27 = 1 .86. 

Because the on-site interviewing process is more likely to intercept avid 
recreators, the sample average number of trips will be higher than the 
population mean. 

For the correct likelihood function, we need to account for the over­
sampling of avid recreators. Equation (7. 19) gives the relationship be­
tween the sample observed proportion of individuals taking each quan­
tity of trips h ( x) and the population number of individuals taking these 
trips. Dividing the numerator and denominator by the total number of 
individuals in the population (N) , equation (7.19) becomes 

h (x) X (Nx/N) (7.20) CXl 
"'£ t (Nt/N) t=l 
xPx (7.21) CXl 

"'£ tPx t=l 
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Because the population proportions (Px) of trips are unknown, the num­
ber of trips taken by an individual in the population can be thought of 
as a discrete random variable with probability function: 

Pr (trips = x) = g (x) x E {0, 1, 2, 3, . . . } 

Px can now be represented as 

Px = g (x) . 

Substituting into (7.20) gives the sample probability of observing x trips 
as a function of the population probability 

h ( ') =  jg (j) 
J I:�l tg (t)

. (7.22) 

Noting that for a non-negative integer valued random variable (x) 
(X) (X) 
Ltg (t) = L tg (t) = E (x) , 
t=l x=O 

we can write the probability of observing j trips from an individual in 
an on-site sample as: 

h ( .) = jg (j) J Ep (x) ' (7.23) 

Though not apparent , equation (7.23) accounts for the truncation present 
in an on-site sample. If we consider only the population of users, then 
the population probability distribution g ( x) is truncated at zero. The 
probability of observing x by an individual drawn at random from the 
population is 

Pr (trips = xltrips > 0) g (x lx > 0) x E {1 , 2 , 3 , . . . } 
g (x) 

Pr (x > O) x E { 1 , 2 , 3 , . . .  } .  

Substituting into equation (7.22) , the probability of observing x trips in 
an endogenously stratified truncated sample becomes 

h (j l x > 0) = 
·-2iiL 

J Pr(x>O) 
"'(X) ___i!_fi)__ Ld=l t Pr(x>O) 
jg (j) - h ( .) "'(X) ( ) - J . L.-t=l tg t 

(7.24) 

(7.25) 
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The normalization constant from the truncation cancels due to the en­
dogenous stratification. Given the endogenous nature of sampling, in­
dividual observations must be weighted by the inverse of expected value 
of trips. 

The final consideration is incorporating individual effects into the 
model. This turns out to be a simple extension of equation (7.23) .  Let 
g (xizi , B) be the individual-specific distribution of trips for an individ­
ual drawn from the population. The individual-specific covariates are 
represented by the vector Zi and {3 is a vector of population parameters. 
The probability of observing a given individual drawn from an on-site 
sample taking j trips is 

(7.26) 

The Poisson Model 
->.-i X'J;i 

For the Poisson model, g (xi) = � with Ep (xi ) = Ai · Substituting X-L · 
into equation (7.26) yields the truncated and endogenously stratified 
Poisson probability 

-Ai ).x,;-l  
h (xi and interview! xi > 0) = e( i 

) ' Xi - 1 . (7.27) 

Equation (7.27) has a particularly simple form since it can be rewritten 
as 

-Ai ).W'i 
h (xi and interview! xi > 0) = 

e 
1 
i 

Wi . 
where Wi = Xi - 1 . The right hand side is simply the probability function 
for a Poisson distribution for the random variable wi. The endogenous 
stratified and truncated Poisson can be estimated by running a standard 
Poisson regression of Xi - 1 on the independent variables. 

In the case of the normal, equation (7.26) becomes 

There is little doubt that the likelihood function constructed from this 
density would be a great deal harder to maximize than the Poisson 
version. By simple comparison to the truncated normal model (which is 
a difficult model to estimate) , the on-site normal model is burdensome. 
The on-site Poisson model, however, is readily estimable. 
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Example 24 Estimating an On-Site Count Model 

The on-site count models are illustrated on a dataset involving beach 
recreation at Lake Erie. 7 This demand function relates to visits to 
Maumee Bay State Park beach in Ohio. The data were gathered in 
an on-site survey. We estimate a simple version of the model, where 
the demand function arguments are income, the own travel cost, and 
the travel cost to a relevant substitute. The substitute is chosen de­
pending on whether the individual travels from the east or the west .  
Table 7 .8 gives the descriptive statistics. The specification is based on 

TABLE 7 .8 .  Means of Variables for Lake Erie Beach Trips 

Variable Description 
Mean 
n = 223 

X Trips to Maumee Bay State Park 5.35 
beach in 1996 

CMB Round-trip travel costs ($0.33 per mile) $27.62 
plus monetary value of 
travel time* to Maumee Bay 

c1 Round-trip travel costs ($0 .33 per mile) $37.88 
plus monetary value of travel time to 
nearest substitute beach 

INC Household income in $ 10 ,000 4 .74 

*The value of travel time is calculated as 30% of the estimated 
wage rate, which is calculated as household income/2000 . 

Sohngen et al. It is interesting to compare the difference between these 
covariates and the covariates for the New Bedford example. In the New 
Bedford case, the travel cost is calculated at $0.084 per mile, compared 
with $0.33 here, reflecting an increase in the nominal and real price of 
transportation over 15 years. The details of composing the independent 
variables can have very large impacts on the welfare measures and are 
often worth more attention than more sophisticated econometric issues. 

The demand function is estimated for the endogenously stratified Pois­
son model (equation 7.27) . For comparison, the results of a truncated 
Poisson model are also reported. The truncated Poisson ignores the 
problem of endogenous stratification. The probability density function 

7 We are grateful to Brent Sohngen, who gave us access to this dataset. The data 
are described in greater detail in Solmgen, Lichtkoppler and Bielen. 
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for the truncated Poisson, based on equation (7. 18) , is given by 

The results of the endogenously stratified Poisson and the truncated 
Poisson are both given in Table 7.9. The estimated coefficients imply 

TABLE 7.9. Truncated and On-site Poisson Models 

E(xi lzi ) = exp (f3Q+f31 CMBi+f32Cli+f33I NCi) 
Truncated On-site 

Poisson Poisson 

Parameter 
Estimate* Estimate* 

(S .E. )  (S .E.)  

f3o 2 .020 1 . 881 
(0.064) (0.069) 

(31 -0.022 -0.026 
(0.002) (0.003) 

(32 0 .032 0 .037 
(0.001) (0.001) 

(33 -0.003 -0 .003 
(0 .012) (0.013) 

Log-likelihood -680.3 -733.2 
-2 ln(LR/Lu) 159 . 1  189.5 

*All coefficients except (33 are different 
from zero at the 95% level of confidence. 

downward sloping demand, and substitute beaches. We calculate the 
willingness to pay for access to the beach as the sample mean of the 
consumer surplus using the general expression in (7. 16) for the calcu­
lation. For the model that accounts for endogenous stratification, the 
estimate of sample mean WT P is 

223 
L WTP(E (x) l access) /223 = 5.35/0.026 = $205 .77. 
i=l 

The truncated model provides a sample mean WT P estimate of $243 .18 
(= 5.35/0.022) . In this case, failure to account for the on-site nature of 
the sample results in an 18% overestimate of sample mean WT P. 
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The Negative Binomial Model 
The next natural step is to estimate a negative binomial version of the 
endogenously stratified count model to test for overdispersion in the 
process. For the negative binomial model 

where E (xi ) = Ai . Substituting into equation (7.26) yields the endoge­
nously stratified truncated negative binomial distribution 

h (xiand interviewh> 0) 
xir (xi +  i ) (__L) i; (-1-) x' ,\x,-l 

f (Xi + 1) f ( i) i + Ai i + Ai ' . 

(7.28) 

(7.29) 

This expression does not collapse to any recognizable density function, 
as the Poisson does. Hence the likelihood function implied by equation 
(7.28) must be programmed into a maximum likelihood routine. 

7.6 Zonal Travel Cost Models 

In its original form, the travel model was a zonal model. The approach 
consisted of forming concentric circles around the destination, so that 
a given zone, the area between two concentric circles, implied a given 
distance and hence a given travel cost. Differences in visits by distance 
zone, when corrected by population, would be caused by differences in 
travel costs. In applications of the zonal travel cost model, distance zones 
are typically replaced by political jurisdictions, such as counties. The 
zonal travel cost approach has been supplanted by models of individual 
behavior for several reasons. Zonal models require aggregate visitation 
data, often not available. But a more difficult problem is that zonal 
models assume that behavior of individuals within a zone is identical. 
Although zonal models aggregate exactly only when individual demands 
are identical, the approach is occasionally useful. 

Suppose that there are J zones that are political jurisdictions or dis­
tance zones. The demand by the ith individual in the lh zone is given 
by Xij . In principle, one wants to estimate a model of the demand for Xij 
but only aggregate data are available. Hence we use x1 as the demand 
by a representative individual and model aggregate demand in zone j as 
given by X1 = N1x1 where N1 is the number of potential users, often 
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measured simply by population. The model ought to be constructed 
so that several aspects of recreation demand, the integer nature of trips 
and the presence of zeros, can be accommodated. As demonstrated by 
Hellerstein, the Poisson works well in this case. Suppose that individual 
demand Xj is Poisson. The Poisson has the property that if two ran­
dom variables a , b are distributed Poisson with parameters .Xi , i = a , b 
then a + b is distributed Poisson with parameter Aa +.Ab . So when Xj 
is distributed Poisson with parameter Aj , NjXj is distributed Poisson 
with parameter Nj Aj . Hence one models the probability function for 
aggregate trips in zone j as 

The likelihood function for the problem is then the product of the like­
lihood functions for each zone. Let Aj = exp(zj/3) be the expected 
demand for the representative individual in zone j where Zj is the vec­
tor of individual characteristics such as the travel and time costs, costs 
of substitutes, and the other variables that enter the individual demand 
function. Then the log-likelihood function is J 

ln L(f31z, X) =  L Nj exp(zj/3) + Xj (ln(Nj )  + Zj/3) - ln(Xj ! ) .  
j=l 

This is not quite the standard log-likelihood function one uses in pro­
grams such as LIMDEP. However, it can be converted to such a program 
by introducing a new covariate ln( Nj ) and constraining the parameter 
on the new term to equal one. The alternative is to write the likelihood 
function from scratch. In either case, one needs to observe aggregate 
visits Xj , the number of users Nj and the covariates Zj from each zone. 
The likelihood maximization process recovers the parameters of the indi­
vidual demand for trips. These parameters can then be used to calculate 
willingness to pay measures by zone. In this case, expected individual 
demand in zone j is exp(zj/3) and the willingness to pay for access per 
individual is given by - exp(zj/3)/ f3c where f3c is the own travel cost 
coefficient in the individual demand curve. Aggregation is achieved by 
multiplying by Nj and summing across distance zones. As in the count 
model for individual demands, it is possible to estimate the negative 
binomial. 

There are other approaches to modeling in the zonal travel cost model. 
For example, Cooper and Loomis estimate a logarithmic per capita de­
mand function. The difficulty with this model is that there may be 
zones with zero trips. The advantage of the Poisson model is that it 
aggregates well and handles zero trips. 
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7.7 Differentiating between Participation and the 
Demand Level 

In most recreational behavior , some people choose not to participate at 
a recreational site, regardless of the price and other traditional demand 
characteristics. For example, poor health might make households un­
likely to visit beaches. Or perhaps the household has a swimming pool 
at home. In the case of the Tobit ,  the Poisson and the negative binomial, 
the researcher assumes that the deterministic and random factors that 
influence participation are the same as those that influence the number 
of trips to a site. Researchers have developed a variety of approaches 
to modeling the participation differently from the quantity choice. We 
examine several models in this section. These models tend to be harder 
to estimate and less satisfactory in terms of their parameters than the 
models that do not try to capture the more complex behavior. When 
both response functions use some of the same covariates, serious identi­
fication problems arise. The simplest model for separating the decisions 
is the Cragg model, which estimates the two behavioral functions sep­
arately. We also illustrate the selection model, and discuss the zero 
inflated Poisson. The estimated models illustrate the difficulties of the 
more complex specifications. 

7. 1. 1 The Cragg Model 

The Cragg model (Cragg, 1971) is a two stage model that amounts to 
one hurdle. In the first stage, one estimates a dichotomous choice model 
that determines whether the individual participates in the activity at 
the site. In the second stage, a truncated model is estimated, based 
on the assumption that when the individual decides to participate, the 
quantity of trips will be positive. The original model was estimated with 
a probit and a truncated normal, but the idea works for any dichotomous 
choice model and any truncated model, because the two models are 
estimated independently. The truncated Poisson is preferable, because 
the truncated normal is frequently difficult to estimate , being highly 
non-linear and failing to converge in many cases. 

In the recreation demand context, the Cragg model is composed of two 
decisions. The first decision is whether to participate and the second 
concerns the level of participation: 

Pr(xi > 0) = F(zil ) 
Xi f(zi2 , Ei2 ) for Xi > 0 
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where F(zil )  is a cumulative density function and Ei2 is a random term 
for the frequency decision. The Cragg model has been estimated in a 
variety of settings. Bockstael, Strand et al. (1990) find that when the 
researcher deems it necessary to separate the two decisions, this model 
seems to work the best. 

Example 25 A Cragg Model Estimated 

The New Bedford beach data from Table 7.1 provide the basis for a 
simple version of this pair of equations. The model is estimated under 
the assumption that Xi is distributed as a truncated Poisson and the 
probability that Xi is greater than zero is a probit. For the probit, let 

and for the Poisson, assume that 

The probability of visiting the site contains prices as well as the two so­
cioeconomic variables, age of the respondent and household income. The 
demand for the number of days, given that the individual participates, 
depends on prices and the ownership of a pass. For income to influence 
the number of days, there would have to be a very strong income effect, 
not likely when travel costs are low. 

Parameter estimates for this model are given in Table 7.10. The 
travel cost coefficients are significant, even for the negative binomial 
in the simple model. The coefficients of the probit model relate the 
negative influence of age and income on participation. Higher incomes 
give households access to more distant beaches and other recreational 
activities. Age reduces the probability that an individual visits any of 
the beaches. The own price (travel cost) reduces the participation and 
visits to the site. The substitute travel costs work less systematically 
when the model is divided into the level decision and the participation 
decision. 

The welfare calculations are based on the individuals who take pos­
itive trips. The sample mean trips, given that trips are positive, is 
L E (xi lxi > 0)/T(x;>O) = 11 .4, so that the mean willingness to pay 
x;>O 
for the user group is 1 1 .4/0 . 11 = $103 (where the denominator is the 
travel cost coefficient from Table 7. 10) . Given that 34% of the sample 
are users, this implies a mean willingness to pay for access of $35 for the 
sample as a whole, more than ten times the value from a single Poisson 
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TABLE 7 .10 .  The Cragg Model 

Pr (xi> 0) = <I>[(/3o1 +!3n CFPi+/321 c2i+/331INCi+/341AGEi)/O'] 
Ai= exp (/302+/312CF Pi+/322C1i+;J32PF Pi) 

Parameter 

;301 
!3n 
;321 
;331 
;341 

!3o2 
;312 
;322 
;332 

Log-likelihood 

-2 ln(LR/ Lu ) 

Estimate 

Pro bit 
*0.73 

*-0.21 

0.08 
*-0.08 
*-0.01 

Truncated Poisson 
*2.60 

*-0 . 1 1  
-0.01 
*0 .44 

Pro bit Poisson 

-298.5 -1312 .7 
37.2 73.9 

Standard 
Error 

0.28 
0.06 
0.06 
0.02 
0.00 

0.06 
0.02 
0.02 
0.08 

*Different from zero at the 95% level of confidence. 

model: 

sample EWTP 
i=1 
Pr (x = 0) · E(WT Pix = 0) 

+ Pr(x > 0) · E(WTPix  > 0) 
0.66 . 0 + 0 .34 . $103 = $35. 

185 

This is so much higher than the value estimated in a Poisson that it is 
worth considering the source of the problem. Increases in the travel cost 
to Fort Phoenix have two effects: a reduction in trips, given that trips are 
positive and a reduction in participation. Hence the elasticity of demand 
for trips, given that they are positive, is quite low, making the surplus 
estimate high. Much of the demand responsiveness uncovered earlier 
pertains to the participation decision. This is one of the difficulties of 
incorrectly accepting the Cragg model. By ignoring the responsiveness 
that stems from participation decisions, the Cragg model underestimates 
demand responsiveness, attenuating the coefficient, and hence increasing 
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consumer surplus. Yet another drawback to this specification with the 
probit and Poisson is that the model is not nested such as a truncated 
and probit would be. 

7. 7. 2 Sample Selection Models for Recreation Demand 

Sample selection issues arise when there are systematic effects from the 
exclusion of some of the population from the sampling list. To get a feel 
for selection in the recreation demand context, consider a recreation site 
in a geographical area with similar sites. If some part of the population 
does not visit the geographical area, they won't visit the site. In making 
inferences about the population from the users of the site, it is necessary 
to explain the process by which people choose to visit the geographical 
area. On the other hand, inferences about the users of the site can 
sometimes be made correctly without considering the selection process. 
So the researcher needs to be aware of the population to which the 

results are to be expanded. The first applications of selection models in 
recreation demand are found in Smith (1988) . 

There are several ways of treating selection effects econometrically. 
We explain a joint probit-Poisson model that fits the recreational context 
reasonably well. Suppose that x2 is observed when x1 = 1 . Then 
consider the following process. Let x1 be a dichotomous variable equal 
to one when the individual is selected. Then we can model a variable 
that indicates the individual visits the site as 

Xi1 1 ,  Zi1f31 + Ci1 > 0 
Xi1 0, Zi1f31 + Ci1 :::: 0. 

This dichotomous variable can be modeled as a probit with covariates 
z1 when the random component is normal with mean zero. The system 
then becomes 

Pr(xi1 
Pr(xi2 

Ai 

1) = iJ?(zi1/3da1) 
n) = exp( -Ai)A? /n! 
exp(zi2/32 + Ei2 ) ,  Ei2 � N(O, a�) . 

The error in the expected mean is assumed to be normal, a measure 
of individual heterogeneity. When c:1 and c2 are correlated, the sample 
selection model emerges. When the errors are uncorrelated, no selection 
effect results, and the selection effect and trip quantity are independent. 
The likelihood function for this model is constructed in Greene (1997) , 
from models developed in Terza. 
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Example 26 The Probit-Poisson Selection Model 

The estimation of this model is facilitated by the presence of a routine 
in LIMDEP version 7.0. The application is to the New Bedford beach 
data. Consider selection as follows. Households who don't go to the 
beach at all won't be observed going to the particular beach being ana­
lyzed, Fort Phoenix. So probit model analyzes whether the household 
visits any of the beaches in the New Bedford area, and Poisson models 
the number of times the household visits Fort Phoeni."X, given that any 
beaches are visited. To illustrate the workings of the model, the spec­
ifications are parsimonious. For the deterministic part of the Poisson 
Ai = exp(,802 + ,812CFPi + ,822C1i) where the C's are the travel costs 
used throughout. For the probit model we estimate 

where Res is one when the household resides in the greater New Bedford 
area, Inc is household income in $10000 units, and Age is the age of the 
respondent. Initially a model that included travel costs was estimated, 
but the travel cost coefficients were not significant. The results are in 
Table 7. 1 1 . In addition to the coefficients on the covariates, there are 
two parameters: the variance of the individual error and the correlation 
between c1 and c2 . All the parameters are estimated in a maximum 
likelihood routine in LIMDEP. 

The parameters of the Poisson, the conditional demand function, are 
significantly different from zero. Of all the Poisson-like models esti­
mated, this version shows the greatest response to travel costs. The 
idea of separating the sample into households who use beaches and 
households who don't gets some support. The probit coefficients are 
reasonable and significant. However, the correlation coefficient between 
the two errors is not significant so that one can argue that the two deci­
sions are independent, and that there is no selection bias from analyzing 
the selected group independently. As a consequence, one can simply 
discard the respondents who do not go to beaches in the area. Leaving 
them out of the estimation stage does not affect the parameter estimates 
because the correlation is zero, and they deserve to be left out of the 
welfare calculations because if they don't visit the site they have zero 
willingness to pay for access to the site. 

Inflating the Poisson 
The last model to be examined is the zero inflated Poisson. This proce­
dure, suggested by Greene (1997) , Mullahey, and Haab and McConnell 
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TABLE 7 . 1 1 .  A Selection Model 

Pr(visit beaches) = <1>[(,801 + ,811Resi + ,821Inci + ,831Agei ) /a] 
Ai= exp (,802+,812CF Pi+,822C1i+,832PF Pi) 

Parameter Estimate 

,801 -0.14 

,811 b l .37 

,821 0.08 

,831 a -O.Ql 

,802 a0.85 

,812 a -0.45 

,822 ao.08 

p 0 .40 

Log-likelihood 

-2 ln(LR/Lu) 

Pr(Visit) 

Poisson 

Standard 
Error 

0 .72 
0 .75 
0 .49 

0 .01 

0 . 15  
0.03 
0.03 

Correlation 

-831.0 
2686.4 

0.45 

aDifferent from zero at the 95% level of confidence. 
bDifferent from zero at the 90% level of confidence. 

(1996) , is essentially a mixture model. Indeed Mullahey argues that 
models with overdispersion will always produce too many zeros. The 
basic idea is to allow the respondents who have zero trips a different 
model of behavior, including different regressors, functional form and 
randomness. The zero inflated Poisson is 

where F is the probability that Xi = 0 and 1 - F is the probability that 
the Poisson holds. The probability F will be modeled as a function of 
covariates in the form of a logit or probit. This is now a double hurdle 
model, in the sense that for positive trips to emerge, the individual must 
first overcome the effects of F, and then the covariates in the Poisson 
need to allow the trips to be positive. The probability of zero trips is 
given by 

Pr(xi = 0) = F + (1 - F)e->-.' .  

In terms of covariates, a double hurdle could be health, a covariate in 
the probability that the Poisson holds, and travel cost, an argument in 
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the Poisson. The model makes sense when the covariates influencing 
the frequency of trips differ from the arguments that determine the first 
hurdle, the probability of that the Poisson does not hold. LIMDEP 
7.0 provides a built-in version of a likelihood function for this model. 
However, the estimation process typically has difficulty discriminating 
between covariates that affect participation and covariates that influence 
the quantity of trips. 

An important implication of the augmented Poisson is the need to 
understand how individuals make their recreation decisions. To model 
correctly selection effects and double-hurdles it is important to have 
knowledge of how individuals choose. Additional information from sur­
veys can go a long way to alleviating the econometric problems caused 
by sample selection and participation decisions. 

7. 8 Conclusion 

This chapter has introduced the general problem of modeling the de­
mand for recreation and surveyed the various methods of estimating 
demands for single sites. The general approach shows that estimating 
recreational demand models is an exercise in the empirics of constructing 
a Becker model of the allocation of time. The estimation of single site 
models is an application of econometric models of discrete-continuous 
variables. The type of model estimated depends on the data generating 
process, which is the confluence of the sampling method and the stochas­
tic specification of the demand function. Censored models are appropri­
ate for data gathered from surveys administered to samples drawn from 
lists of the population. One estimates endogenous stratification models 
when users are sampled on-site. 

These general guidelines help in the handling of models, but not in the 
choice of model. The model one ultimately adopts for welfare analysis 
depends on the intuitive plausibility of the estimated model. To model 
selection effects and double-hurdles it is important to have knowledge 
of how individuals choose. Additional information from surveys can go 
a long way to alleviating the econometric problems caused by sample 
selection and participation decisions. 



 

8 

Site Choice Models 

8. 1 Introduction 

In Chapters 2 through 5 we dealt extensively with the random utility 
model of dichotomous choices for contingent valuation. In this chap­
ter we utilize the random utility model as it was originally developed 
by McFadden and others-to analyze the behavioral choices among mu­
tually exclusive alternatives. The random utility model grew out of 
efforts to model transportation choices, in which an individual chooses 
among a set of alternatives, such as car, bus, train or other, as a way 
of getting to work. The choice of transportation model is amenable to 
the random utility model for several reasons. The choices are mutually 
exclusive-the individual chooses only one mode. These mode choices 
depend on the characteristics of the modes-price, time and convenience 
and perhaps less strongly on individual characteristics such as income. 
The choices are repeated many times, but it is unlikely that they are 
substantially governed by declining marginal values. Recreational de­
cisions, when viewed as the choice over which site to visit, share many 
of the characteristics of transportation choice. In this chapter we an­
alyze the simplest of random utility models, the site choice model. In 
this model, the individual chooses which site to visit , given that the in­
dividual will visit a site. As we have emphasized in our discussion of 
recreational modeling, a general model of recreational choice determines 
choices made over a period of time, such as a season. The most complete 
model is the generalized corner solution model of Phaneuf, Herriges and 
Kling. The repeated logit model deals with all of an individual's choices 
from a set of exogenous choice occasions (Morey, Rowe and Watson) . 

Multiple site count models generalize single site models by estimating 
the demands for a set of sites over a period of time. This approach 
deals with the same issue that generalized corner solution models deal 
with-the seasonal demand for a group of sites, when some quantities 
demanded will be positive and others zero. (See Shonkwiler and von 
Haefen. ) This approach appears to be an effective way to model the 
demands when the number of sites is not very large. It differs from the 
generalized corner solution models of Phaneuf, Herriges and Kling by 
starting the modeling process with demand functions rather than utility 
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functions. See von Haefen and Phaneuf for further exposition. 
The random utility model differs from both the generalized corner 

solution model and the count models. It starts with the choice among 
alternatives, and is capable of modeling the choice among a very large set 
of alternatives. The random utility model is derived from the demand for 
characteristics of alternatives. The alternatives themselves are distinct 
to the degree that their characteristics differ. This aspect of the random 
utility model enables researchers to measure the effects of introducing 
new alternatives. In the generalized corner solution model and count 
demand models, each alternative is distinct, and it is quite difficult to 
introduce an alternative that is not part of the preference function in 
the initial model. 

8.2 Choices among Alternatives 

The random utility model (RUM) was first applied to recreational choices 
by Bockstael, Hanemann, and Kling. Since then it has become the pre­
ferred modeling strategy when the researcher wishes to analyze choices 
among many alternatives. Morey (1999) develops the various models in 
detail and Hanemann (1999b) provides the machinery for welfare analy­
sis for the RUM. Parsons has an extensive bibliography of random utility 
models as used in recreation. Ben-Akiva and Lerman provide a thorough 
and intuitive development of the appropriate statistical distributions. 

The RUM is an appealing modeling strategy for a variety of reasons. 
On a given choice occasion, it models the choice of one out of many recre­
ational sites, as a function of attributes of the sites. When constructed 
correctly, the random utility model implies choices that are logical and 
can answer many kinds of practical welfare questions. The RUM arose 
from the transportation literature, but in one important sense the appli­
cation of random utility models to recreation differs from its application 
to transportation models. In a recreational setting, a taste for variety 
would seem to be a stronger force than in transportation. Wanting vari­
ety, recreationists would alter their choices through a season. To capture 
this aspect of preferences, one would utilize more general models than 
the random utility model. Such models would capture the substitution 
among alternatives that would be induced by the declining marginal 
utility of visits to a single site. 

Random utility models, like single site demand models, deal with 
choices that individuals have made. For effective use of the data, one 
must be explicit about the data generating process. Many different kinds 
of sampling schemes are possible, but it is critical to distinguish two 
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broad types. Exogenous sampling occurs when the researcher chooses 
sample units with a random or stratified sample of the relevant popu­
lation. This type of sampling is essentially sampling from a list that is 
independent of the choices people make. The second type of sampling 
is choice-based sampling, in which the researcher draws samples that 
depend on the choices that people have made. For recreational analy­
sis, the most common type of choice-based sample is on-site sampling. 
Sampling from a list is exogenous but may be proportional or stratified. 

Exogenous sampling, from a list, can be achieved in a variety of ways. 
General population surveys, such as a random digit phone survey or a 
mail survey (which requires an explicit list) , can succeed. But they will 
often have a high proportion of respondents who do not participate in the 
recreational activity and hence make no site choices. These sampling 
strategies can be expensive if the proportion of useful respondents is 
quite low. For example, in the US, the percent of households that fish 
or hunt is typically in the 10 to 20 percent range. The percent that 
visit a specific group of sites would be smaller, making a phone survey 
expensive. In the empirical example described in this chapter, the data 
were gathered from a mail survey of the general population. 

On-site sampling, a form of choice-based sampling, can cause incon­
sistencies in parameter estimates if it is not corrected in the estimation 
process. This is spelled out clearly in Waldman. Essentially the para­
meter estimates depend on the sample proportions of visits to different 
sites. For consistent parameter estimates, one needs the predicted prob­
abilities of visits among sites to equal the population proportions. We 
discuss the issue of on-site sampling in section 8. 7 below. Greater depth 
on the issues of sampling in discrete choice models can be found in Ben­
Akiva and Lerman, Chapter 8, and Manski and McFadden, Chapter 1 .  

Our approach in this chapter goes from the general to the specific. 
We present the nested logit model and show how that simplifies to the 
conditional logit model. 

The logit model is such a widely used idea, and used in so many 
different ways, that we give the gist of the model before we give the 
details. Suppose individual i chooses among j = 1 ,  . . .  , J mutually ex­
clusive alternatives. Let Xij be a vector of individual characteristics 
or attributes for individual i ,  alternative j and let f3j be a conforming 
vector of parameters. Then for each individual and each alternative, we 
could calculate Xijf3j · An individual characteristic might be the age 
of respondent i. An attribute of an alternative would be the cost of 
obtaining alternative j .  
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8.2. 1 Conditional Logit versus Multinomial Logit 

The conditional logit model, developed by McFadden (1974) , gives the 
probability that individual i chooses alternative j as a function of at­
tributes that vary by alternative and unknown parameters. The site 
attributes may vary among individuals, but they need not. For exam­
ple when the attribute is cost of access, individuals with different costs 
of time will have different access costs. Hence, when we use Xij as 
the vector of attributes of site j, individual i , then the probability that 
individual i chooses alternative j is 

(8. 1 ) 

The goal i s  to estimate the unknown parameters. Note that the condi­
tional logit depends on differences among alternative characteristics: 

1 

As one can see, attributes that do not vary by alternative do not affect 
probabilities. 

The multinomial logit model gives the probability that individual i 
chooses alternative j as a function of individual characteristics and un­
known parameters: 

In the multinomial logit , only J - 1 of the parameters can be recovered: 

1 

Because we can only estimate differences, one of the parameter vectors 
is typically normalized to zero. The multinomial logit uses individual 
characteristics to explain the choice of alternative, and estimates J - 1 
parameter vectors for J - 1 of the alternatives. 

In this chapter we will be concerned exclusively with the conditional 
logit and its more general version, the nested logit model. These are in 
essence economic models, because they use the characteristics of alter­
natives, including prices, to determine choice. 
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8.3  Some Results for Nested Models 

Before venturing into the details of the nested and conditional logit 
random utility models, we present some results that will be used in 
understanding the models. First we present the generalized extreme 
value (GEV) distribution in the context of the random utility model. 
This will serve as the basic probability statement from which the nested 
and conditional logit models will be derived. Then we give a property 
of choice among alternatives that permits the discarding of irrelevant 
constants. Third we show the expected maximum utility attainable in 
the GEV framework. This serves as the indirect utility function in the 
derivation of welfare measures from the multiple choice models. 

8.3. 1 Notation for Two Level Models 

We analyze a nested decision structure and a non-nested structure. In 
the nested structure, alternatives are arranged into groups of alterna­
tives, or nests. The nests can be viewed as upper level choices; each 
upper level choice contains a group of lower level choices. We restrict our 
derivations to a two-level nesting structure. The following results can 
be extended to the case of more nesting levels, but as will be apparent , 
the notation becomes burdensome for higher level nesting structures. 
Greene (1995) gives expressions for four level nested models. Morey 
(1999) restricts his models to two-level nests and then adds in the pos­
sibility of repeating the two-level nest. 

Let j and k represent the nesting levels, where j indexes the bottom 
level choice and k indexes the nest or top level choice. Let K be the 
number of alternatives or nests in the upper level choice set (indexed 
k) , and J1 , h,  . . .  , JK be the number of alternatives in the lower level for 
each upper level alternative k. If the individual chooses k = 1 at the 
upper level, then there are J1 alternatives available to that individual in 
the lower level (indexed j = 1 , 2, . . .  , J1 ) .  

Figure 8 . 1 shows the general two-level decision structure. 
The random utility model is so named because the indirect utility from 

choosing an alternative is composed of a random part and a deterministic 
part. In the two level case, utility for the choice combination (j, k) is 
written 

Ujk = Vjk + E:jk · (8.2) 

In applications we make the deterministic utility Vjk depend on char­
acteristics of the alternatives. Randomness enters through E:jk as the 
error associated with the alternative combination j, k. This error is 
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interpreted as part of the preferences known to the individual mak­
ing but random to the researcher. For a given choice, k, at the up­
per level, there is a 1 x Jk vector of associated errors defined as E:.k = 
{c:1k,E2k , . . .  , C:Jkk } .  Combining the K error vectors yields the error vector 

K 
e = {e . 1 , e: .2 , . . .  , e: .K} of dimension 1 x J, where J = 2: Jk . 

k=l 
For each choice combination, we define the probability that the re-

searcher will observe the individual choosing a given combination. Let 
Pr(j, k) be the unconditional probability of choosing the combination 
j, k from among all feasible combinations. For reference, Table 8 . 1  sum­
marizes the notation. The following section is dedicated to the form of 
Pr (j, k) . It is worth emphasizing that this probability relates to imper­
fect observation by the researcher. The individual choosing is assumed 
to have no uncertainty. 

8. 3. 2 The Choice Probability 

The choice probability is the researcher's probability of observing the 
combination (j, k) out of all possible combinations for an individual. As 
such, Pr (j, k) is the probability that the indirect utility from choice se-
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TABLE 8 . 1 .  Notation for GEV Results 

Notation 

J 

Explanation 
Lower level index 
Upper level index 
# of upper level nests 

# of lower level alternatives 
for upper level nest k 
Scalar error associated with 
the alternative combination j ,k 
K 
:Z::: Jk =the total number of alternatives 
k=l 
Error vector conditional on upper 
level nest k 
Full error vector 

quence k , j exceeds the indirect utility from any other choice sequence. 
To derive an expression for Pr (j, k) , we need a distribution of the random 
terms in the indirect utility function. Kotz, Balakrishnan and Johnson 
provide a general overview for a class of distributions known as multi­
variate extreme value distributions. McFadden (1978) utilized a special 
case of the multivariate extreme value distribution to derive the nested 
logit model in a site choice context. Ben-Akiva and Lerman give a 
transparent and intuitive explanation of the GEV. 

Generalized Extreme Value Distribution 
The generalized extreme value distribution employed by McFadden (1978) 
is written in the current notation as 

(8.3) 

where F (c) is the cumulative distribution function, ak > 0 and Bk :S 1 
Vk are parameters of the distribution. 

Equation (8.3) represents one specific form of the multivariate extreme 
value distribution. Other forms exist, but the generalized extreme value 
distribution has the desirable property of a closed form solution for the 
expected maximum. 

Assume that the individual chooses the alternative that provides the 
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maximum utility. The individual chooses the two-level choice (j, k) if 

Ujk 2: Uj'k' Vj' ,  k' . (8.4) 

When the choice is made according to this rule, the utilities are struc­
tured according to equation (8.2 ) , and the stochastic parts are distrib­
uted as generalized extreme value in equation (8.3) , then we derive the 
probability that the researcher observes the choice of a given combina­
tion. 

McFadden's RUM Probability 
If e is distributed as generalized extreme value as in equation (8.3) , then 
the probability of choosing alternative j, k is 

ak exp(7f; ) [� exp(� )] 
lh- 1 

Pr (j, k) = 1=1 
e K [ J ] m 

m�1 
am 

1
� exp(� ) 

(8.5) 

Appendix B establishes this proposition. For interpretation, suppose 
ak = ea• . With substitution and simplification, equation (8.5) becomes 

Because the ak parameters enter as linear additive constants to Vjk > 

they can be interpreted as upper level nest specific constants. Each 
nest has a separate constant. In effect, the ak parameters are location 
parameters and the ek are scale parameters for the different nests. The 
interpretation of the ek will be considered in later sections. 

Equation (8.5) describes the probability that the researcher observes 
the individual choosing the combination (j, k) from all feasible combi­
nations. We assume that the individual is capable of choosing among 
alternatives by comparing utilities. As researchers we lack complete 
knowledge of the forces that motivate the individual, so that we can 
only make probability statements about choice. 

Several implications for data organization follow from the structure 
of the utility function and choice based on maximization. Equation 
(8.4) provides the basis of choice, and it implies that additive constants 
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independent of alternatives do not affect choice. Suppose that we modify 
equation (8.2) by adding a constant c to each Vjk · Then the maximum 
based on equation (8.4) does not change: 

Ujk > Uj'k' 't:/j' , k' ==> 

Vjk + C + C:jk > Vj'k' + C + C:j'k' 't:/j' , k' ==> 

Vjk + C:jk > Vj'k' + C:j' k' 't:/j' ,  k' . (8.7) 

Adding the same constant to the utility of each alternative does not 
affect the rankings of the alternative. Consequently, components of the 
utility function that are additive and constant across choices will not 
be part of the choice probability as given in equation (8.5) . Likewise, 
consider the choice of an alternative, given that the nest is known. That 
is, suppose we want to predict which site within nest k an individual will 
choose. Then additive constants that do not vary across the sites within 
the nest will not affect the probability of choice within the nest. If, given 
k, alternative j is chosen, then 

Ujk > Uj'k 't:/j' ==> 
Vjk + Ck + C:jk > Vj'k + Ck + Cj'k 't:/j' ==> 

Vjk + C:jk > Vj'k + C:j'k 't:/j' .  (8.8) 

Hence an additive constant does not influence the probability of choice 
within a nest if it does not vary by alternative within the nest. We sum­
marize this result for further use to help organize the data and interpret 
the probabilities. 

1 .  An additive constant in the utility function does not affect the 
probability of choice if it does not vary by alternative. 

2. An additive constant that varies by nest but not by alternative 
within a nest does not influence the probability of choice of an 
alternative, given the nest. 

The following section provides the mechanism for welfare calculations. 

8. 3. 3 Expected Maximum Utility 

The indirect utility function provides a direct means of calculating will­
ingness to pay. The indirect utility function is the maximized value of 
the utility function, or in the case of choosing among mutually exclusive 
alternatives, the maximum of the utilities. If we knew the individual's 
preferences, we could pick the maximum utility. Being uncertain about 



 

Site Choice Models 199 

preferences, we look instead for the expected maximum utility. Define 
u.k = {u1k,Uzk , . . .  , uhk} as the vector of attainable utilities for upper 
level choice k. Collect the K utility vectors into a single utility vector 
across all upper and lower level choices as u = { u. 1 ,  u.z , . . .  , u.K } . Fur­
ther, define max(u) as the maximum indirect utility attainable (largest 
element among all possible Ujk = Vjk + Ejk) · Because u is stochastic 
from the researcher's perspective, it will be useful to have an expression 
for the expected maximum utility attainable from a given set of choices. 

Expected Maximum Utility for McFadden's RUM 
If the error vector c: is distributed as generalized extreme value (GEV) 
as in equation (8.3) , then 

( K [ J"' ] e"') 
E{ max (u) }  = ln 1;_ am [; exp(�: ) + C (8.9) 

where C is a known constant . This is the observer's estimation of the 
indirect utility function of the individual, when the individual chooses 
the maximum of Ujk = Vjk +Ejk for all j, k and the Ejk are distributed as 
GEV. The proof of this proposition can be found in detail in Appendix 
B. Because the additive constant C in the expected maximum indirect 
utility function has no impact on utility differences, we will drop it in 
subsequent uses of E{ max (u) } . 

8.4 The Basics of Logit Models 

The random utility model of site choice assumes that the individual 
makes a choice among mutually exclusive alternatives based on the at­
tributes of the alternatives. Only the measured attributes of the sites 
matter to the individual. Two sites that have the same attributes are 
identical and provide the same deterministic utility to the individual. 
The choice of sites is determined by utility maximization. Individual 
characteristics such as age and income can only influence choices when 
they are interacted with site-specific attributes. We explore approaches 
for including such variables in subsequent sections. 

8.4 . 1  The Nested Logit Probability 

We have constructed the nested logit probability in equation (8.5) . This 
probability and the expected maximum utility are the building blocks 
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for parameter estimation and welfare calculation. We initially assume 
that J, the total number of alternatives , is the same for all individuals. 
This restrictive assumption can lead to inconsistent parameter estimates 
when it is wrong. These issues will be discussed in subsequent sections. 

Suppose an individual is observed to choose the choice alternative j, k . 
Associated with that alternative is conditional indirect utility Ujk · Al­
though individuals have complete information about what determines 
their choice of alternative, the researcher cannot fully observe all of this 
information. As such the stochastic term captures site-specific omitted 
variables in the specification of the utility function. We repeat the prob­
ability of observing an individual choosing site j, k from among the J 
possible sites: 

[ J ] e,- 1 
ak exp( 7J;) t exp( 6: )  

Pr (j, k) = 1=1 
K [ J ] em 
L am f exp(�) m=1 1=1 em 

(8. 10) 

where am and em Vm are distributional parameters to be estimated. 
The expression is homogeneous in the am , so that when they are equal, 
they fall out of the probability expressions. At various points we will 
find it convenient to use Bayes's rule to write Pr (j, k) as the product 
of the conditional probability of choosing site j ,  given nest k, times the 
marginal probability of choosing nest k: 

where 

and 

ak exp( ve,' ) 
Pr(j lk)  = __ ..:....o..._ J,. 

L exp(�)  
1=1 e" 

[£= exp(�': )
] e
, 

Pr( k) = ----='---1=--"1-----==----,---
K [ Jm. ] em 
L am L exp(7j-m ) m=l l= l rn 

(8 . 1 1 ) 

(8. 12) 

In equation (8 . 1 1 ) ,  we have a conditional logit model for choosing site 
j among the Jk sites in nest k. In equation (8. 12) , there is the logit 
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of choosing nest k from among all the nests. These expressions help in 
estimating occasionally and they help in constructing nests too. 

8.4 .2  Specifying the Utility Function 

We have written the utility function for alternative j, k very generally 
as Ujk and its deterministic component Vjk with no explanation of their 
arguments. We now develop the specification. Hanemann (1999b) offers 
a full development of the budget-constrained random utility model. The 
essential idea is that we specify the deterministic part of the preference 
function to depend on a composite commodity, z, with a price of one, a 
vector of site-specific attributes denoted <]jk and a vector of nest-specific 
attributes denoted Sk .  Let v (z , <ljk , sk) be  the deterministic function. 
Now suppose that the full cost of travel to site j, k is given by Cjk · 
This cost includes time and travel costs. When time and income are 
not fungible, the utility function will include an additional argument 
for time. The budget constraint for individual i will be yi = zi + Cjk 
where y is the individual's full income. (To avoid notation clutter we 
will suppress the observation index throughout most of the chapter. But 
it is likely that many attributes of sites will vary across individuals. And 
through interaction with dummy variables or site attributes, individual 
attributes can be made to vary across sites. )  The deterministic utility 
enjoyed by an individual who chooses site m, n is v (y - Cmn , qmn , sn) ·  

To make the RUM model operational, a specific form must be assumed 
for the indirect utility function. The most convenient and common form 
is linear in parameters and variables, although for ease of estimation only 
linearity in parameters is necessary. A typical specification would be 

(8.13) 

where {3 and 1 are column vectors conformable with <ljk and sk. It is 
intuitive to think of f3y as the marginal utility of income. Because this 
utility function can be written f3yY - f3ycjk + <I.ikf3 + Sk/ we see that the 
term f3yY is an additive constant and according to equation (8. 7) will 
not affect the probability of choice, so it can be dropped. Instead we 
will analyze choices based on equation (8.14) 

(8. 14) 

Up to a limit imposed by feasibility, we can allow the coefficients on 
site-specific variables to change by nest: 
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This is done in the same way as in a linear regression model: for each 
element of Qjk, say qJk , create an additional variable equal to qh for nest 
k and zero for other nests. In practice, this can lead to a dimension­
ality problem with a large number of upper level choices. Substituting 
equation (8. 14) into (8. 10) gives 

(8. 15) 
Using equations (8. 1 1 )  and (8. 12) we can write the probability of choos­
ing alternative j ,  conditional on choosing upper level nest k: 

Pr (j l k) = _J_
ex
_
p
_
(
_
-
_

f3
_
,,
_
c
_
J�
"'"'
+
_
q
_
J '
_
(3
_
) _ _  

0 ( -(3yCIA+QIA,f3 ) � exp e, 1=1 

(8. 16) 

(Compare with equation 8 . 1 . )  According to equation (8.8) , this proba­
bility is independent of additive parts of the utility function that do not 
change within the nest, so that Sk"f falls out. 

We also use equation (8. 12) to write 

Rearranging yields a common expression for this probability: 

The variable 

Pr (k) = K 
ak exp(sn + 8kh ) 

L am exp(Sm"f + 8mlm) 
m=l 

(8. 1 7) 

(8.18) 

(8.19) 

is known as the inclusive value for nest m , and em is the inclusive value 
parameter. Note the similarity between the inclusive value and the in­
direct utility function as given in expected maximum utility in equation 
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(8.9) . Combining results, the nested logit probability of choosing alter­
native j, k is 

(8.20) 

In practice, several simplifications are often made. For example, it is 
common to allow some nests to have the same () or even to impose 
()k = () for all k. Further, many models assume that most ak = a. But 
the greatest simplifications lead to the conditional logit model. 

8.4 . 3  The Conditional Logit Model 

Consider the nested logit model as defined in equation (8.20) . Suppose 
as a special case, that ()k = 1 and ak = a 'Vk. The probability of 
observing the choice j, k becomes 

e-f3yc1k+q1kf3 eskr+h 
Pr (j, k) = -J=-k _____ x -K=----

L e-f3yclk+qlkf3 I: eSmr+Im 
1=1 m=1 

(8.21) 

which upon substitution of the expression for the inclusive value in equa­
tion (8 . 19) becomes 

Pr (j, k) 
e-f3yc1k+q1kf3 

Jk 
L e-f3yclk+q,.kf3 
1=1 

K Jm I: I: e-f3yclm +ql.mf3+sm.'"f 
m=1 1=1 

where Vjk = -f3ycjk + �kf3 + Sk/- Since the upper nest serves no 
purpose now, we create a single index n for each unique (j, k) and write 
the conditional logit probability of choosing alternative m as 

eVm 
Pr (m) = -J-- (8.22) 

L eVn 
n=1 
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Equation (8.22) represents the conditional logit probability of choosing 
K 

alternative m (m = 1 ,  . . .  , J) from among all J = L Jm alternatives. 
m=l 

Compare this with equation (8. 1 ) .  McFadden (1974) derived this model 
by assuming that the errors of the indirect utility function were indepen­
dently and identically distributed across alternatives following a Type-I 
extreme value distribution (see Appendix B for a description). 

8.5  Independence of Irrelevant Alternatives 

Although the conditional logit model is a special case of the nested 
logit , it was developed first. The conditional logit grew out of efforts 
to explain the choice among an array of alternatives. The nested logit 
emerged partly as a response to the problem with the conditional logit 
that has come to be known as the independence of irrelevant alternatives 
(IIA). 

The IIA principle can be stated as follows: the relative probability 
of choosing between any two alternatives is independent of all other 
alternatives. More specifically, define SR as a set of alternatives available 
to the individual, and SR+I as a broader set of alternatives (SR C SR+I ) .  
The IIA principle states 

Pr (l iSR) 
Pr (miSR) 

Pr (l iSR+I) 
Pr (miSR+I) 

where Pr (l iSR) indicates the probability that alternative l is chosen from 
among the set SR. 

Clearly, the IIA property holds for the conditional logit model. From 
equation (8.22) , the relative probability of choosing site m to choosing 
site p is: 

Pr (m) eVm eVp eVm 

Pr (p) J J evp 
L eVn L eVn 

(8.23) 

n=l n=l 
which is independent of introducing an irrelevant alternative. 

For the conditional logit, the IIA property implies that the relative 
probability of choosing between sites will remain constant even if a per­
fect substitute is introduced. To see why this is a problem, suppose 
there are two sites available (A and B). For simplicity, let the proba­
bility of choosing each site be 0.5. The relative probability of choosing 
A to B is 1 (or odds of 1 : 1 ) .  Now introduce a third alternative C that 
is identical to site B (a perfect substitute) . We would expect that the 
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individual would still choose A with probability 0 .5 and then split the 
remaining 0 .5  between B and C (so that Pr(B) = Pr(C) = 0.25). If 
such were the case, the relative probability of choosing A to B would be­
come 2. However, because of the IIA property, a conditional logit model 
would maintain the odds ratio at 1 : 1  for alternatives A and B, clearly an 
undesirable result. The relative probability of choosing A to (B or C) 
should be 1. If a viable substitute to an alternative is introduced, the 
conditional logit model would still predict that the relative probability 
of choosing site j, k to site p, r would stay the same, as if the new site 
didn't exist. 

The nested logit RUM relaxes the restrictive IIA assumption to some 
degree. Consider the nested logit probability as defined in equation 
(8.5) .  The relative probability of choosing alternative j, k to alternative 
p, r is now 

Pr (j, k) 
Pr (p, r) 

(8.24) 

IIA no longer holds for changes within nests k and r, but changes outside 
these two nests are still irrelevant. Consider the case when r = k; i.e. , 
alternatives j and p are in the same nest. The relative probabilities are 

vjr 
Pr (j, r) j Pr (p, r) = 

e: = e(vjr-Vvr )/Br . e Br 

which is independent of all other alternatives in nest r as well as all other 
nests. The IIA assumption holds within a given nest for the nested logit 
model. However, if r "1- k then equation (8.24) shows that the changes in 
nest k (other than site j) will change the relative probability of choosing 
site j to site p. Similarly, adding or subtracting a site from nest r will 
change the relative probability of choosing site j to site p. The nested 
logit model relaxes the IIA assumption across nests, but maintains the 
assumption within nests. Continuing the A,B,C example from above 
(recall that B and C are perfect substitutes) ,  grouping B and C together 
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in a nest allows the relative probability to other sites to change with the 
addition of alternatives. 

We have illustrated the characteristic of IIA with the conditional logit 
model. This is a property of the conditional logit, but also of any dis­
tribution for which the errors are uncorrelated. In chapter 10 we survey 
mixed logit models, which provides a means of eliminating the IIA prop­
erty of logit models. 

Returning to the parametrization of the indirect utility function, we 
have still to decide on the appropriate functional form for the remain­
ing portion of the indirect utility function Vjk (maintaining the linear 
in income specification) . Standard econometric packages (such as SAS 
and LIMDEP) require the estimated function to be linear in the set of 
estimated parameters. In general, this means that for estimation, the 
indirect utility function typically takes the form: Vjk ( C)jk ,  sk) = Xjkf3* , 
where Xjk = { Cjk ,  C)jk ,  sk} and {3* = { -,BY , )3, 1} . Note that in this 
formulation, the estimated parameter associated with the price of a trip 
is the negative of the marginal utility of income. As such, we would 
expect this parameter to be negative. 

8.6 Estimating the Models 

In this section we deal with the estimation of random utility models 
from population surveys where the sampling is exogenous. That is , we 
sample individuals from a relevant population group, and learn from 
these individuals the choices they made in selecting alternatives. In 
this sample the probability that an individual is selected is independent 
of the probability that an individual chooses a given site. Further, we 
assume that the relative sample weights are the same for different in­
dividuals so that the likelihood function is the simple product of the 
individual contributions. Hence the sample probabilities of site choice 
are consistent estimates of population site choice, and the sampling does 
not influence parameter estimates. In section 7 we will explore the con­
sequences of on-site sampling, in which the sample proportions of visits 
depend on the sampling. For a general discussion of sampling in random 
utility model estimation, see Manski and McFadden (1981). In general, 
the sampling scheme is critical to estimation, and sampling with endoge­
nous weights will tend to yield inconsistent parameter estimates unless 
properly managed. 

Two methods have been used for estimating the nested logit RUM. 
The first is a limited information maximum likelihood (LIML) approach 
that relies on two-stage estimation of the choice probability in equation 
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(8.20) . The second is the full information maximum likelihood approach 
(FIML) which jointly estimates all parameters of the likelihood function. 
Let 8jk = 1 when the individual chooses site (j, k) and 0 otherwise. Then 
the individual contribution to the likelihood function for the nested logit 
RUM is 

K Jk 
= II II 

k=l j=l 

K Jk 
= II II Pr (j, k)6i• 

k=l j=l 

The log-likelihood contribution for a given individual is 

K Jk 
= 2:2: 8jk ln 

k=l j=l 

which can be rewritten as: 

K h K h 
= L L 8jk ln [Pr (J ik)] + L L 8jk ln [Pr (k)] 

k=l j=l k=l j=l 
(8.26) 

where Pr (J ik) and Pr (k) are defined in equations (8. 16) and (8.17). 
The first term is the sum of the log-likelihood contributions from a 
conditional logit model based on the lower level decisions. That is, 
the lower level probability of choosing j, k is the probability of choos­
ing j from among the Jk alternatives in nest k. Similarly, the second 
double-summation term is the log-likelihood contribution from a condi­
tional logit among the K upper level alternatives, i.e. , the probability 
of choosing k from among the K alternatives at the upper leveL Com­
puting capacity has expanded so that the FIML is programmed in most 
software, and is the preferred approach. Nevertheless, as an aid to un­
derstanding the process we outline the LIML. 
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8. 6. 1 Procedure for two-stage (LIML) estimation 

1 .  The number of models estimated at the lower stage equals the num­
ber of distinct fh 's. Each Bk is a scale parameter that normalizes 
the f3 vector. Suppose one wants only one Bk . Then estimate the 
lower level model 

Covariates should include only those variables that vary by lower 
level nests (cjk , Qjk ) ·  This model yields the parameter vector 
( -(3Y , [3)/B. 

2. Calculate the inclusive value 

for all k for each individual. 

3. Estimate a conditional logit for the upper level choice. 

Pr(k) = 
:xp(-ysk + Bh + etkDk) 

:Z:::n=l exp(-ysn + Bin + etnDn) 
The Dk are dummy variables = 1 for nest k, 0 otherwise. Only 
K - 1 dummy variables can be created if the model includes a 
constant. Covariates should include variables that vary by upper 
level choice (sk) , and the calculated inclusive value as regressors 
and Dk. 

Parameters from the two-step procedure are consistent but not effi­
cient. The standard errors are too small relative to their probability 
limits. Increased computing power has made the two-stage estimation 
method somewhat obsolete. In the next section we describe the full­
information maximum likelihood (FIML) estimation approach. Brown­
stone and Small explore the empirical evidence on FIML and LIML 
estimators for nested logit models. 

8. 6. 2 FIML Estimation 

Full information maximum likelihood methods estimates the full model 
using maximum likelihood. Equation (8.26) defines the log-likelihood 
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function to be maximized with respect to the parameter vector: 

{,8, /, a1 ,  . . .  , aK , 81 ,  . . .  8K} . 

Example 27 Beach Choice 

209 

To illustrate the estimation of the random utility model we use an 
example of beach day trip choice by Delaware residents. 1 The data 
come from a random mail survey of 1000 households in the fall of 1997. 
The dataset from which the models are estimated pertains to the 400 
households who took day trips. In the survey, individuals chose from a 
set of 62 beaches in New Jersey, Delaware, Maryland and Virginia. 

Choosing a nesting structure for the nested logit model is a strategic 
modeling decision that often has considerable impact on welfare mea­
sures. In most cases, one constructs the nests based on an understand­
ing of the choice setting. We explore the problems of choosing a nesting 
structure in the following sections. In this problem, the Delaware Bay 
acts as a natural boundary between coastal beaches in Virginia, Mary­
land and Delaware (South beaches) , and those in New Jersey (North 
beaches) . This natural boundary provides a simple nesting structure 
for beach choice decisions. First, individuals choose between visiting 
a South beach or a North beach, and then conditional on this choice, 
individuals choose the actual beach to visit. The questionnaire asked 
individuals the number of day, overnight and extended stay trips they 
had made to each of the 62 beaches in the past year. For our pur­
poses we utilize only the single day trips reported by the individual. 
Each respondent reports the number of day trips to each beach over 
the course of the year. In total, the sample of 400 households took 
9,330 day trips to the 62 study beaches. Respondents took 620 trips 
to North beaches and 8710 trips to South beaches. For illustration of 
the nested logit model, we treat each trip as an independent observation 
without explicitly recognizing the potential correlation across trips for 
an individual. In general, treating each trip as an independent obser­
vation probably produces more efficiency than is warranted because it 
seems likely that there is correlation across different trips for the same 
individual. Treating trips this way gives for each individual number of 
trips x number of alternatives cases, each of which is treated as an 
observation. For a discussion of independence across choice occasions in 
the context of recreation models see Herriges, Kling and Phaneuf (1999) 
or Haab (2001) .  

1 We thank George Parsons for generously giving us access t o  this dataset. For a 
full description of the data see Parsons, Massey and Tomasi. 
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Individual covariates do not vary across trips and are assumed con­
stant across the year. Models that account for linkages between site 
choice and the number of trips taken are discussed in subsequent sec­
tions. 

Table 8.2 describes the variables used in the beach choice estimation 
models. The indirect utility function for all models is assumed to be 

TABLE 8 .2 .  Variable Definitions and Means 

Variable Name Description Mean 
N=9330 

c* Trip cost + time cost $122 
LG Length of beach in miles 0 .62 
BW Boardwalk present=l 0.40 
AM Amusement park near beach =1 0 . 13  
PR Private or limited access beach=l 0 .26 
PK State, Federal Park or wildlife refuge=l 0 . 10 
w Wide beach (=1 if width > 200 feet) 0 .26 

NW Narrow beach ( = 1 if width � 75 feet) 0 . 15 
CT Atlantic City=l 0 .02 
SF Good surfing location=l  0.35 
HR Presence of high rises=l 0.24 
PW Part of  the beach is a park area=l 0 .15 
FC Restroom facilities available=! 0.39 
PG Parking available at beach=l 0.45 

*Travel costs are calculated at $0.35 per mile, and time costs are 
calculated as annual income/2040, or income per hour. 

linear-in-income and all other covariates as in equation (8. 13) : 

Vjk=f3y (y - Cjk) + (31 LGjk + (32BWjk + (33AMjk 
+f34P Rjk + (35P Kjk + (36 Wjk + (37NWjk + (38CTjk 
+(39SFjk + (310HRjk + f3uPWjk + (312FCjk + (313PGjk · 

All the covariates vary by site. I. e. , there are no nest-specific variables. 
Table 8.3 presents the estimation results from a conditional logit model 
based on equation (8.22) on all 62 beaches (no nesting) . All coefficients 
are significant and the signs are plausible. An increase in the length 
of the beach increases the probability of choosing that beach as does 
the presence of a boardwalk or amusement rides. Privatizing a beach 
decreases the probability of visitation, and very wide or very narrow 
beaches have lower probabilities of visitations than beaches between 75 
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TABLE 8.3. Parameters of  Conditional Logit 

Parameter Estimatea Standard 
Error 

f3y 0 .06 0.001 

{31 0 .06 0.03 

{32 0.60 0 . 1 1  

{33 1 .26 0.05 

{34 -0.36 0.05 

{35 0 .23 0 . 12  

{36 -0.74 0.05 

{37 -0.32 0.07 

f3s 0.82 0 . 10  

{3g 0.89 0 .04 

{310 -0.51 0 .06 

f3n 0 .93 0.08 

{312 -0.15 0 .08 

{313 0.49 0 . 13  

Log-likelihood -23374.47 
-2 ln(LR/Lu )b 30263 .38 
a All coefficients different from 
zero at 95% level of confidence. 
bThe restrictions are {3 j = 0 V j. 

and 200 feet wide. The restroom facility result is unexpected. There is 
no obvious reason why the presence of restroom facilities decreases the 
probability of a day trip to a beach. Also, the presence of high-rises at 
the beach decreases the probability of visitation. 

The nested logit model is based on a particularly simple structure: 

eNorth = Bsouth = e. 
That is, only one value of e is estimated. Further, we have assumed that 
the alternative-specific constants are equal: 

a = aNorth = asouth ·  
When the nest-specific constants are equal, they will fall out of the 
estimation, as can be seen by looking at equation (8.5) .  

Table 8.4 gives the parameter estimates for the nested logit model on 
the same data (see equation 8.26) . The beaches are split into North and 
South nests at the upper level as it is expected that the substitution 
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patterns among New Jersey beaches by Delaware residents are similar, 
but as a group, the substitution patterns may differ from the pattern 
among beaches in Delaware, Maryland and Virginia. The signs and sig-

TABLE 8 .4 .  Nested Logit 

Parameter Estimate Standard 
Error 

f3y 0.08 0.002 

/31 0.25 0.03 

/32 0 .82 0 . 13  

(33 1 . 02 0 .05 

/34 -0.35 0 .06 

/35 ao.12  0 .13 

/36 -0.70 0.05 

/37 -0.41 0.08 

f3s 0 .74 0 . 1 1  

/3g 0 .85 0.05 

/310 -0.60 0.06 

f3u 0 .53 0.09 

/312 a -0 . 1 1  0 .09 

/313 0.27 0 . 14 
e 0.50 0.01 

Log-likelihood -231 10.47 
-2 ln(LR/Lu )b 19760 .14 a All coefficients except these different from 

zero at 95% level of confidence. 
bThe restrictions are f3 . = 0 Vj and e = 1 .  

nificance of the nested logit coefficients correspond to those from the 
conditional logit, with the exception of the restroom facility and state 
park coefficients. Both of these have the same sign as the conditional 
logit but the null hypothesis that they are equal to zero can not be re­
jected at any reasonable confidence level. The inclusive value coefficient 
e is significantly different from zero and one, indicating that there is cor­
relation in patterns of substitution across North and South beaches, but 
this correlation is not perfect as is assumed in the conditional logit . By 
rejecting the null hypothesis that e = 1, we reject the conditional logit 
in favor of the two-level nesting structure. We also reject the complete 
IIA of the conditional logit in favor of IIA in the two branches. More 
tests for nesting structure are discussed in section 8.10 below. 
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8. 7 Estimation with On-site Sampling 

In many circumstances, it is much cheaper to gather samples on-site 
than to contact people by phone, mail, or in person. As in the case of 
the single site model, the cost advantage in a multiple site model is par­
ticularly great when the proportion of population participating in the 
activity is quite low. However , a problem arises in estimating the popu­
lation probability of choosing an alternative from an on-site sample: the 
probability estimates will be determined by the sampling scheme. That 
is, given an on-site sample, all inferences about population parameters 
are based on the fact that individual i was interviewed at site j. To 
see the problem with on-site samples (often referred to as choice-based 
samples) ,  consider a simple case. Let the total sample size be N, and 
let Nj be the sample number of individuals interviewed at site j ,  where 
j = 1 ,  . . .  , K. Further, let Pj represent the population proportion of trips 
to site j such that I:f=1 Pj = 1. Given independence across individuals, 
trips and sites, the joint probability of observing N1 individuals at site 
1 ,  N2 individuals at site 2, and so on, is the multinomial probability 

(8.27) 

where P = { P1 , . . .  , PK} . Treating the population proportions as un­
known and the sample number of interviews as known, equation (8.27) 
can be interpreted as a likelihood function. The log-likelihood function 
is K 

ln L (P IN1 ,  N2 , . . .  , NK) = ln (C) + L Nj ln (Pj) 
j=l 

K 
where C = N!j TI Nk ! is constant with respect to the unknown para-

k=l 
meter vector P. By imposing the constraint I:f=1 Pj = 1, we can show 
that the maximum likelihood estimates for the population proportions 
Pj are equal to the sample proportions: 

This is an intuitive result. With no additional information, the best 
guess for the population proportion of individuals taking a trip to a 
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given site will be equal to the sampled proportion of individuals taking 
a trip. 

The problem of an on-site sample arises because the sampling scheme 
is often independent of the population proportions taking trips. As an 
extreme, consider a sampling scheme in which an equal number of indi­
viduals is intercepted and interviewed at each site. In this case, the max­
imum likelihood estimates of the population proportions will be equal 
across all sites even if the true population proportions are not. In the 
typical case, failure to account for the sampling plan will result in para­
meter estimates that combine sampling plans and individual behavior, 
when what we really want is just the behavior. 

Example 28 The Effects of On-Site Sampling 

To show the effect of on-site sampling, we use a simple example moti­
vated by Waldman. Suppose that there are just two choices and the true 
model is Uj = Xj{3 + C:j , where j = 1 ,  2, and x1 and x2 are alternative 
specific scalars. The log-likelihood function for this model becomes 

Maximizing the expression with respect to f3 yields the following closed 
form solution: 

Hence the parameter estimate depends on the samples taken at each 
site, as well as the differences in the values of the attributes. But if the 
samples are distributed evenly at each site, then f3 = 0, regardless of 
the values of the attributes. This is an extreme case, but it illustrates 
the basic point: the parameter estimates are determined by the sam­
pling proportions. If these proportions are different from the population 
proportions then inconsistent parameter estimates will result. 

8. 7. 1 A Solution to On-Site Sampling 

To formulate a solution for the problem of on-site sampling, we write the 
probability of an individual taking a trip to a particular site based on the 
information we have in the sample. For a given individual intercepted 
on-site, we know simply that the individual was interviewed at that site. 
The probability of interviewing a given individual at a particular site will 
be a function of the number of trips the individual takes to each site, 
and the number of individuals interviewed at each site. In particular, 



 

Site Choice Models 215 

the probability of observing individual i being interviewed at site j will 
be 

Pij = K
NjPij 

(8.28) 
L NkPik k=l 

where N1 is the number of individuals sampled at site j, and Pij is i's 
proportion of all trips by all individuals to site j .  The numerator repre­
sents the expected number of interviews at site j for individual i over the 
course of the season. That is, if 100 individuals are interviewed at site 
j ,  and individual i takes 10% of all trips taken to site j ,  then it would be 
expected that individual i would be interviewed 10 times. This implies 
that individuals are interviewed with replacement at a given site. In 
general, this is not a concern as long as an individual's trips are a negli­
gible proportion of the total. Nevertheless, the results below hold only 
when the on-site sampling scheme mimics sampling with replacement. 
The denominator in equation (8.28) represents the expected number of 
interviews for individual i across all sites. Thus, Pij represents the ex­
pected proportion of interviews for individual i at site j .  

Denoting the number of trips taken by individual i to site j as Xij , 
and the total number of trips taken by all individuals to site j as X.j ,  
such that X-j = Li Xij , we write the proportion of total trips to j taken 
by i as 

Pij = XijiX-j · 
Substituting into equation (8.28) , we see that the probability of individ­
ual i being interviewed at site j is 

(8.29) 

Denoting the total number of interviews at all sites as N, the total 
number of trips taken by individual i to all sites as Xi. , and the total 
number of trips taken by the population as x , we can write Pij as 

K NjiN Xij I L 
NkiN Xik 

X.jiX Xi. k=l X.kiX Xi. 
Tif Pri (j) 

J K 
I: ft Pri (k) 
k=l . 

where p1 = Nj IN is the sample proportion of interviews at site j , W1 = 
x.11x is the population proportion of total trips taken to site j and 
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Pri (j) = 
x,j is the unknown probability of observing individual i take X't· 

a trip to site j. 
In random samples, the probability of observing a given individual 

choosing alternative j is conditioned on the site characteristics (Xij = 

{ Cij ,  qij }  ) . Let Pri (j) = Pr (j iXij ) , the population probability that 
individual i with site characteristics Xij will choose site j. Consider the 
probability statement that we interview an individual at site j given by 

w- Pr (j iXij )  Pij = -K--"-1 ____ _ (8.30) 
L � Pr (k iXik) k=l k 

where Pr (j I Xij )  simply denotes the conditioning of the population prob­
ability on individual-site specific covariates. Equation (8.30) represents 
the on-site sample 'corrected' probability that individual i takes a trip 
to site j. Equation (8.30) illustrates a fundamental result regarding on­
site sampling and the conditional logit model: Simple weighting of the 
unknown population probability by the ratio of the sampled proportion of 
site visitors (p1) to the population proportion (W1 ) will not solve the 
problems caused by on-site sampling. 

To understand this result, consider the contribution to the on-site 
sample likelihood function by individual i 

K 

Li (,BIXil , . . . , xiJ) = II Pi�;j j=l 

where bij is an indicator variable that is equal to one if the individual 
is interviewed at site j , and zero otherwise. Substituting the expression 
for the on-site choice probability in equation (8.30) and rewriting the 
likelihood function in log form, the ith contribution to the log-likelihood 
function becomes 
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The first summation term on the right hand site is the log of the on­
site weighted probability, where the weight is the sample proportion to 
population proportion. That is, the probability of taking a trip to site j 
(Pr (j JXij ) )  is weighted by the relative proportions of sampled trips to 
population trips to site j ( �) . However, there is additional weighting 
in the second term on the right hand side. Failure to account for this 
term will result in inconsistent parameter estimates. The correction for 
the problem of on-site sampling requires a tailored likelihood function, 
and programming into an econometrics package. Below, we discuss solu­
tions to the problem of on-site sampling that can be implemented using 
standard econometric packages. 

8. 7. 2  The On-site Conditional Logit 

If Pr (j JXij )  is conditional logit, and there are no site-specific constants 
in Xij ,  then the choice-based sampling problem can be solved by includ­
ing a set of site-specific constants in the model. Consider the conditional 
logit probability: 

Substituting into equation (8.30) gives 

.f!.j_ ex·ij/3 * 
W1 I; h eXihf3 * 

L .f!Js;_ ex;;,/3 * 
k Wk L: h eX·ih/3 * 

!!J.... ex,1 f3 • WJ (8.31) 

which can be rewritten 

(8.32) 

where '"Yj = ln ( �) and the sum is over all sites. Equation (8.32) is the 
equivalent of a conditional logit model with a full set of site-specific con­
stants. Because a full set of site-specific constants cannot be estimated 
(because of the dummy variable trap) , it is necessary to normalize on one 
of the constants. Without loss of generality, we normalize on alternative 
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1 such that equation (8.32) becomes 

(8.33) 

where vj = ln ( t:J1 �) and vi = 0 .  
When uncorrected, choice-based sampling provides results that simply 

reflect the sampling, rather than the choices that individuals have made. 
For consistent estimates of parameters, the sample mean probabilities 
of site choice need to approach the population proportions. When sam­
pling is on-site, estimation without correction will provide consistent 
estimators only accidentally. 

8. 7. 3 Consequences and Solutions in Practice 

To investigate further the consequences of and the possible solutions to 
choice-based sampling, we consider four possible cases: 
Case 1: Population proportions are known, and X contains site­

spec�fic constants. 
If the population weights are known, then the problem of choice-based 

sampling becomes a problem of properly adjusting the site-specific con­
stants. Suppose Xij/3 = aj + Xijf3* , where ai is a constant associated 
with site j .  Then equation (8.33) becomes: 

eX7Jf3*+a; pij = "' X* f3*+a* u e  "'k k 
k 

(8.34) 

where aj = aj + 'Yj . Because 'Yj is known if the population weights are 
known, we can estimate a conditional logit with a full set of site-specific 
constants and then adjust the constants by the appropriate weights. 
That is, a conditional logit with alternative-specific constants will return 
estimates of (3* and aj . Estimates of aj can be found by subtracting 
'Yj from aj . Cosslett (1981) shows that this procedure yields consistent 
and efficient (maximum likelihood) estimates of aj and (3* . 
Case 2: Population weights are known, and X does not contain site­

spec�fic constants. 
If Xj(3 does not contain a constant then the population weights must 

be directly incorporated into the likelihood function. This is difficult, 
and a better procedure might be to proceed according to case 1. Site­
specific constants may be appropriate in a RUM. If we proceed according 
to case 1 ,  and estimate the model assuming site-specific alternatives, 
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we can simply adjust the resulting constant estimates by the known 
population weights. Under ideal circumstances (perfect specification) , 
the set of site-specific constants will be insignificantly different from !'j . 
This procedure will provide consistent estimates of (3* . However, there 
is a loss of efficiency relative to incorporating the weights directly into 
the likelihood function. 
Case 3: Population weights are unknown, and X contains site-spec�fic 

constants. 
In the case where the population weights are unknown, the problem 

of choice-based sampling is difficult to solve. Consistent estimates of 
{3* can be obtained, but estimates of aj cannot be identified. This is 
straightforward because estimates provided by a conditional logit with a 
full set of site-specific alternatives will yield estimates of {3* and aj (as 
in case 1 above) . The problem, however, is that !'j is unknown and its 
estimate is embedded in the estimate of aj along with the estimates of 
aj . Separate identification of the weight factors and the constants is not 
possible. Ignoring the weights and estimating a model with site-specific 
alternatives results in consistent estimates of {3* (see Cosslett 1981) .  
The problem is the inability to identify aj .  Failure to identify estimates 
of aj means we cannot calculate estimates of the population probability 
estimate Pr (j jXij ) = '£ ex;�f3h/3 .  This probability is fundamental to h e  ' 
welfare calculations from the RUM (as seen below) . 
Case 4: Population weights are unknown, and X does not contain 

site-spec�fic constants. 
A possible (but not happy) solution to the problem in case 3 is to 

assume that the true population model does not have site-specific con­
stants, and to estimate a model that does have a set of constants. In 
this case, it is necessary to assume that the estimates of the site-specific 
constants are direct estimates of the weight factors !'j . Under this as­
sumption, the estimates of {3* will be consistent, but less efficient than 
the case where the weights are known (case 2) as information from the 
sample is used to estimate the weight factor. This method requires one 
to maintain the assumption that site-specific constants are not needed 
in the population models and as a result estimates of the site-specific 
constants simply represent the choice-based sampling weights. 

Cases 3 and 4 highlight the conundrum of choice-based sampling in 
RUM's. If choice-based sampling is ignored and no site-specific con­
stants are included in the model, estimates of {3 will be inconsistent and 
inferences based on those parameter estimates (including welfare mea­
sures) will be invalid. If a set of site-specific alternatives is included, the 
estimates of the constants must be taken on faith to be direct estimates 
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of the weight factors 'Yj . Otherwise, it is not possible to calculate the 
population probabilities Pr (j !Xj )  = exp(Xj/3)/ L.h 

eX,f3 , and welfare 
measures are once again invalid. 

The obvious conclusion to this discussion is that case 1 represents 
the most satisfactory model for addressing choice-based sampling. This 
means that information is needed on the population proportions of visi­
tors to correct the non-random choice-based sample. Ideally, these pro­
portions would be known quantities and not estimates, but this is un­
realistic. Using estimated population proportions results in a decrease 
in efficiency relative to known proportions, but this is an unavoidable 
consequence. The alternative is to ignore choice-based sampling and 
have inconsistent parameter estimates and invalid welfare estimates. 

8.8 Welfare Calculations 

Just as in the other models we have reviewed, welfare measurement in 
random utility models is a two step process: estimation of parameters 
and calculation of welfare effects. The standard welfare measure used 
in random utility modeling are often attributed to Small and Rosen 
and Hanemann (1982, 1999b) . We use the indirect utility function in 
equation (8.9) as a basis of welfare calculation. Writing it as a function 
of the arguments of the utility function gives: V ( c, q, s ,y) = 

(8.35) 

Here we have assigned arguments to the site utility function: Vim = 

v(y - C[m, qlm , sm ) but we have not assigned a functional form to the 
utility function. We define WT P implicitly with the indirect utility 
function, as explained in chapter 1. WT P will be computed as the 
willingness to pay to achieve conditions ( c* , q* , s*) when the current 
conditions are ( c, q, s) . This change can incorporate changes in travel 
costs, removal of sites or changes in the quality of sites or characteristics 
of nests. (The elimination of a site can be simulated by letting the cost 
go to infinity. ) WT P is defined implicitly as 

V(c, q, s ,y) = V(c* , q* , s* , y - WTP) . (8.36) 
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When V(c* , q* , s* , y) > V(c , q, s,y) , WTP > 0 and has the standard 
interpretation. When V(c* , q* , s* , y) < V(c , q, s ,y) , WTP < 0, and one 
may think of this as the amount of income that compensates the indi­
vidual for the reduction in the attribute vectors. It is perhaps easiest 
to think of WT P as a benefit measure--positive for improvements in 
the circumstances and negative for deteriorations. For example, when 
sites are removed, WT P will be negative, and when the quality of sites 
improves, WT P will be positive. 

It is clear from the expression for the indirect utility in equation (8.35) 
that the welfare measure depends on the functional form of the utility 
functions. Suppose the utility function is additive and linear in income: 

where Vjk is the non-income component of utility. The arguments of 
Vjk are �k. Sk , and ck . Then willingness to pay can be written as an 
explicit function of the difference between expected maximum utilities 
before and after the change. That is, suppose that the deterministic 
utilities for the alternatives change to v]k · Then the willingness to pay2 

( K [Jm �] em) 
2 A brief recapitulation: In 2: am 2: e Bm = m=l l=l 

( K {3,1(y -WTP) 
In L ame ilm em m=l 
In (ei3v(y-WTP)) 

Of course In ( ei3Y (y-WT P)) = f3y (y -WT P); substitute this, and then extract f3yY 
from the left hand side in the same way. Clearing the terms leaves the expression in 
the text. 
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will be 

WTP 

(8.37) 

This is the indirect utility in the original state less the indirect utility 
after the change, normalized by the marginal utility of income. The 
term Vjk will depend on the site-specific characteristics such as costs 
and time and quality characteristics, as well as the nest characteristics. 
We have omitted the individual's index, but some of the arguments of 
Vjk vary across individuals. For example, in a model of fishing choice, 
costs of travel might vary depending on whether the angler is trailering 
a boat . In practice, researchers calculate welfare measures for two kinds 
of changes: in the attributes of the sites or nests, and in the availability 
of sites. The latter measure constitutes the value of access to sites. 

8. 8. 1 Welfare Measures for Quality Changes 

The characteristics of sites can change in a variety of ways. Beaches can 
be wider, catch rates at fishing sites can be higher, water pollution can 
increase. These changes can occur at a single site or at all sites. One 
of the advantages of the RUM is its ability to describe in a realistic way 
the kinds of changes that households might experience. To write out the 
calculations of welfare changes, it is necessary to write out explicit forms 
of the utility functions. These forms are usually linear in parameters, 
and quite frequently linear in variables. We start with the linear utility 
function given in equation (8. 13) 

v(y - Cjk , <]jk , sk )=f3y (Y - Cjk) + <]jkf3 + Skf. 
Now suppose that q, s change to q* , s"' . Using the basic welfare measure 
for the constant marginal utility of income gives the following expression 
for WTP 

WTP = (3-l y . 

(8.38) 
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With a linear utility function, this is the basic expression for calculating 
the welfare effects of quality changes at different sites. Essentially one 
computes the indirect utility with and without the change, and then 
normalizes by the marginal utility of income. This measure of willingness 
to pay is intuitively appealing because it reflects all of the changes that 
occur, not just at the sites that the individual actually visits. In fact, 
what the individual is observed to do influences only the parameter 
estimates, not the welfare calculations. 

Incremental Quality Changes 
Suppose that the change in quality takes the following simple form: 

qjk = CJ.jk + �q 
where �q is a vector of incremental changes m site attributes that 
are the same across sites. For example, suppose we want to value 
the addition of 10 parking places at all beaches, or we want to cal­
culate the value of an additional mile of recreation trails at all state 
parks. To simplify matters a bit, we use the following notation: X1k = 
{ Cjk ,  CJ.jk > sk} and {3*= {-,BY , {3, 1} . The new set of site characteristics 
will be { Cjk ,  CJ.jk + �q, Sk } . Substituting into the expression for WT P 
for quality change in equation (8.38) yields 

ln ( t am [I= exp(X1m@o*:b.qf3)] 0m) m=l l=l 

( K [ Jm X· r-1* ] Om) - ln 
m�l 

am 1� exp(� ) 
(8.39) 

where {3 is the vector of parameters associated with the changed quality 
attributes. Because the term does not change by nest or site, it can 
be factored, just as income or WT P has been factored earlier. Upon 
simplification, the value of the quality change becomes: 

WTP �q{3 /,6 + ln _m_=_l_-=-!=---.::1'---------=--::-
( t am [I: exp(� )] Om ) 

Y K [ J ] Om 
�q{3 

-r;;· 

m�l 
am �� exp(xe,r ) 

(8.40) 

The log sums are equal, so the logarithm of the ratio is zero. In this 
special case, the value of a quality change across all sites can be found 
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by taking the sum of the quality changes multiplied by the associated 
parameters and dividing by the marginal utility of income. It should be 
emphasized that this only holds for the special case in which there is a 
�q change in a site attribute across all sites. This derivation, however, 
gives a simple interpretation to the parameters of the linear random util­
ity model. The parameter estimates normalized by the marginal utility 
of income measure the value of a one unit change in the corresponding co­
variate across all sites. For a utility enhancing quality change, �qj3 ::=: 0 
and WT P ::=: 0 represents the willingness to pay for the quality improve­
ment. Similarly, for a utility degrading quality change, �qj3 .S 0 and 
WT P .S 0 represents the increment in income that will compensate the 
individual for foregoing the change. 

The Conditional Logit RUM 
To this point, the derivations have assumed a general form for the error 
distribution: the generalized extreme value error. As shown previously, 
if em = 1 and am = a for all m, then the nested logit random utility 
model collapses to the conditional logit random utility model. Suppose 
that the site utility function is linear in income and attributes, as in 
equation (8.13). In this case, the value of a change in site attributes 
from q, s to q* , s* is found from equation (8.37) : 

In (1 am [
,
t, exp(� )n 

- In C�:m [,t, exp(%:: ) n (8.41) 

This can be rewritten as a single summation by creating a new index 
n ,  n = 1 ,  . . .  , J, each n for a j, k combination: 

(8.42) 
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Example 29 The Value of Lengthening Beaches 

For a simple demonstration of estimating the welfare of changing a 
characteristic of all sites by some increment , consider the beach model 
of Parsons, Massey and Tomasi estimated in Tables 8.4 and 8.3. The 
only continuous variables included in the example are the travel cost 
of a trip, and the length of the beach in miles. Suppose we wanted to 
know the value of an additional mile of beach at all beaches. That is, 
what is the willingness to pay by each individual per trip to have the 
option of an additional mile of beach at each beach. From equation 
(8.40) , the WT P for an additional mile at each beach is simply the ratio 
of the parameter estimate on the length of the beach divided by the 
marginal utility of income. For the nested logit model, this value is: 
WTP = D..qf31 /f3y = 0 .251/0.083 = $3.02 per trip. For the conditional 
logit model, this estimate is WT P = 0.064/0.055 = $1 . 16. 

The Non-Linear in Income Case 

The balanced budget random utility model is a model of a choice oc­
casion. It is hard to be definitive about the nature of the budget for a 
choice occasion. Hence linearity in income is an attractive feature be­
cause income then disappears from probability statements and welfare 
calculations. The elimination of income is also advantageous because in­
come is most likely measured with a good deal of error. It is frequently 
interpolated from ranges and may mix before and after tax income. Nev­
ertheless, some formulations of the site utility function include income 
in a non-linear way. 

Suppose the site utility function is given by v(y - Cjk , �k , s,) , and 
the random part of preferences is distributed GEV, so that we have a 
nested model. Then WT P is implicitly defined by 

t;
, 
am [t exp( v(y - c,;�<l!m , ,�

)f" 
t;
, 

a,, [t exp( v(y - C!m -;:,TP,'17m• ': )f" (S.4J) 

For a non-linear-in-income indirect utility function, there will typically 
be no closed form solution for WT P. When this is the case, the re­
searcher must resort to approximations to the WT P or numerical meth­
ods for finding a solution to equation (8.43). The approximation cre­
ates linearity with a first order Taylor's series. It can also be solved by 
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simulation, for which there is an evolving literature. (For example, see 
Herriges and Kling.) 

Despite the increasing ability to compute non-linear income effects, 
it is unclear whether this is a worthwhile enterprise. The non-linear 
income effect has a variety of problems. It is not obvious what budget 
is being balanced on a single choice occasion, nor what income ought to 
be included in a RUM model. Income effects in a random utility model 
are as apt to measure the differential impacts of socioeconomic status 
as the effect of budget constraints. The heart of the conceptual issue is 
whether the marginal utility of income is constant. It is not unreasonable 
to argue that the marginal utility of income varies by income levels and 
hence across respondents. It is more implausible to maintain that the 
marginal utility of income changes because of different costs at different 
sites. 

One means of modeling different income effects is simply to use a 
system of dummy variables for different levels of income. For example, 
let the income term be 

where 81 = 1 when y ::::; y* , 0 otherwise, and 82 = 1 - 81 . For a given 
individual, the income drops out of the probability statement. The 
income term becomes 

This allows the marginal utility to vary by household but leaves it con­
stant for a household with respect to the typical changes that occur in a 
RUM model so that the welfare calculations for linear-in-income utility 
functions work. 

8. 8. 2 The Loss of Sites 

Nested Logit 

The RUM is frequently used to value the loss of access to a subset of 
sites. For example, suppose an oil spill results in the closure of a subset 
of beaches along the east coast of the United States. The RUM can be 
used to measure the welfare effects of this closure. The researcher knows 
only part of the individual's preferences, and must use the expected 
indirect utility function to measure the welfare effects of the loss of a site. 
The value of lost access is based on the change in expected maximum 
utility after the site is eliminated. Assume a constant marginal utility 
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of income indirect utility function of the form: Vjk = Vjk + f3yY· Then 
we can utilize the basic WT P statement in equation (8.37) . The loss of 
access is modeled by simply dropping the sites that are eliminated when 
computing the vjk . Without loss of generality, suppose the site that is 
closed is site 1 ,  1 (that is, the first site in the first nest) .  Then utilizing 
equation (8.37) gives 

WTPn !3;' · [In( a, [t, exp( �:)] '' + t, am [t, exp( �=)] o,. ) 

- ln(t
,
""' [t cxp( �,: r )] (8.44) 

This WT P will be negative because the site is lost. This is the basic 
expression one would program for the welfare calculation. The exten­
sion to more sites or other sites involves omitting them from the sums in 
the first term on the right. The computations do not strain computer 
capacity but, since many sites are involved, the results of the compu­
tation are not always obvious. Bearing in mind that the correct way 
to calculate welfare measures entails the use of equation (8.44) , we can 
rewrite it as an expression that is more grounded in observation: 

and 

WTP - l ( alCih + D  ) · (3- l 1 1 - n - 91 Y 
a1 [ C + e T,-J + D 

K [ J,., l l}m D = 1; am [;; exp(�: ) 

From the equations for the conditional probability of selecting a site, 
given the nest (equation 8. 16) and the marginal probability of choosing a 

nest (equation 8.17) we can see that Dj(a1 [c + e� r' +D) = 1-Pr(1 ) .  
The remaining terms can be rewritten so that 

a1C6' j(a1 [c + e�r' + D) 
(1 - Pr(1 1 1 ) )9 ' Pr(1) .  
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Hence the expression for willingness to pay can be written 

WTP11 = ln[(1 - Pr(1 1 1) )11' Pr(1) + (1 - Pr(1)) ] · !3':/. (8.45) 

The argument of the logarithm is less than one, so that the WT P is less 
than zero, because a site is being removed. In the context of the nested 
logit , the term Pr(1) is the probability of choosing the first nest. The 
expression makes intuitive sense. As the probability of choosing the first 
site, Pr( 1 1 1 ) ,  goes to zero, WTP goes to zero. When Pr(l l l )  goes to 
one WT P goes to ln(1 - Pr(1 ) ) .  As the probability of choosing the first 
nest goes to one, WT P becomes B1 ln(1 - Pr(1) ) .  

This formula can be used to assess the sample mean WT P. A con­
sistent estimate of WT P11 is found by substituting consistent estimates 
of Pr(1 ) ,  Pr(1 1 1 ) ,  B1 , and /3y in equation (8.45). Consistent estimates of 
Pr(1 ) ,  and Pr(1 1 1) can be found by observing the sample proportion of 
individuals choosing nest 1 ,  and choosing site 1 conditional on choosing 
nest 1 .  Consistent estimates of the parameters B1 and /3y are found from 
maximum likelihood estimation of the nested logit model. The formula 
can also be used to calculate an individual's willingness to pay, by com­
puting the probabilities with the individual's covariates. Calculating the 
probabilities helps assess the welfare measures intuitively but provides 
no computational advantage. 

Example 30 Value of Loss of Access: Nested Logit 

Continuing the beach example from Parsons, Massey and Tomasi, we 
find the two beaches with the largest proportion of visits were Cape 
Henlopen State Park (denoted CH) (Pr(CH) = 0.262) and Rehobeth 
Beach (denoted R) (Pr(R) = 0 .127) . Both beaches are located in the 
South nest, and the conditional proportion of trips taken (conditional on 
each trip being to a South beach) is 0.281 for Cape Henlopen (Pr(CHIS)) 
and 0. 136 for Rehobeth (Pr(RIS) ) .  Of the trips taken, 0.933 (Pr(S) ) 
are to South beaches. From equation (8.45) ,  the willingness to pay for 
loss of access to Cape Henlopen and Rehobeth independently from the 
nested logit model estimated in Table 8.4 are 

WTPcH ln[(1 - Pr(CHIS))11 ' Pr(S) + (1 - Pr(S) )] · !3:;/ 
ln [ (1 - 0.281)0·50 (0.933) + (1 - 0.933) ] /0.083 
-$1 .84 
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ln[(1 - Pr(R IS) )0 ' Pr(S) + (1 - Pr(S))] · f3;1 

ln [(1 - 0.136)0·50 (0.933) + (1 - 0.933)] /0.083 -$0 .82 . 

229 

These calculations are the same as one would make using expression 
(8.37) but they can be checked more intuitively with the probabilities. 
Note that we have used the probabilities calculated at the mean vector 
of covariates. We address variation across individuals and randomness 
below. 

Conditional Logit 

If we assume the conditional logit (Bm = 1 and am = a for all m) , the 
willingness to pay for access to site 1 comes from the general expression J J 

WTP1 = /3;1 - ln(L >vj i L >vj ) 
j=2 j=l 

(8.46) 

where we have substituted a single index in the absence of nests. The J 
probability of selecting site h is eiih / I:; eii1 . Using this result we simplify 

j=l 
the WT P to avoid the loss of site 1 :  

WTPn = ln(1 - Pr(1) )/Py · (8.47) 

This expression makes intuitive sense, just as the nested logit analogue. 
If the probability goes to zero, the willingness to pay goes to zero. These 
measures of the economic losses from the elimination of a site as a func­
tion of probabilities are useful in assessing in a quick way what the logit 
and nested logit models tell us about welfare calculations. 

For very small Pr(1 ,  1 ) ,  ln (1 - Pr(1 ,  1)) � - Pr(1 ,  1 ) ,  implying 

WT Pn � - Pr(1 ,  1 )/  Py · (8.48) 

Taking the average across all N individuals in the sample, the sample 
average WT P to prevent loss of access becomes: 

WTPn � _ I:; Pr(1 ,  1 )  = _ Pr(1 ,  1 )  
Nf3y Py 

(8.49) 

where Pr(1 ,  1) is the sample mean probability of visiting site 1. In 
the sampling is exogenous, a consistent estimate of this probability is 
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found by observing the sample portion of individuals visiting site 1 .  
Therefore, a quick approximation to the value of lost access to  a site in 
the conditional logit framework is the sample proportion of visitors to 
that site divided by the negative of the marginal utility of income. The 
accuracy of this approximation will diminish quickly as the probability of 
visitation to the eliminated site increases. For example if Pr(h) = 0.01 , 
ln (1 - Pr(h)) = -0.01005, less than a 1% difference. But if Pr(h) = 0 . 1 ,  
ln (1 - Pr(h)) = -0 .105, a 5% error. The expressions for WT P based on 
probabilities are sometimes convenient for quick calculations of WT P, 
but don't substitute for the correct calculations of individual WT P. 

Example 31 Value of Loss of Access: Conditional Logit 

In the beach example, the unconditional proportions of individuals 
choosing the two most popular beaches: Cape Henlopen ( CH) and Re­
hobeth (R) beaches are 0.262 and 0. 127. Substituting these probabilities 
and the conditional logit estimate of the marginal utility of income from 
Table 8.3 into equation (8.47) gives the value of loss of access to these 
two beaches per trip as 

WTPcH 

and 

ln(1 - Pr(CH))/f3y 
ln(1 - 0.262)/0.0545 
-$5.57 

ln(1 - Pr(R) )/f3y 
ln(1 - 0. 127)/0.0545 
-$2 .49 . 

Using the approximation in equation (8.49) , we find the values of lost 
access to these two beaches are $4.81 and $2.33 per trip. The approxi­
mation for Cape Henlopen is off by almost 14% while the approximation 
for Rehobeth is off by 6%. These are the most visited beaches in the 
sample. For a beach with very small proportion of visitors (for example, 
a number of beaches have only one trip out of 9330 for the sample) the 
approximation is much better. 

Loss of Access to Multiple Sites 

The same measure can be used to value the loss of any subset of sites. 
However, because logit models and their nested versions require that one 
alternative be chosen, the WT P to prevent lost access to all alternatives 
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simultaneously is not well defined. This can be seen from equation 
(8.46) by noting that if all sites are eliminated, the numerator goes to 
zero, leading to an undefined operation. This is sensible, because the 
models we have analyzed relate to site choice, and the decision not to 
visit any site is not part of the analysis. 

Welfare measures in the random utility model depend on substitution 
among sites. The value of the loss of two sites independently is less 
than the value of those same two sites simultaneously. Consider the 
case of eliminating two sites (sites 1 and 2) to a single individual. Take 
the simple case of a decision structure with no nests, and sites indexed 
j = 1 ,  . . .  , J. Equation (8.47) defines the value of lost access to site 1 as 

WTPj = - ln (1 - Pr(j))  /,By 

where Pr(j) is the probability the individual will visit site j. This would 
be calculated using equation (8.46) . The elimination of site one assumes 
that sites 2 through J are viable substitutes for site 1 ,  so a portion of 
the probability of visiting site 1 will be shifted to the viable substitutes. 
The value of lost access in equation (8.47) generalizes to the case of 
eliminating a subset of sites J s as 

WTPJs = - ln (1 - L Pr(h)) /,By 
hEJs 

where the sum is across the set of sites to which access is eliminated. 
For the elimination of sites 1 and 2, this measure becomes: 

WTP12 = - ln (1 - Pr(1) - Pr(2))  /,By . (8.50) 

As more sites are eliminated, the substitutes for the remaining sites are 
reduced. The WT P to avoid loss of access goes up as the number of 
substitutes declines. To see that the sum of the values of independent 
losses of sites 1 and 2 is less than the value of the losses of sites 1 and 2 
simultaneously, sum WTP1 and WTP2: 

WTP1 + WTP2 = - ln[(1 - Pr(1)) · (1 - Pr(2) )l/,8y . 

WT P1 + WT P2 will be less than WT P12 in absolute value because 
( 1  - Pr(1 ) )  ( 1  - Pr(2) ) > 1 - Pr(1) - Pr(2) which holds for all Pr(j) > 0 .  

Example 32 Value of Loss of Access to Multiple Sites 

In the beach example from the previous section, we calculate the con­
ditional logit estimate of the sample mean value of lost access to Cape 
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Henlopen ( CH) as $5.58 per trip, and the sample mean value of lost 
access to Rehobeth as $2.48 per trip. The sum of these, $8.06, is an un­
derestimate of the simultaneous loss of both sites. The correct estimate 
of the value of lost access per trip to both sites is: 

WTPcH,R - ln (1 - Pr(CH) - Pr(R)) /f3y 
- ln(1 - 0.262 - 0. 127) /0.0545 
$9.03. (8.51 ) 

Ignoring the loss of substitutability between the two sites underestimates 
the value of lost access by 11% ($0.97) per trip. When the number of 
eliminated sites grows, the discrepancy grows. 

8.8. 3 Summary: Welfare Measures 

We repeat the results for measuring welfare with the nested and condi­
tional logit models in the following table. We assume that the utility 
function is given by 

Vjk = f3yY + Vjk 
for the nested logit version and by 

Vn = f3yY + Vn 
for the conditional logit, so that we have a general form for the utility 
function except that utility is linear in income. These welfare measures 
are written down for convenience. Our discussion has focused on the 
loss of sites, because that is the most frequent use of RUM models. But 
nothing about the discussion or Table 8.5 prevents the calculation of 
welfare measures for adding sites. One needs to observe the attribute 
vector for the new sites, and then let the new site indexes reflect the 
addition of sites. Valuing a new service is an advantage that a random 
utility model does not share with other approaches such as the gener­
alized corner solution model or the generalized count model. It is a 
consequence of the specifying utility as a function of attributes, rather 
than idiosyncratic commodity demands. 

8. 8.4 Statistical Properties of WTP 

The random utility model requires more effort in the estimation and 
calculation stages than the single site modes or most contingent valu­
ation models. As a consequence, there is relatively less exploration of 
the properties of estimates of WT P. Part of the uncertainty in WT P 
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TABLE 8 .5 .  WTP for Logit Models 

Conditional 
Logit 

J 2::: exp(ii�) 
i ln( "�1 ) 

Y 2::: exp(iin) 
n = l  

Nested 
Logit 

2::: a"' [ 2::: exp( � )] 0"' 1 rnEK* lEJ*' - ln "' 
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Notes: The deterministic utility is f3yY + Vjk ·  In the loss of sites case, 
for the conditional logit, there are J alternatives in the base case and 
J*in the new scenario. For the nested logit, there are K nests and J k 
sites per nest in the base case, and K* nests and Jk, sites per nest in the 
new scenario. In the change of attribute case, vjk is the new site utility. 

estimates is already expected out in order to get the indirect utility func­
tion. Equation (8.9) in effect eliminates the randomness in preferences 
that confounds estimates of WT P in CV models and other recreational 
demand models. With the randomness in preferences having been ex­
pected out, one is left only with uncertainty in parameters. A quick look 
at Table 8.5 illustrates the substantial nonlinearity of WT P as a function 
of random parameters. This uncertainty is not necessarily small. Ran­
dom utility models often have large numbers of parameters. The only 
effective way to grasp the randomness of individual WT P estimates is 
to execute the Krinsky-Robb procedure, inducing the distribution of the 
WT P estimate by taking draws from the normal distribution given by 
the parameter estimates. 

One must also be cognizant of the difference between the WT P esti­
mate for an individual, calculated from Table 8.5 with an individual's 
covariates, and the sample mean, which would be the mean of individual 
estimates of WT P. Since WT P is a non-linear function of covariates, 
the sample mean of WT P will not equal the WT P calculated at the 
mean of the covariates. 
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8.9 Linking the Site Choice with the Quantity of 
Trips 

The random utility model is feasible and flexible, but is not fully consis­
tent with a utility-theoretic choice of the number of days within a period 
of time, such as a year or a recreational season. We have discussed before 
some of the various ways one can model the number of days consistently. 
The conceptually most attractive approach is the generalized corner so­
lution of Phaneuf, Herriges and Kling. The corner solution approach 
incorporates the choice of whether to visit a site with the number of 
times to visit the site in a way that is consistent with demand theory. 
This model presents an especial challenge when there are large num­
bers of alternatives. A second alternative is the repeated logit model, 
in which the recreationist is assumed to have a fixed number of choice 
occasions, and for each occasion chooses whether to recreate and then, 
conditional on choosing to recreate, picks the site. The repeated logit 
requires the assumption that the choices are independent across choice 
occasions. See Morey, Rowe and Watson for more on the repeated logit 
model. A practical and popular approach to incorporating the number 
of days involves first estimating the site choice model and then connect­
ing it with a quantity-determining equation. Since the original paper by 
Bockstael, Hanemann and Kling, researchers have used this approach, 
which has come to be known as a linked model. It allows the researcher 
to measure both the site effects and the quantity effects of changes in 
the site attributes. Herriges, Kling and Phaneuf deal extensively with 
the linked model. 

To understand the need for a connection between site attributes and 
the number of days recreationists spend on an activity, imagine an ex­
treme circumstance. Suppose that one is modeling the site choice of 
recreational fishing over a period of time, say a year. And suppose for 
biological reasons, the catch rate for a major species is dramatically re­
duced. When the catch rate is an important attribute, this could have a 
substantial effect on the deterministic utility at each site, reducing the 
expected maximum utility. It would be quite reasonable to expect the 
total number of days the angler spends fishing to change as well. In­
deed, for large changes that are equal at all sites, there may be no site 
reallocation but there may well be large changes in the number of trips. 
Recall that for a conditional logit, the addition of a constant to each 
alternative's utility does not alter the choice probabilities. The linked 
model is a way to handle this issue. 

In the linked model, one calculates the indirect utility according to 
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equation (8.9) . This depends on the costs and attributes of all the 
alternatives in the individual's choice set. It can accommodate different 
choice sets for different individuals if that approach has been used in 
the estimation of the site choice model. A crude approach to welfare 
can now be constructed. Note that the indirect utility will change when 
the attribute vector, prices, or access to sites changes. Conditional on 
choosing a site, the indirect utility divided by marginal utility of income 
is the WT P for a trip. The drawback of this measure is that individuals 
are required to choose a site-that is, they do not have the option in the 
site choice model of not choosing a site. Denote the change in the value 
per day as 

P = [V(c, q, s,y) - V(c* , q* , s* ,y)J,B;1 
where the indirect utility function V ( c, q ,  s,y) i s  the expected maximum 
utility, and should be computed according to equation (8.35) . (See 
Morey 1994 for more details on this inequality. ) Then the following 
inequality holds: 

x0 P ::=; true welfare effect :::; x* P. 

The superscript 0 indicates the initial value of days and the asterisk 
indicates the subsequent level of days. When P < 0, then the true 
welfare effect is negative, but multiplying by the initial number of days 
will give damages that are too large in absolute value but negative, and 
hence too small (too negative) . Multiplying by the final value of the 
days gives a damage estimate that is too small in absolute value, but 
because P < 0, too big. When P > 0, trips will increase, and the initial 
quantity of trips times P will not account for the increased demand. 

Of course, knowing the level of trips after the change is not so easy. 
A practical but utility-inconsistent approach is to predict the change in 
trips. Consider the demand function for individual i :  

x? = f(Vi , zi , r/ ) 

where vi is the individual's calculated expected maximum utility, zi is 
a vector of socioeconomic variables and 7)i is a random element. One 
can estimate this equation, recognizing that the quantity demand is 
censored, so that a Tobit or Poisson is appropriate. Then following the 
change in the attribute vector, a new value of Vi is calculated. This can 
be used to predict the new level of trips, xi . Then one can use various 
combinations of x0 and x* to approximate welfare. Using this equation 
we calculate the welfare measure from the linked model as 

WTP = x* · [V(c, q, s,y) - V(c* , q* , s* ,y) J,8;1 
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where the x* is a prediction of the new level of trips based on a new 
value for V. Naturally this would be calculated for individual i ,  and the 
covariates would reflect the opportunities that the ith individual faces. 
This would be an overestimate of the true WT P for the change. 

There are several difficulties with the linked approach. Hausman, 
Leonard and McFadden develop a variant of the model, with the claim 
that it is utility-consistent. However , as Herriges, Kling and Phaneuf 
report, the utility-consistent claim is quite limited. There is economet­
ric difficulty with the estimation of the function f (Vi , zi , 'T}i ) because 
the argument V is a function of estimated parameters, and hence the 
parameter estimates are inconsistent. Murphy and Topel explain this 
problem and provide an approach for correction. 

8. 10 Estimation Issues 

8. 1 0. 1 Nesting Structures 

A significant literature has emerged investigating methods for testing 
the nesting specification in nested logit models. The structure of nests 
is a strategic modeling decision, based on an understanding of choices 
that individuals make and a sense of how to structure plausible prefer­
ences. This is a case where there may be conflict between the behavioral 
implications of an assumed decision process and the fit of the model as 
implied by statistical tests. In many cases, the sequence of choices im­
plies a clear nesting structure that can be imposed. For example, in 
the choice between geographic regions (North and South) and then the 
recreation beach conditional on the region, the nesting structure is clear: 
first the individual chooses between North and South and then the in­
dividual chooses which beach to visit. Reversing the decision process is 
nonsensical. The individual cannot first choose the site and then choose 
the geographic region as the choice of site implies the choice of region. 
Other nests are feasible. For example, one might consider counties as 
upper level nests. It would not be nearly as natural as the North-South 
nest , however. 

This discussion assumes that the source of the appropriate nesting 
structure comes from individual behavior. But, as Kling and Thomson 
note, 'while sequential decision making may be an intuitively appealing 
way to interpret [inclusive value] parameters, such [nesting structures] 
can be due to any similarities among alternatives that are unobserved 
to the researcher' (p. 104) . This implies that while behavior might be 
a primary determinant in designing the appropriate nesting structure, 
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lack of information on the part of the researcher must also be considered 
in designing the nests. Nevertheless the appropriate set of nests is a 
strategic research choice that should be made with a full understanding 
of the recreationists' motivation and behavior. 

Likelihood Dominance 

In any of these cases, there are methods for testing between two nest­
ing structures based on competing but plausible models of behavior. 
Because there are so many different nests that can be constructed, it 
makes little sense to test among nests that are not somehow plausible 
models of behavior. Kling and Thomson advocate the use of a likelihood 
dominance criterion introduced by Pollak and Wales. When comparing 
between two nested logit models (called A and B) estimated on the same 
data, but with different nesting structures, the likelihood dominance cri­
terion chooses the model with the larger log-likelihood function value as 
long as the difference between the log-likelihood functions satisfies 

Here dA is the number of estimated parameters in model A, dB is the 
number of estimated parameters in model B and x� is the critical value 
from a Chi-squared distribution with d degrees of freedom and a given 
critical level. (For the test to be valid, the models are assigned the A 
and B labels so that dB ::0:: dA.)  Note that this test has a similar form 
and interpretation to the likelihood ratio test. If the difference between 
the log-likelihood functions ln(LB) - ln(LA) is large and positive, then 
the likelihood dominance criterion favors nesting structure B. If the 
difference is large and negative then the likelihood dominance criterion 
favors model A. If the difference is small, the test is inconclusive. 

Testing IIA 

Related to the issue of testing the nesting structure is testing the validity 
of the independence of irrelevant alternatives assumption. Recall the 
nested logit model described in equation (8.26) 

ln Li (,B, f', al , . . . , aK , Bl , . . . BK !qjk , sk) 
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The IIA assumption holds within a given upper level nest , but does 
not hold across upper level nests. The IIA assumption holds across 
all sites if Bk = 1 for all k, and ak = am for all k,m. These are the 
same conditions that must hold for the nested logit model to collapse to 
the conditional logit model. A simple test for the violation of the IIA 
assumption in a conditional logit model is a likelihood ratio test between 
the nested logit model (the unrestricted model) and the conditional logit 
model (the restricted model) . The degrees of freedom for the test will 
be equal to the number of inclusive value parameters plus the number 
of alternative specific constants in the nested logit model. In the beach 
example, only one parameter, e, separates the nested logit model from 
the conditional logit model. The likelihood ratio test is equivalent to 
a t-test on the parameter. Testing for IIA can also be done with the 
procedure developed by Hausman and McFadden. 

8. 1 0. 2 Choice Sets 

In many recreational settings, the sampled individuals choose from rather 
different choice sets. Consider a model of recreational fishing in which 
one of the nests is fishing from a private boat. This nest will not be 
available to individuals who do not own or have easy access to a pri­
vate boat. The set of alternative sites assumed to be available to an 
individual has a significant impact on the estimated economic value of 
a recreational trip. The impact is felt in two ways. First, having the 
incorrect set of choices can result in inconsistent parameter estimates. 
Second, welfare calculations will be incorrect if done with the wrong 
choice set. For example, if too many sites are included, then the WT P 
to prevent the loss of a site within the choice set will be underestimated. 
In determining the choice set, we face the trade-off between tractability 
of data and integrity of the behavioral model. 

Consider the standard formulation of the recreation site choice model 
in which an individual is assumed to choose the recreation alternative 
that yields the highest level of utility from among a set of alternatives 
S = { 1 ,  . . .  , J}. The universal set S includes all of the alternatives. In the 
individual's contribution to the log-likelihood function (equation 8.26) , 
the choice set is all of the alternatives. More reliable parameter estimates 
come from choice sets that conform with the choices individuals actu­
ally consider. Individual-specific choice sets can be incorporated into 
the framework by assuming that the ith individual chooses the utility 
maximizing alternative from a subset (Si) of the universal choice set S. 
Individual i will therefore choose alternative j if the indirect utility of 
choosing site j exceeds the indirect utility of visiting all other sites that 
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are contained with that individual's choice set. For the ith individual 
we now include superscripts to denote individual-specific covariates: 

Pr (v (yi - c� , q� , si) + c� 2: v (yi - c� , q� , s�) + c� V m E  Si ) . 
(8.53) 

From the researcher's perspective, the probability that individual i chooses 
alternative j can now be written 

(8.54) 

Note that the denominator is summed over the sites in the individual's 
choice set. 

Some Recent Choice Set Studies 

Haab and Hicks (1999) survey the recent literature on choice set issues in 
recreation demand modeling. Several studies have attempted to narrow 
choice sets in recreation site choice models by ruling out sites based on 
individual or site specific characteristics. Parsons and Hauber use dis­
tance to rule out sites. They find that distance based choice sets can be 
successful in reducing the dimension of the site choice problem provided 
valid substitute or complementary sites are not mistakenly excluded. 
Parsons, Plantinga and Boyle define five different choice set selection 
mechanisms for analysis of lake choice in Maine and find that welfare es­
timates vary considerably across choice set and aggregation treatments. 
Similarly, Jones and Lupi investigate the effect of changing the set of 
substitute activities on welfare measurement in this context and con­
clude that the degree of bias introduced by an ill-defined substitution 
set is an empirical question that will vary on a case-by-case basis. 

Peters, Adamowicz and Boxall allow survey respondents to determine 
the sites they 'considered' before choosing the actual site visited, thereby 
allowing the respondent to define the choice set. Hicks and Strand use 
a similar approach, but rely on the survey respondent's familiarity with 
sites instead of the sites they considered. Parsons, Massey and Tomasi 
combine data on actual site choices made by individuals and stated infor­
mation about sites considered or familiar to individuals. They find that 
conventional discrete site choice models may understate recreational val­
ues if the choice set is ill-defined. Their found relatively little difference 
between models that eliminate unfamiliar sites from the choice set (as 
in Hicks and Strand and Peters et al. ) and models that included unfa­
miliar sites, but allowed the utility function to vary by familiarity level. 
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Haab and Hicks (1997) extend models proposed by Manski, and Swait 
and Ben-Akiva (1987a,b) which allow the choice set to be estimated as 
a function of individual and site specific characteristics. They find that 
the endogenous choice set model can perform significantly better than 
more traditional site choice models. 

8. 10. 3  Sampling Alternatives 

The conditional logit random utility model can be computationally bur­
densome as the number of available alternatives becomes large (although 
as computing power increases, this becomes less of an issue) . It is not 
uncommon for studies in some recreational applications to contain hun­
dreds of alternatives available to the individual. Random sampling of 
alternatives can reduce the computational problem substantially. Ran­
dom sampling involves estimating a standard conditional logit model on 
the alternative chosen by the individual plus a randomly selected subset 
of the remaining alternatives in the individuals choice set. Parsons and 
Kealy (1992) have shown in application to recreation demand studies, 
random draws of alternatives can provide surprisingly consistent results 
by reducing the set of alternatives from hundreds to less than 10. Thus 
one can reduce the computational burden dramatically with little loss 
in the efficiency of estimates. 

To understand why random sampling of alternatives will provide con­
sistent estimates of the parameters from a full conditional logit model, 
we rely on the discussion by Ben-Akiva and Lerman. Consider drawing 
a random sample of size NI from the ith individual's full set of alter­
natives Si . Denote this subset Sk. It is understood that the subset of 
alternatives 8}.,1 contains the actual alternative chosen by the individ­
ual plus M - 1 other alternatives chosen according to some sampling 
scheme. The conditional probability of observing individual i choosing 
subset Sk , given the choice of alternative k, will be denoted Pr (Sk lk) . 
By definition, the probability of individual i choosing alternative k, and 
the sampling subset Sk is 

(8.55) 

where Pr i (k) is as defined in equation (8.54) . The probability of inter­
est however is the probability of individual i choosing site k, given the 
randomly chosen subset Sk . With Bayes rule, this probability can be 
written 

(8 .56) 
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The numerator is defined in equation (8.55) . The denominator can be 
rewritten 

Pr(S}u)  = L Pr (Sk im) Pr i (m) . 
mESfw 

(8.57) 

Upon substitution, the conditional probability of choosing site k given 
S}u becomes 

Pr(S}u lk) · Pr(k) 
Pr( k I s}u) = -----'-�--'---�)---'---"- 0 

I: Pr (S}u lm Pr(m) 
mE Si-t 

(8.58) 

The numerator is the product of choosing sample set of size M for in­
dividual i (S}u) and the ith individual's probability of choosing site k. 
(We suppress the individual subscript i on all variables but the choice 
set . )  The denominator is the sum of such products across the sites in 
the choice set M. McFadden (1978) shows that this conditional proba­
bility exists if Pr(S}u lk) > 0 for all k. In other words, if the sampling 
scheme is such that the probability of choosing any particular subset 
is positive given the actual choice of alternatives, then the conditional 
probability of choosing any particular site exists and can be used to 
estimate parameters of the indirect utility function consistently. This 
is known as the positive conditioning property. The model that results 
when the positive conditioning property holds is not a conditional logit 
model. Substituting the exact forms of Pr i ( k )and Pr i ( m) into equation 
(8.58) and rearranging yields the probability expression 

Pr (k iSk) 

Pr (S}u lk) . ev'/ I: evj 
jESi-t 

I: Pr (S}u lm) evm / I: evj 
mESiw jESiw 

evk+ln(Pr(Sk lk))  L evm+ln(Pr(Sk lm)) . (8.59) 
mE Si-t 

This expression is similar to the conditional logit probability of choos­
ing site k from among the sampled subset of alternatives S}u with the 
addition of the terms ln (Pr(S}u l k) ) . These additional terms correct for 
using only a subset of the full set of alternatives. As such, standard condi­
tional logit estimating techniques based on choosing among the sampled 
subset of alternatives will not in general provide consistent estimates of 
the parameters of the indirect utility function. However, a common spe­
cial case allows standard conditional logit estimation among the sampled 
subset of alternatives. Suppose Pr(S}u lj) = Pr(S}u l k) = Pr(S�1) for all 
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j, k E Sir.  That is, suppose the conditional probability of choosing a 
particular subset of alternatives is the same for all sites contained in the 
sampled subset. This is referred to as the un�form conditioning property. 
Substituting the uniform conditioning property into equation (??) , the 
conditional probabilities cancel and the resulting probability 

(8.60) 

is the conditional logit probability of choosing site k from among the 
M sampled alternatives. This means that if the alternative sampling 
scheme is such that the uniform conditioning property holds, consistent 
estimates of the parameters of the indirect utility function can be found 
by estimating a conditional logit model on the chosen alternative from 
among the sampled subset. 

Ben-Akiva and Lerman give two examples of sampling schemes that 
satisfy the uniform conditioning property. The first is to sample ran­
domly M alternatives without replacement from all of the J possible 
alternatives. If the chosen alternative is among the sample, then the 
subsample has M elements. If the chosen alternative is not an element 
of the subsample then the chosen alternative is added to the subsample 
to create a sample with M + 1 elements. The second alternative is to 
choose randomly M - 1 alternatives from among the J - 1 non-chosen 
alternative (without replacement) and then simply add the chosen alter­
native to create a subsample of size Jlvf. To demonstrate that the uniform 
conditioning property holds for this scheme, note that the conditional 
probability of randomly choosing any M dimensional subset is 

1 
Pr ( k 1Si1) = --('"""J--....,.1),_! - (8.61) 

(M-l) ! (J-M)! 

The uniform conditioning property states that this probability must be 
the same regardless of the conditioning alternative (k) . Because this 
probability simply counts the number of ways M - 1 alternatives can be 
chosen from J - 1 choices, it is independent of the conditioning alter­
native. Note that in this expression, one could include an individual­
specific subscript on the universal choice set J to account for the fact 
that one might have tailored each choice set for the individual before 
sampling. Further, nothing about sampling among alternatives carries 
over to calculating welfare measures. There one must deal with the full 
of alternatives. 
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8. 1 0.4 Aggregation of Sites 

In some settings, researchers employ geographic areas or governmental 
subdivisions as alternatives. These larger areas are aggregates of what 
Ben-Akiva and Lerman call elemental sites. An elemental site is the 
ultimate destination of the individual. For example, for a recreational 
angler launching a boat, a boat ramp would be an elemental site. If 
the researcher analyzes the county in which the individual launches his 
boat, the county should be viewed as an aggregate site. Aggregate sites 
are used in random utility modeling rather than the elemental sites for 
a variety of reasons; the researcher may only know the aggregate sites 
as a destination or there may be too many elemental sites to include in 
the analysis. 

Ignoring the effects of aggregation can give misleading results. Con­
sider two aggregate sites that have elemental sites that are similar in 
attractiveness but that aggregate site A has many more elemental sites 
than aggregate site B. If we looked strictly at the results of estimat­
ing a model with attributes as analyzed previously in this chapter, we 
would find that all of the influence of the larger number of elemental 
sites would be attributed to the characteristics of the larger sites. 

The complete analysis for correcting aggregation is presented by Ben­
Akiva and Lerman. We give the conclusion. The analysis is quite similar 
to the nested logit model because the aggregate site may be thought of 
as a nest of elemental sites. Suppose that the utility of an elemental site 
is given by 

Ujk = Vjk + Ejk 

where j is the elemental site and k is the aggregated site and there are 
Mk elemental sites. The utility of the aggregate site will simply be the 
maximum of the utility of the elemental sites. If the elemental utilities 
are liD, then the utility of the aggregate will approximate extreme value. 
Then Ben-Akiva and Lerman show that we can write the systematic 
utility of the aggregate sites as 

where Vk is the mean utility of the elemental sites, l\1k is the number of 
elemental sites and Bk is the variance of the elemental sites for aggregate 
site k. To get Vk we use the mean attribute vector for the aggregate site 
and the parameter vector: Vk = X{3; Mk is a count of the elemental sites, 
and Bk is the variance of the Ujk ·  The coefficient e is the parameter 
of the distribution of type I extreme value, assumed to be equal to one. 
It can either be constrained to be equal to one or estimated. If one 
assumes that variability is equal across aggregate sites, then the Bk 
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term disappears. And it may be hard to find good proxies for Bk · 
Nevertheless, this specification accounts for aggregating over sites. 

8. 1 0. 5 Socioeconomic Variables 

There are occasions when a researcher may want to use individual char­
acteristics to influence choices. As we discussed in several places, indi­
vidual attributes that do not vary across alternatives will drop from logit 
probabilities. For example, we have shown how income will drop from 
a linear income less cost term. Suppose that we want to show the influ­
ence of individual characteristic Zi on the choice among alternatives. A 
first order approximation of the deterministic part of the utility function 
would be 

vi(j) = {3xij + ajZi 
for j = 1, . . .  K. The difference in utility for alternatives j and m will 
be vi (j)  - vi (m) = {3(xij - Xim) + (aj - am)Zi which will be feasible 
for a random utility model. In a random utility context, this model can 
be estimated by constructing a system of K - 1 variables zi1 = z181m 
where bjm = 1 for j = m, 0 for j i=- m. We can only have K - 1 
of these variables; a full set of K dummy variables creates a singular 
matrix of regressors. This simply means that we choose the value of one 
parameter, say a1 without loss of generality, to be zero. This approach 
essentially constructs a mixture of a conditional logit model, in which 
choices depend on the characteristics of alternatives, and a multinomial 
model, in which choices depend on individual characteristics. Note that 
we could have only individual characteristics, without the {3xij term, 
and we would have simply a multinomial logit model. 

8. 1 1  Conclusions 

In this chapter we have given an exposition of the random utility model 
that will help users in the modeling and estimation process. We have 
limited our discussion to the elemental models-conditional and nested 
logits. When site choices are made among just a handful of sites, the 
generalized corner solution models and the generalized count models 
may perform equally well. But when the number of sites is quite large, 
nested logit and conditional logit models are especially desirable. 
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Hedonic Price Equations 

9. 1 Introduction 

In this chapter we address the problem of estimating hedonic price equa­
tions. Hedonic prices result when quality differentiated goods are sold 
in competitive markets. This is the only topic in the book in which 
we deal with market outcomes. Hedonic models fall under the rubric 
of non-market valuation because goods and services occasionally have 
qualities that are not provided by the market. Most of the environmen­
tal applications relate to house prices, although hedonic wage equations 
have been used to model the willingness to pay to avoid risk. Houses are 
just bundles of attributes. Some of the qualities, such as floor space, are 
obviously market-induced. Others, such as exposure to air pollution, are 
non-market. The essence of hedonic modeling is to use the systematic 
variation in price of goods that can be attributed to the characteristics 
of goods to impute the willingness to pay for the characteristics. 

There is a vast literature on hedonic models. Good overviews include 
the chapters by Bartik and Smith, and Palmquist (1991 ) . A recent 
review of more advanced topics can be found in Palmquist (forthcoming) . 
Evidence of the workings of hedonic models for air quality has received 
substantial documentation in the meta-analysis by Smith and Huang 
(1993, 1995) . These papers review the hedonic studies of air pollution 
that were completed by the late 1980s. While the meta-analysis lends 
support for the idea that property values reflect air pollution, it also 
demonstrates the sensitivity of estimates of marginal willingness to pay 
to strategic modeling and research decisions. This is of course true of all 
non-market valuation methods but the evidence appears more prominent 
when one sees a meta-analysis of the method. 

Hedonic models have been widely used to value environmental ameni­
ties, especially air quality. The variety of applications of hedonic mod­
els rivals the contingent valuation method. For example, hedonic prices 
equations have been estimated for agricultural commodities, automo­
biles, wines and labor services. The earliest applications of hedonics to 
the housing market involved efforts to document the effect of air pollu­
tion on housing prices by Ridker and Henning and by Nourse in 1967. 
These early models used census tract data that gave mean or median 
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housing prices. Current research uses the transactions prices of individ­
ual dwellings. Smith and Huang (1993) provide evidence of the effect of 
air quality on housing prices with a meta-analysis of the relevant housing 
price studies covering 25 years. The thrust of their research supports the 
idea that air pollution affects housing prices. Estimating the effect of air 
quality on housing values is somewhat more straightforward than water 
quality, because there is more cross-section variation in air quality than 
in water quality. Air quality can vary spatially across a large metropol­
itan area because of meteorological conditions. This variation can be 
employed in hedonic models if there are sufficient air quality monitors 
to reflect the variation. There are fewer studies of the effect of water 
pollution on housing prices, principally because of the difficulties of dis­
entangling the water quality effect from the effects of other variables that 
are part of the 'location on the water front' effect. This effect includes 
the improved view, access to water recreation, and perhaps disamenities 
such as congestion from boat traffic. Identifying the effect of water qual­
ity requires more variation in the water quality variable. One means of 
obtaining that variation involves the use of observations of the housing 
market over time (for example Mendelsohn, Hellerstein et al.) Research 
by Leggett and Bockstael demonstrates that including a single variable 
to account for water pollution may overestimate the price effects of water 
pollution if the variable also proxies for other undesirable characteristics 
from the source of the pollution. Careful accounting for the sources of 
water pollution, including all the attributes of the polluting source, may 
reduce the estimates of damage from water pollution per se. Hedonic 
models are also used to value a variety of other environmental variables, 
including locating near a hazardous waste site and noise pollution. 

To form an intuitive feel for hedonic prices, imagine a competitive 
housing market , and consider two houses that are identical in attributes 
and location except that one house has three bedrooms and the other has 
two bedrooms. The difference in the market prices of the two houses will 
necessarily reflect the value of the extra bedroom. If the price difference 
is less than the willingness to pay for the extra bedroom, buyers will 
bid up the price of the three bedroom house until the price reflects 
the difference. A price difference in excess of the willingness to pay 
for the extra room cannot be sustained because buyers will bid up the 
price of the two bedroom house relative to the three bedroom house. 
There is no reason to expect that the same market mechanism will not 
account for the differences in non-market attributes of houses although 
with greater error. The differences in prices of houses with different 
non-market attributes, holding all other attributes constant, will reflect 
the willingness to pay for the differences in the non-market attributes. 
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The practice of hedonic modeling began with Waugh's study of price 
differences in fresh vegetables in 1926. While applications were com­
mon, it was not until Rosen fully rationalized hedonic models that the 
complete workings of hedonic models were understood. Rosen's model 
begins with a distribution of utility maximizing buyers and a distribution 
of profit maximizing sellers. Equilibrium is achieved when variations in 
the price of the good reflect variations in its quality in such a way that 
buyers and sellers cannot do better by making other deals. Formally, 
the hedonic price equation arises when sellers maximize the profits from 
selling goods with characteristic bundle z = { z1 , . . .  zc} , where Zc is char­
acteristic c for the good, C being the number of characteristics. Buy­
ers maximize utility, allocating income among the quality-differentiated 
goods and the other goods. There is no uncertainty or hidden infor­
mation. Buyers and sellers know the characteristics and agree on the 
quantity. The equilibrium hedonic price function is given by 

p = h(z, o:) (9. 1) 

where p is the price of the good-for example, the price of a house-z 
is the vector of attributes and o: is a vector of parameters describing 
the shape of the hedonic function. The shape depends on the number 
of buyers and sellers and their characteristics. The representation of 
equation (9. 1) is considered approximate. For simplicity, we will denote 
the hedonic price function as p =  h(z) . The equilibrium conditions that 
give rise to the hedonic price equation may not give an exact solution. 
Rosen solves the equilibrium conditions for one hedonic price equation, 
but this assumed smooth distributions of producers and consumers, and 
a single characteristic. In general, the functional form of the hedonic 
price equation is unknown, and uncertainty about this functional form 
causes part of the random error. 

In the housing market, the hedonic price equation emerges from com­
petitive bidding among home owners and buyers when buyers purchase 
only one home. The equilibrium will persist when buyers have maxi­
mized their utility subject to a budget constraint. Suppose households 
have the preference function u (x, z; {3), where x is a composite bundle 
of commodities, z is the vector of attributes of a house, and {3 is a 
vector of parameters of the household preference function. The budget 
constraint is given by y = h(z) + x, where x is a composite bundle. 
This constraint implicitly assumes that the buyer takes only one unit of 
the hedonic good. Maximizing utility subject to the budget constraint 
implies optimal conditions for each attribute: 

ou(x, z; {3) = >. oh(z)
' c = 1 ,  . . .  , c 

OZc OZc 
(9.2) 
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where A is the marginal utility of income. Of course, hedonic attributes 
are not purchased individually. Rather, there is an equilibrating process 
that allocates houses among households. But when the equilibrium is 
satisfied, then equation (9.2) holds and provides a connection between 
the hedonic price and marginal willingness to pay, which is A - l  Bu(;,z;,6) . 

Zc 
In practice, because buyers choose among a fixed set of houses, rather 

than optimizing at the margin, one might argue that the housing market 
would not be in equilibrium as described in equation (9.2) . And if 
the equilibrium conditions do not hold, then the welfare conclusions 
do not follow. However, the sorting mechanism by which households 
purchase houses appears to induce an equilibrium with the marginal 
conditions described in equation (9.2) .  Simulation work by Cropper 
et al. provides evidence that when housing stock is allocated among 
buyers by maximum bid or by the solution of an assignment problem, 
the equilibrium conditions given in equation (9.2) are satisfied. 

The choice of functional form is an important strategic research de­
cision. When households are heterogeneous, the functional form of the 
hedonic price equation is only mildly restricted. It will slope upward for 
utility-bearing characteristics and it probably will not be linear. The he­
donic price function should be increasing in desirable attributes-a lower 
price associated with a higher desirable attribute level would induce 
movement in the housing market, as buyers competed for the lower price­
high attribute bundles. When the good can be unbundled, so that the 
buyer can purchase different sets of attributes from different sources, 
the hedonic price function becomes linear. But linear hedonic price 
functions are also an accident of the data, so that one may find linear­
ity without implying unbundling. Flexible functional forms have been 
adopted but the cross-product terms tend to increase the already sig­
nificant collinearity of attributes, and reduce the precision of estimates. 
Indeed part of the empirical challenge of hedonic models is to deal with 
the trade-off between a complete functional form and collinearity. We 
focus on this issue in the following sections. 

9 .2  Welfare Measurement in  Hedonic Models 

It is not surprising that in a more complicated model of equilibrium, the 
welfare analysis is also more complicated. The hedonic equation is an 
outcome of a market equilibrium. In the housing market, it represents 
the sorting process that allocates households to houses. Even if it were 
possible to estimate a demand for attributes equation, welfare measure-
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ment in the hedonic model would not be straightforward. But as we 
shall discuss briefly, the demand for hedonic attributes, in the standard 
model of quantity as a function of prices and income, does not typically 
exist. And even if it were to exist in principle, it is unlikely that its 
parameters could be identified in the typical hedonic setting. 

It is therefore fortunate that in measuring welfare effects in hedonic 
models, the need for the preference function rather than the hedonic 
price function is rare. The preference function is useful in the case 
when the research is focused on the question of the generic value of an 
attribute. That is, if we wanted to compare the willingness to pay for 
changes in air quality in different cities, without consideration for the 
housing market, the cleanest approach would be to use the preference 
function, which would give a measure of willingness to pay independent 
of local housing conditions. But when the question concerns the value of 
the changes in the local housing market, then the hedonic price function 
itself will usually suffice, or at least be useful for bounds. 

Two types of changes need to be considered for welfare measurement 
for a change in the vector of housing characteristics, depending on the 
size and extent of the change in characteristic vector. One corresponds 
to what Palmquist (1992) calls a local change, in which the change in 
the characteristic vector is not big enough or extensive enough to cause 
a new hedonic function to be formed. For example, there is a reduction 
in air pollution but not big enough to induce the significant movement 
of households that would lead to a new hedonic schedule. The second 
case occurs when the changes in the attribute vector are sufficient to 
bring about a new hedonic price equation. 

Consider the case where there is a change in attributes so small enough 
to maintain the given hedonic price equation. To make the welfare effects 
clearer, suppose that there are two groups-renters and owners. Since the 
change in attribute vector is small, it is reasonable to assume that the 
utility level of renters will not change. If air quality improves, the houses 
affected will simply be resorted along the given hedonic price function. 
Houses with better air quality will move up the hedonic function. If 
the increase in hedonic price induced by the improvement is greater 
than moving costs, then renters will relocate to houses with air quality 
that they enjoyed before the air quality improvements. If the moving 
costs exceed the price difference caused by changes in air quality, but 
the hedonic price rises anyway, then renters will stay in their original 
houses, and pay the higher rent predicted by the hedonic price equation 
with the new air quality. The gain to the homeowners from the new air 
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quality, and the welfare increase for an affected house is 

WT P = h(z*) - h(z) 

where z* is the new vector of attributes, including better air quality, 
and z is the original vector. This calculation of course needs only the 
hedonic price function. 

If moving costs are sufficiently high so that no households change 
their housing, then there will be no resorting of renters and houses. The 
renters will gain from the improvement in air quality. The amount they 
will gain is given by the willingness to pay that is implicitly defined as 

u(y - h(z) - WT P, z* ; ,6) = u(y - h(z) , z; ,6) 

where z* is a new and improved vector of attributes, and z is the orig­
inal vector. Here WT P is the maximum amount of income that the 
household will give up to obtain the new vector, with the understanding 
that the hedonic function does not change, and the household remains 
in the house. This is an easy calculation to make when the parameters 
of the preference function, /3, are known. This however requires that 
the hedonic identification problem be solved. 

When vectors of housing characteristics change sufficiently to cause 
households to relocate and also cause a new hedonic price function to 
form, the welfare measure is much more complicated. The most rea­
sonable approach for this situation is the general equilibrium approach 
developed by Sieg, Smith, Banzhaf and Walsh, who model jointly the 
equilibrium in the choice among communities and the housing market 
equilibrium. Bartik (1982) provides bounds for this case. 

It is often remarked that the hedonic price function reveals the mar­
ginal value of attributes. This is true because equation (9.4) shows that 
the marginal cost as given by the hedonic function equals the marginal 
value. This property of the hedonic price equation can be useful in 
interpreting the equation but it offers little help in calculating welfare 
effects unless it is known with some confidence that marginal values are 
approximately constant. 

9 .3  The Identification Problem 

When estimating willingness to pay from a preference function rather 
than the hedonic function, one wants to use the parameters of prefer­
ences. The difficulty is that these parameters cannot be identified from 
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the equilibrium conditions, and they cannot be extracted from the hedo­
nic price equation. Much of the discussion of the hedonic equilibrium is 
carried out using the bid function. This is the solution to the condition 

u(y - B(y, z; {3) , z; {3) = u0 (9.3) 

where B(y ,  z ; {3) is the amount that the household with preferences {3 
will pay for the bundle z when their alternative choices allow them utility 
level u0 . Of course, written this way, this is also the willingness to pay 
function, but to be consistent with the hedonic literature we maintain 
the terminology 'bid function' .  The difficulty in identifying the para­
meters of the preference function can seen by rewriting the equilibrium 
conditions in equation (9.2) in terms of the marginal bid function (which 
is also equal to the marginal willingness to pay function) :  

8h(z) 
Bc(x, z; {3) = -!l-

uZc 
(9.4) 

where the left hand side is the marginal value or marginal bid function: 

8u(x, z; {3)
/

' 
= B ( · {3) !Ol A - c X, Z ,  

UZc 

and the right hand side of (9.4) is the marginal cost function. The 
interpretation of the marginal bid function comes from implicit differ­
entiation of equation (9 .3) . One may think of this set of equations as a 
simultaneous system. The endogenous variables in this system are the 
attributes, and the household's chosen attributes. They enter both the 
marginal cost and marginal benefit functions. The researcher must solve 
the identification problem for the parameters of the preference function, 
{3. This is not , however, a garden variety identification problem. There 
are no simple exclusion rules for identification. Exogenous variables 
that influence marginal values also influence the marginal costs. Vari­
ous approaches have been suggested for recovering parameters. Epple 
provides a complete statement of identification in hedonic models. With 
a few exceptions, researchers have abandoned any attempts to recover 
preferences, and work instead with the hedonic price function. 

9.4 Estimating Hedonic Price Equations 

The estimation of hedonic price equations is a regular event, and the 
econometric issues that arise are well documented. While initial work on 



 

252 Valuing Environmental and Natural Resources 

hedonic models exploited US Census tract data on housing prices, which 
were aggregated, the typical study now uses individual housing data. 
The data generation process is quite direct. In current practice, records 
of actual transactions form the bulk of datasets. Sales are recorded and 
characteristics of houses collected. Frequently all sales within a period 
of time are used, so that there is no selection process. And while the 
price of houses cannot be negative, the variance is typically small enough 
to render the statistical likelihood of a non-positive price quite low. One 
can safely treat the data without worrying about truncation or censoring. 
Hence the estimation process itself is straightforward, being principally 
ordinary least squares or a variant of least squares with heteroscedastic 
errors. 

When estimating a hedonic price function, one faces a series of de­
cisions and some well-known econometric problems. Typically one has 
a dataset that includes transaction price and the relevant housing at­
tributes. The strategic choices concern the extent of the market , the 
functional form of the hedonic price equation, and the set of included 
variables. The set of covariates typically includes two types of vari­
ables: the most critical are the attributes of the house such as number of 
bedrooms, number of bathrooms, the presence of air conditioning, and 
other variables descriptive of the house; the other attributes describe 
the neighborhood, location and environment of the house, such as crime 
rates, school test scores, median income, distances from important des­
tinations, and environmental measures such air quality readings from 
monitors. The nature of the equilibrium for attributes within a house 
and for the spatial distribution of houses in an area typically induces a 
good deal of collinearity among the attributes. 1 Larger houses tend to 
have more of everything-more bathrooms go with more bedrooms and 
other amenities. And the market allocates housing to land such that 
the larger houses typically have better environmental quality. Hence 
attributes of houses tend to be correlated. And distances tend to be 
inherently correlated. 

Collinearity makes parameter estimates imprecise and intuitively makes 
inferences on the effects of some attributes difficult to disentangle. Con­
sider, for example, efforts to measure the separate hedonic effects of air 
pollution and location near the Pacific Ocean in the Los Angeles housing 
market. Location near the ocean is clearly a valuable attribute and air 
pollution is undesirable. Because the prevailing winds come from the 

1 Early evidence of the collinearity is provided by Harrison and Rubinfeld. This 
paper became famous because of its illustration of collinearity. 
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west, and temperatures are higher further inland, air pollution builds 
up monotonically with distance from the ocean. Hence as one considers 
houses further from the ocean, air pollution, an undesirable attribute, 
will be higher , as will distance from the ocean. Both have a negative 
effect on housing prices, and sorting them out takes more and different 
kinds of variation in housing prices, distance from the ocean, and air 
pollution. 

The question of functional form arises because the nature of the equi­
librium conditions in the housing market permits a wide variety of solu­
tions. When choosing functional form and the set of included variables, 
the researcher must bear in mind the almost inevitable conflict with 
collinearity. High collinearity makes the choice of a very flexible func­
tional form less attractive, because the interactive terms of a flexible 
functional form cause even greater collinearity. 

Local real estate markets may be segmented when the stocks of hous­
ing differ or when groups of buyers in one market have different pref­
erence functions from buyers in another area. The segmentation will 
persist if buyers do not search among different markets, or if there are 
informational barriers among markets. Persistent market segmentation 
causes the hedonic price equation to differ among markets. Segmented 
markets are revealed when the hedonic price functions for the differ­
ent market differ in functional form and covariates. Were a very general 
functional form available, then it would accommodate different forms for 
different segments of the housing market. Combining market segments 
with different hedonic price functions can result in a larger random er­
ror, which means less precise parameter estimates. A model estimated 
from two distinct housing markets would yield a weighted average of two 
different hedonic functions, with uncertain implications. Michaels and 
Smith studied the issue empirically, consulting with realtors, and found 
evidence that real estate markets in Boston were segmented. What 
this means in practice relates to the collection and use of data. In the 
US, one can frequently collect housing prices for transactions within a 
county. However, for the residential housing market , a county or a city 
may contain a number of real estate markets. On the other hand, if the 
market were agricultural land, then a single market might encompass a 
number of counties. For the actual choice of the extent of the market, 
there is no substitute for local knowledge of the real estate market. 

Other econometric problems may also arise. Leggett and Bockstael 
probe the specification bias that can arise when one includes a single 
attribute of a polluting facility, but excludes other attributes of the fa­
cility. They find that by including the relevant attributes, the hedonic 
effects of water pollution on housing values become less pronounced. 
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9.4 . 1  The Box-Cox Function 

A very general functional form was proposed by Halvorsen and Pol­
lakowski. In parametric form the hedonic price function for the ith house 
is 

c c c 
Pi (f.l) = I>�cZic(A) + 0 .5 L L ,8c9Zic(8)zi9 (8) + Ci (9.5) 

c=l c=l g=l 

where Si is typically a normally distributed error with a constant vari­
ance, the a's and ,8's are linear parameters on the transformed variables, 
and the transformation of any variable x is the typical form for Box-Cox 
models: 

x(>.) (x.\ - 1)/>. for A ::f. 0 
ln(x) for ,\ = 0 .  

Only variables that are positive can be transformed. Dummy variables 
or other variables that take on zero or negative values cannot be raised 
to a non-integer power. The same form of transformation holds for 
all of the variables, including, in the most general case, the hedonic 
price, although the parameters of the transformation, Jl, >., e, may differ. 
For different values of the exponents (Jl, >., 8) ,  this functional form has 
the quadratic, the translog, simple linear models and a variety of other 
functional forms as special cases. For example, if f.l = 0,  ,\ = 1 ,  ,8c9 = 0, 
for all c, the semi-log hedonic price function emerges. 

More generality increases one's ability to explain variation in the he­
donic prices. A model with quadratic terms cannot predict the hedonic 
price worse than a model without the terms. But more complicated func­
tional forms, especially quadratic forms, make it harder to distinguish 
the effects of individual regressors because of the induced collinearity 
and might easily do worse in predicting marginal prices. In a study of 
functional form using a simulated dataset , Cropper et al. found that the 
linear function (f.l = 1 ,  ,\ = 1 ,  .8c = 0) and a linear-quadratic function 
(!1 = 1 ,  ,\ = 1 ,  8 = 1) give the smallest mean square error of the true 
marginal value of the attribute. But when some of the regressors are 
measured with error, the linear Box-Cox model (!1 = 1 ,  ,8c = 0) gives the 
smallest mean squared error of the marginal value of attributes. If one 
cannot estimate the marginal values of attributes accurately, despite the 
good fit of the overall model, then the specification loses its appeal. Con­
sequently, it has become common practice to estimate functional forms 
for hedonic models that are simpler than the general form in equation 
(9.5) . 
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9.4 .2  Estimating Box-Cox Models 

Some computer packages have Box-Cox routines built into the estima­
tion routines. In other cases, one needs to locate the optimal values of 
the transformation parameters in a grid search. We show the likelihood 
for the case where the quadratic terms are omitted. The generalization 
needed to include the quadratic terms is obvious, but it seems unlikely 
that one would want to transform these variables too. To write the 
likelihood function when the errors are independently distributed nor­
mals, we note that the density function for the random error of the ith 
observation is given by 

1 c:2 f(c:i ) = -- exp(--" ) . V27ra2 2a2 
From equation (9.5) (and dropping the quadratic terms), we note that 
Ei = Pi (J.L) - L;=l acZic (..\) , and 

f [  · ( ) _ � . ( ' )] - _1 _ ( [Pi (J.L) - L;=l ClccZic ( ..\)] 2 ) p, J.l L...t aczw "'  - � exp 2 2 . 
c=l v 27ra2 a 

'fransforming random variables from Ei to Pi , the probability density 
function for Pi becomes 

c 
pdf(Pi) = pr-1 f(Pi (J.L) - L aczic (..\) ) .  

c=l 
To see this, let j(E) be the density of E, and let E = g(p) .  Then the 
density of p is f(g(p))g'(p) .  In this case g(p) = Pi(J.L) - L;=l acZic (..\) 
and g' (p) = p�-'-1 . The log-likelihood function for T observations is 

T T C 
L(J.L - 1) ln(pi ) - Tln(a) - L{[Pi (J.L) - LacZic(..\)]2 /2a2} .  
i=l i=l c=l 

One can maximize this likelihood function analytically to estimate pa­
rameters, or one can use a grid search. A grid search is relatively easy 
to implement because, given the value of J.l, the optimizing values of ac 
and ..\ are least squares estimates. 

In practice, welfare measures are made with estimated hedonic price 
equations. For the general Box-Cox hedonic price function in equation 
(9.5 ) ,  the marginal effect of a change in characteristic c for housing unit 
i is given by 
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This equation is just the parametric version of equation (9.4) . It sim­
plifies to all the familiar models under benchmark values of f-l, ,\ and 
e.  

When calculating marginal values or even predicted price changes for 
finite welfare effects, it is customary to use the coefficients of the hedonic 
price equation as if they were the true values. No effort is made to 
disentangle preferences from other effects on the hedonic price function, 
nor to interpret the error in the hedonic price function. In the expression 
for 8pi/8zic , the price will be an argument unless f-l = 1 .  If the price is 
known for certain, this causes no additional randomness. In the typical 
case, however, the price has a random term. This is the case when the 
hedonic price function is specified as the logarithm of price as a linear 
function of characteristics, 8pi/8zic = PiCtc , which includes the error 
from the hedonic price. The error in the hedonic price equation is not 
part of welfare measurement if f-l = 1 .  

Example 33 Estimating a Hedonic Price Function 

We illustrate the estimation and interpretation of a hedonic price func­
tion using a dataset on waterfront housing transactions between 1993 
and 1997 in Anne Arundel County, Maryland.2 This dataset , originally 
assembled by the Maryland Office of Planning, is a subset of the dataset 
used in the published work on water quality on the Chesapeake Bay by 
Leggett and Bockstael. For the study of hedonic models, the dataset is 
unique in several ways. First , it focuses on water quality, rather than the 
more common environmental characteristic, air quality. Second, it in­
cludes what Leggett and Bockstael call 'emitter effects' . These are char­
acteristics of the sources of water pollution, such as waste water treat­
ment plants. The inclusion of emitter effects helps discriminate among 
other attributes of the emitters, such as odor, from the water quality ef­
fects per se. And finally, the dataset uses assessed value of the structure, 
rather than characteristics of the house such as square footage, number 
of bedrooms, presence of a garage, pool or air-conditioning. In effect, 
estimating a hedonic price model with assessed value of the structure 
rather than the individual characteristics of the house reduces collinear­
ity by eliminating a set of highly correlated characteristics. The cost is 
that the assessed value of the structure may be measured with error if 
the assessment is wrong. That will not only attenuate the parameter 

2 We thank Nancy Bockstael and Chris Leggett for allowing us to use the dataset 
and for helping with the details of the data. The original data are from the Maryland 
Office of Planning. A more fully developed study of these housing transactions can 
be found in the paper by Leggett and Bockstael. 
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on assessed value of the structure, but will contaminate other parame­
ters as well. In practice, it is far better to include the housing-specific 
attributes rather than the assessed value of the structure. The suspi­
cious role of the assessed value led Leggett and Bockstael to estimate 
models with the assessed value subtracted from the housing price. In a 
later section we estimate a hedonic model with attributes of the house 
as covariates rather than the assessed value of the structure. 

In illustrating the hedonic model, we follow approximately, but not 
exactly, the Leggett-Bockstael specification.3 Table 9.1 describes the 
characteristics and gives the means. 

TABLE 9 . 1 .  Hedonic Price Function Variables 

Variable 

PRICE ($1000) 

VSTRU ($1000) 
ACRES 

ACSQ 
DISBA 

DIS AN 
ANBA 

BDUM 

PLOD 

PWAT 

DBAD 

Description 

Sales price 
adjusted to constant dollars 
Assessed value of structure 
Acres per house 
Acres squared 

Distance to Baltimore 

Distance to Annapolis 
Distance to Baltimore 
X distance to Annapolis 
Distance to Baltimore 
X percent who commute 
Percent of land with 3/4 miles 
developed at very low density 
Percent of land with 3/4 miles 
that is wetlands or water 
Minimum distance to an industrial 
or municipal source of waste 

F.COL Mean fecal coliform concentration 

Source: Maryland Office of Planning, 
Anne Arundel County Department of Health 

Mean 
n=741 
335.91 

125 .84 
0 .90 
2 .42 

26 .40 

13.30 
352.50 

8 .04 

0 . 18  

0.32 

3 . 18  

109 .70 

The covariates warrant some discussion. The VSTRU is a proxy for 

3 The reader should also note that the dataset that we use has 741 observations 
while the original Leggett-Bockstael dataset contains 1 183 observations. The em­
pirical results of this chapter are not comparable to the Leggett-Bockstael models 
because the set of observations is quite different. 
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all of the house-specific characteristics such as the number of bedrooms, 
bathrooms, and the like but excluding the land. The ACRES variable 
captures the effect of the amount of land, and the squared terms al­
low for the likely declining value of more land per house. The assorted 
distance variables capture the amenities and commuting attractions of 
Annapolis and Baltimore. The land use variables represent landscape 
and environmental effects. The variables PLOD and PWAT are land­
scape variables. They should capture the attraction of water on the 
price of the house. In this version of the hedonic price equation, DBAD 
captures the effects of some of the larger sources of water pollution by 
measuring the minimum distance to such facilities. The price of the 
house should increase with distance from such a source. 

The variable of particular interest in the original research, F.COL, 
is the weighted mean of the fecal coliform count for the three nearest 
monitoring stations. Coliforms can cause gastroenteritis and emit odors 
at high levels. Excessive coliform levels impair water contact sports. In 
any hedonic model, the attributes associated with the house, such as lot 
size, or with the structure itself, such as number of bedrooms, are typi­
cally fairly easily chosen. But the environmental variable must be picked 
with care. Whether one is assessing the hedonic effects of air quality 
or water quality or other environmental characteristics, the question of 
subjective perceptions of the environment versus objective measures of 
environmental quality must be confronted. The problem, which arises 
when behavioral methods are used, is that the researcher does not know 
what cues or measures influence behavior. In many water quality studies, 
and especially studies of hazardous waste sites, it has been the practice 
to use the distance to the offending facility as a measure of its intensity. 
Gayer, Hamilton and Viscusi construct more precise measures of risk, 
and use them in addition to distance measures as a way of assessing 
the damages of hazardous waste sites. For the waterfront houses in the 
Leggett-Bockstael study, information about fecal coliform was regularly 
publicized by the Anne Arundel County Department of Health. While 
one may use objective measures of an environmental variable, there is 
little assurance that the people who are assumed to respond to the pol­
lution measure are aware of the measure or know what it means. In this 
case, the publicity surrounding the water quality measure assures some 
harmony between objective measures and subjective perceptions. 

We estimate four functional forms: the linear model, Box-Cox trans­
formation of the dependent variable, the semi-log dependent variable 
model (a special case of dependent variable transformation) , and a full 
model where both dependent and independent variables are transformed. 
All models are estimated with the Box-Cox routine in LIMDEP version 
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7.0. The most general specification is 

c 
Pi (J.L) = L O:cZic(A) + C:i 

c=l 

where the Zic's are given in Table 9. 1 .  Although we have emphasized 
the empirical evidence that supports the notion of simple hedonic price 
functions, we will show the estimation of more complicated forms for the 
sake of illustrating the approach. The variables PLOD and PWAT are 
not transformed because they can take the value of zero. 

The estimated coefficients for the four models are given in Table 9.2. 
The house and land variables are all significant with the right signs 
in different functional forms. The coefficients on the variables VSTRU, 
ACRES, ACSQ and PWAT do not change across functional forms. How­
ever, the location and environmental variables are more fragile. In par­
ticular, F.COL is not significant for the semi-log and the general Box-Cox 
(columns three and five). 

The models in Table 9.2 are nested versions of the last column, in that 
each is derived with a restriction on the parameters J1 or >.. We can use 
the log-likelihood values in the last row to test the restrictions on the 
parameters. The test of the linear model versus the general Box-Cox 
involves two restrictions. The quantity -2 ln(Lu I LR) is distributed as 
x2 (2) . In this case, -2 ln(LuiLR) = 1279.4, which exceeds the tabled 
value for x�99(2) of 9.2. We can also compare the first two columns with 
the third column for testing, which entails one restriction. (The tabled 
value of the statistic for one restriction at the 99% level of confidence: 
x299 (1) = 6.6.) 

For example, conditioned on >. = 1 (the right hand side is not trans­
formed) , we can reject the linear left hand side ( -2 ln(Lu I LR) = 1063.8) 
and we can reject the log transformation of the price (the semi-log model) 
compared with a more general transformation ( -2 ln(Lu I LR) = 1 12.2) . 
We can also reject the transformation of the left hand side only by 
comparing the fourth and fifth column likelihood values. In this case 
-2 ln(Lu I LR) = 215.6. The transformations change the interaction 
among characteristics. The linear case is the only additively separable 
hedonic function. Consequently the effects of covariates become harder 
to disentangle as the complexity of the functional form increases. And 
it is important to bear in mind that maximizing the likelihood function 
models the most likely behavior underlying the hedonic price function, 
but it does not necessarily minimize the errors associated with the mar­
ginal bids. Adding interactions increases explanatory power but com­
pounds marginal values. 
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TABLE 9 .2 .  Estimation for Selected Functions 

Characteristic 
Parameter Estimates 

(Standard errors in parentheses) 
J.L = l J.L = O  f.L = 0.43c f.L = 0 .16c 
.A = l .A = l .A = l A =  0.33c 

VSTRU a 1 .37 ao .0028 ao.037 a0.25 
(0.040) (0 .0008) (0.009) (0.05) 

ACRES a 1 16.9 a0 .31 a3 .72 a1 .79 

(7.62) (0.06) (0.87) (0.32) 
ACSQ a -7.33 a -0.023 a -0.26 a -0.49 

(0 .79) (0 .005) (0.06) (0.09) 
DISBA a -3.96 -0.01 a0 . 13 a-1 .00 

( 1 . 74) (0.007) (0.06) (0.35) 
DIS AN a - 11 . 80 a -0.047 a -0.49 a -1 .43 

(2 .50) (0 .014) (0 . 13) (0.43) 
ANBA a0.36 0.001 ao.013 a0 .45 

(0 .09) (0.0005) (0.004) (0 .17) 
DBAD 2 .78 ao .042 a0.32 0.07a 

(2 .50) (0 .009) (0 . 10) (0.03) 
F .COL a -0.052 -0.00012 b -0.0015 -0.011 

(0.025) (0.00010) (0 .0009) (0 .008) 
The following variables are not transformed. 

BDUM a - 10.2 a -0.03 a -0.36 a -0.05 
( 1 .89) (0 .008) (0. 10) (0.02) 

PLOD b71.69 a0.27 a2 .88 0 .32 
(37.27) (0 .13) ( 1 .37) (0.26) 

PWAT a 1 19.97 ao.35 a4.20 a0 .74 

(25 .89) (0 . 1 1) ( 1 .26) (0.23) 

Const. a238.69 a5 .77 a22.38 a10 .83 

(47.44) (0.60) (3.55) ( 1 .62) 

Log-like. -4882.7 -4406 .9 -4350.8 -4243.0 

-2 ln (p )  1250.4 1402.0 1524.2 1729.8 
aDifferent from zero at the 95% level of confidence. 
bDifferent from zero at the 90% level of confidence. 
cThese are the optimal transformation parameters. 
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Example 34 Calculating We(fare Effects 

To illustrate the use of the hedonic function, and to anticipate some 
of the difficulties one is likely to encounter, we calculate the marginal 
value of F.COL, and the estimate of the WT P for a finite change in 
this characteristic. Because an undesirable attribute is increasing, we 
measure the WT P to avoid the increase. The marginal value is given 
by expression (9.4) . For computational ease, we calculate the welfare 
effects at the mean price. The basic expression is 

WTP = h(z*) - h(z) 

but we can make it simpler by writing 

p = (p,z(A)a + 1 ) 111" = h(z) . 

Then we use h(z) = p, and z (A)a = (p�" - 1)/ p, so 

h(z* ) = (p�" + (p,z� (A) - zc (A) )ac) 111L .  (9.6) 

Hence we use only the transformation parameters, the coefficient on 
F.COL, the mean price and the initial and final value of F.COL in the 
welfare calculation. Recall from Table 9.2, the coefficient on F.COL 
is not significantly different from zero for the semi-log and the general 
Box-Cox, so that welfare measures of the second and fourth row of Table 
9.3 would not be significantly different from zero. In practice one would 
not calculate welfare measures with insignificant coefficients. 

TABLE 9 .3 .  Welfare Measures for a Change in F .COL 

Functional 
Form 

p, = A = 1 
p, = 0, A =  1 
p, = 0.43, A =  1 
p, = 0. 16, A =  0.33 

Estimated 
Coefficient: ac 

-0 .052 

-0.00012c 
-0.0015 

-O .Ollc 
aMarginal value = ohjozc = p1-�"z;- 1cxc ;  
assuming Z c  = 109,  p = 335.91 . 
bin $1000's; using equation (9.6) . 

Marginal 
Value a 

-0.052 

-0.040 
-0.041 

-0 .063 

Discrete 

Changeb 

-2 .60 

-2 .01  
-2 .06 
-2 .74 

cFor illustration; coefficient not significantly different from zero. 

In the selected sample of observations, the marginal values are all 
quite close, considering the different functional forms. For a discrete 
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change in the characteristic F.COL, we assume that it begins at the mean 
value of the sample, 109, and increases to 159, a substantial increase but 
still below the state standard of 200 for this biological pollutant. The 
estimates suggest that a household in a house with the mean vector of 
attributes, at the mean price, would pay between $2000 and $3000 to 
avoid an increase in F.COL of 50. Even the estimates of willingness 
to pay to avoid the discrete changes in the characteristic are relatively 
close. Note that a first order approximation using the marginal values: 
WrP = �zc 88h(z) is close to the estimates of the discrete change. The Zc 
discrepancy is greatest for the generalized Box-Cox of the last row, where 
�zc 88h(z) = 50 x -0.063 = -3.15, compared with the discrete change Zc 
of -2.74. This is natural because for this function, the departure from 
linearity is greatest. Also the parameter has less relative precision than 
in the other functional forms. 

For the sample of observations that we are utilizing, the estimates of 
willingness to pay for a change in an environmental characteristic are 
similar in concept but fairly different in application from other types of 
valuation. A number of issues cloud the use of hedonics. The estimates 
of WT P are present discounted values, because the house itself is an 
asset. Tax deductions for interest payments create a wedge between 
a change in the price of housing and willingness to pay. The change 
in the environmental attribute may vary substantially among house­
holds because the distribution of the environmental characteristic varies 
among houses. Calculating aggregate WT P for a policy that affects the 
distribution of the environmental characteristic requires some efforts in 
understanding the spatial distribution of the characteristic.4 

Example 35 A Hedonic Model with Housing Attributes 

To emphasize the importance of including the housing attributes rather 
than the assessed value of the structure, we estimate another hedonic 
model for illustration. The environmental disamenity in this case is the 
nitrogen reading in well water. The houses are part of the suburban 
housing market of Baltimore, Maryland. When a house with well water 
(as opposed to publicly provided water) is sold, the water must be tested. 
The test includes measurement of nitrate levels in the water. High lev­
els of nitrates typically stem from excess agricultural nutrients and are 

4The Leggett-Bockstael paper evaluates a strategy of water quality improvements 
to a subset of the houses that is based on a knowledge of the distribution of water 
quality in the housing market and provides a realistic scenario for valuing changes in 
water quality. 
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undesirable for medical reasons. 5 The standard for nitrates is 10 ppm. 
Levels higher than that must be treated, although rather inexpensive 
filters work well. 

We provide this illustration to emphasize the importance of housing 
attributes, as well as to reinforce the workings of the hedonic model. The 
variables are given in Table 9.4. This model has the attributes of the 
house, plus the additional neighborhood covariates, the scores of third 
grade students on achievement tests and location variables. The sales 
price is the actual selling price, and the transactions occurred during the 
period 1985 to 1991 .  

TABLE 9 .4 .  Hedonic Price Function Variables 

Variable Description Mean 
n=1853 

PRICE Sales price 202719 .00 
TIMETREND Monthly time trend, running from 69.23 

1 to 84 over the months of sales 
NUMBED Number of bedrooms 3 .59 
FULLBATH Number of full baths 1 .98 
LIVAREA Square feet of living area 1070.80 
LOTSIZE Lot size in acres 24.10 
DIST Distance to Baltimore 4.04 
SCORE Neighborhood elementary 0 . 18  

school test score 

NITRATE Nitrates in well in ppm 4.05 
PUB SEW* House on public sewer 0.25 
HALF BATH Number of half baths 0.66 
PO OLIN* Inground pool 0.06 
HEATPUMP* Heatpump 0.49 
CARROLL* House in Carroll County 0.35 
HOWARD* House in Howard County 0 . 13  
BALTO* House in Baltimore County 0 .28 

*Indicator variables taking a value of one if the condition holds. 

We estimate only two of the four models that were estimated for the 
waterfront data in the previous section: the linear and the semi-log (in 

5 More details about the effects of nitrates and the implications of a suite of models 
for the value of nitrate can be found in the dissertation by McCormick. We thank 
Charles McCormick for giving us access to the data. 
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which the dependent variable is the logarithm of price) . This is perhaps 
more typical of hedonic practice, though it is still good procedure to test 
the basic formulations for variations, especially when gauging the effects 
of an environmental variable. One of the results of the Cropper et al. 
simulations demonstrates that less prominent attributes are more likely 
to show instability with respect to specification or measurement error 
than the critical variables, such as the number of bedrooms. Table 9.5 
provides parameter estimates for the two OLS models. 

TABLE 9 .5 .  Hedonic Model with Housing Attributes 

Transformation 
p, = l p, = O  
.A = l  .A = l  

Characteristic Estimate S.E. Estimate S .E. 
TIMETREND b -254.0 137.9 -0.00014 0 .0006 
NUMBED a 15206 1856 a0.082 0 .008 
FULLBATH a22772 2 140 a0. 127 0 .009 
LIVAREA a 129.4 5 .45 ao.00055 0.00002 
LOTSIZE a4085.2 291 a0 .018 0.0012 
DIST a -2042 . 1  244 a -0 .0077 0.001 
SCORE a9123.3 3672 ao.037 0.016 
NITRATES a -1151 .5  384 -0 .0036 0.0017 
HALFBATH a16805 1969 a0. 105 0.009 
PO OLIN a8762.4  4296 a0.062 O .Q18 
HEATPUMP a35270 2325 a0 . 173 0 .01 
PUBSEW 138.0 2436 -0.0002 0.01 

CARROLL a1 1752 2979 ao.053 0.013 
HOWARD a59708 4010 a0.254 0.017 
BALTO a22798 3728 a0 .103 0 .016 
Constant a -57425 20188 a 10.78 0.87 

Log-likelihood -22467.00 421.50 
-2ln(LR/Lu) 2506.00 2706 .00 
Adjusted R2 0 .74 0.76 

aDifferent from zero at the 95% level of confidence. 
bDifferent from zero at the 90% level of confidence. 

The specification includes the indicator variables for the counties, as 
well housing attributes. The county indicators should also be consid­
ered location variables, although one might test for whether the housing 
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markets really are the same.6 For this model, we give the adjusted R2 , 
a measure of goodness of fit for ordinary least squares models. The 
advantage of including attributes can best be assessed with the linear 
model. The housing attributes with which most people are familiar, such 
as bedrooms and bathrooms, are valued directly with the linear model. 
So we can see directly that the marginal value of an extra bedroom is 
about $15000 and the value of an additional full bath about $22000. The 
semi-log function gives approximate percent changes in housing prices 
from a change in the attribute level. So, for example, an extra bedroom 
would imply an increment in price of about $16500 for a house worth 
$200000. 

The results of the estimation can be used to value changes in the 
environmental disamenity, nitrates in the well water. Consider an in­
crease in nitrates from 10 to 15  parts per million. The linear model 
predicts the willingness to pay to avoid an increase in NITRATES: -- 8h(z) WT P = Llzc 8 = 5 x 1151 = $5755. We can calculate a 95% confi-zc 
dence interval with the standard error on the coefficient of NITRATES, 
which is 384; the 95% confidence interval is 5755 ± 5 x 1 .96 x 384 which 
gives the interval $1992 to $9518. For the semi-log, when the house 
is valued at $200000, 

8
8h(z) = 200000 X -0.0036 = -$720. This is a Zc 

fair amount less than the linear model gives, and the WT P to avoid 
the increase in NITRATES is 5 x 720 = $3600. Assuming the price 
is not a random variable, we calculate the 95% confidence interval as 
200000 x (0.0036 ± 1 .96 x 0.0017) x 5, where the standard error of the 
coefficient on nitrates equals 0 .0017. This confidence interval is $268 to 
$6932. As a consequence of predicting the percent change in the hous­
ing price, the coefficient has a larger variance on WT P, despite similar 
t-statistics. In both cases, the confidence intervals for finite changes in 
attributes are large, even when the coefficients are significant, even when 
the hedonic price is assumed constant. This suggests the need to look 
into random willingness to pay in greater depth. 

9.4 .3  Randomness of Willingness to  Pay Estimates in 
Hedonic Models 

In the development of contingent valuation models and the assorted 
travel cost models, we have emphasized the two steps involved in ob­
taining estimates of willingness to pay: estimation of parameters and 

r; A simple test for similar housing markets would be to test whether the vector of 
coefficients is the same for all four counties. 
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calculation of welfare measures. In the hedonic model, the two steps are 
present, but the estimation step receives much greater attention than 
the calculation stage. Despite the lesser prominence of the calculation 
step in hedonic models, it is worth considering the role of uncertainty in 
WT P estimates. 

The typical estimate for the WT P of an owner of a housing unit is 

WTP = h(z*) - h(z) 

where h(z) is the deterministic part of the hedonic price function. We 
can get some insight into the role of randomness by using the linear 
Box-Cox model. Solving for the price in the Box-Cox model gives 

p = (!Lz(A)a + 1 + s) 111-' = h(z) . (9.7) 

In the linear case, IL = 1 and the calculation is 

WTP = [z* (.X) - z(5.)]& 

where the hats indicate that the parameters are estimates. When only 
characteristic c changes, the calculation is WT P = [ z� ( 5.) - Zc ( 5.) ]  &c .  
Now only the parameters contribute to randomness. If the model is 
completely linear, i.e. , A = 1 , then the only randomness is in the coeffi­
cient &c ,  which is asymptotically normally distributed N( ac, O"� ) . Conse­
quently, in the linear case, WT P is normally distributed with EWT P = 
ac(z� - zc) and variance O"� · (z* - z)2 . In the linear case we find ran­
domness without resorting to an interpretation of the randomness of 
the hedonic function. If A f- 1 then the estimate of WT P is no longer 
normally distributed. The distribution can be simulated by getting the 
joint distribution of !L, A and the relevant etc's, and following the Krinsky­
Robb procedure (see Chapter 4) of taking a large number of random 
draws from the joint distribution of parameters, calculating the WT P, 
and then forming the (1 - x)lOO% confidence interval by removing the 
x/2 proportion of largest and smallest values of simulated WTP. 

Suppose that we have estimated the general Box-Cox model. The 
estimate of WT P is 

WTP (!Lz* (A)a + 1 + s) 11�-' - (!Lz(A)a + 1 + s?l�-' 
exp(z* (A)a + s) - exp(z(A)a + s) IL = 0. 

�L f- 0  
(9.8) 

In these cases, WT P is not distributed normally. One can simply in­
voke consistency, and calculate the WT P at the probability limit of the 
random variables. It can also be handled with the Krinsky-Robb pro­
cedure. The estimation results give the variance-covariance matrix of 
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all the parameters, and one can take a large number of draws from this 
distribution to simulate the distribution of WT P. 

Consider an alternative approach that economizes on covariate infor­
mation. Using expression (9.7) , we can write 

p,z(.X)a + 1 + E = p�-' . 

Now denote the vector of covariates that change as z so that z*( .X) 
z(.X) + �z(.X) . Then we can write WTP as 

This expression is easier to calculate than the expression in equation 
(9.8) .  It won't be normally distributed unless p, = >. = 1 .  Randomness 
is here in terms of the parameters and the error in the hedonic price. 
One can accept the consistency result and substitute in the probabil­
ity limits. Alternatively, one can utilize the Krinsky-Robb procedure 
outlined earlier, recognizing the sources of uncertainty. 

9.5  Conclusion 

This chapter has explored the econometrics of hedonic price modeling. 
Our treatment has been elementary, attempting to give a sense of the 
empirical approaches that one takes in hedonic modeling, without great 
detail. We have omitted some emerging issues. There seems good likeli­
hood of heteroscedasticity, which can be addressed in a straightforward 
way. A more difficult but potentially more important problem is spa­
tial autocorrelation, which also leads to heteroscedasticity. Leggett and 
Bockstael correct several of their models for heteroscedasticity, and they 
also explore the presence of spatial autocorrelation. The availability of 
housing price data is growing substantially in the US , due to electronic 
storage and retrieval. Datasets that include repeat sales are becoming 
more common. These datasets allow inferences about price changes over 
time, and hence allow one to assess empirically the change in environ­
mental quality not just spatially but temporally. 
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New Directions in 
Non-market Valuation 

In the concluding chapter we give a brief synopsis of several develop­
ments in non-market valuation that are increasingly present in the lit­
erature but have not been addressed in the previous chapters of the 
book. This treatment is brief. We give the flavor of the approaches, 
their advantages and refer to the more important papers or books on 
the topics. 

10. 1  Stated Preferences for Multiple Attributes 

Until recently, the preferred approach to contingent valuation was to de­
scribe a given scenario and then to design a single question that required 
the respondent to choose between a desirable scenario with a monetary 
payment and some type of less desirable scenario, with no payment. 
Over the past decade, many economists working on valuing environ­
mental amenities and public goods have turned to methods that are 
variously known as stated preferences, conjoint analysis, and attribute­
based methods. These approaches evolved from evaluation methods for 
marketing and transportation. The methods present the respondent 
with a set of alternatives, each fully characterized by levels of attributes 
and a cost. Depending on the approach adopted, the respondent may 
rank the scenarios, choose the preferred scenario, or even rate the sce­
nario on a cardinal scale. The framework for analysis of these questions 
has frequently been the random utility framework. 

The essence of stated choice methods lies in the presentation to the 
respondent with numerous decisions over alternatives with multiple at­
tributes. This characteristic turns stated choice methods into hedonic 
models, in the sense that the methods are able to provide measures of 
willingness to pay for discrete changes in a variety of attributes that are 
part of the choice. But they differ from the dichotomous choice con­
tingent valuation in other ways too. Typically the problem is stated in 
the context of a private choice, rather than a public choice, even though 
the vehicle, such as a tax, may be the same. There are several advan-
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tages of this approach. It allows the researcher to combine revealed 
and stated preferences in a fairly detailed manner that deals with at­
tributes. For example, one may combine behavioral data typically used 
for random utility models with similar data from stated preference ex­
periments that would let researchers obtain parameter estimates that 
might not be available from either method alone. Further, because the 
stated preference methods value multiple attributes, results from these 
models can be used to manage the independent valuation and summa­
tion problem of Hoehn and Randall (1989) . Consider two projects that 
pass a benefit-cost test simultaneously but independently. When these 
projects provide amenities that are substitutes, then when considered in 
isolation, the second one will provide less benefits than independent val­
uation would predict. This can be corrected when one accounts for the 
amenities that are inherent in a project. Using attribute-based stated 
preferences methods can help in this regard. 

The literature on the multiple attribute stated preference methods 
has grown extensively. The recent book by Louviere, Hensher and Swait 
provides a complete reference on the topic. Holmes and Adamowicz give 
a good overview with intuitive treatment of the experimental design of 
questions. Hanemann and Kanninen build the basic statistical models 
for the estimation of preferences from these questions, depending on 
whether the respondents rank the alternatives, rate them cardinally or 
choose the preferred alternative. 

Stated preference studies require extensive work on questionnaire de­
velopment , just as dichotomous choice contingent valuation, but the ex­
perimental design literature plays a much more critical role in the de­
velopment of scenarios. This can be understood from the basic setup of 
a multiple attribute stated preferences study. The preference elicitation 
part of a survey instrument has the following components: 

• The number of attributes for a given alternative; 

• The number of alternatives per choice occasion; 

• The number of replications of choice occasions. 

A given alternative is constructed with measurable attributes, even 
if discrete. Suppose there are attributes q1 , . . .  , qA , p, where A is the 
number of attributes and p is the cost of the scenario. Although the 
researcher is free to choose as many attributes as desired, the larger the 
number of attributes, the more difficult the choice for the respondent. 
Further, increases in the number of attributes raise the effective sample 
size required to obtain a given level of precision on parameter estimates. 
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Mostly for reasons of ensuring coherent answers from respondents, re­
searchers tend to limit A, the number of attributes, to three or four. For 
example, Mazzotta, Opaluch, and Grigalunas study the preservation of 
wetlands and shellfish areas on Long Island, in New York state. They 
offer respondents a choice between the status quo, at zero price, and 
two other priced options, with varying levels of wetlands and shellfish 
areas. By observing the choice among alternatives, they could estimate 
preferences for the attributes that comprised each alternative. In this 
case the attributes were various forms of land use. 

Given the selection of the attributes to be valued and the range over 
which the attributes are to be varied, the researcher can determine the 
alternatives to be presented to respondents. The number of choice oc­
casions is the size of the choice set. Let 81 be an alternative that is fully 
described by qf , . . .  q1 , p1 = q1 , p1 . A choice or ranking is made when 
the respondent is presented with alternative 81 ' . . .  ' sN , where N is the 
number of alternatives offered. An essential property of the choices is 
that they are mutually exclusive. Then under appropriate separability 
restrictions on a respondent 's preference function, one can write the util­
ity for a given alternative. If a respondent chooses 81 then he could not 
also choose 82 (or any other S) . 

The alternatives need to be constructed so that the respondent is 
forced to make trade-offs. That is, if one scenario dominates the rest in 
the choice occasion in the sense that it has more of all good attributes 
and less of all the bad attributes, then little would be learned in the 
choice. Although increasing the number of scenarios or alternatives (N) 
per choice occasion is a way of increasing the precision of parameter 
estimates, forcing the respondent to choose among too many alterna­
tives may make the outcomes less meaningful. Depending on the choice 
setting, the number of alternatives or scenarios per choice occasion is 
typically not much larger than a handful, but it of course depends on 
how familiar the respondent is with the attributes of the alternatives. 

Finally, the researcher may provide multiple choice occasions by re­
peating the experiments for a given respondent, but varying the alterna­
tives from one replication to the next. If respondents don't grow weary 
from additional choice occasions, and they answer consistently across 
occasions, then adding another choice occasion is like obtaining a big­
ger sample but of course with considerably less cost. Hence there is 
a temptation to offer many choice occasions. Here too the researcher 
must be cognizant of the potential excess burden imposed on the cog­
nitive ability of respondents. They may handle a few choices well but 
adopt a simpler choice method when the number of replications becomes 
excessive. For example, a recent study of sportsfishing by the National 
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Marine Fisheries Service gave the respondent four choice occasions. For 
each choice occasions, the respondent would choose among three alter­
natives: two trips and the alternative of not taking a trip. And each 
alternative contained four attributes and a cost per trip. 

The combinations of attributes, alternatives and replications that are 
feasible is a subject of substantial research in the stated preference lit­
erature. In a study of the implications of more attributes, larger choice 
sets, and more alternatives, Swait and Adamowicz analyzed six stated 
preference studies in which the number of attributes ranged from five 
to 15 ,  the alternatives ranged from three to six, and the number of 
replications ranged from eight to 16. They found that the variance of 
tastes increased when the alternatives were similar and when the num­
ber attributes increased. They did not analyze the effects of increased 
replications. 

Discrete choice contingent valuation and multiple attribute stated 
preferences share many common traits, and typically attempt to as­
sess the same part of a respondent's preferences. For both approaches, 
great care is needed in devising questions that induce the responses that 
reveal preferences suitably. One of the biggest difference between dis­
crete choice CV methods and attribute-based methods is the need for 
experimental design in the construction of alternatives and replications 
in attribute-based stated preferences methods. Experimental design is 
absolutely essential for a credible and defensible stated preference study. 

The need for experimental design stems from the complete control that 
the researcher exercises over the values of exogenous variables. In the 
experimental design literature, the independent variables or attributes 
are known as factors, and the values they take on are factor levels. A 
full factorial design for a survey creates an alternative for each possible 
combination of all factors or attributes. For example, suppose that the 
attribute-price set is q1 , q2 , p  and the attributes and prices can take on 
(3, 4, 5) values (q1 takes on three values, q2 four values, etc. ) . Then there 
are 3 · 4 · 5 = 60 possible combinations in a full factorial design. When 
some portion of the full factorial design is included it is a fractional 
factorial design. 

The key design issues stem from selecting the appropriate fractional 
design. To illustrate, consider an illustrative case of two attributes-water 
quality and price. Suppose that water quality takes on low, medium and 
high values, and the price is $10, $20, and $30. The full factorial design 
is given in the following Table 10 .1 .  If low water quality is always offered 
with $10 ,  medium with $20, and high with $30, then there will be perfect 
collinearity and one will not be able to disentangle the two effects. On 
the other hand, if high, $10 is compared with low, $20, there's no trade-
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TABLE 10. 1 .  An Elementary Design Matrix 

Low, $10 
Medium, $10 
High, $10 

Low, $20 
Medium,$20 
High,$20 

Low, $30 
Medium, $30 
High, $30 

off for the respondents and hence nothing to be learned. Numerous 
other difficulties can arise without careful preparation of the exogenous 
variables. The chapter by Holmes and Adamowicz and the book by 
Louviere, Hensher and Swait provide excellent coverage of the design 
problems. 

The estimation and welfare calculations that are applied with multiple 
attribute stated preference experiments are much the same as applied 
to random utility models of Chapter 8. Given the mutually exclusive 
assumption about the scenarios, one can then write the utility from a 
particular alternative, say j ,  as 

U*(SJ , y - Pj) = U(qj , y - Pj ) .  
By choosing among the scenarios or ranking the scenarios respondents 
implicitly reveal preferences for the attributes q{ , . . . , q� . If U ( q, y - Pj ) 
has an additive random term that is distributed extreme value, then the 
choice or ranking decisions will allow the estimation of conditional logit 
models, using stated choices rather than revealed choices as in Chapter 
8. In practice, the preference function U ( q, y - Pj ) is expressed as a 
linear function of the q's and sometimes of their interactions, including 
quadratic terms. The ability to estimate interaction and quadratic terms 
is enhanced by the experimental control of the attributes. And the es­
timation of these non-linear terms gives the stated preference methods 
the ability to determine substitutes and complements, as well as declin­
ing marginal values. Ranking and choice result in similar econometrics, 
because choice simply means ranking the best scenario. 

The stated preference approaches for multiple attributes provide more 
information than dichotomous choice CV because they involve respon­
dents in more choices. By inducing more choices per respondent, one gets 
more information about preferences, and better precision on preference 
parameter estimates. Further, when one of the scenarios (or alternatives) 
is the status quo, the calculation of WT P relative to the status quo is 
easily done. 

Multiple attribute approaches are not complete substitutes for di­
chotomous choice CV. Extensive information must be conveyed to re­
spondents, making the method unlikely to succeed on the phone or in 
any setting where the interview is conducted orally. 
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10.2 Mixed Logit Models 

In an econometric sense, the stated preference models are closer to site 
choice models than might appear. In effect, each site choice model has 
a number of 'experiments' for each respondent. In a site choice model, 
an individual chooses a particular site, but the sites that are not chosen 
are also part of the analysis, and influence the parameter estimates and 
standard errors. An econometrics program does not know the difference 
between more alternatives per individual and additional individuals, de­
spite the fact that individuals may differ greatly. The random parameter 
or mixed logit model is one approach for dealing with randomness that is 
individual-specific. The initial applications of this model to recreational 
demand are due to Train (1998, 1999) , though the model has a much 
longer history. Additional applications include Breffie and Morey. The 
mixed logit model assumes that the parameters of the logit model have 
errors that are specific to the individual. A simple mixed logit model 
would follow from the utility for alternative j for individual i with C 
attributes: 

c 
u; = L ZjclJci + C:j · 

c=l 
For this model, the parameters are taken to be random but distributed 
independently of the utility errors. Typically the parameters have the 
following form: 

{Jci = f3c + 7Jci 
where the 7Jci may be N(O, a�) .  Utility for individual i can then be 
written 

c 
u; = L(Zjc/3c + Zjc7Jci ) + C:j . 

c=l 
When the C:j have the type I extreme value distribution, independently 
distributed across individuals and sites, the probability that individual 
i chooses site j out of J alternatives becomes 

where f( 1J) is the joint density of the parameter errors. Because the 
randomness makes the potential behavior much richer, the mixed logit 
model can approximate any form of probability. Note that IIA does not 
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hold, because the ratio of probabilities for sites j and k becomes 

{ 
J
exp(L�=l�Zjcf3c + Zjc7lci) )  j(ry)d'f1-'c-

J S Lk=l exp(Lc=l (zkcf3c + Zkc7lci ) )  
{ 

J
exp(L�-l�Zjcf3c + Zjc7lci ) )  f(ry)dry. 

Js Lk=l exp(Lc=l (Zkcf3c + Zkc7lci ) )  

This does not factor the way the logit model does, so that the ratio 
of probabilities depends on the attributes of all of the alternatives. For 
almost all versions of the density function, closed forms for this probabil­
ity are not available. Instead estimation by simulation is used, in which 
the parameters functions of the distributions of both errors. The mixed 
logit model also requires numerical integration to calculate welfare ef­
fects. Train (forthcoming) gives a thorough analysis of the method and 
guidance for implementing the mixed logit. 

The intuitive advantage of the mixed logit model comes from covari­
ance among the errors, consistent with the panel-like structure of the 
data. Suppose that the 7lci are distributed independently with variance 
V( . ) .  The covariance between two utilities for individual i for alterna­
tives j and k is 

c 
L Z�c V(Tlci ) + V(Ej ) i = h , j  = k 
c=l 
c 

L ZkcZjcV(ryci ) i = h , j f. k 
c=l 
0 i f.  h. 

This error structure exposes the panel-like data that make up a dataset 
for a random utility model. Additional choices in a dataset are correlated 
within an individual's cases. As in the standard RUM, the correlation 
between any two alternatives for different individuals is zero. The mixed 
logit model captures the nature of randomness better than the simple 
logit model, but it comes at the cost of more complex estimation and 
more strategic estimation decisions. With the mixed logit model one 
also needs to choose the distribution for the random part of parameters. 
These choices include which parameters to make random, whether to 
make parameters correlated, and what distributions the parameters will 
have. Packaged programs such as LIMDEP now estimate mixed logit 
models. But the number of strategic decisions the researcher must make 
with a mixed logit model is expanded, and the latitude for different 
results from different strategic models grows. 
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The more common way of forming panel data is to combine time-series 
and cross-sections of observations. Forming a panel when the individ­
ual makes decisions at different times can help remove some individual­
specific errors with unknown but perhaps unattractive properties. These 
properties, being unknown, are assumed away in cross-sectional analysis. 
And even when the models estimated are like the mixed logit models, 
there may be choice-specific errors that do not disappear. True ob­
servations of individual choices at different points in time can provide 
additional support for valuation models that current models are unable 
to provide. 

10 .3  Combining Stated and Revealed Preferences 

Researchers have begun combining stated and revealed preference mod­
els in an attempt to cross-validate results from each. Initially the mo­
tivation behind such models was to use behavioral observation from in­
dividuals to ground the hypothetical responses from a stated preference 
survey in observable behavior. The idea that was more or less openly 
accepted was that the revealed preferences somehow were closer to the 
truth than stated preferences. This interpretation has been called into 
question for a number of reasons. Revealed preferences are typically 
based on observations from market outcomes. However, the institutional 
setting of the markets can influence the market outcomes. There are as 
many cues in a market transaction as there are in CV questions. Fur­
ther, while behavior may be observed, behavior and values are connected 
by strategic research decisions and substantial randomness in non-linear 
functions. So-called revealed values are difficult to validate because real 
values are typically not observable. As such, assuming revealed behav­
ior represents the benchmark for validating stated responses calls into 
question the test itself. Randall ( 1998) gives a succinct summary of the 
problems and benefits of combining revealed and stated preferences: 

In a number of research contexts, the consistency of the two 
kinds of data has been established, typically after apply­
ing some kind of endogenous scaling method (e.g. , Cameron, 
1992; Adamowicz, Louviere and Williams, 1994). Given our 
culture as economists, there is always a tendency to treat 
one of the datasets (typically an observed choice data set) as 
a benchmark against which to scale data generated by the 
other(s) . . .  I would caution that we have less reason than we 
think for maintaining the premise of differential validity; it 
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makes more sense to learn everything that can be learned by 
combining these kinds of data sets without imposing precon­
ceived notions of their validity. 

The combination of stated and revealed preference responses can come 
in a number of forms. Through proper scaling, revealed and stated 
choices of combinations of product attributes can be pooled (stacked) to 
estimate jointly parameters of attributes. The methodology has been 
applied to value non-market goods (e.g. , Adamowicz, Louviere et al. , 
1994; Adamowicz, Swait et al. , 1997) . An important issue is whether 
the two types of discrete choices can be pooled together under a sin­
gle preference structure. Swait and Louviere (1993) develop a procedure 
to test for compatibility of revealed and stated choices and to estimate 
the relative variances in these two types of data. The compatibility of 
revealed and stated choices is often supported by these studies. For ex­
ample, Whitehead, Haab and Huang (2000) use reported recreation trips 
to the Albemarle and Pamlico Sounds in North Carolina as the baseline 
revealed behavior. Then they hypothetically change the water quality in 
the Sounds and ask respondents for their stated future number of trips 
under the hypothetical change. Because water quality does not vary 
significantly in the Sounds over a given short time period, it is difficult 
to identify WT P for quality changes using revealed behavior in a single 
site framework (see Chapter 6). Loomis (1993) has shown that stated 
preferences for recreation trips under hypothetical quality changes can 
in fact be reliable and valid approximations to actual trips. Including 
stated responses to hypothetical changes in water quality allows for the 
identification of parameters associated with water quality that otherwise 
would be unidentified. Englin and Cameron, and Layman, Boyce and 
Criddle also combine revealed trips with stated trip intentions to improve 
the efficiency of estimates of WT P for water quality improvements. 

In other examples of combining revealed and stated preferences re­
searchers have combined recreation trips with dichotomous choice con­
tingent valuation responses to elicit WT P for site amenities (see for 
example, Cameron, 1992, Englin and Cameron, 1996; Huang, Haab, and 
Whitehead; McConnell, Weninger and Strand; Niklitscek and Leon; and 
Loomis (1997) ) .  By deriving the WTP function and recreation demand 
function from the same preference structure it is possible to test the 
consistency of preferences across revealed and stated responses. Huang, 
Haab and Whitehead urge caution in using this approach as it is impor­
tant to ensure that the baseline reference level of site amenities are the 
same across the revealed and stated preference responses. For exam­
ple, if past trips are used as the revealed preference measures, but the 
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WT P question is asked in terms of a future quality change, the refer­
ence level of site amenities may differ and the preference structures may 
be inconsistent across the revealed and stated responses. the reference 
level of site amenities may differ and the preference structures may be 
inconsistent across the revealed and stated responses. 

10.4 Preview 

Throughout the book, we have discussed the construction, specification, 
and estimation of models for behavioral and stated preference data. 
In the empirical analysis, the models have been estimated from cross­
sectional data exclusively. These cross-sectional analyses have been use­
ful for understanding models and for developing techniques. A danger 
of continuing to rely on cross-section data comes from the potential for 
omitted variables. This difficulty can be alleviated in part with panel 
data. A further advantage of panel data on individual behavior lies in 
its ability to model temporal substitution. Such data requires multi­
period surveys, and carries all the problems attendant with collecting 
panel data. But for serious corroboration of non-market values, such as 
one finds in Chay and Greenstone, such data is essential. 
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Appendix A 

Maximum Likelihood 
Estimation 

Here we give a cursory description of maximum likelihood methods. 
We provide no proof for the properties of the ML estimators, nor the 
properties that support such proofs. For more details and greater rigor, 
see Ruud (2000) or Greene (1997) . 

Maximum likelihood techniques represent a general technique for ob­
taining estimates of parameters from an unknown population distribu­
tion. The technique relies on the information contained in a sample of 
observations drawn from the population distribution to identify the esti­
mates of the population parameters. Maximum likelihood estimation is 
a direct extension of standard statistical inference from a sample drawn 
from an unknown population distribution. We start with a simple exam­
ple of the technique of maximum likelihood estimation and then discuss 
in more detail the properties of the resulting estimator. 

Consider a simple example. Suppose we know that a given measure 
(for simplicity we'll call this age) in a population is distributed across 
the population according to a normal distribution with mean, JL, and 
variance, cr2 . The distributional parameters /1 and cr2 are unknown. In 
this simple case, it is not necessary to assume a form for the population 
distribution, but for illustrative purposes we have assumed normality for 
the distribution of age in the population. We also assume that the ages 
of individuals within the population are independently and identically 
distributed. We would like to gain information on the population mean 
and variance from a sample of observations. Suppose we draw a sample 
of 20 individuals randomly from the general population and record their 
ages as: A = { a 1 ,  . . .  , a2o } .  For a given observation in the sample, the 
probability of observing the outcome ai is: 

1 (a; -!;)2 
f (ai iJL, cr2) = --e- 2"' • 

V27rcr2 
Because the sample draws are independent , the probability of observing 
the full sample of outcomes given the population parameters /1 and cr2 
IS 

20 
Pr ( AIJL ,  cr2 ) = IT f ( ai IJL, cr2) . (A. 1 )  

i=l 
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This probability statement is typically interpreted as a function of the 
random sample A given values for 11 and a2 . Because in actuality, A 
is observable and 11 and a2 are unknown, this interpretation can be 
reversed. Rewriting equation (A.l) as 

20 
L (fL, a2 IA) = IT f ( ai lfL, a2) (A.2) 

i=1 
we can interpret the probability of observing the sample A given a partic­
ular value of 11 and a2 as the likelihood of observing that sample for any 
value of fL and a2 . Equation (A.2) is known as the likelihood function. 
It should be emphasized that the likelihood function is a probability 
statement. Choosing the values of 11 and a2 to maximize the likelihood 
function results in the maximum likelihood estimates for 11 and a2 . 

When the probabilities are independent, it is often easier to maximize 
the natural logarithm of the likelihood function rather than the likeli­
hood function itself because the logarithm operator converts the product 
of terms into the sum of terms 

20 
ln (L (f.L, a2 IA) ) = I)n (f (ai lfL, o-2 ) ) . 

i=1 
In this case, the log-likelihood function becomes 

We maximize this function with respect to the unknown parameters 
because we want to determine the parameter values that would maxi­
mize the likelihood of the observation. Assuming that the log-likelihood 
function is concave, we differentiate with respect to 11 and a2 to find the 
first-order conditions for a maximum 

8 ln (L (f.L , a2 IA) ) 
811 

8 ln (L (f.L, a2 IA) ) 
8a2 

20 
L 

ai - fL - -- = 0 a2 i=1 

Solving for 11 and a2 gives the maximum likelihood estimates 

2:::7�1 ai 
20 

2:::7�1 (ai - !1)2 
20 
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For this simple example, the maximum likelihood estimate of the pop­
ulation mean age is simply the sample average, and the estimate of the 
variance is the sample variance about the average. In general, the first­
order conditions for the likelihood maximization problem do not have a 
simple closed-form solution. Below we discuss some specifics of maxi­
mum likelihood estimation in a more general framework. 

A. l The Likelihood Function 

Let Y = {yl , Y2 , . . .  , yr} represent the full population of possible out­
comes for a random event. Each individual population outcome, indexed 
Yi , is drawn from a population probability density function f (Yi iXi , 0) . 
For simplicity, we assume the distribution Yi are distributed indepen­
dently and identically for all individuals in the population. The outcome 
is conditional on Xi , a vector of individual specific characteristics, and 
0, an unknown vector of distributional parameters. Now suppose we ob­
serve a random sample of N outcomes (Y N) from the set of population 
outcomes Y. If the population distribution f (Yi iXi ,  0) were known, the 
probability of observing the set of outcomes Y N would be 

P (YN) = II f (Yi iXi, O) . 
Yi EYN 

(A.3) 

This result relies on the assumption that the individual observations of 
Yi are stochastically independent; otherwise, the probability would be 
the joint probability of observing the N outcomes simultaneously. 

Equation (A.3) assumes that the distribution parameters 0 are known. 
Suppose now, that the population parameters are unknown, so that 
equation (A.3) is a function of the unknown parameter vector and con­
ditioned on the sample observations of Yi and Xi 

L (OIYN, X) = II f (Yi iXi , O) . (A.4) 
Yi EYN 

For a given value of B, equation (A.4) represents the likelihood of ob­
serving the exact sample of outcomes {Y N ,  X} .This is a simple reinter­
pretation of the probability statement in equation (A.3). 

A.2 Maximization 

The question now becomes, what is a reasonable criterion for choosing 
the values for the unknown population parameter vector 0? Because 
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the likelihood function as defined in equation (A.4) represents the like­
lihood of observing the sample outcomes {Y N ,  X} for a given value of 
0, it makes sense to choose the value 0 that maximizes the likelihood of 
observing the specific sample of outcomes. That is, choose the value of 
0 that maximizes L (OJY N ,  X) : 

Assuming an interior solution, local concavity of the likelihood function 
and the existence of a global maximum, maximization of the likelihood 
function is accomplished by finding the solution to the system of first­
order conditions: 

8L (O JY N ,  X) = 0 
80 ° (A.5) 

Because the probability density function is strictly positive, and the 
natural logarithm of f (Yi lXi, 0) is a monotonically increasing transfor­
mation of f (Yi lXi ,  0), one can maximize the natural logarithm of the 
likelihood function which is made easier by the independence of the ob-
servations: 

ln L (OJY N ,  X) = L ln (f (Yi lXi, 0)) (A.6) 
y.; EYN 

yielding the system of first-order conditions: 

The values of the parameters that solve the system in equation (A. 7) 
will be identical to the solution to equation (A.5) .  Given the non-linear 
nature of most probability distributions, it is rarely the case that the 
likelihood maximization problems defined in equations (A.5) and (A. 7) 
will have a closed form solution for 0. It is therefore necessary to rely on 
numerical optimization algorithms to approximate the maximum likeli­
hood values for 0. 

A.2. 1  Maximum Likelihood Algorithms 

There are numerous algorithms for solving systems of equations like 
(A.7) . With the growth in computer power ML methods requiring nu­
merical solution of equations play a much more central role in estimation 
than 20 years ago. Our intent here is not to give a detailed exposition 
of the numerous algorithms for finding maximum likelihood estimates. 
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Instead, we give the flavor for maximum likelihood algorithms and re­
fer the reader to standard econometrics texts for more details on these 
algorithms (see, for example, Greene (1997) , or Ruud (2000)) .  Before 
proceeding, it is useful to define the gradient and Hessian of a likelihood 
function. The gradient vector is simply the vector of first derivatives of 
the likelihood (or log-likelihood) function with respect to the parameters 
to be estimated. At a global maximum, the gradient will be zero with 
respect to all parameters. The Hessian matrix is the matrix of second 
derivatives of the likelihood (or log-likelihood) function with respect to 
the parameter vector. To ensure an algorithm has reached at least a 
local maximum, the Hessian should be negative definite. Ideally, the 
log-likelihood function will be globally concave and the Hessian will be 
negative definite at any value of the parameter vector. This holds for a 
number of commonly estimated models, such as logit models. 

The basic idea behind typical maximum likelihood algorithms is: 

1 .  Choose a starting value for the parameter vector: 00 . The starting 
values are an initial guess as to the correct maximum likelihood 
parameter values. Often OLS parameters prove to be good starting 
values. 

2. Evaluate the log-likelihood function, the gradient and Hessian at 
the starting values. 

3. Update the parameter vector based on an updating rule (typically 
found by taking a Taylor-series approximation to the true parame­
ter vector around the start values) . Depending on the algorithm, 
the updating rule may be a function of the likelihood gradient, the 
Hessian and a step length that determines the size of the adjust­
ment made to the parameter estimates. 

4. Evaluate the log-likelihood function at the new parameter values. 

5. Compare the log-likelihood function values to see if the likelihood 
function has increased. If it has, proceed to step 6. If the log­
likelihood function has not increased, adjust the updating rule (or 
step length) and go to step 3. 

6. Check the convergence criteria. If the new parameter vector meets 
the convergence criteria, then stop. The criteria might be the 
change in the likelihood function, the change in the parameter 
vector or the size of the first derivatives. Otherwise, go to step 3 
and repeat until convergence is achieved. 
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Most maximum likelihood algorithms follow this basic procedure. Al­
gorithms differ in how the Hessian is computed, how the updating rules 
are defined, and how the convergence criteria are defined. Most statis­
tical packages have these algorithms pre-programmed and can be imple­
mented with very simple calls to the likelihood maximization routines. 

A.3 Properties of Maximum Likelihood 
Estimates 

Maximum likelihood parameter estimates have a number of desirable 
statistical properties. The derivation of these properties depends on a 
series of regularity conditions described in detail in Ruud (2000) . In 
brief, the regularity conditions are: (1 )  the assumed distribution is cor­
rectly specified; (2) a global maximum to the likelihood function with 
respect to the parameter vector exists and is identified, and (3) the pa­
rameter space is a closed and bounded set. Assuming these regularity 
conditions hold, the properties of the maximum likelihood parameter 
estimates 0 are: 

A . 3. 1  Consistency 

0 is a consistent estimate of 0. Consistency implies that in the limit , 
the maximum likelihood parameter vector converges in probability to the 
true parameter vector. Among the appealing implications of consistency 
is Slutsky's theorem which states: 

Slutsky 's Theorem 

p lim f (o) = J (p lim o) 
if f (o) is continuous and independent of the sample size. Slutsky's 
theorem is valuable because it allows us to compute functions of para­
meter estimates. In general, the expected value of a function of random 
variables is not equal to the function of the expectation of the random 
variables. However, Slutsky's theorem implies that a function evaluated 
at a consistent estimate is a consistent estimate of the function itself. 
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A .3.2  Asymptotic Normality 

0 is distributed asymptotically as a normal random vector with mean (} 

and variance-covariance matrix V (o) = -E [ 82 1n���J,"N ,x)r1 . The 
mean of the asymptotic distribution follows from consistency of the max­
imum likelihood estimator. The matrix E [ 02 ln ���J," N ,X) J is often re­
ferred to as the Fisher information matrix. The variance-covariance 
matrix -E l82 ln ���J," N ,X) J -l 

is the Cramer-Rao lower bound on the 

variance of (}, implying that the maximum likelihood estimator is as­
ymptotically efficient. 

A.4 Diagnostic Statistics and Tests for 
Maximum Likelihood 

A.4 . 1 Likelihood Ratio Statistic 

Cons�der an unrestricted log-likelihood function ln Lu ( OIY N , X) . De­
fine Ou as the vector of maximum likelihood parameter estimates ob­
tained from the maximization log-likelihood function without restric­
tions on the parameters. Suppose we want to test a set of restrictions 
on the parameter estimates. For example, suppose a subset of the pa­
rameters is thought to be equal to zero. Define ln Lr ( OIY N , X) as t�e 
log-likelihood function evaluated with the imposed restrictions, and Or 
as the resulting maximum likelihood parameter estimates. Under the 
null hypothesis that the parameter restrictions hold, the likelihood ratio 
statistic: 

LR = -2 [ln Lr - ln Lu ] 

is asymptotically distributed as a Chi-squared random variable with de­
grees of freedom equal to the number of parameter restrictions when the 
likelihood function is ln Lr. Intuitively, if the parameter restrictions are 
true, that is, the parameters are actually zero, then imposing the re­
strictions will not significantly decrease the log-likelihood function value 
relative to the unrestricted version. In this case, ln Lr will be close to 
ln Lu and LR will be small. As the restrictions become more binding, 
ln Lr and ln Lu will diverge and LR will be large (leading to rejection of 
the null hypothesis) . 
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� 
A.4 .2  A Special Case: Br = 0 
As a special case, consider the hypothesis that all estimated parameters 
are equal to zero (for models that include a constant , the constant is not 
restricted to zero, but all other parameters are restricted to zero). De­
fine ln Lo as the maximum value of the log-likelihood function under the 
null-hypothesis that all parameters are equal to zero. As before, ln Lu 
is the maximum log-likelihood function value when all parameters are 
free to vary to maximize the likelihood function. The parameter restric­
tions here are the maximum likelihood equivalent of restricting all slope 
parameters to be equal to zero in a standard linear regression model. 
This set of restrictions can be used to evaluate the model goodness of 
fit. Three candidate measures of model goodness of fit will be men­
tioned here: model Chi-squared statistic, pseudo-R2 and McFadden's 
R2 . Each measure has relative advantages and disadvantages that will 
not be debated here. Maddala discusses the properties of these three 
measures. Note that only three pieces of information are necessary to 
calculate these three measures: the unrestricted log-likelihood function 
value (ln Lu ) , the restricted log-likelihood function value (ln L0) and the 
sample size ( N) . 

Model Chi-Squared Statistic 

The model Chi-squared statistic is a special case of the likelihood ratio 
statistic from the previous section with all relevant parameters restricted 
to be equal to zero 

LRModel = -2 [ln Lr - ln Lu] · 

The statistic is distributed as a Chi-squared with degrees of freedom 
equal to the number of parameters restricted to be equal to zero. 

Pseudo-R2 

Various measures based on the likelihood ratios attempt to recreate an 
analogue to the traditional R2 used in linear regression models. The 
difficulty is that the maximum of the likelihood value is one, so that the 
upper bound of the likelihood measures will typically be less than one. 

The pseudo-R2 measure is defined as 

2/N 2/N d R2 _ ln Lu - ln Lr 
pseu o - 2/N 1 - ln Lr 

where N is the number of observations. Similar to the likelihood ratio 
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statistic, if the restriction is non-binding, then ln Lo will be close to ln Lu 
and pseudo R2 will be close to zero. 

McFadden's R2 

McFadden's R2 is a simpler measure of model goodness of fit that does 
not rely on the sample size, but simply on the relative decrease in the 
likelihood function induced by the parameter restrictions 

McR2 = 1 -
ln Lu 
ln Lr 

This measure of goodness of fit has a lower bound of zero when ln Lr = 
ln Lu and goes to one when ln Lr gets very large or Lu goes to one. 

In the presentation of statistics within the text , we report the likeli­
hood value and the likelihood ratio, as well as the number of observa­
tions. We do not report any of the approximate R2' s though we report 
sufficient information to compute these measures if one wishes. 

Percent Correctly Predicted 

Often one will find the percent correctly predicted as a measure of good­
ness of fit in discrete choice models. For example, in a logit model, the 
prediction of alternative j for a choice set of J alternatives would be 

where the /3 are the estimated parameters. The typical rule for a pre­
diction is to find the highest of the predicted probabilities and assign 
one to that alternative and zero to the others. If the individual actually 
chooses the alternative with the highest predicted probability, it will be 
a correct prediction. This measure can fail in two ways. If a model is 
quite skewed, say in a dichotomous choice, 95% choose alternative one, 
and the model predicts roughly the same for everyone, at 55%, then the 
percent correctly predicted will be 95%, even though the model doesn't 
really do very much. On the other hand, consider a multiple choice with 
four alternatives. Suppose the actual probabilities are (0.4, 0.3, 0.2, 0 .1)  
and the predictions are roughly 40% for the first alternative and 45% 
for the second alternative. The percent correctly predicted will give no 
credit for being close on the first alternative, and consequently can be 
quite low. 



 

Appendix B 

Some Useful Results 

B . l  Basic Probabilistic Relations 

This section summarizes some results of probability distributions that 
are well known but used periodically throughout the book. 

B. 1 . 1  Pr(x > a) 

Consider a random variable x. By definition of a valid distribution 
function, Pr(x :S a) + Pr(x > a) = 1 .  Rearranging yields: 

Pr(x > a) = 1 - Pr(x :S a) . (B. 1) 

This is useful because an assumed distribution function is often defined 
in terms of a cumulative distribution function such that Pr(x :S a) = 
F (a) . For example, for a variable that is distributed N(p,, a2 ) the cu­
mulative distribution function ( CDF) is 

fa 1 (x-i)2 <I> (a) = V 2 
e- 2a dx. 

-oo 21ra 

To find Pr(x > a) , where x is normally distributed with mean p, and 
variance a2 , use the definition of the normal CDF and relation B.1 : 

Pr(x > a) = 1 - <I> (a) . 

B. 1 . 2  Pr(x > -a) 

For a random variable x, distributed according to an arbitrary CDF 
F(x) , Pr(x :S -a) + Pr(x > -a) = 1. Rearranging yields 

Pr(x > -a) = 1 - Pr(x :S -a) 
1 - F(-a) . 

This relationship can be seen in Figure B.1 , where f ( x) is the probability 
density function associated with the CDF F(x) . 

For simplicity it is drawn as a triangular distribution. Assume further 
that the CDF is valid such that the area under f(x) is one. The area 
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f(x) 

-a 

� P(x<-a) 
D P(x>-a) 

FIGURE B . l .  Probability Relationship 

f(x) 

� Pr(x>a) 

� Pr(x<-a) 

FIGURE B.2 .  Probability for Symmetric Distribution 

Pr(x > -a) is the area to the right of -a under f(x). The area F(-a) 
is the area to the left of -a under f ( x) .  Because the total area under 
f(x) must equal one, the area to the right of -a is one minus the area 
to the left of -a. 

B. 1 .  3 Symmetry 

If the distribution of a random variable x is symmetric with mean zero, 
then Pr(x :::; a) = Pr (x > -a) . Also, Pr(x :::; -a) = Pr (x > a) . Figure 
B.2 illustrates this. Because the distribution is symmetric about zero (a 
mirror image) , the area below -a under f(x) is equal to the area above a 
under f(x). If the distribution of x is symmetric about a non-zero mean, 
f-.L, then this result generalizes to: Pr(x - f-.L :::; -a) = Pr (x - f-.l > a) . 
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B. 1 .4  Summary of Results on Probabilities 

The results of the previous section are summarized in Table B.1 : 

TABLE B . l .  Summary of  Basic Probability Relations 

Distribution 
Arbitrary CDF F(x) 

Symmetric about 0 Dist6 

Symmetric about fl Dist. c 

Relation 
Pr ( x :::; a)+ Pr ( x > a) = 1 
Pr (x :::; -a)+ Pr (x > -a) = 1 
Pr ( x > a) = 1 - F (a) 
Pr (x > -a) = 1 - F(-a) 
Pr (x :::; a) = F(a) 
Pr (x :::; -a) = F( -a) 
Pr ( x :::; a) = Pr ( x > -a) 
Pr (x :::; -a) = Pr (x > a) 
Pr (x :::; -a) = 1 - F(a) 
Pr (x - fl :::; a) = Pr (x - fl > -a) 
Pr ( x - fl :::; -a) = Pr ( x - fl > a) 
Pr (x - fl < -a) = 1 - F(a - fl) 

a. These results carry over to symmetric distributions 
b. Results do not hold in general, only mean zero 
symmetric distributions 

c. Results do not hold in general, only mean fl 
symmetric distributions 

B.2 Exponential Logistic Distribution 

309 

In this section we are concerned with the distribution of a positive valued 
random variable eTf where '17 is distributed logistically over the infinite 

2 2 
range with mean zero and variance n ;  . The moment generating func-
tion for a mean zero logistic random variate '17 is 

E(etry)  = r (1 - at) r (1 + at) , (B.2) 

where 

(B.3) 

For at :::; 1 
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where sin(no-t) is measured in radians. Evaluating at t = 1 yields 

E( ert) = o-n/ sin( o-n) . 

The restriction a-t � 1 implies a- � 1 if t = 1 . The necessity of the 
restriction is evident for two reasons: 

1 . The gamma function r (a) is only defined for a 2: 0. Substituting 
1 - a-t =  a implies a-t � 1 . 

2. Assuming a- 2: 0, E( ertJ ) > 0 i f  and only if sin( o-n) > 0. This i s  true 
if o-n � 1r which implies a- � 1 . If o-1r > 7r then sin( o-1r) < 0 and 
E( e'flJ ) would be less than zero. This is logically inconsistent as erti 
is a positive valued random variable and cannot have a negative 
mean. If a- > 1 then the expected value of the exponential logistic 
random variable ert is undefined. 

The variance of ert can be found in a similar fashion. By definition, 

which simplifies to: 

E [(ert)2] - [E (ert)] 2 

E (e2rt) - [E (ert)] 2 

Using the moment generating function from above, the variance of ert 
becomes: 

V 
( ert) = 2no- - 1f(J 

( ) 2 

sin (2no-) sin ( 1ro-) 

B.3 Properties of Truncated Normal 

Suppose x is a normally distributed random variable with mean f-L and 
variance o-2 , ¢ ( z) is the standard normal density function, and 

<I> ( z) is 
the standard normal distribution function. Define x* = x�g , a* = a�g . 
Then the expectation for the truncated x is 

¢ (a* ) E (x ix > a) =  t-L + o- <I> ( )
' 1 - a* 

(B.4) 



 

Useful Results 311 

where �¢ ( x�g ) = (2no-2)-� e-H�r is the density function of x. 
:E.=1!:.. 

The distribution function of x, <I> ( x�g) = J_� a-¢ (z) dz and the lower 
truncated density (truncated from below a) for x is 

f (x lx > a) = �¢ ( x : JL) I [ 1 - <I> (a : JL) ] . 

By definition, 

E (xlx > a) = 1
= 
xf (xlx > a) dx. (B.5) 

Substituting in the expression for the truncated normal density function 
gives: 1= 

1 E (xlx > a) =  x-¢ (x* (x)) I [1 - <I> (a* ) ] dx, a 0" 
(B.6) 

where x* = x�v . For simplicity, let P = [1 - <I> (a*) ] and rewrite the 
truncated expectation as 

1 1= 
1 E (x lx > a) = - x-¢ (x*(x)) dx. p a 0" (B.7) 

To integrate this expression, we can transform the variable of integration 
from x to x* . We substitute the function x* (x) = x�g where it occurs 
and solve for x. To do this, we must rewrite the expression as an implicit 
function of x(x*) = x*o-+JL. Note that lim x* (x) --+ oo and when x = a, 

X-->CXJ 
x* (a) = a� 1L = a* . The integral becomes 

1 1x* (=) 1 1 1= 
1 

P 
x (x* ) -¢ (x* ) x'(x* )dx* = - (x*o- + JL) -¢ (x* ) o-dx* x• (a) 0" p a• 0" 

because x'(x*) = a-. Expanding the right hand side and simplifying 
yields 

1 1= 1= 
E (xlx > a) = p (o-x*¢ (x* ) ) dx* + JL ¢ (x* ) dx* . a• p a• (B.S) 

The second integral is straightforward since by definition: ¢ (x*) = d���· ) , 
implying 

; 1� ¢ (x* ) dx* .!!:.. 1= 
d<I> (x* ) dx* 

P a• dx* 
.!!:_ [<I> ( * )]x*== p X x*=a 
JL [1 - <I> (a*)] p 
JL. 

(B.9) 
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The first step follows from the definition of a cumulative distribution 
function, the final step follows from the definition of P. 

To find an expression for -j; faa::' (ax* cjJ ( x* ) ) dx* ,  note that d¢ ( x*) / dx* 
' •2 

= d vk-e-"'2-/dx* = -x*cjJ (x*) . Substituting into the integral expres-
sion � 1� (ax*cjJ (x* ) ) dx* = -� 1� (ad���*) ) dx* 

which upon evaluation becomes 

� 1� (ax*¢ (x*) ) dx* = -; [¢ (x* ) 1 �:�� J . 
Because cjJ ( oo) = 0, this expression becomes 

� 1� (ax*¢ (x* ) ) dx* = a  cjJ �*) . (B.10) 

Substituting the expressions from equations (B . 10) and (B.9) into equa­
tion (B.8) and substituting P = [1 - ci> (a*)] proves the proposition: 

cjJ (a*) E (x lx > a) =  J.L + a ( ) " 1 - ci> a* 
(B.ll ) 

Consequently in the model y = zf3 + c:, for c: � N(O, a2) ,  E(c:ly � 
0) = E(c:lc: � -zf3) = a l-�(�{;ja) , the term found in truncated and 
censored regression models. 

B.4 The Poisson and Negative Binomial 

The Poisson probability of observing a non-negative integer outcome x 
is 

e-.x>.x 
Pr(x) = --1 - , x = 0, 1 , 2 , . .  

X. 

where >. is the Poisson mean. The negative binomial probability is: 

(B. 12) 

where 

(B.13) 
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If z is a non-negative integer, then r (z + 1) = z! .  In Chapter 7 we 
assert that as CY ---* 0, the negative binomial distribution collapses to the 
Poisson distribution. To see this, note that 

r (x + ±)  
= 

x
rr
-1 
( . 

.!.
) 

r (l.) . J + CY • "' ] =0 

We can also write ( i-�.\ r = f1j�ci ( i-�.\ ) . Rewrite the last paren­
thetical term on the right hand side of equation (??) as 

Substitution and simplification gives 

Pr(x) = I_ (_j__) i Ax 
xiT-1 ( j + ± ) . x! l. + >. . l. + >. "' J =O "' 

Multiply the parenthetical terms by � such that 

As CY ---* 0 

So as CY ---* 0 

Pr(x) = I_ (-1-) i Ax IT ( CYj + 1 ) . x! 1 + etA j=O 1 + CYA 

---* e 

-.\AX 
lim Pr (x) = _e_l - .  
a-+0 X. 

-.\ 

This is the Poisson probability. 

B . 5  The Type-I Extreme Value (Gumbel) 

(B. 14) 

Let x be a Type-I extreme value random variable defined over the infinite 
range. The probability density function for x is 

f ( ) B -B(x-A) -e- B(,r.-A) 
EV X = e e (B . 15) 
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where B is the scale parameter and A is the location parameter. The 
distribution function for x is 

F ( ) -e- B(x-A) 
EV X = 1 - e 

The expected value of x is 
(B. 16) 

(B. 17) 

where d��t) l t=l is the first derivative of the incomplete gamma function 
r (t) = f000 Zt-l e-Zdz evaluated at t = 1 . d��t) l t=l iS referred tO a 
Euler's constant 

dr (t) 
� lt=l � -0.57722. 

The expectation of x is approximated as 

The variance of x is 

EEv (x) _ A _  
0.57722 -

B . 

11"2 
VEv (x) = 6B2 . 

B. 5. 1 The McFadden RUM Probability 

(B.18) 

(B.19) 

(B.20) 

In Chapter 8, we define Ujk = Vjk + Ejk as the indirect utility of choice 
sequence k , j  in a two-level nested choice structure. Vjk is the deter­
ministic portion of utility and Ejk is a random error term. Pr (j, k) 
represents the probability of choosing alternative j, k from among all 
possible combinations. As such, Pr (j, k) is the probability that the in­
direct utility from choice sequence k, j exceeds the indirect utility from 
any other choice sequence. In general 

Pr (j, k) = Pr (ujk > Uzm V lm # jk) . (B.21) 

Substituting for the form of the indirect utility function 

Pr (j, k) Pr (vjk + Ejk > Vzm + Elm V lm # jk) (B.22) 
Pr (Ezm < Vjk - Vzm + Ejk V lm # jk) . 

Define f (e) as the multivariate density function for the vector of errors 
e = { eJ1 , eh , . . .  , eJx } , where e .k = {E1k,E2k ,  . . .  , EJ.,k } . Equation (B.22) 
is a "L{;=1 Jk dimension integral of the form 

Pr (j, k) = J · · · J f (e) dEn . . . dEhK (B.23) 
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where the bounds of integration are ( - oo ,  Vjk - Vtm + Ejk) V Etm E lm =/: 
jk and ( - oo ,  oo) for Ejk · This integral can be reduced to a single integral 
of the form 

Pr (j, k) = 1::��: Pr (ctm < Vjk - Vtm + Ejk V lm =/: jk lcjk ) dcjk 
(B.24) 

using the following: 

B. 5. 2 Conditional Probability Relation 

Consider two jointly distributed random variables, xi and x2 , with joint 
distribution function F (xi , x2) .  Let Fj denote the derivative of the joint 
distribution function with respect to the /h argument. The conditional 
probability of xi < z given a particular value of x2 is 

dF (
d
xi , X2) lx,=z Pr (xi < z lx2) X2 

F2 (z, x2) .  
Generalizing this result, Pr (j, k) becomes 

Pr (j, k) = 1
E:
j�
== 

Fjk (vjk - vu + Ejk , . . .  Vjk - VhK + Ejk , )  dcjk · 
Cj k --00 

(B.25) 
To derive a closed-form expression for Pr (j, k) , we need the distribution 
of the random error terms in the indirect utility function. Kotz, Balakr­
ishnan and Johnson provide an overview for multivariate extreme value 
distributions. McFadden utilized a special case of the multivariate ex­
treme value distribution to derive the nested logit model. McFadden's 
generalized extreme value distribution is written in our notation as: 

B . 6  Generalized Extreme Value Distribution 

where am > 0 and Bm :::; 1 Vm are parameters. 

(B.26) 

Equation (B.26) represents one form of the multivariate extreme value 
distribution. Other forms exist, but the generalized extreme value dis­
tribution has some desirable properties (namely a closed form solution 
for the expected maximum) . 
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B. 6. 1 Probability Derivation 

If e is distributed generalized extreme value then 

[ J ]
1:/x, -1 

ake '],; f: e 71;'-
p ( . k) l=l r J, = e . 

t am [� e �::: ] 
"' 

m=l l=l 

(B.27) 

The proof for this proposition is as follows: First differentiate F (e) with 
respect to an arbitrarily chosen e (we'll use en for simplicity) : 

Fn (e) (B.28) 

a,F (e) [t, exp (-�:) r' exp (- ';,' ) 
Substituting into equation (B.25): 

l
su=oo 

Pr ( 1 ,  1) = su
=-

oo Fn (en , Vn - V21 + en, . . .  Vn - VJKK + eu , )  den 

= i: 



 
= 1""=00 
c:u =-CXJ 

= lc:"=oo 
C11=-oo 
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[ - exp ( -vu)
. 
exp ( -c-11 ) 

l a1 exp K [ J ( ) ] IJm X '\"' a '\"' m. exp :!!.Lm. L...-m=1 m L...-1=1 IJm 
X exp (- v" (IJ,-1) ) exp (- ""(IJ, -1) - SJ.J..) e,  e , e, 

X [2:::!�1 exp ( �) r1-1 
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dcu . (B.29) 

Let 

and 

Then 

C _ ( vu (B1 - 1) ) [� (vn ) ] IJ, -1 
1 - a1 exp -

B L exp e 1 1=1 1 
(B.30) 

(B.31) 

(B.32) 

The integrand is closely related to the density function for a Gum­
bel (extreme-value) distributed random variable (see equation (B. 15) ) . 
From equation (B. 15) ,  the density function for a Gumbel distributed 
random variable (denoted f EV ) with unit scale and location parameter 
ln C2 , is: 

(B.33) 
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so that J�= !Ev (en) den = 1 .  Substituting into equation (B.32) yields: 

Pr ( 1 ,  1 )  

Hence we have 

C 1= !Ev (en ) d 1 C en 
-(X) 2 

c1 Pr (1 , 1) = 
02 . 

(B.34) 

(B.35) 

This derivation holds for any choice combination j, k. Substituting back 
in the definitions of C1 and C2 proves the proposition in Chapter 8: 

Pr (j, k) 

(B.36) 

B. 6.2 Expected Maximum Utility 

In chapter 8, we define u.k = { ulk,U2k , . . .  , UJk k} as the vector of utilities 
for upper level choice k in a two-level nested choice structure, and u = 
{ u. 1 , u.2 , . . .  , u. K } as the concatenation of the error vectors across all 
upper and lower level choices. Max(u) is the maximum indirect utility 
attainable (largest element among all possible Ujk = Vjk + e1k ) · 

If the error vector c is distributed as generalized extreme value as in 
equation (B.26) ,  then 

(B.37) 

The proof is as follows. Let 

max (u) = arg max (vn + en , . . .  vhK + ehK) .  
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If alternative j, k is chosen, then max (u) = Vjk + E:jk o For a given value 
of E:jk this occurs with probability 

Pr (vjk + E:jk > Vim + Elm \:1 lm =/= JkiE:jk) 

= Fjk (vjk - vn + E:jk ,  Vjk - v21 + E:jk ,  . .  oVjk - VJxK + E:jk )  (Bo38) 
where Fjk is the derivative of F(c) with respect to argument j, ko Multi­
plying by the realization of max (u) , integrating over all possible values 
of Ejk , and summing over all possible choice outcomes, the expected 
maximum utility is E (max (u) )  = 

V[m - Vn + Elm, ) d (B 39) E:[m o 0 
" 0 '  V[m - VJKK + E:[m 

Define Zlm = Vim + E:[m then 

K Jm r 
E (max (u) )  = L L Jz zF/m (z - vn , . .  o , z - VJxK) dzo 

m=l l=l Ztm 
(B.40) 

Assume F (c) is the GEV cumulative distribution function as defined in 
equation (Bo26) o >From equation (Bo28) 

Ftm (o) � amF (o) [� ex{-�=) r-' ex+�=) · (B.41) 

Substituting F (c) , 

and 

c, � exp hm) t,a, [t, exp (�:) r 
from equation (Bo32) , Flm (c) becomes 

Flm (c) =  Cle-Etme-C2e-'t m 0 (Bo42) 

Transforming random variables from Elm to Zlm 
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Now define 

and 
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(Vlrn ) arn exp Brn 

Expected maximum utility can now be written as E (max (u)) 

(B.44) 

(B.45) 

(B.46) 

A couple of notes are important here. The last line above follows because 
C3 is independent of z. Also, C4 is a constant and as such independent 
of the summations. Further, because the GEV distribution is defined 
over the infinite range, the range of integration for is Z!m infinite. Hence 
we can write 

(B.47) 

Now consider the summation term. Differentiating C4 with respect to 
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evtm will provide a useful result (note that exp (�) = (ev'"' ) "� )  

Om (e"•� ) '� _ ,  [� exp ( 
t) r-' 

e- "' " am (e � ) [� cxp (�:) r· ' 
(B.48) 

Substituting this result into the summation term in equation (B.47) 
yields 

(B.49) 

Relying on Euler's Theorem for homogeneity of a function, if C4 is ho­
mogeneous of degree 1 in ev , where ev = ev1 1 , . . .  evK JK is the full vector 
of possible evj,, , then 

K Jm. dC C4 = � � eVt m _4 . 
L..-t � deVJ. m 
m=l l=l 

Is c4 homogeneous of degree 1 in all eVjk ? From above, 

K 
c4 (ev ) = l: ak 

k=l 

Note that since 

(B .50) 

(B. 51) 

is homogeneous of degree one, c4 is the sum of homogeneous of degree 
one functions and hence is homogeneous of degree one itself. This es­
tablishes the validity of equation (B.50) . Combining equations (B.50) 
and (B.49) gives 

K Jm 
L L C3 = C4 . (B.52) 
m=l l=l 
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Substituting this result into equation (B.47) , expected maximum utility 
now becomes 

E (max (u) )  1 ze-ze-C4e-z dzC4 
lm 

(B.53) 

1 zC4e-ze-C4e-z dz . 
Zl·m 

The integrand is the expected value of a Type-I extreme value (Gum­
bel) random variable with unit scale and location parameter ln ( C4) (see 
equation (B. l5)) .  From equation (B. l9) ,  expected maximum utility is 
therefore: 

E (max (u) )  ln ( C4) - 0.57722 (B.54) 

In (,�,a,. [t, exp ( �=)] ' -) - 0 57722 

This is the expected maximum utility that serves as the indirect utility 
function when calculating welfare effects for the nested logit model, and 
when the parameters am and em are appropriately restricted, for the 
conditional logit. 
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