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Preface

The development of geographic information systems (GIS), an increasing
availability of spatial data, and recent advances in methodological techniques
have all combined to make this an exciting time to study geographic pro-
blems. During the late 1970s and throughout the 1980s there had been,
among many, an increasing disappointment in, and questioning of, the meth-
ods developed during the quantitative revolution of the 1950s and 1960s.
Perhaps this reflected expectations that were initially too high — many had
thought that sheer computing power coupled with sophisticated modeling
would “solve” many of the social problems faced by urban and rural
regions. But the poor performance of spatial analysis that was perceived by
many was at least partly attributable to a limited capability to access, dis-
play, and analyze geographic data. During the last decade, geographic infor-
mation systems have been instrumental not only in providing us with the
capability to store and display information, but also in encouraging the pro-
vision of spatial datasets and the development of appropriate methods of
quantitative analysis. Indeed, the GIS revolution has served to make us
aware of the critical importance of spatial analysis. Geographic information
systems do not realize their full potential without the ability to carry out
methods of statistical and spatial analysis, and an appreciation of this depen-
dence has helped to bring about a renaissance in the field.

Significant advances in quantitative geography have been made during the
past decade, and geographers now have both the tools and the methods to
make valuable contributions to fields as diverse as medicine, criminal justice,
and the environment. These capabilities have been recognized by those in other
fields, and geographers are now routinely called upon as members of interdis-
ciplinary teams studying complex problems. Improvements in computer tech-
nology and computation have led quantitative geography in new directions.
For example, the new field of geocomputation (see, ¢.g., Longley et al. 1998)
lies at the intersection of computer science, geography, information science,
mathematics, and statistics. The recent book by Fotheringham ez al. (2000)
also summarizes many of the new research frontiers in quantitative geography.

The purpose of this book is to provide undergraduate and beginning grad-
uate students with the background and foundation that are necessary to be
prepared for spatial analysis in this new era. I have deliberately adopted a fairly
traditional approach to statistical analysis, along with several notable differ-
ences. First, I have attempted to condense much of the material found in the
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beginning of introductory texts on the subject. This has been done so that there
is an opportunity to progress further in important areas such as regression
analysis and the analysis of geographic patterns in one semester’s time.
Regression is by far the most common method used in geographic analysis,
and it is unfortunate that it is often left to be covered hurriedly in the last week
or two of a “Statistics in Geography” course.

The level of the material is aimed at upper-level undergraduate and begin-
ning graduate students. I have attempted to structure the book so that it may
be used as either a first-semester or a second-semester text. It may be used for a
second-semester course by those students who already possess some back-
ground in introductory statistical concepts. The introductory material here
would then serve as a review. However, the book is also meant to be fairly
self-contained, and thus it should also be appropriate for those students learn-
ing about statistics in geography for the first time. First-semester students, after
completing the introductory material in the first few chapters, will still be able
to learn about the methods used most often by geographers by the end of a
one-semester course; this is often not possible with many first-semester texts.

In writing this text, I had several goals. The first was to provide the basic
material associated with the statistical methods most often used by geo-
graphers. Since a very large number of textbooks provide this basic informa-
tion, I also sought to distinguish it in several ways. I have attempted to provide
plenty of exercises. Some of these are to be done by hand (in the belief that it is
always a good learning experience to carry out a few exercises by hand, despite
what may sometimes be seen as drudgery!), and some require a computer.
Although teaching the reader how to use computer software for statistical
analysis is not one of the specific aims of this book, some guidance on the
use of SPSS for Windows 9.0 is provided. It is important that students become
familiar with some software that is capable of statistical analysis. An important
skill is the ability to sift through output and pick out what is important from
what is not. Different software will produce output in different forms, and it is
also important to be able to pick out relevant information whatever the
arrangement of output.

In addition, I have tried to give students some appreciation of the special
issues and problems raised by the use of geographic data. Straightforward
application of the standard methods ignores the special nature of spatial
data, and can lead to misleading results. Topics such as spatial autocorrelation
and the modifiable areal unit problem are introduced to provide a good aware-
ness of these issues, their consequences, and potential solutions. Because a full
treatment of these topics would require a higher level of mathematical sophis-
tication, they are not covered fully, but pointers to other, more advanced work
and to examples are provided.

Another objective has been to provide some examples of statistical analysis
that appear in the recent literature in geography. This should help to make
clear the relevance and timeliness of the methods. Finally, I have attempted to
point out some of the limitations of a confirmatory statistical perspective, and
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have directed the student to some of the newer literature on exploratory spatial
data analysis. Despite the popularity and importance of exploratory methods,
inferential statistical methods remain absolutely essential in the assessment of
hypotheses. This text aims to provide a background in these statistical methods
and to illustrate the special nature of geographic data.

A Guggenheim Fellowship afforded me the opportunity to finish the manu-
script during a sabbatical leave in England. I would like to thank Paul Longley
for his careful reading of an earlier draft of the book. His excellent suggestions
for revision have led to a better final result. Yifei Sun and Ge Lin also provided
comments that were very helpful in revising earlier drafts. Art Getis, Stewart
Fotheringham, Chris Brunsdon, Martin Charlton, and Ikuho Yamada sug-
gested changes in particular sections, and I am grateful for their assistance.
Emil Boasson and my daughter, Bethany Rogerson, assisted with the produc-
tion of the figures. I am thankful for the thorough job carried out by Richard
Cook of Keyword in editing the manuscript. Finally, I would like to thank
Robert Rojek at Sage Publications for his encouragement and guidance.



Introduction to Statistical Analysis
1 in Geography

1.1 Introduction

The study of geographic phenomena often requires the application of statistical
methods to produce new insight. The following questions serve to illustrate the
broad variety of areas in which statistical analysis has recently been applied to
geographic problems:

(1) How do blood lead levels in children vary over space? Are the levels
randomly scattered throughout the city, or are there discernible geo-
graphic patterns? How are any patterns related to the characteristics of
both housing and occupants? (Griffith et al. 1998).

(2) Can the geographic diffusion of democracy that has occurred during the
post-World War II era be described as a steady process over time, or has it
occurred in waves, or have their been “bursts” of diffusion that have
taken place during short time periods? (O’Loughlin et al. 1998).

(3) What are the effects of global warming on the geographic distribution of
species? For example, how will the type and spatial distribution of tree
species change in particular areas? (MacDonald et al. 1998).

(4) What are the effects of different marketing strategies on product perfor-
mance? For example, are mass-marketing strategies effective, despite the
more distant location of their markets? (Cornish 1997).

These studies all make use of statistical analysis to arrive at their conclu-
sions. Methods of statistical analysis play a central role in the study of
geographic problems — in a survey of articles that had a geographic focus,
Slocum (1990) found that 53% made use of at least one mainstream quanti-
tative method. The role of statistical analysis in geography may be placed
within a broader context through its connection to the “‘scientific method,”
which provides a more general framework for the study of geographic
problems.

1.2 The Scientific Method

Social scientists as well as physical scientists often make use of the scientific
method in their attempts to learn about the world. Figure 1.1 illustrates this
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organize surprise

validate ﬂ formalize

Theory < Laws < | Model | ——— o

Figure 1.1 The scientific method

Figure 1.2 Distribution of cancer cases

method, from the initial attempts to organize ideas about a subject to the
building of a theory.

Suppose that we are interested in describing and explaining the spatial pat-
tern of cancer cases in a metropolitan area. We might begin by plotting recent
incidences on a map. Such descriptive exercises often lead to an unexpected
result — in Figure 1.2, we perceive two fairly distinct clusters of cases. The
surprising results generated through the process of description naturally lead
us to the next step on the route to explanation by forcing us to generate
hypotheses about the underlying process. A “‘rigorous” definition of the term
hypothesis is a proposition whose truth or falsity is capable of being tested.
Though in the social sciences we do not always expect to come to firm con-
clusions in the form of “laws,” we can also think of hypotheses as potential
answers to our initial surprise. For example, one hypothesis in the present
example is that the pattern of cancer cases is related to the distance from
local power plants.

To test the hypothesis, we need a model, which is a device for simplifying
reality so that the relationship between variables may be more clearly studied.
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Whereas a hypothesis might suggest a relationship between two variables, a
model is more detailed, in the sense that it suggests the nature of the relationship
between the variables. In our example, we might speculate that the likelihood of
cancer declines as the distance from a power plant increases. To test this model,
we could plot cancer rates for a subarea versus the distance the subarea centroid
was from a power plant. If we observe a downward sloping curve, we have
gathered some support for our hypothesis (see Figure 1.3).

Models are validated by comparing observed data with what is expected. If
the model is a good representation of reality, there will be a close match
between the two. If observations and expectations are far apart, we need to
“go back to the drawing board” and come up with a new hypothesis. It might
be the case, for example, that the pattern in Figure 1.2 is due simply to the fact
that the population itself is clustered. If this new hypothesis is true, or if there is
evidence in favor of it, the spatial pattern of cancer then becomes understand-
able; a similar rate throughout the population generates apparent cancer
clusters because of the spatial distribution of the population.

Though a model is often used to learn about a particular situation, more
often one also wishes to learn about the underlying process that led to it. We
would like to be able to generalize from one study to statements about other
situations. One reason for studying the spatial pattern of cancer cases is to
determine whether there is a relationship between cancer rates and the dis-
tance to specific power plants; a more general objective is to learn about the
relationship between cancer rates and the distance to any power plant. One
way of making such generalizations is to accumulate a lot of evidence. If we
were to repeat our analysis in many locations throughout a country, and if
our findings were similar in all cases, we would have uncovered an empirical
generalization. In a strict sense, laws are sometimes defined as universal

Cancer
rate in
subarea A

Distance from
Power Plant

Figure 1.3 Cancer rates versus distance from power plant
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statements of unrestricted range. In our example, our generalization would
not have unrestricted range, and we might want, for example, to confine our
generalization or empirical law to power plants and cancer cases in a parti-
cular country.

Einstein called theories “‘free creations of the human mind.” In the context
of our diagram, we may think of theories as collections of generalizations or
laws. The whole collection is greater than the sum of its parts in the sense that it
gives greater insight than that produced by the generalizations or laws alone. If
for example, we generate other empirical laws that relate cancer rates to other
factors, such as diet, we begin to build a theory of the spatial variation in
cancer rates.

Statistical methods occupy a central role in the scientific method, as por-
trayed in Figure 1.1, because they allow us to suggest and test hypotheses using
models. In the following section, we will review some of the important types of
statistical approaches in geography.

1.3 Exploratory and Confirmatory Approaches in Geography

The scientific method provides us with a structured approach to answering
questions of interest. At the core of the method is the desire to form and test
hypotheses. As we have seen, hypotheses may be thought of loosely as potential
answers to questions. For instance, a map of snowfall may suggest the hypo-
thesis that the distance away from a nearby lake may play an important role
in the distribution of snowfall amounts.

Geographers use spatial analysis within the context of the scientific method
in at least two distinct ways. Exploratory methods of analysis are used to
suggest hypotheses; confirmatory methods are, as the name suggests, used
to help confirm hypotheses. A method of visualization or description that
led to the discovery of clusters in Figure 1.2 would be an exploratory
method, whereas a statistical method that confirmed that such an arrangement
of points would have been unlikely to occur by chance would be a confirmatory
method. In this book we will focus primarily upon confirmatory methods.

We should note here two important points. First, confirmatory methods do
not always confirm or refute hypotheses — the world is too complicated a
place, and the methods often have important limitations that prevent such
confirmation and refutation. Nevertheless, they are important in structuring
our thinking and in taking a rigorous and scientific approach to answering
questions. Second, the use of exploratory methods over the past few years has
been increasing rapidly. This has come about as a combination of the avail-
ability of large databases and sophisticated software (including GIS), and a
recognition that confirmatory statistical methods are appropriate in some
situations and not others. Throughout the book we will keep the reader
aware of these points by pointing out some of the limitations of confirmatory
analysis.
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1.4 Descriptive and Inferential Methods

A key characteristic of geographic data that brings about the need for statis-
tical analysis is that they may often be regarded as a sample from a larger
population. Descriptive statistical analysis refers to the use of particular meth-
ods that are used to describe and summarize the characteristics of the sample,
whereas inferential statistical analysis refers to the methods that are used to
infer something about the population from the sample. Descriptive methods
fall within the class of exploratory techniques; inferential statistics lie within
the class of confirmatory methods.

1.4.1 Overview of Descriptive Analysis

Suppose that we wish to learn something about the commuting behavior of
residents in a community. Perhaps we are on a committee that is investigating
the potential implementation of a public transit alternative, and we need to
know how many minutes, on average, it takes people to get to work by car. We
do not have the resources to ask everyone, and so we decide to take a sample of
automobile commuters. Let’s say we survey n= 30 residents, asking them to
record their average time it takes to get to work. We receive the responses
shown in panel (a) of Table 1.1.

We begin our descriptive analysis by summarizing the information. The
sample mean commuting time is simply the average of our observations; it is
found by adding all of the individual responses and dividing by thirty.

Table 1.1 Commuting data

(a) Data on individuals

Individual no. Commuting time (min.) Individual no. Commuting time (min.)

1 5 16 42
2 12 17 31
3 14 18 31
4 21 19 26
5 22 20 24
6 36 21 11
7 21 22 19
8 6 23 9
9 77 24 44
10 12 25 21
1 21 26 17
12 16 27 26
13 10 28 21
14 5 29 24
15 11 30 23

(b) Ranked commuting times

556,910, 11, 11,12, 12, 14, 16, 17, 19, 21, 21, 21, 21, 21, 22, 23, 24, 24, 26,
26, 31, 31, 36, 42, 44, 77
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The sample mean is traditionally denoted by X; in our example we have
X =21.93 minutes. In practice, this could sensibly be rounded to 22 minutes.
The median time is defined as the time that splits the ranked list of commuting
times in half — half of all respondents have commutes that are longer than the
median, and half have commutes that are shorter. When the number of obser-
vations is odd, the median is simply equal to the middle value on a list of
the observations, ranked from shortest commute to longest commute. When
the number of observations is even, as it is here, we take the median to be the
average of the two values in the middle of the ranked list. When the responses
are ranked as in panel (b) of Table 1.1, the two in the middle are 21 and 21. The
median in this case is equal to 21 minutes. The mode is defined as the most
frequently occurring value; here the mode is also 21 minutes, since it occurs
more frequently (four times) than any other outcome.

We may also summarize the data by characterizing its variability. The data
range from a low of five minutes to a high of 77 minutes. The range is the
difference between the two values — here it is equal to 77 — 5 =72 minutes.

The interquartile range is the difference between the 25th and 75th percen-
tiles. With n observations, the 25th percentile is represented by observation
(n+1)/4, when the data have been ranked from lowest to highest. The 75th
percentile is represented by observation 3(n+1)/4. These will often not be
integers, and interpolation is used, just as it is for the median when there is
an even number of observations. For the commuting data, the 25th percentile
is represented by observation (30+ 1)/4="7.75. Interpolation between the 7th
and 8th lowest observations requires that we go 3/4 of the way from the 7th
lowest observation (which is 11) to the 8th lowest observation (which is 12).
This implies that the 25th percentile is 11.75. Similarly, the 75th percentile is
represented by observation 3(30+ 1)/4 =23.25. Since both the 23rd and 24th
observations are equal to 26, the 75th percentile is equal to 26. The interquar-
tile range is the difference between these two percentiles, or 26 — 11.75 =14.25.

The sample variance of the data (denoted s?) may be thought of as the
average squared deviation of the observations from the mean. To ensure
that the sample variance gives an unbiased estimate of the true, unknown
variance of the population from which the sample was drawn (denoted o?),
s> is computed by taking the sum of the squared deviations, and then dividing
by n—1, instead of by n. Here the term unbiased implies that if we were to
repeat this sampling many times, we would find that the average or mean of
our many sample variances would be equal to the true variance. Thus the
sample variance is found from

F=E (1.1)

where the Greek letter ¥ means that we are to sum the squared deviations of the
observations from the mean (notation is discussed in more detail in Chapter 2).
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In our example, s>=208.13. The sample standard deviation is equal to the
square root of the sample variance; here we have s = v/208.13 = 14.43. Since
the sample variance characterizes the average squared deviation from the
mean, by taking the square root and using the standard deviation, we are
putting the measure of variability back on a scale closer to that used for the
mean and the original data. It is not quite correct to say that the standard
deviation is the average absolute deviation of an observation from the mean,
but it is close to being correct.

Since data come from distributions with different means and different
degrees of variability, it is common to standardize observations. One way
to do this is to transform each observation into a z-score by first subtracting
the mean of all observations and then dividing the result by the standard
deviation:

X —X

z =

Y (12)

z-scores may be interpreted as the number of standard deviations an observa-
tion is away from the mean. For example, the z-score for individual 1 is
(5—21.93)/14.3=—1.17. This individual has a commuting time that is 1.17
standard deviations below the mean.

We may also summarize our data by constructing histograms, which are
vertical bar graphs. To construct a histogram, the data are first grouped into
categories. The histogram contains one vertical bar for each category. The
height of the bar represents the number of observations in the category (i.e.,
the frequency), and it is common to note the midpoint of the category on the
horizontal axis. Figure 1.4 is a histogram for the commuting data, produced by
SPSS for Windows 9.0.

Skewness measures the degree of asymmetry exhibited by the data. Figure 1.4
reveals that there are more observations below the mean than above it — this

Figure 1.4 Histogram for commuting data
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is known as positive skewness. Positive skewness can also be detected by com-
paring the mean and median. When the mean is greater than the median, as it is
here, the distribution is positively skewed. In contrast, when there are a small
number of low observations and a large number of high ones, the data exhibit
negative skewness. Skewness is computed by first adding together the cubed
deviations from the mean and then dividing by the product of the cubed
standard deviation and the number of observations:

3
> (X — %)
=1
skewness = ’T (1.3)
The 30 commuting times have a positive skewness of 2.06. If skewness equals
zero, the histogram is symmetric about the mean.
Kurtosis measures how peaked the histogram is. Its definition is similar to

that for skewness, with the exception that the fourth power is used instead of
the third:

Zl (x;— )"

kurtosis = —————— 1.4
ns* (1.4)
Data with a high degree of peakedness are said to be leptokurtic, and have
values of kurtosis over 3.0. Flat histograms are platykurtic, and have kurtosis
values less than 3.0. The kurtosis of the commuting times is equal to 6.43, and

hence the distribution is relatively peaked.
Data may also be summarized via box plots. Figure 1.5 depicts a box plot for
the commuting data. The horizontal line running through the rectangle denotes

Figure 1.5 Boxplot for commuting data
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the median (21), and the lower and upper ends of the rectangle (sometimes
called the “hinges™) represent the 25th and 75th percentiles, respectively.
Velleman and Hoaglin (1981) note that there are two common ways to draw
the “whiskers” which extend upward and downward from the hinges. One way
is to send the whiskers out to the minimum and maximum values. In this case,
the boxplot represents a graphical summary of what is sometimes called a
“five-number summary” of the distribution (the minimum, maximum, 25th
and 75th percentiles, and the median).

There are often extreme outliers in the data that are far from the mean, and
in this case it is not preferable to send whiskers out to these extreme values.
Instead, whiskers are sent out to the outermost observations that are still
within 1.5 times the interquartile range of the hinge. All other observations
beyond this are considered outliers, and are shown individually. In the com-
muting data, 1.5 times the interquartile range is equal to 1.5(14.25)=21.375.
The whisker extending downward from the lower hinge extends to the mini-
mum value of 5, since this is greater than the lower hinge (11.75) minus 21.375.
The whisker extending upward from the upper hinge stops at 44, which is the
highest observation less than 47.375 (which in turn is equal to the upper hinge
(26) plus 21.375). Note that there is a single outlier — observation 9 — which has
a value of 77 minutes.

A stem-and-leaf plot is an alternative way to show how common observa-
tions are. It is similar to a histogram tilted onto its side, with the actual digits
of each observation’s value used in place of bars. The leading digits constitute
the “stem,” and the trailing digits make up the “leaf.”” Each stem has one or
more leaves, with each leaf corresponding to an observation. The visual
depiction of the frequency of leaves conveys to the reader an impression of
the frequency of observations that fall within given ranges. John Tukey, the
designer of the stem-and-leaf plot, has said “If we are going to make a mark,
it may as well be a meaningful one. The simplest — and most useful — mean-
ingful mark is a digit.”” (Tukey 1972, p. 269). For the commuting data, which
have at most two-digit values, the first digit is the “‘stem,” and the second is
the “leaf” (see Figure 1.6).

1.4.2 Overview of Inferential Analysis

Since we did not interview everyone, we do not know the true mean com-
muting time (which we denote p) that characterizes the entire community.
(Note that we use regular, Roman letters to indicate sample means and
variances, and that we use Greek letters to represent the corresponding,
unknown population values. This is a common notational convention that
we will use throughout.) We have an estimate of the true mean from our
sample mean, but it is also desirable to make some sort of inferential state-
ment about p that quantifies our uncertainty regarding the true mean. Clearly
we would be less uncertain about the true mean if we had taken a larger



10 STATISTICAL METHODS FOR GEOGRAPHY

Frequency Stem & Leaf
.00 0

4.00 0 5569
6.00 1 011224
3.00 1 679
9.00 2 111112344
2.00 2 66
2.00 3 11
1.00 3 6
2.00 4 . 24
1.00 Extremes (>=77)

Stem width: 10.00

Each leaf: 1l case(s)

Figure 1.6 Stem-and-leaf plot for commuting data

sample, and we would also be less uncertain about the true mean if we knew
there was less variability in the population values (that is, if o> were lower).
Although we don’t know the “true” variance of commuting times (o), we do
have an estimate of it (s%).

In the next chapter, we will learn how to make inferences about the popula-
tion mean from the sample mean. In particular we will learn how to test
hypotheses regarding the mean (e.g., could the “true’” commuting time in our
population be equal to x =30 minutes?), and we will also learn how to place
confidence limits around the mean to make statements such as “we are 95%
confident that the true mean lies 3.5 minutes from the observed mean.”

To illustrate some common inferential questions using another example,
suppose you are handed a coin, and you are asked to determine whether it
is a “fair” one (that is, the likelihood of a “head” is the same as the likelihood
of a “tail”’). One natural way to gather some information would be to flip the
coin a number of times. Suppose you flip the coin ten times, and you observe
heads eight times. An example of a descriptive statistic is the observed propor-
tion of heads — in this case 8/10 =0.8. We enter the realm of inferential statis-
tics when we attempt to pass judgement on whether the coin is “fair”’. We plan
to do this by inferring whether the coin is fair, on the basis of our sample
results. Eight heads is more than the four, five, or six that might have made
us more comfortable in a declaration that the coin is fair, but is eight heads
really enough to say that the coin is not a fair one?

There are at least two ways to go about answering the question of whether
the coin is a fair one. One is to ask what would happen if the coin were fair, and
to simulate a series of experiments identical to the one just carried out. That is,
if we could repeatedly flip a known fair coin ten times, each time recording the
number of heads, we would learn just how unusual a total of eight heads
actually was. If eight heads comes up quite frequently with the fair coin, we
will judge our original coin to be fair. On the other hand, if eight heads is an
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extremely rare event for a fair coin, we will conclude that our original coin is
not fair.

To pursue this idea, suppose you arrange to carry out such an experiment
100 times. For example, one might have 100 students in a large class each flip a
coin that is known to be fair ten times. Upon pooling together the results,
suppose you find the results shown in Table 1.2. We see that eight heads
occurred 8% of the time.

We still need a guideline to tell us whether our observed outcome of eight
heads should lead us to the conclusion that the coin is (or is not) fair. The usual
guideline is to ask how likely a result equal to or more extreme than the
observed one is, if our initial, baseline hypothesis that we possess a fair coin
(called the null hypothesis) is true. A common practice is to accept the null
hypothesis if the likelihood of a result more extreme than the one we observed
is more than 5%. Hence we would accept the null hypothesis of a fair coin if
our experiment showed that eight or more heads was not uncommon and in
fact tended to occur more than 5% of the time.

Alternatively, we wish to reject the null hypothesis that our original coin is a
fair one if the results of our experiment indicate that eight or more heads out of
ten is an uncommon event for fair coins. If fair coins give rise to eight or more
heads less than 5% of the time, we decide to reject the null hypothesis and
conclude that our coin is not fair.

In the example above, eight or more heads occurred 12 times out of 100,
when a fair coin was flipped ten times. The fact that events as extreme as, or
more extreme than the one we observed will happen 12% of the time with a fair
coin leads us to accept the inference that our original coin is a fair one. Had we
observed nine heads with our original coin, we would have judged it to be
unfair, since events as rare or more rare than this (namely where the number of
heads is equal to 9 or 10) occurred only four times in the one hundred trials of a
fair coin. Note, too, that our observed result does not prove that the coin is
unbiased. It still could be unfair; there is, however, insufficient evidence to
support the allegation.

Table 1.2 Hypothetical outcome of 100
experiments of ten coin tosses each

No. of heads Frequency of occurrence
0 0
1 1
2 4
3 8
4 15
5 22
6 30
7 8
8 8
9 3

10 1
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The approach just described is an example of the Monte Carlo method,
and several examples of its use are given in Chapter 8. A second way to
answer the inferential problem is to make use of the fact that this is a binomial
experiment; in Chapter 2 we will learn how to use this approach.

1.5 The Nature of Statistical Thinking

The American Statistical Association (1993, cited in Mallows 1998) notes that
statistical thinking is

(a) the appreciation of uncertainty and data variability, and their impact on
decision making; and
(b) the use of the scientific method in approaching issues and problems.

Mallows (1998), in his Presidential Address to the American Statistical
Association, argues that statistical thinking is not simply common sense,
nor is it simply the scientific method. Rather, he suggests that statisticians
give more attention to questions that arise in the beginning of the study of
a problem or issue. In particular, Mallows argues that statisticians should
(a) consider what data are relevant to the problem, (b) consider how relevant
data can be obtained, (c) explain the basis for all assumptions, (d) lay out the
arguments on all sides of the issue, and only then (¢) formulate questions that
can be addressed by statistical methods. He feels that too often statisticians
rely too heavily on (e), as well as on the actual use of the methods that
follow. His ideas serve to remind us that statistical analysis is a comprehen-
sive exercise — it does not consist of simply “plugging numbers into a for-
mula” and reporting a result. Instead, it requires a comprehensive assessment
of questions, alternative perspectives, data, assumptions, analysis, and
interpretation.

Mallows defines statistical thinking as that which ‘“concerns the relation
of quantitative data to a real-world problem, often in the presence of
uncertainty and variability. It attempts to make precise and explicit what
the data has to say about the problem of interest.” Throughout the remain-
der of this book, we will learn how various methods are used and imple-
mented, but we will also learn how to interpret the results and understand
their limitations. Too often students working on geographic problems have
only a sense that they “‘need statistics,” and their response is to seek out an
expert on statistics for advice on how to get started. The statistician’s first
reply should be in the form of questions: (1) What is the problem? (2) What
data do you have, and what are its limitations? (3) Is statistical analysis
relevant, or is some other method of analysis more appropriate? It is impor-
tant for the student to think first about these questions. Perhaps simple
description will suffice to achieve the objective. Perhaps some sophisticated
inferential analysis will be necessary. But the subsequent course of events
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should be driven by the substantive problems and questions of interest,
as constrained by data availability and quality. It should not be driven by
a feeling that one needs to use statistical analysis simply for the sake of
doing so.

1.6 Some Special Considerations with Spatial Data

Fotheringham and Rogerson (1993) categorize and discuss a number of general
issues and characteristics associated with problems in spatial analysis. It is
essential that those working with spatial data have an awareness of these
issues. Although all of their categories are relevant to spatial statistical analy-
sis, among those that are most pertinent are:

(a) the modifiable areal unit problem;
(b) boundary problems;

(c) spatial sampling procedures;

(d) spatial autocorrelation.

1.6.1 Modifiable Areal Unit Problem

The modifiable areal unit problem refers to the fact that results of statistical
analyses are sensitive to the zoning system used to report aggregated data.
Many spatial datasets are aggregated into zones, and the nature of the zonal
configuration can influence interpretation quite strongly. Panel (a) of Figure 1.7
shows one zoning system and panel (b) another. The arrows represent migra-
tion flows. In panel (a) no interzonal migration is reported, whereas an inter-
pretation of panel (b) would lead to the conclusion that there was a strong
southward movement. More generally, many of the statistical tools described
in the following chapters would produce different results had different zoning
systems been in effect.

The modifiable areal unit problem has two different aspects that should be
appreciated. The first is related to the placement of zonal boundaries, for zones
or subregions of a given size. If we were measuring mobility rates, we could
overlay a grid of square cells on the study area. There are many different ways
that the grid could be placed, rotated, and oriented on the study area. The
second aspect has to do with geographic scale. If we were to replace the grid
with another grid of larger square cells, the results of the analysis would be
different. Migrants, for example, are less likely to cross cells in the larger grid
than they are in the smaller grid.

As Fotheringham and Rogerson (1993) note, GIS technology now facil-
itates the analysis of data using alternative zoning systems, and it should
become more routine to examine the sensitivity of results to modifiable
areal units.
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Figure 1.7 Two alternative zoning systems for migration data. Arrows show
origins and destinations of migrants

1.6.2 Boundary Problems

Study areas are bounded, and it is important to recognize that events just
outside the study area can affect those inside it. If we are investigating the
market areas of shopping malls in a county, it would be a mistake to neglect
the influence of a large mall located just outside the county boundary. One
solution is to create a buffer zone around the area of study to include features
that affect analysis within the primary area of interest. An example of the use of
buffer zones in point pattern analysis is given in Chapter 8.

Both the size and shape of arcas can affect measurement and interpretation.
There are many migrants leaving Rhode Island each year, but this is partially
due to the state’s small size — almost any move will be a move out of the state!
Similarly, Tennessee experiences more out-migration than other states with the
same land area, in part because of its narrow rectangular shape. This is because
individuals in Tennessee live, on average, closer to the border than do individ-
uals in other states with the same area. A move of given length in some
random direction is therefore more likely to take the Tennessean outside of
the state.

1.6.3 Spatial Sampling Procedures

Statistical analysis is based upon sample data. Usually one assumes that
sample observations are taken randomly from some larger population of
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interest. If we are interested in sampling point locations to collect data on
vegetation or soil, for example, there are many ways to do this. One could
choose x- and y-coordinates randomly; this is known as a simple random
sample. Another alternative would be to choose a stratified spatial sample,
making sure that we chose a predetermined number of observations
from each of several subregions, with simple random sampling within sub-
regions. Alternative methods of sampling are discussed in more detail in
Section 3.7.

1.6.4 Spatial Autocorrelation

Spatial autocorrelation refers to the fact that the value of a variable at one
point in space is related to the value of that same variable in a nearby location.
The travel behavior of residents in a household is likely to be related to the
travel behavior of residents in nearby households, because both households
have similar accessibility to other locations. Hence observations of the two
households are not likely to be independent, despite the requirement of statis-
tical independence for standard statistical analysis. Spatial autocorrelation can
therefore have serious effects on statistical analyses, and hence lead to misin-
terpretation. It is treated in more detail in Chapter 8.

1.7 Descriptive Statistics in SPSS for Windows 9.0
1.7.1 Data Input

After starting SPSS, data are input for the variable or variables of interest.
Each column represents a variable. For the commuting example set out in
Table 1.1, the thirty observations were entered into the first column of the
spreadsheet. Alternatively, respondent ID could have been entered into the
first column (i.e., the sequence of integers, from 1 to 30), and the commuting
times would then have been entered in the second column). The order that the
data are entered into a column is unimportant.

1.7.2 Descriptive Analysis

Simple descriptive statistics. Once the data are entered, click on Analyze (or
Statistics, in older versions of SPSS for Windows). Then click on Descriptive
Statistics. Then click on Explore. A split box will appear on the screen; move
the variable or variables of interest from the left box to the box on the right
that is headed “Dependent List”” by highlighting the variable(s) and clicking on
the arrow. Then click on OK.
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Table 1.3 SPSS output for data of Table 1.1

Descriptives
Statistic Std. Error

VAR00001 Mean 21.9333 2.6340

95% Confidence Lower Bound 16.5463

Interval for Mean  Upper Bound 27.3204

5% Trimmed Mean 20.4259

Median 21.0000

Variance 208.133

Std. Deviation 14.4268

Minimum 5.00

Maximum 77.00

Range 72.00

Interquartile Range 14.2500

Skewness 2.057 427

Kurtosis 6.434 .833

Other options. Options for producing other related statistics and graphs are
available. To produce a histogram for instance, before clicking OK above, click
on Plots, and you can then check a box to produce a histogram. Then click on
Continue and OK.

Results. Table 1.3 displays results of the output. In addition to this table,
boxplots (Figure 1.5), stem and leaf displays (Figure 1.6) and, optionally,
histograms (Figure 1.4) are also produced.

Exercises

1. The 236 values that appear below are the 1990 median household incomes
(in dollars) for the 236 census tracts of Buffalo, New York.

(a) For the first 19 tracts, find the mean, median, range, interquartile range,
standard deviation, variance, skewness, and kurtosis using only a calcula-
tor (though you may want to check your results using a statistical software
package). In addition, construct a stem-and-leaf plot, a box plot, and a
histogram for these 19 observations.

(b) Use a statistical software package to repeat part (a), this time using all 236
observations.

(c) Comment on your results. In particular, what does it mean to find the
mean of a set of medians? How do the observations that have a value of 0
affect the results? Should they be included? How might the results differ if
a different geographic scale were chosen?

22342, 19919, 8187, 15875, 17994, 30765, 31347, 27282, 29310, 23720,
22033, 11706, 15625, 6173, 15694, 7924, 10433, 13274, 17803, 20583, 21897,
14531, 19048, 19850, 19734, 18205, 13984, 8738, 10299, 10678, 8685, 13455,
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14821, 23722, 8740, 12325, 10717, 21447, 11250, 16016, 11509, 11395, 19721,
23231, 21293, 24375, 19510, 14926, 22490, 21383, 25060, 22664, 8671, 31566,
26931, 0, 24965, 34656, 24493, 21764, 25843, 32708, 22188, 19909, 33675,
15608, 15857, 18649, 21880, 17250, 16569, 14991, 0, 8643, 22801, 39708,
17096, 20647, 30712, 19304, 24116, 17500, 19106, 17517, 12525, 13936, 7495,
10232, 6891, 16888, 42274, 43033, 43500, 22257, 22931, 31918, 29072, 31948,
36229, 33860, 32586, 32606, 31453, 32939, 30072, 32185, 35664, 27578, 23861,
18374, 26563, 30726, 33614, 30373, 28347, 37786, 48987, 56318, 49641, 85742,
43229, 53116, 44335, 30184, 36744, 39698, 0, 21987, 66358, 46587, 26934,
27292, 31558, 36944, 43750, 49408, 37354, 31010, 35709, 32913, 25594,
25612, 28980, 28800, 28634, 18958, 26515, 24779, 21667, 24660, 29375,
29063, 30996, 45645, 39312, 34287, 35533, 27647, 24342, 22402, 28967,
39083, 28649, 23881, 31071, 27412, 27943, 34500, 19792, 41447, 35833,
41957, 14333, 12778, 20000, 19656, 22302, 33475, 26580, 0, 24588, 31496,
30179, 33694, 36193, 41921, 35819, 39304, 38844, 37443, 47873, 41410,
34186, 36798, 38508, 38382, 37029, 48472, 38837, 40548, 35165, 39404,
34281, 24615, 34904, 21964, 42617, 58682, 41875, 40370, 24511, 31008,
16250, 29600, 38205, 35536, 35386, 36250, 31341, 33790, 31987, 42113,
37500, 33841, 37877, 35650, 28556, 27048, 27736, 30269, 32699, 28988,
22083, 27446, 76306, 19333

2. Ten migration distances corresponding to the distances moved by recent
migrants are observed (in miles): 43,6,7,11,122,41,21,17,1,3. Find
the mean and standard deviation, and then convert all observations into
z-scores.

3. The probability of commuting by train in a community is 0.1. A survey of
residents in a particular neighborhood finds that four out of ten commute by
train. We wish to conclude either that (a) the “true” commuting rate in the
neighborhood is 0.1, and we have just witnessed four out of ten as a result of
sampling fluctuation, or (b) the “true” commuting rate in the neighborhood is
greater than 0.1, and it is very unlikely that we would have observed four out of
ten train commuters if the true rate was 0.1.

Decide which choice is best via the following steps, using the random
number table in Table A.1 of Appendix A:

(1) take a series of ten random digits, and then count and record the number
of ““0”’s; these will represent the number of train commuters in a sample of
ten, where the “true’” commuting probability is 0.1.

(2) Repeat step 1 twenty times.

(3) Aurrive at either conclusion (a) or (b). You should arrive at conclusion (b)
if you had four or more commuters either once, or not at all, in the twenty
repetitions (since one out of twenty is equal to 0.05, or 5%).



2 Probability and Probability Models

LEARNING OBJECTIVES

e Review of mathematical notation and ordering of mathematical
operations

e Introduction to probability concepts, including (a) sample spaces as
potential outcomes of experiments, (b) assignment of probabilities to
individual outcomes

e Binomial and normal distributions

e Confidence intervals for the sample mean

e Examples of applications based upon simple probability models

In Chapter 1, we had our first glimpse into some of the concepts that are used
both to describe sample data and to make inferences. In this chapter, we will
build upon these concepts. After reviewing mathematical conventions and
notation in the beginning of the chapter, we will explore some of the basic
concepts of probability, which form the basis for statistical inference.

2.1 Mathematical Conventions and Notation

The amount of mathematical notation used in this book is actually quite small,
but, nevertheless, it is useful to review some basic notation and mathematical
conventions.

2.1.1 Mathematical Conventions

By the term ‘“‘mathematical conventions” we are not referring here to the
gatherings of mathematicians at conferences, but rather to the standards that
are used in the writing and use of mathematical material. The primary con-
ventions we are concerned with are those regarding parentheses and the order-
ing of mathematical operations. In a mathematical expression, one performs
operations in the following order, arranged from operations performed first to
those performed last:

(1) Factorials (the factorial of an integer m is the product of the integers from
1 to m, and is further defined below).
(2) Powers and roots.
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(3) Multiplication and division.
(4) Addition and subtraction.

Thus the expression
3410/5% (2.1)

is evaluated by first squaring 5, then finding 10/25=0.4, and then adding 3 to
find the result of 3.4. One does not simply go from left to right; if you did, you
would incorrectly add 10 to 3, then divide by 5 to get 2.6, and then square 2.6
for a final (incorrect) answer of 6.76.

If there is more than one operation in any of the four categories above, one
carries out those particular operations from left to right. Thus, to evaluate

34+10/5+6%7 (2.2)
one would do the division first and the multiplication second, yielding
3+2442=47 (2.3)
Although it would be unusual to see it written this way,
6/3/3 (2.4)

is equal to 2/3, since 6/3 would be carried out first.

Operations within parentheses are always performed before those that are
not within parentheses, and those within nested parentheses are dealt with by
performing the operations within the innermost set of parentheses first. So, for
example,

35 ((543)%/2) +4=3%(82/2)+4=3%32+4=100 (2.5)

Although these basic principles are taught before the high-school years, it is
not uncommon to need a little review! It is important to realize too that it is not
just students of statistics that need brushing up — software developers and
decision-makers sometimes do not abide by these conventions. For example,
new variables that are created within the geographic information system (GIS)
ArcView 3.1 are created by simply carrying out operations from left to right.
Although parentheses are recognized, the fundamental order of operations, as
outlined above, is not! This leads to visions of planners and others all over the
world making decisions based upon inaccurate information!

Suppose we have data on the proportion of people commuting by train
(variable 1), the number of people who commute by bus (variable 2), and
the total number of commuters (variable 3) for a number of census tracts in
our database. Thinking that ArcView will surely use the standard order of
mathematical operations, we compute a new variable reflecting the proportion
of people who commute by bus or train (variable 4) via

Var. 4 = Var. 1 4+ Var. 2/Var. 3 (2.6)
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ArcView will provide us with a column of answers where

Var. 4 = (Var. 1 + Var. 2)/Var. 3 (2.7)
when in fact what we wanted was

Var. 4 = Var. 1 + (Var. 2/Var. 3) (2.8)

One way of ensuring that problems like this do not arise is to use extra sets of
parentheses, as in the last equation (and, in fact, to obtain the desired variable
within ArcView, they must be used).

2.1.2 Mathematical Notation

The mathematical notation used most often in this book is the summation
notation. The Greek letter 3 is used as a shorthand way of indicating that a
sum is to be taken. For example,

lZn:x,- (2.9)

denotes that the sum of # observations is to be taken; the expression is equiva-
lent to

X+ X+ + X, (2.10)

The ““i=1"" under the symbol refers to where the sum of terms begins, and the
“i=n" refers to where it terminates. Thus

i=5

in:x3—|—x4—|—x5 (2.11)
i=3

implies that we are to sum only the third, fourth, and fifth observations. There
are a number of rules that govern the use of this notation. These may be
summarized as follows, where «a is a constant, z is the number of observations,
and x and y are variables:

i=n

iaxi:aZx,- (2.12)
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The first states that summing a constant n times yields a result of an. Thus

i=3
Z4:4+4+4:4*3:12 (2.13)

i=1

The second rule in (2.12) indicates that constants may be taken outside of the
summation sign. So, for example,

=3 =3
D 3w =3 xi=3(x1 + x4+ x3) (2.14)
i=1 i=1

The third rule implies that the order of addition does not matter when sums of
sums are being taken.
Other conventions include

i=n
inyi = XY+ Xoyy e X

i=1

=n
Sxi=xtxn+o+x (2.15)
i=1

: 2
1=n

(le) =(x1 X2+ +x,)°
i=1

Shorthand versions of the summation notation leave out the upper limit of
the summation, and sometimes the lower limit as well. This is done in those
situations where all of the terms, and not just some subset of them, are to be
summed. The following are all equivalent:

ii%x[:zn:xi:Zx,:Zx, (2.16)
i1 i i

[3:E)
1

It should also be recognized that the letter is used in this notation simply
as an indicator (to indicate which observations or terms to sum); we could just
as easily use any other letter:

n k=n
Xi= ) X (2.17)
1 k=1

i

i

In each case we find the sum by adding up all of the n observations. In fact,
we often have use for more than one summation indicator. Double sum-
mations are required when we want to denote the sum of all of the observa-
tions in a table. A table of commuting flows, such as the one in Table 2.1,
indicates the origins and destinations of individuals. The value of any cell is
denoted x; and this refers to the number of commuters from origin i who
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Table 2.1 Hypothetical commuting data

Destination
Origin 1 2 3
1 130 40 50
2 20 100 10
3 30 20 100

commute to destination j. The number of commuters going to destination j
from all origins is Z;z'{ x; (where there are n transportation zones), and the
number of commuters leaving origin i for all destinations is ij x;; . The
total number of commuters is designated by the double summation,
>oi12.i-1 X Using the data in Table 2.1, for example, we find that
>oiXip =160, >, xy; =220, and 3 ;> x; = 500.

Whereas the summation notation refers to the addition of terms, the product
notation applies to the multiplication of terms. It is denoted by the capital
Greek letter II, and is used in the same way as the summation notation. For

example,

n

H(Xi+yi) = (x1+y)(xa+ ) (i + ) (2.18)

i=1

The factorial of a positive integer, n, is equal to the product of the first n
integers. Surprisingly perhaps, factorials are denoted by an exclamation point.
Thus

S!=5%4%x3x2%1=120 (2.19)

Note that we could express factorials in terms of the product notation:

i=n

n! = Hi (2.20)

There is also a convention that 0!=1; factorials are not defined for negative
integers or for nonintegers.

Factorials arise in the calculation of combinations. Combinations refer to the
number of possible outcomes that particular probability experiments may have
(see Section 2.2).

Specifically, the number of ways that r items may be chosen from a group of
n items is denoted by (), and is equal to

(A —— (2.21)

For example,

10 (2.22)
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What does this mean? If, for example, we group income into n=>5 categories,
then there are ten ways to choose two of them. If we label the five categories (a)
through (e), then the ten possible combinations of two income categories are
ab, ac, ad, ae, be, bd, be, cd, ce, and de.

2.1.3 Examples

6l =6%5%4%3%2%1 =720 (2.23)
i=4

i = 1722324 = 576 (2.24)
i=1

34 +(26/13) * 12 = 58 (2.25)

Now let =3, and let the values of a set (n=23) of x and y values be x; =4,
X2:5, X3:6, V1 :7, y2:8, and y3:9 Then

> ax;=3(4+5+6) =45

2
S X = (4)(7) + (5)(8) = 68
i=1

Y oxi=4+5+6 =405 (2.26)
)_C:Zx,-:4+5+6:5
n 3
2 X 0i=3) _ (-8 +(8-8"+(9-8"
Sy— = =
n—1 3-1

Note that the sum of products does not necessarily equal the product of sums:

> xiyi=(4xT)+ (5%8) + (6%9) =122
£ x> yi=(4+5+6)x(7+8+9) =360 (2.27)

2.2 Sample Spaces, Random Variables, and Probabilities

Suppose we are interested in the likelihood that current residents of a suburban
street are new to the neighborhood during the past year. To keep the example
manageable, we shall assume that just four households are asked about
their duration of residence. There are several possible questions that may be
of interest. We may wish to use the sample to estimate the probability that
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residents of the street moved to the street during the past year. Or we may want
to know whether the likelihood of moving onto that street during the past year
is any different than it is for the entire city.

This problem is typical of statistical problems in the sense that it is char-
acterized by the uncertainty associated with the possible outcomes of the
household survey. We may think of the survey as an experiment of sorts.
The experiment has associated with it a sample space, which is the set of all
possible outcomes. Representing a recent move with a “1” and representing
longer-term residents with a “0”, the sample space is enumerated in Table
2.2. These sixteen outcomes represent all of the possible results from our
survey. The individual outcomes are sometimes referred to as simple events
or sample points.

Random variables are functions defined on a sample space. This is a rather
formal way of saying that associated with each possible outcome is a quantity
of interest to us. In our example, we are unlikely to be interested in
the individual responses, but rather the total number of households that are
newcomers to the street. Portrayed in Table 2.3 is the sample space with the
variable of interest, the number of new households, given in parentheses.

In this instance, the random variable is said to be discrete, since it can take
on only a finite number of values (namely, the non-negative integers 0—4).
Other random variables are continuous — they can take on an infinite number
of values. Elevation, for example, is a continuous variable.

Associated with each possible outcome in a sample space is a probability.
Each of the probabilities is greater than or equal to zero, and less than or equal
to one. Probabilities may be thought of as a measure of the likelihood or
relative frequency of each possible outcome. The sum of the probabilities
over the sample space is equal to one.

There are numerous ways to assign probabilities to the elements of sample
spaces. One way is to assign them on the basis of relative frequencies. Given a
description of the current weather pattern, a meteorologist may note that in 65
out of the last 100 times that such a pattern prevailed there was measurable

Table 2.2 The sixteen possible outcomes on a sample of four residents

0000 0100 1000 1100
0001 0101 1001 1101
0010 0110 1010 1110
0011 0111 1011 1111

Table 2.3 Possible outcomes, with the number of new households in parentheses

0000 (0) 0100 (1) 1000 (1) 1100 (2)
0001 (1) 0101 (2) 1001 (2) 1101 (3)
0010 (1) 0110 (2) 1010 (2) 1110 (3)
0011 (2) 0111 (3) 1011 (3) 1111 (4)
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precipitation the next day. The possible outcomes — rain or no rain tomorrow —
are assigned probabilities of 0.65 and 0.35, respectively, on the basis of their
relative frequencies.

Another way to assign probabilities is on the basis of subjective beliefs. The
description of current weather patterns is a simplification of reality, and may be
based upon only a small number of variables such as temperature, wind speed
and direction, barometric pressure, etc. The forecaster may, partly on the basis
of other experience, assess the likelihoods of precipitation and no precipitation
as 0.6 and 0.4, respectively.

Yet another possibility for the assignment of probabilities is to assign each
of the n possible outcomes a probability of 1/n. This approach assumes that
each sample point is equally likely, and it is an appropriate way to assign
probabilities to the outcomes in special kinds of experiments. If, for example,
we flipped four coins, and let “0” represent “heads” and ““1”” represent “‘tails,”
there would be sixteen possible outcomes (identical to the sixteen outcomes
associated with our survey of the four residents above). If the probability
of heads is 1/2, and if the outcomes of the four tosses are assumed indepen-
dent from one another, the probability of any particular sequence of four
tosses is given by the product 1/2x1/2x1/2x1/2=1/16. Similarly, if the prob-
ability that an individual resident is new to the neighborhood is 1/2, we
would assign a probability of 1/16 to each of the sixteen outcomes in
Table 2.2.

Note that if the probability of heads differs from 1/2, the sixteen outcomes
will not be equally likely. If the probability of heads or the probability that a
resident is a newcomer is denoted by p, the probability of tails and the
probability the resident is not a newcomer is equal to (1 —p). In this case,
the probability of a particular sequence is again given by the product of the
likelihoods of the individual tosses. Thus the likelihood of “1001” (or
“HTTH” using H for heads and T for tails) is equal to px(1 —p)x(1 — p)x

p=p>(1-p).

2.3 The Binomial Distribution

Returning to the example of whether the four surveyed households are new-
comers, we are more interested in the random variable defined as the number of
new households than in particular sample points. If we want to know the
likelihood of receiving two “‘successes,” or two new households out of a
survey of four, we must add up all of the probabilities associated with the
relevant sample points. In Table 2.4 we use an “*” to designate those outcomes
where two households among the four surveyed are new ones.

If the probability that a surveyed household is a new one is equal to p, the
likelihood of any particular event with an “*” is p*(1 — p)>. Since there are six
such possibilities, the desired probability is 6p*(1 — p)*.
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Table 2.4 Asterisked outcomes, indicating outcomes of interest

0000 0100 1000 1100*
0001 0101* 1001* 1101
0010 0110* 1010* 1110
0011* 0111 1011 111

Note that we have assumed that the probability p is constant across
households, and also that households behave independently. These assumptions
may or may not be realistic. Different types of household might have different
values of p — for example, those who live in bigger houses may be more (or less)
likely to be newcomers. The responses received from nearby houses may also
not be independent. If one respondent was a newcomer, it might make it more
likely that a nearby respondent is also a newcomer (if for example, a new row of
houses has just been constructed).

Under these assumptions, the number of households who are newcomers is a
binomial variable, and the probability that it takes on a particular value is given
by the binomial distribution. We can find the probability that the random
variable, designated X, is equal to 2, using the binomial formula

p(X =2) = (3)p*(1 - p)* =6p°(1 - p)’ (2.28)

The binomial coefficient provides a means of counting the number of relevant
outcomes in the sample space:

4 24
() =31 = 2@ =6 (2.29)

The binomial distribution is used whenever (a) the process of interest
consists of a number (n) of independent trials (in our example, the indepen-
dent trials were the independent responses of the n =4 residents, (b) each trial
results in one of two possible outcomes (e.g., a newcomer, or not a new-
comer), and (c) the probability of each outcome is known, and is the same
for each trial; these probabilities are designated p and 1 — p. Often the out-
comes of trials are labelled “success” with probability p and ““failure” with
probability 1 — p. Then the probability of x successes is given by the binomial
distribution

pX =x)=()p*(1=p"" (2.30)

You should recognize that, for given values of » and p, we can generate a
histogram by using this formula to generate the expected frequencies associated
with different values of x. The histogram is also known as the binomial prob-
ability distribution, and it reveals how likely particular outcomes are. For
example, suppose that the probability that a surveyed resident is a newcomer
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Figure 2.1 Binomial distribution with n=4, p=0.2

to the neighborhood is p=0.2. Then the probability that our survey of four
residents will result in a given number of newcomers is

p(X =0) = ().2°.8* = .4096
p(X =1)=(}).2".8" = 409
p(X =2) = (3).22.8° = .1536 (2.31)
p(X =3)=(3).2°.8" =.0256
p(X =4) = (3).2°.8° = .0016

The probabilities may be thought of as relative frequencies. If we took
repeated surveys of four residents, 40.96% of the surveys would yield no
newcomers, 40.96% would reveal one newcomer, 15.36% would reveal two
newcomers, 2.56% would yield three newcomers, and 0.16% would result in
four newcomers. Note that the probabilities or relative frequencies sum to one.
The binomial distribution depicted in Figure 2.1 portrays these results graphi-
cally. If we multiplied the vertical scale by n, the histogram would represent
absolute frequencies expected in each category.

2.4 The Normal Distribution

The most common probability distribution is the normal distribution. Its famil-
iar symmetric, bell-shaped appearance is shown in Figure 2.2. The normal
distribution is a continuous one — instead of a histogram with a finite number
of vertical bars, the relative frequency distribution is continuous. You can
think of it as a histogram with a very large number of very narrow vertical
bars. The vertical axis is related to the likelihood of obtaining particular x
values. As with all frequency distributions, the area under the curve between
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Figure 2.2 The normal distribution

any two x values corresponds to the probability of obtaining an x value in that
range. The total area under the curve is equal to one.

The normal distribution arises in a variety of contexts and is related to a
variety of underlying processes. One way in which the normal distribution
arises is through an approximation to binomial processes. Suppose that instead
of interviewing four residents, we interviewed 40. We could still use the bino-
mial distribution to evaluate the probability that eleven or fewer households
were new to the neighborhood, but that would entail a long, tedious calcula-
tion involving large factorials:

pX <) =pX =0)+p(X =1)+---+p(X =11)
= (0)2°8% + ...+ (1).2".8¥ (2.32)

When the sample size is large, the binomial distribution is approximately the
same as a normal distribution which has a mean of np and a variance of
np(l — p). In our example, we would expect a mean of np =(40)(0.2) =8 resi-
dents to indicate that they were newcomers. The variance, np(1 — p) =40(0.2)
(0.8) = 6.4, represents the variability we would expect in a summary of the
results produced by many people who went out and surveyed 40 households.

The probability that eleven or fewer residents are newcomers, p(X <11),
may be determined by the shaded area under the normal curve shown in
Figure 2.3. The areas under normal curves are given in tables such as that
found in Table A.2 in Appendix A. Since variables with normal distributions
may have an infinite number of possible means and standard deviations,
normal tables are standardized, and they display the areas under normal dis-
tributions that have a mean of zero and a standard deviation of one. Before
using a normal table, we must transform our data so that it has a mean of zero
and a standard deviation of one. This is achieved by converting the data into
Z-SCores.
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Figure 2.3 Probability of X< 11

For our example, we convert x=11 into a z-score by first subtracting the
mean and then dividing the result by the standard deviation:

11-8
V6.4 (2:33)

We now find the probability that z<1.19 from the normal table; it is equal to
0.8830. To be a bit more precise, we would account for the fact that our
variable of interest is a discrete one. The vertical bar associated with x=11
on a histogram of the binomial distribution would stretch from x=10.5 to
x=11.5. We can get a better approximation by finding the probability that
x<11.5. Converting x =11.5 to a z-score yields z=1.38, and from the normal
table the probability that z<1.38 is 0.9162. For comparison, the binomial
formula leads to a probability of 0.9125.

Whether the binomial distribution may be approximated well by the normal
distribution depends upon the values of n and p. The binomial distribution is
only truly symmetric when p=0.5, and so, if p is near either 0 or 1, the normal
approximation may not be accurate. The normal approximation also improves
as n becomes large. A common rule-of-thumb is that np should be greater
than 5. In our example np was equal to 8, and the approximation was fairly
accurate.

As we will see in the next subsection, the normal distribution also charac-
terizes the distribution of sample means. In particular, sample means have a
normal distribution, with mean equal to the true population mean (u) and
variance equal to az/n, where o° is the population variance and n is the
sample size. If we repeatedly took samples of size n from a population,
and then made a histogram of all of our sample means, the histogram would
have2 the appearance of a normal distribution with mean p and variance equal
to o /n.
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2.5 Confidence Intervals for the Mean

The central limit theorem tells us something about the nature of sample means.
Any time we sum a large number of independent, identically distributed vari-
ables, the central limit theorem tells us that the sum will have a normal, bell-
shaped curve for its frequency distribution.

Using the data on commuting times from Chapter 1, we begin by summing
the commuting times (and then simply dividing by a constant, n, to obtain the
mean). “Independent” implies that one individual’s commuting time is unre-
lated to the commuting time of other individuals. “Identically distributed”
means that each individual commuting time comes from the same frequency
distribution. In other words, there are not separate frequency distributions that
govern separate subcategories of the population. Under these conditions, we
would find that the frequency distribution of sample means (which could be
constructed if we had the results of many surveys, each with its own sample
mean) would follow a normal distribution.

Furthermore, the normal, bell-shaped curve representing the frequency dis-
tribution of the means will have a mean equal to the true mean, p. Although it
is unlikely that our own sample mean will be equal to the true mean, it is
certainly reassuring to know that, with a large number of people repeating
our survey of thirty individuals, the average of all of the sample means
would be equal to the true mean.

Finally, we know something about the variability that we will observe
among the sample means collected. In particular, the sample means will have
a variance equal to o° /n . This is consistent with one’s intuition that sample
means will display more variability when the original data are inherently
variable; high values of o will lead to high values of o° /n. If we were all to
take large surveys (i.e., make n larger), the resulting distribution of sample
means would also display less variability.

Summarizing, we know that if others repeated our survey, and if we made a
histogram using all of the many sample means that were collected, the his-
togram would have a roughly normal, bell-shaped appearance, the mean of the
sample means would provide an estimate of the true mean, and the variance of
the sample means would be equal to o*/n.

Since we know something about the distribution of sample means, we can
make statements about how confident we are that the true mean is within a given
interval about our sample mean. For a normal distribution, 95% of
the observations lie within about two standard deviations (actually 1.96 stan-
dard deviations) of the mean. This can be verified using the standard normal
table (Table A.2 in Appendix A), which reveals that the probability of a z-score
with absolute value less than 1.96is 0.95. This implies that our individual sample
mean should, 95% of the time, lie within +1.96s/y/n of the true mean, p:

eru— 1.96\%) < %< (u+ 1.96%)] —0.95 (2.34)
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The probability that X lies in the range described in parenthesesis 0.95. Rearrang-
ing allows us to construct a confidence interval around our sample mean:

pr[()_c— 1.96\%) <u< <x+ 1.96%)] = 0.95 (2.35)

This tells us that 95% of the time the true mean should lie within £1.96s/\/n
of the sample mean. A 90% confidence interval could be constructed by
recognizing that the true mean would lie within 1.645 standard deviations of
the mean 90% of the time. The value of 1.645 comes from the standard normal
z-table (Table A.2 in Appendix A); it is the value of z associated with 5% of the
area under each of the two tails of the distribution. It is also fairly common to
use 99% confidence intervals, constructed by adding and subtracting 2.58s/,/n
to the sample mean.

More generally, a (1 — «)% confidence interval around the sample mean is

pr[(x—za%) <u< (x—l—za%ﬂ —l-a (2.36)

where z, is the value taken from the z-table that is associated with a fraction
a of the weight in the tails (and therefore a/2 is the area in each tail).

Before proceeding to apply this to our commuting data example, we must
consider one more factor. The central limit theorem applies when the sample
size is “large;” only then will the distribution of means possess a normal dis-
tribution. When the sample size is not “large,” the frequency distribution of the
sample means has what is known as the z-distribution; it is symmetric, like
the normal distribution, but it has a slightly different shape. The areas under
the t-distribution are given in Table A.3 in Appendix A. With a sample size of
n=30, 95% confidence intervals are constructed using = 2.045, instead of the
value of z=1.96 used above for the normal distribution.

For the commuting data, the 95% confidence interval around the mean is
therefore

pr [{21.93 - %} <p< {21.93 +%\/31_;1-43)H =095 (2.37)

and thus we are 95% sure that the true mean is within plus or minus 2.045x
(14.43)/+/30 = 5.39 of our sample mean of 21.93. The 95% confidence interval
for the mean may be stated as (16.54, 27.32). More precisely, 95% of confi-
dence intervals constructed from samples in this way will contain the true mean.

2.6 Probability Models

Probability is used as a basis for statistical inference. In college mathematics
course sequences probability comes before statistics, since probability concepts
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form the foundation of statistical tests and statistical inference. In addition to
forming the basis of standard statistical tests, probability is used to develop
models of geographic processes. Though the primary emphasis of this book is
on the use of probability in statistical inference, in this section we provide some
examples of probability modeling.

The outline of the scientific method in the previous chapter indicated that
models are used as simplifications of reality. A simplified view of reality per-
mits one to focus on the nature of the relationships between key variables.
Uncertainty and probability are concepts that are central to the construction of
many models in geography. A model that is particularly useful in illustrating
both the nature of models and the manner in which probability is central is
the intervening opportunities model (Stouffer 1940).

2.6.1 The Intervening Opportunities Model

The intervening opportunities model was originally used in the context
of migration, but has since been used more widely in the field of trans-
portation. The conceptual foundation rests on the idea that the movement
behavior of individuals in space obeys the principle of least effort — indivi-
duals will consider opportunities that are closest to them first, and if they find
them unacceptable they will go on to the next closest opportunity or
opportunities.

This conceptual foundation is quite easy to develop into a probability
model that indicates how individual travel behavior might be organized.
Suppose that an individual consumer is considering a purchase, and that
there are several alternative stores in the vicinity where a purchase might
be made. If there are n stores, we can arrange them in order of their distances
from the individual. Let us call the store closest to the individual “store 1,”
and the one that is furthest away ‘“‘store n.”” The intervening opportunities
model makes just two assumptions — that (a) individuals consider opportu-
nities sequentially, in order of distance; and (b) individuals consider
each opportunity, and find each opportunity acceptable with constant prob-
ability L.

These two assumptions imply that our individual starts by considering
the closest opportunity. The probability that it is acceptable is L, so we may
write the probability of stopping at the closest store as

pX=1)=L (2.38)

We use X to denote the random variable we are interested in — namely, the
number of the store the individual purchases from. The probability that
the individual finds the closest opportunity wunacceptable is 1 — L; if this
occurs the person goes on to the second closest opportunity, and accepts it
with probability L. The probability the individual ends up purchasing at
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store 2 is therefore the product of these two independent terms, representing
the likelihood of rejecting the first opportunity and accepting the second:

p(X=2)=(1-L)L (2.39)

Similar reasoning implies that the probability of rejecting the first two oppor-
tunities and accepting the third is

p(X=3)=(1-L)(1-L)L=(1-L)’L (2.40)

In general, the probability of accepting opportunity j is equal to the opportu-
nity of rejecting the first j— 1 opportunities, multiplied by the likelihood of
accepting the jth opportunity:

p(X=j)=(0-0)"L (241)

In this model, the variable X is a geometric variable that is characterized by
a downward-sloping histogram. For example, if L=0.5, the probabilities
are p(X=1)=0.5, p(X=2)=0.25, p(X=3)=0.125, p(X=4)=0.0625, etc.
Note how this simple model captures one of the most important of all
geographical concepts — namely, that geographic interaction declines with
increasing distance. Although the model is an oversimplification in many
respects (e.g., the probability of accepting any given opportunity is probably
not constant in most contexts), it does capture the most important feature of
spatial interaction.

Once we have set out the main features of a probability model such as the
intervening opportunities model, other questions naturally arise. Some of the
questions that might arise here are:

(1) Do the probabilities add to one, as they should?

(2) Where does L come from?

(3) What if we do not have data on the exact distances of the opportunities,
and the data are arranged into zones around the origin?

We now consider each of these questions in turn.

Do the probabilities add to one? A geometric random variable is used
whenever the variable of interest is the number of the trial on which the first
success occurs. Here the “trials’ are the opportunities, and “‘success’ refers to
the selection of a particular opportunity. If the variable is allowed to take for
its value any positive integer (1, 2, ...), then the probabilities will add to one. In
the intervening opportunities model, an individual will not have an infinite
number of opportunities to consider, and therefore the probabilities will sum
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to less than one. That is,

i=n<oo
> opx=i<1 (2.42)
i=1

Consequently, to be more precise, we should adjust our probabilities accord-
ingly. We may do so by dividing by their sum, to ensure that they add to one:

j-1
pX=j) =Bk (2.43)
S (1-)'L

If either (a) n is large, (b) L is large, or (c) n is large and L is large, then such an
adjustment is unnecessary, since the denominator in the previous equation will
be close to one.

Where does L come from? Suppose we have a set of data indicating the
proportion of people leaving a particular residential origin who end up at
each of the n destinations. We would like to choose (i.e., estimate) L in a way
that is consistent with what we observe. That is, since we have the freedom to
estimate L, clearly we should do so in a way that mimics as closely as possible our
observed data.

There are many alternative approaches to choosing L, and here we will
illustrate several of them. Suppose we observe the following proportions of
people leaving an origin for one of the six potential stores in the area (arranged
in terms of increasing distance away from the origin): pops(X'=1)=0.55,
pobs(X: 2)=0.3, pobs(X: 3)=0.1, pobS(X: 4)=0.05, pobs(X: 5)=0.0, and
Pobs(X'=6)=0.0. Most individuals go to the closest store, and no one goes
from our origin to the two stores that are farthest away. The nature of the
observations therefore suggests that the intervening opportunities model might
work well in replicating observed travel behavior.

One way to choose L would be to simply try several values and see which one
works best. We could define “best” in different ways, but let us use the sum of
the squared deviations between observed and predicted values. Thus if we try
L=0.5, our criterion, the sum of squared deviations is

1

- (Pobs(i) — p(i))* = (.55 = .5)% + (.3 — .25)* + (.1 — .125)* 4 (.05 — .0625)”
i=1

+ (0 —.03125)* 4 (0 — .01563)* = .0145 (2.44)
where the “"” indicates the probability predicted by the model (where we have
used the simple form of the model given by Equation 2.41, which may be
justified not by the fact that » is large but rather by the fact that L is likely
to be large, since observed interaction falls off so sharply with distance). If we
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repeat this for many values of L, we obtain the graph in Figure 2.4, which
shows that the deviations are minimized (and hence the fit of the model is best)
at a value of L =0.561. Again, the “*” notation is used to indicate that L is an
estimate of the true, unknown value of L. With L =0.561, the predicted prob-
abilities are

X =1)=0561, HpX=2)=0246, H(X
X =4)=0047, H(X=5=0021, HX

3) =0.108,
6) =0.009  (2.45)

and these are quite close to the observed values.

An alternative way to estimate L is to make use of the fact that the mean of a
geometric random variable is equal to the reciprocal of the probability of
success (or, here, the reciprocal of L, the probability of accepting a given
opportunity). The mean destination of our sampled population is 1.7. To see
this, suppose that 100 people left the origin. Fifty-five would stop at destination
1, 30 at destination 2, 10 at destination 3, and 5 at destination 4. If we make
a list of the destination numbers for each of these 100 individuals, the total will
be (55+(30)(2) +(10)(3) +(4)(5) =165), and dividing by the total number of
people in the sample yields 165/100 = 1.65. Thus we have L =1/1.65=0.606,
which is similar to our previous estimate of L.

What if the opportunity data are organized into zones? A common way of
using the intervening opportunities model is to organize the potential
destinations into zones around the origin. Transportation planners do not
often need to know the number of individuals arriving at each destination;
they are satisfied with more aggregate estimates of the number arriving within
defined transportation zones. We may specify the number of opportunities in
destination zone j as d;, and now arrange the zones in order of increasing

.03
.02

.01

I.=0.561 L

Figure 2.4 Sum of squared errors as a function of L
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distance around the origin. The probability of stopping somewhere in the zone
closest to the origin is equal to the probability of accepting an opportunity
somewhere (anywhere) within it. In turn, this may be thought of as one minus
the probability of not finding any of zone 1’s opportunities acceptable:

p(X=1)=1-(1-L)" (2.46)

where p(X = 1) now refers to the probability of stopping in zone 1. The prob-
ability of stopping in zone 2 is equal to the probability of going beyond zone 1,
minus the probability of going beyond zone 2:

p(X=2)=(1-L)"—(1-L)""% (2.47)

In general, the probability of stopping in zone j is equal to the probability of
going beyond zone j— 1, minus the probability of going beyond zone j:

(LT

L may be determined by minimizing the sum of squared errors, as described in
the previous subsection. For example, suppose that d;=5, dy=4, d;=4,
Pobs(1) =.5, pops(2)=.4, and p.ns(3)=.1. By trying alternative L values we
find that L =0.132 minimizes the sum of squared errors

p(X =)) (2.48)

3
S [Pors(i) — PGP (2.49)

i=1

where the predicted values p(i) are found from Equations 2.46 to 2.48.

2.6.2 A Model of Migration

It is possible to construct a simple model of the movement of people for a
regional system that has been divided into n subareas. For illustrative purposes,
we will look at the n =2 case of movement between central city and suburbs.
We focus only on the redistribution of people who are alive and living in the
study region throughout the study period.

Suppose that each year 20% of central city residents move to the suburbs
and 15% of all suburban residents move to the central city. If we start with
10000 residents in each location, after the first year we have, for the suburban
and central city populations

Py, = .85(10000) +.2(10000) = 10 500
b = -85(10000) + 2(10000) } (2.50)

Pe. = .8(10000) 4 .15(10000) = 9500
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Assuming that these probabilities of movement remain constant over time, the
population at the end of year ¢ can be written in terms of the populations at the
end of the previous year:

Pop(t) = .85Pgp (1 — 1) + 2P (1 — 1) (2.51)
Pcc(t):‘8pcc(t_ 1)+'15Psub(1_1) '
For example, the populations at the end of the second year are
Py (1) = .85(10500) + .2(9500) = 10825 (2.52)
P..(1) = .8(9500) + .15(10 500) = 9175 '

Note that the total population remains fixed at 20 000. This simple model is
known as the Markov model, and it provides a useful short-run method for
projecting the migration component of population change.

The model also has interesting long-run properties. If the model is allowed to
run for a long time, the regional populations approach a constant, equilibrium
value, i.e.,

ﬁw@y—sﬂ@a0+2hxﬂ} (2.53)

b
cc(t) = 'SPCC(I) + '15Psub(t)

The equilibrium populations may be determined by taking either equation
from 2.53 together with the fact that the total population is fixed at 20 000.
For example,

mg0=8ﬂhdﬂ+234”} (2.54)

P
Psub(t) + Pcc(t) = 20000

is a set of two equations and two unknowns. It may easily be solved to yield
Py =11429 and P..=8571. Thus, if current probabilities of movement do not
change, 4/7 of the regional population will reside in the suburbs and 3/7 will
reside in the central city. These equilibrium populations depend only upon the
probabilities of movement between subareas; they do not depend upon the
initial, subarea populations. Although in reality probabilities of movement
do not remain constant for such long periods of time, the long-run equilibrium
provides a useful (moving) target toward which the population distribution
is heading.

The Markov model provides a good illustration of how elementary prob-
ability concepts may be used to model an important process. In this case, the
model provides both useful short-range forecasts and understandable long-
range consequences. For more details on this model, see Rogers (1975).
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2.6.3 The Future of the Human Population

How long will the human species survive? This basic question has been the
subject of much debate. Attention has been given to factors such as the rate at
which we are deplenishing nonrenewable resources, as well as how many
people the earth can support (Cohen 1995).

An interesting approach, using a simple probability argument, to estimating
the survival of the human species has been suggested by Gott (1993). Imagine a
list of all humans who have ever lived, or will ever live. Since there is no reason
to suppose that we occupy a special place on this list, there is only a 5% chance
that we are listed among either the first 2.5% on the list or the last 2.5% on the
list. As Gott notes:

Assume that you are located randomly on the chronological list of human beings. If
the total number of intelligent individuals in the species is a positive integer
Niot = Npast T 1 + Npypure, Where Ny, is the number of intelligent individuals born
before a particular intelligent observer and Ngyure 1S the number born after, then we
expect Np,g to be the integer part of the number 7N, where r is a random number
between 0 and 1.

We know that Ny, is approximately 70 billion. If Npure turns out to be
greater than about 2.8 trillion, that would mean we would be on the first
2.5% of the chronological list (since 70 billion/2.8 trillion =0.025). Similarly,
if Nryure turns out to be less than 1.75 billion, that would mean we would be on
the last 2.5% of the chronological list (since 1.75 billion/70 billion = 0.025). If
we do not occupy a special place on the chronological list, this means that the
future population yet to be born is, with 95% confidence, in the range

1.75billion < Ngyyre < 2.8 trillion (2.55)

Using birth rates that are now slightly out-of-date, Gott translates this into a
95% confidence interval for the length of survival of the human species:

12 years < trypure < 7.8 million years (2.56)

where fyure 1S the number of additional years that the human species will
survive. Readers will probably be comfortable with the upper limit, but will
be surprised by the lower limit! Even the upper limit is not large when con-
sidering, for example, the length of time that life has been present on the
planet.

Different results are obtained when one uses different assumptions. Our
species has been in existence for approximately 7,5 =200000 years. If we do
not occupy a special place on the timeline of the past and future history of the
human species, there is a 2.5% chance that we will live in years that are within
the first 2.5% of the ultimate timeline, and a 2.5% chance that we will live in
years that are within the last 2.5%. If fpeuce 1S less than 5000 years, this would
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mean that we would be in the last 2.5% of the timeline (since 5000/
200000 = 0.025), and if #pure 18 greater than 8 million years, this would mean
that we would be in the first 2.5% of the timeline (since 200 000/8 million =
2.5%). Hence

5000 years < frure < 8 million years (2.57)

So we get a little more time at the lower limit with this scenario.
Exercises

1. The probability of a dry summer is equal to 0.3, the probability of a
wet summer is equal to 0.2, and the probability of a summer with normal
precipitation is equal to 0.5. A climatologist observed the precipitation
during three consecutive summers.

(a) Enumerate the sample space, and assign probabilities to each simple
event.

(b) What is the probability of observing two dry summers?

(c) What is the probability of observing at least two dry summers?

(d) What is the probability of not observing a wet summer?

2. Snowfall for a location is found to be normally distributed with mean 96 in.
and standard deviation 32 in.

(a) What is the probability that a given year will have more than 120 inches of
snow?

(b) What is the probability that the snowfall will be between 90 in. and
100 in.?

(¢) What level of snowfall will be exceeded only 10% of the time?

3. Let a=5, x;=6, x=7, x3=8, x4=10, xs=11, y;=3, y,=5, y3=06,
v4=14, and ys=12. Find the following:

2%
inyi
Z (xitay;)

3

>

i=1

i=n

> a

i=1

Z 20 —3)
k
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4. Find 8!/3! .
5. Find ().

6. Use the following table of commuting flows to determine the total number
of commuters leaving each zone and the total number entering each zone. Also
find the total number of commuters. For each answer, also give the correct
notation, assuming y; denotes the number of commuters who leave origin i to
go to destination zone j.

Destination zone

Origin zone 1 2 3 4
1 32 25 14 10
2 14 33 19 9
3 15 27 39 20
4 10 12 20 40

7. The following data represent stream link lengths in a river network (given
in meters): 100, 426, 322, 466, 112, 155, 388, 1155, 234, 324, 556, 221, 18, 133,
177, 441.

(a) Find the mean and standard deviation of the link lengths.
(b) Find 90% and 95% confidence intervals for the mean.

8. If the probability that an individual moves outside of his or her county of
residence in a given year is 0.15, what is the probability that

(a) less than three out of a sample of ten move outside the county?
(b) at least one moves outside the county?

9. The annual probability that an individual makes an interstate move is 0.03.
What is the probability that at least two out of ten people will make an inter-
state move next year?

10. Assume that the prices paid for housing within a neighborhood have a
normal distribution, with mean $100 000 and standard deviation $35000.

(a) What percentage of houses in the neighborhood have prices between
$90000 and $130000?

(b) What price of housing is such that only 12% of all houses in the neigh-
borhood have lower prices?

11. Assume that the probability that an individual changes residence during
the year is 0.21. A survey is taken of 5 individuals.

(a) Write out the elements in the sample space.
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(b) What is the probability that three out of five individuals move during the
year?

(c) What is the probability that at least one of the five individuals moves
during the year?

12. Residents in a community have a choice of six different grocery stores. The
proportions of residents observed to patronize each are p(1)=.4, p(2)=.25,
p(3)=.15, p(4)=.1, p(5) = .05, and p(6) = 0.05, where the stores are arranged in
terms of increasing distance from the residential community. Fit an intervening
opportunities model to these data by estimating the parameter L.

13. The annual probability that suburban residents move to the central city is
0.08, while the annual probability that central city residents move to the suburbs
is 0.11. Starting with respective populations of 30 000 and 20 000 in the central
city and suburbs, forecast the population redistribution that will occur over the
next three years. Use the Markov model assumption that the probabilities of
movement will remain constant. Also find the long-run, equilibrium populations.

14. The probability that an individual commutes to work by car is 0.9. What is
the probability that ten neighbors al/l commute by car? What is the probability
that exactly eight of the ten commute by car?



3 Hypothesis Testing and Sampling

LEARNING OBJECTIVES

e Formation and testing of hypotheses

e Hypothesis testing for one- and two-sample tests of means and
proportions

e Understanding the distinction between distributions of the variable of
interest and distributions of the test statistic

e The special nature of spatial nature, and complications brought about by
nonindependence of spatial observations

e lIssues associated with sampling

Hypothesis testing is the fundamental way in which inferences about a popula-
tion are made from a sample. In this chapter, we first focus on the testing of
hypotheses involving either one sample or two samples. The latter part of the
chapter focuses upon several alternative methods of sampling that may be used
to gather information.

3.1 Hypothesis Testing and One-Sample z-Tests of the Mean

We will first describe some of the basic concepts of hypothesis testing and
statistical inference through an example using a one-sample test involving a
mean. Suppose we want to know whether the mean number of weekly shop-
ping trips made by households in a particular neighborhood of an urban area
differs from 3.1, which is the corresponding mean for the urban area as a
whole. We do not wish to survey all households in the neighborhood to find
the desired mean, since that would be too costly (and if we could do this, it
would be wasteful). Instead, we choose to take a random sample of house-
holds. In this example, it is assumed that the value of 3.1, which applies to the
entire urban area, is known.

The first step is to set up a null hypothesis, where the mean number of shop-
ping trips in the neighborhood is equal to the mean for the entire urban area:

Hy:p=3.1 (3.1

where p is the hypothesized, true mean for the neighborhood. Null hypotheses
are set up in this way, where to accept it will be in keeping with the default
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option that the neighborhood mean is no different from the hypothesized mean
for the entire urban area. This would be a null result. Rejecting the null
hypothesis occurs when we find evidence for a significant difference from the
hypothesized mean.

The second step is to state an alternative hypothesis. Suppose that we are
interested in this example because we suspect from other anecdotal evidence
that the neighborhood of interest has a high number of shopping trips. In this
case, our alternative hypothesis is that the true, unknown mean in the neigh-
borhood is greater than 3.1:

Hyip> 3.1 (3.2)

This is known as a one-sided hypothesis, since we suspect that if the true
neighborhood mean does differ from 3.1, it will be greater than 3.1 and not
less. If on the other hand we had no a priori idea about how the neighborhood
mean might differ from that for the urban area, we would postulate the
following:

Hy:p#3.1 (3.3)

Here we have a two-sided hypothesis; if the true neighborhood mean differs
from 3.1, it could lie on either side of 3.1. In carrying out statistical tests, we
need to recognize that we will be making decisions on the basis of a sample
drawn from a larger population. We will never know for certain whether the
null hypothesis is true or false. We base our decision on the evidence in favor of
or against the hypothesis. If we interview ten households, and the sample mean
is 11.7 shopping trips/week, two conclusions are possible. One possibility is
that the null hypothesis is true. In this case, the true mean among households in
the neighborhood is 3.1, and we have obtained an unusual sample. The other
possibility is that the null hypothesis is false. In this event, the true mean
among households in the neighborhood is not equal to 3.1. We decide in
favor of the null hypothesis if, under Hy, the sample is not zoo unusual; other-
wise we will reject Hy. The role of statistics in this case is to inform us regarding
precisely how unusual it would be to obtain our sample if the null hypothesis
were true.

In the course of this process, it is possible that one of two kinds of error
might be made. A Type I error refers to rejecting a true hypothesis, whereas a
Type II error refers to accepting a false hypothesis. The likelihood of making a
Type I error is denoted by « and is referred to as the significance level. The
analyst has control over « and the third step in setting up a statistical test is to
choose a significance level. Common values chosen for « are 0.01, 0.05, and
0.10. Though we, of course, wish to keep the likelihood of errors as small as
possible, we cannot simply choose « to be exceedingly small. This is because
there is an inverse relationship between « and [, the likelihood of making a
Type Il error. The lower we choose «, the greater the chance that we will accept
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a false hypothesis. The two columns of Figure 3.1 summarize the four possible
outcomes associated with statistical testing. If the null hypothesis is true, we
either make a correct decision with probability 1 — « or an incorrect decision
with probability «a. If the null hypothesis is false, we either make a correct
decision (with probability 1 — 3), or, with probability 3, we make a Type II
error.

The fourth step in hypothesis testing is to choose a test statistic and to find
the observed value of the test statistic.

For one-sample tests involving the mean, we have sample data x;, x5, ..., X,,.
From Chapter 2 we have learned that sample means are normally distri-
buted with mean p and standard deviation o/+/n. If we replace the unknown
population standard deviation with its sample estimate (s), we can use the test
statistic

X—p

NG

This test statistic will have, for n greater than about 30, a standard normal
distribution with mean 0 and standard deviation 1. The normal distribution is
often denoted N(u, o) which, in this case of the standard normal distribution,
is N(O, 1).

Suppose that, for our example, we interview n = 100 individuals in the neigh-
borhood and find that the sample mean is 4.2 shopping trips per week, with a
sample standard deviation of s=15.0. Then the observed z-statistic is

(3.4)

42-31 1.1
I=— = — = 2.2 3.5
5/v/100 0.5 (3:3)

“True” state of affairs

Likelihood Likelihood
H, true H, false

Likelihood | Correct decision Type II error

Accept H,, (1-o) B)
Conclusion

Likelihood Type I error Correct decision

Reject H (o) 1-p)

(I+w+a=1 p+(1-p)=1

Figure 3.1 Four outcomes associated with statistical testing
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Intuitively, the z-score is large in absolute value when the sample mean is far
from the hypothesized mean, and it is in such cases that we will reject the null
hypothesis for two-sided alternative hypotheses.

How large must the test statistic be before we reject Hy? The fifth step in
hypothesis testing is to use « and our knowledge of the sampling distribution
of the test statistic to determine the critical value of the test statistic. Critical
values are those values of the test statistic where we are on the knife-edge
between acceptance and rejection. If the observed test statistic is slightly to
one side of the critical value, we accept Hy; if it is slightly to the other side, we
reject Hy. Returning to our example, where the sampling distribution is
normal, if we have chosen «=0.05 and the two-sided alternative
Hy:p # 3.1, the critical values of z are equal to — 1.96 and 1.96 (Figure 3.2);
under H,, we would expect 5% of all experiments to result in |Z| > 1.96. Since
our observed value of 2.2>1.96, we reject Hy. How often would we observe a
value as high (or higher) as our observed value of 2.2 under Hy? A check of the
table of normal distribution probabilities reveals that such an event would
occur with probability (2)0.0139=0.0278 (see Figure 3.3). The value of
0.0278 is referred to as the p-value; it tells us how likely a result more extreme
than the one we observed would be if the null hypothesis were true.

Note that if we had used the one-tailed alternative H,: p > 3.1 we would
also have rejected H,, since the critical value of z (denoted z..) would have
been equal to 1.645 (Figure 3.4).

The steps involved in hypothesis testing are summarized below:

Hypothesis testing

(1) State the null hypothesis, Hy.

(2) State the alternative hypothesis, H 4.

(3) Choose a, the probability of making a Type I error (rejecting a true Hy).
(4) Choose a statistical test, and find the observed test statistic.

0.45 7 Accept Hg

Relative frequency

Reject Hy Reject H

4 3 =196 -1 0 1 z;=+1.96 3 4

Figure 3.2 Critical regions of the sampling distribution of the difference of means
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0.45 7 Accept Hy
0.40
0.35
0.30
0.25
0.20
0.15

Relative frequency

0.10 +
0.05 -

0.00 T T T T T T T 1
-4 3 z=2.2 -1 0 1 =422 3 4

.0139 .0139

Figure 3.3 A p-value of 0.0278

0.45 7 Accept H
0.40 -
0.35
0.30 -
0.25
0.20
0.15 -
0.10 -
0.05 -
0.00

Relative frequency

4 3 2 1 0 Zei=+1.645 7 peerea=+2.2 4

Figure 3.4 Critical and p-values in one-sided test

(5) Find the critical value of the test statistic to determine which values of the
observed statistic will imply rejection of H.

(6) Compare the observed test statistic with the critical value of the test
statistic, and decide to accept or reject Hy.

In Section 3.4, we will review two-sample tests for differences in means. This
will lead naturally into the topic of analysis of variance in Chapter 4, which is
concerned with possible differences in means among three or more samples.

3.2 One-Sample t-Tests

When the population variance is unknown (as it almost always is; we don’t
even know the population mean (1), so how would we know the variance?) and
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the sample size is small, the sampling distribution of the mean is no longer
normal, and hence we should not use the z-statistic. Instead, the sampling
distribution of the mean follows a ¢-distribution with n — 1 degrees of freedom.
Degrees of freedom may be somewhat loosely thought of as the number of
observations minus the number of quantities estimated. We have n observa-
tions, and we “use up”’ one degree of freedom to estimate the mean (the sample
mean is also used to estimate the sample variance). We have n — 1 degrees of
freedom since, if I gave you the values of n—1 observations, knowing the
mean, you could calculate the value of the nth observation without being
told it.

In addition to the usual assumption that the observations are independent,
use of the #-distribution requires the additional assumption that the observa-
tions come from a normal distribution.

The t-distribution is similar in shape to the normal distribution, though the
tails of the distribution are slightly fatter in comparison with the normal dis-
tribution. The #-statistic is found in exactly the same way as the z-statistic:

_X—p

s/

¢ (3.6)

To test a hypothesis about the mean, we compare our observed ¢-statistic with
the critical value taken from a t-table (see, e.g., Table A.3a in Appendix A)
with n — 1 degrees of freedom.

3.2.1 lllustration

Suppose that in our previous example we interviewed n =20 people instead of
n=100, and found x=4.5 and s=15.5. Our test statistic is

45-3.1
t=—" o —1.14 3.7
5.5/1/20 37

For a=0.05 and the two-sided alternative H,: u # 3.1, the critical values of
t with n—1 degrees of freedom are #pgs 19=—2.09 and +2.09. Since the
observed value of the test statistic falls within the range of the critical values,
we accept Hy and conclude that there is not enough evidence to reject the null
hypothesis. It is of course possible that we are making an error — specifically the
Type 11 error of accepting a false hypothesis.

The p-value associated with the observed value of ¢ is 2(.1325) =0.265, and
since this is greater than 0.05 it is consistent with the fact that we have not
rejected the null hypothesis. In situations where the null hypothesis is true, we
would expect more extreme values of ¢ about 26.5% of the time. We would
reject the null hypothesis only if our observed value of ¢ was so extreme that it
would be expected less than 5% of the time.
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A 95% confidence interval for the mean is
X % 1905195/ v/n = 4.5 £ 2.09(5.5)/V20 = 4.5 £2.57 = (1.93,7.07)  (3.8)

Note that this interval includes the hypothesized value of 3.1.

3.3 One-Sample Tests for Proportions

When we are interested in whether a proportion, rather than a mean, is differ-
ent from some hypothesized value, we need to know the sampling distribution
of proportions when the null hypothesis is true. Suppose that the true propor-
tion in a population is equal to p,. Then the sampling distribution of propor-
tions is normal, with mean p, and standard deviation 1/py(1 — py). This means
that we may test hypotheses of the form

Hy:p=po (3.9)
by using a z-statistic of the form

PR S N— (3.10)
po(1 —po)/n

Even though we don’t know the true value of py, when calculating z we simply
use the hypothesized value py.

Note that the form of the z-statistic is always the same — the numerator is
equal to the observed sample value minus the hypothesized value, and the
denominator is equal to the standard deviation of the sampling distribution
when H, is true. The z-statistic tells us how many standard deviations the
observed value is away from the hypothesized value.

Note also that we can find a 100(1 — a)% confidence interval around the
sample proportion, as follows:

(3.11)

3.3.1 lllustration

Suppose we are interested in knowing whether the proportion of households in
an area who own two cars differs from the citywide figure of 0.2. We survey
n=>50 households, and find p=16/50=0.32. To test H,:p = 0.2 against the
two-sided alternative H,: p # 0.2 with o =0.05, we find

32-2
2(.8)/50

2.12 (3.12)
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Since the observed value of z falls outside the range of the two critical values,
Z, ., = £1.96, we reject the null hypothesis and conclude that the proportion of
households that own two cars in this neighborhood is significantly higher than
the citywide proportion.

The p-value is found by using the z-table (Table A.2) to determine the like-
lihood of a more extreme z-value than the one observed. The table reveals that
p(z>2.12)=0.017. Since the probability of a z-value less than —2.12 is also
0.017, the probability of getting a statistic more extreme than the one observed
is 2(0.017) = 0.034. Note that the p-value is less than 0.05, and this is consistent

with rejecting H,.

3.4 Two-Sample Tests
3.4.1 Two-Sample t-Tests for the Mean

Often a sample mean is compared with another sample mean, rather than with
some known population value. In this case the s-test is appropriate, and the
form of the #-test depends upon whether the variances of the two samples can
be assumed equal. The assumption of equal variances is known as homo-
scedasticity. If the variances can be assumed equal, the z-statistic is
- N (3.13)
sp/ (1/m) + (1/n3)

where x; and x, are the observed means of the two samples, n; and n, are the
observed sample sizes, and the pooled estimate of the standard deviation, s,, is
equal to

E :\/(nl—l)s%—f—(nz—l)s% (3.14)

P n1+n2 72

Here s7 and s3 represent the observed variances of samples 1 and 2, respectively.
The number of degrees of freedom associated with this test statistic is n; +
n, — 2, since the total sample size is effectively reduced by two due to the estima-
tion of two means. Note that an alternative way of writing this z-statistic is
= Al (3.15)
(s5/m) + (s5/n2)

If it cannot be assumed that the two samples have equal variances, then the
appropriate z-statistic is

‘= (3.16)
(st/my) + (s3/m2)
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In this case the number of degrees of freedom is more difficult to calculate — it is
equal to (Sachs 1984)

[(5/m) + (3/m2)]”
[Si‘/”%(nl - 1)] + [Sg/”%(nz - 1)]

Some statistics texts suggest that the degrees of freedom be simply taken as the
minimum of the two quantities (n; — 1, n, — 1). Sachs notes that the degrees of
freedom as determined from the expression above will always be between
min(n; — 1, n, — 1) and n; +n, — 2. Therefore, taking the degrees of freedom
to be equal to min(n; — 1, n, — 1) will be conservative, in the sense that the
probability of committing the Type I error of rejecting a true hypothesis will be
less than the nominal value of «. In other words, the critical value will be more
extreme, and one will be less likely to reject the null hypothesis.

One may use the F-test to determine whether the assumption of equal var-
iances is justified. Under the null hypothesis of equal variances, the test statistic

df =

(3.17)

F=-21 (3.18)

has an F-distribution, with n; — 1 and n, — 1 degrees of freedom in the numera-
tor and denominator, respectively.

As is the case with the one-sample ¢-test, we must also assume that the
populations from which the samples are taken are themselves normally distrib-
uted. Also, a z-test may be used instead of a z-test when sample sizes are large.

lllustration. Suppose we are interested in knowing whether differences in
recreational behavior exist between the central city and suburban regions of a
metropolitan area. In particular, suppose we are interested in swimming
frequencies. Before collecting the data, we have no prior hypothesis regarding
whether one region’s individuals will have higher frequencies than the other, and
so we will use a two-tailed test. The null and alternative hypotheses may be
stated as

Hy: pec = fhsub Hy: proe 7 Hsub (319)

We collect the hypothetical data shown in Table 3.1, based on a random
sample of eight residents in each region. Because the sample size is small, we
will use a ¢-test; if the sample size were larger (say 30 or so residents from each
region), we would use a z-test. An examination of the sample means reveals
that the annual frequency is higher in suburban locations. Is this difference
“significant,” or might it have arisen by chance? With respect to the latter
possibility, it could be the case that the observed difference is attributable
to sampling fluctuation — if we took another sample of eight residents
from each region, we might not find such a large difference. To proceed with
the two-sample z-test, we should first decide whether the population variances
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Table 3.1 Annual swimming frequencies for eight central city
and eight suburban residents

Annual swimming frequencies

Central city Suburbs

38 58

42 66

50 80

57 62

80 73

70 39

32 73

20 58
Mean 48.63 63.63
Standard deviation 19.88 12.66

are equal. Using the F-test with o =0.05, we have

st 19.887

53 12,66

=24T< Fyyy = Foos77 = 3.79 (320)

The critical value of F=3.79 comes from the F-table (Table A.4 in
Appendix A). We therefore accept the assumption of equal variances. The
sampling distribution has the form of a #-distribution with n;+n, —2=14
degrees of freedom. Using the #-table (Table A.3a) with 14 degrees of free-
dom and a two-tailed test with o« =0.05 implies that the critical values of ¢
are —2.14 and 2.14. Again, the sampling distribution may be thought of as
the frequency distribution resulting from many replications of the experiment
(where “‘experiment” is defined here as surveying eight residents from each
region) under the condition that the null hypothesis is true. If the null
hypothesis of no difference between central cities and suburbs is true, then
5% of the time we can expect the observed ¢-value to be either less than —2.14
or greater than 2.14. In those 5% of the cases we would be making a Type I error
by rejecting a true hypothesis.
Using Equation 3.13, we find that

,_6363-4863 o (3.21)
16.67,/1+1

Since our observed value of ¢ is less than the critical value of 2.14, we fail to
reject the null hypothesis.

We can also find the likelihood of obtaining a result that is more extreme than
the one we observed, assuming that the null hypothesis is true (i.c., the p-value).
Figure 3.5 shows that the p-value associated with the test is equal to
.0467+.0467 = .0934. This is found by using a -table with 14 degrees of free-
dom and finding the area to the left of — 1.8 and to the right of 1.8 (see Table
A.3b). The p-value tells us the likelihood of getting a more extreme result than
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Figure 3.5 t-distribution with 14 degrees of freedom

the one we observed, if H, is true. Low p-values (i.e., lower than «) are
coincident with rejection of Hy, since they imply that it would be quite unlikely
to get a more extreme f-statistic than the one observed if H, were true. In our
case, we have failed to reject the null hypothesis. The p-value gives us added
information about precisely how unlikely our results are under the null hypoth-
esis —if Hy is true, we would expect a ¢-statistic with absolute value 1.8 or greater
about 9.34% of the time. So we have observed a r-value that would be a bit
unusual if the null hypothesis were true, but it is not unusual enough to reject
the null hypothesis.
It is interesting to see what would have happened had we not assumed the
variances of the two columns of data were equal. In that case, we would have had
. 63.63 — 48.63 — 18 (3.22)
\/(19.887/8) + (12.66°/8)

The observed t-value is the same, but the conservative number of degrees of
freedom associated with the ¢-distribution is now min(8 —1,8—1)=7.
Consulting a t-table reveals that the critical values are now —2.36 and 2.36.
Since 1.8 <2.36, we again fail to reject the null hypothesis. Although the con-
clusion is the same, note that the p-value of .0574 +.0574 = .1148 is larger than
it was before. A larger p-value and an observed ¢-value farther from its critical
value than it was before imply that we do not come as close to rejecting the null
hypothesis as we did when we assumed equal variances. When the variances are
not assumed equal, it is more difficult to reject the null hypothesis. This illus-
tration emphasizes the desirability of using the homoscedasticity assumption.
In fact, we could have concocted a more interesting example where the
observed value of ¢ was equal to 2.2. Then we would have rejected H, under
the first approach, assuming homoscedasticity, since 2.2 >2.14. We would have
accepted H, under the second approach (assuming unequal variances), since
2.2<2.36.
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3.4.2 Two-Sample Tests for Proportions
When estimates of proportions are made from two samples taken from two

identical populations, the distribution of differences in proportions is normal,
with mean 0 and standard deviation equal to

1 - 1 -
5, = \/p( p)  p(L=p) (3.23)
ny ny
where p is the pooled estimate of the true proportion:
_mpy+mpy (3.24)
np + ny
This means that we can test null hypotheses of the form
Hy:py—ppy=0 (3.25)
using a z-statistic
.= (P —Pz? — (1 —p) _ (P1 =) (3.26)

Op1—pa Op1—p>

lllustration. We are interested in knowing whether two communities have
identical proportions of people who use mass transit. We expect that
community A has a higher percentage of transit users than community B. The
null and alternative hypotheses are:

Hy:py—pp=0, or HOIPA:PB} (3.27)
Hy:py—pp>0, or Hy:ps>pp

We collect the following sample data:

P = 03, n = 39
2y =02, m =350 (3.28)

The pooled estimate of the proportion is

~0.3(39) 4 0.2(50)
T 39150

=0.244 (3.29)

The z-statistic is

03-02
o 1/(0.244/39) + (0.244/50) =095 (3.30)
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With a=0.05, z.; for this one-sided test is 1.645, and so we accept the null
hypothesis and conclude that there is no difference between the two commu-
nities. The p-value for this example is 0.17, since this corresponds to the area
under the standard normal curve that is more extreme than the observed
z-value. Note the fact that the p-value is greater than 0.05 is consistent with
accepting the null hypothesis.

3.5 Distributions of the Variable and the Test Statistic

A key distinction exists between the distribution of the variable of interest and
the sampling distribution of the test statistic. This distinction is often not fully
appreciated. Suppose that the distribution of distances traveled by park-goers
from their residences to the park is governed by the “friction of distance”
effect, irrespective of the weather. This effect is widely observed in many
types of spatial interaction, where the distribution of trip lengths is character-
ized by many short trips and relatively fewer longer ones (see Figure 3.6). If we
want to test the null hypothesis that the mean trip distance is the same on rainy
days as it is on sunny days, we would take two samples. We might expect that
both the sunny-day trip length distribution and the rainy-day trip length dis-
tribution would have shapes that are similar to the exponential distribution. To
test the null hypothesis, we must compare the observed difference in mean
distances with the sampling distribution of differences, derived by assuming
Hj to be true. The latter may be thought of as the histogram of differences
when many samples are used to calculate many differences in means, when H,,
is true. We know from the central limit theorem that the means of variables are
normally distributed (given a large enough sample size), even when the under-
lying variables themselves are not normally distributed. We also know that the

Frequency

Trip length

Figure 3.6 Distribution of trip lengths
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Relative frequency

0 Difference in mean trip length

Figure 3.7 Distribution of differences in mean trip length

difference of two normal variables is normally distributed. Hence the two-
sample test makes use of the fact that the sampling distribution of differences
in means is normal (Figure 3.7). The important point is that there are two
distributions to keep in mind — the distribution of the underlying variable (in
this case exponential), and the distribution of the test statistic (in this case
normal).

3.6 Spatial Data and the Implications of Nonindependence

One of the assumptions of the one- and two-sample ¢-tests is that observations
are independent. This means that the observed value of one observation is not
affected by the value of another observation. At first glance, this assumption
sounds innocent enough, and it is tempting to simply ignore it and hope that it
is satisfied. However, spatial data are often not independent; the value of one
observation is very likely to be influenced by the value of another observation.
In the swimming example, two individuals chosen at random in the central city
are more likely to have similar responses than two individuals chosen at
random from the suburbs. This could be because the accessibility of swimming
pools is similar for them; the closer the two chosen individuals live together, the
more similar is their distance to pools, and this would tend to make their
swimming frequencies similar to one another. The closer two individuals live
together, the more similar their incomes and lifestyles tend to be. This too
would tend to cause similar swimming frequencies.

What are the consequences of a lack of independence among the observa-
tions? Because observations that are located near one another in space often
exhibit similar values on variables, the effect is to reduce the effective sample
size. Instead of n observations, the sample effectively contains information on
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less than # individuals. To take an extreme case, suppose that two individuals
lived next door to one another, and thirty miles from the nearest pool. If
we survey both of them, they are both likely to indicate that their swimming
frequency was either zero or some very small number. The information
contained in these two responses is essentially equivalent to the information
contained in one response.

The implication of this is that when we carry out a two-sample #-test on
observations that do not exhibit independence, we should really be using a
critical value of ¢ that is based on a smaller number of degrees of freedom
than n. This in turn means that the critical value of ¢ should be larger than the
one that we use when we assume independence. A larger critical value of ¢
means that it would be more difficult to reject the null hypothesis, and also that
we are rejecting too many null hypotheses if we incorrectly assume indepen-
dence. Thus there is a tendency to find significant results when in fact there are
no significant differences in the underlying means of the two populations. The
“apparent” differences between the two samples can, instead, be attributed to
the fact that each sample contains observations that are similar to each other
because of spatial dependence. Cliff and Ord (1975) give some examples of this,
and supply the correct critical values of ¢ that one should use, given a specified
level of dependence.

When data are independent and the variance is o°, we have seen that a
95% confidence interval for the mean, p, is (¥ — 1.960/y/n, X + 1.960//n).
Following Cressie (1993), suppose that we collected n= 10 observations. For
example, we might collect air quality data systematically along a transect
(Figure 3.8). Let us choose x; from a normal distribution with mean yp and
variance o”. Then, instead of choosing x, from a normal distribution with
mean p and variance o2, choose x» as

Xy =px;+¢ (3.31)

Figure 3.8 Systematic collection of data along a transect
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where ¢ comes from a normal distribution with mean 0 and variance
o?(1 — p*), and p is a constant between 0 and 1 indicating the amount of
dependence (with p=0 implying independence and p=1 implying a perfect
dependence, so that x, = x;). Cressie indicates that when successive points are
chosen as in 3.31, the variance of the mean is equal to o°/n only when data are
independent (p =0); more generally it is equal to

(3.32)

Cressie gives an example for 7= 10 and p=0.26; in this case o3 = (0°/10)x
[1.608], implying that a 95% two-sided confidence interval for pu is
(X —2.4580/\/n, X+ 2.4580/+/n). It is important to realize that this is wider
than the confidence interval that results from assuming independence.

If we write the variance of the mean as o> = (02 / n) [ f], where fis the infla-

tion factor induced by the lack of independence, we can also write

) 02f o’
oy =—"=— (3.33)

n n

where n’' = n/f is the effective number of independent observations. With n= 10
and p=0.26, f=1.608 and »n'=10/1.608=6.2; this means that our 10
dependent observations are equivalent to a situation where we have n' =6.2
independent observations.

3.7 Sampling

The statistical methods discussed throughout this book rely upon sampling
from some larger population. The population may be thought of as the collec-
tion of all elements or individuals that are the object of our interest. The list of
all elements in the population is referred to as the sampling frame. Sampling
frames may consist of spatial elements — for example, all of the census tracts in
a city. We may be interested in the commuting times of all individuals in a
community, or in the migration distances of all people who have moved during
the past year. It is important to have a clear definition of this population, since
this is the group about which we are making inferences. The inferences are
made using information collected from a sample.

There are many ways to sample from a population. Perhaps the simplest
sampling method is random sampling, where each of the elements has an equal
probability of being selected from the population into the sample. For exam-
ple, suppose we wish to take a random sample of size n =4 from a population
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of size N=20. (A common convention is to use upper case “N’ to denote
population size and lower case “n” to denote sample size.) Choose a random
number from 1 to 20. Then select another random number from 1 to 20. If it is
the same as the previous random number, discard it and choose another.
Repeat this until four distinct random numbers, representing elements of the
sampling frame, have been chosen. To illustrate, we will use the first two digits
of the five-digit random numbers from Table A.1 in Appendix A. Beginning at
the upper-left of the table and proceeding down the column, the first two-digit
number in the range 01-20 is 17. To complete our sample of n =4, we proceed
down the column and choose the next three numbers in this range — they are 04,
03, and 07.

Choosing a systematic sample of size n begins by selecting an observation at
random from among the first [N/n] elements, where the square brackets indi-
cate that the integer part of N/n is to be taken. Thus if N/n is not an integer,
one just uses the integer part of N/n. Call the label of this randomly chosen
element k. The elements of the sampling frame that are in the sample are
k+iN/n], i=0,1,...,n—1. With N=20 and n=4, k= N/n=15. Suppose,
from among the first five elements, we choose element k=2 at random. The
elements in the sample are 2,2+ 5=7,2+10=12, and 2+ 15=17. Note that it
was necessary to choose only one random number.

When it is known beforehand that there is likely to be variation across certain
subgroups of the population, the sampling frame may be stratified before sam-
pling. For example, suppose that our N = 20 individuals can be divided into two
groups — N,,, = 15 men and N,, = 5 women. A proportional, stratified sampling of
individuals is achieved by making the sample proportions in each stratum
equal. Thus we could choose 7n,,=3 men randomly from among the group of
N,,=15, and n,,=1 woman randomly from the group of N,,=5 women. For
both men and women, the sampling proportion is 1/5.

When the sampled size of the stratum is small, it may be advantageous to
obtain a disproportional random sample, where the small group is oversampled.
In the case above, using n,,=2 and n,=2 would result in unequal sample
proportions, since n,,/N,, =2/15 for men and n,,/N,,=2/5 for women.

3.7.1 Spatial Sampling

When the sampling frame consists of all of the points located in a geographical
region of interest, there are again several alternative sampling methods.

A random spatial sample consists of locations obtained by choosing
x-coordinates and y-coordinates at random. If the region is a non-rectangular
shape, x- and y-coordinates may be chosen by selecting them at random from
the ranges (Xmin, Xmax) @0d (Vmin> Vmax)- 1f the pair of coordinates happens
to correspond to a location outside of the study region, the point is simply
discarded.
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(a) (®) ©

Figure 3.9 Examples of spatial sampling: (a) study region stratified into
subregions; (b) stratified spatial sampling; (c) systematic spatial sampling

To ensure adequate coverage of the study area, the study region may be
broken into a number of mutually exclusive and collectively exhaustive strata.
Figure 3.9(a) divides a study region into a set of s=mn strata. A stratified
spatial sample of size mnp is obtained by taking a random sample of size p
within each of the mn strata (Figure 3.9b). A systematic spatial sample of size
mnp is obtained by (i) taking a random sample of size p within any individual
stratum, and then (ii) using the sample spatial configuration of those p points
within that stratum within the other strata (Figure 3.9¢).

The question of which sampling scheme is “best” depends upon the spatial
characteristics of variability in the data. In particular, because values of vari-
ables at one location tend to be strongly associated with values at nearby
locations, random spatial samples can provide redundant information
when sample locations are close to one another. Consequently, stratified and
systematic random sampling tend to provide better estimates of the variable’s
mean value. Thus if one were to repeat the sampling many times, the variability
associated with the means calculated using systematic or stratified sampl-
ing would be less than that found with random spatial sampling. Haining
(1990a) discusses this in more detail, and gives references that suggest that
systematic random sampling is often slightly better than stratified random
sampling.

3.8 Two-Sample t-Tests in SPSS for Windows 9.0
3.8.1 Data Entry

Suppose we wish to enter the data from Table 3.1 into SPSS and conduct a
two-sample z-test of the null hypothesis that the mean annual swimming
frequency among residents of the central city is equal to the mean annual
swimming frequency among residents of the suburbs.

We begin by entering the data. In SPSS, this entails entering all of the
swimming frequencies into one column. Another column contains a numeric
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value indicating which region the corresponding swimming frequency belongs
to. For our two-region example, we would have

Swim Location

38
42
50
57
80
70
32
20
58
66
80
62
73
39
73
58

—_

NNNMNNNNNN= 2 2

The variable names “Swim” and “Location” are defined by right-clicking at
the head of each column on the heading ““var’ that appears in the SPSS data
editor. Then, under Define Variable, variable names may be assigned.

Note that here the first eight rows correspond to the data from the central
city; location 1 refers to the central city. Similarly, the last eight rows contain
the value “2” in the second column, and these correspond to the observations
from the suburbs. In general, if there are n; observations on one variable and n,
observations on the other, then there will be n; +n, rows and 2 columns once
data have been entered into SPSS.

3.8.2 Running the t-Test

To run the analysis within SPSS, click on Analyze (Statistics in earlier versions
of SPSS for Windows), then on Compare Means, and then on Independent
Samples z-test. A box will open, and the variable Swim should then be high-
lighted and moved to the Test Variable box via the arrow tab. The variable
Location is moved to the box headed Grouping Variable (since we are testing
the variable Swim for differences by Location). Under the Grouping Variable
box, click on Define Groups, and enter 1 for Group 1 and 2 for Group 2; these
are the numeric values that SPSS will use from the second column of data to
distinguish between groups. Then click Continue. Under Options, the percent-
age associated with confidence interval may be assigned if desired (the default is
95%). Finally, click OK.

An example of the output from a two-sample r-test is shown in Table 3.2,
which depicts the results of the test of equality of swimming frequencies in
central city and suburbs using SPSS 9.0 for Windows.



Table 3.2 Results of two sample t-test

Group Statistics

LOCATION N Mean Std. Std. Error
Deviation Mean
Swimfreq 1.00 8 48.6250 19.8778 7.0278
2.00 8 63.6250 12.6597 4.4759
Independent Samples Test
Levene's Test for
Equality of Variances t-test for Equality of Means
95% Confidence
Interval of the
Sig. Mean Std. Error Difference
F Sig. t df (2-tailed) | Difference | Difference | Lower Upper
SWIMFREQ  Equal variance 1.776 .204 -1.800 14 .093 -15.0000 8.3321 -32.8706 | 2.8076
assumed
Equal variance -1.800 | 11.876 .097 -15.0000 8.3321 -33.1751 | 3.1751
not assumed
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First, the swimming frequencies in each region are summarized; location 1
(central city) has a mean response of 48.625 days and a standard deviation
of 19.8778, while those in the suburbs apparently swim more often — the
responses there have a mean of 63.625 and a standard deviation of 12.6597.

Below this are the results of the analysis. First, note that there is a test of the
assumption that the variances of the two groups are indeed equal. This test,
Levene’s test, is based upon an F-statistic. The key piece of output is the
column headed “Sig.”, since this tells us whether to accept or reject the null
hypothesis that the two variances are equal. Since this value (which is also
known as a p-value) is greater than 0.05, we can accept the null hypothesis,
and conclude that the variances may be assumed equal.

The results of the t-test are given for both instances — one where the var-
iances are assumed equal, and one where they are not. In both cases, the
t-statistic is 1.8, and in both cases we accept the null hypothesis since the
“Sig.” column indicates a value higher than 0.05. Note that, when equal var-
iances are assumed, we come slightly closer to rejecting the null hypothesis (the
p-value in that case is 0.093, compared with 0.097 when the variances are not
assumed equal). The p-values differ despite identical #-statistics because the
degrees of freedom differ.

Finally, note that the 95% confidence intervals include zero, indicating that
the true difference between city and suburbs could be zero.

Exercises

1. A political geographer is interested in the spatial voting pattern during a
recent presidential election involving two candidates, A and B. She suspects
that university professors were more likely than the general population to vote
for candidate A. She takes a random sample of 45 professors in the state, and
finds that 20 voted for the candidate A. Is there sufficient evidence to support
her hypothesis? The statewide percentage of the population voting for candi-
date A was 0.38. What is the p-value?

2. A survey of the white and nonwhite population in a local area reveals the
following annual trip frequencies to the nearest state park:

(a) Assume that the variances are equal, and test the null hypothesis that
there is no difference between the park-going frequencies of whites and
nonwhites.

(b) Repeat the exercise, assuming that the variances are unequal.

(¢c) Find the p-value associated with the tests in parts (a) and (b).

(d) Find a 95% confidence interval for the difference in means.

(e) Repeat parts (a)—(d), assuming sample sizes of n; =24 and n, =12.
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3. Test the hypothesis that two communities have equal support for a political
candidate using the following data:

Community A: p=0.33, ny =54
Community B: p=0.18, ng = 38

In addition to testing the hypothesis, find the p-value.

4. A researcher suspects that the level of a particular stream’s pollutant is
higher than the allowable limit of 4.2 mg/l. A sample of n=17 reveals a
mean pollutant level of Xx=6.4 mg/l, with a standard deviation of 4.4. Is
there sufficient evidence that the stream’s pollutant level exceeds the allowable
limit? What is the p-value?

5. Information is collected by a researcher from 14 individuals on their use of
rapid transit. Seven individuals were from suburb A and seven were from
suburb B. The following data are the number of times per year the individual
used rapid transit:

Individual Suburb A Suburb B Pooled data
1 5 67

2 12 56

3 14 44

4 54 22

5 34 16

6 14 61

7 23 37

Mean 22.29 43.28 32.79
Std. dev. 16.67 19.47 20.57

Do the suburbs differ with respect to the mean number of rapid transit trips
taken by individuals? Use the two-sample ¢-test, assuming the variances are
equal. Give the critical value of ¢, recalling that the number of degrees of
freedom is equal to n; +n, — 2. What is the p-value associated with this test?

6. The contour lines of the map below represent elevation.
100

60

50 50

0 100
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(a) Take a random spatial sample of n=18 points and estimate the mean
elevation of the study area.

(b) Divide the study region into a set of 3x3 =9 strata of equal size. Take a
stratified sample of size 18 by randomly choosing two points from within
each stratum. Estimate the mean.

(¢) Using the same 3x3=9 strata from (b), choose a systematic random
sample by first randomly selecting two points from within any individual
stratum. Then use the configuration of points within that stratum to select
points within the other strata (see Figure 3.9¢). Estimate the mean eleva-
tion from the resulting 18 points.

Note: If answers from the entire class are pooled together, it will usually (but
not always!) be the case that the means found in part (a) will display greater
variability than those found in parts (b) and (c).

7.

(a) A two-tailed test of a one-sample hypothesis of a mean yields a test
statistic of z=1.47. What is the p-value?

(b) A one-tailed test of a two-sample hypothesis involving the difference of
sample means yields 1=1.85, with 12 degrees of freedom. What is the
p-value?



4 Analysis of Variance

LEARNING OBJECTIVES

e Comparison of means in three or more samples

e Analysis of underlying assumptions

e Introduction of alternative tests for cases where assumptions are not
reasonable

4.1 Introduction

The two-sample difference of means test may be generalized to the case of more
than two samples. In this case, we wish to test the null hypothesis that the
population means from a set of k> 2 are all equal:

Hy: By =Hy--- =y (4.1)

Such hypotheses may concern variation in means over time or space. For
example, we may wish to know whether traffic counts vary by month, or
whether the number of weekly shopping trips made by households varies
among the central city, suburban, and rural portions of a county.

Data for such problems are typically given in a table such as Table 4.1, with
the categories constituting the columns. Note that the notation in the table is a
bit different — “pluses” are used to indicate means, so that X, designates the
mean of column one, and X, | denotes the mean of all observations, summed
over rows and columns.

Analysis of variance (ANOVA) represents an extension of the two-sample -
test for differences of means. It involves the introduction of some new ideas,
though the underlying assumptions of the test are similar to those used in the
two-sample z-test.

The assumptions of analysis of variance may be stated as follows:

(1) Observations between and within samples are random and independent.
(2) The observations in each category are normally distributed.
(3) The population variances are assumed equal:

U%:o%~~~cri:02 (4.2)

The assumed equality of variances is referred to as the assumption of somo-
scedasticity (sometimes written as homoskedasticity). Though the analysis of
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Table 4.1 Arrangement of data for analysis of variance

Category 1 Category 2 ... Category k
Obs. 1 X11 X12 X1k
Obs. 2 X21 Xzz sz
Obs. 3 X31 X3z X3k
Obs. i Xi Xiz Xik
No. of obs. Ny ny Nk
Mean X1 X2 Xk
Standard deviation 54 s> Sk

Overall mean: X,

variance test is one that tests for the equality of group means, the test itself is
carried out using two independent estimates of the common variance o°. One
estimate of the variance is a pooled estimate of the within-group variances. The
other estimate of the variance is a between-group variance.

The idea behind the test is to compare the variation within columns to the
variation between column means. If the variation between group means is
much greater than the variation within columns, we will be inclined to reject
the null hypothesis. If, however, the variation between group means is not very
large relative to the variation within columns, this suggests that any differences
in group means may be due to sampling fluctuation, and hence we are more
inclined to accept Hy. For example, in Table 4.1, there is variability within
columns; different individuals within each subregion have differing levels of
participation. There is also variability between columns; the sample means in
each region are different. If the between-column variability is high relative to
the within-column variability, we will reject the null hypothesis and conclude
that the true column means are not equal.

To be more specific, we may define the total sum of squares as the sum of the
squared deviations of all observations from the overall mean. This total sum of
squares (TSS) may be partitioned into a ““between sum of squares™ (BSS) and a
“within sum of squares” (WSS). The comparison of between-column variation
to within-column variation leads to an F-statistic. The partitioning of the sum
of squares is as follows:

TSS= 3> (¥, -x..)
i

BSS = Z’/I:/(X-{—_/_X-&--ﬁ-)z (4.3)

WSS = ZZ(K‘/ —Xy) =D - 1)

J
The F-statistic is

_ BSS/(k—1)

F=Wssjiv=n

(4.4)
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When the null hypothesis is true, this statistic has an F-distribution, with k — 1
degrees of freedom and NV — k degrees of freedom associated with the numera-
tor and denominator, respectively.

4.1.1 A Note on the Use of F-Tables

F-statistics are based on ratios. There are degrees of freedom associated with
both the numerator and the denominator. F-tables are typically arranged so
that the columns correspond to particular degrees of freedom associated with
the numerator, and rows correspond to particular degrees of freedom asso-
ciated with the denominator. Entries in the table give the critical F-values, and
the entire table is associated with a given significance level o. Many texts give
separate tables for « =0.01, 0.05, and 0.10; these are provided, for example, in
Table A.4 in Appendix A. Because F-tables are displayed in this way, it is often
difficult to state the p-value associated with the test. Stating the p-value would
require a very complete set of F-tables for many values of «. Software for
statistical analysis is often useful in this regard, since p-values are usually
provided.

4.1.2 More on Sums of Squares
To see why the between sum of squares plus the within sum of squares add

to the total sum of squares, recognize that the total sum of squares may be
written as

2
)DPICIREIES D) I EIREED ) SIS ] IS
i J 1 J
Expanding the square yields
Z Z (X — X4t )} = Z Z (Xj— Xy )? +2(X;5 — X ) (X — X1y)
i J i J

+ (X4, ~ X1y (4.6)

The middle term on the right-hand side is equal to zero, since the sum of
deviations from a mean is equal to zero:

> (X Xy) =0 (47)

i

The first term on the right-hand side is equal to the within sum of squares:

WSS = Z Z - X)) (4.8)
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Similarly, the last term on the right-hand side is equal to the between sum of
squares:

BSS=Y S (x,—x. )= m (X, - x,, ) (4.9)
i J

This demonstrates that the total sum of squares is equal to the between sum of
squares plus the within sum of squares.

4.2 lllustrations
4.2.1 Hypothetical Swimming Frequency Data

Suppose we extend the previous example to include residents of the outlying
rural region, using the data in Table 4.2. We formulate the null hypothesis of
no difference in the mean annual swimming frequency between the three
regions:

Hsyp = Hcc = Hr (4.10)

With a=0.05, the critical value of Fis equal to F 55, =3.47. The observed
F-statistic along with its components are given below:

Total sum of squares: 6406.79

Between sum of squares: 1603.85

Within sum of squares: 4802.94 (4.11)
1605.33/(3 — 1)

F= =351
4802.94/(24 — 3)

Since the observed F value exceeds the critical value of 3.47, the null hypothesis
is rejected. How are the sums of squares most easily calculated? One way is to

Table 4.2 Annual swimming frequencies for three regions

Annual swimming frequencies

Central city Suburbs Rural
38 58 80
42 66 70
50 80 60
57 62 55
80 73 72
70 39 73
32 73 81
20 58 50
Mean 48.63 63.63 67.63
Standard deviation 19.88 12.66 11.43

X,.=59.96; s2=16.69
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recognize that the total sum of squares is equal to the overall variance multi-
plied by N—1. Thus 6406.79 =(16.69)*(23). The within sum of squares is
equal to the sum of the products of the group variances and (n;—1). Thus
4802.94 = (7% 19.88%)4(7 * 12.66%)+(7 * 11.43%) =7 * (19.88°4+12.66°+11.43?).
The between sum of squares is then derived as the difference between the total
and within sum of squares: BSS = 6406.79 — 4802.94 = 1603.85.

4.2.2 Diurnal Variation in Precipitation

The effects of urban areas on temperature are well known — temperatures are
generally higher in cities than in the surrounding countryside (this is known as
the urban “heat island™ effect). But what about the effects of urban areas on
precipitation?

One possibility is that the particulate matter ejected by urban factories forms
the condensation nuclei necessary for precipitation. If this is correct, one might
expect to see diurnal variation in precipitation, since factories are typically idle
on the weekends. If there is no lag, precipitation would be lightest on the
weekends, and heaviest during the week.

I collected the data in Table 4.3 while I was an undergraduate, in conjunc-
tion with an assignment in my geography statistics class! For each day of the
week, the data are lumped into six-month categories. One consequence of this
lumping is to make the assumption of normality more plausible (since sums of
variables from any type of distribution tend to be normally distributed).

A look at the data reveals that the largest amount of precipitation occurs on
Fridays and Sundays, and the least on Tuesdays and Wednesdays. Perhaps
there is a roughly two-day lag between the buildup of particulate matter during
the week and the precipitation events.

Table 4.3 Precipitation data for LaGuardia airport

Precipitation at LaGuardia airport (inches)

Year SAT SUN MON TUE WED THUR FRI
1971 1 2.30 6.84 4.47 3.40 0.94 1.71 8.30
1972 1 5.56 6.81 1.97 2.26 3.03 4.42 5.08
1972 1 5.31 1.50 1.74 3.00 5.89 4.16 2.88
19731 2.15 4.39 3.96 1.17 4.35 4.78 7.09
1973 11 1.7 4.12 2.87 0.79 3.90 3.1 5.68
1974 1 2.60 2.50 1.68 1.36 0.45 4.03 5.27
Mean 3.27 4.36 2.78 2.00 3.09 3.70 5.72
Std. dev. 1.70 2.18 1.20 1.06 2.08 1.12 1.86

Overall mean: 3.56; Overall std. dev.: 1.90

Sum of squares d.f. Variance
Between: 51.97 6 8.663
Within: 96.34 35 2.753

F=3.15
Fo.05,6,35=2.37; Fo.01,6,35=3.37
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The null hypothesis is that mean precipitation in each six-month period does
not vary with day of the week. The results of the analysis of variance, shown in
the table, reveal that the null hypothesis is rejected. In the exercises at the end
of the chapter, you will be asked to repeat this analysis for Boston and
Pittsburgh.

4.3 Analysis of Variance with Two Categories

The analysis of variance with two categories gives the same results as the two-

sample ¢-test. To illustrate, consider once again the first two columns (central

city and suburbs) of the swimming frequency data. Analysis of variance yields

the following:

BSS =900

WSS = 3888

(900/1)

F=——+—"-=324 4.12

(3888/14) (412)

Fos 1,14 =4.60

Fo10,1,14 = 3.10

The null hypothesis of no difference is therefore rejected using a=0.10, and
accepted using o =0.05. The p-value must be close to, but less than, 0.10. The
result is in fact the same as that found in the last chapter using the #-test, under
the assumption of equal variances.

When there are two categories, either the F-test or the 7-test may be used.

4.4 Testing the Assumptions

Since the analysis of variance depends upon a number of assumptions, it is
important to know whether these assumptions are satisfied. One way of testing
the assumption of homoscedasticity is to use Levene’s test. There are a number
of ways to test normality. Two common methods are the Kolmogorov—
Smirnov test and the Shapiro-Wilk test. Although a detailed discussion of
all of these tests is beyond the scope of this text, most statistical software
packages do provide these tests to allow researchers to test the underlying
assumptions. Some additional details on each are given at the end of this
chapter, in Section 4.8.

4.5 The Nonparametric Kruskal-Wallis Test

What do we do if the assumptions are not satisfied? We have at least two
options. One is to proceed with the analysis of variance anyway, and “hope”
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that we get a valid answer. Fortunately, that is often not a bad way to proceed.
The F-test is said to be relatively “‘robust” with respect to deviations from the
assumptions of normality and homoscedasticity. This means that the results of
the F-test may still be used effectively if the assumptions are at least “reason-
ably close” to being satisfied. If either (a) the assumptions are close to being
satisfied, or (b) the F-statistic yields a “clear” conclusion (say, for example, a
p-value much less than, say, 0.01, or greater than 0.20), the conclusion will
generally be acceptable.

If the data deviate drastically from the assumptions, or if the p-value is close
to the significance level, then an alternative test that does not rely on the assump-
tions might be considered. Tests that do not make assumptions regarding how
the underlying data are distributed are called nonparametric tests. The nonpara-
metric test for two or more categories is the Kruskal-Wallis test.

There is another set of circumstances in which the Kruskal-Wallis test is
useful for testing hypotheses about a set of means — namely when only ranked
(i.e., ordinal) data are available. In such situations, there is insufficient
information to use ANOVA, which requires interval or ratio level data.
(With interval and ratio data, the magnitude of the difference between the
observations is meaningful.)

The application of the Kruskal-Wallis test begins by ranking the entire
pooled set of N observations from lowest to highest. That is, the lowest obser-
vation is assigned a rank of 1, and the highest observation is assigned a rank of
N. The idea behind the test is that, if the null hypothesis is true, then the sum of
the ranks in each column should be about the same. Again, no assumptions
about normality and homoscedasticity are required. The test statistic is

2

k
H= <N(A1,—2+1)25—> 3N+ 1) (4.13)

i=1 "1

where R; is the sum of the ranks in category i, and #; is the number of obser-
vations in category i. Under the null hypothesis of no difference in category
means, the statistic H has a chi-square distribution with k—1 degrees of
freedom. Table A.5 contains critical values for the chi-square distribution.

4.5.1 lllustration: Diurnal Variation in Precipitation

The LaGuardia airport precipitation data are ranked and displayed in
Table 4.4. Also shown is the sum of the ranks for each column. Employing
Equation 4.13 yields a value of H=13.17. This is just slightly higher than the
critical value of 12.59, and so the null hypothesis of no variation in precipita-
tion by day of the week is rejected at the oo =0.05 significance level. Note that
the hypothesis would have been accepted using aa=0.01. The p-value asso-
ciated with the test is approximately 0.04, meaning that if the null hypothesis
were true, a test statistic this high would be observed only 4% of the time.
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Table 4.4 Ranked precipitation data for LaGuardia airport

Ranks of observations (1=lowest; 42 =highest)

Year SAT SUN MON TUE WED THUR FRI
19711 14 40 31 22 3 8 42
19721 36 39 1 13 20 30 33
1972 11 35 6 10 19 38 27 18
19731 12 29 24 4 28 32 4
1973 11 9 26 17 2 23 21 37
19741 16 15 7 5 1 25 34
SUM 122 155 100 65 113 143 205

Kruskal-Wallis statistic: H=13.17
Critical value: x%.0s,6=12.59; x%0.01,6=16.81

The reader should compare this with the p-value associated with the ANOVA
results. The ANOVA results yielded a p-value just slightly higher than 0.01 (we
know this since the observed F-value is just slightly less than the critical F value
of 3.37, using a=0.01). This result is a typical one — the Kruskal-Wallis test,
though not relying on as many assumptions as the analysis of variance, is not
as powerful. That is, it is harder to reject false hypotheses. Thus we would have
rejected H, with ANOVA using, say, «=0.02 or above, whereas we would
only have rejected H, using the Kruskal-Wallis test had we chosen a=0.04 or
above.

4.5.2 More on the Kruskal-Wallis Test

If there are values for which the ranks are tied, an adjustment is made to the
value of H. Suppose that we have N =10 original observations, ranked from
lowest to highest: 3.2, 4.1, 4.1,4.6, 5.1, 5.2, 5.2, 5.2, 6.1, and 7.0. There are two
sets of tied observations. When the data are assigned ranks, the tied values are
each assigned the average rank. Thus the ranks of these ten observations are: 1,
2.5,2.5,4,5,7,7,7,9, 10. In instances where tied ranks exist, the usual value of
H is divided by the quantity

2(113 —t)

-t 4.14

BN (4.14)

where #; is the number of observations tied at a given rank, and the sum is

over all sets of tied ranks. In our example containing ten observations, the
adjustment is

(2°-2) +(3° -3) 30 32

1— =1-—==
10 —10 990 33

(4.15)

The effect of this adjustment is to make H bigger, and therefore to give the
Kruskal-Wallis test slightly higher power, since it is then easier to reject false
hypotheses.
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The formula for the Kruskal-Wallis test appears rather mysterious, and the
reader may wish to have a little more understanding of it. A glimpse of insight
may be obtained by asking what the value of H would be if all of the observa-
tions were equal, and therefore all observations had the same rank. We will
assume that there is an equal number of observations (n = N/k) per category.
With N observations, the sum of the ranks is equal to the sum of the integers,
from 1 to NV:

S;iw (4.16)

(An historical aside that I was told when I was a boy: Gauss, at the age of 7,
was punished by his schoolteacher. His punishment consisted of having to find
the sum of all of the integers, from 1 to 100. Within a few minutes, he had
figured out the formula above, and used it to find the answer (5050), rather
than have to carry out the tedious task of actually summing all 100 numbers.)

Now, if all of the observations are tied, the average rank assigned to all
N observations is S/N. Furthermore the sum of the ranks in each category i
will be

N(N+1)

= n(S/N) = S/k ===

(4.17)

Using this in the first term on the right-hand side of Equation 4.13 yields

(Y SN0

(4.18)

We have just shown that H is therefore equal to zero when all of the ranks
are tied.

4.6 Contrasts

The analysis of variance, as a test for the equality of means, can sometimes
leave the analyst with a sense of unfulfillment. In particular, if the null
hypothesis is rejected, what have we learned? We've learned that there is
significant evidence to conclude that the means are not equal, but we do
not know which means differ from one another. We might look at the data
and get a feel for which means seem high and which seem low, but it would
be nice to have a way of testing to see whether particular combinations of
categories had significantly different means. We may, for example, want to
know, in an example involving five categories, whether the difference between
categories 2 and 5 (that is, u, — us) differs significantly from zero. Differences
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that are of interest may involve more than two separate means. For instance,
with the precipitation data, we may wish to contrast weekends with week-
days. In that case, we would want to contrast the mean of the first two
categories (Saturday and Sunday) with the mean of the last five, weekday
categories. This could be represented as

Psat +Hsun  FmoN+ -+ Hrri
2 5

(4.19)

Scheffé (1959) described a formal procedure for contrasting sets of means with
one another. A contrast, 1), is defined as a combination of the means. Usually,
one defines linear combinations, so

k
Y= Z Cilbi (4.20)
i=1

where the values of ¢; are specified by the analyst in a manner that is consistent
with the contrast of interest. In our first example, categories 2 and 5 would be
contrasted with each other using the values ¢; =0, ¢c,=1, ¢3=0, ¢4=0, and
¢s= — 1. This choice of coefficients arises from writing

My —phs = 0oy +1 £y 40 p3 +0 frg +(—1) K5 (4.21)

In the precipitation example, the coefficients for the weekend days would
each be equal to 1/2, and the coefficients for the weekdays would each be
— 1/5. Why? This combination arises from realizing that Equation 4.20 can
be written as

b= Hsat +Hsun  Pmon + -+ + HEri
2 5 (4.22)
= 1/2kspr +1/2 isyn —1/5 Byon — -+ = 1/5 Hppa

Scheffé’s contribution was to show that simultaneous confidence intervals
at the 1 — « level for all possible contrasts are given by

Y —Roy <9y <9¢+Roy, (4.23)
where
R = \/(k - 1) Fk*l,ka.a' (424)
and
WSS\ <~ ¢F
‘712/1 = <m) Z—j (4.25)
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If the original null hypothesis of no difference among the k means is rejected,
then there is at least one contrast that is significantly different from zero. If we
have one or more contrasts that we wish to test, we may do so using the
inequality in (4.23). The null hypothesis that any given contrast is equal to
zero is rejected if the confidence interval (4.23) does not contain zero. If the
original null hypothesis of no difference among the £ means is not rejected, then
there are no contrasts that will be found significant.

4.6.1 A Priori Contrasts

The contrasts just described are a posteriori or post hoc contrasts, since they
occur after the analysis of variance test. But sometimes the analyst may be
interested in a particular contrast or set of contrasts before the analysis of
variance is carried out, or instead of the analysis of variance altogether. For
example, with the swimming data, we may only be interested in whether swim-
ming frequencies among rural residents differ from all the others. With the
precipitation data, we may only wish to know whether weekend and weekday
magnitudes differ.

When contrasts are specified prior to the analysis of variance, confidence
intervals are narrower than when they are determined using Equation 4.23,
after the fact. For a given contrast, the a priori confidence interval at the 1 — «
level is

Y=ty 0p <P < P+iy 0y (4.26)

where o0, is defined as before, and the critical value of ¢ comes from a t-table
with N — k degrees of freedom, using «/2 in each tail. If we are interested in
more than one contrast, the value of « has to be apportioned among the
contrasts of interest. For example, if we were interested in looking at five
a priori contrasts, we could use o =0.01 for each of the five contrasts, giving
a simultaneous confidence level of 0.95.

An example illustrating the use of contrasts is given in Section 4.8.

4.7 Spatial Dependence

One of the assumptions in ANOVA is that the observations within each cate-
gory are independent. With spatial data, observations are often dependent, and
some adjustment to the analysis should be made. The general effect of spatial
dependence will be to render the effective number of observations smaller than
the actual number of observations. With an effectively smaller number of
observations, results are not as significant as they appear in the F-tests outlined
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in this chapter. With spatial data, therefore, it is possible that significant find-
ings are due to the spatial dependence among the observations, and not to any
real underlying differences in the means of the categories.

Griffith (1978) has proposed a spatially adjusted ANOVA model. The details
of his model are beyond the scope of this text. Griffith’s paper may also be
of interest since it contains citations to other studies in geography that use
analysis of variance.

4.8 One-Way ANOVA in SPSS for Windows 9.0
4.8.1 Data Entry

As before, there is a separate row for each observation. Using the data in
Table 4.2, we will have 24 rows and 2 columns. Again, the second column
designates the group number, and now we have added a third value to corre-
spond with the rural region. The data are entered into the Data Editor of
SPSS as follows:

38
42
50
57
80
70
32
20
58
66
80
62
73
39
73
58
80
70
60
55
72
73
81
50
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4.8.2 Data Analysis and Interpretation

The analysis of variance proceeds in SPSS 9.0 for Windows by clicking on
Analyze, then on Compare Means, and then on One-Way ANOVA. Swim
(or whatever name is given to the variable in the first column) is then high-
lighted and moved over into the dialog box entitled Dependent List,
and Location is highlighted and moved over into the dialog box entitled
Factor. At this point, one can simply click OK to proceed with the analysis,
but here we will also click on Options, and then check the boxes entitled
Descriptive and Homogeneity of Variance. Also, post hoc contrasts
can be made by simply clicking on Post Hoc and then clicking on the
box labeled Scheffé. 4 priori contrasts are chosen by clicking on the box labeled
Contrasts. Suppose we wish to contrast swimming frequency in the central city
with the average swimming frequency in the other two regions. After choosing
Contrasts, click on Polynomial, and leave Linear as the selected polynomial.
We then need to specify the contrast coefficients (the ¢’s in Equation 4.20).
Here we could use either ¢; = 1,¢, = —0.5, and ¢; = —0.5, or ¢; = —1,¢, =
0.5, and ¢3 = 0.5. Enter the coefficients one at a time, clicking on Add after
each entry. Finally, choose Continue, and then OK.
The output that results is shown below.

Descriptives

SWIMFREQ
95% Confidence
Interval for Mean
Std. Std. Lower Upper
N Mean Deviation Error Bound Bound Minimum Maximum
1.00 8 48.6250 19.8778 7.0278 | 32.0068 65.2432 20.00 80.00
2.00 8 63.6250 12.6597 4.4759 | 53.0412 74.2088 39.00 80.00
3.00 8 67.6250 11.4260 4.0397 | 58.0726 77.1774 50.00 81.00
Total | 24 59.9583 16.6902 3.4069 | 52.9107 67.0060 20.00 81.00

Test of Homogeneity of Variances
SWIMFREQ

Levene
Statistic | df1 | df2 | Sig.

1.509 2 21 .244

ANOVA
SWIMFREQ
Sum of Mean
Squares df Square F Sig.

Between Groups | 1605.333 2 802.667 | 3.510 | .048
Within Groups 4801.625 21 228.649
Total 6406.958 23
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Contrast Tests
Value of Sig.
Contrast Contrast $Std. Error t df (2-tailed)
VARO0001  Assume equal variances 1 17.0000 6.5476 2.596 21 .017
Does not assume equal 1 17.0000 7.6471 2.223 9.648 .051

Post Hoc Tests

Muitiple Comparisons
Dependent Variable: VAR00001

Scheffe
95% Confidence
Mean Interval

Difference Lower Upper

(1) VAR00002 _ (J) VAR00002 (I-J) Std. Error Sig. Bound Bound
2.00 -15.0000 7.5606 .165 -34.9083 4.9083
3.00 -19.0000 7.5606 .063 -38.9083 .9083
2.00 1.00 15.0000 7.5606 .165 -4.9083 34.9083
3.00 -4.0000 7.5606 .870 -23.9083 15.9083
3.00 1.00 19.0000 7.5606 .063 -.9083 38.9083
2.00 4.0000 7.5606 .870 -15.9083 23.9083

The first box again provides descriptive information on the variable in each
region. Note that the mean frequency among respondents in the rural region is
higher (67.625) than that in other regions, and its standard deviation is lower
(11.426).

The second box gives us the results of a test of the assumption of homo-
scedasticity. This Levene’s test supports the null hypothesis that the variances
of the three region’s responses could be equal (since the column headed
“Sig.” has an entry greater than 0.05) and that we have merely observed
sampling variation. Had the p-value associated with this test been less than
0.05, we would have had to take the results of the analysis of variance more
cautiously, since one of the underlying assumptions would have been violated.

The next box displays the results of the analysis of variance. The table gives
the sums of squares, the mean squares, the degrees of freedom, and the F-
statistic. Note that these match the results discussed in section 4.2.1, with
small differences due to rounding error (as they should!). Importantly, the
output also includes the p-value associated with the test under the column
labelled ““Sig.”. Since this value is less than 0.05, we reject the null hypothesis,
and conclude that there are significant differences in swimming frequencies
among the residents of these three regions and that these differences cannot be
attributed to sampling variation alone (unless we just happened to get a fairly
unusual sample).

The results of the a priori (not shown) contrasts indicate that there is
indeed a significant difference between the swimming frequencies in the cen-
tral city and in other areas. The value of the contrast is 17, which is the mean
difference in swimming frequencies (65.63 —48.63). The significance or
p-value is indicated in the last column, and this is less than 0.05 when variances
are assumed equal (and equal to .051 when variances are not assumed equal).
Results of the post hoc contrasts indicate that there is one paired difference that
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is close to being significant — that between central city and rural regions. This is
indicated by the p-value (in the column headed “Sig.””) of .063. Confidence
intervals for the difference in swimming frequencies associated with each paired
comparison are also given.

4.8.3 Levene’s Test for Equality of Variances

Levene’s test of the assumption that the variances of each column of data are
equal is actually similar to an analysis of variance test, except that the test is
carried out on the absolute value of the data after the column means have been
subtracted

Let

Zij = |xy — X4y

Then Levene’s statistic is

) Ma l'M“\

iz —z44)/ (k= 1)
L=

pops

k
(25 = 24)*/ 22 (m; = 1)

J=1

where there are k categories, z, is the overall mean of the z’s, and z_; is
the mean of the z’s in category j. When the null hypothesis of equal column
variances is true, Levene’s statistic has an F-distribution, with (k—1) and
Zle(n,-— 1) degrees of freedom.

Hllustration. For the data in Table 4.2 on swimming frequencies, the first
step is to subtract the column mean from each observation. Then take the
absolute values of the results; these are the z-values. Then the required
quantities are

3

k=3 > (m—1)=21

J=1
z,, =11489;  z,,=15.625 z,,=9.375  z,3=9.4675

n n

S i —z)?=81275 ) (zp—z4) = 418.75;
i=1 i=1
n3

D (23— z43)* = 196.81

i=1
{8(15.625 —11.489) + 8(9.375 — 11.489) + 8(9.4675 — 11.489)2} /(3 )

L =
(812.75 + 418.75 + 196.81)/(21)

=1.509
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This value of L is the same as that shown in the output, and it is not significant
since it is less than the critical value of F,,; =3.47. Hence the assumption of
homoscedasticity is satisfied.

4.8.4 Tests of Normality: the Shapiro-Wilk Test

One of the assumptions that we should test is whether the data come from a
normal distribution. The Shapiro-Wilk test is a particularly good test of
normality to use when sample sizes are small. Within SPSS for Windows 9.0,
it can be run by using Analyze/Descriptive Statistics/Explore. Before clicking
on OK, click on Plots, and check the box that reads “Normality plots with
tests”.

The results will include a p-value for the Shapiro—Wilk (W) statistic. The W
statistic is found as

b b

W= (xi_)_c)zz(n—l)s2

e

i=1

where
k
b= Zanfzﬂrl{x(nfiﬂ) - X(z‘)}
i=1

Here k=n/2 when n is even, and the x-values have been ordered so that
X1y < X) <+ < X(p. The a coeflicients come from a table, and one is
provided in Table A.6 in Appendix A. If W is less than its critical value
(also taken from a table; see Table A.7), the null hypothesis of normality is
rejected. For further details, see Shapiro and Wilk (1965).

Hlustration. To determine whether the eight swimming frequencies observed in
the rural area could have come from a normal distribution, we use

X(l) = 50, x<2> = 55, X(3) = 60, X(4> S 70,

X(S) = 72, X(6) = 737 X(7) = 80, X(g) =81

From the table, for n=8 and k=4, ag=.6052, a7 =.3164, ac=.1743, and
as=.0561. Thus

b=.6052(81 — 50) +.3164(80 — 55) 4+ .1743(73 — 60) 4 .0561(72 — 70) = 29.04
and

29.04% 843.86

W = =
(n—1)s>  913.875

=.923
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Since this is greater than the critical value of W y5=.818, we accept the null

hypothesis and conclude that there is not enough evidence to reject the assump-
tion of normality.

Exercises

1. Using the following data:

Precipitation at Boston Airport (inches)

Year SAT SUN MON TUE WED THUR FRI
197111 0.83 3.14 420 1.28 1.16 425 2.08
19721 4.66 4.15 3.40 1.74 3.91 5.15 5.06
1972111 3.03 5.80 2.29 3.17 3.50 3.40 3.04
1973 | 3.69 3.72 429 2.06 3.04 2.30 4.26
1973 11 2.35 3.62 3.56 2.27 4.46 2.52 3.36
1974 | 3.18 3.28 1.82 3.75 2.07 3.54 2.27

(a) Find the mean and standard deviation for each day of the week.

(b) Use Levene’s test to determine whether the assumption of homoscedastic-
ity is justified.

(c) Perform an analysis of variance to test the null hypothesis that precipita-
tion does not vary by day of the week. Show the between and within sum
of squares, the observed F-statistic, and the critical F-value.

(d) Repeat the analysis using data for Pittsburgh:

Precipitation at Pittsburgh Airport (inches)

Year SAT SUN MON TUE WED THUR FRI
1971 11 1.64 5.55 3.19 2.45 1.44 1.07 1.66
19721 2.20 3.37 0.78 2.63 2.32 5.57 2.80
1972 11 2.75 1.72 2.34 3.40 3.68 3.48 2.50
1973 1 2.23 4.31 2.02 1.83 4.35 4.07 2.66
1973 1l 3.65 2.66 3.95 2.31 1.85 2.63 1.1
1974 1 4.96 3.00 2.61 1.75 2.70 2.45 4.06

2. Assume that an analysis of variance is conducted for a study where there are
N =50 observations and k=15 categories. Fill in the blanks in the following
ANOVA table:

Degrees of
Sums of squares  freedom Mean square F

Between — — 116.3 —
Within 2000 — —
Total — —
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If the critical value of F is 2.42, what is your conclusion regarding the null
hypothesis that the means of the categories are equal?

3. What are the assumptions of analysis of variance? What does it mean to say
that analysis of variance is relatively robust with respect to deviations from the
assumptions? What does it mean to say that the Kruskal-Wallis test is not as
powerful as ANOVA?

4. Fill in the blanks in the following analysis of variance table. Then compare
the F value with the critical value, using «=0.05.

Sums of squares df Mean square F
Between SS 34.23 2 — —
Within SS — — —
Total SS 217.34 35
5. Using
k

WSS => (n,—1)s;

i=1

(a) Find the within sum of squares for the following data:

Toxin levels in shellfish (mg)

Observation Long Island Sound  Great South Bay  Shinnecock Bay

1 32 54 15
2 23 27 18
3 14 18 19
4 42 1 21
5 13 10 28
6 22 34 9
Mean 24.33 25.67 18.33
Std. dev. 11.08 16.69 6.31

Overall mean=22.78. Overall std. dev.=11.85

(b) Find the value of the test statistic F and compare it with the critical value.
(¢) Rank the data (1 =1lowest), using the average of the ranks for any set of
tied observations. Then find the Kruskal-Wallis statistic

2

12 &R
H= <m2_> —3(N+1)

iz i
Then adjust the value of H by dividing it by
Z(l‘? — 1)

|- 1
N*—N

where ¢; is the number of observations that are tied for a given set of

ranks. Compare this test statistic with the critical value of chi-square, which

has k—1 degrees of freedom to decide whether to accept or reject the null

hypothesis.
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6. Twelve low-income and twelve high-income individuals are asked about
the distance of their last residential move. The following data represent the
distances moved, in kilometers:

Low income High income
5 25
7 24
9 8
11 2
13 11
8 10
10 10
34 66
17 113
50 1
17 3
25 5
Mean 17.17 23.17
Std. dev. 13.25 33.45

Test the null hypothesis of homogeneity of variances by forming the ratio
5 /s%, which has an F-ratio with n; — 1 and n, — 1 degrees of freedom. Then use
the appropriate F-test. Set up the null and alternative hypotheses, choose a
value of alpha and a test statistic, and test the null hypothesis. What assump-
tion of the test is likely not satisfied?

7. Are the confidence intervals associated with a priori contrasts in ANOVA
narrower or wider than a posteriori contrasts? Why? Which would be more
powerful in rejecting the null hypothesis that the contrast was equal to zero?

8. A study groups 72 observations into nine groups, with eight observations in
each group. The study finds that the variance among the 72 observations is 803.
Complete the following ANOVA table:

Sums of squares df Mean square F
Between 6000 — — —
Within — — —
Total —

If the critical value of Fis 2.8, what do you conclude about the hypothesis that
the means of all groups are equal? What can you conclude about the p-value?

9. A sample is taken of incomes in three neighborhoods, yielding the following
data:

Neighborhood Overall
A B C (combined sample)
n 12 10 8 30
mean 43.2 34.3 27.2 35.97

std. dev. 36.2 20.3 214 29.2
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Use analysis of variance to test the null hypothesis that the means are equal.

10. Use the Kruskal-Wallis test to determine whether you should accept
the null hypothesis that the means of the following four columns of data are
equal:

Col 1 Col 2 Col 3 Col 4
23.1 43.1 56.5 10002.3
13.3 10.2 32.1 54.4
15.6 16.2 433 8.7
1.2 0.2 24.4 54.4

11. A researcher is interested in differences in travel behavior for residents
living in four different regions. From a sample of size 48 (12 in each region),
she finds that the mean commuting distance is 5.2 miles, and that the standard
deviation is 3.2 miles. What is the total sum of squares? Suppose that the
standard deviations for each of the four regions are 2.8, 2.9, 3.3, and 3.4.
What is the within sum of squares? Fill in the table:

Sum of squares df Mean square F
Between — — — —
Within — — —
Total —

Suppose the critical value of F is 2.7. Do you accept or reject the null
hypothesis?

12. A researcher wishes to know whether distance travelled to work varies by
income. Eleven individuals in each of three income groups are surveyed. The
resulting data are as follows (in commuting miles, one-way):

Income
Observations Low Medium High
1 5 10 8
2 4 10 11
3 1 8 15
4 2 6 19
5 3 5 21
6 10 3 7
7 6 16 7
8 6 20 4
9 4 7 3
10 12 3 17
11 11 2 18

Use analysis of variance to test the hypothesis that commuting distances do not
vary by income. Also evaluate (using, e.g., the Levene test) the assumption of
homoscedasticity. Finally, lump all of the data together and produce a histo-
gram, and comment on whether the assumption of normality appears to be
satisfied.
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13. Data are collected on automobile ownership by surveying residents in
central cities, suburbs, and rural areas. The results are:

Central cities Suburbs Rural areas
No. of observations 10 15 15
Mean 1.5 2.6 1.2
Std. dev. 1.0 1.1 1.2

Overall mean=1.725. Overall std. dev.=1.2.

Test the null hypothesis that the means are equal in all three areas.



5 Correlation

LEARNING OBJECTIVES

e Understanding the nature of the relationship between two variables
e Understanding the effects of sample size on tests of significance

e Alternative tests of correlation when assumptions are not reasonable

5.1 Introduction and Examples of Correlation

One of the most common objectives of researchers is to determine whether two
variables are associated with one another. Does patronage of a public facility
vary with income? Does interaction vary with distance? Do housing prices vary
with accessibility to major highways? Researchers are interested in how vari-
ables co-vary.

The concept of covariance is a straightforward extension of the concept of
variance. Whereas the variance is the expected or average value of the squared
deviation of observations on a single variable from their mean, the covariance
is the expected or average value of the product of the two variables’ (say X and
Y) respective deviations from their means:

Cov[X, Y] = E[(X — fy)(Y — ty)] (5.1)

The reader may note that, using an argument outlined in Appendix B,
Equation 5.1 may be rewritten

EI(X — i)(Y = fiy)] = E[XY] — tiy iy (5.2)

Alternatively, based upon Equation 5.2, the sample covariance may be found
using

n

Cov[X, Y] = %Zx[y,- — %y (5.3)
i=1

Note that the covariance of a variable X with itself, Cov(X, X), is equal to the
variance of x. In practice, the covariance may be found by taking the average
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of the products of the deviations from the means (although using n — 1 instead
of n in the denominator, as is the case with the variance):

n

L) - 90 ) (5.4)

Cov(X,Y) = "
o=l

The covariance of X and Y may be negative or positive. The covariance will
be positive if most of the points (x, y) lie along a line with positive slope when
they are plotted. The covariance will be negative when the plotted points lie
along a line with negative slope. Figure 5.1 depicts points in the (x, y) plane,
where the axes are centered at (X, 7). It demonstrates that points lying in
quadrants I and III will contribute positively to the covariance, and points
in quadrants IT and IV will contribute negatively to the covariance.

The magnitude of the covariance will depend upon the units of measure-
ment. The covariance may be standardized, so that its values lie in the range
from —1 to +1, by dividing by the product of the standard deviations. This
standardized covariance is known as Pearson’s correlation coefficient. The cor-
relation coefficient provides a standardized measure of the linear association
between two variables. Its theoretical value is

[ — py) (Y — By)]

p= P (5.5)

where o, and oy refer to the standard deviation of variables x and y in the
population. The sample correlation coefficient, r, may be found from

(xi = X)(vi = 7)

= s, (6)

e

where s, and s, are the sample standard deviations of variables x and y,
respectively. This is known as Pearson’s correlation coefficient. Note that
this is equal to

i=1
r==— (5.7)
where z, and z, are the z-scores associated with x and y, respectively.

It is important to note that the correlation coefficient is a measure of the
strength of the /inear association between variables. As Figure 5.2 demon-
strates, it is possible to have a strong, nonlinear association between two vari-
ables and yet have a correlation coefficient close to zero. One implication of
this is that it is important to plot data (the term scatterplot is often used to refer
to graphs such as Figures 5.1 and 5.2, where each observation is represented by
a point in the plane, and where the two axes represent the levels of the two
variables), since potential associations between the variables might be revealed
in those cases where the value of r is low.
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Figure 5.1 Scatterplots illustrating (a) positive and (b) negative correlation

It is also important to realize that the existence of a strong linear association
does not necessarily imply that there is a causal connection between the two
variables. A strong correlation was once found between British coal production
and the death rate of penguins in the Antarctic, but it would be a stretch of the
imagination to connect the two in any direct way! Changes in both British
coal production and the death rate of penguins happened to go in the same
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Figure 5.2 Nonlinear relationship with r approximately 0

direction over a period of time, but this does not necessarily imply a causal
connection between the two. Another article once pointed out the strong con-
nection between the annual number of tornados and the volume of automobile
traffic in the United States. The claim — presumably in jest — was that both the
number of tornados and the volume of automobile traffic had steadily
increased in the United States throughout the twentieth century. If years
were used as observations on the x-axis, with the number of tornados on the
y-axis, a very strong positive correlation would be observed; years with many
tornados would coincide with years with a high volume of traffic. Strong linear
relationships often prompt deep thought about possible explanations, and in
this case an explanation was offered. The correlation was deemed to be due to
the fact that Americans drive on the right-hand side of the road! As cars pass
one another, counterclockwise movements of air are generated, and we all
know that counterclockwise movements of air are associated with low pressure
systems. Some of these low pressure systems spawn tornados. Increasing traffic,
then, would understandably lead to more tornados. Furthermore, since the
British drive on the left, it should come as no surprise that there are not
many tornados there! (Though I doubt one could claim that they have the
great weather one would expect from the high pressure systems created by
the clockwise movement of traffic-generated air currents!). A better explana-
tion of the relationship is that the two have increased over time for very
different reasons. The increase in the number of tornados is likely due to the
simple fact that the weather observation network is better than it used to be.
The search for a causal relationship is an important one, but the effort may
sometimes be carried too far!

5.2 More lllustrations
5.2.1 Mobility and Cohort Size

Easterlin (1980) has suggested that young adults who are members of a large
cohort (like the baby boom) will face a more difficult time in labor and housing
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markets. For these cohorts, the supply of people relative to the number of job
and housing opportunities is relatively high. Consequently, there will be a
tendency for mortgage rates and unemployment to be higher when large
cohorts pass through their young adult years. Similarly, mortgage and unem-
ployment rates will tend to be lower when small cohorts reach their twenties
and thirties. Rogerson (1987) has extended this argument to hypothesize that
large cohorts of young adults will exhibit lower mobility rates, since the
cohort’s opportunities for changing residence will be limited by the relatively
inferior state of the labor and housing markets. The mobility rate is measured
as the percentage of individuals changing residence during a one-year period,
and the size of the young adult cohort is measured by the fraction of the total
population in a specified young adult age group. Data on these variables for
the period 1948-84 are presented in Table 5.1.

For 20-24 year olds, n =28, and the correlation coefficient between mobility
rate and cohort size is equal to —0.747; for 25-29 year olds, r=—0.805. For
the 20-24 year olds, the cross-product > (x; — X)(y; — ¥) (i.e., the numerator

Table 5.1 U.S. mobility data, 1948-1984

Mobility rate Fraction of total population
Year 20-24 25-29 20-24 25-29
1948-49 35.0 * .0804 .0829
1949-50 34.0 * .0784 .0821
1950-51 37.7 33.6 .0767 .0812
1951-52 37.8 31.6 .0746 .0794
1952-53 40.5 334 .0720 .0774
1953-54 38.1 30.5 .0757 .0762
1954-55 41.8 31.3 .0735 .0758
1955-56 44.5 323 .0713 .0750
1956-57 41.2 32.0 .0694 .0734
1957-58 42.6 34.6 .0671 .0715
1958-59 425 33.2 .0645 .0701
1959-60 41.2 321 .0617 .0682
1960-61 43.6 344 .0616 .0605
1961-62 43.2 33.0 .0625 .0592
1962-63 42.0 346 .0641 .0582
1963-64 434 35.2 .0672 .0580
1964-65 45.0 35.8 .0692 .0528
1965-66 424 355 .0708 .0584
1966-67 41.0 33.0 .0715 .0593
1967-68 415 33.2 .0767 .0609
1968-69 425 326 .0787 .0638
1969-70 41.8 32.6 .0813 .0658
1970-71 41.2 324 .0839 .0669
1975-76 38.0 32.6 .0897 .0790
1980-81 36.8 30.1 .0943 .0859
1981-82 355 30.0 .0949 .0868
1982-83 33.7 29.8 .0939 .0892
1983-84 34.1 30.1 .0928 .0904

Note: Data unavailable for missing years.
Source: Rogerson (1987).
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Figure 5.3 Correlation of mobility with cohort size. Source: Plane and Rogerson
(1991)

of the covariance) is —.694. Dividing by n—1=27 yields a covariance of
—.0257. The standard deviations for x and y are 3.371 and 0.0102, respectively.
Dividing the covariance by the product of these standard deviations, as in
Equation 5.6, yields the correlation coefficient of —.747. The data for 20-24
year olds are graphed in Figure 5.3, where the negative relationship between
the variables is apparent.

5.2.2 Statewide Infant Mortality Rates and Income

As part of an assignment back in my graduate school days, I decided to
investigate geographic variation in infant mortality rates in the United
States. The data I collected were at the state level. I was interested in under-
standing whether infant mortality rates varied with factors such as educational
attainment, income, access to health care, etc. As part of my analysis, I
graphed the relationship between infant mortality rates and personal income
for the white population. The graph is shown in Figure 5.4. Most of the states
fall close to a line with negative slope, ranging from states such as Mississippi
and Kentucky (with low values of personal income and high infant mortality
rates) to states such as Connecticut, where the statewide personal income was
high and mortality rates were low. Pearson’s correlation coefficient for the 50
states is equal to —0.28. Notice, though, the presence of six states that have
infant mortality levels above the level expected, given the personal income in
the state (TX, CO, AZ, WY, NM, and NV). Cases such as this that do not fit
the general trend are known as outliers. It is interesting to note that these states
form a compact geographic cluster. Additional inspection of the data had
raised the possibility that these six states had a relatively low number of phy-
sicians per 100 000 statewide residents. A two-tail 7-test confirmed that indeed
these six states had a significantly lower number of physicians per 100000,
relative to the other states.



92 STATISTICAL METHODS FOR GEOGRAPHY

33
31 4 oM
°
g 29 - v
=
o~
> owy
=27
S oMs @ TX CO..AZ
= OKY
§ ° O ME
i ™™
= » ND AL‘GA.WV @ VA
& shO®e o @ WA omT
= ® vr FL® ONH
=, sc o B o
2~ @ 0K Dg LA e ™MD
§ OAR oNC . L ¢ o ()‘H ..1: )\
A OMN MI
° Wi ° AK
21 - ONE Mo ®ks 8, NY e
ouT ocT
19
®DE
17 T T T T T T
2400 2800 3200 3600 4000 4400 4800 5200

Median Personal Income

Figure 5.4 White infant mortality rates as a function of median personal income

The treatment of outliers depends upon the circumstances. A good under-
lying understanding of why particular points are outliers provides some ratio-
nale for removing those points from the analysis. In this case, we have a
reasonably good explanation for the outliers, and we are justified in asking
what the correlation would be without the outliers (it is r=—0.64, a much
stronger negative relationship than was found with the original 50 observa-
tions). Of course we would not want to get in the habit of plotting variables
and arbitrarily eliminating those points that do not fall close to the line, just so
that we can report a high value of . But it is good practice to plot the data and
think carefully about the reasons for any outliers.

5.3 A Significance Test for r
To test the null hypothesis that the true correlation coefficient, p, is equal to
zero, the data for each variable are assumed to come from normal distribu-

tions. If this assumption is satisfied, the test may be carried out by forming the
t-statistic

p=E (5.8)
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If the null hypothesis is true, this statistic has a ¢-distribution, with n—2
degrees of freedom.

5.3.1 lllustration

The data in Table 5.1 for the n =28 observations for 20-24 year olds yields a
correlation coefficient of r= — 0.747. For the null hypothesis Hy:p =0, and a
two-tailed test with o =0.05, the z-statistic is

[ _(0VE -2 59)

1 — (—0.747)?

A t-table reveals that the critical values of ¢, using a=0.05 in a two-tail test
with 26 degrees of freedom, are +2.056. The null hypothesis that the correla-
tion coefficient is zero is rejected.

5.4 The Correlation Coefficient and Sample Size

An extremely important point is that the correlation coefficient is influenced
by sample size. It is far easier to reject the null hypothesis that p=0 with a
large sample size than it is with a small sample size. To see this, compare the
situation where r =0.4 with a sample size of 11, and the situation where r=0.4
with a sample size of n=38. In the former case, the observed z-statistic is 1.3,
which is less than the critical value f4059=2.262, and the null hypothesis is
accepted. In the latter case, when n=38, the f-statistic is 2.0, and the null
hypothesis is rejected since the f-statistic is greater than the critical value,
10.05,36 = 1.96.

One of the implications of this is that there really should be no popular rules
of thumb that are invoked to decide whether r is sufficiently high to make the
researcher happy about the level of correlation. Such rules of thumb do seem to
exist — for instance, an r value of 0.7 or 0.8 may be taken as important or
significant. But, as we have just seen, whether a correlation coefficient is truly
significant depends upon the sample size. Thus, when the researcher is working
with large data sets, a relatively low value of r should not be as disappointing
as that same value of r when the sample size is smaller. A value of r=0.4 could
be quite meaningful if »=1000, and the researcher should not necessarily
throw the results out the window just because the r-value is noticeably less
than 1 and perhaps less than some arbitrary, rule-of-thumb value such as
r=0.8. Table 5.2 gives, for various values of n, the minimum absolute value
of r to achieve significance. For example, with a sample size of n=50, any
value of r>0.288 or less than —0.288 would be found significant using the z-test
described above. The reader will note how even quite small values of r are
significant when the sample size is only modestly large. For values of n> 30, the
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Table 5.2 Minimum values of r required for significance

Minimum absolute value of r needed to

Sample size, n attain significance (using o =0.05)
15 514
20 444
30 .361
50 279
100 197
250 124

For large n, rei: is approximately 2/+/n.

quantity 2/+/n is equal to the approximate absolute value of r that is needed for
significance using o =0.05. For example, if n =49, a correlation coefficient with
absolute value greater than 2/1/49 = 0.286 would be significant.

While we have just argued that we should not too hastily discard the results
of an analysis because of a seemingly low correlation (since with a large sample
size that correlation may be significantly different from zero), there is also some
concern about attaching too much importance to the results of a significance
test. Meehl (1990) has noted that with many data sets there is a strong tendency
to find that “everything correlates to some extent with everything else” (p.
204). This is sometimes referred to as the ““crud factor.” There is no particular
reason for believing that the correlation between any two variables chosen
from most data sets should be exactly zero, and therefore, if the sample size
is large enough, we will be able to reject the null hypothesis that they are
unrelated. For example, Standing et al. (1991) find that in a data set containing
135 variables related to the educational and personal attributes of 2058 indi-
viduals, the typical variable exhibited a significant correlation with 41% of the
other variables. The extreme case was the variable measuring Grade 5 mathe-
matics scores — it was significantly correlated with 76% of the other variables,
leading the authors to conclude that ““‘the number of statistically significant
possible ‘causes’ of mathematics achievement available to the unbridled
theorizer will almost be as large” (p. 125).

5.5 Spearman’s Rank Correlation Coefficient

In situations where only ranked data are available, or where the assumption of
normality required for the test Hy : p =0 is not satisfied, it is appropriate to use
Spearman’s rank correlation coefficient. As the name implies, this measure of
correlation is based only upon the ranks of the data. Two separate sets of ranks
are developed, one for each variable. A rank of 1 is assigned to the lowest value
and a rank of n to the highest observation in each column. Spearman’s rank
correlation coefficient, r, is

re=1-——=1 (5.10)
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Table 5.3 U.S. mobility data, 1948-84, with ranks

Fraction of total

Mobility rate population
Year 20-24 Rank 20-24 Rank d;
1950-51 37.7 5 .0767 17.5 —125
1951-52 37.8 6 .0746 15 -9
1952-53 40.5 9 .0720 13 -4
1953-54 38.1 8 .0757 16 -8
1954-55 41.8 15.5 .0735 14 1.5
1955-56 44.5 25 .0713 11 14
1956-57 41.2 12 .0694 9 3
1957-58 42.6 21 .0671 6 15
1958-59 42.5 19.5 .0645 5 14.5
1959-60 41.2 12 .0617 2 10
1960-61 43.6 24 .0616 1 23
1961-62 43.2 22 .0625 3 19
1962-63 42.0 17 .0641 4 13
1963-64 43.4 23 .0672 7 16
1964-65 45.0 26 .0692 8 18
1965-66 42.4 18 .0708 10 8
1966-67 41.0 10 .0715 12 -2
1967-68 41.5 14 .0767 17.5 -35
1968-69 425 19.5 .0787 19 0.5
1969-70 41.8 15.5 .0813 20 —45
1970-71 41.2 12 .0839 21 -9
1975-76 38.0 7 .0897 22 -15
1980-81 36.8 4 .0943 25 —21
1981-82 35.5 3 .0949 26 -23
1982-83 33.7 1 .0939 24 -23
1983-84 341 2 .0928 23 -21

Source: Plane and Rogerson (1991).

where d,-2 is the squared difference between the ranks for observation i, and
n is the sample size. The mobility data for 20-24 year olds for the period
1950-1984 are repeated in Table 5.3, with ranks adjacent to the mobility
and cohort size variables. Note that tied ranks are treated by replacing
them with the average of the tied ranks. The differences in ranks, d;, are
given in the last column. For these data, rg=1—(6(5045.5))/
(26° —26) = —0.725. To test hypotheses, we may use the fact that the quan-
tity r¢v/n—1 has a t-distribution with n—1 degrees of freedom. In our
example, the observed value of ¢ is therefore —0.725v/26 = —3.70. This is
less than the critical value #gs,5s= —2.06, and so the null hypothesis of no
association is rejected. (Technically, when there are tied ranks, Equation
5.10 should not be used; instead one calculates Spearman’s correlation
coefficient by calculating Pearson’s correlation coefficient, using the ranks
as observations.)
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5.6 Additional Topics
5.6.1 Confidence Intervals for Correlation Coefficients

We saw above that a #-statistic may be used to test the hypothesis that p=0.
One might suppose that the fact that this statistic has a ¢-distribution could be
used to create a confidence interval for p in much the same way that confidence
intervals are created for means or differences between means. Thus one might
contemplate using the observed value of Pearson’s r as follows:

F—ton-20, < p< 14ty 20, (5.11)
where
,/1 2
8, = ! (5.12)
vn—2

The problem with this idea is that, in general, the sampling distribution of r is
not symmetric, and therefore the confidence intervals will not be accurate.

A more accurate confidence interval may be constructed by first transform-
ing the value of r into a variable that has a normal distribution. The quantity y
is derived as follows:

1
y:1.1511n1+r

(5.13)

—r

This variable has a normal distribution with standard deviation equal to

o, = (5.14)

and so a 95% confidence interval for the quantity y is

1.96
£ 905Gy =y £
Y T )o.05 ) Y \/n—:‘§

The endpoints of this confidence interval can then be transformed back into
values of r using Equation 5.13. More specifically, Equation 5.13 can be solved
for r:

(5.15)

e)}/l.lSl -1

r:e,1;/1.151+1 (5.16)

To illustrate, let us place a confidence interval around the observed correla-
tion of — 0.747 between mobility rates and cohort size (where n = 28). We have

1+ (—0.747)

— 1151 )
y =1L =m57

= —2224 (5.17)
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The lower and upper limits of y are therefore

1.96 1.96
—2224 - ——=-2.616 and —-2.2244 —x=—-1.832 5.18
V28 -3 V28 -3 ( )

Equation 5.16 is then solved twice for the limits of the confidence interval for p,
using each of these two values of y. We have

—0.813 < p < —0.662 (5.19)

Note that these limits are not symmetric around the observed value of — 0.747.

5.6.2 Differences in Correlation Coefficients

The transformation of r into the quantity y is also used when comparing
correlation coefficients with one another. Suppose we wish to know whether
the correlation between two variables observed in one year is significantly
different from the correlation observed in another year. The null hypothesis
of no difference in the correlations, H : p; = p,, could be tested by converting
the observed correlations r; and r, to y values, and then using the z-statistic

Z:)h -

U}"l —2

(5.20)

where

(5.21)

Oy1—yy =

Is there a significant difference between the mobility/cohort size correlation
coeflicients for 20-24 year olds and 25-29 year olds? The transformed values, y,
corresponding to the r-values of —0.747 and —0.805 are —2.224 and —2.561,
respectively. The z-statistic is then

L —2.224 — (—2.561) e (522)

V(1/(28 =3)) +(1/(26 - 3))

Comparing this with the critical value of zy ;s = £1.96 used in a two-sided test
implies that we accept the null hypothesis of no difference and conclude that
the two correlation coefficients are not significantly different.

5.6.3 The Effect of Spatial Dependence on Significance Tests for
Correlation Coefficients

The tests of significance outlined for both Pearson’s r and Spearman’s rg
assume that the observations of x are independent and that the values of y
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are also independent. When the x and y variables come from spatial locations,
this assumption of independence may not be satisfied. Indeed, one of the most
important points in this book is that spatial data often exhibit dependence — the
value of x in one location is often related to the value of x in nearby locations.
In turn, spatial dependence affects the outcome of statistical tests, and this
point should always be borne in mind when interpreting statistical results.

When spatial dependence is present and not accounted for, the variance of
the correlation coefficient under the null hypothesis of no correlation is under-
estimated. When repeated samples are taken from spatially dependent data,
and the x and y values follow the null hypothesis of no correlation between x
and y, the frequency distribution of r values will look like the dotted line in
Figure 5.5. The dotted line has a wider frequency distribution than the solid
line. The solid line corresponds to the variability in r that is calculated as
present when standard significance tests such as Equation 5.3 are applied.
The critical values associated with the standard statistical tests (b and c¢) are
lower in absolute value than those which should be used (¢ and d). When
sample values of r fall in the shaded region, the standard statistical tests will
incorrectly imply that the correlation coefficient is significantly different from
zero. Correlation coefficients falling in the shaded region are likely not signifi-
cant, and may be the result of the underlying spatial dependence exhibited by
the x and y variables. Haining (1990a) states this as follows:

The important issue here is not to use conventional procedures to test for the
significance of the correlation coefficient, and to recognize that a large r (or rg)
value may be due to spatial correlation [i.e. dependence] effects ... The risks of
inferring association between variables that is nothing other than the products
of the spatial characteristics of the system are real and call for caution on the
part of the user (p. 321).

To see the effects of spatial dependence on correlation tests, consider the
following model for the value of a variable a, at location (xi, y), applied to the

Relative frequency

Difference in mean trip length

Figure 5.5 Assumed ( ) and actual (----) variability in r when spatial
dependence is present but not accounted for




CORRELATION 99

interior cells of a region that has been subdivided into a grid of square cells:
a(xp,y1) = p+4p(a@— p) +e(xp, 1) (5.23)

where p is the overall mean, @ is the mean value of the variable in the four
cells that share a side with (x, y;), and e(x;, y;) is a normally distributed
error term with mean zero. If p = 0, the values of the variable a(x;, y,) are
independent of the values at other sites. In this case the values of a are simply
equal to the overall mean and a normally distributed error term. When p > 0,
the value in a particular interior cell depends upon the values of the four
surrounding cells. The value of p measures the amount of dependence, and it
can range up to 0.25. Note that, when p = 0.25, the value of a at a location is
precisely equal to the average of the values in surrounding locations, plus an
error term. Clifford and Richardson (1985) use 5.23 to simulate two spatial
variables that are not correlated with one another. Next, they find r and use
Equation 5.8 and o = 0.05 to see whether r is significant. One would expect
to find significant values 5% of the time (since 0.05 is the Type I error
probability). Table 5.4, as reported by Haining (1990a), displays the findings.
p1 and p, represent the amount of spatial dependence used in generating the
two variables.

When p; and p, are zero, the Type I error probability is near its expected value
of 0.05. Note that when one variable has no spatial dependence (p; = 0), the
other variable can exhibit strong spatial dependence (e.g., p» = 0.24), and there
is still no effect on the test for correlation since the Type I error probability is
still near 0.05. But when both variables exhibit strong spatial dependence, the
Type I error probabilities — where one incorrectly finds significant correlation
coeflicients — rise dramatically. With strong spatial dependence and no correc-
tive action, one will too often reject true null hypotheses.

5.6.4 Modifiable Area Unit Problem and Spatial Aggregation

Gehlke and Biehl (1934) noted that correlation coefficients tend to increase
with the level of geographic aggregation when census data are analyzed. A

Table 5.4 Type | error probabilities with spatial

dependence

P1 02 Type | error probability
0 0 0.0566
0 0.2 0.0500
0 0.24 0.0400
0.1 0.1 0.0700
0.1 0.225 0.1000
0.15 0.15 0.1000
0.15 0.225 0.1500
0.2 0.2 0.1900
0.2 0.24 0.3100
0.225 0.225 0.3366

0.24 0.24 0.5000
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smaller number of large geographic units tends to give a larger correlation
coefficient than does an analysis with a larger number of small geographic
units. In a classic study, Robinson (1950) noted that the correlation between
race and illiteracy rose with the level of geographic aggregation. It is important
to keep in mind the fact that the size and configuration of spatial units may
affect the analysis. What is significant at one spatial scale may not be significant
at another.

5.7 Correlation in SPSS for Windows 9.0

Each variable should be represented by a column of data. Then click on
Analyze and Correlate. Next, click on Bivariate, and move the variables you
wish to correlate from the list on the left to the box on the right. You may
move more than two variables into the box if you wish to see a table of
correlations among a number of variables. If desired, check the box to have
Spearman’s correlation coefficient calculated (Pearson’s correlation is calcu-
lated by default).

Table 5.5 1990 Census data for a random sample of census tracts in Erie County,
New York

AREANAME TOTPOP90 MEDHSINC MEDAGE  SAGE MAGE PCTOWN
Tract 0010 BG 4 999 20862 49.24 19.08 60 .510
Tract 0016 BG 2 477 17804 50.70 17.49 60 .354
Tract 0026 BG 1 647 10545 51.24 16.92 58 5
Tract 0028 BG 2 856 14602 50.66 18.29 60 479
Tract 0045 BG 5 994 33603 45.12 15.36 60 .683
Tract 0057 BG 4 1083 24440 52.31 18.05 60 .516
Tract 0060 BG 1 879 15964 39.43 15.83 60 416
Tract 0068 BG 2 374 33750 45.07 16.92 60 .202
Tract 0068 BG 4 806 14597 42.93 18.30 60 .346
Tract 0073.02 BG9 2194 39779 52.49 16.58 39 .906
Tract 0076 BG 4 1150 29250 54.65 17.97 46 .884
Tract 0079.01 BG 3 1720 44205 53.63 13.83 41 .978
Tract 0079.02 BG5 540 34625 60.55 14.06 44 .967
Tract 0079.02 BG 8 1128 32439 58.49 14.18 44 .899
Tract 0085 BG 1 434 39375 54.07 17.89 54 .967
Tract 0087 BG 3 1415 29513 51.42 17.77 60 .706
Tract 0097.01 BG 2 1639 39104 53.35 12.48 33 .992
Tract 0100.02 BG 1 3072 26174 54.41 16.36 30 .886
Tract 0100.02 BG5 1715 28477 49.28 15.38 42 .638
Tract 0101.01 BG 5 755 35000 56.58 15.48 54 1
Tract 0101.02 BG 2 731 17647 43.49 16.66 45 .239
Tract 0111 BG 4 544 28438 57.78 17.04 47 .796
Tract 0115 BG 1 885 33214 51.68 19.54 47 .862
Tract 0117 BG 2 633 36346 48.22 16.09 47 .856
Tract 0120.02 BG 1 851 28500 59.56 17.39 42 .876
Tract 0142.05 BG 1 681 38125 46.44 18.23 19 .885
Tract 0150.03 BG 2 1270 25515 51.64 16.78 60 .58
Tract 0152.02 BG9 1334 29554 49.15 17.89 37 74

Tract 0153.02 BG 1 634 47083 52.38 15.21 46 .86
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Table 5.6 Bivariate correlations among four neighborhood variables

Correlations

MEDHSINC SAGE MEDAGE PCTOWN
MEDHSINC  Pearson Correlation 1.000 -.428* .362 739**
Sig. (2-tailed) . .021 .053 .000
N 30 29 29 29
SAGE Pearson Correlation —.428* 1.000 -.242 -.370*
Sig. (2-tailed) .021 . .207 .048
N 29 29 29 29
MEDAGE Pearson Correlation .362 -.242 1.000 .684**
Sig. (2-tailed) .053 .207 . .000
N 29 29 29 29
PCTOWN Pearson Correlation .739%* -.370* .684** 1.000
Sig. (2-tailed) .000 .048 .000 .
N 29 29 29 29

* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).

Nonparametric Correlations

Correlations

MEDHSINC SAGE MEDAGE PCTOWN
Spearman’srho  MEDHSINC  Correlation Coefficient 1.000 -.433* .347 742%*
Sig. (2-tailed) . .019 .065 .000
N 30 29 29 29
SAGE Correlation Coefficient —-.433* 1.000 -.261 -.403*
Sig. (2-tailed) .019 . 172 .030
N 29 29 29 29
MEDAGE Correlation Coefficient .347 -.261 1.000 745%*
Sig. (2-tailed) .065 172 . .000
N 29 29 29 29
PCTOWN Correlation Coefficient 742** -.403* 745%* 1.000
Sig. (2-tailed) .000 .030 .000 .
N 29 29 29 29

*_Correlation is significant at the .05 level (2-tailed)
**_Correlation is sianificant at the 0.1 level (2-tailed).

5.7.1 lllustration

The data in Table 5.5 are a random sample of 29 census block groups (areas of
about 1000 people) from Erie County, New York, in 1990. For each block
group, there are data on population (totpop90), median household income
(medhsinc), the median age of heads of households (medage), the standard
deviation of the householder’s age (sage), which is a measure of age mixing
in the block group, the median age of housing (mage), and the percentage of
housing that is owner-occupied (pctown). Rogerson and Plane (1998) discuss
the age structure of householders in residential neighborhoods, and develop a
model showing how age structure is related to variables such as age of the
housing in the neighborhood, mobility, and homeownership.

Table 5.6 shows the bivariate correlation coefficients (Pearson and
Spearman) among four of the variables. The median age of houscholders in
block groups has a significant correlation with homeownership; as one might
expect, the association is positive, and median age is higher in areas of higher
homeownership. The variability of ages in a neighborhood (sage) is negatively
related to income (high income neighborhoods are more homogeneous with
respect to age) and negatively related to homeownership (where ownership is
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high, the ages of the householders are more homogeneous). Finally, note the
similarity between Pearson’s and Spearman’s coefficients.

Exercises

1.

(a) Find the correlation coefficient, r, for the following sample data on
income and education:

Observation Income Education
($x1000) (years)

1 30 12

2 28 12

3 52 18

4 40 16

5 35 16

(b) Test the null hypothesis p=0.

(c) Find Spearman’s rank correlation coefficient for these data.

(d) Test whether the observed value of rg from part (c) is significantly differ-
ent from zero.

2.

(a) Draw a graph depicting a situation where the correlation coefficient is
close to zero, but there is a clear relationship between two variables.

(b) Draw a graph depicting a situation where there is a strong positive rela-
tionship between two variables, but where the presence of a small number
of outliers makes the strength of the relationship less strong.

3. The r-statistic for testing the significance of a correlation coefficient is

rvn—2
Vier

[ =

with n — 2 degrees of freedom. If the sample size is 36 and o= 0.05, what is the
smallest absolute value a correlation coefficient must have to be significant?
What if the sample size is 80?

4. Find the correlation coefficient for the following data:

Obs. X Y
1 2 6
2 8 6
3 9 10
4 7 4
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(a) Why is a “rule of thumb” for the significance of a correlation coefficient
(e.g., r* above 0.7 is significant) not a good idea?

(b) Why is a very large sample a “problem” in the interpretation of signifi-
cance tests for the correlation coefficient?

6. Find the correlation coefficient between median annual income in the
United States and the number of horse races won by the leading jockey, for
the period 1984-1995:

Number of races won by

Year Median income leading jockey
1984 35165 399
1985 35778 469
1986 37027 429
1987 37256 450
1988 37512 474
1989 37997 598
1990 37343 364
1991 36054 430
1992 35593 433
1993 35241 410
1994 35486 317

Test the hypothesis that the true correlation coefficient is equal to zero.
Interpret your results.



6 Introduction to Regression Analysis

LEARNING OBJECTIVES

e Modeling one variable as a linear function of another

Fitting a straight line through a set of points plotted in two dimensions
Assumptions of linear regression

Relationship of regression to analysis of variance

Testing the significance of the regression slope

6.1 Introduction

Whereas correlation is used to measure the strength of the linear association
between variables, regression analysis refers to the more complete process of
studying the causal relationship between a dependent variable and a set of
independent, explanatory variables. Linear regression analysis begins by
assuming that a linear relationship exists between the dependent variable ()
and the independent variables (x), proceeds by fitting a straight line to the set
of observed data, and is then concerned with the interpretation and analysis of
the effects of the x variables on y, and with the nature of the fit. An important
outcome of regression analysis is an equation that allows us to predict values of
y from values of x.

Regression analysis is used to specify and test a functional relationship
between variables. As discussed in Chapter 1, the process of description
often leads one to suspect that two or more variables are related. Once we
specify how the variables are related, we have a model, which may be thought
of as a simplification of reality. Regression analysis provides us with (a) a
simplified view of the relationship between variables, (b) a way of fitting the
model with our data, and (c¢) a means for evaluating the importance of the
variables and the correctness of the model.

For example, we may wish to know whether the distance that adults live
away from their parents is dependent upon education, whether snowfall is
dependent upon elevation, whether infant mortality is related to income, or
whether park attendance is related to the income of the population living
within a certain distance of the park. In each case a good place to begin is
to plot the data on a graph, and to measure the correlation between variables.
Linear regression analysis takes this a step further by finding the best-fitting
straight line through the set of points.
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When there is just one independent, explanatory variable, as is the case in the
examples above, we wish to fit a straight line through the set of data points; the
equation of this line is

y=a+bx (6.1)

where  is the predicted value of the dependent variable, x is the observed value
of the independent variable, « is the intercept (or point where the line intersects
the vertical axis), and b is the slope of the line. The quantities « and b represent
parameters describing the line, and these will be estimated from the data. This
case, with one independent variable, is known as simple regression or bivariate
regression, and it is depicted in Figure 6.1. We shall in this chapter confine our
attention to this special case. More generally, multiple regression (treated in the
next chapter) refers to the case where there is more than one independent
variable.

The slope of the line, b, may be interpreted as the change in the dependent
variable expected from a unit change in the independent variable. For example,
suppose a regression of housing sale prices on the square footage of houses
yielded the following equation:

= 30000 + 70s (6.2)

where p is the predicted housing sales price, and s represents square footage.
The slope in this equation is 70, and this means that an increase of one square
foot leads, on average, to a $70 increase in sales price. The price predicted for a

intercept ¢

Figure 6.1 Regression line through a set of points
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house with 2000 square feet is 30 000 + 70(2000) = $170 000. The intercept is the
predicted value of the dependent variable when the independent variable is set
equal to zero. In this example, a house with 0 square feet would sell at a
predicted price of $30000! This intercept of $30000 could be interpreted as
the value of the land on which the house is built. More generally, the intercept
does not always have a realistic interpretation, since a zero value for the
independent variable may lie well outside the range of observed values.

In studying the linear relationship between variables, each observation of the
dependent variable, y, may be expressed as the sum of a predicted value and a
residual term:

y=a+bx+e=j+e (6.3)

where j = a + bx is the predicted value, and e is termed the residual. The value
¥ represents the value of the dependent variable predicted by the regression
line. Note that the residual is equal to the difference between observed and
predicted values:

e=y—7Jp (6.4)

In keeping with the distinction between sample and population, note that a
and b are estimates of some “true”, unknown regression line. The slope and
intercept of this true regression line could, in theory, be determined by taking a
complete, 100% sample of the population. As usual, we use Greek letters to
denote the population values of the parameters:

y=a+fx+¢ (6.5)

where « and (3 are the intercept and slope of the true regression line, respec-
tively. Each observation y may be viewed as the sum of a component that
predicts the value of y on the basis of the value of x (using the true coefficients
« and () and some random error (g). The error term reflects the fact that we do
not expect the model to work “perfectly’’; inevitably there will be other vari-
ables that also influence y, though we hope their influence is relatively minor.
Observations on the dependent variable may be expressed as the sum of the
predicted value and a “true” population error, ¢, where

e=y—J (6.6)

is the difference between the observed value (y) and that predicted by the true
regression line (). The latter quantity is

y=oa+px (6.7)

In Figure 6.2 both the true regression line (Equation 6.7) and the best-fitting
line based on the sample of points (Equation 6.1) are shown. It is important to
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y=a+ bx

Figure 6.2 True and sample regression lines

keep in mind that, had a different sample been collected, the regression line
based on the sample would be different but the true regression line would
remain the same.

6.2 Fitting a Regression Line to a Set of Bivariate Data

Figure 6.3 shows a straight line fit through a set of points plotted in a two-
dimensional, x—y space. In regression analysis, the objective is to find the slope
and intercept of a best-fitting line that runs through the observed set of data
points. But what is meant by best-fitting? There are certainly many ways to fit
a line through a set of points. One way would be to fit the line so that the sum
of the minimum distances of the observations to the line was a minimum. In
this case, the distances are represented in Figure 6.3 geometrically as (dotted)
lines that run from the observations to the regression line and which are
perpendicular to the regression line.

In linear regression analysis, the sum of squared vertical distances from
the observed points to the line (i.e., the solid lines in Figure 6.3) is mini-
mized. The fact that vertical distances are used is consistent with the idea
that the dependent variable, which is always portrayed on the vertical axis,
is being predicted from the independent variable (portrayed on the horizon-
tal axis). In fact, the vertical distance is identical to the value of the resi-
dual, which, as we have indicated, is the difference between the observed
and predicted values of the dependent variable. Thus regression analysis
minimizes the sum of squared residuals. The sum of squared residuals is
used primarily for reasons of mathematical convenience — expressions for
finding the values of ¢ and b from the data are much easier to derive and
express. Thus the objective is to find values of ¢ and b that minimize the
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sum of squared residuals:

n 7

. ,\27 . o _ 2
??ﬁJOG—w<—g?Z;m a— bx;) (6.8)

Geometrically, this problem corresponds to finding the minimum of a three-
dimensional parabolic cone, where a and b are coordinates in the two-
dimensional plane and the sum of squared residuals is the vertical axis (see
Figure 6.4). Viewing the figure, we can imagine trying different values of a and
b —some will work relatively well in the sense that the sum of squared residuals
will be quite small, and other combinations will be poor since the sum of squared
residuals will be large. The values of a and b at the bottom of the parabolic cone
may be determined using the data as follows (see inset for more detail):

n

S (-9 -)
b = - n
ST (%) (6.9)
i=1
a=y—bx

Figure 6.3 Alternative measures of distance from points to regression line

e,
Sum of
squared

residuals

a

Figure 6.4 Minimization of sum of squared residuals
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INSET: Finding the slope and intercept via the solution to a calculus problem

The solution of Equation 6.8 to find the values of the slope and intercept is the
solution of a calculus problem. Solving the calculus problem amounts to finding
the @, b combination that leads to the smallest sum of squared residuals at the
bottom of the parabola. For those with a calculus background, we proceed by
taking the derivatives of Equation 6.8 with respect to a and b, setting them each
to zero, and solving for the two unknowns « and b. The result is Equation 6.9.

The reader should note that the numerator of the expression for the slope b is
identical to that for the correlation coefficient r. In fact, for bivariate regres-
sion, the slope may be written in terms of the correlation coefficient:

b=r2 (6.10)

Sx

Once the values of @ and b have been determined, plotting the line is straight-
forward. As indicated in the equation used above to determine «a, the regression
line goes through the mean (X, ). Another point on the line is (0,a) (the
intercept). After plotting these two points, the regression line may be drawn
by connecting the two points together with a straight line.

6.3 Regression in Terms of Explained and Unexplained Sums of
Squares

Another way to understand regression is to recognize that it provides a way to
partition the variation in the observed values of a dependent (y) variable. In
particular, the variability one observes in y may be decomposed into (a) a part
that is explained by the regression line (via the assumption that y is linearly
related to one or more independent variables) and (b) a part that remains
unexplained.

More specifically, the variability in y may be measured by the sum of
squared deviations of the y values from their mean. Some of this variability
is explained by the regression line — the values of y vary partly because of the
assumed relationship with the x variables. The partitioning of the total sum of
squares into explained and unexplained components is analogous to the ana-
lysis of variance, where the sum of squares is divided into between- and within-
column components. Here we have

n n

S 0P =S G S 9P (6.11)
i=1

i=1 i=1

The left-hand side is the rotal sum of squares; the deviation between observed
value and mean is represented geometrically by the distance 4 in Figure 6.5. In
the figure, the points clearly vary about the horizontal line representing the
mean value of y. Some of this variability may be attributed to the regression
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<

Figure 6.5 Partitioning the variability in y

line; we expect points on the right-hand side of the diagram to be above the
mean, and points on the left-side of the diagram to be below the mean.

The first term on the right-hand side is the regression (or explained) sum of
squares — it 1s the sum of squared differences between predicted values and the
mean value of y. These differences are the deviations of the regression line from
the mean and constitute the “explained” portion of the variability in y. The
distance between the predicted value and the mean is represented by C in
Figure 6.5. Finally, the second term on the right-hand side is the unexplained
or residual sum of squares. This is the sum of squared differences between the
observed and predicted values. It is this quantity that is minimized when the
coeflicients are estimated. The distance between the observation and the regres-
sion line (i.e., the residual) is represented by B in the figure.

The proportion of the total variability in y explained by the regression is
sometimes called the coefficient of determination, and it is equal to the square of
the correlation coefficient:

n
(% — ) 2 e
i=

(n—1)s;

(6.12)

where e is the value of the residual. Note that r” is equal to the regression sum
of squares divided by the total sum of squares. It is also equal to one minus the
ratio of the residual sum of squares to the total sum of squares.

The value of 1 varies from 0 to 1; a value of zero would indicate that no
variability has been explained, whereas a value of one would imply that all of
the residuals are zero and the regression line fits perfectly through all of the
observed points.

One way to determine whether the regression has been successful at explain-
ing a significant portion of the variation in y is to perform an F-test, analogous
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to the F-test used in the analysis of variance. Specifically, for simple regression,
the null hypothesis that p> =0 is tested with the F-statistic

r2(n -2)

F:
j

(6.13)

which has an F-distribution with 1 and n — 2 degrees of freedom when the null
hypothesis is true. By looking back to the previous chapter on correlation, you
will notice that this F-statistic is the square of the f-statistic used to test the
hypothesis that the correlation coefficient p is equal to zero. The tests are
identical in the sense that they will always yield identical conclusions and
p-values.

The origins of this F-test lie in the partitioning of the sums of squares just
described. We can create an analysis of variance table, for a hypothetical
example with 12 observations, as follows:

Sums of squares df Mean square F
Regression 578 1 578 13.7
(explained)
Residual 422 n—-2=10 42.2
(unexplained)
Total 1000 n—1=11

The total sum of squares has n— 1 degrees of freedom associated with it. In
simple regression, where there is one independent variable, there is always 1
degree of freedom associated with the regression sum of squares, leaving n — 2
degrees of freedom associated with the residual sum of squares. The F-ratio is
therefore equal to

_ explained SS  578/1
~ (residual SS)(n —2)  422/10

=137 (6.14)

Recalling the definition of 12, this ANOVA-like expression for F can be seen to
be equivalent to Equation 6.13, since

explained SS r(n—2)
F= = 1
(residual SS)/(n — 2) 1— 2 (6.15)

The value of r* may be thought of as the maximal correlation between a
weighted combination of the independent variables and the dependent vari-
able. (The weights happen to be the regression coefficients if the dependent and
independent variables are put in their standardized, z-scores form). The calcu-
lated value of > overestimates the true value, R%. Note that if the number of
observations is equal to the number of variables, r* will always equal one,
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even if the variables are unrelated (i.e., R*=0). If R>=0, then the expected
value of r* is (p —1)/(n— 1), where p is the number of variables and # is the
number of observations. For example, if p=11 and n=21, then the expected
value of r* is 10/20=0.5, even when the individual variables are not truly
correlated! This serves to emphasize the importance of having a large
number of observations relative to the number of variables. The adjusted r*
represents a downward adjustment of r? that takes this difference between the
sample and population values into account. We will see an example of this
adjustment in Section 6.11.

6.4 Assumptions of Regression

The assumptions of regression analysis for simple regression are:

(1) The relationship between y and x is linear; that is, there is an equation
y = o+ fBx + ¢ that constitutes the population model.

(2) The errors have mean zero and constant variance; that is, E[e] =0 and
V]e] = o The errors do not vary with x; that is, V[e|x] = 0% = o°.

(3) The residuals are independent; the value of one error is not affected by the
value of another error.

(4) For each value of x, the errors have a normal distribution about the
regression line. This normal distribution is centered on the regression
line. This assumption may be written & ~ N(0, 0?).

Multiple regression, treated in the next chapter, adds another assumption —
namely, that the x variables have no multicollinearity (that is, the independent
variables are not significantly correlated with one another).

6.5 Standard Error of the Estimate

The standard error of the estimate is another expression for the standard
deviation of the residuals; for the case of simple regression, it is estimated by

(6.16)

6.6 Tests for Beta

We are often interested in testing the null hypothesis that the true value of the
slope is equal to zero, i.e., Hy : § = 0. We are, of course, usually interested in
the prospect of rejecting this null hypothesis, thereby accumulating some
evidence that the variable x is important in understanding y. This can be
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done via a r-test

b
= = — .1
t 5, (6.17)

SE:‘
6.18
TN = D52 (6.18)
6.7 Confidence Intervals
A confidence interval for the regression line is found from
2 2
Vi) = (1 G 2x) ) (6.19)
n 52
A confidence interval for individual predictions is found from
2 2
. Se xX—X
Vi = (n PRENCIat)N ; ) ) (6.20)

6.8 lllustration: Income Levels and Consumer Expenditures

A supermarket is interested in how income levels (x) may affect the amount of
money spent per week by its customers ( y). The null hypothesis is that income
levels do not affect the amount of money spent per week by customers, and the
alternative hypothesis is that higher incomes are associated with greater spend-
ing. Table 6.1 depicts the data collected from ten survey respondents.

Table 6.1

Amount spent/week Income (x000)
(%) (x)
$120 65
$68 35
$35 30
$60 44
$100 80
$91 77
$44 32
$71 39
$89 44

$113 77
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To fit the regression line, we can first compute the following quantities:

X =52.3; sy = 20.20
y="T79.1; s, =28.34
. (6.21)
> (= X)(y; - F) = 3672.1
i=1
r=0.835

Income x is given in thousands of dollars, and weekly supermarket spending
is given in dollars. From these, we may find the slope from either of the
following:

S 28.34
b= rs—i = 0.835m =1.171
>0 43017 (6.22)
b= I:li 00 1.171
p
The intercept is
a=y—bx=79.1-1.171(52.3) = 17.8 (6.23)
Our regression line may be expressed as
y=178+1.171x (6.24)

implying that every increase of $1000 of income leads to an increase in $1.17
spent at the supermarket each week.

For each observation, we can compute a predicted value and a residual,
using the regression line, along with the values of x. For example, for the
first observation, the predicted value of the dependent variable is

$ =178+ (1.171)(65) = 93.9 (6.25)

The residual for this observation is the observed value of y minus the predicted
value:

e=120-939 =261 (6.26)

Table 6.2 depicts the results, including residuals and predicted values for all
observations. The sum of the residuals (subject to a bit of rounding error) is
equal to zero — the amount by which the positive residuals lie above the
regression line is equal to the amount by which the negative residuals lie
below the regression line.
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Table 6.2
Amount spent/week Income (x000) Predicted Residual
» (x) y €
$120 65 94.0 26.0
$68 35 58.8 9.2
$35 30 53.0 —18.0
$60 44 69.4 -94
$100 80 111.5 -115
$91 77 108.0 -17
$44 32 55.3 -11.3
$71 39 63.5 7.5
$89 44 69.3 19.7
$113 77 108.0 5

The analysis of variance table associated with this regression is as follows:

Sums of squares df Mean square F
Regression 5039.2 1 5039.2 18.4
(explained)
Residual 2189.7 n—-2=8 273.7
(unexplained)
Total 7228.9 n—1=9

This table can be constructed by recalling that, for bivariate regression,
the number of degrees of freedom associated with the explained sum of
squares is equal to one, and that associated with the total sum of squares
is equal to n—1. Also recall that the mean square is simply the sum of
squares divided by the number of degrees of freedom, and the F-statistic is
the ratio of the sums of squares. The first column may be completed by
recognizing that the total sum of squares is equal to the variance of y multi-
plied by n—1:

n
Total sum of squares :Z (i —7) =(n— 1)s; (6.27)
i=1

Since r* =0.835% is the proportion of the total sum of squares explained by the
regression, the regression sum of squares is equal to 7228.4(0.835%) = 5039.8.
The residual sum of squares is simply the difference between the total and
regression sums of squares.

The observed F-ratio of 18.4 in the table may be compared with the critical
value of 5.32 found in the F-table, using «=0.05 and 1 and 8 degrees of free-
dom, respectively, for numerator and denominator. Since the observed value of
F exceeds the critical value of 5.32, we reject the null hypothesis that the true
correlation coefficient p2 is equal to zero, and conclude that income explains a
significant amount of the variability in supermarket spending.

We can also test the hypothesis that the true regression coefficient is equal to
zero by using Equations 6.16 to 6.18. This first requires finding the variance of
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the residuals (s?) and the standard error of the estimate (s,):

n

>
- 2189.7
=2 = g =2BT s=V23T=1654 (6.28)

Next, the standard deviation of the estimate of the slope is given by

2 273.7
5= C— — \0.0745 = 0.27 6.29
& \/(n D52 \/9(20.22) (629)

The test of the null hypothesis H : 8 = 0 is then carried out with the z-statistic

b=p_LITL_ 4oy (6.30)

=
Sp 0.27

Since the observed value of ¢ exceeds the critical value of 2.62 found from
the table using a two-tailed test with o = 0.05, n — 1 = 9 degrees of freedom,
we reject the null hypothesis that the true regression coefficient is equal to zero.
In bivariate regression, the #-test and the F-test will always give consistent
results.

6.9 lllustration: State Aid to Secondary Schools

In New York State, aid is given to schools by the state government. The aid
formula is based upon a number of factors, but one principle is that districts
with residents that have relatively higher household incomes should receive
relatively less in state aid.

A graph of state aid per pupil versus average household income for 27 public
school districts in western New York reveals that there is in fact a downward
trend in aid with increasing income (see Figure 6.6). Regression analysis of the
27 pairs of points confirms this:

§ = 6106.93 — 0.0818x (6.31)

where p is the predicted amount of school aid per pupil, in dollars, and x is the
average housechold income. The slope implies that every increase of $1 in
household income brings with it a decline in state aid of $0.08 per pupil.
Equivalently, every increase of $1000 in household income leads to a decline
of $81.80 in state aid per pupil (although this estimate is also capturing the
effects of other variables in the state aid formula that have been omitted here;
see Sections 7.1.2 and 7.2). The value of #* is 0.257, and the slope is significantly
negative (a r-test yields t = — 2.94, which is more extreme than the critical value
and implies a p-value of 0.007.
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Figure 6.6 New York State school aid per pupil vs average household income

Of particular interest to me is the darkened circle, which represents the
Ambherst school district where my children attend school! Note that the state
aid per pupil is significantly lower than the expected value, given the average
household income in the district. A partial explanation of this has to do with
the way in which the state collects information on income. All taxpayers
must note their school district on their tax return, using a three-digit code
taken from a list at the back of the tax form instruction booklet. The
problem is that the Ambherst school district lies in the town of Amherst,
but so too do a number of other districts, including the Williamsville and
Sweet Home districts. Residents of the Williamsville and Sweet Home dis-
tricts dutifully go to the back of the instruction booklet, begin to scan the list,
and quickly come across Amherst, since it is near the beginning of the
alphabet. Since they live in the town of Ambherst, they (incorrectly) copy
the Ambherst code onto their tax form. State officials then tally up the
income in each district, and find (incorrectly) that Amherst residents make
a lot of money and consequently should receive less in school aid! The
average household income data used in Figure 6.6 represents the more accu-
rate household income data taken from the US Census. Even though it may
be out-of-date, since it was collected in 1990 and the analysis was done in
1997, the census data give a truer picture than do the tax return data of how
deserving of aid each district is.

If the aid received by the Amherst school district from the state was in line
with expectations, the black dot would be raised vertically from its present
location to the regression line. This would represent an increase of $1100 per
pupil, which is almost a 70% increase over the present figure of about $1600
per pupil. Since the district contains over 3000 students, this would represent
an increase of over three million dollars. Unfortunately for the residents of
the Ambherst District, it is difficult to correct the imbalance, and this is true
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despite the potential of geographic information systems to attribute each
resident’s address to the correct local school district. There is a legal clause
that limits the degree to which the problem can be corrected, since any
change that gave more to the Amherst District would give less to surrounding
districts. So, despite the fact that residents in the Williamsville and Sweet
Home districts have less income attributed to their district than they should
(and consequently have higher state aid), the imbalance has been only par-
tially corrected.

One solution I suggested at a meeting of the Amherst School Board was
that we change the name of our district! Since the problem is caused by the
fact that the school district has the same name as the town, perhaps we could
simply change the name to something else. This creative suggestion met with
difficulty too, since it turns out that it is difficult, if not impossible, to change
legally the school district’s name. Another, less savory, approach would be to
launch a campaign to encourage residents of the Amherst School district to
put the school codes of Sweet Home or Williamsville on their tax forms.
In any event, this example serves to illustrate how regression analysis can
be used to both estimate the magnitude of effects of one variable on another
(the term “‘effect” in the current example refers to the effect of income on
state aid) and to interpret unusual observations. The example also illustrates
that because of the quirky nature of data, potential pitfalls abound when one
attempts to establish relationships between one variable (income) and another
(state aid).

6.10 Linear versus Nonlinear Models

It should be understood that the word “‘linear” refers to the fact that in linear
regression analysis the relationship is one that is linear in the parameters. The
parameters are the intercept and slope coefficients, @ and b. Thus linear regres-
sion could be used to study the effects of the square of some variable x on the
value of y. Similarly, the equations

y=a+byx
5 (6.32)
y=a+b(n x)
may also be studied using the methods of linear regression, since the para-
meters a and b appear linearly (that is, they are raised to the power 1).
One example of an equation that is not linear in its parameters is

y=a+bx (6.33)

since the parameter b is raised to the power 2.
In many instances, a nonlinear relationship may still be analyzed using linear
regression, since the nonlinear curve may be transformed into a linear one. For
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example, a common finding in geographic research is that there is a distance—
decay effect for many kinds of interaction. Furthermore, this effect is often well
modeled with a negative exponential curve. Attendance at a local swimming
pool, for instance, may appear to decline exponentially with the distance that
individuals reside from the pool (see Figure 6.7). Negative exponential decay in
this example could be modeled with an equation of the form

pa=poe ™ (6.34)

where p, is the pool attendance rate among residents residing a distance d from
the pool and p is the attendance rate among those living as close as possible to
the pool. Furthermore, e is the constant 2.718..., and b is the rate at which
attendance declines with distance (that is, it is a measure of the steepness of the
exponential decline; higher values of » imply a greater effect of distance on
attendance). In this example, we can transform the curvilinear relationship seen
in Figure 6.2 into a linear one. One reason for wanting to do this is to be able to
make use of the well-developed methods of linear regression analysis. The
transformation is brought about by taking the logarithms of both sides of
Equation 6.1:

In p; =1n py — bd (6.35)

This is the equation of a straight line; if the relation is linear, when In p, is
plotted against distance d, the result will be a straight line with slope equal to
and intercept equal to In p, (see Figure 6.8).

Note also that models with negative exponential decline have to be initially
written with a multiplicative error term, since that allows them to be linearized:

Pa = poe_hde =Inp;=Inpy—pd+e (6.36)

Pa

Pool
attendance
rate

Distance from pool

Figure 6.7 Negative exponential decline in pool attendance rate with distance
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In pa

Natural log of
distance from
pool

Distance from pool

Figure 6.8 Linear decline in log of pool attendance rate with distance

If a model with negative exponential decline is written with an additive error
term, as follows:

pa=poe " +e (6.37)

it is said to be intrinsically nonlinear, since there is not a transformation that
can convert it into the equation of a straight line.

In the next chapter, we will focus on multiple regression, where the regres-
sion model includes more than one explanatory variable. This leads to addi-
tional issues, and these are also discussed in Chapter 7.

6.11 Regression in SPSS for Windows 9.0
6.11.1 Data Input
Each observation is placed into a row of the data table. Each column of the

data table corresponds to a variable. It is often convenient, but not necessary,
to place the dependent variable in the first column.

6.11.2 Analysis

To carry out a regression analysis, first click on Analyze, then Regression, and
then Linear; this will open a box. Within the box, select the dependent variable
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from the list of variables on the left, and use the arrow key to move it into the
box titled “Dependent.” Likewise, move the independent variables from the
left to the box on the right labeled “Independent(s).”” Clicking on “OK™ will
then carry out a regression analysis. This produces information on r, s,, an
ANOVA-type summary table, and information on the coefficients and their
significance. Options for additional output are discussed below.

6.11.3 Options

Clicking on alternatives in the categories Statistics, Plots, and Save can pro-
duce additional output. It is common, for example, to want to save additional
information. Under Save, one can click on boxes to save, among other items,
predicted values, residuals, and confidence intervals associated with both the
mean predicted value of y given x (i.e., the regression line; see Equation 6.19)
and individual values of y (Equation 6.20). New columns containing the
desired information are attached to the right-hand side of the data table.

Table 6.3 Regression of amount spent per week vs income

Variables Entered/Removed’

Variables Variables
Model Entered Removed Method
1 INCOME® . Enter
* All requested variables entered.
" Dependent Variable: AMTWEEK
Model Summary
Std. Error
Adjusted of the
Model R R Square | RSquare Estimate
1 .835° .697 .659 16.5441
® Predictors: (Constant), INCOME
ANOVA’®
Sum of Mean
Model Squares df Square F Sig.
1 Regression 5039.248 1 5039.248 18.411 .003°
Residual 2189.652 8 273.706
Total 7228.900 9
? Predictors: (Constant), INCOME
® Dependent Variable: AMTWEEK
Coefficients’
Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) | 17.833 15.207 1.173 275
INCOME 1.171 273 .835 4.291 .003

* Dependent Variable: AMTWEEK
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6.11.4 Output

An example of output is shown in Table 6.3. This output corresponds to the
results of the regression associated with the data in Table 6.1. Note that the
value of % is 0.697, and the adjusted r* value is 0.659.

Exercises

1. A regression of weekly shopping trip frequency on annual income
(data entered in thousands of dollars) is performed on data collected from
24 respondents. The results are summarized below:

Intercept 0.46

Slope 0.19
Sum of squares df Mean square F
Regression
Residual 1.7
Total 2.3

(a) Fill in the blanks in the ANOVA table.

(b) What is the predicted number of weekly shopping trips for someone
making $50 000/ year?

(¢) In words, what is the meaning of the coefficient 0.19?

(d) Is the regression coefficient significantly different from zero? How do you
know?

(¢) What is the value of the correlation coefficient?

2. Name four assumptions of simple linear regression.

3. The correlation coefficient and the slope are as follows:

-

: (xi =X)(vi = 7) Zn:(xi—x)(%—f)

;= 1 . b= i=1
(n—1)ss, (n—1)s2

Find an equation for 4 in terms of r.

4. A regression of infant mortality rates (annual deaths per hundred births) on
median annual household income (data entered in thousands of dollars) is
performed on data collected from 34 counties. The results are summarized
below:

Intercept 18.46

Slope -0.14

Sum of squares df Mean square F
Regression
Residual 1.8

Total 3.4
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(a) Fill in the blanks in the ANOVA table.

(b) What is the predicted infant mortality rate in a county where the median
annual household income is $40000?

(¢) In words, what is the meaning of the coefficient —0.14? Do NOT simply
say that this is the slope or the regression coefficient; indicate what it
means and how it can be interpreted.

(d) What is the standard error of the residuals?

(e) Are predictions of mortality rates more accurate near the mean of the
median incomes or away from the mean of median incomes?

(f) What is the value of the correlation coefficient?

5. A simple regression of ¥ vs X reveals, for n =22 observations, that > =0.73.
The standard deviation of x is 2.3. The regression sum of squares is 1324. What
is the value of the standard deviation of y? What is the value of the slope 5?

6. In linear regression, which is wider, the confidence interval for a single
predicted value of y, given x, or the confidence interval for the regression
line? Give reasons for your answer.

7. Given a simple regression with slope b=3, s5,=38, and s.=2, find the
standard error of the estimate (i.e., the standard deviation of the residuals).

8. The following data are collected in an effort to determine whether snowfall is
dependent upon elevation:

Snowfall Elevation
(inches) (feet)
36 400
78 800
11 200
45 675

Without the aid of a computer, show your work on problems (a) through (g).

(a) Find the regression coefficients (the intercept and the slope coefficient).

(b) Estimate the standard error of the residuals about the regression line.

(c) Test the hypothesis that the regression coefficient associated with the
independent variable is equal to zero. Also place a 95% confidence inter-
val on the regression coefficient.

(d) Find the value of R%.

(e) Make a table of the observed values, predicted values, and residuals.

(f) Prepare an analysis of variance table portraying the regression results.

(g) Graph the data and the regression line.



7 More on Regression

LEARNING OBJECTIVES

Regression with more than one independent explanatory variable
Regression with categorical explanatory variables

Regression with categorical dependent variables

Interpreting multiple regression coefficients

Choosing explanatory variables

Consequences of poorly satisfied assumptions

7.1 Multiple Regression

It is most often the case that there is more than one variable that is thought
to affect the dependent variable. For example, housing prices are affected by
many characteristics of both the house and the neighborhood. The number
of shopping trips generated by a residential neighborhood is affected by the
income of its residents, the number of automobiles its residents own, accessi-
bility to shopping alternatives, and so on.

With p independent explanatory variables, the regression equation is

V=a+bx;+byxy + -+ b,x, (7.1)

where p is the predicted value of the dependent variable. With a given set of
observations on the dependent (y) and independent (x) variables, the prob-
lem is to find the values of the parameters a and by,b,,...,b,. The solution
is found by minimizing the sum of the squared residuals:

. 2
{a’ljrll}}_r)lb[)}(y —a—byx;—---—b,x,) (7.2)

The problem and solution are identical in concept to that of bivariate
regression discussed in the previous chapter, except that there are now more
parameters to estimate and the geometric interpretation is carried out in a
higher-dimensional space. If p=2, we wish to find a, b, and b, by fitting a
plane through the set of points plotted in a three-dimensional space where the
axes are represented by the y variable and the two x-variables (see Figure 7.1).
The intercept a is the point of the plane on the y-axis when x; = x, = 0. The
value of b; describes how much the value of y changes in the plane when x;
increases by one unit along any line where x, is constant. Similarly, the value of
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° ° X,

X

Figure 7.1 Fitting a plane through a set of points in three dimensions

b, describes the change in y when x, changes by one unit while x; is held
constant. Although it is difficult (if not impossible!) to visualize, we wish to
find the minimum of a four-dimensional parabolic cone, where the sum of
squared residuals is represented along the vertical axis and the values of a,
by, and b, are represented along the other dimensions.

More generally, for p independent variables, we fit a p-dimensional hyper-
plane through the set of points that are plotted in a p+ 1 dimensional space
(one dimension for the y-variable and p additional dimensions, one for each of
the independent variables). The coefficients a and by,...,b, are found at the
base of a p+2 dimensional parabola. Though it is of course not possible to
actually picture this for high-dimensional spaces, this geometric description
serves to reinforce what is actually being carried out in regression analysis.

Multiple regression carried out on spatial data raises special issues. One par-
ticularly difficult problem is that associated with the modifiable area unit
problem, first discussed in Chapter 5. A regression of a dependent variable on
a set of independent variables may yield substantially different conclusions when
carried out on spatial units of differing sizes. Fotheringham and Wong (1991)
note that with multiple and logistic regression (to be discussed in Section 7.6) the
magnitude and significance of regression coeflicients can be very sensitive to the
size and configuration of areal units. If feasible, the sensitivity of one’s results
to changes in the size and/or shape of the spatial units should be explored.

7.1.1 Multicollinearity

In addition to the assumptions given for bivariate regression in the previous
chapter, multiple regression analysis makes use of one additional assumption.
In particular, it is assumed that there is no multicollinearity among the
independent variables. This means that the correlation among the explana-
tory x-variables should not be high. In the extreme case where two variables
are perfectly correlated, it is not possible to estimate the coefficients
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(and computer software will not provide results for this situation). In the more
common case where multicollinearity is high, but not perfect, the estimates
of the regression coefficients become very sensitive to individual observations;
the addition or deletion of a few observations can change the coefficient esti-
mates dramatically. Also, the variance of the coefficient estimates becomes
inflated. Because the coefficients are more variable, it is not uncommon for
insignificant independent, explanatory variables to appear significant.

7.1.2 Interpretation of Coefficients in Multiple Regression

Suppose that a regression of house prices in dollars (p) on lot size in square
feet (x;) and the number of bedrooms (x,) results in the following equation:

p = 4000 + 20x, + 10 000x, (7.3)

The coefficient on lot size means that every increase of one square foot adds
an average of $20 to the house price, holding constant the number of bed-
rooms. Similarly, the coefficient on the number of bedrooms implies that an
added bedroom will increase the value of the house by an estimated $10 000,
for houses with identical lot sizes.

As with simple regression, the coefficients tell us the effect on the dependent
variable of an increase of one unit in the independent variable. In addition,
they control for the effects of other variables in the equation. That is, to under-
stand the effect of a particular explanatory variable on the dependent variable,
it is not sufficient to simply include it in the right-hand side of a regression
equation. Since other variables may also affect the dependent variable, they
also have to be included so that the separate effects of each contributing vari-
able may be estimated. If all relevant variables are not included, this may lead
to misspecification error.

7.2 Misspecification Error

Suppose that Equation 7.3 characterizes the “true” relationship between
house prices, lot size, and the number of bedrooms. We will examine the
effects of a misspecified regression equation that has an omitted variable by
first making up some sample data from the equation

p = 4000 + 20x, + 10000x, + & (7.4)

where ¢ is a normal random variable with mean 0 and variance equal to
30007 (this implies that one can, with 95% confidence, predict house prices
within about two standard deviations, or $6000). Table 7.1 displays the data
associated with ten observations, where the data on lot size and the number
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Table 7.1

House price Lot size Bedrooms
132767 5000 3
134689 5500 2
159718 6000 4
164937 6500 3
132489 5200 2
125766 5400 1
146 568 5700 3
168932 6100 4
171180 6300 4
187921 6400 5

of bedrooms are simply hypothetical, and then Equation 7.4 is used to gener-
ate housing prices.

Now suppose that we incorrectly assume that house prices are a function of
lot size only. A regression of house prices on lot size yields

p = —57809.7 + 36.2x,

(-1.7)  (6.21) (7.5)

where the z-values associated with each coefficient are given below the equa-
tion in parentheses. We see that the coefficient of lot size is significant (since
its t-value is greater than the one-sided critical value of r=1.86 with n —2=8
degrees of freedom) and is in the “‘right” direction (i.c., larger lot sizes lead
to higher housing prices, as we would expect), but it is larger than the
“true” value of 20. We have overestimated the effect of lot size by omitting
the number of bedrooms, which also affects housing price.

Similarly, if we had incorrectly assumed that house prices were a function of
the number of bedrooms only, we would find that the regression equation,
based on the observed data, is

p =103361 + 15580x,

(12.05) (6.1) (7.6)
The effect of number of bedrooms on housing price is significant and in the
expected direction, but we have again overestimated somewhat the “true”
effect of an added bedroom, which we know to be $10 000.
Finally, if we use the data to estimate a regression equation with both
independent variables, we find

p=—1993 4+ 21.6x; +9333x,

(—0.13) (7.12) (7.24) (7.7)

Both variables have significant effects on housing prices, and, more impor-
tantly, we have estimated their effects on housing prices quite accurately,
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since the coefficient of 21.6 is close to its true value of 20 and the coefficient
of 9333 is close to its true value of 10000. The intercept is not too close
to its true value of 4000, but we note from Table 7.2 that all of the true
coefficients are within two standard deviations of their estimated values, and
that all true values of the coefficients lie within their estimated confidence
intervals.

7.3 Dummy Variables

It is sometimes necessary to include explanatory independent variables that
are categorical. For instance, income is often not reported exactly but is
rather classified into a category. Locations may be classified into, for exam-
ple, central city, suburb, or rural categories.

To handle independent variables that have, say, k categories in regression
analysis, we create k — 1 variables. One category is arbitrarily omitted; often
the first category (e.g., lowest income) or last category (e.g., highest income) is
omitted. Each of these new variables is a binary, 0-1 dummy variable. An
observation is assigned a value of zero on one of these variables if it is not
in the category, and is assigned a value of one if it is in the category.

Consider the example in Table 7.3, where individuals either report or are
assigned one of three locations — central city, suburb, or rural. We will arbi-
trarily choose the rural region as the omitted category. We define k — 1 = 2
categories, the first associated with the central city and the second associated
with the suburb.

The first two individuals live in the city — they are each assigned x; = 1 since
they live in the city, and x, = 0 since they do not live in the suburb. Individuals
3 and 5 live in the suburb, so they are assigned x; = 0 since they do not live in
the city, and x, = 1 since they live in the suburb. Note that individual 4 lives in
the rural region, and is assigned a value of 0 on both x; and x,, since the person
does not live in either the city or the suburb.

Table 7.2
Coefficient  Standard deviation Confidence interval

Intercept —1993 14881 (—37181, 33195)
X 21.6 2.98 (14.6, 28.7)
X5 9333 1310 (6234, 12432)

Table 7.3

Individual Location X4 X3

1 Central city 1 0

2 Central city 1 0

3 Suburb 0 1

4 Rural 0 0

5 Suburb 0 1
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The reason that a category is always omitted when dummy variables are
employed has to do with multicollinearity. If all categories were included, there
would be perfect multicollinearity, and this violates an assumption of multiple
regression. Perfect multicollinearity would occur if we defined k& dummy vari-
ables, since the sum of the k columns would always equal one. In our example
above, we have included only two of the three categories; there is no reason to
include a separate column for the third category, since it simply supplies us
with redundant information (for example, we know that if individual 4 does
not live in the central city or the suburb, he or she must live in the rural area).

Dummy variables are coded as 0 or 1 only, and not, for example, 1 or 2. The
0/1 coding is a result of the fact that the dummy variable is a nominal, cate-
gorical variable, and 0/1 coding corresponds to absence/presence.

Once dummy variables are defined, regression analysis proceeds in the usual
way. Suppose that individuals one through five are observed to make 3, 4, 7, 1,
and 5 weekly shopping trips, respectively. The resulting, best-fitting regression
equation is found from a computer program to be

y= 1 -+ 2.5X1 + 5X2 (78)

Table 7.4 displays the observed and predicted values.

The regression coefficients may be interpreted as follows. Being located in
the rural region implies that x; and x; are zero, and so the predicted value of y
is simply the intercept. Thus the intercept in dummy variable regression is the
predicted value of the dependent variable for the omitted category. Being
located in the central city is “worth” an extra 2.5 shopping trips, relative to
the omitted category. Therefore, we predict that someone located in the central
city will shop an average of 3.5 times per week. Being in the suburb is “worth”
an extra 5 shopping trips per week, again, relative to the omitted (rural) cate-
gory. Therefore, individuals residing in the suburb are predicted to shop
1+5=6 times per week.

You may be wondering at this point what would have happened if we had
omitted a category other than the rural region. Suppose the central city had
been chosen as the omitted category. Then our data would look like those in
Table 7.5. Here we define x; = 1 if the individual lives in the suburb, and x, =
1 if the individual lives in the rural region. Using this data in a multiple
regression analysis yields

Table 7.4 Weekly shopping trip frequency

Individual Observed Predicted
1 3 35

2 4 3.5

3 7 6

4 1 1

5 6 6
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Table 7.5
Weekly shopping

Individual Location X1 X2 trips

1 Central city 0 0 3

2 Central city 0 0 4

3 Suburb 1 0 7

4 Rural 0 1 1

5 Suburb 1 0 5

The coefficients are different, but when we interpret them in light of the new
variable definitions, we come to the same conclusions as before (as we
should!). For instance, the intercept of 3.5 is the predicted number of weekly
shopping trips made by those in the central city (the omitted category). The
coefficient of +2.5 is the extra number of shopping trips made by suburban
residents relative to the omitted category. Thus suburban residents are pre-
dicted here to make 3.5+2.5=6 shopping trips per week, the same as in the
previous example. Similarly, the coefficient of —2.5 means that rural resi-
dents make 2.5 fewer shopping trips than central city residents do each week
(3.5-2.5=1.0).

7.3.1 Dummy Variable Regression in a Recreation Planning Example

Part of the statewide recreation planning process is to generate estimates and
forecasts of recreation activity. Annual participation in a specific recreation
activity is taken to be a function of variables such as age, income, and popu-
lation density. In New York State, a survey of approximately 7500 people
was undertaken; individuals were asked about their participation frequencies
in various activities, and their age, income, and location were recorded.
The independent explanatory variables were recorded as dummy variables.
The dependent variable is the number of times the individual participated
in the activity at organized public or private facilities, over the course of a
year. A multiple regression analysis was run for each recreation activity.
Table 7.6 displays the results.

For each independent variable, the highest category is omitted (i.e., high
income, elderly, and urban locations). Recall that the coefficients are to be
interpreted relative to these omitted categories. Thus a person in the low
income category swims, on average, 5.55 times less per year than a person in
the high income category. By using these coefficients, it is easy to estimate the
participation frequency for any activity and any set of categories. For example,
how often does a middle income, young adult, living in the rural regions of the
state, participate in court games at organized facilities each year? The answer is
1.34 (the intercept, called the ““base participation rate” in the table) plus 0.43
(the coeflicient associated with those in the middle income category) plus 5.76
(for being a young adult) minus 3.65 (for those living in the rural area).



Table 7.6 Recreation participation coefficients

Base Income Age Population density
participation Young Middle
Activity rate® Low Low-middle Middle High-middle Youth adult Adult aged Rural Exurban Suburban
Swimming 2.45 —5.55 —-4.37 -0.73 3.22 22.83 9.83 8.94 2.91 8.51 5.98 478
Biking —0.06 —0.94 -0.11 -0.92 0.07 21.63 6.21 3.82 1.17 1.64 2.95 1.31
Court games 1.34 —0.55 0.63 0.43 1.31 16.41 5.76 1.65 0.12 -3.65 -—-211 —1.54
Camping 0.27 -0.13 —0.01 0.34 0.39 1.93 0.44 -0.01 -0.19 1.25 0.41 0.80
Tennis 0.74 —2.30 —2.42 —2.45 —0.46 7.76 4.28 3.31 0.61 1.48 1.78 2.14
Picnicking 0.66 —0.15 0.31 0.48 0.67 1.87 2.23 1.84 0.67 2.30 0.97 1.10
Golf 0.93 —1.44 -1.38 -0.71 —-0.58 -0.30 -0.30 0.28 0.70 1.02 1.34 0.42
Fishing —-0.21 1.35 0.17 0.57 0.83 3.36 1.26 2.01 0.72 1.77 1.41 1.17
Hiking 1.31 0.22 0.20 —0.04 0.77 2.49 0.65 0.47 0.18 0.53 0.54 0.30
Boating 0.24 —1.06 -0.77 —0.09 0.45 3.58 1.42 1.28 0.50 2.36 1.68 1.86
Field games -0.17 -0.39 -0.19 1.53 0.86 8.22 2.73 0.94 -0.13 1.48 0.83 0.56
Skiing 0.70 —0.98 -1.10 —0.86 —0.36 0.85 0.37 0.63 0.03 0.19 0.78 0.31
Snowmobiling -0.07 -0.50 -0.48 —0.08 -0.37 0.33 0.85 0.20 0.14 1.52 0.97 0.44
Local winter 0.66 —1.49 -1.18 —0.80 0.15 5.13 1.34 0.82 0.06 1.84 -0.32 1.05

®The control group selected was the highest income, age, and density group. This column gives the estimated base annual participation rate
for this group. The other columns give the amounts to be added to this amount to obtain participation rates for any other income, age, and

density group. Negative participation rates are possible and should be interpreted as zero.
Source: New York State Office of Parks and Recreation (1978).
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Our estimate is therefore equal to 3.88 times per year. It should of course be
kept in mind that this is an average participation rate across all individuals in
that category.

If an individual happens to be in an omitted category, the implied coefficient
is equal to zero. Thus high-middle income elderly residents of urban areas
swim on average 2.45 (base participation rate, or intercept) plus 3.22
(income coefficient) plus 0 (since they are in the omitted, elderly category)
plus 0 (since they are also in the omitted, urban category), which is equal to
5.67 times per year.

Recreation planners use these coefficients to plan for future use.
Demographic projections provide forecasts of the number of people in each
age/income/population density category. If we can rely on the coefficients in
the table as estimates of individual recreation participation, we can use the
coefficients together with the demographic forecasts to project how much
demand there will be for each recreation activity. The state can then prioritize
recreation projects in a way that will best meet the anticipated demand.

7.4 Multiple Regression lllustration: Species in the Galapagos Islands

The data in Table 7.7 contain two possible dependent variables related to
the number of species found on 30 islands (total species, and number of
native species), as well as five potential independent variables that may help
to understand why different islands have different numbers of species.

In our example, we will use the total number of species as the dependent
variable. We will now explore some of the choices and questions that one is
faced with in arriving at a suitable regression model. All of the output shown in
the tables is from SPSS for Windows 9.0.

7.4.1 Model 1: The Kitchen-Sink Approach

One idea would be to simply put all five independent variables on the right-
hand side and see what happens — i.e., everything is put into the equation
except the kitchen sink! This approach is not recommended, and is shown
here for illustrative purposes only. The output in Table 7.8 shows the value
of ? to be 0.877. There are two significant variables — elevation has a posi-
tive effect on species number, and the area of the adjacent island has a nega-
tive effect. Note that the sign of the area variable is negative, which is
counter to one’s intuition that more species would be found on larger
islands. The standard error of the estimate is 66, which is approximately
equivalent to the average absolute value of a residual (in this case the actual
average absolute value of a residual is 44). This is pretty high, since half of
the islands have fewer than 44 species! Finally, note that the ANOVA table
is similar to that in the univariate case, with the regression degrees of free-
dom equal to the number of independent variables.
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It is often tempting to use the kitchen-sink approach because when an inde-
pendent variable is added to the regression equation, the R* value always
increases. It is important to realize that a high R value is not the primary
goal of regression analysis; if it were, we could simply keep adding explanatory
variables until we achieved our desired value of R*! A more reasonable strategy
often involves either (a) deleting variables that do not reduce the value of R’
very much, and/or (b) adding variables only when they increase R* appreciably.
Variable selection is discussed in more detail in Section 7.5.

Table 7.7 Galapagos Islands: species and geography

Distance (km)

Area of
From From adjacent
Observed species Area  Elevation nearest  Santa island
Island Number  Native km? (m) island Cruz (km?)
1 Baltra 58 23 25.09 - 0.6 0.6 1.84
2 Bartolomé 31 21 1.24 109 0.6 26.3 572.33
3 Caldwell 3 3 0.21 114 2.8 58.7 0.78
4 Champion 25 9 0.10 46 1.9 47.4 0.18
5 Coamano 2 1 0.05 - 1.9 1.9 903.82
6 Daphne 18 11 0.34 119 8.0 8.0 1.84
Major
7 Daphne 24 - 0.08 93 6.0 12.0 0.34
Minor
8 Darwin 10 7 2.33 168 34.1 290.2 2.85
9 Eden 8 4 0.03 - 0.4 0.4 17.95
10 Enderby 2 2 0.18 112 2.6 50.2 0.10
11 Espanola 97 26 58.27 198 1.1 88.3 0.57
12 Fernandina 93 35 634.49 1494 43 95.3 4669.32
13 Gardner* 58 17 0.57 49 1.1 93.1 58.27
14 Gardner’ 5 4 0.78 227 4.6 62.2 0.21
15 Genovesa 40 19 17.35 76 47.4 92.2 129.49
16 Isabela 347 89 4669.32 1707 0.7 28.1 634.49
17 Marchena 51 23 129.49 343 29.1 85.9 59.56
18 Onslow 2 2 0.01 25 3.3 45.9 0.10
19 Pinta 104 37 59.56 777 29.1 119.6 129.49
20 Pinzén 108 33 17.95 458 10.7 10.7 0.03
21 Las Plazas 12 9 0.23 - 0.5 0.6 25.09
22 Rabida 70 30 4.89 367 4.4 24.4 572.33
23 San 280 65 551.62 716 45.2 66.6 0.57
Cristobal
24 San 237 81 572.33 906 0.2 19.8 4.89
Salvador
25 Santa Cruz 444 95 903.82 864 0.6 0.0 0.52
26 Santa Fé 62 28 24.08 259 16.5 16.5 0.52
27 Santa 285 73 170.92 640 2.6 49.2 0.10
Maria
28 Seymour 44 16 1.84 - 0.6 9.6 25.09
29 Tortuga 16 8 1.24 186 6.8 50.9 17.95
30 Wolf 21 12 2.85 253 34.1 254.7 2.33

*Near Espanola. ¥ Near Santa Maria.
The values marked - are not known.

Source: Andrews and Herzberg (1985).
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7.4.2 Missing values

Delving right into the analysis without a consideration of certain questions
can lead to misinterpretation. Before we start, we should decide how we are
going to treat missing values. In the table there are five missing values of ele-
vation. All of the missing values, with the exception of the first observation,
are for islands that have extremely small areas (and, with the exception of
Seymour, small numbers of species). There are various ways we can proceed,
including:

(1) Delete all observations with missing values. This is the default option used
by many software packages.

(2) Replace missing values with the mean. Most statistical software packages
have an option that allows missing values to be replaced with the mean of
the remaining values.

(3) Use the other independent variables, or some subset of them, to predict
the missing value. We could perform an initial regression of elevation on
the other four independent variables for the nonmissing cases. Then we
can use the results to predict the value of elevation, based upon the values
of the other independent variables, for the missing observations.

Which option, or combination of options, should we choose? Option two is
not a reasonable one here. The mean elevation is 412 m, and it would be
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Table 7.8 The kitchen-sink model

Variables Entered/Removed®

Variables Variables
Model | Entered Removed | Method
1 AREAADJ,
DISSC,
AREA, Enter
DISNISL,
ELEV®

? All requested variables entered.
® Dependent Variable: SPECIES

Model Summary

Adjusted | Std. Error of
Model R R Square | R Square | the Estimate

1 .877% .768 .707 65.9482
2 predictors: (Constant), AREAADJ, DISSC, AREA,
DISNISL, ELEV
ANOVA®
Sum of Mean

Model Squares Df Square F Sig.
1 Regression 274097.4 5 | 54819.479 | 12.605 | .000°

Residual 82634.046 19 4349.160

Total 356.731.4 | 24

2 predictors: (Constant), AREAADJ, DISSC, AREA, DISNISL, ELEV
® Dependent Variable: SPECIES

Coefficients®
Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) 11.485 25.626 .448 .659
AREA -2.85E-02 .025 -.220 -1.141 .268
ELEV .330 .063 1.212 5.270 .000
DISNISL -.155 1.149 -.019 -134 .894
DISSC -.260 .243 -.149 -1.068 .299
AREAAD)J -7.96E-02 .020 -.611 -3.903 .001

? Dependent Variable: SPECIES

foolish to suppose that the unknown elevations are this great on the very small
islands for which we have no data.

For the very small islands (observations 5, 9, and 21), one can justifiably
exclude them from the analysis. Although we might also exclude Baltra and
Seymour, here we will estimate their elevations from a regression of elevation
on area. The resulting regression equation is

Elevation = 300 + 0.358(Area) (7.10)

We estimate Baltra’s elevation as 300+ 25.09(0.358)=309 m, and Seymour’s
as 300+ 1.84(0.358)=301 m.
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7.4.3 Outliers and Multicollinearity

A cursory examination of the data reveals that there is a small number of
large islands. This is not an unusual feature of many studies, and it is impor-
tant that we know whether these observations are exerting a significant effect
on the results. Leverage values are designed to indicate how influential parti-
cular observations are in regression analysis. If the leverage value exceeds
2p/n, where p is the number of independent variables, the observation should
be considered as an outlier.

We also want to make sure that multicollinearity is not exerting an undue
influence on the results. An examination of the correlations among the inde-
pendent variables will reveal those where the high correlations exist. The
tolerance is equal to the amount of variance in an independent variable that
is not explained by the other independent variables. It is equal to 1 — r*, where
the r* is associated with the regression of the independent variable on all other
independent variables. A low tolerance indicates problems with multicollinear-
ity, since the variable in question has a high correlation with the other inde-
pendent variables. The reciprocal of the tolerance is the variance inflation factor
(VIF); if it is greater than about 5, this indicates potential multicollinearity
problems.

7.4.4 Model 2

In this second model, we have accounted for the missing elevation data and
have output information on outliers and multicollinearity.

From the output (Table 7.9), we see that the inclusion of Baltra and
Seymour has not changed the results very much. The r* value is 0.869, the
standard error of the residuals is about 65, and elevation and the area of the
adjacent island are still the only significant independent variables. We learn,
however, that the variance inflation factor is slightly high (though not greater
than the rule-of-thumb value of 5) for elevation and area. This is not surprising
when we also inspect the correlation matrix, which reveals a very high correla-
tion between the two variables.

One option for treating multicollinearity is to exclude from the analysis one
or more variables. Here area and elevation are correlated, and we might decide
to drop one of the two since they are close to being redundant (and since the
sign of one of them is not correct). Which one should we drop? The choice
should come primarily from a consideration of the underlying process and,
secondarily, from the magnitude of the variance inflation factors. Both area
and elevation should affect species number, but we will choose to exclude area
because (a) elevation is important in terms of species diversity, and (b) the VIF
is slightly higher for area than it is for elevation. A note of caution is in order
here. Dropping variables from the analysis should only occur after a well-
reasoned consideration of the underlying process. It does little to advance



Table 7.9 Regression estimation with outliers removed

Variables Entered/Removed®

Variables
Model | Entered

Variables
Removed | Method

DISSC,
AREA,
DISNISL,
ELEV®

1 AREAAD),

Enter

# All requested variables entered.
® Dependent Variable: SPECIES

Model Summary®

Std. Error
Adjusted of the
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Model R R Square | R Square | Estimate
1 .869° .755 .697 64.8830
 Predictors: (Constant), AREAADJ, DISSC, AREA,
DISNISL, ELEV
® Dependent Variable: SPECIES
ANOVA®
Sum of Mean
Model Squares df Square F Sig.
1 Regression 272396.7 5 | 54479.338 | 12.941 | .000°
Residual 88405.975 21 4209.808
Total 360802.7 26
2 Predictors: (Constant), AREAADJ, DISSC, AREA, DISNISL, ELEV
® Dependent Variable: SPECIES
Coefficients”
Unstandardized Standardized
Coefficients Coefficients Collinearity Statistics
Model B Std.Error Beta t Sig. | Tolerance VIF
1 (Constant) 3.501 24.263 144 .887
AREA -2.50E-02 .024 -192 | -1.023 | .318 331 3.026
ELEV .325 .061 1.191 5.291 .000 .230 4.339
DISNISL —-7.93E-03 1.124 -.001 -.007 .994 .592 1.689
DISSC -222 .237 -130 | -.936| .360 .604 1.654
AREAADJ —7.76E-02 .020 —-.594 | -3.880 .001 .498 2.009
*. Dependent Variable: SPECIES
Collinearity Diagnostics®
Condition Variance Proportions
Model Dimension | Eigenvalue Index (Constant) | AREA ELEV [ DISNISL| DISSC
1 1 3.170 1.000 .02 .01 .01 .02 .02
2 1.416 1.496 .00 .06 .01 .06 .04
3 .764 2.037 .00 12 .00 .00 .00
4 .347 3.021 .45 .09 .00 .23 .05
5 231 3.702 .00 .05 .02 .59 77
6 7.222E-02 6.625 .52 .67 .95 .10 12

* Dependent Variable: SPECIES

understanding of the process when important variables are dropped from the

regression equation solely because they don’t perform well.

The leverage values also reveal that several outliers have an important
impact upon the results. Leverage values are over the rule-of-thumb value of
2p/n=10/27=0.37 for observations 8, 12, 15, and 16. Fernandina (observation
12) and Isabela (observation 16) have by far the two highest elevations among
the thirty islands. There seems to be less justification for deleting the other
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two observations. Darwin (observation 8) and Genovesa (15) are geo-
graphic outliers, but there are also other geographic outliers with low
leverage values.

7.4.5 Model 3

In this third model, we have deleted area as an independent variable and have
deleted the observations for Fernandina and Isabela. The output (Table 7.10)

Table 7.10 Regression with missing data removed or estimated, and outliers and
area variable removed

Variables Entered/Removed”

Variables Variables
Model Entered Removed Method
1 AREAADJ,
ELEV, Enter
DISNISL,
DISSC’
* All requested variables entered.
® Dependent Variable: SPECIES
Model Summary®
Std. Error
Adjusted of the
Model R R Square | R Square Estimate
1 .858° .736 .684 62.2581

* Predictors: (Constant), AREAADJ, ELEV, DISNISL, DISSC
* Dependent Variable: SPECIES

ANOVA®
Sum of Mean
Model Squares df Square F Sig.
1 Regression 216670.7 4 | 54167.666 | 13.975 | .000°
Residual 77521.336 20 | 3876.067
Total 294192.0 24
® Predictors: (Constant), AREAADJ, ELEV, DISNISL, DISSC
® Dependent Variable: SPECIES
Coefficients®
Unstandardized Standardized
Coefficients Coefficients Collinearity Statistics
Model B Std.Error Beta t Sig. Tolerance VIF
1 (Constant) -5.179 24.690 -.210 .836
ELEV 344 .050 .831 | 6.936 | .000 919 | 1.088
DISNISL -.267 1.086 -.036 | —.246 | .808 .602 1.662
DISSC -.170 232 -.109 | -.730 474 .591 1.691
AREAAD) —5.15E-02 .081 -.073 | -.632 | .534 .981 1.020
* Dependent Variable: SPECIES
Collinearity Diagnostics®
Condition Variance Proportions
Model | Dimension | Eigenvalue Index (Constant) [ ELEV_[DISNISL] DISSC__[AREAAD
1 1 3.030 1.000 .02 .03 .03 .02 .02
2 932 1.804 .00 .00 .03 .03 72
3 .618 2.214 .03 .32 .07 .10 .16
4 274 3.325 .22 .09 .64 .25 .03
5 .146 4.556 .73 .56 .23 .59 .07

* Dependent Variable: SPECIES
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shows that only elevation remains significant. The value of > remains high at
0.858, and the standard error of the estimate is slightly lower, at about 62.
Multicollinearity is not an issue, since all of the VIFs are less than 5. Three
observations (Bartolome, Darwin, and Rabida) are still outliers. This is likely
due to their extreme values on some of the independent variables. Bartolomé
and Rabida are both adjacent to large islands, and Darwin is a long way
from Santa Cruz.

7.4.6 Model 4

To end up with a parsimonious model, we can remove the variables that are
not significant. Thus we regress species number on elevation. The result is
the equation

Species = —24.27 + 0.35(Elevation) (7.11)

From Table 7.11, the value of r* is still high at 0.846 (it is necessarily lower
than before since we have removed variables, but it has not declined very
much). The standard error of the estimate is about 60. Furthermore, a check
of the leverage values reveals no outliers.

Table 7.11 Final regression equation for species data

Variables Entered/Removed®

Variables Variables
Model Entered Removed Method

1 ELEV® Enter

* All requested variables entered.
® Dependent Variable: SPECIES

Model Summary®

Model R R Square | Adjusted | Std. Error
R Square of the
Estimate
1 .846° .716 .703 60.3225
ANOVA®
Model Sum of df Mean F Sig
Squares Square
1 Regression | 210499.4 1 210499.4 | 57.848 .000°
Residual 83692.624 23 3638.810
Total 294192.0 24
Coefficients®
Unstandardized Standardized
Model Coefficients Coefficients
B Std.Error Beta t Sig
1 (Constant) |-24.270 18.640 -1.302 .206
ELEV .350 .046 .846 7.606 .000

* Dependent Variable: SPECIES
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7.5 Variable Selection

As seen in the example, a common issue in regression analysis is the selection
of variables that will appear as explanatory variables on the right-hand side
of the regression equation. A brute-force approach to this question would be
to try all possible combinations. With p potential independent variables this
would mean that we would try p separate regressions that have just one inde-
pendent variable, all (5) = p(p — 1)/2 equations that have two variables, all
(4) = p(p — 1)(p — 2)/6 equations that have three variables, and so on. If p
is large, this is a lot of equations. Even with p=5, one would have to try 31
regression equations. But perhaps the real drawback is that this is even more
of a “kitchen-sink” approach than to include all of the variables on the
right-hand side. It amounts to an admission that we don’t know what we are
doing, and that our strategy is just to go with what looks best. It is always
desirable to start from hypotheses and underlying processes first, in keeping
with the principles of the scientific method described in the first chapter. In a
more exploratory spirit, however, there may be some cases where we really
have little in the way of a priori hypotheses — in this case, the all-possible
regressions approach might be viewed as a potential way to generate new
hypotheses.

An alternative way to select variables for inclusion in a regression equation is
the forward selection approach. The variable that is most highly correlated with
the dependent variable is entered first. Then, given that that variable is already
in the equation, a search is made to see whether there are other variables that
would be significant if added. If so, the one with the greatest significance is
added. In this way, a regression equation is built up. The procedure terminates
when there are no variables in the set of potential variables that would be
significant if entered into the equation.

Backward selection starts with the kitchen-sink equation, where all of the
possible independent variables are in the equation. Then the one that contrib-
utes least to the r* value is removed if the reduction in * is not significant. The
process of removing variables continues until the removal of any variable in the
equation would constitute a significant reduction in >,

Stepwise regression is a combination of the forward and backward pro-
cedures. Variables are added in the manner of forward selection. However,
as each variable is added, variables entered on earlier steps are re-checked to
see if they are still significant. If they are not still significant, they are removed.

7.6 Categorical Dependent Variable

There are many situations where the dependent variable will be a categorical
variable. For example, we may wish to model whether individuals patronize
a park as a function of the distance to the park, or whether individuals
commute by train as a function of automobile travel time. We may want to



MORE ON REGRESSION 141

estimate the probability that a customer patronizes any of, say, four super-
markets as a function of characteristics of the stores and characteristics of
the customers.

In each of these examples, the dependent variable is categorical in the sense
that possible outcomes may be placed into categories. An individual either goes
to the park or does not go. An individual either commutes by train or does not.
If there are only four choices of supermarkets in an area, the consumers may be
classified according to which one they patronize.

When the dependent variable is categorical, special consideration must be
given to how regression analyses are carried out. In this section, we will exam-
ine why this is the case, and we will find out how logistic regression may be used
in such situations.

7.6.1 Binary Response

In the simplest case, there are two possible responses. For example, we may
assign the dependent variable a value of y=1 if the individual takes the train
to work, and y=0 otherwise. Suppose, for instance, we had the data in
Table 7.12 for n=12 respondents.

A cursory examination of the table reveals that there seems to be a tendency
to take the train when the travel time by automobile would be high. Where
auto travel time is not as high, there is more of a tendency for the y variable to
be zero, indicating that the individual drives to work.

We could begin by running an ordinary least-squares analysis; we would find

7= —0.396 + 0.0153x (7.12)

The value of p, which is a continuous variable, may be interpreted as the
predicted probability of taking the train, given an automobile travel time
equal to x.

There are several problems with this approach. One is that the assumption of
homoscedasticity is not met; the estimated variance about the regression line is

Table 7.12

y x: Auto travel time (min)
0 32
1 89
0 50
1 49
0 80
1 56
0 40
1 70
1 72
1 76
0 32
0 58
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equal to y(1 — y) and therefore is not constant. Perhaps more troubling is that
the predicted probabilities (y) do not have to stay on the (0, 1) interval; the
reader might confirm that values of x less than around 25 will yield negative
probabilities, and values of y greater than about 100 will yield probabilities
greater than one! The problem is as shown in Figure 7.2.

How then should we proceed? One idea is to make the probabilities relate to
x in a nonlinear way. The logistic equation in Figure 7.3 has the following
equation:

ea+ﬂm

V= oo (7.13)

Note that when o + (Gx is a large negative number the predicted proba-
bility is near zero, whereas if « + (Gx is a large positive number the predicted

Figure 7.2 Predicted probabilities outside the (0,1) interval
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Figure 7.3 The logistic curve
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probability is near one. In these cases, the predicted probabilities approach their
asymptotes of 0 or 1 but never actually reach them. Thus it is no longer possible
to predict probabilities that are either negative or greater than one.

While we’ve solved one problem by keeping the dependent variable on the
(0, 1) interval, we’ve created another. How can we estimate the parameters? We
can’t use linear regression, since the equation is clearly not linear. One approach
is to use nonlinear least squares. Specifically, we want to find o and § to mini-
mize the sum of squared deviations between observed and predicted values

min > (- 5, (7.14)
i=1

where the predicted value, y;, is given by Equation 7.13 above. The answer,
when minimizing the sum of squared residuals for the data in Table 7.12, is
a = —4.501 and 5 = 0.0802.

Although the predicted probabilities are not linearly related to x, we can
transform the predicted probabilities into a new variable, z, which is linearly
related to x. The transformation is called the logistic transform, and it is
carried out by first finding y/(1 — ») and then taking the logarithm of the
result. The quantity y/(1 — ) is known as the odds, and so the new variable
is known as the “log-odds.” Thus we have

z:ln( Y > =a+ fx (7.15)
=y

The logistic regression model is therefore one that assumes that the log-odds
increases (or decreases) linearly as x increases (see Figure 7.4).

Odds are often stated in place of probabilities for events such as horse
racing. If the probability that a horse wins a race is 0.2, the probability that
it loses is y=0.8. The odds against it winning are stated as 4 to 1 (=0.8/0.2).
Suppose that five people each bet $1; one bets that the horse will win, and the
other four that the horse will lose. If the horse wins, the person betting for
the horse will collect $5, equal to the total amount bet (of course, in reality the
winner will have to give a share of his winnings to the race track, and to
the government in payment of taxes!). If the probability that the horse wins
rises to 0.333, the probability that it loses declines to y = 0.667, and the odds
against it decline to 2 to 1 (=0.667/0.333). Though it is less common to do so,
we could also state the odds in the other direction. When the horse has a
winning probability of 0.2, the odds that the horse wins are 0.2/0.8 = 0.25
to 1. When the probability of winning rises to 0.33, the odds in favor of the
horse rise to 0.33/0.67 = 0.5 to 1.

Returning to our example, the log-odds that an individual takes the train is
given by

z= 1n<1 Y ) = —4.501 +0.0802x (7.16)
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Log-odds

Figure 7.4 Linear relationship between log-odds and x

We see that the slope coefficient § tells us how much the log-odds will
change when x changes by one unit. In the present example, when x = 32
minutes, the predicted probability of taking the train is 0.1262, using x = 32
and the estimated values of « and (. The odds of taking the train are then
given as 0.1444 (=0.1262/(1 —0.1262) to 1. Stated another way, the odds
against taking the train are 6.92 (=1/0.1444) to 1.

Should the individual experience an increase in auto travel time of one
minute, the log of the odds of choosing the train would go up by 0.0802.
What does it mean to say that the log of the odds has gone up by 0.0802?
We can “undo” the log by exponentiating; if @ = In(b), then b = ¢“. This means
that if the log of the odds has increased by 0.0802, the odds of choosing
the train have increased by a factor of ¢%%% = 1.084. The new odds of
taking the train are now equal to 0.1565 = 0.1444 % 1.084 to 1. Equivalently,
the odds against the train have declined by a factor of 1.084, and are now 6.39
(=6.92/1.084) to 1.

When the automobile travel time increases by one minute, from x = 32
to x=33, the probability of taking the train increases from 0.1262 to 0.1353.
This may be verified by using Equation 7.2 with the estimated values of «
and 3, and x = 33:

et 0.1565
1 4eot T 140.1565

i

=0.1353 (7.17)

Finally, note that in logistic regression, when « + Bx =0, the predicted
probability is equal to 1/2 (since e’ = 1). This is equivalent to x = —a/B. In
our example, —«a/f = —4.501/0.0802, which is approximately equal to 56.
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When automobile travel time is about 56 minutes, the probability that an
individual takes the train is about 0.5 (or “50-50’).

7.7 A Summary of Some Problems That Can Arise in Regression
Analysis

Table 7.13, adapted from Haining (1990a), summarizes some of the problems
that can plague regression analyses. The table describes the consequences of
the problem and, in addition, describes how the problem may be diagnosed
and corrected. Section numbers refer to other sections of this text that pro-
vide relevant discussion of the problem.

7.8 Multiple and Logistic Regression in SPSS for Windows 9.0
7.8.1 Multiple Regression

Data input is similar to that for simple linear regression (Chapter 6). Each
observation is represented by a row in the data table, and each variable is
represented by a column.

Click on Analyze/Regression/Linear. Then move the dependent variable into
the box labeled Dependent on the right, and move the desired independent
variables into the box labeled Independents. Then click on OK.

There are a number of common options that you may wish to choose before
clicking on OK. Under save, it is common to check the boxes to save pre-
dicted values, residuals, leverage values to detect outliers, and confidence
intervals for either the mean (i.e., the regression line) or individual predictions.
All of these saved quantities will be attached as new columns in the dataset.
Under statistics, it is desirable to check Collinearity diagnostics, to check for
multicollinearity. Under the box where variables that are in the regression are
indicated, one may choose the method by which independent variables are
entered onto the right-hand side. The default is “enter”’, which means that all
independent variables will be entered. A common alternative is to choose
stepwise, which enters and removes variables one at a time, depending upon
their significance.

7.8.2 Logistic Regression

There are two ways that logistic regression may be carried out using SPSS
for Windows. The first approach is to use nonlinear least squares. This is
easiest to understand, since, as the previous section indicates, we are simply
looking for the values of o and [ that will make the sum of squared resid-
uals as small as possible.
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Table 7.13 Some problems that can arise in regression analysis

Problem Consequences Diagnostic Corrective action

Residuals:

Nonnormal Inferential tests Shapiro-Wilk Transform y values
may be invalid test (4.82)

Heteroscedastic

Not independent

Nonlinear
relationship

Multicollinearity
(7.1.1)

Incorrect set
of explanatory
variables (7.2)

Outliers (7.4)

Categorical
response variable
Spatially varying
parameters
geographically
Missing data at
random

Missing data
(nonrandom)

Biased estimation
of error variance,
leading to invalid
inference

Underestimate-
variance of
regression
coefficients.
Inflated R?

Poor fit and
nonindependent
residuals

Variance of
regression
estimates is
inflated

Difficulties in
performing
efficient analysis,
and poor regression
estimates

May severely affect
model estimates
and fit

Linear regression
model inappropriate

Invalid estimation
and inference

Could waste other
case information if
deleted

Possibly invalid
estimation and
inference

Plot residuals
against y and xs

Moran’s / (8.3.3)

Scatterplots of
y against xs.
Added variable

plots (9.2)

Variance inflation
factor (7.4)

Added variable
plots (9.2)

Plots. Leverage
values (7.4)

Moran’s | (8.3.3)

Transform y values

Spatial regression
(9.3

Transform y and/or x
variables

Delete variable(s)

Stepwise regression
(7.5)

Delete observations
(7.4)

Logistic regression
(7.6)

Expansion method;

Weighted regression
9.4)

Estimate missing
values (7.4)

Delete observation
(7.4)

Note: Relevant sections of text are given in parentheses.
Source: Adapted from Haining (1990a), pp. 332-33.

Data input. In both cases, the approach to data input is the same. As in
linear regression, the dependent variables and independent variables are
arranged in columns. Each row represents an observation. It is common, but
not necessary, to have the dependent variable in the first column. Make sure
that the column containing the dependent variable consists of a column of
“0”s and ““1”’s, consistent with its binary response nature.
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Using SPSS for Windows 9.0 and nonlinear least squares

1. Choose Analyze, Regression, Nonlinear.

2. Under parameters, define o and 3, and give estimated values. Choosing
good estimated values is sometimes important, and not always easy to do.
It may require a bit of trial and error. Using « = 0 and 5 = 0 is often not a
bad way to start.

3. Next, select the dependent variable.

4. Next, set up the model; this refers to the equation for the predicted values
of the dependent variable. For logistic regression you should define the
model as in Equation 7.13.

5. Choose OK to run the nonlinear least-squares analysis.

The nonlinear least-squares approach, however, is a bit more awkward to
implement in SPSS than its alternative, known as the maximum likelihood
approach to finding « and §. In addition, maximum likelihood is, to a statis-
tician, generally a preferable alternative since it produces estimates that are
unbiased and that have relatively smaller sampling variances, at least when the
sample sizes are large.

Many statistical packages, including SPSS for Windows 9.0, make use of
maximum likelihood estimation. The likelihood of observing y = 1 is

ea+ﬂx

1+ ea+/}x

Similarly, the likelihood of observing y =0 is

ea+ Bx

- 1+ ea-‘rﬂx

The likelihood of the sample is therefore

eaJrﬁx ZJ’,‘ eoa+;3x ”*Z«"i
L= 1+ ea-&-ﬁx - 1+ ea-o—{)’x

Many programs, such as SPSS for Windows, choose o and (8 to maximize
this likelihood of obtaining the observed sample.

Using logistic regression in SPSS for Windows

1. Choose Analyze, Regression, Logistic.
2. Choose the dependent variable and the covariates (independent variables).
3. Choose OK.
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Table 7.14 Logistic regresssion output

Dependent Variable.. TRAIN

Beginning Block Number O. 1Initial Log Likelihood Function
-2 Log Likelihood 16.635532

* Constant is included in the model.

Beginning Block Number 1. Method: Enter

Variable(s) Entered on Step Number
1.. AUTOTT

Estimation terminated at iteration number 4 because
Log Likelihood decreased by less than .01 percent.

-2 Log Likelihood 12.543
Goodness of Fit 11.629
Cox & Snell - R"2 . 289
Nagelkerke - R"2 . 389

Chi-8quare df significance

Model 4,093 1 .0431
Block 4,093 1 .0431
Step 4.093 1 .0431
Classification Table for TRAIN
The Cut Value i= .50
Predicted
.00 1.00 Percent Correct
o] 1
Observed
.00 0 5 1 83.33%
1.00 1 2 4 66.67%
Overall 78.00%
---------------------- Variables in the Equation -~--=-=ccecceac--
Variable B S.E, Wald daf 8ig R
AUTOTT .0773 . 0456 2.8744 1 .0900 .2293

Constant ~4,5362 2.7641 2.6933 1 .1008

Exp(B)
1.0804
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Using the SPSS for Windows logistic regression routine, we find

z=—4.5362+40.0773x

Note that these values of o = —4.5362 and = 0.0773 are similar to those
found via nonlinear least squares.

Interpreting output from logistic regression. Tables 7.14 and 7.15 display the
output from the logistic regression analysis of the commuting behavior data
in Table 7.12. We are, of course, interested in the slope and intercept, and
these are displayed in the same part of the output where we found them in
linear regression. They are given along with their standard deviations (also
known as standard errors; see the column headed ““S.E.”). If the coefficients
are more than twice their corresponding standard errors (approximately),
they may be regarded as significantly different from zero. In this example,
the coefficients are not significantly different from zero; this is also reflected
in the column headed ““Sig,” where we find that the p-value associated with
each coefficient is greater than 0.05.

Note that the output also contains a column headed Exp(B); this is the
exponentiated slope referred to in the text, and it tells us by how much the
odds will change when the x variable is increased by one unit. In this example,
an increase of one minute in the commuting time leads to the odds of taking the
train increasing by a factor of 1.0804.

Another interesting part of the output is the two-by-two classification table.
It shows us that there were six observations where y=0 (the individual did not
take the train). Of these, five were predicted correctly by the logistic regression
equation, and one was predicted incorrectly. (A prediction is classified as
“correct” if the model predicts that the actual outcome has a likelihood of

Table 7.15 Summary of results

Predicted probabilities

Y X: Auto travel time (min) Linear OLS Logistic
0 32 .093 113
1 89 .963 913
0 50 .368 .339
1 49 .352 .321
0 80 .826 .839
1 56 459 .449
0 40 215 191
1 70 .673 .706
1 72 .704 737
1 76 .765 793
0 32 .093 113
0 58 490 487
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greater than 0.5.) Note that the fifth individual has an observed auto travel
time of x = 80 minutes. The model predicted that there would be a 0.839
probability that the individual would take the train (Table 7.14), yet we
observed that he/she did not (y = 0).

Of the six individuals who did take the train, the model predicted four
correctly, and there were two cases where the model predicted that the individ-
ual would not take the train when in fact they did. Individuals 4 and 6 both
took the train, yet the model predicted probabilities of less than 0.5 that they
would do so. This table summarizes how successful the model is in predicting
actual outcomes.

Exercises

1. The following data are collected in a study of park attendance:

Park visit?
1=yes; 0=no Distance from park (km)

o
[¢]

OO0 2 2 0000 = = mdmd v v OO0 -0 =0
ONDPRPRIOATOOOWONUVIW=2NNUON WA -=O

Use logistic regression to determine how the likelihood of visiting the park
varies with the distance that an individual resides from the park.

2. In American football, the likelihood of a successful field goal declines with
increasing distance. The following data were collected one week from games
played by teams in the National Football League.
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Made?

1=yes; 0=no Yards
34
20
51
32
51
29
19
37
43
47
24
31
41
22
26
34
41
24
39
43

o

[T N (U G G G G G g g o T o IO o T o TS o T

(a) Use logistic regression to determine how the odds of making a field goal
change as distance increases.

(b) Use the results to draw a graph depicting how the predicted probability of
making a field goal changes with distance.

(¢) In the waning seconds of SuperBowl XXV, Scott Norwood missed a
47-yard field goal that would have carried the Buffalo Bills to victory
over the New York Giants. Use your model to predict the likelihood
that a kicker is successful at a 47-yard field goal attempt. Did Norwood
really deserve the criticism he received for missing the attempt?

3. What is multicollinearity? How can it be detected? Why is it a potential
problem in regression analysis? How might its effects be ameliorated?

4. The number of times per year a person uses rapid transit is a linear function
of income:

Y =12424X, + 84X, 4+ 15.6X3
where X7, X», and X3 are dummy variables for medium, high, and very high
incomes, respectively (the low income category has been omitted). What is

the predicted number of annual transit trips per year for each of the four
income categories?

5. Given the following data,

Y

_—_0 =0
whH o X
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is B (the “slope” of the logistic curve) positive or negative? How do you
know?

6. Suppose, for a given set a data, we find that a logistic regression yields
(= —0.43. What is the change in odds for a unit change in x?

7. The following results were obtained from a regression of n=14 housing
prices (in dollars) on median family income, size of house, and size of lot:

(a)
(b)
(©
(d)
(©

()

(2
(h)

Sum of squares df  Mean square F
Regression SS: 4234 3 — —
Residual SS: 3487 — —
Total SS: — —
Coefficient Standard error VIF
(b) (sb)
Median family income 1.57 0.34 1.3
Size of house (sq. ft.) 23.4 11.2 29
Size of lot (sqg. ft) -9.5 71 1.3
Constant 40000 1000

Fill in the blanks.

What is the value of R*?

What is the standard error of the estimate?

Test the null hypothesis that R*=0 by comparing the F-statistic from the
table with its critical value.

Are the coefficients in the direction you would hypothesize? If not, which
coefficients are opposite in sign from what you would expect?

Find the r-statistics associated with each coefficient, and test the null
hypotheses that the coefficients are equal to zero. Use a=0.05, and be
sure to give the critical value of ¢.

What do you conclude from the variance inflation factors (VIFs)? What
modifications would you recommend in light of the VIFs?

What is the predicted sales price of a house that is 1500 square feet, on a
lot 60 ft x 100 ft, and in a neighborhood where the median family income
is $40000?

8. Choose a dependent variable and two or three independent variables. The
variables chosen should be defined spatially. There should be at least 15 to 20,
and preferably about 30 observations.

(a)
(b)
(©

State any null hypotheses you may have, as well as the alternative
hypotheses.

Graph the dependent variable (y) vs each independent (x) variable.
Describe any obvious outliers.

Graph the dependent variables against each other, and comment on any
obvious multicollinearity.



(d)

©
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Regress y on each of the independent variables separately. Also regress

y on the combined set of all independent variables. If you have three

independent variables, you may wish to regress y on pairs of independent

variables. Comment on the results.

For the regression including only the single most significant independent

variable,

(i) find and graph the 95% confidence interval for the regression line;

(i1) find and graph the 95% confidence interval for predictions of the y
values.

9. Use the data in Table 7.7 to study how the number of native species on
islands varies with the size of the island, the maximal elevation of the island,
and the distance to nearby islands. There are many choices you will need to
make; there is no single ““correct” answer to this question. Some considerations
you should think about include:

(a)

(b)
©

What should be done about the missing elevation values that occur in
some cases?

Are there outliers? If so, how can they be identified?

What about multicollinearity? Should variable(s) be eliminated from the
analysis?

One goal you should have is to come up with a “best’” equation, in the sense
that variables in the equation are both significant and meaningful.



8 Spatial Patterns

LEARNING OBJECTIVES

e Finding geographic patterns in point and areal data

e Introduction to local statistics

e Application of Monte Carlo simulation tests to the statistical analysis of
geographic clustering

8.1 Introduction

One assumption of regression analysis as applied to spatial data is that the
residuals are not spatially autocorrelated — that is, there is no spatial pattern to
the errors. Residuals that are not independent can affect estimates of the var-
iances of the coefficients and hence make it difficult to judge their significance.

We have also seen in other, previous chapters that lack of independence
among observations can affect the outcome of ¢-tests, ANOVA, and correla-
tion, often leading one to find significant results where none in fact exist.

In addition to a desire to remove the complicating effects of spatially depen-
dent observations, spatial analysts also seek to learn whether geographic phe-
nomena cluster in space. Here they have a direct interest in the phenomenon
and/or process itself, not an indirect one; the latter is the case when one wishes
to correct a statistical analysis based upon spatial data. For example, crime
analysts wish to know if clusters of criminal activity exist. Health officials seek
to learn about disease clusters and their determinants.

In this chapter we will investigate statistical methods aimed at detecting
spatial patterns and assessing their significance. The structure of the chapter
follows from the fact that data are typically in the form of either point loca-
tions (where exact locations of, e.g., disease or crime are available) or in the
form of aggregated areal information (where, e.g., information is available only
on regional rates).

8.2 The Analysis of Point Patterns

Carry out the following experiment:

Draw a rectangle that is six inches by five inches on a sheet of paper. Locate 30
dots at random within the rectangle. This means that each dot should be
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located independently of the other dots. Also, for each point you locate,
every subregion of a given size should have an equal likelihood of receiving
the dot.

Then draw a six-by-five grid of 30 square cells on top of your rectangle. You
can do this by making little tick marks at one-inch intervals along the sides of
your rectangle. Connecting the tick marks will divide your original rectangle
into 30 squares, each having a side of length one inch.

Give your results a score, as follows. Each cell containing no dots receives 1
point. Each cell containing one dot receives 0 points. Each cell containing two
dots receives 1 point. Cells containing three dots receive 4 points, cells containing
four dots receive 9 points, cells containing 5 dots receive 16 points, cells contain-
ing 6 dots receive 25 points, and cells containing 7 dots receive 36 points. Find
your total score by adding up the points you have received in all thirty cells.

DO NOT READ ON UNTIL YOU HAVE COMPLETED THE
INSTRUCTIONS ABOVE!

Classify your pattern as follows:

If your score is 16 or less, your pattern is significantly more uniform or regular
than random.

If your score is between 17 and 45, your pattern is characterized as random.

If your score is greater than 45, your pattern exhibits significant clustering.

On average, a set of 30 randomly placed points will receive a score of 29.
95% of the time, a set of randomly placed points will receive a score between 17
and 45. The majority of people who try this experiment produce patterns that
are more uniform or regular than random, and hence their scores are less than
29. Their point patterns are more spread out than a truly random pattern.
When individuals see an empty space on their diagram, there is an almost
overwhelming urge to fill it in by placing a dot there! Consequently, the
locations of dots placed on a map by individuals are not independent of the
locations of previous dots, and hence an assumption of randomness is violated.

Consider next Figures 8.1 and 8.2, and suppose you are a crime analyst look-
ing at the spatial distribution of recent crimes. Make a photocopy of the page,
and indicate in pencil where you think the clusters of crime are. Do this by simply
encircling the clusters (you may define more than one on each diagram).

DO NOT READ THE NEXT PARAGRAPH UNTIL YOU HAVE
COMPLETED THIS EXERCISE!

How many clusters did you find? It turns out that both diagrams were
generated by locating points at random within the square! In addition to
having trouble drawing random patterns, individuals also have a tendency to
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Figure 8.2 Spatial pattern of crime

“see” clusters where none exist. This results from the mind’s strong desire to
organize spatial information.

Both of these exercises point to the need for objective, quantitative measures
of spatial pattern — it is simply not sufficient to rely on one’s visual interpreta-
tion of a map. Crime analysts cannot necessarily pick out true clusters of crime
just by looking at a map, nor can health officials always pick out significant
clusters of disease from map inspection.

8.2.1 Quadrat Analysis

The experiment involving the scoring of points falling within the “6 x 5 rec-
tangle is an example of quadrat analysis, developed primarily by ecologists in
the first half of the twenticth century. In quadrat analysis, a grid of square cells
of equal size is used as an overlay on top of a map of incidents. One then
counts the number of incidents in each cell. In a random pattern, the mean
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number of points per cell will be roughly equal to the variance of the number of
points per cell.

If there is a large amount of variability in the number of points from cell to
cell (some cells have many points, some have none, etc.), this implies a ten-
dency toward clustering. If there is very little variability in the number of
points from cell to cell, this implies a tendency toward a systematic pattern
(where the number of points per cell would be the same). The statistical test
makes use of a chi-square statistic involving the variance—mean ratio:

X’ _m-1)s (8.1)

X
where m is the number of quadrats, and X and s° are the mean and variance of
the number of points per quadrat, respectively. This value is then compared
with a critical value from a chi-square table with m — 1 degrees of freedom.

Quadrat analysis is easy to employ, and it has been a mainstay in the spatial
analyst’s toolkit of pattern detectors over several decades. One important issue
is the size of the quadrat; if the cell size is too small, there will be many empty
cells, and if clustering exists on all but the smallest spatial scales it will be
missed. If the cell size is too large, one may miss patterns that occur within
cells. One may find patterns on some spatial scales and not at others, and thus
the choice of quadrat size can seriously influence the results. Curtiss and
Mclntosh (1950) suggest an “optimal’” quadrat size of two points per quadrat.
Bailey and Gatrell (1995) suggest that the mean number of points per quadrat
should be about 1.6.

Summary of the quadrat method

(1) Divide a study region into m cells of equal size.

(2) Find the mean number of points per cell (X). This is equal to the total
number of points divided by the number of cells (7).

(3) Find the variance of the number of points per cell, s, as follows:

=m

(x; — x)°

Y
o
|
T
—
o
5
~—

m—1

where Xx; is the number of points in cell 7.
(4) Calculate the variance-mean ratio (VMR):

k\|h[\.)

VMR =

(5) Interpret the results as follows.

If s?/% < 1, the variance of the number of points is less than the mean. In
the extreme case where the ratio approaches zero, there is very little variation in
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the number of points from cell to cell. This characterizes situations where the
distribution of points is spread out, or uniform, across the study area.

If sz/)‘c > 1, there is a good deal of variation in the number of points per
cell — some cells have substantially more points than expected ( i.e., x; > X for
some cells i), and some cells have substantially fewer than expected (i.e.,
x; < X). This characterizes situations where the point pattern is more clustered
than random. A value of s*/% near one indicates that the points are close to
being randomly distributed across the study area.

Hypothesis Testing. How can we be more precise in testing the null hypothesis
that there is no spatial pattern? Suppose we were to simulate the null
hypothesis by placing points at random in a study area, and that we then
carried out the procedure described above for finding the variance—mean
ratio. Furthermore, suppose we were to repeat this many times (say 1000),
and then draw a histogram of the results. We would find that the mean of
our 1000 VMR values would be near one, and that the histogram would be
asymmetric, displaying a positive skew (see Figure 8.3). Values of VMR in the
tails of the histogram (also known as the sampling distribution of VMR),
indicate values that are relatively rare when the underlying null hypothesis of
no pattern is true.

For an actual set of observed data, we decide to accept the null hypothesis
that the points are randomly distributed in space if the VMR for the observed
data does not differ too much from one; otherwise, we reject the null hypoth-
esis. More specifically, if the VMR for an observed pattern is greater than
VMRy (shown in Figure 8.3), the null hypothesis is rejected, and the pattern
is taken to be more uniform than random. Similarly, if the observed VMR is
less than VMR, the null hypothesis is rejected, and the pattern is taken to be
more clustered than random.

Figure 8.3 Sampling distribution of VMR when H is rue
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If we were to actually observe an extreme value of VMR in our data (either
greater than VMRy or less than VMR ), we reject the null hypothesis that the
pattern is random. In this case, either (a) the null hypothesis is actually true (in
which case we have incorrectly rejected it, and committed a Type I error), or
(b) the null hypothesis is not true, and we have made a correct decision. To
establish the critical, cutoff values, VMR and VMRy,, we first have to decide
upon how great a likelihood of a Type I error that we are willing to tolerate.

If we use o = 0.05, then the 50 most extreme values out of the total of 1000 in
our experiment are used to obtain the critical values (since 50/1000 =0.05). If
we rank the 1000 VMR values from lowest to highest, the 25th VMR on our
list would be chosen as VMR ; 25 out of 1000 times we will observe a lower
VMR than this when H is true. Similarly, the 975th VMR on our ordered list
would be chosen as VMRyy; 25 out of 1000 times we can expect to observe a
VMR higher than this when Hj is true. Thus 50 out of 1000, or 5% of the time
we will incorrectly reject a true hypothesis when we use these critical values. In
those 50 instances, we would make a Type I error, since we would reject H,
when in fact it was true, and we had simply observed an unusual value of VMR
in the tail of the sampling distribution.

Example. We wish to know whether the pattern observed in Figure 8.4 is
consistent with the null hypothesis that the points were placed at random. We
first calculate the VMR. There are 100 points on the 10 x 10 grid, implying a
mean of one point per cell. There are 6 cells with 3 points, 20 cells with 2 points,
42 cells with one point, and 32 cells with no points. The variance is

{6(3 124202 = 1)2 +42(1 — 1)> +32(0 — 1)2}/99 —76/99 = 0.77 (8.4)

Figure 8.4 A spatial point pattern
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and, since the mean is equal to one, this is also our observed VMR. Since
VMR <1, there is a tendency toward a uniform pattern. How unlikely is a
value 0.77 if the null hypothesis is true — is it unlikely enough that we should
reject the null hypothesis?

To assess this, we need to find the sampling distribution of VMR, when H|) is
true. One hundred points were assigned to cells at random in a 10 x 10 grid.
The VMR was calculated using ¥ = 1, since there is an average of one point per
cell. This was repeated 1000 times to establish the form of the sampling dis-
tribution, when the null hypothesis of a random point pattern is true. The
resulting 1000 VMRs were ranked from lowest to highest. The 25th lowest
value was VMR =0.747 and the 975th value on the list was VMRy =1.313.

These critical values can then be used to decide whether the actual pattern of
interest exhibits significant deviations from randomness. Since our observed
value of VMR =0.77 is not less than the lower critical value of 0.7475, we
accept the null hypothesis: a VMR of 0.77 is not particularly unusual when H,
is true.

The process of deriving a sampling distribution via simulation of the null
hypothesis in the manner we have just described is known as the Monte Carlo
method. It has the merit of making the underlying ideas associated with
hypothesis testing easy to convey and, hopefully, easy to understand. But if
we had ten people each using the Monte Carlo method to find critical values of
VMR in this example, we would get ten different sets of critical values. The
larger the number of repetitions, the closer together the sets of critical values
would be. Another feature of the Monte Carlo method in this example is that
the critical values we found are only appropriate when there are 100 points in
100 cells. If we were to look at another example with other than 100 cells, we
would need to repeat a large number of simulations under the null hypothesis
to establish critical values.

There is an easy way to avoid having to actually simulate the sampling
distribution under the assumption that H, is true. The critical values can be
determined by using the fact that the quantity y> =(m — 1)VMR has a chi-
square distribution, with m — 1 degrees of freedom, when H is true. This fact
allows us to obtain critical values, Xi and Xﬁ, from a chi-square table. In
particular, we will reject H, if either x2 < xi or x2 > XIZ-L

When the number of degrees of freedom (df) is large, the sampling distribu-
tion of x> =(m — 1)VMR begins to approach the shape of a normal distri-
bution. In particular, when df>30 or so (m— 1)VMR will, when Hj is true,
have a normal distribution with mean m — 1 and variance equal to 2(m — 1).
This means that we can treat the quantity

_ (m—=1)VMR — (m—1) e B
z= ST =/( 1)/2 (VMR — 1) (8.5)

as a normal random variable with mean 0 and variance 1. With o =0.05, the
critical values are zp = —1.96 and zy= +1.96. The null hypothesis of no
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pattern is rejected if z <z (implying clustering) or if z>_zy (implying uni-
formity). In our example, we have

_POTD =9 /5575077~ 1) = —1.618 (8.6)
2(99)

This also falls within the critical values of z and hence we do not have strong

enough evidence to reject the null hypothesis.

If cells of a different size had been used, the results, and possibly the con-
clusions, would have been different. By aggregating the cells in Figure 8.4 to a
5x 5 grid of 25 cells, the VMR declines to 0.6875 (based on a variance of
1.658” and a mean of 4 points per cell). The x> value is 24(0.6875)=16.5.
Since the number of degrees of freedom is less than 30, we will use the chi-
square table (Table A.5) to assess significance. With 24 degrees of freedom, and
using interpolation to find the critical values at p =0.025 and p=0.975, yields
X = 12.0 and y# = 40.5. Since our observed value falls between these limits,
we again fail to reject the hypothesis of randomness.

To summarize, after finding VMR, steps 1-4 above, calculate X2 =
(m — 1)VMR, and compare it with the critical values found in a chi-square
table using df =m — 1. If m — 1 is greater than about 30, you can use the fact
that z = y/(m — 1)/2(VMR — 1) has a normal distribution with mean 0 and
variance 1, implying that, for a=0.05, one can compare z with the critical
values z;p = — 1.96 and z; = +1.96.

It is interesting to note that the quantity y> = (m — 1)VMR may be written as

¥} = (m—1)VMR = (m —xl)s2 _ (m —)1623:(«‘;[)— %) _ X (x;z_ x)’ (8.7)

The quantity Y (x; — %)’ /X is the sum across cells of the squared deviations of
the observed numbers from the expected numbers of points in a cell, divided by
the expected number of points in a cell. This is commonly known as the
chi-square goodness-of-fit test.

8.2.2 Nearest Neighbor Analysis

Clark and Evans (1954) developed nearest neighbor analysis to analyze the
spatial distribution of plant species. They developed a method for comparing
the observed average distance between points and their nearest neighbors with
the distance that would be expected between nearest neighbors in a random
pattern. The nearest neighbor statistic, R, is defined as the ratio between the
observed and expected values:

Ry X
=R~ 1/(2v) (88)
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where X is the mean of the distances of points from their nearest neighbors and
A is the number of points per unit area. R varies from 0 (a value obtained
when all points are in one location, and the distance from each point to its
nearest neighbor is zero) to a theoretical maximum of about 2.14 (for a
perfectly uniform or systematic pattern of points spread out on an infinitely
large two-dimensional plane). A value of R=1 indicates a random pattern,
since the observed mean distance between neighbors is equal to that expected
in a random pattern. It is also known that if we examined many random
patterns, we would find that the variance of the mean distances between
nearest neighbors is

4 -7

VIRl =1

(8.9)

where 7 is the number of points. Thus we can form a z-test to test the null
hypothesis that the pattern is random:

(RO - Re) o RO — Re B B -
VIR A= ok RV (8.10)

The quantity z has a normal distribution with mean 0 and variance 1, and
hence tables of the standard normal distribution may be used to assess signifi-
cance. A value of z>1.96 implies that the pattern has significant uniformity,
and a value of z<—1.96 implies that there is a significant tendency toward
clustering.

The strength of this approach lies in its ease of calculation and comprehen-
sion. Several cautions should be noted in the interpretation of the nearest
neighbor statistic. The statistic, and its associated test of significance, may be
affected by the shape of the region. Long, narrow, rectangular shapes may have
relatively low values of R simply because of the constraints imposed by the
region’s shape. Points in long, narrow rectangles are necessarily close to one
another. Boundaries can also make a difference in the analysis. One solution to
the boundary problem is to place a buffer area around the study area. Points
inside the study area may have nearest neighbors that fall within the buffer
area, and these distances (rather than distances to those points that are nearest
within the study area) should be used in the analysis.

Another potential difficulty with the statistic is that, since only nearest neigh-
bor distances are used, clustering is only detected on a relatively small spatial
scale. To overcome this it is possible to extend the approach to second- and
higher-order nearest neighbors.

It is often of interest to ask not only whether clustering exists, but whether
clustering exists over and above some background factor (such as population).
Nearest neighbor methods are not particularly useful in these situations
because they only relate to spatial location and not to other attributes.
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The approaches to the study of pattern that are described in the next section
do not have this limitation.

lllustration. For the point pattern in Figure 8.5, distances are given along the
lines connecting the points. The mean distance between nearest neighbors is
Ry=(1+2+3+1+3+3)/6=13/6=2.167. The expected mean distance
between nearest neighbors in a pattern of six points placed randomly in a
study region with area 7 x 6 =42 is

R, =1/(2V)) = 1/(21/6/42) = 1.323 (8.11)

The nearest neighbor statistic is R=2.167/1.323 = 1.638, which means that the
pattern displays a tendency toward uniformity. To assess significance, we can
calculate the z-statistic from (8.10) as 3.826 (2.167 — 1.323) /6/42 x 6 = 2.99,
which is much greater than the critical value of 1.96; this implies rejection of
the null hypothesis of a random pattern. However, we have neglected bound-
ary effects, and these have a significant effect. As an alternative way to test the
null hypothesis, we can randomly choose 6 points by choosing random x-
coordinates in the range (0,7) and random y-coordinates in the range (0,6).
Then we compute the mean distance to nearest neighbor, and repeat the whole
process many times. Simulating the random placement of 6 points in the 7 x 6
study region 10000 times led to a mean distance between nearest neighbors of
1.62. This is greater than the expected distance of R, =1.323 noted above. This
greater-than-expected distance can be attributed directly to the fact that points
near the border of the study region are relatively farther from other points in
the study region than they presumably would have been to points just outside
of the study region. Ordering the 10000 mean distances to nearest neighbors

Figure 8.5 Nearest neighbor distances
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reveals that the 9500th highest one is 2.29. Only 5% of the time would we
expect a mean distance greater than 2.29. Our observed distance of 2.167 is less
than 2.29, and so we, having accounted for boundary effects through our
Monte Carlo simulation, accept the null hypothesis.

8.3 Geographic Patterns in Areal Data
8.3.1 An Example Using a Chi-Square Test

In a regression of housing prices on housing characteristics, suppose that we
have 51 observations that have been categorized into three spatial locations
(neighborhoods). How might we tell whether there is a tendency for positive or
negative residuals to cluster in one or more neighborhoods? One idea is to note
whether each residual is positive or negative, and then to tabulate the residuals
by neighborhood (see the hypothetical data in Table 8.1).

We can use a chi-square test to determine whether there is any neighbor-
hood-specific tendency for residuals to be positive or negative. Under the null
hypothesis of no pattern, the expected values are equal to the product of the
row and column totals, divided by the overall total. These expected values are
given in parentheses in Table 8.2.

The chi-square statistic is

n 2
X = Z@ (8.12)
i=1

where O is the observed frequency and E is the expected frequency. In this
example, the value of chi-square is 4.40 (see inset), which is less than the critical
value of 5.99, using av=0.05 and 2 degrees of freedom (the number of degrees

Table 8.1 Hypothetical residuals

Neighborhood
1 2 3 Total
+ 10 6 7 23
- 6 15 7 28
Total 16 21 14 51

Table 8.2 Observed and expected frequencies of residuals

Neighborhood
1 2 3 Total
+ 10 6 7 23
(7.22) (9.47) (6.31)
— 6 15 7 28
(8.78) (11.53) (7.69)

Total 16 21 14 51
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of freedom is equal to the number of rows minus one, times the number of
columns minus one). Therefore the null hypothesis of no pattern is not rejected.

INSET: The observed chi-square statistic for the data in Table 8.2:

, (10-722)7% (6-947)° (7—-631)% (6—8.78)> (15— 11.53)

X ="9m T o4 T 631 T 878 T 11s3
(7-7.69)°
=440

When spatial autocorrelation is detected, what can be done about it?
One idea is to include a new, location-specific dummy variable. This will
serve to capture the importance of an observation’s location in a particular
neighborhood. In our housing price example, we could add two variables, one
for two of the three neighborhoods (following the usual practice of omitting
one category). You should also note that if there are k neighborhoods, it is not
necessary to have k — 1 dummy variables; rather, you might choose to have
only one or two dummy variables for those neighborhoods having large
deviations between the observed and predicted values.

8.3.2 The Join-Count Statistic

Whether areas of positive or negative residuals cluster on the map can be
determined by first asking how many total “joins” there are (i.e., the total
number of cases where two subareas share a common boundary). Each join
is then classified as a “++, “+—", or “——"", depending upon the signs of
the residuals in the two arcas. For example, the five-zone system in Figure 8.6
has three zones with negative residuals and two with positive residuals. There is
a total of seven joins (i.e., pairs of regions that share a common boundary).
One of these joins is a “++" join, one is a “——"" join, and the remaining five
joins are “+—""joins.

Figure 8.6 Positive and negative residuals in a five-region system



166 STATISTICAL METHODS FOR GEOGRAPHY

The join count statistic compares the observed number of +— joins with the
number of +— joins that would be expected if no spatial autocorrelation were
present. The expected number of +— joins is

2JPM

=y

(8.13)

where J is the total number of joins, P is the number of positive residuals, M is
the number of negative (‘“‘minus”) residuals, and N is the total number of areas
(N=P+ M). For the system in Figure 8.6,

gl =200 4 (8.14)

The variance of the number of “+—"" joins is equal to the complex expression

S Li(L;—1)PM
V=] =E[+-] - E[+-]* +-

NN —1)
4= 1) = 5 LiLi = DIP(P = )M (M — 1)

+ NIN—D(N—2)(N=3) (8.15)

where L; is the number of links (joins) from region i to other regions. For
Figure 8.6, the values of L; are 2, 3,4,2, and 3, for i=1,2, 3,4, and 5,
respectively. Using Equation 8.15, for the zonal system in Figure 8.6 we have

Vib—] =42 422+ 285(2)(3) L AO©) ~8]Q)MB)@) _ ) 56 (8.16)

“4) 5(4)(3)(2)

The z-statistic

z= (8.17)

has a normal distribution with mean zero and variance one. Thus tables of the
normal distribution can be used to test the null hypothesis that the spatial
pattern is random. For our example, we have slightly more +— joins than
expected. Clearly there is no clustering of positive or negative residuals on
the map, but might the “checkerboard” pattern characterized by “+”’s being

next to “—"’s be significant? The z-statistic is
5—42
z= =1.07 8.18
V.56 (8.18)

which is less than the critical value, indicating that the null hypothesis of
randomly placed residuals cannot be rejected.
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8.3.3 Moran’s |

The join count statistic, if used to evaluate the presence or absence of spatial
autocorrelation, has the drawback of not using all of the available information
—that is, it makes use only of the signs of the residuals and not their magnitude.
Moran’s [ statistic is an alternative measure of spatial autocorrelation.

Moran’s [ statistic (1948, 1950) is one of the classic (as well as one of the
most common) ways of measuring the degree of spatial autocorrelation in areal
data. Moran’s [ is calculated as follows:

i

w3 S wy (v — D)y — 7)
I — J

P (8.19)
(322 wy) (v = 7)°

where there are n regions and w;; is a measure of the spatial proximity between
regions 7 and j. It is interpreted much like a correlation coefficient. Values near
+1 indicate a strong spatial pattern (high values tend to be located near one
another, and low values tend to be located near one another). Values near —1
indicate strong negative spatial autocorrelation; high values tend to be located
near low values. (Spatial patterns with negative autocorrelation are either
extremely rare or nonexistent!) Finally, values near 0 indicate an absence of
spatial pattern.

Though perhaps daunting at first glance, it is helpful to realize that if the
variable of interest is first transformed into a z-score {z = (x — X)/s}, a much
simpler expression for [ results:

ny > wyziz;
i

(=132 wy (8.20)
i

The conceptually important part of the formula is the numerator, which sums
the products of z-scores in nearby regions. Pairs of regions where both regions
exhibit above-average scores (or below average scores) will contribute positive
terms to the numerator, and these pairs will therefore contribute toward posi-
tive spatial autocorrelation. Pairs where one region is above average and the
other is below average will contribute negatively to the numerator, and hence
to negative spatial autocorrelation.

The weights {w;} can be defined in a number of ways. Perhaps the most
common definition is one of binary connectivity; w;=1 if regions i and j are
contiguous, and w; =0 otherwise. Sometimes the w; defined in this way are
standardized to define new w;; by dividing by the number of regions 7 is con-
nected to; i.e., w; = wy/ Z w;. In this case all regions i are characterized by a
set of weights linking 7 to other regions that sum to one; i.e., Z wi = L.

Alternatively, {nl,} may be defined as a function of the dlstance between 7
and j (e.g., w; = d or w; = exp[—[d,]), where the distance between i and j
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could be measured along the line connecting the centroids of the two regions.
It is conventional to use w;= 0. It is also common, though not necessary, to use
symmetric weights, so that w;=wj;.

It is important to recognize that the value of 7 is very dependent upon the
definition of the {w;}. Using a simple binary connectivity definition for the
map in Figure 8.6 gives us

01100
10110
W={w}=110 11
0110 1
00110

In this instance, the definition of {w;} causes the neighborhood around
region 1 to be much smaller than the neighborhood around region 2 or 3.
This is not necessarily “wrong”’, but suppose that we were interested in the
spatial autocorrelation of a disease that was characterized by rates that were
strongly associated over small spatial scales but not correlated over large spa-
tial scales. If we expect disease rates in regions 1 and 2 to be highly correlated
while we expect those in regions 4 and 5 to be uncorrelated due to their large
spatial separation, our observed value of I will be a combined measure of
strong association between close pairs and weak association between distant
pairs. For this example, it might be more appropriate to use a distance-based
definition of {w;}.

lllustration. Consider the six-region system in Figure 8.7. Using a binary
connectivity definition of the weights leads to:

01100 0
101 110
1100 1 1

W=10 1001 0 (8.21)
01 1 1 0 1
001010

where an entry in row 7 and column j is denoted by w;;. The double summation
in the numerator of 7 (see Equation 8.19) is found by taking the product of the
deviations from the mean for all pairs of adjacent regions

(32 = 21)(26 — 21) + (32 — 21)(19 — 21) + (26 — 21)(32 — 21)

4 (26— 21)(19 = 21) + (26 — 21)(18 — 21) + (26 — 21)(17 — 21)
+ (19 = 21)(32 = 21) + (19 — 21)(26 — 21) + (19 — 21)(17 — 21)
+ (19— 21)(14 = 21) + (18 — 21)(26 — 21) + (18 — 21)(17 — 21)
(17 =21)(19 = 21) + (17 = 21)(19 — 21) + (17 — 21)(26 — 21)
(17 =21)(18 = 21) + (17 — 21)(14 — 21) + (14 — 21)(19 — 21)
+ (14— 21)(17 — 21) = 100 (8.22)
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Figure 8.7 Hypothetical six-region system

Since the sum of the weights in (8.21) is 18, and since the variance of the
regional values is 224/5, Moran’s [ is equal to

6(100)
18(224)

I= =0.1488 (8.23)

In addition to this descriptive interpretation, there is a statistical framework
that allows one to decide whether any given pattern deviates significantly from
a random pattern. If the number of regions is large, the sampling distribution
of I, under the hypothesis of no spatial pattern, approaches a normal distribu-
tion, and the mean and variance of I can be used to create a Z-statistic in the
usual way:

(8.24)

The value is then compared with the critical value found in the normal table
(e.g., a = 0.05 would imply critical values of —1.96 and +1.96). The mean and
variance are equal to

n—1)8; —n(n—1)8, +2(n—2)8% (8.25)

(n+1)(n—1)S,

pi =L
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where

n n

Sy = Z Z Wy
i j;éi )

S =0.5 Z Z (wy + W/i)2 (8.26)

i A

n n n 2

S, = z <Z wij + Z“ﬁk)
k J i

Computation is not complicated, but it is tedious enough for one to not
want to do it by hand! Unfortunately, few software packages that
calculate the coefficient and its significance are available. Exceptions include
Anselin’s (1992) SpaceStat and the CrimeStat package downloadable from
www.icpsr.umich.edu/NACJD/crimestat.html

Fortunately, there are also simplifications and approximations that facilitate
the use of Moran’s I. An alternative way of finding Moran’s [ is to simply take
the ratio of two regression slope coefficients (see Griffith 1996). The numerator
of Iis equal to the regression slope obtained when the quantity ¢; = Z}L] WiiZj
is regressed on z; and the denominator of [ is equal to the regression slope
obtained when the quantity b, = 2}1:1 wy; is regressed on ¢;= 1. The zs repre-
sent the z-scores of the original variables, and the slope coefficients are found
using no-intercept regression (i.e., constraining the result of the regression so
that the intercept is equal to zero).

In addition, Griffith gives 2/ % w; as an approximation for the variance
of the Moran coefficient. This expression, though it works best only when the
number of regions is sufficiently large (about 20 or more), is clearly easier to
compute than the alternative given in Equations 8.25 and 8.26! If observational
units are on a square grid and connectivity is indicated by the four adjacent
cells, the variance may be approximated by 1/(2n), where n is the number of
cells. Based on either a grid of hexagonal cells or a map displaying “average”
connectivity with other regions, the variance may be approximated by 1/(3n).
An example is given in Section 8.5.

The use of the normal distribution to test the null hypothesis of randomness
relies upon one of two assumptions:

(1) Normality. Tt can be assumed that regional values are generated from
identically distributed normal random variables (i.e., the variables in
each region arise from normal distributions that have the same mean
and same variance in each region).

(2) Randomization. It can be assumed that all possible permutations (i.e.,
regional rearrangements) of the regional values are equally likely.

The formulae given above (Equations 8.25 and 8.26) for the variance
assumes that the normality assumption holds. The variance formula for the



SPATIAL PATTERNS 171

randomization assumption is algebraically more complex, and gives values that
are only slightly different from that given in 8.25 and 8.26 (see, e.g., Griffith
1987).

If either of the two assumptions above holds, the sampling distribution
of I will have a normal distribution if the null hypothesis of no pattern is
true. One of the two assumptions must hold to generate the sampling
distribution of 7 so that critical values of the test statistic may be estab-
lished. For example, if the first assumption were used to generate regional
values, I could be computed; this could then be repeated many times, and
a histogram of the results could be produced. The histogram would have
the shape of a normal distribution, a mean of E[/], and a variance of V[I].
Similarly, the observed regional values on a map could be randomly rear-
ranged many times, and the value of / computed each time. Again, a
histogram could be produced; it would again have the shape of a
normal distribution with mean E[/] and a variance slightly different from
VII]. If we can rely on one of these two assumptions we do not need to
perform these experiments to generate histograms, since we know before-
hand that they will produce normal distributions with known mean and
variance.

Unfortunately, there are many circumstances in geographical applications
that lead the analyst to question the validity of either assumption. For exam-
ple, maps of counties by township are often characterized by high population
densities in the townships corresponding to or adjacent to the central city,
and by low population densities in outlying townships. Rates of crime or
disease, though they may have equal means across townships, are unlikely
to have equal variances. This is because the outlying towns are character-
ized by greater uncertainty — they are more likely to experience atypically
high or low rates simply because of the chance fluctuations associated with
a relatively smaller population base. Thus assumption 1 is not satisfied,
since all regional values do not come from identical distributions — some
regional values, namely the outlying regions, are characterized by higher
variances. Likewise, not all permutations of regional values are equally
likely — permutations with atypically high or low values out in the periphery
are more likely than permutations with atypically high or low values near
the center.

How can we test the null hypothesis of no spatial pattern in this
instance? One approach is to use Monte Carlo simulation. Suppose we
have data on the number of diseased individuals (r;) and the population
(p;) in each region. Since the Z-test described above is no longer valid, we
need an alternative way to come up with critical values. The null hypoth-
esis of no spatial pattern in disease rates can be assessed via simulation.
Assign the disease to an individual with probability > .n;/>".p;. Then
calculate Moran’s [. This is repeated many times, and the resulting
values of Moran’s / may be used to create a histogram depicting the
relative frequencies of I when the null hypothesis is true. Furthermore,
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the values can be arranged from lowest to highest, and this list can be
used to find critical values of I. For example, if the simulations are carried
out 1000 times, and critical values are desired for a test using « = 0.05,
they can found from the ordered list of 7/ values. The lower critical value
would be the 25th item on the list, and the upper critical value would be
the 975th item on the list.

lllustration of the Monte Carlo method. Dominik Hasek, the goalie for the
gold-medal Czech ice hockey team in the 1998 Olympics, saves 92.4% of
all shots he faces when he plays professionally for the Buffalo Sabres of
the National Hockey League (NHL). The average save percentage of other
goalies in the NHL is 90%. Hasek tends to face about 31 shots per game,
while the Sabres manage just 25 shots per game on the opposing goalie.
To evaluate how much Hasek means to the Sabres, compare the outcomes
of 1000 games using Hasek’s statistics with the outcomes of 1000 games
assuming the Sabres had an “average” goalie who stops 90% of the shots
against him.

Solution. Take 31 random numbers between 0 and 1. Count those greater than
0.924 as goals against the Sabres with Hasek. Take 25 numbers from a uniform
distribution between 0 and 1, and count those greater than 0.9 as goals for the
Sabres. Record the outcome (win, loss, or tie). Repeat this 1000 times
(preferably using a computer!), and tally the outcomes. Finally, repeat the
entire experiment using random numbers greater than 0.9 (instead of 0.924)
to generate goals against the Sabres without Hasek. Each time the experiment
is performed, a different outcome will be obtained. In one comparison, the
results were as follows:

Wins Losses Ties
Scenario 1 (with Hasek) 434 378 188
Scenario 2 (without Hasek) 318 515 167

To evaluate Hasek’s value to the team over the course of an 82-game season,
the outcomes above may first be converted to percentages, multiplied by 82,
and then rounded to integers, yielding:

Wins Losses Ties
Scenario 1 36 31 15
Scenario 2 26 42 14

Thus Hasek is “worth” about 10 wins; that is, they win about ten games a year
that they would have lost if they had an ‘“‘average’ goalie.
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8.4 Local Statistics
8.4.1 Introduction

Besag and Newell (1991) classify the search for clusters into three primary
areas. First are ““general” tests, designed to provide a single measure of overall
pattern for a map consisting of point locations. These general tests are intended
to provide a test of the null hypothesis that there is no underlying pattern, or
deviation from randomness, among the set of points. Examples include the
nearest neighbor test, the quadrat method, and the Moran statistic, all outlined
above. In other situations, the researcher wishes to know whether there is a
cluster of events around a single or small number of prespecified foci. For
example, we may wish to know whether disease clusters around a toxic
waste site, or whether crime clusters around a set of liquor establishments.
Finally, Besag and Newell describe ‘“‘tests for the detection of clustering.”
Here there is no a priori idea of where the clusters may be; the methods are
aimed at searching the data and uncovering the size and location of any pos-
sible clusters.

General tests are carried out with what are called “global” statistics; again, a
single summary value characterizes any deviation from a random pattern.
“Local” statistics are used to evaluate whether clustering occurs around parti-
cular points, and hence are employed for both focused tests and tests for the
detection of clustering. Local statistics have been used in both a confirmatory
manner, to test hypotheses, and in an exploratory manner, where the intent is
more to suggest, rather than confirm, hypotheses.

Local statistics may be used to detect clusters either when the location is
prespecified (focused tests) or when there is no a priori idea of cluster location.
When a global test finds no significant deviation from randomness, local tests
may be useful in uncovering isolated hotspots of increased incidence. When a
global test does indicate a significant degree of clustering, local statistics can be
useful in deciding whether (a) the study area is relatively homogeneous in the
sense that local statistics are quite similar throughout the area, or (b) there are
local outliers that contribute to a significant global statisitc. Anselin (1995)
discusses local tests in more detail.

8.4.2 Local Moran Statistic

The local Moran statistic is

Li=n(y;=5)>_ wyly;—¥) (8.27)
P

The sum of local Morans is equal to, up to a constant of proportionality,
the global Moran; i.e., > I; = I. For example, the local Moran statistic for
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region 1 in Figure 8.7 is
I =(32-21)[(26 — 21) + (19— 21)] = 33 (8.28)
The expected value of the local Moran statistic is
= 2wy =)

J#i

Bl ="

(8.29)

and the expression for its variance is more complicated. Anselin gives the
variance of I, and assesses the adequacy of the assumption that the test statistic
has a normal distribution under the null hypothesis.

8.4.3 Getis’'s G| Statistic

To test whether a particular location 7 and its surrounding regions constitute a
cluster of higher (or lower) than average values on a variable (x) of interest,
Ord and Getis (1995) have used the statistic

J

G! (8.30)

s{nSi - W - 1))

where s is the sample standard deviation of the x values, and w;(d) is equal to
one if region j is within a distance of d from region 7, and 0 otherwise. The sum
is over all regions, including region i. Also,

Wi = Z w;(d)
J

St = Z w,z,
J

(8.31)

Ord and Getis note that when the underlying variable has a normal distribu-
tion, so does the test statistic. Furthermore, the distribution is asymptotically
normal even when the underlying distribution of the x-variables is not normal,
if the distance d is sufficiently large. Since the statistic (8.30) is written in
standardized form, it can be taken as a standard normal random variable,
with mean 0 and variance 1.

For region 1 in Figure 8.7, we will use weights equal to 1 for regions 1, 2, and
3, and weights equal to 0 for other regions. The G; statistic is

—3(21
o 77-3(21)

' 6.69/(63) —9)/5

Since this variable has a normal distribution with mean 0 and variance 1 under
the null hypothesis that region 1 is not located in a region of particularly high

=1.56 (8.32)
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values, we can use a one-sided test with o = 0.05 and z=1.645. We therefore
fail to reject the null hypothesis.

8.5 Finding Moran’s | Using SPSS for Windows 9.0

Consider the six-region system in Figure 8.7. With connectivity defined by a
binary 0-1 weight for adjacent regions, we have the weight matrix given
by Equation 8.21. To compute the value of Moran’s I in SPSS, we first
convert the six regional values to z-scores. For the six regions, the z-scores
are 1.64, 0.747, —0.299, —0.448, —0.598, and —1.046. Then the quantities a; =
Z_,' w;z; are found. These are simply weighted sums of the z-scores of the
regions that 7 is connected to. For example, region 1 is connected to region 2
and 3. For region 1, a1 =0.747 —0.299 =0.448. The six a; scores are 0.448,
0.299, 0.747, 0.149, —1.046, and —0.896. Now perform a regression, using
the as as the dependent variable and the zs as the independent variable. In
SPSS, click on Analyze, Regression, Linear, and define the dependent and
independent variables. Then, under Options, make sure the box labeled
“Include constant in equation’ is NOT checked. This yields a regression co-
efficient of 0.446 for the numerator.

For the denominator, we again use no-intercept regression to regress six
y-values on six x-values. The six “‘y-values” are the sums of the weights in
each row (2, 4, 4, 2, 4, and 2 for rows 1-6, respectively). The six x-values are 1,
1, 1, 1, 1, and 1 (this will always be a set of n ones, where n is the number of
regions). After again making sure that a constant is NOT included in the
regression equation, one finds the regression coefficient is 3.0. Moran’s [ is
simply the ratio of these two coeflicients: 0.446/3 =0.1487.

The variance of I in this example may be found from Equation 8.25:

=0.033

Vi = 2(36)(5)(18) — 4(6)(5)(60) + 2(4)(18)?

7(5)°(18)”
The z-value associated with a test of the null hypothesis of no spatial auto-
correlation is (0.1487 — (—0.2)/4/0.033 = 1.92. This would exceed the critical
value of 1.645 under a one-sided test (which we would use, for example, if our
initial alternative hypothesis was that positive autocorrelation existed), and
would be slightly less than the critical value of 1.96 in a two-sided test. We
note, however, that we are on shaky ground in assuming that this test statistic
has a normal distribution, since the number of regions is small. We also note
that, in this case, the approximation of 1/(3n) described in Section 8.3.3 for the
variance of 7 would have yielded a variance of 1/18 =0.0555, which is not too
far from that found above using Equation 8.25. The approximation of two
divided by the sum of the weights, also described in Section 8.3.3, would have
yielded 2/18=0.1111. This approximation works better for systems with a
greater number of regions.



176 STATISTICAL METHODS FOR GEOGRAPHY

Exercises

1. The following residuals are observed in a regression of wheat yields on
precipitation and temperature over a 6-county area:

County: 1 2 3 4 5 6

+ 7 10 12 9 14 15  Number of positive
residuals

— 12 8 19 10 10 10  Number of negative
residuals

Use the chi-square test to determine whether there is any interaction between
location and the tendency of residuals to be positive or negative. If you reject
the null hypothesis of no pattern, describe how you might proceed in the
regression analysis.

2. A regression of sales on income and education leaves the following residuals:

(a) Use the join count statistic to determine whether there is a spatial pattern
to the residuals.

(b) Use Moran’s I to determine whether there is a spatial pattern to the
residuals.

(c) If you reject the null hypothesis in either (a) or (b), describe how you
would proceed with the regression analysis.
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(a) Find the nearest neighbor statistic for the following pattern:

(b) Test the null hypothesis that the pattern is random by finding the
z-statistic: z = 3.826(R,—R,)v/An, where n is the number of points and
A is the density of points.

(c) Find the chi-square statistic, x> = (m — l)s2 /X for a set of 81 quadrats,
where 1/3 of the quadrats have 0 points, 1/3 of the quadrats have 1 point,
and 1/3 of the quadrats have 2 points. Then find the z-value to test the
hypothesis of randomness, where

_ X —(m-1)
2(m—1)

z

where m is the number of cells. Compare it with a critical value of
z=—1.96 and z= +1.96.

4. Find the expected and observed number of black—white joins in the follow-
ing pattern:

On the basis of your answer, in which direction away from random would you
describe this pattern — more toward a checkerboard pattern, or more toward a
clustered pattern?

5. Vacant land parcels are found at the following locations:
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Find the variance and mean of the number of vacant parcels per cell, and
use the variance—mean ratio to test the hypothesis that parcels are distributed
randomly (against the two-tailed hypothesis that they are not).

6. Find the nearest neighbor statistic (the ratio of observed to expected mean
distances to nearest neighbors) when n points are equidistant from one another
on the circumference of a circle with radius r, and there is one additional point
located at the center of the circle. (Hints: the area of a circle is 7% and the
circumference of a circle is 27r.)

7. Prove that the following two z-scores are equivalent:

R-1_rg—r,
OR N g,
where
0.26
og = 0.52/\/n; o, :—np; R=ry/r,

and ro and r. are the observed and expected distances to nearest neighbors,
respectively. Thus there are two equivalent ways of carrying out the nearest
neighbor test.



Some Spatial Aspects of Regression
9 Analysis

LEARNING OBJECTIVES

e How to include spatial considerations into regression analyses
Added-variable plots for spatial variables

Spatial regression analysis

Spatially varying parameters, including the expansion method and
geographically weighted regression

9.1 Introduction

We have already noted that spatial autocorrelation presents difficulties in esti-
mating regression relationships. In some cases, we may be interested in the
pattern of spatially correlated residuals for its own sake. Figure 9.1 is a map I
produced for an undergraduate project, showing the residuals from a regres-
sion of snowfall on temperature, elevation, and latitude. In this case, the pri-
mary purpose was to obtain a visual impression of the effect of the North
American Great Lakes on snowfall patterns in New York State. One can
clearly see two bands of excess snowfall, one downwind from Lake Erie, and
the other downwind from Lake Ontario. The effects downwind of Lake Erie
are particularly strong, ranging up to 50-60 inches a year greater than that
predicted by temperature, elevation, and latitude alone. The remainder of the
map has relatively small residuals. One might also speculate that the negative
residuals along the northeast border of the state constitute a precipitation
shadow effect, since this area is directly east of the Adirondack Mountains
and much of the moisture would have precipitated out before reaching the
eastern border.

In the snowfall example, it was not necessary to have precise estimates of the
effects of temperature, elevation, and latitude on snowfall, since primary inter-
est was in the map pattern of the residuals. However, spatial autocorrelation in
the residuals violates an underlying assumption of ordinary least-squares
regression, and so alternatives must be considered when reliable regression
equations are desired. Spatial regression models seek to remedy the situation
by adding to the list of explanatory variables the values of x and/or y in
surrounding regions as well. Some approaches to these spatial regression
models are considered in Sections 9.2 and 9.3.

Up to this point, we have assumed that values of the regression coefficients
were global, in the sense that they were thought to apply to the region as a
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Figure 9.1 Regression residuals from snowfall analysis

whole. However, it is possible that the coefficients vary over space. Section 9.4
examines two approaches to spatially varying regression parameters. The final
section provides an illustration of the various methods.

9.2 Added-Variable Plots

When regression residuals exhibit spatial autocorrelation, this suggests that the
regression results may benefit from additional explanatory variables. Haining
(1990b) notes that added variable plots are “graphical devices that are used to
decide whether a new explanatory variable should be added to a regression”
(see also Weisberg 1985, Johnson and McCulloch 1987). He identifies four
situations where spatial effects may be entered into the right-hand side of a
regression equation:

(1) the value of y depends upon values of y nearby;

(2) the value of y at a site depends not only upon values of x at the site but
also upon values of x at nearby sites;

(3) the value of y at a site depends upon the value of x at the site and on
values of x and y at nearby sites; and

(4) the size of the error at a site is related to the size of the error at nearby
sites.

Case (4) is statistically indistinguishable from case (3).
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The idea behind added variable plots is to see whether there is a relationship
between y, once it has been adjusted for the variables already in the equation,
and some omitted variable. Let x, denote the omitted variable. The procedure
is as follows:

(1) Obtain the residuals of the regression of y on the x-variables.

(2) Obtain the residuals of the regression of x,, on the x-variables.

(3) Plot the residuals obtained in (1) on the vertical axis, and those from (2)
on the horizontal axis.

The result is the relationship between x,, and y, adjusted for the other xs. If the
points in the plot lie along or near a straight line, this suggests that the variable
should be added to the regression equation. These plots may be produced
within SPSS by checking the “Produce all Partial Plots” box under the Plots
section of Linear Regression.

9.3 Spatial Regression

It is possible to specify a spatial regression model in the same way as the usual
linear regression model, with the exception that the residuals are modeled as
functions of the surrounding residuals (see, e.g., Bailey and Gatrell 1995). If we
use ¢ to denote the usual residual or error term, the residual for a particular
observation is written as a linear function of the other residuals:

n
5[:[)2”’4‘/6/‘—'—1/{,‘ (91)
J=1

where w;; is a measure of the connection between location i and location j
(often taken as a binary connectivity measure), p is a measure of the strength
of the correlation of the residuals, and u; is the remaining error term after the
correlation among residuals has been accounted for. Note that if p = 0, the
model reduces to the ordinary linear regression model.

To estimate the model, one can define the quantities

Vi=Yi— PZ Wil
! (9.2)

n
/-* p—
X; =X, —p E lexj
=1

Then regressions of y* vs x* are tried for a variety of p values, beginning at
zero. The residuals of each regression are inspected, and the value of p
associated with the most suitable set of residuals is adopted. Section 9.5.3
provides an example. Bailey and Gatrell note that this estimation procedure
is, strictly, not one that is the best from a statistical viewpoint, and that more
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sophisticated approaches exist. However, it should give the analyst a good idea
of the spatial effects that may be present in a model.

9.4 Spatially Varying Parameters
9.4.1 The Expansion Method

With linear regression, the slope and intercept parameters are “global”, in the
sense that they apply to all observations. The expansion method (Casetti 1972,
Jones and Casetti 1992) suggests that these parameters may themselves be
functions of other variables. Thus, in a linear regression equation of house
prices () on lot size (x;) and number of bedrooms (x5):

y = bg + blxl + b2X2 + e (93)

the effect of lot size on house prices (b;) may itself depend upon whether
there is a park nearby (for example, large lot sizes may be more valuable in
a suburb if there is no other green space nearby). So, we add an expansion
equation

bl = C0+Cld (94)

where d is the distance to the nearest park. We would expect ¢; to be positive;
large distances to the nearest park would mean that b; is high, which in turn
means that lot sizes have a large influence on house prices.

If we substitute this expansion equation into the original equation we have

y= bo + (CO + cld)xl + b2X2 + e = bo + CoXq + cldxl + b2X2 + € (95)

To estimate the coefficients, we perform a linear regression of y on the variables
X1, X3, and dx;. In Equation 9.5, the new quantity dx; may be thought of as a
new variable, created by multiplying together distance to park (d) and lot size
(x1). When the coefficient ¢ is significant, this is known as an interaction effect;
the effect of lot size on housing prices interacts with, or depends upon, the
distance to the park (or alternatively, the effect of distance to the park depends
upon the size of the lot).

The edited collection of Jones and Casetti (1992) contains a wide variety of
applications of the expansion method. These include applications to models of
welfare, population growth and development, migrant destination choice,
urban development, metropolitan decentralization, and the spatial structure
of agriculture. The collection also includes methodological contributions that
focus upon statistical aspects of the model, including its relationship to spatial
dependence in the data.
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9.4.2 Geographically Weighted Regression

In a series of articles, Fotheringham and his colleagues at Newcastle have
outlined an alternative approach to the expansion method that accounts for
spatially varying parameters (see, e.g., Fotheringham et al. 1998, Brunsdon
et al. 1996, 1999). Their geographically weighted regression (GWR) technique
is based upon “local” views of regression as observed from any location. For
each location, one can estimate a regression equation where weights are attached
to observations surrounding the location. Relatively large weights are given to
points near the location, and smaller weights are assigned to observations far
from the location. As Fotheringham et al. (2000) note:

There is a continuous surface of parameter values. .. In the calibration of the GWR
model it is assumed that observed data near to point i have more of an influence
in the estimation of the [regression coefficients] than do data located farther from i

(p. 108).
More formally, the dependent variable at location i is modeled as follows:

P
Vi = b,‘o + ZmbU + E; (96)
Jj=1

where, as is the case with simple linear regression, there are p independent
variables, and x;; represents the observation on variable j at location i. The
important point to note is that the b coefficients have i subscripts, indicating
that they are specific to the location of observation i.

One reasonable choice for the weights is a negative exponential function of
squared distance

wy = ef‘gdfz/ = exp(—ﬁdé) (9.7)
so that points that are farther away will be assigned lower weights.

To estimate the regression coefficients at location i, one first defines the
weights (w;), using an initial “guess” for the value of 3 (one possibility
would be to use B =0, which corresponds to the ordinary least-squares
case). Then define the quantities

Vi = VWi (9.8)

These are the weighted observations. At location #, run a linear regression of
the y* on the x*, omitting observation i from the analysis. Use the resulting
regression coefficients to predict the value of y at location i. Then find
the squared difference between the observed value of y (denoted y;) and this
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predicted value

(i = 2u(8)} (9-9)

where y_;() is the predicted value of the dependent variable at location i when
observation i has not been used in the estimation, and the 8 reminds us that
this prediction was made using a specific value of (. After this has been
repeated for each location i, one may compute the total sum of squared devia-
tions between observed and predicted values as

58) =3 i — 5B (9.10)
i=1

The next step is to repeat this procedure for many values of 3, choosing as
“best” the value of § that minimizes the score s(3). This final value of 3 yields
the best set of weights. The final regression coefficients at each location are
given as follows: first use the final, optimal value of 3 to define the weights, and
then regress y* and x* using a/l of the observations.

9.5 Illlustration

Figure 9.2 displays the location of 30 hypothetical houses in a square study
area that features a park at its center. The dataset in Table 9.1 was generated
by assuming that housing prices were related to lot size, number of bedrooms,
and the presence of a fireplace. Furthermore, spatial effects were added in the
generation of the data. The lot sizes were generated in such a way as to be
spatially autocorrelated, and the effect of lot size on housing prices was made
to be a function of how distant the house was from the centrally located park.
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Figure 9.2 Location of thirty hypothetical houses
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Table 9.1 Hypothetical data on 30 houses

CASE XCOORD  YCOORD PRICE LOTSIZE BEDRMS FIREPLC
1 .9619 7817 224323 5.987 3 1
2 .2378 .8520 143510 4.241 2 1
3 .3481 .9440 233533 5.039 6 1
4 9329 2235 192328 3.100 4 1
5 .3258 4532 158553 5.133 2 0
6 .8847 9136 297893 6.397 5 1
7 .7063 6176 150054  7.590 2 1
8 .0473 .2902 193785  4.848 6 0
9 .8927 .5538 206744  4.272 6 0
10 4131 .9766 159585 5.126 3 0
1" .2189 .3649 212046  4.583 5 0
12 .3957 .3827 171795  4.589 3 1
13 .8909 .2550 125737 2.343 3 0
14 .5363 .9402 253078  7.138 4 1
15 9574 .5488 189896 5.016 4 0
16 3571 .5017 228830  6.783 5 1
17 .5396 4733 163033  8.169 2 1
18 .5687 .3996 202935 5.199 2 1
19 4256 .9444 205478  6.426 3 0
20 4431 .9568 207324  6.199 2 1
21 4555 .8451 249965 7.895 3 0
22 5191 .5430 193800  8.689 4 0
23 .2518 .7851 203844  5.000 5 0
24 4458 7717 153122 5.654 2 0
25 .9242 .8261 252367 6.959 4 0
26 4457 4998 101089 5.376 2 0
27 7138 .5867 196954  6.806 4 0
28 3222 .8879 158972  4.352 2 1
29 .7107 .6137 191339  8.170 4 0
30 .8657 .2810 184990  3.377 4 0

More specifically, housing prices were generated using the equations

p =20000 + by x; +20000x, 4+ 20 000x;5 + &
by = 10000 + 20 000d (9.11)
e ~ N(0, 20000%)

All digits have been retained in the generated prices, though in practice one would
expect them to be rounded to, say, the nearest hundred. Where p is price, x; is lot
size (in thousands of square feet), x, is number of bedrooms, and x; is a dummy
variable indicating the presence or absence of a fireplace (1= presence;
0 =absence). dis the distance from the centrally located park, and € is a normally
distributed error term with standard deviation equal to 20000. Houses were
assigned fireplaces with probability 0.3, and were assigned a number of bedrooms
by allowing integers in the range 2—6 with equal likelihoods. Lot sizes were
normally distributed with mean 6 and standard deviation 0.8.

Thus the “true” data follow quite closely an expansion-equation model, and
we will expect that such a model will perform quite well. But for now, let us
assume that we are simply faced with the data in Table 9.1, and we want to
model housing prices as a function of the independent variables.
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9.5.1 Ordinary Least-Squares Regression

Table 9.2 shows the results from the ordinary least-squares regression of
housing price on lot size, number of bedrooms, and presence of fireplace.
The coefficients are all significant. The +* value is 0.562, and the standard
error of the estimate is 29 080. The residuals display positive spatial auto-
correlation, indicating potential problems with the estimation. The coefficient
on lot size is a bit low, since we know from the way the data were generated
that it ranges from a low of 10 000 near the park to a high of about 20000
(=10000+20000(0.5)) near the periphery.

9.5.2 Added-Variable Plots

We begin by making the rather arbitrary decision that neighbors are defined
in this example as the three closest observations. Thus w;=1 if observation j
is one of the three nearest neighbors of i, and 0 otherwise.

Table 9.2 Results from OLS regression

Variables Entered/Removed®

Variables Variables
Model Entered Removed | Method
1 FIREPLC, Enter
LOTSIZE,
BEDRMS®

3All requested variables entered.
“Dependent Variable: PRICE

Model Summary

Std. Error
Adjusted of the
Model R R Square | RSquare Estimate
1 .749° .562 511 29080.13
2Predictors: (Constant), FIREPLC, LOTSIZE, BEDRMS
ANOVA®
Sum of Mean
Model Squares df Square F Sig.
1 Regression 2.8E+10 3 9.4E+09 | 11.108 | .000%
Residual 2.2E+10 26 8.5E+08
Total 5.0E+10 29

®Predictors: (Constant), FIREPLC, LOTSIZE, BEDRMS
bDependent Variable: PRICE

Coefficients®

Unstandardized Standardized

Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) 51249.856 26866.791 1.908 .068
LOTSIZE 10323.904 3444.409 .391 2.997 .006
BEDRMS 20628.873 4153.976 661 4.966 .000
FIREPLC 24834.295 10942.393 .301 2.270 .032

®Dependent Variable: PRICE
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Figure 9.3 Added variable plots

Following Haining’s example, we will consider the addition of new variables.
The possibilities we will consider are

n
* p—
Xi(1) = E :Wz'jyj
=1

- (9.12)
Vi) = D Wi
=1

The first suggests that y at a location is a function not only of x at that location
but also of the y values in surrounding locations. The second equation suggests
that the y value at a location may also be a function of the x-values in sur-
rounding locations. To construct added variable plots for each of these poten-
tial additions to the regression equation, we need (a) the residuals of the
ordinary least-squares regression (from Section 9.5.1), and (b) the residuals
from regressions of x; on x. These residual plots are shown in panels (a) and
(b) of Figure 9.3. Neither plot shows a significant correlation, and so we con-
clude that these variables would not improve the specification of the regression
equation.

9.5.3 Spatial Regression

Following the autocorrelated errors model of Section 9.3, and using the same
definition of the weights (w) used in Section 9.5.2, we define the quantities

n
yi=yi—p Z WiiYj
=1

, (9.13)
Xp =X =) Wi
j=1
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Figure 9.4 Minimizing the standard error of the estimate

Table 9.3 Spatial regression results with p=0.18

Coefficient Standard error t
Intercept 2926.9 4914 0.60
Lot size 17910 334 530
No. of bedrooms 22921 3139 7.30
Fireplace 27233 9003 3.02

We would like to choose a value of p that is associated with a “good” set of
residuals. Although there are different ways that this could be done, after
trying different p values we find that p = 0.18 minimizes the standard error
of the estimate (see Figure 9.4). When y” is regressed on x™ using this value of p,
we obtain the results in Table 9.3. The standard error of the estimate has been
reduced to 26795, and the value of 1 is now 0.883. All variables are significant
as before, and the r-values for all coefficients are higher than those under
ordinary least squares (Section 9.5.1). In addition, the coefficient on lot size
in this equation is equal to 17910, which is closer to its average value of about
15000 (recall that we generated the data so that the true lot size coefficient
varied from 10000 to about 20 000).

9.5.4 Expansion Method
Next we estimate the expansion model

=by+b b b
P o + 01X] + DrXxy + D3X5 +€} (914)

by =y +md

where the variables are as defined above, and ~, and ~, are the regression
coefficients that tell us how the influence of lot size on housing prices varies
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with distance from the park. This may be rewritten as

p=bo+ (o +mnd)x; +byxy+bsx; +e (9.15)
which is identical to

P = by + X1 +ndx1 + baxy + byxy + ¢ (9.16)

The results obtained when using ordinary least-squares regression on this equa-
tion are shown in Table 9.4.

The #* value is equal to 0.747, and all parameters, including those associated
with the expansion equation, are significant. Furthermore, all parameter values
are near their “true” values, and the standard error of the estimate is 22 552.

Of course, it should be kept in mind that one reason this particular approach
has worked relatively well here is that the estimated model is consistent with
the way in which the data were generated. We helped ourselves out by choosing
to expand the model using the relation between lot size effects and distance

Table 9.4 Results from expansion method

Variables Entered/Removed”®

Variables Variables
Model Entered Removed Method
1 DPLOT Enter
FIREPLC,
LOTSIZE,
BEDRMS?®
3All requested variables entered.
PDependent variable: PRICE

Model Summary®

Std. Error
Adjusted of the
Model R R Square - R Square Estimate
1 .864° 747 .706 22552.50
#Predictors: (Constant), DPLOT, FIREPLC, LOTSIZE, BEDRMS
PDependent Variable: PRICE
ANOVA®
Sum Mean
Model of Squares | Df Square F Sig.
1 Regression 3.7E+10 4 9.4E+09 18.409 .000*
Residual 1.3E+10 25 5.1E+08
Total 5.0E+10 29

3Predictors: (Constant), DPLOT, FIREPLC, LOTSIZE, BEDRMS
®Dependent Variable: PRICE

Coefficients®

Unstandardized Standardized

Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) 42361.839 20939.718 2.023 .054
FIREPLC 20632.446 8543.021 .250 2.415 .023
BEDRMS 16482.800 3364.706 .528 4.899 | .000
LOTSIZE 8313.839 2712.410 315 3.065 .005
DPLOT 19743.607 4624.268 454 4.270 | .000

®Dependent Variable: PRICE
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Figure 9.5 Spatial variation in lot size coefficient

from the park — this was a good choice because that is how the data were
created!

9.5.5 Geographically Weighted Regression

Using the weights defined in Equation 9.7 and the method outlined in Section
9.4.2, the optimal value of 3 was found to be 4.8. This defines a set of weights
that are associated with the variables in Equation 9.8. The regressions are then
run once for each data point, using these weights. Figure 9.5 displays a map of
the coefficient on lot size. From the figure one can see that the parameter is
higher away from the park, where there is a large cluster of observations in the
north. This is in keeping with our expectations, since the effect of lot size on
house prices was made to be greater in peripheral locations.

Exercises

1. Use an added variable plot to determine whether distance to the park
should be added to a regression of housing price on lot size, number of bed-
rooms, and presence or absence of a fireplace. Use the data in Table 9.1.

2. Using the data in Table 9.1 and geographically weighted regression, produce
a map showing the spatial variation in the coefficient on number of bedrooms.
Alternatively, you may provide a table showing the regression coefficient for
the number of bedrooms at each of the 30 sample locations.
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3. With the data in Table 9.1, first perform an ordinary least-squares regres-
sion with housing price as the dependent variable and lot size as the indepen-
dent variable. Then use the expansion method, with the lot size coefficient
depending upon the number of bedrooms. Interpret the results.

4. Use the spatial regression method outlined in Sections 9.3 and 9.5.3 with the
data in Table 9.1 for a regression of housing prices on lot size and number of
bedrooms.



Data Reduction: Factor Analysis and
10 Cluster Analysis

LEARNING OBJECTIVES

e Introduction to multivariate methods for data reduction, including
principal components analysis, factor analysis, and cluster analysis

e Geometric interpretations of the methods

10.1 Factor Analysis and Principal Components Analysis

Many studies of complex geographic phenomena begin with a set of data
and notions of hypotheses and theories that are vague at best. Factor analy-
sis may be used as a data reduction method, to reduce a dataset containing
a large number of variables down to one of more manageable size. When
many of the original variables are highly correlated, it is possible to reduce
the original data from a large number of original variables to a small
number of underlying factors.

A geometric interpretation helps one to understand the purpose of factor
analysis. A data set consisting of n observations on p variables may be repre-
sented as n points plotted in a p-dimensional space. This is easiest to imagine
when p=1, 2, or 3, and the latter case is illustrated in Figure 10.1. The figure
also shows an ellipsoidal figure that contains the majority of the data points.
The idea behind factor analysis is to construct factors that represent a large
proportion of the variability of the dataset. The first factor is, geometrically,
the longest axis of the ellipse. The original axes correspond to variables; the
longest axis of the ellipse is a new variable, which is a linear combination of the
original variables. This new variable, or factor, captures as much of the varia-
bility in the dataset as possible.

A second factor is derived by finding the second longest axis of the ellipse,
such that this second axis is perpendicular to the first axis. The fact that the
axes of the ellipse are perpendicular implies that the newly defined factors will
be uncorrelated with one another — they represent separate and independent
aspects of the underlying data.

A dataset characterized by an extremely elongated ellipse would be well
represented by a single factor — that combination of variables would explain
almost all of the variability in the original data. In the extreme case, the plotted
data would fall along a single line, which would constitute the axis or single
factor that would capture all of the variability in the data. At the other
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Figure 10.1 Data ellipsoid in p=3 dimensions

extreme, the data ellipse could be circular; in this case, all factors explain an
equal amount of the variability in the original data, and there are no dominant
factors.

In this discussion we will focus more upon the interpretation of the outputs
of factor analysis, and less on its mathematical aspects. The next subsection
addresses the interpretation of factor analysis results through an example using
1990 census data from Erie County, New York.

10.1.1 lIllustration: 1990 Census Data for Buffalo, New York

Geographers often use many census variables in their analyses, and the set
of variables can easily contain subsets that measure essentially the same phe-
nomenon. The following example illustrates, for a small set of census data,
how the number of original variables can be collapsed into a smaller number
of uncorrelated factors.

A 235x5 data table was constructed by collecting and deriving the following
information for the 235 census tracts in Erie County, New York (variable
labels are in parentheses):

(a) median household income (medhsinc)

(b) percentage of households headed by females (female)

(c) percentage of high school graduates who have a professional degree (educ)

(d) percentage of housing occupied by owner (tenure)

(e) percentage of residents who moved into their present dwelling before 1959
(Ires)

These five variables capture different aspects of the socioeconomic and
demographic character of census tracts. Do they represent separate dimen-
sions of socioeconomic and demographic structure, or is there significant
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redundancy in what they measure, indicating that the variables might be
reduced to a smaller number of underlying indices or factors?

A natural place to start is with the correlation matrix. Table 10.1 reveals that
the highest correlations are with the median household income variable; areas
of high income have low percentages of households headed by females, high
percentages of homeowners, high percentages of graduates with professional
degrees, and a relatively low proportion of long-term residents. Using the test
of significance described in Chapter 5, all correlations with absolute value
greater than 2/4/235 = 0.130 are significant.

The second step is to examine the outcome of describing the data as an
ellipsoid, as described above. The method of principal components is used to
describe the p axes of the ellipse (which in turn is constructed in a p-dimen-
sional space, where p is the number of variables). The relative lengths of the
axes are called eigenvalues. They are referred to in Table 10.2 as “extraction
sums of squared loadings.” A “loading” is the correlation between a com-
ponent or factor and the original variable. If one were to sum the squared
correlations between a factor and all of the original variables, this would be
equal to the eigenvalue or the length of the ellipse axis. From the table, we see
that the highest eigenvalue is 2.6 and the second highest is 0.96. Note that the
column displaying these values sums to five — the eigenvalues (i.e., “extraction
sums of squared loadings™) will always sum to the number of variables. In the
extreme case there would be a single component with perfect correlations with
all of the original variables. The eigenvalue for this component would be equal
to 12 + 12 + - .-+ = p. All of the other eigenvalues would be equal to zero, and
the ellipse would collapse to a single line.

Table 10.1 Correlation among variables
Correlation Matrix
MEDHSINC | FEMALEH EDUC TENURE LRES
Correlation MEDHSINC 1.000 -.595 415 .569 -.455
FEMALEH -.595 1.000 -.348 -.531 221
EDUC 415 -.348 1.000 117 -.161
TENURE .569 -.531 17 1.000 -.438
LRES —-.455 221 -.161 -.438 1.000

Table 10.2 Variance explained by each component

Total Variance Explained

Extraction Sums of Squared
Loadings Rotation Sums of Squared Loadings
% of Cumulative % of Cumulative
Component Total Variance % Total Variance %
1 2.602 52.032 52.032 1.035 20.707 20.707
2 957 19.149 71.181 1.032 20.637 41.344
3 741 14.826 86.007 1.018 20.358 61.702
4 .362 7.244 93.251 1.005 20.110 81.812
5 .337 6.749 100.000 .909 18.188 100.000

Extraction Method : Principal Component Analysis.
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This table also provides us with valuable information concerning how many
factors are necessary to adequately describe the data. There are two “‘rules of
thumb” that are used to decide on the number of factors. One such rule is to
retain components with eigenvalues greater than one. This would be an unfor-
tunate rule to apply in this instance, since the second eigenvalue is just slightly
less than one (0.96). An alternative is to plot the eigenvalues on the vertical axis
and the factor number (ranging from 1 to p) on the horizontal axis of a graph.
Then inspect the graph to locate a point at which the graph (termed a scree
plot) flattens out; such a feature implies that the additional factors do not
contribute much to the explanation of variability in the data set. Figure 10.2
displays a scree plot for our present example. Some judgement is called for, and
we could in this instance justify the extraction of either two or three factors.

Suppose that we decide to extract two factors. The next step is to inspect the
loadings, or correlations between the factors and the original variables. This is
a key step in the analysis, since it is where the “meaning’ and interpretation of
each factor occurs. To aid in this interpretation, the extracted component
solution is rotated in the p-dimensional space, so that the loadings tend to
be either high in absolute value (near plus or minus one) or low (near zero).

Table 10.3 shows that the two-factor solution may be described as follows.
The first factor is one where income, tenure, and length of residence all “load
highly”’. We can think of these variables has being combined to form a single
index (the factor) that describes with a single number what the three variables
represent. The second factor is associated with the other two variables — educa-
tion and family structure. It is common practice to attempt to give the factors
snazzy, descriptive names. Having noted this, it is often difficult to come up

2.5

Eigenvalue (length of
axis)

0.5

1 2 3 4 5

Component

Figure 10.2 Scree plot for Erie County example
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Table 10.3 Factor loadings

Rotated Component Matrix

Component
1 2
MEDHSINC .668 .562
FEMALEH -.515 -.608
EDUC —3.79E-02 912
TENURE .848 154
LRES -.766 | —2.78E-03

Extraction Method : Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
? Rotation converged in 3 iterations.

Table 10.4 Communalities

Communalities
Extraction

MEDHSINC .762

FEMALEH .635

EDUC .833

TENURE 742

LRES .587

Extraction Method : Principal Component Analysis.

with something creative! The first factor here might be thought of as a housing/
economic factor and the second a sociological factor.

The difference between principal components analysis and factor analysis
may be summarized as follows. Principal components analysis is a descriptive
method of decomposing the variation among a set of p original variables into p
components. The components are linear combinations of the original variables.
It is used as a prelude to factor analysis, which attempts to model the varia-
bility in the original set of variables via a reduced number of factors which is
less than p. In factor analysis, values of the original variables may be recon-
structed by writing them as linear combinations of the factors, plus a “unique-
ness” term. Alternatively stated, in factor analysis part of the variability in an
original variable is captured by the factors (this portion of the variability is
termed the communality), and part is not captured by the factors (this portion
is termed the uniqueness). Table 10.4 shows the communalities for the two-
factor solution. The highest communality is for education (0.833) and the
lowest for length of residence (0.587). The communalities for a variable are
equal to the sum of the squared correlations of the variable with the factors.
For example, the communality for education is equal to its squared correlation
with factor one (0.0379%) plus its squared correlation with factor two (0.912%).
Length of residence has the highest uniqueness, since it is not highly correlated
with the two factors.

It is important to realize that the output of a factor analysis is a strong
function of the input. The fact that length of residence is not strongly related
to either factor does not mean that it is not an important feature of urban
structure. The factors that emerge from a factor analysis are not necessarily the
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“most important’ ones, but rather the ones that capture the nature of the
dataset. If we had a dataset with fifteen variables, and eleven of the fifteen
variables were alternative measures of income, we could be certain that an
income factor would emerge as the principal factor, simply because so many
variables were highly intercorrelated.

Finally, one of the outputs from factor analysis is the factor scores. Instead
of making p separate maps describing the spatial pattern of each variable, one
is now interested in making a number of maps equal to the number of under-
lying factors. For each factor, and for each observation, a score may be com-
puted as a linear combination of the original variables. The result is a new data
table; instead of the original n x p table, we now have a n x k table, where & is
the number of factors. Figures 10.3 and 10.4 display the factor scores on each
of our two factors for the Erie County census tracts.

10.1.2 Regression Analysis on Component Scores

As we have seen, the chief use of principal components analysis is to sum-
marize a large number of variables in terms of a set of uncorrelated compo-
nents. This sounds ideal for regression analysis, where one is faced with a
large number of possibly correlated variables, and the objective is to use a
small number of uncorrelated variables that will be useful in explaining the
variability in the dependent variable.

Regression analysis may be carried out on component scores, ensuring not
only that the independent variables are a parsimonious subset capturing the
underlying dimensions of the full set of potential independent variables, but
that they are uncorrelated as well. This idea for eliminating multicollinearity is
one that is quite commonly employed (for example, see Ormrod and Cole 1996,
Ackerman 1998, O’Reilly and Webster 1998). One disadvantage is that it is
somewhat more difficult to interpret the regression coefficients. They now indi-
cate how much the dependent variable changes when the component score
changes by one unit, and it is more difficult to conceptualize just what a
one-unit increase in the component score really implies. Hadi and Ling
(1998) also note some pitfalls in the use of principal components regression.

10.2 Cluster Analysis

Whereas factor analysis works by searching for similar variables, cluster analy-
sis has as its objective the grouping together of similar observations. Since it is
conventional to represent each observation as a row in a data table, and each
variable as a column, cluster analysis has at its core the search for similar rows
of data. Factor analysis is based upon similarities among columns of data.
Like factor analysis, cluster analysis may be thought of as a data reduction
technique. We seek to reduce the n original observations into g groups, where
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FAC1 1

Range  From To Count -
& 1 620 -037 59
@ 2 037 024 60 |

3 0.24 0.60 59
4 0.60 1.38 58

Figure 10.3 Factor 1 scores

1 < g < n. In achieving this reduction of n observations into a smaller number
of groups, a general goal is to minimize the within-group variation and max-
imize the between-group variation. In Figure 10.5, there is relatively little
variability within groups, as measured by the variation in the location of
points around their group centroids. Relative to this within-group variability,
there is much more variation in the locations of the group centroids in relation
to the centroid for the entire dataset.
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Figure 10.4 Factor 2 scores

One of the more widespread applications of cluster analysis in geography has
been in the area of geodemographics, where analysts seek to reduce a large
number of subregions (e.g., census tracts) by classifying them into a small
number of types (see, e.g., Chapter 10 of Plane and Rogerson 1994). Cluster
analysis has also been used as a method of regionalization, where the objective
is to divide a region into a smaller number of contiguous subregions. In this
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Figure 10.5 Clustering in p=3 dimensions

case, it is necessary to modify traditional approaches to cluster analysis slightly
to ensure that the created groups are composed of contiguous subregions (see,
e.g., Murtagh 1985).

Approaches to cluster analysis may be categorized into two broad types.
Agglomerative or hierarchical methods start with n clusters (where n is the
number of observations); each observation is therefore in its own cluster.
Then two clusters are merged, so that n — 1 clusters remain. This process con-
tinues until only one cluster remains (this cluster contains all n observations).
The process is hierarchical because the merger of two clusters at any stage of
the analysis cannot be undone at later stages. Once two observations have been
placed together in the same cluster, they stay together for the remainder of the
grouping process.

In contrast, nonhierarchical or nonagglomerative methods begin with an a
priori decision to form g groups. Then one begins with either an initial set of g
seed points or an initial partition of the data into g groups. If one starts with a
set of seed points, a partition of the data into g groups is achieved by assigning
each observation to the nearest seed point. If one begins with a partition of the
data into g groups, g seed point locations are calculated as the centroids of
these g partitioned groups. In either case, an iterative process then takes place,
where new seed points are calculated from partitions and then new partitions
are created from the seed points. This process continues until no reassignments
of observations from one group to another occur. The convergence of this
iterative process is usually very rapid.

The nonhierarchical methods have the advantage of requiring less computa-
tional resources, and for this reason they are the preferred method when
the number of observations is very large. They have the disadvantage that
the number of groups must be specified prior to the analysis, though in practice
it is not uncommon to find solutions for a range of g values.
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10.2.1 More on Agglomerative Methods

With agglomerative methods, at each stage one merges the closest pair of
clusters. There are many possible definitions that may be used for “‘closest”.
Consider all pairs of distances between elements of cluster A and cluster B.
If there are na elements in cluster A and ng elements in cluster B, there are
nang such pairs. The single linkage (or nearest neighbor) method defines the
distance between clusters as the minimum distance among all of these pairs.
The complete linkage (or furthest neighbor) method defines the distance
between clusters as the maximum distance among all of these pairs.

One of the more commonly used methods is Ward’s method. At each stage,
all potential mergers will reduce the number of current clusters by one. Each
of these potential mergers will result in an increase in the overall within sum of
squares. (The within sum of squares may be thought of as the amount of scatter
about the group centroids. With # clusters the within sum of squares is equal to
zero, since there is no scatter of other members about the group centroids.
With one cluster, the within sum of squares is maximal.) Ward’s method
chooses that merger that results in the smallest increase in the within sum of
squares. This is conceptually appealing, since we would like the within-group
variability to remain as small as possible.

10.2.2 lllustration: 1990 Census Data for Erie County, New York

Here we will illustrate some of the features of cluster analysis using the
dataset described above in the illustration of factor analysis.

Table 10.5 displays the results of a nonhierarchical k-means cluster analysis,
where solutions range from k =2 to k =4. Three variables were used as cluster-
ing variables: the education variable, median household income, and the per-
centage of households headed by females. After standardization, the z-scores
were used in the cluster analysis. For the two-cluster solution, the final cluster
centers reveal that the first cluster is one where there are low scores on the
education and median household income variables and high values on the
percentage of households headed by females. The second cluster has the oppo-
site characteristics, since the final cluster centroid is at education and income
values that are above average, and at a location where the percentage of
female-headed households is below average. There are 126 observations in
the first cluster, and 105 in the second (and there are five observations with
missing data). The ANOVA table reveals that all of the variables are contri-
buting strongly to the success of the clustering, since all of the F-values are
extremely high and significant. It is important to note that, since the cluster
analysis is designed to make the F-statistic large by minimizing within-group
variation, these F-statistics should not be interpreted in the usual way. In
particular, we would expect the F-statistics to be large since we are creating
clusters to make F large. Still, they can be used as rough guidelines to indicate
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Table 10.5 (a) Two-cluster solution; (b) three-cluster solution; (c) four-cluster

solution
(a) Final Cluster Centers
Cluster
1 2
Zscore(EDUCQ) -.49757 .58646
Zscore(FEMALEH) 51941 -.62329
Zscore(MEDHSINC) | -.55645 .76299
ANOVA
Cluster Error
Mean Mean
Square | df | Square df F Sig.
Zscore(EDUCQ) 67.302 1 .639 229 | 105.276 .000
Zscore(FEMALEH) 74.784 1 .678 229 | 110.335 .000
Zscore(MEDHSINC) 99.708 1 496 229 | 201.103 .000

(b)

The F tests should be used only for descriptive purposes because the clusters have been
chosen to maximize the differences among cases in different clusters. The observed
significance levels are not corrected for this and thus cannot be interpreted as tests of
the hypothesis that the cluster means are equal.

Number of Cases in each Cluster

Cluster 1 126.000
2 105.000
Valid 231.000
Missing 5.000
Final Cluster Centers
Cluster
1 2 3
Zscore(EDUCQ) -.58897 -.27850 1.39280
Zscore(FEMALEH) 1.60968 -.27974 | -.68224
Zscore(MEDHSINC) -1.05910 .03641 1.11887
ANOVA
Cluster Error
Mean Mean
Square df Square df F Sig.
Zscore(EDUCQ) 57.715 2 431 228 | 133.904 | .000
Zscore(FEMALEH) 73.226 2 .366 228 | 199.830 | .000
Zscore(MEDHSINC) 53.347 2 467 228 | 114.152 | .000

The F tests should be used only for descriptive purposes because the clusters have been
chosen to maximize the differences among cases in different clusters. The observed
significance levels are not corrected for this and thus cannot be interpreted as tests of
the hypothesis that the cluster means are equal.

Number of Cases in each Cluster
Cluster 1 44,000
2 141.000
3 46.000
Valid 231.000
Missing 5.000
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(o) Final Cluster Centers
Cluster
1 2 3 4
Zscore(EDUCQ) 4.76906 | -.30937 199199 -.62440
Zscore(FEMALEH) -1.02424 | -.17113 | -.68459 1.98402
Zscore(MEDHSINC) -.87318 | —.11596 | 1.19929 | -1.13847
ANOVA
Cluster Error

Mean Mean

Square Df Square df F Sig.
Zscore(EDUQ) 41.594 3 .392 227 | 106.188 .000
Zscore(FEMALEH) 52.519 3 -.319 227 | 164.566 .000
Zscore(MEDHSINC) 40.720 3 401 227 | 101.478 .000

The F tests should be used only for descriptive purposes because the clusters have been

chosen to maximize the differences among cases in diferent clusters. The observed significance
levels are not corrected for this and thus cannot be interpreted as tests of the hypothesis that
the cluster means are equal.

Number of Cases in each Cluster

Cluster 1 2.000
2 143.000
3 54.000
4 32.000
Valid 231.000
Missing 5.000

the success of the clustering and the relative success that individual variables
have in achieving the cluster solution.

The three-cluster solution is similar to the two-cluster solution, with the
addition of a ““middle” group that has values on all three variables that are
close to the countywide averages. There are 41 observations in the first cluster
(characterized by low levels of education and income and a high percentage of
female-headed households), 141 observations in the middle group, and 46
tracts in the third group. Again, all of the F-statistics are high, implying that
all three variables help to place the observations into clusters.

One of the groups in the four-cluster solution has only two observations.
These two observations are characterized by an extremely high percentage of
individuals with professional degrees.

It appears that there are two distinct clusters, with a third, fairly large group
characterized by rather average values on the variables. In addition, the cluster
analysis has been helpful in locating two census tracts that could be character-
ized as outliers due to their high values on the education variable. Figure 10.6
depicts the location of tracts in the three-cluster solution.

An important piece of output from a hierarchical cluster analysis is the
dendogram. As its name implies, a dendogram is a tree-like diagram. It captures
the history of the hierarchical clustering process as one proceeds from left to
right along it. For illustrative purposes, it is rather difficult to show the dendo-
gram that accompanies a hierarchical cluster analysis that has taken place for a
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Figure 10.6 Three-cluster solution

very large number of observations. Instead, Figure 10.7 shows a dendogram
for a subset of 30 tracts that have been selected at random from the dataset. At
the left of the dendogram, the branches that meet indicate observations that
have clustered together. For example, tracts 70 and 146 were very close
together in the three-variable space and clustered together early in the process.
In fact, the agglomeration schedule (shown in Table 10.6) indicates that these
were the first two observations that were clustered together. The horizontal
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Figure 10.7 Dendogram

scale of the dendogram indicates the distance between the observations
or groups that are clustered together. On the left of the dendogram, observa-
tions are close together when they cluster. On the right of the dendogram, there
is only a small number of groups and the distance between those groups is
larger.
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Table 10.6 Agglomeration schedule for hierarchical clustering
Agglomeration Schedule

Stage Cluster First
Cluster Combined Coefficients Appears
Stage | Cluster 1 | Cluster 2 Cluster 1 | Cluster 2 | NextStage
1 70 146 1.578E-02 0 0 7
2 34 181 3.158E-02 0 0 8
3 97 145 5.184E-02 0 0 9
4 72 173 7.689E-02 0 0 10
5 156 171 .104 0 0 14
6 21 43 135 0 0 13
7 70 175 .168 1 0 17
8 34 159 .226 2 0 13
9 9 97 .295 0 3 12
10 32 72 391 0 4 17
11 60 131 514 0 0 19
12 9 10 732 9 0 22
13 21 34 978 6 8 21
14 156 209 1.237 5 0 20
15 20 174 1.545 0 0 16
16 12 20 1.858 0 15 23
17 32 70 2.259 10 7 21
18 117 126 2.721 0 Q 25
19 60 138 3.193 1 0 22
20 156 178 3.782 14 0 24
21 21 32 4.642 13 17 26
22 9 60 5.718 12 19 24
23 12 29 7.126 16 0 26
24 9 156 8.771 22 20 27
25 79 117 11.396 0 18 27
26 12 21 17.329 23 21 28
27 9 79 28.934 24 25 28
28 9 12 58.941 27 26 0

To decide on the number of clusters, one can imagine taking a vertical line
and proceeding from left to right along the dendogram. As one proceeds, the
number of lines from the dendogram that intersect this vertical line decreases
from n to 1. A good choice for the number of groups is one where there is a
fairly large horizontal range in the dendogram where the number of groups
does not change. In Figure 10.7, it would make little sense to choose five
groups, since these five groups could easily be simplified into four by proceed-
ing just a little further to the right on the dendogram. The figure shows that
there are two clear groups of tracts. The tracts that are in each of these groups
may be found by proceeding to the left from each of the two parallel, hori-
zontal lines on the dendogram. Following all the way to the left, through all of
the branches, reveals all of the tracts in each cluster. For example, one of the
two clusters consists of observations 156, 171, 209, 178, 97, 145, 9, 10, 60, 131,
138, 117, 126, and 79. Note that a three-cluster solution would subdivide this
particular cluster into two subclusters, and one of those subclusters would be
quite small (consisting only of observations 117, 126, and 79). The next step in
this analysis would be to examine the characteristics of the observations in each
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cluster. For example, observations 117, 126, and 79 all have quite high values
on the education variable, coupled with high median household incomes.

10.3 Data Reduction Methods in SPSS for Windows 9.0
10.3.1 Factor Analysis

Click on Analyze, then Data Reduction, and then Factor. Choose the vari-
ables that will enter into the factor analysis. Under Rotation, choose
Varimax (it is not the default). It is the most commonly used rotation
method, and you should use it unless you have a good reason to choose an
alternative! Under Extraction, it is most common to choose Principal
Components and to choose as significant Eigenvalues over 1. These are the
defaults, and so unless you wish to change them you do not have to do any-
thing. Under Scores, choose Save as Variables. This will save the factor
scores as new variables by attaching a number of columns to your dataset
that is equal to the number of significant factors. Under Descriptive, choose
Univariate Descriptives if desired. It is also useful to check the box labeled
“coefficients” under Correlation Matrix, to print out a table of the correla-
tion coefficients among variables.

10.3.2 Cluster Analysis

Hierarchical methods. Choose Analyze, then Classify, then Hierarchical
Cluster. Next, choose the variables that are to be clustered. Then, under
Method, choose the clustering method to be used. Note: Ward’s method,
though perhaps the most commonly used, is not the default choice. In fact,
in Versions 8 and 9, one must scroll down the drop-down list to find it at
the end of the list of methods. Next, choose the measure of distance that will
be used; squared Euclidean distance is the default, and is a reasonable (and
readily understandable!) choice. Still in this section, you will likely want to
choose z-scores under the box labeled ‘“‘standardize”; again, it is not the
default option. Under Plots, one will often want to turn off the default
“icicle plot” and check the box labeled “dendogram”. Under Save, you may
save cluster membership, which adds a column of data to the data table
indicating the cluster to which each observation belongs. This can be done
either for a single predefined choice of the number of clusters or for a
predefined range of cluster numbers.

Nonhierarchical clustering. First click on Analyze, then on k-means. After
choosing the variables to cluster (and recalling that it is usually a good idea
to standardize the data by computing z-scores before doing this), choose the
number of clusters desired. It is usually a good idea to click on Save, and
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save “‘cluster membership”’, which adds a column to the data table indicating
the cluster membership of each observation.

Exercises

1. Explain and interpret the rotated factor loading table below

Factor 1 Factor 2
% <15 yr old .88 .21
% blue collar workers 13 .86
% >65 yr old -.92 -1
% white collar workers -.17 -.81
Median income .24 —.71

2. Perform a hierarchical cluster analysis using the following data, and com-
ment on the results.

Data for cluster analysis

Region Mean age %nonfamily Median income
(x000)

1 34 50 34

2 45 44 44

3 32 58 38

4 50 50 59

5 55 70 44

6 26 62 29

7 37 38 33

8 42 36 43

9 47 39 56
10 46 49 58
1 51 68 61
12 38 36 39
13 33 44 41
14 29 66 38

3. How many significant factors would be extracted in the following factor
analysis? How many variables were in the original analysis? Explain your
answer.

Factor Eigenvalue Cumulative percent of
variance explained
1 3.0 45
2 2.5 70
3 1.5 78
4 0.9 89
5 0.3 92
6 0.2 94
7 0.2 96
8 0.2 98
9 0.1 99
10 0.1 100
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4. A researcher collects the following information for a set of census tracts:

Median  Income % No. of % new % blue
Tract age (x000) nonfamily autos residents collar
1 26 29 32 1 23 33
2 35 38 24 2 21 21
3 48 49 29 3 16 44
4 47 55 55 3 18 44
5 36 39 66 2 23 141
6 29 32 42 2 33 40
7 55 58 38 3 10 31
8 56 66 36 3 1 24
9 29 32 33 1 23 28
10 33 44 29 2 21 29
1 44 49 31 2 18 31
12 47 46 38 2 15 30
13 51 52 55 3 12 20
14 44 49 52 2 18 19
15 37 40 38 1 19 43
16 38 41 34 2 21 31

Use factor analysis to summarize the data.
Assume that the data come from a 4x4 grid laid over the city as follows:

(a)
(b)

©

(d)

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

Run a factor analysis to summarize the data above.

How many factors are sufficient to describe the data (i.e., have eigenvalues
greater than 1)?

Describe the rotated factor loadings, describing each factor in terms of the
most important variables that comprise it. Attempt to give names to the
factors. (Note: in this part of the question, discuss only those factors with
eigenvalues greater than 1.)

Save the factor scores, and make a map of the scores on factor 1.



Epilogue

The primary purpose of this book has been to provide a foundation in
some of the basic statistical tools that are used by geographers. The focus
has been on inferential methods. Inferential statistical methods are attrac-
tive because they fit well into the time-honored framework of the scientific
method. There are, of course, limitations to the use of these methods.
Many of the concerns are related to the nature of hypothesis testing. Why
do we test whether two populations have the same mean? An enumeration
of two communities would almost certainly show that the true, “popula-
tion” means of, say, commuting distance were in fact different. Why do we
test whether a true regression coefficient is zero? Independent variables will
almost always have some effect on the dependent variable, even if it is
small. The principal point here is that in many situations the null hypo-
thesis is not going to be true, so why are we testing it? A response to this
concern is that the inferential framework provides not only a way of
testing hypotheses, but also a way of establishing confidence intervals
around estimated parameters. Thus we can state with a given level of con-
fidence the magnitude of the difference in commuting times, and we can
specify with a given level of precision the magnitude of a regression coeffi-
cient.

With the increasing availability of large datasets, there has been an appro-
priate development of exploratory methods. Such exploratory methods are
extremely useful in “data mining” and “‘data trawling” to suggest new hypo-
theses. Ultimately, confirmation of these new hypotheses is called for, and
inferential methods become more appropriate.

Where does the student of quantitative methods in geography go from
here? The books by Longley ef al. (1998) and Fotheringham et al. (2000)
represent two good examples of recent attempts to summarize some of the
new developments in the field. They include accounts of new developments in
the areas of exploratory spatial data analysis and geocomputation. In order
of increasing mathematical sophistication are books on spatial data analysis
by Bailey and Gatrell (1995), Haining (1990a), and Cressie (1993). These
require more background than that required for this book, but that should
not deter the interested student from exploring them. Even if one does not
absorb all of the mathematical detail, it is possible to get a good sense of the
types of questions and the range of problems that spatial analysis can
address.



EPILOGUE 211
Selected Publications

The following is a short list of some recent examples of the use of statistical
methods in geography. Full details can be found in the Reference list.

Two-sample tests
Nelson 1997
Factor analysis in regression
Ormrod and Cole 1996
O’Reilly and Webster 1998
Ackerman 1998
Logistic regression
Myers et al. 1997
Correlation
Williams and Parker 1997
Allen and Turner 1996
Spearman’s
Keim 1997
Correlation and regression
Wyllie and Smith 1996 (stepwise regression)
Regression
Fan 1996
Principal components and factor analysis
Clarke and Holly 1996
Webster 1996
Cluster analysis
Comrie 1996
Dagel 1997
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Appendix A: Statistical Tables

Table A.1 Random digits

Each location in the table is equally likely to be the digit 0, 1,2, 3,4, 5,6, 7, 8, or 9.

39203
39965
17752
04284
03440

07466
83343
03745
27975
54284

79521
17817
56213
75194
44549

11543
27327
65332
45214
77929

54366
08535
36947
28323
16748

33178
26466
36535
66835
09357

07296
01106
15742
16523
03536

73445
52017
63724
16675
01377

49752
40734
64213
24505
34248

60229
36712
94150
36402
15853

59841
79079
87652
63927
97786

12899
72721
48015
70407
28109

93795
48797
82716
03658
28479

45735
47369
83444
30409
36175

88887
65466
67802
33789
41349

69744
93243
14197
93340
02826

75285
48819
99837
51356
42548

35057
99654
57039
01990
36919

61849
81595
91973
41214
31337

06451
16560
42762
94992
95261

91168
97829
07004
07533
37416

31434
52695
85373
56983
48080

56291
59971
77356
65212
49939

21121
72686
40231
35466
61017

16301
48869
81864
56413
75175

11252
88962
72029
09121
35480

29833
40679
87999
37907
50478

97928
63051
06679
38803
49327

05823
96763
62604
03031
78109

61294
35055
54989
51794
90876

32021
95836
95860
60557
24541

06525
36309
77206
07913
80215

03839
28104
91791
50828
43539

46119
74153
84229
73494
71350

19105
58315
59051
16652
66405

49458
31547
40094
97179
92998

78926
96311
36431
65491
54022

83183
87131
46472
84706
24518

84198
68282
00789
34756
49077

53777
99750
58564
59245
66395

82081
26651
89325
41339
36408

81175
67961
76214
38682
85753

16098
68171
31267
73031
66337

96548
67849
48713
39421
93393

51147
23905
52076
28571
75745

86585
05650
61100
24446
35244

48012
90666
96530
39889
18614

57729
87755
92762
24066
61098

18174
34155
21825
31600
10187

17640
53169
12434
87178
72788

60164
12495
56997
16728
63936

38234
73792
85412
89173
64411

44436
05068
19598
12498
61547

48237
91820
46748
86061
32687

31217
24696
34284
53781
33003

85536
29480
17633
47809
39454

97299
91712
84598
49415
03129

35701
29329
75952
41937
25962

74419
29452
25568
84374
84757

85533
58659
81297
84460
66605

37385
68275
70904
96512
36480

24468
63300
83510
40739
27938

22678
98190
25159
30153
25104

30815
22255
54693
88928
29040

41907
66332
06530
63579
32043

92257
92795
38541
87930
50956

56635
16907
62879
97503
68513

70757
52001
54470
26551
04427

10322
94005
00981
36871
45754

10178
37377
36197
58370
08718

52925
20281
91993
11116
87028

30891
89222
73998
40168
56201

37566
33721
28785
80522
27361

01082
91564
63440
55676
74575

42982
22822
51015
42659
01747

24864
39219
08250
83677
36244

57142
65802
82602
09430
08643

28092
24808
88720
58381
33234

95196
23972
89250
83645
51435

23212
53580
84099
34416
96740

91004
73978
13209
92345
05094

89620
10618
13500
95705
16005

45822
13991
57736
30866
27060

00715
28009
03439
68453
45306

64904
37808
39540
53203
49361

48761
22342
04353
46036
31511

00203
94408
57911
39471
91870

97686
54075
57702
04810
04480

47893
66115
24446
80482
52726

02002
16829
55629
75064
45414

71887
07258
50274
04612
95318

50129
24229
65084
46872
49409

26879
73487
72346
05307
17720

18213
19796
97497
66827
22552

63597
78375
61780
29708
61584

31924
60169
13417
07924
40640

77302
76429
18505
12136
93123

90810
48002
61299
35915
02438

77825
40478
86013
22081
24296

08264
10472
03717
07568
81015
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Table A.1 (Continued)

84807 71928 78331 51465 39259 63729 32989 80330 57238 98955
98408 62427 04782 69732 83461 01420 68618 11575 24972 14040
61825 69602 11652 56412 22210 03517 40796 29470 49044 10343
39883 29540 45090 05811 62559 50967 66031 48501 05426 82446
68403 57420 50632 05400 81552 91661 37190 95155 26634 01135

58917 60176 48503 14559 18274 45809 09748 19716 15081 84704
72565 19292 16976 41309 04164 94000 19939 55374 26109 58722
58272 12730 89732 49176 14281 57181 02887 84072 91832 97489
92754 47117 98296 74972 38940 45352 58711 43014 95376 57402
34520 96779 25092 96327 05785 76439 10332 07534 79067 27126

18388 17135 08468 31149 82568 96509 32335 65895 64362 01431
06578 34257 67618 62744 93422 89236 53124 85750 98015 00038
67183 75783 54437 58890 02256 53920 61369 65913 65478 62319
26942 92564 92010 95670 75547 20940 06219 28040 10050 05974
06345 01152 49596 02064 85321 59627 28489 88186 74006 18320

24221 12108 16037 99857 73773 42506 60530 96317 29918 16918
83975 61251 82471 06941 48817 76078 68930 39693 87372 09600
86232 01398 50258 22868 71052 10127 48729 67613 59400 65886
04912 01051 33687 03296 17112 23843 16796 22332 91570 47197
15455 88237 91026 36454 18765 97891 11022 98774 00321 10386

88430 09861 45098 66176 59598 98527 11059 31626 10798 50313
48849 11583 63654 55670 89474 75232 14186 52377 19129 67166
33659 59617 40920 30295 07463 79923 83393 77120 38862 75503
60198 41729 19897 04805 09351 76734 10333 87776 36947 88618
55868 53145 66232 52007 81206 89543 66226 45709 37114 78075

22011 71396 95174 43043 68304 56773 83931 43631 50995 68130
90301 54934 08008 00565 67790 84760 82229 64147 28031 11609
07586 90936 21021 54066 87281 63574 41155 01740 29025 19909
09973 76136 87904 54419 34370 75071 56201 16768 61934 12083
59750 42528 19864 31595 72097 17005 24682 43560 74423 59197

74492 19327 17812 63897 65708 07709 13817 95943 07909 75504
69042 57646 38606 30549 34351 21432 50312 10566 43842 70046
16054 32268 29828 73413 53819 39324 13581 71841 94894 64223
17930 78622 70578 23048 73730 73507 69602 77174 32593 45565
46812 93896 65639 73905 45396 71653 01490 33674 16888 53434

04590 07459 04096 15216 56633 69845 85550 15141 56349 56117
99618 63788 86396 37564 12962 96090 70358 23378 63441 36828
34545 32273 45427 30693 49369 27427 28362 17307 45092 08302
04337 00565 27718 67942 19284 69126 51649 03469 88009 41916
73810 70135 72055 90111 71202 08210 76424 66364 63081 37784

60555 94102 39146 67795 05985 43280 97202 35613 25369 47959
58261 16861 39080 22820 46555 32213 38440 32662 48259 61197
98765 65802 44467 03358 38894 34290 31107 25519 26585 34852
39157 58231 30710 09394 04012 49122 26283 34946 23590 25663
08143 91252 23181 51183 52102 85298 52008 48688 86779 21722

66806 72352 64500 89120 13493 85813 93999 12558 24852 04575
08289 82806 36490 96421 81718 63075 54178 39209 03050 47089
12989 31280 71466 72234 26922 04753 61943 86149 26938 53736
44154 63471 30657 62298 56461 48879 54108 97126 43219 95349
63788 18000 10049 49041 28807 64190 39753 17397 48026 76947
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Table A.2 Normal distribution

The tabled entries represent the proportion p of area
under the normal curve above the indicated values of z.
(Example: .0694 or 6.94% of the area is above z=1.48). For

negative values of z, the tabled entries represent the area /P

less than —z. (Example: .3015 or 30.15% of the area is .

beneath z=-.52.) 0

Second decimal place of z

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
0.0 | 5000 .4960  .4920 .4880 14840 14801 4761 4721 4681 4641
0.1| .4602  .4562  .4522 4483 4443 4404 4364 4325  .4286 4247
02| .4207 4168 4129  .4090 4052 4013 3974 3936 3897 .3859
03| .3821 3783 3745 3707 3669  .3632 3594 3557 .3520 .3483
04 | .3446 3409 3372 3336 .3300  .3264 3228  .3192 3156 3121
05| .3085 .3050  .3015 2981 2946 2912 2877 .2843 2810 2776
0.6 | .2743 2709  .2676 .2643 2611 2578 2546 2514 .2483 .2451
07| 2420 2389 2358  .2327 2297 2266 2236 2206 2177 2148
0.8 | 2119  .2090  .2061 .2033 2005 1977 .1949 1922 1894 .1867
09| .1841 1814  .1788 1762 A736 AN 1685 1660 .1635 1611
1.0 | .1587  .1562  .1539 1515 1492 1469 1446 1423 .1401 1379
11| 1357 1335 1314 1292 271 1251 1230 1210 1190 1170
12| 1151 1131 112 .1093 1075 1056 .1038  .1020  .1003 .0985
13| .0968 .0951  .0934  .0918  .0901 .0885  .0869 .0853  .0838  .0823
1.4 | .0808 .0793 .0778  .0764  .0749  .0735  .0721 0708  .0694  .0681
15| .0668  .0655  .0643 0630  .0618  .0606  .0594  .0582  .0571 .0559
1.6 | .0548  .0537  .0526 0516 .0505 .0495  .0485 0475 0465 .0455
1.7 | 0446 0436  .0427 0418 .0409 .0401 .0392 0384 0375 .0367
18| .0359 .0351 .0344  .0336 0329 0322 .0314  .0307 .0301 .0294
19| .0287 .0281 .0274  .0268  .0262 0256 0250 0244 0239 10233
20| .0228 .0222 .0217 0212 0207 .0202  .0197 0192 .0188 0183
21| .0179  .0174 0170 0166  .0162  .0158  .0154  .0150 0146 0143
22| .0139 0136 .0132 0129 0125 0122 0119 0116 .0113 0110
23| .0107 0104  .0102 .0099 0096  .0094  .0091 0089  .0087 .0084
24| .0082 .0080 .0078  .0075 .0073 .0071 .0069 0068  .0066 .0064
25| .0062 .0060 .0059  .0057 0055  .0054  .0052 .0051 .0049 .0048
2.6 | .0047 .0045 .0044  .0043 .0041 .0040  .0039  .0038  .0037 .0036
27| .0035 .0034  .0033 .0032 .0031 0030  .0029  .0028  .0027 .0026
28| .0026 .0025 .0024  .0023 .0023 0022 .0021 .0021 .0020 .0019
29| .0019 .0018  .0018  .0017 0016  .0016  .0015 .0015 0014 .0014
3.0 | .0013  .0013  .0013 .0012 0012 .00M .0011 .0011 .0010 .0010

Adapted with rounding from Table Il of Fisher and Yates 1974.



Table A.3 Student’s t distribution

For various degrees of freedom (df), the tabled entries
represent the critical values of t above which a specified
proportion p of the t distribution falls. (Example: for df=9,
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a t of 2.262 is surpassed by .025 or 2.5% of the total /P
distribution. ,
0 t
p (one-tailed probabilities)
df .10 .05 .025 .01 .005
1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032
6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250
10 1.372 1.812 2.228 2.764 3.169
1 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947
16 1.337 1.746 2.120 2.583 2.921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845
21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.71 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787
26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2.473 2.771
28 1.313 1.701 2.048 2.467 2.763
29 1.31 1.699 2.045 2.462 2.756
30 1.310 1.697 2.042 2.457 2.750
40 1.303 1.684 2.021 2.423 2.704
60 1.296 1.671 2.000 2.390 2.660
120 1.289 1.658 1.980 2.358 2.617
oo 1.282 1.645 1.960 2.326 2.576

Adapted from Table lll of Fisher and Yates (1974).
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Table A.4 Cumulative distribution of Student’s t distribution

tv [ 1 2 3 4 5 6 7 8 9 10

0.0 | 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000
0.1 | 0.53173 0.53527 0.53667 0.53742 0.53788 0.53820 0.53843 0.53860 0.53873 0.53884
0.2 | 0.56283 0.57002 0.57286 0.57438 | 0.57532 0.57596 0.57642 0.57676 0.57704 0.57726
0.3 | 0.56283 0.57002 0.57286 0.57438 | 0.57532 0.57596 0.57642 0.57676 0.57704 0.57726
0.4 | 0.62112 0.63608 0.64203 0.64520 0.64716 0.64850 0.64946 0.65019 0.65076 0.65122
0.5 | 0.64758 0.66667 0.67428 0.67834 0.68085 0.68256 0.68380 0.68473 0.68546 0.68605
0.6 | 0.67202 0.69529 0.70460 0.70958 0.71267 0.71477 0.71629 0.71745 0.71835 0.71907
0.7 | 0.69440 0.72181 0.73284 0.73875 0.74243 0.74493 0.74674 0.74811 0.74919 0.75006
0.8 | 0.71478 0.74618 0.75890 0.76574 0.76999 0.77289 0.77500 0.77659 0.77784 0.77885
0.9 | 0.73326 0.76845 0.78277 0.79050 0.79531 0.79860 0.80099 0.80280 0.80422 0.80536
1.0 | 0.75000 0.78868 0.80450 0.81305 0.81839 0.82204 0.82469 0.82670 0.82828 0.82955
1.1 | 0.76515 0.80698 0.82416 0.83346 0.83927 0.84325 0.84614 0.84834 0.85006 0.85145
1.2 | 0.77886 0.82349 0.84187 0.85182 0.85805 0.86232 0.86541 0.86777 0.86961 0.87110
1.3 | 0.79129 0.83838 0.85777 0.86827 0.87485 0.87935 0.88262 0.88510 0.88705 0.88862
1.4 | 0.80257 0.85177 0.87200 0.88295 0.88980 0.89448 0.89788 | 0.90046 0.90249 0.90412
1.5 | 0.81283 0.86380 0.88471 0.89600 0.90305 0.90786 0.91135 0.91400 0.91608 0.91775
1.6 | 0.82219 0.87464 0.89605 0.90758 0.91475 0.91964 0.92318 | 0.92587 0.92797 0.92966
1.7 | 0.83075 0.88439 0.90615 0.91782 0.92506 0.92998 0.93354 0.93622 0.93833 0.94002
1.8 | 0.83859 0.89317 0.91516 0.92688 0.93412 0.93902 0.94256 0.94522 0.94731 0.94897
1.9 | 0.84579 0.90109 0.92318 0.93488 0.94207 0.94691 0.95040 0.95302 0.95506 0.95669
2.0 | 0.85242 0.90825 0.93034 0.94194 0.94903 0.95379 0.95719 0.95974 0.96172 0.96331
2.1 | 0.85854 0.91473 0.93672 0.94817 0.95512 0.95976 0.96306 0.96553 0.96744 0.96896
2.2 | 0.86420 0.92060 0.94241 0.95367 0.96045 0.96495 0.96813 0.97050 0.97233 0.97378
2.3 | 0.86945 0.92593 0.94751 0.95853 0.96511 0.96945 0.97250 0.97476 0.97650 0.97787
24 | 0.87433 0.93077 0.95206 0.96282 0.96919 0.97335 0.97627 0.97841 0.98005 0.98134
2.5 | 0.87888 0.93519 0.95615 0.96662 0.97275 0.97674 0.97950 0.98153 0.98307 0.98428
2.6 | 0.88313 0.93923 0.95981 0.96998 | 0.97587 0.97967 0.98229 0.98419 0.98563 0.98675
2.7 | 0.88709 0.94292 0.96311 0.97295 0.97861 0.98221 0.98468 0.98646 0.98780 0.98884
2.8 | 0.89081 0.94630 0.96607 0.97559 0.98100 0.98442 0.98674 0.98840 0.98964 0.99060
2.9 | 0.89430 0.94941 0.96875 0.97794 | 0.98310 0.98633 0.98851 0.93005 0.99120 0.99208
3.0 | 0.89758 0.95227 0.97116 0.98003 0.98495 0.98800 0.99003 0.99146 0.99252 0.99333
3.1 | 0.90067 0.954%0 0.97335 0.98189 0.98657 0.98944 | 0.99134 0.99267 0.99364 | 0.99437
3.2 | 0.90359 0.95733 0.97533 0.98355 0.98800 0.99070 0.99247 0.99369 0.99459 0.99525
3.3 | 0.90634 0.95958 0.97713 0.98503 0.98926 0.99180 0.99344 0.99457 0.99539 0.99599
3.4 | 0.90895 0.96166 0.97877 0.98636 0.99037 0.99275 0.99428 0.99532 0.99606 0.99661
35 | 091441 0.96358 | 0.98026 0.98755 0.99136 0.99359 0.99500. | 0.99596 0.99664 0.99714
3.6 | 0.91376 0.96538 0.98162 0.98862 0.99223 0.99432 0.99563 0.99651 0.99713 0.99758
3.7 | 0.91598 0.96705 0.98286 0.98958 0.99300 0.99496 0.99617 0.99698 0.99754 0.99795
3.8 | 0.91809 0.96860 0.98400 0.99045 0.99369 0.99552 0.99664 0.99738 0.99789 0.99826
3.9 | 0.92010 0.97005 0.98504 0.99123 0.99430 0.99601 0.99705 0.99773 0.99819 0.99852
4.0 | 0.92202 0.97141 0.98600 0.99193 0.99484 0.99644 0.99741 0.99803 0.99845 0.99874
4.2 | 0.92560 0.97386 0.98768 0.99315 0.99575 0.99716 0.99798 0.99850 | 0.99885 0.99909
4.4 | 0.92887 0.97602 0.98912 0.99415 0.99649 0.99772 0.99842 0.99886 0.99914 0.99933
4.6 | 0.93186 0.97792 0.99034 0.99498 0.99708 | 0.99815 0.99876 0.99912 0.99936 0.99951
4.8 | 0.93462 0.97962 0.99140 0.99568 0.99756 0.99850 0.99902 0.99932 0.99951 0.99964
5.0 | 0.93717 0.98113 0.99230 0.99625 0.99795 0.99877 0.99922 0.99947 0.99963 0.99973
5.2 | 0.93952 0.98248 0.99309 0.99674 0.99827 0.99899 0.99937 0.99959 0.99972 0.99980
5.4 | 0.94171 0.98369 0.99378 0.99715 0.99853 0.99917 0.99950 0.99968 | 0.99978 0.99985
5.6 | 0.94375 0.98478 0.99437 0.99750 0.99875 0.99931 0.99959 0.99975 0.99983 0.99989
5.8 | 0.94565 0.98577 0.99490 0.99780 0.99893 0.99942 0.99967 0.99980 0.99987 0.99991
6.0 | 0.94743 0.98666 0.99536 0.99806 0.99908 0.99952 0.99973 0.99984 0.99990 0.99993
6.2 | 0.94910 0.98748 0.99577 0.99828 | 0.99920 0.99959 0.99978 0.99987 0.99992 0.99995
6.4 | 0.95066 0.98822 0.99614 0.99847 0.99931 0.99966 0.99982 0.99990 0.99994 0.99996
6.6 | 0.95214 0.98890 0.99646 0.99863 0.99940 0.99971 0.99985 0.99992 0.99995 0.99997
6.8 | 0.95352 0.98953 0.99675 0.99878 0.99948 0.99975 0.99987 0.99993 0.99996 0.99998
7.0 | 0.95483 0.99010 0.99701 0.99890 0.99954 0.99979 0.99990 0.99994 0.99997 0.99998
7.2 | 0.95607 0.99063 0.99724 0.99901 0.99960 0.99982 0.99991 0.99995 0.99997 0.99999
7.4 | 0.95724 0.99111 0.99745 0.99911 0.99964 0.99984 0.99993 0.99996 0.99998 0.99999
7.6 | 0.95836 0.99156 0.99764 0.99920 0.99969 0.99986 0.99994 0.99997 0.99998 0.99999
7.8 | 0.95941 0.99198 0.99781 0.99927 0.99972 0.99988 0.99995 0.99997 0.99999 0.99999
8.0 | 0.96042 0.99237 0.99796 0.99934 0.99975 0.999%0 0.99996 0.99998 0.99999 0.99999

Source: E.S. Pearson and H.O. Hartley (eds.) [1966], Biometrika Tables for Statisticians, vol. 1, Cambridge University Press,
Cambridge, England (by permission).
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Table A.4 (Continued)

tw " 12 13 14 15 16 17 18 19 20

0.0 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000
0.1 0.53893 0.53900 0.53907 0.53912 0.53917 0.53921 0.53924 0.53928 0.53930 0.53933
0.2 0.57744 0.57759 0.57771 0.57782 0.57792 0.57800 0.57807 0.57814 0.57820 0.57825
03 0.61511 0.61534 0.61554 0.61571 0.61585 0.61598 0.61609 0.61619 0.61628 0.61636
0.4 0.65159 0.65191 0.65217 0.65240 0.65260 0.65278 0.65293 0.65307 0.65319 0.65330

0.5 0.68654 0.68694 0.68728 0.68758 0.68783 0.68806 0.68826 0.68843 0.68859 0.68873
0.6 0.71967 0.72017 0.72059 0.72095 0.72127 0.72155 0.72179 0.72201 0.72220 0.72238
0.7 0.75077 0.75136 0.75187 0.75230 0.75268 0.75301 0.75330 0.75356 0.75380 0.75400
0.8 0.77968 0.78037 0.78096 0.78146 0.78190 0.78229 0.78263 0.78293 0.78320 0.78344
0.9 0.80630 0.80709 0.80776 0.80883 0.80883 0.80927 0.80965 0.81000 0.81031 0.81058

1.0 0.83060 0.83148 0.83222 0.83286 0.83341 0.83390 0.83433 0.83472 0.83506 0.83537
1.1 0.85259 0.85355 0.85436 0.85506 0.85566 0.85620 0.85667 0.85709 0.85746 0.85780
1.2 0.87233 0.87335 0.87422 0.87497 0.87562 0.87620 0.87670 0.87715 0.87756 0.87792
1.3 0.88991 0.89099 0.89191 0.89270 0.89339 0.98399 0.89452 0.89500 0.89542 0.89581
1.4 0.90546 0.90658 0.90754 0.90836 0.90907 0.90970 0.91025 0.91074 0.91118 0.91158

1.5 0.91912 0.92027 0.92125 0.92209 0.92282 0.92346 0.92402 0.92452 0.92498 0.92538
1.6 0.93105 0.93221 0.93320 0.93404 0.93478 0.93542 0.93599 0.93650 0.93695 0.93736
1.7 0.94140 0.94256 0.94354 0.94439 0.94512 0.94576 0.94632 0.94683 0.94728 0.94768
1.8 0.95034 0.95148 0.95245 0.95328 0.95400 0.95463 0.95518 0.95568 0.95612 0.95652
1.9 0.95802 0.95914 0.96008 0.96089 0.96158 0.96220 0.96273 0.96321 0.96364 0.96403

2.0 0.96460 0.96567 0.96658 0.96736 0.96803 0.96861 0.96913 0.96959 0.97000 0.97037
2.1 0.97020 0.97123 0.97209 0.97283 0.97347 0.97403 0.97452 0.97495 0.97534 0.97569
22 0.97496 0.97593 0.97675 0.97745 0.97805 0.97858 0.97904 0.97945 0.97981 0.98014
23 0.86945 0.92593 0.94751 0.95853 0.96511 0.96945 0.97250 0.97476 0.97650 0.97787
24 0.98238 0.98324 0.98396 0.98457 0.98509 0.98554 0.98594 0.98629 0.98660 0.98688

25 0.98525 0.98604 0.98671 0.98727 0.98775 0.98816 0.98853 0.98885 0.98913 0.98938
26 0.98765 0.98839 0.98900 0.98951 0.98995 0.99033 0.99066 0.99095 0.99121 0.99144
27 0.98967 0.99035 0.99090 0.99137 0.99177 0.99211 0.99241 0.99267 0.99290 0.99311
2.8 0.99136 0.99198 0.99249 0.99291 0.99327 0.99358 0.99385 0.99408 | 0.99429 0.99447
29 0.99278 0.99334 0.99380 0.99418 0.99450 0.99478 0.99502 0.99523 0.99541 0.99557

3.0 0.9939%6 0.99447 0.99488 0.99522 0.99551 0.99576 0.99597 0.99616 0.99632 0.99646
31 0.99495 0.99541 0.99578 0.99608 0.99634 0.99656 0.99675 0.99691 0.99705 0.99718
3.2 0.99577 0.99618 0.99652 0.99679 0.99702 0.99721 0.99738 0.99752 0.99764 0.99775
33 0.99646 0.99683 0.99713 0.99737 0.99757 0.99774 0.99789 0.99801 0.99812 0.99821
3.4 0.99703 0.99737 0.99763 0.99784 0.99802 0.99817 0.99830 0.99840 0.99850 0.99858

3.5 0.99751 0.99781 0.99804 0.99823 0.99839 0.99852 0.99863 0.99872 0.99880 0.99887
36 0.99791 0.99818 0.99838 | 0.99855 0.99869 0.99880 0.99890 0.99898 0.99905 0.99911
37 0.99825 0.99848 0.99867 0.99881 0.99893 0.99903 0.99911 0.99918 0.99924 0.99929
38 0.99853 0.99874 0.99890 0.99902 0.99913 0.99921 0.99928 0.99934 0.99939 0.99944
39 0.99876 0.99895 0.99909 0.99920 0.99929 0.99936 0.99942 0.99948 0.99952 0.99956

4.0 0.99896 0.99912 0.99924 0.99934 0.99942 0.99948 0.99954 0.99958 0.99962 0.99965
42 0.99926 0.99938 0.99948 | 0.99955 0.99961 0.99966 0.99970 0.99973 0.99976 0.99978
44 0.99947 0.99957 0.99964 0.99970 0.99974 0.99978 0.99980 0.99983 0.99985 0.99986
4.6 0.99962 0.99969 0.99975 0.99979 0.99983 0.99985 0.99987 0.99989 0.99990 0.99991
43 0.99972 0.99978 0.99983 0.99986 0.99988 0.99990 0.99992 0.99993 0.99994 0.99995

5.0 0.99980 0.99985 0.99988 0.99990 0.99992 0.99993 0.99995 0.99995 0.99996 0.99997
5.2 0.99985 0.99989 0.99992 0.99993 0.99995 0.99996 0.99996 0.99997 0.99997 0.99998
5.4 0.99989 0.99992 0.99994 0.99995 0.99996 0.99997 0.99998 0.99998 | 0.99998 0.99999
5.6 0.99992 0.99994 0.99996 0.99997 0.99997 0.99998 0.99998 0.99999 0.99999 0.99999
5.8 0.99994 0.99996 0.99997 0.99998 0.99998 | 0.99999 0.99999 0.99999 | 0.99999 0.99999

6.0 0.99995 0.99997 0.99998 0.99998 0.99999 0.99999 0.99999 0.99999
6.2 0.99997 0.99998 0.99998 0.99999 0.99999 0.99999
6.4 0.99997 0.99998 0.99999 0.99999 0.99999
6.6 0.99998 0.99999 0.99999 0.99999
6.8 0.99998 0.99999 0.99999

7.00 | 0.99999 0.99999




Table A.5 F distribution

For various pairs of degrees of freedom v, v,, the tabled entries represent the critical values of F
above which a proportion p of the distribution falls. (Example: for df=4,16 an F=2.33 is exceeded

by p>=.10 of the distribution.) Tables are provided for values of p equal to .10, .05, .01. ¢P
P = .10 values F
Degrees of
freedom for
denominator Degrees of freedom for numerator, v,
v, 1 2 3 4 5 6 7 8 9 10 12 15 20 30 40 60 120 oo
1 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86 60.19 60.71 61.22 61.74 62.26 62.53 62.79 | 63.06 | 63.33
2 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.41 9.42 9.44 9.46 9.47 9.47 9.48 9.49
3 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.22 5.20 5.18 5.17 5.16 5.15 5.14 5.13
4 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92 3.90 3.87 3.84 3.82 3.80 3.79 3.78 3.76
5 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.27 3.24 3.21 3.17 3.16 3.14 3.12 3.10
6 3.78 3.46 3.29 3.18 3 3.05 3.01 2.98 2.96 2,94 2.90 2.87 2.84 2.80 2.78 2.76 2.74 2.72
7 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.67 2.63 2.59 2.56 2.54 2.51 2.49 2.47
8 3.46 ERR] 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.50 2.46 2.42 2.38 2.36 2.34 2.32 2.29
9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.38 2.34 2.30 2.25 223 2.21 2.18 2.16
10 3.29 2.92 2.73 2.61 2.52 2.46 241 2.38 2.35 2.32 2.28 2.24 2.20 2.16 2.13 2.1 2.08 2.06
" 3.23 2.86 2.66 2.54 2.45 2.39 234 2.30 2.27 2.25 2.21 2.17 2.12 2.08 2.05 2.03 2.00 1.97
12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.15 2.10 2.06 2.01 1.99 1.96 1.93 1.90
13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14 2.10 2.05 2.01 1.96 1.93 1.90 1.88 1.85
14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 2.05 2.01 1.96 1.91 1.89 1.86 1.83 1.80
15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06 2.02 1.97 1.92 1.87 1.85 1.82 1.79 1.76
16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03 1.99 1.94 1.89 1.84 1.81 1.78 1.75 1.72
17 3.03 2.64 2.44 2.31 222 2.15 2.10 2.06 2.03 2.00 1.96 1.91 1.86 1.81 1.78 1.75 1.72 1.69
18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.93 1.89 1.84 1.78 1.75 1.72 1.69 1.66
19 2.99 2.61 2.40 2.27 2.18 2.1 2.06 2.02 1.98 1.96 1.91 1.86 1.81 1.76 1.73 1.70 1.67 1.63
20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94 1.89 1.84 1.79 1.74 1.7 1.68 1.64 1.61
21 2.96 2.57 2.36 223 2.14 2.08 2.02 1.98 1.95 1.92 1.87 1.83 1.78 1.72 1.69 1.66 1.62 1.59
22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90 1.86 1.81 1.76 1.70 1.67 1.64 1.60 1.57
23 2.94 2.55 2.34 2.21 2.1 2.05 1.99 1.95 1.92 1.89 1.84 1.80 1.74 1.69 1.66 1.62 1.59 1.55
24 2.93 2.54 233 2.19 2.10 2.04 1.98 1.94 1.91 1.88 1.83 1.78 1.73 1.67 1.64 1.61 1.57 1.53
30 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82 1.77 1.72 1.67 1.61 1.57 1.54 1.50 1.46
40 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76 1.7 1.66 1.61 1.54 1.51 1.47 1.42 1.38
60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.66 1.60 1.54 1.48 1.44 1.40 1.35 1.29
120 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65 1.60 1.55 1.48 1.41 1.37 1.32 1.26 1.19
oo 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60 1.55 1.49 1.42 1.34 1.30 1.24 1.17 1.00

Adapted from Table 18 of Pearson and Hartley 1966.



Table A.5 F Distribution (Continued)

P = .05 values

Degrees of
freedom for
denominator

v, 1 2 3 4 5 6 7 8 9 10 12 15 20 30 40 60 120 oo
1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 243.9 2459 248.0 250.1 251.1 252.2 253.3 254.3
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.41 19.43 19.45 19.46 19.47 19.48 19.49 19.50
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.62 8.59 8.57 8.55 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.75 5.72 5.69 5.66 5.63

Degrees of freedom for numerator v,

5 6.61 5.79 5.4 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.50 4.46 4.43 4.40 4.36
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.81 3.77 3.74 3.70 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.38 3.34 3.30 3.27 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.08 3.04 3.01 2.97 2.93
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.86 2.83 2.79 2.75 2.71

10 4.96 4.10 3.7 3.48 3.33 3.22 3.14 3.07 3.02 2.98 291 2.85 2.77 2.70 2.66 2.62 2.58 2.54
1 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.57 2.53 2.49 2.45 2.40
12 4.75 3.89 3.49 3.26 3.1 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.47 2.43 2.38 2.34 2.30
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.7 2.67 2.60 2.53 2.46 2.38 2.34 2.30 2.25 2.21
14 4.60 3.74 3.34 3.1 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.31 2.27 2.22 2.18 2.13

15 4.54 3.68 3.29 3.06 2.90 2.79 2.7 2.64 2.59 2.54 2.48 2.40 2.33 2.25 2.20 2.16 2.11 2.07
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.19 2.15 2.1 2.06 2.01
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.15 2.10 2.06 2.01 1.96
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.1 2.06 2.02 1.97 1.92
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.07 2.03 1.98 1.93 1.88

20 4.35 3.49 3.10 2.87 2.7 2.60 2.51 2.45 239 2.35 2.28 2.20 2.12 2.04 1.99 1.95 1.90 1.84
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.01 1.96 1.92 1.87 1.81
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 1.98 1.94 1.89 1.84 1.78
23 4.28 3.42 3.03 2.80 2.64 253 2.44 2.37 2.32 2.27 2.20 2.13 2.05 1.96 1.91 1.86 1.81 1.76
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.94 1.89 1.84 1.79 1.73

30 4.17 3.32 2.92 2.69 2.53 2.42 233 2.27 2.21 2.16 2.09 2.01 1.93 1.84 1.79 1.74 1.68 1.62
40 4.08 3.23 2.84 2.61 2.45 234 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.74 1.69 1.64 1.58 1.51
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.65 1.59 1.53 1.47 1.39

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.55 1.50 1.43 1.35 1.25
oo 3.84 3.00 2.60 237 221 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.46 1.3 1.32 1.22 1.00




Table A.5 F Distribution (Continued)

P = .01 Values

Degrees of
freedom for
denominator

Degrees of freedom for numerator, v,

1 2 3 4 5 6 7 8 9 10 12 15 20 30 40 60 120 oo

1| 4052 4999.5 | 5403 5625 5764 5859 5928 5981 6022 6056 6106 6157 6209 6261 6287 6313 6339 6366
2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.42 99.43 99.45 99.47 99.47 99.48 99.49 99.50
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23 27.05 26.87 26.69 26.50 26.41 26.32 26.22 26.13
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.37 14.20 14.02 13.84 13.75 13.65 13.56 13.6
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.89 9.72 9.55 9.38 9.29 9.20 9.1 9.02
6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.23 7.14 7.06 6.97 6.88
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 5.99 5.91 5.82 5.74 5.65
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.20 5.12 5.03 4.95 4.86
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.1 4.96 4.81 4.65 4.57 4.48 4.40 4.31
10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.25 4.17 4.08 4.00 3.91
n 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.40 4.25 4.10 3.94 3.86 3.78 3.69 3.60
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.70 3.62 3.54 3.45 3.36
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.96 3.82 3.66 3.51 3.43 3.34 3.25 3.17
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.80 3.66 3.51 3.35 3.27 3.18 3.09 3.00
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.21 3.13 3.05 2.96 2.87
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.4 3.26 3.10 3.02 2.93 2.84 2.75
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.46 3.31 3.16 3.00 2.92 2.83 2.75 2.65
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.7 3.60 3.51 3.37 3.23 3.08 2.92 2.84 2.75 2.66 2.57
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.30 3.15 3.00 2.84 2.76 2.67 2.58 2.49
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.78 2.69 2.61 2.52 2.42
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.17 3.03 2.88 2.72 2.64 2.55 2.46 2.36
22 7.95 5.72 4.82 431 3.99 3.76 3.59 3.45 3.35 3.26 3.12 2.98 2.83 2.67 2.58 2.50 2.40 2.31
23 7.88 5.66 4.76 4.26 3.94 3.7 3.54 3.41 3.30 3.21 3.07 2.93 2.78 2.62 2.54 2.45 2.35 2.26
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.03 2.89 2.74 2.58 2.49 2.40 2.31 2.21
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.39 2.30 221 21 2.01
40 7.31 5.18 431 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52 2.37 2.20 2.1 2.02 1.92 1.80
60 7.08 4.98 4.13 3.65 334 3.12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.03 1.94 1.84 1.73 1.60
120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.19 2.03 1.86 1.76 1.66 1.53 1.38
oo 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.18 2.04 1.88 1.70 1.59 1.47 1.32 1.00




Table A.6 2 Distribution

For various degrees of freedom df, the tabled entries
represent the values of y? above which a proportion
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p of the distribution falls. (Example: for df=5, a ¢P
x2=11.070 is exceeded by p=.05 or 5% of the 5 5
distribution.) X
p
df .99 .95 .90 .10 .05 .01 .001
1 .0’'157| .00393| .0158 2.706 3.841 6.635 10.827
2 .0201 .103 211 4.605 5.991 9.210 13.815
3 115 .352 .584 6.251 7.815 | 11.345 16.266
4 297 71 1.064 7.779 9.488 | 13.277 18.467
5 .554 1.145 1.610 9.236 11.070 | 15.086 20.515
6 .872 1.635 2.204 10.645 12.592 | 16.812 22.457
7 1.239 2.167 2.833 12.017 14.067 | 18.475 24.322
8 1.646 | 2.733 3.490 13.362 15.507 | 20.090 26.125
9 2.088 3.325 4.168 14.684 16.919 | 21.666 27.877
10 2.558 3.940 4.865 15.987 18.307 | 23.209 29.588
11 3.053 4.575 5.578 17.275 19.675 | 24.725 31.264
12 3.571 5.226 6.304 18.549 21.026 | 26.217 32.909
13 4.107 5.892 7.042 19.812 22.362 | 27.688 34.528
14 4.660 6.571 7.790 21.064 23.685 | 29.141 36.123
15 5.229 7.261 8.547 22.307 24.996 | 30.578 37.697
16 5.812 | 7.962 9.312 23.542 26.296 | 32.000 39.252
17 6.408 8.672 |10.085 24.769 27.587 | 33.409 40.790
18 7.015 | 9.390 |10.865 25.989 28.869 | 34.805 42.312
19 7.633 |10.117 [11.651 27.204 30.144 | 36.191 43.820
20 8.260 |10.851 12.443 28.412 31.410 | 37.566 45.315
21 8.897 |11.591 13.240 29.615 32.671 | 38.932 46.797
22 9.542 |12.338 |14.041 30.813 33.924 | 40.289 48.268
23 | 10.196 |13.091 14.848 32.007 35.172 | 41.638 49.728
24 | 10.856 |13.848 |15.659 33.196 36.415 | 42.980 51.179
25 | 11.524 [14.611 16.473 34.382 37.652 | 44.314 52.620
26 | 12.198 |15.379 |17.292 35.563 38.885 | 45.642 54.052
27 | 12.879 |16.151 18.114 36.741 40.113 | 46.963 55.476
28 | 13.565 (16.928 |18.939 37.916 41.337 | 48.278 56.893
29 | 14.256 [17.708 |19.768 39.087 42.557 | 49.588 58.302
30 | 14.953 [18.493 [20.599 40.256 43.773 | 50.892 59.703

Adapted from Table IV of Fisher and Yates (1974).
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Table A.7 Coefficients {a,, _;,q} for the Shapiro-Wilk W test for normality, for

n=2(1)50.
n
i 2 3 4 5 6 7 8 9 10
1 0.7071  0.7071  0.6872 0.6646 0.6431 0.6233 0.6052 0.5888 0.5739
2 — .0000 1677 .2413 .2806 .3031 3164 .3244 .3291
3 — — — .0000 .0875 .1401 1743 .1976 2141
4 — — — — — .0000 .0561 .0947 1224
5 — — — — — — — .0000 .0399
n
i 1 12 13 14 15 16 17 18 19 20
1 0.5601 0.5475 0.5359 0.5251 0.5150 0.5056 0.4968 0.4886 0.4808 0.4734
2 3315 .3325 .3325 .3318 .3306 .3290 3273 .3253 3232 321
3 .2260 .2347 2412 .2460 .2495 .2521 .2540 .2553 .2561 .2565
4 1429 .1586 1707 .1802 .1878 .1939 .1988 2027 .2059 2085
5 .0695 .0922 .1099 .1240 1353 1447 1524 1587 .1641 1686
6 0.0000 0.0303 0.0539 0.0727 0.0880 0.1005 0.1109 0.1197 0.1271 0.1334
7 — — .0000 .0240 .0433 .0593 .0725 .0837 .0932 .1013
8 — — — — .0000 .0196 .0359 .0496 .0612 0711
9 — — — — — — .0000 .0163 .0303 .0422
10 — — — — — — — — .0000 0140
n
i 21 22 23 24 25 26 27 28 29 30
1 0.4643 0.4590 0.4542  0.4493 0.4450 0.4407 0.4366 0.4328 0.4291 0.4254
2 3185 3156 3126 .3098 3069 .3043 .3018 2992 .2968 .2944
3 .2578 2571 2563 .2554 2543 .2533 .2522 .2510 .2499 .2487
4 2119 2131 2139 .2145 2148 2151 2152 2151 .2150 2148
5 1736 1764 1787 .1807 1822 .1836 .1848 .1857 .1864 1870
6 0.1399 0.1443 0.1480 0.1512 0.1539 0.1563  0.1584 0.1601 0.1616  0.1630
7 11092 1150 1201 1245 1283 1316 .1346 1372 1395 .1415
8 .0804 .0878 .0941 .0997 .1046 .1089 1128 1162 1192 1219
9 .0530 .0618 .0696 .0764 .0823 .0876 .0923 .0965 .1002 .1036
10 .0263 .0368 .0459 .0539 .0610 .0672 .0728 .0778 .0822 .0862
11 0.0000 0.0122 0.0228 0.0321 0.0403 0.0476  0.0540 0.0598 0.0650 0.0697
12 — — .0000 .0107 .0200 .0284 .0358 .0424 .0483 .0537
13 — — — — .0000 .0094 .0178 .0253 .0320 .0381
14 — — — — —_ — .0000 .0084 .0159 .0227
15 — — — — — — — — .0000 .0076

Source: Wetherill (1981).

Note: The notation n = 2(1)50 means that entries are provided for n = 2 to n = 50 with
increments of 1.
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Table A.7 (Continued)

n

i 31 32 33 34 35 36 37 38 39 40
1 0.4220 0.4188 0.4156 0.4127 0.4096 0.4068 0.4040 0.4015 0.3989 0.3964
2 2921 .2898 .2876 .2854 .2834 .2813 2794 2774 .2755 2737
3 .2475 .2463 .2451 .2439 2427 .2415 .2403 .2391 .2380 .2368
4 .2145 2141 2137 2132 2127 2121 2116 2110 2104 .2098
5 1874 .1878 .1880 .1882 .1883 .1883 .1883 .1881 .1880 .1878
6 0.1641 0.1651 0.1660 0.1667 0.1673 0.1678 0.1683 0.1686 0.1689 0.1691
7 1433 .1449 .1463 .1475 .1487 .1496 .1505 1513 .1520 .1526
8 1243 1265 .1284 11301 1317 1331 .1344 .1356 .1366 1376
9 .1066 .1093 1118 .1140 .1160 1179 .1196 121 1225 1237
10 .0899 .0931 .0961 .0988 .1013 .1036 .1056 .1075 .1092 .1108

11 0.0739 0.0777 0.0812 .0.0844 0.0873 0.0900 0.0924 0.0947 0.0967 0.0986
12 .0585 .0629 .0669 .0706 .0739 .0770 .0798 .0824 .0848 .0870
13 .0435 .0485 .0530 .0572 .0610 .0645 .0677 .0706 .0733 .0759
14 .0289 .0344 .0395 .0441 .0484 .0523 .0559 .0592 .0622 .0651
15 .0144 .0206 .0262 .0314 .0361 .0404 .0444 .0481 .0515 .0546

16  0.0000 0.0068 0.0131 0.0187 0.0239 0.0287 0.0331 0.0372 0.0409 0.0444

17 — — .0000 .0062 .0119 .0172 .0220 .0264 .0305 .0343
18 — — — — .0000 .0057 .0110 .0158 .0203 .0244
19 — — — — — — .0000 .0053 .0101 .0146
20 — — — — — — — — .0000 .0049
n
41 42 43 44 45 46 47 48 49 50

i

1 03940 0.3917 0.3894 0.3872 0.3850 0.3830 0.3808 0.3789 0.3770 0.3751
2 2719 .2701 .2684 .2667 .2651 .2635 .2620 .2604 .2589 .2574
3 .2357 .2345 2334 .2323 2313 .2302 2291 .2281 2271 .2260
4 .2091 .2085 .2078 2072 .2065 .2058 .2052 .2045 .2038 .2032
5 1876 1874 1871 .1868 .1865 .1862 .1859 .1855 1851 .1847

6 0.1693 0.1694 0.1695 0.1695 0.1695 0.1695 0.1695 0.1693 0.1692 0.1691
7 L1531 1535 .1539 .1542 .1545 .1548 .1550 .1551 1553 .1554
8 .1384 11392 .1398 .1405 .1410 1415 .1420 .1423 1427 .1430
9 .1249 11259 .1269 1278 .1286 1293 .1300 .1306 1312 1317
0 1123 1136 .1149 .1160 1170 .1180 .1189 1197 .1205 1212

11 0.1004 0.1020 0.1035 0.1049 0.1062 0.1073 0.1085 0.1095 0.1105 0.1113
12 .0891 .0909 .0927 .0943 .0959 .0972 .0986 .0998 .1010 .1020
13 .0782 .0804 .0824 .0842 .0860 .0876 .0892 .0906 .0919 .0932
14 .0677 .0701 .0724 .0745 .0765 .0783 .0801 .0817 .0832 .0846
15 .0575 .0602 .0628 .0651 .0673 .0694 .0713 .0731 .0748 .0764

16  0.0476 0.0506 0.0534 0.0560 0.0584 0.0607 0.0628 0.0648 0.0667 0.0685
17 .0379 .0411 .0442 .0471 .0497 .0522 .0546 .0568 .0588 .0608
18 .0283 .0318 .0352 .0383 .0412 .0439 .0465 .0489 .0511 .0532
19 .0188 .0227 .0263 .0296 .0328 .0357 .0385 .0411 .0436 .0459
20 .0094 0136 .0175 .0211 .0245 .0277 .0307 .0335 .0361 .0386

21 0.0000 0.0045 0.0087 0.0126 0.0163 0.0197 0.0229 0.0259 0.0288 0.0314

22 — — .0000 .0042 .0081 .0118 .0153 .0185 .0215 .0244
23 — — — — .0000 .0039 .0076 0111 .0143 .0174
24 — — — — — — .0000 .0037 .0071 .0104

25 - — — — —_ — — .0000  .0035
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Table A.8 Percentage points of the W test* for n=3(1)50

Level

n 0.01 0.02 0.05 0.10 0.50 0.90 0.95 0.98 0.99

3 0.753 0.756 0.767 0.789 0.959 0.998 0.999 1.000 1.000

4 .687 .707 .748 792 935 .987 .992 .996 .997

5 .686 715 .762 .806 .927 .979 .986 991 .993

6 0.713 0.743 0.788 0.826 0.927 0.974 0.981 0.986 0.989

7 .730 .760 .803 .838 .928 972 .979 .985 .988

8 .749 778 .818 .851 .932 .972 .978 .984 .987

9 .764 791 .829 .859 935 972 .978 .984 .986
10 781 .806 .842 .869 938 972 978 .983 .986
11 0.792 0.817 0.850 0.876 0.940 0.973 0.979 0.984 0.986
12 .805 .828 .859 .883 .943 .973 .979 .984 .986
13 .814 .837 .866 .889 .945 974 .979 .984 .986
14 .825 .846 .874 895 .947 .975 .980 .984 .986
15 .835 .855 .881 .901 .950 .975 .980 .984 .987
16 0.844 0.863 0.887 0.906 0.952 0.976 0.981 0.985 0.987
17 .851 .869 .892 910 .954 .977 .981 .985 .987
18 .858 .874 .897 914 .956 .978 .982 .986 .988
19 .863 .879 .901 917 .957 .978 .982 .986 .988
20 .868 .884 .905 .920 .959 979 .983 .986 .988
21 0.873 0.888 0.908 0.923 0.960 0.980 0.983 0.987 0.989
22 .878 .892 91 .926 961 .980 .984 .987 .989
23 .881 .895 914 928 .962 .981 .984 .987 .989
24 .884 .898 916 930 .963 .981 .984 .987 .989
25 .888 .901 918 931 .964 .981 0985 .988 .989
26 0.891 0.904 0.920 0.933 0.965 0.982 0.985 0.988 0.989
27 .894 .906 923 .935 .965 .982 .985 .988 .990
28 .896 .908 924 .936 .966 .982 .985 .988 .990
29 .898 910 .926 .937 .966 .982 .985 .988 .990
30 .900 912 .927 939 .967 .983 .985 .988 .900
31 0.902 0.914 0.929 0.940 0.967 0.983 0.986 0.988 0.990
32 .904 915 .930 941 .968 .983 .986 .988 .990
33 906 917 931 .942 .968 .983 .986 .989 .990
34 .908 919 .933 .943 .969 .983 .986 .989 .990
35 .910 .920 .934 .944 .969 .984 .986 .989 .990
36 0.912 0.922 0.935 0.945 0.970 0.984 0.986 0..989 0.990
37 914 .924 .936 .946 .970 .984 .987 .989 .990
38 916 .925 .938 .947 971 .984 .987 .989 .990
39 917 .927 .939 .948 97 .984 .987 .989 1991
40 919 928 .940 .949 .972 .985 .987 .989 991
a1 0.920 0.929 0.941 0.950 0.972 0.985 0.987 0.989 0.991
42 922 .930 942 951 972 .985 .987 .989 991
43 923 932 943 .951 973 .985 .987 .990 991
a4 .924 933 .944 .952 973 .985 .987 .990 991
45 .926 934 .945 .953 973 .985 .988 .990 991
46 0.927 0.935 0.945 0.953 0.974 0.985 0.988 0.990 0.991
a7 .928 936 .946 .954 .974 .985 .988 .990 991
48 .929 937 .947 .954 974 .985 .988 .990 991
49 .929 .937 .947 .955 .974 .985 .988 .990 991
50 .930 .938 .947 .955 .974 .985 .988 .990 .991

*Based on fitted Johnson (1949) Sz approximation; see Shapiro and Wilk (1965) for details.

Source: Wetherill (1981).

Note: The notation n = 3(1)50 means that entries are provided for n = 3 to n = 50 with
increments of 1.
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Appendix B: Review and Extension of Some Probability Theory

A discrete random variable, X, has a probability distribution (sometimes
called a probability mass function) denoted by P(X=x)=p(x), where x is
the value taken by X. A continuous random variable has a probability distri-
bution (also called a probability density function or pdf) denoted by f(x).
The likelihood of getting a specific value x is zero, since the distribution is
continuous. The likelihood of getting a value within a range, a<x<b is
equal to the area under the curve, f{x), that lies between a and b. For those
familiar with calculus, this area is given as the integral of f{(x) from a to b:

b
P(X =a<x<b) :/f(x)dx (B.1)

For those not familiar with calculus, the integral sign may be thought of as
similar to the summation sign; the only difference is that with a continuous
random variable, we have an infinite number of values to sum over. Since
the probability of getting a value between minus and plus infinity is equal to
one, the total area under the curve f(x) must equal one:

/ f(x)dx=1 (B.2)

Cumulative distribution functions tell us the likelihood that the random
variable will be less than or equal to a particular value. For a discrete
random variable, the probability of obtaining a value less than or equal to a is

F(a) =3 p(x) (B.3)

x<a

For a continuous random variable, we have

Fla) = p(X < a) = / () (B.4)

Expected Values

The expected value of a random variable, E[X], is also known as the
theoretical mean and is denoted by u. The expected value is given as the
weighted average of the possible values the random variable can take on,
where the weights are the likelihoods of obtaining those values. For a dis-
crete random variable,

BX) == 30— 3 ) ®.5
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For a continuous random variable,

tfoo xf(x)dx  +o0
EX]=p="2 - / x f(x) dx (B.6)

Trmar =

As an example, consider the experiment that consists of tossing a die. What
is the expected value of the die? This is equivalent to asking what the
expected average is of a large number of tosses. Using Equation B.5,

SO a2 sre(l) s @
— \6 6 6 6) '
What is the expected value of a uniform random variable — that is, a

random variable that has equally likely outcomes over the range (a, b)? Such
a random variable has a probability density function given by

The expected value is then

b
X 1 by —d a+b
E[X}:,u:/badx:ba< 3 ): 7 (B.9)

a

The expected value of any function of a random variable, g(x), is a weighted
average of the values of g(x), where the weights are again the likelihoods of
obtaining the values of g(x). Thus we have

E[g(X)] =) gx)p(x)

I (B.10)
Ele)) = [ e(07(odx

—00

for discrete and continuous random variables, respectively. Useful rules for
working with expected values are: (i) the expected value of a constant is
simply the constant; (ii) the expected value of a constant times a random
variable is the constant times the expected value of the random variable; and
(ii1) the expected value of a sum is equal to the sum of the expected values.
These rules are summarized below:

Ela)=a (i)
E[bX] = DE[X] (ii) (B.11)
Ela+bX] = a+bE[X] (i, ii, and iii)
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Variance of a Random Variable

The variance of a random variable, o® = V[X], is the expected value of the
squared deviation of an observation from the mean:

VIX] =0 = E[(X — E[X])* = E[(X — )] (B.12)

Using the rules for expected values above,
VIX] = E[X* —2Xp + 1) = E[ X?] — 2uE[X] + 1 = E[ X*] — #*  (B.13)
To illustrate, let us return to the experiment involving the toss of a die. The

variance of the random variable X in this case is equal to E[X*]—3.5% The
expected value of X? is found using Equation B.10:

E[X?] = lz(é) +22<é> +---+62(é> =15.17 (B.14)

The variance is therefore equal to 15.17 —3.5>=2.92. To illustrate the deri-
vation of the variance using a continuous variable, let us continue with the
example of a uniform random variable. We have

By / , 1 P —d
E[X}/x b= 30 a) (B.15)
Then
B -d (a+b)’ b-a
V[X]_3(b—a)_ 4 12 (B-16)

Covariance of Random Variables

How do two variables co-vary? Is there a tendency for one variable to
exhibit high variables when the other does? Or are the variables independent?
The covariance of two random variables, X and Y, is defined as the expected
value of the product of the two deviations from the means:

Cov[X, Y] = E[(X — ky)(Y — fiy)] (B.17)
This may be rewritten in the form

Cov[X,Y] = E[(XY — Xty —YHy + tiyhy)] = E[XY] — iy i, (B.18)
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To find the observed covariance for a set of data, we find the average value
of the product of deviations:

COV[X,)/] _ i (xi - X)(y,— _.}7)

i=1

(B.19)

The correlation coefficient is the standardized covariance:

_ Cov[X, Y]

Ox 0y

(B.20)
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Index

absolute deviation, 7
added-variable plots, in regression
analysis, 180-1, 1867
agglomerative methods of cluster
analysis, 200, 201, 203-7
alternative hypotheses, 43
testing process, 45-54
analysis of variance (ANOVA), 65-80
assumptions, 65-7, 70
Areview 3.1, 19-20
asymmetry of data, 7-8
autocorrelation, spatial, 15, 55-7, 75-6,
96-8, 165, 167-8

backward selection, in multiple
regression analysis, 140

best-fitting regression line, 104, 106-9

binary connectivity of weights, 167-8,
181

binomial distribution, 25-7

bivariate regression, 105-22

boundaries, in spatial analysis, 14

box plots, 89

buffer zones, in spatial analysis, 14

cancer case distribution (example), 2—4
categorical dependent variables, 1445
causal connections
and linear correlations, 87-9
regression analysis of, 104
census data analysis (examples), 99—100,
101-2, 193-7, 201-207
central limit theorem, 30, 31
chi-square () distribution, 219
chi-square (y?) test, 157, 160—1, 163
cluster analysis, 197-207
agglomerative methods, 200, 201,
203-7
nonagglomerative methods, 2002,
201-4, 207-8
clusters, 154-6, 158, 162-3, 173-5
of residuals, 1656
coefficient of determination, 110-12
cohort size and mobility (example),
89-91, 93, 95, 97
coin flipping (examples), 10-12, 25
combinations, 22-3
commuting (examples), 30, 141-5,
149-50

confidence intervals, 10, 30-1, 210
in contrasts of means, 74
for correlation coefficients, 95-7
for one-sample tests, 47
for regression analysis, 133
confirmatory methods of analysis, 4
continuous random variables, 24
contrasts of means, 73-5, 77
correlation, 86102
correlation coefficients, 87
confidence intervals for, 95-9
differences in, 97
Pearson’s, 87, 96, 97, 101-2
of random variables, 226
and sample size, 934
and spatial aggregation, 99-100
Spearman’s, 94-5, 97, 101-2
true, 92-3
covariance, 86—7
of a random variable, 225-6
standardized, see correlation
coeflicients
critical values, 45-6
effect of spatial dependence, 98

data reduction, 192-208
degrees of freedom, 47, 50

for regression, 111, 115
dendograms, 2037
dependence of spatial data, see spatial

autocorrelation

descriptive analysis, 5-9, 15-16
determination, coefficient of, 110-12
discrete random variables, 24
disproportional sampling, 58
dummy variables, 128-32, 165

eigenvalues, in method of principal
components, 194-5
equations, ordering of, 18-21
errors
in testing hypotheses, 434
true (population), 106
expansion method, in regression analysis,
182, 185, 188-90
expected value of a random variable,
223-5
expenditure and income (example),
113-16
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explained sum of squares, in regression
analysis, 109-10

exploratory methods of analysis, 4, 210

extraction sums of squared loadings,
194-5

F-distribution, 50, 67, 21618
F-statistic
for ANOVA, 50, 66-7, 71
in cluster analysis, 201-3
F-test, 50, 51, 70, 71
factor analysis, 192-7
factor scores, 197
factorials, 18, 22, 23
fairness, inferential analysis, 1012
five-number summary of distribution
data, 9
forward selection, in multiple regression
analysis, 140

Galapagos species (example), 132-9

generalization, in scientific method, 3-4

geographically weighted regression,
1834, 190

geometric random variables, 33, 35

Getis’s G, statistic, 174-5

global statistics, 173, 182

heteroscedasticity, see homoscedasticity
hierarchical (agglomerative) methods of
cluster analysis, 200, 201, 203-7
hinges, in box plots, 9
histograms, 7-8, 26—7
homoscedasticity, 49, 52, 65
tests, 70, 78-9
household newcomers survey (example),
24, 25-7, 28-9
housing prices (examples), 105-6, 126-8,
164-5, 182, 184-90
hypotheses
alternative, 43, 45-54
null, 11, 42-3
in scientific method, 2-3, 4
testing process, 42-62, 158-61, 210

income and expenditure (example),
113-16

income and mortality rates (example),
91-2

income and state aid (example), 116-18

independence of spatial data, see spatial
autocorrelation

inferential analysis, 5, 9-12, 210

interaction effects, in regression analysis,
182

interquartile range, 6

intervening opportunities model, 32-6
join count statistic, 161-6, 167

kitchen-sink approach to multiple

regression, 132-6, 140
Kolmogorov-Smirnov test, 70
Kruskal-Wallis test, 70-3
kurtosis of data, 8

leptokurtosis of data, 8

Levene’s test, 70, 79

leverage values, 136, 137-8

local statistics, 1735

log-odds, 1434

logistic regression, 125, 143-4, 146,
147-50

Markov model of migration, 36-7
maximum likelihood approach to
regression coefficients, 147
means
contrasting, 74-5, 77
sample, 5-6, 9, 10, 29, 30-1, 44
true (population), 9-10, 30-1
median, 6
migration models, 32, 36-7
missing values approach to multiple
regression, 134-5
misspecification errors, multiple
regression, 126-8
mobility and cohort size (example),
89-91, 93, 95, 97
mode, 6
modifiable areal units, 13, 99-100, 125
Monte Carlo method, 11-12, 159-60
simulation in testing randomness,
171-2
Moran’s [ statistic, 167-72, 175
mortality rates and income (example),
912
multicollinearity, 125-6, 129, 13640
multiple regression, 105, 124-40, 145

nearest neighbor analysis, 1614
nonagglomerative methods of cluster
analysis, 2001, 207-8
nonindependence of spatial data, see
spatial autocorrelation
nonlinear regression, 118-20, 142-3,
145-7
nonparametric tests, 71
normal distribution (normality), 27-9,
44, 214
in randomness testing, 170-1
tests, 70, 79-80, 220-2



null hypotheses, 11, 42-3
testing process, 45-54

odds, 143

one-sample tests, for the mean, 44-5,
46-9

one-sided hypotheses, 43, 45

ordering of equations, 18-21

outliers, 9, 91-2, 136-8

p-value
in hypothesis testing, 45, 47, 49, 51-2
see also probability
parentheses in equations, 18-20
Pearson’s correlation coefficient, 87, 96,
97, 1012
1T notation for products, 22, 23
platykurtosis of data, 8
point patterns, 154—64
population values, see true values
precipitation, diurnal variation, 69-70,
71-2, 74
predicted values, 34-5
principal components, method of, 194-5,
196, 197
probability, 24-5, 223-6
see also p-value
binomial distribution, 25-7, 29
models, 31-9
normal distribution, 27-9
predicted in logistic regression, 141-5
product notation, 22, 23
proportional sampling, 58
proportions
one-sample tests, 48-9
two-sample tests, 53—4

quadrat analysis, 156-61

random digits, 212-13
random patterns, 155-7
random samples, 15, 58-9
random sampling, 57-8
random variables, 24, 33, 35, 223-6
randomness, testing 158-73
range, 6
interquartile, 6
ranked data
correlation, 94-5
Kruskal-Wallis test, 71-3
recreation activities (example), 130-2
regression analysis
assumptions, 122, 125-6
linear, 104-22
logistic, 125, 143—4, 146, 147-50
multiple, 105, 124-40, 145
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nonlinear, 118-20, 142-3, 145-7
of principal component scores, 196
problems, 145, 146
simple (bivariate), 105-22
spatial, 178-89
regression coefficients, 126-8
from geographically weighted
observations, 1834
maximum likelihood approach, 147
residuals
joint-count statistic, 165-6
in regression analysis, 106-12, 124-5,
179, 180-1

sample size, and correlation coefficients,
934
sample space, 24
sample values, 9-10
absolute and standard deviation, 7
mean, 5-6, 9, 10, 29, 30-1, 44
variance, 6-7, 9
sampling distribution, 160
sampling frames, 57, 58
sampling procedures
random, 57-8
in spatial analysis, 14-15, 58-9
systematic, 58
scatterplots, 87
Scheffé’s procedure for contrasting
means, 74-5, 77
scientific method, 1-4
scree plots, 194
selection of variables, for multiple
regression, 132-3, 140
Shapiro-Wilk W test, 70, 79-81, 220-2
shopping trips (examples), 42-8, 128-30
Y. notation, for summation, 6, 20-2, 23
significance level, 43
simple (bivariate) regression, 105-22
simple events, 24
simple samples, 15, 24
skewness of data, 7-8
snowfall analysis (example), 179
software, 19-20, 170
see also SPSS for Windows 9.0
SpaceStat, 170
spatial aggregation, and modifiable areal
units, 99-100
spatial analysis, 2—4, 154-76, 210
nonindependence of data, see spatial
autocorrelation
problems, 13-15, 99-100
regression models, 17984
sampling procedures, 14-15, 58-9
see also cluster analysis
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spatial autocorrelation, 15, 55-7, 75-6,
97-9, 165, 167-8
spatially varying parameters, 182—4
Spearman’s rank correlation coefficient,
94-5, 97, 101-2
SPSS for Windows 9.0
for ANOVA, 76-80
for cluster analysis, 207-8
for correlation, 100-2
data input, 15, 59-60
for data reduction, 207-8
for descriptive analysis, 15-16
for factor analysis, 207
for Moran’s I, 175
for regression analysis, 120-2, 145-50
for Shapiro-Wilk test, 79
for two-sample #-tests, 59-62
standard deviation, 7
of residuals, 112
standard error of estimate, 112
state aid and income (example), 11618
statistical analysis, geographical
applications, 1
statistical thinking, 12-13
stem-and-leaf plots, 9
stepwise regression, 140
stratified samples, 15, 58, 59
Student’s 7-distribution, see
t-distribution; r-test
sum of squares
of deviations in ANOVA, 66-8, 68-9
eigenvalues, in method of principal
components, 194-5
of residuals in regression analysis,
107-12, 124-5
summation notation, 20-2, 23
survival time model, 38-9
swimming frequency (example), 50-2,
59-62, 68-9, 70, 76-8, 79, 80
systematic sampling, 58, 59

t-distribution, 31, 46-7, 215
t-test
with nonindependent variables, 56
one-sample, 47-8
two-sample, 49-52, 56, 70
test statistics, distribution, 54-5
tolerance, in multiple regression analysis,
136
travel behavior
commuting (examples), 30, 141-5,
149-50
intervening opportunities model, 32-6
trips to park (example), 54-5
true (population) values, 9-10

error, 106
mean, 9-10, 30-1
regression line intercept, 106
regression line slope, 106, 112-13
variance, 6, 9
two-sample tests
for the mean, 49-52, 56, 70
with nonindependent variables, 56-7
for proportions, 534
t-tests on SPSS 9.0 for Windows,
59-62
two-sided hypotheses, 43, 45
Type I and II errors, in testing
hypotheses, 434

unbiased estimates, 6

uncertainty, in statistical problems, 24

unexplained (residual) sum of squares,
109, 110-12

uniformity of spatial patterns, 155, 158,
162, 163

uniqueness, in factor analysis, 196

variability

of data, 6-7, 30

of spatial patterns, 157-8
variables

categorical dependent, 144-5

distribution, 54-5

dummy, 128-32, 165

random, 24, 33, 35 223-6

selection for multiple regression,

132-3, 140

spatially varying parameters, 1824
variance, 6-7, 9

analysis (ANOVA), 65-80

of sample means, 30-1

true (population), 6, 9

in two-sample tests, 49, 52
variance inflation factor, 136
variance-mean ratio (VMR), 157-61

W statistic, 70, 79-80, 220-2
weather patterns, and probability, 24-5
weights
geographical, 1824
in Moran’s I, 167-8
whiskers, in box plots, 9

z-statistic, 7, 28-9, 30, 214
z-test
one-sample, 44-5, 48-9
two-sample, 45, 53—4
zoning systems, 13, 35-6
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