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Józefowska & Wȩglarz/ PERSPECTIVES IN MODERN PROJECT SCHEDULING
Tian & Zhang/ VACATION QUEUEING MODELS: Theory and Applications
Yan, Yin & Zhang/ STOCHASTIC PROCESSES, OPTIMIZATION, AND CONTROL THEORY

APPLICATIONS IN FINANCIAL ENGINEERING, QUEUEING NETWORKS,
AND MANUFACTURING SYSTEMS

Saaty & Vargas/ DECISION MAKING WITH THE ANALYTIC NETWORK PROCESS: Economic,
Political, Social & Technological Applications w. Benefits, Opportunities, Costs & Risks

Yu/ TECHNOLOGY PORTFOLIO PLANNING AND MANAGEMENT: Practical Concepts and Tools
Kandiller/ PRINCIPLES OF MATHEMATICS IN OPERATIONS RESEARCH
Lee & Lee/ BUILDING SUPPLY CHAIN EXCELLENCE IN EMERGING ECONOMIES
Weintraub/ MANAGEMENT OF NATURAL RESOURCES: A Handbook of Operations Research

Models, Algorithms, and Implementations
Hooker/ INTEGRATED METHODS FOR OPTIMIZATION
Dawande et al/ THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS
Friesz/ NETWORK SCIENCE, NONLINEAR SCIENCE AND INFRASTRUCTURE SYSTEMS
Cai, Sha & Wong/ TIME-VARYING NETWORK OPTIMIZATION
Mamon & Elliott/ HIDDEN MARKOV MODELS IN FINANCE
del Castillo/ PROCESS OPTIMIZATION: A Statistical Approach
Józefowska/JUST-IN-TIME SCHEDULING: Models & Algorithms for Computer & Manufacturing

Systems
Yu, Wang & Lai/ FOREIGN-EXCHANGE-RATE FORECASTING WITH ARTIFICIAL NEURAL

NETWORKS
Beyer et al/ MARKOVIAN DEMAND INVENTORY MODELS
Shi & Olafsson/ NESTED PARTITIONS OPTIMIZATION: Methodology and Applications
Samaniego/ SYSTEM SIGNATURES AND THEIR APPLICATIONS IN ENGINEERING

RELIABILITY
Kleijnen/ DESIGN AND ANALYSIS OF SIMULATION EXPERIMENTS
Førsund/ HYDROPOWER ECONOMICS
Kogan & Tapiero/ SUPPLY CHAIN GAMES: Operations Management and Risk Valuation
Vanderbei/ LINEAR PROGRAMMING: Foundations & Extensions, 3rd Edition

Chhajed & Lowe/ BUILDING INTUITION: Insights from Basic Operations Mgmt. Models and

Principles

∗A list of the early publications in the series is at the end of the book∗



Linear and Nonlinear
Programming

Third Edition

David G. Luenberger
Stanford University

Yinyu Ye
Stanford University

123



David G. Luenberger Yinyu Ye
Dept. of Mgmt. Science & Engineering Dept. of Mgmt. Science & Engineering
Stanford University Stanford University
Stanford, CA, USA Stanford, CA, USA

Series Editor:
Frederick S. Hillier
Stanford University
Stanford, CA, USA

ISBN: 978-0-387-74502-2 e-ISBN: 978-0-387-74503-9

Library of Congress Control Number: 2007933062

© 2008 by Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science + Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if the
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com



To Susan, Robert, Jill, and Jenna;
Daisun and Fei



PREFACE

This book is intended as a text covering the central concepts of practical optimization
techniques. It is designed for either self-study by professionals or classroom work at
the undergraduate or graduate level for students who have a technical background
in engineering, mathematics, or science. Like the field of optimization itself,
which involves many classical disciplines, the book should be useful to system
analysts, operations researchers, numerical analysts, management scientists, and
other specialists from the host of disciplines from which practical optimization appli-
cations are drawn. The prerequisites for convenient use of the book are relatively
modest; the prime requirement being some familiarity with introductory elements
of linear algebra. Certain sections and developments do assume some knowledge
of more advanced concepts of linear algebra, such as eigenvector analysis, or some
background in sets of real numbers, but the text is structured so that the mainstream
of the development can be faithfully pursued without reliance on this more advanced
background material.

Although the book covers primarily material that is now fairly standard, it
is intended to reflect modern theoretical insights. These provide structure to what
might otherwise be simply a collection of techniques and results, and this is valuable
both as a means for learning existing material and for developing new results. One
major insight of this type is the connection between the purely analytical character
of an optimization problem, expressed perhaps by properties of the necessary condi-
tions, and the behavior of algorithms used to solve a problem. This was a major
theme of the first edition of this book and the second edition expands and further
illustrates this relationship.

As in the second edition, the material in this book is organized into three
separate parts. Part I is a self-contained introduction to linear programming, a key
component of optimization theory. The presentation in this part is fairly conven-
tional, covering the main elements of the underlying theory of linear programming,
many of the most effective numerical algorithms, and many of its important special
applications. Part II, which is independent of Part I, covers the theory of uncon-
strained optimization, including both derivations of the appropriate optimality condi-
tions and an introduction to basic algorithms. This part of the book explores the
general properties of algorithms and defines various notions of convergence. Part III
extends the concepts developed in the second part to constrained optimization
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problems. Except for a few isolated sections, this part is also independent of Part I.
It is possible to go directly into Parts II and III omitting Part I, and, in fact, the
book has been used in this way in many universities. Each part of the book contains
enough material to form the basis of a one-quarter course. In either classroom use
or for self-study, it is important not to overlook the suggested exercises at the end of
each chapter. The selections generally include exercises of a computational variety
designed to test one’s understanding of a particular algorithm, a theoretical variety
designed to test one’s understanding of a given theoretical development, or of the
variety that extends the presentation of the chapter to new applications or theoretical
areas. One should attempt at least four or five exercises from each chapter. In
progressing through the book it would be unusual to read straight through from
cover to cover. Generally, one will wish to skip around. In order to facilitate this
mode, we have indicated sections of a specialized or digressive nature with an
asterisk∗.

There are several features of the revision represented by this third edition. In
Part I a new Chapter 5 is devoted to a presentation of the theory and methods
of polynomial-time algorithms for linear programming. These methods include,
especially, interior point methods that have revolutionized linear programming. The
first part of the book can itself serve as a modern basic text for linear programming.
Part II includes an expanded treatment of necessary conditions, manifested by
not only first- and second-order necessary conditions for optimality, but also by
zeroth-order conditions that use no derivative information. This part continues to
present the important descent methods for unconstrained problems, but there is new
material on convergence analysis and on Newton’s methods which is frequently
used as the workhorse of interior point methods for both linear and nonlinear
programming. Finally, Part III now includes the global theory of necessary condi-
tions for constrained problems, expressed as zero-th order conditions. Also interior
point methods for general nonlinear programming are explicitly discussed within
the sections on penalty and barrier methods. A significant addition to Part III is
an expanded presentation of duality from both the global and local perspective.
Finally, Chapter 15, on primal–dual methods has additional material on interior
point methods and an introduction to the relatively new field of semidefinite
programming, including several examples.

We wish to thank the many students and researchers who over the years have
given us comments concerning the second edition and those who encouraged us to
carry out this revision.

Stanford, California D.G.L.
July 2007 Y.Y.
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Chapter 1 INTRODUCTION

1.1 OPTIMIZATION
The concept of optimization is now well rooted as a principle underlying the analysis
of many complex decision or allocation problems. It offers a certain degree of
philosophical elegance that is hard to dispute, and it often offers an indispensable
degree of operational simplicity. Using this optimization philosophy, one approaches
a complex decision problem, involving the selection of values for a number of
interrelated variables, by focussing attention on a single objective designed to
quantify performance and measure the quality of the decision. This one objective is
maximized (or minimized, depending on the formulation) subject to the constraints
that may limit the selection of decision variable values. If a suitable single aspect
of a problem can be isolated and characterized by an objective, be it profit or loss
in a business setting, speed or distance in a physical problem, expected return in the
environment of risky investments, or social welfare in the context of government
planning, optimization may provide a suitable framework for analysis.

It is, of course, a rare situation in which it is possible to fully represent all the
complexities of variable interactions, constraints, and appropriate objectives when
faced with a complex decision problem. Thus, as with all quantitative techniques
of analysis, a particular optimization formulation should be regarded only as an
approximation. Skill in modelling, to capture the essential elements of a problem,
and good judgment in the interpretation of results are required to obtain meaningful
conclusions. Optimization, then, should be regarded as a tool of conceptualization
and analysis rather than as a principle yielding the philosophically correct solution.

Skill and good judgment, with respect to problem formulation and interpretation
of results, is enhanced through concrete practical experience and a thorough under-
standing of relevant theory. Problem formulation itself always involves a tradeoff
between the conflicting objectives of building a mathematical model sufficiently
complex to accurately capture the problem description and building a model that is
tractable. The expert model builder is facile with both aspects of this tradeoff. One
aspiring to become such an expert must learn to identify and capture the important
issues of a problem mainly through example and experience; one must learn to
distinguish tractable models from nontractable ones through a study of available
technique and theory and by nurturing the capability to extend existing theory to
new situations.
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2 Chapter 1 Introduction

This book is centered around a certain optimization structure—that character-
istic of linear and nonlinear programming. Examples of situations leading to this
structure are sprinkled throughout the book, and these examples should help to
indicate how practical problems can be often fruitfully structured in this form. The
book mainly, however, is concerned with the development, analysis, and comparison
of algorithms for solving general subclasses of optimization problems. This is
valuable not only for the algorithms themselves, which enable one to solve given
problems, but also because identification of the collection of structures they most
effectively solve can enhance one’s ability to formulate problems.

1.2 TYPES OF PROBLEMS
The content of this book is divided into three major parts: Linear Programming,
Unconstrained Problems, and Constrained Problems. The last two parts together
comprise the subject of nonlinear programming.

Linear Programming
Linear programming is without doubt the most natural mechanism for formulating a
vast array of problems with modest effort. A linear programming problem is charac-
terized, as the name implies, by linear functions of the unknowns; the objective is
linear in the unknowns, and the constraints are linear equalities or linear inequal-
ities in the unknowns. One familiar with other branches of linear mathematics might
suspect, initially, that linear programming formulations are popular because the
mathematics is nicer, the theory is richer, and the computation simpler for linear
problems than for nonlinear ones. But, in fact, these are not the primary reasons.
In terms of mathematical and computational properties, there are much broader
classes of optimization problems than linear programming problems that have elegant
and potent theories and for which effective algorithms are available. It seems that
the popularity of linear programming lies primarily with the formulation phase of
analysis rather than the solution phase—and for good cause. For one thing, a great
number of constraints and objectives that arise in practice are indisputably linear.
Thus, for example, if one formulates a problem with a budget constraint restricting
the total amount of money to be allocated among two different commodities, the
budget constraint takes the form x1 + x2 ≤ B, where xi, i = 1� 2, is the amount
allocated to activity i, and B is the budget. Similarly, if the objective is, for example,
maximum weight, then it can be expressed as w1x1 + w2x2, where wi, i = 1� 2,
is the unit weight of the commodity i. The overall problem would be expressed as

maximize w1x1 +w2x2

subject to x1 +x2 ≤ B

x1 ≥ 0� x2 ≥ 0�
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which is an elementary linear program. The linearity of the budget constraint is
extremely natural in this case and does not represent simply an approximation to a
more general functional form.

Another reason that linear forms for constraints and objectives are so popular
in problem formulation is that they are often the least difficult to define. Thus, even
if an objective function is not purely linear by virtue of its inherent definition (as in
the above example), it is often far easier to define it as being linear than to decide
on some other functional form and convince others that the more complex form is
the best possible choice. Linearity, therefore, by virtue of its simplicity, often is
selected as the easy way out or, when seeking generality, as the only functional form
that will be equally applicable (or nonapplicable) in a class of similar problems.

Of course, the theoretical and computational aspects do take on a somewhat
special character for linear programming problems—the most significant devel-
opment being the simplex method. This algorithm is developed in Chapters 2
and 3. More recent interior point methods are nonlinear in character and these are
developed in Chapter 5.

Unconstrained Problems
It may seem that unconstrained optimization problems are so devoid of struc-
tural properties as to preclude their applicability as useful models of meaningful
problems. Quite the contrary is true for two reasons. First, it can be argued, quite
convincingly, that if the scope of a problem is broadened to the consideration of
all relevant decision variables, there may then be no constraints—or put another
way, constraints represent artificial delimitations of scope, and when the scope
is broadened the constraints vanish. Thus, for example, it may be argued that a
budget constraint is not characteristic of a meaningful problem formulation; since by
borrowing at some interest rate it is always possible to obtain additional funds, and
hence rather than introducing a budget constraint, a term reflecting the cost of funds
should be incorporated into the objective. A similar argument applies to constraints
describing the availability of other resources which at some cost (however great)
could be supplemented.

The second reason that many important problems can be regarded as having no
constraints is that constrained problems are sometimes easily converted to uncon-
strained problems. For instance, the sole effect of equality constraints is simply to
limit the degrees of freedom, by essentially making some variables functions of
others. These dependencies can sometimes be explicitly characterized, and a new
problem having its number of variables equal to the true degree of freedom can be
determined. As a simple specific example, a constraint of the form x1 +x2 = B can
be eliminated by substituting x2 = B − x1 everywhere else that x2 appears in the
problem.

Aside from representing a significant class of practical problems, the study
of unconstrained problems, of course, provides a stepping stone toward the more
general case of constrained problems. Many aspects of both theory and algorithms
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are most naturally motivated and verified for the unconstrained case before
progressing to the constrained case.

Constrained Problems
In spite of the arguments given above, many problems met in practice are formulated
as constrained problems. This is because in most instances a complex problem such
as, for example, the detailed production policy of a giant corporation, the planning
of a large government agency, or even the design of a complex device cannot be
directly treated in its entirety accounting for all possible choices, but instead must be
decomposed into separate subproblems—each subproblem having constraints that
are imposed to restrict its scope. Thus, in a planning problem, budget constraints are
commonly imposed in order to decouple that one problem from a more global one.
Therefore, one frequently encounters general nonlinear constrained mathematical
programming problems.

The general mathematical programming problem can be stated as

minimize f�x�

subject to hi �x� = 0� i = 1� 2� � � � �m

gj �x� ≤ 0� j = 1� 2� � � � r

x ∈ S�

In this formulation, x is an n-dimensional vector of unknowns, x = �x1� x2� � � � � xn�,
and f , hi, i = 1� 2� � � � �m, and gj , j = 1� 2� � � � � r, are real-valued functions of the
variables x1� x2� � � � � xn. The set S is a subset of n-dimensional space. The function
f is the objective function of the problem and the equations, inequalities, and set
restrictions are constraints.

Generally, in this book, additional assumptions are introduced in order to
make the problem smooth in some suitable sense. For example, the functions in
the problem are usually required to be continuous, or perhaps to have continuous
derivatives. This ensures that small changes in x lead to small changes in other
values associated with the problem. Also, the set S is not allowed to be arbitrary
but usually is required to be a connected region of n-dimensional space, rather than,
for example, a set of distinct isolated points. This ensures that small changes in x
can be made. Indeed, in a majority of problems treated, the set S is taken to be the
entire space; there is no set restriction.

In view of these smoothness assumptions, one might characterize the problems
treated in this book as continuous variable programming, since we generally discuss
problems where all variables and function values can be varied continuously.
In fact, this assumption forms the basis of many of the algorithms discussed,
which operate essentially by making a series of small movements in the unknown
x vector.
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1.3 SIZE OF PROBLEMS
One obvious measure of the complexity of a programming problem is its size,
measured in terms of the number of unknown variables or the number of constraints.
As might be expected, the size of problems that can be effectively solved has been
increasing with advancing computing technology and with advancing theory. Today,
with present computing capabilities, however, it is reasonable to distinguish three
classes of problems: small-scale problems having about five or fewer unknowns
and constraints; intermediate-scale problems having from about five to a hundred
or a thousand variables; and large-scale problems having perhaps thousands or even
millions of variables and constraints. This classification is not entirely rigid, but
it reflects at least roughly not only size but the basic differences in approach that
accompany different size problems. As a rough rule, small-scale problems can be
solved by hand or by a small computer. Intermediate-scale problems can be solved
on a personal computer with general purpose mathematical programming codes.
Large-scale problems require sophisticated codes that exploit special structure and
usually require large computers.

Much of the basic theory associated with optimization, particularly in nonlinear
programming, is directed at obtaining necessary and sufficient conditions satisfied
by a solution point, rather than at questions of computation. This theory involves
mainly the study of Lagrange multipliers, including the Karush-Kuhn-Tucker
Theorem and its extensions. It tremendously enhances insight into the philosophy
of constrained optimization and provides satisfactory basic foundations for other
important disciplines, such as the theory of the firm, consumer economics, and
optimal control theory. The interpretation of Lagrange multipliers that accom-
panies this theory is valuable in virtually every optimization setting. As a basis for
computing numerical solutions to optimization, however, this theory is far from
adequate, since it does not consider the difficulties associated with solving the
equations resulting from the necessary conditions.

If it is acknowledged from the outset that a given problem is too large and
too complex to be efficiently solved by hand (and hence it is acknowledged that
a computer solution is desirable), then one’s theory should be directed toward
development of procedures that exploit the efficiencies of computers. In most cases
this leads to the abandonment of the idea of solving the set of necessary conditions
in favor of the more direct procedure of searching through the space (in an intelligent
manner) for ever-improving points.

Today, search techniques can be effectively applied to more or less general
nonlinear programming problems. Problems of great size, large-scale programming
problems, can be solved if they possess special structural characteristics, especially
sparsity, that can be explioted by a solution method. Today linear programming
software packages are capable of automatically identifying sparse structure within
the input data and take advantage of this sparsity in numerical computation. It
is now not uncommon to solve linear programs of up to a million variables and
constraints, as long as the structure is sparse. Problem-dependent methods, where
the structure is not automatically identified, are largely directed to transportation
and network flow problems as discussed in Chapter 6.
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This book focuses on the aspects of general theory that are most fruitful
for computation in the widest class of problems. While necessary and sufficient
conditions are examined and their application to small-scale problems is illustrated,
our primary interest in such conditions is in their role as the core of a broader
theory applicable to the solution of larger problems. At the other extreme, although
some instances of structure exploitation are discussed, we focus primarily on the
general continuous variable programming problem rather than on special techniques
for special structures.

1.4 ITERATIVE ALGORITHMS
AND CONVERGENCE

The most important characteristic of a high-speed computer is its ability to perform
repetitive operations efficiently, and in order to exploit this basic characteristic, most
algorithms designed to solve large optimization problems are iterative in nature.
Typically, in seeking a vector that solves the programming problem, an initial vector x0

is selected and the algorithm generates an improved vector x1. The process is repeated
and a still better solution x2 is found. Continuing in this fashion, a sequence of ever-
improving points x0, x1� � � � � xk� � � �, is found that approaches a solution point x∗. For
linear programming problems solved by the simplex method, the generated sequence
is of finite length, reaching the solution point exactly after a finite (although initially
unspecified) number of steps. For nonlinear programming problems or interior-point
methods, the sequence generally does not ever exactly reach the solution point, but
converges toward it. In operation, the process is terminated when a point sufficiently
close to the solution point, for practical purposes, is obtained.

The theory of iterative algorithms can be divided into three (somewhat
overlapping) aspects. The first is concerned with the creation of the algorithms
themselves. Algorithms are not conceived arbitrarily, but are based on a creative
examination of the programming problem, its inherent structure, and the efficiencies
of digital computers. The second aspect is the verification that a given algorithm
will in fact generate a sequence that converges to a solution point. This aspect is
referred to as global convergence analysis, since it addresses the important question
of whether the algorithm, when initiated far from the solution point, will eventually
converge to it. The third aspect is referred to as local convergence analysis or
complexity analysis and is concerned with the rate at which the generated sequence
of points converges to the solution. One cannot regard a problem as solved simply
because an algorithm is known which will converge to the solution, since it may
require an exorbitant amount of time to reduce the error to an acceptable tolerance.
It is essential when prescribing algorithms that some estimate of the time required
be available. It is the convergence-rate aspect of the theory that allows some
quantitative evaluation and comparison of different algorithms, and at least crudely,
assigns a measure of tractability to a problem, as discussed in Section 1.1.

A modern-day technical version of Confucius’ most famous saying, and one
which represents an underlying philosophy of this book, might be, “One good
theory is worth a thousand computer runs.” Thus, the convergence properties of an
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iterative algorithm can be estimated with confidence either by performing numerous
computer experiments on different problems or by a simple well-directed theoretical
analysis. A simple theory, of course, provides invaluable insight as well as the
desired estimate.

For linear programming using the simplex method, solid theoretical statements
on the speed of convergence were elusive, because the method actually converges to
an exact solution a finite number of steps. The question is how many steps might be
required. This question was finally resolved when it was shown that it was possible
for the number of steps to be exponential in the size of the program. The situation
is different for interior point algorithms, which essentially treat the problem by
introducing nonlinear terms, and which therefore do not generally obtain a solution
in a finite number of steps but instead converge toward a solution.

For nonlinear programs, including interior point methods applied to linear
programs, it is meaningful to consider the speed of converge. There are many
different classes of nonlinar programming algorithms, each with its own conver-
gence characteristics. However, in many cases the convergence properties can be
deduced analytically by fairly simple means, and this analysis is substantiated by
computational experience. Presentation of convergence analysis, which seems to
be the natural focal point of a theory directed at obtaining specific answers, is a
unique feature of this book.

There are in fact two aspects of convergence rate theory. The first is generally
known as complexity analysis and focuses on how fast the method converges
overall, distinguishing between polynomial time algorithms and non-polynomial
time algorithms. The second aspect provides more detailed analysis of how fast
the method converges in the final stages, and can provide comparisons between
different algorithms. Both of these are treated in this book.

The convergence rate theory presented has two somewhat surprising but definitely
pleasing aspects. First, the theory is, for the most part, extremely simple in nature.
Although initially one might fear that a theory aimed at predicting the speed of conver-
gence of a complex algorithm might itself be doubly complex, in fact the associated
convergence analysis often turns out to be exceedingly elementary, requiring only a
line or two of calculation. Second, a large class of seemingly distinct algorithms turns
out to have a common convergence rate. Indeed, as emphasized in the later chapters
of the book, there is a canonical rate associated with a given programming problem
that seems to govern the speed of convergence of many algorithms when applied to
that problem. It is this fact that underlies the potency of the theory, allowing definitive
comparisons among algorithms to be made even without detailed knowledge of the
problems to which they will be applied. Together these two properties, simplicity and
potency, assure convergence analysis a permanent position of major importance in
mathematical programming theory.
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Chapter 2 BASIC PROPERTIES
OF LINEAR
PROGRAMS

2.1 INTRODUCTION
A linear program (LP) is an optimization problem in which the objective function
is linear in the unknowns and the constraints consist of linear equalities and linear
inequalities. The exact form of these constraints may differ from one problem
to another, but as shown below, any linear program can be transformed into the
following standard form:

minimize c1x1 + c2x2 + � � �+ cnxn

subject to a11x1 +a12x2 + � � �+a1nxn = b1

a21x1 +a22x2 + � � �+a2nxn = b2

· ·
· ·
· ·
am1x1 +am2x2 +· · ·+amnxn = bm

and x1 � 0� x2 � 0� � � � � xn � 0�

(1)

where the bi’s, ci’s and aij’s are fixed real constants, and the xi’s are real numbers
to be determined. We always assume that each equation has been multiplied by
minus unity, if necessary, so that each bi � 0.

In more compact vector notation,† this standard problem becomes

minimize cT x

subject to Ax = b and x � 0�
(2)

Here x is an n-dimensional column vector, cT is an n-dimensional row vector, A is
an m×n matrix, and b is an m-dimensional column vector. The vector inequality
x � 0 means that each component of x is nonnegative.

†See Appendix A for a description of the vector notation used throughout this book.

11
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Before giving some examples of areas in which linear programming problems
arise naturally, we indicate how various other forms of linear programs can be
converted to the standard form.

Example 1 (Slack variables). Consider the problem

minimize c1x1 + c2x2 +· · ·+ cnxn

subject to a11x1 +a12x2 +· · ·+a1nxn � b1

a21x1 +a22x2 +· · ·+a2nxn � b2

· ·
· ·
· ·
am1x1 +am2x2 +· · ·+amnxn � bm

and x1 � 0� x2 � 0� � � � � xn � 0�

In this case the constraint set is determined entirely by linear inequalities. The
problem may be alternatively expressed as

minimize c1x1 + c2x2 +· · ·+ cnxn

subject to a11x1 +a12x2 +· · ·+a1nxn +y1 = b1

a21x1 +a22x2 +· · ·+a2nxn +y2 = b2

· ·
· ·
· ·
am1x1 +am2x2 +· · ·+amnxn +ym = bm

and x1 � 0� x2 � 0� � � � � xn � 0�

and y1 � 0� y2 � 0� � � � � ym � 0�

The new positive variables yi introduced to convert the inequalities to equalities
are called slack variables (or more loosely, slacks). By considering the problem
as one having n + m unknowns x1, x2� � � � � xn� y1� y2� � � � � ym, the problem takes
the standard form. The m× �n+m� matrix that now describes the linear equality
constraints is of the special form [A, I] (that is, its columns can be partitioned into
two sets; the first n columns make up the original A matrix and the last m columns
make up an m×m identity matrix).

Example 2 (Surplus variables). If the linear inequalities of Example 1 are reversed
so that a typical inequality is

ai1x1 +ai2x2 +· · ·+ainxn � bi�

it is clear that this is equivalent to

ai1x1 +ai2x2 +· · ·+ainxn −yi = bi
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with yi � 0. Variables, such as yi, adjoined in this fashion to convert a “greater than
or equal to” inequality to equality are called surplus variables.

It should be clear that by suitably multiplying by minus unity, and adjoining
slack and surplus variables, any set of linear inequalities can be converted to
standard form if the unknown variables are restricted to be nonnegative.

Example 3 (Free variables—first method). If a linear program is given in standard
form except that one or more of the unknown variables is not required to be
nonnegative, the problem can be transformed to standard form by either of two
simple techniques.

To describe the first technique, suppose in (1), for example, that the restriction
x1 � 0 is not present and hence x1 is free to take on either positive or negative
values. We then write

x1 = u1 −�1� (3)

where we require u1 � 0 and �1 � 0. If we substitute u1 −�1 for x1 everywhere in
(1), the linearity of the constraints is preserved and all variables are now required
to be nonnegative. The problem is then expressed in terms of the n+ 1 variables
u1� �1� x2� x3� � � � � xn.

There is obviously a certain degree of redundancy introduced by this technique,
however, since a constant added to u1 and �1 does not change x1 (that is, the
representation of a given value x1 is not unique). Nevertheless, this does not hinder
the simplex method of solution.

Example 4 (Free variables—second method). A second approach for converting
to standard form when x1 is unconstrained in sign is to eliminate, x1 together with
one of the constraint equations. Take any one of the m equations in (1) which has
a nonzero coefficient for x1. Say, for example,

ai1x1 +ai2x2 +· · ·+ainxn = bi� (4)

where ai1 �= 0. Then x1 can be expressed as a linear combination of the other
variables plus a constant. If this expression is substituted for x1 everywhere in (1),
we are led to a new problem of exactly the same form but expressed in terms of
the variables x2� x3� � � � � xn only. Furthermore, the ith equation, used to determine
x1, is now identically zero and it too can be eliminated. This substitution scheme
is valid since any combination of nonnegative variables x2� x3� � � � � xn leads to
a feasible x1 from (4), since the sign of x1 is unrestricted. As a result of this
simplification, we obtain a standard linear program having n−1 variables and m−1
constraint equations. The value of the variable x1 can be determined after solution
through (4).
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Example 5 (Specific case). As a specific instance of the above technique consider
the problem

minimize x1 +3x2 +4x3

subject to x1 +2x2 +x3 = 5
2x1 +3x2 +x3 = 6
x2 � 0� x3 � 0�

Since x1 is free, we solve for it from the first constraint, obtaining

x1 = 5−2x2 −x3� (5)

Substituting this into the objective and the second constraint, we obtain the equiv-
alent problem (subtracting five from the objective)

minimize x2 +3x3

subject to x2 +x3 = 4

x2 � 0� x3 � 0�

which is a problem in standard form. After the smaller problem is solved (the
answer is x2 = 4� x3 = 0) the value for x1�x1 = −3� can be found from (5).

2.2 EXAMPLES OF LINEAR PROGRAMMING
PROBLEMS

Linear programming has long proved its merit as a significant model of numerous
allocation problems and economic phenomena. The continuously expanding liter-
ature of applications repeatedly demonstrates the importance of linear programming
as a general framework for problem formulation. In this section we present some
classic examples of situations that have natural formulations.

Example 1 (The diet problem). How can we determine the most economical diet
that satisfies the basic minimum nutritional requirements for good health? Such a
problem might, for example, be faced by the dietician of a large army. We assume
that there are available at the market n different foods and that the jth food sells
at a price cj per unit. In addition there are m basic nutritional ingredients and, to
achieve a balanced diet, each individual must receive at least bi units of the ith
nutrient per day. Finally, we assume that each unit of food j contains aij units of
the ith nutrient.

If we denote by xj the number of units of food j in the diet, the problem then
is to select the xj’s to minimize the total cost
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c1x1 + c2x2 +· · ·+ cnxn

subject to the nutritional constraints

a11x1 +a12x2 +· · ·+a1nxn � b1

a21x1 +a22x2 +· · ·+a2nxn � b2

· ·
· ·
· ·
am1x1 +am2x2 +· · ·+amnxn � bm

and the nonnegativity constraints

x1 � 0� x2 � 0� � � � � xn � 0

on the food quantities.
This problem can be converted to standard form by subtracting a nonnegative

surplus variable from the left side of each of the m linear inequalities. The diet
problem is discussed further in Chapter 4.

Example 2 (The transportation problem). Quantities a1� a2� � � � � am, respectively,
of a certain product are to be shipped from each of m locations and received in
amounts b1� b2� � � � � bn, respectively, at each of n destinations. Associated with the
shipping of a unit of product from origin i to destination j is a unit shipping
cost cij . It is desired to determine the amounts xij to be shipped between each
origin–destination pair i = 1� 2� � � � �m; j = 1� 2� � � � � n; so as to satisfy the shipping
requirements and minimize the total cost of transportation.

To formulate this problem as a linear programming problem, we set up the
array shown below:

x11 x12 · · · x1n

x21 x22 · · · x2n

· ·
· ·
· ·

xm1 xm2 · · · xmn

a1

a2

·
·
·
am

b1 b2 · · · bn

The ith row in this array defines the variables associated with the ith origin, while
the jth column in this array defines the variables associated with the jth destination.
The problem is to place nonnegative variables xij in this array so that the sum
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across the ith row is ai, the sum down the jth column is bj , and the weighted sum
∑n

j=1

∑m
i=1 cijxij , representing the transportation cost, is minimized.

Thus, we have the linear programming problem:

minimize
∑

ij

cijxij

subject to
n∑

j=1

xij = ai for i = 1� 2� � � � �m (6)

m∑

i=1

xij = bj for j = 1� 2� � � � � n (7)

xij � 0 for i = 1� 2� � � � �m�

j = 1� 2� � � � � n�

In order that the constraints (6), (7) be consistent, we must, of course, assume
that

∑m
i=1 ai = ∑n

j=1 bj which corresponds to assuming that the total amount
shipped is equal to the total amount received.

The transportation problem is now clearly seen to be a linear programming
problem in mn variables. The equations (6), (7) can be combined and expressed in
matrix form in the usual manner and this results in an �m+n�× �mn� coefficient
matrix consisting of zeros and ones only.

Example 3 (Manufacturing problem). Suppose we own a facility that is capable
of engaging in n different production activities, each of which produces various
amounts of m commodities. Each activity can be operated at any level xi � 0 but
when operated at the unity level the ith activity costs ci dollars and yields aji units
of the jth commodity. Assuming linearity of the production facility, if we are given
a set of m numbers b1� b2� � � � � bm describing the output requirements of the m

commodities, and we wish to produce these at minimum cost, ours is the linear
program (1).

Example 4 (A warehousing problem). Consider the problem of operating a
warehouse, by buying and selling the stock of a certain commodity, in order
to maximize profit over a certain length of time. The warehouse has a fixed
capacity C, and there is a cost r per unit for holding stock for one period. The
price of the commodity is known to fluctuate over a number of time periods—
say months. In any period the same price holds for both purchase or sale. The
warehouse is originally empty and is required to be empty at the end of the last
period.

To formulate this problem, variables are introduced for each time period. In
particular, let xi denote the level of stock in the warehouse at the beginning of
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period i. Let ui denote the amount bought during period i, and let si denote the
amount sold during period i. If there are n periods, the problem is

maximize
n∑

i=1

�pisi − rxi�

subject to xi+1 = xi +ui − si i = 1� 2� � � � � n−1

0 = xn +un − sn

xi + zi = C i = 2� � � � � n

x1 = 0� xi � 0� ui � 0� si � 0� zi � 0�

If the constraints are written out explicitly for the case n = 3, they take the form

−u1 + s1 +x2 = 0
−x2 −u2 + s2 +x3 = 0

x2 + z2 = C
−x3 −u3 + s3 = 0

x3 + z3 = C

Note that the coefficient matrix can be partitioned into blocks corresponding to the
variables of the different time periods. The only blocks that have nonzero entries
are the diagonal ones and the ones immediately above the diagonal. This structure
is typical of problems involving time.

Example 5 (Support Vector Machines). Suppose several d-dimensional data points
are classified into two distinct classes. For example, two-dimensional data points may
be grade averages in science and humanities for different students. We also know
the academic major of each student, as being in science or humanities, which serves
as the classification. In general we have vectors ai ∈ Ed for i = 1� 2� � � � � n1 and
vectors bj ∈ Ed for j = 1� 2� � � � � n2. We wish to find a hyperplane that separates the
ai’s from the bj’s. Mathematically we wish to find y ∈ Ed and a number � such that

aT
i y +� � 1 for all i

bT
j y +� � −1 for all j�

where 	x 
 xT y+� = 0� is the desired hyperplane, and the separation is defined by
the +1 and −1. This is a linear program. See Fig. 2.1.

Example 6 (Combinatorial Auction). Suppose there are m mutually exclusive
potential states and only one of them will be true at maturity. For example, the states
may correspond to the winning horse in a race of m horses, or the value of a stock
index, falling within m intervals. An auction organizer who establishes a parimutuel
auction is prepared to issue contracts specifying subsets of the m possibilities
that pay $1 if the final state is one of those designated by the contract, and zero
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Hyperplane

Fig. 2.1 Support vector for data classification

otherwise. There are n participants who may place orders with the organizer for
the purchase of such contracts. An order by the jth participant consists of an vector
aj = �a1j� a2j� � � � � amj�

T where each component is either 0 or 1, a one indicating a
desire to be paid if the corresponding state occurs.

Accompanying the order is a number �j which is the price limit the participant
is willing to pay for one unit of the order. Finally, the participant also declares the
maximum number qj of units he or she is willing to accept under these terms.

The auction organizer, after receiving these various orders, must decide how
many contracts to fill. Let xj be the number of units awarded to the jth order. Then
the jth participant will pay �jxj . The total amount paid by all participants is �T x,
where x is the vector of xj’s and � is the vector of prices.

If the outcome is the ith state, the auction organizer must pay out a total
of
∑n

j=1 aijxj = �Ax�i� The organizer would like to maximize profit in the worst
possible case, and does this by solving the problem

maximize �T x −maxi�Ax�i

subject to x ≤ q

x ≥ 0�

This problem can be expressed alternatively as selecting x and s to

maximize �T x − s

subject to Ax − 1 s ≤ 0

x ≤ q

x ≥ 0�
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where 1 is the vector of all 1’s. Notice that the profit will always be nonnegative,
since x = 0 is feasible.

2.3 BASIC SOLUTIONS
Consider the system of equalities

Ax = b� (8)

where x is an n-vector, b an m-vector, and A is an m × n matrix. Suppose that
from the n columns of A we select a set of m linearly independent columns
(such a set exists if the rank of A is m). For notational simplicity assume that we
select the first m columns of A and denote the m×m matrix determined by these
columns by B. The matrix B is then nonsingular and we may uniquely solve the
equation.

BxB = b (9)

for the m-vector xB. By putting x = �xB� 0� (that is, setting the first m components
of x equal to those of xB and the remaining components equal to zero), we obtain
a solution to Ax = b. This leads to the following definition.

Definition. Given the set of m simultaneous linear equations in n unknowns
(8), let B be any nonsingular m × m submatrix made up of columns of A.
Then, if all n−m components of x not associated with columns of B are set
equal to zero, the solution to the resulting set of equations is said to be a basic
solution to (8) with respect to the basis B. The components of x associated
with columns of B are called basic variables.

In the above definition we refer to B as a basis, since B consists of m linearly
independent columns that can be regarded as a basis for the space Em. The basic
solution corresponds to an expression for the vector b as a linear combination of
these basis vectors. This interpretation is discussed further in the next section.

In general, of course, Eq. (8) may have no basic solutions. However, we may
avoid trivialities and difficulties of a nonessential nature by making certain elementary
assumptions regarding the structure of the matrix A. First, we usually assume that
n > m, that is, the number of variables xi exceeds the number of equality constraints.
Second, we usually assume that the rows of A are linearly independent, corresponding
to linear independence of the m equations. A linear dependency among the rows of
A would lead either to contradictory constraints and hence no solutions to (8), or to
a redundancy that could be eliminated. Formally, we explicitly make the following
assumption in our development, unless noted otherwise.

Full rank assumption. The m×n matrix A has m < n, and the m rows of A
are linearly independent.

Under the above assumption, the system (8) will always have a solution and,
in fact, it will always have at least one basic solution.
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The basic variables in a basic solution are not necessarily all nonzero. This is
noted by the following definition.

Definition. If one or more of the basic variables in a basic solution has value
zero, that solution is said to be a degenerate basic solution.

We note that in a nondegenerate basic solution the basic variables, and hence
the basis B, can be immediately identified from the positive components of the
solution. There is ambiguity associated with a degenerate basic solution, however,
since the zero-valued basic and nonbasic variables can be interchanged.

So far in the discussion of basic solutions we have treated only the equality
constraint (8) and have made no reference to positivity constraints on the variables.
Similar definitions apply when these constraints are also considered. Thus, consider
now the system of constraints

Ax = b

x � 0� (10)

which represent the constraints of a linear program in standard form.

Definition. A vector x satisfying (10) is said to be feasible for these
constraints. A feasible solution to the constraints (10) that is also basic is said to
be a basic feasible solution; if this solution is also a degenerate basic solution,
it is called a degenerate basic feasible solution.

2.4 THE FUNDAMENTAL THEOREM OF LINEAR
PROGRAMMING

In this section, through the fundamental theorem of linear programming, we
establish the primary importance of basic feasible solutions in solving linear
programs. The method of proof of the theorem is in many respects as important as
the result itself, since it represents the beginning of the development of the simplex
method. The theorem itself shows that it is necessary only to consider basic feasible
solutions when seeking an optimal solution to a linear program because the optimal
value is always achieved at such a solution.

Corresponding to a linear program in standard form

minimize cT x
subject to Ax = b

x � 0�
(11)

a feasible solution to the constraints that achieves the minimum value of the
objective function subject to those constraints is said to be an optimal feasible
solution. If this solution is basic, it is an optimal basic feasible solution.

Fundamental theorem of linear programming. Given a linear program in
standard form (11) where A is an m×n matrix of rank m,
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i) if there is a feasible solution, there is a basic feasible solution;
ii) if there is an optimal feasible solution, there is an optimal basic feasible

solution.

Proof of (i). Denote the columns of A by a1� a2� � � � � an. Suppose x = �x1� x2� � � � � xn�
is a feasible solution. Then, in terms of the columns of A, this solution satisfies:

x1a1 +x2a2 +· · ·+xnan = b�

Assume that exactly p of the variables xi are greater than zero, and for convenience,
that they are the first p variables. Thus

x1a1 +x2a2 +· · ·+xpap = b� (12)

There are now two cases, corresponding as to whether the set a1� a2� � � � � ap is
linearly independent or linearly dependent.

case 1: Assume a1� a2� � � � � ap are linearly independent. Then clearly, p ≤ m. If
p = m, the solution is basic and the proof is complete. If p < m, then, since A has rank
m�m−p vectors can be found from the remaining n−p vectors so that the resulting
set of m vectors is linearly independent. (See Exercise 12.) Assigning the value zero
to the corresponding m−p variables yields a (degenerate) basic feasible solution.

case 2: Assume a1� a2� � � � � ap are linearly dependent. Then there is a nontrivial
linear combination of these vectors that is zero. Thus there are constants
y1� y2� � � � � yp, at least one of which can be assumed to be positive, such that

y1a1 +y2a2 +· · ·+ypap = 0� (13)

Multiplying this equation by a scalar 
 and subtracting it from (12), we obtain

�x1 −
y1� a1 + �x2 −
y2� a2 +· · ·+ (xp −
yp

)
ap = b� (14)

This equation holds for every 
, and for each 
 the components xi −
yi correspond
to a solution of the linear equalities—although they may violate xi − 
yi � 0.
Denoting y = �y1� y2� � � � � yp� 0� 0� � � � � 0�, we see that for any 


x −
y (15)

is a solution to the equalities. For 
 = 0, this reduces to the original feasible solution.
As 
 is increased from zero, the various components increase, decrease, or remain
constant, depending upon whether the corresponding yi is negative, positive, or zero.
Since we assume at least one yi is positive, at least one component will decrease
as 
 is increased. We increase 
 to the first point where one or more components
become zero. Specifically, we set


 = min 	xi/yi 
 yi > 0� �
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For this value of 
 the solution given by (15) is feasible and has at most p − 1
positive variables. Repeating this process if necessary, we can eliminate positive
variables until we have a feasible solution with corresponding columns that are
linearly independent. At that point Case 1 applies.

Proof of (ii). Let x = �x1� x2� � � � � xn� be an optimal feasible solution and, as in
the proof of (i) above, suppose there are exactly p positive variables x1� x2� � � � � xp.
Again there are two cases; and Case 1, corresponding to linear independence, is
exactly the same as before.

Case 2 also goes exactly the same as before, but it must be shown that for any 

the solution (15) is optimal. To show this, note that the value of the solution x −
y is

cT x −
cT y� (16)

For 
 sufficiently small in magnitude, x −
y is a feasible solution for positive or
negative values of 
. Thus we conclude that cT y = 0. For, if cT y �= 0, an 
 of small
magnitude and proper sign could be determined so as to render (16) smaller than
cT x while maintaining feasibility. This would violate the assumption of optimality
of x and hence we must have cT y = 0.

Having established that the new feasible solution with fewer positive compo-
nents is also optimal, the remainder of the proof may be completed exactly as in
part (i).

This theorem reduces the task of solving a linear program to that of searching
over basic feasible solutions. Since for a problem having n variables and m
constraints there are at most

(
n
m

)

= n!
m!�n−m�!

basic solutions (corresponding to the number of ways of selecting m of n columns),
there are only a finite number of possibilities. Thus the fundamental theorem yields
an obvious, but terribly inefficient, finite search technique. By expanding upon the
technique of proof as well as the statement of the fundamental theorem, the efficient
simplex procedure is derived.

It should be noted that the proof of the fundamental theorem given above is of
a simple algebraic character. In the next section the geometric interpretation of this
theorem is explored in terms of the general theory of convex sets. Although the
geometric interpretation is aesthetically pleasing and theoretically important, the
reader should bear in mind, lest one be diverted by the somewhat more advanced
arguments employed, the underlying elementary level of the fundamental theorem.

2.5 RELATIONS TO CONVEXITY
Our development to this point, including the above proof of the fundamental
theorem, has been based only on elementary properties of systems of linear
equations. These results, however, have interesting interpretations in terms of the
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theory of convex sets that can lead not only to an alternative derivation of the funda-
mental theorem, but also to a clearer geometric understanding of the result. The main
link between the algebraic and geometric theories is the formal relation between
basic feasible solutions of linear inequalities in standard form and extreme points
of polytopes. We establish this correspondence as follows. The reader is referred
to Appendix B for a more complete summary of concepts related to convexity, but
the definition of an extreme point is stated here.

Definition. A point x in a convex set C is said to be an extreme point of C
if there are no two distinct points x1 and x2 in C such that x = �x1 + �1−��x2

for some �� 0 < � < 1.

An extreme point is thus a point that does not lie strictly within a line segment
connecting two other points of the set. The extreme points of a triangle, for example,
are its three vertices.

Theorem. (Equivalence of extreme points and basic solutions). Let A be an
m × n matrix of rank m and b an m-vector. Let K be the convex polytope
consisting of all n-vectors x satisfying

Ax = b

x � 0�
(17)

A vector x is an extreme point of K if and only if x is a basic feasible solution
to (17).

Proof. Suppose first that x = �x1� x2� � � � � xm� 0� 0� � � � � 0� is a basic feasible
solution to (17). Then

x1a1 +x2a2 +· · ·+xmam = b�

where a1� a2� � � � � am, the first m columns of A, are linearly independent. Suppose
that x could be expressed as a convex combination of two other points in K; say,
x = �y+�1−��z� 0 < � < 1� y �= z. Since all components of x, y, z are nonnegative
and since 0 < � < 1, it follows immediately that the last n−m components of y
and z are zero. Thus, in particular, we have

y1a1 +y2a2 +· · ·+ymam = b

and

z1a1 + z2a2 +· · ·+ zmam = b�

Since the vectors a1� a2� � � � � am are linearly independent, however, it follows that
x = y = z and hence x is an extreme point of K.

Conversely, assume that x is an extreme point of K. Let us assume that the
nonzero components of x are the first k components. Then

x1a1 +x2a2 +· · ·+xkak = b�
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with xi > 0� i = 1� 2� � � � � k. To show that x is a basic feasible solution it must be
shown that the vectors a1� a2� � � � � ak are linearly independent. We do this by contra-
diction. Suppose a1� a2� � � � � ak are linearly dependent. Then there is a nontrivial
linear combination that is zero:

y1a1 +y2a2 +· · ·+ykak = 0�

Define the n-vector y = �y1� y2� � � � � yk� 0� 0� � � � � 0�. Since xi > 0� 1 � i � k, it is
possible to select 
 such that

x +
y � 0� x −
y � 0�

We then have x = 1
2 �x+
y�+ 1

2 �x−
y� which expresses x as a convex combination
of two distinct vectors in K. This cannot occur, since x is an extreme point of
K. Thus a1� a2� � � � � ak are linearly independent and x is a basic feasible solution.
(Although if k < m, it is a degenerate basic feasible solution.)

This correspondence between extreme points and basic feasible solutions
enables us to prove certain geometric properties of the convex polytope K defining
the constraint set of a linear programming problem.

Corollary 1. If the convex set K corresponding to (17) is nonempty, it has at
least one extreme point.

Proof. This follows from the first part of the Fundamental Theorem and the
Equivalence Theorem above.

Corollary 2. If there is a finite optimal solution to a linear programming
problem, there is a finite optimal solution which is an extreme point of the
constraint set.

Corollary 3. The constraint set K corresponding to (17) possesses at most a
finite number of extreme points.

Proof. There are obviously only a finite number of basic solutions obtained by
selecting m basis vectors from the n columns of A. The extreme points of K are a
subset of these basic solutions.

Finally, we come to the special case which occurs most frequently in practice
and which in some sense is characteristic of well-formulated linear programs—
the case where the constraint set K is nonempty and bounded. In this case we
combine the results of the Equivalence Theorem and Corollary 3 above to obtain
the following corollary.

Corollary 4. If the convex polytope K corresponding to (17) is bounded,
then K is a convex polyhedron, that is, K consists of points that are convex
combinations of a finite number of points.

Some of these results are illustrated by the following examples:
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x1

x2

x3

Fig. 2.2 Feasible set for Example 1

Example 1. Consider the constraint set in E3 defined by

x1 +x2 +x3 = 1

x1 � 0� x2 � 0� x3 � 0�

This set is illustrated in Fig. 2.2. It has three extreme points, corresponding to the
three basic solutions to x1 +x2 +x3 = 1.

Example 2. Consider the constraint set in E3 defined by

x1 +x2 +x3 = 1

2x1 +3x2 = 1

x1 � 0� x2 � 0� x3 � 0�

This set is illustrated in Fig. 2.3. It has two extreme points, corresponding to the
two basic feasible solutions. Note that the system of equations itself has three basic
solutions, (2, 1, 0), (1/2, 0, 1/2), (0, 1/3, 2/3), the first of which is not feasible.

Example 3. Consider the constraint set in E2 defined in terms of the inequalities

x1 + 8
3

x2 � 4

x1 + x2 � 2

2x1 � 3

x1 � 0� x2 � 0�
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x1

x2

x3

Fig. 2.3 Feasible set for Example 2

This set is illustrated in Fig. 2.4. We see by inspection that this set has five extreme
points. In order to compare this example with our general results we must introduce
slack variables to yield the equivalent set in E5:

x1 + 8
3 x2 + x3 = 4

x1 + x2 + x4 = 2

2x1 + x5 = 3

x1 ≥ 0� x2 ≥ 0� x3 ≥ 0� x4 ≥ 0� x5 ≥ 0�

A basic solution for this system is obtained by setting any two variables to zero and
solving for the remaining three. As indicated in Fig. 2.4, each edge of the figure
corresponds to one variable being zero, and the extreme points are the points where
two variables are zero.

The last example illustrates that even when not expressed in standard form the
extreme points of the set defined by the constraints of a linear program correspond
to the possible solution points. This can be illustrated more directly by including the
objective function in the figure as well. Suppose, for example, that in Example 3
the objective function to be minimized is −2x1 − x2. The set of points satisfying
−2x1 −x2 = z for fixed z is a line. As z varies, different parallel lines are obtained
as shown in Fig. 2.5. The optimal value of the linear program is the smallest value
of z for which the corresponding line has a point in common with the feasible set.
It should be reasonably clear, at least in two dimensions, that the points of solution
will always include an extreme point. In the figure this occurs at the point (3/2,
1/2) with z = −3�1/2�.
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Fig. 2.4 Feasible set for Example 3
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z = –3

z = –3 1
2

z = –2
z = –1

2

1

x2

Fig. 2.5 Illustration of extreme point solution
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2.6 EXERCISES
1. Convert the following problems to standard form:

a� minimize x+2y +3z

subject to 2 � x+y � 3

4 � x+ z � 5

x � 0� y � 0� z � 0�

b� minimize x+y + z

subject to x+2y +3z = 10

x � 1� y � 2� z � 1�

2. A manufacturer wishes to produce an alloy that is, by weight, 30% metal A and 70%
metal B. Five alloys are available at various prices as indicated below:

Alloy 1 2 3 4 5

% A 10 25 50 75 95
% B 90 75 50 25 5

Price/lb $5 $4 $3 $2 $1.50

The desired alloy will be produced by combining some of the other alloys. The
manufacturer wishes to find the amounts of the various alloys needed and to determine
the least expensive combination. Formulate this problem as a linear program.

3. An oil refinery has two sources of crude oil: a light crude that costs $35/barrel and a
heavy crude that costs $30/barrel. The refinery produces gasoline, heating oil, and jet
fuel from crude in the amounts per barrel indicated in the following table:

Gasoline Heating oil Jet fuel

Light crude
Heavy crude

0.3 0.2 0.3
0.3 0.4 0.2

The refinery has contracted to supply 900,000 barrels of gasoline, 800,000 barrels of
heating oil, and 500,000 barrels of jet fuel. The refinery wishes to find the amounts of
light and heavy crude to purchase so as to be able to meet its obligations at minimum
cost. Formulate this problem as a linear program.

4. A small firm specializes in making five types of spare automobile parts. Each part is
first cast from iron in the casting shop and then sent to the finishing shop where holes
are drilled, surfaces are turned, and edges are ground. The required worker-hours (per
100 units) for each of the parts of the two shops are shown below:
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Part 1 2 3 4 5

Casting 2 1 3 3 1
Finishing 3 2 2 1 1

The profits from the parts are $30, $20, $40, $25, and $10 (per 100 units), respectively.
The capacities of the casting and finishing shops over the next month are 700 and 1000
worker-hours, respectively. Formulate the problem of determining the quantities of each
spare part to be made during the month so as to maximize profit.

5. Convert the following problem to standard form and solve:

maximize x1 +4x2 +x3

subject to 2x1 −2x2 +x3 = 4

x1 −x3 = 1

x2 � 0� x3 � 0�

6. A large textile firm has two manufacturing plants, two sources of raw material, and three
market centers. The transportation costs between the sources and the plants and between
the plants and the markets are as follows:

Plant
A B

Source
1
2

$1/ton $1.50/ton

$2/ton $1.50/ton

Market
1 2 3

Plant
A
B

$4/ton $2/ton $1/ton

$3/ton $4/ton $2/ton

Ten tons are available from source 1 and 15 tons from source 2. The three market centers
require 8 tons, 14 tons, and 3 tons. The plants have unlimited processing capacity.

a) Formulate the problem of finding the shipping patterns from sources to plants to
markets that minimizes the total transportation cost.

b) Reduce the problem to a single standard transportation problem with two sources and
three destinations. (Hint: Find minimum cost paths from sources to markets.)

c) Suppose that plant A has a processing capacity of 8 tons, and plant B has a processing
capacity of 7 tons. Show how to reduce the problem to two separate standard trans-
portation problems.

7. A businessman is considering an investment project. The project has a lifetime of four
years, with cash flows of −$100� 000�+$50� 000�+$70� 000, and +$30� 000 in each
of the four years, respectively. At any time he may borrow funds at the rates of 12%,
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22%, and 34% (total) for 1, 2, or 3 periods, respectively. He may loan funds at 10% per
period. He calculates the present value of a project as the maximum amount of money
he would pay now, to another party, for the project, assuming that he has no cash on
hand and must borrow and lend to pay the other party and operate the project while
maintaining a nonnegative cash balance after all debts are paid. Formulate the project
valuation problem in a linear programming framework.

8. Convert the following problem to a linear program in standard form:

minimize �x�+ �y�+ �z�
subject to x+y � 1

2x+ z = 3�

9. A class of piecewise linear functions can be represented as f�x� = Maximum �cT
1 x +

d1� cT
2 x +d2� � � � � cT

p x +dp�. For such a function f , consider the problem

minimize f�x�

subject to Ax = b

x � 0�

Show how to convert this problem to a linear programming problem.

10. A small computer manufacturing company forecasts the demand over the next n months
to be di� i = 1� 2� � � � � n. In any month it can produce r units, using regular production,
at a cost of b dollars per unit. By using overtime, it can produce additional units at c
dollars per unit, where c > b. The firm can store units from month to month at a cost
of s dollars per unit per month. Formulate the problem of determining the production
schedule that minimizes cost. (Hint: See Exercise 9.)

11. Discuss the situation of a linear program that has one or more columns of the A matrix
equal to zero. Consider both the case where the corresponding variables are required to
be nonnegative and the case where some are free.

12. Suppose that the matrix A = �a1� a2� � � � � an� has rank m, and that for some
p < m� a1� a2� � � � � ap are linearly independent. Show that m − p vectors from the
remaining n−p vectors can be adjoined to form a set of m linearly independent vectors.

13. Suppose that x is a feasible solution to the linear program (11), with A an m×n matrix
of rank m. Show that there is a feasible solution y having the same value (that is,
cT y = cT x) and having at most m+1 positive components.

14. What are the basic solutions of Example 3, Section 2.5?

15. Let S be a convex set in En and S∗ a convex set in Em. Suppose T is an m×n matrix
that establishes a one-to-one correspondence between S and S∗, i.e., for every s ∈ S there
is s∗ ∈ S∗ such that Ts = s∗, and for every s∗ ∈ S∗ there is a single s ∈ S such that Ts = s∗.
Show that there is a one-to-one correspondence between extreme points of S and S∗.
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16. Consider the two linear programming problems in Example 1, Section 2.1, one in En

and the other in En+m. Show that there is a one-to-one correspondence between extreme
points of these two problems.

REFERENCES
2.1–2.4 The approach taken in this chapter, which is continued in the next, is the more or
less standard approach to linear programming as presented in, for example, Dantzig [D6],
Hadley [H1], Gass [G4], Simonnard [S6], Murty [M11], and Gale [G2]. Also see Bazaraa,
Jarvis, and H. F. Sherali [B6], Bertsimas and Tsitsiklis [B13], Cottle, [C6], Dantzig and
Thapa [D9, D10], Nash and Sofer [N1], Saigal [S1], and Vanderbei [V3]

2.5 An excellent discussion of this type can be found in Simonnard [S6].



Chapter 3 THE SIMPLEX
METHOD

The idea of the simplex method is to proceed from one basic feasible solution
(that is, one extreme point) of the constraint set of a problem in standard form
to another, in such a way as to continually decrease the value of the objective
function until a minimum is reached. The results of Chapter 2 assure us that it
is sufficient to consider only basic feasible solutions in our search for an optimal
feasible solution. This chapter demonstrates that an efficient method for moving
among basic solutions to the minimum can be constructed.

In the first five sections of this chapter the simplex machinery is developed from
a careful examination of the system of linear equations that defines the constraints
and the basic feasible solutions of the system. This approach, which focuses on
individual variables and their relation to the system, is probably the simplest, but
unfortunately is not easily expressed in compact form. In the last few sections
of the chapter, the simplex method is viewed from a matrix theoretic approach,
which focuses on all variables together. This more sophisticated viewpoint leads to
a compact notational representation, increased insight into the simplex process, and
to alternative methods for implementation.

3.1 PIVOTS
To obtain a firm grasp of the simplex procedure, it is essential that one first
understand the process of pivoting in a set of simultaneous linear equations. There
are two dual interpretations of the pivot procedure.

33
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First Interpretation
Consider the set of simultaneous linear equations

a11x1 + a12x2 + � � � +a1nxn = b1

a21x1 + a22x2 + � � � +a2nxn = b2

· ·
· ·
· ·
am1x1 + am2x2 + · · · +amnxn = bm�

(1)

where m � n. In matrix form we write this as

Ax = b� (2)

In the space En we interpret this as a collection of m linear relations that must be
satisfied by a vector x. Thus denoting by ai the ith row of A we may express (1) as:

a1x = b1

a2x = b2

·
·
·

amx = bm�

(3)

This corresponds to the most natural interpretation of (1) as a set of m equations.
If m < n and the equations are linearly independent, then there is not a unique

solution but a whole linear variety of solutions (see Appendix B). A unique solution
results, however, if n − m additional independent linear equations are adjoined.
For example, we might specify n − m equations of the form ekx = 0, where ek

is the kth unit vector (which is equivalent to xk = 0), in which case we obtain a
basic solution to (1). Different basic solutions are obtained by imposing different
additional equations of this special form.

If the equations (3) are linearly independent, we may replace a given equation
by any nonzero multiple of itself plus any linear combination of the other equations
in the system. This leads to the well-known Gaussian reduction schemes, whereby
multiples of equations are systematically subtracted from one another to yield either
a triangular or canonical form. It is well known, and easily proved, that if the first
m columns of A are linearly independent, the system (1) can, by a sequence of such
multiplications and subtractions, be converted to the following canonical form:

x1 + y1�m+1xm+1 + y1�m+2xm+2 + · · · + y1�nxn = y10

x2 + y2�m+1xm+1 + y2�m+2xm+2 +· · · + y2�nxn = y20

· ·
· ·
· ·

xm + ym�m+1xm+1 + · · · + ym�nxn = ym0�

(4)
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Corresponding to this canonical representation of the system, the variables x1,
x2� � � � � xm are called basic and the other variables are nonbasic. The corresponding
basic solution is then:

x1 = y10� x2 = y20� � � � � xm = ym0� xm+1 = 0� � � � � xn = 0�

or in vector form: x = �y0� 0� where y0 is m-dimensional and 0 is the �n − m�-
dimensional zero vector.

Actually, we relax our definition somewhat and consider a system to be in
canonical form if, among the n variables, there are m basic ones with the property
that each appears in only one equation, its coefficient in that equation is unity, and
no two of these m variables appear in any one equation. This is equivalent to saying
that a system is in canonical form if by some reordering of the equations and the
variables it takes the form (4).

Also it is customary, from the dictates of economy, to represent the system (4)
by its corresponding array of coefficients or tableau:

1 0 · · · 0 y1�m+1 y1�m+2 · · · y1n y10

0 1 · · · 0 y2�m+1 y2�m+2 · · · y2n y20

0 0 · · · 0 · · · · ·
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
0 0 · · · 1 ym�m+1 ym�m+2 · · · ymn ym0

The question solved by pivoting is this: given a system in canonical form,
suppose a basic variable is to be made nonbasic and a nonbasic variable is to be
made basic; what is the new canonical form corresponding to the new set of basic
variables? The procedure is quite simple. Suppose in the canonical system (4) we
wish to replace the basic variable xp� 1 � p � m, by the nonbasic variable xq. This
can be done if and only if ypq is nonzero; it is accomplished by dividing row p by
ypq to get a unit coefficient for xq in the pth equation, and then subtracting suitable
multiples of row p from each of the other rows in order to get a zero coefficient
for xq in all other equations. This transforms the qth column of the tableau so that
it is zero except in its pth entry (which is unity) and does not affect the columns of
the other basic variables. Denoting the coefficients of the new system in canonical
form by y′

ij , we have explicitly

⎧
⎨

⎩

y′
ij = yij − ypj

ypq
yiq� i �= p

y′
pj = ypj

ypq
�

(5)

Equations (5) are the pivot equations that arise frequently in linear programming.
The element ypq in the original system is said to be the pivot element.
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Example 1. Consider the system in canonical form:

x1 + x4 + x5 − x6 = 5
x2 + 2x4 − 3x5 + x6 = 3

x3 − x4 + 2x5 − x6 = −1�

Let us find the basic solution having basic variables x4� x5� x6. We set up the
coefficient array below:

x1 x2 x3 x4 x5 x6

1 0 0 ©1 1 −1 5
0 1 0 2 −3 1 3
0 0 1 −1 2 −1 −1

The circle indicated is our first pivot element and corresponds to the replacement
of x1 by x4 as a basic variable. After pivoting we obtain the array

x1 x2 x3 x4 x5 x6

1 0 0 1 1 −1 5
−2 1 0 0 ©-5 3 −7

1 0 1 0 3 −2 4

and again we have circled the next pivot element indicating our intention to replace
x2 by x5. We then obtain

x1 x2 x3 x4 x5 x6

3/5 1/5 0 1 0 −2/5 18/5
2/5 −1/5 0 0 1 −3/5 7/5

−1/5 3/5 1 0 0 ©−1/5 −1/5

Continuing, there results

x1 x2 x3 x4 x5 x6

1 −1 −2 1 0 0 4
1 −2 −3 0 1 0 2
1 −3 −5 0 0 1 1

From this last canonical form we obtain the new basic solution

x4 = 4� x5 = 2� x6 = 1�

Second Interpretation
The set of simultaneous equations represented by (1) and (2) can be interpreted
in Em as a vector equation. Denoting the columns of A by a1� a2� � � � � an we write
(1) as

x1a1 +x2a2 +· · ·+xnan = b� (6)
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In this interpretation we seek to express b as a linear combination of the ai’s.
If m < n and the vectors ai span Em then there is not a unique solution but a whole

family of solutions. The vector b has a unique representation, however, as a linear
combinationofagiven linearly independent subsetof thesevectors.Thecorresponding
solution with n−m xi variables set equal to zero is a basic solution to (1).

Suppose now that we start with a system in the canonical form corresponding
to the tableau

1 0 · · · 0 y1�m+1 y1�m+2 · · · y1n y10

0 1 · 0 y2�m+1 y2�m+2 · · · y2n y20

0 0 · 0 · · · · ·
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
0 0 · 1 ym�m+1 ym�m+2 · · · ymn ym0

(7)

In this case the first m vectors form a basis. Furthermore, every other vector
represented in the tableau can be expressed as a linear combination of these basis
vectors by simply reading the coefficients down the corresponding column. Thus

aj = y1ja1 +y2ja2 +· · ·+ymjam� (8)

The tableau can be interpreted as giving the representations of the vectors aj in
terms of the basis; the jth column of the tableau is the representation for the vector aj .
In particular, the expression for b in terms of the basis is given in the last column.

We now consider the operation of replacing one member of the basis by another
vector not already in the basis. Suppose for example we wish to replace the basis
vector ap� 1 � p � m, by the vector aq. Provided that the first m vectors with ap

replaced by aq are linearly independent these vectors constitute a basis and every
vector can be expressed as a linear combination of this new basis. To find the new
representations of the vectors we must update the tableau. The linear independence
condition holds if and only if ypq �= 0.

Any vector aj can be expressed in terms of the old array through (8). For aq

we have

aq =
m∑

i=1
i �=p

yiqai +ypqap

from which we may solve for ap,

ap = 1
ypq

aq −
m∑

i=1
i �=p

yiq

ypq

ai� (9)

Substituting (9) into (8) we obtain:

aj =
m∑

i=1
i �=p

(

yij − yiq

ypq

ypj

)

ai +
ypj

ypq

aq� (10)
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Denoting the coefficients of the new tableau, which gives the linear combina-
tions, by y′

ij we obtain immediately from (10)

⎧
⎨

⎩

y′
ij = yij − yiq

ypq
ypj� i �= p

y′
pj = ypj

ypq
�

(11)

These formulae are identical to (5).
If a system of equations is not originally given in canonical form, we may put

it into canonical form by adjoining the m unit vectors to the tableau and, starting
with these vectors as the basis, successively replace each of them with columns of
A using the pivot operation.

Example 2. Suppose we wish to solve the simultaneous equations

x1 + x2 − x3 = 5
2x1 − 3x2 + x3 = 3
−x1 + 2x2 − x3 = −1�

To obtain an original basis, we form the augmented tableau

e1 e2 e3 a1 a2 a3 b
1 0 0 1 1 −1 5
0 1 0 2 −3 1 3
0 0 1 −1 2 −1 −1

and replace e1 by a1� e2 by a2, and e3 by a3. The required operations are identical
to those of Example 1.

3.2 ADJACENT EXTREME POINTS
In Chapter 2 it was discovered that it is only necessary to consider basic feasible
solutions to the system

Ax = b

x � 0
(12)

when solving a linear program, and in the previous section it was demonstrated that
the pivot operation can generate a new basic solution from an old one by replacing
one basic variable by a nonbasic variable. It is clear, however, that although the pivot
operation takes one basic solution into another, the nonnegativity of the solution
will not in general be preserved. Special conditions must be satisfied in order that
a pivot operation maintain feasibility. In this section we show how it is possible to
select pivots so that we may transfer from one basic feasible solution to another.
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We show that although it is not possible to arbitrarily specify the pair of
variables whose roles are to be interchanged and expect to maintain the nonneg-
ativity condition, it is possible to arbitrarily specify which nonbasic variable is to
become basic and then determine which basic variable should become nonbasic.
As is conventional, we base our derivation on the vector interpretation of the linear
equations although the dual interpretation could alternatively be used.

Nondegeneracy Assumption
Many arguments in linear programming are substantially simplified upon the intro-
duction of the following.

Nondegeneracy assumption: Every basic feasible solution of (12) is a nonde-
generate basic feasible solution.

This assumption is invoked throughout our development of the simplex method,
since when it does not hold the simplex method can break down if it is not suitably
amended. The assumption, however, should be regarded as one made primarily for
convenience, since all arguments can be extended to include degeneracy, and the
simplex method itself can be easily modified to account for it.

Determination of Vector to Leave Basis
Suppose we have the basic feasible solution x = �x1, x2� � � � � xm� 0� 0� � � � � 0� or,
equivalently, the representation

x1a1 +x2a2 +· · ·+xmam = b� (13)

Under the nondegeneracy assumption, xi > 0, i = 1� 2� � � � �m. Suppose also that
we have decided to bring into the representation the vector aq� q > m. We have
available a representation of aq in terms of the current basis

aq = y1qa1 +y2qa2 +· · ·+ymqam� (14)

Multiplying (14) by a variable � � 0 and subtracting from (13), we have

�x1 −�y1q� a1 + �x2 −�y2q� a2 +· · ·+ �xm −�ymq� am +�aq = b� (15)

Thus, for any � � 0 (15) gives b as a linear combination of at most m+1 vectors.
For � = 0 we have the old basic feasible solution. As � is increased from zero,
the coefficient of aq increases, and it is clear that for small enough �, (15) gives
a feasible but nonbasic solution. The coefficients of the other vectors will either
increase or decrease linearly as � is increased. If any decrease, we may set � equal
to the value corresponding to the first place where one (or more) of the coefficients
vanishes. That is

� = min
i

{
xi/yiq � yiq > 0

}
� (16)
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In this case we have a new basic feasible solution, with the vector aq replacing the
vector ap where p corresponds to the minimizing index in (16). If the minimum in
(16) is achieved by more than a single index i, then the new solution is degenerate
and any of the vectors with zero component can be regarded as the one which left
the basis.

If none of the yiq’s are positive, then all coefficients in the representation (15)
increase (or remain constant) as � is increased, and no new basic feasible solution
is obtained. We observe, however, that in this case, where none of the yiq’s are
positive, there are feasible solutions to (12) having arbitrarily large coefficients.
This means that the set K of feasible solutions to (12) is unbounded, and this special
case, as we shall see, is of special significance in the simplex procedure.

In summary, we have deduced that given a basic feasible solution and an
arbitrary vector aq, there is either a new basic feasible solution having aq in its
basis and one of the original vectors removed, or the set of feasible solutions is
unbounded.

Let us consider how the calculation of this section can be displayed in our
tableau. We assume that corresponding to the constraints

Ax = b

x � 0�

we have a tableau of the form

a1 a2 a3 · · · am am+1 am+2 · · · an b
1 0 0 · · · 0 y1�m+1 y1�m+2 · · · y1n y10

0 1 0 0 y2�m+1 y2�m+2 · y20

0 0 1 · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
0 0 · 1 ym�m+1 ym�m+2 · · · ymn ym0

(17)

This tableau may be the result of several pivot operations applied to the original
tableau, but in any event, it represents a solution with basis a1, a2� � � � � am. We
assume that y10, y20� � � � � ym0 are nonnegative, so that the corresponding basic
solution x1 = y10, x2 = y20� � � � � xm = ym0 is feasible. We wish to bring into the
basis the vector aq, q > m, and maintain feasibility. In order to determine which
element in the qth column to use as pivot (and hence which vector in the basis will
leave), we use (16) and compute the ratios xi/yiq = yi0/yiq, i = 1� 2� � � � �m, select
the smallest nonnegative ratio, and pivot on the corresponding yiq.

Example 3. Consider the system

a1 a2 a3 a4 a5 a6 b
1 0 0 2 4 6 4
0 1 0 1 2 3 3
0 0 1 −1 2 1 1
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which has basis a1, a2, a3 yielding a basic feasible solution x = �4� 3� 1� 0� 0� 0�.
Suppose we elect to bring a4 into the basis. To determine which element in the
fourth column is the appropriate pivot, we compute the three ratios:

4/2 = 2� 3/1 = 3� 1/−1 = −1

and select the smallest nonnegative one. This gives 2 as the pivot element. The new
tableau is

a1 a2 a3 a4 a5 a6 b
1/2 0 0 1 2 3 2

−1/2 1 0 0 0 0 1
1/2 0 1 0 4 4 3

with corresponding basic feasible solution x = �0� 1� 3� 2� 0� 0�.

Our derivation of the method for selecting the pivot in a given column that
will yield a new feasible solution has been based on the vector interpretation of
the equation Ax = b. An alternative derivation can be constructed by considering
the dual approach that is based on the rows of the tableau rather than the columns.
Briefly, the argument runs like this: if we decide to pivot on ypq, then we first divide
the pth row by the pivot element ypq to change it to unity. In order that the new yp0

remain positive, it is clear that we must have ypq > 0. Next we subtract multiples
of the pth row from each other row in order to obtain zeros in the qth column.
In this process the new elements in the last column must remain nonnegative—if
the pivot was properly selected. The full operation is to subtract, from the ith row,
yiq/ypq times the pth row. This yields a new solution obtained directly from the last
column:

x′
i = xi −

yiq

ypq

xp�

For this to remain nonnegative, it follows that xp/ypq � xi/yiq, and hence again we
are led to the conclusion that we select p as the index i minimizing xi/yiq.

Geometrical Interpretations
Corresponding to the two interpretations of pivoting and extreme points, developed
algebraically, are two geometrical interpretations. The first is in activity space, the
space where x is represented. This is perhaps the most natural space to consider, and
it was used in Section 2.5. Here the feasible region is shown directly as a convex
set, and basic feasible solutions are extreme points. Adjacent extreme points are
points that lie on a common edge.

The second geometrical interpretation is in requirements space, the space where
the columns of A and b are represented. The fundamental relation is

a1x1 +a2x2 +· · ·+anxn = b�
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a2

a1

a3

a4

b

Fig. 3.1 Constraint representation in requirements space

An example for m = 2, n = 4 is shown in Fig. 3.1. A feasible solution defines a
representation of b as a positive combination of the a1’s. A basic feasible solution
will use only m positive weights. In the figure a basic feasible solution can be
constructed with positive weights on a1 and a2 because b lies between them. A
basic feasible solution cannot be constructed with positive weights on a1 and a4.
Suppose we start with a1 and a2 as the initial basis. Then an adjacent basis is found
by bringing in some other vector. If a3 is brought in, then clearly a2 must go out.
On the other hand, if a4 is brought in, a1 must go out.

3.3 DETERMINING A MINIMUM FEASIBLE
SOLUTION

In the last section we showed how it is possible to pivot from one basic feasible
solution to another (or determine that the solution set is unbounded) by arbitrarily
selecting a column to pivot on and then appropriately selecting the pivot in that
column. The idea of the simplex method is to select the column so that the resulting
new basic feasible solution will yield a lower value to the objective function than
the previous one. This then provides the final link in the simplex procedure. By an
elementary calculation, which is derived below, it is possible to determine which
vector should enter the basis so that the objective value is reduced, and by another
simple calculation, derived in the previous section, it is possible to then determine
which vector should leave in order to maintain feasibility.

Suppose we have a basic feasible solution

�xB� 0� = �y10� y20� � � � � ym0� 0� 0� � � � � 0�

together with a tableau having an identity matrix appearing in the first m columns
as shown below:
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a1 a2 · · · am am+1 · · · an b
1 0 0 y1�m+1 · · · y1n y10

0 1 0 y2�m+1 · · · y20 y20

· · · · · ·
· · · · · ·
· · · · · ·
0 0 1 ym�m+1 · · · ymn ym0

(18)

The value of the objective function corresponding to any solution x is

z = c1x1 + c2x2 +· · ·+ cnxn� (19)

and hence for the basic solution, the corresponding value is

z0 = cT
BxB� (20)

where cT
B = �c1� c2� � � � � cm	.

Although it is natural to use the basic solution (xB, 0) when we have the tableau
(18), it is clear that if arbitrary values are assigned to xm+1, xm+2� � � � � xn, we can
easily solve for the remaining variables as

x1 = y10 − n∑

j=m+1
y1jxj

x2 = y20 − n∑

j=m+1
y2jxj

·
·
·
xm = ym0 − n∑

j=m+1
ymjxj�

(21)

Using (21) we may eliminate x1, x2� � � � � xm from the general formula (19). Doing
this we obtain

z = cT x = z0 + �cm+1 − zm+1� xm+1

+ �cm+2 − zm+2� xm+2 +· · ·+ �cn − zn� xn (22)

where

zj = y1jc1 +y2jc2 +· · ·+ymjcm� m+1 � j � n� (23)

which is the fundamental relation required to determine the pivot column. The
important point is that this equation gives the values of the objective function z
for any solution of Ax = b in terms of the variables xm+1� � � � � xn. From it we can
determine if there is any advantage in changing the basic solution by introducing
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one of the nonbasic variables. For example, if cj −zj is negative for some j�m+1 �
j � n, then increasing xj from zero to some positive value would decrease the
total cost, and therefore would yield a better solution. The formulae (22) and (23)
automatically take into account the changes that would be required in the values of
the basic variables x1, x2� � � � � xm to accommodate the change in xj .

Let us derive these relations from a different viewpoint. Let yi be the ith column
of the tableau. Then any solution satisfies

x1e1 +x2e2 +· · ·+xmem = y0 −xm+1ym+1 −xm+2ym+2 −· · ·−xnyn�

Taking the inner product of this vector equation with cT
B , we have

m∑

i=1

cixi = cT
By0 −

n∑

j=m+1

zjxj�

where zj = cT
Byj . Thus, adding

n∑

j=m+1
cjxj to both sides,

cT x = z0 +
n∑

j=m+1

(
cj − zj

)
xj (24)

as before.
We now state the condition for improvement, which follows easily from the

above observation, as a theorem.

Theorem. (Improvement of basic feasible solution). Given a nondegenerate
basic feasible solution with corresponding objective value z0, suppose that for
some j there holds cj − zj < 0. Then there is a feasible solution with objective
value z < z0. If the column aj can be substituted for some vector in the original
basis to yield a new basic feasible solution, this new solution will have z < z0.
If aj cannot be substituted to yield a basic feasible solution, then the solution
set K is unbounded and the objective function can be made arbitrarily small
(toward minus infinity).

Proof. The result is an immediate consequence of the previous discussion. Let
(x1, x2� � � � � xm� 0� 0� � � � � 0) be the basic feasible solution with objective value z0

and suppose cm+1 − zm+1 < 0. Then, in any case, new feasible solutions can be
constructed of the form (x′

1, x′
2� � � � � x′

m, x′
m+1� 0� 0� � � � � 0) with x′

m+1 > 0. Substi-
tuting this solution in (22) we have

z− z0 = �cm+1 − zm+1� x′
m+1 < 0�

and hence z < z0 for any such solution. It is clear that we desire to make x′
m+1

as large as possible. As x′
m+1 is increased, the other components increase, remain

constant, or decrease. Thus x′
m+1 can be increased until one x′

i = 0, i � m, in which
case we obtain a new basic feasible solution, or if none of the x′

i’s decrease, x′
m+1 can
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be increased without bound indicating an unbounded solution set and an objective
value without lower bound.

We see that if at any stage cj − zj < 0 for some j, it is possible to make
xj positive and decrease the objective function. The final question remaining is
whether cj − zj � 0 for all j implies optimality.

Optimality Condition Theorem. If for some basic feasible solution cj − zj � 0
for all j, then that solution is optimal.

Proof. This follows immediately from (22), since any other feasible solution must
have xi � 0 for all i, and hence the value z of the objective will satisfy z−z0 � 0.

Since the constants cj − zj play such a central role in the development of the
simplex method, it is convenient to introduce the somewhat abbreviated notation
rj = cj −zj and refer to the rj’s as the relative cost coefficients or, alternatively, the
reduced cost coefficients (both terms occur in common usage). These coefficients
measure the cost of a variable relative to a given basis. (For notational convenience
we extend the definition of relative cost coefficients to basic variables as well; the
relative cost coefficient of a basic variable is zero.)

We conclude this section by giving an economic interpretation of the relative
cost coefficients. Let us agree to interpret the linear program

minimize cT x

subject to Ax = b

x � 0

as a diet problem (see Section 2.2) where the nutritional requirements must be met
exactly. A column of A gives the nutritional equivalent of a unit of a particular food.
With a given basis consisting of, say, the first m columns of A, the corresponding
simplex tableau shows how any food (or more precisely, the nutritional content of
any food) can be constructed as a combination of foods in the basis. For instance,
if carrots are not in the basis we can, using the description given by the tableau,
construct a synthetic carrot which is nutritionally equivalent to a carrot, by an
appropriate combination of the foods in the basis.

In considering whether or not the solution represented by the current basis is
optimal, we consider a certain food not in the basis—say carrots—and determine if
it would be advantageous to bring it into the basis. This is very easily determined
by examining the cost of carrots as compared with the cost of synthetic carrots. If
carrots are food j, then the unit cost of carrots is cj . The cost of a unit of synthetic
carrots is, on the other hand,

zj =
m∑

i=1

ciyij�
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If rj = cj −zj < 0, it is advantageous to use real carrots in place of synthetic carrots,
and carrots should be brought into the basis.

In general each zj can be thought of as the price of a unit of the column aj when
constructed from the current basis. The difference between this synthetic price and the
direct price of that column determines whether that column should enter the basis.

3.4 COMPUTATIONAL PROCEDURE—SIMPLEX
METHOD

In previous sections the theory, and indeed much of the technique, necessary for
the detailed development of the simplex method has been established. It is only
necessary to put it all together and illustrate it with examples.

In this section we assume that we begin with a basic feasible solution and
that the tableau corresponding to Ax = b is in the canonical form for this solution.
Methods for obtaining this first basic feasible solution, when one is not obvious,
are described in the next section.

In addition to beginning with the array Ax = b expressed in canonical form
corresponding to a basic feasible solution, we append a row at the bottom consisting
of the relative cost coefficients and the negative of the current cost. The result is a
simplex tableau.

Thus, if we assume the basic variables are (in order) x1, x2� � � � � xm, the simplex
tableau takes the initial form shown in Fig. 3.2.

The basic solution corresponding to this tableau is

xi =
{

yi0 0 � i � m

0 m+1 � i � n

which we have assumed is feasible, that is, yi0 � 0, i = 1� 2� � � � �m. The corre-
sponding value of the objective function is z0.

a1 a2 · · · am am+1 am+2 · · · aj · · · an b
1 0 · · · 0 y1�m+1 y1�m+2 · · · y1j · · · y1n y10

0 1 · · · · · ·
· · · · · · · ·
· · · · · · · ·
0 0 · yi�m+1 yi�m+2 · · · yij · · · yin yi0

· · · · · · · ·
· · · · · · · ·
0 0 1 ym�m+1 ym�m+2 · · · ymj · · · ymn ym0

0 0 · · · 0 rm+1 rm+2 · · · rj · · · rn −z0

Fig. 3.2 Canonical simplex tableau
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The relative cost coefficients rj indicate whether the value of the objective
will increase or decrease if xj is pivoted into the solution. If these coefficients
are all nonnegative, then the indicated solution is optimal. If some of them are
negative, an improvement can be made (assuming nondegeneracy) by bringing the
corresponding component into the solution. When more than one of the relative
cost coefficients is negative, any one of them may be selected to determine in
which column to pivot. Common practice is to select the most negative value. (See
Exercise 13 for further discussion of this point.)

Some more discussion of the relative cost coefficients and the last row of the
tableau is warranted. We may regard z as an additional variable and

c1x1 + c2x2 +· · ·+ cnxn − z = 0

as another equation. A basic solution to the augmented system will have m+ 1 basic
variables, but we can require that z be one of them. For this reason it is not necessary
to add a column corresponding to z, since it would always be �0� 0� � � � � 0� 1�.
Thus, initially, a last row consisting of the ci’s and a right-hand side of zero can be
appended to the standard array to represent this additional equation. Using standard
pivot operations, the elements in this row corresponding to basic variables can be
reduced to zero. This is equivalent to transforming the additional equation to the form

rm+1xm+1 + rm+2xm+2 +· · ·+ rnxn − z = −z0� (25)

This must be equivalent to (24), and hence the rj’s obtained are the relative cost coeffi-
cients. Thus, the last row can be treated operationally like any other row: just start with
cj’s and reduce the terms corresponding to basic variables to zero by row operations.

After a column q is selected in which to pivot, the final selection of the
pivot element is made by computing the ratio yi0/yiq for the positive elements yiq,
i = 1� 2� � � � �m, of the qth column and selecting the element p yielding the minimum
ratio. Pivoting on this element will maintain feasibility as well as (assuming nonde-
generacy) decrease the value of the objective function. If there are ties, any element
yielding the minimum can be used. If there are no nonnegative elements in the
column, the problem is unbounded. After updating the entire tableau with ypq as
pivot and transforming the last row in the same manner as all other rows (except
row q), we obtain a new tableau in canonical form. The new value of the objective
function again appears in the lower right-hand corner of the tableau.

The simplex algorithm can be summarized by the following steps:

Step 0. Form a tableau as in Fig. 3.2 corresponding to a basic feasible solution. The
relative cost coefficients can be found by row reduction.

Step 1. If each rj � 0, stop; the current basic feasible solution is optimal.
Step 2. Select q such that rq < 0 to determine which nonbasic variable is to

become basic.
Step 3. Calculate the ratios yi0/yiq for yiq > 0, i = 1� 2� � � � �m. If no yiq > 0, stop;

the problem is unbounded. Otherwise, select p as the index i corresponding to
the minimum ratio.

Step 4. Pivot on the pqth element, updating all rows including the last. Return to
Step 1.
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Proof that the algorithm solves the problem (again assuming nondegeneracy) is
essentially established by our previous development. The process terminates only
if optimality is achieved or unboundedness is discovered. If neither condition is
discovered at a given basic solution, then the objective is strictly decreased. Since
there are only a finite number of possible basic feasible solutions, and no basis
repeats because of the strictly decreasing objective, the algorithm must reach a basis
satisfying one of the two terminating conditions.

Example 1. Maximize 3x1 +x2 +3x3 subject to

2x1 + x2 + x3 � 2
x1 + 2x2 + 3x3 � 5

2x1 + 2x2 + x3 � 6
x1 � 0� x2 � 0� x3 � 0�

To transform the problem into standard form so that the simplex procedure
can be applied, we change the maximization to minimization by multiplying the
objective function by minus one, and introduce three nonnegative slack variables
x4, x5, x6. We then have the initial tableau

a1 a2 a3 a4 a5 a6 b
©2 ©1 1 1 0 0 2
1 2 ©3 0 1 0 5
2 2 1 0 0 1 5

rT −3 −1 −3 0 0 0 0

First tableau

The problem is already in canonical form with the three slack variables serving
as the basic variables. We have at this point rj = cj − zj = cj , since the costs of
the slacks are zero. Application of the criterion for selecting a column in which to
pivot shows that any of the first three columns would yield an improved solution.
In each of these columns the appropriate pivot element is determined by computing
the ratios yi0/yij and selecting the smallest positive one. The three allowable pivots
are all circled on the tableau. It is only necessary to determine one allowable pivot,
and normally we would not bother to calculate them all. For hand calculation on
problems of this size, however, we may wish to examine the allowable pivots and
select one that will minimize (at least in the short run) the amount of division
required. Thus for this example we select ©1 .

2 1 1 1 0 0 2
−3 0 ©1 −2 1 0 1
−2 0 −1 −2 0 1 2
−1 0 −2 1 0 0 2

Second tableau
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We note that the objective function—we are using the negative of the original
one—has decreased from zero to minus two. Again we pivot on ©1 .

©5 1 0 3 −1 0 1
−3 0 1 −2 1 0 1
−5 0 0 −4 1 1 3
−7 0 0 −3 2 0 4

Third tableau

The value of the objective function has now decreased to minus four and we may
pivot in either the first or fourth column. We select 5 .

1 1/5 0 3/5 −1/5 0 1/5
0 3/5 1 −1/5 2/5 0 8/5
0 1 0 −1 0 1 4
0 7/5 0 6/5 3/5 0 27/5

Fourth tableau

Since the last row has no negative elements, we conclude that the solution corre-
sponding to the fourth tableau is optimal. Thus x1 = 1/5, x2 = 0, x3 = 8/5, x4 = 0,
x5 = 0, x6 = 4 is the optimal solution with a corresponding value of the (negative)
objective of −�27/5�.

Degeneracy
It is possible that in the course of the simplex procedure, degenerate basic feasible
solutions may occur. Often they can be handled as a nondegenerate basic feasible
solution. However, it is possible that after a new column q is selected to enter the
basis, the minimum of the ratios yi0/yiq may be zero, implying that the zero-valued
basic variable is the one to go out. This means that the new variable xq will come
in at zero value, the objective will not decrease, and the new basic feasible solution
will also be degenerate. Conceivably, this process could continue for a series of
steps until, finally, the original degenerate solution is again obtained. The result is
a cycle that could be repeated indefinitely.

Methods have been developed to avoid such cycles (see Exercises 15–17
for a full discussion of one of them, which is based on perturbing the problem
slightly so that zero-valued variables are actually small positive values, and
Exercise 32 for Bland’s rule, which is simpler). In practice, however, such proce-
dures are found to be unnecessary. When degenerate solutions are encountered, the
simplex procedure generally does not enter a cycle. However, anticycling proce-
dures are simple, and many codes incorporate such a procedure for the sake of
safety.
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3.5 ARTIFICIAL VARIABLES
A basic feasible solution is sometimes immediately available for linear programs.
For example, in problems with constraints of the form

Ax � b

x � 0 (26)

with b � 0, a basic feasible solution to the corresponding standard form of the
problem is provided by the slack variables. This provides a means for initiating the
simplex procedure. The example in the last section was of this type. An initial basic
feasible solution is not always apparent for other types of linear programs, however,
and it is necessary to develop a means for determining one so that the simplex
method can be initiated. Interestingly (and fortunately), an auxiliary linear program
and corresponding application of the simplex method can be used to determine the
required initial solution.

By elementary straightforward operations the constraints of a linear
programming problem can always be expressed in the form

Ax = b

x � 0 (27)

with b � 0. In order to find a solution to (27) consider the (artificial) minimization
problem

minimize
m∑

i=1

yi

subject to Ax +y = b

x � 0

y � 0

(28)

where y = �y1� y2� � � � � ym� is a vector of artificial variables. If there is a feasible
solution to (27), then it is clear that (28) has a minimum value of zero with y = 0. If
(27) has no feasible solution, then the minimum value of (28) is greater than zero.

Now (28) is itself a linear program in the variables x, y, and the system is
already in canonical form with basic feasible solution y = b. If (28) is solved using
the simplex technique, a basic feasible solution is obtained at each step. If the
minimum value of (28) is zero, then the final basic solution will have all yi = 0,
and hence barring degeneracy, the final solution will have no yi variables basic.
If in the final solution some yi are both zero and basic, indicating a degenerate
solution, these basic variables can be exchanged for nonbasic xi variables (again at
zero level) to yield a basic feasible solution involving x variables only. (However,
the situation is more complex if A is not of full rank. See Exercise 21.)
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Example 1. Find a basic feasible solution to

2x1 +x2 +2x3 = 4

3x1 +3x2 +x3 = 3

x1 � 0� x2 � 0� x3 � 0�

We introduce artificial variables x4 � 0, x5 � 0 and an objective function x4 +x5.
The initial tableau is

x1 x2 x3 x4 x5 b
2 1 2 1 0 4
3 3 1 0 1 3

cT 0 0 0 1 1 0

Initial tableau

A basic feasible solution to the expanded system is given by the artificial variables.
To initiate the simplex procedure we must update the last row so that it has zero
components under the basic variables. This yields:

2 1 2 1 0 4
©3 3 1 0 1 3

rT −5 −4 −3 0 0 −7

First tableau

Pivoting in the column having the most negative bottom row component as
indicated, we obtain:

0 −1 ©4/3 1 −2/3 2

1 1 1/3 0 1/3 1
0 1 −4/3 0 5/3 −2

Second tableau

In the second tableau there is only one choice for pivot, and it leads to the final
tableau shown.

0 −3/4 1 3/4 −1/2 3/2
1 5/4 0 −1/4 1/2 1/2
0 0 0 1 1 0

Final tableau

Both of the artificial variables have been driven out of the basis, thus reducing the
value of the objective function to zero and leading to the basic feasible solution to
the original problem

x1 = 1/2� x2 = 0� x3 = 3/2�
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Using artificial variables, we attack a general linear programming problem by
use of the two-phase method. This method consists simply of a phase I in which
artificial variables are introduced as above and a basic feasible solution is found
(or it is determined that no feasible solutions exist); and a phase II in which, using
the basic feasible solution resulting from phase I, the original objective function
is minimized. During phase II the artificial variables and the objective function of
phase I are omitted. Of course, in phase I artificial variables need be introduced
only in those equations that do not contain slack variables.

Example 2. Consider the problem

minimize 4x1 +x2 +x3

subject to 2x1 +x2 +2x3 = 4

3x1 +3x2 +x3 = 3

x1 � 0� x2 � 0� x3 � 0�

There is no basic feasible solution apparent, so we use the two-phase method. The
first phase was done in Example 1 for these constraints, so we shall not repeat it
here. We give only the final tableau with the columns corresponding to the artificial
variables deleted, since they are not used in phase II. We use the new cost function
in place of the old one. Temporarily writing cT in the bottom row we have

x1 x2 x3 b
0 −3/4 1 3/2
1 5/4 0 1/2

cT 4 1 1 0
Initial tableau

Transforming the last row so that zeros appear in the basic columns, we have

0 −3/4 1 3/2

1 ©5/4 0 1/2
0 −13/4 0 −7/2

First tableau

3/5 0 1 9/5
4/5 1 0 2/5

13/5 0 0 −11/5
Second tableau

and hence the optimal solution is x1 = 0, x2 = 2/5, x3 = 9/5.
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Example 3. (A free variable problem).

minimize −2x1 + 4x2 + 7x3 + x4 + 5x5

subject to −x1 + x2 + 2x3 + x4 + 2x5 = 7
−x1 + 2x2 + 3x3 + x4 + x5 = 6
−x1 + x2 + x3 + 2x4 + x5 = 4

x1 free� x2 � 0� x3 � 0� x4 � 0� x5 � 0�

Since x1 is free, it can be eliminated, as described in Chapter 2, by solving for
x1 in terms of the other variables from the first equation and substituting everywhere
else. This can all be done with the simplex tableau as follows:

x1 x2 x3 x4 x5 b
−©1 1 2 1 2 7
−1 2 3 1 1 6
−1 1 1 2 1 4

cT −2 4 7 1 5 0

Initial tableau

We select any nonzero element in the first column to pivot on—this will eliminate
x1.

1 −1 −2 −1 −2 −7
0 1 1 0 −1 −1
0 0 −1 1 −1 −3
0 2 3 −1 1 −14

Equivalent problem

We now save the first row for future reference, but our linear program only
involves the sub-tableau indicated. There is no obvious basic feasible solution for
this problem, so we introduce artificial variables x6 and x7.

x2 x3 x4 x5 x6 x7 b
−1 −1 0 1 1 0 1

0 1 −1 1 0 1 3
cT 0 0 0 0 1 1 0

Initial tableau for phase I

Transforming the last row appropriately we obtain

x2 x3 x4 x5 x6 x7 b
−1 −1 0 ©1 1 0 1

0 1 −1 1 0 1 3
rT 1 0 1 −2 0 0 −4

First tableau—phase I
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x2 x3 x4 x5 x6 x7 b
−1 −1 0 1 1 0 1
©1 2 −1 0 −1 1 2

−1 −2 1 0 2 0 −2

Second tableau—phase I

0 1 −1 1 0 1 3
1 2 −1 0 −1 1 2
0 0 0 0 1 1 0

Final tableau—phase I

Now we go back to the equivalent reduced problem

x2 x3 x4 x5 b
0 1 −1 1 3
1 2 −1 0 2

cT 2 3 −1 1 −14

Initial tableau—phase II

Transforming the last row appropriately we proceed with:

0 1 −1 1 3
1 ©2 −1 0 2
0 −2 2 0 −21

First tableau—phase II

−1/2 0 −1/2 1 2
1/2 1 −1/2 0 1
1 0 1 0 −19

Final tableau—phase II

The solution x3 = 1, x5 = 2 can be inserted in the expression for x1 giving

x1 = −7+2 ·1+2 ·2 = −1


thus the final solution is

x1 = −1� x2 = 0� x3 = 1� x4 = 0� x5 −2�

3.6 MATRIX FORM OF THE SIMPLEX METHOD
Although the elementary pivot transformations associated with the simplex method
are in many respects most easily discernible in the tableau format, with attention
focused on the individual elements, there is much insight to be gained by studying
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a matrix interpretation of the procedure. The vector–matrix relationships that exist
between the various rows and columns of the tableau lead, however, not only to
increased understanding but also, in a rather direct way, to the revised simplex
procedure which in many cases can result in considerable computational advantage.
The matrix formulation is also a natural setting for the discussion of dual linear
programs and other topics related to linear programming.

A preliminary observation in the development is that the tableau at any point in
the simplex procedure can be determined solely by a knowledge of which variables
are basic. As before we denote by B the submatrix of the original A matrix consisting
of the m columns of A corresponding to the basic variables. These columns are
linearly independent and hence the columns of B form a basis for Em. We refer to
B as the basis matrix.

As usual, let us assume that B consists of the first m columns of A. Then by
partitioning A, x, and cT as

A = �B� D	

x = �xB� xD� � cT = [
cT

B� cT
D

]
�

the standard linear program becomes

minimize cT
BxB + cT

DxD

subject to BxB + DxD = b
xB � 0� xD � 0�

(29)

The basic solution, which we assume is also feasible, corresponding to the
basis B is x = �xB� 0� where xB = B−1b. The basic solution results from setting
xD = 0. However, for any value of xD the necessary value of xB can be computed
from (29) as

xB = B−1b−B−1DxD� (30)

and this general expression when substituted in the cost function yields

z = cT
B�B−1b−B−1DxD�+ cT

DxD

= cT
BB−1b+ (

cT
D − cT

BB−1D
)

xD�
(31)

which expresses the cost of any solution to (29) in terms of xD. Thus

rT
D = cT

D − cT
BB−1D (32)

is the relative cost vector (for nonbasic variables). It is the components of this
vector that are used to determine which vector to bring into the basis.
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Having derived the vector expression for the relative cost it is now possible to
write the simplex tableau in matrix form. The initial tableau takes the form

⎡

⎢
⎣

A
�

� b
−− � −−
cT

�

� 0

⎤

⎥
⎦=

⎡

⎢
⎣

B
�

� D
�

� b
−− � −− � −−
cT

B

�

� cT
D

�

� 0

⎤

⎥
⎦ � (33)

which is not in general in canonical form and does not correspond to a point in
the simplex procedure. If the matrix B is used as a basis, then the corresponding
tableau becomes

T =
⎡

⎢
⎣

I
�

� B−1D
�

� B−1b
−− � −−−−−−− � −−−−−
0

�

� cT
D − cT

BB−1D
�

� −cT
BB−1b

⎤

⎥
⎦ � (34)

which is the matrix form we desire.

3.7 THE REVISED SIMPLEX METHOD
Extensive experience with the simplex procedure applied to problems from various
fields, and having various values of n and m, has indicated that the method can be
expected to converge to an optimum solution in about m, or perhaps 3m/2, pivot
operations. (Except in the worst case. See Chapter 5.) Thus, particularly if m is
much smaller than n, that is, if the matrix A has far fewer rows than columns,
pivots will occur in only a small fraction of the columns during the course of
optimization.

Since the other columns are not explicitly used, it appears that the work
expended in calculating the elements in these columns after each pivot is, in some
sense, wasted effort. The revised simplex method is a scheme for ordering the
computations required of the simplex method so that unnecessary calculations are
avoided. In fact, even if pivoting is eventually required in all columns, but m is
small compared to n, the revised simplex method can frequently save computational
effort.

The revised form of the simplex method is this: Given the inverse B−1 of a
current basis, and the current solution xB = y0 = B−1b,

Step 1. Calculate the current relative cost coefficients rT
D = cT

D − cT
BB−1D. This can

best be done by first calculating �T = cT
BB−1 and then the relative cost vector

rT
D = cT

D −�T D. If rD � 0 stop; the current solution is optimal.

Step 2. Determine which vector aq is to enter the basis by selecting the most
negative cost coefficient; and calculate yq = B−1aq which gives the vector aq

expressed in terms of the current basis.
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Step 3. If no yiq > 0, stop; the problem is unbounded. Otherwise, calculate the
ratios yi0/yiq for yiq > 0 to determine which vector is to leave the basis.

Step 4. Update B−1 and the current solution B−1b. Return to Step 1.

Updating of B−1 is accomplished by the usual pivot operations applied to an
array consisting of B−1 and yq, where the pivot is the appropriate element in yq. Of
course B−1b may be updated at the same time by adjoining it as another column.

To begin the procedure one requires, as always, an initial basic feasible solution
and, in this case, the inverse of the initial basis. In most problems the initial basis
(and hence also its inverse) is an identity matrix, resulting either from slack or
surplus variables or from artificial variables. The inverse of any initial basis can,
however, be explicitly calculated in order to initiate the revised simplex procedure.

To illustrate the method and to indicate how the computations and storage can
be handled, we consider an example.

Example 1. We solve again Example 1 of Section 3.4. The vectors are listed once
for reference

a1 a2 a3 a4 a5 a6 b
2 1 1 1 0 0 2
1 2 3 0 1 0 5
2 2 1 0 0 1 6

and the objective function is determined by

cT = �−3�−1�−3� 0� 0� 0	 �

We start with an initial basic feasible solution and corresponding B−1 as shown
in the tableau below

Variable

4
5
6

B−1

︷ ︸︸ ︷

1 0 0
0 1 0
0 0 1

xB

2
5
6

We compute

�T = �0� 0� 0	 B−1 = �0� 0� 0	

and then

rT
D = cT

D −�T D = �−3�−1�−3	 �
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We decide to bring a2 into the basis (violating the rule of selecting the most negative
relative cost in order to simplify the hand calculation). Its current representation is
found by multiplying by B−1; thus we have

Variable

4
5
6

B−1

︷ ︸︸ ︷

1 0 0
0 1 0
0 0 1

xB y2

2 ©1
5 2
6 2

After computing the ratios in the usual manner, we select the pivot indicated. The
updated tableau becomes

Variable

2
5
6

B−1

︷ ︸︸ ︷

1 0 0
−2 1 0
−2 0 1

xB

2
1
2

then

�T = �−1� 0� 0	 B−1 = �−1� 0� 0	

r1 = −1� r3 = −2� r4 = 1�

We select a3 to enter. We have the tableau

Variable

2
5
6

B−1

︷ ︸︸ ︷

1 0 0
−2 1 0
−2 0 1

xB y3

2 1
1 ©1
2 −1

Using the pivot indicated we obtain

Variable

2
3
6

B−1

︷ ︸︸ ︷

3 −1 0
−2 1 0
−4 1 1

xB

1
1
3

Now

�T = �−1�−3� 0	 B−1 = �3�−2� 0	 �

and

r1 = −7� r4 = −3� r5 = 2�
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We select a1 to enter the basis. We have the tableau

Variable

2
3
6

B−1

︷ ︸︸ ︷

3 −1 0
−2 1 0
−4 1 1

xB y1

1 5
1 −3
3 −5

Using the pivot indicated we obtain

Variable

1
3
6

B−1

︷ ︸︸ ︷

3/5 −1/5 0
−1/5 2/5 0
−1 0 1

xB

1/5
8/5

4

Now

�T = �−3�−3� 0	 B−1 = �−6/5�−3/5� 0	 �

and

r2 = 7/5� r4 = 6/5� r5 = 3/5�

Since the ri’s are all nonnegative, we conclude that the solution x = �1/5� 0�
8/5� 0� 0� 4� is optimal.

∗3.8 THE SIMPLEX METHOD AND LU
DECOMPOSITION

We may go one step further in the matrix interpretation of the simplex method and
note that execution of a single simplex cycle is not explicitly dependent on having
B−1 but rather on the ability to solve linear systems with B as the coefficient
matrix. Thus, the revised simplex method stated at the beginning of Section 3.7
can be restated as: Given the current basis B,

Step 1. Calculate the current solution xB = y0 satisfying By0 = b.

Step 2. Solve �T B = cT
B , and set rT

D = cT
D − �T D. If rD � 0, stop; the current

solution is optimal.

Step 3. Determine which vector aq is to enter the basis by selecting the most
negative relative cost coefficient, and solve Byq = aq.

Step 4. If no yiq > 0, stop; the problem is unbounded. Otherwise, calculate the
ratios yi0/yiq for yiq > 0 and select the smallest nonnegative one to determine
which vector is to leave the basis.

Step 5. Update B. Return to Step 1.
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In this form it is apparent that there is no explicit need for having B−1, but
rather it is only necessary to solve three systems of equations, two involving
the matrix B and one (the one for �) involving BT . In previous sections these
three equations were solved, as the method progressed, by the pivoting operations.
From the viewpoints of efficiency and numerical stability, however, this pivoting
procedure is not as effective as the method of Gaussian elimination for general
systems of linear equations (see Appendix C), and it therefore seems appropriate to
investigate the possibility of adapting the numerically superior method of Gaussian
elimination to the simplex method. The result is a version of the revised simplex
method that possesses better numerical stability than other methods, and which for
large-scale problems can offer tremendous storage advantages.

We concentrate on the problem of solving the linear systems

By0 = b� �T B = cT
B� Byq = aq (35)

that are required by a single step of the simplex method. Suppose B has been
decomposed into the form B = LU where L is a lower triangular matrix and U is
an upper triangular matrix.† Then each of the linear systems (35) can be solved by
solving two triangular systems. Since solving in this fashion is simple, knowledge
of L and U is as good as knowledge of B−1.

Next, we show how the LU decomposition of B can be updated when a single
basis vector is changed. At the beginning of the simplex cycle suppose B has
the form

B = �a1� a2� � � � � am	 �

At the end of the cycle we have the new basis

B = [
a1� a2� � � � � ak−1� ak+1� � � � � am� aq

]
�

where it should be noted that when ak is dropped all subsequent vectors are shifted
to the left, and the new vector aq is appended on the right. This procedure leads to
a fairly simple updating technique.

We have

L−1B = [
L−1a1� L−1a2� � � � � L−1ak−1� L−1ak+1� � � � � L−1am� L−1aq

]

= [
u1� u2� � � � � uk−1� � � � � um� L−1aq

]= H�

†For simplicity, we are assuming that no row interchanges are required to produce the LU
decomposition. This assumption can be relaxed, but both the notation and the method itself
become somewhat more complex. In practice row interchanges are introduced to preserve
accuracy or sparsity.
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where the ui’s are the columns of U. The matrix H takes the form

H =

with zeros below the main diagonal in the first k−1 columns, and zeros below the
element immediately under the diagonal in all other columns. The matrix H itself
can be constructed without additional computation, since the ui’s are known and
L−1aq is a by-product in the computation of yq.

H can be reduced to upper triangular form by using Gaussian elimination to
zero out the subdiagonal elements. Thus the upper triangular matrix U can be
obtained from H by application of a series of transformations, each having the form

Mi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1

·
·

1
mi 1

·
·

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(36)

for i = k�k+1� � � � �m−1. The matrix U becomes

U = Mm−1Mm−2 � � � MkH� (37)

We then have

B = LH = LM−1
k M−1

k+1 � � � M−1
m−1 U� (38)

and thus evaluating

L = LM−1
k � � � M−1

m−1� (39)

we obtain the decomposition

B = LU� (40)
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Since M−1
i is simply Mi with the sign of the off-diagonal term reversed, evaluation

of L is straightforward.
There are numerous variations of this basic idea. The elementary transforma-

tions (36) can be carried rather than explicitly evaluating L, the LU decomposition
can be periodically reevaluated, and row and column interchanges can be handled in
such a way as to maximize stability or minimize the density of the decomposition.
Some of these extensions are discussed in the references at the end of the chapter.

3.9 DECOMPOSITION
Large linear programming problems usually have some special structural form
that can (and should) be exploited to develop efficient computational procedures.
One common structure is where there are a number of separate activity areas that
are linked through common resource constraints. An example is provided by a
multidivisional firm attempting to minimize the total cost of its operations. The
divisions of the firm must each meet internal requirements that do not interact with
the constraints of other divisions; but in addition there are common resources that
must be shared among divisions and thereby represent linking constraints.

A problem of this form can be solved by the Dantzig–Wolfe decomposition
method described in this section. The method is an iterative process where at each
step a number of separate subproblems are solved. The subproblems are themselves
linear programs within the separate areas (or within divisions in the example of
the firm). The objective functions of these subproblems are varied from iteration
to iteration and are determined by a separate calculation based on the results
of the previous iteration. This action coordinates the individual subproblems so
that, ultimately, the solution to the overall problem is solved. The method can be
derived as a special version of the revised simplex method, where the subproblems
correspond to evaluation of reduced cost coefficients for the main problem.

To describe the method we consider the linear program in standard form

minimize cT x

subject to Ax = b (41)

x � 0�

Suppose, for purposes of this entire section, that the A matrix has the special
“block-angular” structure:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

L1 L2 · · · LN

A1

A2

� � �

AN

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(42)
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By partitioning the vectors x� cT , and b consistent with this partition of A, the
problem can be rewritten as

minimize
N∑

i=1

cT
i xi

subject to
N∑

i=1

Lixi = b0 (43)

Aixi = bi

xi � 0� i = 1� � � � �N�

This may be viewed as a problem of minimizing the total cost of N different linear
programs that are independent except for the first constraint, which is a linking
constraint of, say, dimension m.

Each of the subproblems is of the form

minimize cT
i xi

subject to Aixi = bi (44)

xi � 0�

The constraint set for the ith subproblem is Si = �xi � Aixi = bi� xi � 0�. As for
any linear program, this constraint set Si is a polytope and can be expressed as
the intersection of a finite number of closed half-spaces. There is no guarantee
that each Si is bounded, even if the original linear program (41) has a bounded
constraint set. We shall assume for simplicity, however, that each of the polytopes
Si� i = 1� � � � �N is indeed bounded and hence is a polyhedron. One may guarantee
that this assumption is satisfied by placing artificial (large) upper bounds on each
xi.

Under the boundedness assumption, each polyhedron Si consists entirely of
points that are convex combinations of its extreme points. Thus, if the extreme
points of Si are �xi1� xi2� � � � � xiKi

�, then any point xi ∈ Si can be expressed in the form

xi =
Ki∑

j=1

ijxij�

where
Ki∑

j=1

ij = 1

and 
ij � 0� j = 1� � � � �Ki�

(45)

The 
ij’s are the weighting coefficients of the extreme points.
We now convert the original linear program to an equivalent master problem, of

which the objective is to find the optimal weighting coefficients for each polyhedron,
Si. Corresponding to each extreme point xij in Si, define pij = cT

i xij and qij = Lixij .
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Clearly pij is the equivalent cost of the extreme point xij , and qij is its equivalent
activity vector in the linking constraints.

Then the original linear program (41) is equivalent, using (45), to the master
problem:

minimize
N∑

i=1

Ki∑

j=1

pij
ij

subject to
N∑

i=1

Ki∑

j=1

qij
ij = b0 (46)

Ki∑

j=1

ij = 1


ij � 0� j = 1� � � � �Ki

⎫
⎪⎬

⎪⎭
i = 1� � � � �N�

This master problem has variables

� = (

11� � � � �
1K1

�
21� � � � �
2K2
� � � � �
N1� � � � �
NKN

)

and can be expressed more compactly as

minimize pT �

subject to Q� = g (47)

� � 0�

where gT = �bT
0 � 1� 1� � � � � 1	; the element of p associated with 
ij is pij; and the

column of Q associated with 
ij is

[
qij

ei

]

�

with ei denoting the ith unit vector in EN .
Suppose that at some stage of the revised simplex method for the master

problem we know the basis B and corresponding simplex multipliers �T = pT
BB−1.

The corresponding relative cost vector is rT
D = cT

D −�T D, having components

rij = pij −�T

[
qij

ei

]

� (48)

It is not necessary to calculate all the rij’s; it is only necessary to determine the
minimal rij . If the minimal value is nonnegative, the current solution is optimal and
the process terminates. If, on the other hand, the minimal element is negative, the
corresponding column should enter the basis.
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The search for the minimal element in (48) is normally made with respect
to nonbasic columns only. The search can be formally extended to include basic
columns as well, however, since for basic elements

pij −�T

[
qij

ei

]

= 0�

The extra zero values do not influence the subsequent procedure, since a new
column will enter only if the minimal value is less than zero.

We therefore define r∗ as the minimum relative cost coefficient for all possible
basis vectors. That is,

r∗ = minimum
i∈�1�����N�

{

r∗
1 = minimum

j∈�1�����Ki�
�pij −�T

[
qij

ei

]

�

}

�

Using the definitions of pij and qij , this becomes

r∗
i = minimum

j∈�1�����Ki�

{
cT

i xij −�T
0 Lixij −�m+i

}
� (49)

where �0 is the vector made up of the first m elements of ��m being the number
of rows of Li (the number of linking constraints in (43)).

The minimization problem in (49) is actually solved by the ith subproblem:

minimize �cT
i −�T

0 Li�xi

subject to Aixi = bi (50)

xi � 0�

This follows from the fact that �m+i is independent of the extreme point index j
(since � is fixed during the determination of the ri’s), and that the solution of (50)
must be that extreme point of Si, say xik, of minimum cost, using the adjusted cost
coefficients cT

i −�T
0 Li.

Thus, an algorithm for this special version of the revised simplex method
applied to the master problem is the following: Given a basis B

Step 1. Calculate the current basic solution xB, and solve �T B = cT
B for �.

Step 2. For each i = 1� 2� � � � �N , determine the optimal solution x∗
i of the ith

subproblem (50) and calculate

r∗
i = (

cT
i −�T

0 Li

)
x∗

i −�m+i� (51)

If all r∗
i > 0, stop; the current solution is optimal.

Step 3. Determine which column is to enter the basis by selecting the minimal r∗
i .

Step 4. Update the basis of the master problem as usual.
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This algorithm has an interesting economic interpretation in the context of a
multidivisional firm minimizing its total cost of operations as described earlier.
Division i’s activities are internally constrained by Axi = bi, and the common
resources b0 impose linking constraints. At Step 1 of the algorithm, the firm’s central
management formulates its current master plan, which is perhaps suboptimal, and
announces a new set of prices that each division must use to revise its recommended
strategy at Step 2. In particular, −�0 reflects the new prices that higher management
has placed on the common resources. The division that reports the greatest rate of
potential cost improvement has its recommendations incorporated in the new master
plan at Step 3, and the process is repeated. If no cost improvement is possible,
central management settles on the current master plan.

Example 2. Consider the problem

minimize −x1 − 2x2 − 4y1 − 3y2

subject to x1 + x2 + 2y1 � 4
x2 + y1 + y2 � 3

2x1 + x2 � 4
x1 + x2 � 2

y1 + y2 � 2
3y1 + 2y2 � 5

x1 � 0� x2 � 0� y1 � 0� y2 � 0�

The decomposition algorithm can be applied by introducing slack variables and
identifying the first two constraints as linking constraints. Rather than using double
subscripts, the primary variables of the subsystems are taken to be x = �x1� x2�,
y = �y1� y2�.

Initialization. Any vector (x, y) of the master problem must be of the form

x =
I∑

i=1


ixi� y =
J∑

j=1

�jyj�

where xi and yj are extreme points of the subsystems, and

J∑

i=1


i = 1�
J∑

j=1

�j = 1� 
i � 0� �j � 0�

Therefore the master problem is

minimize
I∑

i=1

pi
i +
J∑

j=1

tj�j

subject to
I∑

i=1


iL1xi +
J∑

j=1

�jL2yj + s = b
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I∑

i=1


i = 1� 
i � 0� i = 1� 2� � � � � I

j∑

j=1

�j = 1� �j � 0� j = 1� 2� � � � � J�

where pi is the cost of xi, tj is the cost of yj , and where s = �s1� s2� is a vector of
slack variables for the linking constraints. This problem corresponds to (47).

A starting basic feasible solution is s = b, 
1 = 1, �1 = 1, where x1 = 0, y1 = 0
are extreme points of the subsystems. The corresponding starting basis is B = I
and, accordingly, the initial tableau for the revised simplex method for the master
problem is

Variable B−1 Value

s1 1 0 0 0 4
s2 0 1 0 0 3

1 0 0 1 0 1
�1 0 0 0 1 1

Then �T = �0� 0� 0� 0	 B−1 = �0� 0� 0� 0	.

Iteration 1. The relative cost coefficients are found by solving the subproblems
defined by (50). The first is

minimize −x1 − 2x2

subject to 2x1 + x2 � 4
x1 + x2 � 2

x1 � 0� x2 � 0�

This problem can be solved easily (by the simplex method or by inspection). The
solution is x = �0� 2�, with r1 = −4.

The second subsystem is solved correspondingly. The solution is y = �1� 1�
with r2 = −7.

It follows from Step 2 of the general algorithm that r∗ = −7. We let y2 = �1� 1�
and bring �2 into the basis of the master problem.

Master Iteration. The new column to enter the basis is

⎡

⎢
⎢
⎣

L2y2

0
1

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

2
2
0
1

⎤

⎥
⎥
⎦ �
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and since the current basis is B = I, the new tableau is

Variable B−1 Value
New

column

s1 1 0 0 0 4 2
s2 0 1 0 0 3 2

1 0 0 1 0 1 0
�1 0 0 0 1 1 ©1

which after pivoting leads to

Variable B−1 Value

s1 1 0 0 −2 2
s2 0 1 0 −2 1

1 0 0 1 0 1
�2 0 0 0 1 1

Since t2 = cT
2 y2 = −7, we find

� = �0 0 0 −7	 B−1 = �0 0 0 −7	�

Iteration 2. Since �0, which comprises the first two components of �, has not
changed, the subproblems remain the same, but now according to (51), r∗ = −4
and 
2 should be brought into the basis, where x2 = �0� 2�.
Master Iteration. The new column to enter the basis is

⎡

⎢
⎢
⎢
⎣

L1x2

1
0

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

2
2
1
0

⎤

⎥
⎥
⎥
⎦

�

This must be multiplied by B−1 to obtain its representation in terms of the current
basis (but the representation does not change it in this case). The master tableau is
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then updated as follows:

Variable B−1 Value New
column

s1 1 0 0 −2 2 2
s2 0 1 0 −2 1 ©2

1 0 0 1 0 1 1
�2 0 0 0 1 1 0

Variable B−1 Value

0. s1 1 −1 0 0 1

2 0 1/2 0 −1 1/2

1 0 −1/2 1 1 1/2
�2 0 0 0 1 1

Since p2 = −4, we have

�T = �0�−4� 0�−7	 B−1 = �0�−2� 0�−3	 �

Iteration 3. The subsystem’s problems are now

minimize −x1

subject to 2x1 + x2 � 4
x1 + x2 � 2

x1 � 0� x2 � 0

minimize −2y1 − y2 +3
subject to y1 + y2 � 2

3y1 + 2y2 � 5
y1 � 0� y2 � 0�

It follows that x3 = �2� 0� and 
3 should be brought into the basis.
Master Iteration. Proceeding as usual, we obtain the new tableau and new � as
follows.

Variable B−1 Value

s1 1 −1 0 0 1 2

2 0 1/2 0 −1 1/2 0

1 0 −1/2 1 1 1/2 ©1
�2 0 0 0 1 1/2 0

s1 1 0 −2 −2 0

2 0 1/2 0 −1 1/2

3 0 −1/2 1 1 1/2
�3 0 0 0 1 1

�T = �0�−4�−2�−7	 B−1 = �0�−1�−2�−5	
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The subproblems now have objectives −x1 −x2 +2 and −3y1 −2y2 +5, respectively,
which both have minimum values of zero. Thus the current solution is optimal. The
solution is �1/2�x2 + �1/2�x3 +y2, or equivalently, x1 = 1, x2 = 1, y1 = 1, y2 = 1.

3.10 SUMMARY
The simplex method is founded on the fact that the optimal value of a linear program,
if finite, is always attained at a basic feasible solution. Using this foundation there
are two ways in which to visualize the simplex process. The first is to view the
process as one of continuous change. One starts with a basic feasible solution
and imagines that some nonbasic variable is increased slowly from zero. As the
value of this variable is increased, the values of the current basic variables are
continuously adjusted so that the overall vector continues to satisfy the system of
linear equality constraints. The change in the objective function due to a unit change
in this nonbasic variable, taking into account the corresponding required changes
in the values of the basic variables, is the relative cost coefficient associated with
the nonbasic variable. If this coefficient is negative, then the objective value will
be continuously improved as the value of this nonbasic variable is increased, and
therefore one increases the variable as far as possible, to the point where further
increase would violate feasibility. At this point the value of one of the basic variables
is zero, and that variable is declared nonbasic, while the nonbasic variable that was
increased is declared basic.

The other viewpoint is more discrete in nature. Realizing that only basic
feasible solutions need be considered, various bases are selected and the corre-
sponding basic solutions are calculated by solving the associated set of linear
equations. The logic for the systematic selection of new bases again involves the
relative cost coefficients and, of course, is derived largely from the first, continuous,
viewpoint.

3.11 EXERCISES
1. Using pivoting, solve the simultaneous equations

3x1 +2x2 = 5

5x1 + x2 = 9�

2. Using pivoting, solve the simultaneous equations

x1 +2x2 +x3 = 7

2x1 −x2 +2x3 = 6

x1 +x2 +3x3 = 12�

3. Solve the equations in Exercise 2 by Gaussian elimination as described in Appendix C.
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4. Suppose B is an m × m square nonsingular matrix, and let the tableau T be
constructed, T = �I� B	 where I is the m × m identity matrix. Suppose that pivot
operations are performed on this tableau so that it takes the form [C, I]. Show that
C = B−1.

5. Show that if the vectors a1� a2� � � � � am are a basis in Em, the vectors
a1� a2� � � � � ap−1� aq� ap+1� � � � � am also are a basis if and only if ypq �= 0, where ypq is
defined by the tableau (7).

6. If rj > 0 for every j corresponding to a variable xj that is not basic, show that the
corresponding basic feasible solution is the unique optimal solution.

7. Show that a degenerate basic feasible solution may be optimal without satisfying rj � 0
for all j.

8. a) Using the simplex procedure, solve

maximize −x1 +x2

subject to x1 −x2 � 2

x1 +x2 � 6

x1 � 0� x2 � 0�

b) Draw a graphical representation of the problem in x1, x2 space and indicate the path
of the simplex steps.

c) Repeat for the problem

maximize x1 +x2

subject to −2x1 +x2 � 1

x1 −x2 � 1

x1 � 0� x2 � 0�

9. Using the simplex procedure, solve the spare-parts manufacturer’s problem (Exercise 4,
Chapter 2).

10. Using the simplex procedure, solve

minimize 2x1 + 4x2 + x3 + x4

subject to x1 + 3x2 + x4 � 4
2x1 + x2 � 3

x2 + 4x3 + x4 � 3
x1 � 0 i = 1� 2� 3� 4�

11. For the linear program of Exercise 10

a) How much can the elements of b = �4� 3� 3� be changed without changing the
optimal basis?

b) How much can the elements of c = �2� 4� 1� 1� be changed without changing the
optimal basis?
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c) What happens to the optimal cost for small changes in b?
d) What happens to the optimal cost for small changes in c?

12. Consider the problem

minimize x1 − 3x2 − 0�4x3

subject to 3x1 − x2 + 2x3 � 7
−2x1 + 4x2 � 12
−4x1 + 3x2 + 3x3 � 14

x1 � 0� x2 � 0� x3 � 0�

a) Find an optimal solution.
b) How many optimal basic feasible solutions are there?
c) Show that if c4 + 1

3 a14 + 4
5 a24 � 0, then another activity x4 can be introduced with

cost coefficient c1 and activity vector �a14� a24� a34� without changing the optimal
solution.

13. Rather than select the variable corresponding to the most negative relative cost coefficient
as the variable to enter the basis, it has been suggested that a better criterion would be
to select that variable which, when pivoted in, will produce the greatest improvement
in the objective function. Show that this criterion leads to selecting the variable xk

corresponding to the index k minimizing max
i�yik>0

rkyi0/yik.

14. In the ordinary simplex method one new vector is brought into the basis and one removed
at every step. Consider the possibility of bringing two new vectors into the basis and
removing two at each stage. Develop a complete procedure that operates in this fashion.

15. Degeneracy. If a basic feasible solution is degenerate, it is then theoretically possible
that a sequence of degenerate basic feasible solutions will be generated that endlessly
cycles without making progress. It is the purpose of this exercise and the next two to
develop a technique that can be applied to the simplex method to avoid this cycling.

Corresponding to the linear system Ax = b where A = �a1� a2� � � � � an	 define the
perturbed system Ax = b��� where b��� = b+�a1 +�2a2 +· · ·+�nan� � > 0. Show that
if there is a basic feasible solution (possibly degenerate) to the unperturbed system with
basis B = �a1� a2� � � � � am	, then corresponding to the same basis, there is a nondegenerate
basic feasible solution to the perturbed system for some range of � > 0.

16. Show that corresponding to any basic feasible solution to the perturbed system of
Exercise 15, which is nondegenerate for some range of � > 0, and to a vector ak not in
the basis, there is a unique vector ai in the basis which when replaced by ak leads to a
basic feasible solution; and that solution is nondegenerate for a range of � > 0.

17. Show that the tableau associated with a basic feasible solution of the perturbed system
of Exercise 15, and which is nondegenerate for a range of � > 0, is identical with that of
the unperturbed system except in the column under b���. Show how the proper pivot in
a given column to preserve feasibility of the perturbed system can be determined from
the tableau of the unperturbed system. Conclude that the simplex method will avoid
cycling if whenever there is a choice in the pivot element of a column k, arising from a
tie in the minimum of yi0/yik among the elements i ∈ I0, the tie is resolved by finding
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the minimum of yi1/yik, i ∈ I0. If there still remainties among elements i ∈ I , the process
is repeated with yi2/yik, etc., until there is a unique element.

18. Using the two-phase simplex procedure solve

a� minimize −3x1 +x2 +3x3 −x4

subject to x1 + 2x2 − x3 + x4 = 0
2x1 − 2x2 + 3x3 + 3x4 = 9
x1 − x2 + 2x3 − x4 = 6
x1 � 0� i = 1� 2� 3� 4�

b� minimize x1 + 6x2 − 7x3 + x4 + 5x5

subject to 5x1 − 4x2 + 13x3 − 2x4 + x5 = 20
x1 − x2 + 5x3 − x4 + x5 = 8

x1 � 0� i = 1� 2� 3�4� 5�

19. Solve the oil refinery problem (Exercise 3, Chapter 2).

20. Show that in the phase I procedure of a problem that has feasible solutions, if an artificial
variable becomes nonbasic, it need never again be made basic. Thus, when an artificial
variable becomes nonbasic its column can be eliminated from future tableaus.

21. Suppose the phase I procedure is applied to the system Ax = b, x � 0, and that the
resulting tableau (ignoring the cost row) has the form

x1 x2 · · ·xk xk+1 · · ·xn y1 y2 · · ·yk yk+1 · · ·ym

1
1

1

R1 S1

0 · · · 0
0 · · · 0
���
0 · · · 0

b̄1
���

b̄k

0 0 · · · 0
���
0 · · · 0

R2 S2

1
1

1

0
���
0

This corresponds to having m−k basic artificial variables at zero level.

a) Show that any nonzero element in R2 can be used as a pivot to eliminate a basic
artificial variable, thus yielding a similar tableau but with k increased by one.

b) Suppose that the process in (a) has been repeated to the point where R2 = 0. Show that
the original system is redundant, and show how phase II may proceed by eliminating
the bottom rows.

c) Use the above method to solve the linear program

minimize 2x1 + 6x2 + x3 + x4

subject to x1 + 2x2 + x4 = 6
x1 + 2x2 + x3 + x4 = 7
x1 + 3x2 − x3 + 2x4 = 7
x1 + x2 + x3 = 5

x1 � 0� x2 � 0� x3 � 0� x4 � 0�
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22. Find a basic feasible solution to

x1 + 2x2 − x3 + x4 = 3
2x1 + 4x2 + x3 + 2x4 = 12
x1 + 4x2 + 2x3 + x4 = 9

x1 � 0� i = 1� 2� 3� 4�

23. Consider the system of linear inequalities Ax � b, x � 0 with b � 0. This system can
be transformed to standard form by the introduction of m surplus variables so that it
becomes Ax − y = b, x � 0, y � 0. Let bk = maxi bi and consider the new system in
standard form obtained by adding the kth row to the negative of every other row. Show
that the new system requires the addition of only a single artificial variable to obtain an
initial basic feasible solution.
Use this technique to find a basic feasible solution to the system.

x1 + 2x2 + x3 � 4
2x1 + x2 + x3 � 5
2x1 + 3x2 + 2x3 � 6
xi � 0� i = 1� 2� 3�

24. It is possible to combine the two phases of the two-phase method into a single procedure
by the big–M method. Given the linear program in standard form

minimize cT x
subject to Ax = b

x � 0�

one forms the approximating problem

minimize cT x + M
m∑

i=1
yi

subject to Ax + y = b
x � 0
y � 0�

In this problem y = �y1� y2� � � � � ym� is a vector of artificial variables and M is a large

constant. The term M
m∑

i=1
yi serves as a penalty term for nonzero yi’s.

If this problem is solved by the simplex method, show the following:

a) If an optimal solution is found with y = 0, then the corresponding x is an optimal
basic feasible solution to the original problem.

b) If for every M > 0 an optimal solution is found with y �= 0, then the original problem
is infeasible.

c) If for every M > 0 the approximating problem is unbounded, then the original problem
is either unbounded or infeasible.

d) Suppose now that the original problem has a finite optimal value V���. Let V�M�
be the optimal value of the approximating problem. Show that V�M� � V���.

e) Show that for M1 � M2 we have V�M1� � V�M2�.
f) Show that there is a value M0 such that for M � M0, V�M� = V���, and hence

conclude that the big–M method will produce the right solution for large enough
values of M .
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25. A certain telephone company would like to determine the maximum number of long-
distance calls from Westburgh to Eastville that it can handle at any one time. The
company has cables linking these cities via several intermediary cities as follows:

4
4

9

6

8

5

5
6

3

3

5

1

2

2

8

3

Southgate

Westburgh Eastville

Northgate Northbay

Southbay

Each cable can handle a maximum number of calls simultaneously as indicated in
the figure. For example, the number of calls routed from Westburgh to Northgate
cannot exceed five at any one time. A call from Westburgh to Eastville can be routed
through any other city, as long as there is a cable available that is not currently being
used to its capacity. In addition to determining the maximum number of calls from
Westburgh to Eastville, the company would, of course, like to know the optimal routing
of these calls. Assume calls can be routed only in the directions indicated by the
arrows.

a) Formulate the above problem as a linear programming problem with upper bounds.
(Hint: Denote by xij the number of calls routed from city i to city j.)

b) Find the solution by inspection of the graph.

26. Using the revised simplex method find a basic feasible solution to

x1 + 2x2 − x3 + x4 = 3
2x1 + 4x2 + x3 + 2x4 = 12
x1 + 4x2 + 2x3 + x4 = 9
x1 � 0� i = 1� 2� 3� 4�

27. The following tableau is an intermediate stage in the solution of a minimization problem:

y1 y2 y3 y4 y5 y6 y0

1 2/3 0 0 4/3 0 4
0 −7/3 3 1 −2/3 0 2
0 −2/3 −2 0 2/3 1 2

rT 0 8/3 −11 0 4/3 0 −8

a) Determine the next pivot element.
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b) Given that the inverse of the current basis is

B−1 = �a1� a4� a6	
−1 = 1

3

⎡

⎣
1 1 −1
1 −2 2

−1 2 1

⎤

⎦

and the corresponding cost coefficients are

cT
B = �c1� c4� c6� = �−1�−3� 1� �

find the original problem.

28. In many applications of linear programming it may be sufficient, for practical purposes,
to obtain a solution for which the value of the objective function is within a prede-
termined tolerance � from the minimum value z∗. Stopping the simplex algorithm at
such a solution rather than searching for the true minimum may considerably reduce the
computations.

a) Consider a linear programming problem for which the sum of the variables is known
to be bounded above by s. Let z0 denote the current value of the objective function
at some stage of the simplex algorithm, �cj − zj� the corresponding relative cost
coefficients, and

M = max
j

(
zj − cj

)
�

Show that if M � �/s, then z0 − z∗ � �.
b) Consider the transportation problem described in Section 2.2 (Example 2). Assuming

this problem is solved by the simplex method and it is sufficient to obtain a
solution within � tolerance from the optimal value of the objective function, specify
a stopping criterion for the algorithm in terms of � and the parameters of the
problem.

29. Work out an extension of LU decomposition, as described in Appendix C, when row
interchanges are introduced.

30. Work out the details of LU decomposition applied to the simplex method when row
interchanges are required.

31. Anticycling Rule. A remarkably simple procedure for avoiding cycling was developed
by Bland, and we discuss it here.
Bland’s Rule. In the simplex method:

a) Select the column to enter the basis by j = min�j � rj < 0�; that is, select the lowest-
indexed favorable column.

b) In case ties occur in the criterion for determining which column is to leave the basis,
select the one with lowest index.

We can prove by contradiction that the use of Bland’s rule prohibits cycling. Suppose
that cycling occurs. During the cycle a finite number of columns enter and leave the
basis. Each of these columns enters at level zero, and the cost function does not change.
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Delete all rows and columns that do not contain pivots during a cycle, obtaining a new
linear program that also cycles. Assume that this reduced linear program has m rows
and n columns. Consider the solution stage where column n is about to leave the basis,
being replaced by column p. The corresponding tableau is as follows (where the entries
shown are explained below):

a1 · · · ap · · · an b
� 0 0 0
� 0 0 0

���
���

���
> 0 1 0

cT < 0 0 0

Without loss of generality, we assume that the current basis consists of the last m
columns. In fact, we may define the reduced linear program in terms of this tableau,
calling the current coefficient array A and the current relative cost vector c. In this
tableau we pivot on amp, so amp > 0. By Part b) of Bland’s rule, an can leave the basis
only if there are no ties in the ratio test, and since b = 0 because all rows are in the
cycle, it follows that aip � 0 for all i �= m.

Now consider the situation when column n is about to reenter the basis. Part a)
of Bland’s rule ensures that rn < 0 and ri � 0 for all i �= n. Apply the formula ri =
ci −�T ai to the last m columns to show that each component of � except �m is nonpos-
itive; and �m > 0. Then use this to show that rp = cp − �T ap < cp < 0, contradicting
rp � 0.

32. Use the Dantzig–Wolfe decomposition method to solve

minimize −4x1 − x2 − 3x3 − 2x4

subject to 2x1 + 2x2 + x3 + 2x4 � 6
x2 + 2x3 + 3x4 � 4

2x1 + x2 � 5
x2 � 1

− x3 + 2x4 � 2
x3 + 2x4 � 6

x1 � 0� x2 � 0� x3 � 0� x4 � 0�

REFERENCES
3.1–3.7 All of this is now standard material contained in most courses in linear programming.
See the references cited at the end of Chapter 2. For the original work in this area, see
Dantzig [D2] for development of the simplex method; Orden [O2] for the artificial basis
technique; Dantzig, Orden and Wolfe [D8], Orchard-Hays [O1], and Dantzig [D4] for the
revised simplex method; and Charnes and Lemke [C3] and Dantzig [D5] for upper bounds.
The synthetic carrot interpretation is due to Gale [G2].

3.8 The idea of using LU decomposition for the simplex method is due to Bartels and Golub
[B2]. See also Bartels [B1]. For a nice simple introduction to Gaussian elimination, see
Forsythe and Moler [F15]. For an expository treatment of modern computer implementation
issues of linear programming, see Murtagh [M9].
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3.9 For a more comprehensive description of the Dantzig and Wolfe [D11] decomposition
method, see Dantzig [D6].

3.11 The degeneracy technique discussed in Exercises 15–17 is due to Charnes [C2]. The
anticycling method of Exercise 35 is due to Bland [B19].
For the state of the art in Simplex solvers see Bixby [B18]
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Associated with every linear program, and intimately related to it, is a corresponding
dual linear program. Both programs are constructed from the same underlying cost
and constraint coefficients but in such a way that if one of these problems is one
of minimization the other is one of maximization, and the optimal values of the
corresponding objective functions, if finite, are equal. The variables of the dual
problem can be interpreted as prices associated with the constraints of the original
(primal) problem, and through this association it is possible to give an economically
meaningful characterization to the dual whenever there is such a characterization
for the primal.

The variables of the dual problem are also intimately related to the calcu-
lation of the relative cost coefficients in the simplex method. Thus, a study of
duality sharpens our understanding of the simplex procedure and motivates certain
alternative solution methods. Indeed, the simultaneous consideration of a problem
from both the primal and dual viewpoints often provides significant computational
advantage as well as economic insight.

4.1 DUAL LINEAR PROGRAMS
In this section we define the dual program that is associated with a given linear
program. Initially, we depart from our usual strategy of considering programs
in standard form, since the duality relationship is most symmetric for programs
expressed solely in terms of inequalities. Specifically then, we define duality through
the pair of programs displayed below.

Primal

minimize cT x
subject to Ax � b

x � 0

Dual

maximize �T b
subject to �T A � cT

� � 0

(1)

If A is an m × n matrix, then x is an n-dimensional column vector, b is an
n-dimensional column vector, cT is an n-dimensional row vector, and �T is an
m-dimensional row vector. The vector x is the variable of the primal program, and
� is the variable of the dual program.

79
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The pair of programs (1) is called the symmetric form of duality and, as
explained below, can be used to define the dual of any linear program. It is important
to note that the role of primal and dual can be reversed. Thus, studying in detail
the process by which the dual is obtained from the primal: interchange of cost
and constraint vectors, transposition of coefficient matrix, reversal of constraint
inequalities, and change of minimization to maximization; we see that this same
process applied to the dual yields the primal. Put another way, if the dual is
transformed, by multiplying the objective and the constraints by minus unity, so
that it has the structure of the primal (but is still expressed in terms of �), its
corresponding dual will be equivalent to the original primal.

The dual of any linear program can be found by converting the program to
the form of the primal shown above. For example, given a linear program in
standard form

minimize cT x
subject to Ax = b

x � 0�

we write it in the equivalent form

minimize cT x
subject to Ax � b

−Ax � −b
x � 0�

which is in the form of the primal of (1) but with coefficient matrix

⎡

⎣
A

- - -
−A

⎤

⎦. Using

a dual vector partitioned as (u, v), the corresponding dual is

minimize uT b−vT b
subject to uT A−vT A � cT

u � 0
v � 0�

Letting � = u −v we may simplify the representation of the dual program so that
we obtain the pair of problems displayed below:

Primal Dual

minimize cT x maximize �T b
subject to Ax = b subject to �T A � cT �

x � 0

(2)

This is the asymmetric form of the duality relation. In this form the dual vector �
(which is really a composite of u and v) is not restricted to be nonnegative.
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Similar transformations can be worked out for any linear program to first get
the primal in the form (1), calculate the dual, and then simplify the dual to account
for special structure.

In general, if some of the linear inequalities in the primal (1) are changed to
equality, the corresponding components of � in the dual become free variables. If
some of the components of x in the primal are free variables, then the corresponding
inequalities in �T A � cT are changed to equality in the dual. We mention again that
these are not arbitrary rules but are direct consequences of the original definition
and the equivalence of various forms of linear programs.

Example 1 (Dual of the diet problem). The diet problem, Example 1, Section 2.2,
was the problem faced by a dietician trying to select a combination of foods to
meet certain nutritional requirements at minimum cost. This problem has the form

minimize cT x
subject to Ax � b

x � 0

and hence can be regarded as the primal program of the symmetric pair above. We
describe an interpretation of the dual problem.

Imagine a pharmaceutical company that produces in pill form each of the
nutrients considered important by the dietician. The pharmaceutical company tries
to convince the dietician to buy pills, and thereby supply the nutrients directly rather
than through purchase of various foods. The problem faced by the drug company
is that of determining positive unit prices �1� �2� � � � � �m for the nutrients so as to
maximize revenue while at the same time being competitive with real food. To be
competitive with real food, the cost of a unit of food i made synthetically from pure
nutrients bought from the druggist must be no greater than ci, the market price of
the food. Thus, denoting by ai the ith food, the company must satisfy �T ai � ci

for each i. In matrix form this is equivalent to �T A � cT . Since bj units of the jth
nutrient will be purchased, the problem of the druggist is

maximize �T b
subject to �T A � cT

� � 0�

which is the dual problem.

Example 2 (Dual of the transportation problem). The transportation problem,
Example 2, Section 2.2, is the problem, faced by a manufacturer, of selecting the
pattern of product shipments between several fixed origins and destinations so as
to minimize transportation cost while satisfying demand. Referring to (6) and (7)
of Chapter 2, the problem is in standard form, and hence the asymmetric version of
the duality relation applies. There is a dual variable for each constraint. In this case



82 Chapter 4 Duality

we denote the variables ui� i = 1� 2� � � � �m for (6) and �j� j = 1� 2� � � � � n for (7).
Accordingly, the dual is

maximize
m∑

i=1
aiui +

n∑

j=1
bj�j

subject to ui +�j � cij� i = 1� 2� � � � �m�
j = 1� 2� � � � � n�

To interpret the dual problem, we imagine an entrepreneur who, feeling that
he can ship more efficiently, comes to the manufacturer with the offer to buy his
product at the plant sites (origins) and sell it at the warehouses (destinations). The
product price that is to be used in these transactions varies from point to point,
and is determined by the entrepreneur in advance. He must choose these prices, of
course, so that his offer will be attractive to the manufacturer.

The entrepreneur, then, must select prices −u1�−u2� � � � �−um for the m origins
and �1� �2� � � � � �n for the n destinations. To be competitive with usual transportation
modes, his prices must satisfy ui +�j � cij for all i� j, since ui +�j represents the
net amount the manufacturer must pay to sell a unit of product at origin i and buy
it back again at destination j. Subject to this constraint, the entrepreneur will adjust
his prices to maximize his revenue. Thus, his problem is as given above.

4.2 THE DUALITY THEOREM
To this point the relation between the primal and dual programs has been simply a
formal one based on what might appear as an arbitrary definition. In this section,
however, the deeper connection between a program and its dual, as expressed by
the Duality Theorem, is derived.

The proof of the Duality Theorem given in this section relies on the Separating
Hyperplane Theorem (Appendix B) and is therefore somewhat more advanced than
previous arguments. It is given here so that the most general form of the Duality
Theorem is established directly. An alternative approach is to use the theory of the
simplex method to derive the duality result. A simplified version of this alternative
approach is given in the next section.

Throughout this section we consider the primal program in standard form

minimize cT x
subject to Ax = b

x � 0
(3)

and its corresponding dual

minimize �T b
subject to �T A � cT �

(4)

In this section it is not assumed that A is necessarily of full rank. The following
lemma is easily established and gives us an important relation between the two
problems.
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Dual values Primal values
z

Fig. 4.1 Relation of primal and dual values

Lemma 1. (Weak Duality Lemma). If x and � are feasible for (3) and (4),
respectively, then cT x � �T b.

Proof. We have

�T b = �T Ax � cT x�

the last inequality being valid since x � 0 and �T A � cT .

This lemma shows that a feasible vector to either problem yields a bound on
the value of the other problem. The values associated with the primal are all larger
than the values associated with the dual as illustrated in Fig. 4.1. Since the primal
seeks a minimum and the dual seeks a maximum, each seeks to reach the other.
From this we have an important corollary.

Corollary. If x0 and �0 are feasible for (3) and (4), respectively, and if
cT x0 = �T

0 b, then x0 and �0 are optimal for their respective problems.

The above corollary shows that if a pair of feasible vectors can be found to the
primal and dual programs with equal objective values, then these are both optimal.
The Duality Theorem of linear programming states that the converse is also true,
and that, in fact, the two regions in Fig. 4.1 actually have a common point; there is
no “gap.”

Duality Theorem of Linear Programming. If either of the problems (3) or
(4) has a finite optimal solution, so does the other, and the corresponding
values of the objective functions are equal. If either problem has an unbounded
objective, the other problem has no feasible solution.

Proof. We note first that the second statement is an immediate consequence of
Lemma 1. For if the primal is unbounded and � is feasible for the dual, we must
have �T b � −M for arbitrarily large M , which is clearly impossible.

Second we note that although the primal and dual are not stated in symmetric
form it is sufficient, in proving the first statement, to assume that the primal has
a finite optimal solution and then show that the dual has a solution with the same
value. This follows because either problem can be converted to standard form and
because the roles of primal and dual are reversible.

Suppose (3) has a finite optimal solution with value z0. In the space Em+1

define the convex set

C = {
�r� w� � r = tz0 − cT x� w = tb−Ax� x � 0� t � 0

}
�

It is easily verified that C is in fact a closed convex cone. We show that the point
(1, 0) is not in C. If w = t0b − Ax0 = 0 with t0 > 0� x0 � 0, then x = x0/t0 is
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feasible for (3) and hence r/t0 = z0 −cT x � 0; which means r � 0. If w = −Ax0 = 0
with x0 � 0 and cT x0 = −1, and if x is any feasible solution to (3), then x +	x0 is
feasible for any 	 � 0 and gives arbitrarily small objective values as 	 is increased.
This contradicts our assumption on the existence of a finite optimum and thus we
conclude that no such x0 exists. Hence �1� 0� � C.

Now since C is a closed convex set, there is by Theorem 1, Section B.3, a
hyperplane separating (1, 0) and C. Thus there is a nonzero vector 
s��� ∈ Em+1

and a constant c such that

s < c = inf
{
sr +�T w � �r� w� ∈ C

}
�

Now since C is a cone, it follows that c � 0. For if there were �r� w� ∈ C such that
sr +�T w < 0, then 	�r� w� for large 	 would violate the hyperplane inequality. On
the other hand, since �0� 0� ∈ C we must have c � 0. Thus c = 0. As a consequence
s < 0, and without loss of generality we may assume s = −1.

We have to this point established the existence of � ∈ Em such that

−r +�T w � 0

for all �r� w� ∈ C. Equivalently, using the definition of C,

(
c −�T A

)
x − tz0 + t�T b � 0

for all x � 0, t � 0. Setting t = 0 yields �T A � cT , which says � is feasible for the
dual. Setting x = 0 and t = 1 yields �T b � z0, which in view of Lemma 1 and its
corollary shows that � is optimal for the dual.

4.3 RELATIONS TO THE SIMPLEX PROCEDURE
In this section the Duality Theorem is proved by making explicit use of the charac-
teristics of the simplex procedure. As a result of this proof it becomes clear that
once the primal is solved by the simplex procedure a solution to the dual is readily
obtainable.

Suppose that for the linear program

minimize cT x
subject to Ax = b

x � 0�
(5)

we have the optimal basic feasible solution x = �xB� 0� with corresponding basis B.
We shall determine a solution of the dual program

maximize �T b
subject to �T A � cT (6)

in terms of B.
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We partition A as A = 
B� D�. Since the basic feasible solution xB = B−1b is
optimal, the relative cost vector r must be nonnegative in each component. From
Section 3.7 we have

rT
D = cT

D − cT
BB−1D�

and since rD is nonnegative in each component we have cT
BB−1D � cT

D.
Now define �T = cT

BB−1. We show that this choice of � solves the dual problem.
We have

�T A = [
�T B��T D

]= [
cT

B� cT
BB−1D

]
�
[
cT

B� cT
D

]= cT �

Thus since �T A � cT �� is feasible for the dual. On the other hand,

�T b = cT
BB−1b = cT

BxB�

and thus the value of the dual objective function for this � is equal to the value
of the primal problem. This, in view of Lemma 1, Section 4.2, establishes the
optimality of � for the dual. The above discussion yields an alternative derivation
of the main portion of the Duality Theorem.

Theorem. Let the linear program (5) have an optimal basic feasible solution
corresponding to the basis B. Then the vector � satisfying �T = cT

BB−1 is an
optimal solution to the dual program (6). The optimal values of both problems
are equal.

We turn now to a discussion of how the solution of the dual can be obtained
directly from the final simplex tableau of the primal. Suppose that embedded in the
original matrix A is an m×m identity matrix. This will be the case if, for example,
m slack variables are employed to convert inequalities to equalities. Then in the
final tableau the matrix B−1 appears where the identity appeared in the beginning.
Furthermore, in the last row the components corresponding to this identity matrix
will be cT

I − cT
BB−1, where cI is the m-vector representing the cost coefficients of

the variables corresponding to the columns of the original identity matrix. Thus by
subtracting these cost coefficients from the corresponding elements in the last row,
the negative of the solution �T = cT

BB−1 to the dual is obtained. In particular, if, as
is the case with slack variables, cI = 0, then the elements in the last row under B−1

are equal to the negative of components of the solution to the dual.

Example. Consider the primal program

minimize − x1 − 4x2 − 3x3

subject to 2x1 + 2x2 + x3 � 4
x1 + 2x2 + 2x3 � 6

x1 � 0� x2 � 0� x3 � 0�
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This can be solved by introducing slack variables and using the simplex procedure.
The appropriate sequence of tableaus is given below without explanation.

2 ©2 1 1 0 4
1 2 2 0 1 6

−1 −4 −3 0 0 0

1 1 1/2 1/2 0 2
−1 0 ©1 −1 1 2

3 0 −1 2 0 8

3/2 1 0 1 −1/2 1
−1 0 1 −1 1 2

2 0 0 1 1 10

The optimal solution is x1 = 0, x2 = 1, x3 = 2. The corresponding dual program is

maximize 4�1 + 6�2

subject to 2�1 + �2 � −1
2�1 + 2�2 � −4
�1 + 2�2 � −3

�1 � 0� �2 � 0�

The optimal solution to the dual is obtained directly from the last row of the simplex
tableau under the columns where the identity appeared in the first tableau: �1 = −1,
�2 = −1.

Geometric Interpretation
The duality relations can be viewed in terms of the dual interpretations of linear
constraints emphasized in Chapter 3. Consider a linear program in standard form.
For sake of concreteness we consider the problem

minimize 18x1 + 12x2 + 2x3 + 6x4

subject to 3x1 + x2 − 2x3 + x4 = 2
x1 + 3x2 − x4 = 2

x1 � 0� x2 � 0� x3 � 0� x4 � 0�

The columns of the constraints are represented in requirements space in Fig. 4.2.
A basic solution represents construction of b with positive weights on two of the
ai’s. The dual problem is

maximize 2�1 + 2�2

subject to 3�1 + �2 � 18
�1 + 3�2 � 12

−2�1 � 2
�1 − �2 � 6�
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a3

a2

a1

a4

b

Fig. 4.2 The primal requirements space

The dual problem is shown geometrically in Fig. 4.3. Each column ai of the
primal defines a constraint of the dual as a half-space whose boundary is orthogonal
to that column vector and is located at a point determined by ci. The dual objective
is maximized at an extreme point of the dual feasible region. At this point exactly
two dual constraints are active. These active constraints correspond to an optimal
basis of the primal. In fact, the vector defining the dual objective is a positive linear
combination of the vectors. In the specific example, b is a positive combination
of a1 and a2. The weights in this combination are the xi’s in the solution of the
primal.

a3

a2

λ2

λ1

a1

b

a4

Fig. 4.3 The dual in activity space
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Simplex Multipliers
We conclude this section by giving an economic interpretation of the relation
between the simplex basis and the vector �. At any point in the simplex procedure
we may form the vector � satisfying �T = cT

BB−1. This vector is not a solution
to the dual unless B is an optimal basis for the primal, but nevertheless, it has an
economic interpretation. Furthermore, as we have seen in the development of the
revised simplex method, this � vector can be used at every step to calculate the
relative cost coefficients. For this reason �T = cT

BB−1, corresponding to any basis,
is often called the vector of simplex multipliers.

Let us pursue the economic interpretation of these simplex multipliers. As
usual, denote the columns of A by a1, a2� � � � � an and denote by e1, e2� � � � � em the
m unit vectors in Em. The components of the ai’s and b tell how to construct these
vectors from the ei’s.

Given any basis B, however, consisting of m columns of A, any other vector
can be constructed (synthetically) as a linear combination of these basis vectors.
If there is a unit cost ci associated with each basis vector ai, then the cost of a
(synthetic) vector constructed from the basis can be calculated as the corresponding
linear combination of the ci’s associated with the basis. In particular, the cost of
the jth unit vector, ej , when constructed from the basis B, is �j , the jth component
of �T = cT

BB−1. Thus the �j’s can be interpreted as synthetic prices of the unit
vectors.

Now, any vector can be expressed in terms of the basis B in two steps:
(i) express the unit vectors in terms of the basis, and then (ii) express the desired
vector as a linear combination of unit vectors. The corresponding synthetic cost of
a vector constructed from the basis B can correspondingly be computed directly by:
(i) finding the synthetic price of the unit vectors, and then (ii) using these prices
to evaluate the cost of the linear combination of unit vectors. Thus, the simplex
multipliers can be used to quickly evaluate the synthetic cost of any vector that
is expressed in terms of the unit vectors. The difference between the true cost of
this vector and the synthetic cost is the relative cost. The process of calculating
the synthetic cost of a vector, with respect to a given basis, by using the simplex
multipliers is sometimes referred to as pricing out the vector.

Optimality of the primal corresponds to the situation where every vector
a1, a2� � � � � an is cheaper when constructed from the basis than when purchased
directly at its own price. Thus we have �T ai � ci for i = 1� 2� � � � � n or equivalently
�T A � cT .

4.4 SENSITIVITY AND COMPLEMENTARY
SLACKNESS

The optimal values of the dual variables in a linear program can, as we have seen,
be interpreted as prices. In this section this interpretation is explored in further
detail.
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Sensitivity
Suppose in the linear program

minimize cT x
subject to Ax = b

x � 0�
(7)

the optimal basis is B with corresponding solution �xB� 0�, where xB = B−1b. A
solution to the corresponding dual is �T = cT

BB−1.
Now, assuming nondegeneracy, small changes in the vector b will not cause

the optimal basis to change. Thus for b+�b the optimal solution is

x = �xB +�xB� 0� �

where �xB = B−1�b. Thus the corresponding increment in the cost function is

�z = cT
B�xB = �T �b� (8)

This equation shows that � gives the sensitivity of the optimal cost with respect to
small changes in the vector b. In other words, if a new program were solved with b
changed to b+�b, the change in the optimal value of the objective function would
be �T �b.

This interpretation of the dual vector � is intimately related to its interpretation
as a vector of simplex multipliers. Since �j is the price of the unit vector ej when
constructed from the basis B, it directly measures the change in cost due to a change
in the jth component of the vector b. Thus, �j may equivalently be considered as
the marginal price of the component bj , since if bj is changed to bj +
bj the value
of the optimal solution changes by �j
bj .

If the linear program is interpreted as a diet problem, for instance, then �j is
the maximum price per unit that the dietician would be willing to pay for a small
amount of the jth nutrient, because decreasing the amount of nutrient that must
be supplied by food will reduce the food bill by �j dollars per unit. If, as another
example, the linear program is interpreted as the problem faced by a manufacturer
who must select levels x1, x2� � � � � xn of n production activities in order to meet
certain required levels of output b1, b2� � � � � bm while minimizing production costs,
the �i’s are the marginal prices of the outputs. They show directly how much the
production cost varies if a small change is made in the output levels.

Complementary Slackness
The optimal solutions to primal and dual programs satisfy an additional relation
that has an economic interpretation. This relation can be stated for any pair of dual
linear programs, but we state it here only for the asymmetric and the symmetric
pairs defined in Section 4.1.
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Theorem 1 (Complementary slackness—asymmetric form). Let x and � be
feasible solutions for the primal and dual programs, respectively, in the pair (2).
A necessary and sufficient condition that they both be optimal solutions is that†

for all i

i) xi > 0 ⇒ �T ai = ci

ii) xi = 0 ⇐ �T ai < ci.

Proof. If the stated conditions hold, then clearly ��T A− cT �x = 0. Thus �T b =
cT x, and by the corollary to Lemma 1, Section 4.2, the two solutions are optimal.
Conversely, if the two solutions are optimal, it must hold, by the Duality Theorem,
that �T b = cT x and hence that ��T A − cT �x = 0. Since each component of x is
nonnegative and each component of �T A−cT is nonpositive, the conditions (i) and
(ii) must hold.

Theorem 2 (Complementary slackness—symmetric form). Let x and � be
feasible solutions for the primal and dual programs, respectively, in the pair (1).
A necessary and sufficient condition that they both be optimal solutions is that
for all i and j

i) xi > 0 ⇒ �T ai = ci

ii) xi = 0 ⇐ �T ai < ci

iii) �j > 0 ⇒ ajx = bj

iv) �j = 0 ⇐ ajx > bj ,

(where aj is the jth row of A).

Proof. This follows by transforming the previous theorem.

The complementary slackness conditions have a rather obvious economic inter-
pretation. Thinking in terms of the diet problem, for example, which is the primal
part of a symmetric pair of dual problems, suppose that the optimal diet supplies
more than bj units of the jth nutrient. This means that the dietician would be
unwilling to pay anything for small quantities of that nutrient, since availability
of it would not reduce the cost of the optimal diet. This, in view of our previous
interpretation of �j as a marginal price, implies �j = 0 which is (iv) of Theorem 2.
The other conditions have similar interpretations which the reader can work out.

∗4.5 THE DUAL SIMPLEX METHOD
Often there is available a basic solution to a linear program which is not feasible
but which prices out optimally; that is, the simplex multipliers are feasible for
the dual problem. In the simplex tableau this situation corresponds to having no
negative elements in the bottom row but an infeasible basic solution. Such a situation
may arise, for example, if a solution to a certain linear programming problem is

†The symbol ⇒ means “implies” and ⇐ means “is implied by.”
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calculated and then a new problem is constructed by changing the vector b. In such
situations a basic feasible solution to the dual is available and hence it is desirable
to pivot in such a way as to optimize the dual.

Rather than constructing a tableau for the dual problem (which, if the primal is
in standard form; involves m free variables and n nonnegative slack variables), it is
more efficient to work on the dual from the primal tableau. The complete technique
based on this idea is the dual simplex method. In terms of the primal problem,
it operates by maintaining the optimality condition of the last row while working
toward feasibility. In terms of the dual problem, however, it maintains feasibility
while working toward optimality.

Given the linear program

minimize cT x
subject to Ax = b

x � 0�
(9)

suppose a basis B is known such that � defined by �T = cT
BB−1 is feasible for

the dual. In this case we say that the corresponding basic solution to the primal,
xB = B−1b, is dual feasible. If xB � 0 then this solution is also primal feasible and
hence optimal.

The given vector � is feasible for the dual and thus satisfies �T aj � cj , for
j = 1� 2� � � � � n. Indeed, assuming as usual that the basis is the first m columns of
A, there is equality

�T aj = cj� for j = 1� 2� � � � �m� (10a)

and (barring degeneracy in the dual) there is inequality

�T aj < cj� for j = m+1� � � � � n� (10b)

To develop one cycle of the dual simplex method, we find a new vector �̄ such that
one of the equalities becomes an inequality and one of the inequalities becomes
equality, while at the same time increasing the value of the dual objective function.
The m equalities in the new solution then determine a new basis.

Denote the ith row of B−1 by ui. Then for

�̄T = �T −�ui� (11)

we have �̄T aj = �T aj −�uiaj . Thus, recalling that zj = �T aj and noting that uiaj =
yij , the ijth element of the tableau, we have

�̄T aj = cj� j = 1� 2� � � � �m� i �= j (12a)

�̄T ai = ci −� (12b)

�̄T aj = zj −�yij� j = m+1� m+2� � � � � n� (12c)
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Also,

�̄T b = �T b−�xBi� (13)

These last equations lead directly to the algorithm:

Step 1. Given a dual feasible basic solution xB, if xB � 0 the solution is optimal. If
xB is not nonnegative, select an index i such that the ith component of xB, xBi < 0.

Step 2. If all yij � 0, j = 1� 2� � � � � n, then the dual has no maximum (this follows
since by (12) �̄ is feasible for all � > 0). If yij < 0 for some j, then let

�0 = zk − ck

yik

= min
j

{
zj − cj

yij

� yij < 0
}

� (14)

Step 3. Form a new basis B by replacing ai by ak. Using this basis determine the
corresponding basic dual feasible solution xB and return to Step 1.

The proof that the algorithm converges to the optimal solution is similar in its
details to the proof for the primal simplex procedure. The essential observations
are: (a) from the choice of k in (14) and from (12a, b, c) the new solution will
again be dual feasible; (b) by (13) and the choice xBi

< 0, the value of the dual
objective will increase; (c) the procedure cannot terminate at a nonoptimum point;
and (d) since there are only a finite number of bases, the optimum must be achieved
in a finite number of steps.

Example. A form of problem arising frequently is that of minimizing a positive
combination of positive variables subject to a series of “greater than” type inequal-
ities having positive coefficients. Such problems are natural candidates for appli-
cation of the dual simplex procedure. The classical diet problem is of this type as
is the simple example below.

minimize 3x1 + 4x2 + 5x3

subject to xi + 2x2 + 3x3 � 5
2x1 + 2x2 + x3 � 6

x1 � 0� x2 � 0� x3 � 0�

By introducing surplus variables and by changing the sign of the inequalities we
obtain the initial tableau

−1 −2 −3 1 0 −5
−©2 −2 −1 0 1 −6

3 4 5 0 0 0

Initial tableau
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The basis corresponds to a dual feasible solution since all of the cj − zj’s are
nonnegative. We select any xBi

< 0, say x5 = −6, to remove from the set of basic
variables. To find the appropriate pivot element in the second row we compute
the ratios �zj −cj�/y2j and select the minimum positive ratio. This yields the pivot
indicated. Continuing, the remaining tableaus are

0 −©1 −5/2 1 −1/2 −2
1 1 1/2 0 −1/2 3
0 1 7/2 0 3/2 9

Second tableau

0 1 5/2 −1 1/2 2
1 0 −2 1 −1 1
0 0 1 1 1 11

Final tableau

The third tableau yields a feasible solution to the primal which must be optimal.
Thus the solution is x1 = 1, x2 = 2, x3 = 0.

∗4.6 THE PRIMAL–DUAL ALGORITHM
In this section a procedure is described for solving linear programming problems by
working simultaneously on the primal and the dual problems. The procedure begins
with a feasible solution to the dual that is improved at each step by optimizing an
associated restricted primal problem. As the method progresses it can be regarded
as striving to achieve the complementary slackness conditions for optimality. Origi-
nally, the primal–dual method was developed for solving a special kind of linear
program arising in network flow problems, and it continues to be the most efficient
procedure for these problems. (For general linear programs the dual simplex method
is most frequently used). In this section we describe the generalized version of the
algorithm and point out an interesting economic interpretation of it. We consider
the program

minimize cT x
subject to Ax = b

x � 0
(15)

and the corresponding dual program

maximize �T b
subject to �T A � cT �

(16)

Given a feasible solution � to the dual, define the subset P of 1� 2� � � � � n by
i ∈ P if �T ai = ci where ai is the ith column of A. Thus, since � is dual feasible,



94 Chapter 4 Duality

it follows that i �∈ P implies �T ai < ci. Now corresponding to � and P, we define
the associated restricted primal problem

minimize 1T y
subject to Ax +y = b

x � 0� xi = 0 for i �∈ P
y � 0�

(17)

where 1 denotes the m-vector �1� 1� � � � � 1�.
The dual of this associated restricted primal is called the associated restricted

dual. It is

maximize uT b
subject to uT ai � 0� i �∈ P

u � 1�
(18)

The condition for optimality of the primal–dual method is expressed in the following
theorem.

Primal–Dual Optimality Theorem. Suppose that � is feasible for the dual
and that x and y = 0 is feasible (and of course optimal) for the associated
restricted primal. Then x and � are optimal for the original primal and dual
programs, respectively.

Proof. Clearly x is feasible for the primal. Also we have cT x = �T Ax, because
�T A is identical to cT on the components corresponding to nonzero elements of x.
Thus cT x = �T Ax = �T b and optimality follows from Lemma 1, Section 4.2.

The primal–dual method starts with a feasible solution to the dual and then
optimizes the associated restricted primal. If the optimal solution to this associated
restricted primal is not feasible for the primal, the feasible solution to the dual is
improved and a new associated restricted primal is determined. Here are the details:

Step 1. Given a feasible solution �0 to the dual program (16), determine the
associated restricted primal according to (17).

Step 2. Optimize the associated restricted primal. If the minimal value of this
problem is zero, the corresponding solution is optimal for the original primal by
the Primal–Dual Optimality Theorem.

Step 3. If the minimal value of the associated restricted primal is strictly positive,
obtain from the final simplex tableau of the restricted primal, the solution u0 of
the associated restricted dual (18). If there is no j for which uT

0 aj > 0 conclude the
primal has no feasible solutions. If, on the other hand, for at least one j, uT

0 aj > 0,
define the new dual feasible vector

� = �0 +�0u0
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where

�0 = ck −�T
0 ak

uT
0 ak

= min
j

{
cj −�T

0 aj

uT
0 aj

� uT
0 aj > 0

}

�

Now go back to Step 1 using this �.

To prove convergence of this method a few simple observations and explana-
tions must be made. First we verify the statement made in Step 3 that uT

0 aj � 0
for all j implies that the primal has no feasible solution. The vector �� = �0 +�u0

is feasible for the dual problem for all positive �, since uT
0 A � 0. In addition,

�T
� b = �T

0 b + �uT
0 b and, since uT

0 b = 1T y > 0, we see that as � is increased we
obtain an unbounded solution to the dual. In view of the Duality Theorem, this
implies that there is no feasible solution to the primal.

Next suppose that in Step 3, for at least one j, uT
0 aj > 0. Again we define

the family of vectors �� = �0 + �u0. Since u0 is a solution to (18) we have
uT

0 ai � 0 for i ∈ P, and hence for small positive � the vector �� is feasible for
the dual. We increase � to the first point where one of inequalities �T

� aj < cj ,
j �∈ P becomes an equality. This determines �0 > 0 and k. The new � vector
corresponds to an increased value of the dual objective �T b = �T

0 b + �uT
0 b. In

addition, the corresponding new set P now includes the index k. Any other index i
that corresponded to a positive value of xi in the associated restricted primal is in
the new set P, because by complementary slackness uT

0 ai = 0 for such an i and thus
�T ai = �T

0 ai +�0uT
0 ai = ci. This means that the old optimal solution is feasible for

the new associated restricted primal and that ak can be pivoted into the basis. Since
uT

0 ak > 0, pivoting in ak will decrease the value of the associated restricted primal.
In summary, it has been shown that at each step either an improvement in

the associated primal is made or an infeasibility condition is detected. Assuming
nondegeneracy, this implies that no basis of the associated primal is repeated—and
since there are only a finite number of possible bases, the solution is reached in a
finite number of steps.

The primal–dual algorithm can be given an interesting interpretation in terms
of the manufacturing problem in Example 3, Section 2.2. Suppose we own a facility
that is capable of engaging in n different production activities each of which
produces various amounts of m commodities. Each activity i can be operated at any
level xi � 0, but when operated at the unity level the ith activity costs ci dollars and
yields the m commodities in the amounts specified by the m-vector ai. Assuming
linearity of the production facility, if we are given a vector b describing output
requirements of the m commodities, and we wish to produce these at minimum
cost, ours is the primal problem.

Imagine that an entrepreneur not knowing the value of our requirements vector
b decides to sell us these requirements directly. He assigns a price vector �0 to
these requirements such that �T

0 A � c. In this way his prices are competitive with
our production activities, and he can assure us that purchasing directly from him is
no more costly than engaging activities. As owner of the production facilities we are
reluctant to abandon our production enterprise but, on the other hand, we deem it not
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frugal to engage an activity whose output can be duplicated by direct purchase for
lower cost. Therefore, we decide to engage only activities that cannot be duplicated
cheaper, and at the same time we attempt to minimize the total business volume
given the entrepreneur. Ours is the associated restricted primal problem.

Upon receiving our order, the greedy entrepreneur decides to modify his prices
in such a manner as to keep them competitive with our activities but increase the
cost of our order. As a reasonable and simple approach he seeks new prices of
the form

� = �0 +�u0�

where he selects u0 as the solution to

maximize uT y
subject to uT ai � 0� i ∈ P

u � 1�

The first set of constraints is to maintain competitiveness of his new price vector for
small �, while the second set is an arbitrary bound imposed to keep this subproblem
bounded. It is easily shown that the solution u0 to this problem is identical to the
solution of the associated dual (18). After determining the maximum � to maintain
feasibility, he announces his new prices.

At this point, rather than concede to the price adjustment, we recalculate the new
minimum volume order based on the new prices. As the greedy (and shortsighted)
entrepreneur continues to change his prices in an attempt to maximize profit he
eventually finds he has reduced his business to zero! At that point we have, with
his help, solved the original primal problem.

Example. To illustrate the primal–dual method and indicate how it can be imple-
mented through use of the tableau format consider the following problem:

minimize 2x1 + x2 + 4x3

subject to x1 + x2 + 2x3 = 3
2x1 + x2 + 3x3 = 5

x1 � 0� x2 � 0� x3 � 0�

Because all of the coefficients in the objective function are nonnegative, � = �0� 0�
is a feasible vector for the dual. We lay out the simplex tableau shown below

a1 a2 a3 · · b
1 1 2 1 0 3
2 1 3 0 1 5

−3 −2 −5 0 0 −8
ci −�T ai → 2 1 4 · · ·

First tableau
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To form this tableau we have adjoined artificial variables in the usual manner.
The third row gives the relative cost coefficients of the associated primal problem—
the same as the row that would be used in a phase I procedure. In the fourth row
are listed the ci −�T ai’s for the current �. The allowable columns in the associated
restricted primal are determined by the zeros in this last row.

Since there are no zeros in the last row, no progress can be made in the
associated restricted primal and hence the original solution x1 = x2 = x3 = 0, y1 = 3,
y2 = 5 is optimal for this �. The solution u0 to the associated restricted dual is
u0 = �1� 1�, and the numbers −uT

0 ai, i = 1� 2� 3 are equal to the first three elements
in the third row. Thus, we compute the three ratios 2

3 � 1
2 � 4

5 from which we find
�0 = 1

2 . The new values for the fourth row are now found by adding �0 times the
(first three) elements of the third row to the fourth row.

a1 a2 a3 · · b
1 ©1 2 1 0 3
2 1 3 0 1 5

−3 −2 −5 0 0 −8
1/2 0 3/2 · · ·

Second tableau

Minimizing the new associated restricted primal by pivoting as indicated we obtain

a1 a2 a3 · · b
1 1 2 1 0 3
1 0 1 −1 1 2

−1 0 −1 2 0 −2
−1/2 0 3/2 · · ·

Now we again calculate the ratios 1
2 � 3

2 obtaining �0 = 1
2 , and add this multiple of

the third row to the fourth row to obtain the next tableau.

a1 a2 a3 · · b
1 1 2 1 0 3
©1 0 1 −1 1 2

−1 0 −1 2 0 −2
0 0 1 · · ·

Third tableau

Optimizing the new restricted primal we obtain the tableau:

a1 a2 a3 · · b
0 1 1 2 −1 1
1 0 1 −1 1 2
0 0 0 1 1 0
0 0 1 · · ·

Final tableau



98 Chapter 4 Duality

Having obtained feasibility in the primal, we conclude that the solution is also
optimal: x1 = 2, x2 = 1, x3 = 0.

∗4.7 REDUCTION OF LINEAR INEQUALITIES
Linear programming is in part the study of linear inequalities, and each progressive
stage of linear programming theory adds to our understanding of this important
fundamental mathematical structure. Development of the simplex method, for
example, provided by means of artificial variables a procedure for solving such
systems. Duality theory provides additional insight and additional techniques for
dealing with linear inequalities.

Consider a system of linear inequalities in standard form

Ax = b

x � 0�
(19)

where A is an m×n matrix, b is a constant nonzero m-vector, and x is a variable
n-vector. Any point x satisfying these conditions is called a solution. The set of
solutions is denoted by S.

It is the set S that is of primary interest in most problems involving systems
of inequalities—the inequalities themselves acting merely to provide a description
of S. Alternative systems having the same solution set S are, from this viewpoint,
equivalent. In many cases, therefore, the system of linear inequalities originally used
to define S may not be the simplest, and it may be possible to find another system
having fewer inequalities or fewer variables while defining the same solution set S.
It is this general issue that is explored in this section.

Redundant Equations
One way that a system of linear inequalities can sometimes be simplified is by the
elimination of redundant equations. This leads to a new equivalent system having
the same number of variables but fewer equations.

Definition. Corresponding to the system of linear inequalities

Ax = b

x � 0�
(19)

we say the system has redundant equations if there is a nonzero � ∈ Em

satisfying

�T A = 0

�T b = 0�
(20)
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This definition is equivalent, as the reader is aware, to the statement that a
system of equations is redundant if one of the equations can be expressed as a linear
combination of the others. In most of our previous analysis we have assumed, for
simplicity, that such redundant equations were not present in our given system or
that they were eliminated prior to further computation. Indeed, such redundancy
presents no real computational difficulty, since redundant equations are detected and
can be eliminated during application of the phase I procedure for determining a basic
feasible solution. Note, however, the hint of duality even in this elementary concept.

Null Variables

Definition. Corresponding to the system of linear inequalities

Ax = b

x � 0�
(21)

a variable xi is said to be a null variable if xi = 0 in every solution.

It is clear that if it were known that a variable xi were a null variable, then the
solution set S could be equivalently described by the system of linear inequalities
obtained from (21) by deleting the ith column of A, deleting the inequality xi � 0,
and adjoining the equality xi = 0. This yields an obvious simplification in the
description of the solutions set S. It is perhaps not so obvious how null variables
can be identified.

Example. As a simple example of how null variables may appear consider the
system

2x1 + 3x2 + 4x3 + 4x4 = 6
x1 + x2 + 2x3 + x4 = 3
x1 � 0� x2 � 0� x3 � 0� x4 � 0�

By subtracting twice the second equation from the first we obtain

x2 +2x4 = 0�

Since the xi’s must all be nonnegative, it follows immediately that x2 and x4 are
zero in any solution. Thus x2 and x4 are null variables.

Generalizing from the above example it is clear that if a linear combination of
the equations can be found such that the right-hand side is zero while the coefficients
on the left side are all either zero or positive, then the variables corresponding to
the positive coefficients in this equation are null variables. In other words, if from
the original system it is possible to combine equations so as to yield

�1x1 +�2x2 +· · ·+�nxn = 0

with �i � 0� i = 1� 2� � � � � n, then �i > 0 implies that xi is a null variable.
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The above elementary observations clearly can be used to identify null variables
in some cases. A more surprising result is that the technique described above can
be used to identify all null variables. The proof of this fact is based on the Duality
Theorem.

Null Value Theorem. If S is not empty, the variable xi is a null variable in
the system (21) if and only if there is a nonzero vector � ∈ Em such that

�T A ≥ 0

�T b = 0�
(22)

and the ith component of �T A is strictly positive.

Proof. The “if” part follows immediately from the discussion above. To prove the
“only if” part, suppose that xi is a null variable, and suppose that S is not empty.
Consider the program

minimize − eix
subject to Ax = b

x � 0�

where ei is the ith unit row vector. By our hypotheses, there is a feasible solution
and the optimal value is zero. By the Duality Theorem the dual program

maximize �T b
subject to �T A � −ei

is also feasible and has optimal value zero. Thus there is a � with

�T A � −ei

�T b = 0�

Changing the sign of � proves the theorem.

Nonextremal Variables

Example 1. Consider the system of linear inequalities

x1 +3x2 +4x3 = 4

2x1 +x2 +3x3 = 6 (23)

x1 � 0� x2 � 0� x3 � 0�
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By subtracting the second equation from the first and rearranging, we obtain

x1 = 2+2x2 +x3� (24)

From this we observe that since x2 and x3 are nonnegative, the value of x1 is greater
than or equal to 2 in any solution to the equalities. This means that the inequality
x1 � 0 can be dropped from the original set, and x1 can be treated as a free variable
even though the remaining inequalities actually do not allow complete freedom.
Hence x1 can be replaced everywhere by (24) in the original system (23) leading to

5x2 +5x3 = 2

x2 � 0� x3 � 0 (25)

x1 = 2+2x2 +x3�

The first two lines of (25) represent a system of linear inequalities in standard
form with one less variable and one less equation than the original system. The last
equation is a simple linear equation from which x1 is determined by a solution to
the smaller system of inequalities.

This example illustrates and motivates the concept of a nonextremal variable.
As illustrated, the identification of such nonextremal variables results in a significant
simplification of a system of linear inequalities.

Definition. A variable xi in the system of linear inequalities

Ax = b
x � 0 (26)

is nonextremal if the inequality xi � 0 in (26) is redundant.

A nonextremal variable can be treated as a free variable, and thus can be
eliminated from the system by using one equation to define that variable in terms
of the other variables. The result is a new system having one less variable and one
less equation. Solutions to the original system can be obtained from solutions to the
new system by substituting into the expression for the value of the free variable.

It is clear that if, as in the example, a linear combination of the equations in
the system can be found that implies that xi is nonnegative if all other variables are
nonnegative, then xi is nonextremal. That the converse of this statement is also true
is perhaps not so obvious. Again the proof of this is based on the Duality Theorem.

Nonextremal Variable Theorem. If S is not empty, the variable xj is a
nonextremal variable for the system (26) if and only if there is � ∈ Em and
d ∈ En such that

�T A = dT � (27)
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where

dj = −1� di � 0 for i �= j�

and such that

�T b = −�� (28)
for some � � 0.

Proof. The “if” part of the result is trivial, since forming the corresponding linear
combination of the equations in (28) yields

xj = �+d1x1 +· · ·+dj−1xj−1 +dj+1xj+1 +· · ·+dnxn�

which implies that xj is nonextremal.
To prove the “only if” part, let ai, i = 1� 2� � � � � n denote the ith column of

A. Let us assume that the solution set S is nonempty and that xj is nonextremal.
Consider the linear program

minimize xj

subject to Ax = b
xi � 0� i �= j�

(29)

By hypothesis the minimum value is nonnegative, say it is � � 0. Then by the
Duality Theorem the value of the dual program

maximize �T b
subject to �T ai � 0� i �= j

�T aj = 1

is also �. Taking the negative of the optimal solution to the dual yields the desired
result.

Nonextremal variables occur frequently in systems of linear inequalities. It can
be shown, for instance, that every system having three nonnegative variables and
two (independent) equations can be reduced to two non-negative variables and one
equation.

Applications
Each of the reduction concepts can be applied by searching for a � satisfying an
appropriate system of linear inequalities. This can be done by application of the
simplex method. Thus, the theorems above translate into systematic procedures for
reducing a system.

The reduction methods described in this section can be applied to any linear
program in an effort to simplify the representation of the feasible region. Of course,
for the purpose of simply solving a given linear program the reduction process is
not particularly worthwhile. However, when considering a large problem that will
be solved many times with different objective functions, or a problem with linear
constraints but a nonlinear objective, the reduction procedure can be valuable.
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x2

a1x = b1

a2x = b2

a3x = b3

x1

Fig. 4.4 Redundant inequality

One interesting area of application is the elimination of redundant inequality
constraints. Consider the region shown in Fig. 4.4 defined by the nonnegativity
constraint and three other linear inequalities. The system can be expressed as

a1x � b1� a2x � b2� a3x � b3� x � 0� (30)

which in standard form is

a1x +y1 = b1� a2x +y2 = b2� a3x +y3 = b3� x � 0� y � 0� (31)

The third constraint is, as seen from the figure, redundant and can be eliminated
without changing the solution set. In the standard form (31) this is reflected in
the fact that y3 is nonextremal and hence it, together with the third constraint, can
be eliminated. This special example generalizes, of course, to higher dimensional
problems involving many inequalities where, in general, redundant inequalities
show up as having nonextremal slack variables. The detection and elimination of
such redundant inequalities can be helpful in the cutting-plane methods (discussed
in Chapter 14) where inequalities are continually appended to a system as the
method progresses.

4.8 EXERCISES
1. Verify in detail that the dual of a linear program is the original problem.

2. Show that if a linear inequality in a linear program is changed to equality, the corre-
sponding dual variable becomes free.
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3. Find the dual of

minimize cT x
subject to Ax = b

x � a
where a � 0�

4. Show that in the transportation problem the linear equality constraints are not linearly
independent, and that in an optimal solution to the dual problem the dual variables are
not unique. Generalize this observation to any linear program having redundant equality
constraints.

5. Construct an example of a primal problem that has no feasible solutions and whose
corresponding dual also has no feasible solutions.

6. Let A be an m×n matrix and b be an n-vector. Prove that Ax � 0 implies cT x � 0 if
and only if cT = �T A for some � � 0. Give a geometric interpretation of the result.

7. There is in general a strong connection between the theories of optimization and free
competition, which is illustrated by an idealized model of activity location. Suppose
there are n economic activities (various factories, homes, stores, etc.) that are to be
individually located on n distinct parcels of land. If activity i is located on parcel j that
activity can yield sij units (dollars) of value.
If the assignment of activities to land parcels is made by a central authority, it might
be made in such a way as to maximize the total value generated. In other words, the
assignment would be made so as to maximize

∑
i

∑
j sijxij where

xij =
{

1 if activity i is assigned to parcel j

0 otherwise.

More explicitly this approach leads to the optimization problem

maximize
∑

i

∑

j
sijxij

subject to
∑

j
xij = 1� i = 1� 2� � � � � n

∑

i
xij = 1� j = 1� 2� � � � � n

xij � 0� xij = 0 or 1�

Actually, it can be shown that the final requirement (xij = 0 or 1) is automatically
satisfied at any extreme point of the set defined by the other constraints, so that in fact the
optimal assignment can be found by using the simplex method of linear programming.

If one considers the problem from the viewpoint of free competition, it is assumed
that, rather than a central authority determining the assignment, the individual activities
bid for the land and thereby establish prices.

a) Show that there exists a set of activity prices pi� i = 1� 2� � � � � n and land prices
qj� j = 1� 2� � � � � n such that

pi +qj � sij� i = 1� 2� � � � � n� j = 1� 2� � � � � n

with equality holding if in an optimal assignment activity i is assigned to parcel j.
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b) Show that Part (a) implies that if activity i is optimally assigned to parcel j and if j′

is any other parcel

sij −qj � sij′ −qj′ �

Give an economic interpretation of this result and explain the relation between free
competition and optimality in this context.

c) Assuming that each sij is positive, show that the prices can all be assumed to be
nonnegative.

8. Game theory is in part related to linear programming theory. Consider the game in
which player X may select any one of m moves, and player Y may select any one
of n moves. If X selects i and Y selects j, then X wins an amount aij from Y . The
game is repeated many times. Player X develops a mixed strategy where the various
moves are played according to probabilities represented by the components of the vector

x = �x1� x2� � � � � xm�, where x1 � 0� i = 1� 2� � � � �m and
m∑

i=1
xi = 1. Likewise Y develops

a mixed strategy y = �y1� y2� � � � � yn�, where yi � 0� i = 1� 2� � � � � n and
n∑

i=1
yi = 1. The

average payoff to X is then P�x� y� = xT Ay.

a) Suppose X selects x as the solution to the linear program

maximize A

subject to
m∑

i=1
xi = 1

m∑

i=1
xiaij � A� j = 1� 2� � � � � n

xi � 0� i = 1� 2� � � � �m�

Show that X is guaranteed a payoff of at least A no matter what y is chosen by Y .

b) Show that the dual of the problem above is

minimize B

subject to
n∑

j=1
yj = 1

n∑

j=1
aijyj � B� i = 1� 2� � � � �m

yj � 0� j = 1� 2� � � � � n�

c) Prove that max A = min B. (The common value is called the value of the game.)
d) Consider the “matching” game. Each player selects heads or tails. If the choices

match, X wins $1 from Y ; if they do not match, Y wins $1 from X. Find the value
of this game and the optimal mixed strategies.

e) Repeat Part (d) for the game where each player selects either 1, 2, or 3. The player
with the highest number wins $1 unless that number is exactly 1 higher than the
other player’s number, in which case he loses $3. When the numbers are equal there
is no payoff.
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9. Consider the primal linear program

minimize cT x
subject to Ax = b

x � 0�

Suppose that this program and its dual are feasible. Let � be a known optimal solution
to the dual.

a) If the kth equation of the primal is multiplied by � �= 0, determine an optimal solution
w to the dual of this new problem.

b) Suppose that, in the original primal, we add � times the kth equation to the rth
equation. What is an optimal solution w to the corresponding dual problem?

c) Suppose, in the original primal, we add � times the kth row of A to c. What is an
optimal solution to the corresponding dual problem?

10. Consider the linear program (P) of the form

minimize qT z
subject to Mz ≥ −q

z ≥ 0

in which the matrix M is skew symmetric; that is, M = −MT .

(a) Show that problem (P) and its dual are the same.
(b) A problem of the kind in part (a) is said to be self-dual. An example of a self-dual

problem has

M =
[

0 −AT

A 0

]

� q =
[

c
−b

]

� z =
[

x
y

]

�

Give an interpretation of the problem with this data.
(c) Show that a self-dual linear program has an optimal solution if and only if it is

feasible.

11. A company may manufacture n different products, each of which uses various amounts
of m limited resources. Each unit of product i yields a profit of ci dollars and uses aji

units of the jth resource. The available amount of the jth resource is bj . To maximize
profit the company selects the quantities xi to be manufactured of each product by
solving

maximize cT x
subject to Ax = b

x � 0�

The unit profits ci already take into account the variable cost associated with manufac-
turing each unit. In addition to that cost, the company incurs a fixed overhead H , and
for accounting purposes it wants to allocate this overhead to each of its products. In
other words, it wants to adjust the unit profits so as to account for the overhead. Such an
overhead allocation scheme must satisfy two conditions: (1) Since H is fixed regardless
of the product mix, the overhead allocation scheme must not alter the optimal solution,
(2) All the overhead must be allocated; that is, the optimal value of the objective with
the modified cost coefficients must be H dollars lower than z—the original optimal
value of the objective.
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a) Consider the allocation scheme in which the unit profits are modified according to
ĉT = cT − r�T

0 A, where �0 is the optimal solution to the original dual and r = H/z0

(assume H � z0).

i) Show that the optimal x for the modified problem is the same as that for the
original problem, and the new dual solution is �̂0 = �1− r��0.

ii) Show that this approach fully allocates H .

b) Suppose that the overhead can be traced to each of the resource constraints. Let

Hi � 0 be the amount of overhead associated with the ith resource, where
m∑

i=1
Hi � z0

and ri = Hi/bi � �0
i for i = 1� � � � �m. Based on this information, an allocation scheme

has been proposed where the unit profits are modified such that ĉT = cT − rT A.

i) Show that the optimal x for this modified problem is the same as that for the
original problem, and the corresponding dual solution is �̂0 = �0 − r.

ii) Show that this scheme fully allocates H .

12. Solve the linear inequalities

−2x1 + 2x2 � −1
2x1 − x2 � 2

− 4x2 � 3
−15x1 − 12x2 � −2

12x1 + 20x2 � −1�

Note that x1 and x2 are not restricted to be positive. Solve this problem by considering
the problem of maximizing 0 ·x1 +0 ·x2 subject to these constraints, taking the dual and
using the simplex method.

13. a) Using the simplex method solve

minimize 2x1 −x2

subject to 2x1 −x2 −x3 � 3

x1 −x2 +x3 � 2

xi � 0� i = 1� 2� 3�

(Hint: Note that x1 = 2 gives a feasible solution.)
b) What is the dual problem and its optimal solution?

14. a) Using the simplex method solve

minimize 2x1 +3x2 +2x3 +2x4

subject to x1 +2x2 + x3 +2x4 = 3

x1 + x2 +2x3 +4x4 = 5

xi � 0� i = 1� 2� 3� 4�

b) Using the work done in Part (a) and the dual simplex method, solve the same problem
but with the right-hand sides of the equations changed to 8 and 7 respectively.
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15. For the problem

minimize 5x1 +3x2

subject to 2x1 −x2 +4x3 � 4

x1 +x2 +2x3 � 5

2x1 −x2 +x3 � 1

x1 � 0� x2 � 0� x3 � 0�

a) Using a single pivot operation with pivot element 1, find a feasible solution.
b) Using the simplex method, solve the problem.
c) What is the dual problem?
d) What is the solution to the dual?

16. Solve the following problem by the dual simplex method:

minimize −7x1 + 7x2 − 2x3 − x4 − 6x5

subject to 3x1 − x2 + x3 − 2x4 = −3
2x1 + x2 + x4 + x5 = 4
−x1 + 3x2 − 3x4 + x6 = 12

and xi � 0� i = 1� � � � � 6�

17. Given the linear programming problem in standard form (3) suppose a basis B and the
corresponding (not necessarily feasible) primal and dual basic solutions x and � are
known. Assume that at least one relative cost coefficient ci −�T ai is negative. Consider
the auxiliary problem

minimize cT x

subject to Ax = b
∑

i∈T

xi +y = M

x � 0� y � 0�

where T = �i � ci −�T ai < 0�, y is a slack variable, and M is a large positive constant.
Show that if k is the index corresponding to the most negative relative cost coefficient
in the original solution, then ��� ck −�T ak� is dual feasible for the auxiliary problem.
Based on this observation, develop a big–M artificial constraint method for the dual
simplex method. (Refer to Exercise 24, Chapter 3.)

18. A textile firm is capable of producing three products—x1� x2� x3. Its production plan for
next month must satisfy the constraints

x1 +2x2 +2x3 � 12

2x1 +4x2 +x3 � f

x1 � 0� x2 � 0� x3 � 0�

The first constraint is determined by equipment availability and is fixed. The second
constraint is determined by the availability of cotton. The net profits of the products are
2, 3, and 3, respectively, exclusive of the cost of cotton and fixed costs.
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a) Find the shadow price �2 of the cotton input as a function of f . (Hint: Use the dual
simplex method.) Plot �2�f� and the net profit z�f� exclusive of the cost for cotton.

b) The firm may purchase cotton on the open market at a price of 1/6. However, it may
acquire a limited amount at a price of 1/12 from a major supplier that it purchases
from frequently. Determine the net profit of the firm ��s� as a function of s.

19. Consider the problem

minimize 2x1 +x2 +4x3

subject to x1 +x2 +2x3 = 3
2x1 +x2 +3x3 = 5

xi � 0� x2 � 0� x3 � 0�

a) What is the dual problem?
b) Note that � = �1� 0� is feasible for the dual. Starting with this �, solve the primal

using the primal–dual algorithm.

20. Show that in the associated restricted dual of the primal–dual method the objective �T b
can be replaced by �T y.

21. Given the system of linear inequalities (19), what is implied by the existence of a �
satisfying �T A = 0��T b �= 0?

22. Suppose a system of linear inequalities possesses null variables. Show that when the
null variables are eliminated, by setting them identically to zero, the resulting system
will have redundant equations. Verify this for the example in Section 4.7.

23. Prove that any system of linear inequalities in standard form having two equations and
three variables can be reduced.

24. Show that if a system of linear inequalities in standard form has a nondegenerate basic
feasible solution, the corresponding nonbasic variables are extremal.

25. Eliminate the null variables in the system

2x1 + x2 −x3 + x4 + x5 = 2

−x1 +2x2 +x3 +2x4 + x5 = −1

−x1 − x2 −3x4 +2x5 = −1

x1 � 0� x2 � 0� x3 � 0� x4 � 0� x5 � 0�

26. Reduce to minimal size

x1 + x2 +2x3 + x4 + x5 = 6

3x2 + x3 +5x4 +4x5 = 4

x1 + x2 − x3 +2x4 +2x5 = 3

x1 � 0� x2 � 0� x3 � 0� x4 � 0� x5 � 0�
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Chapter 5 INTERIOR-POINT
METHODS

Linear programs can be viewed in two somewhat complementary ways. They are,
in one view, a class of continuous optimization problems each with continuous
variables defined on a convex feasible region and with a continuous objective
function. They are, therefore, a special case of the general form of problem
considered in this text. However, linearity implies a certain degree of degeneracy,
since for example the derivatives of all functions are constants and hence the differ-
ential methods of general optimization theory cannot be directly used. From an
alternative view, linear programs can be considered as a class of combinatorial
problems because it is known that solutions can be found by restricting attention
to the vertices of the convex polyhedron defined by the constraints. Indeed, this
view is natural when considering network problems such as those of Chapter 6.
However, the number of vertices may be large, up to n!/m!�n−m�!, making direct
search impossible for even modest size problems.

The simplex method embodies both of these viewpoints, for it restricts attention
to vertices, but exploits the continuous nature of the variables to govern the progress
from one vertex to another, defining a sequence of adjacent vertices with improving
values of the objective as the process reaches an optimal point. The simplex method,
with ever-evolving improvements, has for five decades provided an efficient general
method for solving linear programs.

Although it performs well in practice, visiting only a small fraction of the total
number of vertices, a definitive theory of the simplex method’s performance was
unavailable. However, in 1972, Klee and Minty showed by examples that for certain
linear programs the simplex method will examine every vertex . These examples
proved that in the worst case, the simplex method requires a number of steps that
is exponential in the size of the problem.

In view of this result, many researchers believed that a good algorithm, different
than the simplex method, might be devised whose number of steps would be
polynomial rather than exponential in the program’s size—that is, the time required
to compute the solution would be bounded above by a polynomial in the size of
the problem.1

1We will be more precise about complexity notions such as “polynomial algorithm” in
Section 5.1 below.
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Indeed, in 1979, a new approach to linear programming, Khachiyan’s ellipsoid
method was announced with great acclaim. The method is quite different in structure
than the simplex method, for it constructs a sequence of shrinking ellipsoids each of
which contains the optimal solution set and each member of the sequence is smaller
in volume than its predecessor by at least a certain fixed factor. Therefore, the
solution set can be found to any desired degree of approximation by continuing the
process. Khachiyan proved that the ellipsoid method, developed during the 1970s
by other mathematicians, is a polynomial-time algorithm for linear programming.

Practical experience, however, was disappointing. In almost all cases, the
simplex method was much faster than the ellipsoid method. However, Khachiyan’s
ellipsoid method showed that polynomial time algorithms for linear programming
do exist. It left open the question of whether one could be found that, in practice,
was faster than the simplex method.

It is then perhaps not surprising that the announcement by Karmarkar in 1984
of a new polynomial time algorithm, an interior-point method, with the potential to
improve the practical effectiveness of the simplex method made front-page news
in major newspapers and magazines throughout the world. It is this interior-point
approach that is the subject of this chapter and the next.

This chapter begins with a brief introduction to complexity theory, which is the
basis for a way to quantify the performance of iterative algorithms, distinguishing
polynomial-time algorithms from others.

Next the example of Klee and Minty showing that the simplex method is not
a polynomial-time algorithm in the worst case is presented. Following that the
ellipsoid algorithm is defined and shown to be a polynomial-time algorithm. These
two sections provide a deeper understanding of how the modern theory of linear
programming evolved, and help make clear how complexity theory impacts linear
programming. However, the reader may wish to consider them optional and omit
them at first reading.

The development of the basics of interior-point theory begins with Section 5.4
which introduces the concept of barrier functions and the analytic center. Section 5.5
introduces the central path which underlies interior-point algorithms. The relations
between primal and dual in this context are examined. An overview of the details
of specific interior-point algorithms based on the theory are presented in Sections
5.6 and 5.7

5.1 ELEMENTS OF COMPLEXITY THEORY
Complexity theory is arguably the foundation for analysis of computer algorithms.
The goal of the theory is twofold: to develop criteria for measuring the effectiveness
of various algorithms (and thus, be able to compare algorithms using these criteria),
and to assess the inherent difficulty of various problems.

The term complexity refers to the amount of resources required by a compu-
tation. In this chapter we focus on a particular resource, namely, computing time.
In complexity theory, however, one is not interested in the execution time of a
program implemented in a particular programming language, running on a particular
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computer over a particular input. This involves too many contingent factors. Instead,
one wishes to associate to an algorithm more intrinsic measures of its time require-
ments.

Roughly speaking, to do so one needs to define:
• a notion of input size,
• a set of basic operations, and
• a cost for each basic operation.

The last two allow one to associate a cost of a computation. If x is any input, the
cost C�x� of the computation with input x is the sum of the costs of all the basic
operations performed during this computation.

Let � be an algorithm and �n be the set of all its inputs having size n. The
worst-case cost function of � is the function Tw

� defined by

Tw
��n� = sup

x∈�n

C�x��

If there is a probability structure on �n it is possible to define the average-case cost
function Ta

� given by

Ta
��n� = En�C�x���

where En is the expectation over �n. However, the average is usually more difficult
to find, and there is of course the issue of what probabilities to assign.

We now discuss how the objects in the three items above are selected. The
selection of a set of basic operations is generally easy. For the algorithms we
consider in this chapter, the obvious choice is the set �+�−�×� /�≤� of the four
arithmetic operations and the comparison. Selecting a notion of input size and a cost
for the basic operations depends on the kind of data dealt with by the algorithm.
Some kinds can be represented within a fixed amount of computer memory; others
require a variable amount.

Examples of the first are fixed-precision floating-point numbers, stored in a
fixed amount of memory (usually 32 or 64 bits). For this kind of data the size of
an element is usually taken to be 1 and consequently to have unit size per number.

Examples of the second are integer numbers which require a number of bits
approximately equal to the logarithm of their absolute value. This (base 2) logarithm
is usually referred to as the bit size of the integer. Similar ideas apply for rational
numbers.

Let A be some kind of data and x = �x1� � � � � xn� ∈ An. If A is of the first kind
above then we define size�x� = n. Otherwise, we define size�x� =∑n

i=1 bit-size�xi�.
The cost of operating on two unit-size numbers is taken to be 1 and is called

the unit cost. In the bit-size case, the cost of operating on two numbers is the
product of their bit-sizes (for multiplications and divisions) or their maximum (for
additions, subtractions, and comparisons).

The consideration of integer or rational data with their associated bit size and
bit cost for the arithmetic operations is usually referred to as the Turing model of
computation. The consideration of idealized reals with unit size and unit cost is



114 Chapter 5 Interior-Point Methods

today referred as the real number arithmetic model. When comparing algorithms,
one should make clear which model of computation is used to derive complexity
bounds.

A basic concept related to both models of computation is that of polynomial
time. An algorithm � is said to be a polynomial time algorithm if Tw

��n� is bounded
above by a polynomial. A problem can be solved in polynomial time if there is a
polynomial time algorithm solving the problem. The notion of average polynomial
time is defined similarly, replacing Tw

� by Ta
�.

The notion of polynomial time is usually taken as the formalization of efficiency
in complexity theory.

∗
5.2 THE SIMPLEX METHOD IS NOT

POLYNOMIAL-TIME
When the simplex method is used to solve a linear program in standard form with
coefficient matrix A ∈ Em×n, b ∈ Em and c ∈ En, the number of pivot steps to solve
the problem starting from a basic feasible solution is typically a small multiple of
m: usually between 2m and 3m. In fact, Dantzig observed that for problems with
m ≤ 50 and n ≤ 200 the number of iterations is ordinarily less than 1�5 m.

At one time researchers believed—and attempted to prove—that the simplex
algorithm (or some variant thereof) always requires a number of iterations that is
bounded by a polynomial expression in the problem size. That was until Victor Klee
and George Minty exhibited a class of linear programs each of which requires an
exponential number of iterations when solved by the conventional simplex method.

One form of the Klee–Minty example is

maximize
n∑

j=1

10n−jxj

subject to 2
i−1∑

j=1

10i−jxj +xi ≤ 100i−1 i = 1� � � � � n

xj ≥ 0 j = 1� � � � � n

(1)

The problem above is easily cast as a linear program in standard form.
A specific case is that for n = 3, giving

maximize 100x1 + 10x2 + x3

subject to x1 ≤ 1
20x1 + x2 ≤ 100

200x1 + 20x2 + x3 ≤ 10� 000
x1 � 0� x2 � 0� x3 � 0�

In this case, we have three constraints and three variables (along with their
nonnegativity constraints). After adding slack variables, the problem is in standard
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form. The system has m = 3 equations and n = 6 nonnegative variables. It can be
verified that it takes 23 − 1 = 7 pivot steps to solve the problem with the simplex
method when at each step the pivot column is chosen to be the one with the largest
(because this a maximization problem) reduced cost. (See Exercise 1.)

The general problem of the class (1) takes 2n −1 pivot steps and this is in fact
the number of vertices minus one (which is the starting vertex). To get an idea of
how bad this can be, consider the case where n = 50. We have 250 − 1 ≈ 1015� In
a year with 365 days, there are approximately 3 × 107 seconds. If a computer ran
continuously, performing a million pivots of the simplex algorithm per second, it
would take approximately

1015

3×107 ×106
≈ 33 years

to solve a problem of this class using the greedy pivot selection rule.

∗
5.3 THE ELLIPSOID METHOD

The basic ideas of the ellipsoid method stem from research done in the 1960s and
1970s mainly in the Soviet Union (as it was then called) by others who preceded
Khachiyan. In essence, the idea is to enclose the region of interest in ever smaller
ellipsoids.

The significant contribution of Khachiyan was to demonstrate in that under
certain assumptions, the ellipsoid method constitutes a polynomially bounded
algorithm for linear programming.

The version of the method discussed here is really aimed at finding a point of
a polyhedral set � given by a system of linear inequalities.

� = �y ∈ Em 	 yT aj ≤ cj� j = 1� � � � n�

Finding a point of � can be thought of as equivalent to solving a linear programming
problem.

Two important assumptions are made regarding this problem:

(A1) There is a vector y0 ∈ Em and a scalar R > 0 such that the closed ball S�y0�R�
with center y0 and radius R, that is

�y ∈ Em 	 �y −y0� ≤ R��

contains �.
(A2) If � is nonempty, there is a known scalar r > 0 such that � contains a ball

of the form S�y∗� r� with center at y∗ and radius r. (This assumption implies
that if � is nonempty, then it has a nonempty interior and its volume is at
least vol�S�0� r��)2 .

2The (topological) interior of any set � is the set of points in � which are the centers of
some balls contained in �.
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Definition. An ellipsoid in Em is a set of the form

E = �y ∈ Em 	 �y − z�T Q�y − z� ≤ 1�

where z ∈ Em is a given point (called the center) and Q is a positive definite
matrix (see Section A.4 of Appendix A) of dimension m×m. This ellipsoid is
denoted ell�z� Q�.

The unit sphere S�0� 1� centered at the origin 0 is a special ellipsoid with Q = I,
the identity matrix.

The axes of a general ellipsoid are the eigenvectors of Q and the lengths of the
axes are 


−1/2
1 �


−1/2
2 � � � � � 
−1/2

m , where the 
i’s are the corresponding eigenvalues.
It can be shown that the volume of an ellipsoid is

vol�E� = vol�S�0� 1���m
i=1


−1/2
i = vol�S�0� 1��det�Q−1/2��

Cutting Plane and New Containing Ellipsoid
In the ellipsoid method, a series of ellipsoids Ek is defined, with centers yk and
with the defining Q = B−1

k � where Bk is symmetric and positive definite.
At each iteration of the algorithm, we have � ⊂ Ek. It is then possible to check

whether yk ∈ �� If so, we have found an element of � as required. If not, there is
at least one constraint that is violated. Suppose aT

j yk > cj� Then

� ⊂ 1
2

Ek = �y ∈ Ek 	 aT
j y ≤ aT

j yk�

This set is half of the ellipsoid, obtained by cutting the ellipsoid in half through its
center.

The successor ellipsoid Ek+1 is defined to be the minimal-volume ellipsoid
containing �1/2�Ek. It is constructed as follows. Define

� = 1
m+1

� 
 = m2

m2 −1
� � = 2��

yk 1/2 E

Fig. 5.1 A half-ellipsoid
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Then put

yk+1 = yk − �

�aT
j Bkaj�

1/2
Bkaj

Bk+1 = 


(

Bk −�
Bkaja

T
j Bk

aT
j Bkaj

)

(2)

Theorem 1. The ellipsoid Ek+1 = ell�yk+1� B−1
k+1� defined as above is the

ellipsoid of least volume containing �1/2�Ek. Moreover,

vol�Ek+1�

vol�Ek�
=
(

m2

m2 −1

)�m−1�/2
m

m+1
< exp

(

− 1
2�m+1�

)

< 1�

Proof. We shall not prove the statement about the new ellipsoid being of least
volume, since that is not necessary for the results that follow. To prove the remainder
of the statement, we have

vol�Ek+1�

vol�Ek�
= det�B1/2

k+1�

det�B1/2
k �

For simplicity, by a change of coordinates, we may take Bk = I� Then Bk+1 has
m − 1 eigenvalues equal to 
 = m2

m2−1 and one eigenvalue equal to 
 − 2
� =
m2

m2−1 �1− 2
m+1 � = � m

m+1 �2� The reduction in volume is the product of the square roots
of these, giving the equality in the theorem.

Then using �1+x�p � exp, we have

(
m2

m2 −1

)�m−1�/2
m

m+1
=
(

1+ 1
m2 −1

)�m−1�/2(

1− 1
m+1

)

< exp
(

1
2�m+1�

− 1
�m+1�

)

= exp
(

− 1
2�m+1�

)

�

Convergence
The ellipsoid method is initiated by selecting y0 and R such that condition (A1) is
satisfied. Then B0 = R2I, and the corresponding E0 contains �. The updating of
the Ek’s is continued until a solution is found.

Under the assumptions stated above, a single repetition of the ellipsoid method
reduces the volume of an ellipsoid to one-half of its initial value in O�m� iterations.
(See Appendix A for O notation.) Hence it can reduce the volume to less than that
of a sphere of radius r in O�m2 log�R/r�� iterations, since its volume is bounded



118 Chapter 5 Interior-Point Methods

from below by vol�S�0� 1��rm and the initial volume is vol�S�0� 1��Rm. Generally
a single iteration requires O�m2� arithmetic operations. Hence the entire process
requires O�m4 log�R/r�� arithmetic operations.3

Ellipsoid Method for Usual Form of LP
Now consider the linear program (where A is m×n)

�P�
maximize cT x
subject to Ax ≤ b

x ≥ 0

and its dual

�D�
minimize yT b
subject to yT A ≥ cT

y ≥ 0�

Both problems can be solved by finding a feasible point to inequalities

−cT x +bT y ≤ 0
Ax ≤ b

−AT y ≤ −c
x� y ≥ 0�

(3)

where both x and y are variables. Thus, the total number of arithmetic operations
for solving a linear program is bounded by O��m+n�4 log�R/r��.

5.4 THE ANALYTIC CENTER
The new interior-point algorithms introduced by Karmarkar move by successive
steps inside the feasible region. It is the interior of the feasible set rather than the
vertices and edges that plays a dominant role in this type of algorithm. In fact, these
algorithms purposely avoid the edges of the set, only eventually converging to one
as a solution.

Our study of these algorithms begins in the next section, but it is useful at this
point to introduce a concept that definitely focuses on the interior of a set, termed
the set’s analytic center. As the name implies, the center is away from the edge.

In addition, the study of the analytic center introduces a special structure,
termed a barrier or potential that is fundamental to interior-point methods.

3Assumption (A2) is sometimes too strong. It has been shown, however, that when the data
consists of integers, it is possible to perturb the problem so that (A2) is satisfied and if the
perturbed problem has a feasible solution, so does the original �.
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Consider a set � in a subset of � of En defined by a group of inequalities as

� = �x ∈ � 	 gj�x� � 0� j = 1� 2� � � � �m��

and assume that the functions gj are continuous. � has a nonempty interior
	
�=

�x ∈ � 	 gj�x� > 0� all j�� Associated with this definition of the set is the potential
function

��x� = −
m∑

j=1

log gj�x�

defined on
	
� �

The analytic center of � is the vector (or set of vectors) that minimizes the
potential; that is, the vector (or vectors) that solve

min ��x� = min

{

−
m∑

j=1

log gj�x� 	 x ∈ �� gj�x� > 0 for each j

}

�

Example 1. (A cube). Consider the set � defined by xi � 0� �1 − xi� � 0� for
i = 1� 2� � � � � n. This is � = �0� 1�n, the unit cube in En. The analytic center can
be found by differentiation to be xi = 1/2� for all i. Hence, the analytic center is
identical to what one would normally call the center of the unit cube.

In general, the analytic center depends on how the set is defined—on the
particular inequalities used in the definition. For instance, the unit cube is also
defined by the inequalities xi � 0� �1−xi�

d � 0 with d > 1� In this case the solution
is xi = 1/�d + 1� for all i. For large d this point is near the inner corner of the
unit cube.

Also, the additional of redundant inequalities can also change the location
of the analytic center. For example, repeating a given inequality will change the
center’s location.

There are several sets associated with linear programs for which the analytic
center is of particular interest. One such set is the feasible region itself. Another is
the set of optimal solutions. There are also sets associated with dual and primal-dual
formulations. All of these are related in important ways.

Let us illustrate by considering the analytic center associated with a bounded
polytope � in Em represented by n �> m� linear inequalities; that is,

� = �y ∈ Em 	 cT −yT A � 0��

where A ∈ Em×n and c ∈ En are given and A has rank m. Denote the interior of
� by

	
�= �y ∈ Em 	 cT −yT A > 0��
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The potential function for this set is

���y� ≡ −
n∑

j=1

log�cj −yT aj� = −
n∑

j=1

log sj� (4)

where s ≡ c − AT y is a slack vector. Hence the potential function is the negative
sum of the logarithms of the slack variables.

The analytic center of � is the interior point of � that minimizes the potential
function. This point is denoted by ya and has the associated sa = c − AT ya. The
pair �ya� sa� is uniquely defined, since the potential function is strictly convex (see
Section 7.4) in the bounded convex set �.

Setting to zero the derivatives of ��y� with respect to each yi gives

n∑

j=1

aij

cj −yT aj

= 0� for all i�

which can be written

n∑

j=1

aij

sj

= 0� for all i�

Now define xj = 1/sj for each j. We introduce the notion

x 	 s ≡ �x1s1� x2s2� � � � � xnsn�
T �

which is component multiplication. Then the analytic center is defined by the
conditions

x 	 s = 1

Ax = 0

AT y + s = c�

The analytic center can be defined when the interior is empty or equalities are
present, such as

� = �y ∈ Em 	 cT −yT A � 0� By = b��

In this case the analytic center is chosen on the linear surface �y 	 By = b� to
maximize the product of the slack variables s = c − AT y. Thus, in this context
the interior of � refers to the interior of the positive orthant of slack variables:
Rn

+ ≡ �s 	 s � 0�. This definition of interior depends only on the region of the slack
variables. Even if there is only a single point in � with s = c − AT y for some y
where By = b with s > 0, we still say that �

	
is not empty.
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5.5 THE CENTRAL PATH
The concept underlying interior-point methods for linear programming is to use
nonlinear programming techniques of analysis and methodology. The analysis is
often based on differentiation of the functions defining the problem. Traditional
linear programming does not require these techniques since the defining functions
are linear. Duality in general nonlinear programs is typically manifested through
Lagrange multipliers (which are called dual variables in linear programming). The
analysis and algorithms of the remaining sections of the chapter use these nonlinear
techniques. These techniques are discussed systematically in later chapters, so rather
than treat them in detail at this point, these current sections provide only minimal
detail in their application to linear programming. It is expected that most readers
are already familiar with the basic method for minimizing a function by setting
its derivative to zero, and for incorporating constraints by introducing Lagrange
multipliers. These methods are discussed in detail in Chapters 11–15.

The computational algorithms of nonlinear programming are typically iterative
in nature, often characterized as search algorithms. At any step with a given point,
a direction for search is established and then a move in that direction is made to
define the next point. There are many varieties of such search algorithms and they
are systematically presented throughout the text. In this chapter, we use versions of
Newton’s method as the search algorithm, but we postpone a detailed study of the
method until later chapters.

Not only have nonlinear methods improved linear programming, but interior-
point methods for linear programming have been extended to provide new
approaches to nonlinear programming. This chapter is intended to show how
this merger of linear and nonlinear programming produces elegant and effective
methods. These ideas take an especially pleasing form when applied to linear
programming. Study of them here, even without all the detailed analysis, should
provide good intuitive background for the more general manifestations.

Consider a primal linear program in standard form

�LP� minimize cT x (5)

subject to Ax = b

x � 0�

We denote the feasible region of this program by �p. We assume that
	
� p= �x 	

Ax = b� x > 0� is nonempty and the optimal solution set of the problem is bounded.
Associated with this problem, we define for � � 0 the barrier problem

�BP� minimize cT x −�
n∑

j=1

log xj (6)

subject to Ax = b

x > 0�
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It is clear that � = 0 corresponds to the original problem (5). As � → �, the
solution approaches the analytic center of the feasible region (when it is bounded),
since the barrier term swamps out cT x in the objective. As � is varied continuously
toward 0, there is a path x��� defined by the solution to (BP). This path x��� is
termed the primal central path. As � → 0 this path converges to the analytic center
of the optimal face �x 	 cT x = z∗� Ax = b� x � 0�� where z∗ is the optimal value
of (LP).

A strategy for solving (LP) is to solve (BP) for smaller and smaller values
of � and thereby approach a solution to (LP). This is indeed the basic idea of
interior-point methods.

At any � > 0, under the assumptions that we have made for problem (5), the
necessary and sufficient conditions for a unique and bounded solution are obtained
by introducing a Lagrange multiplier vector y for the linear equality constraints to
form the Lagrangian (see Chapter 11)

cT x −�
n∑

j=1

log xj −yT �Ax −b��

The derivatives with respect to the xj’s are set to zero, leading to the conditions

cj −�/xj −yT aj = 0� for each j

or equivalently

�X−11+AT y = c (7)

where as before aj is the j-th column of A� 1 is the vector of 1’s, and X is
the diagonal matrix whose diagonal entries are the components of x > 0. Setting
sj = �/xj the complete set of conditions can be rewritten

x 	 s = �1
Ax = b

AT y + s = c�
(8)

Note that y is a dual feasible solution and c −AT y > 0 (see Exercise 4).

Example 2. (A square primal). Consider the problem of maximizing x1 within
the unit square � = �0� 1�2� The problem is formulated as

min −x1

subject to x1 +x3 = 1

x2 +x4 = 1

x1 � 0� x2 � 0� x3 � 0� x4 � 0�
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Here x3 and x4 are slack variables for the original problem to put it in standard
form. The optimality conditions for x��� consist of the original 2 linear constraint
equations and the four equations

y1 + s1 = 1

y2 + s2 = 0

y1 + s3 = 0

y2 + s4 = 0

together with the relations si = �/xi for i = 1� 2 � � � � 4� These equations are readily
solved with a series of elementary variable eliminations to find

x1��� = 1−2�±√1+4�2

2
x2��� = 1/2�

Using the “+” solution, it is seen that as � → 0 the solution goes to x → �1� 1/2��
Note that this solution is not a corner of the cube. Instead it is at the analytic center
of the optimal face �x 	 x1 = 1� 0 � x2 � 1�� See Fig. 5.2. The limit of x��� as
� → � can be seen to be the point �1/2� 1/2�� Hence, the central path in this case
is a straight line progressing from the analytic center of the square (at � → �) to
the analytic center of the optimal face (at � → 0).

Dual Central Path
Now consider the dual problem

�LD� maximize yT b

subject to yT A+ sT = cT

s � 0�

0 1

1

x1

x2

Fig. 5.2 The analytic path for the square
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We may apply the barrier approach to this problem by formulating the problem

�BD� maximize yT b+�
n∑

j=1

log sj

subject to yT A+ sT = cT

s > 0�

We assume that the dual feasible set �d has an interior
	
� d= ��y� s� 	 yT A + sT =

cT � s > 0� is nonempty and the optimal solution set of (LD) is bounded. Then, as �
is varied continuously toward 0, there is a path �y���� s���� defined by the solution
to (BD). This path is termed the dual central path.

To work out the necessary and sufficient conditions we introduce x as a
Lagrange multiplier and form the Lagrangian

yT b+�
n∑

j=1

log sj − �yT A+ sT − cT �x�

Setting to zero the derivative with respect to yi leads to

bi −aix = 0� for all i

where ai is the i-th row of A. Setting to zero the derivative with respect to sj leads
to

�/sj −xj = 0� for all j�

Combining these equations and including the original constraint yields the complete
set of conditions

x 	 s = �1

Ax = b

AT y + s = c�

These are identical to the optimality conditions for the primal central path (8). Note
that x is a primal feasible solution and x > 0.

To see the geometric representation of the dual central path, consider the dual
level set

��z� = �y 	 cT −yT A � 0� yT b � z�

for any z < z∗ where z∗ is the optimal value of (LD). Then, the analytic center
�y�z�� s�z�� of ��z� coincides with the dual central path as z tends to the optimal
value z∗ from below. This is illustrated in Fig. 5.3, where the feasible region of
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The objective hyperplanes

ya

Fig. 5.3 The central path as analytic centers in the dual feasible region

the dual set (not the primal) is shown. The level sets ��z� are shown for various
values of z. The analytic centers of these level sets correspond to the dual central
path.

Example 3. (The square dual). Consider the dual of example 2. This is

max y1 +y2

subject to y1 � −1

y2 � 0�

(The values of s1 and s2 are the slack variables of the inequalities.) The solution
to the dual barrier problem is easily found from the solution of the primal barrier
problem to be

y1��� = −1−�/x1���� y2 = −2��

As � → 0, we have y1 → −1� y2 → 0� which is the unique solution to the dual LP.
However, as � → �, the vector y is unbounded, for in this case the dual feasible
set is itself unbounded.

Primal–Dual Central Path
Suppose the feasible region of the primal (LP) has interior points and its optimal
solution set is bounded. Then, the dual also has interior points (see Exercise 4). The
primal–dual path is defined to be the set of vectors �x���� y���� s���� that satisfy
the conditions

x 	 s = �1
Ax = b

AT y + s = c
x � 0� s � 0

(9)
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for 0 � � � �� Hence the central path is defined without explicit reference to
an optimization problem. It is simply defined in terms of the set of equality and
inequality conditions.

Since conditions (8) and (9) are identical, the primal–dual central path can be
split into two components by projecting onto the relevant space, as described in the
following proposition.

Proposition 1. Suppose the feasible sets of the primal and dual programs
contain interior points. Then the primal–dual central path (x���� y���� s���)
exists for all �� 0 � � < �. Furthermore, x��� is the primal central path,
and �y���� s���� is the dual central path. Moreover, x��� and �y���� s����
converge to the analytic centers of the optimal primal solution and dual solution
faces, respectively, as � → 0.

Duality Gap
Let �x���� y���� s���� be on the primal-dual central path. Then from (9) it follows
that

cT x −yT b = yT Ax + sT x −yT b = sT x = n��

The value cT x−yT b = sT x is the difference between the primal objective value and
the dual objective value. This value is always nonnegative (see the weak duality
lemma in Section 4.2) and is termed the duality gap.

The duality gap provides a measure of closeness to optimality. For any primal
feasible x, the value cT x gives an upper bound as cT x � z∗ where z∗ is the optimal
value of the primal. Likewise, for any dual feasible pair �y� s�, the value yT b gives
a lower bound as yT b � z∗. The difference, the duality gap g = cT x−yT b, provides
a bound on z∗ as z∗ � cT x −g� Hence if at a feasible point x, a dual feasible �y� s�
is available, the quality of x can be measured as cT x − z∗ � g�

At any point on the primal–dual central path, the duality gap is equal to n�.
It is clear that as � → 0 the duality gap goes to zero, and hence both x��� and
�y���� s���� approach optimality for the primal and dual, respectively.

5.6 SOLUTION STRATEGIES
The various definitions of the central path directly suggest corresponding strategies
for solution of a linear program. We outline three general approaches here: the
primal barrier or path-following method, the primal-dual path-following method
and the primal-dual potential-reduction method, although the details of their imple-
mentation and analysis must be deferred to later chapters after study of general
nonlinear methods. Table 5.1 depicts these solution strategies and the simplex
methods described in Chapters 3 and 4 with respect to how they meet the three
optimality conditions: Primal Feasibility, Dual Feasibility, and Zero-Duality during
the iterative process.
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Table 5.1 Properties of algorithms

P-F D-F 0-Duality

Primal Simplex
√ √

Dual Simplex
√ √

Primal Barrier
√

Primal-Dual Path-Following
√ √

Primal-Dual Potential-Reduction
√ √

For example, the primal simplex method keeps improving a primal feasible
solution, maintains the zero-duality gap (complementarity slackness condition)
and moves toward dual feasibility; while the dual simplex method keeps
improving a dual feasible solution, maintains the zero-duality gap (complemen-
tarity condition) and moves toward primal feasibility (see Section 4.3). The
primal barrier method keeps improving a primal feasible solution and moves
toward dual feasibility and complementarity; and the primal-dual interior-point
methods keep improving a primal and dual feasible solution pair and move toward
complementarity.

Primal Barrier Method
A direct approach is to use the barrier construction and solve the the problem

minimize cT x −�
∑n

j=1 log xj (10)

subject to Ax = b

x � 0�

for a very small value of �. In fact, if we desire to reduce the duality gap to � it is
only necessary to solve the problem for � = �/n. Unfortunately, when � is small,
the problem (10) could be highly ill-conditioned in the sense that the necessary
conditions are nearly singular. This makes it difficult to directly solve the problem
for small �.

An overall strategy, therefore, is to start with a moderately large � (say � =
100) and solve that problem approximately. The corresponding solution is a point
approximately on the primal central path, but it is likely to be quite distant from the
point corresponding to the limit of � → 0� However this solution point at � = 100
can be used as the starting point for the problem with a slightly smaller �, for this
point is likely to be close to the solution of the new problem. The value of � might
be reduced at each stage by a specific factor, giving �k+1 = ��k, where � is a fixed
positive parameter less than one and k is the stage count.
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If the strategy is begun with a value �0, then at the k-th stage we have
�k = �k�0. Hence to reduce �k/�0 to below �� requires

k = log �

log �

stages.
Often a version of Newton’s method for minimization is used to solve each of

the problems. For the current strategy, Newton’s method works on problem (10)
with fixed � by considering the central path equations (8)

x 	 s = �1
Ax = b

AT y + s = c�
(11)

From a given point x ∈ 	
� p, Newton’s method moves to a closer point x+ ∈ 	

� p

by moving in the directions dx, dy and ds determined from the linearized version
of (11)

�X−2dx +ds = �X−11− c�
Adx = 0�

−AT dy −ds = 0�
(12)

(Recall that X is the diagonal matrix whose diagonal entries are components of
x > 0.) The new point is then updated by taking a step in the direction of dx, as
x+ = x +dx.

Notice that if x	s = �1 for some s = c−AT y, then d ≡ �dx� dy� ds� = 0 because
the current point satisfies Ax = b and hence is already the central path solution for
�. If some component of x 	 s is less than �, then d will tend to increment the
solution so as to increase that component. The converse will occur for components
of x 	 s greater than �.

This process may be repeated several times until a point close enough to the
proper solution to the barrier problem for the given value of � is obtained. That is,
until the necessary and sufficient conditions (7) are (approximately) satisfied.

There are several details involved in a complete implementation and analysis of
Newton’s method. These items are discussed in later chapters of the text. However,
the method works well if either � is moderately large, or if the algorithm is initiated
at a point very close to the solution, exactly as needed for the barrier strategy
discussed in this subsection.

To solve (12), premultiplying both sides by X2 we have

�dx +X2ds = �X1−X2c�

Then, premultiplying by A and using Adx = 0, we have

AX2ds = �AX1−AX2c�
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Using ds = −AT dy we have

�AX2AT �dy = −�AX1+AX2c�

Thus, dy can be computed by solving the above linear system of equations. Then ds

can be found from the third equation in (12) and finally dx can be found from the
first equation in (12), together this amounts to O�nm2 +m3� arithmetic operations
for each Newton step.

∗Primal-Dual Path-Following
Another strategy for solving a linear program is to follow the central path from a
given initial primal-dual solution pair. Consider a linear program in standard form

�LP� minimize cT x

subject to Ax = b

x � 0�

�LD� maximize yT b

subject to yT A+ sT = cT

s � 0�

Assume that
	
� �= ∅; that is, both4 .

	
� p= �x 	 Ax = b� x > 0� �= ∅

and

	
� d= ��y� s� 	 s = c −AT y > 0� �= ∅�

and denote by z∗ the optimal objective value.
The central path can be expressed as

� =
{

�x� y� s� ∈ 	
� 	 x 	 s = xT s

n
1
}

in the primal-dual form. On the path we have x 	 s = �1 and hence sT x = n�� A
neighborhood of the central path � is of the form

� ��� = ��x� y� s� ∈ 	
� 	 �s	x −�1� < ��� where � = sT x/n� (13)

4The symbol ∅ denotes the empty set.
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for some � ∈ �0� 1�, say � = 1/4. This can be thought of as a tube whose center is
the central path.

The idea of the path-following method is to move within a tubular neighborhood
of the central path toward the solution point. A suitable initial point �x0� y0� s0� ∈
� ��� can be found by solving the barrier problem for some fixed �0 or from
an initialization phase proposed later. After that, step by step moves are made,
alternating between a predictor step and a corrector step. After each pair of steps,
the point achieved is again in the fixed given neighborhood of the central path, but
closer to the linear program’s solution set.

The predictor step is designed to move essentially parallel to the true central
path. The step d ≡ �dx� dy� ds� is determined from the linearized version of the
primal-dual central path equations of (9), as

s	dx +x 	ds = ��1−x 	 s�
Adx = 0�

−AT dy −ds = 0�
(14)

where here one selects � = 0. (To show the dependence of d on the current pair
�x� s� and the parameter �, we write d = d�x� s� ��.)

The new point is then found by taking a step in the direction of d, as
�x+� y+� s+� = �x� y� s�+��dx� dy� ds�, where � is the step-size. Note that dT

x ds =
−dT

x AT dy = 0 here. Then

�x+�T s+ = �x +�dx�
T �s+�ds� = xT s+��dT

x s+xT ds� = �1−��xT s�

where the last step follows by multiplying the first equation in (14) by 1T . Thus,
the predictor step reduces the duality gap by a factor 1−�. The maximum possible
step-size � in that direction is made in that parallel direction without going outside
of the neighborhood � �2��.

The corrector step essentially moves perpendicular to the central path in order
to get closer to it. This step moves the solution back to within the neighborhood
� ���� and the step is determined by selecting � = 1 in (14) with � = xT s/n. Notice
that if x 	 s = �1, then d = 0 because the current point is already a central path
solution.

This corrector step is identical to one step of the barrier method. Note, however,
that the predictor–corrector method requires only one sequence of steps, each
consisting of a single predictor and corrector. This contrasts with the barrier method
which requires a complete sequence for each � to get back to the central path, and
then an outer sequence to reduce the �’s.

One can prove that for any �x� y� s� ∈ � ��� with � = xT s/n, the step-size in
the predictor stop satisfies

� � 1

2
√

n
�

Thus, the iteration complexity of the method is O�
√

n� log�1/��� to achieve �/�0 �
� where n�0 is the initial duality gap. Moreover, one can prove that the step-size
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� → 1 as xT s → 0, that is, the duality reduction speed is accelerated as the gap
becomes smaller.

Primal-Dual Potential Function
In this method a primal-dual potential function is used to measure the solution’s
progress. The potential is reduced at each iteration. There is no restriction on either
neighborhood or step-size during the iterative process as long as the potential is
reduced. The greater the reduction of the potential function, the faster the conver-
gence of the algorithm. Thus, from a practical point of view, potential-reduction
algorithms may have an advantage over path-following algorithms where iterates
are confined to lie in certain neighborhoods of the central path.

For x ∈ 	
� p and �y� s� ∈ 	

� d the primal–dual potential function is defined by

�n+��x� s� ≡ �n+�� log�xT s�−
n∑

j=1

log�xjsj�� (15)

where � � 0.
From the arithmetic and geometric mean inequality (also see Exercise 10) we

can derive that

n log�xT s�−
n∑

j=1

log�xjsj� � n log n�

Then

�n+��x� s� = � log�xT s�+n log�xT s�−
n∑

j=1

log�xjsj� � � log�xT s�+n log n� (16)

Thus, for � > 0, �n+��x� s� → −� implies that xT s → 0. More precisely, we have
from (16)

xT s � exp
(

�n+��x� s�−n log n

�

)

�

Hence the primal–dual potential function gives an explicit bound on the magnitude
of the duality gap.

The objective of this method is to drive the potential function down toward
minus infinity. The method of reduction is a version of Newton’s method (14).
In this case we select � = n/�n+�� in (14). Notice that that is a combination of
a predictor and corrector choice. The predictor uses � = 0 and the corrector uses
� = 1� The primal–dual potential method uses something in between. This seems
logical, for the predictor moves parallel to the central path toward a lower duality
gap, and the corrector moves perpendicular to get close to the central path. This new
method does both at once. Of course, this intuitive notion must be made precise.



132 Chapter 5 Interior-Point Methods

For � � √
n, there is in fact a guaranteed decrease in the potential function by

a fixed amount 
 (see Exercises 12 and 13). Specifically,

�n+��x+� s+�−�n+��x� s� � −
 (17)

for a constant 
 � 0�2. This result provides a theoretical bound on the number
of required iterations and the bound is competitive with other methods. However,
a faster algorithm may be achieved by conducting a line search along direction
d to achieve the greatest reduction in the primal-dual potential function at each
iteration.

We outline the algorithm here:

Step 1. Start at a point (x0, y0, s0) ∈ 	
� with �n+��x0� s0� ≤ � log��s0�

T x0� +
n log n+O�

√
n log n� which is determined by an initiation procedure, as discussed

in Section 5.7. Set � ≥ √
n. Set k = 0 and � = n/�n + ��. Select an accuracy

parameter � > 0.

Step 2. Set �x� s� = �xk� sk� and compute �dx� dy� ds� from (14).

Step 3. Step 3. Let xk+1 = xk + �̄dx, yk+1 = yk + �̄dy, and sk+1 = sk + �̄ds where

�̄ = arg min
�≥0

�n+��xk +�dx� sk +�ds��

Step 4. Step 4. Let k = k+1. If sT
k xk

sT
0 x0

≤ �, Stop. Otherwise return to Step 2.

Theorem 2. The algorithm above terminates in at most O�� log�n/���
iterations with

�sk�
T xk

�s0�
T x0

≤ ��

Proof. Note that after k iterations, we have from (17)

�n+��xk� sk� ≤ �n+��x0� s0�−k ·
 ≤ � log��s0�
T x0�+n log n+O�

√
n log n�−k ·
�

Thus, from the inequality (16),

� log�sT
k xk�+n log n ≤ � log�sT

0 x0�+n log n+O�
√

n log n�−k ·
�

or

��log�sT
k xk�− log�sT

0 x0�� ≤ −k ·
+O�
√

n log n��
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Therefore, as soon as k ≥ O�� log�n/���, we must have

��log�sT
k xk�− log�sT

0 x0�� ≤ −� log�1/���

or

sT
k xk

sT
0 x0

≤ ��

Theorem 2 holds for any � ≥ √
n. Thus, by choosing � = √

n, the iteration
complexity bound becomes O�

√
n log�n/���.

Iteration Complexity
The computation of each iteration basically requires solving (14) for d. Note that
the first equation of (14) can be written as

Sdx +Xds = ��1−XS1

where X and S are two diagonal matrices whose diagonal entries are components
of x > 0 and s > 0, respectively. Premultiplying both sides by S−1 we have

dx +S−1Xds = ��S−11−x�

Then, premultiplying by A and using Adx = 0, we have

AS−1Xds = ��AS−11−Ax = ��AS−11−b�

Using ds = −AT dy we have

�AS−1XAT �dy = b−��AS−11�

Thus, the primary computational cost of each iteration of the interior-point
algorithm discussed in this section is to form and invert the normal matrix AXS−1AT ,
which typically requires O�nm2 +m3� arithmetic operations. However, an approx-
imation of this matrix can be updated and inverted using far fewer arithmetic
operations. In fact, using a rank-one technique (see Chapter 10) to update the
approximate inverse of the normal matrix during the iterative progress, one can
reduce the average number of arithmetic operations per iteration to O�

√
nm2�. Thus,

if the relative tolerance � is viewed as a variable, we have the following total
arithmetic operation complexity bound to solve a linear program:

Corollary. Let � = √
n. Then, the algorithm above Theorem 2 terminates in

at most O�nm2 log�n/��� arithmetic operations.
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5.7 TERMINATION AND INITIALIZATION
There are several remaining important issues concerning interior-point algorithms
for linear programs. The first issue involves termination. Unlike the simplex method
which terminates with an exact solution, interior-point algorithms are continuous
optimization algorithms that generate an infinite solution sequence converging to
an optimal solution. If the data of a particular problem are integral or rational, an
argument is made that, after the worst-case time bound, an exact solution can be
rounded from the latest approximate solution. Several questions arise. First, under
the real number computation model (that is, the data consists of real numbers), how
can we terminate at an exact solution? Second, regardless of the data’s status, is
there a practical test, which can be computed cost-effectively during the iterative
process, to identify an exact solution so that the algorithm can be terminated before
the worse-case time bound? Here, by exact solution we mean one that could be found
using exact arithmetic, such as the solution of a system of linear equations, which
can be computed in a number of arithmetic operations bounded by a polynomial in n.

The second issue involves initialization. Almost all interior-point algorithms

require the regularity assumption that
	
� �= ∅. What is to be done if this is not true?

A related issue is that interior-point algorithms have to start at a strictly feasible
point near the central path.

Termination
Complexity bounds for interior-point algorithms generally depend on an � which
must be zero in order to obtain an exact optimal solution. Sometimes it is advanta-
geous to employ an early termination or rounding method while � is still moderately
large. There are five basic approaches.

• A “purification” procedure finds a feasible corner whose objective value is at
least as good as the current interior point. This can be accomplished in strongly
polynomial time (that is, the complexity bound is a polynomial only in the
dimensions m and n). One difficulty is that there may be many non-optimal
vertices close to the optimal face, and the procedure might require many pivot
steps for difficult problems.

• A second method seeks to identify an optimal basis. It has been shown that if the
linear program is nondegenerate, the unique optimal basis may be identified early.
The procedure seems to work well for some problems but it has difficulty if the
problem is degenerate. Unfortunately, most real linear programs are degenerate.

• The third approach is to slightly perturb the data such that the new program
is nondegenerate and its optimal basis remains one of the optimal bases of the
original program. There are questions about how and when to perturb the data
during the iterative process, decisions which can significantly affect the success
of the effort.
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• The fourth approach is to guess the optimal face and find a feasible solution on
that face. It consists of two phases: the first phase uses interior point algorithms to
identify the complementarity partition �P∗�Z∗� (see Exercise 6), and the second
phase adapts the simplex method to find an optimal primal (or dual) basic solution
and one can use �P∗�Z∗� as a starting base for the second phase. This method is
often called the cross-over method. It is guaranteed to work in finite time and is
implemented in several popular linear programming software packages.

• The fifth approach is to guess the optimal face and project the current interior
point onto the interior of the optimal face. See Fig. 5.4. The termination criterion
is guaranteed to work in finite time.

The fourth and fifth methods above are based on the fact that (as observed in practice
and subsequently proved) many interior-point algorithms for linear programming
generate solution sequences that converge to a strictly complementary solution or
an interior solution on the optimal face; see Exercise 8.

Initialization
Most interior-point algorithms must be initiated at a strictly feasible point. The
complexity of obtaining such an initial point is the same as that of solving the
linear program itself. More importantly, a complete algorithm should accomplish
two tasks: 1) detect the infeasibility or unboundedness status of the problem, then
2) generate an optimal solution if the problem is neither infeasible nor unbounded.

Several approaches have been proposed to accomplish these goals:

• The primal and dual can be combined into a single linear feasibility problem, and
a feasible point found. Theoretically, this approach achieves the currently best
iteration complexity bound, that is, O�

√
n log�1/���. Practically, a significant

disadvantage of this approach is the doubled dimension of the system of equations
that must be solved at each iteration.

Central path

Objective
hyperplane

Optimal
face

y*

yk

Fig. 5.4 Illustration of the projection of an interior point onto the optimal face
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• The big-M method can be used by adding one or more artificial column(s) and/or
row(s) and a huge penalty parameter M to force solutions to become feasible
during the algorithm. A major disadvantage of this approach is the numerical
problems caused by the addition of coefficients of large magnitude.

• Phase I-then-Phase II methods are effective. A major disadvantage of this
approach is that the two (or three) related linear programs must be solved sequen-
tially.

• A modified Phase I-Phase II method approaches feasibility and optimality simul-
taneously. To our knowledge, the currently best iteration complexity bound of
this approach is O�n log�1/���, as compared to O�

√
n log�1/��� of the three

above. Other disadvantages of the method include the assumption of non-empty
interior and the need of an objective lower bound.

The HSD Algorithm
There is an algorithm, termed the Homogeneous Self-Dual Algorithm that overcomes
the difficulties mentioned above. The algorithm achieves the theoretically best
O�

√
n log�1/��� complexity bound and is often used in linear programming software

packages.
The algorithm is based on the construction of a homogeneous and self-dual

linear program related to (LP) and (LD) (see Section 5.5). We now briefly explain
the two major concepts, homogeneity and self-duality, used in the construction.

In general, a system of linear equations of inequalities is homogeneous if the
right hand side components are all zero. Then if a solution is found, any positive
multiple of that solution is also a soltution. In the constuction used below, we
allow a single inhomogeneous constraint, often called a normalizing constraint.
Karmarkar’s original canonical form is a homogeneous linear program.

A linear program is termed self-dual if the dual of the problem is equivalent to
the primal. The advantage of self-duality is that we can apply a primal-dual interior-
point algorithm to solve the self-dual problem without doubling the dimension of
the linear system solved at each iteration.

The homogeneous and self-dual linear program (HSDP) is constructed from
(LP) and (LD) in such a way that the point x = 1, y = 0, � = 1, z = 1, � = 1 is
feasible. The primal program is

�HSDP� minimize �n+1��

Subject to Ax −b� +b̄� = 0�
−AT y +c� −c̄� ≥ 0�

bT y −cT x +z̄� ≥ 0�

−b̄T y +c̄T x −z̄� = −�n+1��
y free� x ≥ 0� � ≥ 0� � free�

where

b̄ = b−A1� c̄ = c −1� z̄ = cT 1+1� (18)
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Notice that b̄, c̄, and z̄ represent the “infeasibility” of the initial primal point, dual
point, and primal-dual “gap,” respectively. They are chosen so that the system is
feasible. For example, for the point x = 1, y = 0, � = 1, � = 1, the last equation
becomes

0+ cT x −1T x − �cT x +1� = −n−1�

Note also that the top two constraints in (HSDP), with � = 1 and � = 0,
represent primal and dual feasibility (with x ≥ 0). The third equation represents
reversed weak duality (with bT y ≥ cT x) rather than the reverse. So if these three
equations are satisfied with � = 1 and � = 0 they define primal and dual optimal
solutions. Then, to achieve primal and dual feasibility for x = 1, �y� s� = �0� 1�, we
add the artificial variable �. The fourth constraint is added to achieve self-duality.

The problem is self-dual because its overall coefficient matrix has the property
that its transpose is equal to its negative. It is skew-symmetric.

Denote by s the slack vector for the second constraint and by � the slack
scalar for the third constraint. Denote by �h the set of all points (y, x, �, �, s, �)
that are feasible for (HSDP). Denote by � 0

h the set of strictly feasible points with
�x� �� s� �� > 0 in �h. By combining the constraints (Exercise 14) we can write the
last (equality) constraint as

1T x +1T s+ � +�− �n+1�� = �n+1�� (19)

which serves as a normalizing constraint for (HSDP). This implies that for 0 ≤ � ≤ 1
the variables in this equation are bounded.

We state without proof the following basic result.

Theorem 1 Consider problems (HSDP).

(i) (HSDP) has an optimal solution and its optimal solution set is bounded.
(ii) The optimal value of (HSDP) is zero, and

�y� x� �� �� s� �� ∈ �h implies that �n+1�� = xT s+ ���

(iii) There is an optimal solution �y∗� x∗� �∗� �∗ = 0� s∗� �∗� ∈ �h such that
(

x∗ + s∗

�∗ +�∗

)

> 0�

which we call a strictly self-complementary solution.

Part (ii) of the theorem shows that as � goes to zero, the solution tends toward
satisfying complementary slackness between x and s and between � and �. Part
(iii) shows that at a solution with � = 0, the complemenary slackness is strict in
the sense that at least one member of a complemenary pair must be positive. For
example, x1s1 = 0 is required by complementary slackness, but in this case x1 = 0,
s1 = 0 will not occur; exactly one of them must be positive.

We now relate optimal solutions to (HSDP) to those for (LP) and (LD).
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Theorem 2 Let (y∗� x∗� �∗� �∗ = 0, s∗� �∗) be a strictly-self complementary
solution for (HSDP).

(i) (LP) has a solution (feasible and bounded) if and only if �∗ > 0. In this
case, x∗/�∗ is an optimal solution for (LP) and y∗/�∗� s∗/�∗ is an optimal
solution for (LD).

(ii) (LP) has no solution if and only if �∗ > 0. In this case, x∗/�∗ or y∗/�∗

or both are certificates for proving infeasibility: if cT x∗ < 0 then (LD) is
infeasible; if −bT y∗ < 0 then (LP) is infeasible; and if both cT x∗ < 0 and
−bT y∗ < 0 then both (LP) and (LD) are infeasible.

Proof. We prove the second statement. We first assumme that one of (LP) and
(LD) is infeasible, say (LD) is infeasible. Then there is some certificate x̄ ≥ 0 such
that Ax̄ = 0 and CT x̄ = −1. Let �ȳ = 0� s̄ = 0� and

� = n+1
1T x̄ +1T s̄+1

> 0�

Then one can verify that

ỹ∗ = �ȳ� x̃∗ = �x̄� �̃∗ = 0� �̃∗ = 0� s̃∗ = �s̄� �̃∗ = �

is a self-complementary solution for (HSDP). Since the supporting set (the set of
positive entries) of a strictly complementary solution for (HSDP) is unique (see
Exercise 6), �∗ > 0 at any strictly complementary solution for (HSDP).

Conversely, if �∗ = 0, then �∗ > 0, which implies that cT x∗ − bT y∗ < 0, i.e.,
at least one of cT x∗ and −bT y∗ is strictly less than zero. Let us say cT x∗ < 0. In
addition, we have

Ax∗ = 0� AT y∗ + s∗ = 0� �x∗�T s∗ = 0 and x∗ + s∗ > 0�

From Farkas’ lemma (Exercise 5), x∗/�∗ is a certificate for proving dual
infeasibility. The other cases hold similarly.

To solve (HSDP), we have the following theorem that resembles the the central
path analyzed for (LP) and (LD).

Theorem 3 Consider problem (HSDP). For any � > 0, there is a unique

�y� x� �� �� s� �� in
	
�h, such that

(
x 	 s
��

)

= �1�

Moreover, �x� �� = (1, 1), �y� s� �� = (0, 0, 1) and � = 1 is the solution with
� = 1.
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Theorem 3 defines an endogenous path associated with (HSDP):

� =
{

�y� x� �� �� s� �� ∈ � 0
h 	

(
x 	 s
��

)

= xT s+ ��

n+1
1
}

�

Furthermore, the potential function for (HSDP) can be defined as

�n+1+��x� �� s� �� = �n+1+�� log�xT s+ ���−
n∑

j=1

log�xjsj�− log����� (20)

where � ≥ 0. One can then apply the interior-point algorithms described earlier to
solve (HSDP) from the initial point �x� �� = �1� 1�� �y� s� �� = �0� 1� 1� and � = 1
with � = �xT s+ ���/�n+1� = 1.

The HSDP method outlined above enjoys the following properties:
• It does not require regularity assumptions concerning the existence of optimal,

feasible, or interior feasible solutions.
• It can be initiated at x = 1, y = 0 and s = 1, feasible or infeasible, on the

central ray of the positive orthant (cone), and it does not require a big-M penalty
parameter or lower bound.

• Each iteration solves a system of linear equations whose dimension is almost the
same as that used in the standard (primal-dual) interior-point algorithms.

• If the linear program has a solution, the algorithm generates a sequence that
approaches feasibility and optimality simultaneously; if the problem is infeasible
or unbounded, the algorithm produces an infeasibility certificate for at least one
of the primal and dual problems; see Exercise 5.

5.8 SUMMARY
The simplex method has for decades been an efficient method for solving linear
programs, despite the fact that there are no theoretical results to support its
efficiency. Indeed, it was shown that in the worst case, the method may visit every
vertex of the feasible region and this can be exponential in the number of variables
and constraints. If on practical problems the simplex method behaved according
to the worst case, even modest problems would require years of computer time
to solve. The ellipsoid method was the first method that was proved to converge
in time proportional to a polynomial in the size of the program, rather than to
an exponential in the size. However, in practice, it was disappointingly less fast
than the simplex method. Later, the interior-point method of Karmarkar signifi-
cantly advanced the field of linear programming, for it not only was proved to be a
polynomial-time method, but it was found in practice to be faster than the simplex
method when applied to general linear programs.

The interior-point method is based on introducing a logarithmic barrier function
with a weighting parameter �; and now there is a general theoretical structure
defining the analytic center, the central path of solutions as � → 0, and the duals
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of these concepts. This structure is useful for specifying and analyzing various
versions of interior point methods.

Most methods employ a step of Newton’s method to find a point near the
central path when moving from one value of � to another. One approach is the
predictor–corrector method, which first takes a step in the direction of decreasing �
and then a corrector step to get closer to the central path. Another method employs
a potential function whose value can be decreased at each step, which guarantees
convergence and assures that intermediate points simultaneously make progress
toward the solution while remaining close to the central path.

Complete algorithms based on these approaches require a number of other
features and details. For example, once systematic movement toward the solution
is terminated, a final phase may move to a nearby vertex or to a non-vertex point
on a face of the constraint set. Also, an initial phase must be employed to obtain
an feasible point that is close to the central path from which the steps of the search
algorithm can be started. These features are incorporated into several commercial
software packages, and generally they perform well, able to solve very large linear
programs in reasonable time.

5.9 EXERCISES
1. Using the simplex method, solve the program (1) and count the number of pivots required.

2. Prove the volume reduction rate in Theorem 1 for the ellipsoid method.

3. Develop a cutting plane method, based on the ellipsoid method, to find a point satisfying
convex inequalities

fi�x� � 0� i = 1� ����m� �x�2 � R2�

where fi’s are convex functions of x in C1.

4. Consider the linear program (5) and assume that
	
� p = �x 	 Ax = b� x > 0� is nonempty

and its optimal solution set is bounded. Show that the dual of the problem has a nonempty
interior.

5. (Farkas’ lemma) Prove: Exactly one of the feasible sets �x 	 Ax = b� x � 0� and
�y 	 yT A � 0� yT b = 1� is nonempty. A vector y in the latter set is called an infeasibility
certificate for the former.

6. (Strict complementarity) Consider any linear program in standard form and its dual and
let both of them be feasible. Then, there always exists a strictly complementary solution
pair, �x∗� y∗� s∗�, such that

x∗
j s

∗
j = 0 and x∗

j + s∗
j > 0 for all j�

Moreover, the supports of x∗ and s∗, P∗ = �j 	 x∗
j > 0� and Z∗ = �j 	 x∗

j > 0�, are invariant
among all strictly complementary solution pairs.

7. (Central path theorem) Let �x���� y���� s���� be the central path of (9). Then prove
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(a) The central path point �x���� y���� s���� is bounded for 0 < � � �0 and any given
0 < �0 < �.

(b) For 0 < �′ < �,

cT x��′� � cT x��� and bT y��′� � bT y����

Furthermore, if x��′� �= x��� and y��′� �= y���,

cT x��′� < cT x��� and bT y��′� > bT y����

(c) �x���� y���� s���� converges to an optimal solution pair for (LP) and (LD).
Moreover, the limit point x�0�P∗ is the analytic center on the primal optimal face,
and the limit point s�0�Z∗ is the analytic center on the dual optimal face, where
�P∗�Z∗� is the strict complementarity partition of the index set �1� 2� ���� n�.

8. Consider a primal-dual interior point �x� y� s� ∈ � ��� where � < 1. Prove that there is a
fixed quantity 
 > 0 such that

xj � 
� for all j ∈ P∗

and

sj � 
� for all j ∈ Z∗�

where �P∗�Z∗� is defined in Exercise 6.

9. (Potential level theorem) Define the potential level set

��
� 	= ��x� y� s� ∈ 	
� 	 �n+��x� s� � 
��

Prove

(a)

��
1� ⊂ ��
2� if 
1 � 
2�

(b) For every 
, ��
� is bounded and its closure ��
� has non-empty intersection with
the solution set.

10. Given 0 < x� 0 < s ∈ En, show that

n log�xT s�−
n∑

j=1

log�xjsj� � n log n

and

xT s � exp
[

�n+p�x� s�−n log n

p

]

�
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11. (Logarithmic approximation) If d ∈ En such that �d�� < 1 then

1T d �
n∑

i=1

log�1+di� � 1T d − �d�2
2�1−�d���

�

[Note:If d = �d1�d2� � � � dn� then �d�� ≡ maxi�di��]

12. Let the direction �dx� dy� ds� be generated by system (14) with � = n/�n + �� and
� = xT s/n, and let the step size be

� = �
√

min�Xs�

��XS�−1/2� xT s
�n+��

1−Xs�� � (21)

where � is a positive constant less than 1. Let

x+ = x +�dx� y+ = y +�dy� and s+ = s+�ds�

Then, using Exercise 11 and the concavity of the logarithmic function show

�x+� y+� s+� ∈ 	
� and

�n+��x+� s+�−�n+��x� s�

� −�
√

min�Xs� ��Xs�−1/2�1− �n+��

xT s
Xs��+ �2

2�1−��
�

13. Let v = Xs in Exercise 12. Prove

√
min�v� �V−1/2�1− �n+��

1T v
v�� �

√
3/4 �

where V is the diagonal matrix of v. Thus, the two exercises imply

�n+��x+� s+�−�n+��x� s� � −�
√

3/4+ �2

2�1−��
= −


for a constant 
. One can verify that 
 > 0�2 when � = 0�4.

14. Prove property (19) for (HDSP).
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Chapter 6 TRANSPORTATION
AND NETWORK
FLOW PROBLEMS

There are a number of problems of special structure that are important components
of the subject of linear programming. A broad class of such special problems
is represented by the transportation problem and related problems treated in the
first five sections of this chapter, and network flow problems treated in the last
three sections. These problems are important because, first, they represent broad
areas of applications that arise frequently. Indeed, many of these problems were
originally formulated prior to the general development of linear programming, and
they continue to arise in a variety of applications. Second, these problems are
important because of their associated rich theory, which provides important insight
and suggests new general developments.

The chapter is roughly divided into two parts. In the first part the transportation
problem is examined from the viewpoint of the revised simplex method, which
takes an extremely simple form for this problem. The second part of the chapter
introduces graphs and network flows. The transportation algorithm is generalized
and given new interpretations. Next, a special, highly efficient algorithm, the tree
algorithm, is developed for solution of the maximal flow problem.

6.1 THE TRANSPORTATION PROBLEM
The transportation problem was stated briefly in Chapter 2. We restate it here. There
are m origins that contain various amounts of a commodity that must be shipped
to n destinations to meet demand requirements. Specifically, origin i contains an
amount ai, and destination j has a requirement of amount bj . It is assumed that the
system is balanced in the sense that total supply equals total demand. That is,

m∑

i=1

ai =
n∑

j=1

bj� (1)

The numbers ai and bj , i = 1� 2� � � � �m� j = 1� 2� � � � � n, are assumed to be nonneg-
ative, and in many applications they are in fact nonnegative integers. There is a unit
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cost cij associated with the shipping of the commodity from origin i to destination
j. The problem is to find the shipping pattern between origins and destinations that
satisfies all the requirements and minimizes the total shipping cost.

In mathematical terms the above problem can be expressed as finding a set of
xij’s, i = 1� 2� � � � �m� j = 1� 2� � � � � n, to

minimize
m∑

i=1

n∑

j=1

cijxij

subject to
n∑

j=1

xij = ai for i = 1� 2� � � � � m (2)

m∑

i=1

xij = bj for j = 1� 2� � � � � n

xij � 0 for all i and j�

This mathematical problem, together with the assumption (1), is the general trans-
portation problem. In the shipping context, the variables xij represent the amounts
of the commodity shipped from origin i to destination j.

The structure of the problem can be seen more clearly by writing the constraint
equations in standard form:

x11 +x12 +· · ·+x1n = a1

x21 +x22 +· · ·+x2n = a2
���

xm1 +xm2 +· · ·+xmn = am

x11 +x21 xm1 = b1

x12 + x22 + xm2 = b2

���
x1n + x2n + xmn = bn

(3)

The structure is perhaps even more evident when the coefficient matrix A of the
system of equations above is expressed in vector–matrix notation as

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1T

1T

·
·
·
1T

I I · · · I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

� (4)

where 1 = �1� 1� � � � � 1� is n-dimensional, and where each I is an n × n identity
matrix.
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In practice it is usually unnecessary to write out the constraint equations of the
transportation problem in the explicit form (3). A specific transportation problem
is generally defined by simply presenting the data in compact form, such as:

a = �a1� a2� � � � � am�

b = �b1� b2� � � � � bn�

C =

⎡

⎢
⎢
⎣

c11 c12 · · · c1n

c21 c22 · · · c2n

cm1 cm2 · · · cmn

⎤

⎥
⎥
⎦ �

The solution can also be represented by an m × n array, and as we shall see, all
computations can be made on arrays of a similar dimension.

Example 1. As an example, which will be solved completely in a later section, a
specific transportation problem with four origins and five destinations is defined by

a = �30� 80� 10� 60�

b = �10� 50� 20� 80� 20�

C =

⎡

⎢
⎢
⎣

3 4 6 8 9
2 2 4 5 5
2 2 2 3 2
3 3 2 4 2

⎤

⎥
⎥
⎦ �

Note that the balance requirement is satisfied, since the sum of the supply and the
demand are both 180.

Feasibility and Redundancy
A first step in the study of the structure of the transportation problem is to show
that there is always a feasible solution, thus establishing that the problem is well
defined. A feasible solution can be found by allocating shipments from origins to
destinations in proportion to supply and demand requirements. Specifically, let S
be equal to the total supply (which is also equal to the total demand). Then let
xij = aibj/S for i = 1� 2� � � � �m; j = 1� 2� � � � � n. The reader can easily verify that
this is a feasible solution. We also note that the solutions are bounded, since each
xij is bounded by ai (and by bj). A bounded program with a feasible solution has
an optimal solution. Thus, a transportation problem always has an optimal solution.

A second step in the study of the structure of the transportation problem is based
on a simple examination of the constraint equations. Clearly there are m equations
corresponding to origin constraints and n equations corresponding to destination
constraints—a total of n+m. However, it is easily noted that the sum of the origin
equations is

m∑

i=1

n∑

j=1

xij =
m∑

i=1

ai� (5)

and the sum of the destination equations is

n∑

j=1

m∑

i=1

xij =
n∑

j=1

bj� (6)
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The left-hand sides of these equations are equal. Since they were formed by two
distinct linear combinations of the original equations, it follows that the equations
in the original system are not independent. The right-hand sides of (5) and (6)
are equal by the assumption that the system is balanced, and therefore the two
equations are, in fact, consistent. However, it is clear that the original system of
equations is redundant. This means that one of the constraints can be eliminated
without changing the set of feasible solutions. Indeed, any one of the constraints
can be chosen as the one to be eliminated, for it can be reconstructed from those
remaining. The above observations are summarized and slightly extended in the
following theorem.

Theorem. A transportation problem always has a solution, but there is exactly
one redundant equality constraint. When any one of the equality constraints
is dropped, the remaining system of n+m− 1 equality constraints is linearly
independent.

Proof. The existence of a solution and a redundancy were established above. The
sum of all origin constraints minus the sum of all destination constraints is identically
zero. It follows that any constraint can be expressed as a linear combination of the
others, and hence any one constraint can be dropped.

Suppose that one equation is dropped, say the last one. Suppose that there were
a linear combination of the remaining equations that was identically zero. Let the
coefficients of such a combination be �i, i = 1� 2� � � � �m, and �j , j = 1� 2� � � � � n−1.
Referring to (3), it is seen that each xin, i = 1� 2� � � � �m, appears only in the ith
equation (since the last one has been dropped). Thus �i = 0 for i = 1� 2� � � � � n.
In the remaining equations xij appears in only one equation, and hence �j = 0,
j = 1� 2� � � � � n− 1. Hence the only linear combination that yields zero is the zero
combination, and therefore the system of equations is linearly independent.

It follows from the above discussion that a basis for the transportation problem
consists of m+n−1 vectors, and a nondegenerate basic feasible solution consists
of m+n− 1 variables. The simple solution found earlier in this section is clearly
not a basic solution.

6.2 FINDING A BASIC FEASIBLE SOLUTION
There is a straightforward way to compute an initial basic feasible solution to a trans-
portation problem. The method is worth studying at this stage because it introduces
the computational process that is the foundation for the general solution technique
based on the simplex method. It also begins to illustrate the fundamental property of
the structure of transportation problems that is discussed in the next section.

The Northwest Corner Rule
This procedure is conducted on the solution array shown below:
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x11 x12 x13 · · · x1n a1

x21 x22 x23 · · · x2n a2
���

���

xm1 xm2 xm3 · · · xmn am

b1 b2 b3 · · · bn

(7)

The individual elements of the array appear in cells and represent a solution. An
empty cell denotes a value of zero.

Beginning with all empty cells, the procedure is given by the following steps:

Step 1. Start with the cell in the upper left-hand corner.

Step 2. Allocate the maximum feasible amount consistent with row and column
sum requirements involving that cell. (At least one of these requirements will then
be met.)

Step 3. Move one cell to the right if there is any remaining row requirement
(supply). Otherwise move one cell down. If all requirements are met, stop; otherwise
go to Step 2.

The procedure is called the Northwest Corner Rule because at each step it
selects the cell in the upper left-hand corner of the subarray consisting of current
nonzero row and column requirements.

Example 1. A basic feasible solution constructed by the Northwest Corner Rule
is shown below for Example 1 of the last section.

10 20 30
30 20 30 80

10 10
40 20 60

10 50 20 80 20

(8)

In the first step, at the upper left-hand corner, a maximum of 10 units could be
allocated, since that is all that was required by column 1. This left 30 − 10 = 20
units required in the first row. Next, moving to the second cell in the top row, the
remaining 20 units were allocated. At this point the row 1 requirement is met, and it
is necessary to move down to the second row. The reader should be able to follow
the remaining steps easily.

There is the possibility that at some point both the row and column requirements
corresponding to a cell may be met. The next entry will then be a zero, indicating a
degenerate basic solution. In such a case there is a choice as to where to place the
zero. One can either move right or move down to enter the zero. Two examples of
degenerate solutions to a problem are shown below:
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30 30
20 20 40

0 20 20
20 40 60

50 20 40 40

30 30
20 20 0 40

20 20
20 40 60

50 20 40 40

It should be clear that the Northwest Corner Rule can be used to obtain different
basic feasible solutions by first permuting the rows and columns of the array before
the procedure is applied. Or equivalently, one can do this indirectly by starting the
procedure at an arbitrary cell and then considering successive rows and columns in
an arbitrary order.

6.3 BASIS TRIANGULARITY
We now establish the most important structural property of the transportation
problem: the triangularity of all bases. This property simplifies the process of
solution of a system of equations whose coefficient matrix corresponds to a basis,
and thus leads to efficient implementation of the simplex method.

Triangular Matrices
The concept of upper and lower triangular matrices was introduced earlier
in Section 3.8 in connection with Gaussian elimination methods. (Also see
Appendix C.) It is useful at this point to generalize slightly the notion of upper and
lower triangularity.

Definition. A nonsingular square matrix M is said to be triangular if by a
permutation of its rows and columns it can be put in the form of a lower
triangular matrix.

Clearly a nonsingular lower triangular matrix is triangular according to the
above definition. A nonsingular upper triangular matrix is also triangular, since by
reversing the order of its rows and columns it becomes lower triangular.

There is a simple and useful procedure for determining whether a given matrix
M is triangular:

Step 1. Find a row with exactly one nonzero entry.

Step 2. Form a submatrix of the matrix used in Step 1 by crossing out the row
found in Step 1 and the column corresponding to the nonzero entry in that row.
Return to Step 1 with this submatrix.

If this procedure can be continued until all rows have been eliminated, then the
matrix is triangular. It can be put in lower triangular form explicitly by arranging
the rows and columns in the order that was determined by the procedure.
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Example 1. Shown below on the left is a matrix before the above procedure is
applied to it. Indicated along the edges of this matrix is the order in which the rows
and columns are indexed according to the procedure. Shown at the right is the same
matrix when its rows and columns are permuted according to the order found.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 0 1 0 2
4 1 0 5 0 0
0 0 0 4 0 0
2 1 7 2 1 3
2 3 2 0 0 3
0 2 0 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

4
3
1
6
5
2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 0 0 0 0 0
1 2 0 0 0 0
5 1 4 0 0 0
1 2 1 2 0 0
0 3 2 3 2 0
2 1 2 3 7 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

3 2 5 1 6 4

Triangularization

The importance of triangularity is, of course, the associated method of back
substitution for the solution of a triangular system of equations. Suppose that
M is triangular. A permutation of rows is simply a reordering of the equations,
and a permutation of columns is simply a reordering of the variables. So after
appropriate reordering, the system of equations Mx = d takes a lower triangular
form and it can be solved in the familiar way: by first solving for x1 from the first
equation, then substituting this value into the second equation to solve for x2, and
so forth.

This method also applies to systems of the form �T M = cT . In this case the
components of � will be determined in reverse order, starting with 	n. This is
because the system, when written in standard column form, has coefficient matrix
MT , which is upper triangular. The upper triangular form corresponds to that
obtained by standard Gaussian elimination applied to an arbitrary system, and this
accounts for the terminology “back substitution” as discussed in Appendix C.

Triangular Bases
We are now prepared to derive the most important structural property of the trans-
portation problem.

Basis Triangularity Theorem. Every basis of the transportation problem is
triangular.

Proof. Refer to the system of constraints (3). Let us change the sign of the top
half of the system; then the coefficient matrix of the system consists of entries that
are either +1, −1, or 0. Following the result of the theorem in Section 6.1, delete
any one of the equations to eliminate the redundancy. From the resulting coefficient
matrix, form a basis B by selecting a nonsingular subset of m+n−1 columns.

Each column of B contains at most two nonzero entries, a +1 and a −1. Thus
there are at most 2�m + n − 1� nonzero entries in the basis. However, if every
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column contained two nonzero entries, then the sum of all rows would be zero,
contradicting the nonsingularity of B. Thus at least one column of B must contain
only one nonzero entry. This means that the total number of nonzero entries in B
is less than 2�m+n− 1�. It then follows that there must be a row with only one
nonzero entry; for if every row had two or more nonzero entries, the total number
would be at least 2�m + n − 1�. This means that the first step of the procedure
for verifying triangularity is satisfied. A similar argument can be applied to the
submatrix of B obtained by crossing out the row with the single nonzero entry and
the column corresponding to that entry; that submatrix must also contain a row with
a single nonzero entry. This argument can be continued, establishing that the basis
B is triangular.

Example 2. As an illustration of the Basis Triangularity Theorem, consider the
basis selected by the Northwest Corner Rule in Example 1 of Section 6.2. This
basis is represented below, except that only the basic variables are indicated, not
their values.

x x 30
x x x 80

x 10
x x 60

10 50 20 80 20

A row in a basis matrix corresponds to an equation in the original system and is
associated with a constraint either on a row or column sum in the solution array. In
this example the equation corresponding to the first column sum contains only one
basis variable, x11. The value of this variable can be found immediately to be 10.
The next equation corresponds to the first row sum. The corresponding variable is
x12, which can be found to be 20, since x11 is known. Progression in this manner
through the basis variables is equivalent to back substitution.

Example 3. Represented below is another basis for Example 2. We must scan
the rows and columns to find one with a single basic variable. The value of this
variable can be easily found. Such a row or column always exists, since every basis
is triangular. Then this row or column is crossed out and the procedure repeated.
The numbers in the cells indicate an acceptable order of computation, although
there are several others.

x 1 x 5 x 6 30
x 2 x 3 80

x 4 10
x 8 x 7 60

10 50 20 80 20
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Integer Solutions
Since any basis matrix is triangular and all nonzero elements are equal to one (or
minus one if the signs of some equations are changed), it follows that the process
of back substitution will simply involve repeated additions and subtractions of the
given row and column sums. No multiplication is required. It therefore follows that
if the original row and column totals are integers, the values of all basic variables
will be integers. This is an important result, which we summarize by a corollary to
the Basis Triangularity Theorem.

Corollary. If the row and column sums of a transportation problem are
integers, then the basic variables in any basic solution are integers.

6.4 SIMPLEX METHOD FOR TRANSPORTATION
PROBLEMS

Now that the structural properties of the transportation problem have been
developed, it is a relatively straightforward task to work out the details of the
simplex method for the transportation problem. A major objective is to exploit fully
the triangularity property of bases in order to achieve both computational efficiency
and a compact representation of the method. The method used is actually a direct
adaptation of the version of the revised simplex method presented in the first part of
Section 3.7. The basis is never inverted; instead, its triangular form is used directly
to solve for all required variables.

Simplex Multipliers
Simplex multipliers are associated with the constraint equations. In this case we
partition the vector of multipliers as � = �u� v�. Here, ui represents the multiplier
associated with the ith row sum constraint, and vj represents the multiplier associated
with the jth column sum constraint. Since one of the constraints is redundant, an
arbitrary value may be assigned to any one of the multipliers (see Exercise 4,
Chapter 4). For notational simplicity we shall at this point set 
n = 0.

Given a basis B, the simplex multipliers are found to be the solution to the
equation �T B = cT

B . To determine the explicit form of these equations, we again
refer to the original system of constraints (3). If xij is basic, then the corresponding
column from A will be included in B. This column has exactly two +1 entries:
one in the ith position of the top portion and one in the jth position of the bottom
portion. This column thus generates the simplex multiplier equation ui +
j = cij ,
since ui and 
j are the corresponding components of the multiplier vector. Overall,
the simplex multiplier equations are

ui +
j = cij� (9)
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for all i� j for which xij is basic. The coefficient matrix of this system is the
transpose of the basis matrix and hence it is triangular. Thus, this system can be
solved by back substitution. This is similar to the procedure for finding the values
of basic variables and, accordingly, as another corollary of the Triangular Basis
Theorem, an integer property holds for simplex multipliers.

Corollary. If the unit costs cij of a transportation problem are all integers,
then (assuming one simplex multiplier is set arbitrarily equal to an integer)
the simplex multipliers associated with any basis are integers.

Once the simplex multipliers are known, the relative cost coefficients for
nonbasic variables can be found in the usual manner as rT

D = cT
D −�T D. In this case

the relative cost coefficients are

rij = cij −ui −
j for i = 1� 2� � � � � m

j = 1� 2� � � � � n� (10)

This relation is valid for basic variables as well if we define relative cost coefficients
for them—having value zero.

Given a basis, computation of the simplex multipliers is quite similar to the
calculation of the values of the basic variables. The calculation is easily carried out
on an array of the form shown below, where the circled elements correspond to the
positions of the basic variables in the current basis.

c11 ©c12 c13 · · · c1n u1

c21 ©c22 c23 · · · c2n u2

���
���

���
cm1 · · · ©cmn um


1 
2 · · · 
n

In this case the main part of the array, with the coefficients cij , remains fixed, and
we calculate the extra column and row corresponding to u and v.

The procedure for calculating the simplex multipliers is this:

Step 1. Assign an arbitrary value to any one of the multipliers.

Step 2. Scan the rows and columns of the array until a circled element cij is found
such that either ui or 
j (but not both) has already been determined.

Step 3. Compute the undetermined ui or 
j from the equation cij = ui +
j . If all
multipliers are determined, stop. Otherwise, return to Step 2.

The triangularity of the basis guarantees that this procedure can be carried
through to determine all the simplex multipliers.

Example 1. Consider the cost array of Example 1 of Section 5.1, which is shown
below with the circled elements corresponding to a basic feasible solution (found
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by the Northwest Corner Rule). Only these numbers are used in the calculation of
the multipliers.

©3 ©4 6 8 9
2 ©2 ©4 ©5 5
2 2 2 ©3 2
3 3 2 ©4 ©2

We first arbitrarily set 
5 = 0. We then scan the cells, searching for a circled
element for which only one multiplier must be determined. This is the bottom right
corner element, and it gives u4 = 2. Then, from the equation 4 = 2+
4, 
4 is found
to be 2. Next, u3 and u2 are determined, then 
3 and 
2, and finally u1 and 
1. The
result is shown below:

u

©3 ©4 6 8 9 5
2 ©2 ©4 ©5 5 3
2 2 2 ©3 2 1
3 3 2 ©4 ©2 2


 −2 −1 1 2 0

Cycle of Change
In accordance with the general simplex procedure, if a nonbasic variable has an
associated relative cost coefficient that is negative, then that variable is a candidate
for entry into the basis. As the value of this variable is gradually increased, the
values of the current basic variables will change continuously in order to maintain
feasibility. Then, as usual, the value of the new variable is increased precisely to
the point where one of the old basic variables is driven to zero.

We must work out the details of how the values of the current basic variables
change as a new variable is entered. If the new basic vector is d, then the change
in the other variables is given by −B−1d, where B is the current basis. Hence, once
again we are faced with a problem of solving a system associated with the triangular
basis, and once again the solution has special properties. In the next theorem recall
that A is defined by (4).

Theorem. Let B be a basis from A (ignoring one row), and let d be another
column. Then the components of the vector y = B−1d are either 0� +1, or −1.

Proof. Let y be the solution to the equation By = d. Then y is the representation
of d in terms of the basis. This equation can be solved by Cramer’s rule as

yk = det Bk

det B
�

where Bk is the matrix obtained by replacing the kth column of B by d. Both B and
Bk are submatrices of the original constraint matrix A. The matrix B may be put
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in triangular form with all diagonal elements equal to +1. Hence, accounting for
the sign change that may result from the combined row and column interchanges,
det B = +1 or −1. Likewise, it can be shown (see Exercise 3) that det Bk = 0, +1,
or −1. We conclude that each component of y is either 0, +1, or −1.

The implication of the above result is that when a new variable is added to the
solution at a unit level, the current basic variables will each change by +1, −1,
or 0. If the new variable has a value �, then, correspondingly, the basic variables
change by +�, −�, or 0. It is therefore only necessary to determine the signs of
change for each basic variable.

The determination of these signs is again accomplished by row and column
scanning. Operationally, one assigns a + to the cell of the entering variable to
represent a change of +�, where � is yet to be determined. Then +’s, −’s, and 0’s
are assigned, one by one, to the cells of some basic variables, indicating changes
of +�, −�, or 0 to maintain a solution. As usual, after each step there will always
be an equation that uniquely determines the sign to be assigned to another basic
variable. The result will be a sequence of pluses and minuses assigned to cells that
form a cycle leading from the cell of the entering variable back to that cell. In
essence, the new change is part of a cycle of redistribution of the commodity flow
in the transportation system.

Once the sequence of +’s, −’s, and 0’s is determined, the new basic feasible
solution is found by setting the level of the change �. This is set so as to drive one
of the old basic variables to zero. One must simply examine those basic variables for
which a minus sign has been assigned, for these are the ones that will decrease as
the new variable is introduced. Then � is set equal to the smallest magnitude of these
variables. This value is added to all cells that have a + assigned to them and subtracted
from all cells that have a − assigned. The result will be the new basic feasible solution.

The procedure is illustrated by the following example.

Example 3. A completed solution array is shown below:

100 10
20− 10+ 30

20+ 100 30− 60
100 10
10− + 400 50
40 10 30 40 40

In this example x53 is the entering variable, so a plus sign is assigned there. The signs
of the other cells were determined in the order x13, x23, x25, x35, x32, x31, x41, x51, x54.
The smallest variable with a minus assigned to it is x51 = 10. Thus we set � = 10.

The Transportation Algorithm
It is now possible to put together the components developed to this point in the form of
a complete revised simplex procedure for the transportation problem. The steps are:
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Step 1. Compute an initial basic feasible solution using the Northwest Corner Rule
or some other method.

Step 2. Compute the simplex multipliers and the relative cost coefficients. If all
relative cost coefficients are nonnegative, stop; the solution is optimal. Otherwise,
go to Step 3.

Step 3. Select a nonbasic variable corresponding to a negative cost coefficient to
enter the basis (usually the one corresponding to the most negative cost coefficient).
Compute the cycle of change and set � equal to the smallest basic variable with a
minus assigned to it. Update the solution. Go to Step 2.

Example 4. We can now completely solve the problem that was introduced in
Example 1 of the first section. The requirements and a first basic feasible solution
obtained by the Northwest Corner Rule are shown below. The plus and minus
signs indicated on the array should be ignored at this point, since they cannot be
computed until the next step is completed.

10 20 30
30 20− 30+ 80

100 10
+ 40− 200 60

10 50 20 80 20

The cost coefficients of the problem are shown in the array below, with the circled
cells corresponding to the current basic variables. The simplex multipliers, computed
by row and column scanning, are shown as well.

©3 ©4 6 8 9 5
2 ©2 ©4 ©5 5 3
2 2 2 ©3 2 1
3 3 2 ©4 ©2 2

−2 −1 1 2 0

The relative cost coefficients are found by subtracting ui +
j from cij . In this case
the only negative result is in cell 4,3; so variable x43 will be brought into the basis.
Thus a + is entered into this cell in the original array, and the cycle of zeros and
plus and minus signs is determined as shown in that array. (It is not necessary to
continue scanning once a complete cycle is determined.)

The smallest basic variable with a minus sign is 20 and, accordingly, 20 is
added or subtracted from elements of the cycle as indicated by the signs. This leads
to the new basic feasible solution shown in the array below:
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10 20 30
30 50 80

10 10
20 20 20 60

10 50 20 80 20

The new simplex multipliers corresponding to the new basis are computed, and
the cost array is revised as shown below. In this case all relative cost coefficients
are positive, indicating that the current solution is optimal.

©3 ©4 6 8 9 5
2 ©2 4 ©5 5 3
2 2 2 ©3 2 1
3 3 ©2 ©4 ©2 2

−2 −1 0 2 0

Degeneracy
As in all linear programming problems, degeneracy, corresponding to a basic
variable having the value zero, can occur in the transportation problem. If degen-
eracy is encountered in the simplex procedure, it can be handled quite easily by
introduction of the standard perturbation method (see Exercise 15, Chapter 3). In
this method a zero-valued basic variable is assigned the value � and is then treated
in the usual way. If it later leaves the basis, then the � can be dropped.

Example 5. To illustrate the method of dealing with degeneracy, consider a
modification of Example 4, with the fourth row sum changed from 60 to 20 and the
fourth column sum changed from 80 to 40. Then the initial basic feasible solution
found by the Northwest Corner Rule is degenerate. An � is placed in the array for
the zero-valued basic variable as shown below:

10 20 30
30 20− 30+ 80

100 10
+ �− 200 20

10 50 20 40 20

The relative cost coefficients will be the same as in Example 4, and hence again
x43 should be chosen to enter, and the cycle of change is the same as before. In
this case, however, the change is only �, and variable x44 leaves the basis. The new
relative cost coefficients are all positive, indicating that the new solution is optimal.
Now the � can be dropped to yield the final solution (which is, itself, degenerate
in this case).
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10 20 30
30 20 30 80

10 10
� 20 20

10 50 20 40 20

6.5 THE ASSIGNMENT PROBLEM
The assignment problem is a very special case of the transportation problem for two
reasons. First, the areas of application in which it arises are usually quite distinct
from those of the more general transportation problem; and second, its unique
structure is of theoretical significance.

The classic example of the assignment problem is that of optimally assigning
n workers to n jobs. If worker i is assigned to job j, there is a benefit of cij . Each
worker must be assigned to exactly one job, and each job must have one assigned
worker. One wishes to make the assignment in such a way as to maximize (in this
example) the total value of the assignment.

The general formulation of the assignment problem is to find xij , i = 1� 2� � � � � n;
j = 1� 2� � � � � n to

minimize
n∑

j=1

n∑

i=1

cijxij

subject to
n∑

j=1

xij = 1 for i = 1� 2� � � � � n (11)

n∑

i=1

xij = 1 for j = 1� 2� � � � � n

xij � 0 for i = 1� 2� � � � � n

j = 1� 2� � � � � n�

In the motivating examples, it is actually required that each of the variables xij take
the values 0 or 1—otherwise the solution is not meaningful, since it is not possible
to make fractional assignments. In the mathematical description, we relax the
integer assumption and instead formulate the problem as a true linear programming
problem. As stated in the theorem below, this actually leads to the desired result.

Theorem. Any basic feasible solution of the assignment problem has every
xij equal to either zero or one.

Proof. According to the corollary of the Basis Triangularity Theorem, all basic
variables in any basic solution are integers. Clearly, no variable can exceed 1
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because the right-hand sides of the constraint equations are all 1. Therefore, all
variables must be either zero or one.

It follows that there are at most n basic variables that have the value 1
because there can be at most a single one in each row (and in each column). In a
general transportation problem of this dimension, however, a nondegenerate basic
solution would have 2n − 1 positive variables. Thus, basic feasible solutions to
the assignment problem are highly degenerate, with n − 1 basic variables equal
to zero.

The assignment problem can be solved, of course, by use of the general trans-
portation algorithm described in Section 6.4. It is a bit tedious to do so, however,
because of the highly degenerate nature of basic feasible solutions. A highly efficient
special algorithm was developed for the assignment problem, based on the work of
two Hungarian mathematicians, and this method was later generalized to form the
primal-dual method for linear programming.

6.6 BASIC NETWORK CONCEPTS
We now begin a study of an entirely different topic in linear programming: graphs
and flows in networks. It will be seen, however, that this topic provides a foundation
for a wide assortment of linear programming applications and, in fact, provides
a different approach to the problems considered in the first part of this chapter.
This section covers some of the basic graph and network terminology and concepts
necessary for the development of this alternative approach.

Definition. A graph consists of a finite collection of elements called nodes
together with a subset of unordered pairs of the nodes called arcs.

The nodes of a graph are usually numbered, say, 1, 2, 3, � � �, n. An arc between
nodes i and j is then represented by the unordered pair (i, j). A graph is typically
represented as shown in Fig. 6.1. The nodes are designated by circles, with the
number inside each circle denoting the index of that node. The arcs are represented
by the lines between the nodes.

1

2

3 5

4

Fig. 6.1 A graph
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There are a number of other elementary definitions associated with graphs
that are useful in describing their structure. A chain between nodes i and j

is a sequence of arcs connecting them. The sequence must have the form
�i� k1�� �k1� k2�� �k2� k3�� � � � � �km� j�. In Fig. 6.1, (1, 2), (2, 4), (4, 3) is a chain
between nodes 1 and 3. If a direction of movement along a chain is specified—say
from node i to node j—it is then called a path from i to j. A cycle is a chain
leading from node i back to node i. The chain (1, 2), (2, 4), (4, 3), (3, 1) is a cycle
for the graph in Fig. 6.1.

A graph is connected if there is a chain between any two nodes. Thus, the
graph of Fig. 6.1 is connected. A graph is a tree if it is connected and has no cycles.
Removal of any one of the arcs (1, 2), (1, 3), (2, 4), (3, 4) would transform the
graph of Fig. 6.1 into a tree. Sometimes we consider a tree within a graph G, which
is just a tree made up of a subset of arcs from G. Such a tree is a spanning tree if
it touches all nodes of G. It is easy to see that a graph is connected if and only if
it contains a spanning tree.

Our interest will focus primarily on directed graphs, in which a sense of
orientation is given to each arc. In this case an arc is considered to be an ordered
pair of nodes �i� j�, and we say that the arc is from node i to node j. This is
indicated on the graph by having an arrow on the arc pointing from i to j as shown
in Fig. 6.2. When working with directed graphs, some node pairs may have an arc
in both directions between them. Rather than explicitly indicating both arcs in such
a case, it is customary to indicate a single undirected arc. The notions of paths and
cycles can be directly applied to directed graphs. In addition we say that node j is
reachable from i if there is a path from node i to j.

In addition to the visual representation of a directed graph characterized by
Fig. 6.2, another common method of representation is in terms of a graph’s node-arc
incidence matrix. This is constructed by listing the nodes vertically and the arcs
horizontally. Then in the column under arc �i� j�, a +1 is placed in the position
corresponding to node i and a −1 is placed in the position corresponding to node
j. The incidence matrix for the graph of Fig. 6.2 is shown in Table 6.1.

4

3

2

1

Fig. 6.2 A directed graph
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1
2
3
4

(1, 2) (1, 4) (2, 3) (2, 4) (4, 2)
1 1

−1 1 1 −1
−1

−1 −1 1

Table 6.1 Incidence matrix for example

Clearly, all information about the structure of the graph is contained in the
node-arc incidence matrix. This representation is often very useful for computational
purposes, since it is easily stored in a computer.

Flows in Networks
A graph is an effective way to represent the communication structure between
nodes. When there is the possibility of flow along the arcs, we refer to the directed
graph as a network. In applications the network might represent a transportation
system or a communication network, or it may simply be a representation used for
mathematical purposes (such as in the assignment problem).

A flow in a given directed arc �i� j� is a number xij � 0. Flows in the arcs of
the network must jointly satisfy a conservation criterion at each node. Specifically,
unless the node is a source or sink as discussed below, flow cannot be created or
lost at a node; the total flow into a node must equal the total flow out of the node.
Thus at each such node i

n∑

j=1

xij −
n∑

k=1

xki = 0�

The first sum is the total flow from i, and the second sum is the total flow to i.
(Of course xij does not exist if there is no arc from i to j.) It should be clear that
for nonzero flows to exist in a network without sources or sinks, the network must
contain a cycle.

In many applications, some nodes are in fact designated as sources or sinks (or,
alternatively, supply nodes or demand nodes). The net flow out of a source may be
positive, and the level of this net flow may either be fixed or variable, depending
on the application. Similarly, the net flow into a sink may be positive.

6.7 MINIMUM COST FLOW
In this section we consider the basic minimum cost flow problem, which slightly
generalizes the transportation problem. The primary objective of this section is to
develop a network interpretation of the concepts for the transportation problem
previously developed principally in algebraic terms.
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Consider a network having n nodes. Corresponding to each node i, there is a
number bi representing the available supply at the node. (If bi < 0, then there is a
required demand.) We assume that the network is balanced in the sense that

n∑

i=1

bi = 0�

Associated with each arc (i, j) is a number cij , representing the unit cost for
flow along this arc. The minimal cost flow problem is that of determining flows
xij ≥ 0 in each arc of the network so that the net flow into each node i is bi while
minimizing the total cost. In mathematical terms the problem is

minimize
∑

cijxij

subject to
n∑

j=1

xij −
n∑

k=1

xki = bi� i = 1� 2� � � � � n (12)

xij � 0� i� j = 1� 2� � � � � n�

The transportation problem is a special case of this problem, corresponding
to a network with arcs going only from supply to demand nodes, which reflects
the fact that shipping is restricted in that problem to be directly from a supply
node to a demand node. The more general problem allows for arbitrary network
configurations, so that flow from a supply node may progress through several
intermediate nodes before reaching its destination. The more general problem is
often termed the transshipment problem.

Problem Structure
Problem (12) is clearly a linear program. The coefficient matrix A of the flow
constraints is the node-arc incident matrix of the network. The column corre-
sponding to arc �i� j� has a +1 entry in row i and a −1 entry in row j. It follows
that, since the sum of all rows is the zero vector, the matrix A has rank of at most
n−1, and any row of A can be dropped to obtain a coefficient matrix of rank equal
to that of the original. We shall show, using network concepts, that the rank of the
coefficient matrix is indeed n− 1 under a simple connectivity assumption on the
network.

To state the required assumption precisely, we define the undirected graph G of
the network. Each arc of the network is included in G, independent of its direction.
(The orientation of arcs is not considered here because we are only interested in
linear properties of A.) We must assume that G is connected. This implies that G
contains at least one spanning tree.

Now, to proceed with the proof that the rank of A is n−1, select any arbitrary
row to drop from A, and denote the corresponding new matrix by Ā. Consider any
spanning tree T in the graph G. This tree will consist of n−1 arcs without a cycle.
We refer to the node corresponding to the row that was dropped from A as the root
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of the tree. Let AT be the �n−1�×�n−1� submatrix of Ā, consisting of the �n−1�
columns corresponding to arcs in the tree. At least two nodes of the tree must have
only a single arc of T touching them, and at least one of these is not the root.
This means that the corresponding row of AT has a single nonzero entry. Imagine
that we cross out that row and the column corresponding to that entry. In terms
of the tree, this corresponds to elimination of that node and the arc that touched
it. The �n− 2� remaining arcs in T form a tree for the reduced network of n− 1
nodes, including the root. The procedure can therefore be repeated consecutively,
eliminating all nodes except the root until all rows of AT are dropped.

It is clear that the above process is equivalent to the triangularization procedure
of Section 6.3. In other words AT is an �n − 1� × �n − 1� nonsingular triangular
submatrix. It follows that A has rank equal to n−1.

Structure of a Basis
We have shown above that a spanning tree of G corresponds to a basis, since it
defines a nonsingular submatrix Ā. We will now show the converse.

A basis corresponds to a choice of n−1 linearly independent columns from A.
Each column corresponds to an arc from the network, so a selection of a basis is
equivalent to a selection of n−1 arcs. We want to show that these arcs must form a
spanning tree. Suppose that the collection of arcs corresponding to the basis contains
a cycle consisting of, say, m arcs. When arranged as a cycle, the arcs are of the form
�n1� n2� �n2� n3� �n3� n4� � � � �nm�n1�. In this ordering, some arcs may preserve their
original orientation and some may be reversed. Now consider the corresponding
columns a1� a2� � � � � am of A. Form the linear combination ±a1 ± a2 ± a3 � � � ± am

where in each case the coefficient is + if the orientation of the arc is the same
in the cycle as in the original graph and is − if not. The ith column vector in
this combination (after accounting for the sign coefficient) corresponds to the arc
�ni� ni+1� of the cycle and has a +1 in the row corresponding to ni and a −1
in the row corresponding to ni+1. As a result, the +1’s and −1’s all cancel in
the combination. Thus, the combination is the zero vector, contradicting the linear
independence of a1� a2� � � � � am. We have therefore established that the collection of
arcs corresponding to a basis does not contain a cycle. Since there are n− 1 arcs
and n nodes, it is easy to conclude (but we leave it to the reader) that the arcs must
form a spanning tree.

We conclude from the above explanation and the earlier discussion that there
is a direct one-to-one correspondence between the arcs (columns) in a basis and
spanning trees. We also know that any basis is triangular; and it is also easy to
see from the triangularity that a basis is unimodular (see Exercise 3). Therefore,
the essential characteristics of the transportation problem carry over to the more
general minimum cost flow problem.

Given a basis, the corresponding basic solution can be found by back substi-
tution using the triangular structure. In this process one looks for an equation having
just a single undetermined basic variable corresponding to a single undetermined
arc flow xij . This equation is solved for xij , and then another such equation is
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found. In terms of network concepts, one looks first for an end of the spanning
tree corresponding to the basis; that is, one finds a node that touches only one arc
of the tree. The flow in this arc is then determined by the supply (or demand) at
that node. Back substitution corresponds to solving for flows along the arcs of the
spanning tree, starting from an end and successively eliminating arcs.

The Simplex Method
The revised simplex method can easily be applied to the generalized minimum cost
flow problem. We describe the steps below together with a brief discussion of their
network interpretation.

Step 1. Start with a given basic feasible solution.

Step 2. Compute simplex multipliers 
i for each node i. This amounts to solving
the equations


i −
j = cij (13)

for each i� j corresponding to a basic arc. This follows because arc �i� j� corresponds
to a column in A with a +1 at row i and a −1 at row j. The equations are solved
by arbitrarily setting the value of any one multiplier. An equation with only one
undetermined multiplier is found and that value determined, and so forth.

The relative cost coefficients for nonbasic arcs are then

rij = cij − �
i −
j�� (14)

If all relative cost coefficients are nonnegative, stop; the solution is optimal.
Otherwise, go to Step 3.

Step 3. Select a nonbasic flow with negative relative cost coefficient to enter the
basis. Addition of this arc to the spanning tree of the old basis will produce a cycle
(see Fig. 6.3). Introduce a positive flow around this cycle of amount �. As � is
increased, some old basic flows will decrease, so � is chosen to be equal to the
smallest value that makes the net flow in one of the old basic arcs equal to zero.
This variable goes out of the basis. The new spanning tree is therefore obtained by
adding an arc to form a cycle and then eliminating one other arc from the cycle.

Additional Considerations
Additional features can be incorporated as in other applications of the simplex
method. For example, an initial basic feasible solution, if one exists, can be found
by the use of artificial variables in a phase I procedure. This can be accomplished
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Fig. 6.3 Spanning trees of basis

by introducing an additional node with zero supply and with an arc connected to
each other node—directed to nodes with demand and away from nodes with supply.
An initial basic feasible solution is then constructed with flow on these artificial
arcs. During phase I, the cost on the artificial arcs is unity and it is zero on all other
arcs. If the total cost can be reduced to zero, a basic feasible solution to the original
problem is obtained. (The reader might wish to show how the above technique can
be modified so that an additional node is not required.)

An important extension of the problem is the inclusion of upper bounds
(capacities) on allowable flow magnitudes in an arc., but we shall not describe the
details here.

Finally, it should be pointed out that there are various procedures for organizing
the information required by the simplex method. The most straightforward procedure
is to just work with the algebraic form defined by the node–arc incidence matrix.
Other procedures are based on representing the network structure more compactly
and assigning flows to arcs and simplex multipliers to nodes.

6.8 MAXIMAL FLOW
A different type of network problem, discussed in this section, is that of deter-
mining the maximal flow possible from one given source node to a sink node
under arc capacity constraints. A preliminary problem, whose solution is a funda-
mental building block of a method for solving the flow problem, is that of simply
determining a path from one node to another in a directed graph.

Tree Procedure
Recall that node j is reachable from node i in a directed graph if there is a path
from node i to node j. For simple graphs, determination of reachability can be
accomplished by inspection, but for large graphs it generally cannot. The problem
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can be solved systematically by a process of repeatedly labeling and scanning
various nodes in the graph. This procedure is the backbone of a number of methods
for solving more complex graph and network problems, as illustrated later. It can
also be used to establish quickly some important theoretical results.

Assume that we wish to determine whether a path from node 1 to node m
exists. At each step of the algorithm, each node is either unlabeled, labeled but
unscanned, or labeled and scanned. The procedure consists of these steps:

Step 1. Label node 1 with any mark. All other nodes are unlabeled.

Step 2. For any labeled but unscanned node i, scan the node by finding all
unlabeled nodes reachable from i by a single arc. Label these nodes with an i.

Step 3. If node m is labeled, stop; a breakthrough has been achieved—a path exists.
If no unlabeled nodes can be labeled, stop; no connecting path exists. Otherwise,
go to Step 2.

The process is illustrated in Fig. 6.4, where a path between nodes 1 and 10 is
sought. The nodes have been labeled and scanned in the order 1, 2, 3, 5, 6, 8, 4, 7,
9, 10. The labels are indicated close to the nodes. The arcs that were used in the
scanning processes are indicated by heavy lines. Note that the collection of nodes
and arcs selected by the process, regarded as an undirected graph, form a tree—a
graph without cycles. This, of course, accounts for the name of the process, the
tree procedure. If one is interested only in determining whether a connecting path
exists and does not need to find the path itself, then the labels need only be simple
check marks rather than node indices. However, if node indices are used as labels,
then after successful completion of the algorithm, the actual connecting path can be
found by tracing backward from node m by following the labels. In the example,
one begins at 10 and moves to node 7 as indicated; then to 6, 3, and 1. The path
follows the reverse of this sequence.

It is easy to prove that the algorithm does indeed resolve the issue of the
existence of a connecting path. At each stage of the process, either a new node
is labeled, it is impossible to continue, or node m is labeled and the process is
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Fig. 6.4 The scanning procedure
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successfully terminated. Clearly, the process can continue for at most n−1 stages,
where n is the number of nodes in the graph. Suppose at some stage it is impossible
to continue. Let S be the set of labeled nodes at that stage and let S̄ be the set of
unlabeled nodes. Clearly, node 1 is contained in S, and node m is contained in S̄. If
there were a path connecting node 1 with node m, then there must be an arc in that
path from a node k in S to a node in S̄. However, this would imply that node k was
not scanned, which is a contradiction. Conversely, if the algorithm does continue
until reaching node m, then it is clear that a connecting path can be constructed
backward as outlined above.

Capacitated Networks
In some network applications it is useful to assume that there are upper bounds
on the allowable flow in various arcs. This motivates the concept of a capacitated
network.

Definition. A capacitated network is a network in which some arcs are
assigned nonnegative capacities, which define the maximum allowable flow
in those arcs. The capacity of an arc �i� j� is denoted kij , and this capacity is
indicated on the graph by placing the number kij adjacent to the arc.

Throughout this section all capacities are assumed to be nonnegative integers.
Figure 6.5 shows an example of a network with the capacities indicated. Thus the
capacity from node 1 to node 2 is 12, while that from node 2 to node 1 is 6.

The Maximal Flow Problem
Consider a capacitated network in which two special nodes, called the source and
the sink, are distinguished. Say they are nodes 1 and m, respectively. All other
nodes must satisfy the strict conservation requirement; that is, the net flow into
these nodes must be zero. However, the source may have a net outflow and the
sink a net inflow. The outflow f of the source will equal the inflow of the sink as
a consequence of the conservation at all other nodes. A set of arc flows satisfying
these conditions is said to be a flow in the network of value f . The maximal flow
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Fig. 6.5 A network with capacities
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problem is that of determining the maximal flow that can be established in such a
network. When written out, it takes the form

minimize f

subject to
n∑

j=1

x1j −
n∑

j=1

xj1 −f = 0

n∑

j=1

xij −
n∑

j=1

xji = 0� i �= 1� m (15)

n∑

j=1

xmj −
n∑

j=1

xjm +f = 0

0 ≤ xij ≤ kij� all i� j�

where only those i� j pairs corresponding to arcs are allowed.
The problem can be expressed more compactly in terms of the node–arc

incidence matrix. Let x be the vector of arc flows xij (ordered in any way). Let
A be the corresponding node–arc incidence matrix. Finally, let e be a vector with
dimension equal to the number of nodes and having a +1 component on node 1, a
−1 on node m, and all other components zero. The maximal flow problem is then

maximize f

subject to Ax −fe = 0 (16)

x � k�

The coefficient matrix of this problem is equal to the node–arc incidence matrix with
an additional column for the flow variable f . Any basis of this matrix is triangular,
and hence as indicated by the theory in the earlier part of this chapter, the simplex
method can be effectively employed to solve this problem. However, instead of
the simplex method, a more efficient algorithm based on the tree algorithm can
be used.

The basic strategy of the algorithm is quite simple. First we recognize that it is
possible to send nonzero flow from node 1 to node m only if node m is reachable
from node 1. The tree procedure of the previous section can be used to determine
if m is in fact reachable; and if it is reachable, the algorithm will produce a path
from 1 to m. By examining the arcs along this path, we can determine the one
with minimum capacity. We may then construct a flow equal to this capacity from
1 to m by using this path. This gives us a strictly positive (and integer-valued)
initial flow.

Next consider the nature of the network at this point in terms of additional
flows that might be assigned. If there is already flow xij in the arc �i� j�, then the
effective capacity of that arc is reduced by xij (to kij −xij), since that is the maximal
amount of additional flow that can be assigned to that arc. On the other hand, the
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effective reverse capacity, on the arc (j� i), is increased by xij (to kji +xij), since a
small incremental backward flow is actually realized as a reduction in the forward
flow through that arc. Once these changes in capacities have been made, the tree
procedure can again be used to find a path from node 1 to node m on which to
assign additional flow. (Such a path is termed an augmenting path.) Finally, if m
is not reachable from 1, no additional flow can be assigned, and the procedure is
complete.

It is seen that the method outlined above is based on repeated application of
the tree procedure, which is implemented by labeling and scanning. By including
slightly more information in the labels than in the basic tree algorithm, the minimum
arc capacity of the augmenting path can be determined during the initial scanning,
instead of by reexamining the arcs after the path is found. A typical label at a node
i has the form �k� ci�, where k denotes a precursor node and ci is the maximal flow
that can be sent from the source to node i through the path created by the previous
labeling and scanning. The complete procedure is this:

Step 0. Set all xij = 0 and f = 0.

Step 1. Label node 1 (−��). All other nodes are unlabeled.

Step 2. Select any labeled node i for scanning. Say it has label (k� ci). For all
unlabeled nodes j such that �i� j� is an arc with xij < kij , assign the label �i� cj�,
where cj = min �ci� kij − xij�. For all unlabeled nodes j such that �j� i� is an arc
with xji > 0, assign the label (i� cj), where cj = min �ci� xji�.

Step 3. Repeat Step 2 until either node m is labeled or until no more labels can
be assigned. In this latter case, the current solution is optimal.

Step 4. (Augmentation.) If the node m is labeled �i� cm�, then increase f and the
flow on arc (i�m) by cm. Continue to work backward along the augmenting path
determined by the nodes, increasing the flow on each arc of the path by cm. Return
to Step 1.

The validity of the algorithm should be fairly apparent. However, a complete
proof is deferred until we consider the max flow–min cut theorem below. Never-
theless, the finiteness of the algorithm is easily established.

Proposition. The maximal flow algorithm converges in at most a finite number
of iterations.

Proof. (Recall our assumption that all capacities are nonnegative integers.) Clearly,
the flow is bounded—at least by the sum of the capacities. Starting with zero flow,
the minimal available capacity at every stage will be an integer, and accordingly,
the flow will be augmented by an integer amount at every step. This process must
terminate in a finite number of steps, since the flow is bounded.

Example. An example of the above procedure is shown in Fig. 6.6. Node 1 is the
source, and node 6 is the sink. The original network with capacities indicated on the
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arcs is shown in Fig. 6.6(a). Also shown in that figure are the initial labels obtained
by the procedure. In this case the sink node is labeled, indicating that a flow of 1
unit can be achieved. The augmenting path of this flow is shown in Fig. 6.6(b).
Numbers in square boxes indicate the total flow in an arc. The new labels are then
found and added to that figure. Note that node 2 cannot be labeled from node 1
because there is no unused capacity in that direction. Node 2 can, however, be
labeled from node 4, since the existing flow provides a reverse capacity of 1 unit.
Again the sink is labeled, and 1 unit more flow can be constructed. The augmenting
path is shown in Fig. 6.6(c). A new labeling is appended to that figure. Again the
sink is labeled, and an additional 1 unit of flow can be sent from source to sink.
The path of this 1 unit is shown in Fig. 6.6(d). Note that it includes a flow from
node 4 to node 2, even though flow was not allowed in this direction in the original
network. This flow is allowable now, however, because there is already flow in the
opposite direction. The total flow at this point is shown in Fig. 6.6(e). The flow
levels are again in square boxes. This flow is maximal, since only the source node
can be labeled.

The efficiency of the maximal flow algorithm can be improved by various
refinements. For example, a considerable gain in efficiency can be obtained by
applying the tree algorithm in first-labeled, first-scanned mode. Further discussion
of these points can be found in the references cited at the end of the chapter.

Max Flow–Min Cut Theorem
A great deal of insight and some further results can be obtained through the
introduction of the notion of cuts in a network. Given a network with source node
1 and sink node m, divide the nodes arbitrarily into two sets S and S̄ such that the
source node is in S and the sink is in S̄. The set of arcs from S to S̄ is a cut and is
denoted (S� S̄). The capacity of the cut is the sum of the capacities of the arcs in
the cut.
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An example of a cut is shown in Fig. 6.7. The set S consists of nodes 1 and 2,
while S̄ consists of 3, 4, 5, 6. The capacity of this cut is 4.

It should be clear that a path from node 1 to node m must include at least
one arc in any cut, for the path must have an arc from the set S to the set S̄.
Furthermore, it is clear that the maximal amount of flow that can be sent through
a cut is equal to its capacity. Thus each cut gives an upper bound on the value of
the maximal flow problem. The max flow–min cut theorem states that equality is
actually achieved for some cut. That is, the maximal flow is equal to the minimal
cut capacity. It should be noted that the proof of the theorem also establishes the
maximality of the flow obtained by the maximal flow algorithm.

Max Flow–Min Cut Theorem. In a network the maximal flow between a source
and a sink is equal to the minimal cut capacity of all cuts separating the source
and sink.

Proof. Since any cut capacity must be greater than or equal to the maximal flow,
it is only necessary to exhibit a flow and a cut for which equality is achieved.
Begin with a flow in the network that cannot be augmented by the maximal flow
algorithm. For this flow find the effective arc capacities of all arcs for incremental
flow changes as described earlier and apply the labeling procedure of the maximal
flow algorithm. Since no augmenting path exists, the algorithm must terminate
before the sink is labeled.

Let S and S̄ consist of all labeled and unlabeled nodes, respectively. This
defines a cut separating the source from the sink. All arcs originating in S and
terminating in S̄ have zero incremental capacity, or else a node in S̄ could have
been labeled. This means that each arc in the cut is saturated by the original flow;
that is, the flow is equal to the capacity. Any arc originating in S̄ and terminating in
S, on the other hand, must have zero flow; otherwise, this would imply a positive
incremental capacity in the reverse direction, and the originating node in S̄ would
be labeled. Thus, there is a total flow from S to S̄ equal to the cut capacity, and zero
flow from S̄ to S. This means that the flow from source to sink is equal to the cut
capacity. Thus the cut capacity must be minimal, and the flow must be maximal.

In the network of Fig. 6.6, the minimal cut corresponds to the S consisting
only of the source. That cut capacity is 3. Note that in accordance with the max
flow–min cut theorem, this is equal to the value of the maximal flow, and the
minimal cut is determined by the final labeling in Fig. 6.6(e). In Fig. 6.7 the cut
shown is also minimal, and the reader should easily be able to determine the pattern
of maximal flow.

Duality
The character of the max flow–min cut theorem suggests a connection with the
Duality Theorem. We conclude this section by briefly exploring this connection.

The maximal flow problem is a linear program, which is expressed formally
by (16). The dual problem is found to be
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minimize wT k

subject to uT A = wT (17)

uT e = 1

w ≥ 0�

When written out in detail, the dual is

minimize
∑

ij

wijkij

subject to ui −uj = wij

u1 −um = 1 (18)

wij ≥ 0�

A pair i, j is included in the above only if (i, j) is an arc of the network.
A feasible solution to this dual problem can be found in terms of any cut set

�S� S̄�. In particular, it is easily seen that

ui =
{

1 if i ∈ S

0 if i ∈ S̄
(19)

wij =
{

1 if �i� j� ∈ �S� S̄�

0 otherwise

is a feasible solution. The value of the dual problem corresponding to this solution
is the cut capacity. If we take the cut set to be the one determined by the labeling
procedure of the maximal flow algorithm as described in the proof of the theorem
above, it can be seen to be optimal by verifying the complementary slackness
conditions (a task we leave to the reader). The minimum value of the dual is
therefore equal to the minimum cut capacity.

6.9 SUMMARY
Problems of special structure are important both for applications and for theory.
The transportation problem represents an important class of linear programs with
structural properties that lead to an efficient implementation of the simplex method.
The most important property of the transportation problem is that any basis is
triangular. This means that the basic variables can be found, one by one, directly
by back substitution, and the basis need never be inverted. Likewise, the simplex
multipliers can be found by back substitution, since they solve a set of equations
involving the transpose of the basis.

Since all elements of the basis are either zero or one, it follows that all basic
variables will be integers if the requirements are integers, and all simplex multipliers
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will be integers if the cost coefficients are integers. When a new variable with
a value � is to be brought into the basis, the change in all other basic variables
will be either +��−�, or 0, again because of the structural properties of the basis.
This leads to a cycle of change, which amounts to shipping an amount � of the
commodity around a cycle on the transportation system. All necessary computations
for solution of the transportation problem can be carried out on arrays of solutions
or of cost coefficients. The primary operations are row and column scanning, which
implement the back substitution process.

The assignment problem is a case of the transportation problem with additional
structure. Every solution is highly degenerate, having only n positive values instead
of the 2n−1 that would appear in a nondegenerate solution.

Network flow problems represent another important class of linear
programming problems. The transportation problem can be generalized to a
minimum cost flow problem in a network. This leads to the interpretation of a
simplex basis as corresponding to a spanning tree in the network.

Another fundamental network problem is that of determining whether it is
possible to construct a path of arcs to a specified destination node from a given
origin node. This problem can be efficiently solved using the tree algorithm. This
algorithm progresses by fanning out from the origin, first determining all nodes
reachable in one step, then all nodes reachable in one step from these, and so forth
until the specified destination is attained or it is not possible to continue.

The maximal flow problem is that of determining the maximal flow from an
origin to a destination in a network with capacity constraints on the flow in each
arc. This problem can be solved by repeated application of the tree algorithm,
successively determining paths from origin to destination and assigning flow along
such paths.

6.10 EXERCISES
1. Using the Northwest Corner Rule, find basic feasible solutions to transportation problems

with the following requirements:

a) a = �10� 15� 7� 8� b = �8� 6� 9� 12� 5�
b) a = �2� 3� 4� 5� 6� b = �6� 5� 4� 3� 2�
c) a = �2� 4� 3� 1� 5� 2� b = �6� 4� 2� 3� 2�

2. Transform the following to lower triangular form, or show that such transformation is
not possible.

⎡

⎣
4 5 6
0 0 1
3 0 2

⎤

⎦

⎡

⎢
⎢
⎣

0 2 0 1
0 0 0 3
1 3 6 2
8 7 0 4

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 3 4 0
2 0 2 3
0 0 0 2
0 3 0 1

⎤

⎥
⎥
⎦

3. A matrix A is said to be totally unimodular if the determinant of every square submatrix
formed from it has value 0, +1, or −1.
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a) Show that the matrix A defining the equality constraints of a transportation problem
is totally unimodular.

b) In the system of equations Ax = b, assume that A is totally unimodular and that
all elements of A and b are integers. Show that all basic solutions have integer
components.

4. For the arrays below:

a) Compute the basic solutions indicated. (Note: They may be infeasible.)
b) Write the equations for the basic variables, corresponding to the indicated basic

solutions, in lower triangular form.

x x 10
x 20

x x 30
20 20 20

x x 10
x 20
x x 30

20 20 20

5. For the arrays of cost coefficients below, the circled positions indicate basic variables.

a) Compute the simplex multipliers.
b) Write the equations for the simplex multipliers in upper triangular form, and compare

with Part (b) of Exercise 4.

3 ©6 ©7
2 ©4 3
©1 5 ©2

©3 6 ©7
2 ©4 3
1 ©5 ©2

6. Consider the modified transportation problem where there is more available at origins
than is required at destinations:

minimize
m∑

j=1

n∑

i=1

cijxij

subject to
n∑

j=1

xij � ai� i = 1� 2� � � � � m

n∑

i=1

xij = bj� j = 1� 2� � � � � n

xij � 0� all i� j�

where
m∑

i=1

ai >
n∑

j=1

bj�

a) Show how to convert it to an ordinary transportation problem.
b) Suppose there is a storage cost of si per unit at origin i for goods not transported to

a destination. Repeat Part (a) with this assumption.

7. Solve the following transportation problem, which is an original example of Hitchcock.

a = �25 25 50�
b = �15 20 30 35�

C =
⎡

⎣
10 5 6 7

8 2 7 6
9 3 4 8

⎤

⎦
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8. In a transportation problem, suppose that two rows or two columns of the cost coefficient
array differ by a constant. Show that the problem can be reduced by combining those
rows or columns.

9. The transportation problem is often solved more quickly by carefully selecting the
starting basic feasible solution. The matrix minimum technique for finding a starting
solution is: (1) Find the lowest cost unallocated cell in the array, and allocate the
maximum possible to it, (2) Reduce the corresponding row and column requirements,
and drop the row or column having zero remaining requirement. Go back to Step 1
unless all remaining requirements are zero.

a) Show that this procedure yields a basic feasible solution.
b) Apply the method to Exercise 7.

10. The caterer problem. A caterer is booked to cater a banquet each evening for the next T
days. He requires rt clean napkins on the tth day for t = 1� 2� � � � � T . He may send dirty
napkins to the laundry, which has two speeds of service—fast and slow. The napkins
sent to the fast service will be ready for the next day’s banquet; those sent to the slow
service will be ready for the banquet two days later. Fast and slow service cost c1 and
c2 per napkin, respectively, with c1 > c2. The caterer may also purchase new napkins
at any time at cost c0. He has an initial stock of s napkins and wishes to minimize the
total cost of supplying fresh napkins.

a) Formulate the problem as a transportation problem. (Hint: Use T +1 sources and T
destinations.)

b) Using the values T = 4� s = 200� r1 = 100� r2 = 130� r3 = 150� r4 = 140� c1 = 6� c2 =
4� c0 = 12, solve the problem.

11. The marriage problem. A group of n men and n women live on an island. The amount of
happiness that the ith man and the jth woman derive by spending a fraction xij of their
lives together is cijxij . What is the nature of the living arrangements that maximizes the
total happiness of the islanders?

12. Shortest route problem. Consider a system of n points with distance cij between points
i and j. We wish to find the shortest path from point 1 to point n.

a) Show how to formulate the problem as an n node minimal cost flow problem.
b) Show how to convert the problem to an equivalent assignment problem of dimension

n−1.

13. Transshipment I. The general minimal cost flow problem of Section 6.7 can be converted
to a transportation problem and thus solved by the transportation algorithm. One way to
do this conversion is to find the minimum cost path from every supply node to every
demand node, allowing for possible shipping through intermediate transshipment nodes.
The values of these minimum costs become the effective point-to-point costs in the
equivalent transportation problem. Once the transportation problem is solved, yielding
amounts to be shipped from origins to destinations, the result is translated back to flows
in arcs by shipping along the previously determined minimal cost paths.

Consider the transshipment problem with five shipping points defined by the
symmetric cost matrix and the requirements indicated below

s = �10� 30� 0� −20� −20�
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C =

⎡

⎢
⎢
⎢
⎢
⎣

0 3 3 6 4
3 0 5 4 8
3 5 0 2 5
6 4 2 0 5
4 8 5 5 0

⎤

⎥
⎥
⎥
⎥
⎦

�

In this system points 1 and 2 are net suppliers, points 4 and 5 are net demanders, and
point 3 is neither. Any of the points may serve as transshipment points. That is, it is not
necessary to ship directly from one node to another; any path is allowable.

a) Show that the above problem is equivalent to the transportation problem defined by
the arrays below, and solve this problem.

4 5 a

1 10
2 30
b 20 20

C = 5 4
4 7

b) Find the optimal flows in the original network.

14. Transshipment II. Another way to convert a transshipment problem to a transportation
problem is through the introduction of buffer stocks at each node. A transshipment
can then be replaced by a series of direct shipments, where the buffer stocks from
intermediate points are shipped ahead but then replenished when other shipments arrive.

Suppose the original problem had n nodes with supply values bi, i = 1� 2� � � � � n,
with

∑
bi = 0. In the equivalent problem there are n origin nodes with supply B and n

destination nodes with value B+bi. B is the buffer level (sufficiently large).
Using this method and B = 40, the problem in Exercise 13 can be formulated as a

5 × 5 transportation problem with supplies (40, 40, 40, 40, 40) and demands (50, 70,
40, 20, 20). Solve this problem. Throw away all diagonal terms (which represent buffer
changes) to obtain the solution of the original problem.

15. Transshipment III. Solve the problem of Exercise 13 using the method of Section 6.7.

16. Apply the maximal flow algorithm to the network below. All arcs have capacity 1 unless
otherwise indicated.

2

2

2

4 3

3
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Chapter 7 BASIC PROPERTIES
OF SOLUTIONS
AND ALGORITHMS

In this chapter we consider optimization problems of the form

minimize f�x�
subject to x ∈ ��

(1)

where f is a real-valued function and �, the feasible set, is a subset of En.
Throughout most of the chapter attention is restricted to the case where � = En,
corresponding to the completely unconstrained case, but sometimes we consider
cases where � is some particularly simple subset of En.

The first and third sections of the chapter characterize the first- and second-
order conditions that must hold at a solution point of (1). These conditions are
simply extensions to En of the well-known derivative conditions for a function of
a single variable that hold at a maximum or a minimum point. The fourth and
fifth sections of the chapter introduce the important classes of convex and concave
functions that provide zeroth-order conditions as well as a natural formulation for a
global theory of optimization and provide geometric interpretations of the derivative
conditions derived in the first two sections.

The final sections of the chapter are devoted to basic convergence charac-
teristics of algorithms. Although this material is not exclusively applicable to
optimization problems but applies to general iterative algorithms for solving
other problems as well, it can be regarded as a fundamental prerequisite for a
modern treatment of optimization techniques. Two essential questions are addressed
concerning iterative algorithms. The first question, which is qualitative in nature, is
whether a given algorithm in some sense yields, at least in the limit, a solution to the
original problem. This question is treated in Section 7.6, and conditions sufficient to
guarantee appropriate convergence are established. The second question, the more
quantitative one, is related to how fast the algorithm converges to a solution. This
question is defined more precisely in Section 7.7. Several special types of conver-
gence, which arise frequently in the development of algorithms for optimization,
are explored.

183
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7.1 FIRST-ORDER NECESSARY CONDITIONS
Perhaps the first question that arises in the study of the minimization problem
(1) is whether a solution exists. The main result that can be used to address
this issue is the theorem of Weierstras, which states that if f is continuous and
� is compact, a solution exists (see Appendix A.6). This is a valuable result
that should be kept in mind throughout our development; however, our primary
concern is with characterizing solution points and devising effective methods for
finding them.

In an investigation of the general problem (1) we distinguish two kinds of
solution points: local minimum points, and global minimum points.

Definition. A point x∗ ∈ � is said to be a relative minimum point or a local
minimum point of f over � if there is an � > 0 such that f�x� � f�x∗� for all
x ∈ � within a distance � of x∗ (that is, x ∈ � and �x−x∗� < �). If f�x� > f�x∗�
for all x ∈ �, x �= x∗, within a distance � of x∗, then x∗ is said to be a strict
relative minimum point of f over �.

Definition. A point x∗ ∈ � is said to be a global minimum point of f over
� if f�x� � f�x∗� for all x ∈ �. If f�x� > f�x∗� for all x ∈ �, x �= x∗, then x∗

is said to be a strict global minimum point of f over �.

In formulating and attacking problem (1) we are, by definition, explicitly asking
for a global minimum point of f over the set �. Practical reality, however, both
from the theoretical and computational viewpoint, dictates that we must in many
circumstances be content with a relative minimum point. In deriving necessary
conditions based on the differential calculus, for instance, or when searching for
the minimum point by a convergent stepwise procedure, comparisons of the values
of nearby points is all that is possible and attention focuses on relative minimum
points. Global conditions and global solutions can, as a rule, only be found if the
problem possesses certain convexity properties that essentially guarantee that any
relative minimum is a global minimum. Thus, in formulating and attacking problem
(1) we shall, by the dictates of practicality, usually consider, implicitly, that we are
asking for a relative minimum point. If appropriate conditions hold, this will also
be a global minimum point.

Feasible Directions
To derive necessary conditions satisfied by a relative minimum point x∗, the basic
idea is to consider movement away from the point in some given direction. Along
any given direction the objective function can be regarded as a function of a single
variable, the parameter defining movement in this direction, and hence the ordinary
calculus of a single variable is applicable. Thus given x ∈ � we are motivated to say
that a vector d is a feasible direction at x if there is an �̄ > 0 such that x+�d ∈ �
for all �, 0 � � � �̄. With this simple concept we can state some simple conditions
satisfied by relative minimum points.
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Proposition 1 (First-order necessary conditions). Let � be a subset of En and
let f ∈ C1 be a function on �. If x∗ is a relative minimum point of f over �,
then for any d ∈ En that is a feasible direction at x∗, we have �f�x∗�d � 0.

Proof. For any �, 0 � � � �̄, the point x��� = x∗ +�d ∈ �. For 0 � � � �̄ define
the function g��� = f�x����. Then g has a relative minimum at � = 0. A typical g
is shown in Fig. 7.1. By the ordinary calculus we have

g���−g�0� = g′�0��+o���� (2)

where o��� denotes terms that go to zero faster than � (see Appendix A). If
g′�0� < 0 then, for sufficiently small values of � > 0, the right side of (2) will be
negative, and hence g���−g�0� < 0, which contradicts the minimal nature of g�0�.
Thus g′�0� = �f�x∗�d � 0.

A very important special case is where x∗ is in the interior of � (as would be
the case if � = En). In this case there are feasible directions emanating in every
direction from x∗, and hence �f�x∗�d � 0 for all d ∈ En. This implies �f�x∗� = 0.
We state this important result as a corollary.

Corollary. (Unconstrained case). Let � be a subset of En, and let f ∈ C1 be
a function’ on �. If x∗ is a relative minimum point of f over � and if x∗ is an
interior point of �, then �f�x∗� = 0.

The necessary conditions in the pure unconstrained case lead to n equations
(one for each component of �f ) in n unknowns (the components of x∗), which
in many cases can be solved to determine the solution. In practice, however, as
demonstrated in the following chapters, an optimization problem is solved directly
without explicitly attempting to solve the equations arising from the necessary
conditions. Nevertheless, these conditions form a foundation for the theory.

g(α)

slope > 0

0 αα

Fig. 7.1 Construction for proof
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Example 1. Consider the problem

minimize f�x1� x2� = x2
1 −x1x2 +x2

2 −3x2�

There are no constraints, so � = E2. Setting the partial derivatives of f equal to
zero yields the two equations

2x1 − x2 = 0
−x1 + 2x2 = 3�

These have the unique solution x1 = 1, x2 = 2, which is a global minimum point of f .

Example 2. Consider the problem

minimize f�x1� x2� = x2
1 −x1 +x2 +x1x2

subject to x1 � 0� x2 � 0�

This problem has a global minimum at x1 = 1
2 , x2 = 0. At this point

	f

	x1

= 2x1 −1+x2 = 0

	f

	x2

= 1+x1 = 3
2 �

Thus, the partial derivatives do not both vanish at the solution, but since any
feasible direction must have an x2 component greater than or equal to zero, we have
�f�x∗�d � 0 for all d ∈ E2 such that d is a feasible direction at the point (1/2, 0).

7.2 EXAMPLES OF UNCONSTRAINED PROBLEMS
Unconstrained optimization problems occur in a variety of contexts, but most
frequently when the problem formulation is simple. More complex formula-
tions often involve explicit functional constraints. However, many problems with
constraints are frequently converted to unconstrained problems by using the
constraints to establish relations among variables, thereby reducing the effective
number of variables. We present a few examples here that should begin to indicate
the wide scope to which the theory applies.

Example 1 (Production). A common problem in economic theory is the deter-
mination of the best way to combine various inputs in order to produce a certain
commodity. There is a known production function f�x1� x2� � � � � xn� that gives the
amount of the commodity produced as a function of the amounts xi of the inputs,
i = 1� 2� � � � � n. The unit price of the produced commodity is q, and the unit prices
of the inputs are p1, p2� � � � � pn. The producer wishing to maximize profit must
solve the problem

maximize qf�x1� x2� � � � � xn�−p1x1 −p2x2 � � �−pnxn�
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The first-order necessary conditions are that the partial derivatives with respect
to the xi’s each vanish. This leads directly to the n equations

q
	f

	xi

�x1� x2� � � � � xn� = pi� i = 1� 2� � � � � n�

These equations can be interpreted as stating that, at the solution, the marginal
value due to a small increase in the ith input must be equal to the price pi.

Example 2 (Approximation). A common use of optimization is for the purpose
of function approximation. Suppose, for example, that through an experiment
the value of a function g is observed at m points, x1� x2� � � � � xm. Thus, values
g�x1�� g�x2�� � � � � g�xm� are known. We wish to approximate the function by a
polynomial

h�x� = anx
n +an−1x

n−1 + � � �+a0

of degree n (or less), where n < m. Corresponding to any choice of the approximating
polynomial, there will be a set of errors �k = g�xk�−h�xk�. We define the best approx-
imation as the polynomial that minimizes the sum of the squares of these errors; that
is, minimizes

m∑

k=1

��k�
2�

This in turn means that we minimize

f�a� =
m∑

k=1


g�xk�− �anx
n
k +an−1x

n−1
k + � � �+a0��

2

with respect to a = �a0� a1� � � � � an� to find the best coefficients. This is a quadratic
expression in the coefficients a. To find a compact representation for this objective

we define qij = m∑

k=1
�xk�

i+j , bj = m∑

k=1
g�xk��xk�

j and c = m∑

k=1
g�xk�

2. Then after a bit of

algebra it can be shown that

f�a� = aT Qa −2bT a + c

where Q = 
qij�, b = �b1� b2� � � � � bn+1�.
The first-order necessary conditions state that the gradient of f must vanish. This

leads directly to the system of n+1 equations

Qa = b�

These can be solved to determine a.
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Example 3 (Selection problem). It is often necessary to select an assortment of
factors to meet a given set of requirements. An example is the problem faced by
an electric utility when selecting its power-generating facilities. The level of power
that the company must supply varies by time of the day, by day of the week, and
by season. Its power-generating requirements are summarized by a curve, h�x�, as
shown in Fig. 7.2(a), which shows the total hours in a year that a power level of at
least x is required for each x. For convenience the curve is normalized so that the
upper limit is unity.

The power company may meet these requirements by installing generating
equipment, such as (1) nuclear or (2) coal-fired, or by purchasing power from a
central energy grid. Associated with type i �i = 1� 2� of generating equipment is
a yearly unit capital cost bi and a unit operating cost ci. The unit price of power
purchased from the grid is c3.

Nuclear plants have a high capital cost and low operating cost, so they are
used to supply a base load. Coal-fired plants are used for the intermediate level,
and power is purchased directly only for peak demand periods. The requirements
are satisfied as shown in Fig. 7.2(b), where x1 and x2 denote the capacities of the
nuclear and coal-fired plants, respectively. (For example, the nuclear power plant
can be visualized as consisting of x1/� small generators of capacity �, where � is
small. The first such generator is on for about h��� hours, supplying �h��� units
of energy; the next supplies �h�2�� units, and so forth. The total energy supplied
by the nuclear plant is thus the area shown.)

The total cost is

f�x1� x2� = b1x1 +b2x2 + c1

∫ x1

0
h�x� dx

+ c2

∫ x1+x2

x1

h�x� dx+ c3

∫ 1

x1+x2

h�x� dx�

power (megawatts) power (megawatts)

purchase

x

hours required hours required

(a) (b)

11 x2x1

Fig. 7.2 Power requirements curve
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and the company wishes to minimize this over the set defined by

x1 � 0� x2 � 0� x1 +x2 � 1�

Assuming that the solution is interior to the constraints, by setting the partial
derivatives equal to zero, we obtain the two equations

b1 + �c1 − c2�h�x1�+ �c2 − c3�h�x1 +x2� = 0

b2 + �c2 − c3�h�x1 +x2� = 0�

which represent the necessary conditions.
If x1 = 0, then the general necessary condition theorem shows that the first

equality could relax to � 0. Likewise, if x2 = 0, then the second equality could
relax to � 0. The case x1 +x2 = 1 requires a bit more analysis (see Exercise 2).

Example 4 (Control). Dynamic problems, where the variables correspond to
actions taken at a sequence of time instants, can often be formulated as unconstrained
optimization problems. As an example suppose that the position of a large object is
controlled by a series of corrective control forces. The error in position (the distance
from the desired position) is governed by the equation

xk+1 = xk +uk�

where xk is the error at time instant k, and uk is the effective force applied at time
uk (after being normalized to account for the mass of the object and the duration of
the force). The value of x0 is given. The sequence u0, u1� � � � � un should be selected
so as to minimize the objective

J =
n∑

k=0


x2
k +u2

k��

This represents a compromise between a desire to have xk equal to zero and
recognition that control action uk is costly.

The problem can be converted to an unconstrained problem by eliminating the
xk variables, k = 1� 2� � � � � n, from the objective. It is readily seen that

xk = x0 +u0 +u1 +· · ·+uk−1�

The objective can therefore be rewritten as

J =
n∑

k=0


�x0 +u0 +· · ·+uk−1�
2 +u2

k��

This is a quadratic function in the unknowns uk. It has the same general structure
as that of Example 2 and it can be treated in a similar way.
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7.3 SECOND-ORDER CONDITIONS
The proof of Proposition 1 in Section 7.1 is based on making a first-order approx-
imation to the function f in the neighborhood of the relative minimum point.
Additional conditions can be obtained by considering higher-order approximations.
The second-order conditions, which are defined in terms of the Hessian matrix �2f
of second partial derivatives of f (see Appendix A), are of extreme theoretical
importance and dominate much of the analysis presented in later chapters.

Proposition 1 (Second-order necessary conditions). Let � be a subset of En

and let f ∈ C2 be a function on �. If x∗ is a relative minimum point of f over
�, then for any d ∈ En that is a feasible direction at x∗ we have

i� �f�x∗�d � 0 �3�

ii� if �f�x∗�d = 0� then dT �2f�x∗�d � 0� �4�

Proof. The first condition is just Proposition 1, and the second applies only if
�f�x∗�d = 0. In this case, introducing x��� = x∗ + �d and g��� = f�x���� as
before, we have, in view of g′�0� = 0,

g���−g�0� = 1
2 g′′�0��2 +o��2��

If g′′�0� < 0 the right side of the above equation is negative for sufficiently small
� which contradicts the relative minimum nature of g�0�. Thus

g′′�0� = dT �2f�x∗�d � 0�

Example 1. For the same problem as Example 2 of Section 7.1, we have for
d = �d1�d2�

�f�x∗�d = 3
2 d2�

Thus condition (ii) of Proposition 1 applies only if d2 = 0. In that case we have
dT �2f�x∗�d = 2d2

1 � 0, so condition (ii) is satisfied.
Again of special interest is the case where the minimizing point is an interior

point of �, as, for example, in the case of completely unconstrained problems. We
then obtain the following classical result.

Proposition 2 (Second-order necessary conditions—unconstrained case).
Let x∗ be an interior point of the set �, and suppose x∗ is a relative minimum
point over � of the function f ∈ C2. Then

i) �f�x∗� = 0 �5�

ii) for all d� dT �2f�x∗�d � 0� (6)
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For notational simplicity we often denote �2f�x�, the n×n matrix of the second
partial derivatives of f , the Hessian of f , by the alternative notation F(x). Condition
(ii) is equivalent to stating that the matrix F�x∗� is positive semidefinite. As we
shall see, the matrix F�x∗�, which arises here quite naturally in a discussion of
necessary conditions, plays a fundamental role in the analysis of iterative methods
for solving unconstrained optimization problems. The structure of this matrix is the
primary determinant of the rate of convergence of algorithms designed to minimize
the function f .

Example 2. Consider the problem

minimize f�x1� x2� = x3
1 −x2

1x2 +2x2
2

subject to x1 � 0� x2 � 0�

If we assume that the solution is in the interior of the feasible set, that is, if
x1 > 0� x2 > 0, then the first-order necessary conditions are

3x2
1 −2x1x2 = 0� −x2

1 +4x2 = 0�

There is a solution to these at x1 = x2 = 0 which is a boundary point, but there is
also a solution at x1 = 6� x2 = 9. We note that for x1 fixed at x1 = 6, the objective
attains a relative minimum with respect to x2 at x2 = 9. Conversely, with x2 fixed
at x2 = 9, the objective attains a relative minimum with respect to x1 at x1 = 6.
Despite this fact, the point x1 = 6� x2 = 9 is not a relative minimum point, because
the Hessian matrix is

F =
[

6x1 −2x2 −2x1

−2x1 4

]

�

which, evaluated at the proposed solution x1 = 6� x2 = 9, is

F =
[

18 −12
−12 4

]

�

This matrix is not positive semidefinite, since its determinant is negative. Thus the
proposed solution is not a relative minimum point.

Sufficient Conditions for a Relative Minimum
By slightly strengthening the second condition of Proposition 2 above, we obtain a
set of conditions that imply that the point x∗ is a relative minimum. We give here
the conditions that apply only to unconstrained problems, or to problems where the
minimum point is interior to the feasible region, since the corresponding conditions
for problems where the minimum is achieved on a boundary point of the feasible
set are a good deal more difficult and of marginal practical or theoretical value. A
more general result, applicable to problems with functional constraints, is given in
Chapter 11.
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Proposition 3 (Second-order sufficient conditions—unconstrained case).
Let f ∈ C2 be a function defined on a region in which the point x∗ is an interior
point. Suppose in addition that

i� �f�x∗� = 0 �7�

ii� F�x∗� is positive definite� (8)

Then x∗ is a strict relative minimum point of f .

Proof. Since F�x∗� is positive definite, there is an a > 0 such that for all
d� dT F�x∗�d � a�d�2. Thus by the Taylor’s Theorem (with remainder)

f�x∗ +d�−f�x∗� = 1
2 dT F�x∗�d +o��d�2�

� �a/2��d�2 +o��d�2�

For small �d� the first term on the right dominates the second, implying that both
sides are positive for small d.

7.4 CONVEX AND CONCAVE FUNCTIONS
In order to develop a theory directed toward characterizing global, rather than local,
minimum points, it is necessary to introduce some sort of convexity assumptions.
This results not only in a more potent, although more restrictive, theory but also
provides an interesting geometric interpretation of the second-order sufficiency
result derived above.

Definition. A function f defined on a convex set � is said to be convex if,
for every x1, x2 ∈ � and every �, 0 � � � 1, there holds

f��x1 + �1−��x2� � �f�x1�+ �1−��f�x2��

If, for every �, 0 < � < 1, and x1 �= x2, there holds

f��x1 + �1−��x2� < �f�x1�+ �1−��f�x2��

then f is said to be strictly convex.

Several examples of convex or nonconvex functions are shown in Fig. 7.3.
Geometrically, a function is convex if the line joining two points on its graph lies
nowhere below the graph, as shown in Fig. 7.3(a), or, thinking of a function in two
dimensions, it is convex if its graph is bowl shaped.

Next we turn to the definition of a concave function.

Definition. A function g defined on a convex set � is said to be concave
if the function f = −g is convex. The function g is strictly concave if −g is
strictly convex.
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f

x
convex

(a)

f

x
nonconvex

(c)

f

x
convex

(b)

Fig. 7.3 Convex and nonconvex functions
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Combinations of Convex Functions
We show that convex functions can be combined to yield new convex functions
and that convex functions when used as constraints yield convex constraint sets.

Proposition 1. Let f1 and f2 be convex functions on the convex set �. Then
the function f1 +f2 is convex on �.

Proof. Let x1, x2 ∈ �, and 0 < � < 1. Then

f1��x1 + �1−��x2�+f2��x1�+ �1−��x2�

� �
f1�x1�+f2�x1��+ �1−��
f1�x2�+f2�x2���

Proposition 2. Let f be a convex function over the convex set �. Then the
function af is convex for any a � 0.

Proof. Immediate.

Note that through repeated application of the above two propositions it follows
that a positive combination a1f1 +a2f2 + � � �+amfm of convex functions is again
convex.

Finally, we consider sets defined by convex inequality constraints.

Proposition 3. Let f be a convex function on a convex set �. The set
�c = 
x � x ∈ ��f�x� � c� is convex for every real number c.

Proof. Let x1, x2 ∈ �c. Then f�x1� � c, f�x2� � c and for 0 < � < 1,

f��x1 + �1−��x2� � �f�x1�+ �1−��f�x2� � c�

Thus �x1 + �1−��x2 ∈ �c.

We note that, since the intersection of convex sets is also convex, the set of
points simultaneously satisfying

f1�x� � c1� f2�x� � c2� � � � � fm�x� � cm�

where each fi is a convex function, defines a convex set. This is important in
mathematical programming, since the constraint set is often defined this way.

Properties of Differentiable Convex Functions
If a function f is differentiable, then there are alternative characterizations of
convexity.



7.4 Convex and Concave Functions 195

Proposition 4. Let f ∈ C1. Then f is convex over a convex set � if and only
if

f�y� � f�x�+�f�x��y −x� (9)

for all x� y ∈ �.

Proof. First suppose f is convex. Then for all �, 0 � � � 1,

f��y + �1−��x� � �f�y�+ �1−��f�x��

Thus for 0 < � � 1

f�x +��y −x��−f�x�

�
� f�y�−f�x��

Letting � → 0 we obtain

�f�x��y −x� � f�y�−f�x��

This proves the “only if” part.
Now assume

f�y� � f�x�+�f�x��y −x�

for all x, y ∈ �. Fix x1, x2 ∈ � and �, 0 � � � 1. Setting x = �x1 + �1−��x2 and
alternatively y = x1 or y = x2, we have

f�x1� � f�x�+�f�x��x1 −x� (10)

f�x2� � f�x�+�f�x��x2 −x�� (11)

Multiplying (10) by � and (11) by (1−�) and adding, we obtain

�f�x1�+ �1−��f�x2� � f�x�+�f�x�
�x1 + �1−��x2 −x��

But substituting x = �x1 + �1−��x2, we obtain

�f�x1�+ �1−��f�x2� � f��x1 + �1−��x2��

The statement of the above proposition is illustrated in Fig. 7.4. It can be
regarded as a sort of dual characterization of the original definition illustrated in
Fig. 7.3. The original definition essentially states that linear interpolation between
two points overestimates the function, while the above proposition states that linear
approximation based on the local derivative underestimates the function.

For twice continuously differentiable functions, there is another characterization
of convexity.
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f (y)

y
x

f (x) + ∇ f (x) (y – x)

Fig. 7.4 Illustration of Proposition 4

Proposition 5. Let f ∈ C2. Then f is convex over a convex set � containing
an interior point if and only if the Hessian matrix F of f is positive semidefinite
throughout �.

Proof. By Taylor’s theorem we have

f�y� = f�x� = �f�x��y −x�+ 1
2 �y −x�T F�x +��y −x���y −x� (12)

for some �, 0 � � � 1. Clearly, if the Hessian is everywhere positive semidefinite,
we have

f�y� � f�x�+�f�x��y −x�� (13)

which in view of Proposition 4 implies that f is convex.
Now suppose the Hessian is not positive semidefinite at some point x ∈ �. By

continuity of the Hessian it can be assumed, without loss of generality, that x is an
interior point of �. There is a y ∈ � such that �y −x�T F�x��y −x� < 0. Again by
the continuity of the Hessian, y may be selected so that for all �, 0 � � � 1,

�y −x�T F�x +��y −x���y −x� < 0�

This in view of (12) implies that (13) does not hold; which in view of Proposition 4
implies that f is not convex.

The Hessian matrix is the generalization to En of the concept of the curvature
of a function, and correspondingly, positive definiteness of the Hessian is the
generalization of positive curvature. Convex functions have positive (or at least
nonnegative) curvature in every direction. Motivated by these observations, we
sometimes refer to a function as being locally convex if its Hessian matrix is positive
semidefinite in a small region, and locally strictly convex if the Hessian is positive
definite in the region. In these terms we see that the second-order sufficiency result
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of the last section requires that the function be locally strictly convex at the point
x∗. Thus, even the local theory, derived solely in terms of the elementary calculus,
is actually intimately related to convexity—at least locally. For this reason we can
view the two theories, local and global, not as disjoint parallel developments but
as complementary and interactive. Results that are based on convexity apply even
to nonconvex problems in a region near the solution, and conversely, local results
apply to a global minimum point.

7.5 MINIMIZATION AND MAXIMIZATION
OF CONVEX FUNCTIONS

We turn now to the three classic results concerning minimization or maximization
of convex functions.

Theorem 1. Let f be a convex function defined on the convex set �. Then
the set � where f achieves its minimum is convex, and any relative minimum
of f is a global minimum.

Proof. If f has no relative minima the theorem is valid by default. Assume now
that c0 is the minimum of f . Then clearly � = 
x � f�x� � c0� x ∈ �� and this is
convex by Proposition 3 of the last section.

Suppose now that x∗ ∈ � is a relative minimum point of f , but that there
is another point y ∈ � with f�y� < f�x∗�. On the line �y + �1 −��x∗, 0 < � < 1
we have

f��y + �1−��x∗� � �f�y�+ �1−��f�x∗� < f�x∗��

contradicting the fact that x∗ is a relative minimum point.

We might paraphrase the above theorem as saying that for convex functions, all
minimum points are located together (in a convex set) and all relative minima are
global minima. The next theorem says that if f is continuously differentiable and
convex, then satisfaction of the first-order necessary conditions are both necessary
and sufficient for a point to be a global minimizing point.

Theorem 2. Let f ∈ C1 be convex on the convex set �. If there is a point
x∗ ∈ � such that, for all y ∈ �, �f�x∗��y−x∗� � 0, then x∗ is a global minimum
point of f over �.

Proof. We note parenthetically that since y − x∗ is a feasible direction at x∗,
the given condition is equivalent to the first-order necessary condition stated in
Section 7.1. The proof of the proposition is immediate, since by Proposition 4 of
the last section

f�y� � f�x∗�+�f�x∗��y −x∗� � f�x∗��

Next we turn to the question of maximizing a convex function over a convex
set. There is, however, no analog of Theorem 1 for maximization; indeed, the
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tendency is for the occurrence of numerous nonglobal relative maximum points.
Nevertheless, it is possible to prove one important result. It is not used in subsequent
chapters, but it is useful for some areas of optimization.

Theorem 3. Let f be a convex function defined on the bounded, closed convex
set �. If f has a maximum over � it is achieved at an extreme point of �.

Proof. Suppose f achieves a global maximum at x∗ ∈ �. We show first that this
maximum is achieved at some boundary point of �. If x∗ is itself a boundary point,
then there is nothing to prove, so assume x∗ is not a boundary point. Let L be any
line passing through the point x∗. The intersection of this line with � is an interval
of the line L having end points y1, y2 which are boundary points of �, and we have
x∗ = �y1 + �1−��y2 for some �, 0 < � < 1. By convexity of f

f�x∗� � �f�y1�+ �1−��f�y2� � max
f�y1�� f�y2���

Thus either f�y1� or f�y2� must be at least as great as f�x∗�. Since x∗ is a maximum
point, so is either y1 or y2.

We have shown that the maximum, if achieved, must be achieved at a boundary
point of �. If this boundary point, x∗, is an extreme point of � there is nothing
more to prove. If it is not an extreme point, consider the intersection of � with a
supporting hyperplane H at x∗. This intersection, T1, is of dimension n−1 or less
and the global maximum of f over T1 is equal to f�x∗� and must be achieved at
a boundary point x1 of T1. If this boundary point is an extreme point of T1, it is
also an extreme point of � by Lemma 1, Section B.4, and hence the theorem is
proved. If x1 is not an extreme point of T1, we form T2, the intersection of T1 with a
hyperplane in En−1 supporting T1 at x1. This process can continue at most a total of
n times when a set Tn of dimension zero, consisting of a single point, is obtained.
This single point is an extreme point of Tn and also, by repeated application of
Lemma 1, Section B.4, an extreme point of �.

7.6 ZERO-ORDER CONDITIONS
We have considered the problem

minimize f�x�

subject to x ∈ � (14)

to be unconstrained because there are no functional constraints of the form g�x� � b
or h�x� = c. However, the problem is of course constrained by the set �. This
constraint influences the first- and second-order necessary and sufficient conditions
through the relation between feasible directions and derivatives of the function f .
Nevertheless, there is a way to treat this constraint without reference to derivatives.
The resulting conditions are then of zero order. These necessary conditions require
that the problem be convex is a certain way, while the sufficient conditions require
no assumptions at all. The simplest assumptions for the necessary conditions are
that � is a convex set and that f is a convex function on all of En.
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Fig. 7.5 The epigraph, the tubular region, and the hyperplane

To derive the necessary conditions under these assumptions consider the set
� ⊂ En+1 = 
�r� x� � r � f�x�� x ∈ En�. In a figure of the graph of f , the set � is the
region above the graph, shown in the upper part of Fig. 7.5. This set is called the
epigraph of f . It is easy to verify that the set � is convex if f is a convex function.

Suppose that x∗ ∈ � is the minimizing point with value f ∗ = f�x∗�. We
construct a tubular region with cross section � and extending vertically from −	
up to f ∗, shown as B in the upper part of Fig. 7.5. This is also a convex set, and it
overlaps the set � only at the boundary point �f ∗� b∗� above x∗ (or possibly many
boundary points if f is flat near x∗).

According to the separating hyperplane theorem (Appendix B), there is a
hyperplane separating these two sets. This hyperplane can be represented by a
nonzero vector of the form �s� �� ∈ En+1 with s a scalar and � ∈ En, and a
separation constant c. The separation conditions are

sr +�T x ≥ c for all x ∈ En and r ≥ f�x� (15)

sr +�T x ≤ c for all x ∈ � and r ≤ f ∗� (16)

It follows that s �= 0; for otherwise � �= 0 and then (15) would be violated for some
x ∈ En. It also follows that s � 0 since otherwise (16) would be violated by very
negative values of r. Hence, together we find s > 0 and by appropriate scaling we
may take s = 1.

It is easy to see that the above conditions can be expressed alternatively as two
optimization problems, as stated in the following proposition.

Proposition 1 (Zero-order necessary conditions). If x∗ solves (14) under the
stated convexity conditions, then there is a nonzero vector � ∈ En such that x∗

is a solution to the two problems:



200 Chapter 7 Basic Properties of Solutions and Algorithms

minimize f�x�+�T x

subject to x ∈ En (17)

and

maximize �T x

subject to x ∈ �� (18)

Proof. Problem (17) follows from (15) (with s = 1) and the fact that f�x� ≤ r
for r ≥ f�x�. The value c is attained from above at �f ∗� x∗�. Likewise (18) follows
from (16) and the fact that x∗ and the appropriate r attain c from below.

Notice that problem (17) is completely unconstrained, since x may range over
all of En. The second problem (18) is constrained by � but has a linear objective
function.

It is clear from Fig. 7.5 that the slope of the hyperplane is equal to the slope
of the function f when f is continuously differentiable at the solution x∗.

If the optimal solution x∗ is in the interior of �, then the second problem (18)
implies that � = 0, for otherwise there would be a direction of movement from
x∗ that increases the product �T x above �T x∗. The hyperplane is horizontal in
that case. The zeroth-order conditions provide no new information in this situation.
However, when the solution is on a boundary point of � the conditions give very
useful information.

Example 1 (Minimization over an interval). Consider a continuously differen-
tiable function f of a single variable x ∈ E1 defined on the unit interval [0,1] which
plays the role of � here. The first problem (17) implies f ′�x∗� = −�. If the solution
is at the left end of the interval (at x = 0) then the second problem (18) implies
that � ≤ 0 which means that f ′�x∗� ≥ 0. The reverse holds if x∗ is at the right end.
These together are identical to the first-order conditions of section 7.1.

Example 2 As a generalization of the above example, let f ∈ C1 on En, and let f
have a minimum with respect to � at x∗. Let d ∈ En be a feasible direction at x∗.
Then it follows again from (17) that �f�x∗�d ≥ 0.

Sufficient Conditions. The conditions of Proposition 1 are sufficient for x∗ to be
a minimum even without the convexity assumptions.

Proposition 2 (Zero-order sufficiency conditions). If there is a � such that
x∗ ∈ � solves the problems (17) and (18), then x∗ solves (14).

Proof. Suppose x1 is any other point in �. Then from (17)

f�x1�+�T x1 � f�x∗�+�T x∗�

This can be rewritten as

f�x1�−f�x∗� � �T x∗ −�T x1�
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By problem (18) the right hand side of this is greater than or equal to zero. Hence
f�x1�−f�x∗� � 0 which establishes the result.

7.7 GLOBAL CONVERGENCE OF DESCENT
ALGORITHMS

A good portion of the remainder of this book is devoted to presentation and analysis
of various algorithms designed to solve nonlinear programming problems. Although
these algorithms vary substantially in their motivation, application, and detailed
analysis, ranging from the simple to the highly complex, they have the common
heritage of all being iterative descent algorithms. By iterative, we mean, roughly,
that the algorithm generates a series of points, each point being calculated on the
basis of the points preceding it. By descent, we mean that as each new point is
generated by the algorithm the corresponding value of some function (evaluated at
the most recent point) decreases in value. Ideally, the sequence of points generated
by the algorithm in this way converges in a finite or infinite number of steps to a
solution of the original problem.

An iterative algorithm is initiated by specifying a starting point. If for arbitrary
starting points the algorithm is guaranteed to generate a sequence of points
converging to a solution, then the algorithm is said to be globally convergent. Quite
definitely, not all algorithms have this obviously desirable property. Indeed, many of
the most important algorithms for solving nonlinear programming problems are not
globally convergent in their purest form and thus occasionally generate sequences
that either do not converge at all or converge to points that are not solutions. It is
often possible, however, to modify such algorithms, by appending special devices,
so as to guarantee global convergence.

Fortunately, the subject of global convergence can be treated in a unified
manner through the analysis of a general theory of algorithms developed mainly
by Zangwill. From this analysis, which is presented in this section, we derive
the Global Convergence Theorem that is applicable to the study of any iterative
descent algorithm. Frequent reference to this important result is made in subsequent
chapters.

Algorithms
We think of an algorithm as a mapping. Given a point x in some space X, the
output of an algorithm applied to x is a new point. Operated iteratively, an algorithm
is repeatedly reapplied to the new points it generates so as to produce a whole
sequence of points. Thus, as a preliminary definition, we might formally define
an algorithm A as a mapping taking points in a space X into (other) points in
X. Operated iteratively, the algorithm A initiated at x0 ∈ X would generate the
sequence 
xk� defined by

xk+1 = A�xk��
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In practice, the mapping A might be defined explicitly by a simple mathematical
expression or it might be defined implicitly by, say, a lengthy complex computer
program. Given an input vector, both define a corresponding output.

With this intuitive idea of an algorithm in mind, we now generalize the concept
somewhat so as to provide greater flexibility in our analyses.

Definition. An algorithm A is a mapping defined on a space X that assigns
to every point x ∈ X a subset of X.

In this definition the term “space” can be interpreted loosely. Usually X is the
vector space En but it may be only a subset of En or even a more general metric
space. The most important aspect of the definition, however, is that the mapping
A, rather than being a point-to-point mapping of X, is a point-to-set mapping of X.

An algorithm A generates a sequence of points in the following way. Given
xk ∈ X the algorithm yields A�xk� which is a subset of X. From this subset an
arbitrary element xk+1 is selected. In this way, given an initial point x0, the algorithm
generates sequences through the iteration

xk+1 ∈ A�xk��

It is clear that, unlike the case where A is a point-to-point mapping, the sequence
generated by the algorithm A cannot, in general, be predicted solely from knowledge
of the initial point x0. This degree of uncertainty is designed to reflect uncertainty
that we may have in practice as to specific details of an algorithm.

Example 1. Suppose for x on the real line we define

A�x� = 
−�x�/2� �x�/2�

so that A�x� is an interval of the real line. Starting at x0 = 100, each of the sequences
below might be generated from iterative application of this algorithm.

100� 50� 25� 12� −6� −2� 1� 1/2� � � �
100� −40� 20� −5� −2� 1� 1/4� 1/8� � � �

100� 10� −1� 1/16� 1/100� −1/1000� 1/10� 000� � � �

The apparent ambiguity that is built into this definition of an algorithm is not
meant to imply that actual algorithms are random in character. In actual imple-
mentation algorithms are not defined ambiguously. Indeed, a particular computer
program executed twice from the same starting point will generate two copies of the
same sequence. In other words, in practice algorithms are point-to-point mappings.
The utility of the more general definition is that it allows one to analyze, in a
single step, the convergence of an infinite family of similar algorithms. Thus, two
computer programs, designed from the same basic idea, may differ slightly in some
details, and therefore perhaps may not produce identical results when given the
same starting point. Both programs may, however, be regarded as implementations
of the same point-to-set mappings. In the example above, for instance, it is not
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necessary to know exactly how xk+1 is determined from xk so long as it is known
that its absolute value is no greater than one-half xk’s absolute value. The result will
always tend toward zero. In this manner, the generalized concept of an algorithm
sometimes leads to simpler analysis.

Descent
In order to describe the idea of a descent algorithm we first must agree on a subset
� of the space X, referred to as the solution set. The basic idea of a descent function,
which is defined below, is that for points outside the solution set, a single step of
the algorithm yields a decrease in the value of the descent function.

Definition. Let � ⊂ X be a given solution set and let A be an algorithm on
X. A continuous real-valued function Z on X is said to be a descent function
for � and A if it satisfies

i) if x � � and y ∈ A�x�, then Z�y� < Z�x�
ii) if x ∈ � and y ∈ A�x�, then Z�y� � Z�x�.

There are a number of ways a solution set, algorithm, and descent function can
be defined. A natural set-up for the problem

minimize f�x�
subject to x ∈ �

(19)

is to let � be the set of minimizing points, and define an algorithm A on � in
such a way that f decreases at each step and thereby serves as a descent function.
Indeed, this is the procedure followed in a majority of cases. Another possibility
for unconstrained problems is to let � be the set of points x satisfying �f�x� = 0.
In this case we might design an algorithm for which ��f�x�� serves as a descent
function or for which f�x� serves as a descent function.

Closed Mappings
An important property possessed by some algorithms is that they are closed. This
property, which is a generalization for point-to-set mappings of the concept of
continuity for point-to-point mappings, turns out to be the key to establishing a
general global convergence theorem. In defining this property we allow the point-
to-set mapping to map points in one space X into subsets of another space Y .

Definition. A point-to-set mapping A from X to Y is said to be closed at
x ∈ X if the assumptions

i) xk → x, xk ∈ X,
ii) yk → y, yk ∈ A�xk�

imply
iii) y ∈ A�x�.
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The point-to-set map A is said to be closed on X if it is closed at each point of X.

Example 2. As a special case, suppose that the mapping A is a point-to-point
mapping; that is, for each x ∈ X the set A(x) consists of a single point in Y . Suppose
also that A is continuous at x ∈ X. This means that if xk → x then A�xk� → A�x�,
and it follows that A is closed at x. Thus for point-to-point mappings continuity
implies closedness. The converse is, however, not true in general.

The definition of a closed mapping can be visualized in terms of the graph
of the mapping, which is the set 
�x� y� � x ∈ X� y ∈ A�x��. If X is closed, then A
is closed throughout X if and only if this graph is a closed set. This is illustrated
in Fig. 7.6. However, this equivalence is valid only when considering closedness
everywhere. In general a mapping may be closed at some points and not at others.

Example 3. The reader should verify that the point-to-set mapping defined in
Example 1 is closed.

Many complex algorithms that we analyze are most conveniently regarded
as the composition of two or more simple point-to-set mappings. It is therefore
natural to ask whether closedness of the individual maps implies closedness of the
composite. The answer is a qualified “yes.” The technical details of composition
are described in the remainder of this subsection. They can safely be omitted at
first reading while proceeding to the Global Convergence Theorem.

Definition. Let A � X → Y and B � Y → Z be point-to-set mappings. The
composite mapping C = BA is defined as the point-to-set mapping C � X →
Z with

C�x� = ∪
y∈A�x�

B�y��

This definition is illustrated in Fig. 7.7.

Proposition. Let A � X → Y and B � Y → Z be point-to-set mappings. Suppose
A is closed at x and B is closed on A(x). Suppose also that if xk → x and
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yk ∈ A�xk�, there is a y such that, for some subsequence 
yki�, yki → y. Then
the composite mapping C = BA is closed at x.

Proof. Let xk → x and zk → z with zk ∈ C�xk�. It must be shown that z ∈ C�x�.
Select yk ∈ A�xk� such that zk ∈ B�yk� and according to the hypothesis let y

and 
yki� be such that yki → y. Since A is closed at x it follows that y ∈ A�x�.
Likewise, since yki → y, zki → z and B is closed at y, it follows that z ∈ B�y� ⊂

BA�x� = C�x�.

Two important corollaries follow immediately.

Corollary 1. Let A � X → Y and B � Y → Z be point-to-set mappings. If A
is closed at x, B is closed on A(x) and Y is compact, then the composite map
C = BA is closed at x.

Corollary 2. Let A � X → Y be a point-to-point mapping and B � Y → Z a
point-to-set mapping. If A is continuous at x and B is closed at A(x), then the
composite mapping C = BA is closed at x.

Global Convergence Theorem
The Global Convergence Theorem is used to establish convergence for the following
general situation. There is a solution set � . Points are generated according to
the algorithm xk+1 ∈ A�xk�, and each new point always strictly decreases a
descent function Z unless the solution set � is reached. For example, in nonlinear
programming, the solution set may be the set of minimum points (perhaps only
one point), and the descent function may be the objective function itself. A suitable
algorithm is found that generates points such that each new point strictly reduces
the value of the objective. Then, under appropriate conditions, it follows that the
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sequence converges to the solution set. The Global Convergence Theorem estab-
lishes technical conditions for which convergence is guaranteed.

Global Convergence Theorem. Let A be an algorithm on X, and suppose that,
given x0 the sequence 
xk�

	
k=0 is generated satisfying

xk+1 ∈ A�xk��

Let a solution set � ⊂ X be given, and suppose

i) all points xk are contained in a compact set S ⊂ X
ii) there is a continuous function Z on X such that

(a) if x � � , then Z�y� < Z�x� for all y ∈ A�x�
(b) if x ∈ � , then Z�y� � Z�x� for all y ∈ A�x�

iii) the mapping A is closed at points outside � .

Then the limit of any convergent subsequence of 
xk� is a solution.

Proof. Suppose the convergent subsequence 
xk�, k ∈� converges to the limit x.
Since Z is continuous, it follows that for k ∈� , Z�xk� → Z�x�. This means that Z is
convergent with respect to the subsequence, and we shall show that it is convergent
with respect to the entire sequence. By the monotonicity of Z on the sequence 
xk�
we have Z�xk�−Z�x� � 0 for all k. By the convergence of Z on the subsequence,
there is, for a given � > 0, a K ∈ � such that Z�xk� − Z�x� < � for all k > K,
k ∈ � .

Thus for all k > K

Z�xk�−Z�x� = Z�xk�−Z�xK�+Z�xK�−Z�x� < ��

which shows that Z�xk� → Z�x�.
To complete the proof it is only necessary to show that x is a solution. Suppose

x is not a solution. Consider the subsequence 
xk+1�� . Since all members of this
sequence are contained in a compact set, there is a �̄ ⊂ � such that 
xk+1��̄
converges to some limit x̄. We thus have xk → x, k ∈ �̄ , and xk+1 ∈ A�xk� with
xk+1 → x̄, k ∈ � . Thus since A is closed at x it follows that x̄ ∈ A�x�. But from
above, Z�x̄� = Z�x� which contradicts the fact that Z is a descent function.

Corollary. If under the conditions of the Global Convergence Theorem �
consists of a single point x̄, then the sequence 
xk� converges to x̄.

Proof. Suppose to the contrary that there is a subsequence 
xk�� and an � > 0
such that �xk − x̄� > � for all k ∈� . By compactness there must be � ′ ⊂� such that

xk�� ′ converges, say to x′. Clearly, �x′ − x̄� � �, but by the Global Convergence
Theorem x′ ∈ � , which is a contradiction.

In later chapters the Global Convergence Theorem is used to establish
the convergence of several standard algorithms. Here we consider some simple
examples designed to illustrate the roles of the various conditions of the theorem.
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Example 4. In many respects condition (iii) of the theorem, the closedness of
A outside the solution set, is the most important condition. The failure of many
popular algorithms can be traced to nonsatisfaction of this condition. On the real
line consider the point-to-point algorithm

A�x� =
{

1
2 �x−1�+1 x > 1
1
2 x x � 1

and the solution set � = 
0�. It is easily verified that a descent function for this
solution set and this algorithm is Z�x� = �x�. However, starting from x > 1, the
algorithm generates a sequence converging to x = 1 which is not a solution. The
difficulty is that A is not closed at x = 1.

Example 5. On the real line X consider the solution set to be empty, the descent
function Z�x� = e−x, and the algorithm A�x� = x+1. All conditions of the conver-
gence theorem except (i) hold. The sequence generated from any starting condition
diverges to infinity. This is not strictly a violation of the conclusion of the theorem
but simply an example illustrating that if no compactness assumption is introduced,
the generated sequence may have no convergent subsequence.

Example 6. Consider the point-to-set algorithm A defined by the graph in Fig. 7.8
and given explicitly on X = 
0� 1� by

A�x� =
{


0� x� 1 � x > 0

0 x = 0�

where 
0� x� denotes a half-open interval (see Appendix A). Letting � = 
0�, the
function Z�x� = x serves as a descent function, because for x �= 0 all points in A�x�
are less than x.

0

1

1
x

A (x)

Fig. 7.8 Graph for Example 6
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The sequence defined by

x0 = 1

xk+1 = xk − 1
2k+2

satisfies xk+1 ∈ A�xk� but it can easily be seen that xk → 1
2 � � . The difficulty here,

of course, is that the algorithm A is not closed outside the solution set.

7.8 SPEED OF CONVERGENCE
The study of speed of convergence is an important but sometimes complex subject.
Nevertheless, there is a rich and yet elementary theory of convergence rates that
enables one to predict with confidence the relative effectiveness of a wide class
of algorithms. In this section we introduce various concepts designed to measure
speed of convergence, and prepare for a study of this most important aspect of
nonlinear programming.

Order of Convergence
Consider a sequence of real numbers 
rk�

	
k=0 converging to the limit r∗. We define

several notions related to the speed of convergence of such a sequence.

Definition. Let the sequence 
rk� converge to r∗. The order of convergence
of 
rk� is defined as the supremum of the nonnegative numbers p satisfying

0 � lim
k→	

�rk+1 − r∗�
�rk − r∗�p < 	�

To ensure that the definition is applicable to any sequence, it is stated in terms
of limit superior rather than just limit and 0/0 (which occurs if rk = r∗ for all k) is
regarded as finite. But these technicalities are rarely necessary in actual analysis,
since the sequences generated by algorithms are generally quite well behaved.

It should be noted that the order of convergence, as with all other notions related
to speed of convergence that are introduced, is determined only by the properties
of the sequence that hold as k → 	. Somewhat loosely but picturesquely, we are
therefore led to refer to the tail of a sequence—that part of the sequence that is
arbitrarily far out. In this language we might say that the order of convergence is
a measure of how good the worst part of the tail is. Larger values of the order p
imply, in a sense, faster convergence, since the distance from the limit r∗ is reduced,
at least in the tail, by the pth power in a single step. Indeed, if the sequence has
order p and (as is the usual case) the limit

� = lim
k→	

�rk+1 − r∗�
�rk − r∗�p
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exists, then asymptotically we have

�rk+1 − r∗� = ��rk − r∗�p�

Example 1. The sequence with rk = ak where 0 < a < 1 converges to zero with
order unity, since rk+1/rk = a.

Example 2. The sequence with rk = a�2k� for 0 < a < 1 converges to zero with
order two, since rk+1/r2

k = 1.

Linear Convergence
Most algorithms discussed in this book have an order of convergence equal to unity.
It is therefore appropriate to consider this class in greater detail and distinguish
certain cases within it.

Definition. If the sequence 
rk� converges to r∗ in such a way that

lim
k→	

�rk+1 − r∗�
�rk − r∗� = � < 1�

the sequence is said to converge linearly to r∗ with convergence ratio (or
rate) �.

Linear convergence is, for our purposes, without doubt the most important
type of convergence behavior. A linearly convergent sequence, with convergence
ratio �, can be said to have a tail that converges at least as fast as the geometric
sequence c�k for some constant c. Thus linear convergence is sometimes referred
to as geometric convergence, although in this book we reserve that phrase for the
case when a sequence is exactly geometric.

As a rule, when comparing the relative effectiveness of two competing
algorithms both of which produce linearly convergent sequences, the comparison is
based on their corresponding convergence ratios—the smaller the ratio the faster the
rate. The ultimate case where � = 0 is referred to as superlinear convergence. We
note immediately that convergence of any order greater than unity is superlinear,
but it is also possible for superlinear convergence to correspond to unity order.

Example 3. The sequence rk = 1/k converges to zero. The convergence is of
order one but it is not linear, since lim

k→	
�rk+1/rk� = 1, that is, � is not strictly less

than one.
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Example 4. The sequence rk = �1/k�k is of order unity, since rk+1/r
p
k → 	 for

p > 1. However, rk+1/rk → 0 as k → 	 and hence this is superlinear convergence.

∗Average Rates
All the definitions given above can be referred to as step-wise concepts of conver-
gence, since they define bounds on the progress made by going a single step: from
k to k+ 1. Another approach is to define concepts related to the average progress
per step over a large number of steps. We briefly illustrate how this can be done.

Definition. Let the sequence 
rk� converge to r∗. The average order of
convergence is the infimum of the numbers p > 1 such that

lim
k→	

�rk − r∗�1/pk = 1�

The order is infinity if the equality holds for no p > 1.

Example 5. For the sequence rk = a�2k�, 0 < a < 1, given in Example 2, we have

�rk�1/2k = a�

while

�rk�1/pk = a�2/p�k → 1

for p > 2. Thus the average order is two.

Example 6. For rk = ak with 0 < a < 1 we have

�rk�
1/pk = ak�1/p�k → 1

for any p > 1. Thus the average order is unity.

As before, the most important case is that of unity order, and in this case we
define the average convergence ratio as lim

k→	
�rk − r∗�1/k. Thus for the geometric

sequence rk = cak, 0 < a < 1, the average convergence ratio is a. Paralleling the
earlier definitions, the reader can then in a similar manner define corresponding
notions of average linear and average superlinear convergence.

Although the above array of definitions can be further embellished and
expanded, it is quite adequate for our purposes. For the most part we work with
the step-wise definitions, since in analyzing iterative algorithms it is natural to
compare one step with the next. In most situations, moreover, when the sequences
are well behaved and the limits exist in the definitions, then the step-wise and
average concepts of convergence rates coincide.
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∗Convergence of Vectors
Suppose 
xk�

	
k=0 is a sequence of vectors in En converging to a vector x∗. The conver-

gence properties of such a sequence are defined with respect to some particular
function that converts the sequence of vectors into a sequence of numbers. Thus,
if f is a given continuous function on En, the convergence properties of 
xk�
can be defined with respect to f by analyzing the convergence of f�xk� to f�x∗�.
The function f used in this way to measure convergence is called the error function.

In optimization theory it is common to choose the error function by which to
measure convergence as the same function that defines the objective function of the
original optimization problem. This means we measure convergence by how fast the
objective converges to its minimum. Alternatively, we sometimes use the function
�x−x∗�2 and thereby measure convergence by how fast the (squared) distance from
the solution point decreases to zero.

Generally, the order of convergence of a sequence is insensitive to the particular
error function used; but for step-wise linear convergence the associated convergence
ratio is not. Nevertheless, the average convergence ratio is not too sensitive, as the
following proposition demonstrates, and hence the particular error function used to
measure convergence is not really very important.

Proposition. Let f and g be two error functions satisfying f�x∗� = g�x∗� = 0
and, for all x, a relation of the form

0 � a1g�x� � f�x� � a2g�x�

for some fixed a1 > 0, a2 > 0. If the sequence 
xk�
	
k=0 converges to x∗ linearly

with average ratio � with respect to one of these functions, it also does so with
respect to the other.

Proof. The statement is easily seen to be symmetric in f and g. Thus we assume

xk� is linearly convergent with average convergence ratio � with respect to f , and
will prove that the same is true with respect to g. We have

� = lim
k→	

f�xk�
1/k � lim

k→	
a

1/k
2 g�xk�

1/k = lim
k→	

g�xk�
1/k

and

� = lim
k→	

f�xk�
1/k � lim

k→	
a

1/k
1 g�xk�

1/k = lim
k→	

g�xk�
1/k�

Thus

� = lim
k→	

g�xk�
1/k�

As an example of an application of the above proposition, consider the case
where g�x� = �x−x∗�2 and f�x� = �x−x∗�T Q�x−x∗�, where Q is a positive definite
symmetric matrix. Then a1 and a2 correspond, respectively, to the smallest and
largest eigenvalues of Q. Thus average linear convergence is identical with respect
to any error function constructed from a positive definite quadratic form.
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Complexity
Complexity theory as outlined in Section 5.1 is an important aspect of convergence
theory. This theory can be used in conjunction with the theory of local convergence.
If an algorithm converges according to any order greater than zero, then for a
fixed problem, the sequence generated by the algorithm will converge in a time
that is a function of the convergence order (and rate, if convergence is linear). For
example, if the order is one with rate 0 < c < 1 and the process begins with an
error of R, a final error of r can be achieved by a number of steps n satisfing
cnR � r . Thus it requires approximately n = log�R/r�/ log�1/c� steps. In this form
the number of steps is not affected by the size of the problem. However, problem
size enters in two possible ways. First, the rate c may depend on the size–say
going toward 1 as the size increases so that the speed is slower for large problems.
The second way that size may enter, and this is the more important way, is that
the time to execute a single step almost always increases with problem size. For
instance if, for a problem seeking an optimal vector of dimension m, each step
requires a Gaussian elimination inversion of an m × m matrix, the solution time
will increase by a factor proportional to m3. Overall the algorithm is therefore a
polynomial time algorithm. Essentially all algorithms in this book employ steps,
such as matrix multiplications or inversion or other algebraic operations, which are
polynomial-time in character. Convergence analysis, therefore, focuses on whether
an algorithm is globally convergent, on its local convergence properties, and also
on the order of the algebraic operations required to execute the steps required. The
last of these is usually easily deduced by listing the number and size of the required
vector and matrix operations.

7.9 SUMMARY
There are two different but complementary ways to characterize the solution to
unconstrained optimization problems. In the local approach, one examines the
relation of a given point to its neighbors. This leads to the conclusion that, at an
unconstrained relative minimum point of a smooth function, the gradient of the
function vanishes and the Hessian is positive semidefinite; and conversely, if at
a point the gradient vanishes and the Hessian is positive definite, that point is a
relative minimum point. This characterization has a natural extension to the global
approach where convexity ensures that if the gradient vanishes at a point, that point
is a global minimum point.

In considering iterative algorithms for finding either local or global minimum
points, there are two distinct issues: global convergence properties and local conver-
gence properties. The first is concerned with whether starting at an arbitrary point
the sequence generated will converge to a solution. This is ensured if the algorithm
is closed, has a descent function, and generates a bounded sequence. Local conver-
gence properties are a measure of the ultimate speed of convergence and generally
determine the relative advantage of one algorithm to another.
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7.10 EXERCISES
1. To approximate a function g over the interval [0, 1] by a polynomial p of degree n (or

less), we minimize the criterion

f�a� =
∫ 1

0

g�x�−p�x��2 dx�

where p�x� = anx
n + an−1x

n−1 + � � � + a0. Find the equations satisfied by the optimal
coefficients a = �a0� a1� � � � � an�.

2. In Example 3 of Section 7.2 show that if the solution has x1 > 0, x1 +x2 = 1, then it is
necessary that

b1 −b2 + �c1 − c2�h�x1� = 0

b2 + �c2 − c3�h�x1 +x2� � 0�

Hint: One way is to reformulate the problem in terms of the variables x1 and y = x1 +x2.

3. a) Using the first-order necessary conditions, find a minimum point of the function

f�x� y� z� = 2x2 +xy +y2 +yz+ z2 −6x−7y −8z+9�

b) Verify that the point is a relative minimum point by verifying that the second-order
sufficiency conditions hold.

c) Prove that the point is a global minimum point.

4. In this exercise and the next we develop a method for determining whether a given
symmetric matrix is positive definite. Given an n×n matrix A let Ak denote the principal
submatrix made up of the first k rows and columns. Show (by induction) that if the
first n−1 principal submatrices are nonsingular, then there is a unique lower triangular
matrix L with unit diagonal and a unique upper triangular matrix U such that A = LU.
(See Appendix C.)

5. A symmetric matrix is positive definite if and only if the determinant of each of its
principal submatrices is positive. Using this fact and the considerations of Exercise 4,
show that an n×n symmetric matrix A is positive definite if and only if it has an LU
decomposition (without interchange of rows) and the diagonal elements of U are all
positive.

6. Using Exercise 5 show that an n×n matrix A is symmetric and positive definite if and
only if it can be written as A = GGT where G is a lower triangular matrix with positive
diagonal elements. This representation is known as the Cholesky factorization of A.

7. Let fi, i ∈ I be a collection of convex functions defined on a convex set �. Show that
the function f defined by f�x� = sup

i∈I
fi�x� is convex on the region

where it is finite.
8. Let � be a monotone nondecreasing function of a single variable (that is, ��r� � ��r ′�

for r ′ > r) which is also convex; and let f be a convex function defined on a convex
set �. Show that the function ��f� defined by ��f��x� = �
f�x�� is convex on �.
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9. Let f be twice continuously differentiable on a region � ⊂ En. Show that a sufficient
condition for a point x∗ in the interior of � to be a relative minimum point of f is that
�f�x∗� = 0 and that f be locally convex at x∗.

10. Define the point-to-set mapping on En by

A�x� = 
y � yT x � b��

where b is a fixed constant. Is A closed?

11. Prove the two corollaries in Section 7.6 on the closedness of composite mappings.

12. Show that if A is a continuous point-to-point mapping, the Global Convergence Theorem
is valid even without assumption (i). Compare with Example 2, Section 7.7.

13. Let 
rk�
	
k=0 and 
ck�

	
k=0 be sequences of real numbers. Suppose rk → 0 average linearly

and that there are constants c > 0 and C such that c � ck � C for all k. Show that
ckrk → 0 average linearly.

14. Prove a proposition, similar to the one in Section 7.8, showing that the order of conver-
gence is insensitive to the error function.

15. Show that if rk → r∗ (step-wise) linearly with convergence ratio �, then rk → r∗ (average)
linearly with average convergence ratio no greater than �.

REFERENCES
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and McCormick [F4], Zangwill [Z2] and Luenberger [L8].
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order conditions appears to be new.

7.7 The idea of using a descent function (usually the objective itself) in order to guarantee
convergence of minimization algorithms is an old one that runs through most literature
on optimization, and has long been used to establish global convergence. Formulation of
the general Global Convergence Theorem, which captures the essence of many previously
diverse arguments, and the idea of representing an algorithm as a point-to-set mapping are
both due to Zangwill [Z2].

7.8 Most of the definitions given in this section have been standard for quite some time. A
thorough discussion which contributes substantially to the unification of these concepts is
contained in Ortega and Rheinboldt [O7].



Chapter 8 BASIC DESCENT
METHODS

We turn now to a description of the basic techniques used for iteratively solving
unconstrained minimization problems. These techniques are, of course, important
for practical application since they often offer the simplest, most direct alterna-
tives for obtaining solutions; but perhaps their greatest importance is that they
establish certain reference plateaus with respect to difficulty of implementation
and speed of convergence. Thus in later chapters as more efficient techniques and
techniques capable of handling constraints are developed, reference is continually
made to the basic techniques of this chapter both for guidance and as points of
comparison.

There is a fundamental underlying structure for almost all the descent
algorithms we discuss. One starts at an initial point; determines, according to
a fixed rule, a direction of movement; and then moves in that direction to a
(relative) minimum of the objective function on that line. At the new point a
new direction is determined and the process is repeated. The primary differences
between algorithms (steepest descent, Newton’s method, etc.) rest with the rule
by which successive directions of movement are selected. Once the selection is
made, all algorithms call for movement to the minimum point on the corresponding
line.

The process of determining the minimum point on a given line is called
line search. For general nonlinear functions that cannot be minimized analyti-
cally, this process actually is accomplished by searching, in an intelligent manner,
along the line for the minimum point. These line search techniques, which are
really procedures for solving one-dimensional minimization problems, form the
backbone of nonlinear programming algorithms, since higher dimensional problems
are ultimately solved by executing a sequence of successive line searches. There
are a number of different approaches to this important phase of minimization and
the first half of this chapter is devoted to their, discussion.

The last sections of the chapter are devoted to a description and analysis of the
basic descent algorithms for unconstrained problems; steepest descent, Newton’s
method, and coordinate descent. These algorithms serve as primary models for the
development and analysis of all others discussed in the book.

215
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8.1 FIBONACCI AND GOLDEN SECTION SEARCH
A very popular method for resolving the line search problem is the Fibonacci search
method described in this section. The method has a certain degree of theoretical
elegance, which no doubt partially accounts for its popularity, but on the whole, as
we shall see, there are other procedures which in most circumstances are superior.

The method determines the minimum value of a function f over a closed
interval [c1, c2]. In applications, f may in fact be defined over a broader domain,
but for this method a fixed interval of search must be specified. The only property
that is assumed of f is that it is unimodal, that is, it has a single relative minimum
(see Fig. 8.1). The minimum point of f is to be determined, at least approximately,
by measuring the value of f at a certain number of points. It should be imagined, as
is indeed the case in the setting of nonlinear programming, that each measurement
of f is somewhat costly—of time if nothing more.

To develop an appropriate search strategy, that is, a strategy for selecting
measurement points based on the previously obtained values, we pose the following
problem: Find how to successively select N measurement points so that, without
explicit knowledge of f , we can determine the smallest possible region of uncer-
tainty in which the minimum must lie. In this problem the region of uncertainty is
determined in any particular case by the relative values of the measured points in
conjunction with our assumption that f is unimodal. Thus, after values are known
at N points x1, x2� � � � � xN with

c1 � x1 < x2 � � � < xN−1 < xN � c2�

the region of uncertainty is the interval �xk−1� xk+1� where xk is the minimum point
among the N , and we define x0 = c1� xN+1 = c2 for consistency. The minimum of
f must lie somewhere in this interval.

f

c1 c2

x

Fig. 8.1 A unimodal function
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The derivation of the optimal strategy for successively selecting measurement
points to obtain the smallest region of uncertainty is fairly straight-forward but
somewhat tedious. We simply state the result and give an example.

Let

d1 = c2 − c1� the initial width of uncertainty

dk = width of uncertainty after k measurements�

Then, if a total of N measurements are to be made, we have

dk =
(

FN−k+1

FN

)

d1� (1)

where the integers Fk are members of the Fibonacci sequence generated by the
recurrence relation

FN = FN−1 +FN−2� F0 = F1 = 1� (2)

The resulting sequence is 1, 1, 2, 3, 5, 8, 13, � � � .
The procedure for reducing the width of uncertainty to dN is this: The first two

measurements are made symmetrically at a distance of �FN−1/FN �d1 from the ends
of the initial intervals; according to which of these is of lesser value, an uncertainty
interval of width d2 = �FN−1/FN �d1 is determined. The third measurement point
is placed symmetrically in this new interval of uncertainty with respect to the
measurement already in the interval. The result of this third measurement gives an
interval of uncertainty d3 = �FN−2/FN �d1. In general, each successive measurement
point is placed in the current interval of uncertainty symmetrically with the point
already existing in that interval.

Some examples are shown in Fig. 8.2. In these examples the sequence of
measurement points is determined in accordance with the assumption that each
measurement is of lower value than its predecessors. Note that the procedure always
calls for the last two measurements to be made at the midpoint of the semifinal
interval of uncertainty. We are to imagine that these two points are actually separated
a small distance so that a comparison of their respective values will reduce the
interval to nearly half. This terminal anomaly of the Fibonacci search process is,
of course, of no great practical consequence.

Search by Golden Section
If the number N of allowed measurement points in a Fibonacci search is made to
approach infinity, we obtain the golden section method. It can be argued, based on
the optimal property of the finite Fibonacci method, that the corresponding infinite
version yields a sequence of intervals of uncertainty whose widths tend to zero
faster than that which would be obtained by other methods.
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Fig. 8.2 Fibonacci search

The solution to the Fibonacci difference equation

FN = FN−1 +FN−2 (3)

is of the form

FN = A�N
1 +B�N

2 � (4)

where �1 and �2 are roots of the characteristic equation

�2 = � +1�

Explicitly,

�1 = 1+√
5

2
� �2 = 1−√

5
2

�

(The number �1 � 1�618 is known as the golden section ratio and was considered
by early Greeks to be the most aesthetic value for the ratio of two adjacent sides
of a rectangle.) For large N the first term on the right side of (4) dominates the
second, and hence

lim
N→�

FN−1

FN

= 1
�1

� 0�618�
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It follows from (1) that the interval of uncertainty at any point in the process has
width

dk =
(

1
�1

)k−1

d1� (5)

and from this it follows that

dk+1

dk

= 1
�1

= 0�618� (6)

Therefore, we conclude that, with respect to the width of the uncertainty interval,
the search by golden section converges linearly (see Section 7.8) to the overall
minimum of the function f with convergence ratio 1/�1 = 0�618.

8.2 LINE SEARCH BY CURVE FITTING
The Fibonacci search method has a certain amount of theoretical appeal, since
it assumes only that the function being searched is unimodal and with respect
to this broad class of functions the method is, in some sense, optimal. In most
problems, however, it can be safely assumed that the function being searched, as
well as being unimodal, possesses a certain degree of smoothness, and one might,
therefore, expect that more efficient search techniques exploiting this smoothness
can be devised; and indeed they can. Techniques of this nature are usually based
on curve fitting procedures where a smooth curve is passed through the previously
measured points in order to determine an estimate of the minimum point. A variety
of such techniques can be devised depending on whether or not derivatives of the
function as well as the values can be measured, how many previous points are
used to determine the fit, and the criterion used to determine the fit. In this section
a number of possibilities are outlined and analyzed. All of them have orders of
convergence greater than unity.

Newton’s Method
Suppose that the function f of a single variable x is to be minimized, and suppose
that at a point xk where a measurement is made it is possible to evaluate the three
numbers f�xk�, f ′�xk�, f ′′�xk�. It is then possible to construct a quadratic function
q which at xk agrees with f up to second derivatives, that is

q�x� = f�xk�+f ′�xk��x−xk�+ 1
2 f ′′�xk��x−xk�

2� (7)

We may then calculate an estimate xk+1 of the minimum point of f by finding the
point where the derivative of q vanishes. Thus setting

0 = q′�xk+1� = f ′�xk�+f ′′�xk��xk+1 −xk��
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xk + 1 xk
x

f

Fig. 8.3 Newton’s method for minimization

we find

xk+1 = xk − f ′�xk�

f ′′�xk�
� (8)

This process, which is illustrated in Fig. 8.3, can then be repeated at xk+1.
We note immediately that the new point xk+1 resulting from Newton’s method

does not depend on the value f�xk�. The method can more simply be viewed as a
technique for iteratively solving equations of the form

g�x� = 0�

where, when applied to minimization, we put g�x� ≡ f ′�x�. In this notation Newton’s
method takes the form

xk+1 = xk − g�xk�

g′�xk�
� (9)

This form is illustrated in Fig. 8.4.
We now show that Newton’s method has order two convergence:

Proposition. Let the function g have a continuous second derivative, and let
x∗ satisfy g�x∗� = 0, g′�x∗� 	= 0. Then, provided x0 is sufficiently close to x∗,
the sequence 	xk


�
k=0 generated by Newton’s method (9) converges to x∗ with

an order of convergence at least two.

Proof. For points � in a region near x∗ there is a k1 such that 
g′′���
 < k1 and a
k2 such that 
g′���
 > k2. Then since g�x∗� = 0 we can write

xk+1 −x∗ = xk −x∗ − g�xk�−g�x∗�
g′�xk�

= −�g�xk�−g�x∗�+g′�xk��x
∗ −xk��/g′�xk��
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xk + 1 xk
x

g

Fig. 8.4 Newton’s method for solving equations

The term in brackets is, by Taylor’s theorem, zero to first-order. In fact, using the
remainder term in a Taylor series expansion about xk, we obtain

xk+1 −x∗ = 1
2

g′′���

g′�xk�
�xk −x∗�2

for some � between x∗ and xk. Thus in the region near x∗,


xk+1 −x∗
 � k1

2k2


xk −x∗
2�

We see that if 
xk −x∗
k1/2k2 < 1, then 
xk+1 −x∗
 < 
xk −x∗
 and thus we conclude
that if started close enough to the solution, the method will converge to x∗ with an
order of convergence at least two.

Method of False Position
Newton’s method for minimization is based on fitting a quadratic on the basis of
information at a single point; by using more points, less information is required at
each of them. Thus, using f�xk�, f ′�xk�, f ′�xk−1� it is possible to fit the quadratic

q�x� = f�xk�+f ′�xk��x−xk�+ f ′�xk−1�−f ′�xk�

xk−1 −xk

· �x−xk�
2

2
�

which has the same corresponding values. An estimate xk+1 can then be determined
by finding the point where the derivative of q vanishes; thus

xk+1 = xk −f ′�xk�

[
xk−1 −xk

f ′�xk−1�−f ′�xk�

]

� (10)

(See Fig. 8.5.) Comparing this formula with Newton’s method, we see again that
the value f�xk� does not enter; hence, our fit could have been passed through
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xk xk + 1 xk – 1
x

f

q

Fig. 8.5 False position for minimization

either f�xk� or f�xk−1�. Also the formula can be regarded as an approximation to
Newton’s method where the second derivative is replaced by the difference of two
first derivatives.

Again, since this method does not depend on values of f directly, it can be
regarded as a method for solving f ′�x� ≡ g�x� = 0. Viewed in this way the method,
which is illustrated in Fig. 8.6, takes the form

xk+1 = xk −g�xk�

[
xk −xk−1

g�xk�−g�xk−1�

]

� (11)

We next investigate the order of convergence of the method of false position
and discover that it is order �1 � 1�618, the golden mean.

Proposition. Let g have a continuous second derivative and suppose x∗ is
such that g�x∗� = 0, g′�x∗� 	= 0. Then for x0 sufficiently close to x∗, the sequence
	xk


�
k=0 generated by the method of false position (11) converges to x∗ with

order �1 � 1�618.

xk xk + 1 xk – 1
x

g

Fig. 8.6 False position for solving equations
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Proof. Introducing the notation

g�a� b� = g�b�−g�a�

b−a
� (12)

we have

xk−1 −x∗ = xk −x∗ −g�xk�

[
xk −xk−1

g�xk�−g�xk−1�

]

= �xk −x∗�
{

g�xk−1� xk�−g�xk� x∗�
g�xk−1� xk�

}

� (13)

Further, upon the introduction of the notation

g�a� b� c� = g�a� b�−g�b� c�

a− c
�

we may write (13) as

xk+1 −x∗ = �xk −x∗��xk−1 −x∗�
{

g�xk−1� xk� x∗�
g�xk−1� xk�

}

�

Now, by the mean value theorem with remainder, we have (see Exercise 2)

g�xk−1� xk� = g′��k� (14)

and

g�xk−1� xk� x∗� = 1
2 g′′��k�� (15)

where �k and �k are convex combinations of xk, xk−1 and xk, xk−1, x∗, respec-
tively. Thus

xk+1 −x∗ = g′′��k�

2g′��k�
�xk −x∗��xk−1 −x∗�� (16)

It follows immediately that the process converges if it is started sufficiently close
to x∗.

To determine the order of convergence, we note that for large k Eq. (16)
becomes approximately

xk+1 −x∗ = M�xk −x∗��xk−1 −x∗��

where

M = g′′�x∗�
2g′�x∗�

�
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Thus defining 
k = �xk −x∗� we have, in the limit,


k+1 = M
k
k−1� (17)

Taking the logarithm of this equation we have, with yk = log M
k,

yk+1 = yk +yk−1� (18)

which is the Fibonacci difference equation discussed in Section 7.1. A solution to
this equation will satisfy

yk+1 − �1yk → 0�

Thus

log M
k+1 − �1 log M
k → 0 or log
M
k+1

�M
k�
�1

→ 0�

and hence

k+1



�1
k

→ M��1−1��

Having derived the error formula (17) by direct analysis, it is now appropriate
to point out a short-cut technique, based on symmetry and other considerations,
that can sometimes be used in even more complicated situations. The right side of
error formula (17) must be a polynomial in 
k and 
k−1, since it is derived from
approximations based on Taylor’s theorem. Furthermore, it must be second order,
since the method reduces to Newton’s method when xk = xk−1. Also, it must go
to zero if either 
k or 
k−1 go to zero, since the method clearly yields 
k+1 = 0 in
that case. Finally, it must be symmetric in 
k and 
k−1, since the order of points is
irrelevant. The only formula satisfying these requirements is 
k+1 = M
k
k−1.

Cubic Fit
Given the points xk−1 and xk together with the values f�xk−1�, f ′�xk−1�, f�xk�,
f ′�xk�, it is possible to fit a cubic equation to the points having corresponding
values. The next point xk+1 can then be determined as the relative minimum point
of this cubic. This leads to

xk+1 = xk − �xk −xk−1�

[
f ′�xk�+u2 −u1

f ′�xk�−f ′�xk−1�+2u2

]

� (19)

where

u1 = f ′�xk−1�+f ′�xk�−3
f�xk−1�−f�xk�

xk−1 −xk

u2 = �u2
1 −f ′�xk−1�f

′�xk��
1/2�

which is easily implementable for computations.
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It can be shown (see Exercise 3) that the order of convergence of the cubic fit
method is 2.0. Thus, although the method is exact for cubic functions indicating
that its order might be three, its order is actually only two.

Quadratic Fit
The scheme that is often most useful in line searching is that of fitting a quadratic
through three given points. This has the advantage of not requiring any derivative
information. Given x1� x2� x3 and corresponding values f�x1� = f1� f�x2� =
f2� f�x3� = f3 we construct the quadratic passing through these points

q�x� =
3∑

i=1

fi

∏
j 	=i�x−xj�

∏
j 	=i�xi −xj�

� (20)

and determine a new point x4 as the point where the derivative of q vanishes. Thus

x4 = 1
2

b23f1 +b31f2 +b12f3

a23f1 +a31f2 +a12f3

� (21)

where aij = xi −xj� bij = x2
i −x2

j .
Define the errors 
i = x∗ − xi� i = 1, 2, 3, 4. The expression for 
4 must be

a polynomial in 
1� 
2� 
3. It must be second order (since it is a quadratic fit).
It must go to zero if any two of the errors 
1� 
2� 
3 is zero. (The reader should
check this.) Finally, it must be symmetric (since the order of points is relevant). It
follows that near a minimum point x∗ of f , the errors are related approximately by


4 = M�
1
2 +
2
3 +
1
3�� (22)

where M depends on the values of the second and third derivatives of f at x∗.
If we assume that 
k → 0 with an order greater than unity, then for large k the

error is governed approximately by


k+2 = M
k
k−1�

Letting yk = log M
k this becomes

yk+2 = yk +yk−1

with characteristic equation

�3 −�−1 = 0�

The largest root of this equation is � � 1�3 which thus determines the rate of growth
of yk and is the order of convergence of the quadratic fit method.
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Approximate Methods
In practice line searches are terminated before they have converged to the actual
minimum point. In one method, for example, a fairly large value for x1 is chosen
and this value is successively reduced by a positive factor � < 1 until a sufficient
decrease in the function value is obtained. Approximate methods and suitable
stopping criteria are discussed in Section 8.5.

8.3 GLOBAL CONVERGENCE OF CURVE FITTING
Above, we analyzed the convergence of various curve fitting procedures in the
neighborhood of the solution point. If, however, any of these procedures were
applied in pure form to search a line for a minimum, there is the danger—alas, the
most likely possibility—that the process would diverge or wander about meaning-
lessly. In other words, the process may never get close enough to the solution for
our detailed local convergence analysis to be applicable. It is therefore important to
artfully combine our knowledge of the local behavior with conditions guaranteeing
global convergence to yield a workable and effective procedure.

The key to guaranteeing global convergence is the Global Convergence
Theorem of Chapter 7. Application of this theorem in turn hinges on the
construction of a suitable descent function and minor modifications of a pure curve
fitting algorithm. We offer below a particular blend of this kind of construction
and analysis, taking as departure point the quadratic fit procedure discussed in
Section 8.2 above.

Let us assume that the function f that we wish to minimize is strictly unimodal
and has continuous second partial derivatives. We initiate our search procedure by
searching along the line until we find three points x1� x2� x3 with x1 < x2 < x3 such
that f�x1� � f�x2� � f�x3�. In other words, the value at the middle of these three
points is less than that at either end. Such a sequence of points can be determined
in a number of ways—see Exercise 7.

The main reason for using points having this pattern is that a quadratic fit to
these points will have a minimum (rather than a maximum) and the minimum point
will lie in the interval �x1� x3�. See Fig. 8.7. We modify the pure quadratic fit
algorithm so that it always works with points in this basic three-point pattern.

The point x4 is calculated from the quadratic fit in the standard way and f�x4�
is measured. Assuming (as in the figure) that x2 < x4 < x3, and accounting for the
unimodal nature of f , there are but two possibilities:

1. f�x4� � f�x2�
2. f�x2� < f�x4� � f�x3�.

In either case a new three-point pattern, x̄1� x̄2� x̄3, involving x4 and two of the
old points, can be determined: In case (1) it is

�x̄1� x̄2� x̄3� = �x2� x4� x3��
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f (x1)

f (x2)

x1 x2 x3

f (x3)

Fig. 8.7 Three-point pattern

while in case (2) it is

�x̄1� x̄2� x̄3� = �x1� x2� x4��

We then use this three-point pattern to fit another quadratic and continue. The pure
quadratic fit procedure determines the next point from the current point and the
previous two points. In the modification above, the next point is determined from
the current point and the two out of three last points that form a three-point pattern
with it. This simple modification leads to global convergence.

To prove convergence, we note that each three-point pattern can be thought
of as defining a vector x in E3. Corresponding to an x = �x1� x2� x3� such that
�x1� x2� x3� form a three-point pattern with respect to f , we define A�x� =
�x̄1� x̄2� x̄3� as discussed above. For completeness we must consider the case where
two or more of the xi� i = 1� 2� 3 are equal, since this may occur. The appropriate
definitions are simply limiting cases of the earlier ones. For example, if x1 = x2,
then �x1� x2� x3� form a three-point pattern if f�x2� � f�x3� and f ′�x2� < 0 (which
is the limiting case of f�x2� < f�x1�). A quadratic is fit in this case by using the
values at the two distinct points and the derivative at the duplicated point. In case
x1 = x2 = x3� �x1� x2� x3� forms a three-point pattern if f ′�x2� = 0 and f ′′�x2� � 0.
With these definitions, the map A is well defined. It is also continuous, since curve
fitting depends continuously on the data.

We next define the solution set � ⊂ E3 as the points x∗ = �x∗� x∗� x∗� where
f ′�x∗� = 0.

Finally, we let Z�x� = f�x1�+f�x2�+f�x3�. It is easy to see that Z is a descent
function for A. After application of A one of the values f�x1�� f�x2�� f�x3� will
be replaced by f�x4�, and by construction, and the assumption that f is unimodal,
it will replace a strictly larger value. Of course, at x∗ = �x∗� x∗� x∗� we have
A�x∗� = x∗ and hence Z�A�x∗�� = Z�x∗�.

Since all points are contained in the initial interval, we have all the requirements
for the Global Convergence Theorem. Thus the process converges to the solution.
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The order of convergence may not be destroyed by this modification, if near the
solution the three-point pattern is always formed from the previous three points. In
this case we would still have convergence of order 1.3. This cannot be guaranteed,
however.

It has often been implicitly suggested, and accepted, that when using the
quadratic fit technique one should require

f�xk+1� < f�xk�

so as to guarantee convergence. If the inequality is not satisfied at some cycle, then a
special local search is used to find a better xk+1 that does satisfy it. This philosophy
amounts to taking Z�x� = f�x3� in our general framework and, unfortunately, this
is not a descent function even for unimodal functions, and hence the special local
search is likely to be necessary several times. It is true, of course, that a similar
special local search may, occasionally, be required for the technique we suggest in
regions of multiple minima, but it is never required in a unimodal region.

The above construction, based on the pure quadratic fit technique, can be
emulated to produce effective procedures based on other curve fitting techniques.
For application to smooth functions these techniques seem to be the best available in
terms of flexibility to accommodate as much derivative information as is available,
fast convergence, and a guarantee of global convergence.

8.4 CLOSEDNESS OF LINE SEARCH
ALGORITHMS

Since searching along a line for a minimum point is a component part of most
nonlinear programming algorithms, it is desirable to establish at once that this
procedure is closed; that is, that the end product of the iterative procedures outlined
above, when viewed as a single algorithmic step finding a minimum along a line,
define closed algorithms. That is the objective of this section.

To initiate a line search with respect to a function f , two vectors must be
specified: the initial point x and the direction d in which the search is to be made.
The result of the search is a new point. Thus we define the search algorithm S as a
mapping from E2n to En.

We assume that the search is to be made over the semi-infinite line emanating
from x in the direction d. We also assume, for simplicity, that the search is not
made in vain; that is, we assume that there is a minimum point along the line. This
will be the case, for instance, if f is continuous and increases without bound as x
tends toward infinity.

Definition. The mapping S � E2n → En is defined by

S�x� d� = 	y � y = x +�d for some � � 0� f�y� = min
0����

f�x +�d�
� (23)

In some cases there may be many vectors y yielding the minimum, so S is a
set-valued mapping. We must verify that S is closed.
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Theorem. Let f be continuous on En. Then the mapping defined by (23) is
closed at (x, d) if d 	= 0.

Proof. Suppose 	xk
 and 	dk
 are sequences with xk → x� dk → d 	= 0. Suppose
also that yk ∈ S�xk� dk� and that yk → y. We must show that y ∈ S�x� d�.

For each k we have yk = xk +�kdk for some �k. From this we may write

�k = 
yk −xk


dk


�

Taking the limit of the right-hand side of the above, we see that

�k → � ≡ 
y −x


d
 �

It then follows that y = x +�d. It still remains to be shown that y ∈ S�x� d�.
For each k and each �� 0 � � < �,

f�yk� � f�xk +�dk��

Letting k → � we obtain

f�y� � f�x +�d��

Thus

f�y� � min
0��<�

f�x +�d��

and hence y ∈ S�x� d�.

The requirement that d 	= 0 is natural both theoretically and practically. From
a practical point of view this condition implies that, when constructing algorithms,
the choice d = 0 had better occur only in the solution set; but it is clear that if
d = 0, no search will be made. Theoretically, the map S can fail to be closed at
d = 0, as illustrated below.

Example. On E1 define f�x� = �x−1�2. Then S�x� d� is not closed at x = 0� d=0.
To see this we note that for any d > 0

min
0��<�

f��d� = f�1��

and hence

S�0� d� = 1�

but

min
0��<�

f�� ·0� = f�0�

so that

S�0� 0� = 0�

Thus as d → 0� S�0� d� 	→ S�0� 0�.
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8.5 INACCURATE LINE SEARCH
In practice, of course, it is impossible to obtain the exact minimum point called for
by the ideal line search algorithm S described above. As a matter of fact, it is often
desirable to sacrifice accuracy in the line search routine in order to conserve overall
computation time. Because of these factors we must, to be realistic, be certain, at
every stage of development, that our theory does not crumble if inaccurate line
searches are introduced.

Inaccuracy generally is introduced in a line search algorithm by simply termi-
nating the search procedure before it has converged. The exact nature of the
inaccuracy introduced may therefore depend on the particular search technique
employed and the criterion used for terminating the search. We cannot develop a
theory that simultaneously covers every important version of inaccuracy without
seriously detracting from the underlying simplicity of the algorithms discussed
later. For this reason our general approach, which is admittedly more free-wheeling
in spirit than necessary but thereby more transparent and less encumbered than a
detailed account of inaccuracy, will be to analyze algorithms as if an accurate line
search were made at every step, and then point out in side remarks and exercises
the effect of inaccuracy.

In the remainder of this section we present some commonly used criteria for
terminating a line search.

Percentage Test
One important inaccurate line search algorithm is the one that determines the
search parameter � to within a fixed percentage of its true value. Specifically, a
constant c� 0 < c < 1 is selected (c = 0�10 is reasonable) and the parameter �
in the line search is found so as to satisfy 
� − �̄
 � c�̄ where �̄ is the true
minimizing value of the parameter. This criterion is easy to use in conjunction
with the standard iterative search techniques described in the first sections of this
chapter. For example, in the case of the quadratic fit technique using three-point
patterns applied to a unimodal function, at each stage it is known that the true
minimum point lies in the interval spanned by the three-point pattern, and hence
a bound on the maximum possible fractional error at that stage is easily deduced.
One iterates until this bound is no greater than c. It can be shown (see Exercise 13)
that this algorithm is closed.

Armijo’s Rule
A practical and popular criterion for terminating a line search is Armijo’s rule. The
essential idea is that the rule should first guarantee that the selected � is not too
large, and next it should not be too small. Let us define the function

���� = f�xk +�dk��

Armijo’s rule is implemented by consideration of the function ��0�+
�′�0�� for
fixed 
� 0 < 
 < 1. This function is shown in Fig. 8.8(a) as the dashed line. A value
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φ
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(b) Golden test

φ

α

α
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(c) Wolfe test

φ

φ (o) + ε φ′ (o) α

α
acceptable range
(a) Armijo rule

Fig. 8.8 Stopping rules

of � is considered to be not too large if the corresponding function value lies below
the dashed line; that is, if

���� � ��0�+
�′�0��� (24)
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To insure that � is not too small, a value � > 1 is selected, and � is then considered
to be not too small if

����� > ��0�+
�′�0����

This means that if � is increased by the factor �, it will fail to meet the test (24).
The acceptable region defined by the Armijo rule is shown in Fig. 8.8(a) when
� = 2.

Sometimes in practice, the Armijo test is used to define a simplified line search
technique that does not employ curve fitting methods. One begins with an arbitrary
�. If it satisfies (24), it is repeatedly increased by � �� = 2 or � = 10 and 
 = �2
are often used) until (24) is not satisfied, and then the penultimate � is selected. If,
on the other hand, the original � does not satisfy (24), it is repeatedly divided by
� until the resulting � does satisfy (24).

Goldstein Test
Another line search accuracy test that is frequently used is the Goldstein test. As in
the Armijo rule, a value of � is considered not too large if it satisfies (24), with a
given 
� 0 < 
 < �1/2�. A value of � is considered not too small in the Goldstein
test if

���� > ��0�+ �1−
��′�0��� (25)

In other words ���� must lie above the lower dashed line shown in Fig. 8.8(b).
In terms of the original notation, the Goldstein criterion for an acceptable value

of �, with corresponding xk+1 = xk +�dk, is


 � f�xk+1�−f�xk�

��f�xk�dk

� 1−
�

We now show that the Goldstein test leads to a closed line search algorithm.

Theorem. Let f ∈ C2 on En. Fix 
� 0 < 
 < 1/2. Then the mapping S � E2n →
En defined by

S�x� d� = 	y � y = x +�d for some � � 0� 
 � f�y�−f�x�

��f�x�d
� 1−



is closed at (x, d) if d 	= 0.

Proof. Suppose 	xk
 and 	dk
 are sequences with xk → x� dk → d 	= 0. Suppose
also that yk ∈ S�xk� dk� and yk → y. We must show y ∈ S�x� d�. For each k� yk =
xk +�kdk for some �k. Thus

�k = 
yk −xk


dk


→ 
y −x


d
 ≡ ��
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Hence �k converges to some � and y = x +�d. Let

��x� d� �� = f�x +�d�−f�x�

��f�x�d
�

Then 
 � ��xk� dk� �k� � 1 − 
 for all k. By our assumptions on f�x�� � is
continuous. Thus ��xk� dk� �k� → ��x� d� �� and 
 � ��x� d� �� � 1−
, which
implies y ∈ S�x� d�.

Wolfe Test
If derivatives of the objective function, as well as its values, can be evaluated
relatively easily, then the Wolfe test, which is a variation of the above, is sometimes
preferred. In this case 
 is selected with 0 < 
 < 1/2, and � is required to
satisfy (24) and

�′��� � �1−
��′�0��

This test is illustrated in Fig. 8.8(c). An advantage of this test is that this last
criterion is invariant to scale-factor changes, whereas (25) in the Goldstein test
is not.

Backtracking
A simplified method of line search is available when a good estimate of a suitable
step length is available. This is the case for the multi-dimensional Newton’s method
for minimization discussed in the next chapter. Here a good initial choice is � = 1.
Backtracking is defined by the initial guess � and two positive parameters � > 1
and 
 < 1 (usually 
 < �5�. The stopping criterion used is the same as the first part
of Amijo’s rule or the Goldstein test. That is, defining ���� ≡ f�xk + �dk�, the
procedure is terminated at the current � if ���� � ��0�+
�′�0��. If this criterion
is not satisfied, then � is reduced by the factor 1/�. That is, �new = �old/�. Often
� of about 1.1 or 1.2 is used.

If the intial � (such as � = 1) satisfies the test, then it is taken as the step size.
Otherwise, � is reduced by 1/�. Repeating this successively, the first � that satisfies
the test is declared the final value. By definition it is known that the previous value
�old = �new� does not pass the first test, and this means that it passes the second
condition of Amijo’s rule.

8.6 THE METHOD OF STEEPEST DESCENT
One of the oldest and most widely known methods for minimizing a function of
several variables is the method of steepest descent (often referred to as the gradient
method). The method is extremely important from a theoretical viewpoint, since
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it is one of the simplest for which a satisfactory analysis exists. More advanced
algorithms are often motivated by an attempt to modify the basic steepest descent
technique in such a way that the new algorithm will have superior convergence
properties. The method of steepest descent remains, therefore, not only the technique
most often first tried on a new problem but also the standard of reference against
which other techniques are measured. The principles used for its analysis will be
used throughout this book.

The Method
Let f have continuous first partial derivatives on En. We will frequently have need
for the gradient vector of f and therefore we introduce some simplifying notation.
The gradient �f�x� is, according to our conventions, defined as a n-dimensional row
vector. For convenience we define the n-dimensional column vector g�x� = �f�x�T .
When there is no chance for ambiguity, we sometimes suppress the argument x
and, for example, write gk for g�xk� = �f�xk�

T .
The method of steepest descent is defined by the iterative algorithm

xk+1 = xk −�kgk�

where �k is a nonnegative scalar minimizing f�xk −�gk�. In words, from the point
xk we search along the direction of the negative gradient −gk to a minimum point
on this line; this minimum point is taken to be xk+1.

In formal terms, the overall algorithm A � En → En which gives xk+1 ∈ A�xk�
can be decomposed in the form A = SG. Here G � En → E2n is defined by G�x� =
�x�−g�x��, giving the initial point and direction of a line search. This is followed
by the line search S � E2n → En defined in Section 8.4.

Global Convergence
It was shown in Section 8.4 that S is closed if �f�x� 	= 0, and it is clear that G is
continuous. Therefore, by Corollary 2 in Section 7.7 A is closed.

We define the solution set to be the points x where �f�x� = 0. Then Z�x� = f�x�
is a descent function for A, since for �f�x� 	= 0

lim
0��<�

f�x −�g�x�� < f�x��

Thus by the Global Convergence Theorem, if the sequence 	xk
 is bounded, it will
have limit points and each of these is a solution.
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The Quadratic Case
Essentially all of the important local convergence characteristics of the method of
steepest descent are revealed by an investigation of the method when applied to
quadratic problems. Consider

f�x� = 1
2 xT Qx −xT b� (26)

where Q is a positive definite symmetric n×n matrix. Since Q is positive definite,
all of its eigenvalues are positive. We assume that these eigenvalues are ordered: 0 <
a = �1 � �2 � � � � �n = A. With Q positive definite, it follows (from Proposition 5,
Section 7.4) that f is strictly convex.

The unique minimum point of f can be found directly, by setting the gradient
to zero, as the vector x∗ satisfying

Qx∗ = b� (27)

Moreover, introducing the function

E�x� = 1
2 �x −x∗�T Q�x −x∗�� (28)

we have E�x� = f�x�+ �1/2�x∗T Qx∗, which shows that the function E differs from
f only by a constant. For many purposes then, it will be convenient to consider
that we are minimizing E rather than f .

The gradient (of both f and E) is given explicitly by

g�x� = Qx −b� (29)

Thus the method of steepest descent can be expressed as

xk+1 = xk −�kgk� (30)

where gk = Qxk −b and where �k minimizes f�xk −�gk�. We can, however, in this
special case, determine the value of �k explicitly. We have, by definition (26),

f�xk −�gk� = 1
2 �xk −�gk�

T Q�xk −�gk�− �xk −�gk�
T b�

which (as can be found by differentiating with respect to �) is minimized at

�k = gT
k gk

gT
k Qgk

� (31)

Hence the method of steepest descent (30) takes the explicit form

xk+1 = xk −
(

gT
k gk

gT
k Qgk

)

gk� (32)

where gk = Qxk −b.
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x0
x1

x*

Fig. 8.9 Steepest descent

The function f and the steepest descent process can be illustrated as in Fig. 8.9
by showing contours of constant values of f and a typical sequence developed
by the process. The contours of f are n-dimensional ellipsoids with axes in the
directions of the n-mutually orthogonal eigenvectors of Q. The axis corresponding
to the ith eigenvector has length proportional to 1/�i. We now analyze this process
and show that the rate of convergence depends on the ratio of the lengths of the
axes of the elliptical contours of f , that is, on the eccentricity of the ellipsoids.

Lemma 1. The iterative process (32) satisfies

E�xk+1� =
{

1− �gT
k gk�

2

�gT
k Qgk��gT

k Q−1gk�

}

E�xk�� (33)

Proof. The proof is by direct computation. We have, setting yk = xk −x∗,

E�xk�−E�xk+1�

E�xk�
= 2�kgT

k Qyk −�2
kgT

k Qgk

yT
k Qyk

�

Using gk = Qyk we have

E�xk�−E�xk+1�

E�xk�
=

2�gT
k gk�

2

�gT
k Qgk�

− �gT
k gk�

2

�gT
k Qgk�

gT
k Q−1gk

= �gT
k gk�

2

�gT
k Qgk��gT

k Q−1gk�
�

In order to obtain a bound on the rate of convergence, we need a bound on
the right-hand side of (33). The best bound is due to Kantorovich and his lemma,
stated below, is a useful general tool in convergence analysis.
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Kantorovich inequality: Let Q be a positive definite symmetric n×n matrix.
For any vector x there holds

�xT x�2

�xT Qx��xT Q−1x�
� 4aA

�a+A�2
� (34)

where a and A are, respectively, the smallest and largest eigenvalues of Q.

Proof. Let the eigenvalues �1� �2� � � � � �n of Q satisfy

0 < a = �1 � �2 � � � � �n = A�

By an appropriate change of coordinates the matrix Q becomes diagonal with
diagonal ��1� �2� � � � � �n�. In this coordinate system we have

�xT x�2

�xT Qx��xT Q−1x�
= �

∑n
i=1 x2

i �
2

�
∑n

i=1 �ix
2
i ��
∑n

i=1�x
2
i /�i��

�

which can be written as

�xT x�2

�xT Qx��xT Q−1x�
= 1/

∑n
i=1 �i�i

∑n
i=1��i/�i�

≡ ����

����
�

where �i = x2
i /
∑n

i=1 x2
i . We have converted the expression to the ratio of two

functions involving convex combinations; one a combination of �i’s; the other a
combination of 1/�i’s. The situation is shown pictorially in Fig. 8.10. The curve
in the figure represents the function 1/�. Since

∑n
i=1 �i�i is a point between �1

and �n, the value of ���� is a point on the curve. On the other hand, the value of
���� is a convex combination of points on the curve and its value corresponds to
a point in the shaded region. For the same vector � both functions are represented
by points on the same vertical line. The minimum value of this ratio is achieved
for some � = �1�1 + �n�n, with �1 + �n = 1. Using the relation �1/�1 + �n/�n =
��1 +�n −�1�1 −�n�n�/�1�n, an appropriate bound is

����

����
� lim

�1����n

�1/��

��1 +�n −��/��1�n�
�

The minimum is achieved at � = ��1 +�n�/2, yielding

����

����
� 4�1�n

��1 +�n�
2
�

Combining the above two lemmas, we obtain the central result on the conver-
gence of the method of steepest descent.
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λ1 λ2 λn
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Fig. 8.10 Kantorovich inequality

Theorem. (Steepest descent—quadratic case). For any x0 ∈ En the method
of steepest descent (32) converges to the unique minimum point x∗ of f.
Furthermore, with E�x� = 1

2 �x −x∗�T Q�x −x∗�, there holds at every step k

E�xk+1� �
(

A−a

A+a

)2

E�xk�� (35)

Proof. By Lemma 1 and the Kantorovich inequality

E�xk+1� �
{

1− 4aA

�A+a�2

}

E�xk� =
(

A−a

A+a

)2

E�xk��

It follows immediately that E�xk� → 0 and hence, since Q is positive definite, that
xk → x∗.

Roughly speaking, the above theorem says that the convergence rate of steepest
descent is slowed as the contours of f become more eccentric. If a = A, corre-
sponding to circular contours, convergence occurs in a single step. Note, however,
that even if n − 1 of the n eigenvalues are equal and the remaining one is a
great distance from these, convergence will be slow, and hence a single abnormal
eigenvalue can destroy the effectiveness of steepest descent.

In the terminology introduced in Section 7.8, the above theorem states that
with respect to the error function E (or equivalently f ) the method of steepest
descent converges linearly with a ratio no greater than ��A − a�/�A + a��2. The
actual rate depends on the initial point x0. However, for some initial points the
bound is actually achieved. Furthermore, it has been shown by Akaike that, if the
ratio is unfavorable, the process is very likely to converge at a rate close to the
bound. Thus, somewhat loosely but with reasonable justification, we say that the
convergence ratio of steepest descent is ��A−a�/�A+a��2.
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It should be noted that the convergence rate actually depends only on the ratio
r = A/a of the largest to the smallest eigenvalue. Thus the convergence ratio is

(
A−a

A+a

)2

=
(

r −1
r +1

)2

�

which clearly shows that convergence is slowed as r increases. The ratio r , which
is the single number associated with the matrix Q that characterizes convergence,
is often called the condition number of the matrix.

Example. Let us take

Q =

⎡

⎢
⎢
⎣

0�78 −0�02 −0�12 −0�14
−0�02 0�86 −0�04 0�06
−0�12 −0�04 0�72 −0�08
−0�14 0�06 −0�08 0�74

⎤

⎥
⎥
⎦

b = �0�76� 0�08� 1�12� 0�68��

For this matrix it can be calculated that a = 0�52� A = 0�94 and hence r = 1�8.
This is a very favorable condition number and leads to the convergence ratio
��A−a�/�A+a��2 = 0�081. Thus each iteration will reduce the error in the objective
by more than a factor of ten; or, equivalently, each iteration will add about one
more digit of accuracy. Indeed, starting from the origin the sequence of values
obtained by steepest descent as shown in Table 8.1 is consistent with this estimate.

The Nonquadratic Case
For nonquadratic functions, we expect that steepest descent will also do reasonably
well if the condition number is modest. Fortunately, we are able to establish
estimates of the progress of the method when the Hessian matrix is always positive
definite. Specifically, we assume that the Hessian matrix is bounded above and
below as aI � F�x̄� � AI. (Thus f is strongly convex.) We present three analyses:

Table 8.1 Solution to Example

Step k f�xk�

0 0
1 −2.1563625
2 −2.1744062
3 −2.1746440
4 −2.1746585
5 −2.1746595
6 −2.1746595

Solution point x∗ = �1�534965� 0�1220097�
1�975156� 1�412954�
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1. Exact line search. Given a point xk, we have for any �

f�xk −�g�xk�� � f�xk��−�g�xk�
T g�xk�+ A�2

2
g�xk�

T g�xk�� (36)

Minimizing both sides separately with respect to � the inequality will hold for the
two minima. The minimum of the left hand side is f�xk+1�. The minimum of the
right hand side occurs at � = 1/A, yielding the result

f�xk+1� � f�xk�− 1
2A


g�xk�
2�

where 
g�xk�
2 ≡ g�xk�T g�xk�. Subtracting the optimal value f ∗ = f�x∗� from both
sides produces

f�xk+1�− f∗ � f�xk�− f∗ − 1
2A


g�xk�
2� (37)

In a similar way, for any x there holds

f�x� � f�xk�+g�xk�T �x −xk�+ a
2

x −xk
2�

Again we can minimize both sides separately. The minimum of the left hand side is
f ∗ the optimal solution value. Minimizing the right hand side leads to the quadratic
optimization problem. The solution is x = xk − g�xk�/a. Substituting this x in the
right hand side of the inequality gives

f ∗ � f�xk�− 1
2a


g�xk�
2� (38)

From (38) we have

−
g�xk�
2 � 2a�f ∗ −f�xk��� (39)

Substituting this in (37) gives

f�xk+1�−f ∗ � �1−a/A��f�xk�−f ∗�� (40)

This shows that the method of steepest descent makes progress even when it is not
close to the solution.

2. Other stopping criteria. As an example of how other stopping criteria can
be treated, we examine the rate of convergence when using Amijo’s rule with 
 < �5
and � > 1. Note first that the inequality t � t2 for 0 � t � 1 implies by a change of
variable that

−�+ �2A

2
≤ −�/2
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for 0 � � � 1/A. Then using (36) we have that for � < 1/A

f�xk −�g�xk�� ≤ f�xk�−�
g�xk�
2 + �5�2A
g�xl�
2
≤ f�xk�− �5�
g�xk�
2
< f�xk�−
�
g�xk�
2

since 
 < �5. This means that the first part of the stopping criterion is satisfied
for � < 1/A.

The second part of the stopping criterion states that �� does not satisfy the first
criterion and thus the final � must satisfy � ≥ 1/��A�. Therefore the inequality of
the first part of the criterion implies

f�xk+1� ≤ f�xk�− 


�A

g�xk�
2�

Subtracting f ∗ from both sides,

f�xk+1�−f ∗ ≤ f�xk�−f ∗ − 


�A

g�xk�
2�

Finally, using (39) we obtain

f�xk+1�−f ∗ ≤ �1− �2
a/�A���f�xk�−f ∗��

Clearly 2
a/�A < 1 and hence there is linear convergence. Notice if that in fact 
 is
chosen very close to .5 and � is chosen very close to 1, then the stopping condition
demands that the � be restricted to a very small range, and the estimated rate of
convergence is very close to the estimate obtained above for exact line search.

3. Asymptotic convergence. We expect that as the points generated by steepest
descent approach the solution point, the convergence characteristics will be close
to those inherent for quadratic functions. This is indeed the case.

The general procedure for proving such a result, which is applicable to most
methods having unity order of convergence, is to use the Hessian of the objective at
the solution point as if it were the Q matrix of a quadratic problem. The particular
theorem stated below is a special case of a theorem in Section 12.5 so we do
not prove it here; but it illustrates the generalizability of an analysis of quadratic
problems.

Theorem. Suppose f is defined on En, has continuous second partial deriva-
tives, and has a relative minimum at x∗. Suppose further that the Hessian matrix
of f , F�x∗�, has smallest eigenvalue a > 0 and largest eigenvalue A > 0. If
	xk
 is a sequence generated by the method of steepest descent that converges
to x∗, then the sequence of objective values 	f�xk�
 converges to f�x∗� linearly
with a convergence ratio no greater than ��A−a�/�A+a��2.
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8.7 APPLICATIONS OF THE THEORY
Now that the basic convergence theory, as represented by the formula (35) for the
rate of convergence, has been developed and demonstrated to actually characterize
the behavior of steepest descent, it is appropriate to illustrate how the theory can
be used. Generally, we do not suggest that one compute the numerical value of the
formula—since it involves eigenvalues, or ratios of eigenvalues, that are not easily
determined. Nevertheless, the formula itself is of immense practical importance,
since it allows one to theoretically compare various situations. Without such a
theory, one would be forced to rely completely on experimental comparisons.

Application 1 (Solution of gradient equation). One approach to the minimization
of a function f is to consider solving the equations �f�x� = 0 that represent the
necessary conditions. It has been proposed that these equations could be solved
by applying steepest descent to the function h�x� = 
�f�x�
2. One advantage of
this method is that the minimum value is known. We ask whether this method is
likely to be faster or slower than the application of steepest descent to the original
function f itself.

For simplicity we consider only the case where f is quadratic. Thus let f�x� =
�1/2�xT Qx −bT x. Then the gradient of f is g�x� = Qx −b, and h�x� = 
g�x�
2 =
xT Q2x−2xT Qb+bT b. Thus h�x� is itself a quadratic function. The rate of conver-
gence of steepest descent applied to h will be governed by the eigenvalues of the
matrix Q2. In particular the rate will be

(
r̄ −1
r̄ +1

)2

�

where r̄ is the condition number of the matrix Q2. However, the eigenvalues of Q2

are the squares of those of Q itself, so r̄ = r2, where r is the condition number of
Q, and it is clear that the convergence rate for the proposed method will be worse
than for steepest descent applied to the original function.

We can go further and actually estimate how much slower the proposed method
is likely to be. If r is large, we have

steepest descent rate =
(

r −1
r +1

)2

� �1−1/r�4

proposed method rate =
(

r2 −1
r2 +1

)2

� �1−1/r2�4�

Since �1−1/r2�r � 1−1/r, it follows that it takes about r steps of the new method
to equal one step of ordinary steepest descent. We conclude that if the original
problem is difficult to solve with steepest descent, the proposed method will be
quite a bit worse.



8.7 Applications of the Theory 243

Application 2 (Penalty methods). Let us briefly consider a problem with a single
constraint:

minimize f�x� (41)

subject to h�x� = 0�

One method for approaching this problem is to convert it (at least approximately)
to the unconstrained problem

minimize f�x�+ 1
2 �h�x�2� (42)

where � is a (large) penalty coefficient. Because of the penalty, the solution to (42)
will tend to have a small h�x�. Problem (42) can be solved as an unconstrained
problem by the method of steepest descent. How will this behave?

For simplicity let us consider the case where f is quadratic and h is linear.
Specifically, we consider the problem

minimize
1
2

xT Qx −bT x (43)

subject to cT x = 0�

The objective of the associated penalty problem is �1/2�	xT Qx+�xT ccT x
−bT x.
The quadratic form associated with this objective is defined by the matrix Q+�ccT

and, accordingly, the convergence rate of steepest descent will be governed by
the condition number of this matrix. This matrix is the original matrix Q with a
large rank-one matrix added. It should be fairly clear† that this addition will cause
one eigenvalue of the matrix to be large (on the order of �). Thus the condition
number is roughly proportional to �. Therefore, as one increases � in order to get
an accurate solution to the original constrained problem, the rate of convergence
becomes extremely poor. We conclude that the penalty function method used in this
simplistic way with steepest descent will not be very effective. (Penalty functions,
and how to minimize them more rapidly, are considered in detail in Chapter 11.)

Scaling
The performance of the method of steepest descent is dependent on the particular
choice of variables x used to define the problem. A new choice may substantially
alter the convergence characteristics.

Suppose that T is an invertible n×n matrix. We can then represent points in
En either by the standard vector x or by y where Ty = x. The problem of finding

†See the Interlocking Eigenvalues Lemma in Section 10.6 for a proof that only one eigenvalue
becomes large.
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x to minimize f�x� is equivalent to that of finding y to minimize h�y� = f�Ty�.
Using y as the underlying set of variables, we then have

�h = �fT� (44)

where �f is the gradient of f with respect to x. Thus, using steepest descent, the
direction of search will be

�y = −TT �fT � (45)

which in the original variables is

�x = −TTT �fT � (46)

Thus we see that the change of variables changes the direction of search.
The rate of convergence of steepest descent with respect to y will be determined

by the eigenvalues of the Hessian of the objective, taken with respect to y. That
Hessian is

�2h�y� ≡ H�y� = TT F�Ty�T�

Thus, if x∗ = Ty∗ is the solution point, the rate of convergence is governed by the
matrix

H�y∗� = TT F�x∗�T� (47)

Very little can be said in comparison of the convergence ratio associated with
H and that of F. If T is an orthonormal matrix, corresponding to y being defined
from x by a simple rotation of coordinates, then TT T = I, and we see from (41) that
the directions remain unchanged and the eigenvalues of H are the same as those
of F.

In general, before attacking a problem with steepest descent, it is desirable,
if it is feasible, to introduce a change of variables that leads to a more favorable
eigenvalue structure. Usually the only kind of transformation that is at all practical
is one having T equal to a diagonal matrix, corresponding to the introduction
of scale factors on each of the variables. One should strive, in doing this, to
make the second derivatives with respect to each variable roughly the same.
Although appropriate scaling can potentially lead to substantial payoff in terms of
enhanced convergence rate, we largely ignore this possibility in our discussions of
steepest descent. However, see the next application for a situation that frequently
occurs.

Application 3 (Program design). In applied work it is extremely rare that one
solves just a single optimization problem of a given type. It is far more usual that
once a problem is coded for computer solution, it will be solved repeatedly for
various parameter values. Thus, for example, if one is seeking to find the optimal
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production plan (as in Example 1 of Section 7.2), the problem will be solved for
the different values of the input prices. Similarly, other optimization problems will
be solved under various assumptions and constraint values. It is for this reason
that speed of convergence and convergence analysis is so important. One wants a
program that can be used efficiently. In many such situations, the effort devoted to
proper scaling repays itself, not with the first execution, but in the long run.

As a simple illustration consider the problem of minimizing the function

f�x� = x2 −5xy +y4 −ax−by�

It is desirable to obtain solutions quickly for different values of the parameters a
and b. We begin with the values a = 25� b = 8.

The result of steepest descent applied to this problem directly is shown in
Table 8.2, column (a). It requires eighty iterations for convergence, which could be
regarded as disappointing.

Table 8.2 Solution to Scaling Application

Value of f

Iteration (a) (b)
no. Unscaled Scaled

0 0�0000 0�0000
1 −230�9958 −162�2000
2 −256�4042 −289�3124
4 −293�1705 −341�9802
6 −313�3619 −342�9865
8 −324�9978 −342�9998
9 −329�0408 −343�0000

15 −339�6124
20 −341�9022
25 −342�6004
30 −342�8372
35 −342�9275
40 −342�9650
45 −342�9825
50 −342�9909
55 −342�9951
60 −342�9971 Solution

x = 20�0
y = 3�0

65 −342�9883
70 −342�9990
75 −342�9994
80 −342�9997
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The reason for this poor performance is revealed by examining the Hessian
matrix

F =
[

2 −5
−5 12y2

]

Using the results of our first experiment, we know that y = 3. Hence the diagonal
elements of the Hessian, at the solution, differ by a factor of 54. (In fact, the
condition number is about 61.) As a simple remedy we scale the problem by
replacing the variable y by z = ty. The new lower right-corner term of the Hessian
then becomes 12z2/t4, which has magnitude 12 × t2 × 32/t4 = 108/t2. Thus we
might put t = 7 in order to make the two diagonal terms approximately equal.
The result of applying steepest descent to the problem scaled this way is shown in
Table 8.2, column (b). (This superior performance is in accordance with our general
theory, since the condition number of the scaled problem is about two.) For other
nearby values of a and b, similar speeds will be attained.

8.8 NEWTON’S METHOD
The idea behind Newton’s method is that the function f being minimized is approx-
imated locally by a quadratic function, and this approximate function is minimized
exactly. Thus near xk we can approximate f by the truncated Taylor series

f�x� � f�xk�+�f�xk��x −xk�+ 1
2 �x −xk�

T F�xk��x −xk��

The right-hand side is minimized at

xk+1 = xk − �F�xk��
−1�f�xk�

T � (48)

and this equation is the pure form of Newton’s method.
In view of the second-order sufficiency conditions for a minimum point, we

assume that at a relative minimum point, x∗, the Hessian matrix, F�x∗�, is positive
definite. We can then argue that if f has continuous second partial derivatives,
F(x) is positive definite near x∗ and hence the method is well defined near the
solution.

Order Two Convergence
Newton’s method has very desirable properties if started sufficiently close to the
solution point. Its order of convergence is two.

Theorem. (Newton’s method). Let f ∈ C3 on En, and assume that at the
local minimum point x∗, the Hessian F�x∗� is positive definite. Then if started
sufficiently close to x∗, the points generated by Newton’s method converge to
x∗. The order of convergence is at least two.
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Proof. There are � > 0� �1 > 0� �2 > 0 such that for all x with 
x−x∗
 < �, there
holds 
F�x�−1
 < �1 (see Appendix A for the definition of the norm of a matrix)
and 
�f�x∗�T −�f�x�T −F�x��x∗ −x�
 � �2
x −x∗
2. Now suppose xk is selected
with �1�2
xk −x∗
 < 1 and 
xk −x∗
 < �. Then


xk+1 −x∗
 = 
xk −x∗ −F�xk�
−1�f�xk�

T 

= 
F�xk�

−1��f�x∗�T −�f�xk�
T −F�xk��x∗ −xk��


� 
F�xk�
−1
�2
xk −x∗
2

� �1�2
xk −x∗
2 < 
xk −x∗
�

The final inequality shows that the new point is closer to x∗ than the old point, and
hence all conditions apply again to xk+1. The previous inequality establishes that
convergence is second order.

Modifications
Although Newton’s method is very attractive in terms of its convergence properties
near the solution, it requires modification before it can be used at points that are
remote from the solution. The general nature of these modifications is discussed in
the remainder of this section.

1. Damping. The first modification is that usually a search parameter � is introduced
so that the method takes the form

xk+1 = xk −�k�F�xk��
−1�f�xk�

T �

where �k is selected to minimize f . Near the solution we expect, on the basis of how
Newton’s method was derived, that �k � 1. Introducing the parameter for general
points, however, guards against the possibility that the objective might increase
with �k = 1, due to nonquadratic terms in the objective function.

2. Positive definiteness. A basic consideration for Newton’s method can be seen
most clearly by a brief examination of the general class of algorithms

xk+1 = xk −�Mkgk� (49)

where Mk is an n×n matrix, � is a positive search parameter, and gk = �f�xk�
T . We

note that both steepest descent �Mk = I� and Newton’s method �Mk = �F�xk��
−1�

belong to this class. The direction vector dk = −Mkgk obtained in this way is a
direction of descent if for small � the value of f decreases as � increases from
zero. For small � we can say

f�xk+1� = f�xk�+�f�xk��xk+1 −xk�+O�
xk+1 −xk
2��
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Employing (44) this can be written as

f�xk+1� = f�xk�−�gT
k Mkgk +O��2��

As � → 0, the second term on the right dominates the third. Hence if one is to
guarantee a decrease in f for small �, we must have gT

k Mkgk > 0. The simplest
way to insure this is to require that Mk be positive definite.

The best circumstance is that where F(x) is itself positive definite throughout
the search region. The objective function of many important optimization problems
have this property, including for example interior-point approaches to linear
programming using the logarithm as a barrier function. Indeed, it can be argued that
convexity is an inherent property of the majority of well-formulated optimization
problems.

Therefore, assume that the Hessian matrix F(x) is positive definite throughout
the search region and that f has continuous third derivatives. At a given xk define
the symmetric matrix T = F�xk�

−1/2. As in section 8.7 introduce the change of
variable Ty = x. Then according to (41) a steepest descent direction with respect
to y is equivalent to a direction with respect to x of d = −TTT g�xk�, where g�xk�
is the gradient of f with respect to x at xk. Thus, d = F−1g�xk�. In other words, a
steepest descent direction in y is equivalent to a Newton direction in x.

We can turn this relation around to analyze Newton steps in x as equivalent
to gradient steps in y. We know that convergence properties in y depend on the
bounds on the Hessian matrix given by (42) as

H�y� = TT F�x�T = F−1/2F�x�F−1/2� (50)

Recall that F = F�xk� which is fixed, whereas F�x� denotes the general Hessian
matrix with respect to x near xk. The product (50) is the identity matrix at yk but the
rate of convergence of steepest descent in y depends on the bounds of the smallest
and largest eigenvalues of H�y� in a region near yk.

These observations tell us that the damped method of Newton’s method will
converge at a linear rate at least as fast as c = �1−a/A� where a and A are lower
and upper bounds on the eigenvalues of F�x0�

−1/2F�x0�F�x0�
−1/2� where x0 and x0

are arbitrary points in the local search region. These bounds depend, in turn, on
the bounds of the third-order derivatives of f . It is clear, however, by continuity of
F�x� and its derivatives, that the rate becomes very fast near the solution, becoming
superlinear, and in fact, as we know, quadratic.

3. Backtracking. The backtracking method of line search, using � = 1 as the initial
guess, is an attractive procedure for use with Newton’s method. Using this method
the overall progress of Newton’s method divides naturally into two phases: first
a damping phase where backtracking may require � < 1, and second a quadratic
phase where � = 1 satisfies the backtracking criterion at every step. The damping
phase was discussed above.

Let us now examine the situation when close to the solution. We assume that all
derivatives of f through the third are continuous and uniformly bounded. We also
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assume that in the region close to the solution, F�x� is positive definite with a > 0
and A > 0 being, respectively, uniform lower and upper bounds on the eigenvalues
of F�x�. Using � = 1 and 
 < �5 we have for dk = −F�xk�

−1g�xk�

f�xk +dk� = f�xk�−g�xk�
T F�xk�

−1g�xk�+ 1
2 g�xk�

T F�xk�
−1g�xk�+o�
g�xk�
2�

= f�xk�− 1
2 g�xk�

T F�xk�
−1g�xk�+o�
g�xk�
2�

< f�xk�−
g�xk�
T F�xk�

−1g�xk�+o�
g�xk�
2��

where the o bound is uniform for all xk. Since 
g�xk�
 → 0 (uniformly) as xk → x∗, it
follows that once xk is sufficiently close to x∗, then f�xk +dk� < f�xk�−
g�xk�

T dk

and hence the backtracking test (the first part of Amijo’s rule) is satisfied. This
means that � = 1 will be used throughout the final phase.

4. General Problems. In practice, Newton’s method must be modified to accom-
modate the possible nonpositive definiteness at regions remote from the solution.

A common approach is to take Mk = �
kI + F�xk��
−1 for some non-negative

value of 
k. This can be regarded as a kind of compromise between steepest descent
(
k very large) and Newton’s method �
k = 0�. There is always an 
k that makes
Mk positive definite. We shall present one modification of this type.

Let Fk ≡ F�xk�. Fix a constant � > 0. Given xk, calculate the eigenvalues of Fk

and let 
k be the smallest nonnegative constant for which the matrix 
kI + Fk has
eigenvalues greater than or equal to �. Then define

dk = −�
kI +Fk�
−1gk (51)

and iterate according to

xk+1 = xk +�kdk� (52)

where �k minimizes f�xk +�dk�� � � 0.
This algorithm has the desired global and local properties. First, since the

eigenvalues of a matrix depend continuously on its elements, 
k is a continuous
function of xk and hence the mapping D � En → E2n defined by D�xk� = �xk� dk�
is continuous. Thus the algorithm A = SD is closed at points outside the solution
set � = 	x � �f�x� = 0
. Second, since 
kI+Fk is positive definite, dk is a descent
direction and thus Z�x� ≡ f�x� is a continuous descent function for A. Therefore,
assuming the generated sequence is bounded, the Global Convergence Theorem
applies. Furthermore, if � > 0 is smaller than the smallest eigenvalue of F�x∗�,
then for xk sufficiently close to x∗ we will have 
k = 0, and the method reduces to
Newton’s method. Thus this revised method also has order of convergence equal
to two.

The selection of an appropriate � is somewhat of an art. A small � means that
nearly singular matrices must be inverted, while a large � means that the order two
convergence may be lost. Experimentation and familiarity with a given class of
problems are often required to find the best �.
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The utility of the above algorithm is hampered by the necessity to calculate
the eigenvalues of F�xk�, and in practice an alternate procedure is used. In one
class of methods (Levenberg–Marquardt type methods), for a given value of 
k,
Cholesky factorization of the form 
kI+F�xk� = GGT (see Exercise 6 of Chapter 7)
is employed to check for positive definiteness. If the factorization breaks down,

k is increased. The factorization then also provides the direction vector through
solution of the equations GGT dk = gk, which are easily solved, since G is triangular.
Then the value f�xk +dk� is examined. If it is sufficiently below f�xk�, then xk+1 is
accepted and a new 
k+1 is determined. Essentially, 
 serves as a search parameter
in these methods. It should be clear from this discussion that the simplicity that
Newton’s method first seemed to promise is not fully realized in practice.

Newton’s Method and Logarithms
Interior point methods of linear and nonlinear programming use barrier functions,
which usually are based on the logarithm. For linear programming especially, this
means that the only nonlinear terms are logarithms. Newton’s method enjoys some
special properties in this case,

To illustrate, let us apply Newton’s method to the one-dimensional problem

min
x

�tx− ln x� (53)

where t is a positive parameter. The derivative at x is

f ′�x� = t − 1
x

�

and of course the solution is x∗ = 1/t, or equivalently 1 − tx∗ = 0. The second
derivative is f ′′�x� = 1/x2. Denoting by x+ the result of one step of a pure Newton’s
method (with step length equal to 1) applied to the point x, we find

x+ = x− �f ′′�x��−1f ′�x� = x−x2

(

t − 1
x

)

= x− tx2 +x

= 2x− tx2�

Thus

1− tx+ = 1−2tx+x2t2 = �1− tx�2 (54)

Therefore, rather surprisingly, the quadratic nature of convergence of �1− tx� → 0
is directly evident and exact. Expression (54) represents a reduction in the error
magnitude only if 
�1 − tx�
 < 1, or equivalently, 0 < x < 2/t. If x is too large,
then Newton’s method must be used with damping until the region 0 < x < 2/t is
reached. From then on, a step size of 1 will exhibit pure quadratic error reduction.
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t

0
xk xk + 1 x1

1/t

t – 1/x

Fig. 8.11 Newton’s method applied to minimization of tx− ln x

The situation is shown in Fig. 8.11. The graph is that of f ′�x� = t −1/x. The
root-finding form of Newton’s method (Section 8.2) is then applied to this function.
At each point, the tangent line is followed to the x axis to find the new point.
The starting value marked x1 is far from the solution 1/t and hence following the
tangent would lead to a new point that was negative. Damping must be applied at
that starting point. Once a point x is reached with 0 < x < 1/t, all further points
will remain to the left of 1/t and move toward it quadratically.

In interior point methods for linear programming, a logarithmic barrier function
is applied separately to the variables that must remain positive. The convergence
analysis in these situations is an extension of that for the simple case given here,
allowing for estimates of the rate of convergence that do not require knowledge of
bounds of third-order derivatives.

Self-Concordant Functions
The special properties exhibited above for the logarithm have been extended to the
general class of self-concordant functions of which the logarithm is the primary
example. A function f defined on the real line is self-concordant if it satisfies


f ′′′�x�
 ≤ 2f ′′�x�3/2� (55)

throughout its domain. It is easily verified that f�x� = − ln x satisfies this inequality
with equality for x > 0.

Self-concordancy is preserved by the addition of an affine term since such a
term does not affect the second or third derivatives.

A function defined on En is said to be self-concordant if it is self-concordant
in every direction: that is if f�x+�d� is self-concordant with respect to � for every
d throughout the domain of f .
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Self-concordant functions can be combined by addition and even by compo-
sition with affine functions to yield other self-concordant functions. (See
exercise 29.). For example the function

f�x� = −
m∑

i=1

ln�bi −aT
i x��

often used in interior point methods for linear programming, is self-concordant.
When a self-concordant function is subjected to Newton’s method, the quadratic

convergence of final phase can be measured in terms of the function

��x� = ��f�x�F�x�−1�f�x�T �1/2�

where as usual F(x) is the Hessian matrix of f at x. Then it can be shown that close
to the solution

2��xk+1� ≤ �2��xk��
2 � (56)

Furthermore, in a backtracking procedure, estimates of both the stepwise progress
in the damping phase and the point at which the quadratic phase begins can be
expressed in terms of parameters that depend only on the backtracking parameters.
Although, this knowledge does not generally influence practice, it is theoretically
quite interesting.

Example 1. (The logarithmic case). Consider the earlier example of f�x� =
tx− ln x� There

��x� = [
f ′�x�2/f ′′�x�

] 1
2 = 
�t −1/x�x
 = 
1− tx
�

Then (56) gives

�1− tx+� ≤ 2�1− tx�2�

Actually, for this example, as we found in (54), the factor of 2 is not required.

There is a relation between the analysis of self-concordant functions and our
earlier convergence analysis.

Recall that one way to analyze Newton’s method is to change variables from
x to y according to ỹ = �F�x��−�1/2�x̃� where here x is a reference point and x̃ is
variable. The gradient with respect to y at ỹ is then F�x�−�1/2��f�x̃�� and hence the
norm of the gradient at y is

[
�f�x�F�x�−1�f�x�T

]�1/2� ≡ ��x�. Hence it is perhaps
not surprising that ��x� plays a role analogous to the role played by the norm of
the gradient in the analysis of steepest descent.



8.9 Coordinate Descent Methods 253

8.9 COORDINATE DESCENT METHODS
The algorithms discussed in this section are sometimes attractive because of their
easy implementation. Generally, however, their convergence properties are poorer
than steepest descent.

Let f be a function on En having continuous first partial derivatives. Given
a point x = �x1� x2� � � � � xn�, descent with respect to the coordinate xi (i fixed)
means that one solves

minimize
xi

f�x1� x2� � � � � xn��

Thus only changes in the single component xi are allowed in seeking a new and
better vector x. In our general terminology, each such descent can be regarded as a
descent in the direction ei (or −ei) where ei is the ith unit vector. By sequentially
minimizing with respect to different components, a relative minimum of f might
ultimately be determined.

There are a number of ways that this concept can be developed into a full
algorithm. The cyclic coordinate descent algorithm minimizes f cyclically with
respect to the coordinate variables. Thus x1 is changed first, then x2 and so forth
through xn. The process is then repeated starting with x1 again. A variation of this is
the Aitken double sweep method. In this procedure one searches over x1� x2� � � � � xn,
in that order, and then comes back in the order xn−1� xn−2� � � � � x1. These cyclic
methods have the advantage of not requiring any information about �f to determine
the descent directions.

If the gradient of f is available, then it is possible to select the order of descent
coordinates on the basis of the gradient. A popular technique is the Gauss–Southwell
Method where at each stage the coordinate corresponding to the largest (in absolute
value) component of the gradient vector is selected for descent.

Global Convergence
It is simple to prove global convergence for cyclic coordinate descent. The
algorithmic map A is the composition of 2n maps

A = SCnSCn−1 � � � SC1�

where Ci�x� = �x� ei� with ei equal to the ith unit vector, and S is the usual line
search algorithm but over the doubly infinite line rather than the semi-infinite line.
The map Ci is obviously continuous and S is closed. If we assume that points are
restricted to a compact set, then A is closed by Corollary 1, Section 7.7. We define
the solution set � = 	x � �f�x� = 0
. If we impose the mild assumption on f that
a search along any coordinate direction yields a unique minimum point, then the
function Z�x� ≡ f�x� serves as a continuous descent function for A with respect
to � . This is because a search along any coordinate direction either must yield a
decrease or, by the uniqueness assumption, it cannot change position. Therefore,
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if at a point x we have �f�x� 	= 0, then at least one component of �f�x� does
not vanish and a search along the corresponding coordinate direction must yield a
decrease.

Local Convergence Rate
It is difficult to compare the rates of convergence of these algorithms with the rates
of others that we analyze. This is partly because coordinate descent algorithms are
from an entirely different general class of algorithms than, for example, steepest
descent and Newton’s method, since coordinate descent algorithms are unaffected
by (diagonal) scale factor changes but are affected by rotation of coordinates—the
opposite being true for steepest descent. Nevertheless, some comparison is possible.

It can be shown (see Exercise 20) that for the same quadratic problem as treated
in Section 8.6, there holds for the Gauss–Southwell method

E�xk+1� �
(

1− a

A�n−1�

)

E�xk�� (57)

where a, A are as in Section 8.6 and n is the dimension of the problem. Since

(
A−a

A+a

)2

�
(

1− a

A

)
�
(

1− a

A�n−1�

)n−1

� (58)

we see that the bound we have for steepest descent is better than the bound we have
for n − 1 applications of the Gauss–Southwell scheme. Hence we might argue that
it takes essentially n − 1 coordinate searches to be as effective as a single gradient
search. This is admittedly a crude guess, since (47) is generally not a tight bound,
but the overall conclusion is consistent with the results of many experiments. Indeed,
unless the variables of a problem are essentially uncoupled from each other (corre-
sponding to a nearly diagonal Hessian matrix) coordinate descent methods seem
to require about n line searches to equal the effect of one step of steepest descent.

The above discussion again illustrates the general objective that we seek in
convergence analysis. By comparing the formula giving the rate of convergence
for steepest descent with a bound for coordinate descent, we are able to draw
some general conclusions on the relative performance of the two methods that are
not dependent on specific values of a and A. Our analyses of local convergence
properties, which usually involve specific formulae, are always guided by this
objective of obtaining general qualitative comparisons.

Example. The quadratic problem considered in Section 8.6 with

Q =

⎡

⎢
⎢
⎣

0�78 −0�02 −0�12 −0�14
−0�02 0�86 −0�04 0�06
−0�12 −0�04 0�72 −0�08
−0�14 0�06 −0�08 0�74

⎤

⎥
⎥
⎦

b = �0�76� 0�08� 1�12� 0�68�
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Table 8.3 Solutions to Example

Value of f for various methods

Iteration no. Gauss-Southwell Cyclic Double sweep

0 0�0 0�0 0�0
1 −0�871111 −0�370256 −0�370256
2 −1�445584 −0�376011 −0�376011
3 −2�087054 −1�446460 −1�446460
4 −2�130796 −2�052949 −2�052949
5 −2�163586 −2�149690 −2�060234
6 −2�170272 −2�149693 −2�060237
7 −2�172786 −2�167983 −2�165641
8 −2�174279 −2�173169 −2�165704
9 −2�174583 −2�174392 −2�168440

10 −2�174638 −2�174397 −2�173981
11 −2�174651 −2�174582 −2�174048
12 −2�174655 −2�174643 −2�174054
13 −2�174658 −2�174656 −2�174608
14 −2�174659 −2�174656 −2�174608
15 −2�174659 −2�174658 −2�174622
16 −2�174659 −2�174655
17 −2�174659 −2�174656
18 −2�174656
19 −2�174659
20 −2�174659

was solved by the various coordinate search methods. The corresponding values of
the objective function are shown in Table 8.3. Observe that the convergence rates
of the three coordinate search methods are approximately equal but that they all
converge about three times slower than steepest descent. This is in accord with the
estimate given above for the Gauss-Southwell method, since in this case n−1 = 3.

8.10 SPACER STEPS
In some of the more complex algorithms presented in later chapters, the rule used to
determine a succeeding point in an iteration may depend on several previous points
rather than just the current point, or it may depend on the iteration index k. Such
features are generally introduced in order to obtain a rapid rate of convergence but
they can grossly complicate the analysis of global convergence.

If in such a complex sequence of steps there is inserted, perhaps irregularly
but infinitely often, a step of an algorithm such as steepest descent that is known to
converge, then it is not difficult to insure that the entire complex process converges.
The step which is repeated infinitely often and guarantees convergence is called a
spacer step, since it separates disjoint portions of the complex sequence. Essentially



256 Chapter 8 Basic Descent Methods

the only requirement imposed on the other steps of the process is that they do not
increase the value of the descent function.

This type of situation can be analyzed easily from the following viewpoint.
Suppose B is an algorithm which together with the descent function Z and solution
set � , satisfies all the requirements of the Global Convergence Theorem. Define
the algorithm C by C�x� = 	y � Z�y� � Z�x�
. In other words, C applied to x can
give any point so long as it does not increase the value of Z. It is easy to verify
that C is closed. We imagine that B represents the spacer step and the complex
process between spacer steps is just some realization of C. Thus the overall process
amounts merely to repeated applications of the composite algorithm CB. With this
viewpoint we may state the Spacer Step Theorem.

Spacer Step Theorem. Suppose B is an algorithm on X which is closed outside
the solution set � . Let Z be a descent function corresponding to B and � .

Suppose that the sequence 	xk

�
k=0 is generated satisfying

xk+1 ∈ B�xk�

for k in an infinite index set � , and that

Z�xk+1� � Z�xk�

for all k. Suppose also that the set S = 	x � Z�x� � Z�x0�
 is compact. Then the
limit of any convergent subsequence of 	xk
� is a solution.

Proof. We first define for any x ∈ X� B̄�x� = S ∩ B�x� and then observe that
A = CB̄ is closed outside the solution set by Corollary 1, in the subsection on closed
mappings in Section 7.7. The Global Convergence Theorem can then be applied to
A. Since S is compact, there is a subsequence of 	xk
k∈� converging to a limit x.
In view of the above we conclude that x ∈ � .

8.11 SUMMARY
Most iterative algorithms for minimization require a line search at every stage of the
process. By employing any one of a variety of curve fitting techniques, however,
the order of convergence of the line search process can be made greater than unity,
which means that as compared to the linear convergence that accompanies most
full descent algorithms (such as steepest descent) the individual line searches are
rapid. Indeed, in common practice, only about three search points are required in
any one line search.

It was shown in Sections 8.4, 8.5 and the exercises that line search algorithms
of varying degrees of accuracy are all closed. Thus line searching is not only rapid
enough to be practical but also behaves in such a way as to make analysis of global
convergence simple.

The most important result of this chapter is the fact that the method of steepest
descent converges linearly with a convergence ratio equal to ��A − a�/�A + a��2,
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where a and A are, respectively, the smallest and largest eigenvalues of the Hessian
of the objective function evaluated at the solution point. This formula, which arises
frequently throughout the remainder of the book, serves as a fundamental reference
point for other algorithms. It is, however, important to understand that it is the
formula and not its value that serves as the reference. We rarely advocate that
the formula be evaluated since it involves quantities (namely eigenvalues) that are
generally not computable until after the optimal solution is known. The formula
itself, however, even though its value is unknown, can be used to make significant
comparisons of the effectiveness of steepest descent versus other algorithms.

Newton’s method has order two convergence. However, it must be modified
to insure global convergence, and evaluation of the Hessian at every point can be
costly. Nevertheless, Newton’s method provides another valuable reference point
in the study of algorithms, and is frequently employed in interior point methods
using a logarithmic barrier function.

Coordinate descent algorithms are valuable only in the special situation where
the variables are essentially uncoupled or there is special structure that makes
searching in the coordinate directions particularly easy. Otherwise steepest descent
can be expected to be faster. Even if the gradient is not directly available, it would
probably be better to evaluate a finite-difference approximation to the gradient,
by taking a single step in each coordinate direction, and use this approximation
in a steepest descent algorithm, rather than executing a full line search in each
coordinate direction.

Finally, Section 8.10 explains that global convergence is guaranteed simply by
the inclusion, in a complex algorithm, of spacer steps. This result is called upon
frequently in what follows.

8.12 EXERCISES
1. Show that g�a� b� c� defined by (14) is symmetric, that is, interchange of the arguments

does not affect its value.

2. Prove (14) and (15).

Hint: To prove (15) expand it, and subtract and add g′�xk� to the numerator.

3. Argue using symmetry that the error in the cubic fit method approximately satisfies an
equation of the form


k+1 = M�
2
k
k−1 +
k


2
k−1�

and then find the order of convergence.

4. What conditions on the values and derivatives at two points guarantee that a cubic
polynomial fit to this data will have a minimum between the two points? Use your
answer to develop a search scheme, based on cubic fit, that is globally convergent for
unimodal functions.

5. Using a symmetry argument, find the order of convergence for a line search method
that fits a cubic to xk−3� xk−2� xk−1� xk in order to find xk+1.
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6. Consider the iterative process

xk+1 = 1
2

(

xk + a

xk

)

�

where a > 0. Assuming the process converges, to what does it converge? What is the
order of convergence?

7. Suppose the continuous real-valued function f of a single variable satisfies

min
x�0

f�x� < f�0��

Starting at any x > 0 show that, through a series of halvings and doublings of x and
evaluation of the corresponding f�x�’s, a three-point pattern can be determined.

8. For � > 0 define the map S� by

S��x� d� = 	y � y = x +�d� 0 � � � �� f�y� = min
0����

f�x +�d�
�

Thus S� searches the interval �0� �� for a minimum of f�x +�d�, representing a “limited
range” line search. Show that if f is continuous, S� is closed at all (x, d).

9. For 
 > 0 define the map 
S by


S�x� d� = 	y � y = x +�d� � � 0� f�y� � min
0��

f�x +�d�+

�

Show that if f is continuous, 
S is closed at (x, d) if d 	= 0. This map corresponds to
an “inaccurate” line search.

10. Referring to the previous two exercises, define and prove a result for 
S�.

11. Define S̄ as the line search algorithm that finds the first relative minimum of f�x +�d�
for � � 0. If f is continuous and d 	= 0, is S̄ closed?

12. Consider the problem

minimize 5x2 +5y2 −xy −11x+11y +11�

a) Find a point satisfying the first-order necessary conditions for a solution.
b) Show that this point is a global minimum.
c) What would be the rate of convergence of steepest descent for this problem?
d) Starting at x = y = 0, how many steepest descent iterations would it take (at most)

to reduce the function value to 10−11?

13. Define the search mapping F that determines the parameter � to within a given fraction
c� 0 � c � 1, by

F�x� d� = 	y � y = x +�d� 0 � � < �� 
�
 � c�� where

d

d�
f�x +�d� = 0
 �

Show that if d 	= 0 and �d/d��f�x +�d� is continuous, then F is closed at (x, d).
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14. Let e1� e2� � � � � en denote the eigenvectors of the symmetric positive definite n × n
matrix Q. For the quadratic problem considered in Section 8.6, suppose x0 is chosen
so that g0 belongs to a subspace M spanned by a subset of the ei’s. Show that for the
method of steepest descent gk ∈ M for all k. Find the rate of convergence in this case.

15. Suppose we use the method of steepest descent to minimize the quadratic function
f�x� = 1

2 �x − x∗�T Q�x − x∗� but we allow a tolerance ±��k � � 0) in the line search,
that is

xk+1 = xk −�kgk�

where

�1−���k � �k � �1+���k

and �k minimizes f�xk −�gk� over �.

a) Find the convergence rate of the algorithm in terms of a and A, the smallest and
largest eigenvalues of Q, and the tolerance �.
Hint: Assume the extreme case �k = �1+���k.

b) What is the largest � that guarantees convergence of the algorithm? Explain this
result geometrically.

c) Does the sign of � make any difference?

16. Show that for a quadratic objective function the percentage test and the Goldstein test
are equivalent.

17. Suppose in the method of steepest descent for the quadratic problem, the value of �k is
not determined to minimize E�xk+1� exactly but instead only satisfies

E�xk�−E�xk+1�

E�xk�
� �

E�xk�−E

E�xk�

for some �� 0 < � < 1, where E is the value that corresponds to the best �k. Find the
best estimate for the rate of convergence in this case.

18. Suppose an iterative algorithm of the form

xk+1 = xk +�kdk

is applied to the quadratic problem with matrix Q, where �k as usual is chosen as
the minimum point of the line search and where dk is a vector satisfying dT

k gk < 0
and �dT

k gk�
2 � ��dT

k Qdk��gT
k Q−1gk�, where 0 < � � 1. This corresponds to a steepest

descent algorithm with “sloppy” choice of direction. Estimate the rate of convergence
of this algorithm.

19. Repeat Exercise 18 with the condition on �dT
k gk�

2 replaced by

�dT
k gk�

2 � ��dT
k dk��gT

k gk�� 0 < � � 1�

20. Use the result of Exercise 19 to derive (57) for the Gauss-Southwell method.
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21. Let f�x� y� = s2 +y2 +xy −3x.

a) Find an unconstrained local minimum point of f .
b) Why is the solution to (a) actually a global minimum point?
c) Find the minimum point of f subject to x � 0� y � 0.
d) If the method of steepest descent were applied to (a), what would be the rate of

convergence of the objective function?

22. Find an estimate for the rate of convergence for the modified Newton method

xk+1 = xk −�k�
kI +Fk�
−1gk

given by (51) and (52) when � is larger than the smallest eigenvalue of F�x∗�.

23. Prove global convergence of the Gauss-Southwell method.

24. Consider a problem of the form

minimize f�x�

subject to x � 0�

where x ∈ En. A gradient-type procedure has been suggested for this kind of problem
that accounts for the constraint. At a given point x = �x1� x2� � � � � xn�, the direction
d = �d1� d2� � � � � dn� is determined from the gradient �f�x�T = g = �g1� g2� � � � � gn� by

di =
{

−gi if xi > 0 or gi < 0

0 if xi = 0 and gi � 0�

This direction is then used as a direction of search in the usual manner.

a) What are the first-order necessary conditions for a minimum point of this problem?
b) Show that d, as determined by the algorithm, is zero only at a point satisfying the

first-order conditions.
c) Show that if d 	= 0, it is possible to decrease the value of f by movement along d.
d) If restricted to a compact region, does the Global Convergence Theorem apply? Why?

25. Consider the quadratic problem and suppose Q has unity diagonal. Consider a coordinate
descent procedure in which the coordinate to be searched is at every stage selected
randomly, each coordinate being equally likely. Let �k = xk −x∗. Assuming �k is known,
show that �T

k+1Q�k+1, the expected value of �T
k+1Q�k+1, satisfies

�T
k+1Q�k+1 =

(

1− �T
k Q2�k

n�T
k Q�k

)

�T
k Q�k �

(

1− a2

nA

)

�T
k Q�k�

26. If the matrix Q has a condition number of 10, how many iterations of steepest descent
would be required to get six place accuracy in the minimum value of the objective
function of the corresponding quadratic problem?

27. Stopping criterion. A question that arises in using an algorithm such as steepest descent
to minimize an objective function f is when to stop the iterative process, or, in other
words, how can one tell when the current point is close to a solution. If, as with steepest
descent, it is known that convergence is linear, this knowledge can be used to develop a
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stopping criterion. Let 	fk

�
k=0 be the sequence of values obtained by the algorithm. We

assume that fk → f ∗ linearly, but both f ∗ and the convergence ratio � are unknown.
However we know that, at least approximately,

fk+1 −f ∗ = ��fk −f ∗�

and

fk −f ∗ = ��fk−1 −f ∗��

These two equations can be solved for � and f ∗.

a) Show that

f ∗ − f 2
k −fk−1fk+1

2fk −fk−1 −fk+1

� = fk+1 −fk

fk −fk−1
�

b) Motivated by the above we form the sequence 	f ∗
k 
 defined by

f ∗
k = f 2

k −fk−1fk+1

2fk −fk−1 −fk+1

as the original sequence is generated. (This procedure of generating 	f ∗
k 
 from 	fk
 is

called the Aitken �2-process.) If 
fk −f ∗
 = �k +o��k� show that 
f ∗
k −f ∗
 = o��k�

which means that 	f ∗
k 
 converges to f ∗ faster than 	fk
 does. The iterative search

for the minimum of f can then be terminated when fk − f ∗
k is smaller than some

prescribed tolerance.

28. Show that the concordant requirement (55) can be expressed as

∣
∣
∣
∣

d
dx

f ′′�x�− 1
2

∣
∣
∣
∣≤ 1�

29. Assume f�x� and g�x� are self-concordant. Show that the following functions are also
self-concordant.

(a) af�x� for a > 1
(b) ax+b+f�x�
(c) f�ax+b�
(d) f�x�+g�x�
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Chapter 9 CONJUGATE
DIRECTION
METHODS

Conjugate direction methods can be regarded as being somewhat intermediate
between the method of steepest descent and Newton’s method. They are motivated
by the desire to accelerate the typically slow convergence associated with steepest
descent while avoiding the information requirements associated with the evaluation,
storage, and inversion of the Hessian (or at least solution of a corresponding system
of equations) as required by Newton’s method.

Conjugate direction methods invariably are invented and analyzed for the purely
quadratic problem

minimize 1
2 xT Qx −bT x�

where Q is an n×n symmetric positive definite matrix. The techniques once worked
out for this problem are then extended, by approximation, to more general problems;
it being argued that, since near the solution point every problem is approximately
quadratic, convergence behavior is similar to that for the pure quadratic situation.

The area of conjugate direction algorithms has been one of great creativity
in the nonlinear programming field, illustrating that detailed analysis of the pure
quadratic problem can lead to significant practical advances. Indeed, conjugate
direction methods, especially the method of conjugate gradients, have proved to be
extremely effective in dealing with general objective functions and are considered
among the best general purpose methods.

9.1 CONJUGATE DIRECTIONS

Definition. Given a symmetric matrix Q, two vectors d1 and d2 are said to
be Q-orthogonal, or conjugate with respect to Q, if dT

1 Qd2 = 0.

In the applications that we consider, the matrix Q will be positive definite but this
is not inherent in the basic definition. Thus if Q = 0, any two vectors are conjugate,
while if Q = I, conjugacy is equivalent to the usual notion of orthogonality. A finite

263
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set of vectors d0, d1� � � � � dk is said to be a Q-orthogonal set if dT
i Qdj = 0 for all

i �= j.

Proposition. If Q is positive definite and the set of nonzero vectors d0, d1,
d2� � � � � dk are Q-orthogonal, then these vectors are linearly independent.

Proof. Suppose there are constants �i, i = 0, 1, 2, � � �, k such that

�0d0 +· · ·+�kdk = 0�

Multiplying by Q and taking the scalar product with di yields

�id
T
i Qdi = 0�

Or, since dT
i Qdi > 0 in view of the positive definiteness of Q, we have �i = 0.

Before discussing the general conjugate direction algorithm, let us investigate
just why the notion of Q-orthogonality is useful in the solution of the quadratic
problem

minimize 1
2 xT Qx −bT x� (1)

when Q is positive definite. Recall that the unique solution to this problem is also
the unique solution to the linear equation

Qx = b� (2)

and hence that the quadratic minimization problem is equivalent to a linear equation
problem.

Corresponding to the n × n positive definite matrix Q let d0, d1� � � � � dn−1

be n nonzero Q-orthogonal vectors. By the above proposition they are linearly
independent, which implies that the solution x∗ of (1) or (2) can be expanded in
terms of them as

x∗ = �0d0 +· · ·+�n−1dn−1 (3)

for some set of �i’s. In fact, multiplying by Q and then taking the scalar product
with di yields directly

�i = dT
i Qx∗

dT
i Qdi

= dT
i b

dT
i Qdi

� (4)

This shows that the �i’s and consequently the solution x∗ can be found by evaluation
of simple scalar products. The end result is

x∗ =
n−1∑

i=0

dT
i b

dT
i Qdi

di� (5)
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There are two basic ideas imbedded in (5). The first is the idea of selecting
an orthogonal set of di’s so that by taking an appropriate scalar product, all terms
on the right side of (3), except the ith, vanish. This could, of course, have been
accomplished by making the di’s orthogonal in the ordinary sense instead of making
them Q-orthogonal. The second basic observation, however, is that by using Q-
orthogonality the resulting equation for �i can be expressed in terms of the known
vector b rather than the unknown vector x∗; hence the coefficients can be evaluated
without knowing x∗.

The expansion for x∗ can be considered to be the result of an iterative process
of n steps where at the ith step �idi is added. Viewing the procedure this way, and
allowing for an arbitrary initial point for the iteration, the basic conjugate direction
method is obtained.

Conjugate Direction Theorem. Let �di�
n−1
i=0 be a set of nonzero Q-orthogonal

vectors. For any x0 ∈ En the sequence �xk� generated according to

xk+1 = xk +�kdk� k � 0 (6)

with

�k = − gT
k dk

dT
k Qdk

(7)

and

gk = Qxk −b�

converges to the unique solution, x∗, of Qx = b after n steps, that is, xn = x∗.

Proof. Since the dk’s are linearly independent, we can write

x∗ −x0 = �0d0 +�1d1 +· · ·+�n−1dn−1

for some set of �k’s. As we did to get (4), we multiply by Q and take the scalar
product with dk to find

�k = dT
k Q�x∗ −x0�

dT
k Qdk

� (8)

Now following the iterative process (6) from x0 up to xk gives

xk −x0 = �0d0 +�1d1 +· · ·+�k−1dk−1� (9)

and hence by the Q-orthogonality of the dk’s it follows that

dT
k Q�xk −x0� = 0� (10)
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Substituting (10) into (8) produces

�k = dT
k Q�x∗ −xk�

dT
k Qdk

= − gT
k dk

dT
k Qdk

�

which is identical with (7).

To this point the conjugate direction method has been derived essentially
through the observation that solving (1) is equivalent to solving (2). The conjugate
direction method has been viewed simply as a somewhat special, but nevertheless
straightforward, orthogonal expansion for the solution to (2). This viewpoint,
although important because of its underlying simplicity, ignores some of the most
important aspects of the algorithm; especially those aspects that are important when
extending the method to nonquadratic problems. These additional properties are
discussed in the next section.

Also, methods for selecting or generating sequences of conjugate directions
have not yet been presented. Some methods for doing this are discussed in the
exercises; while the most important method, that of conjugate gradients, is discussed
in Section 9.3.

9.2 DESCENT PROPERTIES OF THE CONJUGATE
DIRECTION METHOD

We define �k as the subspace of En spanned by �d0� d1� � � � � dk−1�. We shall
show that as the method of conjugate directions progresses each xk minimizes the
objective over the k-dimensional linear variety x0 +�k.

Expanding Subspace Theorem. Let �di�
n−1
i=0 be a sequence of nonzero Q-

orthogonal vectors in En. Then for any x0 ∈ En the sequence �xk� generated
according to

xk+1 = xk +�kdk (11)

�k = − gT
k dk

dT
k Qdk

(12)

has the property that xk minimizes f�x� = 1
2 xT Qx−bT x on the line x = xk−1 +

�dk−1�−� < � < �, as well as on the linear variety x0 +�k.

Proof. It need only be shown that xk minimizes f on the linear variety x0 +�k,
since it contains the line x = xk−1 +�dk−1. Since f is a strictly convex function,
the conclusion will hold if it can be shown that gk is orthogonal to �k (that is, the
gradient of f at xk is orthogonal to the subspace �k). The situation is illustrated in
Fig. 9.1. (Compare Theorem 2, Section 7.5.)
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xo + �k

xk

gk

dk–1

dk–2

xk–2

xk–1

Fig. 9.1 Conjugate direction method

We prove gk ⊥ �k by induction. Since �0 is empty that hypothesis is true
for k = 0. Assuming that it is true for k, that is, assuming gk ⊥ �k, we show that
gk+1 ⊥ �k+1. We have

gk+1 = gk +�kQdk� (13)

and hence

dT
k gk+1 = dT

k gk +�kdT
k Qdk = 0 (14)

by definition of �k. Also for i < k

dT
i gk+1 = dT

i gk +�kdT
i Qdk� (15)

The first term on the right-hand side of (15) vanishes because of the induction
hypothesis, while the second vanishes by the Q-orthogonality of the di’s. Thus
gk+1 ⊥ �k+1.

Corollary. In the method of conjugate directions the gradients gk, k = 0, 1, � � �,
n satisfy

gT
k di = 0 for i < k�

The above theorem is referred to as the Expanding Subspace Theorem,
since the �k’s form a sequence of subspaces with �k+1 ⊃ �k. Since xk

minimizes f over x0 +�k, it is clear that xn must be the overall minimum
of f .
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dk

�k+1

�kxk

x*

xk+1

Fig. 9.2 Interpretation of expanding subspace theorem

To obtain another interpretation of this result we again introduce the function

E�x� = 1
2 �x −x∗�T Q�x −x∗� (16)

as a measure of how close the vector x is to the solution x∗. Since E�x� = f�x�+
�1/2�x∗T Qx∗ the function E can be regarded as the objective that we seek to
minimize.

By considering the minimization of E we can regard the original problem as
one of minimizing a generalized distance from the point x∗. Indeed, if we had
Q = I, the generalized notion of distance would correspond (within a factor of two)
to the usual Euclidean distance. For an arbitrary positive-definite Q we say E is a
generalized Euclidean metric or distance function. Vectors di, i = 0, 1, � � �, n− 1
that are Q-orthogonal may be regarded as orthogonal in this generalized Euclidean
space and this leads to the simple interpretation of the Expanding Subspace Theorem
illustrated in Fig. 9.2. For simplicity we assume x0 = 0. In the figure dk is shown
as being orthogonal to �k with respect to the generalized metric. The point xk

minimizes E over �k while xk+1 minimizes E over �k+1. The basic property is that,
since dk is orthogonal to �k, the point xk+1 can be found by minimizing E along
dk and adding the result to xk.

9.3 THE CONJUGATE GRADIENT METHOD
The conjugate gradient method is the conjugate direction method that is obtained by
selecting the successive direction vectors as a conjugate version of the successive
gradients obtained as the method progresses. Thus, the directions are not specified
beforehand, but rather are determined sequentially at each step of the iteration. At
step k one evaluates the current negative gradient vector and adds to it a linear
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combination of the previous direction vectors to obtain a new conjugate direction
vector along which to move.

There are three primary advantages to this method of direction selection. First,
unless the solution is attained in less than n steps, the gradient is always nonzero
and linearly independent of all previous direction vectors. Indeed, the gradient gk

is orthogonal to the subspace �k generated by d0, d1, � � � � dk−1. If the solution is
reached before n steps are taken, the gradient vanishes and the process terminates—
it being unnecessary, in this case, to find additional directions.

Second, a more important advantage of the conjugate gradient method is the
especially simple formula that is used to determine the new direction vector. This
simplicity makes the method only slightly more complicated than steepest descent.

Third, because the directions are based on the gradients, the process makes good
uniform progress toward the solution at every step. This is in contrast to the situation
for arbitrary sequences of conjugate directions in which progress may be slight until
the final few steps. Although for the pure quadratic problem uniform progress is of no
great importance, it is important for generalizations to nonquadratic problems.

Conjugate Gradient Algorithm
Starting at any x0 ∈ En define d0 = −g0 = b−Qx0 and

xk+1 = xk +�kdk (17)

�k = − gT
k dk

dT
k Qdk

(18)

dk+1 = −gk+1 +	kdk (19)

	k = gT
k+1Qdk

dT
k Qdk

� (20)

where gk = Qxk −b.
In the algorithm the first step is identical to a steepest descent step; each

succeeding step moves in a direction that is a linear combination of the current
gradient and the preceding direction vector. The attractive feature of the algorithm
is the simple formulae, (19) and (20), for updating the direction vector. The method
is only slightly more complicated to implement than the method of steepest descent
but converges in a finite number of steps.

Verification of the Algorithm
To verify that the algorithm is a conjugate direction algorithm, it is necessary
to verify that the vectors �dk� are Q-orthogonal. It is easiest to prove this by
simultaneously proving a number of other properties of the algorithm. This is done
in the theorem below where the notation [d0, d1, � � � � dk] is used to denote the
subspace spanned by the vectors d0, d1, � � �, dk.
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Conjugate Gradient Theorem. The conjugate gradient algorithm (17)–(20) is
a conjugate direction method. If it does not terminate at xk, then

a) 
g0� g1� � � � � gk� = 
g0� Qg0� � � � � Qkg0�
b) 
d0� d1� � � � � dk� = 
g0� Qg0� � � � � Qkg0�
c) dT

k Qdi = 0 for i � k−1
d) �k = gT

k gk/dT
k Qdk

e) 	k = gT
k+1gk+1/gT

k gk.

Proof. We first prove (a), (b) and (c) simultaneously by induction. Clearly, they
are true for k = 0. Now suppose they are true for k, we show that they are true for
k+1. We have

gk+1 = gk +�kQdk�

By the induction hypothesis both gk and Qdk belong to 
g0� Qg0� � � � � Qk+1g0�, the
first by (a) and the second by (b). Thus gk+1 ∈ 
g0� Qg0� � � � � Qk+1g0�. Furthermore
gk+1 � 
g0� Qg0� � � � � Qkg0� = 
d0� d1� � � � � dk� since otherwise gk+1 = 0, because for
any conjugate direction method gk+1 is orthogonal to 
d0� d1� � � � � dk�. (The induction
hypothesis on (c) guarantees that the method is a conjugate direction method up to
xk+1.) Thus, finally we conclude that


g0� g1� � � � � gk+1� = 
g0� Qg0� � � � � Qk+1g0��

which proves (a).
To prove (b) we write

dk+1 = −gk+1 +	kdk�

and (b) immediately follows from (a) and the induction hypothesis on (b).
Next, to prove (c) we have

dT
k+1Qdi = −gT

k+1Qdi +	kdT
k Qdi�

For i = k the right side is zero by definition of 	k. For i < k both terms vanish.
The first term vanishes since Qdi ∈ 
d1� d2� � � � � di+1�, the induction hypothesis
which guarantees the method is a conjugate direction method up to xk+1, and
by the Expanding Subspace Theorem that guarantees that gk+1 is orthogonal to

d0� d1� � � � � di+1�. The second term vanishes by the induction hypothesis on (c).
This proves (c), which also proves that the method is a conjugate direction method.

To prove (d) we have

−gT
k dk = gT

k gk −	k−1gT
k dk−1�

and the second term is zero by the Expanding Subspace Theorem.
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Finally, to prove (e) we note that gT
k+1gk = 0, because gk ∈ 
d0� � � � � dk� and

gk+1 is orthogonal to 
d0� � � � � dk�. Thus since

Qdk = 1
�k

�gk+1 −gk��

we have

gT
k+1Qdk = 1

�k

gT
k+1gk+1�

Parts (a) and (b) of this theorem are a formal statement of the interrelation
between the direction vectors and the gradient vectors. Part (c) is the equation
that verifies that the method is a conjugate direction method. Parts (d) and (e) are
identities yielding alternative formulae for �k and 	k that are often more convenient
than the original ones.

9.4 THE C–G METHOD AS AN OPTIMAL PROCESS
We turn now to the description of a special viewpoint that leads quickly to some
very profound convergence results for the method of conjugate gradients. The basis
of the viewpoint is part (b) of the Conjugate Gradient Theorem. This result tells
us the spaces �k over which we successively minimize are determined by the
original gradient g0 and multiplications of it by Q. Each step of the method brings
into consideration an additional power of Q times g0. It is this observation we
exploit.

Let us consider a new general approach for solving the quadratic minimization
problem. Given an arbitrary starting point x0, let

xk+1 = x0 +Pk�Q�g0� (21)

where Pk is a polynomial of degree k. Selection of a set of coefficients for each of
the polynomials Pk determines a sequence of xk’s. We have

xk+1 −x∗ = x0 −x∗ +Pk�Q�Q�x0 −x∗�

= 
I +QPk�Q���x0 −x∗��
(22)

and hence

E�xk+1� = 1
2 �xk+1 −x∗�T Q�xk+1 −x∗�

= 1
2 �x0 −x∗�T Q
I +QPk�Q��2�x0 −x∗��

(23)

We may now pose the problem of selecting the polynomial Pk in such a
way as to minimize E�xk+1� with respect to all possible polynomials of degree k.
Expanding (21), however, we obtain

xk+1 = x0 +�0g0 +�1Qg0 +· · ·+�kQkg0� (24)
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where the �i’s are the coefficients of Pk. In view of

�k+1 = 
d0� d1� � � � � dk� = 
g0� Qg0� � � � � Qkg0��

the vector xk+1 = x0 +�0d0 +�1d1 + � � �+�kdk generated by the method of conjugate
gradients has precisely this form; moreover, according to the Expanding Subspace
Theorem, the coefficients �i determined by the conjugate gradient process are such
as to minimize E�xk+1�. Therefore, the problem posed of selecting the optimal Pk

is solved by the conjugate gradient procedure.
The explicit relation between the optimal coefficients �i of Pk and the constants

�i, 	i associated with the conjugate gradient method is, of course, somewhat
complicated, as is the relation between the coefficients of Pk and those of Pk+1. The
power of the conjugate gradient method is that as it progresses it successively solves
each of the optimal polynomial problems while updating only a small amount of
information.

We summarize the above development by the following very useful theorem.

Theorem 1. The point xk+1 generated by the conjugate gradient method
satisfies

E�xk+1� = min
Pk

1
2 �x0 −x∗�T Q
I +QPk�Q��2�x0 −x∗�� (25)

where the minimum is taken with respect to all polynomials Pk of degree k.

Bounds on Convergence
To use Theorem 1 most effectively it is convenient to recast it in terms of eigen-
vectors and eigenvalues of the matrix Q. Suppose that the vector x0 −x∗ is written
in the eigenvector expansion

x0 −x∗ = 
1e1 +
2e2 +· · ·+
nen�

where the ei’s are normalized eigenvectors of Q. Then since Q�x0 −x∗� = �1
1e1 +
�2
2e2 + � � �+�n
nen and since the eigenvectors are mutually orthogonal, we have

E�x0� = 1
2 �x0 −x∗�T Q�x0 −x∗� = 1

2

n∑

i=1

�i

2
i � (26)

where the �i’s are the corresponding eigenvalues of Q. Applying the same manip-
ulations to (25), we find that for any polynomial Pk of degree k there holds

E�xk+1� � 1
2

n∑

i=1


1+�iPk��i��
2�i


2
i �
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It then follows that

E�xk+1� � max
�i


1+�iPk��i��
2 1

2

n∑

i=1′
�i


2
i �

and hence finally

E�xk+1� � max
�i


1+�iPk��i��
2E�x0��

We summarize this result by the following theorem.

Theorem 2. In the method of conjugate gradients we have

E�xk+1� � max
�i


1+�iPk��i��
2E�x0� (27)

for any polynomial Pk of degree k, where the maximum is taken over all
eigenvalues �i of Q.

This way of viewing the conjugate gradient method as an optimal process is
exploited in the next section. We note here that it implies the far from obvious fact
that every step of the conjugate gradient method is at least as good as a steepest
descent step would be from the same point. To see this, suppose xk has been
computed by the conjugate gradient method. From (24) we know xk has the form

xk = x0 + �̄0g0 + �̄1Qg0 +· · ·+ �̄k−1Qk−1g0�

Now if xk+1 is computed from xk by steepest descent, then xk+1 = xk − �kgk for
some �k. In view of part (a) of the Conjugate Gradient Theorem xk+1 will have
the form (24). Since for the conjugate direction method E�xk+1� is lower than any
other xk+1 of the form (24), we obtain the desired conclusion.

Typically when some information about the eigenvalue structure of Q is known,
that information can be exploited by construction of a suitable polynomial Pk to
use in (27). Suppose, for example, it were known that Q had only m < n distinct
eigenvalues. Then it is clear that by suitable choice of Pm−1 it would be possible
to make the mth degree polynomial 1 + �Pm−1��� have its m zeros at the m
eigenvalues. Using that particular polynomial in (27) shows that E�xm� = 0. Thus
the optimal solution will be obtained in at most m, rather than n, steps. More
sophisticated examples of this type of reasoning are contained in the next section
and in the exercises at the end of the chapter.

9.5 THE PARTIAL CONJUGATE GRADIENT
METHOD

A collection of procedures that are natural to consider at this point are those in
which the conjugate gradient procedure is carried out for m+1 < n steps and then,
rather than continuing, the process is restarted from the current point and m + 1
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more conjugate gradient steps are taken. The special case of m = 0 corresponds
to the standard method of steepest descent, while m = n − 1 corresponds to the
full conjugate gradient method. These partial conjugate gradient methods are of
extreme theoretical and practical importance, and their analysis yields additional
insight into the method of conjugate gradients. The development of the last section
forms the basis of our analysis.

As before, given the problem

minimize 1
2 xT Qx −bT x� (28)

we define for any point xk the gradient gk = Qxk − b. We consider an iteration
scheme of the form

xk+1 = xk +Pk�Q�gk� (29)

where Pk is a polynomial of degree m. We select the coefficients of the polynomial
Pk so as to minimize

E�xk+1� = 1
2 �xk+1 −x∗�T Q�xk+1 −x∗�� (30)

where x∗ is the solution to (28). In view of the development of the last section, it
is clear that xk+1 can be found by taking m+1 conjugate gradient steps rather than
explicitly determining the appropriate polynomial directly. (The sequence indexing
is slightly different here than in the previous section, since now we do not give
separate indices to the intermediate steps of this process. Going from xk to xk+1 by
the partial conjugate gradient method involves m other points.)

The results of the previous section provide a tool for convergence analysis
of this method. In this case, however, we develop a result that is of particular
interest for Q’s having a special eigenvalue structure that occurs frequently in
optimization problems, especially, as shown below and in Chapter 12, in the context
of penalty function methods for solving problems with constraints. We imagine that
the eigenvalues of Q are of two kinds: there are m large eigenvalues that may or
may not be located near each other, and n−m smaller eigenvalues located within
an interval [a, b]. Such a distribution of eigenvalues is shown in Fig. 9.3.

As an example, consider as in Section 8.7 the problem on En

minimize 1
2 xT Qx −bT x

subject to cT x = 0�

0 a

n – m eigenvalues m large eigenvalues

b

Fig. 9.3 Eigenvalue distribution
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where Q is a symmetric positive definite matrix with eigenvalues in the interval
[a, A] and b and c are vectors in En. This is a constrained problem but it can be
approximated by the unconstrained problem

minimize 1
2 xT Qx −bT x + 1

2 ��cT x�2�

where � is a large positive constant. The last term in the objective function is
called a penalty term; for large � minimization with respect to x will tend to make
cT x small.

The total quadratic term in the objective is 1
2 xT �Q + �ccT �x, and thus it is

appropriate to consider the eigenvalues of the matrix Q + �ccT . As � tends to
infinity it can be shown (see Chapter 13) that one eigenvalue of this matrix tends to
infinity and the other n−1 eigenvalues remain bounded within the original interval
[a, A].

As noted before, if steepest descent were applied to a problem with such a
structure, convergence would be governed by the ratio of the smallest to largest
eigenvalue, which in this case would be quite unfavorable. In the theorem below it is
stated that by successively repeating m+1 conjugate gradient steps the effects of the
m largest eigenvalues are eliminated and the rate of convergence is determined as
if they were not present. A computational example of this phenomenon is presented
in Section 13.5. The reader may find it interesting to read that section right after
this one.

Theorem (Partial conjugate gradient method). Suppose the symmetric positive
definite matrix Q has n − m eigenvalues in the interval [a, b], a > 0 and
the remaining m eigenvalues are greater than b. Then the method of partial
conjugate gradients, restarted every m+1 steps, satisfies

E�xk+1� �
(

b−a

b+a

)2

E�xk�� (31)

(The point xk+1 is found from xk by taking m+ 1 conjugate gradient steps so
that each increment in k is a composite of several simple steps.)

Proof. Application of (27) yields

E�xk+1 � max
�i


1+�iP��i��
2E�xk� (32)

for any mth-order polynomial P, where the �i’s are the eigenvalues of Q. Let us
select P so that the �m + 1�th-degree polynomial q��� = 1 + �P��� vanishes at
�a+b�/2 and at the m large eigenvalues of Q. This is illustrated in Fig. 9.4. For
this choice of P we may write (32) as

E�xk+1� � max
a��i�b


1+�iP��i��
2E�xk��

Since the polynomial q��� = 1+�P��� has m+1 real roots, q′��� will have m real
roots which alternate between the roots of q��� on the real axis. Likewise, q′′���
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1

a b

q (λ)

a + b
1 –

2λ

λ

Fig. 9.4 Construction for proof

will have m−1 real roots which alternate between the roots of q′���. Thus, since
q��� has no root in the interval �−�� �a+b�/2�, we see that q′′��� does not change
sign in that interval; and since it is easily verified that q′′�0� > 0 it follows that
q��� is convex for � < �a+b�/2. Therefore, on 
0� �a+b�/2�, q��� lies below the
line 1− 
2�/�a+b��. Thus we conclude that

q��� � 1− 2�

a+b

on 
0� �a+b�/2� and that

q′
(

a+b

2

)

� − 2
a+b

�

We can see that on 
�a+b�/2� b�

q��� � 1− 2�

a+b
�

since for q��� to cross first the line 1 − 
2�/�a + b�� and then the �-axis would
require at least two changes in sign of q′′���, whereas, at most one root of q′′���
exists to the left of the second root of q���. We see then that the inequality


1+�P���
 � 
1− 2�

a+b



is valid on the interval [a, b]. The final result (31) follows immediately.

In view of this theorem, the method of partial conjugate gradients can be
regarded as a generalization of steepest descent, not only in its philosophy and
implementation, but also in its behavior. Its rate of convergence is bounded by
exactly the same formula as that of steepest descent but with the largest eigenvalues
removed from consideration. (It is worth noting that for m = 0 the above proof
provides a simple derivation of the Steepest Descent Theorem.)
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9.6 EXTENSION TO NONQUADRATIC PROBLEMS
The general unconstrained minimization problem on En

minimize f�x�

can be attacked by making suitable approximations to the conjugate gradient
algorithm. There are a number of ways that this might be accomplished; the choice
depends partially on what properties of f are easily computable. We look at three
methods in this section and another in the following section.

Quadratic Approximation
In the quadratic approximation method we make the following associations at xk:

gk ↔ �f�xk�
T � Q ↔ F�xk��

and using these associations, reevaluated at each step, all quantities necessary to
implement the basic conjugate gradient algorithm can be evaluated. If f is quadratic,
these associations are identities, so that the general algorithm obtained by using
them is a generalization of the conjugate gradient scheme. This is similar to the
philosophy underlying Newton’s method where at each step the solution of a general
problem is approximated by the solution of a purely quadratic problem through
these same associations.

When applied to nonquadratic problems, conjugate gradient methods will not
usually terminate within n steps. It is possible therefore simply to continue finding
new directions according to the algorithm and terminate only when some termination
criterion is met. Alternatively, the conjugate gradient process can be interrupted
after n or n+ 1 steps and restarted with a pure gradient step. Since Q-conjugacy
of the direction vectors in the pure conjugate gradient algorithm is dependent on
the initial direction being the negative gradient, the restarting procedure seems to
be preferred. We always include this restarting procedure. The general conjugate
gradient algorithm is then defined as below.

Step 1. Starting at x0 compute g0 = �f�x0�
T and set d0 = −g0.

Step 2. For k = 0� 1� � � � � n−1:

a) Set xk+1 = xk +�kdk where �k = −gT
k dk

dT
k F�xk�dk

.

b) Compute gk+1 = �f�xk+1�
T .

c) Unless k = n−1, set dk+1 = −gk+1 +	kdk where

	k = gT
k+1F�xk�dk

dT
k F�xk�dk

and repeat (a).
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Step 3. Replace x0 by xn and go back to Step 1.

An attractive feature of the algorithm is that, just as in the pure form of
Newton’s method, no line searching is required at any stage. Also, the algorithm
converges in a finite number of steps for a quadratic problem. The undesirable
features are that F�xk� must be evaluated at each point, which is often impractical,
and that the algorithm is not, in this form, globally convergent.

Line Search Methods
It is possible to avoid the direct use of the association Q ↔ F�xk�. First, instead
of using the formula for �k in Step 2(a) above, �k is found by a line search that
minimizes the objective. This agrees with the formula in the quadratic case. Second,
the formula for 	k in Step 2(c) is replaced by a different formula, which is, however,
equivalent to the one in 2(c) in the quadratic case.

The first such method proposed was the Fletcher–Reeves method, in which
Part (e) of the Conjugate Gradient Theorem is employed; that is,

	k = gT
k+1gk+1

gT
k gk

�

The complete algorithm (using restarts) is:

Step 1. Given x0 compute g0 = �f�x0�
T and set d0 = −g0.

Step 2. For k = 0� 1� � � � � n−1:
a) Set xk+1 = xk +�kdk where �k minimizes f�xk +�dk�.
b) Compute gk+1 = �f�xk+1�

T .
c) Unless k = n−1, set dk+1 = −gk+1 +	kdk where

	k = gT
k+1gk+1

gT
k gk

�

Step 3. Replace x0 by xn and go back to Step 1.

Another important method of this type is the Polak–Ribiere method, where

	k = �gk+1 −gk�
T gk+1

gT
k gk

is used to determine 	k. Again this leads to a value identical to the standard formula
in the quadratic case. Experimental evidence seems to favor the Polak–Ribiere
method over other methods of this general type.
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Convergence
Global convergence of the line search methods is established by noting that a pure
steepest descent step is taken every n steps and serves as a spacer step. Since
the other steps do not increase the objective, and in fact hopefully they decrease
it, global convergence is assured. Thus the restarting aspect of the algorithm is
important for global convergence analysis, since in general one cannot guarantee
that the directions dk generated by the method are descent directions.

The local convergence properties of both of the above, and most other,
nonquadratic extensions of the conjugate gradient method can be inferred from the
quadratic analysis. Assuming that at the solution, x∗, the matrix F�x∗� is positive
definite, we expect the asymptotic convergence rate per step to be at least as good
as steepest descent, since this is true in the quadratic case. In addition to this bound
on the single step rate we expect that the method is of order two with respect to
each complete cycle of n steps. In other words, since one complete cycle solves
a quadratic problem exactly just as Newton’s method does in one step, we expect
that for general nonquadratic problems there will hold 
xk+n −x∗
 � c
xk −x∗
2 for
some c and k = 0� n� 2n� 3n� � � �. This can indeed be proved, and of course underlies
the original motivation for the method. For problems with large n, however, a
result of this type is in itself of little comfort, since we probably hope to terminate
in fewer than n steps. Further discussion on this general topic is contained in
Section 10.4.

Scaling and Partial Methods
Convergence of the partial conjugate gradient method, restarted every m+1 steps,
will in general be linear. The rate will be determined by the eigenvalue structure
of the Hessian matrix F�x∗�, and it may be possible to obtain fast convergence
by changing the eigenvalue structure through scaling procedures. If, for example,
the eigenvalues can be arranged to occur in m+ 1 bunches, the rate of the partial
method will be relatively fast. Other structures can be analyzed by use of Theorem 2,
Section 9.4, by using F�x∗� rather than Q.

9.7 PARALLEL TANGENTS
In early experiments with the method of steepest descent the path of descent was
noticed to be highly zig-zag in character, making slow indirect progress toward the
solution. (This phenomenon is now quite well understood and is predicted by the
convergence analysis of Section 8.6.) It was also noticed that in two dimensions
the solution point often lies close to the line that connects the zig-zag points, as
illustrated in Fig. 9.5. This observation motivated the accelerated gradient method
in which a complete cycle consists of taking two steepest descent steps and then
searching along the line connecting the initial point and the point obtained after
the two gradient steps. The method of parallel tangents (PARTAN) was developed
through an attempt to extend this idea to an acceleration scheme involving all
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Fig. 9.5 Path of gradient method

previous steps. The original development was based largely on a special geometric
property of the tangents to the contours of a quadratic function, but the method is
now recognized as a particular implementation of the method of conjugate gradients,
and this is the context in which it is treated here.

The algorithm is defined by reference to Fig. 9.6. Starting at an arbitrary point
x0 the point x1 is found by a standard steepest descent step. After that, from a point
xk the corresponding yk is first found by a standard steepest descent step from xk,
and then xk+1 is taken to be the minimum point on the line connecting xk−1 and
yk. The process is continued for n steps and then restarted with a standard steepest
descent step.

Notice that except for the first step, xk+1 is determined from xk, not by searching
along a single line, but by searching along two lines. The direction dk connecting
two successive points (indicated as dotted lines in the figure) is thus determined
only indirectly. We shall see, however, that, in the case where the objective function
is quadratic, the dk’s are the same directions, and the xk’s are the same points, as
would be generated by the method of conjugate gradients.

PARTAN Theorem. For a quadratic function, PARTAN is equivalent to the
method of conjugate gradients.

x2

y1

x0 x1

d1

y2

d2

x3

y3

Fig. 9.6 PARTAN
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dk–1xk–1 xk

yk

dk

–gk

xk+1

Fig. 9.7 One step of PARTAN

Proof. The proof is by induction. It is certainly true of the first step, since it
is a steepest descent step. Suppose that x0� x1� � � � � xk have been generated by the
conjugate gradient method and xk+1 is determined according to PARTAN. This
single step is shown in Fig. 9.7. We want to show that xk+1 is the same point as
would be generated by another step of the conjugate gradient method. For this to be
true xk+1 must be that point which minimizes f over the plane defined by dk−1 and
gk = �f�xk�

T . From the theory of conjugate gradients, this point will also minimize
f over the subspace determined by gk and all previous di’s. Equivalently, we must
find the point x where �f�x� is orthogonal to both gk and dk−1. Since yk minimizes
f along gk, we see that �f�yk� is orthogonal to gk. Since �f�xk−1� is contained in
the subspace 
d0� d1� � � � � dk−1� and because gk is orthogonal to this subspace by the
Expanding Subspace Theorem, we see that �f�xk−1� is also orthogonal to gk. Since
�f�x� is linear in x, it follows that at every point x on the line through xk−1 and
yk we have �f�x� orthogonal to gk. By minimizing f along this line, a point xk+1

is obtained where in addition �f�xk+1� is orthogonal to the line. Thus �f�xk+1� is
orthogonal to both gk and the line joining xk−1 and yk. It follows that �f�xk+1� is
orthogonal to the plane.

There are advantages and disadvantages of PARTAN relative to other methods
when applied to nonquadratic problems. One attractive feature of the algorithm is
its simplicity and ease of implementation. Probably its most desirable property,
however, is its strong global convergence characteristics. Each step of the process
is at least as good as steepest descent; since going from xk to yk is exactly steepest
descent, and the additional move to xk+1 provides further decrease of the objective
function. Thus global convergence is not tied to the fact that the process is restarted
every n steps. It is suggested, however, that PARTAN should be restarted every n
steps (or n+1 steps) so that it will behave like the conjugate gradient method near
the solution.

An undesirable feature of the algorithm is that two line searches are required at
each step, except the first, rather than one as is required by, say, the Fletcher–Reeves
method. This is at least partially compensated by the fact that searches need not
be as accurate for PARTAN, for while inaccurate searches in the Fletcher–Reeves
method may yield nonsensical successive search directions, PARTAN will at least
do as well as steepest descent.
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9.8 EXERCISES
1. Let Q be a positive definite symmetric matrix and suppose p0, p1, � � � � pn−1 are linearly

independent vectors in En. Show that a Gram–Schmidt procedure can be used to generate
a sequence of Q-conjugate directions from the pi’s. Specifically, show that d0, d1,
� � � � dn−1 defined recursively by

d0 = p0

dk+1 = pk+1 −
k∑

i=0

pT
k+1Qdi

dT
i Qdi

di

form’s a Q-conjugate set.

2. Suppose the pi’s in Exercise 1 are generated as moments of Q, that is, suppose
pk = Qkp0� k = 1� 2� � � � � n−1. Show that the corresponding dk’s can then be generated
by a (three-term) recursion formula where dk+1 is defined only in terms of Qdk� dk and
dk−1.

3. Suppose the pk’s in Exercise 1 are taken as pk = ek where ek is the kth unit coordinate
vector and the dk’s are constructed accordingly. Show that using dk’s in a conjugate
direction method to minimize �½�xT Qx − bT x is equivalent to the application of
Gaussian elimination to solve Qx = b.

4. Let f�x� = �½�xT Qx − bT x be defined on En with Q positive definite. Let x1 be a
minimum point of f over a subspace of En containing the vector d and let x2 be the
minimum of f over another subspace containing d. Suppose f�x1� < f�x2�. Show that
x1 −x2 is Q-conjugate to d.

5. Let Q be a symmetric matrix. Show that any two eigenvectors of Q, corresponding to
distinct eigenvalues, are Q-conjugate.

6. Let Q be an n × n symmetric matrix and let d0� d1� � � � � dn−1 be Q-conjugate. Show
how to find an E such that ET QE is diagonal.

7. Show that in the conjugate gradient method Qdk−1 ∈ �k+1.

8. Derive the rate of convergence of the method of steepest descent by viewing it as a
one-step optimal process.

9. Let Pk�Q� = c0 +c1Q+c2Q2 +· · ·+cmQm be the optimal polynomial in (29) minimizing
(30). Show that the ci’s can be found explicitly by solving the vector equation

−

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

gT
k Qgk gT

k Q2gk · · · gT
k Qm+1gk

gT
k Q2gk gT

k Q3gk · · · gT
k Qm+2gk

·
·
·
gT

k Qm+1gk · · · gT
k Q2m+1gk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

c0

c1

·
·
·
cm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

gT
k gk

gT
k Qgk

·
·
·
gT

k Qmgk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Show that this reduces to steepest descent when m = 0.

10. Show that for the method of conjugate directions there holds

E�xk� � 4
(

1−√
�

1+√
�

)2k

E�x0��
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where � = a/A and a and A are the smallest and largest eigenvalues of Q. Hint: In (27)
select Pk−1��� so that

1+�Pk−1��� =
Tk

(
A+a−2�

A−a

)

Tk

(
A+a

A−a

) �

where Tk��� = cos (k arc cos �) is the kth Chebyshev polynomial. This choice gives
the minimum maximum magnitude on [a, A]. Verify and use the inequality

�1−��k

�1+√
��2k + �1−√

��2k
�
(

1−√
�

1+√
�

)k

�

11. Suppose it is known that each eigenvalue of Q lies either in the interval [a, A] or in
the interval 
a + ��A + �� where a, A, and � are all positive. Show that the partial
conjugate gradient method restarted every two steps will converge with a ratio no
greater than 
�A−a�/�A+a��2 no matter how large � is.

12. Modify the first method given in Section 9.6 so that it is globally convergent.

13. Show that in the purely quadratic form of the conjugate gradient method dT
k Qdk =

−dT
k Qgk. Using this show that to obtain xk+1 from xk it is necessary to use Q only to

evaluate gk and Qgk.

14. Show that in the quadratic problem Qgk can be evaluated by taking a unit step from xk

in the direction of the negative gradient and evaluating the gradient there. Specifically,
if yk = xk −gk and pk = �f�yk�

T , then Qgk = gk −pk.

15. Combine the results of Exercises 13 and 14 to derive a conjugate gradient method for
general problems much in the spirit of the first method of Section 9.6 but which does
not require knowledge of F�xk� or a line search.
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Chapter 10 QUASI-NEWTON
METHODS

In this chapter we take another approach toward the development of methods lying
somewhere intermediate to steepest descent and Newton’s method. Again working
under the assumption that evaluation and use of the Hessian matrix is impractical
or costly, the idea underlying quasi-Newton methods is to use an approximation to
the inverse Hessian in place of the true inverse that is required in Newton’s method.
The form of the approximation varies among different methods—ranging from
the simplest where it remains fixed throughout the iterative process, to the more
advanced where improved approximations are built up on the basis of information
gathered during the descent process.

The quasi-Newton methods that build up an approximation to the inverse
Hessian are analytically the most sophisticated methods discussed in this book for
solving unconstrained problems and represent the culmination of the development
of algorithms through detailed analysis of the quadratic problem. As might be
expected, the convergence properties of these methods are somewhat more difficult
to discover than those of simpler methods. Nevertheless, we are able, by continuing
with the same basic techniques as before, to illuminate their most important features.

In the course of our analysis we develop two important generalizations of
the method of steepest descent and its corresponding convergence rate theorem.
The first, discussed in Section 10.1, modifies steepest descent by taking as the
direction vector a positive definite transformation of the negative gradient. The
second, discussed in Section 10.8, is a combination of steepest descent and Newton’s
method. Both of these fundamental methods have convergence properties analogous
to those of steepest descent.

10.1 MODIFIED NEWTON METHOD
A very basic iterative process for solving the problem

minimize f �x�

which includes as special cases most of our earlier ones is

285
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xk+1 = xk −�kSk�f �xk�
T � (1)

where Sk is a symmetric n×n matrix and where, as usual, �k is chosen to minimize
f�xk+1�. If Sk is the inverse of the Hessian of f , we obtain Newton’s method, while
if Sk = I we have steepest descent. It would seem to be a good idea, in general,
to select Sk as an approximation to the inverse of the Hessian. We examine that
philosophy in this section.

First, we note, as in Section 8.8, that in order that the process (1) be guaranteed
to be a descent method for small values of �, it is necessary in general to require
that Sk be positive definite. We shall therefore always impose this as a requirement.

Because of the similarity of the algorithm (1) with steepest descent† it should
not be surprising that its convergence properties are similar in character to our
earlier results. We derive the actual rate of convergence by considering, as usual,
the standard quadratic problem with

f �x� = 1
2 xT Qx −bT x� (2)

where Q is symmetric and positive definite. For this case we can find an explicit
expression for �k in (1). The algorithm becomes

xk+1 = xk −�kSkgk� (3a)

where

gk = Qxk −b (3b)

�k = gT
k Skgk

gT
k SkQSkgk

� (3c)

We may then derive the convergence rate of this algorithm by slightly extending
the analysis carried out for the method of steepest descent.

Modified Newton Method Theorem (Quadratic case). Let x∗ be the unique
minimum point of f, and define E�x� = 1

2 �x −x∗�T Q�x −x∗�.
Then for the algorithm (3) there holds at every step k

E �xk+1� �
(

Bk −bk

Bk +bk

)2

E �xk� � (4)

where bk and Bk are, respectively, the smallest and largest eigenvalues of the
matrix SkQ.

†The algorithm (1) is sometimes referred to as the method of deflected gradients, since the
direction vector can be thought of as being determined by deflecting the gradient through
multiplication by Sk.
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Proof. We have by direct substitution

E �xk�−E �xk+1�

E �xk�
=

(
gT

k Skgk

)2

(
gT

k SkQSkgk

) (
gT

k Q−1gk

) �

Letting Tk = S1/2
k QS1/2

k and pk = S1/2
k gk we obtain

E �xk�−E �xk+1�

E �xk�
=

(
pT

k Pk

)2

(
pT

k Tkpk

) (
pT

k T−1
k pk

) �

From the Kantorovich inequality we obtain easily

E �xk+1� �
(

Bk −bk

Bk +bk

)2

E �xk� �

where bk and Bk are the smallest and largest eigenvalues of Tk. Since S1/2
k TkS−1/2

k =
SkQ, we see that SkQ is similar to Tk and therefore has the same eigenvalues.

This theorem supports the intuitive notion that for the quadratic problem one
should strive to make Sk close to Q−1 since then both bk and Bk would be close
to unity and convergence would be rapid. For a nonquadratic objective function f
the analog to Q is the Hessian F(x), and hence one should try to make Sk close to
F�xk�

−1.
Two remarks may help to put the above result in proper perspective. The

first remark is that both the algorithm (1) and the theorem stated above are only
simple, minor, and natural extensions of the work presented in Chapter 8 on steepest
descent. As such the result of this section can be regarded, correspondingly, not as
a new idea but as an extension of the basic result on steepest descent. The second
remark is that this one simple result when properly applied can quickly characterize
the convergence properties of some fairly complex algorithms. Thus, rather than
an isolated result concerned with a specific form of algorithm, the theorem above
should be regarded as a general tool for convergence analysis. It provides significant
insight into various quasi-Newton methods discussed in this chapter.

A Classical Method
We conclude this section by mentioning the classical modified Newton’s method, a
standard method for approximating Newton’s method without evaluating F�xk�

−1

for each k. We set

xk+1 = xk −�k �F �x0�	
−1 �f �xk�

T � (5)

In this method the Hessian at the initial point x0 is used throughout the process.
The effectiveness of this procedure is governed largely by how fast the Hessian is
changing—in other words, by the magnitude of the third derivatives of f .
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10.2 CONSTRUCTION OF THE INVERSE
The fundamental idea behind most quasi-Newton methods is to try to construct
the inverse Hessian, or an approximation of it, using information gathered as the
descent process progresses. The current approximation Hk is then used at each stage
to define the next descent direction by setting Sk = Hk in the modified Newton
method. Ideally, the approximations converge to the inverse of the Hessian at the
solution point and the overall method behaves somewhat like Newton’s method.
In this section we show how the inverse Hessian can be built up from gradient
information obtained at various points.

Let f be a function on En that has continuous second partial derivatives.
If for two points xk+1, xk we define gk+1 = �f�xk+1�

T , gk = �f�xk�
T and pk =

xk+1 −xk, then

gk+1 −gk � F �xk� pk� (6)

If the Hessian, F, is constant, then we have

qk ≡ gk+1 −gk = Fpk� (7)

and we see that evaluation of the gradient at two points gives information about F.
If n linearly independent directions p0, p1, p2� � � � � pn−1 and the corresponding qk’s
are known, then F is uniquely determined. Indeed, letting P and Q be the n × n
matrices with columns pk and qk respectively, we have

F = QP−1� (8)

It is natural to attempt to construct successive approximations Hk to F−1 based
on data obtained from the first k steps of a descent process in such a way that if
F were constant the approximation would be consistent with (7) for these steps.
Specifically, if F were constant Hk+1 would satisfy

Hk+1qi = pi� 0 � i � k� (9)

After n linearly independent steps we would then have Hn = F−1.
For any k < n the problem of constructing a suitable Hk, which in general serves as

anapproximation to the inverseHessianandwhich in thecaseofconstantFsatisfies (9),
admits an infinity of solutions, since there are more degrees of freedom than there are
constraints. Thus a particular method can take into account additional considerations.
We discuss below one of the simplest schemes that has been proposed.

Rank One Correction
Since F and F−1 are symmetric, it is natural to require that Hk, the approximation
to F−1, be symmetric. We investigate the possibility of defining a recursion of
the form

Hk+1 = Hk +akzkzT
k � (10)



10.2 Construction of the Inverse 289

which preserves symmetry. The vector zk and the constant ak define a matrix of
(at most) rank one, by which the approximation to the inverse is updated. We select
them so that (9) is satisfied. Setting i equal to k in (9) and substituting (10) we obtain

pk = Hk+1qk = Hkqk +akzkzT
k qk� (11)

Taking the inner product with qk we have

qT
k pk −qT

k Hkqk = ak

(
zT

k qk

)2
� (12)

On the other hand, using (11) we may write (10) as

Hk+1 = Hk + �pk −Hkqk� �pk −Hkqk�
T

ak

(
zT

k qk

)2 �

which in view of (12) leads finally to

Hk+1 = Hk + �pk −Hkqk� �pk −Hkqk�
T

qT
k �pk −Hkqk�

� (13)

We have determined what a rank one correction must be if it is to satisfy (9)
for i = k. It remains to be shown that, for the case where F is constant, (9) is also
satisfied for i < k. This in turn will imply that the rank one recursion converges to
F−1 after at most n steps.

Theorem. Let F be a fixed symmetric matrix and suppose that p0, p1,
p2� � � � � pk are given vectors. Define the vectors qi = Fpi, i = 0� 1� 2� � � � � k.
Starting with any initial symmetric matrix H0 let

Hi+1 = Hi +
�pi −Hiqi� �pi −Hiqi�

T

qT
i �pi −Hiqi�

� (14)

Then

pi = Hk+1qi for i � k� (15)

Proof. The proof is by induction. Suppose it is true for Hk, and i � k− 1. The
relation was shown above to be true for Hk+1 and i = k. For i < k

Hk+1qi = Hkqi +yk�pT
k qi −qT

k Hkqi�� (16)

where

yk = �pk −Hkqk�

qT
k �pk −Hkqk�

�

By the induction hypothesis, (16) becomes
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Hk+1qi = pi +yk

(
pT

k qi −qT
k pi

)
�

From the calculation

qT
k pi = pT

k Fpi = pT
k qi�

it follows that the second term vanishes.

To incorporate the approximate inverse Hessian in a descent procedure while
simultaneously improving it, we calculate the direction dk from

dk = −Hkgk

and then minimize f�xk + �dk� with respect to � � 0. This determines xk+1 =
xk +�kdk, pk = �kdk, and gk+1. Then Hk+1 can be calculated according to (13).

There are some difficulties with this simple rank one procedure. First, the
updating formula (13) preserves positive definiteness only if qT

k �pk − Hkqk� > 0,
which cannot be guaranteed (see Exercise 6). Also, even if qT

k �pk −Hkqk� is positive,
it may be small, which can lead to numerical difficulties. Thus, although an excellent
simple example of how information gathered during the descent process can in
principle be used to update an approximation to the inverse Hessian, the rank one
method possesses some limitations.

10.3 DAVIDON–FLETCHER–POWELL METHOD
The earliest, and certainly one of the most clever schemes for constructing the inverse
Hessian, was originally proposed by Davidon and later developed by Fletcher and
Powell. It has the fascinating and desirable property that, for a quadratic objective,
it simultaneously generates the directions of the conjugate gradient method while
constructing the inverse Hessian. At each step the inverse Hessian is updated
by the sum of two symmetric rank one matrices, and this scheme is therefore
often referred to as a rank two correction procedure. The method is also often
referred to as the variable metric method, the name originally suggested by Davidon.

The procedure is this: Starting with any symmetric positive definite matrix H0,
any point x0, and with k = 0,

Step 1. Set dk = −Hkgk.

Step 2. Minimize f�xk + �dk� with respect to � � 0 to obtain xk+1, pk = �kdk,
and gk+1.

Step 3. Set qk = gk+1 −gk and

Hk+1 = Hk + pkpT
k

pT
k qk

− HkqkqT
k Hk

qT
k Hkqk

� (17)

Update k and return to Step 1.
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Positive Definiteness
We first demonstrate that if Hk is positive definite, then so is Hk+1. For any x ∈ En

we have

xT Hk+1x = xT Hkx +
(
xT pk

)2

pT
k qk

−
(
xT Hkqk

)2

qT
k Hkqk

� (18)

Defining a = H1/2
k x� b = H1/2

k qk we may rewrite (18) as

xT Hk+1x =
(
aT a

) (
bT b

)− (aT b
)2

�bT b�
+
(
xT pk

)2

pT
k qk

�

We also have

pT
k qk = pT

k gk+1 −pT
k gk = −pT

k gk� (19)

since

pT
k gk+1 = 0� (20)

because xk+1 is the minimum point of f along pk. Thus by definition of pk

pT
k qk = �kgT

k Hkgk� (21)

and hence

xT Hk+1x =
(
aT a

) (
bT b

)− (aT b
)2

�bT b�
+

(
xT pk

)2

�kgT
k Hkgk

� (22)

Both terms on the right of (22) are nonnegative—the first by the Cauchy–Schwarz
inequality. We must only show they do not both vanish simultaneously. The first
term vanishes only if a and b are proprotional. This in turn implies that x and qk

are proportional, say x = 
qk. In that case, however,

pT
k x = 
pT

k qk = 
�kgT
k Hkgk �= 0

from (21). Thus xT Hk+1x > 0 for all nonzero x.
It is of interest to note that in the proof above the fact that �k is chosen as

the minimum point of the line search was used in (20), which led to the important
conclusion pT

k qk > 0. Actually any �k, whether the minimum point or not, that
gives pT

k qk > 0 can be used in the algorithm, and Hk+1 will be positive definite (see
Exercises 8 and 9).
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Finite Step Convergence
We assume now that f is quadratic with (constant) Hessian F. We show in this
case that the Davidon–Fletcher–Powell method produces direction vectors pk that
are F-orthogonal and that if the method is carried n steps then Hn = F−1.

Theorem. If f is quadratic with positive definite Hessian F, then for the
Davidon–Fletcher–Powell method

pT
i Fpj = 0� 0 � i < j � k (23)

Hk+1Fpi = pi for 0 � i � k� (24)

Proof. We note that for the quadratic case

qk = gk+1 −gk = Fxk+1 −Fxk = Fpk� (25)

Also

Hk+1Fpk = Hk+1qk = pk (26)

from (17).
We now prove (23) and (24) by induction. From (26) we see that they are true

for k = 0. Assuming they are true for k−1, we prove they are true for k. We have

gk = gi+1 +F �pi+1 +· · ·+pk−1� �

Therefore from (23) and (20)

pT
i gk = pT

i gi+1 = 0 for 0 � i < k� (27)

Hence from (24)

pT
i FHkgk = 0� (28)

Thus since pk = −�kHkgk and since �k �= 0, we obtain

pT
i Fpk = 0 for i < k� (29)

which proves (23) for k.
Now since from (24) for k−1, (25) and (29)

qT
k HkFpi = qT

k pi = pT
k Fpi = 0� 0 � i < k

we have

Hk+1Fpi = HkFpi = pi� 0 � i < k�

This together with (26) proves (24) for k.
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Since the pk’s are F-orthogonal and since we minimize f successively in these
directions, we see that the method is a conjugate direction method. Furthermore,
if the initial approximation H0 is taken equal to the identity matrix, the method
becomes the conjugate gradient method. In any case the process obtains the overall
minimum point within n steps.

Finally, (24) shows that p0, p1, p2� � � � � pk are eigenvectors corresponding to
unity eigenvalue for the matrix Hk+1F. These eigenvectors are linearly independent,
since they are F-orthogonal, and therefore Hn = F−1.

10.4 THE BROYDEN FAMILY
The updating formulae for the inverse Hessian considered in the previous two
sections are based on satisfying

Hk+1qi = pi� 0 � i � k� (30)

which is derived from the relation

qi = Fpi� 0 � i � k� (31)

which would hold in the purely quadratic case. It is also possible to update approx-
imations to the Hessian F itself, rather than its inverse. Thus, denoting the kth
approximation of F by Bk, we would, analogously, seek to satisfy

qi = Bk+1pi� 0 � i � k� (32)

Equation (32) has exactly the same form as (30) except that qi and pi are
interchanged and H is replaced by B. It should be clear that this implies that
any update formula for H derived to satisfy (30) can be transformed into a corre-
sponding update formula for B. Specifically, given any update formula for H, the
complementary formula is found by interchanging the roles of B and H and of q
and p. Likewise, any updating formula for B that satisfies (32) can be converted
by the same process to a complementary formula for updating H. It is easily seen
that taking the complement of a complement restores the original formula.

To illustrate complementary formulae, consider the rank one update of
Section 10.2, which is

Hk+1 = Hk + �pk −Hkqk� �pk −Hkqk�
T

qT
k �pk −Hkqk�

� (33)

The corresponding complementary formula is

Bk+1 = Bk + �qk −Bkpk� �qk −Bkpk�
T

pT
k �qk −Bkpk�

� (34)
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Likewise, the Davidon–Fletcher–Powell (or simply DFP) formula is

HDFP
k+1 = Hk + pkpT

k

pT
k qk

− HkqkqT
k Hk

qT
k Hkqk

� (35)

and its complement is

Bk+1 = Bk + qkqT
k

qT
k pk

− BkpkpT
k Bk

pT
k Bkpk

� (36)

This last update is known as the Broyden–Fletcher–Goldfarb–Shanno update of Bk,
and it plays an important role in what follows.

Another way to convert an updating formula for H to one for B or vice versa
is to take the inverse. Clearly, if

Hk+1qi = pi� 0 � i � k� (37)

then

qi = H−1
k+1pi� 0 � i � k� (38)

which implies that H−1
k+1 satisfies (32), the criterion for an update of B. Also, most

importantly, the inverse of a rank two formula is itself a rank two formula.
The new formula can be found explicitly by two applications of the general

inversion identity (often referred to as the Sherman–Morrison formula)

�A+abT 	−1 = A−1 − A−1abT A−1

1+bT A−1a
� (39)

where A is an n×n matrix, and a and b are n-vectors, which is valid provided the
inverses exist. (This is easily verified by multiplying through by A+abT .)

The Broyden–Fletcher–Goldfard–Shanno update for B produces, by taking the
inverse, a corresponding update for H of the form

HBFGS
k+1 = Hk +

(
1+qT

k Hkqk

qT
k qk

)
pkpT

k

pT
k qk

− pkqT
k Hk +HkqkqT

k

qT
k pk

� (40)

This is an important update formula that can be used exactly like the DFP formula.
Numerical experiments have repeatedly indicated that its performance is superior
to that of the DFP formula, and for this reason it is now generally preferred.

It can be noted that both the DFP and the BFGS updates have symmetric
rank two corrections that are constructed from the vectors pk and Hkqk. Weighted
combinations of these formulae will therefore also be of this same type (symmetric,
rank two, and constructed from pk and Hkqk). This observation naturally leads
to consideration of a whole collection of updates, known as the Broyden family,
defined by

H� = �1−�� HDFP +�HBFGS� (41)
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where � is a parameter that may take any real value. Clearly � = 0 and � = 1
yield the DFP and BFGS updates, respectively. The Broyden family also includes
the rank one update (see Exercise 12).

An explicit representation of the Broyden family can be found, after a fair
amount of algebra, to be

H�
k+1 = Hk + pkpT

k

pT
k qk

− HkqkqT
k Hk

qT
k Hkqk

+�vkvT
k

= HDFP
k+1 +�vkvT

k �

(42)

where

vk = �qT
k Hkqk�

1/2

(
pk

pT
k qk

− Hkqk

qT
k Hkqk

)

�

This form will be useful in some later developments.
A Broyden method is defined as a quasi-Newton method in which at each

iteration a member of the Broyden family is used as the updating formula. The
parameter � is, in general, allowed to vary from one iteration to another, so a
particular Broyden method is defined by a sequence �1, �2� � � �, of parameter values.
A pure Broyden method is one that uses a constant �.

Since both HDFP and HBFGS satisfy the fundamental relation (30) for updates,
this relation is also satisfied by all members of the Broyden family. Thus it can
be expected that many properties that were found to hold for the DFP method will
also hold for any Broyden method, and indeed this is so. The following is a direct
extension of the theorem of Section 10.3.

Theorem. If f is quadratic with positive definite Hessian F, then for a Broyden
method

pT
i Fpj = 0� 0 � i < j � k

Hk+1Fpi = pi for 0 � i � k�

Proof. The proof parallels that of Section 10.3, since the results depend only on
the basic relation (30) and the orthogonality (20) because of exact line search.

The Broyden family does not necessarily preserve positive definiteness of H�

for all values of �. However, we know that the DFP method does preserve positive
definiteness. Hence from (42) it follows that positive definiteness is preserved for
any � � 0, since the sum of a positive definite matrix and a positive semidefinite
matrix is positive definite. For � < 0 there is the possibility that H� may become
singular, and thus special precautions should be introduced. In practice � � 0 is
usually imposed to avoid difficulties.

There has been considerable experimentation with Broyden methods to
determine superior strategies for selecting the sequence of parameters �k.
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The above theorem shows that the choice is irrelevant in the case of a quadratic
objective and accurate line search. More surprisingly, it has been shown that
even for the case of nonquadratic functions and accurate line searches, the points
generated by all Broyden methods will coincide (provided singularities are avoided
and multiple minima are resolved consistently). This means that differences in
methods are important only with inaccurate line search.

For general nonquadratic functions of modest dimension, Broyden methods
seem to offer a combination of advantages as attractive general procedures. First,
they require only that first-order (that is, gradient) information be available. Second,
the directions generated can always be guaranteed to be directions of descent by
arranging for Hk to be positive definite throughout the process. Third, since for a
quadratic problem the matrices Hk converge to the inverse Hessian in at most n
steps, it might be argued that in the general case Hk will converge to the inverse
Hessian at the solution, and hence convergence will be superlinear. Unfortunately,
while the methods are certainly excellent, their convergence characteristics require
more careful analysis, and this will lead us to an important additional modification.

Partial Quasi-Newton Methods
There is, of course, the option of restarting a Broyden method every m+ 1 steps,
where m+ 1 < n. This would yield a partial quasi-Newton method that, for small
values of m, would have modest storage requirements, since the approximate inverse
Hessian could be stored implicitly by storing only the vectors pi and qi, i � m+1. In
the quadratic case this method exactly corresponds to the partial conjugate gradient
method and hence it has similar convergence properties.

10.5 CONVERGENCE PROPERTIES
The various schemes for simultaneously generating and using an approximation
to the inverse Hessian are difficult to analyze definitively. One must therefore, to
some extent, resort to the use of analogy and approximate analyses to determine
their effectiveness. Nevertheless, the machinery we developed earlier provides a
basis for at least a preliminary analysis.

Global Convergence
In practice, quasi-Newton methods are usually executed in a continuing fashion,
starting with an initial approximation and successively improving it throughout the
iterative process. Under various and somewhat stringent conditions, it can be proved
that this procedure is globally convergent. If, on the other hand, the quasi-Newton
methods are restarted every n or n+ 1 steps by resetting the approximate inverse
Hessian to its initial value, then global convergence is guaranteed by the presence
of the first descent step of each cycle (which acts as a spacer step).



10.5 Convergence Properties 297

Local Convergence
The local convergence properties of quasi-Newton methods in the pure form
discussed so far are not as good as might first be thought. Let us focus on the
local convergence properties of these methods when executed with the restarting
feature. Specifically, consider a Broyden method and for simplicity assume that at
the beginning of each cycle the approximate inverse Hessian is reset to the identity
matrix. Each cycle, if at least n steps in duration, will then contain one complete
cycle of an approximation to the conjugate gradient method. Asymptotically, in
the tail of the generated sequence, this approximation becomes arbitrarily accurate,
and hence we may conclude, as for any method that asymptotically approaches
the conjugate gradient method, that the method converges superlinearly (at least if
viewed at the end of each cycle). Although superlinear convergence is attractive,
the fact that in this case it hinges on repeated cycles of n steps in duration can
seriously detract from its practical significance for problems with large n, since we
might hope to terminate the procedure before completing even a single full cycle
of n steps.

To obtain insight into the defects of the method, let us consider a special
situation. Suppose that f is quadratic and that the eigenvalues of the Hessian, F,
of f are close together but all very large. If, starting with the identity matrix, an
approximation to the inverse Hessian is updated m times, the matrix HmF will
have m eigenvalues equal to unity and the rest will still be large. Thus, the ratio
of smallest to largest eigenvalue of HmF, the condition number, will be worse
than for F itself. Therefore, if the updating were discontinued and Hm were used
as the approximation to F−1 in future iterations according to the procedure of
Section 10.1, we see that convergence would be poorer than it would be for ordinary
steepest descent. In other words, the approximations to F−1 generated by the
updating formulas, although accurate over the subspace traveled, do not necessarily
improve and, indeed, are likely to worsen the eigenvalue structure of the iteration
process.

In practice a poor eigenvalue structure arising in this manner will play a
dominating role whenever there are factors that tend to weaken its approximation
to the conjugate gradient method. Common factors of this type are round-off errors,
inaccurate line searches, and nonquadratic terms in the objective function. Indeed,
it has been frequently observed, empirically, that performance of the DFP method
is highly sensitive to the accuracy of the line search algorithm—to the point where
superior step-wise convergence properties can only be obtained through excessive
time expenditure in the line search phase.

Example. To illustrate some of these conclusions we consider the six-dimensional
problem defined by

f�x� = 1
2 xT Qx�
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where

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

40 0 0 0 0 0
0 38 0 0 0 0
0 0 36 0 0 0
0 0 0 34 0 0
0 0 0 0 32 0
0 0 0 0 0 30

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

�

This function was minimized iteratively (the solution is obviously x∗ = 0) starting
at x0 = �10� 10� 10� 10� 10� 10�, with f�x0� = 10� 500, by using, alternatively, the
method of steepest descent, the DFP method, the DFP method restarted every six
steps, and the self-scaling method described in the next section. For this quadratic
problem the appropriate step size to take at any stage can be calculated by a simple
formula. On different computer runs of a given method, different levels of error
were deliberately introduced into the step size in order to observe the effect of line
search accuracy. This error took the form of a fixed percentage increase over the
optimal value. The results are presented below:

Case 1. No error in step size �

Function value

Iteration Steepest descent DFP DFP (with restart) Self-scaling

1 96.29630 96.29630 96.29630 96.29630
2 1.560669 6�900839×10−1 6�900839×10−1 6�900839×10−1

3 2�932559×10−2 3�988497×10−3 3�988497×10−3 3�988497×10−3

4 5�787315×10−4 1�683310×10−5 1�683310×10−5 1�683310×10−5

5 1�164595×10−5 3�878639×10−8 3�878639×10−8 3�878639×10−8

6 2�359563×10−7

Case 2. 0.1% error in step size �

Function value

Iteration Steepest descent DFP DFP (with restart) Self-scaling

1 96.30669 96.30669 96.30669 96.30669
2 1.564971 6�994023×10−1 6�994023×10−1 6�902072×10−1

3 2�939804×10−2 1�225501×10−2 1�225501×10−2 3�989507×10−3

4 5�810123×10−4 7�301088×10−3 7�301088×10−3 1�684263×10−5

5 1�169205×10−5 2�636716×10−3 2�636716×10−3 3�881674×10−8

6 2�372385×10−7 1�031086×10−5 1�031086×10−5

7 3�633330×10−9 2�399278×10−8
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Case 3. 1% error in step size �

Function value

Iteration Steepest descent DFP DFP (with restart) Self-scaling

1 97.33665 97.33665 97.33665 97.33665
2 1.586251 1.621908 1.621908 0.7024872
3 2�989875×10−2 8�268893×10−1 8�268893×10−1 4�090350×10−3

4 5�908101×10−4 4�302943×10−1 4�302943×10−1 1�779424×10−5

5 1�194144×10−5 4�449852×10−3 4�449852×10−3 4�195668×10−8

6 2�422985×10−7 5�337835×10−5 5�337835×10−5

7 3�767830×10−5 4�493397×10−7

8 3�768097×10−9

Case 4. 10% error in step size �

Function value

Iteration Steepest descent DFP DFP (with restart) Self-scaling

1 200.333 200.333 200.333 200.333
2 2.732789 93.65457 93.65457 2.811061
3 3�836899×10−2 56.92999 56.92999 3�562769×10−2

4 6�376461×10−4 1.620688 1.620688 4�200600×10−4

5 1�219515×10−5 5�251115×10−1 5�251115×10−1 4�726918×10−6

6 2�457944×10−7 3�323745×10−1 3�323745×10−1

7 6�150890×10−3 8�102700×10−3

8 3�025393×10−3 2�973021×10−3

9 3�025476×10−5 1�950152×10−3

10 3�025476×10−7 2�769299×10−5

11 1�760320×10−5

12 1�123844×10−6

We note first that the error introduced is reported as a percentage of the step
size itself. In terms of the change in function value, the quantity that is most often
monitored to determine when to terminate a line search, the fractional error is the
square of that in the step size. Thus, a one percent error in step size is equivalent
to a 0.01% error in the change in function value.

Next we note that the method of steepest descent is not radically affected by an
inaccurate line search while the DFP methods are. Thus for this example while DFP
is superior to steepest descent in the case of perfect accuracy, it becomes inferior
at an error of only 0.1% in step size.

10.6 SCALING
There is a general viewpoint about what makes up a desirable descent method that
underlies much of our earlier discussions and which we now summarize briefly in
order to motivate the presentation of scaling. A method that converges to the exact
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solution after n steps when applied to a quadratic function on En has obvious appeal
especially if, as is usually the case, it can be inferred that for nonquadratic problems
repeated cycles of length n of the method will yield superlinear convergence. For
problems having large n, however, a more sophisticated criterion of performance
needs to be established, since for such problems one usually hopes to be able to
terminate the descent process before completing even a single full cycle of length
n. Thus, with these sorts of problems in mind, the finite-step convergence property
serves at best only as a sign post indicating that the algorithm might, make rapid
progress in its early stages. It is essential to insure that in fact it will make rapid
progress at every stage. Furthermore, the rapid convergence at each step must not
be tied to an assumption on conjugate directions, a property easily destroyed by
inaccurate line search and nonquadratic objective functions. With this viewpoint it
is natural to look for quasi-Newton methods that simultaneously possess favorable
eigenvalue structure at each step (in the sense of Section 10.1) and reduce to the
conjugate gradient method if the objective function happens to be quadratic. Such
methods are developed in this section.

Improvement of Eigenvalue Ratio
Referring to the example presented in the last section where the Davidon–Fletcher–
Powell method performed poorly, we can trace the difficulty to the simple obser-
vation that the eigenvalues of H0Q are all much larger than unity. The DFP
algorithm, or any Broyden method, essentially moves these eigenvalues, one at a
time, to unity thereby producing an unfavorable eigenvalue ratio in each HkQ for
1 � k < n. This phenomenon can be attributed to the fact that the methods are
sensitive to simple scale factors. In particular if H0 were multiplied by a constant,
the whole process would be different. In the example of the last section, if H0 were
scaled by, for instance, multiplying it by 1/35, the eigenvalues of H0Q would be
spread above and below unity, and in that case one might suspect that the poor
performance would not show up.

Motivated by the above considerations, we shall establish conditions under
which the eigenvalue ratio of Hk+1F is at least as favorable as that of HkF in a
Broyden method. These conditions will then be used as a basis for introducing
appropriate scale factors.

We use (but do not prove) the following matrix theoretic result due to Loewner.

Interlocking Eigenvalues Lemma. Let the symmetric n × n matrix A have
eigenvalues �1 � �2 � � � � � �n. Let a be any vector in En and denote the
eigenvalues of the matrix A+aaT by 
1 � 
2 � � � � 
n. Then �1 � 
1 � �2 �

2 � � � � �n � 
n.

For convenience we introduce the following definitions:

Rk = F1/2
k HkF1/2

k

rk = F1/2
k pk�
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Then using qk = F1/2
k rk, it can be readily verified that (42) is equivalent to

R�
k+1 = Rk − RkrkrT

k Rk

rT
k Rkrk

+ rkrT
k

rT
k rk

+�zkzT
k � (43)

where

zk = F1/2vk =
√

rT
k Rkrk

(
rk

rT
k rk

− Rkrk

rT
k Rkrk

)

�

Since Rk is similar to HkF (because HkF = F1/2RkF1/2), both have the same eigen-
values. It is most convenient, however, in view of (43) to study Rk, obtaining
conclusions about HkF indirectly.

Before proving the general theorem we shall consider the case � = 0 corre-
sponding to the DFP formula. Suppose the eigenvalues of Rk are �1��2� � � � � �n

with 0 < �1 � �2 � � � � � �n. Suppose also that 1 ∈ ��1��n	. We will show that
the eigenvalues of Rk+1 are all contained in the interval ��1��n	, which of course
implies that Rk+1 is no worse than Rk in terms of its condition number. Let us first
consider the matrix

P = Rk − RkrkrT
k Rk

rT
k Rkrk

�

We see that Prk = 0 so one eigenvalue of P is zero. If we denote the eigenvalues
of P by 
1 � 
2 � � � � � 
n, we have from the above observation and the lemma
on interlocking eigenvalues that

0 = 
1 � �1 � 
2 � � � � � 
n � �n�

Next we consider

Rk+1 = Rk − RkrkrT
k Rk

rT
k Rkrk

+ rkrT
k

rT
k rk

= P + rkrT
k

rT
k rk

� (44)

Since rk is an eigenvector of P and since, by symmetry, all other eigenvectors of
P are therefore orthogonal to rk, it follows that the only eigenvalue different in
Rk+1 from in P is the one corresponding to rk—it now being unity. Thus Rk+1

has eigenvalues 
2�
3� � � � �
n and unity. These are all contained in the interval
��1��n	. Thus updating does not worsen the eigenvalue ratio. It should be noted
that this result in no way depends on �k being selected to minimize f .

We now extend the above to the Broyden class with 0 � � � 1.

Theorem. Let the n eigenvalues of HkF be �1��2� � � � � �n with 0 < �1 � �2 �
� � � � �n. Suppose that 1 ∈ ��1��n	. Then for any �� 0 � � � 1, the eigenvalues
of H�

k+1F, where H�
k+1 is defined by (42), are all contained in ��1��n	.
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Proof. The result shown above corresponds to � = 0. Let us now consider � = 1,
corresponding to the BFGS formula. By our original definition of the BFGS update,
H−1 is defined by the formula that is complementary to the DFP formula. Thus

H−1
k+1 = H−1

k + qkqT
k

qT
k pk

− H−1
k+1pkpT

k H−1
k

pT
k H−1

k pk

�

This is equivalent to

R−1
k+1 = R−1

k − R−1
k rkrT

k R−1
k

rT
k R−1

k rk

+ rkrT
k

rT
k rk

� (45)

which is identical to (44) except that Rk is replaced by R−1
k .

The eigenvalues of R−1
k are 1/�n � 1/�n−1 � � � � � 1/�1. Clearly, 1 ∈

�1/�n� 1/�1	. Thus by the preliminary result, if the eigenvalues of R−1
k+1 are denoted

1/
n < 1/
n−1 < � � � < 1/
1, it follows that they are contained in the interval
�1/�n� 1/�1	. Thus 1/�n < 1/
n and 1/�1 > 1/
1. When inverted this yields 
1 >
�1 and 
n < �n, which shows that the eigenvalues of Rk+1 are contained in ��1��n	.
This establishes the result for � = 1.

For general � the matrix R�
k+1 defined by (43) has eigenvalues that are all

monotonically increasing with � (as can be seen from the interlocking eigenvalues
lemma). However, from above it is known that these eigenvalues are contained in
��1��n	 for � = 0 and � = 1. Hence, they must be contained in ��1��n	 for all
�� 0 � � � 1.

Scale Factors
In view of the result derived above, it is clearly advantageous to scale the matrix Hk

so that the eigenvalues of HkF are spread both below and above unity. Of course
in the ideal case of a quadratic problem with perfect line search this is strictly only
necessary for H0, since unity is an eigenvalue of HkF for k > 0. But because of
the inescapable deviations from the ideal, it is useful to consider the possibility of
scaling every Hk.

A scale factor can be incorporated directly into the updating formula. We first
multiply Hk by the scale factor �k and then apply the usual updating formula. This
is equivalent to replacing Hk by �kHk in (43) and leads to

Hk+1 =
(

Hk − HkqkqT
k Hk

qT
k Hkqk

+�kvkvT
k

)

�k + pkpT
k

pT
k qk

� (46)

This defines a two-parameter family of updates that reduces to the Broyden family
for �k = 1.

Using �0� �1� � � � as arbitrary positive scale factors, we consider the algorithm:
Start with any symmetric positive definite matrix H0 and any point x0, then starting
with k = 0,
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Step 1. Set dk = −Hkgk.

Step 2. Minimize f�xk + �dk� with respect to � � 0 to obtain xk+1� Pk = �kdk,
and gk+1.

Step 3. Set qk = gk+1 −gk and

Hk+1 =
(

Hk − HkqkqT
k Hk

qT
k Hkqk

+�kvkvT
k

)

�k + pkpT
k

pT
k qk

vk = �qT
k Hqk�

1/2

(
pk

pT
k qk

− Hkqk

qT
k Hkqk

)

�

(47)

The use of scale factors does destroy the property Hn = F−1 in the quadratic case,
but it does not destroy the conjugate direction property. The following properties of
this method can be proved as simple extensions of the results given in Section 10.3.

1. If Hk is positive definite and pT
k qk > 0, (47) yields an Hk+1 that is positive

definite.
2. If f is quadratic with Hessian F, then the vectors p0� p1� � � � � pn−1 are mutually

F-orthogonal, and, for each k, the vectors p0� p1� � � � � pk are eigenvectors of
Hk+1F.

We can conclude that scale factors do not destroy the underlying conjugate
behavior of the algorithm. Hence we can use scaling to ensure good single-step
convergence properties.

A Self-Scaling Quasi-Newton Algorithm
The question that arises next is how to select appropriate scale factors. If �1 �
�2 � � � � � �n are the eigenvalues of HkF, we want to multiply Hk by �k where
�1 � 1/�k � �n. This will ensure that the new eigenvalues contain unity in the
interval they span.

Note that in terms of our earlier notation

qT
k Hkqk

pT
k qk

= rT
k Rkrk

rT
k rk

�

Recalling that Rk has the same eigenvalues as HkF and noting that for any rk

�1 � rT
k Rkrk

rT
k rk

� �n�

we see that

�k = pT
k qk

qT
k Hkqk

(48)

serves as a suitable scale factor.
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We now state a complete self-scaling, restarting, quasi-Newton method based
on the ideas above. For simplicity we take � = 0 and thus obtain a modification of
the DFP method. Start at any point x0� k = 0.

Step 1. Set Hk = I.

Step 2. Set dk = −Hkgk.

Step 3. Minimize f�xk +�dk� with respect to � � 0 to obtain �k, xk+1, pk = �kdk,
gk+1 and qk = gk+1 −gk. (Select �k accurately enough to ensure pT

k qk > 0.)

Step 4. If k is not an integer multiple of n, set

Hk+1 =
(

Hk − HkqkqT
k Hk

qT
k Hkqk

)
pT

k qk

qT
k Hkqk

+ pkpT
k

pT
k qk

� (49)

Add one to k and return to Step 2. If k is an integer multiple of n, return to
Step 1.

This algorithm was run, with various amounts of inaccuracy introduced in the
line search, on the quadratic problem presented in Section 10.4. The results are
presented in that section.

10.7 MEMORYLESS QUASI-NEWTON METHODS
The preceding development of quasi-Newton methods can be used as a basis for
reconsideration of conjugate gradient methods. The result is an attractive class of
new procedures.

Consider a simplification of the BFGS quasi-Newton method where Hk+1 is
defined by a BFGS update applied to H = I, rather than to Hk. Thus Hk+1 is
determined without reference to the previous Hk, and hence the update procedure
is memoryless. This update procedure leads to the following algorithm: Start at any
point x0� k = 0.

Step 1. Set Hk = I. (50)

Step 2. Set dk = −Hkgk. (51)

Step 3. Minimize f�xk + �dk� with respect to � � 0 to obtain �k� xk+1� pk =
�kdk� gk+1, and qk = gk+1 −gk. (Select �k accurately enough to ensure pT

k qk > 0.)

Step 4. If k is not an integer multiple of n, set

Hk+1 = I − qkpT
k +pkqT

k

pT
k qk

+
(

1+ qT
k qk

pT
k qk

)
pkpT

k

pT
k qk

� (52)
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Add 1 to k and return to Step 2. If k is an integer multiple of n, return to
Step 1.

Combining (51) and (52), it is easily seen that

dk+1 = −gk+1 + qkpT
k gk+1 +pkqT

k gk+1

pT
k qk

−
(

1+ qT
k qk

pT
k qk

)
pkpT

k gk−1

pT
k qk

� (53)

If the line search is exact, then pT
k gk+1 = 0 and hence pT

k qk = −pT
k gk. In this case

(53) is equivalent to

dk+1 = −gk+1 + qT
k gk+1

pT
k qk

pk (54)

= −gk+1 +
kdk�

where


k = qkqT
k+1

gT
k qk

�

This coincides exactly with the Polak–Ribiere form of the conjugate gradient
method. Thus use of the BFGS update in this way yields an algorithm that is of
the modified Newton type with positive definite coefficient matrix and which is
equivalent to a standard implementation of the conjugate gradient method when the
line search is exact.

The algorithm can be used without exact line search in a form that is similar
to that of the conjugate gradient method by using (53). This requires storage of
only the same vectors that are required of the conjugate gradient method. In light
of the theory of quasi-Newton methods, however, the new form can be expected
to be superior when inexact line searches are employed, and indeed experiments
confirm this.

The above idea can be easily extended to produce a memoryless quasi-Newton
method corresponding to any member of the Broyden family. The update formula
(52) would simply use the general Broyden update (42) with Hk set equal to I.
In the case of exact line search (with pT

k gk+1 = 0), the resulting formula for dk+1

reduces to

dk+1 = −gk+1 + �1−��
qT

k gk+1

qT
k qk

qk +�
qT

k gk+1

pT
k qk

pk� (55)

We note that (55) is equivalent to the conjugate gradient direction (54) only for
� = 1, corresponding to the BFGS update. For this reason the choice � = 1 is
generally preferred for this type of method.
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Scaling and Preconditioning
Since the conjugate gradient method implemented as a memoryless quasi-Newton
method is a modified Newton method, the fundamental convergence theory based
on condition number emphasized throughout this part of the book is applicable, as
are the procedures for improving convergence. It is clear that the function scaling
procedures discussed in the previous section can be incorporated.

According to the general theory of modified Newton methods, it is the eigen-
values of HkF�xk� that influence the convergence properties of these algorithms.
From the analysis of the last section, the memoryless BFGS update procedure will,
in the pure quadratic case, yield a matrix HkF that has a more favorable eigenvalue
ratio than F itself only if the function f is scaled so that unity is contained in the
interval spanned by the eigenvalues of F. Experimental evidence verifies that at least
an initial scaling of the function in this way can lead to significant improvement.
Scaling can be introduced at every step as well, and complete self-scaling can be
effective in some situations.

It is possible to extend the scaling procedure to a more general preconditioning
procedure. In this procedure the matrix governing convergence is changed from
F�xk� to HF�xk� for some H. If HF�xk� has its eigenvalues all close to unity,
then the memoryless quasi-Newton method can be expected to perform exceedingly
well, since it possesses simultaneously the advantages of being a conjugate gradient
method and being a well-conditioned modified Newton method.

Preconditioning can be conveniently expressed in the basic algorithm by simply
replacing Hk in the BFGS update formula by H instead of I and replacing I by H
in Step 1. Thus (52) becomes

Hk+1 = H − HqkpT
k +pkqT

k H
qT

k qk

+
(

1+ qT
k Hqk

pT
k qk

)
pkpT

k

pT
k pk

� (56)

and the explicit conjugate gradient version (53) is also modified accordingly.
Preconditioning can also be used in conjunction with an �m+1�-cycle partial

conjugate gradient version of the memoryless quasi-Newton method. This is highly
effective if a simple H can be found (as it sometimes can in problems with structure)
so that the eigenvalues of HF�xk� are such that either all but m are equal to unity
or they are in m bunches. For large-scale problems, methods of this type seem to
be quite promising.

∗10.8 COMBINATION OF STEEPEST DESCENT
AND NEWTON’S METHOD

In this section we digress from the study of quasi-Newton methods, and again
expand our collection of basic principles. We present a combination of steepest
descent and Newton’s method which includes them both as special cases. The
resulting combined method can be used to develop algorithms for problems having
special structure, as illustrated in Chapter 13. This method and its analysis comprises
a fundamental element of the modern theory of algorithms.
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The method itself is quite simple. Suppose there is a subspace N of En on
which the inverse Hessian of the objective function f is known (we shall make
this statement more precise later). Then, in the quadratic case, the minimum of f
over any linear variety parallel to N (that is, any translation of N ) can be found
in a single step. To minimize f over the whole space starting at any point xk, we
could minimize f over the linear variety parallel to N and containing xk to obtain
zk; and then take a steepest descent step from there. This procedure is illustrated in
Fig. 10.1. Since zk is the minimum point of f over a linear variety parallel to N ,
the gradient at zk will be orthogonal to N , and hence the gradient step is orthogonal
to N . If f is not quadratic we can, knowing the Hessian of f on N , approximate
the minimum point of f over a linear variety parallel to N by one step of Newton’s
method. To implement this scheme, that we described in a geometric sense, it is
necessary to agree on a method for defining the subspace N and to determine what
information about the inverse Hessian is required so as to implement a Newton step
over N . We now turn to these questions.

Often, the most convenient way to describe a subspace, and the one we follow
in this development, is in terms of a set of vectors that generate it. Thus, if B is
an n×m matrix consisting of m column vectors that generate N , we may write N
as the set of all vectors of the form Bu where u ∈ Em. For simplicity we always
assume that the columns of B are linearly independent.

To see what information about the inverse Hessian is required, imagine that
we are at a point xk and wish to find the approximate minimum point zk of f with
respect to movement in N . Thus, we seek uk so that

zk = xk +Buk

approximately minimizes f . By “approximately minimizes” we mean that zk should
be the Newton approximation to the minimum over this subspace. We write

f �zk� � f �xk�+�f �xk� Buk + 1
2 uT

k BT F �xk� Buk

and solve for uk to obtain the Newton approximation. We find

xk

zk

zk + 1

xk + 1

Fig. 10.1 Combined method
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uk = −�BT F�xk�B�−1BT �f�xk�
T

zk = xk −B�BT F�xk�B�−1BT �f�xk�
T �

We see by analogy with the formula for Newton’s method that the expression
B�BT F�xk�B�−1BT can be interpreted as the inverse of F�xk� restricted to the
subspace N .

Example. Suppose

B =
[

I
0

]

�

where I is an m × m identity matrix. This corresponds to the case where N is
the subspace generated by the first m unit basis elements of En. Let us partition
F = �2f�xk� as

F =
[

F11 F12

F21 F22

]

�

where F11 is m×m. Then, in this case

�BT FB�−1 = F−1
11 �

and

B�BT FB�−1BT =
[

F−1
11 0
0 0

]

�

which shows explicitly that it is the inverse of F on N that is required. The general
case can be regarded as being obtained through partitioning in some skew coordinate
system.

Now that the Newton approximation over N has been derived, it is possible to
formalize the details of the algorithm suggested by Fig. 10.1. At a given point xk,
the point xk+1 is determined through

a) Set dk = – B(BT F(xk)B)−1BT �f(xk)T .
b) zk = xk + 
kdk, where 
k minimizes f(xk + 
dk). (57)
c) Set pk = –�f(zk)T .
d) xk+1 = zk + �kpk, where �k minimizes f(zk + �pk).

The scalar search parameter 
k is introduced in the Newton part of the algorithm
simply to assure that the descent conditions required for global convergence are
met. Normally 
k will be approximately equal to unity. (See Section 8.8.)
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Analysis of Quadratic Case
Since the method is not a full Newton method, we can conclude that it possesses only
linear convergence and that the dominating aspects of convergence will be revealed
by an analysis of the method as applied to a quadratic function. Furthermore, as
might be intuitively anticipated, the associated rate of convergence is governed
by the steepest descent part of algorithm (57), and that rate is governed by a
Kantorovich-like ratio defined over the subspace orthogonal to N .

Theorem. (Combined method). Let Q be an n×n symmetric positive definite
matrix, and let x∗ ∈ En. Define the function

E�x� = 1
2 �x −x∗�T Q�x −x∗�

and let b = Qx∗. Let B be an n×m matrix of rank m. Starting at an arbitrary
point x0, define the iterative process
a) uk = −�BT QB�−1BT gk, where gk = Qxk −b.
b) zk = xk +Buk.
c) pk = b−Qzk.

d) xk+1 = zk +�kpk, where �k = pT
k pk

pT
k Qpk

.

This process converges to x∗, and satisfies

E�xk+1� � �1−��E�xk� (58)

where �� 0 � � � 1, is the minimum of

�pT p�2

�pT Qp��pT Q−1p�

over all vectors p in the nullspace of BT .

Proof. The algorithm given in the theorem statement is exactly the general
combined algorithm specialized to the quadratic situation. Next we note that

BT pk = BT Q �x∗ − zk� = BT Q �x∗ −xk�−BT QBuk

= −BT gk +BQBT
(
BT QB

)−1
BT gk = 0�

(59)

which merely proves that the gradient at zk is orthogonal to N . Next we calculate

2�E�xk�−E�zk�� = �xk −x∗�T Q�xk −x∗�− �zk −x∗�T Q�zk −x∗�

= −2uT
k BT Q�xk −x∗�−uT

k BT QBuk

= −2uT
k BT gk +uT

k BT QB�BT QB�−1BT gk

= −uT
k BT gk = gT

k B�BT QB�−1BT gk�

(60)
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Then we compute

2�E�zk�−E�xk+1�� = �zk −x∗�T Q�zk −x∗�− �xk+1 −x∗�T Q�xk+1 −x∗�

= −2�kpT
k Q�zk −x∗�−�2

kpT
k Qpk

= 2�kpT
k pk −�2

kpT
k Qpk

= �kpT
k pk = �pT

k pk�
2

pT
k Qpk

�

(61)

Now using (59) and pk = −gk −QBuk we have

2E�xk� = �xk −x∗�T Q�xk −x∗� = gT
k Q−1gk

= �pT
k +uT

k BT Q�Q−1�pk +QBuk�

= pT
k Q−1pk +uT

k BT QBuk

= pT
k Q−1pk +gT

k B�BT QB�−1BT gk�

(62)

Adding (60) and (61) and dividing by (62) there results

E�xk�−E�xk+1�

E�xk�
= gT

k B�BT QB�−1BT gk + �pT
k pk�

2/pT
k Qpk

pT
k Q−1pk +gT

k B�BT QB�−1BT gk

= q + �pT
k pk�/�pT

k Qpk�

q + �pT
k Q−1pk�/�pT

k pk�
�

where q � 0. This has the form �q +a�/�q +b� with

a = pT
k pk

pT
k Qpk

� b = pT
k Q−1pk

pT
k pk

�

But for any pk, it follows that a � b. Hence

q +a

q +b
� a

b
�

and thus

E�xk�−E�xk+1�

E�xk�
� �pT

k pk�
2

�pT
k Qpk��pT

k Q−1pk�
�

Finally,

E�xk+1� � E�xk�

[

1− �pT
k pk�

2

�pT
k Qpk��pT

k Q−1pk�

]

� �1−��E�xk��

since BT pk = 0.
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The value � associated with the above theorem is related to the eigenvalue
structure of Q. If p were allowed to vary over the whole space, then the Kantorovich
inequality

�pT p�2

�pT Qp��pT Q−1p�
� 4aA

�a+A�2
� (63)

where a and A are, respectively, the smallest and largest eigenvalues of Q, gives
explicitly

� = 4aA

�a+A�2
�

When p is restricted to the nullspace of BT , the corresponding value of � is larger.
In some special cases it is possible to obtain a fairly explicit estimate of �. Suppose,
for example, that the subspace N were the subspace spanned by m eigenvectors of
Q. Then the subspace in which p is allowed to vary is the space orthogonal to N
and is thus, in this case, the space generated by the other n−m eigenvectors of Q.
In this case since for p in N⊥ (the space orthogonal to N ), both Qp and Q−1p are
also in N⊥, the ratio � satisfies

� = �pT p�2

�pT Qp��pT Q−1p�
� 4aA

�a+A�2
�

where now a and A are, respectively, the smallest and largest of the n−m eigen-
values of Q corresponding to N⊥. Thus the convergence ratio (58) reduces to the
familiar form

E�xk+1� �
(

A−a

A+a

)2

E�xk��

where a and A are these special eigenvalues. Thus, if B, or equivalently N , is chosen
to include the eigenvectors corresponding to the most undesirable eigenvalues of
Q, the convergence rate of the combined method will be quite attractive.

Applications
The combination of steepest descent and Newton’s method can be applied usefully
in a number of important situations. Suppose, for example, we are faced with a
problem of the form

minimize f�x� y��

where x ∈ En� y ∈ Em, and where the second partial derivatives with respect to x
are easily computable but those with respect to y are not. We may then employ
Newton steps with respect to x and steepest descent with respect to y.
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Another instance where this idea can be greatly effective is when there are a
few vital variables in a problem which, being assigned high costs, tend to dominate
the value of the objective function; in other words, the partial second derivatives
with respect to these variables are large. The poor conditioning induced by these
variables can to some extent be reduced by proper scaling of variables, but more
effectively, by carrying out Newton’s method with respect to them and steepest
descent with respect to the others.

10.9 SUMMARY
The basic motivation behind quasi-Newton methods is to try to obtain, at least on the
average, the rapid convergence associated with Newton’s method without explicitly
evaluating the Hessian at every step. This can be accomplished by constructing
approximations to the inverse Hessian based on information gathered during the
descent process, and results in methods which viewed in blocks of n steps (where
n is the dimension of the problem) generally possess superlinear convergence.

Good, or even superlinear, convergence measured in terms of large blocks,
however, is not always indicative of rapid convergence measured in terms of
individual steps. It is important, therefore, to design quasi-Newton methods so
that their single step convergence is rapid and relatively insensitive to line search
inaccuracies. We discussed two general principles for examining these aspects of
descent algorithms. The first of these is the modified Newton method in which
the direction of descent is taken as the result of multiplication of the negative
gradient by a positive definite matrix S. The single step convergence ratio of this
method is determined by the usual steepest descent formula, but with the condition
number of SF rather than just F used. This result was used to analyze some popular
quasi-Newton methods, to develop the self-scaling method having good single step
convergence properties, and to reexamine conjugate gradient methods.

The second principle method is the combined method in which Newton’s
method is executed over a subspace where the Hessian is known and steepest
descent is executed elsewhere. This method converges at least as fast as steepest
descent, and by incorporating the information gathered as the method progresses,
the Newton portion can be executed over larger and larger subspaces.

At this point, it is perhaps valuable to summarize some of the main themes
that have been developed throughout the four chapters comprising Part II. These
chapters contain several important and popular algorithms that illustrate the range
of possibilities available for minimizing a general nonlinear function. From a broad
perspective, however, these individual algorithms can be considered simply as
specific patterns on the analytical fabric that is woven through the chapters—the
fabric that will support new algorithms and future developments.

One unifying element, that has reproved its value several times, is the Global
Convergence Theorem. This result helped mold the final form of every algorithm
presented in Part II and has effectively resolved the major questions concerning
global convergence.
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Another unifying element is the speed of convergence of an algorithm, which
we have defined in terms of the asymptotic properties of the sequences an algorithm
generates. Initially, it might have been argued that such measures, based on
properties of the tail of the sequence, are perhaps not truly indicative of the actual
time required to solve a problem—after all, a sequence generated in practice is
a truncated version of the potentially infinite sequence, and asymptotic properties
may not be representative of the finite version—a more complex measure of the
speed of convergence may be required. It is fair to demand that the validity of
the asymptotic measures we have proposed be judged in terms of how well they
predict the performance of algorithms applied to specific examples. On this basis,
as illustrated by the numerical examples presented in these chapters, and on others,
the asymptotic rates are extremely reliable predictors of performance—provided
that one carefully tempers one’s analysis with common sense (by, for example, not
concluding that superlinear convergence is necessarily superior to linear conver-
gence when the superlinear convergence is based on repeated cycles of length n).
A major conclusion, therefore, of the previous chapters is the essential validity of
the asymptotic approach to convergence analysis. This conclusion is a major strand
in the analytical fabric of nonlinear programming.

10.10 EXERCISES
1. Prove (4) directly for the modified Newton method by showing that each step of the

modified Newton method is simply the ordinary method of steepest descent applied to
a scaled version of the original problem.

2. Find the rate of convergence of the version of Newton’s method defined by (51), (52)
of Chapter 8. Show that convergence is only linear if � is larger than the smallest
eigenvalue of F�x∗�.

3. Consider the problem of minimizing a quadratic function

f�x� = 1
2 xT Qx −xT b�

where Q is symmetric and sparse (that is, there are relatively few nonzero entries in Q).
The matrix Q has the form

Q = I +V�

where I is the identity and V is a matrix with eigenvalues bounded by e < 1 in magnitude.

a) With the given information, what is the best bound you can give for the rate of
convergence of steepest descent applied to this problem?

b) In general it is difficult to invert Q but the inverse can be approximated by I − V,
which is easy to calculate. (The approximation is very good for small e.) We are
thus led to consider the iterative process

xk−l = xk −�k�I −V	gk�

where gk = Qxk − b and �k is chosen to minimize f in the usual way. With the
information given, what is the best bound on the rate of convergence of this method?
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c) Show that for e < �
√

5 − 1�/2 the method in part (b) is always superior to steepest
descent.

4. This problem shows that the modified Newton’s method is globally convergent under
very weak assumptions.

Let a > 0 and b � a be given constants. Consider the collection P of all n × n
symmetric positive definite matrices P having all eigenvalues greater than or equal to
a and all elements bounded in absolute value by b. Define the point-to-set mapping
B � En → En+n2

by B�x� = ��x� P� � P ∈ P�. Show that B is a closed mapping.
Now given an objective function f ∈ C1, consider the iterative algorithm

xk+1 = xk −�kPkgk�

where gk = g�xk� is the gradient of f at xk� Pk is any matrix from P and �k is chosen
to minimize f�xk+1�. This algorithm can be represented by A which can be decomposed
as A = SCB where B is defined above, C is defined by C�x� P� = �x�−Pg�x��, and S
is the standard line search mapping. Show that if restricted to a compact set in En, the
mapping A is closed.

Assuming that a sequence �xk� generated by this algorithm is bounded, show that
the limit x∗ of any convergent subsequence satisfies g�x∗� = 0.

5. The following algorithm has been proposed for minimizing unconstrained functions
f�x�� x ∈ En, without using gradients: Starting with some arbitrary point x0, obtain a
direction of search dk such that for each component of dk

f�xk = �dk�iei� = min
di

f�xk +diei��

where ei denotes the ith column of the identity matrix. In other words, the ith component
of dk is determined through a line search minimizing f�x� along the ith component.

The next point xk+1 is then determined in the usual way through a line search along
dk; that is,

xk+1 = xk +�kdk�

where dk minimizes f�xk+1�.

a) Obtain an explicit representation for the algorithm for the quadratic case where
f�x� = 1

2 �x −x∗�T Q�x −x∗�+f�x∗�.
b) What condition on f�x� or its derivatives will guarantee descent of this algorithm

for general f�x�?
c) Derive the convergence rate of this algorithm (assuming a quadratic objective).

Express your answer in terms of the condition number of some matrix.

6. Suppose that the rank one correction method of Section 10.2 is applied to the quadratic
problem (2) and suppose that the matrix R0 = F1/2H0F1/2 has m < n eigenvalues less than
unity and n−m eigenvalues greater than unity. Show that the condition qT

k �pk −Hkqk� >
0 will be satisfied at most m times during the course of the method and hence, if updating
is performed only when this condition holds, the sequence �Hk� will not converge to
F−1. Infer from this that, in using the rank one correction method, H0 should be taken
very small; but that, despite such a precaution, on nonquadratic problems the method is
subject to difficulty.
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7. Show that if H0 = I the Davidon-Fletcher-Powell method is the conjugate gradient
method. What similar statement can be made when H0 is an arbitrary symmetric positive
definite matrix?

8. In the text it is shown that for the Davidon–Fletcher–Powell method Hk+1 is positive
definite if Hk is. The proof assumed that �k is chosen to exactly minimize f�xk +�dk�.
Show that any �k > 0 which leads to pT

k qk > 0 will guarantee the positive definiteness
of Hk+1. Show that for a quadratic problem any �k �= 0 leads to a positive definite Hk+1.

9. Suppose along the line xk + �dk� � > 0, the function f�xk + �dk� is unimodal and
differentiable. Let �̄k be the minimizing value of �. Show that if any �k > �̄k is selected
to define xk+1 = xk +�kdk, then pT

k qk > 0. (Refer to Section 10.3).

10. Let �Hk�� k = 0� 1� 2 � � � be the sequence of matrices generated by the Davidon-
Fletcher-Powell method applied, without restarting, to a function f having continuous
second partial derivatives. Assuming that there is a > 0� A > 0 such that for all k we
have Hk −aI and AI − Hk positive definite and the corresponding sequence of xk’s is
bounded, show that the method is globally convergent.

11. Verify Eq. (42).

12. a) Show that starting with the rank one update formula for H, forming the comple-
mentary formula, and then taking the inverse restores the original formula.

b) What value of � in the Broyden class corresponds to the rank one formula?

13. Explain how the partial Davidon method can be implemented for m < n/2, with less
storage than required by the full method.

14. Prove statements (1) and (2) below Eq. (47) in Section 10.6.

15. Consider using

�k = pT
k H−1

k pk

pT
k qk

instead of (48).

a) Show that this also serves as a suitable scale factor for a self-scaling quasi-Newton
method.

b) Extend part (a) to

�k = �1−��
pT

k qk

qT
k Hkqk

+�
pT

k H−1
k pk

pT
k qk

for 0 � � � 1.

16. Prove global convergence of the combination of steepest descent and Newton’s method.

17. Formulate a rate of convergence theorem for the application of the combination of
steepest and Newton’s method to nonquadratic problems.
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18. Prove that if Q is positive definite

�pT p�

pT Qp
� pT Q−1p

pT p

for any vector p.

19. It is possible to combine Newton’s method and the partial conjugate gradient method.
Given a subspace N ⊂ En� xk+1 is generated from xk by first finding zk by taking a
Newton step in the linear variety through xk parallel to N , and then taking m conjugate
gradient steps from zk. What is a bound on the rate of convergence of this method?

20. In this exercise we explore how the combined method of Section 10.7 can be updated
as more information becomes available. Begin with N0 = �0�. If Nk is represented by
the corresponding matrix Bk, define Nk+1 by the corresponding Bk+1 = �Bk� pk	, where
pk = xk+1 − zk.

a) If Dk = Bk�BT
k FBk�

−1BT
k is known, show that

Dk+1 = Dk = �pk −Dkqk��pk −Dkqk�
T

�pk −Dkqk�
T qk

�

where qk = gk+1 −gk. (This is the rank one correction of Section 10.2.)
b) Develop an algorithm that uses (a) in conjunction with the combined method of

Section 10.8 and discuss its convergence properties.
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Chapter 11 CONSTRAINED
MINIMIZATION
CONDITIONS

We turn now, in this final part of the book, to the study of minimization problems
having constraints. We begin by studying in this chapter the necessary and sufficient
conditions satisfied at solution points. These conditions, aside from their intrinsic
value in characterizing solutions, define Lagrange multipliers and a certain Hessian
matrix which, taken together, form the foundation for both the development and
analysis of algorithms presented in subsequent chapters.

The general method used in this chapter to derive necessary and sufficient
conditions is a straightforward extension of that used in Chapter 7 for unconstrained
problems. In the case of equality constraints, the feasible region is a curved surface
embedded in En. Differential conditions satisfied at an optimal point are derived by
considering the value of the objective function along curves on this surface passing
through the optimal point. Thus the arguments run almost identically to those for
the unconstrained case; families of curves on the constraint surface replacing the
earlier artifice of considering feasible directions. There is also a theory of zero-order
conditions that is presented in the final section of the chapter.

11.1 CONSTRAINTS
We deal with general nonlinear programming problems of the form

minimize f�x�
subject to h1�x� = 0 g1�x� � 0

h2�x� = 0 g2�x� � 0
���

���
hm�x� = 0 gp�x� � 0
x�∈ � ⊂ En�

(1)

where m � n and the functions f , hi� i = 1� 2� � � � �m and gj� j = 1� 2� � � � � p
are continuous, and usually assumed to possess continuous second partial

321
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derivatives. For notational simplicity, we introduce the vector-valued functions
h = �h1� h2� � � � � hm� and g = �g1� g2� � � � � gP� and rewrite (1) as

minimize f�x�
subject to h�x� = 0� g�x� � 0

x ∈ ��
(2)

The constraints h�x� = 0� g�x� � 0 are referred to as functional constraints,
while the constraint x ∈ � is a set constraint. As before we continue to de-emphasize
the set constraint, assuming in most cases that either � is the whole space En or
that the solution to (2) is in the interior of �. A point x ∈ � that satisfies all the
functional constraints is said to be feasible.

A fundamental concept that provides a great deal of insight as well as simpli-
fying the required theoretical development is that of an active constraint. An
inequality constraint gi�x� � 0 is said to be active at a feasible point x if gi�x� = 0
and inactive at x if gi�x� < 0. By convention we refer to any equality constraint
hi�x� = 0 as active at any feasible point. The constraints active at a feasible point
x restrict the domain of feasibility in neighborhoods of x, while the other, inactive
constraints, have no influence in neighborhoods of x. Therefore, in studying the
properties of a local minimum point, it is clear that attention can be restricted to the
active constraints. This is illustrated in Fig. 11.1 where local properties satisfied by
the solution x∗ obviously do not depend on the inactive constraints g2 and g3.

It is clear that, if it were known a priori which constraints were active at the
solution to (1), the solution would be a local minimum point of the problem defined
by ignoring the inactive constraints and treating all active constraints as equality
constraints. Hence, with respect to local (or relative) solutions, the problem could
be regarded as having equality constraints only. This observation suggests that the
majority of insight and theory applicable to (1) can be derived by consideration of
equality constraints alone, later making additions to account for the selection of the

x*

g2(x) = 0

g1(x) = 0

g3(x) = 0

Fig. 11.1 Example of inactive constraints
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active constraints. This is indeed so. Therefore, in the early portion of this chapter
we consider problems having only equality constraints, thereby both economizing
on notation and isolating the primary ideas associated with constrained problems.
We then extend these results to the more general situation.

11.2 TANGENT PLANE
A set of equality constraints on En

h1�x� = 0

h2�x� = 0

���

hm�x� = 0

(3)

defines a subset of En which is best viewed as a hypersurface. If the constraints
are everywhere regular, in a sense to be described below, this hypersurface is of
dimension n−m. If, as we assume in this section, the functions hi� i = 1� 2� � � � �m
belong to C1, the surface defined by them is said to be smooth.

Associated with a point on a smooth surface is the tangent plane at that point,
a term which in two or three dimensions has an obvious meaning. To formalize the
general notion, we begin by defining curves on a surface. A curve on a surface S
is a family of points x�t� ∈ S continuously parameterized by t for a � t � b. The
curve is differentiable if ẋ ≡ �d/dt�x�t� exists, and is twice differentiable if ẍ�t�
exists. A curve x�t� is said to pass through the point x∗ if x∗ = x�t∗� for some
t∗� a � t∗ � b. The derivative of the curve at x∗ is, of course, defined as ẋ�t∗�. It is
itself a vector in En.

Now consider all differentiable curves on S passing through a point x∗. The
tangent plane at x∗ is defined as the collection of the derivatives at x∗ of all these
differentiable curves. The tangent plane is a subspace of En.

For surfaces defined through a set of constraint relations such as (3), the
problem of obtaining an explicit representation for the tangent plane is a fundamental
problem that we now address. Ideally, we would like to express this tangent plane
in terms of derivatives of functions hi that define the surface. We introduce the
subspace

M = �y ��h�x∗�y = 0	

and investigate under what conditions M is equal to the tangent plane at x∗. The
key concept for this purpose is that of a regular point. Figure 11.2 shows some
examples where for visual clarity the tangent planes (which are sub-spaces) are
translated to the point x∗.



324 Chapter 11 Constrained Minimization Conditions

Tangent plane

h(x*)T

h(x) = 0

x*

(a)
S

Δ

Tangent plane

h(x) = 0
(b)

h(x*)TΔ

Tangent plane

h2(x) = 0

h1(x) = 0
(c)

h(x*)TΔ

h1(x*)TΔ

Fig. 11.2 Examples of tangent planes (translated to x∗)
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Definition. A point x∗ satisfying the constraint h�x∗� = 0 is said
to be a regular point of the constraint if the gradient vectors
�h1�x∗���h2�x∗�� � � � ��hm�x∗� are linearly independent.

Note that if h is affine, h�x� = Ax + b, regularity is equivalent to A having
rank equal to m, and this condition is independent of x.

In general, at regular points it is possible to characterize the tangent plane in
terms of the gradients of the constraint functions.

Theorem. At a regular point x∗ of the surface S defined by h�x� = 0 the
tangent plane is equal to

M = �y ��h�x∗�y = 0	�

Proof. Let T be the tangent plane at x∗. It is clear that T ⊂ M whether x∗ is
regular or not, for any curve x�t� passing through x∗ at t = t∗ having derivative
ẋ�t∗� such that �h�x∗�ẋ�t∗� �= 0 would not lie on S.

To prove that M ⊂ T we must show that if y ∈ M then there is a curve on S
passing through x∗ with derivative y. To construct such a curve we consider the
equations

h�x∗ + ty +�h�x∗�T u�t�� = 0� (4)

where for fixed t we consider u�t� ∈ Em to be the unknown. This is a nonlinear
system of m equations and m unknowns, parameterized continuously, by t. At t = 0
there is a solution u�0� = 0. The Jacobian matrix of the system with respect to u at
t = 0 is the m×m matrix

�h�x∗��h�x∗�T �

which is nonsingular, since �h�x∗� is of full rank if x∗ is a regular point. Thus, by the
Implicit Function Theorem (see Appendix A) there is a continuously differentiable
solution u�t� in some region −a � t � a.

The curve x�t� = x∗ + ty+�h�x∗�T u�t� is thus, by construction, a curve on S.
By differentiating the system (4) with respect to t at t = 0 we obtain

0 = d

dt
h�x�t��

]

t=0

= �h�x∗�y +�h�x∗��h�x∗�T u̇�0��

By definition of y we have �h�x∗�y = 0 and thus, again since �h�x∗��h�x∗�T is
nonsingular, we conclude that ẋ�0� = 0. Therefore

ẋ�0� = y +�h�x∗�T ẋ�0� = y�

and the constructed curve has derivative y at x∗.

It is important to recognize that the condition of being a regular point is not a
condition on the constraint surface itself but on its representation in terms of an h.
The tangent plane is defined independently of the representation, while M is not.
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Example. In E2 let h�x1� x2� = x1. Then h�x� = 0 yields the x2 axis, and every
point on that axis is regular. If instead we put h�x1� x2� = x2

1, again S is the x2

axis but now no point on the axis is regular. Indeed in this case M = E2, while the
tangent plane is the x2 axis.

11.3 FIRST-ORDER NECESSARY CONDITIONS
(EQUALITY CONSTRAINTS)

The derivation of necessary and sufficient conditions for a point to be a local
minimum point subject to equality constraints is fairly simple now that the represen-
tation of the tangent plane is known. We begin by deriving the first-order necessary
conditions.

Lemma. Let x∗ be a regular point of the constraints h�x� = 0 and a local
extremum point (a minimum or maximum) of f subject to these constraints.
Then all y ∈ En satisfying

�h�x∗�y = 0 (5)

must also satisfy

�f�x∗�y = 0� (6)

Proof. Let y be any vector in the tangent plane at x∗ and let x�t� be any smooth
curve on the constraint surface passing through x∗ with derivative y at x∗; that is,
x�0� = x∗, ẋ�0� = y, and h�x�t�� = 0 for −a � t � a for some a > 0.

Since x∗ is a regular point, the tangent plane is identical with the set of y’s
satisfying �h�x∗�y = 0. Then, since x∗ is a constrained local extremum point of f ,
we have

d

dt
f�x�t��

]

t=0

= 0�

or equivalently,

�f�x∗�y = 0�

The above Lemma says that �f�x∗� is orthogonal to the tangent plane. Next
we conclude that this implies that �f�x∗� is a linear combination of the gradients
of h at x∗, a relation that leads to the introduction of Lagrange multipliers.
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Theorem. Let x∗ be a local extremum point of f subject to the constraints
h�x� = 0. Assume further that x∗ is a regular point of these constraints. Then
there is a � ∈ Em such that

�f�x∗�+�T �h�x∗� = 0� (7)

Proof. From the Lemma we may conclude that the value of the linear program

maximize �f�x∗�y

subject to �h�x∗�y = 0

is zero. Thus, by the Duality Theorem of linear programming (Section 4.2)
the dual problem is feasible. Specifically, there is � ∈ Em such that �f�x∗� +
�T �h�x∗� = 0.

It should be noted that the first-order necessary conditions

�f�x∗�+�T �h�x∗� = 0

together with the constraints

h�x∗� = 0

give a total of n + m (generally nonlinear) equations in the n + m variables
comprising x∗��. Thus the necessary conditions are a complete set since, at least
locally, they determine a unique solution.

It is convenient to introduce the Lagrangian associated with the constrained
problem, defined as

l�x��� = f�x�+�T h�x�� (8)

The necessary conditions can then be expressed in the form

�xl�x��� = 0 (9)

��l�x��� = 0� (10)

the second of these being simply a restatement of the constraints.

11.4 EXAMPLES
We digress briefly from our mathematical development to consider some examples
of constrained optimization problems. We present five simple examples that can
be treated explicitly in a short space and then briefly discuss a broader range of
applications.
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Example 1. Consider the problem

minimize x1x2 +x2x3 +x1x3

subject to x1 +x2 +x3 = 3�

The necessary conditions become

x2 + x3 + 
 = 0
x1 + x3 + 
 = 0
x1 + x2 + 
 = 0�

These three equations together with the one constraint equation give four equations
that can be solved for the four unknowns x1� x2� x3� 
. Solution yields x1 = x2 =
x3 = 1, 
 = −2.

Example 2 (Maximum volume). Let us consider an example of the type that is
now standard in textbooks and which has a structure similar to that of the example
above. We seek to construct a cardboard box of maximum volume, given a fixed
area of cardboard.

Denoting the dimensions of the box by x� y� z, the problem can be expressed
as

maximize xyz

subject to �xy +yz+xz� = c

2
� (11)

where c > 0 is the given area of cardboard. Introducing a Lagrange multiplier, the
first-order necessary conditions are easily found to be

yz+
�y + z� = 0

xz+
�x+ z� = 0 (12)

xy +
�x+y� = 0

together with the constraint. Before solving these, let us note that the sum of these
equations is �xy + yz+xz�+2
�x+ y + z� = 0. Using the constraint this becomes
c/2 + 2
�x + y + z� = 0. From this it is clear that 
 �= 0. Now we can show that
x� y, and z are nonzero. This follows because x = 0 implies z = 0 from the second
equation and y = 0 from the third equation. In a similar way, it is seen that if either
x� y, or z are zero, all must be zero, which is impossible.

To solve the equations, multiply the first by x and the second by y, and then
subtract the two to obtain


�x−y�z = 0�
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Operate similarly on the second and third to obtain


�y − z�x = 0�

Since no variables can be zero, it follows that x = y = z = √
c/6 is the unique

solution to the necessary conditions. The box must be a cube.

Example 3 (Entropy). Optimization problems often describe natural phenomena.
An example is the characterization of naturally occurring probability distributions
as maximum entropy distributions.

As a specific example consider a discrete probability density corresponding to
a measured value taking one of n values x1� x2� � � � � xn. The probability associated

with xi is pi. The pi’s satisfy pi � 0 and
n∑

i=1
pi = 1.

The entropy of such a density is

� = −
n∑

i=1

pi log�pi��

The mean value of the density is
n∑

i=1
xipi.

If the value of mean is known to be m (by the physical situation), the maximum
entropy argument suggests that the density should be taken as that which solves the
following problem:

maximize −
n∑

i=1

pi log�pi�

subject to
n∑

i=1

pi = 1

n∑

i=1

xipi = m

pi � 0� i = 1� 2� � � � � n�

(13)

We begin by ignoring the nonnegativity constraints, believing that they may
be inactive. Introducing two Lagrange multipliers, 
 and �, the Lagrangian is

l =
n∑

i=1

�−pi log pi +
pi +�xipi	−
−�m�

The necessary conditions are immediately found to be

− log pi −1+
+�xi = 0� i = 1� 2� � � � � n�

This leads to

pi = exp��
−1�+�xi	� i = 1� 2� � � � � n� (14)
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We note that pi > 0, so the nonnegativity constraints are indeed inactive. The result
(14) is known as an exponential density. The Lagrange multipliers 
 and � are
parameters that must be selected so that the two equality constraints are satisfied.

Example 4 (Hanging chain). A chain is suspended from two thin hooks that are
16 feet apart on a horizontal line as shown in Fig. 11.3. The chain itself consists of
20 links of stiff steel. Each link is one foot in length (measured inside). We wish
to formulate the problem to determine the equilibrium shape of the chain.

The solution can be found by minimizing the potential energy of the chain. Let
us number the links consecutively from 1 to 20 starting with the left end. We let
link i span an x distance of xi and a y distance of yi. Then x2

i +y2
i = 1. The potential

energy of a link is its weight times its vertical height (from some reference). The
potential energy of the chain is the sum of the potential energies of each link. We
may take the top of the chain as reference and assume that the mass of each link is
concentrated at its center. Assuming unit weight, the potential energy is then

1
2

y1 +
(

y1 + 1
2

y2

)

+
(

y1 +y2 + 1
2

y3

)

+· · ·

+
(

y1 +y2 +· · ·+yn−1 + 1
2

yn

)

=
n∑

i=1

(

n− i+ 1
2

)

yi�

where n = 20 in our example.
The chain is subject to two constraints: The total y displacement is zero, and

the total x displacement is 16. Thus the equilibrium shape is the solution of

minimize
n∑

i=1

(

n− i+ 1
2

)

yi

subject to
n∑

i=1

yi = 0 (15)

n∑

i=1

√

1−y2
i = 16�

chain
link

1ft

16 ft

Fig. 11.3 A hanging chain
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The first-order necessary conditions are
(

n− i+ 1
2

)

+
− �yi
√

1−y2
i

= 0 (16)

for i = 1� 2� � � � � n. This leads directly to

yi = − n− i+ 1
2 +


√

�2 + �n− i+ 1
2 +
�2

� (17)

As in Example 2 the solution is determined once the Lagrange multipliers are
known. They must be selected so that the solution satisfies the two constraints.

It is useful to point out that problems of this type may have local minimum
points. The reader can examine this by considering a short chain of, say, four links
and v and w configurations.

Example 5 (Portfolio design). Suppose there are n securities indexed by i =
1� 2� � � � � n. Each security i is characterized by its random rate of return ri which
has mean value ri. Its covariances with the rates of return of other securtities are

ij , for j = 1� 2� � � � � n. The portfolio problem is to allocate total available wealth
among these n securities, allocating a fraction wi of wealth to the security i.

The overall rate of return of a portfolio is r =∑n
i=1 wiri. This has mean value

r =∑n
i=1 wiri and variance 
2 =∑n

i�j=1 wi
ijwj .
Markowitz introduced the concept of devising efficient portfolios which for a

given expected rate of return r have minimum possible variance. Such a portfolio
is the solution to the problem

min
wi�w2�����wn

∑n

i�j=1
wi
ijwj

subject to
∑n

i=1
wiri = r

∑n

i=1
wi = 1�

The second constraint forces the sum of the weights to equal one. There may be
the further restriction that each wi ≥ 0 which would imply that the securities must
not be shorted (that is, sold short).

Introducing Lagrange multipliers 
 and � for the two constraints leads easily
to the n+2 linear equations

n∑

j=1


ijwj +
ri +� = 0 for i = 1� 2� � � � � n

n∑

i=1

wiri = r

n∑

i=1

wi = 1

in the n+2 unknowns (the wi’s, 
 and �).
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Large-Scale Applications
The problems that serve as the primary motivation for the methods described in
this part of the book are actually somewhat different in character than the problems
represented by the above examples, which by necessity are quite simple. Larger,
more complex, nonlinear programming problems arise frequently in modern applied
analysis in a wide variety of disciplines. Indeed, within the past few decades
nonlinear programming has advanced from a relatively young and primarily analytic
subject to a substantial general tool for problem solving.

Large nonlinear programming problems arise in problems of mechanical struc-
tures, such as determining optimal configurations for bridges, trusses, and so
forth. Some mechanical designs and configurations that in the past were found by
solving differential equations are now often found by solving suitable optimization
problems. An example that is somewhat similar to the hanging chain problem is
the determination of the shape of a stiff cable suspended between two points and
supporting a load.

A wide assortment, of large-scale optimization problems arise in a similar way
as methods for solving partial differential equations. In situations where the under-
lying continuous variables are defined over a two- or three-dimensional region,
the continuous region is replaced by a grid consisting of perhaps several thousand
discrete points. The corresponding discrete approximation to the partial differ-
ential equation is then solved indirectly by formulating an equivalent optimization
problem. This approach is used in studies of plasticity, in heat equations, in the
flow of fluids, in atomic physics, and indeed in almost all branches of physical
science.

Problems of optimal control lead to large-scale nonlinear programming
problems. In these problems a dynamic system, often described by an ordinary
differential equation, relates control variables to a trajectory of the system state. This
differential equation, or a discretized version of it, defines one set of constraints.
The problem is to select the control variables so that the resulting trajectory satisfies
various additional constraints and minimizes some criterion. An early example of
such a problem that was solved numerically was the determination of the trajectory
of a rocket to the moon that required the minimum fuel consumption.

There are many examples of nonlinear programming in industrial operations
and business decision making. Many of these are nonlinear versions of the kinds
of examples that were discussed in the linear programming part of the book.
Nonlinearities can arise in production functions, cost curves, and, in fact, in almost
all facets of problem formulation.

Portfolio analysis, in the context of both stock market investment and evalu-
ation of a complex project within a firm, is an area where nonlinear programming
is becoming increasingly useful. These problems can easily have thousands of
variables.

In many areas of model building and analysis, optimization formulations are
increasingly replacing the direct formulation of systems of equations. Thus large
economic forecasting models often determine equilibrium prices by minimizing
an objective termed consumer surplus. Physical models are often formulated
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as minimization of energy. Decision problems are formulated as maximizing
expected utility. Data analysis procedures are based on minimizing an average
error or maximizing a probability. As the methodology for solution of nonlinear
programming improves, one can expect that this trend will continue.

11.5 SECOND-ORDER CONDITIONS
By an argument analogous to that used for the unconstrained case, we can also derive
the corresponding second-order conditions for constrained problems. Throughout
this section it is assumed that f� h ∈ C2.

Second-Order Necessary Conditions. Suppose that x∗ is a local minimum of
f subject to h�x� = 0 and that x∗ is a regular point of these constraints. Then
there is a � ∈ Em such that

�f�x∗�+�T �h�x∗� = 0� (18)

If we denote by M the tangent plane M = �y � �h�x∗�y = 0	, then the matrix

L�x∗� = F�x∗�+�T H�x∗� (19)

is positive semidefinite on M , that is, yT L�x∗�y � 0 for all y ∈ M .

Proof. From elementary calculus it is clear that for every twice differentiable
curve on the constraint surface S through x∗ (with x�0� = x∗) we have

d2

dt2
f�x�t��

]

t=0

� 0� (20)

By definition

d2

dt2
f�x�t��

]

t=0

= ẋ�0�T F�x∗�ẋ�0�+�f�x∗�ẍ�0�� (21)

Furthermore, differentiating the relation �T h�x�t�� = 0 twice, we obtain

ẋ�0�T �T H�x∗�ẋ�0�+�T �h�x∗�ẍ�0� = 0� (22)

Adding (22) to (21), while taking account of (20), yields the result

d2

dt2
f�x�t��

]

t=0

= ẋ�0�T L�x∗�ẋ�0� � 0�

Since ẋ�0� is arbitrary in M , we immediately have the stated conclusion.

The above theorem is our first encounter with the matrix L = F+�T H which
is the matrix of second partial derivatives, with respect to x, of the Lagrangian l.
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(See Appendix A, Section A.6, for a discussion of the notation �T H used here.)
This matrix is the backbone of the theory of algorithms for constrained problems,
and it is encountered often in subsequent chapters.

We next state the corresponding set of sufficient conditions.

Second-Order Sufficiency Conditions. Suppose there is a point x∗ satisfying
h�x∗� = 0, and a � ∈ Em such that

�f�x∗�+�T �h�x∗� = 0� (23)

Suppose also that the matrix L�x∗� = F�x∗�+�T H�x∗� is positive definite on
M = �y � �h�x∗�y = 0	, that is, for y ∈ M , y �= 0 there holds yT L�x∗�y > 0.
Then x∗ is a strict local minimum of f subject to h�x� = 0.

Proof. If x∗ is not a strict relative minimum point, there exists a sequence of
feasible points �yk	 converging to x∗ such that for each k� f�yk� � f�x∗�. Write
each yk in the form yk = x∗ + �ksk where sk ∈ En, �sk� = 1, and �k > 0 for each
k. Clearly, �k → 0 and the sequence �sk	, being bounded, must have a convergent
subsequence converging to some s∗. For convenience of notation, we assume that
the sequence �sk	 is itself convergent to s∗. We also have h�yk�− h�x∗� = 0, and
dividing by �k and letting k → 
 we see that �h�x∗�s∗ = 0.

Now by Taylor’s theorem, we have for each j

0 = hj�yk� = hj�x∗�+�k�hj�x∗�sk + �2
k

2
sT
k �2hj��j�sk (24)

and

0 � f�yk�−f�x∗� = �k�f�x∗�sk + �2
k

2
sT
k �2f��0�sk� (25)

where each �j is a point on the line segment joining x∗ and yk. Multiplying (24)
by �j and adding these to (25) we obtain, on accounting for (23),

0 � �2
k

2
sT
k

{

�2f��0�+
m∑

i=1

�i�
2hi��i�

}

sk�

which yields a contradiction as k → 
.

Example 1. Consider the problem

maximize x1x2 +x2x3 +x1x3

subject to x1 +x2 +x3 = 3�
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In Example 1 of Section 11.4 it was found that x1 = x2 = x3 = 1� 
 = −2 satisfy
the first-order conditions. The matrix F+�T H becomes in this case

L =
⎡

⎣
0 1 1
1 0 1
1 1 0

⎤

⎦ �

which itself is neither positive nor negative definite. On the subspace M = �y �
y1 +y2 +y3 = 0	, however, we note that

yT Ly = y1�y2 +y3�+y2�y1 +y3�+y3�y1 +y2�

= −�y2
1 +y2

2 +y2
3��

and thus L is negative definite on M . Therefore, the solution we found is at least a
local maximum.

11.6 EIGENVALUES IN TANGENT SUBSPACE
In the last section it was shown that the matrix L restricted to the subspace M
that is tangent to the constraint surface plays a role in second-order conditions
entirely analogous to that of the Hessian of the objective function in the uncon-
strained case. It is perhaps not surprising, in view of this, that the structure of L
restricted to M also determines rates of convergence of algorithms designed for
constrained problems in the same way that the structure of the Hessian of the
objective function does for unconstrained algorithms. Indeed, we shall see that the
eigenvalues of L restricted to M determine the natural rates of convergence for
algorithms designed for constrained problems. It is important, therefore, to under-
stand what these restricted eigenvalues represent. We first determine geometrically
what we mean by the restriction of L to M which we denote by LM . Next we
define the eigenvalues of the operator LM . Finally we indicate how these various
quantities can be computed.

Given any vector y ∈ M , the vector Ly is in En but not necessarily in M .
We project Ly orthogonally back onto M , as shown in Fig. 11.4, and the result
is said to be the restriction of L to M operating on y. In this way we obtain a
linear transformation from M to M . The transformation is determined somewhat
implicitly, however, since we do not have an explicit matrix representation.

A vector y ∈ M is an eigenvector of LM if there is a real number 
 such that
LMy = 
y; the corresponding 
 is an eigenvalue of LM . This coincides with the
standard definition. In terms of L we see that y is an eigenvector of LM if Ly can
be written as the sum of 
y and a vector orthogonal to M . See Fig. 11.5.

To obtain a matrix representation for LM it is necessary to introduce a basis
in the subspace M . For simplicity it is best to introduce an orthonormal basis, say
e1� e2� � � � � en−m. Define the matrix E to be the n× �n−m� matrix whose columns
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Ly

LMy

M

y

Fig. 11.4 Definition of LM

consist of the vectors ei. Then any vector y in M can be written as y = Ez for some
z ∈ En−m and, of course, LEz represents the action of L on such a vector. To project
this result back into M and express the result in terms of the basis e1� e2� � � � � en−m,
we merely multiply by ET . Thus ET LEz is the vector whose components give the
representation in terms of the basis; and, correspondingly, the �n−m�× �n−m�
matrix ET LE is the matrix representation of L restricted to M .

The eigenvalues of L restricted to M can be found by determining the eigen-
values of ET LE. These eigenvalues are independent of the particular orthonormal
basis E.

Example 1. In the last section we considered

L =
⎡

⎣
0 1 1
1 0 1
1 1 0

⎤

⎦

Ly

λy y

M

Fig. 11.5 Eigenvector of LM
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restricted to M = �y � y1 +y2 +y3 = 0	. To obtain an explicit matrix representation
on M let us introduce the orthonormal basis:

e1 = 1√
2

�1� 0�−1�

e2 = 1√
6

�1�−2� 1��

This gives, upon expansion,

ET LE =
[ −1 0

0 −1

]

�

and hence L restricted to M acts like the negative of the identity.

Example 2. Let us consider the problem

extremize x1 +x2
2 +x2x3 +2x2

3

subject to
1
2

�x2
1 +x2

2 +x2
3� = 1�

The first-order necessary conditions are

1+ 
x1 = 0

2x2 +x3 +
x2 = 0

x2 +4x3 +
x3 = 0�

One solution to this set is easily seen to be x1 = 1, x2 = 0, x3 = 0, 
 = −1. Let us
examine the second-order conditions at this solution point. The Lagrangian matrix
there is

L =
⎡

⎣
−1 0 0

0 1 1
0 1 3

⎤

⎦ �

and the corresponding subspace M is

M = �y � y1 = 0	�

In this case M is the subspace spanned by the second two basis vectors in E3 and
hence the restriction of L to M can be found by taking the corresponding submatrix
of L. Thus, in this case,

ET LE =
[

1 1
1 3

]

�
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The characteristic polynomial of this matrix is

det
[

1−
 1
1 3−


]

= �1−
��3−
�−1 = 
2 −4
+2�

The eigenvalues of LM are thus 
 = 2±√
2, and LM is positive definite.

Since the LM matrix is positive definite, we conclude that the point found is a
relative minimum point. This example illustrates that, in general, the restriction of
L to M can be thought of as a submatrix of L, although it can be read directly from
the original matrix only if the subspace M is spanned by a subset of the original
basis vectors.

Bordered Hessians
The above approach for determining the eigenvalues of L projected onto M is quite
direct and relatively simple. There is another approach, however, that is useful
in some theoretical arguments and convenient for simple applications. It is based
on constructing matrices and determinants of order n + m rather than n − m, so
dimension is increased.

Let us first characterize all vectors orthogonal to M . M itself is the set of all x
satisfying �hx = 0. A vector z is orthogonal to M if zT x = 0 for all x ∈ M . It is not
hard to show that z is orthogonal to M if and only if z = �hT w for some w ∈ Em.
The proof that this is sufficient follows from the calculation zT x = wT �hx = 0.
The proof of necessity follows from the Duality Theorem of Linear Programming
(see Exercise 6).

Now we may explicitly characterize an eigenvector of LM . The vector x is
such an eigenvector if it satisfies these two conditions: (1) x belongs to M , and (2)
Lx = 
x +z, where z is orthogonal to M . These conditions are equivalent, in view
of the characterization of z, to

�hx = 0

Lx = 
x +�hT w�

This can be regarded as a homogeneous system of n + m linear equations in the
unknowns w� x. It possesses a nonzero solution if and only if the determinant of
the coefficient matrix is zero. Denoting this determinant p�
�, we have

det
[

0 �h
−�hT L−
I

]

≡ p�
� = 0 (26)

as the condition. The function p�
� is a polynomial in 
 of degree n−m. It is, as
we have derived, the characteristic polynomial of LM .
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Example 3. Approaching Example 2 in this way we have

p�
� ≡ det

⎡

⎢
⎢
⎣

0 1 0 0
−1 −�1+
� 0 0

0 0 �1−
� 1
0 0 1 �3−
�

⎤

⎥
⎥
⎦ �

This determinant can be evaluated by using Laplace’s expansion down the first
column. The result is

p�
� = �1−
��3−
�−1�

which is identical to that found earlier.

The above treatment leads one to suspect that it might be possible to extend
other tests for positive definiteness over the whole space to similar tests in the
constrained case by working in n+m dimensions. We present (but do not derive)
the following classic criterion, which is of this type. It is expressed in terms of the
bordered Hessian matrix

B =
[

0 �h
�hT L

]

� (27)

(Note that by convention the minus sign in front of �hT is deleted to make B
symmetric; this only introduces sign changes in the conclusions.)

Bordered Hessian Test. The matrix L is positive definite on the subspace
M = �x � �hx = 0	 if and only if the last n−m principal minors of B all have
sign �−1�m.

For the above example we form

B = det

⎡

⎢
⎢
⎢
⎣

0 1 0
��� 0

1 −1 0
��� 0

0 0 1
��� 1� � � � � � � � � � � � ��

0 0 1 3

⎤

⎥
⎥
⎥
⎦

and check the last two principal minors—the one indicated by the dashed lines and
the whole determinant. These are −1, −2, which both have sign �−1�1, and hence
the criterion is satisfied.

11.7 SENSITIVITY
The Lagrange multipliers associated with a constrained minimization problem have
an interpretation as prices, similar to the prices associated with constraints in linear
programming. In the nonlinear case the multipliers are associated with the particular
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solution point and correspond to incremental or marginal prices, that is, prices
associated with small variations in the constraint requirements.

Suppose the problem

minimize f�x�

subject to h�x� = 0
(28)

has a solution at the point x∗ which is a regular point of the constraints. Let � be the
corresponding Lagrange multiplier vector. Now consider the family of problems

minimize f�x�

subject to h�x� = c�
(29)

where c ∈ Em. For a sufficiently small range of c near the zero vector, the problem
will have a solution point x�c� near x�0� ≡ x∗. For each of these solutions there is a
corresponding value f�x�c��, and this value can be regarded as a function of c, the
right-hand side of the constraints. The components of the gradient of this function
can be interpreted as the incremental rate of change in value per unit change in
the constraint requirements. Thus, they are the incremental prices of the constraint
requirements measured in units of the objective. We show below how these prices
are related to the Lagrange multipliers of the problem having c = 0.

Sensitivity Theorem. Let f , h ∈ C2 and consider the family of problems

minimize f�x�

subject to h�x� = c�
(29)

Suppose for c = 0 there is a local solution x∗ that is a regular point and that,
together with its associated Lagrange multiplier vector �, satisfies the second-
order sufficiency conditions for a strict local minimum. Then for every c ∈ Em

in a region containing 0 there is an x�c�, depending continuously on c, such
that x�0� = x∗ and such that x�c� is a local minimum of (29). Furthermore,

� cf�x�c��

]

c=0

= −�T �

Proof. Consider the system of equations

�f�x�+�T �h�x� = 0 (30)

h�x� = c� (31)

By hypothesis, there is a solution x∗, � to this system when c = 0. The Jacobian
matrix of the system at this solution is

[
L�x∗� �h�x∗�T

�h�x∗� 0

]

�
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Because by assumption x∗ is a regular point and L�x∗� is positive definite on M ,
it follows that this matrix is nonsingular (see Exercise 11). Thus, by the Implicit
Function Theorem, there is a solution x�c����c� to the system which is in fact
continuously differentiable.

By the chain rule we have

� cf�x�c��

]

c=0

= �xf�x∗�� cx�0��

and

� ch�x�c��

]

c=0

= �xh�x∗�� cx�0��

In view of (31), the second of these is equal to the identity I on Em, while this, in
view of (30), implies that the first can be written

� cf�x�c��

]

c=0

= −�T �

11.8 INEQUALITY CONSTRAINTS
We consider now problems of the form

minimize f�x�

subject to h�x� = 0 (32)

g�x� � 0�

We assume that f and h are as before and that g is a p-dimensional function.
Initially, we assume f� h� g ∈ C1.

There are a number of distinct theories concerning this problem, based on
various regularity conditions or constraint qualifications, which are directed toward
obtaining definitive general statements of necessary and sufficient conditions. One
can by no means pretend that all such results can be obtained as minor extensions
of the theory for problems having equality constraints only. To date, however, these
alternative results concerning necessary conditions have been of isolated theoretical
interest only—for they have not had an influence on the development of algorithms,
and have not contributed to the theory of algorithms. Their use has been limited to
small-scale programming problems of two or three variables. We therefore choose
to emphasize the simplicity of incorporating inequalities rather than the possible
complexities, not only for ease of presentation and insight, but also because it is
this viewpoint that forms the basis for work beyond that of obtaining necessary
conditions.
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First-Order Necessary Conditions
With the following generalization of our previous definition it is possible to parallel
the development of necessary conditions for equality constraints.

Definition. Let x∗ be a point satisfying the constraints

h�x∗� = 0� g�x∗� � 0� (33)

and let J be the set of indices j for which gj�x∗� = 0. Then x∗ is said to be a
regular point of the constraints (33) if the gradient vectors �hi�x∗�, �gj�x∗�,
1 � i � m�j ∈ J are linearly independent.

We note that, following the definition of active constraints given in
Section 11.1, a point x∗ is a regular point if the gradients of the active constraints
are linearly independent. Or, equivalently, x∗ is regular for the constraints if it is
regular in the sense of the earlier definition for equality constraints applied to the
active constraints.

Karush–Kuhn–Tucker Conditions. Let x∗ be a relative minimum point for the
problem

minimize f�x�

subject to h�x� = 0� g�x� � 0�
(34)

and suppose x∗ is a regular point for the constraints. Then there is a vector
� ∈ Em and a vector � ∈ Ep with � � 0 such that

�f�x∗�+�T �h�x∗�+�T �g�x∗� = 0 (35)

�T g�x∗� = 0� (36)

Proof. We note first, since � � 0 and g�x∗� � 0, (36) is equivalent to the statement
that a component of � may be nonzero only if the corresponding constraint is
active. This a complementary slackness condition, stating that g�x∗�i < 0 implies
�i = 0 and �i > 0 implies g�x∗�i = 0.

Since x∗ is a relative minimum point over the constraint set, it is also a relative
minimum over the subset of that set defined by setting the active constraints to zero.
Thus, for the resulting equality constrained problem defined in a neighborhood of
x∗, there are Lagrange multipliers. Therefore, we conclude that (35) holds with
�j = 0 if gj�x∗� �= 0 (and hence (36) also holds).

It remains to be shown that � � 0. Suppose �k < 0 for some k ∈ J . Let S
and M be the surface and tangent plane, respectively, defined by all other active
constraints at x∗. By the regularity assumption, there is a y such that y ∈ M and
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�gk�x∗�y < 0. Let x�t� be a curve on S passing through x∗ (at t = 0) with ẋ�0� = y.
Then for small t � 0, x�t� is feasible, and

df

dt
�x�t��

]

t=0

= �f�x∗�y < 0

by (35), which contradicts the minimality of x∗.

Example. Consider the problem

minimize 2x2
1 +2x1x2 +x2

2 −10x1 −10x2

subject to x2
1 +x2

2 � 5

3x1 +x2 � 6�

The first-order necessary conditions, in addition to the constraints, are

4x1 +2x2 −10+2�1x1 +3�2 = 0

2x1 +2x2 −10+2�1x2 +�2 = 0

�1 � 0� �2 � 0

�1�x
2
1 +x2

2 −5� = 0

�2�3x1 +x2 −6� = 0�

To find a solution we define various combinations of active constraints and check
the signs of the resulting Lagrange multipliers. In this problem we can try setting
none, one, or two constraints active. Assuming the first constraint is active and the
second is inactive yields the equations

4x1 +2x2 −10+2�1x1 = 0

2x1 +2x2 −10+2�1x2 = 0

x2
1 +x2

2 = 5�

which has the solution

x1 = 1� x2 = 2� �1 = 1�

This yields 3x1 + x2 = 5 and hence the second constraint is satisfied. Thus, since
�1 > 0, we conclude that this solution satisfies the first-order necessary conditions.
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Second-Order Conditions
The second-order conditions, both necessary and sufficient, for problems with
inequality constraints, are derived essentially by consideration only of the equality
constrained problem that is implied by the active constraints. The appropriate
tangent plane for these problems is the plane tangent to the active constraints.

Second-Order Necessary Conditions. Suppose the functions f� g� h ∈ C2 and
that x∗ is a regular point of the constraints (33). If x∗ is a relative minimum
point for problem (32), then there is a � ∈ Em, � ∈ Ep, � � 0 such that (35)
and (36) hold and such that

L�x∗� = F�x∗�+�T H�x∗�+�T G�x∗� (37)

is positive semidefinite on the tangent subspace of the active constraints at x∗.

Proof. If x∗ is a relative minimum point over the constraints (33), it is also a
relative minimum point for the problem with the active constraints taken as equality
constraints.

Just as in the theory of unconstrained minimization, it is possible to formulate
a converse to the Second-Order Necessary Condition Theorem and thereby obtain a
Second-Order Sufficiency Condition Theorem. By analogy with the unconstrained
situation, one can guess that the required hypothesis is that L�x∗� be positive definite
on the tangent plane M . This is indeed sufficient in most situations. However, if
there are degenerate inequality constraints (that is, active inequality constraints
having zero as associated Lagrange multiplier), we must require L�x∗� to be positive
definite on a subspace that is larger than M .

Second-Order Sufficiency Conditions. Let f� g� h ∈ C2. Sufficient conditions
that a point x∗ satisfying (33) be a strict relative minimum point of problem
(32) is that there exist � ∈ Em, � ∈ Ep, such that

� � 0 (38)

�T g�x∗� = 0 (39)

�f�x∗�+�T �h�x∗�+�T1�g�x∗� = 0� (40)

and the Hessian matrix

L�x∗� = F�x∗�+�T H�x∗�+�T G�x∗� (41)

is positive definite on the subspace

M ′ = �y � �h�x∗�y = 0��gj�x∗�y = 0 for all j ∈ J	�

where

J = �j � gj�x∗� = 0��j > 0	�
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Proof. As in the proof of the corresponding theorem for equality constraints in
Section 11.5, assume that x∗ is not a strict relative minimum point; let �yk	 be a
sequence of feasible points converging to x∗ such that f�yk� � f�x∗�, and write each
yk in the form yk = x∗ + �ksk with �sk� = 1� �k > 0. We may assume that �k → 0
and sk → s∗. We have 0 � �f�x∗�s∗, and for each i = 1� � � � �m we have

�hi�x∗�s∗ = 0�

Also for each active constraint gj we have gj�yk�−gj�x∗� � 0, and hence

�gj�x∗�s∗ � 0�

If �gj�x∗�s∗ = 0 for all j ∈ J , then the proof goes through just as in Section 11.5.
If �gj�x∗�s∗ < 0 for at least one j ∈ J , then

0 � �f�x∗�s∗ = −�T �h�x∗�s∗ −�T �g�x∗�s∗ > 0�

which is a contradiction.

We note in particular that if all active inequality constraints have strictly
positive corresponding Lagrange multipliers (no degenerate inequalities), then the
set J includes all of the active inequalities. In this case the sufficient condition is that
the Lagrangian be positive definite on M , the tangent plane of active constraints.

Sensitivity
The sensitivity result for problems with inequalities is a simple restatement of the
result for equalities. In this case, a nondegeneracy assumption is introduced so
that the small variations produced in Lagrange multipliers when the constraints are
varied will not violate the positivity requirement.

Sensitivity Theorem. Let f� g� h ∈ C2 and consider the family of problems

minimize f�x�
subject to h�x� = c

g�x� � d�
(42)

Suppose that for c = 0, d = 0, there is a local solution x∗ that is a regular
point and that, together with the associated Lagrange multipliers, ��� � 0,
satisfies the second-order sufficiency conditions for a strict local minimum.
Assume further that no active inequality constraint is degenerate. Then for
every �c� d� ∈ Em+p in a region containing �0� 0� there is a solution x�c� d�,
depending continuously on �c� d�, such that x�0� 0� = x∗, and such that x�c� d�
is a relative minimum point of (42). Furthermore,

� cf�x�c� d��

]

0�0

= −�T (43)

�df�x�c� d��

]

0�0

= −�T � (44)
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11.9 ZERO-ORDER CONDITIONS AND LAGRANGE
MULTIPLIERS

Zero-order conditions for functionally constrained problems express conditions in
terms of Lagrange multipliers without the use of derivatives. This theory is not only
of great practical value, but it also gives new insight into the meaning of Lagrange
multipliers. Rather than regarding the Lagrange multipliers as separate scalars,
they are identified as components of a single vector that has a strong geometric
interpretation. As before, the basic constrained problem is

minimize f�x�

subject to h�x� = 0� g�x� ≤ 0 (45)

x ∈ ��

where x is a vector in En, and h and g are m-dimensional and p-dimensional
functions, respectively.

In purest form, zero-order conditions require that the functions that define the
objective and the constraints are convex functions and sets. (See Appendix B).

The vector-valued function g consisting of p individual component functions
g1� g2� � � � � gp is said to be convex if each of the component functions is convex.

The programming problem (45) above is termed a convex programming
problem if the functions f and g are convex, the function h is affine (that is, linear
plus a constant), and the set � ⊂ En is convex.

Notice that according to Proposition 3, Section 7.4, the set defined by each of
the inequalities gj�x� ≤ 0 is convex. This is true also of a set defined by hi�x� =
0. Since the overall constraint set is the intersection of these and � it follows from
Proposition 1 of Appendix B that this overall constraint set is itself convex. Hence the
problem can be regarded as minimize f�x�� x ∈ �1 where �1 is a convex subset of �.

With this view, one could apply the zero-order conditions of Section 7.6 to the
problem with constraint set �1. However, in the case of functional constraints it
is common to keep the structure of the constraints explicit instead of folding them
into an amorphous set.

Although it is possible to derive the zero-order conditions for (45) all at
once, treating both equality and inequality constraints together, it is notationally
cumbersome to do so and it may obscure the basic simplicity of the arguments.
For this reason, we treat equality constraints first, then inequality constraints, and
finally the combination of the two.

The equality problem is

minimize f�x�

subject to h�x� = 0 (46)

x ∈ ��

Letting Y = En, we have h(x) ∈ Y for all x. For this problem we require a regularity
condition.
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Definition. An affine function h is regular with respect to � if the set C in Y
defined by C = �y � h�x� = y for some x ∈ �	 contains an open sphere around
0; that is, C contains a set of the form �y � �y� < �	 for some � > 0.

This condition means that h�x� can attain 0 and can vary in arbitrary directions
from 0.

Notice that this condition is similar to the definition of a regular point in the
context of first-order conditions. If h has continuous derivatives at a point x∗ the
earlier regularity condition implies that �h�x∗� is of full rank and the Implicit
Function Theorem (of Appendix A) then guarantees that there is an � > 0 such that
for any y with �y − h�x∗�� < � there is an x such that h�x� = y. In other words,
there is an open sphere around y∗ = h�x∗� that is attainable. In the present situation
we assume this attainability directly, at the point 0 ∈ Y.

Next we introduce the following important construction.

Definition. The primal function associated with problem (46) is

w�y� = inf�f�x� � h�x� = y� x ∈ �	�

defined for all y ∈ C.

Notice that the primal function is defined by varying the right hand side of the
constraint. The original problem (46) corresponds to ��0�. The primal function is
illustrated in Fig. 11.6.

Proposition 1. Suppose � is convex, the function f is convex, and h is affine.
Then the primal function � is convex.

Proof. For simplicity of notation we assume that � is the entire space X. Then
we observe

���y1 + �1−��y2� = inf�f�x� � h�x� = �y1 + �1−��y2	

≤ inf�f�x� � x = �x1 + �1−��x2� h�x1� = y1� h�x2� = y2	

≤ � inf�f�x1� � h�x1� = y1	+ �1−��inf�fx2� � h�x2� = y2	

= ���y1�+ �1−����y2��

ω (y)

y

Fig. 11.6 The primal function
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We now turn to the derivation of the Lagrange multiplier result for (46).

Proposition 2. Assume that � ⊂ En is convex, f is a convex function on �
and h is an m-dimensional affine function on �. Assume that h is regular with
respect to �. If x∗ solves (46), then there is � ∈ Em such that x∗ solves the
Lagrangian problem

minimize f�x�+�T h�x�

subject to x ∈ ��

Proof. Let f ∗ = f�x∗�. Define the sets A and B in Em+1 as

A = ��r� y� � r ≥ ��y�� y ∈ C	

B = ��r� y� � r ≤ f ∗� y = 0	�

A is the epigraph of � (see Section 7.6) and B is the vertical line extending below
f ∗ and aligned with the origin. Both A and B are convex sets. Their only common
point is at �f ∗� 0�. See Fig. 11.7

According to the separating hyperplane theorem (Appendix B), there is a
hyperplane separating A and B. This hyperplane can be represented by a nonzero
vector in Em+1 of the form �s���, with � ∈ Em, and a separation constant c. The
separation conditions are

sr +�T y ≥ c for all �r� y� ∈ A

sr +�T y ≤ c for all �r� y� ∈ B�

It follows immediately that s ≥ 0 for otherwise points �r� 0� ∈ B with r very negative
would violate the second inequality.

Hyperplane ←B

A

r

y

Fig. 11.7 The sets A and B and the separating hyperplane
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Geometrically, if s = 0 the hyperplane would be vertical. We wish to show
that s �= 0, and it is for this purpose that we make use of the regularity condition.
Suppose s = 0. Then � �= 0 since both s and � cannot be zero. It follows from the
second separation inequality that c = 0 because the hyperplane must include the
point �f ∗� 0�. Now, as y ranges over a sphere centered at 0 ∈ C, the left hand side
of the first separation inequality ranges correspondingly over �T y which is negative
for some y’s. This contradicts the first separation inequality. Thus s �= 0 and thus
in fact s > 0. Without loss of generality we may, by rescaling if necessary, assume
that s = 1.

Finally, suppose x ∈ �. Then �f�x�� h�x�� ∈ A and �f�x∗�� 0� ∈ B. Thus, from
the separation inequality (with s = 1) we have

f�x�+�T h�x� ≥ f�x∗� = f�x∗�+�T h�x∗��

Hence x∗ solves the stated minimization problem.

Example 1 (Best rectangle). Consider the classic problem of finding the rectangle
of of maximum area while limiting the perimeter to a length of 4. This can be
formulated as

minimize −x1x2

subject to x1 +x2 −2 = 0

x1 ≥ 0� x2 ≥ 0�

The regularity condition is met because it is possible to make the right hand side of
the functional constraint slightly positive or slightly negative with nonnegative x1

and x2. We know the answer to the problem is x1 = x2 = 1. The Lagrange multiplier
is 
 = 1. The Lagrangian problem of Proposition 2 is

minimize −x1x2 +1 · �x1 +x2 −2�

subject to x1 ≥ 0� x2 ≥ 0�

This can be solved by differentiation to obtain x1 = x2 = 1.
However the conclusion of the proposition is not satisfied! The value of the

Lagrangian at the solution is V = −1 + 1 + 1 − 2 = −1. However, at x1 = x2 = 0
the value of the Lagrangian is V ′ = −2 which is less than V . The Lagrangian is
not minimized at the solution. The proposition breaks down because the objective
function f�x1� x2� = −x1x2 is not convex.

Example 2 (Best diagonal). As an alternative problem, consider minimizing the
length of the diagonal of a rectangle subject to the perimeter being of length 4. This
problem can be formulated as

minimize
1
2

�x2
1 +x2

2�
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subject to x1 +x2 −2 = 0

x1 ≥ 0� x2 ≥ 0�

In this case the objective function is convex. The solution is x1 = x2 = 1 and the
Lagrange multiplier is 
 = −1. The Lagrangian problem is

minimize
1
2

�x2
1 +x2

2�−1 · �x1 +x2 −2�

subject to x1 ≥ 0� x2 ≥ 0�

The value of the Lagrangian at the solution is V = 1 which in this case is a minimum
as guaranteed by the proposition. (The value at x1 = x2 = 0 is V ′ = 2.)

Inequality constraints
We outline the parallel results for the inequality constrained problem

minimize f�x�

subject to g�x� ≤ 0

x ∈ �� (47)

where g is a p-dimensional function.
We let Z = Ep and define D ⊂ Z as D = {z ∈ Z : g(x) ≤ z for some x ∈ �}. The

regularity condition (called the Slater condition) is that there is a z1 ∈ D with z1 < 0.
As before we introduce the primal function.

Definition. The primal function associated with problem (47) is

w�z� = inf�f�x� � g�x� ≤ z� x ∈ �	�

The primal function is again defined by varying the right hand side of the
constraint function, using the variable z. Now the primal function in monotonically
decreasing with z, since an increase in z enlarges the constraint region.

Proposition 3. Suppose � ⊂ En is convex and f and g are convex functions.
Then the primal function � is also convex.

Proof. The proof parallels that of Proposition 1. One simply substitutes g�x� ≤ 0
for h�x� = y throughout the series of inequalities.

The zero-order necessary Lagrangian conditions are then given by the
proposition below.

Proposition 4. Assume � is a convex subset of En and that f and g are
convex functions. Assume also that there is a point x1 ∈ � such that g�x1� < 0.
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Then, if x∗ solves (47), there is a vector � ∈ Ep with � ≥ 0 such that x∗ solves
the Lagrangian problem

minimize f�x∗�+�T g�x� (48)
subject to x ∈ ��

Furthermore, �T g�x∗� = 0.

Proof. Here is the proof outline. Let f ∗ = f�x∗�. In this case define in Ep+1 the
two sets

A =��r� 0� � r ≥ f�x�� 0 ≥ g�x�� for some x ∈ �	

B =��r� 0� � r ≤ f ∗� 0 ≤ 0	�

A is the epigraph of the primal function �. The set B is the rectangular region at
or to the left of the vertical axis and at or lower than f ∗. Both A and B are convex.
See Fig. 11.8.

The proof is made by constructing a hyperplane separating A and B. The
regularity condition guarantees that this hyperplane is not vertical.

The condition �T g�x∗� = 0 is the complementary slackness condition that is
characteristic of necessary conditions for problems with inequality constraints.

Example 4. (Quadratic program). Consider the quadratic program

minimize xT Qx + cT x

subject to aT x ≤ b

x ≥ 0�

Let � = �x � x ≥ 0	 and g�x� = aT x−b. Assume that the n×n matrix Q is positive
definite, in which case the objective function is convex. Assuming that b > 0, the
Slater regularity condition is satisfied. Hence there is a Lagrange multiplier � ≥ 0

Hyperplane
A

0

r

z

B

Fig. 11.8 The sets A and B and the separating hyperplane for inequalities
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(a scalar in this case) such that the solution x∗ to the quadratic program is also a
solution to

minimize xT Qx + cT x +��aT x −b�

subject to x ≥ 0�

and ��aT x∗ −b� = 0.

Mixed constraints
The two previous results can be combined to obtain zero-order conditions for the
problem

minimize f�x�

subject to h�x� = 0� g�x� ≤ 0 (49)

x ∈ ��

Zero-order Lagrange Theorem. Assume that � ⊂ En is a convex set, f and
g are convex functions of dimension 1 and p, respectively, and h is affine of
dimension m. Assume also that h satisfies the regularity condition with respect
to � and that there is an x1 ∈ � with h�x1� = 0 and g�x1� < 0. Suppose x∗

solves (49). Then there are vectors � ∈ Em and � ∈ Ep with � ≥ 0 such that
x∗ solves the Lagrangian problem

minimize f�x�+�T h�x�+�T g�x� (50)

subject to x ∈ ��

Furthermore, �T g�x∗� = 0.

The convexity requirements of this result are satisfied in many practical
problems. Indeed convex programming problems are both pervasive and relatively
well treated by theory and numerical methods. The corresponding theory also
motivates many approaches to general nonlinear programming problems. In fact,
it will be apparent that many methods attempt to “convexify” a general nonlinear
problem either by changing the formulation of the underlying application or by
introducing devices that temporarily relax as the method progresses.

Zero-order sufficient conditions
The sufficiency conditions are very strong and do not require convexity.

Proposition 5. (Sufficiency Conditions). Suppose f is a real-valued function
on a set � ⊂ En. Suppose also that h and g are, respectively, m-dimensional
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and p-dimensional functions on �. Finally, suppose there are vectors x∗ ∈ �,
� ∈ Em, and � ∈ Ep with � ≥ 0 such that

f�x∗�+�T h�x∗�+�T g�x∗� ≤ f�x�+�T h�x�+�T g�x�

for all x ∈ �. Then x∗ solves

minimize f�x�

subject to h�x� = h�x∗�

g�x� ≤ g�x∗�

x ∈ ��

Proof. Suppose there is x1 ∈ � with f�x1� < f�x∗�, h�x1� = h�x∗�, and g�x1� ≤
g�x∗�� From � ≥ 0 it is clear that �T g�x1� ≤ �T g�x∗�. It follows that f�x1� +
�T h�x1�+�T g�x1� < f�x∗�+�T h�x∗�+�T g�x∗�, which is a contradiction.

This result suggests that Lagrange multiplier values might be guessed and used
to define a Lagrangian which is subsequently minimized. This will produce a special
value of x and special values of the right hand sides of the constraints for which
this x is optimal. Indeed, this approach is characteristic of duality methods treated
in Chapter 14.

The theory of this section has an inherent geometric simplicity captured clearly
by Figs. 11.7 and 11.8. It raises ones’s level of understanding of Lagrange multipliers
and sets the stage for the theory of convex duality presented in Chapter 14. It is
certainly possible to jump ahead and read that now.

11.10 SUMMARY
Given a minimization problem subject to equality constraints in which all functions
are smooth, a necessary condition satisfied at a minimum point is that the gradient
of the objective function is orthogonal to the tangent plane of the constraint surface.
If the point is regular, then the tangent plane has a simple representation in terms of
the gradients of the constraint functions, and the above condition can be expressed
in terms of Lagrange multipliers.

If the functions have continuous second partial derivatives and Lagrange multi-
pliers exist, then the Hessian of the Lagrangian restricted to the tangent plane plays
a role in second-order conditions analogous to that played by the Hessian of the
objective function in unconstrained problems. Specifically, the restricted Hessian
must be positive semidefinite at a relative minimum point and, conversely, if it is
positive definite at a point satisfying the first-order conditions, that point is a strict
local minimum point.

Inequalities are treated by determining which of them are active at a solution.
An active inequality then acts just like an equality, except that its associated
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Lagrange multiplier can never be negative because of the sensitivity interpretation
of the multipliers.

The necessary conditions for convex problems can be expressed without deriva-
tives, and these are according termed zero-order conditions. These conditions are
highly geometric in character and explicitly treat the Lagrange multiplier as a vector
in a space having dimension equal to that of the right-hand-side of the constraints.
This Lagrange multiplier vector defines a hyperplane that separates the epigraph
of the primal function from a set of unattainable objective and constraint value
combinations.

11.11 EXERCISES
1. In E2 consider the constraints

x1 � 0

x2 � 0

x2 − �x1 −1�2 � 0�

Show that the point x1 = 1, x2 = 0 is feasible but is not a regular point.

2. Find the rectangle of given perimeter that has greatest area by solving the first-order
necessary conditions. Verify that the second-order sufficiency conditions are satisfied.

3. Verify the second-order conditions for the entropy example of Section 11.4.

4. A cardboard box for packing quantities of small foam balls is to be manufactured as
shown in Fig. 11.9. The top, bottom, and front faces must be of double weight (i.e.,
two pieces of cardboard). A problem posed is to find the dimensions of such a box that
maximize the volume for a given amount of cardboard, equal to 72 sq. ft.

a) What are the first-order necessary conditions?
b) Find x� y� z.
c) Verify the second-order conditions.

x

z front

y

Fig. 11.9 Packing box
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5. Define

L =
⎡

⎣
4 3 2
3 1 1
2 1 1

⎤

⎦ � h = �1� 1� 0��

and let M be the subspace consisting of those points x = �x1� x2� x3� satisfying hT x = 0.

a) Find LM .
b) Find the eigenvalues of LM .
c) Find

p�
� = det
[

0 hT

−h L− I


]

�

d) Apply the bordered Hessian test.

6. Show that zT x = 0 for all x satisfying Ax = 0 if and only if z = AT w for some w. (Hint:
Use the Duality Theorem of Linear Programming.)

7. After a heavy military campaign a certain army requires many new shoes. The quarter-
master can order three sizes of shoes. Although he does not know precisely how many
of each size are required, he feels that the demand for the three sizes are independent
and the demand for each size is uniformly distributed between zero and three thousand
pairs. He wishes to allocate his shoe budget of four thousand dollars among the three
sizes so as to maximize the expected number of men properly shod. Small shoes cost
one dollar per pair, medium shoes cost two dollars per pair, and large shoes cost four
dollars per pair. How many pairs of each size should he order?

8. Optimal control. A one-dimensional dynamic process is governed by a difference
equation

x�k+1� = ��x�k��u�k�� k�

with initial condition x�0� = x0. In this equation the value x�k� is called the state at step
k and u�k� is the control at step k. Associated with this system there is an objective
function of the form

J =
N∑

k=0

��x�k��u�k�� k��

In addition, there is a terminal constraint of the form

g�x�N +1�� = 0�

The problem is to find the sequence of controls u�0�� u�1�� u�2�� � � � � u�N� and corre-
sponding state values to minimize the objective function while satisfying the terminal
constraint. Assuming all functions have continuous first partial derivatives and that the
regularity condition is satisfied, show that associated with an optimal solution there is a
sequence 
�k�� k = 0� 1� � � � �N and a � such that


�k−1� = 
�k��x�x�k��u�k�� k�+�x�x�k��u�k�� k�� k = 1� 2� � � � �N


�N� = �gx�x�N +1��

�u�x�k�� u�k�� k�+
�k��u�x�k��u�k�� k� = 0� k = 0� 1� 2� � � � �N�
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9. Generalize Exercise 9 to include the case where the state x�k� is an n-dimensional vector
and the control u�k� is an m-dimensional vector at each stage k.

10. An egocentric young man has just inherited a fortune F and is now planning how to
spend it so as to maximize his total lifetime enjoyment. He deduces that if x�k� denotes
his capital at the beginning of year k, his holdings will be approximately governed by
the difference equation

x�k+1� = �x�k�−u�k�

x�0� = F�

where � � 1 (with �−1 as the interest rate of investment) and where u�k� is the amount
spent in year k. He decides that the enjoyment achieved in year k can be expressed as
��u�k�� where �, his utility function, is a smooth function, and that his total lifetime
enjoyment is

J =
N∑

k=0

��u�k���k�

where the term �k �0 < � < 1� reflects the notion that future enjoyment is counted
less today. The young man wishes to determine the sequence of expenditures that will
maximize his total enjoyment subject to the condition x�N +1� = 0.

a) Find the general optimality relationship for this problem.
b) Find the solution for the special case ��u� = u1/2.

11. Let A be an m×n matrix of rank m and let L be an n×n matrix that is symmetric and
positive definite on the subspace M = �x � Ax = 0	. Show that the �n+m�× �n+m�
matrix

[
L AT

A 0

]

is nonsingular.

12. Consider the quadratic program

minimize
1
2

xT Qx −bT x

subject to Ax = c�

Prove that x∗ is a local minimum point if and only if it is a global minimum point. (No
convexity is assumed.)

13. Maximize 14x−x2 +6y −y2 +7 subject to x+y � 2� x+2y � 3.

14. In the quadratic program example of Section 11.9, what are more general conditions on
a and b that satisfy the Slater condition?

15. What are the general zero-order Lagrangian conditions for the problem (46) without the
regularity condition? [The coefficient of f will be zero, so there is no real condition.]

16. Show that the problem of finding the rectangle of maximum area with a diagonal of
unit length can be formulated as an unconstrained convex programming problem using
trigonometric functions. [Hint: use variable � over the range 0 ≤ � ≤ 45 degrees.]
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Chapter 12 PRIMAL METHODS

In this chapter we initiate the presentation, analysis, and comparison of algorithms
designed to solve constrained minimization problems. The four chapters that
consider such problems roughly correspond to the following classification scheme.
Consider a constrained minimization problem having n variables and m constraints.
Methods can be devised for solving this problem that work in spaces of dimension
n−m�n�m, or n+m. Each of the following chapters corresponds to methods in
one of these spaces. Thus, the methods in the different chapters represent quite
different approaches and are founded on different aspects of the theory. However,
there are also strong interconnections between the methods of the various chapters,
both in the final form of implementation and in their performance. Indeed, there
soon emerges the theme that the rates of convergence of most practical algorithms
are determined by the structure of the Hessian of the Lagrangian much like the
structure of the Hessian of the objective function determines the rates of conver-
gence for a wide assortment of methods for unconstrained problems. Thus, although
the various algorithms of these chapters differ substantially in their motivation, they
are ultimately found to be governed by a common set of principles.

12.1 ADVANTAGE OF PRIMAL METHODS
We consider the question of solving the general nonlinear programming problem

minimize f�x�

subject to g�x� � 0

h�x� = 0� (1)

where x is of dimension n, while f� g, and h have dimensions 1� p, and m, respec-
tively. It is assumed throughout the chapter that all of the functions have continuous
partial derivatives of order three. Geometrically, we regard the problem as that of
minimizing f over the region in En defined by the constraints.

By a primal method of solution we mean a search method that works on
the original problem directly by searching through the feasible region for the
optimal solution. Each point in the process is feasible and the value of the objective
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function constantly decreases. For a problem with n variables and having m equality
constraints only, primal methods work in the feasible space, which has dimension
n−m.

Primal methods possess three significant advantages that recommend their use
as general procedures applicable to almost all nonlinear programming problems.
First, since each point generated in the search procedure is feasible, if the process
is terminated before reaching the solution (as practicality almost always dictates
for nonlinear problems), the terminating point is feasible. Thus this final point is a
feasible and probably nearly optimal solution to the original problem and therefore
may represent an acceptable solution to the practical problem that motivated the
nonlinear program. A second attractive feature of primal methods is that, often,
it can be guaranteed that if they generate a convergent sequence, the limit point
of that sequence must be at least a local constrained minimum. Finally, a major
advantage is that most primal methods do not rely on special problem structure,
such as convexity, and hence these methods are applicable to general nonlinear
programming problems.

Primal methods are not, however, without major disadvantages. They require a
phase I procedure (see Section 3.5) to obtain an initial feasible point, and they are all
plagued, particularly for problems with nonlinear constraints, with computational
difficulties arising from the necessity to remain within the feasible region as the
method progresses. Some methods can fail to converge for problems with inequality
constraints unless elaborate precautions are taken.

The convergence rates of primal methods are competitive with those of other
methods, and particularly for linear constraints, they are often among the most
efficient. On balance their general applicability and simplicity place these methods
in a role of central importance among nonlinear programming algorithms.

12.2 FEASIBLE DIRECTION METHODS
The idea of feasible direction methods is to take steps through the feasible region
of the form

xk+1 = xk +�kdk� (2)

where dk is a direction vector and �k is a nonnegative scalar. The scalar is chosen
to minimize the objective function f with the restriction that the point xk+1 and
the line segment joining xk and xk+1 be feasible. Thus, in order that the process
of minimizing with respect to � be nontrivial, an initial segment of the ray xk +
�dk�� > 0 must be contained in the feasible region. This motivates the use of
feasible directions for the directions of search. We recall from Section 7.1 that a
vector dk is a feasible direction (at xk) if there is an �̄ > 0 such that xk + �dk

is feasible for all �� 0 � � � �̄. A feasible direction method can be considered
as a natural extension of our unconstrained descent methods. Each step is the
composition of selecting a feasible direction and a constrained line search.
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Example 1 (Simplified Zoutendijk method). One of the earliest proposals for a
feasible direction method uses a linear programming subproblem. Consider the
problem with linear inequality constraints

minimize f�x� (3)

subject to aT
1 x � b1

·
·
·
aT

mx � bm�

Given a feasible point, xk, let I be the set of indices representing active constraints,
that is, aT

i xk = bi for i ∈ I . The direction vector dk is then chosen as the solution to
the linear program

minimize �f�xk�d

subject to aT
i d � 0� i ∈ I (4)
n∑

i=1

�di� = 1�

where d = �d1�d2� � � � � dn�. The last equation is a normalizing equation that ensures
a bounded solution. (Even though it is written in terms of absolute values, the
problem can be converted to a linear program; see Exercise 1.) The other constraints
assure that vectors of the form xk +�dk will be feasible for sufficiently small � > 0,
and subject to these conditions, d is chosen to line up as closely as possible with the
negative gradient of f . In some sense this will result in the locally best direction in
which to proceed. The overall procedure progresses by generating feasible directions
in this manner, and moving along them to decrease the objective.

There are two major shortcomings of feasible direction methods that require
that they be modified in most cases. The first shortcoming is that for general
problems there may not exist any feasible directions. If, for example, a problem had
nonlinear equality constraints, we might find ourselves in the situation depicted by
Fig. 12.1 where no straight line from xk has a feasible segment. For such problems
it is necessary either to relax our requirement of feasibility by allowing points to
deviate slightly from the constraint surface or to introduce the concept of moving
along curves rather than straight lines.

xk
Feasible
set

Fig. 12.1 No feasible direction
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A second shortcoming is that in simplest form most feasible direction methods
are not globally convergent. They are subject to jamming (sometimes referred to as
zigzagging) where the sequence of points generated by the process converges to a
point that is not even a constrained local minimum point. This phenomenon can be
explained by the fact that the algorithmic map is not closed.

The algorithm associated with a method of feasible directions can generally be
written as the composition of two maps A = MD, where D is a map that selects a
direction and M is the map corresponding to constrained minimization in the given
direction. (We use the new notation M rather than S, since now the line search
is constrained to the feasible region.) Unfortunately, it is quite often the case in
feasible direction methods that M and D are not both closed.

Example 2 (M not closed). Consider the region shown in Fig. 12.2 together with
the sequence of feasible points �xk� and feasible directions �dk�. We have xk → x∗

and dk → d∗. Also from the diagram and the direction of �fT it is clear that

M�xk� dk� = xk+1 → x∗� M�x∗� d∗� = y �= x∗�

Thus M is not closed at �x∗� d∗�.

Example 3 (D not closed). In the simplified method presented in Example 1, the
feasible direction selection map D is not closed. This can be seen from Fig. 12.3
where the directions are shown for a convergent sequence of points, and the limiting
direction is not equal to the direction at the limiting point. Basically, nonclosedness

y

d*

x*

∇f T

d4

d3

d2

d1

x1

x2 x3

x4

x5

Fig. 12.2 Example of M not closed
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d1

x1 x2 x3 x*

d2 d3

d*

∇f 
T

Fig. 12.3 Example of D not closed

is caused in this case by the fact that the method used for generating the feasible
direction changes suddenly when an additional constraint becomes active.

It is possible to develop feasible direction algorithms that are closed and hence
not subject to jamming. Some procedures for doing so are discussed in Exercises 4 to
7. However, such methods can become somewhat complicated. A simpler approach
for treating inequality constraints is to use an active set method, as discussed in the
next section.

12.3 ACTIVE SET METHODS
The idea underlying active set methods is to partition inequality constraints into
two groups: those that are to be treated as active and those that are to be treated as
inactive. The constraints treated as inactive are essentially ignored.

Consider the constrained problem

minimize f�x�

subject to g�x� � 0�
(5)

which for simplicity of the current discussion is taken to have inequality constraints
only. The inclusion of equality constraints is straightforward, as will become clear.

The necessary conditions for this problem are

�f�x�+�T �g�x� = 0

g�x� � 0

�T g�x� = 0

� � 0�

(6)
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(See Section 11.8.) These conditions can be expressed in a somewhat simpler form
in terms of the set of active constraints. Let A denote the index set of active
constraints; that is, A is the set of i such that gi�x∗� = 0. Then the necessary
conditions (6) become

�f�x�+∑
i∈A

	i�gi�x� = 0

gi�x� = 0� i ∈ A

gi�x� < 0� i � A (7)

�i � 0� i ∈ A

�i = 0� i � A

The first two lines of these conditions correspond identically to the necessary
conditions of the equality constrained problem obtained by requiring the active
constraints to be zero. The next line guarantees that the inactive constraints are
satisfied, and the sign requirement of the Lagrange multipliers guarantees that every
constraint that is active should be active.

It is clear that if the active set were known, the original problem could be
replaced by the corresponding problem having equality constraints only. Alter-
natively, suppose an active set was guessed and the corresponding equality
constrained problem solved. Then if the other constraints were satisfied and
the Lagrange multipliers turned out to be nonnegative, that solution would be
correct.

The idea of active set methods is to define at each step, or at each phase, of
an algorithm a set of constraints, termed the working set, that is to be treated as
the active set. The working set is chosen to be a subset of the constraints that are
actually active at the current point, and hence the current point is feasible for the
working set. The algorithm then proceeds to move on the surface defined by the
working set of constraints to an improved point. At this new point the working
set may be changed. Overall, then, an active set method consists of the following
components: (1) determination of a current working set that is a subset of the current
active constraints, and (2) movement on the surface defined by the working set to
an improved point.

There are several methods for determining the movement on the surface
defined by the working set. (This surface will be called the working surface.)
The most important of these methods are discussed in the following sections.
The direction of movement is generally determined by first-order or second-order
approximations of the functions at the current point in a manner similar to that
for unconstrained problems. The asymptotic convergence properties of active set
methods depend entirely on the procedure for moving on the working surface,
since near the solution the working set is generally equal to the correct active set,
and the process simply moves successively on the surface determined by those
constraints.
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Changes in Working Set
Suppose that for a given working set W the problem with equality constraints

minimize f�x�
subject to gi�x� = 0� i ∈ W

is solved yielding the point xW that satisfies gi�xW � < 0, i � W . This point satisfies
the necessary conditions

�f�xW �+∑

i∈W

	i�gi�xW � = 0� (8)

If 	i � 0 for all i ∈ W , then the point xW is a local solution to the original problem.
If, on the other hand, there is an i ∈ W such that 	i < 0, then the objective can
be decreased by relaxing constraint i. This follows directly from the sensitivity
interpretation of Lagrange multipliers, since a small decrease in the constraint value
from 0 to −c would lead to a change in the objective function of 	ic, which is
negative. Thus, by dropping the constraint i from the working set, an improved
solution can be obtained. The Lagrange multiplier of a problem thereby serves as
an indication of which constraints should be dropped from the working set. This is
illustrated in Fig. 12.4. In the figure, x is the minimum point of f on the surface (a
curve in this case) defined by g1�x� = 0. However, it is clear that the corresponding
Lagrange multiplier 	1 is negative, implying that g1 should be dropped. Since �f
points outside, it is clear that a movement toward the interior of the feasible region
will indeed decrease f .

During the course of minimizing f�x� over the working surface, it is necessary
to monitor the values of the other constraints to be sure that they are not violated,
since all points defined by the algorithm must be feasible. It often happens that
while moving on the working surface a new constraint boundary is encountered. It
is then convenient to add this constraint to the working set, proceeding on a surface
of one lower dimension than before. This is illustrated in Fig. 12.5. In the figure
the working constraint is just g1 = 0 for x1� x2� x3. A boundary is encountered at
the next step, and therefore g2 = 0 is adjoined to the set of working constraints.

g1 = 0

∇f 
T

g2 = 0

x

Feasible region

∇g1
T

Fig. 12.4 Constraint to be dropped
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g2 = 0

g1 = 0

x5 x4

x2

x3

x1

x0

Fig. 12.5 Constraint added to working set

A complete active set strategy for systematically dropping and adding
constraints can be developed by combining the above two ideas. One starts with a
given working set and begins minimizing over the corresponding working surface.
If new constraint boundaries are encountered, they may be added to the working
set, but no constraints are dropped from the working set. Finally, a point is obtained
that minimizes f with respect to the current working set of constraints. The corre-
sponding Lagrange multipliers are determined, and if they are all nonnegative the
solution is optimal. Otherwise, one or more constraints with negative Lagrange
multipliers are dropped from the working set. The procedure is reinitiated with this
new working set, and f will strictly decrease on the next step.

An active set method built upon this basic active set strategy requires that a
procedure be defined for minimization on a working surface that allows constraints
to be added to the working set when they are encountered, and that, after dropping
a constraint, insures that the objective is strictly decreased. Such a method is
guaranteed to converge to the optimal solution, as shown below.

Active Set Theorem. Suppose that for every subset W of the constraint indices,
the constrained problem

minimize f�x�
subject to gi�x� = 0� i ∈ W

(9)

is well-defined with a unique nondegenerate solution (that is, for all i ∈ W ,
	i �= 0). Then the sequence of points generated by the basic active set strategy
converges to the solution of the inequality constrained problem (6).

Proof. After the solution corresponding to one working set is found, a decrease
in the objective is made, and hence it is not possible to return to that working set.
Since there are only a finite number of working sets, the process must terminate.

The difficulty with the above procedure is that several problems with incorrect
active sets must be solved. Furthermore, the solutions to these intermediate problems
must, in general, be exact global minimum points in order to determine the correct
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sign of the Lagrange multipliers and to assure that during the subsequent descent
process the current working surface is not encountered again.

In practice one deviates from the ideal basic method outlined above by dropping
constraints using various criteria before an exact minimum on the working surface
is found. Convergence cannot be guaranteed for many of these methods, and indeed
they are subject to zigzagging (or jamming) where the working set changes an
infinite number of times. However, experience has shown that zigzagging is very
rare for many algorithms, and in practice the active set strategy with various
refinement is often very effective.

It is clear that a fundamental component of an active set method is the algorithm
for solving a problem with equality constraints only, that is, for minimizing on the
working surface. Such methods and their analyses are presented in the following
sections.

12.4 THE GRADIENT PROJECTION METHOD
The gradient projection method is motivated by the ordinary method of steepest
descent for unconstrained problems. The negative gradient is projected onto the
working surface in order to define the direction of movement. We present it here
in a simplified form that is based on a pure active set strategy.

Linear Constraints
Consider first problems of the form

minimize f�x�
subject to aT

i x � bi� i ∈ I1

aT
i x = bi� i ∈ I2

(10)

having linear equalities and inequalities.
A feasible solution to the constraints, if one exists, can be found by application

of the phase I procedure of linear programming; so we shall always assume that
our descent process is initiated at such a feasible point. At a given feasible point x
there will be a certain number q of active constraints satisfying aT

i x = bi and some
inactive constraints aT

i x < bi. We initially take the working set W�x� to be the set
of active constraints.

At the feasible point x we seek a feasible direction vector d satisfying
�f�x�d < 0, so that movement in the direction d will cause a decrease in the
function f . Initially, we consider directions satisfying aT

i d = 0, i ∈ W�x� so that
all working constraints remain active. This requirement amounts to requiring that
the direction vector d lie in the tangent subspace M defined by the working set of
constraints. The particular direction vector that we shall use is the projection of the
negative gradient onto this subspace.

To compute this projection let Aq be defined as composed of the rows of
working constraints. Assuming regularity of the constraints, as we shall always
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assume, Aq will be a q × n matrix of rank q < n. The tangent subspace M in
which d must lie is the subspace of vectors satisfying Aqd = 0. This means that
the subspace N consisting of the vectors making up the rows of Aq (that is, all
vectors of the form AT

q � for � ∈ Eq) is orthogonal to M . Indeed, any vector can be
written as the sum of vectors from each of these two complementary subspaces. In
particular, the negative gradient vector −gk can be written

−gk = dk +AT
q �k (11)

where dk ∈ M and �k ∈ Eq. We may solve for �k through the requirement that
Aqdk = 0. Thus

Aqdk = −Aqgk − �AqAT
q ��k = 0� (12)

which leads to

�k = −�AqAT
q �−1Aqgk (13)

and

dk = −
I −AT
q �AqAT

q �−1Aq�gk = −Pkgk� (14)

The matrix

Pk = 
I −AT
q �AqAT

q �−1Aq� (15)

is called the projection matrix corresponding to the subspace M . Action by it on
any vector yields the projection of that vector onto M . See Exercises 8 and 9 for
other derivations of this result.

We easily check that if dk �= 0, then it is a direction of descent. Since gk +dk

is orthogonal to dk, we have

gT
k dk = �gT

k +dT
k −dT

k �dk = −�dk�2�

Thus if dk as computed from (14) turns out to be nonzero, it is a feasible direction
of descent on the working surface.

We next consider selection of the step size. As � is increased from zero, the
point x + �d will initially remain feasible and the corresponding value of f will
decrease. We find the length of the feasible segment of the line emanating from x
and then minimize f over this segment. If the minimum occurs at the endpoint, a
new constraint will become active and will be added to the working set.

Next, consider the possibility that the projected negative gradient is zero. We
have in that case

�f�xk�+�T
k Aq = 0� (16)
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and the point xk satisfies the necessary conditions for a minimum on the working
surface. If the components of �k corresponding to the active inequalities are all
nonnegative, then this fact together with (16) implies that the Karush-Kuhn-Tucker
conditions for the original problem are satisfied at xk and the process terminates. In
this case the �k found by projecting the negative gradient is essentially the Lagrange
multiplier vector for the original problem (except that zero-valued multipliers must
be appended for the inactive constraints).

If, however, at least one of those components of �k is negative, it is possible,
by relaxing the corresponding inequality, to move in a new direction to an improved
point. Suppose that 	jk, the jth component of �k, is negative and the indexing
is arranged so that the corresponding constraint is the inequality aT

j x � bj . We
determine the new direction vector by relaxing the jth constraint and projecting
the negative gradient onto the subspace determined by the remaining q − 1 active
constraints. Let Aq̄ denote the matrix Aq with row aj deleted. We have for some �k

−gk = AT
q �k (17)

−gk = dk +AT
q �k� (18)

where dk is the projection of −gk using Aq̄. It is immediately clear that dk �= 0, since
otherwise (18) would be a special case of (17) with 	jk = 0 which is impossible,
since the rows of Aq are linearly independent. From our previous work we know
that gT

k d̄k < 0. Multiplying the transpose of (17) by dk and using Aq̄dk = 0 we
obtain

0 > gT
k dk = −	jkaT

j dk� (19)

Since 	jk < 0 we conclude that aT
j dk < 0. Thus the vector dk is not only a direction

of descent, but it is a feasible direction, since aT
i dk = 0� i ∈ W�xk�, i �= j, and

aT
j dk < 0. Hence j can be dropped from W�xk�.

In summary, one step of the algorithm is as follows: Given a feasible point x

1. Find the subspace of active constraints M , and form Aq, W�x�.
2. Calculate P = I −AT

q �AqAT
q �−1Aq and d = −P�f�x�T .

3. If d �= 0, find �1 and �2 achieving, respectively,

max �� � x +�d is feasible �

min �f�x +�d� � 0 � � � �1��

Set x to x +�2d and return to (1).
4. If d = 0, find � = −�AqAT

q �−1Aq�f�x�T .

a) If 	j � 0, for all j corresponding to active inequalities, stop; x satisfies the
Karush-Kuhn-Tucker conditions.

b) Otherwise, delete the row from Aq corresponding to the inequality with the
most negative component of � (and drop the corresponding constraint from
W�x�� and return to (2).



370 Chapter 12 Primal Methods

The projection matrix need not be recomputed in its entirety at each new
point. Since the set of active constraints in the working set changes by at most one
constraint at a time, it is possible to calculate one required projection matrix from
the previous one by an updating procedure. (See Exercise 11.) This is an important
feature of the gradient projection method and greatly reduces the computation
required at each step.

Example. Consider the problem

minimize x2
1 +x2

2 +x2
3 +x2

4 −2x1 −3x4

subject to 2x1 +x2 +x3 +4x4 = 7 (20)

x1 +x2 +2x3 +x4 = 6

xi � 0� i = 1� 2� 3� 4�

Suppose that given the feasible point x = �2� 2� 1� 0� we wish to find the direction
of the projected negative gradient. The active constraints are the two equalities and
the inequality x4 � 0. Thus

Aq =
⎡

⎣
2 1 1 4
1 1 2 1
0 0 0 1

⎤

⎦ � (21)

and hence

AqAT
q =

⎡

⎣
22 9 4

9 7 1
4 1 1

⎤

⎦ �

After considerable calculation we then find

�AqAT
q �−1 = 1

11

⎡

⎣
6 −5 −19

−5 6 14
−19 14 73

⎤

⎦

and finally

P = 1
11

⎡

⎢
⎢
⎣

1 −3 1 0
−3 9 −3 0

1 −3 1 0
0 0 0 0

⎤

⎥
⎥
⎦ � (22)

The gradient at the point (2, 2, 1, 0) is g = �2� 4� 2�−3� and hence we find

d = −Pg = 1
11

�−8� 24�−8� 0��
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or normalizing by 8/11

d = �−1� 3�−1� 0�� (23)

It can be easily verified that movement in this direction does not violate the
constraints.

Nonlinear Constraints
In extending the gradient projection method to problems of the form

minimize f�x�

subject to h�x� = 0 (24)

g�x� � 0�

the basic idea is that at a feasible point xk one determines the active constraints and
projects the negative gradient onto the subspace tangent to the surface determined
by these constraints. This vector, if it is nonzero, determines the direction for the
next step. The vector itself, however, is not in general a feasible direction, since the
surface may be curved as illustrated in Fig. 12.6. It is therefore not always possible
to move along this projected negative gradient to obtain the next point.

What is typically done in the face of this difficulty is essentially to search
along a curve on the constraint surface, the direction of the curve being defined by
the projected negative gradient. A new point is found in the following way: First,
a move is made along the projected negative gradient to a point y. Then a move
is made in the direction perpendicular to the tangent plane at the original point to
a nearby feasible point on the working surface, as illustrated in Fig. 12.6. Once
this point is found the value of the objective is determined. This is repeated with

Constraint
surface

xk

xk + 1

y

–   f(xk) 

TΔ

Fig. 12.6 Gradient projection method
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various y’s until a feasible point is found that satisfies one of the standard descent
criteria for improvement relative to the original point.

This procedure of tentatively moving away from the feasible region and then
coming back introduces a number of additional difficulties that require a series of
interpolations and nonlinear equation solutions for their resolution. A satisfactory
general routine implementing the gradient projection philosophy is therefore of
necessity quite complex. It is not our purpose here to elaborate on these details but
simply to point out the general nature of the difficulties and the basic devices for
surmounting them.

One difficulty is illustrated in Fig. 12.7. If, after moving along the projected
negative gradient to a point y, one attempts to return to a point that satisfies the
old active constraints, some inequalities that were originally satisfied may then be
violated. One must in this circumstance use an interpolation scheme to find a new
point y along the negative gradient so that when returning to the active constraints
no originally nonactive constraint is violated. Finding an appropriate y is to some
extent a trial and error process. Finally, the job of returning to the active constraints
is itself a nonlinear problem which must be solved with an iterative technique. Such
a technique is described below, but within a finite number of iterations, it cannot
exactly reach the surface. Thus typically an error tolerance 
 is introduced, and
throughout the procedure the constraints are satisfied only to within 
.

Computation of the projections is also more difficult in the nonlinear case.
Lumping, for notational convenience, the active inequalities together with the equal-
ities into h�xk�, the projection matrix at xk is

Pk = I −�h�xk�
T 
�h�xk��h�xk�

T �−1�h�xk�� (25)

At the point xk this matrix can be updated to account for one more or one less
constraint, just as in the linear case. When moving from xk to xk+1, however, �h
will change and the new projection matrix cannot be found from the old, and hence
this matrix must be recomputed at each step.

S

xk

xk+1

y
y–

–    f 
TΔ

Fig. 12.7 Interpolation to obtain feasible point
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The most important new feature of the method is the problem of returning to
the feasible region from points outside this region. The type of iterative technique
employed is a common one in nonlinear programming, including interior-point
methods of linear programming, and we describe it here. The idea is, from any
point near xk, to move back to the constraint surface in a direction orthogonal
to the tangent plane at xk. Thus from a point y we seek a point of the form
y+�h�xk�

T � = y∗ such that h�y∗� = 0. As shown in Fig. 12.8 such a solution may
not always exist, but it does for y sufficiently close to xk.

To find a suitable first approximation to �, and hence to y∗, we linearize the
equation at xk obtaining

h�y +�h�xk�
T �� � h�y�+�h�xk��h�xk�

T �� (26)

the approximation being accurate for ��� and �y−x� small. This motivates the first
approximation

�1 = −
�h�xk��h�xk�
T �−1h�y� (27)

y1 = y −�h�xk�
T 
�h�xk��h�xk�

T �−1h�y�� (28)

Substituting y1 for y and successively repeating the process yields the sequence
�yj� generated by

yj+1 = yj −�h�xk�
T 
�h�xk��h�xk�

T �−1h�yj�� (29)

which, started close enough to xk and the constraint surface, will converge to a
solution y∗. We note that this process requires the same matrices as the projection
operation.

The gradient projection method has been successfully implemented and has
been found to be effective in solving general nonlinear programming problems.
Successful implementation resolving the several difficulties introduced by the
requirement of staying in the feasible region requires, as one would expect, some
degree of skill. The true value of the method, however, can be determined only
through an analysis of its rate of convergence.

xk

y

Fig. 12.8 Case in which it is impossible to return to surface
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12.5 CONVERGENCE RATE OF THE GRADIENT
PROJECTION METHOD

An analysis that directly attacked the nonlinear version of the gradient projection
method, with all of its iterative and interpolative devices, would quickly become
monstrous. To obtain the asymptotic rate of convergence, however, it is not
necessary to analyze this complex algorithm directly—instead it is sufficient to
analyze an alternate simplified algorithm that asymptotically duplicates the gradient
projection method near the solution. Through the introduction of this idealized
algorithm we show that the rate of convergence of the gradient projection method
is governed by the eigenvalue structure of the Hessian of the Lagrangian restricted
to the constraint tangent subspace.

Geodesic Descent
For simplicity we consider first the problem having only equality constraints

minimize f�x�

subject to h�x� = 0�
(30)

The constraints define a continuous surface � in En.
In considering our own difficulties with this problem, owing to the fact that the

surface is nonlinear thereby making directions of descent difficult to define, it is
well to also consider the problem as it would be viewed by a small bug confined to
the constraint surface who imagines it to be his total universe. To him the problem
seems to be a simple one. It is unconstrained, with respect to his universe, and is
only (n−m)-dimensional. He would characterize a solution point as a point where
the gradient of f (as measured on the surface) vanishes and where the appropriate
(n − m)-dimensional Hessian of f is positive semidefinite. If asked to develop a
computational procedure for this problem, he would undoubtedly suggest, since
he views the problem as unconstrained, the method of steepest descent. He would
compute the gradient, as measured on his surface, and would move along what
would appear to him to be straight lines.

Exactly what the bug would compute as the gradient and exactly what he
would consider as straight lines would depend basically on how distance between
two points on his surface were measured. If, as is most natural, we assume that he
inherits his notion of distance from the one which we are using in En, then the path
x�t� between two points x1 and x2 on his surface that minimizes

∫ x2

x1
�ẋ�t��dt would

be considered a straight line by him. Such a curve, having minimum arc length
between two given points, is called a geodesic.

Returning to our own view of the problem, we note, as we have previously, that
if we project the negative gradient onto the tangent plane of the constraint surface
at a point xk, we cannot move along this projection itself and remain feasible. We
might, however, consider moving along a curve which had the same initial heading
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as the projected negative gradient but which remained on the surface. Exactly which
such curve to move along is somewhat arbitrary, but a natural choice, inspired
perhaps by the considerations of the bug, is a geodesic. Specifically, at a given
point on the surface, we would determine the geodesic curve passing through that
point that had an initial heading identical to that of the projected negative gradient.
We would then move along this geodesic to a new point on the surface having a
lesser value of f .

The idealized procedure then, which the bug would use without a second
thought, and which we would use if it were computationally feasible (which it
definitely is not), would at a given feasible point xk (see Fig. 12.9):

1. Calculate the projection p of −�f�xk�
T onto the tangent plane at xk.

2. Find the geodesic, x�t�� t � 0, of the constraint surface having x�0� =
xk� ẋ�0� = p.

3. Minimize f�x�t�� with respect to t � 0, obtaining tk and xk+1 = x�tk�.

At this point we emphasize that this technique (which we refer to as geodesic
descent) is proposed essentially for theoretical purposes only. It does, however,
capture the main philosophy of the gradient projection method. Furthermore, as
the step size of the methods go to zero, as it does near the solution point, the
distance between the point that would be determined by the gradient projection
method and the point found by the idealized method goes to zero even faster. Thus
the asymptotic rates of convergence for the two methods will be equal, and it is,
therefore, appropriate to concentrate on the idealized method only.

Our bug confined to the surface would have no hesitation in estimating the rate
of convergence of this method. He would simply express it in terms of the smallest
and largest eigenvalues of the Hessian of f as measured on his surface. It should
not be surprising, then, that we show that the asymptotic convergence ratio is

(
A−a

A+a

)2

� (31)

xk
xk + 1

p

–g

Fig. 12.9 Geodesic descent
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where a and A are, respectively, the smallest and largest eigenvalues of L, the
Hessian of the Lagrangian, restricted to the tangent subspace M . This result parallels
the convergence rate of the method of steepest descent, but with the eigenvalues
determined from the same restricted Hessian matrix that is important in the general
theory of necessary and sufficient conditions for constrained problems. This rate,
which almost invariably arises when studying algorithms designed for constrained
problems, will be referred to as the canonical rate.

We emphasize again that, since this convergence ratio governs the convergence
of a large family of algorithms, it is the formula itself rather than its numerical
value that is important. For any given problem we do not suggest that this ratio be
evaluated, since this would be extremely difficult. Instead, the potency of the result
derives from the fact that fairly comprehensive comparisons among algorithms can
be made, on the basis of this formula, that apply to general classes of problems
rather than simply to particular problems.

The remainder of this section is devoted to the analysis that is required to
establish the convergence rate. Since this analysis is somewhat involved and not
crucial for an understanding of remaining material, some readers may wish to
simply read the theorem statement and proceed to the next section.

Geodesics
Given the surface � = �x � h�x� = 0� ⊂ En, a smooth curve, x�t� ∈ �� 0 � t � T
starting at x�0� and terminating at x�T� that minimizes the total arc length

∫ T

0
�ẋ�t��dt

with respect to all other such curves on � is said to be a geodesic connecting x�0�
and x�T�.

It is common to parameterize a geodesic x�t�� 0 � t � T so that �ẋ�t�� = 1.
The parameter t is then itself the arc length. If the parameter t is also regarded as
time, then this parameterization corresponds to moving along the geodesic curve
with unit velocity. Parameterized in this way, the geodesic is said to be normalized.
On any linear subspace of En geodesics are straight lines. On a three-dimensional
sphere, the geodesics are arcs of great circles.

It can be shown, using the calculus of variations, that any normalized geodesic
on � satisfies the condition

ẍ�t� = �hT �x�t����t� (32)

for some function � taking values in Em. Geometrically, this condition says that
if one moves along the geodesic curve with unit velocity, the acceleration at every
point will be orthogonal to the surface. Indeed, this property can be regarded as
the fundamental defining characteristic of a geodesic. To stay on the surface �, the
geodesic must also satisfy the equation

�h�x�t��ẋ�t� = 0� (33)
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since the velocity vector at every point is tangent to �. At a regular point x0

these two differential equations, together with the initial conditions x�0� = x0� ẋ�0�
specified, and �ẋ�0�� = 1, uniquely specify a curve x�t�� t � 0 that can be continued
as long as points on the curve are regular. Furthermore, �ẋ�t�� = 1 for t � 0. Hence
geodesic curves emanate in every direction from a regular point. Thus, for example,
at any point on a sphere there is a unique great circle passing through the point in
a given direction.

Lagrangian and Geodesics
Corresponding to any regular point x ∈ � we may define a corresponding Lagrange
multiplier ��x� by calculating the projection of the gradient of f onto the tangent
subspace at x, denoted M�x�. The matrix that, when operating on a vector, projects
it onto M�x� is

P�x� = I −�h�x�T 
�h�x��h�x�T �−1�h�x��

and it follows immediately that the projection of �f�x�T onto M�x� has the form

y�x� = 
�f�x�+��x�T �h�x��T � (34)

where ��x� is given explicitly as

��x�T = −�f�x��h�x�T 
�h�x��h�x�T �−1� (35)

Thus, in terms of the Lagrangian function l�x��� = f�x�+�T h�x�, the projected
gradient is

y�x� = lx�x���x��T � (36)

If a local solution to the original problem occurs at a regular point x∗ ∈ �, then
as we know

lx�x∗���x∗�� = 0� (37)

which states that the projected gradient must vanish at x∗. Defining L�x� =
lxx�x���x�� = F�x� + ��x�T H�x� we also know that at x∗ we have the second-
order necessary condition that L�x∗� is positive semidefinite on M�x∗�; that is,
zT L�x∗�z � 0 for all z ∈ M�x∗�. Equivalently, letting

L�x� = P�x�L�x�P�x�� (38)

it follows that L�x∗� is positive semidefinite.
We then have the following fundamental and simple result, valid along a

geodesic.



378 Chapter 12 Primal Methods

Proposition 1. Let x�t�� 0 � t � T , be a geodesic on �. Then

d

dt
f�x�t�� = lx�x���x��ẋ�t� (39)

d2

dt2
f�x�t�� = ẋ�t�T L�x�t��ẋ�t�� (40)

Proof. We have

d

dt
f�x�t�� = �f�x�t��ẋ�t� = lx�x���x��ẋ�t��

the second equality following from the fact that ẋ�t� ∈ M�x�. Next,

d2

dt2
f�x�t�� = ẋ�t�T F�x�t��ẋ�t�+�f�x�t��ẍ�t�� (41)

But differentiating the relation �T h�x�t�� = 0 twice, for fixed �, yields

ẋ�t�T �T H�x�t��ẋ�t�+�T �h�x�t��ẍ�t� = 0�

Adding this to (41), we have

d2

dt2
f�x�t�� = ẋ�t�T �F+�T H�ẋ�t�+ ��f�x�+�T �h�x��ẍ�t��

which is true for any fixed �. Setting � = ��x� determined as above, ��f +�T �h�T

is in M�x� and hence orthogonal to ẍ�t�, since x�t� is a normalized geodesic. This
gives (40).

It should be noted that we proved a simplified version of this result in
Chapter 11. There the result was given only for the optimal point x∗, although it
was valid for any curve. Here we have shown that essentially the same result is
valid at any point provided that we move along a geodesic.

Rate of Convergence
We now prove the main theorem regarding the rate of convergence. We assume
that all functions are three times continuously differentiable and that every point
in a region near the solution x∗ is regular. This theorem only establishes the rate
of convergence and not convergence itself so for that reason the stated hypotheses
assume that the method of geodesic descent generates a sequence �xk� converging
to x∗.

Theorem. Let x∗ be a local solution to the problem (30) and suppose that
A and a > 0 are, respectively, the largest and smallest eigenvalues of L�x∗�
restricted to the tangent subspace M�x∗�. If �xk� is a sequence generated by
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the method of geodesic descent that converges to x∗, then the sequence of
objective values �f�xk�� converges to f�x∗� linearly with a ratio no greater
than 
�A−a�/�A+a��2.

Proof. Without loss of generality we may assume f�x∗� = 0. Given a point xk it
will be convenient to define its distance from the solution point x∗ as the arc length
of the geodesic connecting x∗ and xk. Thus if x�t� is a parameterized version of the
geodesic with x�0� = x∗, �ẋ�t�� = 1� x�T� = xk, then T is the distance of xk from
x∗. Associated with such a geodesic we also have the family y�t�� 0 � t � T , of
corresponding projected gradients y�t� = lx�x���x��T , and Hessians L�t� = L�x�t��.
We write yk = y�xk�, Lk = L�xk�.

We now derive an estimate for f�xk�. Using the geodesic discussed above we
can write (setting ẋk = ẋ�T��

f�x∗�−f�xk� = −f�xk� = −yT
k ẋkT + 1

2
T 2ẋT

k Lkẋk +o�T 2�� (42)

which follows from Proposition 1. We also have

yk = −y�x∗�+y�xk� = ẏkT +o�T�� (43)

But differentiating (34) we obtain

ẏk = Lkẋk +�h�xk�
T �̇

T

k � (44)

and hence if Pk is the projection matrix onto M�xk� = Mk, we have

Pkẏk = PkLkẋk� (45)

Multiplying (43) by Pk and accounting for Pkyk = yk we have

PkẏkT = yk +o�T�� (46)

Substituting (45) into this we obtain

PkLkẋkT = yk +o�T��

Since Pkẋk = ẋk we have, defining Lk = PkLkPk,

LkẋkT = yk +o�T�� (47)

The matrix Lk is related to LMk
, the restriction of Lk to Mk, the only difference

being that while LMk
is defined only on Mk, the matrix Lk is defined on all of En

but in such a way that it agrees with LMk
on Mk and is zero on Mk

⊥. The matrix Lk
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is not invertible, but for yk ∈ Mk there is a unique solution z ∈ Mk to the equation
Lkz = yk which we denote† L

−1

k yk. With this notation we obtain from (47)

ẋkT = L
−1

k yk +o�T�� (48)

Substituting this last result into (42) and accounting for �yk� = O�T� (see (43)) we
have

f�xk� = 1
2

yT
k L

−1

k yk +o�T 2�� (49)

which expresses the objective value at xk in terms of the projected gradient.
Since �ẋk� = 1 and since Lk → L∗ as xk → x∗, we see from (47) that

o�T�+aT � �yk� � AT +o�T�� (50)

which means that not only do we have �yk� = O�T�, which was known before, but
also �yk� �= o�T�. We may therefore write our estimate (49) in the alternate form

f�xk� = 1
2

yT
k L

−1

k yk

(

1+ o�T 2�

yT
k L

−1

k yk

)

� (51)

and since o�T 2� �= yT
k L

−1

k yk = O�T 2�, we have

f�xk� = 1
2

yT
k L

−1

k yk�1+O�T��� (52)

which is the desired estimate.
Next, we estimate f�xk+1� in terms of f�xk�. Given xk now let x�t�, t � 0, be

the normalized geodesic emanating from xk ≡ x�0� in the direction of the negative
projected gradient, that is,

ẋ�0� ≡ ẋk = −yk/�yk��

Then

f�x�t�� = f�xk�+ tyT
k ẋk + t2

2
ẋT

k Lkẋk +o�t2�� (53)

This is minimized at

tk = − yT
k ẋk

ẋT
k Lkẋk

+o�tk�� (54)

† Actually a more standard procedure is to define the pseudoinverse L
†

k, and then z = L
†

kyk.
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In view of (50) this implies that tk = O�T�, tk �= o�T�. Thus tk goes to zero at
essentially the same rate as T . Thus we have

f�xk+1� = f�xk�− 1
2

�yT
k ẋk�

2

ẋT
k Lkẋk

+o�T 2�� (55)

Using the same argument as before we can express this as

f�xk�−f�xk+1� = 1
2

�yT
k yk�

2

yT
k Lkyk

�1+O�T��� (56)

which is the other required estimate.
Finally, dividing (56) by (52) we find

f�xk�−f�xk+1�

f�xk�
= �yT

k yk�
2�1+O�T��

�yT
k Lkyk��yT

k L
−1

k yk�
� (57)

and thus

f�xk+1� =
[

1− �yT
k yk�

2�1+O�T��

�yT
k Lkyk��yT

k L
−1

k yk�

]

f�xk�� (58)

Using the fact that Lk → L∗ and applying the Kantorovich inequality leads to

f�xk+1� �
[(

A−a

A+a

)2

+O�T�

]

f�xk�� (59)

Problems with Inequalities
The idealized version of gradient projection could easily be extended to problems
having nonlinear inequalities as well as equalities by following the pattern of
Section 12.4. Such an extension, however, has no real value, since the idealized
scheme cannot be implemented. The idealized procedure was devised only as a
technique for analyzing the asymptotic rate of convergence of the analytically more
complex, but more practical, gradient projection method.

The analysis of the idealized version of gradient projection given above, never-
theless, does apply to problems having inequality as well as equality constraints. If
a computationally feasible procedure is employed that avoids jamming and does not
bounce on and off constraint boundaries an infinite number of times, then near the
solution the active constraints will remain fixed. This means that near the solution
the method acts just as if it were solving a problem having the active constraints
as equality constraints. Thus the asymptotic rate of convergence of the gradient
projection method applied to a problem with inequalities is also given by (59) but



382 Chapter 12 Primal Methods

with L�x∗� and M�x∗� (and hence a and A) determined by the active constraints
at the solution point x∗. In every case, therefore, the rate of convergence is deter-
mined by the eigenvalues of the same restricted Hessian that arises in the necessary
conditions.

12.6 THE REDUCED GRADIENT METHOD
From a computational viewpoint, the reduced gradient method, discussed in this
section and the next, is closely related to the simplex method of linear programming
in that the problem variables are partitioned into basic and nonbasic groups. From
a theoretical viewpoint, the method can be shown to behave very much like the
gradient projection method.

Linear Constraints
Consider the problem

minimize f�x�

subject to Ax = b� x � 0�
(60)

where x ∈ En, b ∈ Em, A is m×n, and f is a function in C2. The constraints are
expressed in the format of the standard form of linear programming. For simplicity
of notation it is assumed that each variable is required to be non-negative—if
some variables were free, the procedure (but not the notation) would be somewhat
simplified.

We invoke the nondegeneracy assumptions that every collection of m columns
from A is linearly independent and every basic solution to the constraints has m
strictly positive variables. With these assumptions any feasible solution will have
at most n − m variables taking the value zero. Given a vector x satisfying the
constraints, we partition the variables into two groups: x = �y� z� where y has
dimension m and z has dimension n−m. This partition is formed in such a way
that all variables in y are strictly positive (for simplicity of notation we indicate the
basic variables as being the first m components of x but, of course, in general this
will not be so). With respect to the partition, the original problem can be expressed
as

minimize f�y� z� (61a)

subject to By +Cz = b (61b)

y � 0� z � 0� (61c)

where, of course, A = 
B� C�. We can regard z as consisting of the independent
variables and y the dependent variables, since if z is specified, (61b) can be uniquely
solved for y. Furthermore, a small change �z from the original value that leaves



12.6 The Reduced Gradient Method 383

z + �z nonnegative will, upon solution of (61b), yield another feasible solution,
since y was originally taken to be strictly positive and thus y + �y will also be
positive for small �y. We may therefore move from one feasible solution to another
by selecting a �z and moving z on the line z+��z�� � 0. Accordingly, y will move
along a corresponding line y+��y. If in moving this way some variable becomes
zero, a new inequality constraint becomes active. If some independent variable
becomes zero, a new direction �z must be chosen. If a dependent (basic) variable
becomes zero, the partition must be modified. The zero-valued basic variable is
declared independent and one of the strictly positive independent variables is made
dependent. Operationally, this interchange will be associated with a pivot operation.

The idea of the reduced gradient method is to consider, at each stage,
the problem only in terms of the independent variables. Since the vector of
dependent variables y is determined through the constraints (61b) from the vector
of independent variables z, the objective function can be considered to be a function
of z only. Hence a simple modification of steepest descent, accounting for the
constraints, can be executed. The gradient with respect to the independent variables
z (the reduced gradient) is found by evaluating the gradient of f�B−1b−B−1Cz� z�.
It is equal to

rT = � zf�y� z�−�yf�y� z�B−1C� (62)

It is easy to see that a point (y� z) satisfies the first-order necessary conditions for
optimality if and only if

ri = 0 for all zi > 0

ri � 0 for all zi = 0�

In the active set form of the reduced gradient method the vector z is moved in
the direction of the reduced gradient on the working surface. Thus at each step, a
direction of the form

�zi =
{−ri� i � W�z�

0� i ∈ W�z�

is determined and a descent is made in this direction. The working set is augmented
whenever a new variable reaches zero; if it is a basic variable, a new partition
is also formed. If a point is found where ri = 0 for all i � W�z� (representing a
vanishing reduced gradient on the working surface) but rj < 0 for some j ∈ W�z�,
then j is deleted from W�z� as in the standard active set strategy.

It is possible to avoid the pure active set strategy by moving away from our
active constraint whenever that would lead to an improvement, rather than waiting
until an exact minimum on the working surface is found. Indeed, this type of
procedure is often used in practice. One version progresses by moving the vector
z in the direction of the overall negative reduced gradient, except that zero-valued
components of z that would thereby become negative are held at zero. One step of
the procedure is as follows:
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1. Let �zi =
{−ri if ri < 0 or zi > 0

0 otherwise�
2. If �z is zero, stop; the current point is a solution. Otherwise, find �y =

−B−1C�z.
3. Find �1��2��3 achieving, respectively,

max �� � y +��y � 0�
max �� � z+��z � 0�
min �f�x +��x� � 0 � � � �1� 0 � � � �2�

Let x = x +�3�x.
4. If �3 < �1, return to (1). Otherwise, declare the vanishing variable in the

dependent set independent and declare a strictly positive variable in the
independent set dependent. Update B and C.

Example. We consider the example presented in Section 12.4 where the projected
negative gradient was computed:

minimize x2
1 +x2

2 +x2
3 +x2

4 −2x1 −3x4

subject to 2x1 +x2 +x3 +4x4 = 7

x1 +x2 +2x3 +x4 = 6

xi � 0� i = 1� 2� 3� 4�

We are given the feasible point x = �2� 2� 1� 0�. We may select any two of the
strictly positive variables to be the basic variables. Suppose y = �x1� x2� is selected.
In standard form the constraints are then

x1 +0 − x3 +3x4 = 1

0+x2 +3x3 −2x4 = 5

xi � 0� i = 1� 2� 3� 4�

The gradient at the current point is g = �2� 4� 2�−3�. The corresponding reduced
gradient (with respect to z = �x3� x4�) is then found by pricing-out in the usual
manner. The situation at the current point can then be summarized by the tableau

Variable x1 x2 x3 x4

Constraints
{ 1 0 −1 3 1

0 1 3 −2 5
rT 0 0 −8 −1
Current value 2 2 1 0

Tableau for Example

In this solution x3 and x4 would be increased together in a ratio of eight to one.
As they increase, x1 and x2 would follow in such a way as to keep the constraints
satisfied. Overall, in E4, the implied direction of movement is thus

d = �5�−22� 8� 1��
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If the reader carefully supplies the computational details not shown in the presen-
tation of the example as worked here and in Section 12.4, he will undoubtedly
develop a considerable appreciation for the relative simplicity of the reduced
gradient method.

It should be clear that the reduced gradient method can, as illustrated in the
example above, be executed with the aid of a tableau. At each step the tableau
of constraints is arranged so that an identity matrix appears over the m dependent
variables, and thus the dependent variables can be easily calculated from the values
of the independent variables. The reduced gradient at any step is calculated by
evaluating the n-dimensional gradient and “pricing out” the dependent variables
just as the reduced cost vector is calculated in linear programming. And when the
partition of basic and non-basic variables must be changed, a simple pivot operation
is all that is required.

Global Convergence
The perceptive reader will note the direction finding algorithm that results from the
second form of the reduced gradient method is not closed, since slight movement
away from the boundary of an inequality constraint can cause a sudden change in
the direction of search. Thus one might suspect, and correctly so, that this method
is subject to jamming. However, a trivial modification will yield a closed mapping;
and hence global convergence. This is discussed in Exercise 19.

Nonlinear Constraints
The generalized reduced gradient method solves nonlinear programming problems
in the standard form

minimize f�x�

subject to h�x� = 0� a � x � b�

where h�x� is of dimension m. A general nonlinear programming problem can
always be expressed in this form by the introduction of slack variables, if required,
and by allowing some components of a and b to take on the values +� or −�,
if necessary.

In a manner quite analogous to that of the case of linear constraints, we
introduce a nondegeneracy assumption that, at each point x, hypothesizes the
existence of a partition of x into x = �y� z� having the following properties:

i) y is of dimension m, and z is of dimension n−m.
ii) If a = �ay� az� and b = �by� bz� are the corresponding partitions of a, b, then

ay < y < by.
iii) The m×m matrix �yh�y� z� is nonsingular at x = �y� z�.



386 Chapter 12 Primal Methods

Again y and z are referred to as the vectors of dependent and independent
variables, respectively.

The reduced gradient (with respect to z) is in this case:

rT = � zf�y� z�+�T � zh�y� z��

where � satisfies

�yf�y� z�+�T �yh�y� z� = 0�

Equivalently, we have

rT = � zf�y� z�−�yf�y� z�
�yh�y� z��−1� zh�y� z�� (63)

The actual procedure is roughly the same as for linear constraints in that moves
are taken by changing z in the direction of the negative reduced gradient (with
components of z on their boundary held fixed if the movement would violate the
bound). The difference here is that although z moves along a straight line as before,
the vector of dependent variables y must move nonlinearly to continuously satisfy
the equality constraints. Computationally, this is accomplished by first moving
linearly along the tangent to the surface defined by z → z +�z� y → y +�y with
�y = −
�yh�−1� zh�z. Then a correction procedure, much like that employed in
the gradient projection method, is used to return to the constraint surface and
the magnitude bounds on the dependent variables are checked for feasibility. As
with the gradient projection method, a feasibility tolerance must be introduced to
acknowledge the impossibility of returning exactly to the constraint surface. An
example corresponding to n = 3�m = 1� a = 0� b = +� is shown in Fig. 12.10.

To return to the surface once a tentative move along the tangent is made, an
iterative scheme is employed. If the point xk was the point at the previous step,
then from any point x = �v� w� near xk one gets back to the constraint surface by
solving the nonlinear equation

h�y� w� = 0 (64)

for y (with w fixed). This is accomplished through the iterative process

yj+1 = yj − 
�yh�xk��
−1h�yj� w�� (65)

which, if started close enough to xk, will produce �yj� with yj → y, solving (64).
The reduced gradient method suffers from the same basic difficulties as the

gradient projection method, but as with the latter method, these difficulties can
all be more or less successfully resolved. Computation is somewhat less complex
in the case of the reduced gradient method, because rather than compute with

�h�x��h�x�T �−1 at each step, the matrix 
�yh�y� z��−1 is used.



12.7 Convergence Rate of the Reduced Gradient Method 387

x0

x1

z0

z2

z1

y

Δx = (Δy/Δ)

Δz

Fig. 12.10 Reduced gradient method

12.7 CONVERGENCE RATE OF THE REDUCED
GRADIENT METHOD

As argued before, for purposes of analyzing the rate of convergence, it is sufficient
to consider the problem having only equality constraints

minimize f�x�

subject to h�x� = 0�
(66)

We then regard the problem as being defined over a surface � of dimension n−m.
At this point it is again timely to consider the view of our bug, who lives on
this constraint surface. Invariably, he continues to regard the problem as extremely
elementary, and indeed would have little appreciation for the complexity that seems
to face us. To him the problem is an unconstrained problem in n−m dimensions
not, as we see it, a constrained problem in n dimensions. The bug will tenaciously
hold to the method of steepest descent. We can emulate him provided that we know
how he measures distance on his surface and thus how he calculates gradients and
what he considers to be straight lines.

Rather than imagine that the measure of distance on his surface is the one that
would be inherited from us in n dimensions, as we did when studying the gradient
projection method, we, in this instance, follow the construction shown in Fig. 12.11.
In our n-dimensional space, n−m coordinates are selected as independent variables
in such a way that, given their values, the values of the remaining (dependent)
variables are determined by the surface. There is already a coordinate system in
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Fig. 12.11 Induced coordinate system

the space of independent variables, and it can be used on the surface by projecting
it parallel to the space of the remaining dependent variables. Thus, an arc on the
surface is considered to be straight if its projection onto the space of independent
variables is a segment of a straight line. With this method for inducing a geometry
on the surface, the bug’s notion of steepest descent exactly coincides with an
idealized version of the reduced gradient method.

In the idealized version of the reduced gradient method for solving (66), the
vector x is partitioned as x = �y� z� where y ∈ Em� z ∈ En−m. It is assumed that the
m×m matrix �yh�y� z� is nonsingular throughout a given region of interest. (With
respect to the more general problem, this region is a small neighborhood around the
solution where it is not necessary to change the partition.) The vector y is regarded
as an implicit function of z through the equation

h�y�z�� z� = 0� (67)

The ordinary method of steepest descent is then applied to the function q�z� =
f�y�z�� z�. We note that the gradient rT of this function is given by (63).

Since the method is really just the ordinary method of steepest descent with
respect to z, the rate of convergence is determined by the eigenvalues of the Hessian
of the function q at the solution. We therefore turn to the question of evaluating
this Hessian.

Denote by Y�z� the first derivatives of the implicit function y�z�, that is,
Y�z� ≡ � zy�z�. Explicitly,

Y�z� = −
�yh�y� z��−1� zh�y� z�� (68)

For any � ∈ Em we have

q�z� = f�y�z�� z� = f�y�z�� z�+�T h�y�z�� z�� (69)

Thus

�q�z� = 
�yf�y� z�+�T �yh�y� z��Y�z�+� zf�y� z�+�T � zh�y� z�� (70)
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Now if at a given point x∗ = �y∗� z∗� = �y�z∗�� z∗�, we let � satisfy

�yf�y∗� z∗�+�T �yh�y∗� z∗� = 0� (71)

then introducing the Lagrangian l�y� z��� = f�y� z� + �T h�y� z�, we obtain by
differentiating (70)

�2q�z∗� = Y�z∗�T �2
yyl�y∗� z∗�Y�z∗�+�2

zyl�y∗� z∗�Y�z∗�

+Y�z∗�T �2
yzl�y∗� z∗�+�2

zzl�y∗� z∗�� (72)

Or defining the n× �n−m� matrix

C =
[

Y�z∗�
I

]

� (73)

where I is the �n−m�× �n−m� identity, we have

Q ≡ �2q�z∗� = CT L�x∗�C� (74)

The matrix L�x∗� is the n×n Hessian of the Lagrangian at x∗, and �2q�z∗� is an
�n−m�× �n−m� matrix that is a restriction of L�x∗� to the tangent subspace M ,
but it is not the usual restriction. We summarize our conclusion with the following
theorem.

Theorem. Let x∗ be a local solution of problem (66). Suppose that the
idealized reduced gradient method produces a sequence �xk� converging to x∗

and that the partition x = �y� z� is used throughout the tail of the sequence.
Let L be the Hessian of the Lagrangian at x∗ and define the matrix C by (73)
and (68). Then the sequence of objective values �f�xk�� converges to f�x∗�
linearly with a ratio no greater than 
�B − b�/�B + b��2 where b and B are,
respectively, the smallest and largest eigenvalues of the matrix Q = CT LC.

To compare the matrix CT LC with the usual restriction of L to M that deter-
mines the convergence rate of most methods, we note that the n× �n−m� matrix
C maps �z ∈ En−m into ��y��z� ∈ En lying in the tangent subspace M; that is,
�yh�y + � zh�z = 0. Thus the columns of C form a basis for the subspace M .
Next note that the columns of the matrix

E = C�CT C�−1/2 (75)

form an orthonormal basis for M , since each column of E is just a linear combination
of columns of C and by direct calculation we see that ET E = I. Thus by the
procedure described in Section 11.6 we see that a representation for the usual
restriction of L to M is

LM = �CT C�−1/2CT LC�CT C�−1/2� (76)
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Comparing (76) with (74) we deduce that

Q = �CT C�1/2LM�CT C�1/2� (77)

This means that the Hessian matrix for the reduced gradient method is the restriction
of L to M but pre- and post-multiplied by a positive definite symmetric matrix.

The eigenvalues of Q depend on the exact nature of C as well as LM . Thus, the
rate of convergence of the reduced gradient method is not coordinate independent
but depends strongly on just which variables are declared as independent at the
final stage of the process. The convergence rate can be either faster or slower than
that of the gradient projection method. In general, however, if C is well-behaved
(that is, well-conditioned), the ratio of eigenvalues for the reduced gradient method
can be expected to be the same order of magnitude as that of the gradient projection
method. If, however, C should be ill-conditioned, as would arise in the case where
the implicit equation h�y� z� = 0 is itself ill-conditioned, then it can be shown that
the eigenvalue ratio for the reduced gradient method will most likely be considerably
worsened. This suggests that care should be taken to select a set of basic variables
y that leads to a well-behaved C matrix.

Example. (The hanging chain problem). Consider again the hanging chain
problem discussed in Section 11.4. This problem can be used to illustrate a wide
assortment of theoretical principles and practical techniques. Indeed, a study of this
example clearly reveals the predictive power that can be derived from an interplay
of theory and physical intuition.

The problem is

minimize
n∑

i=1

�n− i+0�5�yi

subjectto
n∑

i=1

yi = 0

n∑

i=1

√

1−y2
i = 16�

where in the original formulation n = 20.
This problem has been solved numerically by the reduced gradient method.∗

An initial feasible solution was the triangular shape shown in Fig. 12.12(a) with

yi =
{−0�6� 1 � i � 10

0�6� 11 � i � 20�

∗ The exact solution is obviously symmetric about the center of the chain, and hence
the problem could be reduced to having 10 links and only one constraint. However, this
symmetry disappears if the first constraint value is specified as nonzero. Therefore for
generality we solve the full chain problem.
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(a) Original configuration of chain

(b) Final configuration

(c) Long chain

θ

Fig. 12.12 The chain example
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Table 12.1 Results of original chain problem

Iteration Value Solution (1/2 of chain)

0 –60.00000 y1 = −�8148260
10 –66.47610 y2 = −�7826505
20 –66.52180 y3 = −�7429208
30 –66.53595 y4 = −�6930959
40 –66.54154 y5 = −�6310976
50 –66.54537 y6 = −�5541078
60 –66.54628 y7 = −�4597160
69 –66.54659 y8 = −�3468334
70 –66.54659 y9 = −�2169879

y10 = −�07492541
Lagrange multipliers −9�993817, −6�763148

The results obtained from a reduced gradient package are shown in Table 12.1.
Note that convergence is obtained in approximately 70 iterations.

The Lagrange multipliers of the constraints are a by-product of the solution.
These can be used to estimate the change in solution value if the constraint values
are changed slightly. For example, suppose we wish to estimate, without resolving
the problem, the change in potential energy (the objective function) that would result
if the separation between the two supports were increased by, say, one inch. The
change can be estimated by the formula �� = −	2/12 = 0�0833× �6�76� = 0�563.
(When solved again numerically the change is found to be 0.568.)

Let us now pose some more challenging questions. Consider two variations of the
originalproblem. In the first variation thechain is replacedbyonehaving twiceasmany
links, but each link is now half the size of the original links. The overall chain length is
therefore the same as before. In the second variation the original chain is replaced by
one having twice as many links, but each link is the same size as the original links. The
chain length doubles in this case. If these problems are solved by the same method as
the original problem, approximately how many iterations will be required—about the
same number, many more, or substantially less?

These questions can be easily answered by using the theory of convergence
rates developed in this chapter. The Hessian of the Lagrangian is

L = F+�1H1 +�2H2�

However, since the objective function and the first constraint are both linear, the
only nonzero term in the above equation is 	2H2. Furthermore, since convergence
rates depend only on eigenvalue ratios, the 	2 can be ignored. Thus the eigenvalues
of H2 determine the canonical convergence rate.

It is easily seen that H2 is diagonal with ith diagonal term,

�H2�ii = −�1−y2
i �

−3/2�

and these values are the eigenvalues of H2. The canonical convergence rate is
defined by the eigenvalues of H22 in the (n−2)-dimensional tangent subspace M .



12.7 Convergence Rate of the Reduced Gradient Method 393

We cannot exactly determine these eigenvalues without a lot of work, but we can
assume that they are close to the eigenvalues of H22. (Indeed, a version of the
Interlocking Eigenvalues Lemma states that the n− 2 eigenvalues are interlocked
with the eigenvalues of H22.) Then the convergence rate of the gradient projection
method will be governed by these eigenvalues. The reduced gradient method will
most likely be somewhat slower.

The eigenvalue of smallest absolute value corresponds to the center links, where
yi � 0. Conversely, the eigenvalue of largest absolute value corresponds to the first
or last link, where yi is largest in absolute value. Thus the relevant eigenvalue ratio
is approximately

r = 1

�1−y2
1�

3/2
= 1

�sin ��3/2
�

where � is the angle shown in Fig. 12.12(b).
For very little effort we have obtained a powerful understanding of the chain

problem and its convergence properties. We can use this to answer the questions
posed earlier. For the first variation, with twice as many links but each of half size,
the angle � will be about the same (perhaps a little smaller because of increased
flexibility of the chain). Thus the number of iterations should be slightly larger
because of the increase in � and somewhat larger again because there are more
variables (which tends to increase the condition number of CT C). Note in Table 12.2
that about 122 iterations were required, which is consistent with this estimate.

For the second variation the chain will hang more vertically; hence y1 will
be larger, and therefore convergence will be fundamentally slower. To be more
specific it is necessary to substitute a few numbers in our simple formula. For the
original case we have y1 � −�81. This yields

r = �1− �812�−3/2 = 4�9

Table 12.2 Results of modified chain problems

Short links Long chain

Iteration Value Iteration Value

0 −60�00000 0 −366�6061
10 −66�45499 10 −375�6423
20 −66�56377 20 −375�9123
40 −66�58443 50 −376�5128
60 −66�59191 100 −377�1625
80 −66�59514 200 −377�8983

100 −66�59656 500 −378�7989
120 −66�59825 1000 −379�3012
121 −66�59827 1500 −379�4994
122 −66�59827 2000 −379�5965

2500 −379�6489
y1 = �4109519 y1 = �9886223
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and a convergence factor of

R =
(

r −1
r +1

)2

� �44�

This is a modest value and quite consistent with the observed result of 70 iterations
for a reduced gradient method. For the long chain we can estimate that y1 � �98.
This yields

r = �1− �982�−3/2 � 127

R =
(

r −1
r +1

)2

� �969�

This last number represents extremely slow convergence. Indeed, since ��969�25 �
�44, we expect that it may easily take twenty-five times as many iterations for
the long chain problem to converge as the original problem (although quantitative
estimates of this type are rough at best). This again is verified by the results shown
in Table 12.2, where it is indicated that over 2500 iterations were required by a
version of the reduced gradient method.

12.8 VARIATIONS
It is possible to modify either the gradient projection method or the reduced gradient
method so as to move in directions that are determined through additional consid-
erations. For example, analogs of the conjugate gradient method, PARTAN, or any
of the quasi-Newton methods can be applied to constrained problems by handling
constraints through projection or reduction. The corresponding asymptotic rates
of convergence for such methods are easily determined by applying the results
for unconstrained problems on the �n−m�-dimensional surface of constraints, as
illustrated in this chapter.

Although such generalizations can sometimes lead to substantial improvement
in convergence rates, one must recognize that the detailed logic for a complicated
generalization can become lengthy. If the method relies on the use of an approximate
inverse Hessian restricted to the constraint surface, there must be an effective
procedure for updating the approximation when the iterative process progresses
from one set of active constraints to another. One would also like to insure that the
poor eigenvalue structure sometimes associated with quasi-Newton methods does
not dominate the short-term convergence characteristics of the extended method
when the active constraint set changes. In other words, one would like to be able to
achieve simultaneously both superlinear convergence and a guarantee of fast single
step progress. There has been some work in this general area and it appears to be
one of potential promise.



12.8 Variations 395

∗Convex Simplex Method
A popular modification of the reduced gradient method, termed the convex simplex
method, most closely parallels the highly effective simplex method for solving
linear programs. The major difference between this method and the reduced gradient
method is that instead of moving all (or several) of the independent variables in
the direction of the negative reduced gradient, only one independent variable is
changed at a time. The selection of the one independent variable to change is made
much as in the ordinary simplex method.

At a given feasible point, let x = �y� z� be the partition of x into dependent
and independent parts, and assume for simplicity that the bounds on x are x � 0.
Given the reduced gradient rT at the current point, the component zi to be changed
is found from:

1. Let ri1 = min
i

�ri�.

2. Let ri2zi2 = max
i

�rizi�

If ri1 = ri2zi2 = 0, terminate. Otherwise:
If ri1 � −�ri2zi2�, increase zi1

If ri1 � −�ri2zi2�, decrease zi2.

The rule in Step 2 amounts to selecting the variable that yields the best potential
decrease in the cost function. The rule accounts for the non-negativity constraint
on the independent variables by weighting the cost coefficients of those variables
that are candidates to be decreased by their distance from zero. This feature ensures
global convergence of the method.

The remaining details of the method are identical to those of the reduced
gradient method. Once a particular component of z is selected for change, according
to the above criterion, the corresponding y vector is computed as a function of
the change in that component so as to continuously satisfy the constraints. The
component of z is continuously changed until either a local minimum with respect
to that component is attained or the boundary of one nonnegativity constraint is
reached.

Just as in the discussion of the reduced gradient method, it is convenient,
for purposes of convergence analysis, to view the problem as unconstrained with
respect to the independent variables. The convex simplex method is then seen to
be a coordinate descent procedure in the space of these n − m variables. Indeed,
since the component selected is based on the magnitude of the components of
the reduced gradient, the method is merely an adaptation of the Gauss-Southwell
scheme discussed in Section 8.9 to the constrained situation. Hence, although it is
difficult to pin down precisely, we expect that it would take approximately n−m
steps of this coordinate descent method to make the progress of a single reduced
gradient step. To be competitive with the reduced gradient method; therefore, the
difficulties associated with a single step—line searching and constraint evaluation—
must be approximately n − m times simpler when only a single component is
varied than when all n−m are varied simultaneously. This is indeed the case for
linear programs and for some quadratic programs but not for nonlinear problems



396 Chapter 12 Primal Methods

that require the full line search machinery. Hence, in general, the convex simplex
method may not be a bargain.

12.9 SUMMARY
The concept of feasible direction methods is a straightforward and logical extension
of the methods used for unconstrained problems but leads to some subtle difficulties.
These methods are susceptible to jamming (lack of global convergence) because many
simple direction finding mappings and the usual line search mapping are not closed.

Problems with inequality constraints can be approached with an active set
strategy. In this approach certain constraints are treated as active and the others
are treated as inactive. By systematically adding and dropping constraints from
the working set, the correct set of active constraints is determined during the
search process. In general, however, an active set method may require that several
constrained problems be solved exactly.

The most practical primal methods are the gradient projection methods and the
reduced gradient method. Both of these basic methods can be regarded as the method
of steepest descent applied on the surface defined by the active constraints. The rate
of convergence for the two methods can be expected to be approximately equal and
is determined by the eigenvalues of the Hessian of the Lagrangian restricted to the
subspace tangent to the active constraints. Of the two methods, the reduced gradient
method seems to be best. It can be easily modified to ensure against jamming and
it requires fewer computations per iterative step and therefore, for most problems,
will probably converge in less time than the gradient projection method.

12.10 EXERCISES
1. Show that the problem of finding d = �d1�d2� � � � � dn� to

minimize cT d

subject to Ad � 0
n∑

i=1

�di� = 1

can be converted to a linear program.

2. Sometimes a different normalizing term is used in (4). Show that the problem of finding
d = �d1�d2� � � � � dn� to

minimize cT d

subject to Ad � 0

max
i

�di� = 1

can be converted to a linear program.
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3. Perhaps the most natural normalizing term to use in (4) is one based on the Euclidean
norm. This leads to the problem of finding d = �d1�d2� � � � � dn� to

minimize cT d

subject to Ad � 0
n∑

i=1

d2
i = 1�

Find the Karush-Kuhn–Tucker necessary conditions for this problem and show how
they can be solved by a modification of the simplex procedure.

4. Let � ⊂ En be a given feasible region. A set � ⊂ E2n consisting of pairs �x� d�, with
x ∈ � and d a feasible direction at x, is said to be a set of uniformly feasible direction
vectors if there is a 
 > 0 such that �x� d� ∈ � implies that x + �d is feasible for all
�� 0 � � � 
. The number 
 is referred to as the feasibility constant of the set � .

Let � ⊂ E2n be a set of uniformly feasible direction vectors for �, with feasibility
constant 
. Define the mapping

M
�x� d� = �y � f�y� � f�x + �d� for all �� 0 �� � 
� y = x +�d�

for some �� 0 � � � �� y ∈ ���

Show that if d �= 0, the map M
 is closed at �x� d�.

5. Let � ⊂ E2n be a set of uniformly feasible direction vectors for � with feasibility
constant 
. For � > 0 define the map �M
 or � by

�M
�x� d� = �y � f�y� � f�x + �d�+� for all ��0 � � � 
� y = x +�d�

for some �� 0 � � � �� y ∈ ���

The map �M
 corresponds to an “inaccurate” constrained line search. Show that this
map is closed if d �= 0.

6. For the problem

minimize f�x�

subject to aT
1 x � b1

aT
2 x � b2

���

aT
mx � bm�

consider selecting d = �d1�d2� � � � � dn� at a feasible point x by solving the problem

minimize �f�x�d

subject to aT
i d � �bi −aT

i x�M� i = 1� 2� � � � �m

n∑

i=1

�di� = 1�
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where M is some given positive constant. For large M the ith inequality of this
subsidiary problem will be active only if the corresponding inequality in the original
problem is nearly active at x (indeed, note that M → � corresponds to Zoutendijk’s
method). Show that this direction finding mapping is closed and generates uniformly
feasible directions with feasibility constant 1/M .

7. Generalize the method of Exercise 6 so that it is applicable to nonlinear inequalities.

8. An alternate, but equivalent, definition of the projected gradient p is that it is the vector
solving

minimize �g −p�2
subject to Aqp = 0�

Using the Karush-Kuhn–Tucker necessary conditions, solve this problem and thereby
derive the formula for the projected gradient.

9. Show that finding the d that solves

minimize gT d

subject to Aqd = 0� �d�2 = 1

gives a vector d that has the same direction as the negative projected gradient.

10. Let P be a projection matrix. Show that PT = P� P2 = P.

11. Suppose Aq = 
aT � Aq̄ � so that Aq is the matrix Aq̄ with the row aT adjoined. Show that
�AqAT

q �−1 can be found from �Aq̄AT
q̄ �−1 from the formula

�AqAT
q �−1 =

[
� −�aT AT

q̄ �Aq̄AT
q̄ �−1

−��Aq̄AT
q̄ �−1Aq̄a �Aq̄AT

q̄ �−1
I +Aq̄aaT AT
q̄ �Aq̄AT

q̄ �−1�

]

�

where

� = 1

aT a −aT AT
q̄ �Aq̄AT

q̄ �−1Aq̄a
�

Develop a similar formula for (Aq̄Aq̄�
−1 in terms of �AqAq�

−1.

12. Show that the gradient projection method will solve a linear program in a finite number
of steps.

13. Suppose that the projected negative gradient d is calculated satisfying

−g = d +AT
q �

and that some component 	i of �, corresponding to an inequality, is negative. Show
that if the ith inequality is dropped, the projection di of the negative gradient onto the
remaining constraints is a feasible direction of descent.

14. Using the result of Exercise 13, it is possible to avoid the discontinuity at d = 0 in the
direction finding mapping of the simple gradient projection method. At a given point let
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� = −min �0� 	i�, with the minimum taken with respect to the indices i corresponding
the active inequalities. The direction to be taken at this point is d = −Pg if �Pg� � �,
or d, defined by dropping the inequality i for which 	i = −�, if �Pg� � �. (In case of
equality either direction is selected.) Show that this direction finding map is closed over
a region where the set of active inequalities does not change.

15. Consider the problem of maximizing entropy discussed in Example 3, Section 14.4.
Suppose this problem were solved numerically with two constraints by the gradient
projection method. Derive an estimate for the rate of convergence in terms of the
optimal pi’s.

16. Find the geodesics of

a) a two-dimensional plane
b) a sphere.

17. Suppose that the problem

minimize f�x�

subject to h�x� = 0

is such that every point is a regular point. And suppose that the sequence of points
�xk�

�
k=0 generated by geodesic descent is bounded. Prove that every limit point of the

sequence satisfies the first-order necessary conditions for a constrained minimum.

18. Show that, for linear constraints, if at some point in the reduced gradient method �z is
zero, that point satisfies the Karush-Kuhn–Tucker first-order necessary conditions for a
constrained minimum.

19. Consider the problem

minimize f�x�

subject to Ax = b

x � 0�

where A is m × n. Assume f ∈ C1, that the feasible set is bounded, and that the
nondegeneracy assumption holds. Suppose a “modified” reduced gradient algorithm is
defined following the procedure in Section 12.6 but with two modifications: (i) the basic
variables are, at the beginning of an iteration, always taken as the m largest variables
(ties are broken arbitrarily); (ii) the formula for �z is replaced by

�zi =
{ −ri if ri � 0

−xiri if ri > 0�

Establish the global convergence of this algorithm.

20. Find the exact solution to the example presented in Section 12.4.

21. Find the direction of movement that would be taken by the gradient projection method
if in the example of Section 12.4 the constraint x4 = 0 were relaxed. Show that if the
term −3x4 in the objective function were replaced by −x4, then both the gradient
projection method and the reduced gradient method would move in identical directions.
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22. Show that in terms of convergence characteristics, the reduced gradient method behaves
like the gradient projection method applied to a scaled version of the problem.

23. Let r be the condition number of LM and s the condition number of CT C. Show that the
rate of convergence of the reduced gradient method is no worse than 
�sr −1�/�sr +1��2.

24. Formulate the symmetric version of the hanging chain problem using a single constraint.
Find an explicit expression for the condition number of the corresponding CT C matrix
(assuming y1 is basic). Use Exercise 23 to obtain an estimate of the convergence
rate of the reduced gradient method applied to this problem, and compare it with the
rate obtained in Table 12.1, Section 12.7. Repeat for the two-constraint formulation
(assuming y1 and yn are basic).

25. Referring to Exercise 19 establish a global convergence result for the convex simplex
method.
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Chapter 13 PENALTY
AND BARRIER
METHODS

Penalty and barrier methods are procedures for approximating constrained
optimization problems by unconstrained problems. The approximation is accom-
plished in the case of penalty methods by adding to the objective function a term
that prescribes a high cost for violation of the constraints, and in the case of barrier
methods by adding a term that favors points interior to the feasible region over
those near the boundary. Associated with these methods is a parameter c or � that
determines the severity of the penalty or barrier and consequently the degree to
which the unconstrained problem approximates the original constrained problem.
For a problem with n variables and m constraints, penalty and barrier methods work
directly in the n-dimensional space of variables, as compared to primal methods
that work in (n−m)-dimensional space.

There are two fundamental issues associated with the methods of this chapter.
The first has to do with how well the unconstrained problem approximates the
constrained one. This is essential in examining whether, as the parameter c is
increased toward infinity, the solution of the unconstrained problem converges
to a solution of the constrained problem. The other issue, most important from
a practical viewpoint, is the question of how to solve a given unconstrained
problem when its objective function contains a penalty or barrier term. It turns out
that as c is increased to yield a good approximating problem, the corresponding
structure of the resulting unconstrained problem becomes increasingly unfavorable
thereby slowing the convergence rate of many algorithms that might be applied.
(Exact penalty functions also have a very unfavorable structure.) It is necessary,
then, to devise acceleration procedures that circumvent this slow convergence
phenomenon.

Penalty and barrier methods are of great interest to both the practitioner and the
theorist. To the practitioner they offer a simple straightforward method for handling
constrained problems that can be implemented without sophisticated computer
programming and that possess much the same degree of generality as primal
methods. The theorist, striving to make this approach practical by overcoming its
inherently slow convergence, finds it appropriate to bring into play nearly all aspects

401
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of optimization theory; including Lagrange multipliers, necessary conditions, and
many of the algorithms discussed earlier in this book. The canonical rate of conver-
gence associated with the original constrained problem again asserts its fundamental
role by essentially determining the natural accelerated rate of convergence for
unconstrained penalty or barrier problems.

13.1 PENALTY METHODS
Consider the problem

minimize f�x�

subject to x ∈ S�
(1)

where f is a continuous function on En and S is a constraint set in En. In most
applications S is defined implicitly by a number of functional constraints, but in this
section the more general description in (1) can be handled. The idea of a penalty
function method is to replace problem (1) by an unconstrained problem of the form

minimize f�x�+ cP�x�� (2)

where c is a positive constant and P is a function on En satisfying: (i) P is
continuous, (ii) P�x� � 0 for all x ∈ En, and (iii) P�x� = 0 if and only if x ∈ S.

Example 1. Suppose S is defined by a number of inequality constraints:

S = �x � gi�x� � 0� i = 1� 2� � � � � p	�

A very useful penalty function in this case is

P�x� = 1
2

P∑

i=1
�max 
0� gi�x���2�

The function cP�x� is illustrated in Fig. 13.1 for the one-dimensional case with
g1�x� = x−b� g2�x� = a−x.

For large c it is clear that the minimum point of problem (2) will be in a
region where P is small. Thus, for increasing c it is expected that the corresponding
solution points will approach the feasible region S and, subject to being close, will
minimize f . Ideally then, as c → � the solution point of the penalty problem will
converge to a solution of the constrained problem.
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c = 1
cP (x)

c = 1

c = 10 c = 10

c = 100

a b

c = 100

x

Fig. 13.1 Plot of cP�x�

The Method
The procedure for solving problem (1) by the penalty function method is this:
Let �ck	� k = 1� 2� � � �, be a sequence tending to infinity such that for each
k� ck � 0� ck+1 > ck. Define the function

q�c� x� = f�x�+ cP�x�� (3)

For each k solve the problem

minimize q�ck� x�� (4)

obtaining a solution point xk.
We assume here that, for each k, problem (4) has a solution. This will be true,

for example, if q�c� x� increases unboundedly as �x� → �. (Also see Exercise 2 to
see that it is not necessary to obtain the minimum precisely.)

Convergence
The following lemma gives a set of inequalities that follow directly from the
definition of xk and the inequality ck+1 > ck.

Lemma 1.
q�ck� xk� � q�ck+1� xk+1� (5)

P�xk� � P�xk+1� (6)

f�xk� � f�xk+1�� (7)

Proof.

q�ck+1� xk+1� = f�xk+1�+ ck+1P�xk+1� � f�xk+1�+ ckP�xk+1�

� f�xk�+ ckP�xk� = q�ck� xk��
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which proves (5).
We also have

f�xk�+ ckP�xk� � f�xk+1�+ ckP�xk+1� (8)

f�xk+1�+ ck+1P�xk+1� � f�xk�+ ck+1P�xk�� (9)

Adding (8) and (9) yields

�ck+1 − ck�P�xk+1� � �ck+1 − ck�P�xk��

which proves (6).
Also

f�xk+1�+ ckP�xk+1� � f�xk�+ ckP�xk��

and hence using (6) we obtain (7).

Lemma 2. Let x∗ be a solution to problem (1). Then for each k

f�x∗� � q�ck� xk� � f�xk��

Proof.

f�x∗� = f�x∗�+ ckP�x∗� � f�xk�+ ckP�xk� � f�xk��

Global convergence of the penalty method, or more precisely verification that
any limit point of the sequence is a solution, follows easily from the two lemmas
above.

Theorem. Let �xk	 be a sequence generated by the penalty method. Then, any
limit point of the sequence is a solution to (1).

Proof. Suppose the subsequence �xk	� k ∈� is a convergent subsequence of �xk	
having limit x. Then by the continuity of f , we have

limit
k∈� f�xk� = f�x�� (10)

Let f ∗ be the optimal value associated with problem (1). Then according to
Lemmas 1 and 2, the sequence of values q�ck� xk� is nondecreasing and bounded
above by f ∗. Thus

limit
k∈� q�ck� xk� = q∗ � f ∗� (11)

Subtracting (10) from (11) yields

limit
k∈� ckP�xk� = q∗ −f�x�� (12)
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Since P�xk� � 0 and ck → �, (12) implies

limit
k∈� P�xk� = 0�

Using the continuity of P, this implies P�x� = 0. We therefore have shown that the
limit point x is feasible for (1).

To show that x is optimal we note that from Lemma 2, f�xk� � f ∗ and hence

f�x� = limitk∈�f�xk� � f ∗�

13.2 BARRIER METHODS
Barrier methods are applicable to problems of the form

minimize f�x�

subject to x ∈ S�
(13)

where the constraint set S has a nonempty interior that is arbitrarily close to any
point of S. Intuitively, what this means is that the set has an interior and it is
possible to get to any boundary point by approaching it from the interior. We shall
refer to such a set as robust. Some examples of robust and nonrobust sets are shown
in Fig. 13.2. This kind of set often arises in conjunction with inequality constraints,
where S takes the form

S = �x � gi�x� � 0� i = 1� 2� � � � � p	

Barrier methods are also termed interior methods. They work by establishing
a barrier on the boundary of the feasible region that prevents a search procedure
from leaving the region. A barrier function is a function B defined on the interior
of S such that: (i) B is continuous, (ii) B�x� � 0, (iii) B�x� → � as x approaches
the boundary of S.

Example 1. Let gi� i = 1� 2� � � � � p be continuous functions on En. Suppose

S = �x � gi�x� � 0� i = 1� 2� � � � � p	�

is robust, and suppose the interior of S is the set of x’s where gi�x� < 0� i =
1� 2� � � � � p. Then the function

B�x� = −
p∑

i=1

1
gi�x�

�

defined on the interior of S, is a barrier function. It is illustrated in one dimension
for g1 = x−a�g2 = x−b in Fig. 13.3.
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Robust Not robust  Not robust

Fig. 13.2 Examples

Example 2. For the same situation as Example 1, we may use the logarithmic
utility function

B�x� = −
p∑

i=1

log
−gi�x���

This is the barrier function commonly used in linear programming interior point
methods, and it is frequently used more generally as well.

Corresponding to the problem (13), consider the approximate problem

minimize f�x�+ 1
c

B�x�

subject to x ∈ interior of S�

(14)

where c is a positive constant.
Alternatively, it is common to formulate the barrier method as

minimize f�x�+�B�x� (15)

subject to x ∈ interior of S�

a

c = 2.0

c = 1.0

1 B(x)
c–

b
x

Fig. 13.3 Barrier function
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When formulated with c we take c large (going to infinity); while when formulated
with � we take � small (going to zero). Either way the result is a constrained
problem, and indeed the constraint is somewhat more complicated than in the
original problem (13). The advantage of this problem, however, is that it can be
solved by using an unconstrained search technique. To find the solution one starts
at an initial interior point and then searches from that point using steepest descent
or some other iterative descent method applicable to unconstrained problems. Since
the value of the objective function approaches infinity near the boundary of S, the
search technique (if carefully implemented) will automatically remain within the
interior of S, and the constraint need not be accounted for explicitly. Thus, although
problem (14) or (15) is from a formal viewpoint a constrained problem, from a
computational viewpoint it is unconstrained.

The Method
The barrier method is quite analogous to the penalty method. Let �ck	 be a sequence
tending to infinity such that for each k�k = 1� 2� � � � � ck � 0, ck+1 > ck. Define the
function

r�c� x� = f�x�+ 1
c

B�x��

For each k solve the problem

minimize r�ck� x�

subject to x ∈ interior of S�

obtaining the point xk.

Convergence
Virtually the same convergence properties hold for the barrier method as for the
penalty method. We leave to the reader the proof of the following result.

Theorem. Any limit point of a sequence �xk	 generated by the barrier method
is a solution to problem (13).

13.3 PROPERTIES OF PENALTY AND BARRIER
FUNCTIONS

Penalty and barrier methods are applicable to nonlinear programming problems
having a very general form of constraint set S. In most situations, however, this set
is not given explicitly but is defined implicitly by a number of functional constraints.
In these situations, the penalty or barrier function is invariably defined in terms of
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the constraint functions themselves; and although there are an unlimited number of
ways in which this can be done, some important general implications follow from
this kind of construction.

For economy of notation we consider problems of the form

minimize f�x�

subject to gi�x� � 0� i = 1� 2� � � � � p�
(16)

For our present purposes, equality constraints are suppressed, at least notationally,
by writing each of them as two inequalities. If the problem is to be attacked with
a barrier method, then, of course, equality constraints are not present even in an
unsuppressed version.

Penalty Functions
A penalty function for a problem expressed in the form (16) will most naturally be
expressed in terms of the auxiliary constraint functions

gi
+�x� ≡ max 
0� gi�x��� i = 1� 2� � � � � p� (17)

This is because in the interior of the constraint region P�x� ≡ 0 and hence P should
be a function only of violated constraints. Denoting by g+�x� the p-dimensional
vector made up of the gi

+�x�’s, we consider the general class of penalty functions

P�x� = ��g+�x��� (18)

where � is a continuous function from Ep to the real numbers, defined in such a
way that P satisfies the requirements demanded of a penalty function.

Example 1. Set

P�x� = 1
2

p∑

i=1
gi

+�x�2 = 1
2 �g+�x��2�

which is without doubt the most popular penalty function. In this case � is one-half
times the identity quadratic form on Ep, that is, ��y� = 1

2 �y�2.

Example 2. By letting

��y� = yT �y�

where � is a symmetric positive definite p×p matrix, we obtain the penalty function

P�x� = g+�x�T �g+�x��
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Example 3. A general class of penalty functions is

P�x� =
p∑

i=1

�gi
+�x��


for some 
 > 0.

Lagrange Multipliers
In the penalty method we solve, for various ck, the unconstrained problem

minimize f�x�+ ckP�x�� (19)

Most algorithms require that the objective function has continuous first partial
derivatives. Since we shall, as usual, assume that both f and g ∈ C1, it is natural to
require, then, that the penalty function P ∈ C1. We define

�g+
i �x� =

{
�gi�x� if gi�x� � 0

0 if gi�x� < 0�
(20)

and, of course, �g+�x� is the m×n matrix whose rows are the �g+
i ’s. Unfortunately,

�g+ is usually discontinuous at points where g+
i �x� = 0 for some i = 1� 2� � � � � p,

and thus some restrictions must be placed on � in order to guarantee P ∈ C1. We
assume that � ∈ C1 and that if y = �y1� y2� � � � � yn�, ���y� = ���1���2� � � � � ��n�,
then

yi = 0 implies ��i = 0� (21)

(In Example 3 above, for instance, this condition is satisfied only for 
 > 1.) With
this assumption, the derivative of ��g+�x�� with respect to x is continuous and
can be written as ���g+�x���g�x�. In this result �g�x� legitimately replaces the
discontinuous �g+�x�, because it is premultiplied by ���g+�x��. Of course, these
considerations are necessary only for inequality constraints. If equality constraints
are treated directly, the situation is far simpler.

In view of this assumption, problem (19) will have its solution at a point xk

satisfying

�f�xk�+ ck���g+�xk���g�xk� = 0�

which can be written as

�f�xk�+�T
k �g�xk� = 0� (22)

where

�T
k ≡ ck���g+�xk��� (23)
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Thus, associated with every c is a Lagrange multiplier vector that is determined
after the unconstrained minimization is performed.

If a solution x∗ to the original problem (16) is a regular point of the constraints,
then there is a unique Lagrange multiplier vector �∗ associated with the solution.
The result stated below says that �k → �∗.

Proposition. Suppose that the penalty function method is applied to problem
(16) using a penalty function of the form (18) with � ∈ C1 and satisfying
(21). Corresponding to the sequence �xk	 generated by this method, define
�T

k = ck���g+�xk��. If xk → x∗, a solution to (16), and this solution is a regular
point, then �k → �∗, the Lagrange multiplier associated with problem (16).

Proof. Left to the reader.

Example 4. For P�x� = 1
2 �g+�x��2 we have �k = ckg+�xk�.

As a final observation we note that in general if xk → x∗, then since �k =
ck���g+�xk��

T → �∗, the sequence xk approaches x∗ from outside the constraint
region. Indeed, as xk approaches x∗ all constraints that are active at x∗ and have
positive Lagrange multipliers will be violated at xk because the corresponding
components of ���g+�xk�� are positive. Thus, if we assume that the active
constraints are nondegenerate (all Lagrange multipliers are strictly positive), every
active constraint will be approached from the outside.

The Hessian Matrix
Since the penalty function method must, for various (large) values of c, solve the
unconstrained problem

minimize f�x�+ cP�x�� (24)

it is important, in order to evaluate the difficulty of such a problem, to determine
the eigenvalue structure of the Hessian of this modified objective function. We
show here that the structure becomes increasingly unfavorable as c increases.

Although in this section we require that the function P ∈ C1, we do not require
that P ∈ C2. In particular, the most popular penalty function P�x� = 1

2 �g+�x��2,
illustrated in Fig. 13.1 for one component, has a discontinuity in its second derivative
at any point where a component of g is zero. At first this might appear to be a
serious drawback, since it means the Hessian is discontinuous at the boundary of the
constraint region—right where, in general, the solution is expected to lie. However,
as pointed out above, the penalty method generates points that approach a boundary
solution from outside the constraint region. Thus, except for some possible chance
occurrences, the sequence will, as xk → x∗, be at points where the Hessian is well-
defined. Furthermore, in iteratively solving the unconstrained problem (24) with
a fixed ck, a sequence will be generated that converges to xk which is (for most
values of k) a point where the Hessian is well-defined, and hence the standard type
of analysis will be applicable to the tail of such a sequence.
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Defining q�c� x� = f�x�+ c��g+�x�� we have for the Hessian, Q, of q (with
respect to x)

Q�c� x� = F�x�+ c���g+�x��G�x�+ c�g+�x�T ��g+�x���g+�x��

where F� G, and � are, respectively, the Hessians of f� g, and �. For a fixed ck we
use the definition of �k given by (23) and introduce the rather natural definition

Lk�xk� = F�xk�+�T
k G�xk�� (25)

which is the Hessian of the corresponding Lagrangian. Then we have

Q�ck� xk� = Lk�xk�+ ck�g+�xk�
T ��g+�xk���g+�xk�� (26)

which is the desired expression.
The first term on the right side of (26) converges to the Hessian of the

Lagrangian of the original constrained problem as xk → x∗, and hence has a limit
that is independent of ck. The second term is a matrix having rank equal to the
rank of the active constraints and having a magnitude tending to infinity. (See
Exercise 7.)

Example 5. For P�x� = 1
2 �g+�x��2 we have

��g+�xk�� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

e1 0 · · · 0
0 e2 0
0 · ·
· · ·
· · ·
0 · · · 0 ep

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

�

where

ei =
⎧
⎨

⎩

1 if gi�xk� > 0
0 if gi�xk� < 0

undefined if gi�xk� = 0�

Thus

ck�g+�xk�
T �g+�xk���g+�xk� = ck�g+�xk�

T �g+�xk��

which is ck times a matrix that approaches �g+�x∗�T �g+�x∗�. This matrix has rank
equal to the rank of the active constraints at x∗ (refer to (20)).

Assuming that there are r active constraints at the solution x∗, then for well-
behaved �, the Hessian matrix Q�ck� xk� has r eigenvalues that tend to infinity as
ck → �, arising from the second term on the right side of (26). There will be n− r
other eigenvalues that, although varying with ck, tend to finite limits. These limits
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turn out to be, as is perhaps not too surprising at this point, the eigenvalues of
L�x∗� restricted to the tangent subspace M of the active constraints. The proof of
this requires some further analysis.

Lemma 1. Let A�c� be a symmetric matrix written in partitioned form

A�c� =
[

A1�c� A2�c�
AT

2 �c� A3�c�

]

� (27)

where A1�c� tends to a positive definite matrix A1� A2�c� tends to a finite
matrix, and A3�c� is a positive definite matrix tending to infinity with c (that
is, for any s > 0� A3�c� ⇁ sI is positive definite for sufficiently large c). Then

A−1�c� →
[

A−1
1 0
0 0

]

(28)

as c → �.

Proof. We have the identity
[

A1 A2

AT
2 A3

]−1

=
[

�A1 −A2A−1
3 AT

2 �−1 −�A1 −A2A−1
3 AT

2 �A2A−1
3

−A−1
3 AT

2 �A1 −A2A−1
3 AT

2 �−1 �A3 −AT
2 A−1

1 A2�
−1

]

�

(29)

Using the fact that A−1
3 �c� → 0 gives the result.

To apply this result to the Hessian matrix (26) we associate A with Q�ck� xk�
and let the partition of A correspond to the partition of the space En into the subspace
M and the subspace N that is orthogonal to M; that is, N is the subspace spanned
by the gradients of the active constraints. In this partition, LM , the restriction of L
to M , corresponds to the matrix A1.

We leave the details of the required continuity arguments to the reader. The
important conclusion is that if x∗ is a solution to (16), is a regular point, and has
exactly r active constraints none of which are degenerate, then the Hessian matrices
Q�ck� xk� of a penalty function of form (18) have r eigenvalues tending to infinity
as ck → �, and n− r eigenvalues tending to the eigenvalues of LM .

This explicit characterization of the structure of penalty function Hessians is
of great importance in the remainder of the chapter. The fundamental point is that
virtually any choice of penalty function (within the class considered) leads both to
an ill-conditioned Hessian and to consideration of the ubiquitous Hessian of the
Lagrangian restricted to M .

Barrier Functions
Essentially the same story holds for barrier function. If we consider for Problem
(16) barrier functions of the form

B�x� = ��g�x��� (30)
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then Lagrange multipliers and ill-conditioned Hessians are again inevitable. Rather
than parallel the earlier analysis of penalty functions, we illustrate the conclusions
with two examples.

Example 1. Define

B�x� =
p∑

i=1

− 1
gi�x�

� (31)

The barrier objective

r�ck� x� = f�x�− 1
ck

p∑

i=1

1
gi�x�

has its minimum at a point xk satisfying

�f�xk�+ 1
ck

p∑

i=1

1
gi�xk�

2
�gi�xk� = 0� (32)

Thus, we define �k to be the vector having ith component
1
ck

· 1
gi�xk�

2
. Then (32)

can be written as

�f�xk�+�T
k �g�xk� = 0�

Again, assuming xk → x∗, the solution of (16), we can show that �k → �∗, the
Lagrange multiplier vector associated with the solution. This implies that if gi is an
active constraint,

1
ckgi�xk�

2
→ �∗

i < �� (33)

Next, evaluating the Hessian R�ck� xk� of r�ck� xk�, we have

R�ck� xk� = F�xk�+ 1
ck

p∑

i=1

1
gi�xk�

2
Gi�xk�− 1

ck

p∑

i=1

2
gi�xk�

3
�gi�xk�

T �gi�xk�

= L�xk�− 1
ck

p∑

i=1

2
gi�xk�

3
�gi�xk�

T �gi�xk��

As ck → � we have

−1
ckgi�xk�

3
→
{� if gi is active at x∗

0 if gi is inactive at x∗

so that we may write, from (33),

R�ck� xk� → L�xk�+∑
i∈1

− �i�k

gi�xk�
�gi�xk�

T �gi�xk��
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where I is the set of indices corresponding to active constraints. Thus the Hessian
of the barrier objective function has exactly the same structure as that of penalty
objective functions.

Example 2. Let us use the logarithmic barrier function

B�x� = −
p∑

i=1

log
−gi�x��

In this case we will define the barrier objective in terms of � as

r��� x� = f�x�−�
p∑

i=1

log
−gi�x��

The minimum point x� satisfies

0 =�f�x��+�
p∑

i=1

−1
gi�x��

�gi�x��� (34)

Defining

���i = �
−1

gi�x��

(34) can be written as

�f�x��+�T
��g�x�� = 0�

Further we expect that �� → �∗ as � → 0.

The Hessian of r��� x� is

R��� x�� = F�x��+
p∑

i=1

�i��Gi�x��+
p∑

i=1

− �i��

gI�x��
�gi�x��T �gi�x���

Hence, for small � it has the same structure as that found in Example 1.

The Central Path
The definition of the central path associated with linear programs is easily extended
to general nonlinear programs. For example, consider the problem

minimize f�x�

subject to h�x� = 0

g�x� ≤ 0�
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We assume that
	
�= �x � h�x� = 0� g�x� < 0	 
= �. Then we use the logarithmic

barrier function to define the problems

minimize f�x�−�
∑p

i=1
log
−gi�x��

subject to h�x� = 0�

The solution x� parameterized by � → 0 is the central path.
The necessary conditions for the problem can be written as

�f�x��+�T �g�x��+yT h�x�� = 0

h�x�� = 0�

�igi�x�� = −�� i = 1� 2� � � � � p

where y is the Lagrange multiplier vector for the constraint h�x�� = 0.

Geometric Interpretation—The Primal Function
There is a geometric construction that provides a simple interpretation of penalty
functions. The basis of the construction itself is also useful in other areas of
optimization, especially duality theory, as explained in the next chapter.

Let us again consider the problem

minimize f�x�

subject to h�x� = 0� (35)

where h�x� ∈ Em. We assume that the solution point x∗ of (35) is a regular point
and that the second-order sufficiency conditions are satisfied. Corresponding to this
problem we introduce the following definition:

Definition. Corresponding to the constrained minimization problem (35), the
primal function � is defined on Em in a neighborhood of 0 to be

��y� = min�f�x� � h�x� = y	� (36)

The primal function gives the optimal value of the objective for various values of
the right-hand side. In particular ��0� gives the value of the original problem.

Strictly speaking the minimum in the definition (36) must be specified as a local
minimum, in a neighborhood of x∗. The existence of ��y� then follows directly
from the Sensitivity Theorem in Section 11.7. Furthermore, from that theorem it
follows that ���0� = −�∗T .

Now consider the penalty problem and note the following relations:

min �f�x�+ 1
2 c�h�x��2	 = minx�y�f�x�+ 1

2 c�y�2 � h�x� = y	

= miny���y�+ 1
2 c�y�2	� (37)
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ω +   cy2–1
2

ω

0
u

Fig. 13.4 The primal function

This is illustrated in Fig. 13.4 for the case where y is one-dimensional. The primal
function is the lowest curve in the figure. Its value at y = 0 is the value of the
original constrained problem. Above the primal function are the curves ��y�+ 1

2 cy2

for various values of c. The value of the penalty problem is shown by (37) to be
the minimum point of this curve. For large values of c this curve becomes convex
near 0 even if ��y� is not convex. Viewed in this way, the penalty functions can
be thought of as convexifying the primal.

Also, as c increases, the associated minimum point moves toward 0. However,
it is never zero for finite c. Furthermore, in general, the criterion for u to be optimal
for the penalty problem is that the gradient of ��y�+ 1

2 cy2 equals zero. This yields
���y�+ cyT = 0. Using ���y� = −�T and y = h�xc�, where now xc denotes the
minimum point of the penalty problem, gives � = ch�xc�, which is the same as (23).

13.4 NEWTON’S METHOD AND PENALTY
FUNCTIONS

In the next few sections we address the problem of efficiently solving the uncon-
strained problems associated with a penalty or barrier method. The main difficulty
is the extremely unfavorable eigenvalue structure that, as explained in Section 13.3,
always accompanies unconstrained problems derived in this way. Certainly straight-
forward application of the method of steepest descent is out of the question!

One method for avoiding slow convergence for these problems is to apply
Newton’s method (or one of its variations), since the order two convergence of
Newton’s method is unaffected by the poor eigenvalue structure. In applying the
method, however, special care must be devoted to the manner by which the Hessian
is inverted, since it is ill-conditioned. Nevertheless, if second-order information
is easily available, Newton’s method offers an extremely attractive and effective
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method for solving modest size penalty or barrier optimization problems. When
such information is not readily available, or if data handling and storage require-
ments of Newton’s method are excessive, attention naturally focuses on first-order
methods.

A simple modified Newton’s method can often be quite effective for some
penalty problems. For example, consider the problem having only equality
constraints

minimize f�x�

subject to h�x� = 0
(38)

with x ∈ En, h�x� ∈ Em, m < n. Applying the standard quadratic penalty method
we solve instead the unconstrained problem

minimize f�x�+ 1
2 c�h�x��2 (39)

for some large c. Calling the penalty objective function q�x� we consider the
iterative process

xk+1 = xk −�k
I + c�h�xk�
T �h�xk��

−1�q�xk�
T � (40)

where �k is chosen to minimize q�xk+1�. The matrix I + c�h�xk�
T �h�xk� is

positive definite and although quite ill-conditioned it can be inverted efficiently
(see Exercise 11).

According to the Modified Newton Method Theorem (Section 10.1) the rate of
convergence of this method is determined by the eigenvalues of the matrix


I + c�h�xk�
T �h�xk��

−1Q�xk�� (41)

where Q�xk� is the Hessian of q at xk. In view of (26), as c → � the matrix (41)
will have m eigenvalues that approach unity, while the remaining n−m eigenvalues
approach the eigenvalues of LM evaluated at the solution x∗ of (38). Thus, if the
smallest and largest eigenvalues of LM , a and A, are located such that the interval

a�A� contains unity, the convergence ratio of this modified Newton’s method will
be equal (in the limit of c → �) to the canonical ratio 
�A − a�/�A + a��2 for
problem (38).

If the eigenvalues of LM are not spread below and above unity, the convergence
rate will be slowed. If a point in the interval containing the eigenvalues of LM is
known, a scalar factor can be introduced so that the canonical rate is achieved, but
such information is often not easily available.

Inequalities
If there are inequality as well as equality constraints in the problem, the analogous
procedure can be applied to the associated penalty objective function. The unusual



418 Chapter 13 Penalty and Barrier Methods

feature of this case is that corresponding to an inequality constraint gi�x� � 0,
the term �g+

i �x�T �g+
i �x� used in the iteration matrix will suddenly appear if the

constraint is violated. Thus the iteration matrix is discontinuous with respect to x,
and as the method progresses its nature changes according to which constraints
are violated. This discontinuity does not, however, imply that the method is
subject to jamming, since the result of Exercise 4, Chapter 10 is applicable to this
method.

13.5 CONJUGATE GRADIENTS AND PENALTY
METHODS

The partial conjugate gradient method proposed and analyzed in Section 9.5 is
ideally suited to penalty or barrier problems having only a few active constraints. If
there are m active constraints, then taking cycles of m+1 conjugate gradient steps
will yield a rate of convergence that is independent of the penalty constant c. For
example, consider the problem having only equality constraints:

minimize f�x�

subject to h�x� = 0�
(42)

where x ∈ En, h�x� ∈ Em, m < n. Applying the standard quadratic penalty method,
we solve instead the unconstrained problem

minimize f�x�+ 1
2 c�h�x��2 (43)

for some large c. The objective function of this problem has a Hessian matrix
that has m eigenvalues that are of the order c in magnitude, while the remaining
n−m eigenvalues are close to the eigenvalues of the matrix LM , corresponding to
problem (42). Thus, letting xk+1 be determined from xk by taking m+1 steps of a
(nonquadratic) conjugate gradient method, and assuming xk → x, a solution to (43),
the sequence �f�xk�	 converges linearly to f�x� with a convergence ratio equal to
approximately

(
A−a

A+a

)2

� (44)

where a and A are, respectively, the smallest and largest eigenvalues of LM�x�.
This is an extremely effective technique when m is relatively small. The

programming logic required is only slightly greater than that of steepest descent,
and the time per iteration is only about m+1 times as great as for steepest descent.
The method can be used for problems having inequality constraints as well but it
is advisable to change the cycle length, depending on the number of constraints
active at the end of the previous cycle.
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Example 3.

minimize f�x1� x2� � � � � x10� =
10∑

k=1

kx2
k

subject to 1�5x1 + x2 + x3 +0�5x4 + 0�5x5 = 5�5

2�0x6 −0�5x7 −0�5x8 + x9 − x10 = 2�0

x1 + x3 + x5 + x7 + x9 = 10

x2 + x4 + x6 + x8 + x10 = 15�

This problem was treated by the penalty function approach, and the resulting
composite function was then solved for various values of c by using various cycle
lengths of a conjugate gradient algorithm. In Table 13.1 p is the number of conjugate
gradient steps in a cycle. Thus, p = 1 corresponds to ordinary steepest descent;
p = 5 corresponds, by the theory of Section 9.5, to the smallest value of p for which
the rate of convergence is independent of c; and p = 10 is the standard conjugate
gradient method. Note that for p < 5 the convergence rate does indeed depend on
c, while it is more or less constant for p � 5. The value of c’s selected are not
artificially large, since for c = 200 the constraints are satisfied only to within 0.5
percent of their right-hand sides. For problems with nonlinear constraints the results
will most likely be somewhat less favorable, since the predicted convergence rate
would apply only to the tail of the sequence.

Table 13.1

p (steps per cycle)

Number of
cycles to
convergence No. of steps

Value of
modified
objective

c = 20

⎧
⎪⎪⎨

⎪⎪⎩

1 90 90 388�565
3 8 24 388�563
5 3 15 388�563
7 3 21 388�563

c = 200

⎧
⎪⎪⎨

⎪⎪⎩

1 230∗ 230 488�607
3 21 63 487�446
5 4 20 487�438
7 2 14 487�433

c = 2000

⎧
⎪⎪⎨

⎪⎪⎩

1 260∗ 260 525�238
3 45∗ 135 503�550
5 3 15 500�910
7 3 21 500�882

∗ Program not run to convergence due to excessive time.
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13.6 NORMALIZATION OF PENALTY FUNCTIONS
There is a good deal of freedom in the selection of penalty or barrier functions that
can be exploited to accelerate convergence. We propose here a simple normalization
procedure that together with a two-step cycle of conjugate gradients yields the
canonical rate of convergence. Again for simplicity we illustrate the technique for
the penalty method applied to the problem

minimize f�x�

subject to h�x� = 0
(45)

as in Sections 13.4 and 13.5, but the idea is easily extended to other penalty or
barrier situations.

Corresponding to (45) we consider the family of quadratic penalty functions

P�x� = 1
2 h�x�T �h�x�� (46)

where � is a symmetric positive definite m×m matrix. We ask what the best choice
of � might be.

Letting

q�c� x� = f�x�+ cP�x�� (47)

the Hessian of q turns out to be, using (26),

Q�c� xk� = L�xk�+ c�h�xk�
T ��h�xk�� (48)

The m large eigenvalues are due to the second term on the right. The observation
we make is that although the m large eigenvalues are all proportional to c, they are
not necessarily all equal. Indeed, for very large c these eigenvalues are determined
almost exclusively by the second term, and are therefore c times the nonzero
eigenvalues of the matrix �h�xk�

T ��h�xk�. We would like to select � so that these
eigenvalues are not spread out but are nearly equal to one another. An ideal choice
for the kth iteration would be

� = 
�h�xk��h�xk�
T �−1� (49)

since then all nonzero eigenvalues would be exactly equal. However, we do not
allow to change at each step, and therefore compromise by setting

� = 
�h�x0��h�x0�
T �−1� (50)

where x0 is the initial point of the iteration.
Using this penalty function, the corresponding eigenvalue structure will at any

point look approximately like that shown in Fig. 13.5. The eigenvalues are bunched
into two separate groups. As c is increased the smaller eigenvalues move into the
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0 a A c

Fig. 13.5 Eigenvalue distributions

Table 13.2

p (steps per cycle)
Number of cycles
to convergence

No. of
steps

Value of modified
objective

c = 10

{ 1 28 28 251�2657
2 9 18 251�2657
3 5 15 251�2657

c = 100

{ 1 153 153 379�5955
2 13 26 379�5955
3 11 33 379�5955

c = 1000

{ 1 261∗ 261 402�0903
2 14 28 400�1687
3 13 39 400�1687

∗ Program not run to convergence due to excessive time.

interval 
a�A� where a and A are, as usual, the smallest and largest eigenvalues of
LM at the solution to (45). The larger eigenvalues move forward to the right and
spread further apart.

Using the result of Exercise 11, Chapter 9, we see that if xk+1 is determined
from xk by two conjugate gradient steps, the rate of convergence will be linear at a
ratio determined by the widest of the two eigenvalue groups. If our normalization is
sufficiently accurate, the large-valued group will have the lesser width. In that case
convergence of this scheme is approximately that of the canonical rate for the original
problem. Thus, by proper normalization it is possible to obtain the canonical rate of
convergence for only about twice the time per iteration as required by steepest descent.

There are, of course, numerous variations of this method that can be used
in practice. � can, for example, be allowed to vary at each step, or it can be
occasionally updated.

Example. The example problem presented in the previous section was also solved
by the normalization method presented above. The results for various values of c
and for cycle lengths of one, two, and three are presented in Table 13.2. (All runs
were initiated from the zero vector.)

13.7 PENALTY FUNCTIONS AND GRADIENT
PROJECTION

The penalty function method can be combined with the idea of the gradient
projection method to yield an attractive general purpose procedure for solving
constrained optimization problems. The proposed combination method can be
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viewed either as a way of accelerating the rate of convergence of the penalty
function method by eliminating the effect of the large eigenvalues, or as a technique
for efficiently handling the delicate and usually cumbersome requirement in the
gradient projection method that each point be feasible. The combined method
converges at the canonical rate (the same as does the gradient projection method),
is globally convergent (unlike the gradient projection method), and avoids much of
the computational difficulty associated with staying feasible.

Underlying Concept
The basic theoretical result that motivates the development of this algorithm is the
Combined Steepest Descent and Newton’s Method Theorem of Section 10.7. The
idea is to apply this combined method to a penalty problem. For simplicity we first
consider the equality constrained problem

minimize f�x�

subject to h�x� = 0�
(51)

where x ∈ En� h�x� ∈ Em. The associated unconstrained penalty problem that we
consider is

minimize q�x�� (52)

where

q�x� = f�x�+ 1
2 c�h�x��2�

At any point xk let M�xk� be the subspace tangent to the surface Sk = �x �
h�x� = h�xk�	. This is a slight extension of the tangent subspaces that we have
considered before, since M�xk� is defined even for points that are not feasible. If
the sequence �xk	 converges to a solution xc of problem (52), then we expect that
M�xk� will in some sense converge to M�xc�. The orthogonal complement of M�xk�
is the space generated by the gradients of the constraint functions evaluated at xk.
Let us denote this space by N�xk�. The idea of the algorithm is to take N as the
subspace over which Newton’s method is applied, and M as the space over which
the gradient method is applied. A cycle of the algorithm would be as follows:

1. Given xk, apply one step of Newton’s method over, the subspace N�xk� to obtain
a point wk of the form

wk = xk +�h�xk�
T uk

uk ∈ Em�
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2. From wk, take an ordinary steepest descent step to obtain xk+1.

Of course, we must show how Step 1 can be easily executed, and this is done below,
but first, without drawing out the details, let us examine the general structure of
this algorithm.

The process is illustrated in Fig. 13.6. The first step is analogous to the step
in the gradient projection method that returns to the feasible surface; except that
here the criterion is reduction of the objective function rather than satisfaction
of constraints. To interpret the second step, suppose for the moment that the
original problem (51) has a quadratic objective and linear constraints; so that,
consequently, the penalty problem (52) has a quadratic objective and N�x��M�x�
and �h�x� are independent of x. In that case the first (Newton) step would
exactly minimize q with respect to N , so that the gradient of q at wk would be
orthogonal to N ; that is, the gradient would lie in the subspace M . Furthermore,
since �q�wk� = �f�wk� + ch�wk��h�wk�, we see that �q�wk� would in that
case be equal to the projection of the gradient of f onto M . Hence, the second
step is, in the quadratic case exactly, and in the general case approximately, a
move in the direction of the projected negative gradient of the original objective
function.

The convergence properties of such a scheme are easily predicted from the
theorem on the Combined Steepest Descent and Newton’s Method, in Section 10.7,
and our analysis of the structure of the Hessian of the penalty objective function
given by (26). As xk → xc the rate will be determined by the ratio of largest to
smallest eigenvalues of the Hessian restricted to M�xc�.

This leads, however, by what was shown in Section 12.3, to approximately the
canonical rate for problem (51). Thus this combined method will yield again the
canonical rate as c → �.

xk + 1

wk

xk

∇h(xk)
T

h(x) = 0

M(xk)
 + xk

M(xk)
 + wk

Fig. 13.6 Illustration of the method
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Implementing the First Step
To implement the first step of the algorithm suggested above it is necessary to show
how a Newton step can be taken in the subspace N�xk�. We show that, again for
large values of c, this can be accomplished easily.

At the point xk the function b, defined by

b�u� = q�xk +�h�xk�
T u� (53)

for u ∈ Em, measures the variations in q with respect to displacements in N�xk�.
We shall, for simplicity, assume that at each point, xk, �h�xk� has rank m. We can
immediately calculate the gradient with respect to u,

�b�u� = �q�xk +�h�xk�
T u��h�xk�

T � (54)

and the m×n Hessian with respect to u at u = 0,

B = �h�xk�Q�xk��h�xk�
T � (55)

where Q is the n×n Hessian of q with respect to x. From (26) we have that at xk

Q�xk� = Lk�xk�+ c�h�xk�
T �h�xk�� (56)

And given B, the direction for the Newton step in N would be

dk = −�h�xk�
T B−1�c�0�T

= −�h�xk�
T B−1�h�xk��q�xk�

T �
(57)

It is clear from (55) and (56) that exact evaluation of the Newton step requires
knowledge of L�xk� which usually is costly to obtain. For large values of c, however,
B can be approximated by

B � c
�h�xk��h�xk�
T �2� (58)

and hence a good approximation to the Newton direction is

dk = −1
c

�h�xk�
T 
�h�xk��h�xk�

T �−2�h�xk��q�xk�
T � (59)

Thus a suitable implementation of one cycle of the algorithm is:

1. Calculate

dk = −1
c

�h�xk�
T 
�h�xk��h�xk�

T �−2�h�xk��q�xk�
T �
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2. Find �k to minimize q�xk +�dk� (using �k = 1 as an initial search point), and
set wk = xk +�kdk.

3. Calculate pk = −�q�wk�
T .

4. Find �k to minimize q�wk +�pk�, and set xk+1 = wk +�kpk.

It is interesting to compare the Newton step of this version of the algorithm
with the step for returning to the feasible region used in the ordinary gradient
projection method. We have

�q�xk�
T = �f�xk�

T + c�h�xk�
T h�xk�� (60)

If we neglect �f�xk�
T on the right (as would be valid if we are a long distance

from the constraint boundary) then the vector dk reduces to

dk = −�h�xk�
T 
�h�xk��h�xk�

T �−1h�xk��

which is precisely the first estimate used to return to the boundary in the gradient
projection method. The scheme developed in this section can therefore be regarded
as one which corrects this estimate by accounting for the variation in f .

An important advantage of the present method is that it is not necessary to carry
out the search in detail. If � = 1 yields an improved value for the penalty objective,
no further search is required. If not, one need search only until some improvement
is obtained. At worst, if this search is poorly performed, the method degenerates
to steepest descent. When one finally gets close to the solution, however, � = 1 is
bound to yield an improvement and terminal convergence will progress at nearly
the canonical rate.

Inequality Constraints
The procedure is conceptually the same for problems with inequality constraints.
The only difference is that at the beginning of each cycle the subspace M�xk� is
calculated on the basis of those constraints that are either active or violated at xk,
the others being ignored. The resulting technique is a descent algorithm in that the
penalty objective function decreases at each cycle; it is globally convergent because
of the pure gradient step taken at the end of each cycle; its rate of convergence
approaches the canonical rate for the original constrained problem as c → �; and
there are no feasibility tolerances or subroutine iterations required.

13.8 EXACT PENALTY FUNCTIONS
It is possible to construct penalty functions that are exact in the sense that the
solution of the penalty problem yields the exact solution to the original problem
for a finite value of the penalty parameter. With these functions it is not necessary
to solve an infinite sequence of penalty problems to obtain the correct solution.
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However, a new difficulty introduced by these penalty functions is that they are
nondifferentiable.

For the general constrained problem

minimize f�x�

subject to h�x� = 0 (61)

g�x� � 0�

consider the absolute-value penalty function

P�x� =
m∑

i=1

�hi�x��+
p∑

j=1

max �0� gj�x��� (62)

The penalty problem is then, as usual,

minimize f�x�+ cP�x� (63)

for some positive constant c. We investigate the properties of the absolute-value
penalty function through an example and then generalize the results.

Example 1. Consider the simple quadratic problem

minimize 2x2 +2xy +y2 −2y

subject to x = 0�
(64)

It is easy to solve this problem directly by substituting x = 0 into the objective.
This leads immediately to x = 0, y = 1.

If a standard quadratic penalty function is used, we minimize the objective

2x2 +2xy +y2 −2y + 1
2 cx2 (65)

for c > 0. The solution again can be easily found and is x = −2/�2 + c�, y =
1−2/�2+c�. This solution approaches the true solution as c → �, as predicted by
the general theory. However, for any finite c the solution is inexact.

Now let us use the absolute-value penalty function. We minimize the function

2x2 +2xy +y2 −2y + c�x�� (66)

We rewrite (66) as

2x2 +2xy +y2 −2y + c�x�
= 2x2 +2xy + c�x�+ �y −1�2 −1

= 2x2 +2x+ c�x�+ �y −1�2 +2x�y −1�−1

= x2 + �2x+ c�x��+ �y −1+x�2 −1�

(67)
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All terms (except the −1) are nonnegative if c > 2. Therefore, the minimum value
of this expression is −1, which is achieved (uniquely) by x = 0, y = 1. Therefore,
for c > 2 the minimum point of the penalty problem is the correct solution to the
original problem (64).

We let the reader verify that � = −2 for this example. The fact that c > ��� is
required for the solution to be exact is an illustration of a general result given by
the following theorem.

Exact Penalty Theorem. Suppose that the point x∗ satisfies the second-order
sufficiency conditions for a local minimum of the constrained problem (61). Let
� and � be the corresponding Lagrange multipliers. Then for c > max ���i���j �
i = 1� 2� � � � �m� j = 1� 2� � � � � p	� x∗ is also a local minimum of the absolute-
value penalty objective (62).

Proof. For simplicity we assume that there are equality constraints only. Define
the primal function

��z� = min
x

�f�x� � hi�x� = zi for i = 1� 2� � � � �m	� (68)

The primal function was introduced in Section 12.3. Under our assumption the
function exists in a neighborhood of x∗ and is continuously differentiable, with
���0� = −�T .

Now define

�c�z� = ��z�+ c
m∑

i=1

�zi��

Then we have

min
x

�f�x�+ c
m∑

i=1

�hi�x��	 = min
x�u

�f�x�+ c
m∑

i=1

�zi� � h�x� = z	

= min
u

�p�z�+ c
m∑

i=1

�zi�	

= min
u

pc�z��

By the Mean Value Theorem,

��z� = ��0�+����z�z

for some �, 0 � � � 1. Therefore,

�c�z� = ��0�+����z�z+ c
m∑

i=1

�zi�� (69)
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We know that ���z� is continuous at 0, and thus given 
 > 0 there is a neighborhood
of 0 such that ����z�i� < ��i�+
. Thus

����z�z =
m∑

i=1

����z�izi � −�max
i

�����z�i�	
m∑

i=1

�zi�

� −�max
i

���i�+
�	
m∑

i=1

�zi��

Using this in (69), we obtain

�c�z� � p�0�+ �c−
−max ��i��
m∑

i=1

�zi��

For c > 
 + max ��i� it follows that �c�z� is minimized at z = 0. Since 
 was
arbitrary, the result holds for c > max ��i�.

This result is easily extended to include inequality constraints. (See
Exercise 16.)

It is possible to develop a geometric interpretation of the absolute-value penalty
function analogous to the interpretation for ordinary penalty functions given in
Fig. 13.4. Figure 13.7 corresponds to a problem for a single constraint. The smooth
curve represents the primal function of the problem. Its value at 0 is the value of
the original problem, and its slope at 0 is −�. The function �c�z� is obtained by
adding c�z� to the primal function, and this function has a discontinuous derivative
at z = 0. It is clear that for c > ���, this composite function has a minimum at
exactly z = 0, corresponding to the correct solution.

ω + c ⎢z ⎢

ω

z
0

Fig. 13.7 Geometric interpretation of absolute-value penalty function
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There are other exact penalty functions but, like the absolute-value penalty
function, most are nondifferentiable at the solution. Such penalty functions are for
this reason difficult to use directly; special descent algorithms for nondifferentiable
objective functions have been developed, but they can be cumbersome. Furthermore,
although these penalty functions are exact for a large enough c, it is not known at
the outset what magnitude is sufficient. In practice a progression of c’s must often
be used. Because of these difficulties, the major use of exact penalty functions in
nonlinear programming is as merit functions—measuring the progress of descent
but not entering into the determination of the direction of movement. This idea is
discussed in Chapter 15.

13.9 SUMMARY
Penalty methods approximate a constrained problem by an unconstrained problem
that assigns high cost to points that are far from the feasible region. As the
approximation is made more exact (by letting the parameter c tend to infinity) the
solution of the unconstrained penalty problem approaches the solution to the original
constrained problem from outside the active constraints. Barrier methods, on the
other hand, approximate a constrained problem by an (essentially) unconstrained
problem that assigns high cost to being near the boundary of the feasible region,
but unlike penalty methods, these methods are applicable only to problems having a
robust feasible region. As the approximation is made more exact, the solution of the
unconstrained barrier problem approaches the solution to the original constrained
problem from inside the feasible region.

The objective functions of all penalty and barrier methods of the form P�x� =
��h�x���B�x� = ��g�x�� are ill-conditioned. If they are differentiable, then as c →
� the Hessian (at the solution) is equal to the sum of L, the Hessian of the
Lagrangian associated with the original constrained problem, and a matrix of rank
r that tends to infinity (where r is the number of active constraints). This is a
fundamental property of these methods.

Effective exploitation of differentiable penalty and barrier functions requires
that schemes be devised that eliminate the effect of the associated large eigen-
values. For this purpose the three general principles developed in earlier chapters,
The Partial Conjugate Gradient Method, The Modified Newton Method, and The
Combination of Steepest Descent and Newton’s Method, when creatively applied,
all yield methods that converge at approximately the canonical rate associated with
the original constrained problem.

It is necessary to add a point of qualification with respect to some of the
algorithms introduced in this chapter, lest it be inferred that they are offered as
panaceas for the general programming problem. As has been repeatedly emphasized,
the ideal study of convergence is a careful blend of analysis, good sense, and
experimentation. The rate of convergence does not always tell the whole story,
although it is often a major component of it. Although some of the algorithms
presented in this chapter asymptotically achieve the canonical rate of convergence
(at least approximately), for large c the points may have to be quite close to the
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solution before this rate characterizes the process. In other words, for large c the
process may converge slowly in its initial phase, and, to obtain a truly representative
analysis, one must look beyond the first-order convergence properties of these
methods. For this reason many people find Newton’s method attractive, although
the work at each step can be substantial.

13.10 EXERCISES
1. Show that if q�c� x� is continuous (with respect to x) and q�c� x� → � as �x� → �,

then q�c� x� has a minimum.

2. Suppose problem (1), with f continuous, is approximated by the penalty problem (2),
and let �ck	 be an increasing sequence of positive constants tending to infinity. Define
q�c� x� = f�x�+ cP�x�, and fix 
 > 0. For each k let xk be determined satisfying

q�ck� xk� � 
min
x

q�ck� x��+
�

Show that if x∗ is a solution to (1), any limit point, x, of the sequence �xk	 is feasible
and satisfies f�x� � f�x∗�+
.

3. Construct an example problem and a penalty function such that, as c → �, the solution
to the penalty problem diverges to infinity.

4. Combined penalty and barrier method. Consider a problem of the form

minimize f�x�

subject to x ∈ S ∩T

and suppose P is a penalty function for S and B is a barrier function for T . Define

d�c� x� = f�x�+ cP�x�+ 1
c

B�x��

Let �ck	 be a sequence ck → �, and for k = 1� 2� � � � let xk be a solution to

minimize d�ck� x�

subject to x ∈ interior of T . Assume all functions are continuous, T is compact (and
robust), the original problem has a solution x∗, and that S∩ [interior of T ] is not empty.
Show that

a) limit
k∈� d�ck� xk� = f�x∗�.

b) limit
k∈� ckP�xk� = 0.

c) limit
k∈�

1
ck

B�xk� = 0.

5. Prove the Theorem at the end of Section 13.2.

6. Find the central path for the problem of minimizing x2 subject to x � 0.
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7. Consider a penalty function for the equality constraints

h�x� = 0� h�x� ∈ Em�

having the form

P�x� = ��h�x�� =
m∑

i=1

w�hi�x���

where w is a function whose derivative w′ is analytic and has a zero of order s � 1 at
zero.

a) Show that corresponding to (26) we have

Q�ck� xk� = Lk�xk�+ ck

m∑

i=1

�w′′�hi�xk��	�hi�xk�
T �hi�xk��

b) Show that as ck → �, m eigenvalues of Q�ck� xk� have magnitude on the order of
�ck�

1/s.

8. Corresponding to the problem

minimize f�x�

subject to g�x� � 0�

consider the sequence of unconstrained problems

minimize f�x�+ 
g+�x�+1�k −1�

and suppose xk is the solution to the kth problem.

a) Find an appropriate definition of a Lagrange multiplier �k to associate with xk.
b) Find the limiting form of the Hessian of the associated objective function, and

determine how fast the largest eigenvalues tend to infinity.

9. Repeat Exercise 8 for the sequence of unconstrained problems

minimize f�x�+ 
�g�x�+1�+�k�

10. Morrison’s method. Suppose the problem

minimize f�x�

subject to h�x� = 0
(70)

has solution x∗. Let M be an optimistic estimate of f�x∗�, that is, M � f�x∗�. Define
v�M� x� = 
f�x�−M�2 +�h�x��2 and define the unconstrained problem

minimize v�M� x�� (71)
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Given Mk � f�x∗�, a solution xMk
to the corresponding problem (71) is found, then Mk

is updated through

Mk+1 = Mk + 
v�Mk� xMk
��1/2 (72)

and the process repeated.

a) Show that if M = f�x∗�, a solution to (71) is a solution to (70).
b) Show that if xM is a solution to (71), then f�xM� � f�x∗�.
c) Show that if Mk � f�x∗� then Mk+1 determined by (72) satisfies Mk+1 � f�x∗�.
d) Show that Mk → f�x∗�.
e) Find the Hessian of v�M� x� (with respect to x∗). Show that, to within a scale factor,

it is identical to that associated with the standard penalty function method.

11. Let A be an m×n matrix of rank m. Prove the matrix identity


I +AT A�−1 = I −AT 
I +AAT �−1A

and discuss how it can be used in conjunction with the method of Section 13.4.

12. Show that in the limit of large c, a single cycle of the normalization method of
Section 13.6 is exactly the same as a single cycle of the combined penalty function and
gradient projection method of Section 13.7.

13. Suppose that at some step k of the combined penalty function and gradient projection
method, the m × n matrix �h�xk� is not of rank m. Show how the method can be
continued by temporarily executing the Newton step over a subspace of dimension less
than m.

14. For a problem with equality constraints, show that in the combined penalty function
and gradient projection method the second step (the steepest descent step) can be
replaced by a step in the direction of the negative projected gradient (projected onto
Mk) without destroying the global convergence property and without changing the rate
of convergence.

15. Develop a method that is analogous to that of Section 13.7, but which is a combination
of penalty functions and the reduced gradient method. Establish that the rate of
convergence of the method is identical to that of the reduced gradient method.

16. Extend the result of the Exact Penalty Theorem of Section 13.8 to inequalities. Write
gj�x� � 0 in the form of an equality as gj�x� + y2

j = 0 and show that the original
theorem applies.

17. Develop a result analogous to that of the Exact Penalty Theorem of Section 13.8 for the
penalty function

P�x� = max�0� gi�x�� g2�x�� � � � � gp�x�� �hi�x��� �h2�x��� � � � � �hm�x��	�
18. Solve the problem

minimize x2 +xy +y2 −2y

subject to x+y = 2

three ways analytically
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a) with the necessary conditions.
b) with a quadratic penalty function.
c) with an exact penalty function.
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Chapter 14 DUAL AND
CUTTING PLANE
METHODS

Dual methods are based on the viewpoint that it is the Lagrange multipliers which
are the fundamental unknowns associated with a constrained problem; once these
multipliers are known determination of the solution point is simple (at least in
some situations). Dual methods, therefore, do not attack the original constrained
problem directly but instead attack an alternate problem, the dual problem, whose
unknowns are the Lagrange multipliers of the first problem. For a problem with n
variables and m equality constraints, dual methods thus work in the m-dimensional
space of Lagrange multipliers. Because Lagrange multipliers measure sensitivities
and hence often have meaningful intuitive interpretations as prices associated with
constraint resources, searching for these multipliers, is often, in the context of a
given practical problem, as appealing as searching for the values of the original
problem variables.

The study of dual methods, and more particularly the introduction of the dual
problem, precipitates some extensions of earlier concepts. Thus, perhaps the most
interesting feature of this chapter is the calculation of the Hessian of the dual problem
and the discovery of a dual canonical convergence ratio associated with a cons-
trained problem that governs the convergence of steepest ascent applied to the dual.

Cutting plane algorithms, exceedingly elementary in principle, develop a series
of ever-improving approximating linear programs, whose solutions converge to the
solution of the original problem. The methods differ only in the manner by which an
improved approximating problem is constructed once a solution to the old approx-
imation is known. The theory associated with these algorithms is, unfortunately,
scant and their convergence properties are not particularly attractive. They are,
however, often very easy to implement.

14.1 GLOBAL DUALITY
Duality in nonlinear programming takes its most elegant form when it is formu-
lated globally in terms of sets and hyperplanes that touch those sets. This theory
makes clear the role of Lagrange multipliers as defining hyperplanes which can be

435
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considered as dual to points in a vector space. The theory provides a symmetry
between primal and dual problems and this symmetry can be considered as perfect
for convex problems. For non-convex problems the “imperfection” is made clear
by the duality gap which has a simple geometric interpretation. The global theory,
which is presented in this section, serves as useful background when later we
specialize to a local duality theory that can be used even without convexity and
which is central to the understanding of the convergence of dual algorithms.

As a counterpoint to Section 11.9 where equality constraints were considered
before inequality constraints, here we shall first consider a problem with inequality
constraints. In particular, consider the problem

minimize f�x� (1)

subject to g�x� ≤ 0

x ∈ ��

� ⊂ En is a convex set, and the functions f and g are defined on �. The function g
is p-dimensional. The problem is not necessarily convex, but we assume that there
is a feasible point. Recall that the primal function associated with (1) is defined for
z ∈ Ep as

��z� = inf �f�x� � g�x� ≤ z	 x ∈ �
	 (2)

defined by letting the right hand side of inequality constraint take on arbitrary
values. It is understood that (2) is defined on the set D = �z � g�x� ≤ z, for some
x ∈ �
.

If problem (1) has a solution x∗ with value f ∗ = f�x∗�, then f ∗ is the point on
the vertical axis in Ep+1 where the primal function passes through the axis. If (1)
does not have a solution, then f ∗ = inf�f�x� � g�x� ≤ 0	 x ∈ �
 is the intersection
point.

The duality principle is derived from consideration of all hyperplanes that lie
below the primal function. As illustrated in Fig. 14.1 the intercept with the vertical
axis of such a hyperplanes lies below (or at) the value f ∗.

ω (z)

Hyperplane
below ω (z)

z

r

f 
*

Fig. 14.1 Hyperplane below ��z�
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To express this property we define the dual function defined on the positive
cone in Ep as

���� = inf �f�x�+�T g�x� � x ∈ �
� (3)

In general, � may not be finite throughout the positive orthant E
p
+ but the region

where it is finite is convex.

Proposition 1. The dual function is concave on the region where it is finite.

Proof. Suppose �1, �2 are in the finite region, and let 0 ≤ � ≤ 1. Then

����1 + �1−��2�� = inf �f�x�+ ���1 + �1−���2�
T g�x� � x ∈ �


≥ inf ��f�x1�+��T
1 g�x1� � x1 ∈ �


+ inf ��1−��f�x2�+ �1−���T
2 g�x2� � x2 ∈ �


= ����1�+ �1−�����2��

We define �∗ = sup����� � � ≥ 0
 where it is understood that the supremum
is taken over the region where � is finite. We can now state the weak form of
global duality.

Weak Duality Proposition. �∗ ≤ f ∗.

Proof. For every � ≥ 0 we have

���� = inf �f�x�+�T g�x� � x ∈ �


≤ inf �f�x�+�T g�x� � g�x� ≤ 0	 x ∈ �


≤ inf �f�x� � g�x� ≤ 0	 x ∈ �
 = f ∗�

Taking the supremum over the left hand side gives �∗ ≤ f ∗.

Hence the dual function gives lower bounds on the optimal value f ∗.
This dual function has a strong geometric interpretation. Consider a p + 1-

dimensional vector �1	�� ∈ Ep+1 with � ≥ 0 and a constant c. The set of vectors
�r	 z� such that the inner product �1	��T �r	 z� ≡ r +�T z = c defines a hyperplane
in Ep+1. Different values of c give different hyperplanes, all of which are parallel.

For a given �1	�� we consider the lowest possible hyperplane of this form that
just barely touches (supports) the region above the primal function of problem (1).
Suppose x1 defines the touching point with values r = f�x1� and z = g�x1�. Then
c = f�x1�+�T g�x1� = ����.

The hyperplane intersects the vertical axis at a point of the form �r0	 0�. This
point also must satisfy �1	��T �r0	 0� = c = ����. This gives c = r0. Thus the
intercept gives ���� directly. Thus the dual function at � is equal to the intercept
of the hyperplane defined by � that just touches the epigraph of the primal function.
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Highest hyperplane

ϕ∗

f∗ Duality gap

z

ω (z)

Fig. 14.2 The highest hyperplane

Furthermore, this intercept (and dual function value) is maximized by the
Lagrange multiplier which corresponds to the largest possible intercept, at a point
no higher than the optimal value f ∗. See Fig. 14.2.

By introducing convexity assumptions, the foregoing analysis can be
strengthened to give the strong duality theorem, with no duality gap when the
intercept is at f ∗. See Fig. 14.3.

We shall state the result for the more general problem that includes equality
constraints of the form h�x� = 0, as in Section 11.9.

Specifically, we consider the problem

maximize f�x� (4)

subject to h�x� = 0	 g�x� ≤ 0

x ∈ �

where h is affine of dimension m, g is convex of dimension p, and � is a convex
set.

Optimal
hyperplane

z

r
ω(z)

f * = ϕ∗

Fig. 14.3 The strong duality theorem. There is no duality gap
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In this case the dual function is

���	�� = inf�f�x�+�T h�x�+�T g�x� � x ∈ �
�

And

�∗ = sup����	�� � � ∈ Em	� ∈ Ep	� ≥ 0
�

Strong Duality Theorem. Suppose in the problem (4), h is regular with respect
to � and there is a point x1 ∈ � with that h�x� = 0 and g�x� < 0.

Suppose the problem has solution x∗ with value f�x∗� = f ∗. Then for every
� and � ≥ 0 there holds

�∗ ≤ f ∗�

Furthermore, there are �, � ≥ 0 such that

���	�� = f ∗

and hence �∗ = f ∗. Moreover, the � and � above are Lagrange multipliers
for the problem.

Proof. The proof follows almost immediately from the Zero-order Lagrange

Theorem of Section 11.9. The Lagrange multipliers of that theorem give

f ∗ = max�f�x�+�T h�x�+�T g�x� � x ∈ �


= ���	�� ≤ �∗ ≤ f ∗�

Equality must hold across the inequalities, which establishes the results.

As a nice summary we can place the primal and dual problems together.

f ∗ = min ��z�

subject to z ≤ 0 Primal

�∗ = max ����

subject to � ≥ 0� Dual

Example 1. (Quadratic program). Consider the problem

minimize
1
2

xT Qx (5)

subject to Bx −b ≤ 0�

The dual function is

���� = min
x

1
2

xT Qx +�T �Bx −b��
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This gives the necessary conditions

Qx +BT � = 0

and hence x = −Q−1BT �. Substituting this into ���� gives

���� = −1
2

�T BQ−1BT �−�T b�

Hence the dual problem is

maximize − 1
2

�T BQ−1BT �−�T b (6)

subject to � ≥ 0	

which is also a quadratic programming problem. If this problem is solved for �,
that � will be the Lagrange multiplier for the primal problem (5).

Note that the first-order conditions for the dual problem (6) imply

�T 
−BQ−1BT �−b� = 0	

which by substituting the formula for x is equivalent to

�T 
Bx −b� = 0�

This is the complementary slackness condition for the original (primal) problem (5).

Example 4 (Integer solutions). Duality gaps may arise if the object function or
the constraint functions are not convex. A gap may also arise if the underlying
set is not convex. This is characteristic, for example, of problems in which the
components of the solution vector are constrained to be integers. For instance,
consider the problem

minimize x2
1 +2x2

2

subject to x1 +x2 ≥ 1/2

x1	 x2 nonnegative integers

It is clear that the solution is x1 = 1	 x2 = 0, with objective value f ∗ = 1. To put
this problem in the standard form we have discussed, we write the constraint as

−x1 −x2 +1/2 ≤ z	 where z = 0�

The primal function ��z� is equal to 0 for z ≥ 1/2 since then x1 = x2 = 0 is feasible.
The entire primal function has steps as z steps negatively integer by integer, as
shown in Fig. 14.4.
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Hyperplane
with μ =1

ω (z)

Duality gap1

0 1/2

z

Fig. 14.4 Duality for an integer problem

The dual function is

���� = max �x2
1 +x2

2 −��x1 +x2 −1/2�


where the maximum is taken with respect to the integer constraint. Analytically,
the solution for small values of � is

���� = �/2 for 0 ≤ � ≤ 1	
= 1−�/2 for 1 ≤ � ≤ 2	
��� and more

The maximum value of ���� is the maximum intercept of the corresponding
hyperplanes (lines, in this case) with the vertical axis. This occurs for � = 1 with
a corresponding value of �∗ = ��1� = 1/2. We have �∗ < f ∗ and the difference
f ∗ −�∗ = 1/2 is the duality gap.

14.2 LOCAL DUALITY
In practice the mechanics of duality are frequently carried out locally, by setting
derivatives to zero, or moving in the direction of a gradient. For these operations
the beautiful global theory can in large measure be replaced by a weaker but often
more useful local theory. This theory requires a minimum of convexity assumptions
defined locally. We present such a theory in this section, since it is in keeping
with the spirit of the earlier chapters and is perhaps the simplest way to develop
computationally useful duality results.

As often done before for convenience, we again consider nonlinear
programming problems of the form

minimize f�x�

subject to h�x� = 0	
(7)
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where x ∈ En	 h�x� ∈ En and f	 h ∈ C2. Global convexity is not assumed here.
Everything we do can be easily extended to problems having inequality as well as
equality constraints, for the price of a somewhat more involved notation.

We focus attention on a local solution x∗ of (7). Assuming that x∗ is a regular
point of the constraints, then, as we know, there will be a corresponding Lagrange
multiplier (row) vector �∗ such that

�f�x∗�+ ��∗�T �h�x∗� = 0	 (8)

and the Hessian of the Lagrangian

L�x∗� = F�x∗�+ ��∗�T H�x∗� (9)

must be positive semidefinite on the tangent subspace

M = �x � �h�x∗�x = 0
�

At this point we introduce the special local convexity assumption necessary
for the development of the local duality theory. Specifically, we assume that the
Hessian L�x∗� is positive definite. Of course, it should be emphasized that by this we
mean L�x∗� is positive definite on the whole space En, not just on the subspace M .
The assumption guarantees that the Lagrangian l�x� = f�x�+ ��∗�T h�x� is locally
convex at x∗.

With this assumption, the point x∗ is not only a local solution to the constrained
problem (7); it is also a local solution to the unconstrained problem

minimize f�x�+ ��∗�T h�x�	 (10)

since it satisfies the first- and second-order sufficiency conditions for a local
minimum point. Furthermore, for any � sufficiently close to �∗ the function
f�x�+�T h�x� will have a local minimum point at a point x near x∗. This follows
by noting that, by the Implicit Function Theorem, the equation

�f�x�+�T �h�x� = 0 (11)

has a solution x near x∗ when � is near �∗, because L∗ is nonsingular; and by the
fact that, at this solution x, the Hessian F�x�+�T H�x� is positive definite. Thus
locally there is a unique correspondence between � and x through solution of the
unconstrained problem

minimize f�x�+�T h�x�� (12)

Furthermore, this correspondence is continuously differentiable.
Near �∗ we define the dual function � by the equation

���� = minimum 
f�x�+�T h�x��	 (13)
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where here it is understood that the minimum is taken locally with respect to x
near x∗. We are then able to show (and will do so below) that locally the original
constrained problem (7) is equivalent to unconstrained local maximization of the
dual function � with respect to �. Hence we establish an equivalence between a
constrained problem in x and an unconstrained problem in �.

To establish the duality relation we must prove two important lemmas. In the
statements below we denote by x��� the unique solution to (12) in the neighborhood
of x∗.

Lemma 1. The dual function � has gradient

����� = h�x����T (14)

Proof. We have explicitly, from (13),

���� = f�x����+�T h�x�����

Thus

����� = 
�f�x����+�T �h�x������x���+h�x����T �

Since the first term on the right vanishes by definition of x���, we obtain (14).

Lemma 1 is of extreme practical importance, since it shows that the gradient of
the dual function is simple to calculate. Once the dual function itself is evaluated,
by minimization with respect to x, the corresponding h�x�T , which is the gradient,
can be evaluated without further calculation.

The Hessian of the dual function can be expressed in terms of the Hessian of
the Lagrangian. We use the notation L�x	�� = F�x�+�T H�x�, explicitly indicating
the dependence on �. (We continue to use L�x∗� when � = �∗ is understood.) We
then have the following lemma.

Lemma 2. The Hessian of the dual function is

���� = −�h�x����L−1�x���	���h�x����T � (15)

Proof. The Hessian is the derivative of the gradient. Thus, by Lemma 1,

���� = �h�x�����x���� (16)

By definition we have

�f�x����+�T �h�x���� = 0	

and differentiating this with respect to � we obtain

L�x���	���x���+�h�x����T = 0�
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Solving for �x��� and substituting in (16) we obtain (15).

Since L−1�x���� is positive definite, and since �h�x���� is of full rank near
x∗, we have as an immediate consequence of Lemma 2 that the m×m Hessian of
� is negative definite. As might be expected, this Hessian plays a dominant role in
the analysis of dual methods.

Local Duality Theorem. Suppose that the problem

minimize f�x�

subject to h�x� = 0
(17)

has a local solution at x∗ with corresponding value r∗ and Lagrange multiplier
�∗. Suppose also that x∗ is a regular point of the constraints and that the
corresponding Hessian of the Lagrangian L∗ = L�x∗� is positive definite. Then
the dual problem

maximize ���� (18)

has a local solution at �∗ with corresponding value r∗ and x∗ as the point
corresponding to �∗ in the definition of �.

Proof. It is clear that x∗ corresponds to �∗ in the definition of �. Now at �∗ we
have by Lemma 1

����∗� = h�x∗�T = 0	

and by Lemma 2 the Hessian of � is negative definite. Thus �∗ satisfies the first-
and second-order sufficiency conditions for an unconstrained maximum point of �.
The corresponding value ���∗� is found from the definition of � to be r∗.

Example 1. Consider the problem in two variables

minimize −xy

subject to �x−3�2 +y2 = 5�

The first-order necessary conditions are

−y + �2x−6�� = 0

−x+2y� = 0

together with the constraint. These equations have a solution at

x = 4	 y = 2	 � = 1�
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The Hessian of the corresponding Lagrangian is

L =
[

2 −1
−1 2

]

�

Since this is positive definite, we conclude that the solution obtained is a local
minimum. (It can be shown, in fact, that it is the global solution.)

Since L is positive definite, we can apply the local duality theory near this
solution. We define

���� = min �−xy +�
�x−3�2 +y2 −5�
	

which leads to

���� = 4�+4�3 −80�5

�4�2 −1�2

valid for � > 1
2 . It can be verified that � has a local maximum at � = 1.

Inequality Constraints
For problems having inequality constraints as well as equality constraints the above
development requires only minor modification. Consider the problem

minimize f�x�

subject to h�x� = 0 (19)

g�x� � 0	

where g�x� ∈ Ep, g ∈ C2 and everything else is as before. Suppose x∗ is a local
solution of (19) and is a regular point of the constraints. Then, as we know, there
are Lagrange multipliers �∗ and �∗ � 0 such that

�f�x∗�+ ��∗�T �h�x∗�+ ��∗�T �g�x∗� = 0 (20)

��∗�T g�x∗� = 0� (21)

We impose the local convexity assumptions that the Hessian of the Lagrangian

L�x∗� = F�x∗�+ ��∗�T H�x∗�+ ��∗�T G�x∗� (22)

is positive definite (on the whole space).
For � and � � 0 near �∗ and �∗ we define the dual function

���	�� = min
f�x�+�T h�x�+�T g�x��	 (23)

where the minimum is taken locally near x∗. Then, it is easy to show, paralleling
the development above for equality constraints, that � achieves a local maximum
with respect to �, � � 0 at �∗, �∗.
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Partial Duality
It is not necessary to include the Lagrange multipliers of all the constraints of a
problem in the definition of the dual function. In general, if the local convexity
assumption holds, local duality can be defined with respect to any subset of
functional constraints. Thus, for example, in the problem

minimize f�x�

subject to h�x� = 0 (24)

g�x� � 0	

we might define the dual function with respect to only the equality constraints. In
this case we would define

���� = min
g�x��0

�f�x�+�T h�x�
	 (25)

where the minimum is taken locally near the solution x∗ but constrained by the
remaining constraints g�x� � 0. Again, the dual function defined in this way will
achieve a local maximum at the optimal Lagrange multiplier �∗.

14.3 DUAL CANONICAL CONVERGENCE RATE
Constrained problems satisfying the local convexity assumption can be solved
by solving the associated unconstrained dual problem, and any of the standard
algorithms discussed in Chapters 7 through 10 can be used for this purpose. Of
course, the method that suggests itself immediately is the method of steepest ascent.
It can be implemented by noting that, according to Lemma 1. Section 14.2, the
gradient of � is available almost without cost once � itself is evaluated. Without
some special properties, however, the method as a whole can be extremely costly
to execute, since every evaluation of � requires the solution of an unconstrained
problem in the unknown x. Nevertheless, as shown in the next section, many
important problems do have a structure which is suited to this approach.

The method of steepest ascent, and other gradient-based algorithms, when
applied to the dual problem will have a convergence rate governed by the eigenvalue
structure of the Hessian of the dual function �. At the Lagrange multiplier �∗

corresponding to a solution x∗ this Hessian is (according to Lemma 2, Section 13.1)

� = −�h�x∗��L∗�−1�h�x∗�T �

This expression shows that � is in some sense a restriction of the matrix �L∗�−1

to the subspace spanned by the gradients of the constraint functions, which is
the orthogonal complement of the tangent subspace M . This restriction is not the
orthogonal restriction of �L∗�−1 onto the complement of M since the particular repre-
sentation of the constraints affects the structure of the Hessian. We see, however,
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that while the convergence of primal methods is governed by the restriction of L∗

to M , the convergence of dual methods is governed by a restriction of �L∗�−1 to
the orthogonal complement of M .

The dual canonical convergence rate associated with the original constrained
problem, which is the rate of convergence of steepest ascent applied to the dual,
is �B − b�2/�B + b�2 where b and B are, respectively, the smallest and largest
eigenvalues of

−� = �h�x∗��L∗�−1�h�x∗�T �

For locally convex programming problems, this rate is as important as the primal
canonical rate.

Scaling
We conclude this section by pointing out a kind of complementarity that exists
between the primal and dual rates. Suppose one calculates the primal and dual
canonical rates associated with the locally convex constrained problem

minimize f�x�

subject to h�x� = 0�

If a change of primal variables x is introduced, the primal rate will in general change
but the dual rate will not. On the other hand, if the constraints are transformed (by
replacing them by Th�x� = 0 where T is a nonsingular m×m matrix), the dual rate
will change but the primal rate will not.

14.4 SEPARABLE PROBLEMS
A structure that arises frequently in mathematical programming applications is that
of the separable problem:

minimize
q∑

i=1

fi�xi� (26)

subject to
q∑

i=1

hi�xi� = 0 (27)

q∑

i=1

gi�xi� � 0� (28)

In this formulation the components of the n-vector x are partitioned into q disjoint
groups, x = �x1	 x2	 � � � 	 xq� where the groups may or may not have the same number
of components. Both the objective function and the constraints separate into sums
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of functions of the individual groups. For each i, the functions fi, hi, and gi are
twice continuously differentiable functions of dimensions 1, m, and p, respectively.

Example 1. Suppose that we have a fixed budget of, say, A dollars that may be
allocated among n activities. If xi dollars is allocated to the ith activity, then there
will be a benefit (measured in some units) of fi�xi�. To obtain the maximum benefit
within our budget, we solve the separable problem

maximize
n∑

i=1

fi�xi�

subject to
n∑

i=1

xi � A (29)

xi � 0�

In the example x is partitioned into its individual components.

Example 2. Problems involving a series of decisions made at distinct times are
often separable. For illustration, consider the problem of scheduling water release
through a dam to produce as much electric power as possible over a given time
interval while satisfying constraints on acceptable water levels. A discrete-time
model of this problem is to

maximize
N∑

k=1

f�y�k�	u�k��

subject to y�k� = y�k−1�−u�k�+ s�k�	 k = 1	 � � � 	N

c � y�k� � d	 k = 1	 � � � 	N

0 � u�k�	 k = 1	 � � � 	N�

Here y�k� represents the water volume behind the dam at the end of period k	u�k�
represents the volume flow through the dam during period k, and s�k� is the volume
flowing into the lake behind the dam during period k from upper streams. The
function f gives the power generation, and c and d are bounds on lake volume.
The initial volume y�0� is given.

In this example we consider x as the 2N -dimensional vector of unknowns
y�k�	u�k�	 k = 1	 2	 � � � 	N . This vector is partitioned into the pairs xk =
�y�k�	u�k��. The objective function is then clearly in separable form. The
constraints can be viewed as being in the form (27) with hk�xk� having dimension
N and such that hk�xk� is identically zero except in the k and k+1 components.

Decomposition
Separable problems are ideally suited to dual methods, because the required uncon-
strained minimization decomposes into small subproblems. To see this we recall
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that the generally most difficult aspect of a dual method is evaluation of the dual
function. For a separable problem, if we associate � with the equality constraints
(27) and � � 0 with the inequality constraints (28), the required dual function is

���	�� = min
q∑

i=1

fi�xi�+�T hi�xi�+�T gi�xi��

This minimization problem decomposes into the q separate problems

min
xi

fi�xi�+�T hi�xi�+�T gi�xi��

The solution of these subproblems can usually be accomplished relatively
efficiently, since they are of smaller dimension than the original problem.

Example 3. In Example 1 using duality with respect to the budget constraint, the
ith subproblem becomes, for � > 0

max
xi�0

fi�xi�−�xi	

which is only a one-dimensional problem. It can be interpreted as setting a benefit
value � for dollars and then maximizing total benefit from activity i, accounting
for the dollar expenditure.

Example 4. In Example 2 using duality with respect to the equality constraints we
denote the dual variables by ��k�	 k = 1	 2	 � � � 	N . The kth subproblem becomes

max
c�y�k��d

0�u�k�

�f�y�k�	u�k��+ 
��k+1�−��k��y�k�−��k�
u�k�− s�k��


which is a two-dimensional optimization problem. Selection of � ∈ EN decomposes
the problem into separate problems for each time period. The variable ��k� can be
regarded as a value, measured in units of power, for water at the beginning of period
k. The kth subproblem can then be interpreted as that faced by an entrepreneur who
leased the dam for one period. He can buy water for the dam at the beginning of
the period at price ��k� and sell what he has left at the end of the period at price
��k+1�. His problem is to determine y�k� and u�k� so that his net profit, accruing
from sale of generated power and purchase and sale of water, is maximized.

Example 5. (The hanging chain). Consider again the problem of finding the
equilibrium position of the hanging chain considered in Example 4, Section 11.3,
and Example 1, Section 12.7. The problem is

minimize
n∑

i=1

ciyi
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subject to
n∑

i=1

yi = 0

n∑

i=1

√

1−y2
i = L	

where ci = n − i + 1
2 , L = 16. This problem is locally convex, since as shown in

Section 12.7 the Hessian of the Lagrangian is positive definite. The dual function
is accordingly

���	�� = min
n∑

i=1

{

ciyi +�yi +�

√

1−y2
i

}

−L��

Since the problem is separable, the minimization divides into a separate
minimization for each yi, yielding the equations

ci +�− �yi
√

1−y2
i

= 0

or

�ci +��2�1−y2
i � = �2y2

i �

This yields

yi = −�ci +��


�ci +��2 +�2�1/2
� (30)

The above represents a local minimum point provided � < 0; and the minus sign
must be taken for consistency.

The dual function is then

���	�� =
n∑

i=1

{
−�ci +��2


�ci +��2 +�2�1/2
+�

[
�2


�ci +��2 +�2�

]1/2
}

−L�

or finally, using
√

�2 = −� for � < 0,

���	�� = −L�−
n∑

i=1

√
�ci +��2 +�2�

The correct values of � and � can be found by maximizing ���	��. One way to do
this is to use steepest ascent. The results of this calculation, starting at � = � = 0,
are shown in Table 14.1. The values of yi can then be found from (30).
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Table 14.1 Results of Dual of Chain Problem

Final solution
� = −10�00048

Iteration Value � = −6�761136

0 −200�00000 y1 = −�8147154
1 −66�94638 y2 = −�7825940
2 −66�61959 y3 = −�7427243
3 −66�55867 y4 = −�6930215
4 −66�54845 y5 = −�6310140
5 −66�54683 y6 = −�5540263
6 −66�54658 y7 = −�4596696
7 −66�54654 y8 = −�3467526
8 −66�54653 y9 = −�2165239
9 −66�54653 y10 = −�0736802

14.5 AUGMENTED LAGRANGIANS
One of the most effective general classes of nonlinear programming methods is
the augmented Lagrangian methods, alternatively referred to as multiplier methods.
These methods can be viewed as a combination of penalty functions and local duality
methods; the two concepts work together to eliminate many of the disadvantages
associated with either method alone.

The augmented Lagrangian for the equality constrained problem

minimize f�x�

subject to h�x� = 0
(31)

is the function

lc�x	�� = f�x�+�T h�x�+ 1
2

c�h�x��2

for some positive constant c. We shall briefly indicate how the augmented
Lagrangian can be viewed as either a special penalty function or as the basis for a
dual problem. These two viewpoints are then explored further in this and the next
section.

From a penalty function viewpoint the augmented Lagrangian, for a fixed value
of the vector �, is simply the standard quadratic penalty function for the problem

minimize f�x�+�T h�x�

subject to h�x� = 0�
(32)

This problem is clearly equivalent to the original problem (31), since combinations
of the constraints adjoined to f�x� do not affect the minimum point or the minimum
value. However, if the multiplier vector were selected equal to �∗, the correct



452 Chapter 14 Dual and Cutting Plane Methods

Lagrange multiplier, then the gradient of lc�x	�∗� would vanish at the solution x∗.
This is because �lc�x	�∗� = 0 implies �f�x� + ��∗�T �h�x� + ch�x��h�x� = 0,
which is satisfied by �f�x�+ ��∗�T �h�x� = 0 and h�x� = 0. Thus the augmented
Lagrangian is seen to be an exact penalty function when the proper value of �∗ is
used.

A typical step of an augmented Lagrangian method starts with a vector �k.
Then xk is found as the minimum point of

f�x�+�T
k h�x�+ 1

2
c�h�x��2 (33)

Next �k is updated to �k+1. A standard method for the update is

�k+1 = �k + ch�xk��

To motivate the adjustment procedure, consider the constrained problem (32)
with � = �k. The Lagrange multiplier corresponding to this problem is �∗ − �k,
where �∗ is the Lagrange multiplier of (31). On the other hand since (33) is the
penalty function corresponding to (32), it follows from the results of Section 13.3
that ch�xk� is approximately equal to the Lagrange multiplier of (32). Combining
these two facts, we obtain ch�xk� 	 �∗ −�k. Therefore, a good approximation to
the unknown �∗ is �k+1 = �k + ch�xk�.

Although the main iteration in augmented Lagrangian methods is with respect
to �, the penalty parameter c may also be adjusted during the process. As in ordinary
penalty function methods, the sequence of c’s is usually preselected; c is either held
fixed, is increased toward a finite value, or tends(slowly) toward infinity. Since in
this method it is not necessary for c to go to infinity, and in fact it may remain
of relatively modest value, the ill-conditioning usually associated with the penalty
function approach is mediated.

From the viewpoint of duality theory, the augmented Lagrangian is simply the
standard Lagrangian for the problem

minimize f�x�+ 1
2

c�h�x��2

subject to h�x� = 0�

(34)

This problem is equivalent to the original problem (31), since the addition of the term
1
2 c�h�x��2 to the objective does not change the optimal value, the optimum solution
point, nor the Lagrange multiplier. However, whereas the original Lagrangian may
not be convex near the solution, and hence the standard duality method cannot be
applied, the term 1

2 c�h�x��2 tends to “convexify” the Lagrangian. For sufficiently
large c, the Lagrangian will indeed be locally convex. Thus the duality method can
be employed, and the corresponding dual problem can be solved by an iterative
process in �. This viewpoint leads to the development of additional multiplier
adjustment processes.
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The Penalty Viewpoint
We begin our more detailed analysis of augmented Lagrangian methods by showing
that if the penalty parameter c is sufficiently large, the augmented Lagrangian has
a local minimum point near the true optimal point. This follows from the following
simple lemma.

Lemma. Let A and B be n × n symmetric matrices. Suppose that B is
positive semi-definite and that A is positive definite on the subspace Bx = 0.
Then there is a c∗ such that for all c ≥ c∗ the matrix A+cB is positive definite.

Proof. Suppose to the contrary that for every k there were an xk with �xk� = 1 such
that xT

k �A + kB�xk ≤ 0. The sequence �xk
 must have a convergent subsequence
converging to a limit x. Now since xT

k Bxk ≥ 0, it follows that xT Bx = 0. It also
follows that xT Ax ≤ 0. However, this contradicts the hypothesis of the lemma.

This lemma applies directly to the Hessian of the augmented Lagrangian
evaluated at the optimal solution pair x∗, �∗. We assume as usual that the second-
order sufficiency conditions for a constrained minimum hold at x∗	�∗. The Hessian
of the augmented Lagrangian evaluated at the optimal pair x∗	�∗ is

Lc�x∗	�∗� = F�x∗�+ ��∗�T H�x∗�+ c�h�x∗�T �h�x∗�

= L�x∗�+ c�h�x∗�T �h�x∗��

The first term, the Hessian of the normal Lagrangian, is positive definite on the
subspace �h�x∗�x = 0. This corresponds to the matrix A in the lemma. The matrix
�h�x∗�T �h�x∗� is positive semi-definite and corresponds to B in the lemma. It
follows that there is a c∗ such that for all c > c∗	 Lc�x∗	�∗� is positive definite.
This leads directly to the first basic result concerning augmented Lagrangians.

Proposition 1. Assume that the second-order sufficiency conditions for a local
minimum are satisfied at x∗	�∗. Then there is a c∗ such that for all c ≥ c∗, the
augmented Lagrangian lc�x	�∗� has a local minimum point at x∗.

By a continuity argument the result of the above proposition can be extended to
a neighborhood around x∗	�∗. That is, for any � near �∗, the augmented Lagrangian
has a unique local minimum point near x∗. This correspondence defines a continuous
function. If a value of � can be found such that h�x���� = 0, then that � must in
fact be �∗, since x��� satisfies the necessary conditions of the original problem.
Therefore, the problem of determining the proper value of � can be viewed as one
of solving the equation h�x���� = 0. For this purpose the iterative process

�k+1 = �k + ch�x��k��	

is a method of successive approximation. This process will converge linearly in a
neighborhood around �∗, although a rigorous proof is somewhat complex. We shall
give more definite convergence results when we consider the duality viewpoint.
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Example 1. Consider the simple quadratic problem studied in Section 13.8

minimize 2x2 +2xy +y2 −2y

subject to x = 0�

The augmented Lagrangian for this problem is

lc�x	 y	�� = 2x2 +2xy +y2 −2y +�x+ 1
2

cx2�

The minimum of this can be found analytically to be x = −�2 + ��/�2 + c�	 y =
�4 + c +��/�2 + c�. Since h�x	 y� = x in this example, it follows that the iterative
process for �k is

�k+1 = �k − c�2+�k�

2+ c

or

�k+1 =
(

2
2+ c

)

�k − 2c

2+ c
�

This converges to � = −2 for any c > 0. The coefficient 2/�2+c� governs the rate
of convergence, and clearly, as c is increased the rate improves.

Geometric Interpretation
The augmented Lagrangian method can be interpreted geometrically in terms of
the primal function in a manner analogous to that in Sections 13.3 and 13.8 for
the ordinary quadratic penalty function and the absolute-value penalty function.
Consider again the primal function ��y� defined as

��y� = min�f�x� � h�x� = y
	

where the minimum is understood to be taken locally near x∗. We remind the
reader that ��0� = f�x∗� and that ���0�T = −�∗. The minimum of the augmented
Lagrangian at step k can be expressed in terms of the primal function as follows:

min lc�x	�k� = min
x

�f�x�+�T
k h�x�+ 1

2
c�h�x��2


= min
x	u

�f�x�+�T
k y + 1

2
c�y�2 � h�x� = y


= min
u

���y�+�T
k y + 1

2
c�y�2
	

(35)

where the minimization with respect to y is to be taken locally near y = 0. This
minimization is illustrated geometrically for the case of a single constraint in



14.5 Augmented Lagrangians 455

slope – λk + 1

slope – λk

yk

0

slope – λ∗

slope – λk+1

y
yk+1

ω (y)

c
2

ω ( y) + – y2

Fig. 14.5 Primal function and augmented Lagrangian

Fig. 14.5. The lower curve represents ��y�, and the upper curve represents ��y�+
1
2 c�y�2. The minimum point yk of (30) occurs at the point where this upper curve
has slope equal to −�k. It is seen that for c sufficiently large this curve will be
convex at y = 0. If �k is close to �∗, it is clear that this minimum point will be
close to 0; it will be exact if �k = �∗.

The process for updating �k is also illustrated in Fig. 14.5. Note that in general,
if xk minimizes lc�x	�k�, then yk = h�xk� is the minimum point of ��y�+�T

k y +
1
2 c�y�2. At that point we have as before

���yk�
T + cyk = −�k

or equivalently,

���yk�
T = −��k + cyk� = −��k + ch�xk���

It follows that for the next multiplier we have

�k+1 = �k + ch�xk� = −���yk�
T 	

as shown in Fig. 14.5 for the one-dimensional case. In the figure the next point
yk+1 is the point where ��y�+ 1

2 c�y�2 has slope −�k+1, which will yield a positive
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value of yk+1 in this case. It can be seen that if �k is sufficiently close to �∗, then
�k+1 will be even closer, and the iterative process will converge.

14.6 THE DUAL VIEWPOINT
In the method of augmented Lagrangians (the method of multipliers), the primary
iteration is with respect to �, and therefore it is most natural to consider the method
from the dual viewpoint. This is in fact the more powerful viewpoint and leads to
improvements in the algorithm.

As we observed earlier, the constrained problem

minimize f�x�

subject to h�x� = 0
(36)

is equivalent to the problem

minimize f�x�+ 1
2

c�h�x��2

subject to h�x� = 0
(37)

in the sense that the solution points, the optimal values, and the Lagrange multipliers
are the same for both problems. However, as spelled out by Proposition 1 of the
previous section, whereas problem (36) may not be locally convex, problem (37) is
locally convex for sufficiently large c; specifically, the Hessian of the Lagrangian is
positive definite at the solution pair x∗, �∗. Thus local duality theory is applicable
to problem (37) for sufficiently large c.

To apply the dual method to (37), we define the dual function

���� = min�f�x�+�T h�x�+ 1
2

c�h�x��2
 (38)

in a region near x∗, �∗. If x��� is the vector minimizing the right-hand side of
(37), then as we have seen in Section 14.2, h�x���� is the gradient of �. Thus the
iterative process

�k+1 = �k + ch�x��k��

used in the basic augmented Lagrangian method is seen to be a steepest ascent
iteration for maximizing the dual function �. It is a simple form of steepest ascent,
using a constant stepsize c.

Although the stepsize c is a good choice (as will become even more evident
later), it is clearly advantageous to apply the algorithmic principles of optimization
developed previously by selecting the stepsize so that the new value of the dual
function satisfies an ascent criterion. This can extend the range of convergence of
the algorithm.
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The rate of convergence of the optimal steepest ascent method (where the
steplength is selected to maximize � in the gradient direction) is determined by the
eigenvalues of the Hessian of �. The Hessian of � is found from (15) to be

�h�x����
L�x���	��+ c�h�x����T �h�x�����−1�h�x�T � (39)

The eigenvalues of this matrix at the solution point x∗, �∗ determine the convergence
rate of the method of steepest ascent.

To analyze the eigenvalues we make use of the matrix identity

cB�A+ cBT B�−1BT = I − �I + cBA−1BT �−1	

which is a generalization of the Sherman-Morrison formula. (See Section 10.4.)
It is easily seen from the above identity that the matrices B�A + cBT B�−1BT and
(BA−1BT ) have identical eigenvectors. One way to see this is to multiply both sides
of the identity by (I + cBA−1BT ) on the right to obtain

cB�A+ cBT B�−1BT �I + cBA−1BT � = cBA−1BT �

Suppose both sides are applied to an eigenvector e of BA−1BT having eigen-
value w. Then we obtain

cB�A+ cBT B�−1BT �1+ cw�e = cwe�

It follows that e is also an eigenvector of B�A + cBT B�−1BT , and if � is the
corresponding eigenvalue, the relation

c��1+ cw� = cw

must hold. Therefore, the eigenvalues are related by

� = w

1+ cw
� (40)

The above relations apply directly to the Hessian (39) through the associations
A = L�x∗	�∗� and B = �h�x∗�. Note that the matrix �h�x∗�L�x∗	�∗�−1�h�x∗�T ,
corresponding to BA−1BT above, is the Hessian of the dual function of the original
problem (36). As shown in Section 14.3 the eigenvalues of this matrix determine
the rate of convergence for the ordinary dual method. Let w and W be the smallest
and largest eigenvalues of this matrix. From (40) it follows that the ratio of smallest
to largest eigenvalues of the Hessian of the dual for the augmented problem is

1
W

+ c

1
w

+ c

�



458 Chapter 14 Dual and Cutting Plane Methods

This shows explicitly how the rate of convergence of the multiplier method depends
on c. As c goes to infinity, the ratio of eigenvalues goes to unity, implying arbitrarily
fast convergence.

Other unconstrained optimization techniques may be applied to the
maximization of the dual function defined by the augmented Lagrangian; conjugate
gradient methods, Newton’s method, and quasi-Newton methods can all be used.
The use of Newton’s method requires evaluation of the Hessian matrix (39). For
some problems this may be feasible, but for others some sort of approximation is
desirable. One approximation is obtained by noting that for large values of c, the
Hessian (39) is approximately equal to �1/c�I. Using this value for the Hessian and
h�x���� for the gradient, we are led to the iterative scheme

�k+1 = �k + ch�x��k��	

which is exactly the simple method of multipliers originally proposed.
We might summarize the above observations by the following statement relating

primal and dual convergence rates. If a penalty term is incorporated into a problem,
the condition number of the primal problem becomes increasingly poor as c → �
but the condition number of the dual becomes increasingly good. To apply the dual
method, however, an unconstrained penalty problem of poor condition number must
be solved at each step.

Inequality Constraints
One advantage of augmented Lagrangian methods is that inequality constraints can
be easily incorporated. Let us consider the problem with inequality constraints:

minimize f�x�

subject to g�x� ≤ 0	
(41)

where g is p-dimensional. We assume that this problem has a well-defined solution
x∗, which is a regular point of the constraints and which satisfies the second-
order sufficiency conditions for a local minimum as specified in Section 11.8. This
problem can be written as an equivalent problem with equality constraints:

minimize f�x�

subject to gj�x�+ z2
j = 0	 j = 1	 2	 � � � 	 p�

(42)

Through this conversion we can hope to simply apply the theory for equality
constraints to problems with inequalities.

In order to do so we must insure that (42) satisfies the second-order sufficiency
conditions of Section 11.5. These conditions will not hold unless we impose a strict
complementarity assumption that gj�x∗� = 0 implies �∗

j > 0 as well as the usual
second-order sufficiency conditions for the original problem (41). (See Exercise 10.)
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With these assumptions we define the dual function corresponding to the
augmented Lagrangian method as

���� = min
z	x

�f�x�+
p∑

j=1

��j
gj�x�+ z2
j �+

1
2

c�gj�x�+ z2
j �2

�

For convenience we define �j = z2
j for j = 1	 2	 � � � 	 p. Then the definition of ����

becomes

���� = min
v≥0	x

�f�x�+�T 
g�x�+v�+ 1
2

c�g�x�+v�2
� (43)

The minimization with respect to v in (43) can be carried out analytically, and this
will lead to a definition of the dual function that only involves minimization with
respect to x. The variable �j enters the objective of the dual function only through
the expression

Pj = �j
gj�x�+�j�+
1
2

c
gj�x�+�j�
2� (44)

It is this expression that we must minimize with respect to �j ≥ 0. This is easily
accomplished by differentiation: If �j > 0, the derivative must vanish; if �j = 0,
the derivative must be nonnegative. The derivative is zero at �j = −gj�x�−�j/c.
Thus we obtain the solution

�j =
{

−gj�x�− �j

c
if −gj�x�− �j

c
≥ 0

0 otherwise

or equivalently,

�j = max
[
0	−gj�x�− �j

c

]
� (45)

We now substitute this into (44) in order to obtain an explicit expression for the
minimum of Pj .

For �j = 0, we have

Pj = 1
2c

�2�jcgj�x�+ c2gj�x�2


= 1
2c

�
�j + cgj�x��2 −�2
j 
�

For �j = −gj�x�−�j/c we have

Pj = −�2
j /2c�

These can be combined into the formula

Pj = 1
2c

�
max �0	�j + cgj�x���2 −�2
j 
�
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Fig. 14.6 Penalty function for inequality problem

In view of the above, let us define the function of two scalar arguments t and �:

Pc�t	�� = 1
2c

�
max �0	�+ ct��2 −�2
� (46)

For a fixed � > 0, this function is shown in Fig. 14.6. Note that it is a smooth
function with derivative with respect to t equal to � at t = 0.

The dual function for the inequality problem can now be written as

���� = min
x

{

f�x�+
p∑

j=1

Pc�gj�x�	�j�

}

� (47)

Thus inequality problems can be treated by adjoining to f�x� a special penalty
function (that depends on �). The Lagrange multiplier � can then be adjusted to
maximize �, just as in the case of equality constraints.

14.7 CUTTING PLANE METHODS
Cutting plane methods are applied to problems having the general form

minimize cT x

subject to x ∈ S	
(48)

where S ⊂ En is a closed convex set. Problems that involve minimization of a
convex function over a convex set, such as the problem

minimize f�y�

subject to y ∈ R	
(49)
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where R ⊂ En−1 is a convex set and f is a convex function, can be easily converted
to the form (48) by writing (49) equivalently as

minimize r

subject to f�y�− r � 0

y ∈ R	

(50)

which, with x = �r	 y�, is a special case of (48).

General Form of Algorithm
The general form of a cutting-plane algorithm for problem (48) is as follows:

Given a polytope Pk ⊃ S

Step 1. Minimize cT x over Pk obtaining a point xk in Pk. If xk ∈ S, stop; xk is
optimal. Otherwise,

Step 2. Find a hyperplane Hk separating the point xk from S, that is, find ak ∈ En,
bk ∈ E1 such that S ⊂ �x � aT

k x � bk
, xk ∈ �x � aT
k x > bk
. Update Pk to obtain Pk+1

including as a constraint aT
k x � bk.

The process is illustrated in Fig. 14.7.
Specific algorithms differ mainly in the manner in which the hyperplane that

separates the current point xk from the constraint set S is selected. This selection is,
of course, the most important aspect of the algorithm, since it is the deepness of the
cut associated with the separating hyperplane, the distance of the hyperplane from
the current point, that governs how much improvement there is in the approximation
to the constraint set, and hence how fast the method converges.

s

–cx3

x2

H2 H1

x1

Fig. 14.7 Cutting plane method
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Specific algorithms also differ somewhat with respect to the manner by which
the polytope is updated once the new hyperplane is determined. The most straight-
forward procedure is to simply adjoin the linear inequality associated with that
hyperplane to the ones determined previously. This yields the best possible updated
approximation to the constraint set but tends to produce, after a large number of
iterations, an unwieldy number of inequalities expressing the approximation. Thus,
in some algorithms, older inequalities that are not binding at the current point are
discarded from further consideration.

Duality
The general cutting plane algorithm can be regarded as an extended application of
duality in linear programming, and although this viewpoint does not particularly aid
in the analysis of the method, it reveals the basic interconnection between cutting
plane and dual methods. The foundation of this viewpoint is the fact that S can be
written as the intersection of all the half-spaces that contain it; thus

S = �x � aT
i x � bi	 i ∈ I
	

where I is an (infinite) index set corresponding to all half-spaces containing S.
With S viewed in this way problem (48) can be thought of as an (infinite) linear
programming problem.

Corresponding to this linear program there is (at least formally) the dual
problem

maximize
∑

i∈I

�ibi

subject to
∑

i∈I

�iai = c (51)

�i � 0	 i ∈ I�

Selecting a finite subset of I , say Ī , and forming

P = �x � aT
i x � bi	 i ∈ Ī


gives a polytope that contains S. Minimizing cT x over this polytope yields a point
and a corresponding subset of active constraints IA. The dual problem with the
additional restriction �i = 0 for i 
 IA will then have a feasible solution, but this
solution will in general not be optimal. Thus, a solution to a polytope problem
corresponds to a feasible but non-optimal solution to the dual. For this reason the
cutting plane method can be regarded as working toward optimality of the (infinite
dimensional) dual.
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14.8 KELLEY’S CONVEX CUTTING PLANE
ALGORITHM

The convex cutting plane method was developed to solve convex programming
problems of the form

minimize f�x�

subject to gi�x� � 0	 i = 1	 2	 � � � 	 p	
(52)

where x ∈ En and f and the gi’s are differentiable convex functions. As indicated
in the last section, it is sufficient to consider the case where the objective function
is linear; thus, we consider the problem

minimize cT x

subject to g�x� � 0
(53)

where x ∈ En and g�x� ∈ Ep is convex and differentiable.
For g convex and differentiable we have the fundamental inequality

g�x� � g�w�+�g�w��x −w� (54)

for any x, w. We use this equation to determine the separating hyperplane. Specif-
ically, the algorithm is as follows:

Let S = �x � g�x� � 0
 and let P be an initial polytope containing S and such
that cT x is bounded on P. Then

Step 1. Minimize cT x over P obtaining the point x = w. If g�w� � 0, stop; w is
an optimal solution. Otherwise,

Step 2. Let i be an index maximizing gi�w�. Clearly gi�w� > 0. Define the new
approximating polytope to be the old one intersected with the half-space

�x � gi�w�+�gi�w��x −w� � 0
� (55)

Return to Step 1.

The set defined by (55) is actually a half-space if �gi�w� �= 0. However,
�gi�w� = 0 would imply that w minimizes gi which is impossible if S is nonempty.
Furthermore, the half-space given by (55) contains S, since if g�x� � 0 then by (54)
gi�w�+�gi�w��x − w� � gi�x� � 0. The half-space does not contain the point w
since gi�w� > 0. This method for selecting the separating hyperplane is illustrated
in Fig. 14.8 for the one-dimensional case. Note that in one dimension, the procedure
reduces to Newton’s method.
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S
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x

g(x)

Fig. 14.8 Convex cutting plane

Calculation of the separating hyperplane is exceedingly simple in this algorithm,
and hence the method really amounts to the solution of a series of linear
programming problems. It should be noted that this algorithm, valid for any convex
programming problem, does not involve any line searches. In that respect it is also
similar to Newton’s method applied to a convex function.

Convergence
Under fairly mild assumptions on the convex function, the convex cutting plane
method is globally convergent. It is possible to apply the general conver-
gence theorem to prove this, but somewhat easier, in this case, to prove it
directly.

Theorem. Let the convex functions gi	 i = 1	 2	 � � � 	 p be continuously differen-
tiable, and suppose the convex cutting plane algorithm generates the sequence
of points �wk
. Any limit point of this sequence is a solution to problem (53).

Proof. Suppose �wk
, k ∈ � is a subsequence of �wk
 converging to w. By
taking a further subsequence of this, if necessary, we may assume that the index i
corresponding to Step 2 of the algorithm is fixed throughout the subsequence. Now
if k ∈ � , k′ ∈ � and k′ > k, then we must have

gi�wk�+�gi�wk��wk′ −wk� � 0	

which implies that

gi�wk� � ��gi�wk���wk′ −wk�� (56)

Since ��gi�wk�� is bounded with respect to k ∈ � , the right-hand side of (56) goes
to zero as k and k′ go to infinity. The left-hand side goes to gi�w�. Thus gi�w� � 0
and we see that w is feasible for problem (53).
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If f ∗ is the optimal value of problem (53), we have cT wk � f ∗ for each k
since wk is obtained by minimizing over a set containing S. Thus, by continuity,
cT w � f ∗ and hence w is an optimal solution.

As with most algorithms based on linear programming concepts, the rate of
convergence of cutting plane algorithms has not yet been satisfactorily analyzed.
Preliminary research shows that these algorithms converge arithmetically, that is,
if x∗ is optimal, then �xk −x∗�2 � c/k for some constant c. This is an exceedingly
poor type of convergence. This estimate, however, may not be the best possible and
indeed there are indications that the convergence is actually geometric but with a
ratio that goes to unity as the dimension of the problem increases.

14.9 MODIFICATIONS
In this section we describe the supporting hyperplane algorithm (an alternative
method for determining a cutting plane) and examine the possibility of dropping
from consideration some old hyperplanes so that the linear programs do not grow
too large.

The Supporting Hyperplane Algorithm
The convexity requirements are less severe for this algorithm. It is applicable to
problems of the form

minimize cT x

subject to g�x� � 0	

where x ∈ En, g�x� ∈ Ep, the gi’s are continuously differentiable, and the constraint
region S defined by the inequalities is convex. Note that convexity of the functions
themselves is not required. We also assume the existence of a point interior to the
constraint region, that is, we assume the existence of a point y such that g�y� < 0,
and we assume that on the constraint boundary gi�x� = 0 implies �gi�x� �= 0. The
algorithm is as follows:

Start with an initial polytope P containing S and such that cT x is bounded
below on S. Then

Step 1. Determine w = x to minimize cT x over P. If w ∈ S, stop. Otherwise,

Step 2. Find the point u on the line joining y and w that lies on the boundary
of S. Let i be an index for which gi�u� = 0 and define the half-space H = �x �
�gi�u��x −u� � 0
. Update P by intersecting with H . Return to Step 1.

The algorithm is illustrated in Fig. 14.9.
The price paid for the generality of this method over the convex cutting plane

method is that an interpolation along the line joining y and w must be executed to
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Fig. 14.9 Supporting hyperplane algorithm

find the point u. This is analogous to the line search for a minimum point required
by most programming algorithms.

Dropping Nonbinding Constraints
In all cutting plane algorithms nonbinding constraints can be dropped from the
approximating set of linear inequalities so as to keep the complexity of the approx-
imation manageable. Indeed, since n linearly independent hyperplanes determine
a single point in En, the algorithm can be arranged, by discarding the nonbinding
constraints at the end of each step, so that the polytope consists of exactly n linear
inequalities at every stage.

Global convergence is not destroyed by this process, since the sequence of
objective values will still be monotonically increasing. It is not known, however,
what effect this has on the speed of convergence.

14.10 EXERCISES
1. (Linear programming) Use the global duality theorem to find the dual of the linear

program

minimize cT x

subject to Ax = b

x ≥ 0�

Note that some of the regularity conditions may not be necessary for the linear case.

2. (Double dual) Show that the for a convex programming problem with a solution, the
dual of the dual is in some sense the original problem.
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3. (Non-convex?) Consider the problem

minimize xy

subject to x+y −4 ≥ 0

1 ≤ x ≤ 5	 1 ≤ y ≤ 5�

Show that although the objective function is not convex, the primal function is convex.
Find the optimal value and the Lagrange multiplier.

4. Find the global maximum of the dual function of Example 1, Section 14.2.

5. Show that the function � defined for �, �, �� � 0�, by ���	�� = minx
f�x�+�T h�x�+
�T g�x�� is concave over any convex region where it is finite.

6. Prove that the dual canonical rate of convergence is not affected by a change of variables
in x.

7. Corresponding to the dual function (23):

a) Find its gradient.
b) Find its Hessian.
c) Verify that it has a local maximum at �∗, �∗.

8. Find the Hessian of the dual function for a separable problem.

9. Find an explicit formula for the dual function for the entropy problem (Example 3,
Section 11.4).

10. Consider the problems

minimize f�x�

subject to gj�x� � 0	 j = 1	 2	 � � � 	 p
(57)

and

minimize f�x�

subject to gj�x�+ z2
j = 0	 j = 1	 2	 � � � 	 p�

(58)

a) Let x∗	�∗
1	�∗

2	 � � � 	�∗
p be a point and set of Lagrange multipliers that satisfy the first-

order necessary conditions for (57). For x∗, �∗, write the second-order sufficiency
conditions for (58).

b) Show that in general they are not satisfied unless, in addition to satisfying the
sufficiency conditions of Section 11.8, gj�x∗� implies �∗

j > 0.

11. Establish global convergence for the supporting hyperplane algorithm.

12. Establish global convergence for an imperfect version of the supporting hyperplane
algorithm that in interpolating to find the boundary point u actually finds a point
somewhere on the segment joining u and 1

2 u + 1
2 w and establishes a hyperplane there.

13. Prove that the convex cutting plane method is still globally convergent if it is modified by
discarding from the definition of the polytope at each stage hyperplanes corresponding
to inactive linear inequalities.
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Chapter 15 PRIMAL-DUAL
METHODS

This chapter discusses methods that work simultaneously with primal and dual
variables, in essence seeking to satisfy the first-order necessary conditions for
optimality. The methods employ many of the concepts used in earlier chapters,
including those related to active set methods, various first and second order methods,
penalty methods, and barrier methods. Indeed, a study of this chapter is in a sense
a review and extension of what has been presented earlier.

The first several sections of the chapter discuss methods for solving the standard
nonlinear programming structure that has been treated in the Parts 2 and 3 of the
text. These sections provide alternatives to the methods discussed earlier.

Section 15.9 however discusses a completely different form of problem,
termed semidefinite programming, which evolved from linear programming. These
problems are characterized by inequalities defined by positive-semidefiniteness of
matrices. In other words, rather than a restriction of the form x � 0 for a vector
x, the restriction is of the form A � 0 where A is a symmetric matrix and � 0
denotes positive semi-definiteness. Such problems are of great practical importance.
The principle solution method for semidefinite problems are generalizations of the
interior point methods for linear programming.

15.1 THE STANDARD PROBLEM
Consider again the standard nonlinear program

minimize f�x� (1)

subject to h�x� = 0

g�x� � 0�

The first-order necessary conditions for optimality are, as we know,

�f�x�+�T �h�x�+�T �g�x� = 0 (2)

h�x� = 0

469
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g�x� � 0

�T g�x� = 0

The last requirement is the complementary slackness condition. If it is known which
of the inequality constraints is active at the solution, these active constraints can be
rolled into the equality constraints h�x� = 0� and the inactive inequalities along with
the complementary slackness condition dropped, to obtain a problem with equality
constraints only. This indeed is the structure of the problem near the solution.

If in this structure the vector x is n-dimensional and h is m-dimensional, then
� will also be m-dimensional. The system (1) will, in this reduced form, consist of
n+m equations and n+m unknowns, which is an indication that the system may
be well defined, and hence that there is a solution for the pair �x���. In essence,
primal–dual methods amount to solving this system of equations, and use additional
strategies to account for inequality constraints.

In view of the above observation it is natural to consider whether in fact the
system of necessary conditions is in fact well conditioned, possessing a unique
solution �x���. We investigate this question by considering a linearized version of
the conditions.

A useful and somewhat more generally useful approach is to consider the
quadratic program

minimize 1
2 xT Qx + cT x (3)

subject to Ax = b�

where x is n-dimensional and b is m-dimensional.
The first-order conditions for this problem are

Qx + AT � + c = 0
Ax − b = 0�

(4)

These correspond to the necessary conditions (2) for equality constraints only. The
following proposition gives conditions under which the system is nonsingular.

Proposition. Let Q and A be n×n and m×n matrices, respectively. Suppose
that A has rank m and that Q is positive definite on the subspace M = �x �
Ax = 0	. Then the matrix

[
Q AT

A 0

]

(5)

is nonsingular.

Proof. Suppose �x� y� ∈ En+m is such that

Qx +AT y = 0

Ax = 0�
(6)
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Multiplication of the first equation by xT yields

xT Qx +xT AT y = 0�

and substitution of Ax = 0 yields xT Qx = 0. However, clearly x ∈ M , and thus
the hypothesis on Q together with xT Qx = 0 implies that x = 0. It then follows
from the first equation that AT y = 0. The full-rank condition on A then implies that
y = 0. Thus the only solution to (6) is x = 0, y = 0.

If, as is often the case, the matrix Q is actually positive definite (over the whole
space), then an explicit formula for the solution of the system can be easily derived
as follows: From the first equation in (4) we have

x = −Q−1AT �−Q−1c�

Substitution of this into the second equation then yields

−AQ−1AT �−AQ−1c −b = 0�

from which we immediately obtain

� = −�AQ−1AT �−1
AQ−1c +b� (7)

and

x = Q−1AT �AQ−1AT �−1
AQ−1c +b�−Q−1c

= −Q−1
I −AT �AQ−1AT �−1AQ−1�c (8)

+Q−1AT �AQ−1AT �−1b�

15.2 STRATEGIES
There are some general strategies that guide the development of the primal–dual
methods of this chapter.

1. Descent measures. A fundamental concept that we have frequently used is
that of assuring that progress is made at each step of an iterative algorithm.
It is this that is used to guarantee global convergence. In primal methods this
measure of descent is the objective function. Even the simplex method of linear
programming is founded on this idea of making progress with respect to the
objective function. For primal minimization methods, one typically arranges that
the objective function decreases at each step.

The objective function is not the only possible way to measure progress. We
have, for example, when minimizing a function f , considered the quantity
�1/2���f�x��2� seeking to monotonically reduce it to zero.

In general, a function used to measure progress is termed a merit function.
Typically, it is defined so as to decrease as progress is made toward the solution



472 Chapter 15 Primal-Dual Methods

of a minimization problem, but the sign may be reversed in some definitions.
For primal–dual methods, the merit function may depend on both x and �.

One especially useful merit function for equality constrained problems is

m�x��� = 1
2
��f�x�+�T �h�x��2 + 1

2
�h�x���2�

It is examined in the next section.

We shall examine other merit functions later in the chapter. With interior point
methods or semidefinite programming, we shall use a potential function that
serves as a merit function.

2. Active Set Methods. Inequality constraints can be treated using active set
methods that treat the active constraints as equality constraints, at least for
the current iteration. However, in primal–dual methods, both x and � are
changed. We shall consider variations of steepest descent, conjugate directions,
and Newton’s method where movement is made in the �x��� space.

3. Penalty Functions. In some primal–dual methods, a penalty function can serve
as a merit function, even though the penalty function depends only on x. This
is particularly attractive for recursive quadratic programming methods where a
quadratic program is solved at each stage to determine the direction of change
in the pair �x����

4. Interior (Barrier) Methods. Barrier methods lead to methods that move within
the relative interior of the inequality constraints. This approach leads to the
concept of the primal–dual central path. These methods are used for semidefinite
programming since these problems are characterized as possessing a special
form of inequality constraint.

15.3 A SIMPLE MERIT FUNCTION
It is very natural, when considering the system of necessary conditions (2), to form
the function

m�x��� = 1
2
��f�x�+�T �h�x��2 + 1

2
�h�x��2� (9)

and use it as a measure of how close a point �x��� is to a solution.
It must be noted, however, that the function m�x��� is not always well-behaved;

it may have local minima, and these are of no value in a search for a solution. The
following theorem gives the conditions under which the function m�x��� can serve
as a well-behaved merit function. Basically, the main requirement is that the Hessian
of the Lagrangian be positive definite. As usual, we define l�x��� = f�x�+�T h�x�.

Theorem. Let f and h be twice continuously differentiable functions on En of
dimension 1 and m, respectively. Suppose that x∗ and �∗ satisfy the first-order
necessary conditions for a local minimum of m�x��� = 1

2 ��f�x�+�T �h�x��2 +
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1
2 �h�x��2 with respect to x and �. Suppose also that at x∗, �∗, (i) the rank
of �h�x∗� is m and (ii) the Hessian matrix L�x∗��∗� = F�x∗�+�∗T H�x∗� is
positive definite. Then, x∗, �∗ is a (possibly nonunique) global minimum point
of m�x���, with value m�x∗��∗� = 0.

Proof. Since x∗��∗ satisfies the first-order conditions for a local minimum point
of m�x���, we have


�f�x∗�+�∗T �h�x∗��L�x∗��∗�+h�x∗�T �h�x∗� = 0 (10)


�f�x∗�+�∗T �h�x∗���h�x∗�T = 0� (11)

Multiplying (10) on the right by 
�f�x∗�+�∗T �h�x∗��T and using (11) we obtain†

�l�x∗��∗�L�x∗��∗��l�x∗��∗�T = 0�

Since L�x∗��∗� is positive definite, this implies that �l�x∗��∗� = 0. Using this in
(10), we find that h�x∗�T �h�x∗� = 0, which, since �h�x∗� is of rank m, implies
that h�x∗� = 0.

The requirement that the Hessian of the Lagrangian L�x∗��∗� be positive
definite at a stationary point of the merit function m is actually not too restrictive.
This condition will be satisfied in the case of a convex programming problem where
f is strictly convex and h is linear. Furthermore, even in nonconvex problems one
can often arrange for this condition to hold, at least near a solution to the original
constrained minimization problem. If it is assumed that the second-order sufficiency
conditions for a constrained minimum hold at x∗��∗, then L�x∗��∗� is positive
definite on the subspace that defines the tangent to the constraints; that is, on the
subspace defined by �h�x∗�x = 0. Now if the original problem is modified with a
penalty term to the problem

minimize f�x�+ 1
2

c�h�x��2

subject to h�x� = 0�

(12)

the solution point x∗ will be unchanged. However, as discussed in Chapter 14,
the Hessian of the Lagrangian of this new problem (12) at the solution point is
L�x∗��∗�+ c�h�x∗�T �h�x∗�. For sufficiently large c, this matrix will be positive
definite. Thus a problem can be “convexified” (at least locally) before the merit
function method is employed.

An extension to problems with inequality constraints can be defined by parti-
tioning the constraints into the two groups active and inactive. However, at this
point the simple merit function for problems with equality constraints is adequate
for the purpose of illustrating the general idea.

† Unless explicitly indicated to the contrary, the notation �l�x��� refers to the gradient of
l with respect to x, that is, �xl�x���.
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15.4 BASIC PRIMAL–DUAL METHODS
Many primal–dual methods are patterned after some of the methods used in earlier
chapters, except of course that the emphasis is on equation solving rather than
explicit optimization.

First-Order Method
We consider first a simple straightforward approach, which in a sense parallels
the idea of steepest descent in that it uses only a first-order approximation to the
primal–dual equations. It is defined by

xk+1 = xk −
k�l�xk��k�
T

�k+1 = �k +
kh�xk��
(13)

where 
k is not yet determined. This is based on the error in satisfying (2). Assume
that the Hessian of the Lagrangian L�x��� is positive definite in some compact
region of interest, and consider the simple merit function

m�x��� = 1
2
��l�x����2 + 1

2
�h�x��2 (14)

discussed above. We would like to determine whether the direction of change in
(13) is a descent direction with respect to this merit function. The gradient of the
merit function has components corresponding to x and � of

�l�x���L�x���+h�x�T �h�x�

�l�x����h�x�T �
(15)

Thus the inner product of this gradient with the direction vector having components
−�l�x���T � h�x� is

−�l�x���L�x����l�x���T −h�x�T �h�x��l�x���T +�l�x����h�x�T h�x�

= −�l�x���L�x����l�x���T � 0�

This shows that the search direction is in fact a descent direction for the merit
function, unless �l�x��� = 0. Thus by selecting 
k to minimize the merit function
in the search direction at each step, the process will converge to a point where
�l�x��� = 0. However, there is no guarantee that h�x� = 0 at that point.

We can try to improve the method either by changing the way in which
the direction is selected or by changing the merit function. In this case a slight
modification of the merit function will work. Let

w�x��� �� = m�x���−�
f�x�+�T h�x��
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for some � > 0. We then calculate that the gradient of w has the two components
corresponding to x and �

�l�x���L�x���+h�x�T �h�x�−��l�x���

�l�x����h�x�T −�h�x�T �

and hence the inner product of the gradient with the direction −�l�x���T � h�x� is

−�l�x���
L�x���−�I��l�x���T −��h�x��2�
Now since we are assuming that L�x��� is positive definite in a compact region of
interest, there is a � > 0 such that L�x���−�I is positive definite in this region.
Then according to the above calculation, the direction −�l�x���T � h�x� is a descent
direction, and the standard descent method will converge to a solution. This method
will not converge very rapidly however. (See Exercise 2 for further analysis of this
method.)

Conjugate Directions
Consider the quadratic program

minimize
1
2

xT Qx −bT x

subject to Ax = c�

(16)

The first-order necessary conditions for this problem are

Qx +AT � = b

Ax = c�
(17)

As discussed in the previous section, this problem is equivalent to solving a system
of linear equations whose coefficient matrix is

M =
[

Q AT

A 0

]

� (18)

This matrix is symmetric, but it is not positive definite (nor even semidefinite).
However, it is possible to formally generalize the conjugate gradient method to
systems of this type by just applying the conjugate-gradient formulae (17)–(20) of
Section 9.3 with Q replaced by M. A difficulty is that singular directions (defined
as directions p such that pT Mp = 0) may occur and cause the process to break down.
Procedures for overcoming this difficulty have been developed, however. Also,
as in the ordinary conjugate gradient method, the approach can be generalized to
treat nonquadratic problems as well. Overall, however, the application of conjugate
direction methods to the Lagrange system of equations, although very promising,
is not currently considered practical.
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Newton’s Method
Newton’s method for solving systems of equations can be easily applied to the
Lagrange equations. In its most straightforward form, the method solves the system

�l�x��� = 0

h�x� = 0
(19)

by solving the linearized version recursively. That is, given xk��k the new point
xk+1��k+1 is determined from the equations

�l�xk��k�
T +L�xk��k�dk +�h�xk�

T yk = 0

h�xk� + �h�xk�dk = 0
(20)

by setting xk+1 = xk + dk��k+1 = �k + yk. In matrix form the above Newton
equations are

[
L�xk��k� �h�xk�

T

�h�xk� 0

][
dk

yk

]

=
[−�l�xk��k�

T

−h�xk�

]

� (21)

The Newton equations have some important structural properties. First, we
observe that by adding �h�xk�

T �k to the top equation, the system can be trans-
formed to the form

[
L�xk��k� �h�xk�

T

�h�xk� 0

][
dk

�k+1

]

=
[−�f�xk�

T

−h�xk�

]

� (22)

where again �k+1 = �k +yk. In this form �k appears only in the matrix L�xk��k�.
This conversion between (21) and (22) will be useful later.

Next we note that the structure of the coefficient matrix of (21) or (22) is
identical to that of the Proposition of Section 15.1. The standard second-order
sufficiency conditions imply that �h�x∗� is of full rank and that L�x∗��∗� is
positive definite on M = �x � �h�x∗�x = 0	 at the solution. By continuity these
conditions can be assumed to hold in a region near the solution as well. Under
these assumptions it follows from Proposition 1 that the Newton equation (21) has
a unique solution.

It is again worthwhile to point out that, although the Hessian of the Lagrangian
need be positive definite only on the tangent subspace in order for the system (21)
to be nonsingular, it is possible to alter the original problem by incorporation of
a quadratic penalty term so that the new Hessian of the Lagrangian is L�x���+
c�h�x�T �h�x�. For sufficiently large c, this new Hessian will be positive definite
over the entire space.

If L�x��� is positive definite (either originally or through the incorporation
of a penalty term), it is possible to write an explicit expression for the solution of
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the system (21). Let us define Lk = L�xk��k�� Ak = �h�xk�� lk = �l�xk��k�
T � hk =

h�xk�. The system then takes the form

Lkdk +AT
k yk = −lk

Akdk = −hk�
(23)

The solution is readily found, as in (7) and (8) for quadratic programming, to be

yk = �AkL−1
k AT

k �−1
hk −AkL−1
k lk� (24)

dk = −L−1
k 
I −AT

k �AkL−1
k AT

k �−1AkL−1
k �lk −L−1

k AT
k �AkL−1

k AT
k �−1hk� (25)

There are standard results concerning Newton’s method applied to a system
of nonlinear equations that are applicable to the system (19). These results state
that if the linearized system is nonsingular at the solution (as is implied by our
assumptions) and if the initial point is sufficiently close to the solution, the method
will in fact converge to the solution and the convergence will be of order at least two.
To guarantee convergence from remote initial points and hence be more broadly
applicable, it is desirable to use the method as a descent process. Fortunately, we
can show that the direction generated by Newton’s method is a descent direction
for the simple merit function

m�x��� = 1
2
��l�x����2 + 1

2
�h�x��2�

Given dk� yk satisfying (23), the inner product of this direction with the gradient of
m at xk��k is, referring to (15),


Lklk +AT
k hk� Aklk�

T 
dk� yk� = lTk Lkdk +hT
k Akdk + lTk AT

k yk

= −�lk�2 −�hk�2�
This is strictly negative unless both lk = 0 and hk = 0. Thus Newton’s method has
desirable global convergence properties when executed as a descent method with
variable step size.

Note that the calculation above does not employ the explicit formulae (24)
and (25), and hence it is not necessary that L�x��� be positive definite, as long as
the system (21) is invertible. We summarize the above discussion by the following
theorem.

Theorem. Define the Newton process by

xk+1 = xk +
kdk

�k+1 = �k +
kyk�

where dk� yk are solutions to (24) and where 
k is selected to minimize the
merit function

m�x��� = 1
2
��l�x����2 + 1

2
�h�x��2�
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Assume that dk� yk exist and that the points generated lie in a compact set. Then
any limit point of these points satisfies the first-order necessary conditions for
a solution to the constrained minimization problem (1).

Proof. Most of this follows from the above observations and the Global Conver-
gence Theorem. The one-dimensional search process is well-defined, since the merit
function m is bounded below.

In view of this result, it is worth pursuing Newton’s method further. We would
like to extend it to problems with inequality constraints. We would also like to
avoid the necessity of evaluating L�xk��k� at each step and to consider alternative
merit functions—perhaps those that might distinguish a local maximum from a
local minimum, which the simple merit function does not do. These considerations
guide the developments of the next several sections.

Relation to Quadratic Programming
It is clear from the development of the preceding discussion that Newton’s method
is closely related to quadratic programming with equality constraints. We explore
this relationship more fully here, which will lead to a generalization of Newton’s
method to problems with inequality constraints.

Consider the problem

minimize lTk dk + 1
2

dT
k Lkdk

subject to Akdk +hk = 0�
(26)

The first-order necessary conditions of this problem are exactly (21), or equivalently
(23), where yk corresponds to the Lagrange multiplier of (26). Thus, the solution
of (26) produces a Newton step.

Alternatively, we may consider the quadratic program

minimize �f�xk�dk + 1
2

dT
k Lkdk

subject to Akdk +hk = 0�
(27)

The necessary conditions of this problem are exactly (22), where �k+1 now corre-
sponds to the Lagrange multiplier of (27). The program (27) is obtained from (26)
by merely subtracting �T

k Akdk from the objective function; and this change has no
influence on dk, since Akdk is fixed.

The connection with quadratic programming suggests a procedure for extending
Newton’s method to minimization problems with inequality constraints. Consider
the problem

minimize f�x�

subject to h�x� = 0

g�x� � 0�
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Given an estimated solution point xk and estimated Lagrange multipliers �k��k,
one solves the quadratic program

minimize �f�xk�dk + 1
2

dT
k Lkdk

subject to �h�xk�dk +hk = 0

�g�xk�dk +gk � 0�

(28)

where Lk = F�xk�+�T
k H�xk�+�T

k G�xk�� hk = h�xk�� gk = g�xk�. The new point is
determined by xk+1 = xk +dk, and the new Lagrange multipliers are the Lagrange
multipliers of the quadratic program (28). This is the essence of an early method for
nonlinear programming termed SOLVER. It is a very attractive procedure, since it
applies directly to problems with inequality as well as equality constraints without
the use of an active set strategy (although such a strategy might be used to solve
the required quadratic program). Methods of this general type, where a quadratic
program is solved at each step, are referred to as recursive quadratic programming
methods, and several variations are considered in this chapter.

As presented here the recursive quadratic programming method extends
Newton’s method to problems with inequality constraints, but the method has limita-
tions. The quadratic program may not always be well-defined, the method requires
second-order derivative information, and the simple merit function is not a descent
function for the case of inequalities. Of these, the most serious is the requirement
of second-order information, and this is addressed in the next section.

15.5 MODIFIED NEWTON METHODS
A modified Newton method is based on replacing the actual linearized system by
an approximation.

First, we concentrate on the equality constrained optimization problem

minimize f�x�

subject to h�x� = 0
(29)

in order to most clearly describe the relationships between the various approaches.
Problems with inequality constraints can be treated within the equality constraint
framework by an active set strategy or, in some cases, by recursive quadratic
programming.

The basic equations for Newton’s method can be written

[
xk+1

�k+1

]

=
[

xk

�k

]

−
k

[
Lk AT

k

Ak 0

]−1 [
lk
hk

]

�
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where as before Lk is the Hessian of the Lagrangian, Ak = �h�xk�� lk = 
�f�xk�+
�T

k �h�xk��
T � hk = h�xk�. A structured modified Newton method is a method of the

form

[
xk+1

�k+1

]

=
[

xk

�k

]

−
k

[
Bk AT

k

Ak 0

]−1 [
lk
hk

]

� (30)

where Bk is an approximation to Lk. The term “structured” derives from the fact that
only second-order information in the original system of equations is approximated;
the first-order information is kept intact.

Of course the method is implemented by solving the system

Bkdk +AT
k yk = −lk

Akdk = −hk

(31)

for dk and yk and then setting xk+1 = xk +
kdk��k+1 = �k +
kyk for some value
of 
k. In this section we will not consider the procedure for selection of 
k, and
thus for simplicity we take 
k = 1. The simple transformation used earlier can be
applied to write (31) in the form

Bkdk +AT
k �k+1 = −�f�xk�

T

Akdk = −hk�
(32)

Then xk+1 = xk +dk, and �k+1 is found directly as a solution to system (32).
There are, of course, various ways to choose the approximation Bk. One is to

use a fixed, constant matrix throughout the iterative process. A second is to base
Bk on some readily accessible information in L�xk��k�, such as setting Bk equal to
the diagonal of L�xk��k�. Finally, a third possibility is to update Bk using one of
the various quasi-Newton formulae.

One important advantage of the structured method is that Bk can be taken to
be positive definite even though Lk is not. If this is done, we can write the explicit
solution

yk = �AkB−1
k AT

k �−1
hk −AkB−1
k lk� (33)

dk = −B−1
k 
I −AT

k �AkB−1
k AT

k �−1AkB−1
k �lk −B−1

k AT
k �AkB−1

k AT
k �−1hk� (34)

Quadratic Programming
Consider the quadratic program

minimize �f�xk�dk + 1
2

dT
k Bkdk

subject to Akdk +h�xk� = 0�

(35)
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The first-order necessary conditions for this problem are

Bkdk +AT
k �k+1 +�f�xk�

T = 0

Akdk = −h�xk��
(36)

which are again identical to the system of equations of the structured modified
Newton method—in this case in the form (33). The Lagrange multiplier of the
quadratic program is �k+1. The equivalence of (35) and (36) leads to a recursive
quadratic programming method, where at each xk the quadratic program (35) is
solved to determine the direction dk. In this case an arbitrary symmetric matrix Bk

is used in place of the Hessian of the Lagrangian. Note that the problem (35) does
not explicitly depend on �k; but Bk, often being chosen to approximate the Hessian
of the Lagrangian, may depend on �k.

As before, a principal advantage of the quadratic programming formulation
is that there is an obvious extension to problems with inequality constraints: One
simply employs a linearized version of the inequalities.

15.6 DESCENT PROPERTIES
In order to ensure convergence of the structured modified Newton methods of the
previous section, it is necessary to find a suitable merit function—a merit function
that is compatible with the direction-finding algorithm in the sense that it decreases
along the direction generated. We must abandon the simple merit function at this
point, since it is not compatible with these methods when Bk �= Lk. However, two
other penalty functions considered earlier, the absolute-value exact penalty function
and the quadratic penalty function, are compatible with the modified Newton
approach.

Absolute-Value Penalty Function
Let us consider the constrained minimization problem

minimize f�x�

subject to g�x� � 0�
(37)

where g�x� is r-dimensional. For notational simplicity we consider the case of
inequality constraints only, since it is, in fact, the most difficult case. The extension
to equality constraints is straightforward. In accordance with the recursive quadratic
programming approach, given a current point x, we select the direction of movement
d by solving the quadratic programming problem

minimize
1
2

dT Bd +�f�x�d

subject to �g�x�d +g�x� � 0�

(38)
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where B is positive definite.
The first-order necessary conditions for a solution to this quadratic program

are

Bd +�f�x�T +�g�x�T � = 0 (39a)

�g�x�d +g�x� � 0 (39b)

�T 
�g�x�d +g�x�� = 0 (39c)

� � 0� (39d)

Note that if the solution to the quadratic program has d = 0, then the point x,
together with � from (39), satisfies the first-order necessary conditions for the
original minimization problem (37). The following proposition is the fundamental
result concerning the compatibility of the absolute-value penalty function and the
quadratic programming method for determining the direction of movement.

Proposition 1. Let d, � (with d �= 0) be a solution of the quadratic program
(38). Then if c � max

j
��j�, the vector d is a descent direction for the penalty

function

P�x� = f�x�+ c
r∑

j=1

gj�x�+�

Proof. Let J�x� = �j � gj�x� > 0	. Now for 
 > 0,

P�x +
d� = f�x +
d�+ c
r∑

j=1

gj�x +
d�+

= f�x�+
�f�x�d + c
r∑

j=1


gj�x�+
�gj�x�d�+ +o�
�

= f�x�+
�f�x�d + c
r∑

j=1

gj�x�+ +
c
∑

j∈J�x�

�gj�x�d +o�
�

= P�x�+
�f�x�d +
c
∑

j∈J�x�

�gj�x�d +o�
�� (40)

Where (39b) was used in the third line to infer that �gj�x� � 0 if gj�x� = 0. Again
using (39b) we have

c
∑

j∈J�x�

�gj�x�d � c
∑

j∈J�x�

−gj�x� = −c
r∑

j=1

gj�x�+� (41)

Using (39a) we have

�f�x�d = −dT Bd −
r∑

j=1

�j�gj�x�d�



15.6 Descent Properties 483

which by using the complementary slackness condition (39c) leads to

�f�x�d = −dT Bd +
r∑

j=1

�jgj�x� � −dT Bd +
r∑

j=1

�jgj�x�+

� −dT Bd +max ��j�
r∑

j=1

gj�x�+�

(42)

Finally, substituting (41) and (42) in (40), we find

P�x +
d� � P�x�+
�−dT Bd − 
c−max ��j��
r∑

j=1

gj�x�+	+o�
��

Since B is positive definite and c � max��j�, it follows that for 
 sufficiently small,
P�x +
d� < P�x�.

The above proposition is exceedingly important, for it provides a basis for estab-
lishing the global convergence of modified Newton methods, including recursive
quadratic programming. The following is a simple global convergence result based
on the descent property.

Theorem. Let B be positive definite and assume that throughout some compact
region ⊂ En, the quadratic program (38) has a unique solution d, � such that
at each point the Lagrange multipliers satisfy max

j
��j� � c. Let the sequence

�xk	 be generated by

xk+1 = xk +
kdk�

where dk is the solution to (38) at xk and where 
k minimizes P�xk+1�. Assume
that each xk ∈ �. Then every limit point x̄ of �xk	 satisfies the first-order
necessary conditions for the constrained minimization problem (37).

Proof. The solution to a quadratic program depends continuously on the data,
and hence the direction determined by the quadratic program (38) is a continuous
function of x. The function P�x� is also continuous, and by Proposition 1, it follows
that P is a descent function at every point that does not satisfy the first-order
conditions. The result thus follows from the Global Convergence Theorem.

In view of the above result, recursive quadratic programming in conjunction
with the absolute-value penalty function is an attractive technique. There are,
however, some difficulties to be kept in mind. First, the selection of the parameter

k requires a one-dimensional search with respect to a nondifferentiable function.
Thus the efficient curve-fitting search methods of Chapter 8 cannot be used without
significant modification. Second, use of the absolute-value function requires an
estimate of an upper bound for �j’s, so that c can be selected properly. In some
applications a suitable bound can be obtained from previous experience, but in
general one must develop a method for revising the estimate upward when necessary.
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Another potential difficulty with the quadratic programming approach above
is that the quadratic program (38) may be infeasible at some point xk, even though
the original problem (37) is feasible. If this happens, the method breaks down.
However, see Exercise 8 for a method that avoids this problem.

The Quadratic Penalty Function
Another penalty function that is compatible with the modified Newton method
approach is the standard quadratic penalty function. It has the added technical
advantage that, since this penalty function is differentiable, it is possible to apply
our earlier analytical principles to study the rate of convergence of the method.
This leads to an analytical comparison of primal-dual methods with the methods of
other chapters.

We shall restrict attention to the problem with equality constraints, since that is
all that is required for a rate of convergence analysis. The method can be extended
to problems with inequality constraints either directly or by an active set method.
Thus we consider the problem

minimize f�x�

subject to h�x� = 0
(43)

and the standard quadratic penalty objective

P�x� = f�x�+ 1
2

c�h�x��2� (44)

From the theory in Chapter 13, we know that minimization of the objective with
a quadratic penalty function will not yield an exact solution to (43). In fact, the
minimum of the penalty function (44) will have ch�x� � �, where � is the Lagrange
multiplier of (43). Therefore, it seems appropriate in this case to consider the
quadratic programming problem

minimize
1
2

dT Bd +�f�x�d

subject to �h�x�d +h�x� = �̂/c�

(45)

where �̂ is an estimate of the Lagrange multiplier of the original problem. A
particularly good choice is

�̂ = 
�1/c�I +Q�−1
h�x�−AB−1�f�x�T �� (46)

where A = �h�x�, Q = AB−1AT which is the Lagrange multiplier that would
be obtained by the quadratic program with the penalty method. The proposed
method requires that �̂ be first estimated from (46) and then used in the quadratic
programming problem (45).
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The following proposition shows that this procedure produces a descent
direction for the quadratic penalty objective.

Proposition 2. For any c > 0, let d�� (with d �= 0) be a solution to the
quadratic program (45). Then d is a descent direction of the function P�x� =
f�x�+ �1/2�c�h�x��2.

Proof. We have from the constraint equation

Ad = �1/c��̂−h�x��

which yields

cAT Ad = AT �̂− cAT h�x��

Solving the necessary conditions for (45) yields (see the top part of (9) for a similar
expression with Q = B there)

Bd = AT Q−1
AB−1�f�x�T + �1/c��̂−h�x��−�f�x�T �

Therefore,

�B+ cAT A�d = AT Q−1
AB−1�f�x�T −h�x��

+AT 
�1/c�Q−1 + I��̂−�f�x�T − cAT h�x�

= AT Q−1�AB−1�f�x�T −h�x�+ ��1/c�I +Q��̂	

−�f�x�T − cAT h�x�

= −�f�x�T − cAT h�x� = −�P�x�T �

The matrix (B + cAT A) is positive definite for any c � 0. It follows that
�P�x�d < 0.

15.7 RATE OF CONVERGENCE
It is now appropriate to apply the principles of convergence analysis that have been
repeatedly emphasized in previous chapters to the recursive quadratic programming
approach. We expect that, if this new approach is well founded, then the rate of
convergence of the algorithm should be related to the familiar canonical rate, which
we have learned is a fundamental measure of the complexity of the problem. If
it is not so related, then some modification of the algorithm is probably required.
Indeed, we shall find that a small but important modification is required.

From the proof of Proposition 2 of Section 15.6, we have the formula

�B+ cAT A�d = −�P�x�T �
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which can be written as

d = −�B+ cAT A�−1�P�x�T �

This shows that the method is a modified Newton method applied to the uncon-
strained minimization of P�x�. From the Modified Newton Method Theorem of
Section 10.1, we see immediately that the rate of convergence is determined by the
eigenvalues of the matrix that is the product of the coefficient matrix �B+cAT A�−1

and the Hessian of the function P at the solution point. The Hessian of P is
�L + cAT A�, where L = F�x� + ch�x�T H�x�. We know that the vector ch�x� at
the solution of the penalty problem is equal to �c, where �f�x�+�T

c �h�x� = 0.
Therefore, the rate of convergence is determined by the eigenvalues of

�B+ cAT A�−1�L+ cAT A�� (47)

where all quantities are evaluated at the solution to the penalty problem and L =
F+�T

c H. For large values of c, all quantities are approximately equal to the values
at the optimal solution to the constrained problem.

Now what we wish to show is that as c → 
, the matrix (47) looks like B−1
M LM

on the subspace, M , and like the identity matrix on M⊥, the subspace orthogonal
to M . To do this in detail, let C be an n× �n−m� matrix whose columns form an
orthonormal basis for M , the tangent subspace �x � Ax = 0	. Let D = AT �AAT �−1.
Then AC = 0� AD = I� CT C = I� CT D = 0.

The eigenvalues of �B+ cAT A�−1�L+ cAT A� are equal to those of


C� D�−1�B+ cAT A�−1�
C� D�T 	−1
C� D�T �L+ cAT A�
C� D�

=
[

CT BC CT BD
DT BC DT BC+ cI

]−1 [
CT LC CT LD
DT LC DT LD+ cI

]

�

Now as c → 
, the matrix above approaches

[
B−1

M LM BMCT �L−B�D
0 I

]

�

where BM = CT BC� LM = CT LC (see Exercise 6). The eigenvalues of this matrix
are those of B−1

M LM together with those of I. This analysis leads directly to the
following conclusion:

Theorem. Let a, A be the smallest and largest eigenvalues, respectively,
of B−1

M LM and assume that a � 1 � A. Then the structured modified Newton
method with quadratic penalty function has a rate of convergence no greater
than 
�A−a�/�A+a��2 as c → 
.

In the special case of B = I, the rate in the above proposition is precisely
the canonical rate, defined by the eigenvalues of L restricted to the tangent plane.
It is important to note, however, that in order for the rate of the theorem to be
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h(x) = h(xk)

xk

d

h = 0

AT (l + µ)

–∇f 
T

–p

Fig. 15.1 Decomposition of the direction d

achieved, the eigenvalues of B−1
M LM must be spread around unity; if not, the rate

will be poorer. Thus, even if LM is well-conditioned, but the eigenvalues differ
greatly from unity, the choice B = I may be poor. This is an instance where proper
scaling is vital. (We also point out that the above analysis is closely related to that
of Section 13.4, where a similar conclusion is obtained.)

There is a geometric explanation for the scaling property. Take B = I for
simplicity. Then the direction of movement d is d = −�f�x�T +AT � for some �.
Using the fact that the projected gradient is p = �f�x�T +AT � for some �, we see
that d = −p+AT ��+��. Thus d can be decomposed into two components: one in
the direction of the projected negative gradient, the other in a direction orthogonal to
the tangent plane (see Fig. 15.1). Ideally, these two components should be in proper
proportions so that the constraint surface is reached at the same point as would be
reached by minimization in the direction of the projected negative gradient. If they
are not, convergence will be poor.

15.8 INTERIOR POINT METHODS
The primal–dual interior-point methods discussed for linear programming in
Chapters 5 are, as mentioned there, closely related to the barrier methods presented
in Chapter 13 and the primal–dual methods of the current chapter. They can be
naturally extended to solve nonlinear programming problems while maintaining
both theoretical and practical efficiency.

Consider the inequality constrained problem

minimize f�x�

subject to Ax = b�
g�x� ≤ 0�

(48)
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In general, a weakness of the active constraint method for such a problem is the
combinatorial nature of determining which constraints should be active.

Logarithmic Barrier Method
A method that avoids the necessity to explicitly select a set of active constraints
is based on the logarithmic barrier method, which solves a sequence of equality
constrained minimization problems. Specifically,

minimize f�x�−�
p∑

i=1
log�−gi�x��

subject to Ax = b�

(49)

where � = �k > 0, k = 1� � � � �, �k > �k+1, �k → 0. The �ks can be pre-determined.
Typically, we have �k+1 = ��k for some constant 0 < � < 1. Here, we also assume
that the original problem has a feasible interior-point x0; that is,

Ax0 = b and g�x0� < 0�

and A has full row rank.
For fixed �, and using Si = �/gi, the optimality conditions of the barrier

problem (49) are:

−Sg�x� = �1
Ax = b

−AT y +�f�x�T +�g�x�T s = 0�
(50)

where S = diag�s�; that is, a diagonal matrix whose diagonal entries are s, and
�g�x� is the Jacobian matrix of g�x�.

If f�x� and gi�x� are convex functions for all i, f�x� − �
∑

i log�−gi�x�� is
strictly convex in the interior of the feasible region, and the objective level set is
bounded, then there is a unique minimizer for the barrier problem. Let �x��� >
0� y���� s��� > 0� be the (unique) solution of (50). Then, these values form the
primal-dual central path of (48):

� = ��x���� y���� s��� > 0� � 0 < � < 
	 �

This can be summarized in the following theorem.

Theorem 1. Let �x���� y���� s���� be on the central path.

i) If f�x� and gi�x� are convex functions for all i, then s��� is unique.
ii) Furthermore, if f�x� − �

∑
i log�−gi�x�� is strictly convex,

�x���� y���� s���� are unique, and they are bounded for 0 < � � �0 for
any given �0 > 0.

iii) For 0 < �′ < �, f�x��′�� < f�x���� if x��′� �= x���.
iv) �x���� y���� s���� converges to a point satisfying the first-order necessary

conditions for a solution of (48) as � → 0.
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Once we have an approximate solution point �x� y� s� = �xk� yk� sk� for (50)
for � = �k > 0, we can again use the primal-dual methods described for linear
programming to generate a new approximate solution to (50) for � = �k+1 < �k.
The Newton direction �dx� dy� ds� is found from the system of linear equations:

−S�g�x�dx −G�x�ds = �1+Sg�x�� (51)

Adx = b−Ax�

−AT dy +
(

�2f�x�+∑
i

si�
2gi�x�

)

dx

+�g�x�T ds = AT y −�f�x�T −�g�x�T s�

where G�x� = diag�g�x��.
Recently, this approach has also been used to find points satisfying the first-

order conditions for problems when f�x� and gi�x� are not generally convex
functions.

Quadratic Programming
Let f�x� = �1/2�xT Qx + cT x and gi�x� = −xi for i = 1� � � � � n, and consider the
quadratic program

minimize 1
2 xT Qx + cT x

subject to Ax = b�
x � 0�

(52)

where the given matrix Q ∈ En×n is positive semidefinite (that is, the objective is
a convex function), A ∈ En×m, c ∈ En and b ∈ Em. The problem reduces to finding
x ∈ En, y ∈ Em and s ∈ En satisfying the following optimality conditions:

Sx = 0

Ax = b
−AT y +Qx − s = −c

�x� s� ≥ 0�

(53)

The optimality conditions with the logarithmic barrier function with parameter �
are be:

Sx = �1
Ax = b

−AT y +Qx − s = −c�
(54)

Note that the bottom two sets of constraints are linear equalities.
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Thus, once we have an interior feasible point �x� y� s� for (54), with � = xT s/n,
we can apply Newton’s method to compute a new (approximate) iterate �x+� y+� s+�
by solving for �dx� dy� ds� from the system of linear equations:

Sdx +Xds = ��1−Xs�

Adx = 0�
−AT dy +Qdx −ds = 0�

(55)

where X and S are two diagonal matrices whose diagonal entries are x > 0 and
s > 0, respectively. Here, � is a fixed positive constant less than 1, which implies
that our targeted � is reduced by the factor � at each step.

Potential Function
For any interior feasible point �x� y� s� of (52) and its dual, a suitable merit function
is the potential function introduced in Chapter 5 for linear programming:

�n+��x� s� = �n+�� log�xT s�−
n∑

j=1

log�xjsj��

The main result for this is stated in the following theorem.

Theorem 2. In solving (55) for �dx� dy� ds�, let � = n/�n+�� < 1 for fixed
� � √

n and assign x+ = x +
dx, y+ = y +
dy, and s+ = s+
ds where


 = 
̄
√

min�Xs�

��XS�−1/2� xT s
n+�

1−Xs�� �

where 
̄ is any positive constant less than 1. (Again X and S are matrices with
components on the diagonal being those of x and s, respectively.) Then,

�n+��x+� s+�−�n+��x� s� � −
̄
√

3/4+ 
̄2

2�1− 
̄�
�

The proof of the theorem is also similar to that for linear programming; see
Exercise 12. Notice that, since Q is positive semidefinite, we have

dx
T ds = �dx� dy�

T �ds� 0� = dT
x Qdx � 0

while dT
x ds = 0 in the linear programming case.

We outline the algorithm here:

Given any interior feasible �x0� y0� s0� of (52) and its dual. Set � � √
n and

k = 0.
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1. Set �x� s� = �xk� sk� and � = n/�n+�� and compute �dx� dy� ds� from (55).
2. Let xk+1 = xk + 
̄dx, yk+1 = yk + 
̄dy, and sk+1 = sk + 
̄ds where


̄ = arg min

�0

�n+��xk +
dx� sk +
ds��

3. Let k = k+1. If sT
k xk/sT

0 x0 ≤ �, stop. Otherwise, return to Step 1.

This algorithm exhibits an iteration complexity bound that is identical to that of
linear programming expressed in Theorem 2, Section 5.6.

15.9 SEMIDEFINITE PROGRAMMING
Semidefinite programming (SDP) is a natural extension of linear programming. In
linear programming, the variables form a vector which is required to be component-
wise nonnegative, while in semidefinite programming the variables are compo-
nents of a symmetric matrix constrained to be positive semidefinite. Both types
of problems may have linear equality constraints as well. Although semidef-
inite programs have long been known to be convex optimization problems, no
efficient solution algorithm was known until, during the past decade or so, it
was discovered that interior-point algorithms for linear programming discussed in
Chapter 5, can be adapted to solve semidefinite programs with both theoretical and
practical efficiency. During the same period, it was discovered that the semidefinite
programming framework is representative of a wide assortment of applications,
including combinatorial optimization, statistical computation, robust optimization,
Euclidean distance geometry, quantum computing, and optimal control. Semidef-
inite programming is now widely recognized as a powerful model of general
importance.

Suppose A and B are m × n matrices. We define A • B = trace �AT B� =
∑

i�j aijbij � In semidefinite programming, this definition is almost always used for
the case where the matrices are both square and symmetric.

Now let C and Ai, i = 1� 2� � � � �m, be given n-dimensional symmetric matrices
and b ∈ Em. And let X be an unknown n-dimensional symmetric matrix. Then, the
primal semidefinite programming problem is

�SDP� minimize C•X

subject to Ai •X = bi� i = 1� 2� � � � �m� X � 0�
(56)

The notation X � 0 means that X is positive semidefinite, and X � 0 means that X
is positive definite. If a matrix X � 0 satisfies all equalities in (56), it is called a
(primal) strictly or interior feasible solution.

Note that in semidefinite programming we minimize a linear function of a
symmetric matrix constrained in the cone of positive semidefinite matrices and
subject to linear equality constraints.
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We present several examples to illustrate the flexibility of this formulation.

Example 1 (Binary quadratic optimization). Consider a binary quadratic
optimization problem

minimize xT Qx +2cT x

subject to xj = �1�−1	� for all j = 1� � � � � n�

which is a difficult nonconvex optimization problem. The problem can be rewritten
as

z∗ ≡ minimize
[

x
1

]T [
Q c
cT 0

][
x
1

]

subject to �xj�
2 = 1� for all j = 1� � � � � n�

which can be also written as

z∗ ≡ minimize
[

Q c
cT 0

]

•
[

x
1

][
x
1

]T

subject to Ij •
[

x
1

][
x
1

]T

= 1� for all j = 1� � � � � n�

where Ij is the �n+ 1�× �n+ 1� matrix whose components are all zero except at
the jth position on the main diagonal where it is 1.

Since
[

x
1

][
x
1

]T

forms a positive-semidefinite matrix (with rank equal to 1), a

semidefinite relaxation of the problem is defined as

zSDP ≡ minimize
[

Q c
cT 0

]

•Y

subject to Ij •Y = 1� for all j = 1� ���� n+1�

Y � 0�

(57)

where the symmetric matrix Y has dimension n + 1. Obviously, zSDP is a lower
bound of z∗, since the rank-1 constraint is not enforced in the relaxation.

For simplicity, assuming zSDP > 0, it has been shown that in many cases
of this problem an optimal SDP solution either constitutes an exact solution or
can be rounded to a good approximate solution of the original problem. In the
former case, one can show that a rank-1 optimal solution matrix Y exists for the
semidefinite relaxation and it can be found by using a rank-reduction procedure.
For the latter case, one can, using a randomized rank-reduction procedure or the
principle components of Y, find a rank-1 feasible solution matrix Ŷ such that

[
Q c
cT 0

]

• Ŷ � 
 ·ZSDP � 
 ·Z∗
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for a provable factor 
 > 1. Thus, one can find a feasible solution to the original
problem whose objective cost is no more than a factor 
 higher than the minimal
objective cost.

Example 2 (Linear Programming). To see that the problem (SDP) (that is,
(56)) generalizes linear programing define C = diag
c1� c2� � � � � cn�, and let Ai =
diag
ai1� ai2� � � � � ain� for i = 1� 2� � � �m� The unknown is the n×n symmetric matrix
X which is constrained by X � 0� Since the trace of C • X depends only on the
diagonal elements of X, we may restrict the solutions X to diagonal matrices. It
follows that in this case the problem can be recast as the linear program

minimize cT x (58)

subject to Ax = b

x � 0�

Example 3 (Sensor localization). This problem is that of determining the location
of sensors (for example, several cell phones scattered in a building) when measure-
ments of some of their separation distances can be determined, but their specific
locations are not known. In general, suppose there are n unknown points xj ∈ Ed,
j = 1� � � � � n. We consider an edge to be a path between two points, say, i and j.
There is a known subset Ne of pairs (edges) ij for which the separation distance dij

is known. For example, this distance might be determined by the signal strength or
delay time between the points. Typically, in the cell phone example, Ne contains
those edges whose lengths are small so that there is a strong radio signal. Then, the
localization problem is to find locations xj , j = 1� � � � � n, such that

�xi −xj�2 = �dij�
2� for all �i� j� ∈ Ne�

subject to possible rotation and translation. (If the locations of some of the sensors
are known, these may be sufficient to determine the rotation and translation).

Let X = 
x1 x2 � � � xn� be the d×n matrix to be determined. Then

�xi −xj�2 = �ei − ej�
T XT X�ei − ej��

where ei ∈ En is the vector with 1 at the ith position and zero everywhere else. Let
Y = XT X. Then the semidefinite relaxation of the localization problem is to find Y
such that

�ei − ej��ei − ej�
T •Y = �dij�

2� for all �i� j� ∈ Ne�

Y � 0�

This problem is one of finding a feasible solution; the objective function is zero.
For certain instances, factorization of Y provides a unique localization X to the
original problem.
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Duality
Because semidefinite programming is an extension of linear programming, it would
seem that there is a natural dual to the primal problem, and that this dual is itself
a semidefinite program. This is indeed the case, and it is related to the primal in
much the same way as primal and dual linear programs are related. Furthermore,
the primal and dual together lead to the formation a primal–dual solution method,
which is discussed later in this section.

The dual of the primal (SDP) is

�SDD� maximize yT b

subject to
∑m

i yiAi +S = C�

S � 0�

(59)

As in much of linear programming, the vector of dual variable is often labeled
y rather than � and this convention is followed here. Notice that S represents a
slack matrix, and hence the problem can alternatively be expressed as

maximize yT b

subject to
∑m

i yiAi � C�
(60)

The duality is manifested by the relation between the optimal values of the
primal and dual programs. The weak form of this relation is spelled out in the
following lemma, the proof of which, like the weak form of other duality relations
we have studied, is essentially an accounting issue.

Weak Duality in SDP. Let X be feasible for �SDP� and �y� S� feasible for
�SDD�. Then,

C•X � bT y�

Proof. By direct calculation

C • X −bT y = �
m∑

i=1

yiAi +S
) • X −bT y =

m∑

i=1

�Ai • X�yi + S•X −bT y = S • X�

Since both X and S are positive semidefinite, it follows that S•X � 0�

Let us consider some examples of dual problems.
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Example 4 (The dual of binary quadratic optimization). Consider the semidefinite
relaxation (57) for the binary quadratic problem. It’s dual is

maximize
∑n=1

i=1 yi

subject to
∑n+1

j=i yiIi +S =
[

Q c
cT 0

]

S � 0�

Note that
[

Q c
cT 0

]

−
n+1∑

i=1

yiIi

is the Hessian matrix of the Lagrange function of the quadratic problem; see
Chapter 11.

Example 5 (Dual linear program). The dual of the linear program (58) is

maximum bT y

subject to AT y � c�

It can be written as

maximum bT y

subject to diag�c −AT y� � 0

where as usual diag�c� denotes the diagonal matrix whose diagonal elements are
the components of c.

Example 6 (The dual of sensor localization). Consider the semidefinite
programming relaxation for the sensor localization problem. It’s dual is

maximize
∑

�i�j�∈Ne
yij

subject to
∑

�i�j�∈Ne
yij�ei − ej��ei − ej�

T +S = 0�

S � 0�

Here, yij represents an internal force or tension on edge �i� j�. Obviously, yij = 0
for all �i� j� ∈ Ne is a feasible solution for the dual. However, finding non-trivial
internal forces is a fundamental problem in network and structure design.

Example 7 (Quadratic constraints). Quadratic constraints can be transformed to
linear semidefinite form by using the concept of Schur complements. To introduce
this concept, consider the quadratic problem

minimize x xT Ax +2yT BT x +yT Cy�
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where A is positive definite and C is symmetric. This has solution with respect to
x for fixed y of

x = −A−1By�

The minimum value is then
[

x
y

]T [
A B

BT C

][
x
y

]

= yT Sy�

where

S = C−BT A−1B�

The matrix S is the Schur complement of A in the matrix

Z =
[

A B
BT C

]

�

From this it follows that Z is positive semidefinite if and only if S is positive
semidefinite (still assuming that A is positive definite).

Now consider a general quadratic constraint of the form

xT BT Bx − cT x −d ≥ 0� (61)

This is equivalent to
[

I Bx
xT BT cT x +d

]

≥ 0 (62)

because the Schur complement of this matrix with respect to I is the negative of the
left side of the original constraint (61). Note that in this larger matrix, the variable
x appears only afinely, not quadratically.

Indeed, (62) can be written as

P�x� = P0 +x1P1 +x2P2 +· · ·xnPn ≥ 0� (63)

where

P0 =
[

I 0
0 d

]

� Pi =
[

0 bi

bT
i ci

]

for i = 1� 2� � � � n

with bi being the ith column of B and ci being the ith component of c. The constraint
(63) is of the form that appears in the dual form of a semidefinite program.

Suppose the original optimization problem has a quadratic objective: minimize
q�x�. The objective can be written instead as: minimize t subject to q�x� ≤ t, and
then this constraint as well as any number of other quadratic constraints can be
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transformed to semidefinite constraints, and hence the entire problem converted to
a semidefinite program. This approach is useful in many applications, especially in
various problems of control theory.

As in other instances of duality, the duality of semidefinite programs is weak
unless other conditions hold. We state here, but do not prove, a version of the strong
duality theorem.

Strong Duality in SDP. Suppose (SDP) and (SDD) are both feasible and at
least one of them has an interior. Then, there are optimal solutions to the
primal and the dual and their optimal values are equal.

If the non-empty interior condition of the above theorem does not hold, then
the duality gap may not be zero at optimality.

Example 8 The following semidefinite program has a duality gap:

C =
⎡

⎣
0 1 0
1 0 0
0 0 0

⎤

⎦ � A1 =
⎡

⎣
0 0 0
0 1 0
0 0 0

⎤

⎦ � A2 =
⎡

⎣
0 −1 0

−1 0 0
0 0 2

⎤

⎦

and

b =
[

0
10

]

�

The primal minimal objective value is 0 achieved by

X =
⎡

⎣
0 0 0
0 0 0
0 0 5

⎤

⎦

and the dual maximal objective value is −10 achieved by y = 
0�−1�; so the duality
gap is 10.

Interior-Point Algorithms for SDP
Let the primal �SDP� and dual �SDD� semidefinite programs both have interior
point feasible solutions. Then, the central path can be expressed as

� =
{
�X� y� S� ∈ �

� � XS = �I� 0 < � < 

}

�

The primal-dual potential function for SDP, a descent merit function, is

�n+��X� S� = �n+�� log�X •S�− log�det�X� ·det�S��

where � � 0. Note that if X and S are diagonal matrices, these definitions reduce
to those for linear programming.
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Once we have an interior feasible point �X� y� S�, we can generate a new iterate
�X+� y+� S+� by solving for �DX� dy� DS� from the primal-dual system of linear
equations

D−1DXD−1 +DS = ��X−1 −S�

Ai •DX = 0� for all i�

−∑m
i �dy�iAi −DS = 0�

(64)

where D is the (scaling) matrix

D = X
1
2 �X

1
2 SX

1
2 �− 1

2 X
1
2

and � = X•S/n. Then one assigns X+ = X+ 
̄DX, y+ = y+ 
̄dy, and S+ = s+ 
̄DS

where


̄ = arg min

�0

�n+��X +
DX� S+
DS��

Furthermore, it can be shown that

�n+��X+� S+�−�n+��X� S� ≤ −�

for a constant � > 0�2.
This provides an iteration complexity bound that is identical to linear

programming as discussed in Chapter 5.

15.10 SUMMARY
A constrained optimization problem can be solved by directly solving the equations
that represent the first-order necessary conditions for a solution. For a quadratic
programming problem with linear constraints, these equations are linear and thus
can be solved by standard linear procedures. Quadratic programs with inequality
constraints can be solved by an active set method in which the direction of movement
is toward the solution of the corresponding equality constrained problem. This
method will solve a quadratic program in a finite number of steps.

For general nonlinear programming problems, many of the standard methods
for solving systems of equations can be adapted to the corresponding necessary
equations. One class consists of first-order methods that move in a direction related
to the residual (that is, the error) in the equations. Another class of methods is based
on extending the method of conjugate directions to nonpositive-definite systems.
Finally, a third class is based on Newton’s method for solving systems of nonlinear
equations, and solving a linearized version of the system at each iteration. Under
appropriate assumptions, Newton’s method has excellent global as well as local
convergence properties, since the simple merit function, 1

2 ��f�x� + �T �h�x��2 +
1
2 �h�x��2, decreases in the Newton direction. An individual step of Newton’s method
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is equivalent to solving a quadratic programming problem, and thus Newton’s
method can be extended to problems with inequality constraints through recursive
quadratic programming.

More effective methods are developed by accounting for the special structure of
the linearized version of the necessary conditions and by introducing approximations
to the second-order information. In order to assure global convergence of these
methods, a penalty (or merit) function must be specified that is compatible with
the method of direction selection, in the sense that the direction is a direction of
descent for the merit function. The absolute-value penalty function and the standard
quadratic penalty function are both compatible with some versions of recursive
quadratic programming.

The best of the primal-dual methods take full account of special structure,
and are based on direction-finding procedures that are closely related to methods
described in earlier chapters. It is not surprising therefore that the convergence
properties of these methods are also closely related to those of other chapters. Again
we find that the canonical rate is fundamental for properly designed first-order
methods.

Interior point methods in the primal–dual mode are very effective for treating
problems with inequality constraints, for they avoid (or at least minimize) the diffi-
culties associated with determining which constraints will be active at the solution.
Applied to general nonlinear programming problems, these methods closely parallel
the interior point methods for linear programming. There is again a central path,
and Newton’s method is a good way to follow the path.

A relatively new class of mathematical programming problems is semidefinite
programming, where the unknown is a matrix and at least some of the constraints
require the unknown matrix to be positive semidefinite (or negative semidefinite).
There is a variety of interesting and important practical problems that can be
naturally cast in this form. Because many problems which appear nonlinear (such
as quadratic problems) become essentially linear in semidefinite form, the efficient
interior point algorithms for linear programming can be extended to these problems
as well.

15.11 EXERCISES
1. Solve the quadratic program

minimize x2 −xy +y2 −3x

subject to x � 0

y � 0

x+y � 4

by use of the active set method starting at x = y = 0.
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2. Suppose x∗, �∗ satisfy

�f�x∗�+�∗T �h�x∗� = 0

h�x∗� = 0�

Let

C =
[

L�x∗��∗� �h�x∗�T

�h�x∗� 0

]

�

Assume that L�x∗��∗� is positive definite and that �h�x∗� is of full rank.

a) Show that the real part of each eigenvalue of C is positive.
b) Using the result of Part (a), show that for some 
 > 0 the iterative process

xk+1 = xk −
�l�xk��k�
T

�k+1 = �k +
h�xk�

converges locally to x∗, �∗. (That is, if started sufficiently close to x∗, �∗, the process
converges to x∗, �∗.) Hint: Use Ostroski’s Theorem: Let A�z� be a continuously
differentiable mapping from Ep to Ep, assume A�z∗� = 0, and let �A�z∗� have all
eigenvalues strictly inside the unit circle of the complex plane. Then zk+1 = zk +A�zk�
converges locally to z∗.

3. Let A be a real symmetric matrix. A vector x is singular if xT Ax = 0. A pair of vectors
x, y is a hyperbolic pair if both x and y are singular and xT Ay �= 0. Hyperbolic pairs can
be used to generalize the conjugate gradient method to the nonpositive definite case.

a) If pk is singular, show that if pk+1 is defined as

pk+1 = Apk − �Apk�
T A2pk

2�Apk�2
pk�

then pk, pk+1 is a hyperbolic pair.
b) Consider a modification of the conjugate gradient process of Section 8.3, where if

pk is singular, pk+1 is generated as above, and then

xk+1 = xk +
kpk

xk+2 = xk+1 +
k+1pk+1


k = rT
k pk+1

pT
k Apk+1


k+1 = rT
k pk

pT
k Apk+1

pk+2 = rk+2 − rT
k+2Apk+1

pkApk+1

pk�

Show that if pk+1 is the second member of a hyperbolic pair and rk �= 0, then
xk+2 �= xk+1, which means the process does not get “stuck.”
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4. Another method for solving a system Ax = b when A is nonsingular and symmetric
is the conjugate residual method. In this method the direction vectors are constructed
to be an A2-orthogonalized version of the residuals rk = b − Axk. The error function
E�x� = �Ax−b�2 decreases monotonically in this process. Since the directions are based
on rk rather than the gradient of E, which is 2Ark, the method extends the simplicity
of the conjugate gradient method by implicit use of the fact that A2 is positive definite.
The method is this: Set p1 = r1 = b − Ax1 and repeat the following steps, omitting (a,
b) on the first step.
If 
k−1 �= 0,

pk = rk −�kpk−1� �k = rT
k A2pk−1

pT
k−1A2pk−1

� (65a)

If 
k−1 = 0,

pk = Ark −�kpk−1 −�kpk−2

�k = rT
k A3pk−1

pT
k−1A2pk−1

� �k = rT
k A3pk−2

pT
k−2A3pk−2

(65b)

xk+1 = xk +
kpk� 
k = rT
k Apk

pT
k A2pk

(65c)

rk+1 = b−Axk+1� (65d)

Show that the directions pk are A2-orthogonal.

5. Consider the �n+m�-dimensional system of equations

[
L AT

A 0

][
x
�

]

=
[

a
b

]

�

Suppose that A = 
B� C�, where B is m×m and invertible. Let x = �xB� xc�, where xB

is the first m components of x. The system can then be written

⎡

⎣
LBB LBC BT

LCB LCC CT

B C 0

⎤

⎦

⎡

⎣
xB

xC

�

⎤

⎦=
⎡

⎣
aB

aC

b

⎤

⎦

a) Assume that L is positive definite on the tangent space �x � Ax = 0	. Derive an
explicit statement equivalent to this assumption in terms of the positive definiteness
of some �n−m�× �n−m� matrix.

b) Solve the system in terms of the submatrices of the partitioned form.

6. Consider the partitioned square matrix M of the form

M =
[

A B
C D

]

�

Show that

M−1 =
[

Q −QBD−1

−D−1CQ D−1 +D−1CQBD−1

]

�
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where Q = �A−BD−1C�−1, provided that all indicated inverses exist. Use this result to
verify the rate of convergence result in Section 15.7.

7. For the problem

minimize f�x�

subject to g�x� � 0�

where g�x� is r-dimensional, define the penalty function

p�x� = f�x�+ c max�0� g1�x�� g2�x�� � � � � gr�x�	�

Let d, �d �= 0� be a solution to the quadratic program

minimize
1
2

dT Bd +�f�x�d

subject to g�x�+�g�x�d � 0�

where B is positive definite. Show that d is a descent direction for p for sufficiently
large c.

8. Suppose the quadratic program of Exercise 7 is not feasible. In that case one may solve

minimize
1
2

dT Bd +�f�x�d + c�

subject to g�x�+�g�x�d � �1

� � 0�

a) Show that if d �= 0 is a solution, then d is a descent direction for p.
b) If d = 0 is a solution, show that x is a critical point of p in the sense that for any

d �= 0, p�x +
d� > p�x�+o�
�.

9. For the equality constrained problem, consider the function

��x� = f�x�+��x�T h�x�+ ch�x�T C�x�C�x�T h�x��

where

C�x� = 
�h�x��h�x�T �−1�h�x� and ��x� = C�x��f�x�T �

a) Under standard assumptions on the original problem, show that for sufficiently large
c, � is (locally) an exact penalty function.
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b) Show that ��x� can be expressed as

��x� = f�x�+��x�T h�x��

where ��x� is the Lagrange multiplier of the problem

minimize
1
2

cdT d +�f�x�d

subject to �h�x�d +h�x� = 0�

c) Indicate how � can be defined for problems with inequality constraints.

10. Let �Bk	 be a sequence of positive definite symmetric matrices, and assume that there
are constants a > 0, b > 0 such that a�x�2 � xT Bkx � b�x�2 for all x. Suppose that B is
replaced by Bk in the kth step of the recursive quadratic programming procedure of the
theorem in Section 15.5. Show that the conclusions of that theorem are still valid. Hint:
Note that the set of allowable Bk’s is closed.

11. (Central path theorem) Prove the central path theorem, Theorem 1 of Section 15.8, for
convex optimization.

12. Prove the potential reduction theorem, Theorem 2 of Section 15.8, for convex quadratic
programming. This theorem can be generalized to non-quadratic convex objective
functions f�x� satisfying the following condition: let

� � �0� 1� → �1�
�

be a monotone increasing function; then

�X��f�x +dx�−�f�x�−�2f�x�dx��1 ≤ ��
�dT
x �f�x�dx

whenever

x > 0� �X−1dx�
 ≤ 
 < 1�

Such condition is called the scaled Lipschitz condition in �x � x > 0	.

13. Let A and B be two symmetric and positive semidefinite matrices. Prove that

A•B � 0�

14. (Farkas’ lemma in SDP) Let Ai, i = 1� � � � �m, have rank m (that is,
∑m

i yiAi = 0 implies
y = 0). Then, there exists a symmetric matrix X � 0 with

Ai •X = bi� i = 1� � � � �m�

if and only if
∑m

i yiAi � 0 and
∑m

i yiAi �= 0 imply bT y < 0.

15. Let X and S both be positive definite. Prove that

n log�X •S�− log�det�X� ·det�S�� � n log n�
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16. Consider a SDP and the potential level set

���� = ��X� y� S� ∈ �
� � �n+��X� S� ≤ �	�

Prove that

���1� ⊂ ���2� if �1 ≤ �2�

and for every �, ���� is bounded and its closure ���� has non-empty intersection with
the SDP solution set.

17. Let both (SDP) and (SDD) have interior feasible points. Then for any 0 < � < 
, the central
path point �X���� y���� S���� exists and is unique. Moreover,

i) the central path point �X���� y���� S���� is bounded where 0 < � � �0 for any
given 0 < �0 < 
.

ii) For 0 < �′ < �,

C•X��′� < C•X��� and bT y��′� > bT y���

if X��� �= X��′� and y��� �= y��′�.
iii) �X���� y���� S���� converges to an optimal solution pair for (SDP) and (SDD),

and the rank of the limit of X��� is maximal among all optimal solutions of (SDP)
and the rank of the limit S��� is maximal among all optimal solutions of (SDD).
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Appendix A MATHEMATICAL
REVIEW

The purpose of this appendix is to set down for reference and review some basic
definitions, notation, and relations that are used frequently in the text.

A.1 SETS
If x is a member of the set S, we write x ∈ S. We write y � S if y is not a member
of S.

A set S may be specified by listing its elements between braces; such as,
for example, S = �1� 2� 3� 4�. Alternatively, a set can be specified in the form
S = �x � P�x�� as the set of elements satisfying property P; such as S = �x � 1 �
x � 4� x integer�.

The union of two sets S and T is denoted S ∪T and is the set consisting of
the elements that belong to either S or T . The intersection of two sets S and T is
denoted S ∩T and is the set consisting of the elements that belong to both S and
T . If S is a subset of T , that is, if every member of S is also a member of T , we
write S ⊂ T or T ⊃ S.

The empty set is denoted � or ∅. There are two ways that operations such as
minimization over a set are represented. Specifically we write either

min
x∈S

f�x� or min �f�x� � x ∈ S�

to denote the minimum value of f over the set S. The set of x’s in S that achieve
the minimum is denoted argmin �f�x� � x ∈ S�.

Sets of Real Numbers
If a and b are real numbers, 	a� b
 denotes the set of real numbers x satisfying
a � x � b. A rounded, instead of square, bracket denotes strict inequality in the
definition. Thus �a� b
 denotes all x satisfying a < x � b.

507
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If S is a set of real numbers bounded above, then there is a smallest real number
y such that x � y for all x ∈ S. The number y is called the least upper bound or
supremum of S and is denoted

sup
x∈S

�x� or sup �x � x ∈ S��

Similarly, the greatest lower bound or infimum of a set S is denoted

inf
x∈S

�x� or inf �x � x ∈ S��

A.2 MATRIX NOTATION
A matrix is a rectangular array of numbers, called elements. The matrix itself is
denoted by a boldface letter. When specific numbers are not used, the elements are
denoted by italicized lower-case letters, having a double subscript. Thus we write

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

·
·
·

am1 am2 · · · amn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

for a matrix A having m rows and n columns. Such a matrix is referred to as an
m×n matrix. If we wish to specify a matrix by defining a general element, we use
the notation A = 	aij
.

An m × n matrix all of whose elements are zero is called a zero matrix and
denoted 0. A square matrix (a matrix with m = n) whose elements aij = 0 for i 	= j,
and aii = 1 for i = 1� 2� � � � � n is said to be an identity matrix and denoted I.

The sum of two m×n matrices A and B is written A + B and is the matrix
whose elements are the sum of the corresponding elements in A and B. The product
of a matrix A and a scalar �, written �A or A�, is obtained by multiplying each
element of A by �. The product AB of an m×n matrix A and an n×p matrix B
is the m×p matrix C with elements cij =∑n

k=1 aikbkj .
The transpose of an m×n matrix A is the n×m matrix AT with elements aT

ij =
aji. A (square) matrix A is symmetric if AT = A. A square matrix A is nonsingular
if there is a matrix A−1, called the inverse of A, such that A−1A = I = AA−1. The
determinant of a square matrix A is denoted by det (A). The determinant is nonzero
if and only if the matrix is nonsingular. Two square n×n matrices A and B are
similar if there is a nonsingular matrix S such that B = S−1AS.

Matrices having a single row are referred to as row vectors; matrices having a
single column are referred to as column vectors. Vectors of either type are usually
denoted by lower-case boldface letters. To economize page space, row vectors are
written a = 	a1� a2� � � � � an
 and column vectors are written a = �a1� a2� � � � � an�.
Since column vectors are used frequently, this notation avoids the necessity to



A.3 Spaces 509

display numerous columns. To further distinguish rows from columns, we write
a ∈ En if a is a column vector with n components, and we write b ∈ En if b is a
row vector with n components.

It is often convenient to partition a matrix into submatrices. This is indicated
by drawing partitioning lines through the matrix, as for example,

A =
⎡

⎣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

⎤

⎦=
[

A11 A12

A21 A22

]

�

The resulting submatrices are usually denoted Aij , as illustrated.
A matrix can be partitioned into either column or row vectors, in which case

a special notation is convenient. Denoting the columns of an m×n matrix A by
aj� j = 1� 2� � � � � n, we write A = 	a1� a2� � � � � an
. Similarly, denoting the rows of A
by ai� i = 1� 2� � � � �m, we write A = �a1� a2� � � � � am�. Following the same pattern,
we often write A = 	B� C
 for the partitioned matrix A = 	B
C
.

A.3 SPACES
We consider the n-component vectors x = �x1� x2� � � � � xn� as elements of a vector
space. The space itself, n-dimensional Euclidean space, is denoted En. Vectors in
the space can be added or multiplied by a scalar, by performing the corresponding
operations on the components. We write x � 0 if each component of x is nonneg-
ative.

The line segment connecting two vectors x and y is denoted [x� y] and consists
of all vectors of the form 
x + �1−
�y with 0 � 
 � 1.

The scalar product of two vectors x = �x1� x2� � � � � xn� and y = �y1� y2� � � � � yn�
is defined as xT y = yT x =∑n

i=1 xiyi. The vectors x and y are said to be orthogonal
if xT y = 0. The magnitude or norm of a vector x is 
x
 = �xT x�1/2. For any two
vectors x and y in En, the Cauchy-Schwarz Inequality holds: 
xT y
 � 
x
 · 
y
.

A set of vectors a1� a2� � � � � ak is said to be linearly dependent if there are
scalars �1� �2� � � � � �k, not all zero, such that

∑k
i=1 �iai = 0. If no such set of scalars

exists, the vectors are said to be linearly independent. A linear combination of the
vectors a1� a2� � � � � ak is a vector of the form

∑k
i=1 �iai. The set of vectors that are

linear combinations of a1� a2� � � � � ak is the set spanned by the vectors. A linearly
independent set of vectors that span En is said to be a basis for En. Every basis for
En contains exactly n vectors.

The rank of a matrix A is equal to the maximum number of linearly independent
columns in A. This number is also equal to the maximum number of linearly
independent rows in A. The m×n matrix A is said to be of full rank if the rank of
A is equal to the minimum of m and n.

A subspace M of En is a subset that is closed under the operations of vector
addition and scalar multiplication; that is, if a and b are vectors in M , then �a+�b
is also in M for every pair of scalars ���. The dimension of a subspace M is equal
to the maximum number of linearly independent vectors in M . If M is a subspace
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of En, the orthogonal complement of M , denoted M⊥, consists of all vectors that
are orthogonal to every vector in M . The orthogonal complement of M is easily
seen to be a subspace, and together M and M⊥ span En in the sense that every
vector x ∈ En can be written uniquely in the form x = a +b with a ∈ M� b ∈ M⊥. In
this case a and b are said to be the orthogonal projections of x onto the subspaces
M and M⊥, respectively.

A correspondence A that associates with each point in a space X a point in
a space Y is said to be a mapping from X to Y . For convenience this situation is
symbolized by A � X → Y . The mapping A may be either linear or nonlinear. The
norm of linear mapping A is defined as 
A
 = max


x
≤1

Ax
. It follows that for any

x� 
Ax
 ≤ 
A
 · 
x
.

A.4 EIGENVALUES AND QUADRATIC FORMS
Corresponding to an n × n square matrix A, a scalar � and a nonzero vector x
satisfying the equation Ax = �x are said to be, respectively, an eigenvalue and
eigenvector of A. In order that � be an eigenvalue it is clear that it is necessary and
sufficient for A −�I to be singular, and hence det �A −�I� = 0. This last result,
when expanded, yields an nth-order polynomial equation which can be solved for
n (possibly nondistinct) complex roots � which are the eigenvalues of A.

Now, for the remainder of this section, assume that A is symmetric. Then the
following properties hold:

i) The eigenvalues of A are real.
ii) Eigenvectors associated with distinct eigenvalues are orthogonal.

iii) There is an orthogonal basis for En, each element of which is an eigenvector
of A.

If the basis u1� u2� � � � � un in (iii) is normalized so that each element has magnitude
unity, then defining the matrix Q = 	u1� u2� � � � � un
 we note that QT Q = I and
hence QT = Q−1. A matrix with this property is said to be an orthogonal matrix.
Also, we observe, in this case, that

Q−1AQ = QT AQ = QT 	Au1� Au2� � � � � Aun


= QT 	�1u1� �2u2� � � � � �nun
�

Thus

Q−1AQ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�1

�2

·
·
·
�n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

�

and therefore A is similar to a diagonal matrix.
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A symmetric matrix A is said to be positive definite if the quadratic form xT Ax
is positive for all nonzero vectors x. Similarly, we define positive semidefinite,
negative definite, and negative semidefinite if xT Ax � 0�< 0, or � 0 for all x. The
matrix A is indefinite if xT Ax is positive for some x and negative for others.

It is easy to obtain a connection between definiteness and the eigenvalues of A.
For any x let y = Q−1x where Q is defined as above. Then xT Ax = yT QT AQy =
∑n

i=1 �iy
2
i . Since the yi’s are arbitrary (since x is), it is clear that A is positive

definite (or positive semidefinite) if and only if all eigenvalues of A are positive
(or nonnegative).

Through diagonalization we can also easily show that a positive semidefinite
matrix A has a positive semidefinite (symmetric) square root A1/2 satisfying A1/2 ·
A1/2 = A. For this we use Q as·above and define

A1/2 = Q

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�
1/2
1

�
1/2
2

·
·
·
�1/2

n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

QT �

which is easily verified to have the desired properties.

A.5 TOPOLOGICAL CONCEPTS
A sequence of vectors x0� x1� � � � � xk� � � �, denoted �xk�

�
k = 0, or if the index set is

understood, by simply �xk�, is said to converge to the limit x if 
xk − x
 → 0 as
k → � (that is, if given � > 0, there is a N such that k � N implies 
xk −x
 < �).
If �xk� converges to x, we write xk → x or limit xk = x.

A point x is a limit point of the sequence �xk� if there is a subsequence of �xk�
convergent to x. Thus x is a limit point of �xk� if there is a subset � of the positive
integers such that �xk�k∈� is convergent to x.

A sphere around x is a set of the form �y � 
y −x
 < �� for some � > 0. Such
a sphere is also referred to as the neighborhood of x of radius �.

A subset S of En is open if around every point in S there is a sphere that is
contained in S. Equivalently, S is open if given x ∈ S there is an � > 0 such that

y−x
 < � implies y ∈ S. Thus the sphere �x � 
x
 < 1� is open. In general, open sets
can be characterized as sets having no sharp boundaries. The interior of any set S
in En is the set of points x ∈ S which are the center of some sphere contained in
S. It is denoted

�
S. The interior of a set is always open; indeed it is the largest open

set contained in S. The interior of the set �x � 
x
 � 1� is the sphere �x � 
x
 < 1�.
A set P is closed if every point that is arbitrarily close to the set P is a member

of P. Equivalently, P is closed if xk → x with xk ∈ P implies x ∈ P. Thus the set
�x � 
x
 � 1� is closed. The closure of any set P in En is the smallest closed set
containing P. It is denoted S. The boundary of a set is that part of the closure that
is not in the interior.
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A set is compact if it is both closed and bounded (that is, if it is closed
and is contained within some sphere of finite radius). An important result, due to
Weierstrass, is that if S is a compact set and �xk� is a sequence each member of
which belongs to S, then �xk� has a limit point in S (that is, there is subsequence
converging to a point in S).

Corresponding to a bounded sequence �rk�
�
k=0 of real numbers, if we let sk =

sup�ri � i � k� then �sk� converges to some real number so. This number is called
the limit superior of �rk� and is denoted lim

k→�
�rk�.

A.6 FUNCTIONS
A real-valued function f defined on a subset of En is said to be continuous at x
if xk → x implies f�xk� → f�x�. Equivalently, f is continuous at x if given � > 0
there is a � > 0 such that 
y−x
 < � implies 
f�y�−f�x�
 < �. An important result
connected with continuous functions is a theorem of Weierstrass: A continuous
function f defined on a compact set S has a minimum point in S; that is, there is
an x∗ ∈ S such that for all x ∈ S, f�x� � f�x∗�.

A set of real-valued functions f1� f2� � � � � fm on En can be regarded as a
single vector function f = �f1� f2� � � � � fm�. This function assigns a vector f�x� =
�f1�x�� f2�x�� � � � � fm�x�� in Em to every vector x ∈ En. Such a vector-valued
function is said to be continuous if each of its component functions is continuous.

If each component of f = �f1� f2� � � � � fm� is continuous on some open set of
En, then we write f ∈ C. If in addition, each component function has first partial
derivatives which are continuous on this set, we write f ∈ C1. In general, if the
component functions have continuous partial derivatives of order p, we write f ∈ Cp.

If f ∈ C1 is a real-valued function on En� f�x� = f�x1� x2� � � � � xn�, we define
the gradient of f to be the vector

�f�x� =
[

�f�x�

�x1

�
�f�x�

�x2

� · · · �
�f�x�

�xn

]

�

We sometimes use the alternative notation fx�x� for �f�x�. In matrix calculations
the gradient is considered to be a row vector.

If f ∈ C2 then we define the Hessian of f at x to be the n×n matrix denoted
�2f�x� or F�x� as

F�x� =
[

�2f�x�

�xi�xj

]

�

Since

�2f

�xi�xj

= �2f

�xj�xi

�

it is easily seen that the Hessian is symmetric.
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For a vector-valued function f = �f1� f2� � � � � fm� the situation is similar. If
f ∈ C1, the first derivative is defined as the m×n matrix

�f�x� =
[

�fi�x�

�xj

]

�

If f ∈ C2 it is possible to define the m Hessians F1�x�� F2�x�� � � � � Fm�x� corres-
ponding to the m component functions. The second derivative itself, for a vector
function, is a third-order tensor but we do not require its use explicitly. Given any
�T = 	�1� �2� � � � � �m
 ∈ Em, we note, however, that the real-valued function �T f
has gradient equal to �T �f�x� and Hessian, denoted �T F�x�, equal to

�T F�x� =
m∑

i=1

�iFi�x��

Also see Section 7.4 for a discussion of convex functions.

Taylor’s Theorem
A group of results that are used frequently in analysis are referred to under the
general heading of Taylor’s Theorem or Mean Value Theorems. If f ∈ C1 in a
region containing the line segment 	x1� x2
, then there is a �, 0 � � � 1 such that

f�x2� = f�x1�+�f��x1 + �1−��x2��x2 −x1��

Furthermore, if f ∈ C2 then there is a �� 0 � � � 1 such that

f�x2� = f�x1�+�f�x1��x2 −x1�

+ 1
2

�x2 −x1�
T F��x1 + �1−��x2��x2 −x1��

where F denotes the Hessian of f .

Implicit Function Theorem
Suppose we have a set of m equations in n variables

hi�x� = 0� i = 1� 2� � � � �m�

The implicit function theorem addresses the question as to whether if n − m of
the variables are fixed, the equations can be solved for the remaining m variables.
Thus selecting m variables, say x1� x2� � � � � xm, we wish to determine if these may
be expressed in terms of the remaining variables in the form

xi = �i�xm+1� xm+2� � � � � xn�� i = 1� 2� � � � �m�
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The functions �i, if they exist, are called implicit functions.

Theorem. Let x0 = �x0
1� x0

2� � � � � x0
n� be a point in En satisfying the properties:

i) The functions hi ∈ Cp� i = 1� 2� � � � �m in some neighborhood of x0, for
some p � 1.

ii) hi�x0� = 0� i = 1� 2� � � � �m.

iii) The m×m Jacobian matrix

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

�h1�x0�

�x1

· · · �h1�x0�

�xm
���

���
�hm�x0�

�x1

· · · �hm�x0�

�xm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

�

is nonsingular.
Then there is a neighborhood of x̂0 = �x0

m+1� x0
m+2� � � � � x0

n� ∈ En−m such
that for x̂ = �xm+1� xm+2� � � � � xn� in this neighborhood there are functions
�i�x̂�� i = 1� 2� � � � �m such that

i) �i ∈ Cp.

ii) x0
i = �i�x̂0�� i = 1� 2� � � � �m.

iii) hi��i�x̂���2�x̂�� � � � ��m�x̂��x̂� = 0� i = 1� 2� � � � �m.

Example 1. Consider the equation x2
1 + x2 = 0. A solution is x1 = 0, x2 = 0.

However, in a neighborhood of this solution there is no function � such that x1 =
��x2�. At this solution condition (iii) of the implicit function theorem is violated.
At any other solution, however, such a � exists.

Example 2. Let A be an m × n matrix (m < n) and consider the system of linear
equations Ax = b. If A is partitioned as A = 	B� C
 where B is m×m then condition
(iii) is satisfied if and only if B is nonsingular. This condition corresponds, of course,
exactly with what the theory of linear equations tells us. In view of this example, the
implicit function can be regarded as a nonlinear generalization of the linear theory.

o�O Notation
If g is a real-valued function of a real variable, the notation g�x� = O�x� means
that g�x� goes to zero at least as fast as x does. More precisely, it means that there
is a K � 0 such that

∣
∣
∣
∣
g�x�

x

∣
∣
∣
∣� K as x → 0�

The notation g�x� = o�x� means that g�x� goes to zero faster than x does; or
equivalently, that K above is zero.



Appendix B CONVEX SETS

B.1 BASIC DEFINITIONS
Concepts related to convex sets so dominate the theory of optimization that it is
essential for a student of optimization to have knowledge of their most fundamental
properties. In this appendix is compiled a brief summary of the most important of
these properties.

Definition. A set C in En is said to be convex if for every x1� x2 ∈ C and
every real number �� 0 < � < 1, the point �x1 + �1−��x2 ∈ C.

This definition can be interpreted geometrically as stating that a set is convex
if, given two points in the set, every point on the line segment joining these two
points is also a member of the set. This is illustrated in Fig. B.1.

The following proposition shows the certain familiar set operations preserve
convexity.

Proposition 1. Convex sets in En satisfy the following relations:

i) If C is a convex set and � is a real number, the set

�C = �x � x = �c� c ∈ C	

is convex.
ii) If C and D are convex sets, then the set

C +D = �x � x = c +d� c ∈ C� d ∈ D	

is convex.
iii) The intersection of any collection of convex sets is convex.

The proofs of these three properties follow directly from the definition of a
convex set and are left to the reader. The properties themselves are illustrated in
Fig. B.2.

Another important concept is that of forming the smallest convex set containing
a given set.

515
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convex nonconvex

x1

x2x2

x1

Fig. B.1 Convexity

C

C

C
D

D

C + D

2 . C

0 0

Fig. B.2 Properties of convex sets

Definition. Let S be a subset of En. The convex hull of S, denoted co(S), is
the set which is the intersection of all convex sets containing S. The closed
convex hull of S is defined as the closure of co(S).

Finally, we conclude this section by defining a cone and a convex cone. A
convex cone is a special kind of convex set that arises quite frequently.

0

Not convex

0

Not convex
0

Convex

Fig. B.3 Cones



B.2 Hyperplanes and Polytopes 517

Definition. A set C is a cone if x ∈ C implies �x ∈ C for all � > 0. A cone
that is also convex is a convex cone.

Some cones are shown in Fig. B.3. Their basic property is that if a point x
belongs to a cone, then the entire half line from the origin through the point (but
not the origin itself) also must belong to the cone.

B.2 HYPERPLANES AND POLYTOPES
The most important type of convex set (aside from single points) is the hyperplane.
Hyperplanes dominate the entire theory of optimization, appearing under the guise
of Lagrange multipliers, duality theory, or gradient calculations.

The most natural definition of a hyperplane is the logical generalization of
the geometric properties of a plane in three dimensions. We start by giving this
geometric definition. For computations and for a concrete description of hyper-
planes, however, there is an equivalent algebraic definition that is more useful. A
major portion of this section is devoted to establishing this equivalence.

Definition. A set V in En is said to be a linear variety, if, given any x1� x2 ∈ V ,
we have 
x1 + �1−
�x2 ∈ V for all real numbers 
.

Note that the only difference between the definition of a linear variety and a
convex set is that in a linear variety the entire line passing through any two points,
rather than simply the line segment between them, must lie in the set. Thus in three
dimensions the nonempty linear varieties are points, lines, two-dimensional planes,
and the whole space. In general, it is clear that we may speak of the dimension of a
linear variety. Thus, for example, a point is a linear variety of dimension zero and
a line is a linear variety of dimension one. In the general case, the dimension of
a linear variety in En can be found by translating it (moving it) so that it contains
the origin and then determining the dimension of the resulting set, which is then a
subspace of En.

Definition. A hyperplane in En is an (n−1)-dimensional linear variety.

We see that hyperplanes generalize the concept of a two-dimensional plane in
three-dimensional space. They can be regarded as the largest linear varieties in a
space, other than the entire space itself.

We now relate this abstract geometric definition to an algebraic one.

Proposition 2. Let a be a nonzero n-dimensional column vector, and let c be
a real number. The set

H = �x ∈ En � aT x = c	

is a hyperplane in En.

Proof. It follows directly from the linearity of the equation aT x = c that H is
a linear variety. Let x1 be any vector in H . Translating by −x1 we obtain the set
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M = H −x1 which is a linear subspace of En. This subspace consists of all vectors
x satisfying aT x = 0; in other words, all vectors orthogonal to a. This is clearly an
�n−1�-dimensional subspace.

Proposition 3. Let H be a hyperplane in En. Then there is a nonzero n-
dimensional vector and a constant c such that

H = �x ∈ En � aT x = c	�

Proof. Let x1 ∈ H and translate by −x1 obtaining the set M = H − x1. Since
H is a hyperplane, M is an �n− 1�-dimensional subspace. Let a be any nonzero
vector that is orthogonal to this subspace, that is, a belongs to the one-dimensional
subspace M⊥. Clearly M = �x � aT x = 0	. Letting c = aT x1 we see that if x2 ∈ H
we have x2 − x1 ∈ M and thus aT x2 − aT x1 = 0 which implies aT x2 = c. Thus
H ⊂ �x � aT x = c	. Since H is, by definition, of dimension n−1 and �x � aT x = c	
is of dimension n−1 by Proposition 2, these two sets must be equal.

Combining Propositions 2 and 3, we see that a hyperplane is the set of solutions
to a single linear equation. This is illustrated in Fig. B.4. We now use hyperplanes
to build up other important classes of convex sets.

Definition. Let a be a nonzero vector in En and let c be a real number.
Corresponding to the hyperplane H = �x � aT x = c	 are the positive and negative
closed half spaces

H+ = �x � aT x � c	

H− = �x � aT x � c	

and the positive and negative open half spaces

�
H+ = �x � aT x > c	

�
H− = �x � aT x < c	�

a

0

H

Fig. B.4
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Fig. B.5 Polytopes

It is easy to see that half spaces are convex sets and that the union of H+ and
H− is the whole space.

Definition. A set which can be expressed as the intersection of a finite number
of closed half spaces is said to be a convex polytope.

We see that convex polytopes are the sets obtained as the family of solutions
to a set of linear inequalities of the form

aT
1 x � b1

aT
2 x � b2

· ·
· ·
· ·

aT
mx � bm�

since each individual inequality defines a half space and the solution family is
the intersection of these half spaces. (If some ai = 0, the resulting set can still, as
the reader may verify, be expressed as the intersection of a finite number of half
spaces.)

Several polytopes are illustrated in Fig. B.5. We note that a polytope may be
empty, bounded, or unbounded. The case of a nonempty bounded polytope is of
special interest and we distinguish this case by the following.

Definition. A nonempty bounded polytope is called a polyhedron.

B.3 SEPARATING AND SUPPORTING
HYPERPLANES

The two theorems in this section are perhaps the most important results related to
convexity. Geometrically, the first states that given a point outside a convex set, a
hyperplane can be passed through the point that does not touch the convex set. The
second, which is a limiting case of the first, states that given a boundary point of a
convex set, there is a hyperplane that contains the boundary point and contains the
convex set on one side of it.
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Theorem 1. Let C be a convex set and let y be a point exterior to the closure
of C. Then there is a vector a such that aT y < inf

x∈C
aT x.

Proof. Let

� = inf
x∈C

�x −y� > 0�

There is an x0 on the boundary of C such that �x0 − y� = �. This follows because
the continuous function f�x� = �x −y� achieves its minimum over any closed and
bounded set and it is clearly only necessary to consider x in the intersection of the
closure of C and the sphere of radius 2� centered at y.

We shall show that setting a = x0 −y satisfies the conditions of the theorem.
Let x ∈ C. For any �� 0 � � � 1, the point x0 +��x −x0� ∈ C and thus

�x0 +��x −x0�−y�2 � �x0 −y�2�

Expanding,

2��x0 −y�T �x −x0�+�2�x −x0�2 � 0�

Thus, considering this as � → 0+, we obtain

�x0 −y�T �x −x0� � 0

or,

�x0 −y�T x � �x0 −y�T x0 = �x0 −y�T y + �x0 −y�T �x0 −y�

= �x0 −y�T y +�2�

Setting a = x0 −y proves the theorem.

The geometrical interpretation of Theorem 1 is that, given a convex set C and a
point y exterior to the closure of C, there is a hyperplane containing y that contains
C in one of its open half spaces. We can easily extend this theorem to include the
case where y is a boundary point of C.

Theorem 2. Let C be a convex set and let y be a boundary point of C. Then
there is a hyperplane containing y and containing C in one of its closed half
spaces.

Proof. Let �yk	 be a sequence of vectors, exterior to the closure of C, converging
to y. Let �ak	 be the sequence of corresponding vectors constructed according to
Theorem 1, normalized so that �ak� = 1, such that

aT
k yk < inf

x∈C
aT

k x�
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Since �ak	 is a bounded sequence, it has a convergent subsequence �ak	, k ∈ �
with limit a. For this vector we have for any x ∈ C.

aT y = lim
k∈�

aT
k yk � lim

k∈�
aT

k x = ax�

Definition. A hyperplane containing a convex set C in one of its closed
half spaces and containing a boundary point of C is said to be a supporting
hyperplane of C.

In terms of this definition, Theorem 2 says that, given a convex set C and a
boundary point y of C, there is a hyperplane supporting C at y.

It is useful in the study of convex sets to consider the relative interior of a
convex set C defined as the largest subset of C that contains no boundary points
of C.

Another variation of the theorems of this section is the one that follows, which
is commonly known as the Separating Hyperplane Theorem.

Theorem 3. Let B and C be convex sets with no common relative interior
points. (That is the only common points are boundary points.) Then there is
a hyperplane separating B and D. In particular, there is a nonzero vector a
such that supb∈B aT b ≤ infc∈C aT c.

Proof. Consider the set G = C −B. It is easily shown that G is convex and that
0 is not a relative interior point of G. Hence, Theorem 1 or Theorem 2 applies and
gives the appropriate hyperplane.

B.4 EXTREME POINTS

Definition. A point x in a convex set C is said to be an extreme point of C
if there are no two distinct points x1 and x2 in C such that x = �x1 + �1−��x2

for some �� 0 < � < 1.

For example, in E2 the extreme points of a square are its four corners; the
extreme points of a circular disk are all points on the boundary. Note that a linear
variety consisting of more than one point has no extreme points.

Lemma 1. Let C be a convex set, H a supporting hyperplane of C, and T the
intersection of H and C. Every extreme point of T is an extreme point of C.

Proof. Suppose x0 ∈ T is not an extreme point of C. Then x0 = �x1 + �1−��x2

for some x1� x2 ∈ C� x1 	= x2� 0 < � < 1. Let H be described as H = �x � aT x = c	
with C contained in its closed positive half space. Then

aT x1 � c� aT x2 � c�
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But, since x0 ∈ H ,

c = aT x0 = �aT x1 + �1−��aT x2�

and thus x1 and x2 ∈ H . Hence x1, x2 ∈ T and x0 is not an extreme point of T .

Theorem 4. A closed bounded convex set in En is equal to the closed convex
hull of its extreme points.

Proof. The proof is by induction on the dimension of the space En. The statement
is easily seen to be true for n = 1. Suppose that it is true for n−1. Let C be a closed
bounded convex set in En, and let K be the closed convex hull of the extreme
points of C. We wish to show that K = C.

Assume there is y ∈ C y 
 K. Then by Theorem 1, Section B.3, there is a
hyperplane separating y and K; that is, there is a 	= 0, such that aT y < infx∈K aT x.
Let c0 = infx∈C�aT x�. The number c0 is finite and there is an x0 ∈ C for which
aT x0 = c0, because by Weierstrass’ Theorem, the continuous function aT x achieves
its minimum over any closed bounded set. Thus the hyperplane H = �x � aT x = c0	
is a supporting hyperplane to C. It is disjoint from K since c0 < inf

x∈K
�aT x�.

Let T = H ∩C. Then T is a bounded closed convex subset of H which can be
regarded as a space of dimension n−1. T is nonempty, since it contains x0. Thus,
by the induction hypothesis, T contains extreme points; and by Lemma 1 these are
also extreme points of C. Thus we have found extreme points of C not in K, which
is a contradiction.

Let us investigate the implications of this theorem for convex polyhedra. We
recall that a convex polyhedron is a bounded polytope. Being the intersection of
closed half spaces, a convex polyhedron is also closed. Thus any convex polyhedron
is the closed convex hull of its extreme points. It can be shown (see Section 2.5)
that any polytope has at most a finite number of extreme points and hence a convex
polyhedron is equal to the convex hull of a finite number of points. The converse
can also be established, yielding the following two equivalent characterizations.

Theorem 5. A convex polyhedron can be described either as a bounded
intersection of a finite number of closed half spaces, or as the convex hull of
a finite number of points.



Appendix C GAUSSIAN
ELIMINATION

This appendix describes the method for solving systems of linear equations that
has proved to be, not only the most popular, but also the fastest and least
susceptible to round-off error accumulation—the method of Gaussian elimination.
Attention is directed toward explaining this classical elimination technique itself
and its relation to the theory of LU decomposition of a non-singular square
matrix.

We first note how easily triangular systems of equations can be solved. Thus
the system

a11x1 = b1

a21x1 +a22x2 = b2

· ·
· ·
· ·
an1x1 +an2x2 +· · ·+annxn = bn

can be solved recursively as follows:

x1 = b1/a11

x2 = �b2 −a21x1�/a22

·
·
·
xn = �bn −an1x1 −an2x2 � � �−ann−1xn−1�/ann�

provided that each of the diagonal terms aii, i = 1� 2� � � � � n is nonzero (as they must
be if the system is nonsingular). This observation motivates us to attempt to reduce
an arbitrary system of equations to a triangular one.

523
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Definition. A square matrix C = �cij� is said to be lower triangular if cij = 0
for i < j. Similarly, C is said to be upper triangular if cij = 0 for i > j.

In matrix notation, the idea of Gaussian elimination is to somehow find a
decomposition of a given n×n matrix A in the form A = LU where L is a lower
triangular and U an upper triangular matrix. The system

Ax = b (C.1)

can then be solved by solving the two triangular systems

Ly = b� Ux = y� (C.2)

The calculation of L and U together with solution of the first of these systems is
usually referred to as forward elimination, while solution of the second triangular
system is called back substitution.

Every nonsingular square matrix A has an LU decomposition, provided that
interchanges of rows of A are introduced if necessary. This interchange of rows
corresponds to a simple reordering of the system of equations, and hence amounts
to no loss of generality in the method. For simplicity of notation, however, we
assume that no such interchanges are required.

We turn now to the problem of explicitly determining L and U, by elimination,
for a nonsingular matrix A. Given the system, we attempt to transform it so that
zeros appear below the main diagonal. Assuming that a11 �= 0 we subtract multiples
of the first equation from each of the others in order to get zeros in the first column
below a11. If we define mk1 = ak1/a11 and let

M1 =

1

1

1

1

,

–m21

–m31

–mn1

the resulting new system of equations can be expressed as

A�2�x = b�2�

with

A�2� = M1A� b�2� = M1b�

The matrix A�2� = �a
�2�
ij � has a

�2�
k1 = 0� k > 1.
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Next, assuming a
�2�
22 �= 0, multiples of the second equation of the new system

are subtracted from equations 3 through n to yield zeros below a
�2�
22 in the second

column. This is equivalent in premultiplying A�2� and b�2� by

M2 = ,

1

1–m32

–m42

–mn2

1 0

0 1

where mk2 = a
�2�
k2 /a

�2�
22 . This yields A�3� = M2A�2� and b�3� = M2A�2�.

Proceeding in this way we obtain A�n� = Mn−1Mn−2 � � � M1A, an upper trian-
gular matrix which we denote by U. The matrix M = Mn−1Mn−2 � � � M1 is a lower
triangular matrix, and since MA = U we have A = M−1U. The matrix L = M−1 is
also lower triangular and becomes the L of the desired LU decomposition for A.

The representation for L can be made more explicit by noting that M−1
k is the

same as Mk except that the off-diagonal terms have the opposite sign. Furthermore,
we have L = M−1 = M−1

1 M−1
2 � � � M−1

n−1 which is easily verified to be

1 0

m21

m31 m32

mn1 mn2

1

1
L =

1

Hence L can be evaluated directly in terms of the calculations required by the elimi-
nation process. Of course, an explicit representation for M = L−1 would actually
be more useful but a simple representation for M does not exist. Thus we content
ourselves with the explicit representation for L and use it in (C.2).

If the original system (C.1) is to be solved for a single b vector, the vector
y satisfying Ly = b is usually calculated simultaneously with L in the form
y = b�n� = Mb. The final solution x is then found by a single back substitution,
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from Ux = y. Once the LU decomposition of A has been obtained, however, the
solution corresponding to any right-hand side can be found by solving the two
systems (C.2).

In practice, the diagonal element a
�k�
kk of A�k� may become zero or very close

to zero. In this case it is important that the kth row be interchanged with a row
that is below it. Indeed, for considerations of numerical accuracy, it is desirable to
continuously introduce row interchanges of this type in such a way to insure �mij� �
1 for all i� j. If this is done, the Gaussian elimination procedure has exceptionally
good stability properties.
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convergence rate of the, 387
Redundant equations, 98–99
Relative cost coefficients, 45, 88
Requirements space, 41, 86–87
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for transportation problems, 153–159

Simplex multipliers, 64, 88–90,
153–154, 157–158, 165–166, 174
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applications, 242–246
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See also Termination
Strong duality theorem, 439, 497
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Tree algorithm, 145, 166, 169–170,

172, 175
Triangular bases, 151, 154
Triangularity, 150

Triangularization procedure, 151, 164
Triangular matrices, 150, 525
Turing model of computation, 113

Unimodal, 216
Unimodular, 175
Upper triangular, 525

Variable metric method, 290

Warehousing problem, 16
Weak duality

lemma, 83, 126
proposition, 437

Wolfe Test, 233
Working set, 364–368, 370, 383, 396
Working surface, 364–369, 371, 383

Zero-duality gap, 126–127
Zero-order

conditions, 198–200, 346–354
Lagrange theorem, 352, 439

Zigzagging, 362, 367
Zoutendijk method, 361
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