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A great deal of intelligence can be invested in ignorance 

when the need for illusion is deep.

Saul Bellow
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Preface to the Second Edition

The main changes for the second edition of the book have been the correc-
tion of a few errors that have either been pointed out by readers of the first 
edition or noticed by me in the updating of references and the text, particu-
larly in terms of the software needed for calculations and changes to the web 
sites, and the addition of some exercises at the end of chapters. I would par-
ticularly like to thank students attending my workshops and courses at sta-
tistics.com for helping me to clarify parts of the text that were not altogether 
clear in the first edition.

The aims of the book are still the same as for the first edition; namely, to 
introduce environmental scientists and managers to the statistical methods 
that will be useful for them in their work, and also as a text suitable for a 
course in statistics for graduate students in the environmental science area.

Bryan Manly
March 2008
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Preface to the First Edition

This book is intended to introduce environmental scientists and managers 
to the statistical methods that will be useful for them in their work. A sec-
ondary aim was to produce a text suitable for a course in statistics for gradu-
ate students in the environmental science area. I wrote the book because it 
seemed to me that these groups should really learn about statistical methods 
in a special way. It is true that their needs are similar in many respects to 
those working in other areas. However, there are some special topics that are 
relevant to environmental science to the extent that they should be covered 
in an introductory text, although they would probably not be mentioned at 
all in such a text for a more general audience. I refer to environmental moni-
toring, impact assessment, which all have their own chapters here.

The book is not intended to be a complete introduction to statistics. Rather, 
it is assumed that readers have already taken a course or read a book on basic 
methods, covering the ideas of random variation, statistical distributions, 
tests of significance, and confidence intervals. For those who have done this 
some time ago, Appendix A is meant to provide a quick refresher course.

A number of people have contributed directly or indirectly to this book. I 
must first mention Lyman McDonald of West, Inc., Cheyenne, WY, who first 
stimulated my interest in environmental statistics, as distinct from ecological 
statistics. Much of the contents of the book are influenced by the discussions 
that we have had on matters statistical. Jennifer Brown from the University 
of Canterbury in New Zealand has influenced the contents because we have 
shared the teaching of several short courses on statistics for environmental 
scientists and managers. Likewise, sharing a course on statistics for MSc stu-
dents of environmental science with Caryn Thompson and David Fletcher 
has also had an effect on the book. Other people are too numerous to name, 
so I would just like to thank generally those who have contributed data sets, 
helped me check references and equations, etc.

Most of this book was written in the Department of Mathematics and Sta-
tistics at the University of Otago. As usual, the university was generous with 
the resources that are needed for the major effort of writing a book, includ-
ing periods of sabbatical leave that enabled me to write large parts of the text 
without interruptions, and an excellent library.

However, the manuscript would definitely have taken longer to finish if I 
had not been invited to spend part of the year 2000 as a visiting researcher 
at the Max Planck Institute for Limnology at Plön in Germany. This enabled 
me to write the final chapters and put the whole book together. I am very 
grateful to Winfried Lampert, the Director of the Institute, for his kind invi-
tation to come to Plön, and for allowing me to use the excellent facilities at 
the Institute while I was there.
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The Saul Bellow quotation above may need some explanation. It results 
from attending meetings where an environmental matter is argued at length, 
with everyone being ignorant of the true facts of the case. Furthermore, one 
suspects that some people there would prefer not to know the true facts 
because this would be likely to end the arguments.

Bryan F.J. Manly
May 2000
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1
The Role of Statistics in 
Environmental Science

1.1  Introduction

In this chapter the role of statistics in environmental science is considered by 
examining some specific examples. First, however, an important point needs 
to be made. The need for statistics is obvious in this area because much of 
what is learned about the environment is based on numerical data. There-
fore, the appropriate handling of data is crucial. Indeed, the use of incor-
rect statistical methods may make individuals and organizations vulnerable 
to being sued for large amounts of money. In the United States, it certainly 
appears that increasing attention to the use of statistical methods is driven 
by the fear of litigation.

In this context, it is important to note that there is usually no single correct way 
to gather and analyze data. At best, there may be several alternative approaches 
that are all about equally good. At worst, the alternatives may involve differ-
ent assumptions and lead to different conclusions. This will become apparent 
from some of the examples in this and the following chapters.

1.2  Some Examples

The following examples demonstrate the nontrivial statistical problems that can 
arise in practice, and are intended to show the importance of the proper use of 
statistical theory. Some of these examples are revisited again in later chapters.

For environmental scientists and resource managers there are three broad 
types of situations that are often of interest:

 1. Baseline studies intended to document the present state of the envi-
ronment in order to establish future changes resulting, for example, 
from unforeseen events such as oil spills
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 2. Targeted studies designed to assess the impact of planned events such 
as the construction of a dam, or accidents such as oil spills

 3. Regular monitoring intended to detect trends and changes in impor-
tant variables, possibly to ensure that compliance conditions are 
being met for an industry that is permitted to discharge small 
amounts of pollutants into the environment

The following examples include all of these types of situations.

Example 1.1: The Exxon Valdez Oil Spill
Oil spills resulting from the transport of crude and refined oils occur 
from time to time, particularly in coastal regions. Some very large spills 
(over 100,000 tonnes) have attracted considerable interest around the 
world. Notable examples are the Torrey Canyon spill in the English Chan-
nel in 1967, the Amoco Cadiz off the coast of Brittany, France, in 1978, and 
the grounding of the Braer off the Shetland Islands in 1993. These spills 
all bring similar challenges for damage control for the physical environ-
ment and wildlife. There is intense concern from the public, resulting 
in political pressures on resource managers. There is the need to assess 
both short-term and long-term environmental impacts. Often there are 
lengthy legal cases to establish liability and compensation terms.

One of the most spectacular oil spills was that of the Exxon Valdez, 
which grounded on Bligh Reef in Prince William Sound, Alaska, on 
24 March 1989, spilling more than 41 million liters of crude oil from 
the Alaska North Slope. This was the largest spill up to that time in 
U.S. coastal waters, although far from the size of the Amoco Cadiz spill. 
The publicity surrounding it was enormous, and the costs for cleanup, 
damage assessment, and compensation were considerable at nearly 
$US 12,000 per barrel lost, compared with the more typical $US 5,000 per 
barrel, for which the sale price was only about $US 15 at the time (Wells 
et al. 1995, p. 5). Figure 1.1 shows the path of the oil through Prince Wil-
liam Sound and the western Gulf of Alaska.

There were many targeted studies of the Exxon Valdez spill related to 
the persistence and fate of the oil and the impact on fisheries and wild-
life. Here three of these studies are considered, related to the shoreline 
impact of the oil. The investigators used different study designs, and 
all met with complications that were not foreseen in advance of sam-
pling. The three studies are Exxon’s Shoreline Ecology Program (Page 
et al. 1995; Gilfillan et al. 1995), the Oil Spill Trustees’ Coastal Habitat 
Injury Assessment (Highsmith et al. 1993; McDonald et al. 1995), and the 
Biological Monitoring Survey (Houghton et al. 1993). The summary here 
owes much to a paper presented by Harner et al. (1995) at an Interna-
tional Environmetrics Conference in Kuala Lumpur, Malaysia.

The Exxon Shoreline Ecology Program
The Exxon Shoreline Ecology Program started in 1989 with the purpose-
ful selection of a number of heavily oiled sites along the shoreline that 
were to be measured over time to determine recovery rates. Because 
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these sites are not representative of the shoreline potentially affected by 
oil, they were not intended to assess the overall damage.

In 1990, using a stratified random sampling design of a type that is 
discussed in Chapter 2, the study was enlarged to include many more 
sites. Basically, the entire area of interest was divided into a number of 
short segments of shoreline. Each segment was then allocated to one of 
16 strata based on the substrate type (exposed bedrock, sheltered bed-
rock, boulder/cobble, and pebble/gravel) and the degree of oiling (none, 
light, moderate, and heavy). For example, the first stratum was exposed 
bedrock with no oiling. Finally, four sites were chosen from each of the 
16 strata for sampling to determine the abundances of more than a thou-
sand species of animals and plants. A number of physical variables were 
also measured at each site.

The analysis of the data collected from the Exxon Shoreline Ecology 
Program was based on the use of what are called generalized linear mod-
els for species counts. These models are described in Chapter 3, and here 
it suffices to say that the effects of oiling were estimated on the assump-
tion that the model used for each species was correct, with an allowance 
being made for differences in physical variables between sites.

A problem with the sampling design was that the initial allocation 
of shoreline segments to the 16 strata was based on the information in a 
geographical information system (GIS). However, this resulted in some 
sites being misclassified, particularly in terms of oiling levels. Further-
more, sites were not sampled if they were near an active eagle nest or 

Valdez
Anchorage

Alaska

Kodiak Island
Day 40, 560 km

Day 56, 750 km

Day 19, 400 km
Day 11, 220 km

Day 7, 140 km
Day 4, 60 km

Prince
William
Sound

Figure 1.1
The path of the oil spill from the Exxon Valdez that occurred on 24 March (day 1) until 18 May 
1989 (day 56), through Prince William Sound and the western Gulf of Alaska.
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human activity. The net result was that the sampling probabilities used 
in the study design were not quite what they were supposed to be. The 
investigators considered that the effect of this was minor. However, the 
authors of the National Oceanic and Atmospheric Administrations guid-
ance document for assessing the damage from oil spills argue that this 
could be used in an attempt to discredit the entire study (Bergman et al. 
1995, Section F). It is, therefore, an example of how a minor deviation 
from the requirements of a standard study design may lead to poten-
tially very serious consequences.

The Oil Spill Trustees’ Coastal Habitat Injury Assessment
The Exxon Valdez Oil Spill Trustee Council was set up to oversee the allo-
cation of funds from Exxon for the restoration of Prince William Sound 
and Alaskan waters. Like the Exxon Shoreline Ecology Program, the 1989 
Coastal Habitat Injury Assessment study that was set up by the council 
was based on a stratified random sampling design of a type that will be 
discussed in Chapter 2. There were 15 strata used, with these defined 
by five habitat types, each with three levels of oiling. Sample units were 
shoreline segments with varying lengths, and these were selected using 
a GIS system, with probabilities proportional to their lengths.

Unfortunately, so many sites were misclassified by the GIS system 
that the 1989 study design had to be abandoned in 1990. Instead, each 
of the moderately and heavily oiled sites that were sampled in 1989 was 
matched up with a comparable unoiled control site based on physical 
characteristics, to give a paired-comparison design. The investigators 
then considered whether the paired sites were significantly different 
with regard to species abundance.

There are two aspects of the analysis of the data from this study that 
are unusual. First, the results of comparing site pairs (oiled and unoiled) 
were summarized as p-values (probabilities of observing differences as 
large as those seen on the hypothesis that oiling had no effect). These 
p-values were then combined using a meta-analysis, which is a method 
that is discussed in Chapter 4. This approach for assessing the evidence 
was used because each site pair was thought of as an independent study 
of the effects of oiling.

The second unusual aspect of the analysis was the weighting of 
results that was used for one of the two methods of meta-analysis that 
was employed. By weighting the results for each site pair by the recipro-
cal of the probability of the pair being included in the study, it was pos-
sible to make inferences with respect to the entire set of possible pairs in 
the study region. This was not a particularly simple procedure to carry 
out, because inclusion probabilities had to be estimated by simulation. It 
did, however, overcome the problems introduced by the initial misclas-
sification of sites.

The Biological Monitoring Survey
The Biological Monitoring Survey was instigated by the National Oce-
anic and Atmospheric Administration to study differences in impact 
between oiling alone and oiling combined with high-pressure hot-water 
washing at sheltered rocky sites. Thus there were three categories of sites 
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used. Category 1 sites were unoiled. Category 2 sites were oiled but not 
washed. Category 3 sites were oiled and washed. Sites were subjectively 
selected, with unoiled ones being chosen to match those in the other two 
categories. Oiling levels were also classified as being light or moderate/
heavy, depending on their state when they were laid out in 1989. Species 
counts and percentage cover were measured at sampled sites.

Randomization tests were used to assess the significance of the dif-
ferences between the sites in different categories because of the extreme 
nature of the distributions found for the recorded data. These types of 
test are discussed in Chapter 4. Here it is just noted that the hypothesis 
tested is that an observation was equally likely to have occurred for a 
site in any one of the three categories. This can certainly provide valid 
evidence of differences between the categories. However, the subjective 
methods used to select sites allows the argument to be made that any 
significant differences were due to the selection procedure rather than 
the oiling or the hot-water treatment.

Another potential problem with the analysis of the study is that it 
may have involved pseudo-replication (treating correlated data as inde-
pendent data), which is also defined and discussed in Chapter 4. This 
is because sampling stations along a transect on a beach were treated 
as if they provided completely independent data, although in fact some 
of these stations were in close proximity. In reality, observations taken 
close together in space can be expected to be more similar than observa-
tions taken far apart. Ignoring this fact may have led to a general ten-
dency to conclude that sites in the different categories differed, when 
this was not really the case.

General Comments on the Three Studies
The three studies on the Exxon Valdez oil spill took different approaches 
and led to answers to different questions. The Exxon Shoreline Ecol-
ogy Program was intended to assess the impact of oiling over the entire 
spill zone by using a stratified random sampling design. A minor prob-
lem is that the standard requirements of the sampling design were not 
quite followed because of site misclassification and some restrictions 
on sites that could be sampled. The Oil Trustees’ Coastal Habitat Study 
was badly upset by site misclassification in 1989, and was therefore con-
verted to a paired-comparison design in 1990 to compare moderately or 
heavily oiled sites with subjectively chosen unoiled sites. This allowed 
evidence for the effect of oiling to be assessed, but only at the expense 
of a complicated analysis involving the use of simulation to estimate the 
probability of a site being used in the study, and a special method to 
combine the results for different pairs of sites. The Biological Monitoring 
Survey focused on assessing the effects of hot-water washing, and the 
design gives no way for making inferences to the entire area affected by 
the oil spill.

All three studies are open to criticism in terms of the extent to which 
they can be used to draw conclusions about the overall impact of the oil 
spill in the entire area of interest. For the Exxon Coastal Ecology Program 
and the Trustees’ Coastal Habitat Injury Assessment, this was the result 
of using stratified random sampling designs for which the randomization 
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was upset to some extent. As a case study, the Exxon Valdez oil spill should, 
therefore, be a warning to those involved in oil spill impact assessment 
in the future about problems that are likely to occur with this type of 
design. Another aspect of these two studies that should give pause for 
thought is that the analyses that had to be conducted were rather compli-
cated and might be difficult to defend in a court of law. They were not in 
tune with the KISS philosophy (Keep It Simple, Statistician).

Example 1.2: Acid Rain in Norway
A Norwegian research program was started in 1972 in response to wide-
spread concern in Scandinavian countries about the effects of acid pre-
cipitation (Overrein et al. 1980). As part of this study, regional surveys 
of small lakes were carried out from 1974 to 1978, with some extra sam-
pling done in 1981. Data were recorded for pH, sulfate (SO4) concentra-
tion, nitrate (NO3) concentration, and calcium (Ca) concentration at each 
sampled lake. This can be considered to be a targeted study in terms of 
the three types of study that were previously defined, but it may also be 
viewed as a monitoring study that was only continued for a relatively 
short period of time. Either way, the purpose of the study was to detect 
and describe changes in the water chemical variables that might be 
related to acid precipitation.

Table 1.1 shows the data from the study, as provided by Mohn and 
Volden (1985). Figure 1.2 shows the pH values, plotted against the 
locations of lakes in each of the years 1976, 1977, 1978, and 1981. Similar 
plots can be produced for sulfate, nitrate, and calcium. The lakes that 
were measured varied from year to year. There is, therefore, a problem 
with missing data for some analyses that might be considered.

In practical terms, the main questions that are of interest from this 
study are:

 1. Is there any evidence of trends or abrupt changes in the values for 
one or more of the four measured chemistry variables?

 2. If trends or changes exist, are they related for the four variables, 
and are they of the type that can be expected to result from acid 
precipitation?

Other questions that may have intrinsic interest and are also relevant to 
the answering of the first two questions are:

 3. Is there evidence of spatial correlation such that measurements on 
lakes that are in close proximity tend to be similar?

 4. Is there evidence of time correlation such that the measurements on 
a lake tend to be similar if they are close in time?

One of the important considerations in many environmental studies 
is the need to allow for correlation in time and space. Methods for doing 
this are discussed at some length in Chapters 8 and 9, as well as being 
mentioned briefly in several other chapters. Here it can merely be noted 
that a study of the pH values in Figure 1.2 indicates a tendency for the 
highest values to be in the north, with no striking changes from year to 
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year for individual lakes (which are, of course, plotted at the same loca-
tion for each of the years they were sampled).

Example 1.3: Salmon Survival in the Snake River
The Snake River and the Columbia River in the Pacific Northwest of the 
United States contain eight dams used for the generation of electricity, as 
shown in Figure 1.3. These rivers are also the migration route for hatch-
ery and wild salmon, so there is a clear potential for conflict between dif-
ferent uses of the rivers. The dams were constructed with bypass systems 
for the salmon, but there has been concern nevertheless about salmon 
mortality rates in passing downstream, with some studies suggesting 
losses as high as 85% of hatchery fish in just portions of the river.

To get a better understanding of the causes of salmon mortality, a 
major study was started in 1993 by the National Marine Fisheries Service 
and the University of Washington to investigate the use of modern mark–
recapture methods for estimating survival rates through both the entire 
river system and the component dams. The methodology was based 
on theory developed by Burnham et al. (1987) specifically for mark– 
recapture experiments for estimating the survival of fish through dams, 
but with modifications designed for the application in question (Dauble 
et al. 1993). Fish are fitted with passive integrated transponder (PIT) tags 
that can be uniquely identified at downstream detection stations in the 
bypass systems of dams. Batches of tagged fish are released, and their 
recoveries at detection stations are recorded. Using special probability 
models, it is then possible to use the recovery information to estimate the 
probability of a fish surviving through different stretches of the rivers 
and the probability of fish being detected as they pass through a dam.

In 1993 a pilot program of fish releases was conducted to (a) field-test 
the mark–recapture method for estimating survival, including testing 
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Values of pH for lakes in southern Norway in 1976, 1977, 1978, and 1981, plotted against the 
longitude and latitude of the lakes.
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the assumptions of the probability model; (b) identify operational and 
logistical constraints limiting the collection of data; and (c) determine 
whether survival estimates could be obtained with adequate precision. 
Seven primary batches of 830 to 1442 hatchery yearling chinook salmon 
(Oncorhynchus tshawytscha) were released above the Lower Granite Dam, 
with some secondary releases at Lower Granite Dam and Little Goose 
Dam to measure the mortality associated with particular aspects of the 
dam system. It was concluded that the methods used will provide accu-
rate estimates of survival probabilities through the various sections of 
the Columbia and Snake Rivers (Iwamoto et al. 1994).

The study continued in 1994 with ten primary releases of hatchery 
yearling chinook salmon (O. tshawytscha) in batches of 542 to 1196, one 
release of 512 wild yearling chinook salmon, and nine releases of hatch-
ery steelhead salmon (O. mykiss) in batches of 1001 to 4009, all above the 
first dam. The releases took place over a greater proportion of the juve-
nile migration period than in 1993, and survival probabilities were esti-
mated for a larger stretch of the river. In addition, 58 secondary releases 
in batches of 700 to 4643 were made to estimate the mortality associ-
ated with particular aspects of the dam system. In total, the records for 
nearly 100,000 fish were analyzed, so that this must be one of the largest 
mark–recapture study ever carried out in one year with uniquely tagged 
individuals. From the results obtained, the researchers concluded that 
the assumptions of the models used were generally satisfied and reit-
erated their belief that these models permit the accurate estimation of 
survival probabilities through individual river sections, reservoirs, and 
dams on the Snake and Columbia Rivers (Muir et al. 1995).
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Figure 1.3
Map of the Columbia River Basin showing the location of dams. Primary releases of pit-tagged 
salmon were made in 1993 and 1994 above Lower Granite Dam, with recoveries at Lower Granite 
Dam and Little Goose Dam in 1993, and at these dams plus Lower Monumental Dam in 1994.
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In terms of the three types of studies that were defined previously, 
the mark–recapture experiments on the Snake River in 1993 and 1994 can 
be thought of as part of a baseline study, because the main objective was 
to assess this approach for estimating survival rates of salmon with the 
present dam structures, with a view to assessing the value of possible 
modifications in the future. Estimating survival rates for populations 
living outside captivity is usually a difficult task, and this is certainly 
the case for salmon in the Snake and Columbia Rivers. However, the 
estimates obtained by mark–recapture seem quite accurate, as indicated 
by the results shown in Table 1.2.

This example is unusual because of the use of the special mark– 
recapture methods. It is included here to illustrate the wide variety of 
statistical methods that are applicable for solving environmental prob-
lems, in this case improving the survival of salmon in a river that is used 
for electricity generation. More recent reports related to this example are 
provided by Williams et al. (2005) and Ferguson et al. (2005).

Example 1.4: A Large-Scale Perturbation Experiment
Predicting the responses of whole ecosystems to perturbations is one of 
the greatest challenges to ecologists because this often requires experi-
mental manipulations to be made on a very large scale. In many cases, 
small-scale laboratory or field experiments will simply not necessarily 
demonstrate the responses obtained in the real world. For this reason, 
a number of experiments have been conducted on lakes, catchments, 
streams, and open terrestrial and marine environments. Although these 
experiments involve little or no replication, they do indicate the response 

Table 1.2

Estimates of Survival Probabilities for 10 Releases of Hatchery Yearling 
Chinook Salmon Made above the Lower Granite Dam in 1994

Release Date Number Released Survival Estimate Standard Error a

16 April 1189 0.688 0.027
17 April 1196 0.666 0.028
18 April 1194 0.634 0.027
21 April 1190 0.690 0.040
23 April  776 0.606 0.047
26 April 1032 0.630 0.048
29 April  643 0.623 0.069
1 May 1069 0.676 0.056
4 May  542 0.665 0.094

10 May 1048 0.721 0.101
Mean 0.660 0.011

Note: The survival is through the Lower Granite Dam, Little Goose Dam, and 
Lower Monumental Dam.

a The standard errors shown with individual estimates are calculated from the 
mark-recapture model. The standard error of the mean is the standard 
deviation of the 10 estimates divided by √10.

Source: Muir et al. (1995).
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potential of ecosystems to powerful manipulations that can be expected 
to produce massive unequivocal changes (Carpenter et al. 1995). They 
are targeted studies, as defined previously.

Carpenter et al. (1989) discussed some examples of large-scale 
exper iments involving lakes in the Northern Highlands Lake District 
of Wisconsin. One such experiment, which was part of the Cascading 
Trophic Interaction Project, involved removing 90% of the piscivore bio-
mass from Peter Lake and adding 90% of the planktivore biomass from 
another lake. Changes in Peter Lake over the following two years were 
then compared with changes in Paul Lake, which is in the same area 
but received no manipulation. Studies of this type are often referred to 
as having a before–after-control-impact (BACI) design, as discussed in 
Chapter 6.

One of the variables measured at Peter Lake and Paul Lake was the 
chlorophyll concentration in mg/m3. This was measured for 10 samples 
taken in June to August 1984, for 17 samples taken in June to August 
1985, and for 15 samples taken in June to August 1986. The manipula-
tion of Peter Lake was carried out in May 1985. Figure 1.4 shows the 
results obtained. In situations like this, the hope is that time effects other 
than those due to the manipulation are removed by taking the differ-
ence between measurements for the two lakes. If this is correct, then a 
comparison between the mean difference between the lakes before the 
manipulation with the mean difference after the manipulation gives a 
test for an effect of the manipulation.

Before the manipulation, the sample size is 10 and the mean differ-
ence (treated-control) is −2.020. After the manipulation, the sample size 
is 32 and the mean difference is −0.953. To assess whether the change 
in the mean difference is significant, Carpenter et al. (1989) used a 
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Figure 1.4
The outcome of an intervention experiment in terms of chlorophyll concentrations (mg/m3). 
Samples 1 to 10 were taken in June to August 1984, samples 11 to 27 were taken from June to 
August 1985, and samples 28 to 42 were taken in June to August 1986. The treated lake received 
a food web manipulation in May 1985, between samples number 10 and 11 (as indicated by a 
vertical line).
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randomization test. This involved comparing the observed change with 
the distribution obtained for this statistic by randomly reordering the 
time series of differences, as discussed further in Section 4.6. The out-
come of this test was significant at the 5% level, so they concluded that 
there was evidence of a change.

A number of other statistical tests to compare the mean differences 
before and after the change could have been used just as well as the ran-
domization test. However, most of these tests may be upset to some extent 
by correlation between the successive observations in the time series of 
differences between the manipulated lake and the control lake. Because 
this correlation will generally be positive, it has the tendency to give 
more significant results than should otherwise occur. From the results 
of a simulation study, Carpenter et al. (1989) suggested that this can be 
allowed for by regarding effects that are significant between the 1% and 
5% level as equivocal if correlation seems to be present. From this point 
of view, the effect of the manipulation of Peter Lake on the chlorophyll 
concentration is not clearly established by the randomization test.

This example demonstrates the usual problems with BACI studies. 
In particular:

 1. the assumption that the distribution of the difference between 
Peter Lake and Paul Lake would not have changed with time in 
the absence of any manipulation is not testable, and making this 
assumption amounts to an act of faith; and

 2. the correlation between observations taken with little time between 
them is likely to be only partially removed by taking the difference 
between the results for the manipulated lake and the control lake, 
with the result that the randomization test (or any simple alternative 
test) for a manipulation effect is not completely valid.

There is nothing that can be done about problem 1 because of the 
nature of the situation. More complex time series modeling offers the 
possibility of overcoming problem 2, but there are severe difficulties 
with using these techniques with the relatively small sets of data that 
are often available. These matters are considered further in Chapters 6 
and 8.

Example 1.5: Ring Widths of Andean Alders
Tree-ring width measurements are useful indicators of the effects of pol-
lution, climate, and other environmental variables (Fritts 1976; Norton 
and Ogden 1987). There is, therefore, interest in monitoring the widths at 
particular sites to see whether changes are taking place in the distribu-
tion of widths. In particular, trends in the distribution may be a sensitive 
indicator of environmental changes.

With this in mind, Dr. Alfredo Grau collected data on ring widths for 
27 Andean alders (Alnus acuminanta) on the Taficillo Ridge at an altitude 
of about 1700 m in Tucuman, Argentina, every year from 1970 to 1989. 
The measurements that he obtained are shown in Figure 1.5. It is appar-
ent here that, over the period of the study, the mean width decreased, as 
did the amount of variation between individual trees. Possible reasons 
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for a change of the type observed here are climate changes and pollution. 
The point is that regularly monitored environmental indicators such as 
tree-ring widths can be used to signal changes in conditions. The causes 
of these changes can then be investigated in targeted studies.

Example 1.6: Monitoring Antarctic Marine Life
An example of monitoring on a very large scale is provided by work 
carried out by the Commission for the Conservation of Antarctic Marine 
Living Resources (CCAMLR), an intergovernmental organization estab-
lished to develop measures for the conservation of marine life of the 
Southern Ocean surrounding Antarctica. Currently 25 countries are 
members of the commission, while nine other states have acceded to the 
convention set up as part of CCAMLR to govern the use of the resources 
in question.

One of the working groups of CCAMLR is responsible for ecosys-
tem monitoring and management. Monitoring in this context involves 
the collection of data on indicators of the biological health of Antarctica. 
These indicators are annual figures that are largely determined by what 
is available as a result of scientific research carried out by member states. 
They include such measures as the average weight of penguins when 
they arrive at various breeding colonies, the average time that penguins 
spend on the first shift incubating eggs, the catch of krill by fishing ves-
sels within 100 km of land-based penguin breeding sites, average forag-
ing durations of fur seal cows, and the percentage cover of sea ice. Major 
challenges in this area include ensuring that research groups of different 
nationalities collect data using the same standard methods and, in the 
longer term, being able to understand the relationships between differ-
ent indicators and combining them better to measure the state of the 
Antarctic and detect trends and abrupt changes.
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Figure 1.5
Tree-ring widths for Andean alders on Taficillo Ridge, near Tucuman, Argentina, 1970–1989. 
The horizontal line is the overall mean for all ring widths in all years.
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Example 1.7: Evaluating the Attainment of Cleanup Standards
Many environmental studies are concerned with the specific problem of 
evaluating the effectiveness of the reclamation of a site that has suffered 
from some environmental damage. For example, a government agency 
might require a mining company to work on restoring a site until the bio-
mass of vegetation per unit area is equivalent to what is found on undam-
aged reference areas. This requires a targeted study as defined previously.

There are two complications with using standard statistical meth-
ods in this situation. The first is that the damaged and reference sites 
are not generally selected randomly from populations of potential sites, 
and it is unreasonable to suppose that they would have had exactly the 
same mean for the study variable even in the absence of any impact on 
the damaged site. Therefore, if large samples are taken from each site, 
there will be a high probability of detecting a difference, irrespective of 
the extent to which the damaged site has been reclaimed. The second 
complication is that, when a test for a difference between the two sites 
does not give a significant result, this does not necessarily mean that a 
difference does not exist. An alternative explanation is that the sample 
sizes were not large enough to detect a difference that does exist.

These complications with statistical tests led to a recommendation by 
the U.S. Environmental Protection Agency (US EPA 1989a) that the null 
hypothesis for statistical tests should depend on the status of a site, in 
the following way:

 1. If a site has not been declared to be contaminated, then the null 
hypothesis should be that it is clean, i.e., there is no difference from 
the control site. The alternative hypothesis is that the site is contami-
nated. A nonsignificant test result leads to the conclusion that there 
is no real evidence that the site is contaminated.

 2. If a site has been declared to be contaminated, then the null hypoth-
esis is that this is true, i.e., there is a difference (in an unacceptable 
direction) from the control site. The alternative hypothesis is that 
the site is clean. A nonsignificant test result leads to the conclusion 
that there is no real evidence that the site has been cleaned up.

The point here is that, once a site has been declared to have a certain status, 
pertinent evidence should be required to justify changing this status.

If the point of view expressed by items 1 and 2 is not adopted, so 
that the null hypothesis is always that the damaged site is not different 
from the control, then the agency charged with ensuring that the site is 
cleaned up is faced with setting up a maze of regulations to ensure that 
study designs have large enough sample sizes to detect differences of 
practical importance between the damaged and control sites. If this is 
not done, then it is apparent that any organization wanting to have the 
status of a site changed from contaminated to clean should carry out 
the smallest study possible, with low power to detect even a large differ-
ence from the control site. The probability of a nonsignificant test result 
(the site is clean) will then be as high as possible.

As an example of the type of data that may be involved in the com-
parison of a control site and a possibly contaminated one, consider 
some measurements of 1,2,3,4-tetrachlorobenzene (TcCB) in parts per 
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thousand million given by Gilbert and Simpson (1992, p. 6.22). There are 
47 measurements made in different parts of the control site and 77 mea-
surements made in different parts of the possibly contaminated site, as 
shown in Table 1.3 and Figure 1.6. Clearly the TcCB levels are much more 
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Figure 1.6
Comparison of TcCB measurements in parts per thousand million at a contaminated site (2) 
and a reference site (1).

Table 1.3

Measurements of 1,2,3,4-Tetrachlorobenzene from Samples Taken at a Reference 
Site and a Possibly Contaminated Site

Reference Site (n = 47)

 0.60  0.50 0.39 0.84 0.46 0.39 0.62   0.67 0.69 0.81 0.38 0.79
 0.43  0.57 0.74 0.27 0.51 0.35 0.28   0.45 0.42 1.14 0.23 0.72
 0.63  0.50 0.29 0.82 0.54 1.13 0.56   1.33 0.56 1.11 0.57 0.89
 0.28  1.20 0.76 0.26 0.34 0.52 0.42   0.22 0.33 1.14 0.48

Mean  0.60
SD  0.28

Possibly Contaminated Site (n = 75)

 1.33  0.09 0.12 0.28 0.14 0.16 0.17   0.47 0.17 0.18 0.19 0.09
18.40  0.20 0.21 0.12 0.22 0.22 0.22 168.6 0.24 0.25 0.25 0.20
 0.48  0.26 5.56 0.21 0.29 0.31 0.33   3.29 0.33 0.34 0.37 0.25
 2.59  0.39 0.40 0.28 0.43 6.61 0.48   0.17 0.49 0.51 0.51 0.38
 0.92  0.60 0.61 0.43 0.75 0.82 0.85   0.23 0.94 1.05 1.10 0.54
 1.53  1.19 1.22 0.62 1.39 1.39 1.52   0.33 1.73 2.35 2.46 1.10
51.97  2.61 3.06

Mean  4.02
SD 20.27
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variable at the possibly contaminated site. Presumably, this might have 
occurred from the TcCB levels being lowered in parts of the site by clean-
ing, while very high levels remained in other parts of the site.

Methods for comparing samples such as these in terms of means 
and variation are discussed further in Chapter 7. For the data in this 
example, the extremely skewed distribution at the contaminated site, 
with several very extreme values, should lead to some caution in mak-
ing comparisons based on the assumption that distributions are normal 
within sites.

Example 1.8: Delta Smelt in the Sacramento–San Joaquin Delta
The final example considered in this chapter concerns the decline in the 
abundance of delta smelt (Hypomesus transpacificus) in the Sacramento–
San Joaquin Delta in California, that apparently started in about 2000. The 
delta smelt is classified as a threatened species in the delta, so that there 
has been particular concern in the decline of this fish, although there is 
also evidence of the decline of other pelagic fish numbers at the same 
time.

A number of surveys of the abundance of delta smelt take place 
each year. One of these surveys is called the fall midwater trawl, which 
samples adults over the four months September to December. From the 
survey results, an index of abundance is constructed by weighting the 
densities of fish observed in different parts of the delta by values that 
reflect the different amounts of habitats expected in those different 
regions. It is then assumed that the actual abundance of adult delta smelt 
in any year is proportional to the index value, at least approximately. 
Figure 1.7 shows the values of the fall midwater trawl index for the years 
since sampling began. The decline in numbers since 1999 is very clear.

There is much speculation about the cause of the decline in delta smelt 
numbers. Some claim that it is the result of the water being pumped out 
of the delta for use in towns and for agriculture, while others suggest 
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Figure 1.7
The fall midwater trawl abundance index for delta smelt for the years since sampling began in 
1967, with no sampling in 1974 and 1979.
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that, although pumping may cause some reduction in delta smelt num-
bers, the effect is not enough to account for the very large decline that has 
been observed. Unfortunately, determining the true cause of the decline 
is not a simple matter. Regression methods, as discussed in Chapter 3, 
can be used to find relationships between different variables, but this 
is not the same as proving causal relationships. To date, a number of 
explanations for the decline have been proposed, but the true cause is 
still unknown (Bennett 2005).

1.3  The Importance of Statistics in the Examples

The examples that are presented above demonstrate clearly the importance of 
statistical methods in environmental studies. With the Exxon Valdez oil spill, 
problems with the application of the study designs meant that rather compli-
cated analyses were required to make inferences. With the Norwegian study 
on acid rain, there is a need to consider the impact of correlation in time and 
space on the water-quality variables that were measured. The estimation of 
the yearly survival rates of salmon in the Snake River requires the use of 
special models for analyzing mark-recapture experiments combined with 
the use of the theory of sampling for finite populations. Monitoring studies 
such as the one involving the measurement of tree-ring width in Argentina 
call for the use of methods for the detection of trends and abrupt changes in 
distributions. Monitoring of whole ecosystems as carried out by the Commis-
sion for the Conservation of Antarctic Marine Living Resources requires the 
collection and analysis of vast amounts of data, with many very complicated 
statistical problems. The comparison of samples from contaminated and ref-
erence sites may require the use of tests that are valid with extremely non-
normal distributions. Attempts to determine the cause of the recent decline 
in delta smelt and other fish numbers in the Sacramento–San Joaquin Delta 
has involved many standard and not-so-standard analyses to try to deter-
mine the relationship between delta smelt numbers and other variables. All 
of these matters are considered in more detail in the pages that follow.

1.4  Chapter Summary

Statistics is important in environmental science because much of •	
what is known about the environment comes from numerical data.
Three broad types of study of interest to resource managers are base-•	
line studies (to document the present state of the environment), targeted 
studies (to assess the impact of particular events), and regular moni-
toring (to detect trends and other changes in important variables).
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All types of study involve sampling over time and space, and it is •	
important that sampling designs be cost effective and, if necessary, 
that they can be justified in a court of law.
Eight examples are discussed to demonstrate the importance of sta-•	
tistical methods to environmental science. These examples involve 
the shoreline impact of the Exxon Valdez oil spill in Prince William 
Sound, Alaska, in March 1989; a Norwegian study of the possible 
impact of acid precipitation on small lakes; estimation of the sur-
vival rate of salmon in the Snake and Columbia Rivers in the Pacific 
Northwest of the United States; a large-scale perturbation experiment 
carried out in Wisconsin in the United States, involving changing 
the piscivore and planktivore composition of a lake and comparing 
changes in the chlorophyll composition with changes in a control 
lake; monitoring of the annual ring widths of Andean alders near 
Tucuman in Argentina; monitoring marine life in the Antarctic, 
comparing a possibly contaminated site with a control site in terms 
of measurements of the amounts of a pollutant in samples taken 
from the two sites; and the determination of the cause or causes of a 
reduction in the numbers of a species of fish (Hypomesus transpacifi-
cus, delta smelt) in the Sacramento–San Joaquin Delta.

Exercises

Exercise 1.1
Despite the large amounts of money spent on them, the studies on the 
effects of the Exxon Valdez oil spill on the coastal habitat of Alaska all 
failed to produce simple, easily understood estimates of these effects. 
What happened was that the oil spill took everyone by surprise, and none 
of the groups involved (state and federal agencies and Exxon) apparently 
was able to quickly produce a good sampling design and start collecting 
data. Instead, it seems that there were many committee meetings, but 
very little actually done while the short Alaskan summer was disap-
pearing. With the benefit of hindsight, what do you think would have 
been a good approach to use for estimating the effects of the oil spill? 
This question is not asking for technical details—just a broad suggestion 
for how a study might have been designed.

Exercise 1.2
The study designs for the estimation of the survival rate of fish through 
the dams on the Snake River in Washington State have been criticized 
because the releases of batches of fish were made over short periods of 
time during only part of the migration season. The mark–recapture esti-
mates may therefore not reflect the average survival rate for all fish over 
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the whole season if this rate varies during the season. (Issues like this 
seem to come up with all studies in controversial areas.) Assuming that 
you know the likely length of the migration season, and roughly how 
many fish are likely to pass through the dam each week, how would you 
suggest that the average survival rate be estimated?
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2
Environmental Sampling

2.1  Introduction

All of the examples considered in the previous chapter involved sampling 
of some sort, showing that the design of sampling schemes is an important 
topic in environmental statistics. This chapter is therefore devoted to con-
sidering this topic in some detail. The estimation of mean values, totals, and 
proportions from the data collected by sampling is covered at the same time, 
and this means that the chapter includes all methods that are needed for 
many environmental studies.

The first task in designing a sampling scheme is to define the population 
of interest as well as the sample units that make up this population. Here 
the population is defined as a collection of items that are of interest, and 
the sample units are these items. In this chapter it is assumed that each of the 
items is characterized by the measurements that it has for certain variables 
(e.g., weight or length), or which of several categories it falls into (e.g., the 
color that it possesses, or the type of habitat where it is found). When this is 
the case, statistical theory can assist in the process of drawing conclusions 
about the population using information from a sample of some of the items.

Sometimes defining the population of interest and the sample units is 
straightforward because the extent of the population is obvious, and a natu-
ral sample unit exists. At other times, some more-or-less arbitrary defini-
tions will be required. An example of a straightforward situation is where 
the population is all the farms in a region of a country and the variable of 
interest is the amount of water used for irrigation on a farm. This contrasts 
with the situation where there is interest in the impact of an oil spill on the 
flora and fauna on beaches. In that case, the extent of the area that might be 
affected may not be clear, and it may not be obvious which length of beach 
to use as a sample unit. The investigator must then subjectively choose the 
potentially affected area and impose a structure in terms of sample units. 
Furthermore, there will not be one correct size for the sample unit. A range 
of lengths of beach may serve equally well, taking into account the method 
that is used to take measurements. The choice of what to measure will also, 
of course, introduce some further subjective decisions.
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2.2  Simple Random Sampling

A simple random sample is one that is obtained by a process that gives each 
sample unit the same probability of being chosen. Usually it will be desir-
able to choose such a sample without replacement so that sample units are 
not used more than once. This gives slightly more accurate results than sam-
pling with replacement, whereby individual units can appear two or more 
times in the sample. However, for samples that are small in comparison with 
the population size, the difference in the accuracy obtained is not great.

Obtaining a simple random sample is easiest when a sampling frame 
is available, where this is just a list of all the units in the population from 
which the sample is to be drawn. If the sampling frame contains units num-
bered from 1 to N, then a simple random sample of size n is obtained with-
out replacement by drawing n numbers one by one in such a way that each 
choice is equally likely to be any of the numbers that have not already been 
used. For sampling with replacement, each of the numbers 1 to N is given the 
same chance of appearing at each draw.

The process of selecting the units to use in a sample is sometimes facili-
tated by using a table of random numbers such as the one shown in Table 2.1. 
As an example of how such a table can be used, suppose that a study area is 
divided into 116 quadrats as shown in Figure 2.1, and it is desirable to select 
a simple random sample of ten of these quadrats without replacement. To do 
this, first start at an arbitrary place in the table such as the beginning of row 
five. The first three digits in each block of four digits can then be considered, 
to give the series 698, 419, 008, 127, 106, 605, 843, 378, 462, 953, 745, and so on. 
The first ten different numbers between 1 and 116 then give a simple random 
sample of quadrats: 8, 106, and so on. For selecting large samples, essentially 
the same process can be carried out on a computer using pseudo-random 
numbers in a spreadsheet, for example.

2.3  Estimation of Population Means

Assume that a simple random sample of size n is selected without replace-
ment from a population of N units, and that the variable of interest has val-
ues y1, y2, …, yn, for the sampled units. Then the sample mean is

 y y ni
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n

=
=

∑( )/
1

 (2.1)

the sample variance is
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Table 2.1

Random Number Table

1252 9045 1286 2235 6289 5542 2965 1219 7088 1533
9135 3824 8483 1617 0990 4547 9454 9266 9223 9662
8377 5968 0088 9813 4019 1597 2294 8177 5720 8526
3789 9509 1107 7492 7178 7485 6866 0353 8133 7247
6988 4191 0083 1273 1061 6058 8433 3782 4627 9535
7458 7394 0804 6410 7771 9514 1689 2248 7654 1608
2136 8184 0033 1742 9116 6480 4081 6121 9399 2601
5693 3627 8980 2877 6078 0993 6817 7790 4589 8833
1813 0018 9270 2802 2245 8313 7113 2074 1510 1802
9787 7735 0752 3671 2519 1063 5471 7114 3477 7203
7379 6355 4738 8695 6987 9312 5261 3915 4060 5020
8763 8141 4588 0345 6854 4575 5940 1427 8757 5221
6605 3563 6829 2171 8121 5723 3901 0456 8691 9649
8154 6617 3825 2320 0476 4355 7690 9987 2757 3871
5855 0345 0029 6323 0493 8556 6810 7981 8007 3433
7172 6273 6400 7392 4880 2917 9748 6690 0147 6744
7780 3051 6052 6389 0957 7744 5265 7623 5189 0917
7289 8817 9973 7058 2621 7637 1791 1904 8467 0318
9133 5493 2280 9064 6427 2426 9685 3109 8222 0136
1035 4738 9748 6313 1589 0097 7292 6264 7563 2146
5482 8213 2366 1834 9971 2467 5843 1570 5818 4827
7947 2968 3840 9873 0330 1909 4348 4157 6470 5028
6426 2413 9559 2008 7485 0321 5106 0967 6471 5151
8382 7446 9142 2006 4643 8984 6677 8596 7477 3682
1948 6713 2204 9931 8202 9055 0820 6296 6570 0438
3250 5110 7397 3638 1794 2059 2771 4461 2018 4981
8445 1259 5679 4109 4010 2484 1495 3704 8936 1270
1933 6213 9774 1158 1659 6400 8525 6531 4712 6738
7368 9021 1251 3162 0646 2380 1446 2573 5018 1051
9772 1664 6687 4493 1932 6164 5882 0672 8492 1277
0868 9041 0735 1319 9096 6458 1659 1224 2968 9657
3658 6429 1186 0768 0484 1996 0338 4044 8415 1906
3117 6575 1925 6232 3495 4706 3533 7630 5570 9400
7572 1054 6902 2256 0003 2189 1569 1272 2592 0912
3526 1092 4235 0755 3173 1446 6311 3243 7053 7094
2597 8181 8560 6492 1451 1325 7247 1535 8773 0009
4666 0581 2433 9756 6818 1746 1273 1105 1919 0986
5905 5680 2503 0569 1642 3789 8234 4337 2705 6416
3890 0286 9414 9485 6629 4167 2517 9717 2582 8480
3891 5768 9601 3765 9627 6064 7097 2654 2456 3028

Note: Each digit was chosen such that 0, 1, …, 9 were equally likely to occur. 
The grouping of four digits is arbitrary so that, for example, to select 
numbers from 0 to 99999, the digits can be considered five at a time.
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and the sample standard deviation is s, the square root of the variance. Equa-
tions (2.1) and (2.2) are the same as equations (A1.1) and (A1.2), respectively, 
in Appendix 1, except that the variable being considered is now labeled y 
instead of x. Another quantity that is sometimes of interest is the sample 
coefficient of variation

 CV(y) = s/y (2.3)

These values that are calculated from samples are often referred to as sam-
ple statistics. The corresponding population values are the population mean 
μ, the population variance σ2, the population standard deviation σ, and the 
population coefficient of variation σ/μ. These are often referred to as popula-
tion parameters, and they are obtained by applying equations (2.1) to (2.3) to 
the full set of N units in the population. For example, μ is the mean of the 
observations on all of the N units.

The sample mean is an estimator of the population mean μ. The differ-
ence y − μ is then the sampling error in the mean. This error will vary from 
sample to sample if the sampling process is repeated, and it can be shown 

1 2 3 4

5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40 41 42

43 44 45 46 47 48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63 64 65 66 67

68 69 70 71 72 73 74 75 76 77

78 79 80 81 82 83 84 85 86
87 88 89 90 91 92 93 94

95 96 97 98 99 100 101

102 103 104 105 106 107

108 109 110 111 112

113 114 115 116

Figure 2.1
An irregularly shaped study area divided into 116 equal-sized square quadrats to be used as 
sample units.



Environmental Sampling 27

theoretically that if this is done a large number of times, then the error will 
average out to zero. For this reason, the sample mean is said to be an unbi-
ased estimator of the population mean.

It can also be shown theoretically that the distribution of y that is obtained 
by repeating the process of simple random sampling without replacement 
has the variance

 Var(y) = (σ²/n)[1 − (n/N)] (2.4)

The factor [1 − (n/N)] is called the finite-population correction because it 
makes an allowance for the size of the sample relative to the size of the popu-
lation. The square root of Var(y) is commonly called the standard error of the 
sample mean. It will be denoted here by SE(y) = √Var(y).

The population variance σ2 will not usually be known, so it must be esti-
mated by the sample variance s2 for use in equation (2.4). The resulting 
estimate of the variance of the sample mean is then

 Vâr(y) = (s²/n)[1 − (n/N)] (2.5)

The square root of this quantity is the estimated standard error of the mean

 SÊ = √Vâr(y) (2.6)

The caps on Vâr(y) and SÊ(y) are used here to indicate estimated values, 
which is a common convention in statistics.

The terms standard error of the mean and standard deviation are often con-
fused. What must be remembered is that the standard error of the mean is 
just the standard deviation of the mean rather than the standard deviation 
of individual observations. More generally, the term standard error is used to 
describe the standard deviation of any sample statistic that is used to esti-
mate a population parameter.

The accuracy of a sample mean for estimating the population mean is often 
represented by a 100(1 − α)% confidence interval for the population mean of 
the form

 y ± zα/2 SÊ(y) (2.7)

where zα/2 refers to the value that is exceeded with probability α/2 for the 
standard normal distribution, which can be determined using Table A2.1 
if necessary. This is an approximate confidence interval for samples from 
any distribution, based on the result that sample means tend to be normally 
distributed even when the distribution being sampled is not. The interval is 
valid providing that the sample size is larger than about 25 and the distri-
bution being sampled is not very extreme in the sense of having many tied 
values or a small proportion of very large or very small values.
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Commonly used confidence intervals are:

y ± 1.64 SÊ(y) (90% confidence)
y ± 1.96 SÊ(y) (95% confidence)
y ± 2.58 SÊ(y) (99% confidence)

Often, a 95% confidence interval is taken as y ± 2 SÊ(y) on the grounds of sim-
plicity, and because it makes some allowance for the fact that the standard 
error is only an estimated value.

The concept of a confidence interval is discussed in Section A1.5 of Appen-
dix 1. A 90% confidence interval is, for example, an interval within which the 
population mean will lie with probability 0.9. Put another way, if many such 
confidence intervals are calculated, then about 90% of these intervals will 
actually contain the population mean.

For samples that are smaller than 25, it is better to replace the confidence 
interval given in equation (2.7) with

 y ± tα/2,n−1 SÊ(y) (2.8)

where tα/2,n−1 is the value that is exceeded with probability α/2 for the t-dis-
tribution with n−1 degrees of freedom. This is the interval that is justified in 
Section A1.5 of Appendix 1 for samples from a normal distribution, except 
that the standard error used in that case was just s/√n, because a finite popu-
lation correction was not involved. The use of the interval given in equation 
(2.8) requires the assumption that the variable being measured is approxi-
mately normally distributed in the population being sampled. It may not be 
satisfactory for samples from very nonsymmetric distributions.

Example 2.1: Soil Percentage in the Corozal District of Belize
As part of a study of prehistoric land use in the Corozal District of Belize 
in Central America, the area was divided into 151 plots of land with sides 
2.5 × 2.5 km (Green 1973). A simple random sample of 40 of these plots 
was selected without replacement, and these provided the percentages 
of soils with constant lime enrichment that are shown in Table 2.2. This 

Table 2.2

Percentage of Soils with Constant Lime Enrichment 
from the Corozal District of Belize

100 10 100 10 20 40 75 0 60 0
40 40 5 100 60 10 60 50 100 60
20 40 20 30 20 30 90 10 90 40
50 70 30 30 15 50 30 30 0 60

Note: Data are for 40 plots of land (2.5 × 2.5 km) chosen 
by simple random sampling without replacement 
from 151 plots.
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example considers the use of these data to estimate the average value of 
the measured variable (Y) for the entire area.

The mean percentage for the sampled plots is 42.38, and the standard 
deviation is 30.40. The estimated standard error of the mean is then 
found from equation (2.6) to be

 SÊ(y) = √[(30.40²/40)(1 − 40/151)] = 4.12

Approximate 95% confidence limits for the population mean percentage 
are then found from equation (2.7) to be 42.38 ± 1.96 × 4.12, or 34.3 to 50.5.

Green (1973) provides the data for all 151 plots in his paper. The 
population mean percentage of soils with constant lime enrichment is 
therefore known to be 47.7%. This is within the confidence limits, so the 
estimation procedure has been effective.

Note that the plot size used to define sample units in this example 
could have been different. A larger size would have led to a popula-
tion with fewer sample units, while a smaller size would have led to 
more sample units. The population mean, which is just the percentage 
of soils with constant lime enrichment in the entire study area, would 
be unchanged.

2.4  Estimation of Population Totals

In many situations, there is more interest in the total of all values in a pop-
ulation, rather than the mean per sample unit. For example, the total area 
damaged by an oil spill is likely to be of more concern than the average 
area damaged on individual sample units. It turns out that the estimation of 
a population total is straightforward, provided that the population size N is 
known and an estimate of the population mean is available. It is obvious, for 
example, that if a population consists of 500 plots of land, with an estimated 
mean amount of oil-spill damage of 15 m2, then it is estimated that the total 
amount of damage for the whole population is 500 × 15 = 7500 m2.

The general equation relating the population total Ty to the population 
mean μ for a variable Y is Ty = Nμ, where N is the population size. The obvi-
ous estimator of the total based on a sample mean y is therefore

 ty = Ny (2.9)

The sampling variance of this estimator is

 Var(ty) = N² Var(y) (2.10)

and its standard error (i.e., standard deviation) is

 SE(ty) = N SE(y) (2.11)
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Estimates of the variance and standard error are

 Vâr(ty) = N² Vâr(y) (2.12)

and

 SÊ(ty) = N SÊ(y) (2.13)

In addition, an approximate 100(1 − α)% confidence interval for the true 
population total can also be calculated in essentially the same manner as 
described in the previous section for finding a confidence interval for the 
population mean. Thus the limits are

 ty ± zα/2 SÊ(ty) (2.14)

where zα/2 is the value that is exceeded with probability α/2 for the standard 
normal distribution.

2.5  Estimation of Proportions

In discussing the estimation of population proportions, it is important to dis-
tinguish between proportions measured on sample units and proportions 
of sample units. Proportions measured on sample units, such as the pro-
portions of the units covered by a certain type of vegetation, can be treated 
like any other variables measured on the units. In particular, the theory for 
the estimation of the mean of a simple random sample that is covered in 
Section 2.3 applies for the estimation of the mean proportion. Indeed, Exam-
ple 2.1 was of exactly this type, except that the measurements on the sample 
units were percentages rather than proportions (i.e., proportions multiplied 
by 100). Proportions of sample units are different because the interest is in 
which units are of a particular type. An example of this situation is where 
the sample units are blocks of land, and it is required to estimate the propor-
tion of all the blocks that show evidence of damage from pollution. In this 
section, only the estimation of proportions of sample units is considered.

Suppose that a simple random sample of size n is selected without replace-
ment from a population of size N and contains r units with some characteris-
tic of interest. Then the sample proportion is p̂ = r/n, and it can be shown that 
this has a sampling variance of

 Var(p̂) = [p(1 − p)/n][1 − (n/N)] (2.15)

and a standard error of SE(p̂) = √Var(p̂). These results are the same as those 
obtained from assuming that r has a binomial distribution (see Appendix 
Section A1.2), but with a finite population correction.
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Estimated values for the variance and standard error can be obtained by 
replacing the population proportion in equation (2.15) with the sample pro-
portion p̂. Thus the estimated variance is

 Vâr(p̂) = [p̂(1 − p̂)/n] [1 − (n/N)] (2.16)

and the estimated standard error is SÊ(p̂) = √Vâr(p̂). This creates little error 
in estimating the variance and standard error unless the sample size is quite 
small (say, less than 20).

Using the estimated standard error, an approximate 100(1 − α)% confidence 
interval for the true proportion is

 p̂ ± zα/2 SÊ(p̂) (2.17)

where, as before, zα/2 is the value from the standard normal distribution that 
is exceeded with probability α/2.

The confidence limits produced by equation (2.17) are based on the assump-
tion that the sample proportion is approximately normally distributed, which 
it will be if np(1 − p) ≥ 5 and the sample size is fairly small in comparison 
with the population size. If this is not the case, then alternative methods for 
calculating confidence limits should be used (Cochran 1977, sec. 3.6).

Example 2.2: PCB Concentrations in Surface Soil Samples
As an example of the estimation of a population proportion, consider 
some data provided by Gore and Patil (1994) on polychlorinated biphe-
nyl (PCB) concentrations in parts per million (ppm) at the Armagh com-
pressor station in West Wheatfield Township, along the gas pipeline of 
the Texas Eastern Pipeline Gas Company, in Pennsylvania. The cleanup 
criterion for PCB in this situation for a surface soil sample is an average 
PCB concentration of 5 ppm in soils between the surface and six inches 
in depth.

In order to study the PCB concentrations at the site, grids were set up 
surrounding four potential sources of the chemical, with 25 ft separating 
the grid lines for the rows and columns. Samples were then taken at 358 
of the points where the row and column grid lines intersected. Gore and 
Patil give the PCB concentrations at all of these points. However, here the 
estimation of the proportion of the N = 358 points at which the PCB con-
centration exceeds 5 ppm will be considered, based on a random sample 
of n = 50 of the points, selected without replacement.

The PCB values for the sample of 50 points are shown in Table 2.3. 
Of these, 31 exceed 5 ppm, so that the estimate of the proportion of 
exceedances for all 358 points is p̂ = 31/50 = 0.620. The estimated vari-
ance associated with this proportion is then found from equation (2.16) 
to be

 Vâr(p̂) = (0.62 × 0.38/50) (1 − 50/358) = 0.0041

Thus SÊ(p̂) = √(0.0041) = 0.064, and the approximate confidence inter-
val for the proportion for all points, calculated from equation (2.17), is 
0.620 ± 1.96 × 0.064, which is 0.495 to 0.745.
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2.6  Sampling and Nonsampling Errors

Four sources of error may affect the estimation of population parameters 
from samples. These are:

 1. Sampling errors due to the variability between sample units and the 
random selection of units included in a sample

 2. Measurement errors due to the lack of uniformity in the manner in 
which a study is conducted and inconsistencies in the measurement 
methods used

 3. Missing data due to the failure to measure some units in the sample

 4. Errors of various types introduced in coding, tabulating, typing, 
and editing of data.

The first of these errors is allowed for in the usual equations for variances. 
Also, random measurement errors from a distribution with a mean of zero 
will just tend to inflate sample variances, and will therefore be accounted for 
along with the sampling errors. Therefore, the main concerns with sampling 
should be potential bias due to measurement errors that tend to be in one 
direction, missing data values that tend to be different from the known val-
ues, and errors introduced while processing data.

The last three types of error are sometimes called nonsampling errors. It 
is very important to ensure that these errors are minimal, and to appreci-
ate that, unless care is taken, they may swamp the sampling errors that are 
reflected in variance calculations. This has been well recognized by environ-
mental scientists in the last 20 years or so, with much attention given to the 
development of appropriate procedures for quality assurance and quality 
control (QA/QC). These matters are discussed by Keith (1991, 1996) and Lia-
bastre et al. (1992), and are also a key element in the U.S. EPA’s Data Quality 
Objectives (DQO) process that is discussed in Section 2.15.

Table 2.3

PCB Concentrations (ppm at 50 sample points) from the Armagh 
Compressor Station

5.1 49.0 36.0 34.0 5.4 38.0 1000.0 2.1 9.4 7.5
1.3 140.0 1.3 75.0 0.0 72.0 0.0 0.0 14.0 1.6
7.5 18.0 11.0 0.0 20.0 1.1 7.7 7.5 1.1 4.2

20.0 44.0 0.0 35.0 2.5 17.0 46.0 2.2 15.0 0.0
22.0 3.0 38.0 1880.0 7.4 26.0 2.9 5.0 33.0 2.8
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2.7  Stratified Random Sampling

A valid criticism of simple random sampling is that it leaves too much to 
chance, so that the number of sampled units in different parts of the popu-
lation may not match the distribution in the population. One way to over-
come this problem while still keeping the advantages of random sampling 
is to use stratified random sampling. This involves dividing the units in the 
population into nonoverlapping strata, and selecting an independent simple 
random sample from each of these strata.

Often there is little to lose by using this more complicated type of sampling, 
but there are some potential gains. First, if the individuals within strata are 
more similar than individuals in general, then the estimate of the overall 
population mean will have a smaller standard error than can be obtained 
with the same simple random sample size. Second, there may be value in 
having separate estimates of population parameters for the different strata. 
Third, stratification makes it possible to sample different parts of a popula-
tion in different ways, which may make some cost savings possible.

However, stratification can also cause problems that are best avoided if 
possible. This was the case with two of the Exxon Valdez studies that were dis-
cussed in Example 1.1. Exxon’s Shoreline Ecology Program and the Oil Spill 
Trustees’ Coastal Habitat Injury Assessment were both upset to some extent 
by an initial misclassification of units to strata, which meant that the final 
samples within the strata were not simple random samples. The outcome 
was that the results of these studies either require a rather complicated anal-
ysis or are susceptible to being discredited. The first problem that can occur 
is, therefore, that the stratification used may end up being inappropriate.

Another potential problem with using stratification is that, after the data 
are collected using one form of stratification, there is interest in analyzing 
the results using a different stratification that was not foreseen in advance, or 
using an analysis that is different from the original one proposed. Because of 
the many different groups interested in environmental matters from differ-
ent points of view, this is always a possibility, and it led Overton and Steh-
man (1995) to argue strongly in favor of using simple sampling designs with 
limited or no stratification.

If stratification is to be employed, then generally this should be based on 
obvious considerations such as spatial location, areas within which the pop-
ulation is expected to be uniform, and the size of sampling units. For exam-
ple, in sampling vegetation over a large area, it is natural to take a map and 
partition the area into a few apparently homogeneous strata based on factors 
such as altitude and vegetation type. Usually the choice of how to stratify is 
just a question of common sense.

Assume that K strata have been chosen, with the ith of these having size Ni 
and the total population size being ∑Ni = N. Then if a random sample with 
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size ni is taken from the ith stratum, the sample mean yi will be an unbiased 
estimate of the true stratum mean μi, with estimated variance

 Vâr(yi) = (si
2/ni)[1 − (ni /Ni)] (2.18)

where si is the sample standard deviation within the stratum. These results 
follow by simply applying the results discussed earlier for simple random 
sampling to the ith stratum only.

In terms of the true strata means, the overall population mean is the 
weighted average

 µ =
=

∑N u Ni i

i

K

1

 (2.19)

and the corresponding sample estimate is
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The estimated standard error of ys is SÊ(ys), the square root of the esti-
mated variance, and an approximate 100(1 − α)% confidence interval for the 
population mean is given by

 ys ± zα/2 SÊ(ys) (2.22)

where zα/2 is the value exceeded with probability α/2 for the standard nor-
mal distribution.

If the population total is of interest, then this can be estimated by

 ts = N ys (2.23)

with estimated standard error

 SÊ(ts) = N SÊ(ys) (2.24)
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Again, an approximate 100(1 − α)% confidence interval takes the form

 ts ± zα/2 SÊ(ts) (2.25)

Equations are available for estimating a population proportion from a 
stratified sample (Scheaffer et al. 1990, sec. 5.6). However, if an indicator vari-
able Y is defined that takes the value 1 if a sample unit has the property of 
interest and 0 otherwise, then the mean of Y in the population is equal to 
the proportion of the sample units in the population that have the property. 
Therefore, the population proportion of units with the property can be esti-
mated by applying equation (2.20) with the indicator variable, together with 
the equations for the variance and approximate confidence limits.

When a stratified sample of points in a spatial region is carried out, it will 
often be the case that there are an unlimited number of sample points that 
can be taken from any of the strata, so that Ni and N are infinite. Equation 
(2.20) can then be modified to

 y w ys i i

i

K

=
=

∑
1

 (2.26)

where wi, the proportion of the total study area within the ith stratum, 
replaces Ni/N. Similarly, equation (2.21) changes to

 Var /ˆ ( )y w s ns i i i
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while equations (2.22) to (2.25) remain unchanged.

Example 2.3: Bracken Density in Otago
As part of a study of the distribution of scrub weeds in New Zealand, 
data were obtained on the density of bracken on 1-hectare (ha, 100 × 
100 m) pixels along a transect 90-km long and 3-km wide, running from 
Balclutha to Katiki Point on the South Island of New Zealand, as shown 
in Figure 2.2 (Gonzalez and Benwell 1994). This example involves a com-
parison between estimating the density (the percentage of the land in 
the transect covered with bracken) using (a) a simple random sample of 
400 pixels, and (b) a stratified random sample with five strata and the 
same total sample size.

There are altogether 27,000 pixels in the entire transect, most of which 
contain no bracken. The simple random sample of 400 pixels was found 
to contain 377 with no bracken, 14 with 5% bracken, 6 with 15% bracken, 
and 3 with 30% bracken. The sample mean is therefore y = 0.625%, the 
sample standard deviation is s = 3.261, and the estimated standard error 
of the mean is

 SÊ(ys) = (3.261/√400)(1 − 400/27000) = 0.162
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The approximate 95% confidence limits for the true population mean 
density is therefore 0.625 ± 1.96 × 0.162, or 0.31% to 0.94%.

The strata for stratified sampling were five stretches of the transect, 
each about 18-km long, and each containing 5400 pixels. The sample 
results and some of the calculations for this sample are shown in Table 2.4. 
The estimated population mean density from equation (2.19) is 0.613%, 
with an estimated variance of 0.0208 from equation (2.21). The estimated 
standard error is therefore √0.0208 = 0.144, and an approximate 95% con-
fidence limits for the true population mean density is 0.613 ± 1.96 × 0.144, 
or 0.33% to 0.90%.

In the situation being considered, there might be some interest in esti-
mating the area in the study region covered by bracken. The total area 
is 27,000 ha. Therefore, the estimate from simple random sampling is 
27,000 × 0.00625 = 168.8 ha, with an estimated standard error of 27,000 × 
0.00162 = 43.7 ha, expressing the estimated percentage cover as a pro-
portion. The approximate 95% confidence limits are 27,000 × 0.0031 = 
83.7 to 27,000 × 0.0094 = 253.8 ha. Similar calculations with the results 
of the stratified sample give an estimated coverage of 165.5 ha, with a 
standard error of 38.9 ha, and approximate 95% confidence limits of 89.1 
to 243.0 ha.

In this example, the advantage of using stratified sampling instead of 
simple random sampling is not great. The estimates of the mean bracken 

Christchurch

Dunedin
Transect

Figure 2.2
A transect about 90-km long and 3-km wide along which bracken has been sampled in the 
South Island of New Zealand.
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Table 2.4

Results of Stratified Random Sampling for Estimating the Density 
of Bracken along a Transect in the South Island of New Zealand

Case

Stratum

1 2 3 4 5

 1 0 0 15 5 0 0 0 0 0 0
 2 0 0 0 0 0 0 0 0 0 0
 3 0 0 0 0 0 0 0 0 0 0
 4 0 0 0 0 0 0 0 0 0 0
 5 0 0 15 0 5 0 0 0 0 0
 6 0 0 0 0 0 0 0 0 0 0
 7 0 0 0 5 0 5 0 5 0 0
 8 0 0 0 0 0 0 0 0 0 0
 9 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0
14 0 0 5 0 0 0 0 30 0 0
15 0 0 0 15 15 0 0 0 0 0
16 0 0 5 0 0 30 0 0 0 0
17 5 0 0 0 0 0 0 0 0 0
18 0 0 15 0 0 0 0 0 0 0
19 0 0 0 0 0 5 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0
23 0 0 5 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0
25 0 5 5 5 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 5 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0
30 0 0 5 5 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0
32 0 0 15 5 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0 0 0
37 0 0 0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0 0 0 0

(continued on next page)
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density are quite similar, and the standard error from the stratified sam-
ple (0.144) is not much smaller than that for simple random sampling 
(0.162). Of course, if it had been known in advance that no bracken would 
be recorded in stratum 5, then the sample units in that stratum could have 
been allocated to the other strata, leading to some further reduction in 
the standard error. Methods for deciding on sample sizes for stratified 
and other sampling methods are discussed further in Section 2.13.

2.8  Post-Stratification

At times, there may be value in analyzing a simple random sample as if it 
were obtained by stratified random sampling. That is to say, a simple random 
sample is taken and the units are then placed into strata, possibly based on 
information obtained at the time of sampling. The sample is then analyzed 
as if it were a stratified random sample in the first place, using the equations 
given in the previous section. This procedure is called post-stratification. It 
requires that the strata sizes Ni be known so that equations (2.20) and (2.21) 
can be used.

A simple random sample is expected to place sample units in different 
strata according to the size of those strata. Therefore, post-stratification 
should be quite similar to stratified sampling with proportional allocation, 
providing that the total sample size is reasonably large. It therefore has some 
considerable potential merit as a method that permits the method of strati-
fication to be changed after a sample has been selected. This may be par-
ticularly valuable in situations where the data may be used for a variety of 
purposes, some of which are not known at the time of sampling.

Table 2.4 (continued)

Results of Stratified Random Sampling for Estimating the Density 
of Bracken along a Transect in the South Island of New Zealand

Stratum

Case 1 2 3 4 5

39 0 0 0 0 0 0 0 0 0 0
40 0 5 5 0 0 0 0 0 0 0

Mean 0.1875 1.625 0.8125 0.4375 0.000
SD 0.956 3.879 3.852 3.393 0.000 Total
n 80 80 80 80 80 400
N 5,400 5,400 5,400 5,400 5,400 27,000

Contributions to the sum in equation (2.19) for the estimated mean
0.0375 0.3250 0.1625 0.0875 0.0000 0.6125

Contributions to the sum in equation (2.21) for the estimated variance
0.0005 0.0074 0.0073 0.0057 0.0000 0.0208
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2.9  Systematic Sampling

Systematic sampling is often used as an alternative to simple random sam-
pling or stratified random sampling for two reasons. First, the process of 
selecting sample units is simpler for systematic sampling. Second, under cer-
tain circumstances, estimates can be expected to be more precise for system-
atic sampling because the population is covered more evenly.

The basic idea with systematic sampling is to take every kth item in a list, or 
to sample points that are regularly placed in space. As an example, consider 
the situation that is shown in Figure 2.3. The top part of the figure shows the 
positions of 12 randomly placed sample points in a rectangular study area. 
The middle part shows a stratified sample where the study region is divided 
into four equal-sized strata, and three sample points are placed randomly 
within each. The lower part of the figure shows a systematic sample where 
the study area is divided into 12 equal-sized quadrats, each of which con-
tains a point at the same randomly located position within the quadrat. 
Quite clearly, stratified sampling has produced better control than random 

Simple Random Sampling

Stratified Random Sampling

Systematic Sampling

Figure 2.3
Comparison of simple random sampling, stratified random sampling, and systematic sam-
pling for points in a rectangular study region.
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sampling in terms of the way that the sample points cover the region, but not 
as much control as systematic sampling.

It is common to analyze a systematic sample as if it were a simple ran-
dom sample. In particular, population means, totals, and proportions are 
estimated using the equations in Sections 2.3 to 2.5, including the estimation 
of standard errors and the determination of confidence limits. The assump-
tion is then made that, because of the way that the systematic sample covers 
the population, this will, if anything, result in standard errors that tend to 
be somewhat too large and confidence limits that tend to be somewhat too 
wide. That is to say, the assessment of the level of sampling errors is assumed 
to be conservative.

The only time that this procedure is liable to give a misleading impression 
about the true level of sampling errors is when the population being sampled 
has some cyclic variation in observations, so that the regularly spaced obser-
vations that are selected tend to all be either higher or lower than the popu-
lation mean. Therefore, if there is a suspicion that regularly spaced sample 
points may follow some pattern in the population values, then systematic 
sampling should be avoided. Simple random sampling and stratified ran-
dom sampling are not affected by any patterns in the population, and it is 
therefore safer to use these when patterns may be present.

The U.S. Environmental Protection Agency (US EPA 1989a) manual on 
statistical methods for evaluating the attainment of site cleanup standards 
recommends two alternatives to treating a systematic sample as a simple 
random sample for the purpose of analysis. The first of these alternatives 
involves combining adjacent points into strata, as indicated in Figure 2.4. 
The population mean and standard error are then estimated using equations 
(2.26) and (2.27). The assumption being made is that the sample within each of 
the imposed strata is equivalent to a random sample. It is most important that 
the strata are defined without taking any notice of the values of observations, 
because otherwise bias will be introduced into the variance calculation.

If the number of sample points or the area is not the same within each 
of the strata, then the estimated mean from equation (2.26) will differ from 
the simple mean of all of the observations. This is to be avoided because 
it will be an effect that is introduced by a more-or-less arbitrary system of 
stratification. The estimated variance of the mean from equation (2.27) will 
inevitably depend on the stratification used, and under some circumstances 
it may be necessary to show that all reasonable stratifications give about the 
same result.

The second alternative to treating a systematic sample as a simple random 
sample involves joining the sample points with a serpentine line that joins 
neighboring points and passes only once through each point, as shown in 
Figure 2.5. Assuming that this has been done, and that yi is the ith observa-
tion along the line, it is assumed that yi−1 and yi are both measures of the vari-
able of interest in approximately the same location. The difference squared 
(yi − yi−1)2 is then an estimate of twice the variance of what can be thought 
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of as the local sampling errors. With a systematic sample of size n, there are 
n − 1 such squared differences, leading to a combined estimate of the vari-
ance of local sampling errors of

 s y y nL i i

i

n
2 1

2 1
2

1

1= − −−

=

∑( ) ( )/  (2.28)

On this basis, the estimate of the standard error of the mean of the systematic 
sample is

 SÊ(y) = sL/√n (2.29)

Site Boundary

Figure 2.4
Grouping sample points from a systematic sample so that it can be analyzed as a stratified 
sample.	The	sample	points	(•)	are	grouped	here	into	10	strata,	each	containing	six	points.

Site BoundaryStart of Line
(point 1)

End of Line
(point 60)

Figure 2.5
Defining a serpentine line connecting the points of a systematic sample so that the sampling 
variance can be estimated using squared differences between adjacent points on the line.
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No finite sampling correction is applied when estimating the standard 
error on the presumption that the number of potential sampling points in 
the study area is very large. Once the standard error is estimated using equa-
tion (2.29), approximate confidence limits can be determined using equation 
(2.7), and the population total can be estimated using the methods described 
in Section 2.4. This approach for assessing sampling errors was found to be 
as good or better than seven alternatives from a study that was carried out 
by Wolter (1984).

An alternative to adopting one of the methods described in this section for 
estimating the mean from a systematic sample involves using a geostatisti-
cal analysis, as briefly described in Sections 9.8 and 9.9 of this book. This 
approach is intended to properly account for the correlation between the 
observations at different distances apart in the study area.

Example 2.4: Total PCBs in Liverpool Bay Sediments
Camacho-Ibar and McEvoy (1996) describe a study that was aimed at 
determining the concentrations of 55 polychlorinated biphenyl (PCB) 
congeners in sediment samples from Liverpool Bay in the United King-
dom. For this purpose, the total PCB was defined as the summation of 
the concentrations of all the identifiable individual congeners that were 
present at detectable levels in each of 66 grab samples taken between 14 
and 16 September 1988. The values for this variable and the approximate 
position of each sample are shown in Figure 2.6. Although the sample 
locations were not systematically placed over the bay, they are more reg-
ularly spaced than would be expected to occur with random sampling.
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Figure 2.6
Concentration of total PCBs (pg⋅g−1) in samples of sediment taken from Liverpool Bay. Obser-
vations are shown at their approximate position in the study area. The arrow points to the 
entrance to the River Mersey.
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The mean and standard deviation of the 66 observations are y = 3937.7 
and s = 6646.5, in units of pg⋅g−1 (picograms per gram, i.e., parts per 1012). 
Therefore, if the sample is treated as being equivalent to a simple ran-
dom sample, then the estimated standard error is SÊ(y) = 6646.5/√66 = 
818.1, and the approximate 95% confidence limits for the mean over the 
sampled region are 3937.7 ± 1.96 × 818.1, or 2334.1 to 5541.2.

The second method for assessing the accuracy of the mean of a sys-
tematic sample, as described previously, entails dividing the samples 
into strata. This division was done arbitrarily using 11 strata of six 
observations each, as shown in Figure 2.7, and the calculations for the 
resulting stratified sample are shown in Table 2.5. The estimated mean 
level for total PCBs in the area is still 3937.7 pg⋅g−1. However, the stan-
dard error calculated from the stratification is 674.2, which is lower than 
the value of 818.1 found by treating the data as coming from a simple 
random sample. The approximate 95% confidence limits from stratifica-
tion are 3937.7 ± 1.96 × 674.2, or 2616.2 to 5259.1.

Finally, the standard error can be estimated using equations (2.28) and 
(2.29), with the sample points in the order shown in Figure 2.7, but with 
the closest points connected between the sets of six observations that 
formed the strata before. This produces an estimated standard deviation 
of sL = 5704.8 for small-scale sampling errors, and an estimated standard 
error for the mean in the study area of SÊ(y) = 5704.8/√66 = 702.2. By this 
method, the approximate 95% confidence limits for the area mean are 
3937.7 ± 1.96 × 702.2, or 2561.3 to 5314.0 pg⋅g−1. This is quite close to what 
was obtained using the stratification method.
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Figure 2.7
Partitioning of samples in Liverpool Bay into 11 strata consisting of points that are connected 
by lines, so that stratum 1 contains the observations 1444, 96, 1114, 4069, 2597, and 2599.
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2.10  Other Design Strategies

So far in this chapter the sample designs that have been considered are sim-
ple random sampling, stratified random sampling, and systematic sampling. 
There are also a number of other design strategies that are sometimes used. 
Here, some of the designs that may be useful in environmental studies are 
just briefly mentioned. For further details, see Scheaffer et al. (1990), Thomp-
son (1992), or some other specialized text on sampling. Also, a very useful 
text on methods for sampling rare animals and plants is Thompson (2004).

With cluster sampling, groups of sample units that are close in some sense 
are randomly sampled together, and then all measured. The idea is that this 
will reduce the cost of sampling each unit, so that more units can be mea-
sured than would be possible if they were all sampled individually. This 
advantage is offset to some extent by the tendency of sample units that are 
close together to have similar measurements. Therefore, in general, a cluster 
sample of n units will give estimates that are less precise than a simple ran-
dom sample of n units. Nevertheless, cluster sampling may give better value 
for money than the sampling of individual units.

With multistage sampling, the sample units are regarded as falling within 
a hierarchical structure. Random sampling is then conducted at the various 
levels within this structure. For example, suppose that there is interest in 

Table 2.5

Treating the Data on Total PCBs as Coming from a Stratified Sample

Stratum Total PCB (pg⋅g−1) Mean SD
Contribution 
to Variance

 1 1,444 96 1,114 4,069 2,597 2,599 1,986.5 1,393.9 2,676.1
 2 266 1,306 86 4,832 2,890 1,870 1,875.0 1,782.5 4,376.7
 3 3,621 6,755 1,516 133 794 607 2,237.7 2,530.4 8,819.2
 4 454 305 303 5,256 3,153 4,486 2,326.2 2,263.4 7,056.7
 5 2,384 402 537 488 359 473 773.8 791.4 862.6
 6 1,980 315 3,164 5,990 28,680 223 6,725.3 10,964.7 165,598.4
 7 421 231 273 1,084 401 5,702 1,352.0 2,153.4 6,387.4
 8 2,032 4,136 8,767 687 321 192 2,689.2 3,326.2 15,239.1
 9 82 305 2,278 633 5,218 2,068 1,764.0 1,924.8 5,102.9
10 5,314 143 2,204 4,160 17,688 967 5,079.3 6,471.9 57,692.8
11 3,108 14,339 16,143 37,883 13,676 13,882 16,505.2 11,456.0 180,772.6

3,937.7 454,584.5
SE = 674.2

Note: The 66 sample points have been grouped into 11 strata with six points in each (Figure 2.7). 
The last column in the table shows the contributions from each of the strata to the summa-
tion on the right-hand side of equation (2.27) for the stratified sample variance. For this 
equation, all strata are treated as being of equal size, so that wi = 1/11 for all i. The stan-
dard error of the estimated mean (SE) is the square root of the sum of the last column.
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estimating the mean of some water-quality variable in the lakes in a very 
large area such as a whole country. The country might then be divided into 
primary sampling units consisting of states or provinces; each primary unit 
might then consist of a number of counties, and each county might contain a 
certain number of lakes. A three-stage sample of lakes could then be obtained 
by first randomly selecting several primary sampling units, next randomly 
selecting one or more counties (second-stage units) within each sampled 
primary unit, and finally randomly selecting one or more lakes (third-stage 
units) from each sampled county. This type of sampling plan may be useful 
when a hierarchical structure already exists, or when it is simply convenient 
to sample at two or more levels.

The technique of composite sampling is valuable in situations where the 
cost of selecting and acquiring sample units is much less than the cost of 
analyzing them. What this involves is the mixing of several samples from 
approximately the same location and then analyzing the composite samples. 
For example, sets of four samples might be mixed so that the number of 
analyses is only one-quarter of the number of samples. This should have 
little effect on the estimated mean, provided that the samples are mixed 
sufficiently so that the observation from a composite sample is close to the 
mean for the samples that it contains. However, there is a loss of information 
about extreme values for individual sample units because of dilution effects. 
If there is a need to identify individual samples with extreme values, then 
methods are available to achieve this without the need to analyze every sam-
ple. These and other aspects of composite sampling are discussed by Gore 
and Patil (1994) and Patil (1995), while Gilbert (1987) considers the estimation 
of the mean when composite samples are used with more complicated sam-
pling designs.

Ranked-set sampling is another method that can be used to reduce the 
cost of analysis in surveys. The technique was originally developed for 
the estimation of the biomass of vegetation (McIntyre 1952), but the potential 
uses are much wider. It relies on the existence of an inexpensive method of 
assessing the relative magnitude of a small set of observations to supplement 
expensive accurate measurements.

As an example, suppose that 90 uniformly spaced sample units are 
arranged in a rectangular grid over an intertidal study area, and that it is 
necessary to estimate the average barnacle density. A visual assessment 
is made of the density on the first three units, which are then on that basis 
ordered from the one with the lowest density to the one with the highest 
density. The density is then determined accurately for the highest ranked 
unit. The next three units are then visually ranked in the same way, and 
the density is then determined accurately for the unit with the middle of the 
three ranks. Next, sample units 7, 8, and 9 are ranked, and the density deter-
mined accurately for the unit with the lowest rank. The process of visually 
ranking sets of three units and measuring first the highest ranking unit, then 
the middle ranking unit, and finally the lowest ranking unit is then repeated 
using units 10 to 18, units 19 to 27, and so on. After the completion of this 



46 Statistics for Environmental Science and Management, Second Edition

procedure on all 90 units, a ranked-set sample of size 30 is available based 
on the accurate estimation of density. This sample is not as good as would 
have been obtained by measuring all 90 units accurately, but it should have 
considerably better precision than a standard sample of size 30.

Let m be the size of the ranked set (3 in the above example), so that one 
cycle of ranking and measurement uses m2 units, accurately measuring first 
the highest of m units then the second highest of m units, and so on. Also, 
let k be the number of times that the cycle is repeated (10 in the above exam-
ple), so that n = km values are accurately measured in total. Then it can be 
shown that if there are no errors in the ranking of the sets of size m and if 
the distribution of the variable being measured is unimodal, the ratio of the 
variance of the mean from ranked-set sampling to the variance of the mean 
for a simple random sample of size n is slightly more than 2/(m + 1). Thus, 
in the example with m = 3 and a ranked-set sample size of 30, the variance of 
the sample mean should be slightly more than 2/(3 + 1) = 1/2 of the variance 
of a simple random sample of size 30.

In practice, the user of ranked-set sampling has two alternatives in terms 
of assessing the error in estimating a population mean using the mean of 
the ranked-set sample. If there are few, if any, errors in ranking, and if the 
distribution of data values in the population being studied can be assumed 
to be unimodal, then the standard error of the ranked-set sample mean can 
be estimated approximately by

 SÊ(x) = √{[2/(m + 1)](s2/n)} (2.30)

Alternatively, the sample can conservatively be treated as being equivalent to 
a simple random sample of size n, in which case the estimated standard error

 SÊ(x) = s/√n (2.31)

will almost certainly be too large.
For a further discussion and more details about ranked-set sampling, see 

the review by Patil et al. (1994) and the special issue of the journal Envi-
ronmental and Ecological Statistics on this topic (Ross and Stokes 1999). For 
reviews of the alternative methods that may be applied for environmental 
sampling, two U.S. Environmental Protection Agency reports are relevant 
(US EPA 2002a, 2002b).

2.11  Ratio Estimation

Occasions arise where the estimation of the population mean or total for 
a variable X is assisted by information on a subsidiary variable U. What is 
required is that the items in a random sample of size n have values x1 to xn 
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for X, and corresponding values u1 to un for U. In addition, μu, the population 
mean for U, and Tu = Nμu, the population total for U, must be known values. 
An example of such a situation would be where the level of a chemical was 
measured some years ago for all of the sample units in a population, and it 
is required to estimate the current mean level from a simple random sample 
of the units. Then the level of the chemical from the earlier survey is the vari-
able U, and the current level is the variable X.

With ratio estimation, it is assumed that X and U are approximately pro-
portional, so that X ≈ RU, where R is some constant. The value of the ratio R 
of X to U can then be estimated from the sample data by

 r = x/u (2.32)

and hence the population mean of X can be estimated by multiplying r by the 
population mean of U, to get

 xratio = rμu (2.33)

which is the ratio estimator of the population mean. Multiplying both sides 
of this equation by the population size N, the ratio estimate of the population 
total for X is found to be

 tX = rTu (2.34)

If the ratio of X to U is relatively constant for the units in a population, 
then the ratio estimator of the population mean for X can be expected to 
have lower standard errors than the sample mean x. Similarly, the ratio esti-
mator of the population total for X should have a lower standard error than 
Nx. This is because the ratio estimators allow for the fact that the observed 
sample may, by chance alone, consist of items with rather low or high values 
for X. Even if the random sample does not reflect the population very well, 
the estimate of r may still be reasonable, which is all that is required for a 
good estimate of the population total.

The variance of xratio can be estimated by
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An approximate 100(1 − α)% confidence interval for the population mean of 
X is then given by

 xratio ± zα/2 SÊ(xratio) (2.36)

where SÊ(xratio) = √Vâr(xratio) and, as before, zα/2 is the value from the standard 
normal distribution that is exceeded with probability α/2.
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Because the ratio estimator of the population total of X is tx = Nxratio, it also 
follows that

 SÊ(tX) ≈ N SÊ(xratio) (2.37)

and an approximate 100(1 − α)% confidence interval for the true total is 
given by

 tX ± zα/2 SÊ(tx) (2.38)

The equations for variances, standard errors, and confidence intervals 
should give reasonable results, provided that the sample size n is large 
(which in practice means 30 or more) and that the coefficients of variation of 
x and u (the standard errors of these sample means divided by their popula-
tion means) are less than 0.1 (Cochran 1977, p. 153).

Ratio estimation assumes that the ratio of the variable of interest X to the 
subsidiary variable U is approximately constant for the items in the popula-
tion. A less restrictive assumption is that X and U are related by an equation 
of the form X ≈ α + βU, where α and β are constants. This then allows regres-
sion estimation to be used. See Manly (1992, chap. 2) for more information 
about this generalization of ratio estimation.

Example 2.5: pH Levels in Norwegian Lakes
Example 1.2 was concerned with a Norwegian study that was started 
in 1972 to investigate the effects of acid precipitation. As part of this 
study, the pH levels of 46 lakes were measured in 1976, and for 32 of the 
lakes the pH level was measured again in 1977. The results are shown in 
Table 2.6 for the 32 lakes that were measured in both years. The present 
example is concerned with the estimation of the mean pH level for the 
population of 46 lakes in 1977 using the ratio method. Figure 2.8 shows 
a plot of the 1977 pH values against the 1976 pH values for the 32 lakes. 
Because a line through the data passes nearly through the origin, there is 
approximately a ratio relationship, so that ratio estimation is justified.

For ratio estimation, the pH level in a lake in 1976 is the auxiliary vari-
able (U), and the pH level in 1977 is the main variable of interest (X). The 
mean of U for the 46 lakes is known to be 5.345 in 1976. For the 32 lakes 
sampled in 1977, the mean of U is u = 5.416, and the mean of X is x = 5.400. 
Therefore the estimated ratio of X to U is

 r = 5.400/5.416 = 0.997

The ratio estimate of the mean pH for all 46 lakes in 1977 is therefore 
given by equation (2.33) to be

 xratio = 0.997 × 5.345 = 5.329

The column headed X − rU in Table 2.6 gives the values required for 
the summation on the right-hand side of equation (2.35). The sum of this 
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Table 2.6
Values for pH Measured on 32 Norwegian 
Lakes in 1976 and 1977

pH

1976 1977

Lake Id U X X − rU

 1  4 4.32 4.23 −0.077
 2  5 4.97 4.74 −0.215
 3  6 4.58 4.55 −0.016
 4  8 4.72 4.81 0.104
 5  9 4.53 4.70 0.184
 6 10 4.96 5.35 0.405
 7 11 5.31 5.14 −0.154
 8 12 5.42 5.15 −0.254
 9 17 4.87 4.76 −0.095
10 18 5.87 5.95 0.098
11 19 6.27 6.28 0.029
12 20 6.67 6.44 −0.210
13 24 5.38 5.32 −0.044
14 26 5.41 5.94 0.546
15 30 5.60 6.10 0.517
16 32 4.93 4.94 0.025
17 36 5.60 5.69 0.107
18 38 6.72 6.59 −0.110
19 40 5.97 6.02 0.068
20 41 4.68 4.72 0.054
21 43 6.23 6.34 0.129
22 47 6.15 6.23 0.098
23 49 4.82 4.77 −0.036
24 50 5.42 4.82 −0.584
25 58 5.31 5.77 0.476
26 59 6.26 5.03 −1.211
27 65 5.99 6.10 0.128
28 83 4.88 4.99 0.125
29 85 4.60 4.88 0.294
30 86 4.85 4.65 −0.185
31 88 5.97 5.82 −0.132
32 94 6.05 5.97 −0.062

Mean 5.416 5.400 0.000
SD 0.668 0.672 0.324

Note: The mean pH for the population of all 46 
lakes measured in 1976 was 5.345. The lake 
identifier (Id) is as used by Mohn and 
Volden (1985).
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column is zero, and the value given as the standard deviation at the foot 
of the column (0.324) is the square root of ∑(xi − rUi)2/(n − 1). The esti-
mated variance of the ratio estimator is therefore

 Vâr(xratio) = (0.3242/32)[1 − (32/46)] = 0.000998

and the estimated standard error is √0.000998 = 0.032. An approximate 
95% confidence interval for the mean pH in all lakes in 1977 is therefore 
5.329 ± 1.96 × 0.032, or 5.27 to 5.39.

For comparison, consider just using the mean pH value from the 
sample of 32 lakes to estimate the mean for all 46 lakes in 1977. The sam-
ple mean is 5.400, with an estimated standard deviation of 0.672. From 
equation (2.6), the estimated standard error of the mean is then 0.066. An 
approximate 95% confidence interval for the population mean is therefore 
5.400 ± 1.96 × 0.066, or 5.27 to 5.53. Here the standard error is much larger 
than it was with ratio estimation, leading to a much wider confidence 
interval, although the lower limits are the same to two decimal places.

2.12  Double Sampling

In the previous section it was assumed that the value of the auxiliary vari-
able U, or at least its population mean value, is known. Sometimes this is not 
the case and, instead, the following procedure is used. First, a large sample 
is taken and the value of U is measured on all of the sample units. Next, a 
small random subsample of the larger sample is selected, and the values of X 
are measured on this. The larger sample then provides an accurate estimate 
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The relationship between pH values in 1976 and 1977 for 32 Norwegian lakes that were sam-
pled in both years.
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of the population mean of U, which is used for ratio or regression estimation 
in place of the exact population mean of U.

This procedure will be useful if it is much easier or much less expensive to 
measure U than it is to measure X, provided that there is a good ratio or lin-
ear relationship between the two variables. A variation of this sample design 
can also be used with post-stratification of the larger sample.

The analysis of data from these types of double-sampling designs is dis-
cussed by Scheaffer et al. (1990, sec. 5.11) and Thompson (1992, chap. 14). More 
details of the theory are provided by Cochran (1977, chap. 12).

2.13  Choosing Sample Sizes

One of the most important questions for the design of any sampling program 
is the total sample size that is required and, where it is relevant, how this 
total sample size should be allocated to different parts of the population. 
There are a number of specific aids available in the form of equations and 
tables that can assist in this respect. However, before considering these, it is 
appropriate to mention a few general points.

First, it is worth noting that, as a general rule, the sample size for a study 
should be large enough so that important parameters are estimated with suf-
ficient precision to be useful, but it should not be unnecessarily large. This 
is because, on the one hand, small samples with unacceptable levels of error 
are hardly worth doing at all while, on the other hand, very large samples 
giving more precision than is needed are a waste of time and resources. In 
fact, the reality is that the main danger in this respect is that samples will be 
too small. A number of authors have documented this in different areas of 
application. For example, Peterman (1990) describes several situations where 
important decisions concerning fisheries management have been based on 
the results of samples that were not adequate.

The reason why sample sizes tend to be too small, if they are not considered 
properly in advance, is that it is a common experience with environmental 
sampling that “what is desirable is not affordable, and what is affordable is 
not adequate” (Gore and Patil 1994). There is no simple answer to this prob-
lem, but researchers should at least know in advance if they are unlikely to 
achieve their desired levels of precision with the resources available, and 
possibly seek the extra resources that are needed. Also, it suggests that a rea-
sonable strategy for determining sample sizes involves deciding what is the 
maximum size that is possible within the bounds of the resources available. 
The accuracy that can be expected from this size can then be assessed. If this 
accuracy is acceptable, but not as good as the researcher would like, then 
this maximum study size can be used on the grounds that it is the best that 
can be done. On the other hand, if a study of the maximum size gives an 
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unnecessary level of accuracy, then the possibility of a smaller study can be 
investigated.

Another general approach to sample-size determination that can usually 
be used fairly easily is trial and error. For example, a spreadsheet can be set 
up to carry out the analysis that is intended for a study, and the results of 
using different sample sizes can be explored using simulated data drawn 
from the type of distribution or distributions that are thought likely to occur 
in practice. A variation on this approach involves the generation of data by 
bootstrap resampling of data from earlier studies. This involves producing 
test data by randomly sampling with replacement from the earlier data, as 
discussed by Manly (1992, p. 329). It has the advantage of not requiring arbi-
trary decisions about the distribution that the data will follow in the pro-
posed new study.

Equations are available for determining sample sizes in some specific situ-
ations. Some results that are useful for large populations are as follows. For 
details of their derivation, and results for small populations, see Manly (1992, 
sec. 11.4). In all cases, δ represents a level of error that is considered to be 
acceptable by those carrying out a study. That is to say, δ is to be chosen by 
the investigators based on their objectives.

 1. To estimate a population mean from a simple random sample 
with a 95% confidence interval of x ± δ, the sample size should be 
approximately

 n = 4σ²/δ² (2.39)

  where σ is the population standard deviation. To use this equation, 
an estimate or guess of σ must be available.

 2. To obtain a 95% confidence limit for a population proportion of the 
form p ± δ, where p is the proportion in a simple random sample, 
requires that the sample size should be approximately

 n = 4π(1 − π)/δ² (2.40)

  where π is the true population proportion. This has the upper limit 
of n = 1/δ² when π = ½, which gives a safe sample size, whatever is 
the value of π.

 3. Suppose two random samples of size n are taken from distribu-
tions that are assumed to have different means but the same stan-
dard deviation σ. If the sample means obtained are x1 and x2, then 
to obtain an approximate 95% confidence interval for the difference 
between the two population means of the form x1 − x2 ± δ requires 
that the sample sizes should be approximately

 n = 8σ²/δ² (2.41)
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 4. Suppose that the difference between two sample proportions p̂1 and 
p̂2, with sample sizes of n, is to be used to estimate the difference 
between the corresponding population proportions p1 and p2. To 
obtain an approximate 95% confidence interval for the difference 
between the population proportions of the form p̂1 − p̂2 ± δ requires 
that n should be approximately

 n = 8π′(1 − π′)/δ² (2.42)

  where π′ is the average of the two population proportions. The larg-
est possible value of n occurs with this equation when π′ = ½, in 
which case n = 2/δ². This is therefore a safe sample size for any pop-
ulation proportions.

The sample-size equations just provided are based on the assumption that 
sample statistics are approximately normally distributed, and that sample 
sizes are large enough for the standard errors estimated from samples to 
be reasonably close to the true standard errors. In essence, this means that 
the sample sizes produced by the equations must be treated with some reser-
vations unless they are at least 20 and the distribution or distributions being 
sampled are not grossly nonnormal. Generally, the larger the sample size, 
the less important is the normality of the distribution being sampled.

For stratified random sampling, it is necessary to decide on an overall sam-
ple size, and also how this should be allocated to the different strata. These 
matters are considered by Manly (1992, sec. 2.7). In brief, it can be said the 
most efficient allocation to strata is one where ni, the sample size in the ith 
stratum, is proportional to Niσi/√ci, where Ni is the size, σi is the standard 
deviation, and ci is the cost of sampling one unit for this stratum. Therefore, 
when there is no reason to believe that the standard deviations vary greatly 
and sampling costs are about the same in all strata, it is sensible to use pro-
portional allocation, with ni proportional to Ni.

Sample design and analysis can be a complex business, dependent very 
much on the particular circumstances (Rowan et al. 1995; Lemeshow et al. 
1990; Borgman et al. 1996). There are now a number of computer packages 
for assisting with this task, such as PASS (Power Analysis and Sample Size), 
which is produced by NCSS Statistical Software (2008).

Sample size determination is an important component in the U.S. EPA’s 
Data Quality Objectives (DQO) process that is described in Section 2.15.

2.14  Unequal-Probability Sampling

The sampling theory discussed so far in this chapter is based on the assump-
tion of random sampling of the population of interest. In other words, the 
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population is sampled in such a way that each unit in the population has the 
same chance of being selected. It is true that this is modified with the more 
complex schemes involving, for example, stratified or cluster sampling, but 
even in these cases, random sampling is used to choose units from those 
available.

However, situations do arise where the nature of the sampling mechanism 
makes random sampling impossible because the availability of sample units 
is not under the control of the investigator, so that there is unequal-probability 
sampling. In particular, cases occur where the probability of a unit being sam-
pled is a function of the characteristics of that unit. For example, large units 
might be more conspicuous than small ones, so that the probability of a unit 
being selected depends on its size. If the probability of selection is proportional 
to the size of units, then this special case is called size-biased sampling.

It is possible to estimate population parameters allowing for unequal-
probability sampling. Thus, suppose that the population being sampled con-
tains N units, with values y1, y2, …, yN for a variable Y, and that sampling is 
carried out so that the probability of including yi in the sample is pi. Assume 
that estimation of the population size (N), the population mean (μy), and the 
population total (Ty) is of interest, and that the sampling process yields n 
observed units. Then the population size can be estimated by
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and the mean of Y can be estimated by

 ˆ ˆ ( ) ( )µy y i i

i

n

i

i

n

t N y p p= =
= =

∑ ∑/ / /
1 1

1  (2.45)

The estimators represented by equations (2.43) and (2.44) are called 
Horvitz-Thomson estimators after those who developed them in the first 
place (Horvitz and Thompson 1952). They provide unbiased estimates of the 
population parameters because of the weight given to different observations. 
For example, suppose that there are a number of population units with pi = 
0.1. Then it is expected that only one in ten of these units will appear in 
the sample of observed units. Consequently, the observation for any of these 
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units that are observed should be weighted by 1/pi = 10 to account for those 
units that are missed from the sample.

Variance equations for all three estimators are provided by McDonald and 
Manly (1989), who suggest that replications of the sampling procedure will 
be a more reliable way of determining variances. Alternatively, bootstrap-
ping may be effective. The book by Thompson (1992) gives a comprehensive 
guide to the many situations that occur where unequal-probability sampling 
is involved.

2.15  The Data Quality Objectives Process

The Data Quality Objectives (DQO) process was developed by the United 
States Environmental Protection Agency (US EPA) to ensure that, when a 
data collection process has been completed, it will have provided sufficient 
data to make the required decisions within a reasonable certainty while col-
lecting only the minimum amount of necessary data. The idea was to have 
the least expensive data collection scheme, but not at the price of providing 
answers that have too much uncertainty.

At the heart of the use of the process is the assumption that there will 
always be two problems with environmental decision making: (1) the 
resources available to address the question being considered are not infi-
nite, and (2) there will never be a 100% guarantee that the right decision has 
been reached. Generally, more resources can be expected to reduce uncer-
tainty. The DQO process was therefore set up to get a good balance between 
resource use and uncertainty, and to provide a complete and defensible jus-
tification for the data collection methods used, covering:

The questions that are important•	
Whether the data will answer the questions•	
The needed quality of the data•	
The amount of data needed•	
How the data will actually be used in decision making•	

This is all done before the data are collected and, preferably, agreed to by all 
the stakeholders involved.

There are seven steps to the DQO process:

 1. State the problem: Describe the problem, review prior work, and 
understand the important factors

 2. Identify the goals of the study: Find what questions need to be answered 
and the actions that might be taken, depending on the answers
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 3. Identify inputs to the decision: Determine the data needed to answer 
the important questions

 4. Define the study boundaries: Specify the time periods and spatial areas to 
which decisions will apply; determine when and where to gather data

 5. Develop the analytical approach: Define the parameter of interest, 
specify action limits, and integrate the previous DQO outputs into a 
single statement that describes the logical basis for choosing among 
possible alternative actions

 6. Specify performance or acceptance criteria: Specify tolerable decision 
error probabilities (probabilities of making the wrong decisions) 
based on the consequences of incorrect decisions

 7. Develop the plan for obtaining data: Consider alternative sampling 
designs, and choose the one that meets all the DQOs with the mini-
mum use of resources

The output from each step influences the choices made later, but it is 
important to realize that the process is iterative, and the carrying out of one 
step may make it necessary to reconsider one or more earlier steps. Steps 1–6 
should produce the Data Quality Objectives that are needed to develop 
the sampling design at step 7.

Preferably, a DQO planning team usually consists of technical experts, 
senior managers, a statistical expert, and a quality assurance/quality control 
(QA/QC) advisor. The final product is a data-collection design that meets 
the qualitative and quantitative needs of the study, and much of the infor-
mation generated during the process is used for the development of quality 
assurance project plans (QAPPs) and the implementation of the data qual-
ity assessment (DQA) process. These are all part of the US EPA’s system for 
maintaining quality in its operations. More information about the DQO pro-
cess, with reference documents, can be obtained from the EPA’s guidance 
document (US EPA 2006).

2.16  Chapter Summary

A crucial early task in any sampling study is to define the popula-•	
tion of interest and the sample units that make up this population. 
This may or may not be straightforward.
Simple random sampling involves choosing sample units in such a •	
way that each unit is equally likely to be selected. It can be carried 
out with or without replacement.
Equations for estimating a population mean, total, and proportion •	
are provided for simple random sampling.
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Sampling errors are those due to the random selection of sample •	
units for measurement. Nonsampling errors are those from all other 
sources. The control of both sampling and nonsampling errors is 
important for all studies, using appropriate protocols and proce-
dures for establishing data quality objectives (DQO) and quality 
control and assurance (QC/QA).

Stratified random sampling is sometimes useful for ensuring that •	
the units that are measured are well representative of the popula-
tion. However, there are potential problems due to the use of incor-
rect criteria for stratification or the wish to use a different form of 
stratification to analyze the data after they have been collected.

Equations for estimating the population mean and total are provided •	
for stratified sampling.

Post-stratification can be used to analyze the results from simple •	
random sampling as if they had been obtained from stratified ran-
dom sampling.

With systematic sampling, the units measured consist of every •	 kth 
item in a list, or are regularly spaced over the study area. Units may 
be easier to select than they are with random sampling, and estimates 
may be more precise than they would otherwise be because they 
represent the whole population well. Treating a systematic sample as 
a simple random sample may overestimate the true level of sampling 
error. Two alternatives to this approach (imposing a stratification and 
joining sample points with a serpentine line) are described.

Cluster sampling (selecting groups of close sample units for measure-•	
ment) may be a cost-effective alternative to simple random sampling.

Multistage sampling involves randomly sampling large primary •	
units, randomly sampling some smaller units from each selected 
primary unit, and possibly randomly sampling even smaller units 
from each secondary unit, etc. This type of sampling plan may be 
useful when a hierarchical structure already exists in a population.

Composite sampling is potentially valuable when the cost of mea-•	
suring sample units is much greater than the cost of selecting and 
collecting them. It involves mixing several sample units from the 
same location and then measuring the mixture. If there is a need to 
identify sample units with extreme values, then special methods are 
available for doing this without measuring every sample unit.

Ranked-set sampling involves taking a sample of •	 m units and put-
ting them in order from the smallest to largest. The largest unit only 
is then measured. A second sample of m units is then selected, and 
the second largest unit is measured. This is continued until the mth 
sample of m units is taken and the smallest unit is measured. The 
mean of the m measured units will then usually be a more accurate 
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estimate of the population mean than the mean of a simple random 
sample of m units.
Ratio estimation can be used to estimate a population mean and •	
total for a variable X when the population mean is known for a sec-
ond variable U that is approximately proportional to X. Regression 
estimation can be used instead if X is approximately linearly related 
to U.
Double sampling is an alternative to ratio or regression estimation •	
that can be used if the population mean of U is not known, but mea-
suring U on sample units is inexpensive. A large sample is used to 
estimate the population mean of U, and a smaller sample is used to 
estimate either a ratio or linear relationship between X and U.
Methods for choosing sample sizes are discussed. Equations are •	
provided for estimating population means, proportions, differences 
between means, and differences between proportions.
Unequal-probability sampling is briefly discussed, where the sam-•	
pling process is such that different units in a population have differ-
ent probabilities of being included in a sample. Horvitz-Thompson 
estimators of the total population size and the total for a variable Y 
are stated.
The U.S. EPA Data Quality Objective (DQO) process is described. •	
This is a formal seven-step mechanism for ensuring that sufficient 
data are collected to make required decisions with a reasonable prob-
ability that these are correct, and that only the minimum amount of 
necessary data are collected.

Exercises

Exercise 2.1
In a certain region of a country there are about 200 small lakes. A ran-
dom sample of 25 of these lakes was taken, and the sulfate levels (SO4, 
mg/L) were measured, with the following results:

6.5 5.5 4.8 7.4 3.7 7.6 1.6 1.5 1.4 4.6

7.5 5.8 1.5 3.8 3.9 1.9 2.4 2.7 3.2 5.2

2.5 1.4 3.5 3.8 5.1

 1. Find an approximate 95% confidence interval for the mean sulfate 
level in all 200 lakes.

 2. Find an approximate 95% confidence interval for the percentage of 
lakes with a sulfate level of 5.0 or more.
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Exercise 2.2
Given the data from question 2.1, suppose that you have to propose a 
sampling design to estimate the difference between the SO4 levels in two 
different regions of the same country, both containing approximately 
200 small lakes. What sample sizes do you propose to obtain confidence 
limits of about x1 − x2 ± 0.75?

Exercise 2.3
A study involved taking 40 partly systematic samples from a 1 × 1-m 
grid in a 1-ha field and measuring the sand content (%) of the soil. The 
measurements on sand content are as shown in Figure 2.9.

 1. Estimate the mean sand content of the field with a standard error 
and 95% confidence limits, treating the sample as being effectively a 
random sample of points.

 2. Estimate the mean sand content of the field with a standard error 
and 95% confidence limits using the first of the US EPA methods 
described in Section 2.9 (combining adjacent points into strata and 
using the stratified sampling formulae).

 3. Estimate the mean sand content in the field, with a standard error 
and 95% confidence limits, using the second method recommended 
by the US EPA (joining points with a serpentine line).

 4. Compare the results found in items 1 to 3 above and discuss reasons 
for the differences, if any.
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Figure 2.9
Sand content (%) from soil samples taken at different locations in a field.
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3
Models for Data

3.1  Statistical Models

Many statistical analyses are based on a specific model for a set of data, where 
this consists of one or more equations that describe the observations in terms 
of parameters of distributions and random variables. For example, a simple 
model for the measurement X made by an instrument might be

 X = θ + ε

where θ is the true value of what is being measured, and ε is a measurement 
error that is equally likely to be anywhere in the range from −0.05 to +0.05.

In situations where a model is used, an important task for the data analyst 
is to select a plausible model and to check, as far as possible, that the data are 
in agreement with this model. This includes examining both the form of the 
equation assumed and the distribution or distributions that are assumed for 
the random variables.

To aid in this type of modeling process there are many standard distribu-
tions available, the most important of which are considered in the following 
two sections of this chapter. In addition, there are some standard types of 
models that are useful for many sets of data. These are considered in the later 
sections of this chapter.

3.2  Discrete Statistical Distributions

A discrete distribution is one for which the random variable being consid-
ered can only take on certain specific values, rather than any value within 
some range (Appendix 1, Section A1.2). By far the most common situation in 
this respect is where the random variable is a count, and the possible values 
are 0, 1, 2, 3, and so on.

It is conventional to denote a random variable by a capital X and a particu-
lar observed value by a lowercase x. A discrete distribution is then defined 



62 Statistics for Environmental Science and Management, Second Edition

by a list of the possible values x1, x2, x3, …, for X, and the probabilities P(x1), 
P(x2), P(x3), …, for these values. Of necessity,

 P(x1) + P(x2) + P(x3) + … = 1

i.e., the probabilities must add to 1. Also of necessity, P(xi) ≥ 0 for all i, with 
P(xi) = 0, meaning that the value xi can never occur. Often there is a specific 
equation for the probabilities defined by a probability function

 P(x) = Prob(X = x)

where P(x) is some function of x.
The mean of a random variable is sometimes called the expected value, 

and is usually denoted either by μ or E(X). It is the sample mean that would 
be obtained for a very large sample from the distribution, and it is possible 
to show that this is equal to

 E X x P x x P x x P x x P xi i( ) ( ) ( ) ( ) ( )= = + + +…∑ 1 1 2 2 3 3  (3.1)

The variance of a discrete distribution is equal to the sample variance that 
would be obtained for a very large sample from the distribution. It is often 
denoted by σ2, and it is possible to show that this is equal to

	
σ µ

µ µ

2 2
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2

3− +…µ
 (3.2)

The square root of the variance, σ, is the standard deviation of the distribution.
The following discrete distributions are the ones that occur most often in 

environmental and other applications of statistics. Johnson and Kotz (1969) pro-
vide comprehensive details on these and many other discrete distributions.

3.2.1  The Hypergeometric Distribution

The hypergeometric distribution arises when a random sample of size n is 
taken from a population of N units. If the population contains R units with 
a certain characteristic, then the probability that the sample will contain 
exactly x units with the characteristic is

 P(x) = RCx N−RCn−x/NCn, for x = 0, 1, …, Min(n,R) (3.3)

where aCb denotes the number of combinations of a objects taken b at a time. 
The proof of this result will be found in many elementary statistics texts. A 
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random variable with the probabilities of different values given by equation 
(3.3) is said to have a hypergeometric distribution. The mean and variance are

	 μ = nR/N (3.4)

and

	 σ2 = [nR(N − R)(N − n)]/[N2 (N − 1)]. (3.5)

As an example of a situation where this distribution applies, suppose that 
a grid is set up over a study area, and the intersection of the horizontal and 
vertical grid lines defines N possible sample locations. Let R of these loca-
tions have values in excess of a constant C. If a simple random sample of n of 
the N locations is taken, then equation (3.1) gives the probability that exactly 
x out of the n sampled locations will have a value exceeding C.

Figure 3.1(a) shows examples of probabilities calculated for some particu-
lar hypergeometric distributions.

3.2.2  The binomial Distribution

Suppose that it is possible to carry out a certain type of trial and that, when 
this is done, the probability of observing a positive result is always p for each 
trial, irrespective of the outcome of any other trial. Then if n trials are car-
ried out, the probability of observing exactly x positive results is given by the 
binomial distribution

 P(x) = nCxpx(1 − p)n−x, for x = 0, 1, 2, …, n (3.6)

which is a result also provided in Section A1.2 of Appendix 1. The mean and 
variance of this distribution are, respectively,

	 μ = np (3.7)

and

	 σ2 = np(1 − p). (3.8)

An example of this distribution occurs with the situation described in 
Example 1.3, which was concerned with the use of mark–recapture methods 
to estimate survival rates of salmon in the Snake and Columbia Rivers in the 
Pacific Northwest of the United States. In that setting, if n fish are tagged and 
released into a river, and if there is a probability p of being recorded while 
passing a detection station downstream for each of the fish, then the probabil-
ity of recording a total of exactly p fish downstream is given by equation (3.6).

Figure 3.1(b) shows some examples of probabilities calculated for some 
particular binomial distributions.
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3.2.3  The Poisson Distribution

One derivation of the Poisson distribution is as the limiting form of the bino-
mial distribution as n tends to infinity and p tends to zero, with the mean μ = 
np remaining constant. More generally, however, it is possible to derive it as 
the distribution of the number of events in a given interval of time or a given 
area of space when the events occur at random, independently of each other 
at a constant mean rate. The probability function is

 P(x) = exp(−μ)μx/x!, for x = 0, 1, 2, …, n (3.9)

The mean and variance are both equal to μ.
In terms of events occurring in time, the type of situation where a Pois-

son distribution might occur is for counts of the number of occurrences of 
minor oil leakages in a region per month, or the number of cases per year of 
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Figure 3.1
Examples of hypergeometric, binomial, and Poisson discrete probability distributions.
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a rare disease in the same region. For events occurring in space, a Poisson 
distribution might occur for the number of rare plants found in randomly 
selected meter-square quadrats taken from a large area. In reality, though, 
counts of these types often display more variation than is expected for the 
Poisson distribution because of some clustering of the events. Indeed, the 
ratio of the variance of sample counts to the mean of the same counts, which 
should be close to 1 for a Poisson distribution, is sometimes used as an index 
of the extent to which events do not occur independently of each other.

Figure 3.1(c) shows some examples of probabilities calculated for some par-
ticular Poisson distributions.

3.3  Continuous Statistical Distributions

Continuous distributions are often defined in terms of a probability density 
function, f (x), which is a function such that the area under the plotted curve 
between two limits a and b gives the probability of an observation within 
this range, as shown in Figure 3.2. This area is also the integral between a 
and b, so that, in the usual notation of calculus,

 Prob( ) ( )a X b f x dx
a

b

< < = ∫  (3.10)

The total area under the curve must be exactly 1, and f (x) must be greater 
than or equal to 0 over the range of possible values of x for the distribution 
to make sense.
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Figure 3.2
The probability density function f(x) for a continuous distribution. The probability of a value 
between a and b is the area under the curve between these values, i.e., the area between the two 
vertical lines at x = a and x = b.
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The mean and variance of a continuous distribution are the sample mean 
and variance that would be obtained for a very large random sample from 
the distribution. In calculus notation, the mean is

	 µ = ∫ x f x dx( )

where the range of integration is the possible values for the x. This is also 
sometimes called the expected value of the random variable X, and denoted 
E(X). Similarly, the variance is

	 σ µ2 2= −∫ ( ) ( )x f x dx  (3.11)

where, again, the integration is over the possible values of x.
The continuous distributions that are described here are ones that often 

occur in environmental and other applications of statistics. See Johnson and 
Kotz (1970a, 1970b) for details about many more continuous distributions.

3.3.1  The exponential Distribution

The probability density function for the exponential distribution with mean 
μ is

 f (x) = (1/μ) exp(−x/μ), for x ≥ 0 (3.12)

which has the form shown in Figure 3.3. For this distribution, the standard 
deviation is always equal to the mean μ.
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Figure 3.3
Examples of probability density functions for exponential distributions.
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The main application is as a model for the time until a certain event occurs, 
such as the failure time of an item being tested, the time between the report-
ing of cases of a rare disease, etc.

3.3.2  The Normal or gaussian Distribution

The normal or Gaussian distribution with a mean of μ and a standard devia-
tion of σ has the probability density function

 f (x) = [1/√(2πσ2)] exp[−(x − μ)2/(2σ2)], for −∞ < x < +∞. (3.13)

This distribution is discussed in Section A1.2 of Appendix 1, and the form of 
the probability density function is illustrated in Figure A1.1.

The normal distribution is the default that is often assumed for a distribu-
tion that is known to have a symmetric bell-shaped form, at least roughly. 
It is commonly observed for biological measurements such as the height of 
humans, and it can be shown theoretically (through something called the 
central limit theorem) that the normal distribution will tend to result when-
ever the variable being considered consists of a sum of contributions from 
a number of other distributions. In particular, mean values, totals, and pro-
portions from simple random samples will often be approximately normally 
distributed, which is the basis for the approximate confidence intervals for 
population parameters that have been described in Chapter 2.

3.3.3  The lognormal Distribution

It is a characteristic of the distribution of many environmental variables that 
they are not symmetric like the normal distribution. Instead, there are many 
fairly small values and occasional extremely large values. This can be seen, 
for example, in the measurements of PCB concentrations that are shown in 
Table 2.3.

With many measurements, only positive values can occur, and it turns out 
that the logarithm of the measurements has a normal distribution, at least 
approximately. In that case, the distribution of the original measurements can 
be assumed to be a lognormal distribution, with probability density function

 f (x) = {1/[x√(2πσ2)]} exp{−[loge(x) − μ]2/(2σ2)}, for x > 0 (3.14)

Here μ and σ are, respectively, the mean and standard deviation of the 
natural logarithm of the original measurement. The mean and variance of 
the original measurements are

 E(X) = exp(μ + ½σ2) (3.15)

and

 Var(X) = exp(2μ + σ2)[exp(σ2) – 1] (3.16)
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Figure 3.4 shows some examples of probability density functions for three 
lognormal distributions.

3.4  The Linear Regression Model

Linear regression is one of the most frequently used statistical tools. Its pur-
pose is to relate the values of a single variable Y to one or more other vari-
ables X1, X2, …, Xp in an attempt to account for the variation in Y in terms 
of variation in the other variables. With only one other variable, this is often 
referred to as simple linear regression.

The usual situation is that the data available consist of n observations y1, 
y2, …, yn for the dependent variable Y, with corresponding values for the X 
variables. The model assumed is

 y = β0 + β1x1 + β2x2 + … + βpxp + ε (3.17)

where ε is a random error with a mean of zero and a constant standard devi-
ation σ. The model is estimated by finding the coefficients of the X values 
that make the error sum of squares as small as possible. In other words, if 
the estimated equation is

 ŷ = b0 + b1x1 + b2x2 + … + bpxp (3.18)

then the b values are chosen so as to minimize the sum of squares for error

 SSE = Σ(yi − ŷi)² (3.19)
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Figure 3.4
Examples of lognormal distributions with a mean of 1.0 and standard deviations of 0.5, 1.0, 
and 2.0.
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where the ŷi is the value given by the fitted equation that corresponds to the 
data value yi, and the sum is over the n data values. Statistical packages or 
spreadsheets are readily available to do these calculations.

There are various ways that the usefulness of a fitted regression equation 
can be assessed. One involves partitioning the variation observed in the Y 
values into parts that can be accounted for by the X values, and a part (SSE, 
above) that cannot be accounted for. To this end, the total variation in the Y 
values is measured by the total sum of squares

 SST = Σ(yi − y)2 (3.20)

This is partitioned into the sum of squares for error (SSE) and the sum of 
squares accounted for by the regression (SSR), so that

 SST = SSR + SSE

The proportion of the variation in Y accounted for by the regression equation 
is then the coefficient of multiple determination,

 R2 = SSR/SST = 1 − SSE/SST (3.21)

which is a good indication of the effectiveness of the regression.
There are a variety of inference procedures that can be applied in the mul-

tiple regression situation when the regression errors ε are assumed to be 
independent random variables from a normal distribution with a mean of 
zero and constant variance σ2. A test for whether the fitted equation accounts 
for a significant proportion of the total variation in Y can be based on 
Table 3.1, which is called an analysis-of-variance table because it compares 
the observed variation in Y accounted for by the fitted equation with the 
variation due to random errors. From this table, the F-ratio,

 F = MSR/MSE = (SSR/p)/[SSE/(n − p − 1)] (3.22)

can be tested against the F-distribution with p and n − p − 1 degrees of free-
dom (df) to see if it is significantly large. If this is the case, then there is evi-
dence that Y is related to at least one of the X variables.

Table 3.1

Analysis-of-Variance Table for a Multiple Regression Analysis

Source of 
Variation Sum of Squares

Degrees of 
Freedom (df) Mean Square F-Ratio

Regression SSR p MSR MSR/MSE
Error SSE n – p – 1 MSE

Total SST n – 1
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The estimated regression coefficients can also be tested individually to see 
whether they are significantly different from zero. If this is not the case for 
one of these coefficients, then there is no evidence that Y is related to the 
X variable concerned. The test for whether βj is significantly different from 
zero involves calculating the statistic bj/SÊ(bj), where SÊ(bj) is the estimated 
standard error of bj, which should be output by the computer program used 
to fit the regression equation. This statistic can then be compared with the 
percentage points of the t-distribution with n − p − 1 df. If bj/SÊ(bj) is signifi-
cantly different from zero, then there is evidence that βj is not equal to zero. 
In addition, if the accuracy of the estimate bj is to be assessed, then this can 
be done by calculating a 95% confidence interval for βj as bj ± t5%,n−p−1 bj/SÊ(bj), 
where t5%,n−p−1 is the absolute value that is exceeded with probability 0.05 for 
the t-distribution with n − p − 1 df.

There is sometimes value in considering the variation in Y that is accounted 
for by a variable Xj when this is included in the regression after some of the 
other variables are already in. Thus if the variables X1 to Xp are in the order of 
their importance, then it is useful to successively fit regressions relating Y to 
X1, Y to X1 and X2, and so on up to Y related to all the X variables. The varia-
tion in Y accounted for by Xj after allowing for the effects of the variables X1 
to Xj−1 is then given by the extra sum of squares accounted for by adding Xj to 
the model.

To be more precise, let SSR(X1, X2, …, Xj) denote the regression sum of 
squares with variables X1 to Xj in the equation. Then the extra sum of squares 
accounted for by Xj on top of X1 to Xj−1 is

 SSR(Xj •X1, X2, …, Xj−1) = SSR(X1, X2, …, Xj) − SSR(X1, X2, …, Xj−1). (3.23)

On this basis, the sequential sums of squares shown in Table 3.2 can be 
calculated. In this table, the mean squares are the sums of squares divided 
by their degrees of freedom, and the F-ratios are the mean squares divided by 
the error mean square. A test for the variable Xj being significantly related 

Table 3.2

Analysis-of-Variance Table for the Extra Sums of Squares Accounted for by Variables 
as They Are Added into a Multiple Regression Model One by One

Source of 
Variation Sum of Squares

Degrees of 
Freedom (df) Mean Square F-Ratio

X1 SSR(X1) 1 MSR(X1) F(X1)
X2|X1 SSR(X2|X1) 1 MSR(X2|X1) F(X2|X1)
. . .
. . .
Xp|X1, …, Xp–1 SSR(Xp|X1, …, Xp–1) 1 MSR(Xp|X1, …, Xp–1) F(Xp|X1, …, Xp–1)
Error SSE n – p – 1 MSE

Total SST n – 1
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to Y, after allowing for the effects of the variables X1 to Xj−1, involves seeing 
whether the corresponding F-ratio is significantly large in comparison to the 
F-distribution with 1 and n − p − 1 df.

If the X variables are uncorrelated, then the F-ratios indicated in Table 3.2 
will be the same irrespective of what order the variables are entered into the 
regression. However, usually the X variables are correlated, and the order 
may be of crucial importance. This merely reflects the fact that, with corre-
lated X variables, it is generally only possible to talk about the relationship 
between Y and Xj in terms of which of the other X variables are in the equa-
tion at the same time.

This has been a very brief introduction to the uses of multiple regression. 
It is a tool that is used for a number of applications later in this book. For a 
more detailed discussion, see one of the many books devoted to this topic 
(e.g., Kutner et al. 2004). Some further aspects of the use of this method are 
also considered in the following example.

Example 3.1: Chlorophyll-a in Lakes
The data for this example are part of a larger data set originally pub-
lished by Smith and Shapiro (1981) and also discussed by Dominici et al. 
(1997). The original data set contains 74 cases, where each case consists of 
observations on the concentration of chlorophyll-a, phosphorus, and (in 
most cases) nitrogen in a lake at a certain time. For the present example, 
25 of the cases were randomly selected from those where measurements 
on all three variables are present. This resulted in the values shown in 
Table 3.3.

Chlorophyll-a is a widely used indicator of lake water quality. It is a 
measure of the density of algal cells, and reflects the clarity of the water 
in a lake. High concentrations of chlorophyll-a are associated with high 
algal densities and poor water quality, a condition known as eutrophica-
tion. Phosphorus and nitrogen stimulate algal growth, and high values 
for these chemicals are therefore expected to be associated with high 
chlorophyll-a. The purpose of this example is to illustrate the use of mul-
tiple regression to obtain an equation relating chlorophyll-a to the other 
two variables.

The regression equation

 CH = β0 + β1PH + β2NT + ε (3.24)

was fitted to the data in Table 3.3, where CH denotes chlorophyll-a, PH 
denotes phosphorus, and NT denotes nitrogen. This gave

 CH = −9.386 + 0.333PH + 1.200NT (3.25)

with an R2 value from equation (3.21) of 0.774. The equation was fitted using 
the regression option in a spreadsheet, which also provided estimated 
standard errors for the coefficients of SÊ(b1) = 0.046 and SÊ(b2) = 1.172.
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To test for the significance of the estimated coefficients, the ratios

 b1/SÊ(b1) = 0.333/0.046 = 7.21

and

 b2/SÊ(b2) = 1.200/1.172 = 1.02

must be compared with the t-distribution with n − p − 1 = 25 − 2 − 1 = 
22 df. The probability of obtaining a value as far from zero as 7.21 is 
0.000 to three decimal places, so that there is very strong evidence that 
chlorophyll-a is related to phosphorus. However, the probability of 
obtaining a value as far from zero as 1.02 is 0.317, which is quite large. 
Therefore, there seems to be little evidence that chlorophyll-a is related 
to nitrogen.

This analysis seems straightforward, but there are in fact some prob-
lems with it. These problems are indicated by plots of the regression 

Table 3.3

Values of Chlorophyll-a, Phosphorus, and Nitrogen 
Taken from Various Lakes at Various Times

Case Chlorophyll-a Phosphorus Nitrogen

1 95.0 329.0 8
2 39.0 211.0 6
3 27.0 108.0 11
4 12.9 20.7 16
5 34.8 60.2 9
6 14.9 26.3 17
7 157.0 596.0 4
8 5.1 39.0 13
9 10.6 42.0 11

10 96.0 99.0 16
11 7.2 13.1 25
12 130.0 267.0 17
13 4.7 14.9 18
14 138.0 217.0 11
15 24.8 49.3 12
16 50.0 138.0 10
17 12.7 21.1 22
18 7.4 25.0 16
19 8.6 42.0 10
20 94.0 207.0 11
21 3.9 10.5 25
22 5.0 25.0 22
23 129.0 373.0 8
24 86.0 220.0 12
25 64.0 67.0 19
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residuals, which are the differences between the observed concentra-
tions of chlorophyll-a and the amounts that are predicted by the fitted 
equation (3.25). To show this, it is convenient to use standardized residu-
als, which are the differences between the observed CH values and the 
values predicted from the regression equation, divided by the estimated 
standard deviation of the regression errors.

For a well-fitting model, these standardized residuals will appear 
to be completely random, and should be mostly within the range from 
−2 to +2. No patterns should be apparent when they are plotted against 
the values predicted by the regression equation or the variables being 
used to predict the dependent variable. This is because the standardized 
residuals should approximately equal the error term ε in the regression 
model, but scaled to have a standard deviation of 1.

The standardized residuals are plotted on the left-hand side of 
Figure 3.5 for the regression equation (3.25). There is some suggestion 
that (a) the variation in the residuals increases with the fitted value 
or, at any rate, is relatively low for the smallest fitted values, (b) all the 
residuals are less than zero for lakes with very low phosphorus concen-
trations, and (c) the residuals are low, then tend to be high, and then tend 
to be low again as the nitrogen concentration increases.
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Figure 3.5
(a) Standardized residuals for chlorophyll-a plotted against the fitted value predicted from 
the regression equation (3.25) and against the phosphorus and nitrogen concentrations for 
lakes, and (b) standardized residuals for log(chlorophyll-a) plotted against the fitted value, 
log(phosphorus), and log(nitrogen) for the regression equation (3.27).
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The problem here seems to be the particular form assumed for the 
relationship between chlorophyll-a and the other two variables. It is 
more usual to assume a linear relationship in terms of logarithms, i.e.,

 log(CH) = β0 + β1 log(PH) + β2 log(NT) + ε (3.26)

for the variables being considered (Dominici et al. 1997). Using loga-
rithms to base 10, fitting this equation by multiple regression gives

 log(CH) = −1.860 + 1.238 log(PH) + 0.907 log(NT) (3.27)

The R2 value from equation (3.21) is 0.878, which is substantially higher 
than the value of 0.774 found from fitting equation (3.25). The estimated 
standard errors for the estimated coefficients of log(PH) and log(NT) are 
0.124 and 0.326, respectively, which means that there is strong evidence 
that log(CH) is related to both of these variables (t = 1.238/0.124 = 9.99 
for log(CH), giving p = 0.000 for the t-test with 22 df; t = 0.970/0.326 = 2.78 
for log(NT), giving p = 0.011 for the t-test). Finally, the plots of standard-
ized residuals for equation (3.27) that are shown on the right-hand side 
of Figure 3.5 give little cause for concern.

An analysis of variance is provided for equation (3.27) in Table 3.4. 
This shows that the equation with log(PH) included accounts for a very 
highly significant part of the variation in log(CH). Adding in log(NT) to 
the equation then gives a highly significant improvement.

In summary, a simple linear regression of chlorophyll-a against phospho-
rus and nitrogen does not seem to fit the data altogether properly, although 
it accounts for about 77% of the variation in chlorophyll-a. However, by tak-
ing logarithms of all the variables, a fit with better properties is obtained, 
which accounts for about 88% of the variation in log(chlorophyll-a).

3.5  Factorial Analysis of Variance

The analysis of variance that can be carried out with linear regression is 
very often used in other situations as well, particularly with what are 
called factorial experiments. An important distinction in this connection is 

Table 3.4

Analysis of Variance for Equation (3.27) Showing the Sums  
of Squares Accounted for by log(PH) and log(NT) Added  
into the Equation after log(PH)

Source
Sum of 
Squares

Degrees of 
Freedom (df)

Mean 
Square F-Ratio p-Value

Phosphorus 5.924 1 5.924 150.98 0.0000
Nitrogen 0.303 1 0.303   7.72 0.0110
Error 0.863 22 0.039

Total 7.090 24 0.295
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between variables and factors. A variable is something like the phosphorus 
concentration or nitrogen concentration in lakes, as in the example just con-
sidered. A factor, on the other hand, has a number of levels and, in terms of 
a  regression model, it may be thought plausible that the response variable 
being  considered has a mean level that changes with these levels.

Thus if an experiment is carried out to assess the effect of a toxic chemi-
cal on the survival time of fish, then the survival time might be related by a 
regression model to the dose of the chemical, perhaps at four concentrations, 
which would then be treated as a variable. If the experiment were carried out 
on fish from three sources, or on three different species of fish, then the type 
of fish would be a factor, which could not just be entered as a variable. The 
fish types would be labeled 1 to 3, and what would be required in the regres-
sion equation is that the mean survival time varied with the type of fish.

The type of regression model that could then be considered would be

 Y = β1X1 + β2X2 + β3X3 + β4X4 + ε (3.28)

where Y is the survival time of a fish; Xi for i = 1 to 3 are dummy indicator 
variables such that Xi = 1 if the fish is of type i, or is otherwise 0; and X4 is the 
concentration of the chemical. The effect of this formulation is that, for a fish 
of type 1, the expected survival time with a concentration of X4 is β1 + β4X4, 
for a fish of type 2 the expected survival time with this concentration is β2 + 
β4X4, and for a fish of type 3 the expected survival time with this concentra-
tion is β3 + β4X4. Hence, in this situation, the fish type factor at three levels 
can be allowed for by introducing three 0–1 variables into the regression 
equation and omitting the constant term β0.

Equation (3.28) allows for a factor effect, but only on the expected survival 
time. If the effect of the concentration of the toxic chemical may also vary 
with the type of fish, then the model can be extended to allow for this by 
adding products of the 0–1 variables for the fish type with the concentration 
variable to give

 Y = β1X1 + β2X2 + β3X3 + β4X1X4 + β5X2X4 + β6X3X4 + ε (3.29)

For fish of types 1 to 3, the expected survival times are then β1 + β4X4, 
β2 + β5X4, and β3 + β6X4, respectively. The effect is then a linear relationship 
between the survival time and the concentration of the chemical, which dif-
fers for the three types of fish.

When there is only one factor to be considered in a model, it can be han-
dled reasonably easily by using dummy indicator variables as just described. 
However, with more than one factor, this gets cumbersome, and it is more 
usual to approach modeling from the point of view of a factorial analysis 
of variance. This is based on a number of standard models, and the theory 
can get quite complicated. Nevertheless, the use of analysis of variance in 
practice can be quite straightforward if a statistical package is available to do 
the calculations. A detailed introduction to experimental designs and their 
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corresponding analyses of variance is presented by Mead et al. (2002). Here, 
only three simple situations will be considered.

3.5.1  One-Factor analysis of Variance

With a single factor, the analysis-of-variance model is just a model for com-
paring the means of I samples, where I is 2 or more. This model can be writ-
ten as
 xij = μ + ai + εij (3.30)

where xij is the jth observed value of the variable of interest at the ith factor 
level (i.e., in the ith sample), μ is an overall mean level, ai is the deviation 
from μ for the ith factor level with a1 + a2 + … + aI = 0, and εij is the random 
component of xij, which is assumed to be independent of all other terms in 
the model, with a mean of zero and a constant variance.

To test for an effect of the factor, an analysis-of-variance table is set up, which 
takes the form shown in Table 3.5. Here the sum of squares for the factor is 
just the sum of squares accounted for by allowing the mean level to change 
with the factor level in a regression model, although it is usually computed 
somewhat differently. The F-test requires the assumption that the random 
components εij in the model of equation (3.30) have a normal distribution.

3.5.2  Two-Factor analysis of Variance

With a two-factor situation, there are I levels for one factor (A) and J levels 
for the other factor (B). It is simplest if m observations are taken for each 
combination of levels, which is what will be assumed here. The model can 
be written
 xijk = μ + ai + bj + (ab)ij + εijk (3.31)

where xijk denotes the kth observation at the ith level for factor A and the 
jth level for factor B, μ denotes an overall mean level, ai denotes an effect 

Table 3.5

Form of the Analysis-of-Variance Table for a One-Factor Model, with 
I Levels of the Factor and n Observations in Total

Source of 
Variation Sum of Squaresa

Degrees of 
Freedom (df) Mean Squareb Fc

Factor SSF I – 1 MSF = SSF/(I – 1) MSF/MSE
Error SSE n – I MSE = SSE/(n – I)

Total SST = ∑∑(xij – x)2 n – 1

a SSF = sum of squares between factor levels, SSE = sum of squares for error (variation 
within factor levels), and SST = total sum of squares for which the summation is 
over all observations at all factor levels.

b MSF = mean square between factor levels, and MSE = mean square error.
c The F-value is tested for significance by comparison with critical values for the 

F-distribution with I − 1 and n − I df.
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associated with the ith level of factor A, bj denotes an effect associated with 
the jth level of factor B, (ab)ij denotes an interaction effect so that the mean 
level at a factor combination does not have to be just the sum of the effects of 
the two individual factors, and εijk is the random part of the observation xijk, 
which is assumed to be independent of all other terms in the model, with a 
mean of zero and a constant variance.

Moving from one to two factors introduces the complication of deciding 
whether the factors have what are called fixed or random effects, because 
this can affect the conclusions reached. With a fixed-effects factor, the levels 
of the factor for which data are collected are regarded as all the levels of 
interest. The effects associated with that factor are then defined to add to 
zero. Thus if A has fixed effects, then a1 + a2 + … + aI = 0 and (ab)1j + (ab)2j + … 
+ (ab)Ij = 0, for all j. If, on the contrary, A has random effects, then the values 
a1 to aI are assumed to be random values from a distribution with mean zero 
and variance σ2

A, while (ab)1j to (ab)Ij are assumed to be random values from a 
distribution with mean zero and variance σ2

AB.
An example of a fixed effect is when an experiment is run with low, 

medium, and high levels for the amount of a chemical, because in such a 
case the levels can hardly be thought of as a random choice from a popula-
tion of possible levels. An example of a random effect is when one of the fac-
tors in an experiment is the brood of animals tested, where these broods are 
randomly chosen from a large population of possible broods. In this case, the 
brood effects observed in the data will be random values from the distribu-
tion of brood effects that are possible.

The distinction between fixed and random effects is important because 
the way that the significance of factor effects is determined depends on what 
is assumed about these effects. Some statistical packages allow the user to 
choose which effects are fixed and which are random, and carries out tests 
based on this choice. The default is usually fixed effects for all factors, in 
which case the analysis-of-variance table is as shown in Table 3.6.

Table 3.6

Form of the Analysis-of-Variance Table for a Two-Factor Model with Fixed Effects, 
and with I Levels for Factor A, J Levels for Factor B, m Observations for Each 
Combination of Factor Levels, and n = IJm Observations in Total

Source of 
Variation Sum of Squaresa

Degrees of 
Freedom (df) Mean Square Fb

Factor A SSA I – 1 MSA = SSA/(I – 1) MSA/MSE
Factor B SSB J – 1 MSB = SSB/(J – 1) MSB/MSE
Interaction SSAB (I – 1)(J – 1) MSAB =  

SSAB/[(I – 1)(J – 1)]
MSAB/MSE

Error SSE IJ(m – 1) MSE = SSE/[IJ(m – 1)]

Total SST = ∑∑∑((xijk – x)2 n – 1

a The sum for SST is over all levels for i, j, and k, i.e., over all n observations.
b The F-ratios for the factors are for fixed effects only.
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If there is only m = 1 observation for each factor combination, then the error 
sum of squares shown in Table 3.6 cannot be calculated. In that case, it is 
usual to assume that there is no interaction between the two factors, in which 
case the interaction sum of squares becomes an error sum of squares, and 
the factor effects are tested using F-ratios that are the factor mean squares 
divided by this error sum of squares.

3.5.3  Three-Factor analysis of Variance

With three factors with levels I, J, and K and m observations for each factor 
combination, the analysis of variance model becomes

 xijku = ai + bj + ck + (ab)ij + (ac)ik + (bc)jk + (abc)ijk + εijku (3.32)

where xijku is the uth observation for level i of factor A, level j of factor B, and 
level k of factor C; ai, bj, and ck are the main effects of the three factors; (ab)ij, 
(ac)ik, and (bc)jk are terms that allow for first-order interactions between pairs 
of factors; (abc)ijk allows for a three-factor interaction (where the mean for a 
factor combination is not just the sum of the factor and first-order interaction 
effects); and εijku is a random component of the observation, independent of 
all other terms in the model, with a mean of zero and a constant variance.

The analysis-of-variance table generalizes in an obvious way in moving 
from two to three factors. There are now sums of squares, mean squares, and 
F-ratios for each of the factors, the two-factor interactions, the three-factor 
interaction, and the error term, as shown in Table 3.7. This table is for all 
effects fixed. With one or more random effects, some of the F-ratios must be 
computed differently.

Example 3.2: Survival of Trout in a Metals Mixture
This example concerns part of the results from a series of experiments 
conducted by Marr et al. (1995) to compare the survival of naive and 
metals-acclimated juvenile brown trout (Salmo trutta) and rainbow trout 
(Oncorhynchus mykiss) when exposed to a metals mixture with the maxi-
mum concentrations found in the Clark Fork River, Montana.

In the trials, called Challenge 1, there were three groups of fish 
(hatchery brown trout, hatchery rainbow trout, and Clark Fork River 
brown trout). Approximately half of each group (randomly selected) 
were controls that were kept in clean water for three weeks before being 
transferred to the metals mixture. The other fish in each group were 
acclimated for three weeks in a weak solution of metals before being 
transferred to the stronger mixture. All fish survived the initial three-
week period, and an outcome variable of interest was the survival time 
of the fish in the stronger mixture. The results from the trials are shown 
in Table 3.8.

The results from this experiment can be analyzed using the two- factor 
analysis-of-variance model. The first factor is the type of fish, which is 
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at three levels (two types of brown trout and one type of  rainbow trout). 
This is a fixed-effects factor because no other types of fish are being 
considered. The second factor is the treatment, which is at two levels 
( control and acclimated). Again, this is a fixed-effects factor because 
no other treatments are being considered. A slight complication is the 
unequal numbers of fish at the different factor combinations. However, 
many statistical packages can allow for this reasonably easily. The analy-
sis presented here was carried out with the general linear model option 
in MINITAB (Minitab 2008).

A second complication is the increase in the variation in the survival 
time as the mean increases. It can be seen, for example, that the lowest 
mean survival time shown in Table 3.8 (21.53 h) is for control hatchery 
brown trout. This group also has the lowest standard deviation (4.72 h). 
This can be compared with the highest mean survival time (69.00 h) for 
acclimated Clark Fork River brown trout, which also has the highest 
standard deviation (35.25 h). It seems, therefore, that the assumption of 
a constant variance for the random component in the model presented 
in equation (3.31) is questionable. This problem can be overcome for this 
example by analyzing the logarithm of the survival time rather than 
the survival time itself. This largely removes the apparent relationship 
between means and variances.

The analysis of variance is shown in Table 3.9 for logarithms to base 
10. Starting from a model with no effects, adding the species factor gives 

Table 3.7

Form of the Analysis-of-Variance Table for a Three-Factor Model with Fixed Effects

Source of 
Variation

Sum of 
Squaresa

Degrees of 
Freedom (df) Mean Square Fb

Factor A SSA I – 1 MSA = SSA/(I – 1) MSA/MSE
Factor B SSB J – 1 MSB = SSB/(J – 1) MSB/MSE
Factor C SSC K – 1 MSC = SSC/(K – 1) MSC/MSE
AB interaction SSAB (I – 1)(J – 1) MSAB =  

SSAB/[(I – 1)(J – 1)]
MSAB/MSE

AC interaction SSAC (I – 1)(K – 1) MSAC =  
SSAC/[(I – 1)(K – 1)]

MSAC/MSE

BC interaction SSBC (J – 1)(K – 1) MSBC =  
SSBC/[(J – 1)(K – 1)]

MSBC/MSE

ABC interaction SSABC (I – 1)(J – 1)
(K – 1)

MSABC =  
SSABC/[(I – 1)(J – 1)(K – 1)]

MSABC/MSE

Error SSE IJK(m – 1) MSE =  
SSE/[IJK(m – 1)]

Total SST = 
∑∑∑∑(xijk – x)2

n – 1

Note: I Levels for factor A, J Levels for factor B, K Levels for factor C, m observations for each 
combination of factor levels, and n = IJMm observations in total

a The sum for SST is over all levels for i, j , k, and m, i.e., over all n observations.
b The F-ratios for the factors and two-factor interactions are for fixed effects only.
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Table 3.8

Results from Challenge 1 Experiment, Where the Effect of an Acclimatization 
Treatment on Survival Was Examined for Three Types of Fish

Survival Time (h)

Hatchery Brown Trout Hatchery Rainbow Trout Clark Fork Brown Trout

Control Treated Control Treated Control Treated

 8 10 24 54 30  36
18 60 24 48 30  30
24 60 24 48 30  30
24 60 24 54 36  30
24 54 24 54 30  36
24 72 24 36 36  30
18 54 24 30 36  42
18 30 24 18 24  54
24 36 24 48 36  30
18 48 24 36 36  48
10 48 24 24 36  24
24 42 18 24 30  54
24 54 18 48 18  54
24 10 24 48 30  36
10 66 30 36 24  30
18 42 30 42 30  90
24 36 30 36 24  60
24 42 30 36 30  66
24 36 36 42 42 108
24 36 30 36 42 114
24 36 30 36 24 108
24 36 30 36 10 114
24 36 30 36 24 120
24 36 30 42 24  90
24 30 36 42 24  96
24 30 36 36 36  30
24 36 36 36 24 108
24 30 36 36 30 108
24 36 36 36 18 108
24 36 36 24 102

102
120

n 30 30 30 29 30  32
Mean 21.53 41.27 28.20 39.10 28.93 69.00

Std. Dev.  4.72 14.33  5.49  8.87  7.23 35.25

Source: Marr et al. (1995).
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a very highly significant improvement in the fit of the model (F = 17.20, 
p = 0.000). Adding the main effect of treatment leads to another very 
highly significant improvement in fit (F = 108.39, p = 0.000). Finally, add-
ing in the interaction gives a highly significant improvement in the fit 
of the model (F = 5.72, p = 0.004). It can therefore be concluded that the 
mean value of the logarithm of the survival time varies with the species 
and with the acclimation treatment. Also, because of the interaction that 
seems to be present, the effect of the acclimation treatment is not the 
same for all three types of fish.

On a logarithmic scale, a treatment has no interaction when the pro-
portional change that it causes is constant. For the Challenge 1 trials, the 
interaction is significant because the effect of acclimation varies consid-
erably with the three types of fish. For hatchery brown trout, the mean 
survival time for acclimated fish (41.3 h) was 92% higher than the 
mean survival time for the controls (21.5 h); for hatchery rainbow trout, 
the mean survival time for acclimated fish (39.1 h) was 39% higher than 
the mean survival time for the controls (28.2 h); and for Clark Fork River 
brown trout the mean survival time for the acclimated fish (69.0 h) was 
139% higher than the mean survival time for the controls (28.9 h). The 
proportional changes are therefore very far from being constant.

The assumptions of the analysis-of-variance model seem fairly rea-
sonable for this example after the survival times are transformed to log-
arithms, as can be seen from the plots of standardized residuals that are 
shown in Figure 3.6. For a good fitting model, most of the standardized 
residuals should be within the range −2 to +2, which they are. There are, 
however, some standardized residuals less than −2, and one of nearly 
−4. There is also a suggestion that the amount of variation is relatively 
low for fish with a small expected survival time, the second type of fish 
(hatchery rainbow trout), and treatment 1 (the controls). These effects are 
not clear enough to cause much concern.

Table 3.9

Analysis of Variance on Logarithms to Base 10 of the Daily Survival 
Times Shown in Table 3.8

Source of 
Variation

Sum of 
Squaresa

Degrees of 
Freedom (df) Mean Square F p-Value

Species 0.863   2 0.431  17.20 0.000
Treatment 2.719   1 2.719 108.39 0.000
Interaction 0.287   2 0.143   5.72 0.004
Error 4.389 175 0.025

Total 8.257 180

a The sums of squares shown here depend on the order in which effects are 
added into the model, which is species, then the treatment, and finally the 
interaction between these two factors.
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3.5.4  repeated-Measures Designs

Many environmental data sets have a repeated-measures type of design. 
An example would be vegetation monitoring to assess the effect of alterna-
tive control strategies on browsing pests, such as possums in New Zealand. 
There might, for example, be three areas: one with no pest control, one with 
some pest control, and one with intensive pest control. Within each area, four 
randomly placed plots might be set up, and then the percentage foliage cover 
measured for six years on those plots. This would then result in data of the 
form shown in Table 3.10.

In this example, the area is a between-plot factor at three levels, and the 
year is a within-plot factor. There is a special option in many statistics pack-
ages to analyze data of this type, and there can be more than one between-
plot factor, and more than one within-plot factor. A set of data like that 
shown in Table 3.10 should not be analyzed as a factorial design with three 
factors (area, year, and plot), because that assumes that the plots in differ-
ent areas match up, e.g., plot 1 in areas 1, 2, and 3 have something similar 
about them, which will generally not be true. Rather, the numbering of plots 
within areas will be arbitrary, which is sometimes referred to as plots being 
nested within areas. On the other hand, a repeated-measures analysis of 
variance does assume that the measurements at different times on one plot 
in one area tend to be similar. Thus it is one way of overcoming the problem 
of pseudoreplication, which is discussed further in Section 4.8.

An important special application of repeated-measures analysis of vari-
ance is with the before–after-control-impact (BACI) and other designs that 
are discussed in Chapter 6. In this case, there may be a group of sites that 
are controls, with no potential impact, and another group of sites that are 
potentially impacted. Repeated observations are made on the sites at differ-
ent times over the study period, and at some point in time there is an event 
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Plots of standardized residuals against fitted values, the type of fish, and the treatment from 
the analysis of variance model for the logarithm of survival times from Marr et al.’s (1995) 
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at the sites that may be impacted. The question then is whether the event has 
a detectable effect on the observations at the impact sites.

The analysis of designs with repeated measures can be quite complicated, 
and it is important to make the right assumptions (Von Ende 1993). This is 
one area where expert advice may need to be sought.

3.5.5  Multiple Comparisons and Contrasts

Many statistical packages for analysis of variance allow the user to make 
comparisons of the mean level of the dependent variable for different fac-
tor combinations, with the number of multiple comparisons being allowed 
for in various ways. Multiple testing methods are discussed further in Sec-
tion 4.9. Basically, they are a way to ensure that the number of significant 
results is controlled when a number of tests of significance are carried out 
at the same time, with all the null hypotheses being true. Or, alternatively, 
the same methods can be used to ensure that when a number of confidence 
intervals are calculated at the same time, then they will all contain the true 
parameter value with a high probability.

There are often many options available with statistical packages, and 
the help facility with the package should be read carefully before deciding 
which, if any, of these to use. The use of a Bonferroni correction is one pos-
sibility that is straightforward and usually available, although this may not 
have the power of other methods.

Be warned that some statisticians do not like multiple comparison meth-
ods. To quote one leading expert on the design and analysis of experiments 
(Mead 1988, p. 310):

Table 3.10

The Form of Data from a Repeated-Measures Experiment with Four Plots 
in Each of Three Different Treatment Areas Measured for Six Years

Area Plot Year 1 Year 2 Year 3 Year 4 Year 5 Year 6

No pest control 1 X X X X X X
2 X X X X X X
3 X X X X X X
4 X X X X X X

Low pest control 1 X X X X X X
2 X X X X X X
3 X X X X X X
4 X X X X X X

High pest control 1 X X X X X X
2 X X X X X X
3 X X X X X X
4 X X X X X X

Note: A measurement of percentage foliage cover is indicated by X.
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Although each of these methods for multiple comparisons was devel-
oped for a particular, usually very limited, situation, in practice these 
methods are used very widely with no apparent thought as to their 
appropriateness. For many experimenters, and even editors of journals, 
they have become automatic in the less desirable sense of being used 
as a substitute for thought.… I recommend strongly that multiple com-
parison methods be avoided unless, after some thought and identifying 
the situation for which the test you are considering was proposed, you 
decide that the method is exactly appropriate.

He goes on to suggest that simple graphs of means against factor levels will 
often be much more informative than multiple comparison tests.

On the other hand, Mead (1988) does make use of contrasts for interpret-
ing experimental results, where these are linear combinations of mean values 
that reflect some aspect of the data that is of particular interest. For example, 
if observations are available for several years, then one contrast might be the 
mean value in year 1 compared with the mean value for all other years com-
bined. Alternatively, a set of contrasts might be based on comparing each of the 
other years with year 1. Statistical packages often offer the possibility of con-
sidering either a standard set of contrasts, or contrasts defined by the user.

3.6  Generalized Linear Models

The regression and analysis-of-variance models described in the previous 
two sections can be considered to be special cases of a general class of gen-
eralized linear models. These were first defined by Nelder and Wedderburn 
(1972), and include many of the regression types of models that are likely to 
be of most use for analyzing environmental data. A very thorough descrip-
tion of the models and the theory behind them is provided by McCullagh 
and Nelder (1989).

The characteristic of generalized linear models is that there is a dependent 
variable Y, which is related to some other variables X1, X2, …, Xp by an equa-
tion of the form
 Y = f (β0 + β1X1 + β2X2 + … + βpXp) + ε (3.33)

where f (x) is one of a number of allowed functions, and ε is a random value 
with a mean of zero from one of a number of allowed distributions. For 
example, setting f (x) = x and assuming a normal distribution for ε just gives 
the usual multiple regression model of equation (3.17).

Setting f(x) = exp(x) makes the expected value of Y equal to

 E(Y) = exp(β0 + β1X1 + β2X2 + … + βpXp) (3.34)
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Assuming that Y has a Poisson distribution then gives a log-linear model, 
which is a popular assumption for analyzing count data. The description 
log-linear comes about because the logarithm of the expected value of Y is a 
linear combination of the X variables.

Alternatively, setting f (x) = exp(x)/[1 + exp(x)] makes the expected value of 
Y equal to

 E(Y) = exp(β0 + β1X1 + … + βpXp)/[1 + exp(β0 + β1X1 + … + βpXp)] (3.35)

This is the logistic model for a random variable Y that takes the value 0 (indi-
cating the absence of an event) or 1 (indicating that an event occurs), where 
the probability of Y = 1 is given as a function of the X variables by the right-
hand side of equation (3.35).

There are many other possibilities for modeling within this framework 
using many of the standard statistical packages currently available. Table 3.11 
gives a summary of the most common models that are used.

Generalized linear models are usually fitted to data using the principle 
of maximum likelihood, i.e., the unknown parameter values are estimated 
as those values that make the probability of the observed data as large as 
possible. This principle is one that is often used in statistics for estimation. 
Here it is merely noted that the goodness of fit of a model is measured by 
the deviance, which is (apart from a constant) minus twice the maximized 
log-likelihood, with associated degrees of freedom equal to the number of 
observations minus the number of estimated parameters.

With models for count data with Poisson errors, the deviance gives a direct 
measure of absolute goodness of fit. If the deviance is significantly large in 
comparison with critical values from the chi-squared distribution, then the 
model is a poor fit to the data. Conversely, a deviance that is not significantly 
large shows that the model is a good fit. Similarly, with data consisting of 
proportions with binomial errors, the deviance is an absolute measure of the 
goodness of fit when compared with the chi-squared distribution, provided 
that the numbers of trials that the proportions relate to (n in Table 3.11) are 
not too small, say, generally more than five.

With data from distributions other than the Poisson or binomial, or for 
binomial data with small numbers of trials, the deviance can only be used 
as a relative measure of goodness of fit. The key result then is that—if one 
model has a deviance of D1 with ν1 df and another model has a deviance of 
D2 with ν2 df, and the first model contains all of the parameters in the second 
model plus some others—then the first model gives a significantly better fit 
than the second model if the difference D2 − D1 is significantly large in com-
parison with the chi-squared distribution with ν2 − ν1 df. Comparing several 
models in this way is called an analysis of deviance by analogy to the analy-
sis of variance. These tests using deviances are approximate, but they should 
give reasonable results, except perhaps with rather small sets of data.
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The individual estimates in a generalized linear model can also be tested 
to see whether they are significantly different from zero. This just involves 
comparing the estimate divided by its estimated standard error,

 z = b/SÊ(b)

with critical values for the standard normal distribution. Thus if the absolute 
value of z exceeds 1.96, then the estimate is significantly different from zero 
at about the 5% level.

One complication that can occur with some generalized linear models is 
overdispersion, with the differences between the observed and fitted values 
of the dependent variable being much larger than what is expected from 
the assumed error distribution. There are ways of handling this should it 
arise. For more information on this and other aspects of these models, see 
McCullagh and Nelder (1989) or Dobson (2001).

Example 3.3: Dolphin Bycatch in Trawl Fisheries
The accidental capture of marine mammals and birds in commercial 
fishing operations is of considerable concern in many fisheries around 
the world. This example concerns one such situation, which is of catches 
of the common dolphin (Delphinus delphis) and the bottlenose dolphin 
(Tursiops truncatus) in the Taranaki Bight trawl fishery for jack mackerel 
(Trachurus declivis, T. novaezelandiae, and T. murphyi) off the west coast of 
New Zealand.

The New Zealand Ministry of Fisheries puts official observers on 
a sample of fishing vessels to monitor dolphin bycatch, and Table 3.12 
shows a summary of the data collected by these observers for the six 
fishing seasons 1989/90 to 1994/95, as originally published by Baird 
(1996, Table 3). The table shows the number of observed trawls and the 
number of dolphins accidentally killed, categorized by up to eight con-
ditions for each fishing year. These are the fishing area (the northern or 
southern Taranaki Bight), the gear type (bottom or midwater), and the 
time (day or night). Excluding five cases where there were no observed 
trawls, this gives 43 observations on the bycatch under different condi-
tions, in different years. Some results from fitting a generalized linear 
model to these data are also shown in the last two columns of the table.

The data in Table 3.12 will be used here to examine how the amount of 
bycatch varies with the factors recorded (year, area, gear type, and time 
of day). Because the dependent variable (the number of dolphins killed) 
is a count, it is reasonable to try fitting the data using a log-linear model 
with Poisson errors. A simple model of that type for the ith count is

 Yi = Ti exp[α( fi) + β1Xi1 + β2Xi2 + β3Xi3] + εi (3.36)

where Ti is the number of tows involved; α( fi) depends on the fishing 
year fi when the observation was collected in such a way that α( fi) = 
α(1) for observations in 1989/90, α( fi) = α(2) for observations in 1990/91, 
and so on up to α( fi) = α(6) for observations in 1994/95; Xi1 is 0 for North 
Taranaki and 1 for South Taranaki; Xi2 is 0 for bottom trawls and 1 for 
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Table 3.12

Bycatch of Dolphins in the Taranaki Bight Trawl Fishery for Jack 
Mackerel on Tows Officially Observed

Season Area
Gear 
Type Time Tows

Dolphins Killed

Observed Fitted Ratea

1989/90 North Bottom Day 48 0 0.0 0.1
North Bottom Night 6 0 0.0 0.6
North Midwater Night 1 0 0.0 3.9
South Bottom Day 139 0 0.6 0.4
South Midwater Day 6 0 0.2 2.8
South Bottom Night 6 0 0.2 3.6
South Midwater Night 90 23 21.9 24.4

1990/91 North Bottom Day 2 0 0.0 0.0
South Bottom Day 47 0 0.0 0.0
South Midwater Day 110 0 0.0 0.0
South Bottom Night 12 0 0.0 0.0
South Midwater Night 73 0 0.0 0.0

1991/92 North Bottom Day 101 0 0.4 0.4
North Midwater Day 4 0 0.1 2.8
North Bottom Night 36 2 1.3 3.6
North Midwater Night 3 5 0.7 24.3
South Bottom Day 74 1 1.9 2.5
South Midwater Day 3 0 0.5 17.1
South Bottom Night 7 5 1.5 22.1
South Midwater Night 15 16 22.6 150.4

1992/93 North Bottom Day 135 0 0.1 0.1
North Midwater Day 3 0 0.0 0.5
North Bottom Night 22 0 0.1 0.6
North Midwater Night 16 0 0.7 4.2
South Bottom Day 112 0 0.5 0.4
South Bottom Night 6 0 0.2 3.9
South Midwater Night 28 9 7.4 26.3

1993/94 North Bottom Day 78 0 0.0 0.0
North Midwater Day 19 0 0.0 0.2
North Bottom Night 13 0 0.0 0.2
North Midwater Night 28 0 0.4 1.6
South Bottom Day 155 0 0.2 0.2
South Midwater Day 20 0 0.2 1.1
South Bottom Night 14 0 0.2 1.4
South Midwater Night 71 8 6.8 9.6

1994/95 North Bottom Day 17 0 0.0 0.1
North Midwater Day 80 0 0.3 0.4
North Bottom Night 9 0 0.0 0.5
North Midwater Night 74 0 2.5 3.4
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midwater trawls; and Xi3 is 0 for day and 1 for night. The fishing year 
is then being treated as a factor at six levels while the three X variables 
indicate the absence and presence of different particular conditions. The 
number of trawls is included as a multiplying factor in equation (3.36) 
because, other things being equal, the amount of bycatch is expected 
to be proportional to the number of trawls made. Such a multiplying fac-
tor is called an offset in the model.

The model was fitted using GenStat (Lawes Agricultural Trust 2007) 
to produce the estimates that are shown in Table 3.13. The estimates for 
the effects of different years are not easy to interpret because their esti-
mated standard errors are quite large. Nevertheless, there are significant 
differences between years, as will be seen from the analysis of deviance 
to be considered shortly. The main thing to notice in this respect is the 
absence of any recorded bycatch in 1990/91.

The coefficient of X1, the area effect, is 1.822, with standard error 
0.411. This estimate is very highly significantly different from zero 

Table 3.13

Estimates from Fitting a Log-Linear Model to the Dolphin 
Bycatch Data

Parameter Estimate Standard Error

α(1), year effect 1989/90 –7.328  0.590

α(2), year effect 1990/91 –17.520 21.380

α(3), year effect 1991/92 –5.509  0.537

α(4), year effect 1992/93 –7.254  0.612

α(5), year effect 1993/94 –8.260  0.636

α(6), year effect 1994/95 –7.463  0.551
Area effect (south vs. north) 1.822  0.411
Gear effect (midwater vs. bottom) 1.918  0.443
Time effect (night vs. day) 2.177  0.451

Table 3.12 (continued)

Bycatch of Dolphins in the Taranaki Bight Trawl Fishery for Jack 
Mackerel on Tows Officially Observed

Season Area
Gear 
Type Time Tows

Dolphins Killed

Observed Fitted Ratea

South Bottom Day 41 0 0.1 0.4
South Midwater Day 73 6 1.8 2.4
South Bottom Night 13 0 0.4 3.1
South Midwater Night 74 15 15.8 21.3

a Dolphins expected to be captured per 100 tows according to the fitted model.
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(z = 1.822/0.411 = 4.44, p = 0.000 compared with the standard normal 
distribution). The positive coefficient indicates that bycatch was higher 
in South Taranaki than in North Taranaki. Other things being equal, 
the estimated rate in the south is exp(1.822) = 6.18 times higher than the 
estimated rate in the north.

The estimated coefficient of X2, the gear-type effect, is 1.918 with standard 
error 0.443. This is very highly significantly different from zero (z = 4.33, p = 
0.000). The estimated coefficient implies that the bycatch rate is exp(1.918) = 
6.81 times higher for midwater trawls than it is for bottom trawls.

The estimated coefficient for X3, the time of fishing, is 2.177 with stan-
dard error 0.451. This is another highly significant result (z = 4.82, p = 
0.000), implying that, other things being equal, the bycatch rate at night 
is exp(2.177) = 8.82 higher than it is during the day.

Table 3.14 shows the analysis-of-deviance table obtained by adding 
effects into the model one at a time. All effects are highly significant in 
terms of the reduction in the deviance that is obtained by adding them 
into the model, and the final model gives a good fit to the data (chi-
squared = 42.07 with 34 df, p = 0.161).

Finally, the last two columns of Table 3.12 show the expected counts of 
dolphin deaths to compare with the observed counts, and the expected 
number of deaths per 100 tows. The expected number of deaths per 
100 tows is usually fairly low, but has the very large value of 150.4 for 
midwater tows, at night, in South Taranaki, in 1991/92. In summary, it 
seems clear that bycatch rates seem to have varied greatly with all of the 
factors considered in this example.

Table 3.14

Analysis of Deviance for the Log-Linear 
Model Fitted to the Dolphin Bycatch Data

Effect Deviance df

Change

Deviance df

No effects 334.33a 42
58.48b 5

+ Year 275.85a 37
60.71b 1

+ Area 215.14a 36
139.16b 1

+ Gear type 75.98a 35
33.91b 1

+ Time 42.07 34
a Significantly large at the 0.1% level, indicating 

that the model gives a poor fit to the data.
b Significantly large at the 0.1% level, indicating 

that bycatch is very strongly related to the effect 
added to the model.
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3.7  Chapter Summary

Statistical models describe observations on variables in terms of param-•	
eters of distributions and the nature of the random variation involved.
The properties of discrete random variables are briefly described, •	
including definitions of the mean and the variance. The hyper-
geometric, binomial, and Poisson distributions are described.
The properties of continuous random variables are briefly described, •	
including definitions of a probability density function, the mean, 
and the variance. The exponential, normal, and lognormal distribu-
tions are described.
The theory of linear regression is summarized as a way of relating •	
the values of a variable Y to the corresponding values of some other 
variables X1, X2, …, Xp. The coefficient of multiple determination, R2, 
is defined. Tests for the significance of relationships and the use of 
analysis of variance with regression are described.
The use of multiple regression is illustrated using an example where •	
chlorophyll-a concentrations are predicted from phosphorus and 
nitrogen concentrations in lakes.
The difference between factors and variables is described. The mod-•	
els for one-, two-, and three-factor analysis of variance are defined, 
together with their associated analysis-of-variance tables.
A two-factor example on the survival time of fish is used to illustrate •	
analysis of variance, where the two factors are the type of fish and 
the treatment before the fish were kept in a mixture of toxic metals.
The structure of data for a repeated-measures analysis of variance •	
is defined.
The use of multiple testing methods for comparing means after anal-•	
ysis of variance is briefly discussed, as is the fact that these methods 
are not approved of by all statisticians. The use of contrasts is also 
discussed briefly.
The structure of generalized linear models is defined. Tests for good-•	
ness of fit, and for the existence of effects based on the comparison 
of deviances with critical values of the chi-squared distribution, are 
described, as are tests for the significance of the coefficients of indi-
vidual X variables.
The use of a generalized linear model is illustrated by an example •	
where the number of dolphins accidentally killed during commer-
cial fishing operations is related to the year of fishing, the type of 
fishing gear used, and the time of day of fishing. A log-linear model, 
with the number of dolphins killed assumed to have a Poisson dis-
tribution, is found to give a good fit to the data.
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Exercises

Exercise 3.1
At the start of the chapter the hypergeometric, binomial, Poisson, normal, 
and lognormal distributions are described, with examples of where each 
might be used. Give one further environmental example where each dis-
tribution would likely be appropriate for data.

Exercise 3.2
The data in Table 3.15 data come from a study by Green (1973). These 
data show four soil variables (X1 to X4) and one vegetation variable (Y), 
where the variables are X1 = % soil with constant lime enrichment, X2 = 
% meadow soil with calcium groundwater, X3 = % soil with coral bed-
rock under conditions of constant lime enrichment, X4 = % alluvial and 
organic soils adjacent to rivers and saline organic soil at the coast, and 
Y = % deciduous seasonal broadleaf forest. The sample units for this 
study were 2.5 × 2.5-km plots in the Corozal District of Belize in Central 
America. Use multiple regression to relate Y to the X variables. Plot Y 
against each of the X variables and determine whether the relationships, 
if any, appear to be linear. If they are linear, then a regression of the 
form

 Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + e

can be fitted. Otherwise, modify this equation as appropriate. For exam-
ple, you might decide that the relationship with one of the variables does 
not seem to be linear, so you might decide to relate Y to both X and X2. 
Fit the equation that you have selected using any statistical package that 
is available to you, or in a spreadsheet. Produce residual plots to test 
assumptions. Remove any X variables from the equation if they do not 
appear to be related to Y. Clearly state your conclusions from this analy-
sis about the extent that the amount of deciduous seasonal broadleaf for-
est can be predicted by the soil characteristics.

Exercise 3.3
Table 1.1 shows data from Norwegian lakes on SO4 concentrations (mg/L) 
as well as other variables. Carry out a two-factor analysis of variance on 
the SO4 data and report your conclusions concerning (a) whether there 
was any change from year to year and (b) whether the assumptions of the 
analysis of variance model are reasonable. For (b), residual plots should 
be examined. You can, for example, plot the residuals against latitudes 
and longitudes. An important question concerns whether the residuals 
from the fitted model show correlation in time or space. If they do, then 
a simple two-factor analysis of variance is not appropriate for the data. 
Note that this is a two-factor analysis of variance with some missing 
data for some lakes in some years. This can be handled by some statisti-
cal packages under what may be referred to as a general linear model 
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Table 3.15

Soil and Vegetation Data for 2.5 × 2.5-km Plots in the Corozal District  
of Belize in Central America

Case X1 X2 X3 X4 Y Case X1 X2 X3 X4 Y

1 40 30 0 30 0 77 30 0 0 50 0
2 20 0 0 10 10 78 50 10 0 30 5
3 5 0 0 50 20 79 100 0 0 0 60
4 30 0 0 30 0 80 50 0 0 50 20
5 40 20 0 20 0 81 10 0 0 90 0
6 60 0 0 5 0 82 30 30 0 20 0
7 90 0 0 10 0 83 20 20 0 20 0
8 100 0 0 0 20 84 90 0 0 0 50
9 0 0 0 10 40 85 30 0 0 0 30

10 15 0 0 20 25 86 20 30 0 50 20
11 20 0 0 10 5 87 50 30 0 10 50
12 0 0 0 50 5 88 80 0 0 0 70
13 10 0 0 30 30 89 80 0 0 0 50
14 40 0 0 20 50 90 60 10 0 25 80
15 10 0 0 40 80 91 50 0 0 0 75
16 60 0 0 0 100 92 70 0 0 0 75
17 45 0 0 0 5 93 100 0 0 0 85
18 100 0 0 0 100 94 60 30 0 0 40
19 20 0 0 0 20 95 80 20 0 0 50
20 0 0 0 60 0 96 100 0 0 0 100
21 0 0 0 80 0 97 100 0 0 0 95
22 0 0 0 50 0 98 0 0 0 60 0
23 30 10 0 60 0 99 30 20 0 30 0
24 0 0 0 50 0 100 15 0 0 35 20
25 50 20 0 30 0 101 40 0 0 45 70
26 5 15 0 80 0 102 30 0 0 45 20
27 60 40 0 0 10 103 60 10 0 30 10
28 60 40 0 0 50 104 40 20 0 40 0
29 94 5 0 0 90 105 100 0 0 0 70
30 80 0 0 20 0 106 100 0 0 0 40
31 50 50 0 0 25 107 80 10 0 10 40
32 10 40 50 0 75 108 90 0 0 10 10
33 12 12 75 0 10 109 100 0 0 0 20
34 50 50 0 0 15 110 30 50 0 20 10
35 50 40 10 0 80 111 60 40 0 0 50
36 0 0 100 0 100 112 100 0 0 0 80
37 0 0 100 0 100 113 60 0 0 40 60
38 70 30 0 0 50 114 50 50 0 0 0
39 40 40 20 0 50 115 60 30 0 10 25
40 0 0 100 0 100 116 40 0 0 60 30
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Table 3.15 (continued)

Soil and Vegetation Data for 2.5 × 2.5-km Plots in the Corozal District  
of Belize in Central America

Case X1 X2 X3 X4 Y Case X1 X2 X3 X4 Y

41 25 25 50 0 100 117 30 0 0 70 0
42 40 40 0 20 80 118 50 20 0 30 0
43 90 0 0 10 100 119 50 50 0 0 25
44 100 0 0 0 100 120 90 10 0 0 50
45 100 0 0 0 90 121 100 0 0 0 60
46 10 0 0 90 100 122 50 0 0 50 70
47 80 0 0 20 100 123 10 10 0 80 0
48 60 0 0 30 80 124 50 50 0 0 30
49 40 0 0 0 0 125 75 0 0 25 80
50 50 0 0 50 100 126 40 0 0 60 0
51 50 0 0 0 40 127 90 10 0 10 75
52 30 30 0 20 30 128 45 45 0 55 30
53 20 20 0 40 0 129 20 35 0 80 10
54 20 80 0 0 0 130 80 0 0 20 70
55 0 10 0 60 0 131 100 0 0 0 90
56 0 50 0 30 0 132 75 0 0 25 50
57 50 50 0 0 30 133 60 5 0 40 50
58 0 0 0 60 0 134 40 0 0 60 60
59 20 20 0 60 0 135 60 0 0 40 70
60 90 10 0 0 70 136 90 10 0 10 75
61 100 0 0 0 100 137 50 0 5 0 30
62 15 15 0 30 0 138 70 0 30 0 70
63 100 0 0 0 25 139 60 0 40 0 100
64 95 0 0 5 90 140 50 0 0 0 50
65 95 0 0 5 90 141 30 0 50 0 60
66 60 40 0 0 50 142 5 0 95 0 80
67 30 60 10 10 50 143 10 0 90 0 70
68 50 0 50 50 100 144 50 0 0 0 15
69 60 30 0 10 60 145 20 0 80 0 50
70 90 8 0 2 80 146 0 0 100 0 90
71 30 30 30 40 60 147 0 0 100 0 75
72 33 33 33 33 75 148 90 0 10 0 60
73 20 10 0 40 0 149 0 0 100 0 80
74 50 0 0 50 40 150 0 0 100 0 60
75 75 12 0 12 50 151 0 40 60 40 50
76 75 0 0 25 40

Source: Green (1973).
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option, or an option for unbalanced data. However, many packages 
assume that observations on all factor combinations are present, and 
these will not do the required analysis. If you do not have software avail-
able that will handle the missing values, then just do the analysis for 
those lakes without missing values.

Exercise 3.4
Table 3.16 shows the results of a fisheries observer program in New Zea-
land for the surface long-line fisheries. For different Fisheries Manage-
ment Areas (FMAs), target fisheries species, and years, the table provides 
the number of fishing days observed on surface long-line vessels and the 
total number of marine mammals caught in the line. Carry out an analy-
sis along the lines of Example 3.3, using a log-linear model. The analysis 
can be carried out using any computer package that has a log-linear 
model facility. Note the following points: (a) an offset is needed in the 
model to allow for the fact that, other things being equal, the bycatch is 
expected to be proportional to the observation time; (b) the FMAs, target 
species, and years should be treated as levels of factors; and (c) given the 
limited data, only try fitting main effects of these factors (i.e., no inter-
actions between the factors). The offset should probably be entered as 
the natural logarithm of days of fishing. After completing your analysis, 
summarize your conclusions about the effects of the three factors on the 
probability of bycatch occurring.
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Table 3.16

Observer Records for Long-Line Fishing in New Zealand

Case FMA Target Year Fishing Days Total Bycatch

1 5 STN 1999 192 51
2 7 STN 2003 177 24
3 7 STN 1997 162 26
4 5 STN 2003 157 32
5 5 STN 2001 156 23
6 5 STN 2002 144 20
7 7 STN 2000 143 39
8 7 STN 1998 134 29
9 7 STN 1999 122 55
10 7 STN 2002 105 25
11 5 STN 1998 88 12
12 5 STN 2000 74  9
13 1 BIG 2001 66  0
14 3 STN 1999 61  1
15 3 STN 1997 57  3
16 1 BIG 1997 53  2
17 7 STN 2001 47 22
18 1 ALB 2003 45  1
19 5 STN 1997 41 21
20 1 BIG 2002 33  0
21 1 BIG 1998 29  0
22 3 STN 1998 28  4
23 3 STN 2000 21  3
24 1 BIG 2000 19  0
25 3 STN 2001 12  0
26 1 BIG 1999 11  0
27 1 YFN 2001 11  0
28 6 STN 1997 6  0
29 6 STN 2001 5  0
30 6 STN 1998 4  3
31 7 BIG 2001 4  0
32 3 STN 2002 4  0
33 6 STN 2002 3  1
34 3 STN 2003 3  0
35 1 STN 2001 2  0
36 6 STN 2003 2  0
37 1 ALB 1997 1  0
38 6 STN 1999 1  0
39 1 YFN 2000 1  0
40 1 STN 2002 1  0
41 7 ALB 2003 1  0

Note: The total number of mammals caught during long-line fishing 
is shown for different fisheries management areas (FMA), tar-
get species, years, and the fishing days observed.



97

4
Drawing Conclusions from Data

4.1  Introduction

Statistics is all about drawing conclusions from data, and the purpose of the 
present chapter is to look more closely and critically at the methods that are 
used to do this. The topics considered include some that are rather important 
and yet often receive relatively little attention in statistics texts. The topics cover 
the difference between observational and experimental studies; the difference 
between inference based on the random sampling design used to collect data 
and inference based on the assumption of a particular model for the data; 
criticisms that have been raised about the excessive use of significance tests; 
the use of computer-intensive methods of randomization and bootstrapping 
instead of more conventional methods; the avoidance of pseudoreplication; 
the use of sampling methods where sample units have different probabilities 
of selection; the problem of multiple testing; meta-analysis (methods for com-
bining the results from different studies); and Bayesian inference.

4.2  Observational and Experimental Studies

When considering the nature of empirical studies, there is an important 
distinction between observational and experimental studies. With obser-
vational studies, data are collected by observing populations in a passive 
manner that, as much as possible, will not change the ongoing processes. For 
example, samples of animals might be collected to estimate the proportions 
in different age classes or the sex ratio. On the other hand, experimental 
studies are usually thought of as involving the collection of data with some 
manipulation of variables that is assumed to affect population parameters, 
keeping other variables constant as far as possible. An example of this type 
would be a study where some animals are removed from an area to see 
whether they are replaced by invaders from outside.
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In many cases, the same statistical analysis can be used with either obser-
vational or experimental data. However, the validity of any inferences that 
result from the analysis depends very much on the type of study. In particu-
lar, an effect that is seen consistently in replications of a well-designed exper-
iment can only reasonably be explained as being caused by the manipulation 
of the experimental variables. But with an observational study, the same con-
sistency of results might be obtained because all the data are affected in the 
same way by some unknown and unmeasured variable. Therefore, the obvi-
ous explanation for an effect that is seen in the results of an observational 
study may be quite wrong. To put it another way, the conclusions from obser-
vational studies are not necessarily wrong. The problem is that there is little 
assurance that they are right (Hairston 1989, p. 1).

It is clear that, in general, it is best to base inferences on experiments rather 
than observational studies, but this is not always possible. Some experiments 
cannot be performed either because the variables involved are not control-
lable, or because the experiment is simply not feasible. For example, suppose 
that a researcher wishes to assess the effect of discharges of pollutants from 
a sewage treatment plant on the organisms in a river. Systematically chang-
ing the levels of pollutants, and in some cases increasing them to higher lev-
els than normally occur, might either not be possible or might be considered 
to be unethical. Hence, in this situation, the only possible study might be one 
involving attempts to relate measurements on the organisms to unplanned 
variation in pollutant levels, with some allowance for the effects of other fac-
tors that may be important.

Having defined two categories of study (observational and experimental), 
it must be admitted that, at times, the distinction becomes a little blurred. In 
particular, suppose that the variables thought to determine the state of an 
ecological system are abruptly changed either by some naturally occurring 
accident, or are an unintentional result of some human intervention. If the 
outcome is then studied, this appears to be virtually the same as if the changes 
were made by the observer as part of an experiment. But such natural experi-
ments do not have some of the important characteristics of true experiments. 
The conclusions that can be drawn might be stronger than those that could 
be drawn if the system were not subjected to large changes, but they are not 
as strong as those that could be drawn if the same changes were made as 
part of a well-designed experiment.

Although the broad distinction made between observational and experi-
mental studies is useful, a little thought will show that both of these categories 
can be further subdivided in meaningful ways. For example, Eberhardt and 
Thomas (1991) propose a classification of studies into eight different types. 
However, this elaboration is unnecessary for the present discussion, where it 
merely needs to be noted that most environmental studies are observational, 
with all the potential limitations that this implies.
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4.3  True Experiments and Quasi-Experiments

At this stage it is important to better define what is required for a study to be 
a true experiment. Basically, the three important ingredients are randomiza-
tion, replication, and controls.

Randomization should be used whenever there is an arbitrary choice to be 
made of which units will be measured out of a larger collection of possible 
units, or of the units to which different levels of a factor will be assigned. 
This does not mean that all selections of units and all allocations of factor 
levels have to be made completely at random. In fact, a large part of the the-
ory of experimental design is concerned with how to restrict randomization 
and allocation in order to obtain the maximum amount of information from 
a fixed number of observations. Thus randomization is only required subject 
to whatever constraints are involved in the experimental design.

Randomization is used in the hope that it will remove any systematic 
effects of uncontrolled factors of which the experimenter has no knowl-
edge. The effects of these factors will still be in the observations. However, 
randomization makes these effects part of the experimental errors that are 
allowed for by statistical theory. Perhaps more to the point, if randomization 
is not carried out, then there is always the possibility of some unseen bias in 
what seems to be a haphazardous selection or allocation.

Randomization in experiments is not universally recommended. Its crit-
ics point to the possibility of obtaining random choices that appear to be 
unsatisfactory. For example, if different varieties of a crop are to be planted 
in different plots in a field, then a random allocation can result in all of one 
variety being placed on one side of the field. Any fertility trends in the soil 
may then appear as a difference between the two varieties, and the random-
ization has failed to remove potential biases due to positions in the field. 
Although this is true, common sense suggests that if an experimenter has 
designed an experiment that takes into account all of the obvious sources of 
variation, such as fertility trends in a field, so that the only choices left are 
between units that appear to be essentially the same, such as two plots in the 
same part of a field, then randomization is always worthwhile as one extra 
safeguard against the effects of unknown factors.

Replication is needed in order to decide how large effects have to be 
before they become difficult to account for in terms of normal variation. This 
requires the measurement of normal variation, which can be done by repeat-
ing experimental arrangements independently a number of times under con-
ditions that are as similar as possible. Experiments without replication are 
case studies, which may be quite informative and convincing, but it becomes 
a matter of judgment as to whether the outcome could have occurred in the 
absence of any manipulation.
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Controls provide observations under normal conditions without the 
manipulation of factor levels. They are included in an experiment to give 
the standard with which the results under other conditions are compared. 
In the absence of controls, it is usually necessary to assume that if there had 
been controls then these would have given a particular outcome. For instance, 
suppose that the yield of a new type of wheat is determined without running 
control trials with the standard variety of wheat. Then, to decide whether the 
yield of the new variety is higher than that for the standard, it is necessary to 
make some assumption about what the yield of the standard variety would 
have been under the experimental conditions. The danger here is obvious. It 
may be that, under the conditions of the study, the yield of the standard vari-
ety would not be what is expected, so that the new variety is being compared 
with the wrong standard.

Experiments that lack one or more of the ingredients of randomization, 
replication, and control are sometimes called quasi-experiments. Social scien-
tists realized many years ago that they can often only do quasi-experiments 
rather than true experiments, and have considered very thoroughly the 
implications of this in terms of drawing conclusions (Campbell and Stanley 
1963; Shadish et al. 2002). An important point to realize is that many experi-
ments in environmental science are really quasi-experiments, so that the 
social scientists’ problems are also shared by environmental scientists.

There is no space here to discuss these problems at length. In fact, many of 
them are fairly obvious with a little thought. Some of the simpler designs that 
are sometimes used without a proper recognition of potential problems are 
listed below. Here Oi indicates observations made on a group of experimen-
tal units, X denotes an experimental manipulation, and R indicates a ran-
dom allocation of experimental units to treatment groups. The description 
“pre-experimental design” is used for the weakest situations, where infer-
ences are only possible by making strong assumptions. Quasi-experimental 
designs are better, but still not very satisfactory, while “proper designs” have 
all the desirable characteristics of true experiments.

Two Pre-Experimental Designs

The one-group pretest-posttest design
O1 X O2

The two-group comparison without randomization
 X O1

  O2

A Quasi-Experimental Design

The comparative change design without randomization
O1 X O2

 O3 O4
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Two Proper Designs

The two-group comparison with randomization
R X O1

 R O2

The comparative change design with randomization
R O1 X O2

 R O3 O4

Of these designs, the comparative-change ones are of particular interest 
because they are the same as the before–after-control-impact (BACI) design 
that is commonly used by environmental scientists, as in Example 1.4. Problems 
arise in these applications because it is not possible to randomly allocate experi-
mental units to the treated and control groups before the treatment is applied.

4.4  Design-Based and Model-Based Inference

It is often not realized that conclusions from data are commonly reached 
using one of two very different philosophies. One is design-based, using the 
randomization that is applied when collecting data, and the other is model-
based, using the randomness that is inherent in the assumed model.

All of the methods for environmental sampling that were covered in Chap-
ter 2 are design-based, because this is how the classical theory for sampling 
finite populations developed. For example, equation (3.4) for the variance of 
the mean of a random sample of size n from a population of size N with vari-
ance σ2 states that

 Var(y) = (σ2/n)[1 − (n/N)]

What this means is that if the process of drawing a random sample is repeated 
many times, and the sample means y1, y2, y3, …, yn are recorded, then the vari-
ance of these means will be (σ2/n)[1 − (n/N)]. Thus this is the variance that is 
generated by the sampling process. No model is needed for the distribution 
of the Y values, and in fact the variance applies for any distribution at all.

By way of contrast, consider the testing of the coefficient of X for a sim-
ple linear regression equation. In that case, the usual situation is that there 
are n values y1, y2, …, yn for Y with corresponding values x1, x2, …, xn for X. 
The specific model

 yi = β0 + β1xi + εi (4.1)

is then assumed, where β0 and β1 are constants to be estimated, and εi is a 
random value from a normal distribution with a mean of zero and a con-



102 Statistics for Environmental Science and Management, Second Edition

stant unknown variance σ2. The values of β0 and β1 are then estimated by 
least-squares, as discussed in Section 3.4. If b1 is the estimate of β1, with an 
estimated standard error SÊ(b1), then a test to see whether this is significantly 
different from zero involves comparing b1/SÊ(b1) with critical values of the 
t-distribution with n − 2 degrees of freedom (df).

In this case, there is no requirement that the units on which X and Y are 
measured be a random sample from some specific population. In fact, the 
equation for estimating the standard error of b1 is based on the assumption 
that the X values for the data are fixed constants rather than being random, 
with the difference between b1 and β1 being due only to the particular values 
that are obtained for the errors ε1, ε2, …, εn in the model. Thus, in this case, 
the assessment about whether b1 is significantly different from zero is not 
based on any requirement for random sampling of a population. Instead, it 
is based on the assumption that the model given in equation (4.1) correctly 
describes the structure of the data, and that the errors ε1, ε2, …, εn for the real 
data are a random sample from a normal distribution with mean zero and 
constant variance.

An advantage of the design-based approach is that valid inferences are 
possible that are completely justified by the design of the study and by the 
way that data are collected. The conclusions can then always be defended, 
provided that there is agreement about which variables should be measured, 
the procedures used to do the measuring, and the design protocol. In this 
case, any reanalysis of the data by other groups will not be able to declare 
these original conclusions incorrect. It is possible that a reanalysis using 
a model-based method may lead to different conclusions, but the original 
analysis will still retain its validity.

On the other hand, most statistical analyses are model-based, and there 
can be no question about the fact that this is necessary. The use of models 
allows much more flexibility in analyses, and all of the methods described in 
the previous chapter are model-based, requiring specific assumptions about 
the structure of data. The flexibility comes at a price. Sometimes the implicit 
assumptions of models are hidden below the surface of the analysis. These 
include assumptions about the random components of models, which may 
or may not be critical as far as conclusions are concerned, and assumptions 
about the mathematical form of the equations that relate different variables. 
The latter assumptions may be absolutely critical, particularly if it is neces-
sary to predict the response of some variable when predictor variables are 
outside the range observed for the available data. Moreover, whenever con-
clusions are drawn from a model-based analysis, there is always the possibil-
ity that someone else will repeat the analysis with another equally reasonable 
model and reach different conclusions.

A case in point is the use of the lognormal distribution as a model for 
data. This is frequently assumed for the distribution of the concentration of 
a chemical in field samples because it has an appropriate shape (Figure 3.4). 
Schmoyer et al. (1996) simulated data from lognormal, truncated normal, 
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and gamma distributions and compared the results from estimation and 
testing assuming a lognormal distribution with other approaches that do 
not make this assumption. They found that departures from the lognormal 
distribution were difficult to detect with the sample sizes that they used, but 
when they occurred, the tests based on the lognormal assumption did not 
work as well as the alternatives. They concluded that “in the estimation of or 
tests about a mean, if the assumption of lognormality is at all suspect, then 
lognormal-based approaches may not be as good as the alternative meth-
ods.” Because the lognormal distribution will probably seldom hold exactly 
for real data, this is a serious criticism of the model.

Wiens’s (1999) example is even more disturbing. The same set of data was 
analyzed two ways. First, the observations (the amount of antibody to hepa-
titis A virus in serum samples) were analyzed assuming a generalized linear 
model with a possible mean difference between two groups, and lognor-
mal errors. The difference in the two groups was approaching significance 
(p = 0.10), with the second group estimated to have a higher mean. Next, the 
data were analyzed assuming gamma-distributed errors, where the gamma 
distribution is one that often has the same type of shape as the lognormal. 
In this case, the difference between the two groups was nowhere near sig-
nificant (p = 0.71), but the first group was estimated to have a higher mean. 
Hence, the modeling assumptions made when analyzing the data are rather 
crucial. Wiens notes that with this particular example, a nonparametric test 
can be used to compare the two groups, which is better than the model-
based approach. However, he also points out that with more-complicated 
data sets a model-based approach may be preferred because of the flexibility 
that this permits in the analysis. He therefore proposes the ad hoc solution 
of analyzing data like this using both the lognormal and gamma models and 
investigating further if the results do not agree. This, of course, raises the 
possibility that both models are wrong, with similar misleading outcomes 
that go undetected.

The moral from all this is that, although a strict adherence to design-based 
analyses is not possible for environmental studies, it is a good idea to rely 
on design-based analyses as much as possible. The value of at least a few 
indisputable design-based statistical inferences may, for example, be of great 
value for defending a study in a court case.

4.5  Tests of Significance and Confidence Intervals

The concept of a test of significance is discussed in Section A1.4 of Appendix 1. 
Such tests are very commonly used for drawing conclusions from data. How-
ever, they do have certain limitations that have led over the years to a number 
of authors questioning their use, or at least the extent to which they are used.
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The two basic problems were mentioned in Example 1.7, which is concerned 
with the comparison of the mean of a variable at a site that was once contami-
nated and is now supposed to be cleaned up with the mean at a reference site 
that was never contaminated. The first problem is that the two sites cannot 
be expected to have exactly the same mean even if the cleaning operation has 
been very effective. Therefore, if large samples are taken from each site, there 
will be a high probability of finding a significant difference between the two 
sample means. The second problem is that if the differ ence between the sam-
ple means is not significant, then it does not mean that no difference exists. 
An alternative explanation is that the sample sizes used are not large enough 
to detect the existing differences.

These well-known problems have been discussed many times by social 
scientists (e.g., Oakes 1986), medical statisticians (e.g., Gardner and Altman 
1986), environmental scientists (e.g., McBride et al. 1993), wildlife scientists 
(e.g., Cherry 1998; Johnson 1999), statisticians in general (e.g., Nelder 1999), 
and no doubt by those working in other areas as well. A common theme 
is that, too often, hypothesis tests are used when it is obvious in advance 
that the null hypothesis is not true, and that as a result scientific papers 
are becoming cluttered up with unnecessary p-values.

In truth, there is not much point in testing hypotheses that are known to 
be false. Under such circumstances it makes more sense to estimate the mag-
nitude of the effect of interest, with some indication of the likely accuracy of 
results. However, there are situations where the truth of a null hypothesis 
really is in question, and then carrying out a significance test is an entirely 
reasonable thing to do. Once evidence for the existence of an effect is found, 
it is then reasonable to start measuring its magnitude.

Testing null models in ecology is a case in point, as discussed in the book 
by Gotelli and Graves (1996). The point of view adopted is that there is a 
whole range of situations where it is at least plausible that ecological struc-
tures are just the result of chance. For example, if a number of islands in the 
same general area are considered, then the species that are present on each 
island can be recorded. A null model then says that the species occur on 
different islands completely independent of each other, possibly subject to 
certain constraints such as the sizes of the islands and the fact that some spe-
cies are naturally more widespread than others. This null model can then be 
tested by choosing a test statistic S that measures, in some sense, the appar-
ent interaction between species occurrences, and then seeing whether the 
observed value of S could reasonably have occurred if the null hypothesis 
is true.

Some ecologists do not seem to like the idea of testing null models like this, 
perhaps because they believe that it is obvious that species interact. How-
ever, proponents of these methods do not accept that this is necessarily true 
and argue that testing this fundamental idea is still necessary. From their 
point of view, tests of significance are an entirely reasonable tool for analyz-
ing data.
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No doubt, arguments about the value of tests of significance will continue. 
The point of view adopted here is that it does often happen that the exis-
tence of an effect is in doubt, in which case testing the null hypothesis that 
the effect does not exist is sensible. However, in other cases, it is more or less 
certain that an effect exists, and the main question of interest is the size of the 
effect. In that case, a confidence interval may provide the necessary informa-
tion. Thus both tests of significance and confidence intervals are important 
tools for data analysis, but under different circumstances.

4.6  Randomization Tests

Randomization inference is a computer-intensive method that is receiving 
more use as time goes by for the analysis of environmental data. It has a long 
history, going back to the work of Sir Ronald Fisher, one of the developers of 
many of the statistical methods used today (Fisher 1935, 1936). The method 
is referred to quite often in the following chapters. It was also used in the 
analyses of data from the Exxon Shoreline Ecology Program and the Biologi-
cal Monitoring Survey that are discussed in Example 1.1, and in Carpenter 
et al.’s (1989) analyses of large-scale perturbation experiments that are dis-
cussed in Example 1.4.

The simplest situation for understanding what is meant by a random-
ization test is the two-group comparison, as proposed by Fisher (1936). In 
this situation there is one sample of values x1, x2, …, xm, with mean x, and a 
second sample of values y1, y2, …, yn, with mean y. The question of interest 
is whether the two samples come from the same distribution or, more pre-
cisely, whether the absolute mean difference |x − y| is small enough for this 
to be plausible.

The test proceeds as follows:

 1. The observed absolute mean difference is labeled d1.

 2. It is argued that if the null hypothesis is true (the two samples come 
from the same distribution), then any one of the observed values x1, 
x2, …, xm and y1, y2, …, yn could equally well have occurred in either 
of the samples. On this basis, a new sample 1 is chosen by randomly 
selecting m out of the full set of n + m values, with the remaining 
values providing the new sample 2. The absolute mean difference 
d2 = |x − y| is then calculated for this randomized set of data.

 3. Step 2 is repeated a large number of times (R − 1) to give a total of R 
differences d1, d2, …, dR.

 4. The R differences are put in order from the smallest to largest.



106 Statistics for Environmental Science and Management, Second Edition

 5. If the null hypothesis is true, then d1 should look like a typical value 
from the set of R differences, and is equally likely to appear any-
where in the list. On the other hand, if the two original samples 
come from distributions with different means, then d1 will tend to 
be near the top of the list. On this basis, d1 is said to be significantly 
large at the 100α% level if it is among the top 100α% of values in the 
list. If 100α% is small (say 5% or less), then this is regarded as evi-
dence against the null hypothesis.

It is an interesting fact that this test is exact in a certain sense even when 
R is quite small. For example, suppose that R = 99. Then, if the null hypoth-
esis is true and there are no tied values in the differences d1, d2, …, d100, the 
probability of d1 being one of the largest 5% of values (i.e., one of the largest 5) 
is exactly 0.05. This is precisely what is required for a test at the 5% level, 
which is that the probability of a significant result when the null hypothesis 
is true is equal to 0.05.

The test just described is two-sided. A one-sided version is easily con-
structed by using the signed difference x − y as the test statistic, and seeing 
whether this is significantly large (assuming that the alternative to the null 
hypothesis of interest is that the values in the first sample come from a dis-
tribution with a higher mean than that for the second sample).

An advantage that the randomization approach has over a conventional 
parametric test on the sample mean difference is that it is not necessary to 
assume any particular type of distribution for the data, such as normal dis-
tributions for the two samples for a t-test. The randomization approach also 
has an advantage over a nonparametric test like the Mann-Whitney U-test 
because it allows the original data to be used rather than just the ranks of the 
data. Indeed, the Mann-Whitney U-test is really just a type of randomization 
test for which the test statistic only depends on the ordering of the data val-
ues in the two samples being compared.

A great deal more could be said about randomization testing, and much 
fuller accounts are given in the books by Edgington and Onghena (2007), 
Good (2004), and Manly (2007). The following example shows the outcome 
obtained on a real set of data.

Example 4.1: Survival of Rainbow Trout
This example concerns part of the results shown in Table 3.8 from a series 
of experiments conducted by Marr et al. (1995) to compare the survival of 
naive and metals-acclimated juvenile brown trout (Salmo trutta) and rain-
bow trout (Oncorhynchus mykiss) when exposed to a metals mixture with 
the maximum concentrations found in the Clark Fork River, Montana. 
Here only the results for the hatchery rainbow trout will be considered. 
For these, there were 30 control fish that were randomly selected to be 
controls and were kept in clean water for three weeks before being trans-
ferred to the metals mixture, while the remaining 29 fish were acclimated 
for three weeks in a weak solution of metals before being transferred to 
the stronger mixture. All the fish survived the initial three-week period, 
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and there is interest in whether the survival time of the fish in the stron-
ger mixture was affected by the treatment.

In Example 3.2 the full set of data shown in Table 3.8 was analyzed 
using two-factor analysis of variance. However, a logarithmic transfor-
mation was first applied to the survival times to overcome the tendency 
for the standard deviation of survival times to increase with the mean. 
This is not that apparent when only the hatchery rainbow trout are 
considered. Therefore, if only these results were known, then it is quite 
likely that no transformation would be considered necessary. Actually, 
as will be seen shortly, it is immaterial whether a transformation is made 
or not if only these fish are considered.

Note that for this example, carrying out a test of significance to com-
pare the two samples is reasonable. Before the experiment was carried 
out, it was quite conceivable that the acclimation would have very lit-
tle, if any, effect on survival, and it is interesting to know whether the 
observed mean difference could have occurred purely by chance.

The mean survival difference (acclimated − control) is 10.904. Test-
ing this using the randomization procedure using steps 1 to 5 described 
above using 4999 randomizations resulted in the observed value of 
10.904 being the largest in the set of 5000 absolute mean differences con-
sisting of itself and the 4999 randomized differences. The result is there-
fore significantly different from zero at the 0.02% level (1/5000). Taking 
logarithms to base 10 of the data and then running the test gives a mean 
difference of 0.138, which is again significantly different from zero at 
the 0.02% level. There is very strong evidence that acclimation affects the 
mean survival time, in the direction of increasing it.

Note that if it was decided in advance that, if anything, acclimation 
would increase the mean survival time, the randomization test could 
then be made one-sided to see whether the mean difference of (accli-
mated − control) is significantly large. This also gives a result that is 
significant at the 0.2% level using either the survival times or logarithms 
of these.

Note also that, in this example, the use of a randomization test is com-
pletely justified by the fact that the fish were randomly allocated to a 
control and to an acclimated group before the experiment began. This 
ensures that if acclimation has no effect, then the data that are observed 
are exactly equivalent to one of the alternative sets generated by ran-
domizing this observed data. Any one of the randomized sets of data 
really would have been just as likely to occur as the observed set. When 
using a randomization test, it is always desirable that an experimen-
tal randomization be done to fully justify the test, although this is not 
always possible.

Finally, it is worth pointing out that any test on these data can be 
expected to give a highly significant result. A two-sample t-test using the 
mean survival times and assuming that the samples are from populations 
with the same variance gives t = 5.70 with 57 df, giving p = 0.0000. Using 
logarithms instead gives t = 5.39 still with 57 df and p = 0.0000. Using a 
Mann-Whitney U-test on either the survival times or logarithms also 
gives p = 0.0000. The conclusion is therefore the same, whatever reason-
able test is used.
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4.7  Bootstrapping

Bootstrapping as a general tool for analyzing data was first proposed by 
Efron (1979). Initially, the main interest was in using this method to con-
struct confidence intervals for population parameters using the minimum 
of assumptions, but more recently there has been increased interest in boot-
strap tests of hypotheses (Efron and Tibshirani 1993; Hall and Wilson 1991; 
Manly 2007).

The basic idea behind bootstrapping is that when only sample data are 
available, and no assumptions can be made about the distribution that 
the data are from, then the best guide to what might happen by taking more 
samples from the distribution is provided by resampling the sample. This is 
a very general idea, and the way that it might be applied is illustrated by the 
following example.

Example 4.2: A Bootstrap 95% Confidence Interval
Table 3.3 includes the values for chlorophyll-a for 25 lakes in a region. 
Suppose that the total number of lakes in the region is very large and 
that there is interest in calculating a 95% confidence interval for the 
mean of chlorophyll-a, assuming that the 25 lakes are a random sample 
of all lakes.

If the chlorophyll-a values were approximately normally distributed, 
then this would probably be done using the t-distribution and equation 
(A1.9) from Appendix 1. The interval would then be

 x − 2.064s/√25 < μ < x + 2.064s/√25 (4.2)

where x is the sample mean, s is the sample standard deviation, and 2.064 
is the value that is exceeded with probability 0.025 for the t-distribution 
with 24 df. For the data in question, x = 50.30 and s = 50.02, so the interval 
is

 29.66 < μ < 70.95

The problem with this is that the values of chlorophyll-a are very far 
from being normally distributed, as is clear from Figure 4.1. There is, 
therefore, a question about whether this method for determining the 
interval really gives the required level of 95% confidence.

Bootstrapping offers a possible method for obtaining an improved 
confidence interval, with the method that will now be described being 
called bootstrap-t (Efron 1981). This works by using the bootstrap to 
approximate the distribution of

 t = (x − μ)/(s/√25)

instead of assuming that this follows a t-distribution with 24 df, which it 
would for a sample from a normal distribution. An algorithm to do this 
is as follows, where this is easily carried out in a spreadsheet.
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 1. The 25 sample observations of chlorophyll-a from Table 3.3 are set 
up as the bootstrap population to be sampled. This population has 
the known mean of μB = 50.30.

 2. A bootstrap sample of size 25 is selected from the population by 
making each value in the sample equally likely to be any of the 
25 population values. This is sampling with replacement, so that a 
population value may occur 0, 1, 2, 3, or more times.

 3. The t-statistic t1 = (x − μB)/(s/√25) is calculated from the bootstrap 
sample.

 4. Steps 2 and 3 are repeated 5000 times to produce 5000 t-values t1, t2, 
…, t5000 to approximate the distribution of the t-statistic for samples 
from the bootstrap population.

 5. Using the bootstrap distribution obtained, two critical values tlow 
and thigh are estimated such that

 Prob[(x − μB)/(s/√25) < tlow] = 0.025

and

 Prob[(x − μB)/(s/√25) > thigh] = 0.025

 6. It is assumed that the critical values also apply for random samples 
of size 25 from the distribution of chlorophyll-a from which the 
original set of data was drawn. Thus it is asserted that

 Prob[tlow < (x − μ)/(s/√25) < thigh] = 0.95

  where x and s are now the values calculated from the original sam-
ple, and μ is the mean chlorophyll-a value for all lakes in the region 
of interest. Rearranging the inequalities then leads to the statement 
that

 Prob[x − thighs/√25 < μ < x − tlows/√25] = 0.95
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Figure 4.1
The distribution of chlorophyll-a for 25 lakes in a region, with the height of the histogram bars 
reflecting the percentage of the distribution in different ranges.
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  so that the required 95% confidence interval is

 x − thighs/√25 < μ < x − tlows/√25 (4.3)

The interval shown in equation (4.3) only differs from the usual con-
fidence interval based on the t-distribution to the extent that tlow and thigh 
vary from 2.064. When the process was carried out, it was found that the 
bootstrap distribution of t = (x − μB)/(s/√25) is quite close to the t-distribu-
tion with 24 df, as shown by Figure 4.2, but with tlow = −2.6 and thigh = 2.0. 
Using the sample mean and standard deviation, the bootstrap-t interval 
therefore becomes

 50.30 − 2.0(50.02/5) < μ < 50.30 + 2.6(50.02/5)

or

 30.24 < μ < 76.51

These compare with the limits of 29.66 to 70.95 obtained using the 
t-distribution. Thus the bootstrap-t method gives a rather higher upper 
limit, presumably because this takes better account of the type of distri-
bution being sampled.

4.8  Pseudoreplication

The idea of pseudoreplication causes some concern, particularly among field 
ecologists, with the clear implication that when an investigator believes that 
replicated observations have been taken, this may not really be the case at 
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Figure 4.2
Comparison between the bootstrap distribution of (x − μB)/(s/√25) and the t-distribution with 
24 df. According to the bootstrap distribution, the probability of a value less than tlow = −2.6 is 
approximately 0.025, and the probability of a value higher than thigh = 2.0 is approximately 0.025.
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all. Consequently, there is some fear that the conclusions from studies will 
not be valid because of unrecognized pseudoreplication.

The concept of pseudoreplication was introduced by Hurlbert (1984) with 
the definition: “the use of inferential statistics to test for treatment effects 
with data from experiments where either treatments are not replicated, or 
replicates are not statistically independent.” Two examples of pseudoreplica-
tion are:

a sample of meter-square quadrats randomly located within a 1-ha •	
study region randomly located in a larger burned area is treated as a 
random sample from the entire burned area

repeated observations on the location of a radio-tagged animal are •	
treated as a simple random sample of the habitat points used by the 
animal, although in fact successive observations tend to be close 
together in space

In both of these examples it is the application of inferential statistics to 
dependent replicates as if they were independent replicates from the popula-
tion of interest that causes the pseudoreplication. However, it is important 
to understand that using a single observation per treatment or per replicates 
that are not independent data is not necessarily wrong. Indeed it may be 
unavoidable in some field studies. What is wrong is to ignore this in the 
analysis of the data.

There are two common aspects of pseudoreplication. One of these is the 
extension of a statistical-inference observational study beyond the specific 
population studied to other unstudied populations. This is the problem with 
the first example above on the sampling of burned areas. The other aspect 
is the analysis of dependent data as if they are independent data. This is the 
problem with the example on radio-tagged animals.

When dependent data are analyzed as if they are independent, the sample 
size used is larger than the effective number of independent observations. 
This often results in too many significant results being obtained from tests 
of significance, and confidence intervals being narrower than they should 
be. To avoid this, a good rule to follow is that statistical inferences should be 
based on only one value from each independently sampled unit, unless the 
dependence in the data is properly handled in the analysis. For example, if 
five quadrats are randomly located in a study area, then statistical inferences 
about the area should be based on five values, regardless of the number of 
plants, animals, soil samples, etc., that are counted or measured in each quad-
rant. Similarly, if a study uses data from five radio-tagged animals, then statis-
tical inferences about the population of animals should be based on a sample 
of size five, regardless of the number of times each animal is relocated.

When data are dependent because they are collected close together in time 
or space, there are a very large number of analyses available to allow for this. 
Many of these methods are discussed in later chapters in connection with 
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particular types of applications, particularly in Chapters 8 and 9. For now, it 
is just noted that unless it is clearly possible to identify independent observa-
tions from the study design, then one of these methods needs to be used.

4.9  Multiple Testing

Suppose that an experimenter is planning to run a number of trials to deter-
mine whether a chemical at a very low concentration in the environment 
has adverse effects. A number of variables will be measured (survival times 
of fish, growth rate of plants, etc.) with comparisons between control and 
treated situations, and the experimenter will end up doing 20 tests of signifi-
cance, each at the 5% level. He or she decides that if any of these tests give a 
significant result, then there is evidence of adverse effects. This experimenter 
then has a multiple testing problem.

To see this, suppose that the chemical has no perceptible effects at the 
level tested, so that the probability of a significant effect on any one of the 
20 tests is 0.05. Suppose also that the tests are on independent data. Then 
the probability of none of the tests being significant is 0.9520 = 0.36, so 
that the probability of obtaining at least one significant result is 1 − 0.36 = 
0.64. Hence the likely outcome of the experimenter’s work is to conclude that 
the chemical has an adverse effect even when it is harmless.

Many solutions to the multiple-testing problem have been proposed. The 
best known of these relate to the specific problem of comparing the mean 
values at different levels of a factor in conjunction with analysis of vari-
ance, as discussed in Section 3.5. There are also some procedures that can 
be applied more generally when several tests are to be conducted at the same 
time. Of these, the Bonferroni procedure is the simplest. This is based on the 
fact that if m tests are carried out at the same time using the significance level 
(100α%)/m, and if all of the null hypotheses are true, then the probability 
of getting any significant result is less than α. Thus the experimenter with 
20 tests to carry out can use the significance level (5%)/20 = 0.25% for each 
test, and this ensures that the probability of getting any significant results is 
less than 0.05 when no effects exist.

An argument against using the Bonferroni procedure is that it requires 
very conservative significance levels when there are many tests to carry 
out. This has led to the development of a number of improvements that are 
designed to result in more power to detect effects when they do really exist. 
Of these, the method of Holm (1979) appears to be the one that is easiest to 
apply (Peres-Neto 1999). However, this does not take into account the cor-
relation between the results of different tests. If some correlation does exist 
because the different test statistics are based partially on the same data, then, 
in principle, methods that allow for this should be better, such as the random-
ization procedure described by Manly (2007, sec. 6.8), which can be applied 
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in a wide variety of different situations (e.g., Holyoak and Crowley 1993), or 
several approaches that are described by Troendle and Legler (1998).

Holm’s method works using the following algorithm:

 1. Decide on the overall level of significance α to be used (the probabil-
ity of declaring anything significant when the null hypotheses are 
all true).

 2. Calculate the p-value for the m tests being carried out.
 3. Sort the p-values into ascending order, to give p1, p2, …, pm, with any 

tied values being put in a random order.
 4. See if p1 ≤ α/m, and if so declare the corresponding test to give a 

significant result, otherwise stop. Next, see if p2 ≤ α/(m − 1), and if so 
declare the corresponding test to give a significant result, otherwise 
stop. Next, see if p3 ≤ α/(m − 2), and if so declare the corresponding 
test to give a significant result, otherwise stop. Continue this process 
until an insignificant result is obtained, or until it is seen whether 
pk ≤ α, in which case the corresponding test is declared to give a 
significant result. Once an insignificant result is obtained, all the 
remaining tests are also insignificant, because their p-values are at 
least as large as the insignificant one.

The procedure is illustrated by the following example.

Example 4.3: Multiple Tests on Characters for Brazilian Fish
This example to illustrate the Holm (1979) procedure is the one also used 
by Peres-Neto (1999). The situation is that five morphological characters 
have been measured for 47 species of Brazilian fish, and there is interest 
in which pairs of characters show significant correlation. Table 4.1 shows 

Table 4.1

Correlations (r) between Characters for 47 Species  
of Brazilian Fish, with Corresponding p-Values

Character

Character 1 2 3 4

2 r 0.110 … … …

 p-value 0.460 … … …

3 r 0.325 0.345 … …

 p-value 0.026 0.018 … …

4 r 0.266 0.130 0.142 …

p-value 0.070 0.385 0.340 …

5 r 0.446 0.192 0.294 0.439

p-value 0.002 0.196 0.045 0.002

Note: For example, the correlation between characters 1 
and 2 is 0.110, with p = 0.460.
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the ten pairwise correlations obtained with their probability values based 
on the assumptions that the 47 species of fish are a random sample from 
some population, and that the characters being measured have normal 
distributions for this population. (For the purposes of this example, the 
validity of these assumptions will not be questioned.)

The calculations for Holm’s procedure, using an overall significance 
level of 5% (α = 0.05), are shown in Table 4.2. It is found that just two of 
the correlations are significant after allowing for multiple testing.

4.10  Meta-Analysis

The term meta-analysis is used to describe methods for combining the results 
from several studies to reach an overall conclusion. This can be done in a 
number of different ways, with the emphasis either on determining whether 
there is overall evidence of the effect of some factor, or of producing the best 
estimate of an overall effect.

A simple approach to combining the results of several tests of significance 
was proposed by Fisher (1970). This is based on three well-known results:

 1. If the null hypothesis is true for a test of significance, then the p-value 
from the test has a uniform distribution between 0 and 1 (i.e., any 
value in this range is equally likely to occur).

 2. If p has a uniform distribution, then −2loge(p) has a chi-squared dis-
tribution with 2 df.

 3. If X1, X2, …, Xn all have independent chi-squared distributions, then 
their sum, S = ∑Xi, also has a chi-squared distribution, with the 

Table 4.2

Calculations and Results from the Holm Method 
for Multiple Testing Using the Correlations and 
p-Values from Table 4.1 and α = 0.05

i r p-Value 0.05/(m + i – 1) Significance

 1 0.439 0.002 0.005 yes
 2 0.446 0.002 0.006 yes
 3 0.345 0.018 0.006 no
 4 0.325 0.026 0.007 no
 5 0.294 0.045 0.008 no
 6 0.266 0.070 0.010 no
 7 0.192 0.196 0.013 no
 8 0.142 0.340 0.017 no
 9 0.130 0.385 0.025 no
10 0.110 0.460 0.050 no

Source: Holm (1979).
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number of degrees of freedom being the sum of the degrees of free-
dom for the components.

It follows from these results that if n tests are carried out on the same null 
hypothesis using independent data and yield p-values of p1, p2, …, pn, then a 
sensible way to combine the test results involves calculating

 S pe i1 2= − ∑log ( )  (4.4)

where this will have a chi-squared distribution with 2n degrees of freedom 
if the null hypothesis is true for all of the tests. A significantly large value of 
S1 is evidence that the null hypothesis is not true for at least one of the tests. 
This will occur if one or more of the individual p-values is very small, or if 
most of the p-values are fairly small.

There are a number of alternative methods that have been proposed for 
combining p-values, but Fisher’s method seems generally to be about the 
best, provided that the interest is in whether the null hypothesis is false for 
any of the sets of data being compared (Folks 1984). However, Rice (1990) 
argued that sometimes this is not quite what is needed. Instead, the ques-
tion is whether a set of tests of a null hypothesis is in good agreement about 
whether there is evidence against the null hypothesis. Then a consensus 
p-value is needed to indicate whether, on balance, the null hypothesis is sup-
ported or not. For this purpose, Rice suggests using the Stouffer method 
described by Folks (1984).

The Stouffer method proceeds as follows. First, the p-value from each test 
is converted to an equivalent z-score, i.e., the p-value pi for the ith test is used 
to find the value zi such that

 Prob(Z < zi) = pi (4.5)

where Z is a random value from the standard normal distribution with a 
mean of 0 and a standard deviation of 1. If the null hypothesis is true for all 
of the tests, then all of the zi values will be random values from the standard 
normal distribution, and it can be shown that their mean z will be normally 
distributed with a mean of zero and a variance of 1/√n. The mean z-value can 
therefore be tested for significance by seeing whether

 S2 = z/(1/√n) (4.6)

is significantly less than zero.
There is a variation on the Stouffer method that is appropriate when, for 

some reason, it is desirable to weight the results from different studies differ-
ently. This weighting might, for example, be based on the sample sizes used 
in the study, some assessment of reliability, or perhaps with recent studies 
given the highest weights. This is called the Liptak-Stouffer method by Folks 
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(1984). In this case, let wi be the weight for the ith study, and define the test 
statistic

 S3 = (w1z1 + w2z2 + … + wnzn)/√(w1
2 + w2

2 + … + wn
2) (4.7)

If the null hypothesis is true for all studies, then this will follow a stan-
dard normal distribution. If it is significantly low in comparison with the 
standard normal distribution, then this is evidence that the null hypothesis 
is not always true.

Meta-analysis, as generally understood, involves more than just combin-
ing the p-values from several sets of data. In fact, the usual approach is to 
take a series of studies, and for each one to calculate an estimated effect 
size, which is often just the mean difference between the treated and control 
groups in units of the estimated standard deviation of individual observa-
tions. Questions of interest are:

How large is the effect overall?•	
Is it generally a positive or a negative effect, and is it usually differ-•	
ent from zero?
Are the effect sizes similar for all studies?•	
If there is variation between studies, can this be related to the differ-•	
ent types of studies involved?

There is much literature on this type of meta-analysis. Comprehensive 
sources for more information are the books by Hedges and Olkin (1985) and 
Sutton et al. (2000), while the introductions to the topic provided by Gure-
vitch and Hedges (1993, 1999) will be useful for beginners in this area. Also, 
a special feature in the journal Ecology gives a review of applications of meta-
analysis in this area (Osenberg et al. 1999).

Example 4.4: The Exxon Valdez Oil Spill and Intertidal Sites
Table 4.3 summarizes the results from part of the Oil Spill Trustees’ 
Coastal Habitat Injury Assessment study of the shoreline impact of the 
Exxon Valdez oil spill that was discussed in Example 1.1. The source of 
these results is the paper by McDonald et al. (1995), who also provide 
the example calculations considered here. They come from comparing the 
biomass of barnacles (the family Balanomorpha) at some paired intertidal 
sites, of which one was oiled and the other not. The pairing was designed 
to ensure that the sites were similar in all respects except the oiling.

One way of looking at these results is to regard each pair of sites as a 
quasi-experiment on the effects of oiling. Each experiment can then be 
summarized by its p-value, which gives the probability of observing a 
positive difference between the biomass for the control and oiled sites 
as large as that observed. This is the p-value for a one-sided test because 
the assumption is that, if anything, oiling will reduce the biomass. The 
p-values are 0.374, 0.015, 0.167, 0.052, and 0.148. They are all fairly small, 
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but only one gives significance at the 5% level. A reasonable question 
is whether all the sites between them give real evidence of an effect of 
oiling.

This question can be answered using Fisher’s (1970) method for com-
bining p-values from independent data. From equation (4.4), the statistic 
for the combined p-values is
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with 2 × 5 = 10 df. The probability of a value this large from the chi-
squared distribution with 10 df is 0.0083, which is the combined p-value. 
Consequently, taken together, the five sites give a result that is significant 
at the 1% level (since 0.0083 < 0.01), and there is clear evidence of an effect 
of oiling at one or more of the sites.

A problem with this conclusion is that it says nothing about inter-
tidal sites in general. However, a conclusion in that respect is possible 
using the Liptak-Stouffer method. Consider the ith site, with the p-value 
pi and the corresponding z-score zi from equation (4.5). The z-score can 
then be thought of as an observation for the site pair, which is one unit 
from a population consisting of all the site pairs that could have been 
sampled. If the sample of five site pairs used in the study were a ran-
dom sample from the population of all site pairs, then the mean z-score 
for the sample would be an unbiased estimator of the population mean, 
allowing an inference to be drawn immediately about oiling in general. 
In particular, if the sample mean is significantly less than zero, then this 
would be evidence of an oiling effect in general.

Unfortunately, the site pairs were not a random sample from the pop-
ulation of all possible site pairs because the pairs were made up after a 
stratified sampling plan was found to be unsatisfactory (a high number 
of sites were found to be in the wrong strata by field teams). However, 
this problem can be overcome by using the Horvitz-Thomson estimator 
described in Section 2.14, and equation (2.45) in particular. Thus

Table 4.3

Results of Comparing the Biomass of Mussels at Paired 
Oiled and Control Sites on Prince William Sound, Alaska, 
in the Second Meter of Vertical Drop during May 1990

Site Pair

Density (count/0.1 m2)
p-Value  

from Test
Inclusion 

Probability (q)Unoiled Oiled

1  22.7  13.2 0.3740 1.000
2  62.8  32.0 0.0146 0.262
3 428.4 232.7 0.1670 0.600
4 385.9 132.7 0.0515 0.179
5 213.7 112.9 0.1479 0.668
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is an unbiased estimator of the population mean of z, where qi is the 
probability of the ith site being included in the sample. Setting

 wi = (1/qi)/(1/q1 + 1/q2 + … +1/q5)

makes

	 µ̂ z w z w z w z= + +…+1 1 2 2 5 5

which will be normally distributed with a mean of zero and a variance 
of w1

2 + w2
2 + … + w5

2 if the null hypothesis of no oiling effects on average 
is true. Hence this null hypothesis can be tested by seeing whether

 S3 = (w1z1 + w2z2 + … + w5z5)/√(w1
2 + w2

2 + … + w5
2)

is significantly less than zero in comparison with the standard normal 
distribution. This is precisely the Liptak-Stouffer test statistic of equation 
(4.7), showing that one application of the Liptak-Stouffer method is where 
the weight used for a z-value is proportional to the reciprocal of the prob-
ability of the observation being included in the sample that is available.

The inclusion probabilities for the five sites are shown in the last col-
umn of Table 4.3. Using these probabilities, the calculation of S3 is shown 
in Table 4.4. It is found that S3 = −2.91, where the probability of a value 
this low or lower for the standard normal distribution is 0.0018. This is 
therefore significantly low at the 1% level, giving strong evidence of an 
average effect of oiling.

Table 4.4

Calculation of the Liptak-Stouffer Test Statistic for the Data in 
Table 4.3 on the Biomass of Mussels at Oiled and Unoiled Sites

Site Pair
Inclusion 

Probability (q)
Weight 

(w)a

Test Result 
(p)

Normal 
Score (z)b

Product 
(wz)

1 1.000 0.0737 0.3740 –0.321 –0.0237
2 0.262 0.2813 0.0146 –2.181 –0.6135
3 0.600 0.1228 0.1673 –0.966 –0.1187
4 0.179 0.4118 0.0515 –1.630 –0.6714
5 0.668 0.1103 0.1479 –1.045 –0.1154

Sum 1.0000 –1.5426
∑w2 0.2814

Liptak-Stouffer statisticc –2.9080

a The weight for site i is (1/qi)/∑(1/qk).
b The normal score is the value obtained from equation (4.5).
c Calculated as ∑wizi/√(∑wi

2).
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This analysis is still not without problems. In particular, the z values are 
only a very indirect measure of the difference between oiled and unoiled 
sites, and all that can be said if there is an effect of oiling is that these 
z values will tend to be negative. An analysis based on a more meaningful 
measure of the effect of oiling would therefore have been preferable.

4.11  Bayesian Inference

So far, the methods discussed in this book have all been based on a tradi-
tional view of statistics, with tests of significance and confidence intervals 
being the main tools for inference, justified either by the study design (for 
design-based inference) or an assumed model (with model-based inference). 
There is, however, another fundamentally different approach to inference 
that is being used increasingly in recent times because certain computational 
difficulties that used to occur have now been overcome.

This alternative approach is called Bayesian inference because it is based 
on a standard result in probability theory called Bayes’s theorem. To see 
what this theorem says, consider the situation where it is possible to state 
that a certain parameter θ must take one, and only one, of a set of n specific 
values denoted by θ1, θ2, …, θn, and where—before any data are collected—it 
is known that the prior probability of θi (i.e., the probability of this being the 
correct value for θ) is P(θi), with P(θ1) + P(θ2) + … + P(θn) = 1. Some data that 
are related to θ are then collected. Under these conditions, Bayes’s theorem 
states that the posterior probability that θi (i.e., the probability that this is the 
correct value of θ, given the evidence in the data) is

 P P P Pi i k k( ) ( ) ( ) ( )θ θ θ θ|data data| data|= ∑  (4.8)

where the summation is for k = 1 to n, and P(data|θi) is the probability of 
observing the data if θ = θi.

This result offers a way to calculate the probability that a particular value is 
the correct one for θ on the basis of the data, which is the best that can be hoped 
for in terms of inferences about θ. The stumbling block is that, to do this, it is 
necessary to know the prior probabilities before the data are collected.

There are two approaches used to determine prior probabilities when, as 
is usually the case, these are not really known. The first approach uses the 
investigator’s subjective probabilities, based on general knowledge about 
the situation. The obvious disadvantage of this is that another investigator 
will likely not have the same subjective probabilities, so that the conclusions 
from the data will depend to some extent at least on who does the analysis. It 
is also very important that the prior probabilities not be determined after the 
data have been examined, because equation (4.8) does not apply if the prior 
probabilities depend on the data. Thus inferences based on equation (4.8) 
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with the prior probabilities depending partly on the data are not Bayesian 
inferences. In fact, they are not justified at all.

The second approach is based on choosing prior probabilities that are 
uninformative, so that they do not have much effect on the posterior prob-
abilities. For example, the n possible values of θ can all be given the prior 
probability 1/n. One argument for this approach is that it expresses initial 
ignorance about the parameter in a reasonable way and that, provided that 
there is enough data, the posterior probabilities do not depend very much on 
whatever is assumed for the prior probabilities.

Equation (4.8) generalizes in a straightforward way to situations where 
there are several or many parameters of interest, and where the prior distri-
butions for these parameters are discrete or continuous. For many purposes, 
all that needs to be known is that

 P(parameters|data) ∝ P(data|parameters)P(parameters)

i.e., the probability of a set of parameter values given the data is proportional 
to the probability of the data given the parameter values, multiplied by the 
prior probability of the set of parameter values. This result can be used to 
generate posterior probability distributions using possibly very complicated 
models when the calculations are done using a special technique called 
Markov-chain Monte Carlo.

There is one particular aspect of Bayesian inference that should be appreci-
ated. It is very much model-based in the sense discussed in Section 4.4. This 
means that it is desirable, with any serious study, that the conclusions from 
an analysis should be quite robust to both the assumptions made about prior 
distributions and the assumptions made about the other components in the 
model. Unfortunately, these types of assessments are often either not done or 
are not done very thoroughly.

This brief introduction to Bayesian inference has been included here 
because it seems likely that environmental scientists will be seeing more of 
these methods in the future as a means of drawing conclusions from data. 
More information about them with the emphasis on Markov-chain Monte 
Carlo methods is provided in the books by Manly (2007) and Gilks et al. 
(1996). For more on Bayesian data analysis in general, see the book by Gelman 
et al. (2003).

4.12  Chapter Summary

In drawing conclusions from data, it is important to distinguish •	
between observational and experimental studies. In general, obser-
vational studies are more likely to be affected by uncontrolled fac-
tors, leading to incorrect conclusions.
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Experimental studies can be either true experiments or quasi-exper-•	
iments. True experiments incorporate randomization, replication, 
and controls, while quasi-experiments lack one of these components. 
Many studies in environmental science are really quasi- experiments, 
so it is important to realize the limitations that this imposes on 
inferences.

There are two quite distinct philosophies that are used for drawing •	
conclusions with conventional statistical methods. One is design-
based, drawing its justification from the randomization used in sam-
pling, or in the random allocation of experimental units to different 
treatments. The other is model-based, drawing its justification from 
the random variation inherent in a model assumed to describe the 
nature of observations. In general, it is recommended that, where 
possible, inferences should be design-based because this requires 
fewer assumptions and is always valid, provided that randomiza-
tions are properly carried out.

There are limitations with tests of significance, which has led to •	
criticism of their use, at least with some applications. Two particular 
problems are: (a) tests are often carried out when the null hypothesis 
is known to probably be untrue, so that a significant result is very 
likely if enough data are collected, and (b) a nonsignificant result 
does not mean that the null hypothesis is false, because the sample 
size may just not be large enough to detect the existing effect.

It is argued that null hypotheses are relevant in situations where •	
there really is doubt about whether a null hypothesis is true or not. 
If this is not the case, then it is more reasonable to estimate the mag-
nitude of effects with some measure of how accurate the estimation 
is, using a confidence interval, for example.

Randomization tests have been used quite often with environmental •	
data. The idea is to compare the value of an observed test statistic with 
the distribution obtained by, in some sense, randomly reallocating the 
data to different samples. These tests have the advantage of requiring 
fewer assumptions than more-conventional tests. They are, however, 
computer intensive and may need special computer software.

Bootstrapping is another computer-intensive method. It is based on •	
the idea that, in the absence of any knowledge about a distribution 
other than the values in a random sample from the distribution, the 
best guide to what would happen by resampling the population is 
to resample the sample. In principle, bootstrapping can be used to 
conduct tests of significance and to construct confidence intervals 
for population parameters.

Pseudoreplication occurs when standard statistical methods are •	
used to test treatment effects where either treatments are not rep-
licated, or replicates are not statistically independent. Two errors 
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can be made in this respect: (a) inferences can be extended outside 
the population actually sampled, and (b) observations that are cor-
related because they are close in space or time are analyzed without 
taking error (a) into account.
When several related hypothesis tests are carried out at the same •	
time and all the null hypotheses are true, the probability of at least 
one significant result increases with the number of tests. This is a 
well-known problem that has led to the development of a range of 
procedures to take into account the multiple testing, including using 
a Bonferroni adjustment for the significance level used with indi-
vidual tests and Holm’s stepwise method for adjusting these levels.
Meta-analysis is concerned with the problem of combining the results •	
from a number of different studies on the same subject. This can 
be done by combining the p-values obtained from different studies 
using Fisher’s method or the Stouffer method. The Stouffer method 
also has a variation called the Liptak-Stouffer method, which allows 
the results of different studies to receive different weights. Alterna-
tively, rather than using p-values, an effect size is estimated for each 
study, and these effect sizes are examined in terms of the overall 
effect, the extent to which the effect varies from study to study, and 
whether the variation between studies can be explained by differ-
ences between the types of studies used.
Bayesian inference is different from conventional statistical inference, •	
and it is becoming more widely used as the cost of computing power 
decreases. With this approach, a prior distribution assumed for a 
parameter of interest is changed, using Bayes’s theorem, into a poste-
rior distribution, given the information from some new data. Modern 
computing methods, particularly Markov-chain Monte Carlo, make 
the Bayesian approach much easier to use than was the case in the 
past. However, it is cautioned that Bayesian inference is very much 
model-based, with all the potential problems that this implies.

Exercises

Exercise 4.1
Suppose that a pill is marketed with the claim that if one pill a day is 
taken, then it will lead to a significant weight loss for male and female 
adults. Describe how this claim might be tested using the experimen-
tal designs described in Section 4.3 (pre-experimental designs, a quasi-
experimental design, and two proper experimental designs). Explain the 
potential problems with the pre-experimental designs and the quasi-
experimental design, and how these can be overcome with the proper 
designs.
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Exercise 4.2
Repeat the analysis described in Example 4.1, but using the data in 
Table 3.8 on the hatchery brown trout and applying a logarithmic trans-
formation to overcome the apparent problem of unequal variances for 
the treated and control fish.

Exercise 4.3
Use bootstrapping to find a 95% confidence interval for the mean differ-
ence in the survival time between treated and control hatchery rainbow 
trout using the data in Table 3.8.
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5
Environmental Monitoring

5.1  Introduction

The increasing worldwide concern about threats to the natural environment 
both on a local and a global scale has led to the introduction of many moni-
toring schemes that are intended to provide an early warning of violations of 
quality control systems, to detect the effects of major events such as acciden-
tal oil spills or the illegal disposal of wastes, and to study long-term trends 
or cycles in key environmental variables.

Two examples of the national monitoring schemes that are now operating 
are the U.S. Environmental Protection Agency’s Environmental Moni toring 
and Assessment Program (EMAP) based on 12,600 hexagons, each with 
an area of 40 km2 (US EPA 2002c), and the United Kingdom Environmen-
tal Change Network (ECN) based on 12 terrestrial sites and 45 freshwater 
sites (Sykes 1999). In both of these schemes, a large number of variables are 
recorded on a regular basis to describe physical aspects of the land, water, 
and atmosphere and the abundance of many species of animals and plants. 
Around the world, numerous smaller-scale monitoring schemes are also 
operated for particular purposes, such as to ensure that the quality of drink-
ing water is adequate for a city.

Monitoring schemes to detect unexpected changes and trends are essen-
tially repeated surveys. The sampling methods described in Chapter 2 are 
therefore immediately relevant. In particular, if the mean value of a variable 
for the sample units in a geographical area is of interest, then the population 
of units should be randomly sampled so that the accuracy of estimates can 
be assessed in the usual way. Modifications of simple random sampling such 
as stratified sampling may well be useful to improve efficiency.

The requirements of environmental monitoring schemes have led to an 
interest in special types of sampling designs that include aspects of random 
sampling, good spatial cover, and the gradual replacement of sampling sites 
over time (Skalski 1990; Stevens and Olsen 1991; Overton et al. 1991; Urquhart 
et al. 1993; Conquest and Ralph 1998; McDonald 2003). Designs that are opti-
mum in some sense have also been developed (Fedorov and Mueller 1989; 
Caselton et al. 1992).
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Although monitoring schemes sometimes require fairly complicated 
designs, as a general rule it is a good idea to keep designs as simple as possible 
so that they are easily understood by administrators and the public. Simple 
designs also make it easier to use the data for purposes that were not fore-
seen in the first place, which is something that will often occur. As noted by 
Overton and Stehman (1995, 1996), complex sample structures create poten-
tial serious difficulties that do not exist with simple random sampling.

5.2  Purposely Chosen Monitoring Sites

For practical reasons, the sites for long-term monitoring programs are often 
not randomly chosen. For example, Cormack (1994) notes that the original 
nine sites for the United Kingdom ECN were chosen on the basis of having:

 1. a good geographical distribution covering a wide range of environmen-
tal conditions and the principal natural and managed ecosystems;

 2. some guarantee of long-term physical and financial security;
 3. a known history of consistent management;
 4. reliable and accessible records of past data, preferably for 10 or more 

years; and
 5. sufficient size to allow the opportunity for further experiments 

and observations.

In this scheme it is assumed that the initial status of sites can be allowed 
for by only considering time changes. These changes can then be related to 
differences between the sites in terms of measured meteorological variables 
and known geographical differences.

5.3  Two Special Monitoring Designs

Skalski (1990) suggested a rotating panel design with augmentation for long-
term monitoring. This takes the form shown in Table 5.1 if there are eight 
sites that are visited every year and four sets of 10 sites that are rotated. 
Site set 7, for example, consists of 10 sites that are visited in years 4 to 7 of 
the study. The number of sites in different sets is arbitrary. Preferably, the 
sites will be randomly chosen from an appropriate population of sites. This 
design has some appealing properties: The sites that are always measured 
can be used to detect long-term trends, but the rotation of blocks of 10 sites 
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ensures that the study is not too dependent on an initial choice of sites that 
may be unusual in some respects.

The serially alternating design with augmentation that is used for EMAP 
is of the form shown in Table 5.2. It differs from the previous monitoring 
design in that sites are not rotated out of the study. Rather, there are 8 sites 
that are measured every year and another 160 sites in blocks of 40, where 
each block of 40 is measured every four years. The number of sites in dif-
ferent sets is at choice in a design of this form. Sites should be randomly 
selected from an appropriate population.

Table 5.2

Serially Alternating Design with Augmentation

Site Set
Number 
of Sites

Year

1 2 3 4 5 6 7 8 9 10 11 12

0  8 x x x x x x x x x x x x
1 40 x x x
2 40 x x x
3 40 x x x
4 40 x x x

Note: Every year, 48 sites are measured. Of these, eight sites are always the same, and the 
other 40 sites are measured every four years.

Table 5.1

Rotating Panel Design with Augmentation

Site Set
Number 
of Sites

Year

1 2 3 4 5 6 7 8 9 10 11 12

 0  8 x x x x x x x x x x x x

 1 10 x
 2 10 x x
 3 10 x x x
 4 10 x x x x
 5 10 x x x x
 6 10 x x x x
 7 10 x x x x
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .

14 10 x x
15 10 x

Note: Every year 48 sites are visited. Of these, 8 are always the same and the other 40 sites 
are in four blocks of size 10, such that each block of 10 remains in the sample for four 
years after the initial startup period.

Source: Skalski (1990).
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Urquhart et al. (1993) compared the efficiency of the designs in Tables 5.1 
and 5.2 when there are a total of 48 sites, of which the number visited every 
year (i.e., in set 0) ranged from 0 to 48. To do this, they assumed the model

 Yijk = Si(j)k + Tj + eijk

where Yijk is a measure of the condition at site i, in year j, within site set 
k; Si(j)k is an effect specific to site i, in site set k, in year j; Tj is a year effect 
common to all sites; and eijk is a random disturbance. They also allowed for 
auto correlation between the overall year effects and between the repeated 
measurements at one site. They found the design of Table 5.2 to always be 
better for estimating the current mean and the slope in a trend because more 
sites are measured in the first few years of the study. However, in a later 
study that compared the two designs in terms of variance and cost, Lesser 
and Kalsbeek (1997) concluded that the first design tends to be better for 
detecting short-term change, while the second design tends to be better 
for detecting long-term change. See also Urquhart and Kincaid (1999).

The EMAP sample design is based on approximately 12,600 points on a 
grid, each of which is the center of a hexagon with area 40 km². The grid is 
itself within a large hexagonal region covering much of North America, as 
shown in Figure 5.1. The area covered by the 40-km² hexagons entered on the 
grid points is 1/16 of the total area of the conterminous United States, with 
the area used being chosen after a random shift in the grid. Another aspect 
of the design is that the four sets of sites that are measured on different years 
are spatially interpenetrating, as indicated in Figure 5.2. This allows the esti-
mation of parameters for the whole area every year.

Figure 5.1
The EMAP baseline grid for North America. The shaded area shown is covered by about 12,600 
small hexagons, with a spacing of 27 km between their centers.
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5.4  Designs Based on Optimization

One approach to the design of monitoring schemes is by choosing the sites 
so that the amount of information is in some sense maximized. The main 
question then is how to measure the information that is to be maximized, 
particularly if the monitoring scheme has a number of different objectives, 
some of which will only become known in the future.

One possibility involves choosing a network design, or adding or subtract-
ing stations to minimize entropy, where low entropy corresponds to high 
information (Caselton et al. 1992). The theory is complex and needs more 
prior information than will usually be available, particularly if there is no 
existing network to provide this.

Another possibility considers the choice of a network design to be a prob-
lem of the estimation of a regression function for which a classical theory of 
optimal design exists (Fedorov and Mueller 1989).

5.5  Monitoring Designs Typically Used

In practice, sample designs for monitoring often consist of selecting a certain 
number of sites, preferably (but not necessarily) at random from the potential 
sites in a region, and then measuring the variable of interest at those sites at 
a number of points in time. A complication is that, for one reason or another, 
some of the sites may not be measured at some of the times. A typical set of 
data will then look like the data in Table 5.3 for pH values measured on lakes 

Year 1 Year 2 Year 3 Year 4

Figure 5.2
The use of spatially interpenetrating samples for visits at four-year intervals.



130 Statistics for Environmental Science and Management, Second Edition

Table 5.3

pH Values for Lakes in Southern Norway with the Latitudes 
and Longitudes for the Lakes

Lake Latitude Longitude

pH

1976 1977 1978 1981

 1 58.0 7.2 4.59 4.48 4.63
 2 58.1 6.3 4.97 4.60 4.96
 4 58.5 7.9 4.32 4.23 4.40 4.49
 5 58.6 8.9 4.97 4.74 4.98 5.21
 6 58.7 7.6 4.58 4.55 4.57 4.69
 7 59.1 6.5 4.80 4.74 4.94
 8 58.9 7.3 4.72 4.81 4.83 4.90
 9 59.1 8.5 4.53 4.70 4.64 4.54
10 58.9 9.3 4.96 5.35 5.54 5.75
11 59.4 6.4 5.31 5.14 4.91 5.43
12 58.8 7.5 5.42 5.15 5.23 5.19
13 59.3 7.6 5.72 5.73 5.70
15 59.3 9.8 5.47 5.38 5.38
17 59.1 11.8 4.87 4.76 4.87 4.90
18 59.7 6.2 5.87 5.95 5.59 6.02
19 59.7 7.3 6.27 6.28 6.17 6.25
20 59.9 8.3 6.67 6.44 6.28 6.67
21 59.8 8.9 6.06 5.80 6.09
24 60.1 12.0 5.38 5.32 5.33 5.21
26 59.6 5.9 5.41 5.94
30 60.4 10.2 5.60 6.10 5.57 5.98
32 60.4 12.2 4.93 4.94 4.91 4.93
34 60.5 5.5 4.90 4.87
36 60.9 7.3 5.60 5.69 5.41 5.66
38 60.9 10.0 6.72 6.59 6.39
40 60.7 12.2 5.97 6.02 5.71 5.67
41 61.0 5.0 4.68 4.72 5.02
42 61.3 5.6 5.07 5.18
43 61.0 6.9 6.23 6.34 6.20 6.29
46 61.0 9.7 6.64 6.24 6.37
47 61.3 10.8 6.15 6.23 6.07 5.68
49 61.5 4.9 4.82 4.77 5.09 5.45
50 61.5 5.5 5.42 4.82 5.34 5.54
57 61.7 4.9 4.99 5.16 5.25
58 61.7 5.8 5.31 5.77 5.60 5.55
59 61.9 7.1 6.26 5.03 5.85
65 62.2 6.4 5.99 6.10 5.99 6.13
80 58.1 6.7 4.63 4.59 4.92
81 58.3 8.0 4.47 4.36 4.50
82 58.7 7.1 4.60 4.54 4.66



Environmental Monitoring 131

in Norway. With this set of data, which is part of the more extensive data 
that are shown in Table 1.1 and discussed in Example 1.2, the main question 
of interest is whether there is any evidence for changes from year to year in 
the general level of pH and, in particular, whether the pH level was tending 
to increase or decrease.

5.6  Detection of Changes by Analysis of Variance

A relatively simple analysis for data like the Norwegian lake pH values 
shown in Table 5.3 involves carrying out a two-factor analysis of variance, as 
discussed in Section 3.5. The two factors are then the site and the time. The 
model for the observation at site i at time j is

 yij = μ + Si + Tj + eij (5.1)

where μ represents an overall general level for the variable being measured, 
Si represents the deviation of site i from the general level, Tj represents a time 
effect, and eij represents measurement errors and other random variation 
that is associated with the observation at the site at the particular time.

The model given in equation (5.1) does not include a term for the interaction 
between sites and times, as is included in the general two-factor analysis-of-
variance model as defined in equation (3.31). This is because there is only, at 
most, one observation for a site in a particular year, which means that it is not 
possible to separate interactions from measurement errors. Consequently, it 
must be assumed that any interactions are negligible.

Table 5.3 (continued)

pH Values for Lakes in Southern Norway with the Latitudes 
and Longitudes for the Lakes

Lake Latitude Longitude

pH

1976 1977 1978 1981

83 58.9 6.1 4.88 4.99 4.86 4.92
85 59.4 11.3 4.60 4.88 4.91 4.84
86 59.3 9.4 4.85 4.65 4.77 4.84
87 59.2 7.6 5.06 5.15 5.11
88 59.4 7.3 5.97 5.82 5.90 6.17
89 59.3 6.3 5.47 6.05 5.82
94 61.0 11.5 6.05 5.97 5.78 5.75
95 61.2 4.6 5.70 5.50

Mean 5.34 5.40 5.31 5.38
SD 0.65 0.66 0.57 0.56
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Example 5.1: Analysis of Variance on the pH Values
The results of an analysis of variance on the pH values for Norwe-
gian lakes are summarized in Table 5.4. The results in this table were 
obtained using the MINITAB package (Minitab 2008) using an option 
that takes into account the missing values, although many other stan-
dard statistical packages could have been used just as well. The effects 
in the model were assumed to be fixed rather than random (as discussed 
in Section 3.5), although since interactions are assumed to be negligible, 
the same results would be obtained using random effects. It is found 
that there is a very significant difference between the lakes (p < 0.001) 
and a nearly significant difference between the years (p = 0.061). There-
fore there is no very strong evidence from this analysis of differences 
between years.

To check the assumptions of the analysis, standardized residuals (the 
differences between the actual observations and those predicted by the 
model, divided by their standard deviations) can be plotted against the 
lake, the year, and against their position in space for each of the four 
years. These plots are shown in Figures 5.3 and 5.4. These residuals show 
no obvious patterns, so that the model seems satisfactory, except that 
there are one or two residuals that are rather large.

Table 5.4

Analysis-of-Variance Table for Data on pH Levels in Norwegian Lakes

Source of 
Variation

Sum of 
Squaresa

Degrees of 
Freedom Mean Square F p-Value

Lake 58.70  47 1.249 37.95 0.000
Year  0.25   3 0.083  2.53 0.061
Error  3.85 117 0.033

Total 62.80 167

a The sums of squares shown here depend on the order in which effects are 
added into the model, which is species, the lake and then the year.
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Figure 5.3
Standardized residuals from the analysis-of-variance model for pH in Norwegian lakes plot-
ted against the lake number and the year number.
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5.7  Detection of Changes Using Control Charts

Control charts are used to monitor industrial processes (Montgomery 2005), 
and they can be used equally well with environmental data. The simplest 
approach involves using an x chart to detect changes in a process mean, 
together with a range chart to detect changes in the amount of variation. 
These types of charts are often called Shewhart control charts after their 
originator (Shewhart 1931).

Typically, the starting point is a moderately large set of data consisting of 
M random samples of size n, where these are taken at equally spaced inter-
vals of time from the output of the process. This set of data is then used to 
estimate the process mean and standard deviation, and hence to construct 
the two charts. The data are then plotted on the charts. It is usually assumed 
that the observations are normally distributed.

If the process seems to have a constant mean and standard deviation, then 
the sampling of the process is continued, with new points being plotted to 
monitor whatever is being measured. If the mean or standard deviation does 
not seem to have been constant for the time when the initial samples were 
taken, then, in the industrial process situation, action is taken to bring the 
process under control. With environmental monitoring, this may not be pos-
sible. However, the knowledge that the process being measured is not stable 
will be of interest anyway.
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Figure 5.4
Standardized residuals from the analysis-of-variance model for pH in Norwegian lakes plot-
ted against the locations of the lakes. The standardized residuals are rounded to the nearest 
integer for clarity.
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The method for constructing the x-chart involves the following stages:

 1. The sample mean and the sample range (the maximum value in a 
sample minus the minimum value in a sample) are calculated for 
each of the M samples. For the ith sample, let these values be denoted 
by xi and Ri.

 2. The mean of the variable being measured is assumed to be constant 
and is estimated by the overall mean of all the available observa-
tions, which is also just the mean of the sample means x1 to xM. Let 
the estimated mean be denoted by μ̂.

 3. Similarly, the standard deviation is assumed to have remained con-
stant, and this is estimated on the basis of a known relationship 
between the mean range for samples of size n and the standard 
deviation for samples from a normal distribution. This relationship 
is of the form σ = k(n)μR, where μR is the mean range for samples of 
size n, and the constant k(n) is given in Table 5.5. Thus the estimated 
standard deviation is

	 σ̂ = k(n)R
—
 (5.2)

where R
—
 is the mean of the sample ranges.

Table 5.5

Control Chart Limits for Sample Ranges, Assuming Samples 
from Normal Distributions

Sample 
Size

Lower Limits Upper Limits
SD

Factor (k)Action Warning Warning Action

 2 0.00 0.04 2.81 4.12 0.887
 3 0.04 0.18 2.17 2.99 0.591
 4 0.10 0.29 1.93 2.58 0.486
 5 0.16 0.37 1.81 2.36 0.430
 6 0.21 0.42 1.72 2.22 0.395
 7 0.26 0.46 1.66 2.12 0.370
 8 0.29 0.50 1.62 2.04 0.351
 9 0.32 0.52 1.58 1.99 0.337
10 0.35 0.54 1.56 1.94 0.325

Source: Tables G1 and G2 of Davies and Goldsmith (1972).
Note: To find the limits on the range chart, multiply the mean range by 

the tabulated value. For example, for samples of size n = 5, the 
lower action limit is 0.16 μR, where μR is the mean range. With a 
stable distribution, a warning limit is crossed with probability 
0.05 (5%) and an action limit with probability 0.002 (0.2%). The 
last column is the factor that the mean range must be multiplied 
by to obtain the standard deviation. For example, for samples of 
size 3 the standard deviation is 0.591 μR.
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 4. The standard error of the mean for samples of size n is estimated to 
be S(x) = σ̂/√n.

 5. Warning limits are set at the mean ±1.96 standard errors, i.e., at μ̂ ± 
1.96S(x). If the mean and standard deviation are constant, then only 
about 1 in 20 (5%) of sample means should be outside these limits. 
Action limits are set at the mean ±3.09 standard errors, i.e., at μ̂ ± 
3.09S(x). Only about 1 in 500 (0.2%) sample means should plot outside 
these limits.

The rationale behind constructing the x chart in this way is that it shows 
the changes in the sample means with time, and the warning and action lim-
its indicate whether these changes are too large to be due to normal random 
variation if the mean is in fact constant.

With control charts, it is conventional to measure process variability using 
sample ranges on the grounds of simplicity, although standard deviations or 
variances could be used instead. Like x charts, range charts can have warn-
ing limits placed so that the probability of crossing one of these is 0.05 (5%), 
assuming that the level of variation is stable. Similarly, action limits can be 
placed so that the probability of crossing one of them is 0.002 (0.2%) when 
the level of variation is stable. The setting of these limits requires the use of 
tabulated values that are provided and explained in Table 5.5.

Control charts can be produced quite easily in a spreadsheet program. 
Alternatively, some statistical packages have options to produce the charts.

Example 5.2: Monitoring pH in New Zealand
Table 5.6 shows data that were obtained from regular monitoring of riv-
ers in the South Island of New Zealand. Values are provided for pH for 
five randomly chosen rivers, with a different selection for each of the 
monthly sample times from January 1989 to December 1997. The data 
are used to construct control charts for monitoring pH over the sam-
pled time. As shown in Figure 5.5, the distribution is reasonably close 
to normal.

The overall mean of the pH values for all the samples is μ̂ = 7.640. 
This is used as the best estimate of the process mean. The mean of the 
sample ranges is R

—
 = 0.694. From Table 5.5, the factor to convert this to an 

estimate of the process standard deviation is k(5) = 0.43. The estimated 
standard deviation is therefore

	 σ̂ = 0.43 × 0.694 = 0.298

Hence, the estimated standard error for the sample means is

 SÊ(x) = 0.298/√5 = 0.133

The mean control chart is shown in Figure 5.6(a), with the action lim-
its set at 7.640 ± 3.09 × 0.133 (i.e., 7.23 and 8.05), and the warning limits at 
7.640 ± 1.96 × 0.133 (i.e., 7.38 and 7.90).
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Table 5.6

pH Values for Five Randomly Selected Rivers in the South Island of 
New Zealand, for Each Month from January 1989 to December 1997

Year Month pH Values Mean Range

1989 Jan 7.27 7.10 7.02 7.23 8.08 7.34 1.06
Feb 8.04 7.74 7.48 8.10 7.21 7.71 0.89
Mar 7.50 7.40 8.33 7.17 7.95 7.67 1.16
Apr 7.87 8.10 8.13 7.72 7.61 7.89 0.52
May 7.60 8.46 7.80 7.71 7.48 7.81 0.98
Jun 7.41 7.32 7.42 7.82 7.80 7.55 0.50
Jul 7.88 7.50 7.45 8.29 7.45 7.71 0.84
Aug 7.88 7.79 7.40 7.62 7.47 7.63 0.48
Sep 7.78 7.73 7.53 7.88 8.03 7.79 0.50
Oct 7.14 7.96 7.51 8.19 7.70 7.70 1.05
Nov 8.07 7.99 7.32 7.32 7.63 7.67 0.75
Dec 7.21 7.72 7.73 7.91 7.79 7.67 0.70

1990 Jan 7.66 8.08 7.94 7.51 7.71 7.78 0.57
Feb 7.71 8.73 8.18 7.04 7.28 7.79 1.69
Mar 7.72 7.49 7.62 8.13 7.78 7.75 0.64
Apr 7.84 7.67 7.81 7.81 7.80 7.79 0.17
May 8.17 7.23 7.09 7.75 7.40 7.53 1.08
Jun 7.79 7.46 7.13 7.83 7.77 7.60 0.70
Jul 7.16 8.44 7.94 8.05 7.70 7.86 1.28
Aug 7.74 8.13 7.82 7.75 7.80 7.85 0.39
Sep 8.09 8.09 7.51 7.97 7.94 7.92 0.58
Oct 7.20 7.65 7.13 7.60 7.68 7.45 0.55
Nov 7.81 7.25 7.80 7.62 7.75 7.65 0.56
Dec 7.73 7.58 7.30 7.78 7.11 7.50 0.67

1991 Jan 8.52 7.22 7.91 7.16 7.87 7.74 1.36
Feb 7.13 7.97 7.63 7.68 7.90 7.66 0.84
Mar 7.22 7.80 7.69 7.26 7.94 7.58 0.72
Apr 7.62 7.80 7.59 7.37 7.97 7.67 0.60
May 7.70 7.07 7.26 7.82 7.51 7.47 0.75
Jun 7.66 7.83 7.74 7.29 7.30 7.56 0.54
Jul 7.97 7.55 7.68 8.11 8.01 7.86 0.56
Aug 7.86 7.13 7.32 7.75 7.08 7.43 0.78
Sep 7.43 7.61 7.85 7.77 7.14 7.56 0.71
Oct 7.77 7.83 7.77 7.54 7.74 7.73 0.29
Nov 7.84 7.23 7.64 7.42 7.73 7.57 0.61
Dec 8.23 8.08 7.89 7.71 7.95 7.97 0.52

1992 Jan 8.28 7.96 7.86 7.65 7.49 7.85 0.79
Feb 7.23 7.11 8.53 7.53 7.78 7.64 1.42
Mar 7.68 7.68 7.15 7.68 7.85 7.61 0.70
Apr 7.87 7.20 7.42 7.45 7.96 7.58 0.76
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Table 5.6 (continued)

pH Values for Five Randomly Selected Rivers in the South Island of 
New Zealand, for Each Month from January 1989 to December 1997

Year Month pH Values Mean Range

May 7.94 7.35 7.68 7.50 7.12 7.52 0.82
Jun 7.80 6.96 7.56 7.22 7.76 7.46 0.84
Jul 7.39 7.12 7.70 7.47 7.74 7.48 0.62
Aug 7.42 7.41 7.47 7.80 7.12 7.44 0.68
Sep 7.91 7.77 6.96 8.03 7.24 7.58 1.07
Oct 7.59 7.41 7.41 7.02 7.60 7.41 0.58
Nov 7.94 7.32 7.65 7.84 7.86 7.72 0.62
Dec 7.64 7.74 7.95 7.83 7.96 7.82 0.32

1993 Jan 7.55 8.01 7.37 7.83 7.51 7.65 0.64
Feb 7.30 7.39 7.03 8.05 7.59 7.47 1.02
Mar 7.80 7.17 7.97 7.58 7.13 7.53 0.84
Apr 7.92 8.22 7.64 7.97 7.18 7.79 1.04
May 7.70 7.80 7.28 7.61 8.12 7.70 0.84
Jun 7.76 7.41 7.79 7.89 7.36 7.64 0.53
Jul 8.28 7.75 7.76 7.89 7.82 7.90 0.53
Aug 7.58 7.84 7.71 7.27 7.95 7.67 0.68
Sep 7.56 7.92 7.43 7.72 7.21 7.57 0.71
Oct 7.19 7.73 7.21 7.49 7.33 7.39 0.54
Nov 7.60 7.49 7.86 7.86 7.80 7.72 0.37
Dec 7.50 7.86 7.83 7.58 7.45 7.64 0.41

1994 Jan 8.13 8.09 8.01 7.76 7.24 7.85 0.89
Feb 7.23 7.89 7.81 8.12 7.83 7.78 0.89
Mar 7.08 7.92 7.68 7.70 7.40 7.56 0.84
Apr 7.55 7.50 7.52 7.64 7.14 7.47 0.50
May 7.75 7.57 7.44 7.61 8.01 7.68 0.57
Jun 6.94 7.37 6.93 7.03 6.96 7.05 0.44
Jul 7.46 7.14 7.26 6.99 7.47 7.26 0.48
Aug 7.62 7.58 7.09 6.99 7.06 7.27 0.63
Sep 7.45 7.65 7.78 7.73 7.31 7.58 0.47
Oct 7.65 7.63 7.98 8.06 7.51 7.77 0.55
Nov 7.85 7.70 7.62 7.96 7.13 7.65 0.83
Dec 7.56 7.74 7.80 7.41 7.59 7.62 0.39

1995 Jan 8.18 7.80 7.22 7.95 7.79 7.79 0.96
Feb 7.63 7.88 7.90 7.45 7.97 7.77 0.52
Mar 7.59 8.06 8.22 7.57 7.73 7.83 0.65
Apr 7.47 7.82 7.58 8.03 8.19 7.82 0.72
May 7.52 7.42 7.76 7.66 7.76 7.62 0.34
Jun 7.61 7.72 7.56 7.49 6.87 7.45 0.85
Jul 7.30 7.90 7.57 7.76 7.72 7.65 0.60

(continued on next page)
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The range chart is shown in Figure 5.6(b). Using the factors for setting 
the action and warning limits from Table 5.5, these limits are set at 0.16 × 
0.694 = 0.11 (lower action limit), 0.37 × 0.694 = 0.26 (lower warning limit), 
1.81 × 0.694 = 1.26 (upper warning limit), and 2.36 × 0.694 = 1.64 (upper 
action limit). Due to the nature of the distribution of sample ranges, these 
limits are not symmetrically placed about the mean.

Table 5.6 (continued)

pH Values for Five Randomly Selected Rivers in the South Island of 
New Zealand, for Each Month from January 1989 to December 1997

Year Month pH Values Mean Range

Aug 7.75 7.75 7.52 8.12 7.75 7.78 0.60
Sep 7.77 7.78 7.75 7.49 7.14 7.59 0.64
Oct 7.79 7.30 7.83 7.09 7.09 7.42 0.74
Nov 7.87 7.89 7.35 7.56 7.99 7.73 0.64
Dec 8.01 7.56 7.67 7.82 7.44 7.70 0.57

1996 Jan 7.29 7.62 7.95 7.72 7.98 7.71 0.69
Feb 7.50 7.50 7.90 7.12 7.69 7.54 0.78
Mar 8.12 7.71 7.20 7.43 7.56 7.60 0.92
Apr 7.64 7.75 7.80 7.72 7.73 7.73 0.16
May 7.59 7.57 7.86 7.92 7.22 7.63 0.70
Jun 7.60 7.97 7.14 7.72 7.72 7.63 0.83
Jul 7.07 7.70 7.33 7.41 7.26 7.35 0.63
Aug 7.65 7.68 7.99 7.17 7.72 7.64 0.82
Sep 7.51 7.64 7.25 7.82 7.91 7.63 0.66
Oct 7.81 7.53 7.88 7.11 7.50 7.57 0.77
Nov 7.16 7.85 7.63 7.88 7.66 7.64 0.72
Dec 7.67 8.05 8.12 7.38 7.77 7.80 0.74

1997 Jan 7.97 7.04 7.48 7.88 8.24 7.72 1.20
Feb 7.17 7.69 8.15 6.96 7.47 7.49 1.19
Mar 7.52 7.84 8.12 7.85 8.07 7.88 0.60
Apr 7.65 7.14 7.38 7.23 7.66 7.41 0.52
May 7.62 7.64 8.17 7.56 7.53 7.70 0.64
Jun 7.10 7.16 7.71 7.57 7.15 7.34 0.61
Jul 7.85 7.62 7.68 7.71 7.72 7.72 0.23
Aug 7.39 7.53 7.11 7.39 7.03 7.29 0.50
Sep 8.18 7.75 7.86 7.77 7.77 7.87 0.43
Oct 7.67 7.66 7.87 7.82 7.51 7.71 0.36
Nov 7.57 7.92 7.72 7.73 7.47 7.68 0.45
Dec 7.97 8.16 7.70 8.21 7.74 7.96 0.51

Mean 7.640 0.694

Source: This is part of a larger data set provided by Graham McBride, 
National Institute of Water and Atmospheric Research, Hamilton, 
New Zealand.
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Figure 5.5
Histogram of the distribution of pH for samples from lakes in the South Island of New Zea-
land, 1989 to 1997.
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Figure 5.6
Control charts for pH levels in rivers in the South Island of New Zealand. For a process that is 
stable, about 1 in 40 points should plot outside one of the warning limits (LWL and UWL), and 
only about 1 in 1000 points should plot outside one of the action limits (LAL and UAL).
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With 108 observations altogether, it is expected that about five points 
will plot outside the warning limits. In fact, there are ten points out-
side these limits, and one point outside the lower action limit. It appears, 
therefore, that the mean pH level in the South Island of New Zealand 
was changing to some extent during the monitored period, with the 
overall plot suggesting that the pH level was high for about the first two 
years, and was lower from then on.

The range chart has seven points outside the warning limits, and one 
point above the upper action limit. Here again there is evidence that the 
process variation was not constant, with occasional spikes of high vari-
ability, particularly in the early part of the monitoring period.

As this example demonstrates, control charts are a relatively simple 
tool for getting some insight into the nature of the process being moni-
tored, through the use of the action and control limits, which indicate the 
level of variation expected if the process is stable. See a book on indus-
trial process control such as the one by Montgomery (2005) for more 
details about the use of x and range charts, as well as a number of other 
types of charts that are intended to detect changes in the average level 
and the variation in processes.

5.8  Detection of Changes Using CUSUM Charts

An alternative to the x chart that is sometimes used for monitoring the mean 
of a process is a CUSUM chart, as proposed by Page (1961). With this chart, 
instead of plotting the means of successive samples directly, the differences 
between the sample means and the desired target mean are calculated and 
summed. Thus if the means of successive samples are x1, x2, x3, and so on, 
then S1 = (x1 − μ) is plotted against sample number 1, S2 = (x1 − μ) + (x2 − μ) 
is plotted against sample number 2, S3 = (x1 − μ) + (x2 − μ) + (x3 − μ) is plot-
ted against sample number 3, and so on, where μ is the target mean of the 
process. The idea is that because deviations from the target mean are accu-
mulated, this type of chart will show small deviations from the target mean 
more quickly than the traditional x chart. See MacNally and Hart (1997) for 
an environmental application.

Setting control limits for CUSUM charts is more complicated than it is for 
an x chart (Montgomery 2005), and the details will not be considered here. 
There is, however, a variation on the usual CUSUM approach that will be 
discussed because of its potential value for monitoring under circumstances 
where repeated measurements are made on the same sites at different times. 
That is to say, the data are like the pH values for a fixed set of Norwegian 
lakes shown in Table 5.3, rather than the pH values for random samples of 
New Zealand rivers shown in Table 5.6.
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This method proceeds as follows (Manly 1994; Manly and MacKenzie 
2000). Suppose that there are n sample units measured at m different times. 
Let xij be the measurement on sample unit i at time tj, and let xi be the mean 
of all the measurements on the unit. Assume that the units are numbered in 
order of their values for xi, to make x1 the smallest mean and xn the largest 
mean. Then it is possible to construct m CUSUM charts by calculating

 Sij = (x1j − x 1) + (x2j − x2) + … + (xij − xi) (5.3)

for j from 1 to m and i from 1 to n, and plotting the Sij values against i, for each 
of the m sample times.

The CUSUM chart for time tj indicates the manner in which the observa-
tions made on sites at that time differ from the average values for all sample 
times. For example, a positive slope for the CUSUM shows that the values for 
that time period are higher than the average values for all periods. Further-
more, a CUSUM slope of D for a series of sites (the rise divided by the number 
of observations) indicates that the observations on those sites are, on average, 
D higher than the corresponding means for the sites over all sample times. 
Thus a constant difference between the values on a sample unit at one time 
and the mean for all times is indicated by a constant slope of the CUSUM 
going either up or down from left to right. On the other hand, a positive slope 
on the left-hand side of the graph followed by a negative slope on the right-
hand side indicates that the values at the time being considered were high for 
sites with a low mean but low for sites with a high mean. Figure 5.7 illustrates 
some possible patterns that might be obtained, and their interpretation.

Randomization methods can be used to decide whether the CUSUM plot 
for time tj indicates systematic differences between the data for this time and 
the average for all times. In brief, four approaches based on the null hypoth-
esis that the values for each sample unit are in a random order with respect 
to time are:

 1. A large number of randomized CUSUM plots can be constructed 
where, for each one of these, the observations on each sample unit 
are randomly permuted. Then, for each value of i, the maximum 
and minimum values obtained for Sij can be plotted on the CUSUM 
chart. This gives an envelope within which any CUSUM plot for real 
data can be expected to lie, as shown in Figure 5.8. If the real data 
plot goes outside the envelope, then there is clear evidence that the 
null hypothesis is not true.

 2. Using the randomizations, it is possible to determine whether Sij is 
significantly different from zero for any particular values of i and j. 
Thus if there are R − 1 randomizations, then the observed value of •Sij• 
is significantly different from zero at the 100α% level if it is among 
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the largest 100α% of the R values of •Sij• consisting of the observed 
value and the R − 1 randomizations.

 3. To obtain a statistic that measures the overall extent to which a 
CUSUM plot differs from what is expected on the basis of the null 
hypothesis, the standardized deviation of Sij from zero,

 Zij = Sij/√Var(Sij)

  is calculated for each value of i. A measure of the overall deviation of 
the jth CUSUM from zero is then

 Zmax,j = Max(•Z1j•, •Z2j•, …, •Znj•)

  The value of Zmax,j for the observed data is significantly large at the 
100α% level if it is among the largest 100α% of the R values consist-
ing of itself plus R − 1 other values obtained by randomization.

 4. To measure the extent to which the CUSUM plots for all times differ 
from what is expected from the null hypothesis, the statistic

 Zmax,T = Zmax,1 + Zmax,2 + … + Zmax,m

  can be used. Again, the Zmax,T for a set of observed data is signifi-
cantly large at the 100α% level if it is among the largest 100α% of the 
R values consisting of itself plus R − 1 comparable values obtained 
from randomized data.

See Manly (1994) and Manly and MacKenzie (2000) for more details about 
how these tests are made.

Missing values can be handled easily. Again, see Manly (1994) and Manly 
and MacKenzie (2000) for more details. For the randomization tests, only the 
observations that are present are randomly permuted on a sample unit.

The way that the CUSUM values are calculated using equation (5.3) means 
that any average differences between sites are allowed for, so that there is no 
requirement for the mean values at different sites to be similar. However, for 
the randomization tests, there is an implicit assumption that there is negli-
gible serial correlation between the successive observations at one sampling 
site, i.e., there is no tendency for these observations to be similar because 
they are relatively close in time. If this is not the case, as may well happen 
for many monitored variables, then it is possible to modify the randomiza-
tion tests to allow for this. A method to do this is described by Manly and 
MacKenzie (2000), who also compare the power of the CUSUM procedure 
with the power of other tests for systematic changes in the distribution of the 
variable being studied. This modification will not be considered here.
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The calculations for the CUSUM method are fairly complicated, particu-
larly when serial correlation is involved. A Windows computer program 
called CAT (Cusum Analysis Tool) to do these calculations can be down-
loaded from the Web site www.proteus.co.nz.

Example 5.3: CUSUM Analysis of pH Data
As an example of the use of the CUSUM procedure, consider again the 
data from a Norwegian research program that are shown in Table 5.3. 
Figure 5.9 shows the plots for the years 1976, 1977, 1978, and 1981, each 
compared with the mean for all years. It appears that the pH values in 
1976 were generally close to the mean, with the CUSUM plots falling 
well within the limits found from 9999 randomizations, and the Zmax 
value (1.76) being quite unexceptional (p = 0.48). For 1977 there is some 
suggestion of pH values being low for lakes with a low mean, but the 
Zmax value (2.46) is not particularly large (p = 0.078). For 1978 there is also 
little evidence of differences from the mean for all years (Zmax = 1.60; 
p = 0.626). However, for 1981 it is quite another matter. The CUSUM plot 
even exceeds some of the upper limits obtained from 9999 randomiza-
tions, and the observed Zmax value (3.96) is most unlikely to have been 
obtained by chance (p = 0.0002). Thus there is very clear evidence that 
the pH values in 1981 were higher than in the other years, although the 
CUSUM plot shows that the differences were largely on the lakes with 
relatively low mean pH levels, because it becomes quite flat on the right-
hand side of the graph.

The sum of the Zmax values for all four years is Zmax,T = 9.79. From the 
randomizations, the probability of obtaining a value this large is 0.0065, 
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Figure 5.9
CUSUM plots for 1976, 1977, 1978, and 1981 compared with the mean for all years. The horizon-
tal axis corresponds to lakes in the order of mean pH values for the four years. For each plot, 
the upper and lower continuous lines are the limits obtained from 9999 randomized sets of 
data, and the CUSUM is the line with open boxes. The p-value with each plot is the probability 
of obtaining a plot as extreme or more extreme than the one obtained.
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giving clear evidence of systematic changes in the pH levels of the lakes, 
for the years considered together.

5.9  Chi-Squared Tests for a Change in a Distribution

Stehman and Overton (1994) describe a set of tests for a change in a distribu-
tion, which they suggest will be useful as a screening device. These tests can 
be used whenever observations are available on a random sample of units at 
two times. If the first observation in a pair is x and the second one is y, then y 
is plotted against x, and three chi-squared calculations are made.

The first test compares the number of points above a 45 degree line with 
the number below, as indicated in Figure 5.10. A significant difference indi-
cates an overall shift in the distribution either upward (most points above 
the 45 degree line) or downward (most points below the 45 degree line). 
In Figure 5.10 there are 30 points above the line and 10 points below. The 
expected counts are both 20 if x and y are from the same distribution.

The one-sample chi-squared test (Appendix 1, Section A1.4) is used to com-
pare the observed and expected frequencies. The test statistic is Σ(O − E)2/E, 
where O is an observed frequency, E an expected frequency, and the sum-
mation is over all such frequencies. Thus for the situation being considered, 
the statistic is

 (30 − 20)²/20 + (10 − 20)²/20 = 10.00

35
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10 Points Below Line20Y

15
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5
5 10 15 20

X
25 30 35

Figure 5.10
Test for a shift in a distribution by counting points above and below the line y = x.
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with 1 degree of freedom (df). This is significantly large at the 1% level, giv-
ing clear evidence of a shift in the general level of observations. Because 
most plotted points are above the 45 degree line, the observations tend to be 
higher at the second sample time than at the first sample time.

For the second test, the line at 45 degrees is shifted upward or downward 
so that an equal number of points are above and below it. Counts are then 
made of the number of points in four quadrats, as shown in Figure 5.11. The 
counts then form a 2 × 2 contingency table, and the contingency table chi-
squared test (Appendix 1, Section A1.4) can be used to see whether the counts 
above and below the line are significantly different. A significant result indi-
cates a change in shape of the distribution from one time period to the next. 
In Figure 5.11 the observed counts are

 10 10
 10 10

These are exactly equal to the expected counts on the assumption that the 
probability of a point plotting above the line is the same for high and low 
observations, leading to a chi-squared value of zero with 1 df. There is, there-
fore, no evidence of a change in shape of the distribution from this test.

Finally, the third test involves dividing the points into quartiles, as shown 
in Figure 5.12. The counts in the different parts of the plot now make a 4 × 2 
contingency table for which a significant chi-squared statistic again indicates 
a change in distribution. The contingency table from Figure 5.12 is shown in 
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Figure 5.11
Test for a change of shape in a distribution by counting points around a shifted line.
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Table 5.7. The chi-squared statistic is 0.80 with 3 df, again giving no evidence 
of a change in the shape of the distribution.

In carrying out these tests, it will usually be simplest to count the points 
based on drawing graphs like those shown in Figures 5.10 to 5.12 very accu-
rately, with points on lines omitted from the counts.

Example 5.4: The pH for Norwegian Lakes in 1976 and 1978
Figure 5.13 shows the 1978 pH values plotted against the 1976 values 
for the 44 lakes shown in Table 5.3 for which observations are available 
for both years. For the first of Stehman and Overton’s (1994) tests, it is 
found that there are 13 points that plot above, and 31 that plot below the 
45 degree line. The chi-square statistic is therefore

 (13 − 22)²/22 + (31 − 22)²/22 = 7.36

Table 5.7

Counts of Points above and below the Shifted 
45 Degree Line Shown in Figure 5.12

Quartile of the Distribution

1 2 3 4 Total

Above line  5  5  6  4 20
Below line  5  5  4  6 20

Total 10 10 10 10 40
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Figure 5.12
Extension of the test for a change in the shape of a distribution with more division of points.
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with 1 df. Because this is significant at the 1% level, there is clear evi-
dence of a shift (downward) in the distribution.

For the second of Stehman and Overton’s (1994) tests, the counts above 
and below a shifted line are found to be

 15  7

  7 15

The chi-squared statistic for this 2 × 2 contingency table is 5.82 with 
1 df. This is significant at the 5% level, giving some evidence of a change 
in the shape of the distribution. The nature of the changes is that there 
seems to have been a tendency for low values to increase and high values 
to decrease between 1976 and 1978.

For the third test, the counts are given in Table 5.8. The expected count 
in each cell is 5.5, and the contingency table chi-squared test comparing 
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Figure 5.13
Plot of 1978 pH values (Y) against 1976 pH values (X) for 44 Norwegian lakes, for use with Steh-
man and Overton’s (1994) tests.

Table 5.8

Counts of Points above and below the Shifted 
45 Degree Line for the Comparison between 
pH Levels of Lakes in 1976 and 1978

Quartile of the Distribution

1 2 3 4 Total

Above line  7  8  5  2 22
Below line  4  3  6  9 22

Total 11 11 11 11 44
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observed and expected frequencies gives a test statistic of 7.64 with 3 df. 
This is not quite significantly large at the 5% level, so that at this level of 
detail the evidence for a change in distribution is not strong.

Overall, the three chi-squared tests suggest that there has been a shift 
in the distribution toward lower pH values, with some reduction in vari-
ation as well.

5.10  Chapter Summary

A number of monitoring schemes are set up around the world to •	
detect changes and trends in environmental variables, at scales rang-
ing from whole countries to small local areas. Monitoring sites may 
be purposely chosen to be representative and meet other criteria, 
be chosen using special sampling designs incorporating both fixed 
sites and changing sites, or based on some optimization principle.

If repeated measurements are taken at a set of sites over a region, •	
then one approach to testing for time changes is to use two-factor 
analysis of variance. The first factor is then the site and the second 
factor is the sample time. This type of analysis is illustrated using 
pH data from Norwegian lakes.

Control charts are widely used to monitor industrial processes, and •	
can be used equally well to monitor environmental variables. With 
Shewhart’s (1931) method, there is one chart to monitor the process 
mean and a second chart to monitor the variability. The construction 
of these charts is described and illustrated using pH data from rivers 
in the South Island of New Zealand.

Cumulative sum (CUSUM) charts are an alternative to the Shewhart •	
control chart for the mean. They involve plotting accumulating 
sums of deviations from a target value for a mean, rather than sam-
ple means. This type of chart may be able to detect small changes 
in the mean more effectively than the Shewhart chart, but is more 
complicated to set up.

A variation on the usual CUSUM idea can be used to detect system-•	
atic changes with time in situations where a number of sampling 
stations are sampled at several points in time. This procedure incor-
porates randomization tests to detect changes, and is illustrated 
using the pH data from Norwegian lakes.

A method for detecting changes in a distribution using chi-squared •	
tests is described. With this test, the same randomly selected sample 
units are measured at two times, and the second measurement (y) is 
plotted against the first measurement (x). Based on the positions of the 
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plotted points, it is possible to test for a change in the mean of the distri-
bution, followed by tests for changes in the shape of the distribution.

Exercises

Exercise 5.1
Table 5.9 shows the annual ring widths (mm) measured for samples 
of five Andean alders taken each year from 1964 to 1989 from a site on 
Taficillo Ridge, Tucuman, Argentina, which was the topic of Example 1.5. 
Construct control charts for the sample means and ranges and comment 

Table 5.9

Tree-Ring Widths (mm) of Andean Alders (Alnus acuminata)

1 2 3 4 5

1964 3.0 5.0 7.2 6.0 5.1
1965 5.1 4.1 8.2 3.5 5.3
1966 2.9 6.6 6.8 7.5 4.3
1967 7.3 7.0 5.2 5.0 3.3
1968 3.3 5.7 10.1 4.8 4.0
1969 4.4 1.3 4.3 2.6 9.2
1970 1.9 4.3 3.3 5.2 1.4
1971 7.3 2.6 4.7 3.2 2.7
1972 2.2 4.4 3.1 4.7 0.5
1973 1.6 4.5 1.3 1.8 1.1
1974 3.2 2.3 2.0 1.9 0.8
1975 1.4 0.5 1.5 1.3 1.5
1976 1.7 5.4 4.1 0.2 1.6
1977 2.1 2.4 4.6 4.5 2.5
1978 2.9 4.3 5.2 3.0 4.1
1979 7.3 2.6 2.6 3.4 1.0
1980 1.7 1.5 2.1 2.1 0.6
1981 1.8 4.6 1.1 1.6 0.9
1982 0.3 1.0 2.0 2.8 1.8
1983 0.5 0.9 1.0 1.4 0.2
1984 0.2 0.3 0.2 0.8 0.3
1985 1.3 0.8 0.5 0.5 0.8
1986 1.0 0.3 2.0 1.5 0.6
1987 0.2 0.8 1.2 0.1 0.1
1988 3.7 0.8 1.4 0.5 0.3
1989 0.1 0.3 1.7 1.0 0.2

Note: In each year, five ring widths were measured.
Source: As measured by Dr. Alfredo Grau on the Taficillo Ridge, 

Tucuman, Argentina.
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on whether the distribution of tree-ring widths appears to have been 
constant over the sampled period. The control chart for the mean should 
have 1 in 20 warning limits at the mean ±1.96 SÊ(x) and 1 in 500 action 
limits at the mean ±3.09 SÊ(x). The control chart for the range should be 
set up using the factors in Table 5.5.

Exercise 5.2
Use Stehman and Overton’s chi-squared tests as described in Section 5.9 
to see whether the distribution of SO4 levels of Norwegian lakes seems 
to have changed from 1978 to 1981 and, if so, describe the nature of the 
apparent change. The data are in Table 1.1. It is simplest to plot the data, 
draw on the lines by hand, and count the points for this example.
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6
Impact Assessment

6.1  Introduction

The before–after-control-impact (BACI) sampling design is often used to 
assess the effects of an environmental change made at a known point in 
time, and was called the optimal impact study design by Green (1979). The 
basic idea is that one or more potentially impacted sites are sampled both 
before and after the time of the impact, and one or more control sites that 
cannot receive any impact are sampled at the same time. The assumption 
is that any naturally occurring changes will be about the same at the two 
types of sites, so that any extreme changes at the potentially impacted sites 
can be attributed to the impact. An example of this type of study is given in 
Example 1.4, where the chlorophyll concentration and other variables were 
measured on two lakes on a number of occasions from June 1984 to August 
1986, with one of the lakes receiving a large experimental manipulation in 
the piscivore and planktivore composition in May 1985.

Figure 6.1 illustrates a situation where there are three observation times before 
the impact and four observation times after the impact. Evidence for an impact 
is provided by a statistically significant change in the difference between the 
control and impact sites before and after the impact time. On the other hand, 
if the time plots for the two types of sites remain approximately parallel, then 
there is no evidence that the impact had an effect. Confidence in the existence 
of a lasting effect is also gained if the time plots are approximately parallel 
before the impact time, and then approximately parallel after the impact time, 
but with the difference between them either increased or decreased.

It is possible, of course, for an impact to have an effect that increases or 
decreases with time. Figure 6.2 illustrates the latter situation, where the 
impacted site apparently returns to its usual state by about two time periods 
after the impact.

As emphasized by Underwood (1994), it is desirable to have more than one 
control site to compare with the potentially impacted site, and where possible, 
these should be randomly selected from a population of sites that are physi-
cally similar to the impact site. It is also important to compare control sites 
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to each other in order to be able to claim that the changes in the control sites 
reflect the changes that would be present in the impact site if there were no 
effect of the impact.

In experimental situations, there may be several impact sites as well as sev-
eral control sites. Clearly, the evidence of an impact from some treatment is 
improved if about the same effect is observed when the treatment is applied 
independently in several different locations.

The analysis of BACI and other types of studies to assess the impact of an 
event may be quite complicated because there are usually repeated measure-
ments taken over time at one or more sites (Stewart-Oaten and Bence 2001). 
The repeated measurements at one site will then often be correlated, with 
those that are close in time tending to be more similar than those that are 
further apart in time. If this correlation exists but is not taken into account 
in the analysis of data, then the design has pseudoreplication (Section 4.8), 
with the likely result being that the estimated effects appear to be more sta-
tistically significant than they should be.

When there are several control sites and several impact sites, each mea-
sured several times before and several times after the time of the impact, 
then one possibility is to use a repeated-measures analysis of variance. The 
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Figure 6.1
A BACI study with three samples before and four samples after the impact, which occurs 
between times 3 and 4.
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Figure 6.2
A situation where the effect of an impact between times 3 and 4 becomes negligible after four 
time periods.
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form of the data would be as shown in Table 6.1, which is for the case of 
three control and three impact sites, three samples before the impact, and 
four samples after the impact. For a repeated-measures analysis of variance, 
the two groups of sites give a single treatment factor at two levels (control 
and impact), and one within-site factor, which is the time relative to the 
impact, again at two levels (before and after). The repeated measurements 
are the observations at different times within the levels before and after, for 
one site. Interest is in the interaction between treatment factor and the time 
relative to the impact factor, because an impact will change the observations 
at the impact sites but not the control sites.

There are other analyses that can be carried out on data of the form shown 
in Table 6.1 that make different assumptions and may be more appropriate, 
depending on the circumstances (Von Ende 1993). Sometimes the data are 
obviously not normally distributed, or for some other reason a generalized-
linear-model approach as discussed in Section 3.6 is needed rather than an 
analysis of variance. This is likely to be the case, for example, if the observa-
tions are counts or proportions. There are so many possibilities that it is not 
possible to cover them all here, and expert advice should be sought unless 
the appropriate analysis is very clear.

Various analyses have been proposed for the situation where there is only 
one control and one impact site (Manly 1992, chap. 6; Rasmussen et al. 1993). 
In the next section, a relatively straightforward approach is described that 
may properly allow for serial correlation in the observations from one site.

6.2  The Simple Difference Analysis with BACI Designs

Hurlbert (1984) highlighted the potential problem of pseudoreplication 
with BACI designs due to the use of repeated observations from sites. To 

Table 6.1

The Form of Results from a BACI Experiment with Three Observations 
before and Four Observations after the Impact Time

Site

Before the Impact After the Impact

Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7

Control 1 X X X X X X X
Control 2 X X X X X X X
Control 3 X X X X X X X
Impact 1 X X X X X X X
Impact 2 X X X X X X X
Impact 3 X X X X X X X

Note: Observations are indicated by X.
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overcome this, Stewart-Oaten et al. (1986) suggested that if observations are 
taken at the same times at the control and impact sites, then the differences 
between the impact and control sites at different times may be effectively 
independent. For example, if the control and impact sites are all in the same 
general area, then it can be expected that they will be affected similarly by 
rainfall and other general environmental factors. The hope is that, by consid-
ering the difference between the impact and control sites, the effects of these 
general environmental factors will cancel out.

This approach was briefly described in Example 1.4 on a large-scale pertur-
bation experiment. The following is another example of the same type. Both 
of these examples involve only one impact site and one control site. With 
multiple sites of each type, the analysis can be applied using the differences 
between the average for the impact sites and the average for the control sites 
at different times.

Carpenter et al. (1989) considered the question of how much the simple 
difference method is upset by serial correlation in the observations from a 
site. As a result of a simulation study, they suggested that, to be conserva-
tive (in the sense of not declaring effects to be significant more often than 
expected by chance), results that are significant at a level of between 1% and 
5% should be considered to be equivocal. This was for a randomization test, 
but their conclusion is likely to apply equally well to other types of test such 
as the t-test used with Example 6.1.

Example 6.1: The Effect of Poison Pellets on Invertebrates
Possums (Trichosurus vulpecula) cause extensive damage in New Zealand 
forests when their density gets high, and to reduce the damage, aerial 
drops of poison pellets containing 1080 (sodium monofluoroacetate) poi-
son are often made. The assumption is made that the aerial drops have 
a negligible effect on nontarget species, and a number of experiments 
have been carried out by the New Zealand Department of Conservation 
to verify this.

One such experiment was carried out in 1997, with one control and one 
impact site (Lloyd and McQueen 2000). At the control site, 100 nontoxic 
baits were put out on six occasions, and the proportion of these that were 
fed on by invertebrates was recorded for three nights. At the impact site, 
observations were taken in the same way on the same six occasions, but 
for the last two occasions the baits were toxic, containing 1080 poison. 
In addition, there was an aerial drop of poison pellets in the impact area 
between the fourth and fifth sample times. The question of interest was 
whether the proportion of baits being fed on by invertebrates dropped 
in the impact area after the aerial drop. If so, this may be the result of the 
invertebrates being adversely affected by the poison pellets.

The available data are shown in Table 6.2 and plotted in Figure 6.3. The 
mean difference (impact-control) for times 1 to 4 before the aerial drop 
is −0.138. The mean difference after the drop for times 5 and 6 is −0.150, 
which is very similar. Figure 6.3 also shows that the time changes were 
rather similar at both sites, so there seems little suggestion of an impact. 
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Treating the impact-control differences before the impact as a random 
sample of size 4, and the differences after the impact as a random sample 
of size 2, the change in the mean difference −0.150 − (−0.138) = −0.012 can 
be tested for significance using a two-sample t-test. This gives t = −0.158 
with 4 df, which is not at all significant (p = 0.88 on a two-sided test). The 
conclusion must therefore be that there is no evidence here of an impact 
resulting from the aerial drop and the use of poison pellets.

If a significant difference had been obtained from this analysis it 
would, of course, be necessary to consider the question of whether this 
was just due to the time changes at the two sites being different for rea-
sons completely unrelated to the use of poison pellets at the impact site. 
Thus the evidence for an impact would come down to a matter of judg-
ment in the end.
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Figure 6.3
Results from a BACI experiment to see whether the proportion of pellets fed on by inverte-
brates changes when there is an aerial drop of 1080 pellets at the impact site between times 4 
and 5.

Table 6.2

Results from an Experiment To Assess Whether 
the Proportion of Pellets Fed On by Invertebrates 
Changes When the Pellets Contain 1080 Poison

Time Control Impact Difference

1 0.40 0.37 –0.03
2 0.37 0.14 –0.23
3 0.56 0.40 –0.16
4 0.63 0.50 –0.13

Start of Impact
5 0.33 0.26 –0.07
6 0.45 0.22 –0.23

Mean Difference

Before –0.138
After –0.150
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6.3  Matched Pairs with a BACI Design

When there is more than one impact site, pairing is sometimes used to 
improve the study design, with each impact site being matched with a con-
trol site that is as similar as possible. This is then called a control-treatment 
paired (CTP) design (Skalski and Robson 1992, chap. 6) or a before–after-
control-impact-pairs (BACIP) design (Stewart-Oaten et al. 1986). Sometimes 
information is also collected on variables that describe the characteristics of 
the individual sites (elevation, slope, etc.). These can then be used in the anal-
ysis of the data to allow for imperfect matching. The actual analysis depends 
on the procedure used to select and match sites, and on whether or not vari-
ables to describe the sites are recorded.

The use of matching can lead to a relatively straightforward analysis, as 
demonstrated by the following example.

Example 6.2: Another Study of the Effect of Poison Pellets
Like Example 6.1, this concerns the effects of 1080 poison pellets on inver-
tebrates. However, the study design was rather different. The original 
study is described by Sherley et al. (1999). In brief, 13 separate trials of the 
use of 1080 were carried out, where for each trial about 60 pellets were 
put out in a grid pattern in two adjacent sites over each of nine successive 
days. The pellets were of the type used in aerial drops to reduce possum 
numbers. However, in one of the two adjacent sites used for each trial, 
the pellets never contained 1080 poison. This served as the control. In the 
other site, the pellets contained poison on days 4, 5, and 6 only. Hence the 
control and impact sites were observed for three days before the impact, 
for three days during the impact (1080 pellets), and for three days after 
the impact was removed. The study involved some other components as 
well as the nine-day trials, but these will not be considered here.

The average number of invertebrates seen on pellets each day is shown 
in the top graph of Figure 6.4, for each of the 13 × 2 = 26 sites. There is 
a great deal of variation in these averages, although it is noticeable that 
the control sites tend toward higher means, as well as being more vari-
able than the poison sites. When the results are averaged for the control 
and poison sites, a clearer picture emerges (Figure 6.4, bottom graph). 
The poison sites had slightly lower mean counts than the control sites for 
days 1 to 3; the mean for the poison sites was much lower for days 4 to 6; 
and then the difference became less for days 7 to 9.

If the differences between the pairs of sites are considered, then the 
situation becomes somewhat clearer (Figure 6.5). The poison sites always 
had a lower mean than the control sites, but the difference increased for 
days 4 to 6, and then started to return to the original level.

Once differences are taken, a result is available for each of the nine 
days, for each of the 13 trials. An analysis of these differences is pos-
sible using a two-factor analysis of variance, as discussed in Section 3.5. 
The two factors are the trial at 13 levels, and the day at 9 levels. As there 
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is only one observation for each combination of these levels, it is not pos-
sible to estimate an interaction term, and the model

 xij = μ + ai + bj + εij (6.1)

must be assumed, where xij is the difference for trial i on day j, μ is an over-
all mean, ai is an effect for the ith trial, bj is an effect for the jth day, and εij 
represents random variation. When this model was fitted using Minitab 
(Minitab 2008), the differences between trials were highly significant (F = 
8.89 with 12 and 96 df, p < 0.0005), as were the differences between days 
(F = 9.26 with 8 and 96 df, p < 0.0005). It appears, therefore, that there is 
very strong evidence that the poison and control sites changed during 
the study, presumably because of the impact of the 1080 poison.

There may be some concern that this analysis will be upset by serial 
correlation in the results for the individual trials. However, this does not 
seem to be a problem here because there are wide fluctuations from day 
to day for some trials (Figure 6.5). Of more concern is the fact that the 
standardized residuals (the differences between the observed values for 
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Figure 6.4
Plots of the average number of invertebrates observed per pellet (top graph) and the daily 
means (bottom graph) for the control areas (broken lines) and the treated areas (continuous 
lines). At the treated site, poison pellets were used on days 4, 5, and 6 only.
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x and those predicted by the fitted model, divided by the estimated stan-
dard deviation of the error term in the model) are more variable for the 
larger predicted values (Figure 6.6). This seems to be because the origi-
nal counts of invertebrates on the pellets have a variance that increases 
with the mean value of the count. This is not unexpected because it is 
what usually occurs with counts, and a more suitable analysis for the 
data involves fitting a log-linear model (Section 3.6) rather than an 
analysis-of-variance model. However, if a log-linear model is fitted to 
the count data, then exactly the same conclusion is reached: The differ-
ence between the poison and control sites changes systematically over 

0.50.0–0.5
Fitted Value

St
an

da
rd

iz
ed

 R
es

id
ua

l

–1.0–1.5
–3
–2

–1

1
0

2
3
4

Figure 6.6
Plot of the standardized residuals from a two-factor analysis of variance against the values 
predicted by the model, for the difference between the poison and control sites for one day of 
one trial.
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Figure 6.5
The differences between the poison and control sites for the 13 trials, for each day of the trials. 
The heavy line is the mean difference for all trials. Poison pellets were used at the treated site 
for days 4, 5, and 6 only.
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the nine days of the trials, with the number of invertebrates decreasing 
during the three days of poisoning at the treated sites, followed by some 
recovery toward the initial level in the next three days.

This conclusion is quite convincing because of the replicated trials 
and the fact that the observed impact has the pattern that is expected if 
the 1080 poison has an effect on invertebrate numbers. The same conclu-
sion was reached by Sherley et al. (1999), but using a randomization test 
instead of analysis of variance or log-linear modeling.

6.4  Impact-Control Designs

When there is an unexpected incident such as an oil spill, there will usually 
be no observations taken before the incident at either control or impact sites. 
The best hope for impact assessment then is the impact-control design, which 
involves comparing one or more potentially impacted sites with similar con-
trol sites. The lack of “before” observations typically means that the design 
has low power in comparison with BACI designs (Osenberg et al. 1994).

It is obvious that systematic differences between the control and impact 
sites following the incident may be due to differences between the types 
of sites rather than the incident. For this reason, it is desirable to measure 
variables to describe the sites, in the hope that these will account for much of 
the observed variation in the variables that are used to describe the impact.

Evidence of a significant area by time interaction is important in an impact-
control design, because this may be the only source of information about the 
magnitude of an impact. For example, Figure 6.7 illustrates a situation where 
there is a large immediate effect of an impact, followed by an apparent recovery 
to the situation where the control and impact areas become rather similar.

The analysis of the data from an impact-control study will obviously 
depend on precisely how the data are collected. If there are a number of con-
trol sites and a number of impact sites measured once each, then the means 
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Figure 6.7
The results from an impact-control study, where an initial impact at time 0 largely disappears 
by about time 4.
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for the two groups can be compared by a standard test of significance, and 
confidence limits for the difference can be calculated. If each site is measured 
several times, then a repeated-measures analysis of variance may be appro-
priate. The sites are then the subjects, with the two groups of sites giving two 
levels of a treatment factor. As with the BACI design with multiple sites, care-
ful thought is needed to choose the best analysis for these types of data.

6.5  Before–After Designs

The before–after design can be used for situations where either no suitable 
control areas exist, or it is not possible to measure suitable areas. It does 
require data to be collected before a potential impact occurs, which may be 
the case with areas that are known to be susceptible to damage, or which 
are being used for long-term monitoring. The key question is whether the 
observations taken immediately after an incident occurs can be considered 
to fit within the normal range for the system. A pattern such as that shown 
in Figure 6.8 is expected, with a large change after the impact followed by a 
return to normal conditions.

The analysis of the data must be based on some type of time series analy-
sis, as discussed in Chapter 8 (Rasmussen et al. 1993). In simple cases where 
serial correlation in the observations is negligible, a multiple regression 
model may suffice. However, if serial correlation is clearly present, then this 
should be allowed for, possibly using a regression model with correlated 
errors (Kutner et al. 2004).

Of course, if some significant change is observed it is important to be able 
to rule out causes other than the incident. For example, if an oil spill occurs 
because of unusually bad weather, then the weather itself may account for 
large changes in some environmental variables, but not others.
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Figure 6.8
The before–after design, where an impact between times 2 and 3 disappears by about time 6.
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6.6  Impact-Gradient Designs

The impact-gradient design (Ellis and Schneider 1997) can be used where 
there is a point source of an impact in areas that are fairly homogeneous. The 
idea is to establish a function which demonstrates that the impact reduces 
as the distance from the source of the impact increases. To this end, data are 
collected at a range of distances from the source of the impact, preferably 
with the largest distances being such that no impact is expected. Regression 
methods can then be used to estimate the average impact as a function of 
the distance from the source. There may well be natural variation over the 
study area associated with the type of habitat at different sample locations, 
in which case suitable variables should be measured so that these can be 
included in the regression equation to account for the natural variation as 
far as possible.

A number of complications can occur with the analysis of data from the 
impact-gradient design. The relationship between the impact and the dis-
tance from the source may not be simple, necessitating the use of non linear 
regression methods; the variation in observations may not be constant at 
different distances from the source; and there may be spatial correlation, 
as discussed in Chapter 9. This is therefore another situation where expert 
advice on the data analysis may be required.

6.7  Inferences from Impact Assessment Studies

True experiments, as defined in Section 4.3, include randomization of exper-
imental units to treatments, replication to obtain observations under the 
same conditions, and control observations that are obtained under the same 
conditions as observations with some treatment applied, but without any 
treatment. Most studies to assess environmental impacts do not meet these 
conditions, and hence result in conclusions that must be accepted with reser-
vations. This does not mean that the conclusions are wrong. It does mean that 
alternative explanations for observed effects must be ruled out as unlikely if 
the conclusions are to be considered true.

It is not difficult to devise alternative explanations for the simpler study 
designs. With the impact-control design (Section 6.4), it is always possible that 
the differences between the control and impact sites existed before the time 
of the potential impact. If a significant difference is observed after the time of 
the potential impact, and if this is claimed to be a true measure of the impact, 
then this can only be based on the judgment that the difference is too large 
to be part of normal variation. Likewise, with the before–after design (Sec-
tion 6.5), if the change from before to after the time of the potential impact is 
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significant and this is claimed to represent the true impact, then this is again 
based on a judgment that the magnitude of the change is too large to be 
explained by anything else. Furthermore, with these two designs, no amount 
of complicated statistical analysis can change these basic weaknesses. In the 
social science literature, these designs are described as preexperimental 
designs because they are not even as good as quasi-experimental designs.

The BACI design with replication of control sites at least is better because 
there are control observations in time (taken before the potential impact) 
and in space (the sites with no potential impact). However, the fact is that, 
just because the control and impact sites have an approximately constant 
difference before the time of the potential impact, it does not mean that this 
would necessarily continue in the absence of an impact. If a significant change 
in the difference is used as evidence of an impact, then it is an assumption 
that nothing else could cause a change of this size.

Even the impact-gradient study design is not without its problems. It might 
seem that a statistically significant trend in an environmental variable with 
increasing distance from a potential point source of an impact is clear evi-
dence that the point source is responsible for the change. However, the vari-
able might naturally display spatial patterns and trends associated with 
obvious and nonobvious physical characteristics of the region. The probability 
of detecting a spurious significant trend may then be reasonably high if this 
comes from an analysis that does not take into account spatial correlation.

With all these limitations, it is possible to wonder about the value of many 
studies to assess impacts. The fact is that they are often done because they 
are all that can be done, and they give more information than no study at all. 
Sometimes the estimated impact is so large that it is impossible to imagine 
it being the result of anything but the impact event, although some small 
part of the estimate may indeed be due to natural causes. At other times, the 
estimated impact is small and insignificant, in which case it is not possible to 
argue that somehow the real impact is really large and important.

6.8  Chapter Summary

The before–after-control-impact (BACI) study design is often used to •	
assess the impact of some event on variables that measure the state 
of the environment. The design involves repeated measurements 
over time being made at one or more control sites and one or more 
potentially impacted sites, both before and after the time of the event 
that may cause an impact.

Serial correlation in the measurements taken at a site results in •	
pseudo replication if it is ignored in the analysis of data. Analyses 
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that may allow for this serial correlation in an appropriate way 
include repeated-measures analysis of variance.
A simple method that is valid with some sets of data takes the dif-•	
ferences between the observations at an impact site and a control 
site, and then tests for a significant change in the mean difference 
from before the time of the potential impact to after this time. This 
method can be applied using the differences between the mean for 
several impact sites and the mean for several control sites. It is illus-
trated using the results of an experiment on the effect of poison pel-
lets on invertebrate numbers.
A variation of the BACI design uses control and impact sites that •	
are paired up on the basis of their similarity. This can allow a rela-
tively simple analysis of the study results, as is illustrated by another 
study on the effect of poison pellets on invertebrate numbers.
With an impact-control design, measurements at one or more control •	
sites are compared with measurements at one or more impact sites 
only after the potential impact event has occurred.
With a before–after design, measurements are compared before and •	
after the time of the potential impact event, at impact sites only.
An impact-gradient study can be used when there is a point source •	
of a potential impact. This type of study looks for a trend in the val-
ues of an environmental variable with increasing distance from the 
point source.
Impact studies are not usually true experiments with randomiza-•	
tion, replication, and controls. The conclusions drawn are therefore 
based on assumptions and judgment. Nevertheless, they are often 
carried out because nothing else can be done, and they are better 
than no study at all.

Exercises

Exercise 6.1
Burk (1980) started a considerable controversy when he claimed that 
the fluoridation of water in Birmingham, England, in 1964 caused a 
sharp increase in cancer death rates in that city. His claim was based 
on the crude cancer death rates per 10,000 of population that are shown 
in Table 6.3 for Birmingham and Manchester, 1959 to 1977. The water 
in Manchester was not fluoridated at any time between 1959 and 1977. 
Analyze these data using the simple difference BACI analysis described 
in Section 6.2 and report your conclusions as to whether the difference 
between the cancer death rates for the two cities changed significantly 
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in about 1964. A number of authors objected strongly to the claim that 
any change in the cancer death rate in Birmingham in about 1964 was 
caused by fluoridation. What are some of the issues involved in deter-
mining whether a causal relationship between fluoridation and cancer 
was involved?

Table 6.3

Crude Cancer Death Rates (CDR) per 
100,000 of Population in Birmingham and 
Manchester, England, for 1959 to 1977

Year

CDR

Birmingham Manchester

1959 219 228
1960 209 244
1961 207 243
1962 211 242
1963 215 247
1964 208 242
1965 221 254
1966 221 249
1967 228 260
1968 243 263
1969 237 260
1970 234 264
1971 248 284
1972 246 286
1973 267 290
1974 263 291
1975 254 297
1976 269 305
1977 266 301

Note: The drinking water in Birmingham was 
fluoridated from 1964 onward.



167

7
Assessing Site Reclamation

7.1  Introduction

This chapter is concerned with the specific problem of evaluating the effec-
tiveness of the reclamation of a site that has suffered from some environmen-
tal damage. An example of the type of situation to be considered is where 
a site has been used for mining in the past and a government agency now 
requires that the mining company improve the state of the site until the bio-
mass of vegetation per unit area is similar to what is found on an undam-
aged reference site.

There are some difficulties with treating this problem using a classical 
test of significance. These are discussed in the next section of the chapter. 
An alternative approach that has gained support from some environmental 
scientists and managers is to use the concept of bioequivalence for compar-
ing the sites. Much of the chapter is concerned with how this alternative 
approach can be applied.

7.2  Problems with Tests of Significance

At first sight, it might seem that it is a straightforward problem to decide 
whether two sites are similar in terms of something like the biomass of veg-
etation, and that this can be dealt with in the following manner. The dam-
aged site should be improved until it appears to be similar to the reference 
site. Random sample quadrats should then be taken from each of the sites 
and the mean biomass calculated. If the two means are not significantly dif-
ferent, then the two sites are declared to be similar.

Unfortunately, as noted in Example 1.7 which was concerned with this 
type of problem, there are two complications with this obvious approach:

It is unreasonable to suppose that the damaged and reference sites •	
would have had exactly the same mean for the study variable, even 
in the absence of any impact on the damaged site. Therefore, if large 
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samples are taken from each site, there will be a high probability of 
detecting a difference, irrespective of the extent to which the damaged 
site has been reclaimed. Hence, the question of interest should not be 
whether there is a significant difference between the sites. Rather, the 
question should be whether the difference is of practical importance.
When a test for a difference between the two sites does not give a •	
significant result, this does not necessarily mean that a difference 
does not exist. An alternative explanation is that the sample sizes 
were not large enough to detect the difference that does exist.

Given this situation, the mining company has two sensible options. It can 
try to ensure that the comparison of sites is done with the smallest possible 
sample sizes so that there is not much power to detect a small difference 
between the sites. Or alternatively, it can improve the damaged site so that 
the biomass is much higher than for the reference site, on the assumption 
that the government agency will think this is acceptable. Neither of these 
options seems very satisfactory.

To avoid these complications with statistical tests, the U.S. Environmental 
Protection Agency (US EPA 1989a; Gilbert et al. 1996) recommended that the 
null hypothesis for statistical tests should depend on the status of a site in 
the following way:

 1. If a site has not been declared to be damaged, then the null hypoth-
esis should be that it is not, i.e., there is no difference from the control 
site. The alternative hypothesis is that the site is contaminated. A 
nonsignificant test result leads to the conclusion that there is no real 
evidence that the site is damaged.

 2. If a site has been declared to be damaged then the null hypothesis is 
that this is true, i.e., there is a difference (in an unacceptable direc-
tion) from the control site. The alternative hypothesis is that the site 
is undamaged. A nonsignificant test result leads to the conclusion 
that there is no real evidence that the site has been cleaned up.

The point here is that once a site has been declared to have a certain status, 
pertinent evidence should be required to justify changing this status.

Following these recommendations does seem to overcome the main dif-
ficulty with using a test of significance, although there is still the problem of 
deciding what to use for the null hypothesis difference if option 2 is used.

7.3  The Concept of Bioequivalence

When the null hypothesis to be tested is that a site is damaged, there is a 
need to define what exactly this means. The concept of bioequivalence then 
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becomes useful (McBride et al. 1993; McDonald and Erickson 1994; McBride 
1999). In the pharmaceutical area, a new drug is considered to be bioequiva-
lent to a standard drug if the potency of the new drug is, say, at least 80% of 
the potency of the standard drug (Kirkwood 1981; Westlake 1988). In a simi-
lar way, a damaged site might be considered to be bioequivalent to a control 
site in terms of vegetation biomass if the mean biomass per unit area on the 
damaged site, μt, is at least 80% of the mean on the control site, μc. In that case, 
bioequivalence can be examined by testing the null hypothesis

 H0: μt ≤ 0.8μc

against the alternative hypothesis

 H1: μt > 0.8μc

Example 7.1: Native Shrubs at Reclaimed and Reference Sites
As an example of how the concept of bioequivalence might be used 
to assess reclamation, consider the following hypothetical situation 
described by McDonald and Erickson (1994), noting that the analysis 
here is simpler than the one that they used. It is imagined that a mining 
company has paid a bond to a government agency to guarantee the suc-
cessful reclamation of a strip mining site. Having carried out the neces-
sary work, the company wants the bond released. However, the agency 
requires the company to provide evidence that the mined site is equiva-
lent to an untouched control site with respect to the density of native 
shrubs.

A consultant has designed and carried out a study that involved ran-
domly selecting eight plots from the treated site and matching them up 
on the basis of slope, aspect, and soil type with eight plots from the con-
trol site. The densities of native shrubs that were obtained are shown in 
Table 7.1. The (control − mined) site differences are also shown with their 
means and sample standard deviations.

A conventional approach for analyzing these results involves using 
a t-test to see whether the mean difference of d = 0.041 is significantly 
greater than zero. The null hypothesis is then that the mean density of 

Table 7.1

Comparison between the Vegetation Density on Eight Paired  
Plots from an Undamaged Control Site and a Site Where Mining 
Has Occurred

Plot pair 1 2 3 4 5 6 7 8

Control site 0.94 1.02 0.80 0.89 0.88 0.76 0.71 0.75
Mined site 0.75 0.94 1.01 0.67 0.75 0.88 0.53 0.89
Difference 0.19 0.08 −0.21 0.22 0.13 −0.10 0.18 −0.14

Note: The difference is for the (control − mined) sites. Mean difference = 
0.041; standard deviation of difference = 0.171.
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native shrubs is the same on paired plots at the two sites, while the alter-
native hypothesis is that the density is higher on the control site. The test 
statistic is

 t = d/SE(d)

where SE(d) = SD(d)/√n = 0.171/√8 = 0.060 is the estimated standard error 
of the mean. That is, t = 0.041/0.060 = 0.68, with seven degrees of freedom 
(df). This is not significantly large at the 5% level because the critical 
value that has to be exceeded to make this the case is 1.89. The mining 
company can therefore argue that the reclamation has been effective.

The government agency could object to this analysis on the grounds 
that the nonsignificant result may just be a consequence of the small 
sample size. The agency might well prefer an analysis that is based on 
the idea that the control and the mined sites are equivalent for all practi-
cal purposes, provided that the native shrub density on the mined site is 
more than 80% of the density on the control site. On this basis, the null 
hypothesis is that the native shrub density at the mined site is 80% of the 
density at the control site, and the contrast

 z = (mined-site density) − [0.8 × (control-site density)]

will have a mean of zero for paired sites. The alternative hypothesis is 
that the mean of z is greater than zero, in which case the two sites are 
considered to be equivalent.

Note that now the null hypothesis is that the sites are not equivalent. 
The data have to provide evidence that this is not true before the sites are 
declared to be equivalent. Thus the precautionary principle is used, and 
an adverse effect is assumed unless the data suggest otherwise.

The test procedure follows the same steps as the first analysis except 
that values of z are used instead of the simple differences between the 
paired sites, as shown in Table 7.2. The mean of the z values is 0.127, 
with an estimated standard error of 0.163/√8 = 0.058. The t-statistic for 
testing whether the mean is significantly greater than zero is therefore 
0.127/0.058 = 2.21, with 7 df. Because this is significantly large at the 
5% level, it is concluded that there is evidence against the null hypoth-
esis, and thus the equivalence of the mined and control sites can be 
accepted.

Table 7.2

Testing for Bioequivalence Using the Vegetation Density on Eight 
Paired Plots from an Undamaged Control Site and a Site Where 
Mining Has Occurred

Plot Pair 1 2 3 4 5 6 7 8

Control site 0.94 1.02 0.80 0.89 0.88 0.76 0.71 0.75
Mined site 0.75 0.94 1.01 0.67 0.75 0.88 0.53 0.89
z value 0.00 0.12 0.37 −0.04 0.05 0.27 −0.04 0.29

Note: The z value is (mined-site density) − (0.8 × control-site density); 
mean of z = 0.127; standard deviation of z = 0.163.
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This second analysis seems more realistic than the first one because 
the acceptance of the null hypothesis, possibly because of the small sam-
ple size, will result in the mined site being considered to need further 
remediation: The mined site is guilty until proved innocent, rather than 
innocent until proved guilty. The definition of equivalence in terms of 
the mined site having more than 80% of the shrub density of the control 
site would, of course, have been the subject of negotiations between the 
mining company and the government agency. Another percentage could 
be used equally well in the test.

7.4  Two-Sided Tests of Bioequivalence

The example just considered was quite straightforward because the test was 
one-sided, and the data were paired. A more complicated situation is where 
a previously damaged site is considered to be equivalent to an undamaged 
reference site, provided that the mean of a relevant variable at the first site is 
sufficiently close to the mean at the reference site.

Here the null hypothesis can be that the two sites are not equivalent (fol-
lowing the precautionary principle) or that they are equivalent. In the first 
case, the null hypothesis becomes that μd < μdL or μd > μdH, where the two 
sites are considered to be equivalent if μd, the true difference between them 
(damaged − reference), is within the range from μdL to μdH. In the second case 
the null hypothesis is that μdL ≤ μd ≤ μdH. It may be very important which of 
these null hypotheses is chosen, because with the first, a significant result 
leads to the conclusion that the two sites are equivalent, whereas with the 
second, a significant result leads to the conclusion that the sites are not 
equivalent.

The simplest way to test the null hypothesis that the two sites are not 
equivalent is to run the two one-sided test (TOST) developed by Schuirmann 
(1987) and Westlake (1988). Assuming normally distributed data, with equal 
variances for the potentially damaged site and the reference site, this pro-
ceeds as follows for a 5% level of significance:

 1. Calculate the mean difference d between the potentially damaged 
site and the reference site, and the estimated standard error of 
this difference

 SE(d) = sp√(1/n1 + 1/n2)

  where n1 is the sample size for the damaged site, and n2 is the sample 
size for the reference site,

 sp
2 = [(n1 − 1)s1

2 + (n2 − 1)s2
2]/(n1 + n2 − 2)
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  is the pooled-sample estimate of variance, s1
2 is the sample variance 

for the damaged site, and s2
2 is the sample variance for the reference 

site.

 2. Use a t-test to see whether d is significantly higher than μdL at the 5% 
level, which involves seeing whether (d − μdL)/SE(d) is greater than or 
equal to the upper 5% point of the t-distribution with n1 + n2 − 2 df.

 3. Use a t-test to see whether d is significantly lower than μdH at the 5% 
level, which involves seeing whether (d − μdH)/SE(d) is less than or 
equal to the lower 5% point of the t-distribution with n1 + n2 − 2 df.

 4. If the tests at steps 2 and 3 are both significant, then declare that 
there is evidence for the equivalence of the two sites. The logic here 
is that if the observed difference is both significantly higher than 
the lowest allowed difference, and also significantly lower than the 
highest allowed difference, then there is certainly evidence that it is 
within the allowed range.

Of course, this test can be carried out using a different significance level if 
necessary, and it should be noted that, although it includes two t-tests, there 
is no need to allow for multiple testing because the probability of declaring 
the two sites to be equivalent when they are not is no more than α if the two 
t-tests are each carried out at the 100α% level (Berger and Hsu 1996).

If the null hypothesis is that the sites are equivalent (μdL ≤ μd ≤ μdH), then 
the two tests that are part of the TOST procedure must be modified. Part 2 of 
the above procedure changes to:

 2. Use a t-test to see whether d is significantly lower than μdL at the 5% 
level, which involves seeing whether (d – μdL)/SE(d) is less than or 
equal to the lower 5% point of the t-distribution with n1 + n2 − 2 df.

This reveals whether there is any evidence that the true mean difference is 
lower than μdL. Similarly, part 3 of the procedure changes to:

 3. Use a t-test to see whether d is significantly higher than μdH at the 5% 
level, which involves seeing whether (d − μdH)/SE(d) is greater than 
or equal to the upper 5% point of the t-distribution with n1 + n2 − 
2 df.

Now, if either of these tests gives a significant result, then there is evidence 
that the two sites are not equivalent.

The test of the nonequivalence null hypothesis is more stringent than the 
test of the equivalence null hypothesis because evidence is required before 
sites are declared to be equivalent, rather than the other way round. With 
the nonequivalence null hypothesis, the TOST procedure carried out with a 
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5% level of significance can be shown to give evidence of equivalence if the 
sample mean difference falls within the interval

	 μdL + t0.05,ν SE(d) ≤ d ≤ μdH − t0.05,ν SE(d) (7.1)

where t0.05,ν is the value that is exceeded with probability 0.05 for the 
t-distribution with ν = n1 + n2 − 2 df. On the other hand, with the equivalence 
null hypothesis carried out with the same level of significance, there is no 
evidence against the null hypothesis if

	 μdL − t0.05,ν SE(d) ≤ d ≤ μdH + t0.05,ν SE(d) (7.2)

The second interval may be much wider than the first one. This is demon-
strated in Figure 7.1, which is for a hypothetical situation where two sites are 
considered to be equivalent if the mean difference is between −1 and +1.

There are procedures other than TOST for carrying out two-sided tests of 
bioequivalence, as reviewed by McBride (1999). Apparently the general view 
in the pharmaceutical literature, where most applications have been in the 
past, is that the TOST approach is best.

In Example 7.1, bioequivalence was expressed in terms of a ratio, with the 
equivalence of a damaged and a reference site being defined as the biomass 
per unit area of native plants in the damaged site being at least 80% of the 
value for the reference site. The two-sided version for this might then be that 
two sites are considered as equivalent providing that the ratio R = (density of 
native plants in an impacted area)/(density of native plants in a control area) 

Value of Site Difference (d)

95% Confidence Interval

Equivalence Interval From Test of Non-Equivalence

Equivalence Interval From Test of Equivalence

0 1 2–2 –1

Figure 7.1
Bioequivalence intervals for a situation where two sites are considered to be equivalent if their 
true mean difference is between −1 and +1. It is assumed that a random sample of size 10 is 
taken from each of the two sites and gives a sample mean difference of d = −0.5 with an esti-
mated standard error of SE(d) = 0.3. The top interval is the 95% confidence interval for the true 
mean difference between the sites, d ± 2.10 SE(d); the middle interval is the range of sample 
means that give evidence for equivalence calculated from equation (7.1); and the bottom inter-
val is the range of sample means that give no evidence against the hypothesis of equivalence 
calculated from equation (7.2).
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should be within the range 0.8 to 1.2. McDonald and Erickson (1994) discuss 
procedures for use with this ratio-type of approach.

Specialized computer programs are now available to carry out bioequiva-
lence tests. One is EquivTest/PK from Statistical Solutions (http://www.
statsolusa.com), and another is Power and Sample Size Analysis (PASS) from 
Number Cruncher Statistical Systems (http://www.ncss.com).

Example 7.2: PCB at the Armagh Compressor Station
For an example of a comparison between a reference site and a poten-
tially contaminated site, some data were extracted from a much larger 
set described by Gore and Patil (1994). Their study involved two phases 
of sampling of polychlorinated biphenyl (PCB) at the site of the Armagh 
compressor station in Indiana County, Pennsylvania. The phase 1 sam-
pling was in areas close to sources of PCB, while the phase 2 sampling 
was away from these areas. For the present purpose, a random sample of 
30 observations was extracted from the phase 2 sampling results to rep-
resent a sample from a reference area, and a random sample of 20 obser-
vations was extracted from the phase 1 sample results to represent a 
sample from a possibly contaminated area.

The values for the PCB concentrations in parts per million (ppm) are 
shown in the left-hand side of Table 7.3 and plotted on the left-hand side 
of Figure 7.2. Clearly, the possibly contaminated sample has much more 
variable results than the reference sample, which complicates the com-
parison of the means. However, for data of this type, it is common to 
find that distributions are approximately lognormal (Section 3.3), sug-
gesting that the comparison between samples is best made on the loga-
rithms of the original results, which should be approximately normally 
distributed, with the variation being more similar in different samples. 
This turns out to be the case here, as shown by the right-hand sides of 
Figure 7.2 and Table 7.3.

It is in fact convenient to work with logarithms if it is desirable to 
define the equivalence between the two areas in terms of the ratio of their 
means. Thus, suppose that it is decided that the two areas are equivalent 
in practical terms, provided that the ratio of the mean PCB concentra-
tion in the possibly contaminated area to the mean in the reference area 
is between 0.5 and 1.0/0.5 = 2.0. Then this corresponds to a difference 
between the logarithms of means between log(0.5) = −0.301 and log(2.0) = 
+0.301, using logarithms to base 10. Then, for the tests of nonequivalence 
and equivalence described above, μdL = −0.301 and μdH = +0.301. These 
tests will be carried out here using the 5% level of significance.

From the logarithmic data in Table 7.3, the observed mean difference 
between the samples is d = 0.630, with estimated standard error SE(d) = 
0.297. For the test for nonequivalence, it is first necessary to see whether 
d is significantly higher than −0.301, at the 5% level of significance. The 
t-statistic is t = (d − μdL)/SE(d) = 3.137, with 48 df. The probability of a 
value this large or larger is 0.001, so there is evidence that the observed 
mean is higher than the lowest value allowed. Next, it is necessary to 
test whether d is significantly lower than +0.301, at the 5% level of sig-
nificance. As d exceeds 0.301, this is clearly not true. This nonsignificant 
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result means that the null hypothesis of nonequivalence is accepted. The 
conclusion is that there is no evidence that the areas are equivalent.

Turning now to the test of the null hypothesis of equivalence, this 
again depends on the results of two t-tests. The first test is whether the 
observed mean difference is significantly lower than −0.301, at the 5% 
level of significance. As d exceeds −0.301, this is clearly not true. The 

Table 7.3

PCB Concentrations in a Reference Area and a Possibly Contaminated 
Area around the Armagh Compressor Station, and Results 
Transformed to Logarithms to Base 10

Original PCB Concentration (ppm) After Log Transformation

Reference Contaminated Reference Contaminated

3.5 2.6 0.54 0.41
5.0 18.0 0.70 1.26

36.0 110.0 1.56 2.04
68.0 1300.0 1.83 3.11

170.0 6.9 2.23 0.84
4.3 1.0 0.63 0.00
7.4 13.0 0.87 1.11
7.1 1070.0 0.85 3.03
1.6 661.0 0.20 2.82
3.8 8.9 0.58 0.95

35.0 34.0 1.54 1.53
1.1 24.0 0.04 1.38

27.0 22.0 1.43 1.34
19.0 74.0 1.28 1.87
64.0 80.0 1.81 1.90
40.0 1900.0 1.60 3.28

320.0 2.4 2.51 0.38
1.7 1.5 0.23 0.18
7.8 1.6 0.89 0.20
1.6 140.0 0.20 2.15
0.1 −1.30
0.1 −1.30
2.2 0.34

210.0 2.32
300.0 2.48

1.1 0.04
4.0 0.60

31.0 1.49
7.5 0.88
0.1 −1.30

Mean 46.0 273.5 0.859 1.489
SD 86.5 534.7 1.030 1.025
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second test is whether the observed mean difference is significantly 
larger than +0.301, at the 5% level of significance. The test statistic is 
(d − μdH)/SE(d) = 1.108, with 48 df. The probability of a value this large 
or larger is 0.14, so the result is not significant. The two one-sided tests 
are both nonsignificant, and there is therefore no evidence against the 
hypothesis that the sites are equivalent.

The precautionary principle suggests that, in a situation like this, it 
is the test of nonequivalence that should be used. It is quite apparent 
from Gore and Patil’s (1994) full set of data that the mean PCB levels 
are not the same in the phase 1 and the phase 2 sampling areas. Hence, 
the nonsignificant result for the test of the null hypothesis of equivalence 
is simply due to the relatively small sample sizes.

Of course, it can reasonably be argued that this example is not very 
sensible, because if the mean PCB concentration is lower in the potentially 
damaged area, then no one would mind. This suggests that one-sided 
tests are needed rather than the two-sided tests presented here. From 
this point of view, this example should just be regarded as an illustration 
of the TOST calculations, rather than what might be done in practice.

7.5  Chapter Summary

Classical null hypothesis tests may not be appropriate in situations •	
such as deciding whether an impacted site has been reclaimed, 
because the initial assumption should be that this is not the case. 
The null hypothesis should be that the site is still impacted.
The U.S. Environmental Protection Agency recommends that, for a •	
site that has not been declared impacted, the null hypothesis should 
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The distribution of PCB and log10(PCB) values in a sample of size 30 from a reference area and 
a sample of size 20 from a possibly contaminated area.
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be that this is true, and the alternative hypothesis should be that an 
impact has occurred. These hypotheses are reversed for a site that 
has been declared to be impacted.
An alternative to a usual hypothesis test involves testing for bioequiv-•	
alence (two sites are similar enough to be considered equivalent for 
practical purposes). For example, the test could evaluate the hypoth-
esis that the density of plants at the impacted site is at least 80% of 
the density at a control site.
With two-sided situations, where a reclaimed site should not have a •	
mean that is either too high or too low, the simplest approach for test-
ing for bioequivalence is called the two one-sided test (TOST) that 
was developed for testing the bioequivalence of two drugs. There 
are two versions of this that are described. The first version, in line 
with the precautionary principle (a site is considered to be damaged 
until there is real evidence to the contrary), has the null hypothesis 
that the two sites are not equivalent (i.e., the true mean difference 
is not within an acceptable range). The second version has the null 
hypothesis that the two sites are equivalent.
Bioequivalence can be defined in terms of the ratio of the means at •	
two sites if this is desirable.
The two approaches for assessing bioequivalence in terms of an allow-•	
able range of mean differences are illustrated using data on PCB concen-
trations at the Armagh compressor station located in Pennsylvania.

Exercises

Exercise 7.1
To determine whether a cleanup was necessary for a site that had been 
used for ammunition testing, 6 soil samples were taken from areas out-
side but close to the site, and 32 samples were taken from the site. This 
gave the sediment concentrations shown in Table 7.4 for eight metals. 
Report on whether the site and the area outside the site are similar in 
terms of the mean concentration for each of the eight metals.
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Table 7.4

Sediment Concentrations (mg/kg) in Soils for Six Samples (A) Taken outside an 
Ammunition Testing Site and 24 (B) Samples Taken inside the Site

Site Aluminum Cadmium Lead Mercury Sodium Thallium Vanadium Zinc

A1  9,550 0.1200 17.2 0.0830 38.9 0.295 27.0 70.3
A2  8,310 0.0175 13.6 0.0600 55.7 0.290 22.9 58.3
A3 10,200 0.0970 17.6 0.0790 58.5 0.320 28.5 75.2
A4  4,840 0.0135 8.0 0.0220 39.6 0.225 13.6 36.7
A5  9,960 0.0200 16.3 0.0340 64.1 0.325 25.9 74.2
A6  8,220 0.0760 13.0 0.0295 78.4 0.310 22.2 61.0
B1 10,400 0.4100 43.1 0.1100 114.0 0.385 27.2 260.0
B2  8,600 0.3000 35.5 0.0300 69.9 0.305 23.3 170.0
B3  8,080 4.0000 64.6 0.8000 117.0 0.330 20.5 291.0
B4  5,270 0.1600 16.2 0.0245 37.7 0.240 15.9 82.0
B5 12,800 1.2000 62.6 0.1500 151.0 0.380 30.6 387.0
B6 16,100 2.3000 89.9 0.5800 194.0 0.435 42.2 460.0
B7  2,970 0.1200 14.4 0.0235 13.5 0.240 10.1 65.9
B8 14,000 1.9000 120.0 0.3000 189.0 0.550 37.2 491.0
B9 12,200 1.0000 90.7 0.2400 119.0 0.550 37.9 351.0
B10  7,990 1.1000 52.3 0.2400 86.7 0.390 25.9 240.0
B11 12,800 0.8800 58.6 0.2000 154.0 0.465 33.5 342.0
B12 10,000 0.0820 42.8 0.0280 102.0 0.290 27.1 196.0
B13 13,700 2.0000 87.1 0.4400 139.0 0.450 38.0 385.0
B14 16,700 1.5000 86.4 0.3400 184.0 0.440 41.1 449.0
B15 17,300 1.1000 96.3 0.2800 189.0 0.550 41.9 477.0
B16 13,100 1.1000 81.8 0.2100 139.0 0.445 36.5 371.0
B17 11,700 0.4600 58.1 0.1800 126.0 0.450 30.5 242.0
B18 12,300 0.6200 71.2 0.1500 133.0 0.480 34.0 270.0
B19 14,100 0.7500 104.0 0.1900 138.0 0.445 34.7 350.0
B20 15,600 0.7300 123.0 0.1900 131.0 0.415 39.9 346.0
B21 14,200 0.6500 185.0 0.2200 167.0 0.445 35.1 363.0
B22 14,000 1.1000 100.0 0.2000 134.0 0.420 37.5 356.0
B23 11,700 0.7100 69.0 0.1800 160.0 0.440 32.9 314.0
B24  7,220 0.8100 37.2 0.0225 114.0 0.220 11.3 94.0
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8
Time Series Analysis

8.1  Introduction

Time series have played a role in several of the earlier chapters. In particular, 
environmental monitoring (Chapter 5) usually involves collecting observa-
tions over time at some fixed sites, so that there is a time series for each 
of these sites, and the same is true for impact assessment (Chapter 6). How-
ever, the emphasis in the present chapter will be different, because the situ-
ations that will be considered are where there is a single time series, which 
may be reasonably long (say with 50 or more observations), and the primary 
concern will often be to understand the structure of the series.

There are several reasons why a time series analysis may be important. 
For example:

It gives a guide to the underlying mechanism that produces the series.•	
It is sometimes necessary to decide whether a time series displays •	
a significant trend, possibly taking into account serial correlation, 
which, if present, can lead to the appearance of a trend in stretches of 
a time series, although in reality the long-run mean of the series is 
constant.
A series shows seasonal variation through the year that needs to be •	
removed to display the true underlying trend.
The appropriate management action depends on the future values of •	
a series, so it is desirable to forecast these and understand the likely 
size of differences between the forecast and true values.

There is a vast amount of literature on the modeling of time series. It is 
not possible to cover this in any detail here; so this chapter just provides an 
introduction to some of the more popular types of models and provides ref-
erences to where more information can be found.
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8.2  Components of Time Series

To illustrate the types of time series that arise, some examples can be con-
sidered. The first is Jones et al.’s (1998a, 1998b) temperature reconstructions 
for the Northern and Southern Hemispheres, 1000–1991 AD These two series 
were constructed using data on temperature-sensitive proxy variables, 
including tree rings, ice cores, corals, and historic documents from 17 sites 
worldwide. They are plotted in Figure 8.1.

The series is characterized by a considerable amount of year-to-year varia-
tion, with excursions away from the overall mean for periods up to about 
100 years, and with these excursions being more apparent in the Northern 
Hemisphere series. The excursions are typical of the behavior of series with 
a fairly high level of serial correlation.

In view of the current interest in global warming, it is interesting to see 
that the Northern Hemisphere temperatures in the latter part of the pres-
ent century are warmer than the overall mean, but similar to those seen 
after 1000 AD, although somewhat less variable. The recent pattern of warm 
Southern Hemisphere temperatures is not seen earlier in the series.

A second example is a time series of the water temperature of a stream 
in Dunedin, New Zealand, measured every month from January 1989 to 
December 1997. The series is plotted in Figure 8.2. In this case, not surpris-
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Figure 8.1
Average Northern and Southern Hemisphere temperature series, 1000–1991 AD, calculated 
using data from temperature-sensitive proxy variables at 17 sites worldwide. The heavy hori-
zontal lines on each plot are the overall mean temperatures.
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ingly, there is a very strong seasonal component, with the warmest tempera-
tures in January to March, and the coldest temperatures in about the middle 
of the year. There is no clear trend, although the highest recorded tempera-
ture was in January 1989, and the lowest was in August 1997.

A third example is the estimated number of pairs of the sandwich tern 
(Sterna sandvicensis) on the Dutch Wadden island of Griend for the years 1964 
to 1995, as provided by Schipper and Meelis (1997). The situation is that, in the 
early 1960s, the number of breeding pairs decreased dramatically because of 
poisoning by chlorated hydrocarbons. The discharge of these toxicants was 
stopped in 1964, and estimates of breeding pairs were then made annually to 
see whether the numbers increased. Figure 8.3 shows the estimates obtained.

The time series in this case is characterized by an upward trend, with sub-
stantial year-to-year variation around this trend. Another point to note is 
that the year-to-year variation increased as the series increased. This is an 
effect that is frequently observed in series with a strong trend.
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Figure 8.2
Water temperatures measured on a stream in Dunedin, New Zealand, at monthly intervals 
from January 1989 to December 1997. The overall mean is the heavy horizontal line.
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Figure 8.3
The estimated number of breeding sandwich-tern pairs on the Dutch Wadden Island, Griend, 
from 1964 to 1995.
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Finally, Figure 8.4 shows yearly sunspot numbers from 1700 to the present 
(Solar Influences Data Analysis Centre 2008). The most obvious characteris-
tic of this series is the cycle of about 11 years, although it is also apparent that 
the maximum sunspot number varies considerably from cycle to cycle.

The examples demonstrate the types of components that may appear in a 
time series. These are:

 1. a trend component, such that there is a long-term tendency for the val-
ues in the series to increase or decrease (as for the sandwich tern);

 2. a seasonal component for series with repeated measurements within 
calendar years, such that observations at certain times of the year 
tend to be higher or lower than those at certain other times of the 
year (as for the water temperatures in Dunedin);

 3. a cyclic component that is not related to the seasons of the year (as 
for sunspot numbers);

 4. a component of excursions above or below the long-term mean or 
trend that is not associated with the calendar year (as for global tem-
peratures); and

 5. a random component affecting individual observations (as in all 
the examples).

These components cannot necessarily be separated easily. For example, it 
may be a question of definition as to whether component 4 is part of the 
trend in a series or is a deviation from the trend.

8.3  Serial Correlation

Serial correlation coefficients measure the extent to which the observations 
in a series separated by different time differences tend to be similar. They 
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Figure 8.4
Yearly sunspot numbers since 1700 from the Royal Observatory of Belgium. The heavy hori-
zontal line is the overall mean.
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are calculated in a similar way to the usual Pearson correlation coefficient 
between two variables. Given data (x1, y1), (x2, y2), …, (xn, yn) on n pairs of 
observations for variables X and Y, the sample Pearson correlation is calcu-
lated as

 r x x y y x x yi i
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n

i

i
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where x is the sample mean for X and y is the sample mean for Y.
Equation (8.1) can be applied directly to the values (x1, x2), (x2, x3), …, (xn−1, xn) 

in a time series to estimate the serial correlation, r1, between terms that are 
one time period apart. However, what is usually done is to calculate this 
using a simpler equation, such as
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where x is the mean of the whole series. Similarly, the correlation between xi 
and xi+k can be estimated by
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This is sometimes called the autocorrelation at lag k.
There are some variations on equations (8.2) and (8.3) that are sometimes 

used, and when using a computer program, it may be necessary to determine 
what is actually calculated. However, for long time series, the different vari-
eties of equations give almost the same values.

The correlogram, which is also called the autocorrelation function (ACF), 
is a plot of the serial correlations rk against k. It is a useful diagnostic tool for 
gaining some understanding of the type of series that is being dealt with. A 
useful result in this respect is that, if a series is not too short (say n > 40) and 
consists of independent random values from a single distribution (i.e., there 
is no autocorrelation), then the statistic rk will be approximately normally 
distributed with a mean of

 E(rk) ≈ −1/(n − 1) (8.4)
and a variance of
 Var(rk) ≈ 1/n (8.5)

The significance of the sample serial correlation rk can therefore be assessed by 
seeing whether it falls within the limits [−1/(n − 1)] ± 1.96/√n. If it is within these 
limits, then it is not significantly different from zero at about the 5% level.
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Note that there is a multiple testing problem here, because if r1 to r20 are all 
tested at the same time, for example, then one of these values can be expected 
to be significant by chance (Section 4.9). This suggests that the limits [−1/(n − 1)] 
± 1.96/√n should be used only as a guide to the importance of serial correlation, 
with the occasional value outside the limits not being taken too seriously.

Figure 8.5 shows the correlograms for the global temperature time series 
(Figure 8.1). It is interesting to see that these are quite different for the North-
ern and Southern Hemisphere temperatures. It appears that, for some reason, 
the Northern Hemisphere temperatures are significantly correlated, even up 
to about 70 years apart in time. However, the Southern Hemisphere tempera-
tures show little correlation after they are two years or more apart in time.

Figure 8.6 shows the correlogram for the series of monthly temperatures 
measured for a Dunedin stream (Figure 8.2). Here the effect of seasonal vari-
ation is very apparent, with temperatures showing high but decreasing cor-
relations for time lags of 12, 24, 36, and 48 months.
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Figure 8.5
Correlograms for Northern and Southern Hemisphere temperatures, 1000–1991 AD The bro-
ken horizontal lines indicate the limits within which autocorrelations are expected to lie 95% 
of the time for random series of this length.
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Correlogram for the series of monthly temperatures in a Dunedin stream. The broken hori-
zontal lines indicate the 95% limits on autocorrelations expected for a random series of this 
length.
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The time series of the estimated number of pairs of the sandwich tern 
on Wadden Island displays increasing variation as the mean increases 
(Figure 8.3). However, the variation is more constant if the logarithm to 
base 10 of the estimated number of pairs is considered (Figure 8.7). The cor-
relogram has therefore been calculated for the logarithm series, and this is 
shown in Figure 8.8. Here the autocorrelation is high for observations 1 year 
apart, decreases to about −0.4 for observations 22 years apart, and then starts 
to increase again. This pattern must be largely due to the trend in the series.

Finally, the correlogram for the sunspot numbers series (Figure 8.4) is 
shown in Figure 8.9. The 11-year cycle shows up very obviously with high 
but decreasing correlations for 11, 22, 33, and 44 years. The pattern is simi-
lar to what is obtained from the Dunedin stream temperature series with a 
yearly cycle.

If nothing else, these examples demonstrate how different types of time 
series exhibit different patterns of structure.
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Figure 8.7
Logarithms (base 10) of the estimated number of pairs of the sandwich tern at Wadden Island.
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8.4  Tests for Randomness

A random time series is one that consists of independent values from the 
same distribution. There is no serial correlation, and this is the simplest type 
of data that can occur.

There are a number of standard nonparametric tests for randomness that 
are sometimes included in statistical packages. These may be useful for a 
preliminary analysis of a time series to decide whether it is necessary to do 
a more complicated analysis. They are called “nonparametric” because they 
are only based on the relative magnitude of observations rather than assum-
ing that these observations come from any particular distribution.

One test is the runs above and below the median test. This involves replac-
ing each value in a series by 1 if it is greater than the median, and 0 if it is 
less than or equal to the median. The number of runs of the same value 
is then determined, and compared with the distribution expected if the 
zeros and ones are in a random order. For example, consider the following 
series: 1 2 5 4 3 6 7 9 8. The median is 5, so that the series of zeros and ones is 
0 0 0 0 0 1 1 1 1. There are M = 2 runs, so this is the test statistic. The trend in 
the initial series is reflected in M being the smallest possible value. This then 
needs to be compared with the distribution that is obtained if the zeros and 
ones are in a random order.

For short series (20 or fewer observations), the observed value of M can be 
compared with the exact distribution when the null hypothesis is true using 
tables provided by Swed and Eisenhart (1943), Siegel (1956), or Madansky 
(1988), among others. For longer series, this distribution is approximately 
normal with mean

	 μM = 2r(n − r)]/n + 1 (8.6)
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Correlogram for the series of sunspot numbers. The broken horizontal lines indicate the limits 
on autocorrelations expected for a random series of this length.
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and variance

	 σ2
M = 2r(n − r)[2r(n − r) − n]/[n2(n − 1)] (8.7)

where r is the number of zeros (Gibbons 1986, p. 556). Hence

 Z = (M − μM)/σM.

can be tested for significance by comparison with the standard normal distri-
bution (possibly modified with the continuity correction described below).

Another nonparametric test is the sign test. In this case the test statistic is 
P, the number of positive signs for the differences x2 − x1, x3 − x2, …, xn − xn−1. 
If there are m differences after zeros have been eliminated, then the distribu-
tion of P has mean

	 μP = m/2 (8.8)

and variance

	 σ2
P = m/12 (8.9)

for a random series (Gibbons, 1986, p. 558). The distribution approaches a nor-
mal distribution for moderate-length series (say 20 observations or more).

The runs up and down test is also based on the differences between suc-
cessive terms in the original series. The test statistic is R, the observed num-
ber of runs of positive or negative differences. For example, in the case of the 
series 1 2 5 4 3 6 7 9 8, the signs of the differences are + + − − + + + +, and 
R = 3. For a random series, the mean and variance of the number of runs are

	 μR = (2m + 1)/3 (8.10)

and

	 σ2
R = (16m − 13)/90 (8.11)

where m is the number of differences (Gibbons 1986, p. 557). A table of the 
distribution is provided by Bradley (1968) among others, and C is approxi-
mately normally distributed for longer series (20 or more observations).

When using the normal distribution to determine significance levels for 
these tests of randomness, it is desirable to make a continuity correction 
to allow for the fact that the test statistics are integers. For example, sup-
pose that there are M runs above and below the median, which is less than 
the expected number μM. Then the probability of a value this far from μM 
is twice the integral of the approximating normal distribution from minus 
infinity to M + ½, provided that M + ½ is less than μM. The reason for taking 
the integral up to M + ½ rather than M is to take into account the probability 
of getting exactly M runs, which is approximated by the area from M − ½ to 
M + ½ under the normal distribution. In a similar way, if M is greater than 
μM, then twice the area from M − ½ to infinity is the probability of M being 
this far from μM, provided that M − ½ is greater than μM. If μM lies within the 
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range from M − ½ to M + ½, then the probability of being this far or further 
from μM is exactly 1.

Example 8.1: Minimum Temperatures in Uppsala, 1900–1981
To illustrate the tests for randomness just described, consider the data 
in Table 8.1 for July minimum temperatures in Uppsala, Sweden, for the 
years 1900 to 1981. This is part of a long series started by Anders Celsius, 
the professor of astronomy at the University of Uppsala, who started col-
lecting daily measurements in the early part of the 18th century. There 
are almost complete daily temperatures from the year 1739, although 
true daily minimums are only recorded from 1839, when a maximum–
minimum thermometer started to be used (Jandhyala et al. 1999). Mini-
mum temperatures in July are recorded by Jandhyala et al. for the years 
1774 to 1981, as read from a figure given by Leadbetter et al. (1983), but 
for the purpose of this example only the last part of the series is tested 
for randomness.

A plot of the series is shown in Figure 8.10. The temperatures were 
low in the early part of the century, but then increased and became 
fairly constant.

The number of runs above and below the median is M = 42. From 
equations (8.6) and (8.7), the expected number of runs for a random 
series is also μM = 32.0, with standard deviation σM = 4.50. Clearly, this is 
not a significant result. For the sign test, the number of positive differ-

Table 8.1

Minimum July Temperatures in Uppsala (°C), 1900–1981

Year Temp Year Temp Year Temp Year Temp Year Temp

1900 5.5 1920 8.4 1940 11.0 1960 9.0 1980  9.0
1901 6.7 1921 9.7 1941 7.7 1961 9.9 1981 12.1
1902 4.0 1922 6.9 1942 9.2 1962 9.0
1903 7.9 1923 6.7 1943 6.6 1963 8.6
1904 6.3 1924 8.0 1944 7.1 1964 7.0
1905 9.0 1925 10.0 1945 8.2 1965 6.9
1906 6.2 1926 11.0 1946 10.4 1966 11.8
1907 7.2 1927 7.9 1947 10.8 1967 8.2
1908 2.1 1928 12.9 1948 10.2 1968 7.0
1909 4.9 1929 5.5 1949 9.8 1969 9.7
1910 6.6 1930 8.3 1950 7.3 1970 8.2
1911 6.3 1931 9.9 1951 8.0 1971 7.6
1912 6.5 1932 10.4 1952 6.4 1972 10.5
1913 8.7 1933 8.7 1953 9.7 1973 11.3
1914 10.2 1934 9.3 1954 11.0 1974 7.4
1915 10.8 1935 6.5 1955 10.7 1975 5.7
1916 9.7 1936 8.3 1956 9.4 1976 8.6
1917 7.7 1937 11.0 1957 8.1 1977 8.8
1918 4.4 1938 11.3 1958 8.2 1978 7.9
1919 9.0 1939 9.2 1959 7.4 1979 8.1
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ences is P = 44, out of m = 81 nonzero differences. From equations (8.8) 
and (8.9), the mean and standard deviation for P for a random series are 
μP = 40.5 and σP = 2.6. With the continuity correction described above, 
the significance can be determined by comparing Z = (P − ½ − μP)/σP = 
1.15 with the standard normal distribution. The probability of a value 
this far from zero is 0.25. Hence this gives little evidence of nonrandom-
ness. Finally, the observed number of runs up and down is R = 49. From 
equations (8.10) and (8.11), the mean and standard deviation of R for a 
random series are μR = 54.3 and σR = 3.8. With the continuity correction, 
the observed R corresponds to a score of Z = −1.28 for comparing with 
the standard normal distribution. The probability of a value this far from 
zero is 0.20, so this is another insignificant result.

None of the nonparametric tests for randomness give any evi-
dence against this hypothesis, even though it appears that the mean of 
the series was lower in the early part of the century than it has been 
more recently. This suggests that it is also worth looking at the correlo-
gram, which indicates some correlation in the series from one year to the 
next. But even here, the evidence for nonrandomness is not very marked 
(Figure 8.11). The question of whether the mean was constant for this 
series is considered again in the next section.
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Figure 8.10
Minimum July temperatures in Uppsala, Sweden, for the years 1900 to 1981. The horizontal line 
shows the mean temperature for the whole period.
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Figure 8.11
Correlogram for the minimum July temperatures in Uppsala. The 95% limits on autocorrela-
tions for a random series are shown by the broken horizontal lines.
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8.5  Detection of Change Points and Trends

Suppose that a variable is observed at a number of points of time, to give a 
time series x1, x2, …, xn. The change-point problem is then to detect a change 
in the mean of the series if this has occurred at an unknown time between 
two of the observations. The problem is much easier if the point where a 
change might have occurred is known, which then requires what is some-
times called an intervention analysis.

A formal test for the existence of a change point seems to have first been 
proposed by Page (1955) in the context of industrial process control. Since 
that time, a number of other approaches have been developed, as reviewed 
by Jandhyala and MacNeill (1986) and Jandhyala et al. (1999). Methods for 
detecting a change in the mean of an industrial process through control 
charts and related techniques have been considerably developed (Sections 5.7 
and 5.8). Bayesian methods have also been investigated (Carlin et al. 1992), 
and Sullivan and Woodhall (1996) suggest a useful approach for examining 
data for a change in the mean or the variance at an unknown time. More 
recent methods are reviewed by Manly and Chotkowski (2006), who propose 
two new methods based on bootstrap resampling specifically for data con-
sisting of counts.

The main point to note about the change-point problem is that it is not valid 
to look at the time series, decide where a change point may have occurred, and 
then test for a significant difference between the means for the observations 
before and after the change. This is because the maximum mean difference 
between two parts of the time series may be quite large by chance alone, and it 
is liable to be statistically significant if it is tested ignoring the way that it was 
selected. Some type of allowance for multiple testing (Section 4.9) is therefore 
needed. See the references given above for details of possible approaches.

A common problem with an environmental time series is the detection of 
a monotonic trend. Complications include seasonality and serial correlation 
in the observations. When considering this problem, it is most important to 
define the time scale that is of interest. As pointed out by Loftis et al. (1991), 
in most analyses that have been conducted in the past, there has been an 
implicit assumption that what is of interest is a trend over the time period 
for which data happen to be available. For example, if 20 yearly results are 
known, then a 20-year trend has implicitly been of interest. This then means 
that an increase in the first 10 years followed by a decrease in the last 10 years 
to the original level has been considered to give no overall trend, with the 
intermediate changes possibly being thought of as due to serial correlation. 
This is clearly not appropriate if systematic changes over, say, a five-year 
period are thought of by managers as being a trend.

When serial correlation is negligible, regression analysis provides a very 
convenient framework for testing for trends. In simple cases, a regression of 
the measured variable against time will suffice, with a test to see whether the 
coefficient of time is significantly different from zero. In more complicated 
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cases, there may be a need to allow for seasonal effects and the influence of 
one or more exogenous variables. Thus, for example, if the dependent variable 
is measured monthly, then the type of model that might be investigated is

 Yt = β1M1t + β2M2t + … + β12M12t + αXt + θt + εt (8.12)

where Yt is the observation at time t, Mkt is a month indicator that is 1 when 
the observation is for month k or is otherwise 0, Xt is a relevant covariate 
measured at time t, and εt is a random error. Then the parameters β1 to β12 
allow for differences in Y values related to months of the year, the parameter 
α allows for an effect of the covariate, and θ is the change in Y per month 
after adjusting for any seasonal effects and effects due to differences in X 
from month to month. There is no separate constant term because this is 
incorporated by the allowance for month effects. If the estimate of θ obtained 
by fitting the regression equation is significant, then this provides the evi-
dence for a trend.

A small change can be made to the model to test for the existence of sea-
sonal effects. One of the month indicators (say, the first or last) can be omit-
ted from the model and a constant term introduced. A comparison between 
the fit of the model with just a constant and the model with the constant and 
month indicators then shows whether the mean value appears to vary from 
month to month.

If a regression equation such as equation (8.12) is fitted to data, then a check 
for serial correlation in the error variable εij should always be made. The 
usual method involves using the Durbin-Watson test (Durbin and Watson 
1951), for which the test statistic is
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where there are n observations altogether, and e1 to en are the regres-
sion residuals in time order. The expected value of V is 2 when there is no 
autocorrelation. Values less than 2 indicate a tendency for observations that 
are close in time to be similar (positive autocorrelation), and values greater 
than 2 indicate a tendency for close observations to be different (negative 
autocorrelation).

Table A2.5 in Appendix 2 can be used to assess the significance of an 
observed value of V for a two-sided test at the 5% level. The test is a little 
unusual, as there are values of V that are definitely not significant, values 
where the significance is uncertain, and values that are definitely significant. 
This is explained with the table. The Durbin-Watson test does assume that 
the regression residuals are normally distributed. It should therefore be used 
with caution if this does not seem to be the case.

If autocorrelation seems to be present, then the regression model can still 
be used. However, it should be fitted using a method that is more appropriate 
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than ordinary least-squares. Edwards and Coull (1987), Kutner et al. (2004), 
and Zetterqvist (1991) all describe how this can be done. Some statistical pack-
ages provide one or more of these methods as options. One simple approach 
is described in Section 8.6 below.

Actually, some researchers have tended to favor nonparametric tests for 
trend because of the need to analyze large numbers of series with a mini-
mum amount of time devoted to considering the special needs of each series. 
Thus transformations to normality, choosing models, etc., are to be avoided if 
possible. The tests for randomness that have been described in the previous 
section are possibilities in this respect, with all of them being sensitive to 
trends to some extent. However, the nonparametric methods that currently 
appear to be most useful are the Mann-Kendall test, the seasonal Kendall 
test, and the seasonal Kendall test with a correction for serial correlation 
(Taylor and Loftis 1989; Harcum et al. 1992).

The Mann-Kendall test is appropriate for data that do not display seasonal 
variation, or for seasonally corrected data, with negligible autocorrelation. 
For a series x1, x2, …, xn, the test statistic is the sum of the signs of the differ-
ences between all pairwise observations,
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where sign(z) is −1 for z < 0, 0 for z = 0, and +1 for z > 0. For a series of values 
in a random order, the expected value of S is zero and the variance is

 Var(S) = n(n − 1)(2n + 5)/18 (8.15)

To test whether S is significantly different from zero, it is best to use a spe-
cial table if n is 10 or less (Helsel and Hirsch 1992, p. 469). For larger values 
of n, ZS = S/√Var(S) can be compared with critical values for the standard 
normal distribution.

To accommodate seasonality in the series being studied, Hirsch et al. (1982) 
introduced the seasonal Kendall test. This involves calculating the statistic S 
separately for each of the seasons of the year (weeks, months, etc.) and uses 
the sum for an overall test. Thus if Sj is the value of S for season j, then on 
the null hypothesis of no trend, ST = ∑Sj has an expected value of zero and a 
variance of Var(ST) = ∑Var(Sj). The statistic ZT = ST/√Var(ST) can therefore be 
used for an overall test of trend by comparing it with the standard normal 
distribution. Apparently, the normal approximation is good, provided that 
the total series length is 25 or more.

An assumption with the seasonal Kendall test is that the statistics for the 
different seasons are independent. When this is not the case, an adjustment 
for serial correlation can be made when calculating Var(∑ST) (Hirsch and 
Slack 1984; Zetterqvist 1991). An allowance for missing data can also be made 
in this case.
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Finally, an alternative approach for estimating the trend in a series with-
out assuming that it can be approximated by a particular parametric func-
tion involves using a moving-average type of approach. Computer packages 
often offer this type of approach as an option, and more details can be found 
in specialist texts on time series analysis (e.g., Chatfield 2003).

Example 8.2: Minimum Temperatures in Uppsala, Reconsidered
In Example 8.1, tests for randomness were applied to the data in Table 8.1 
on minimum July temperatures in Uppsala for the years 1900 to 1981. 
None of the tests gave evidence for nonrandomness, although some sug-
gestion of autocorrelation was found. The nonsignificant results seem 
strange because the plot of the series (Figure 8.10) gives an indication that 
the minimum temperatures tended to be low in the early part of the cen-
tury. In this example, the series is therefore reexamined, with evidence 
for changes in the mean level of the series being specifically considered.

First, consider a regression model for the series, of the form

 Yt = β0 + β1t + β2t2 + … + βptp + εt (8.16)

where Yt is the minimum July temperature in year t, taking t = 1 for 1900 
and t = 82 for 1981; and εt is a random deviation from the value given by 
the polynomial for the year t. Trying linear, quadratic, cubic, and quartic 
models gives the analysis of variance shown in Table 8.2. It is found that 
the linear and quadratic terms are highly significant, the cubic term is 
not significant at the 5% level, and the quartic term is not significant at 
all. A quadratic model therefore seems appropriate.

When a simple regression model like this is fitted to a time series, it 
is most important to check that the estimated residuals do not display 
autocorrelation. The Durbin-Watson statistic of equation (8.13) is V = 1.69 
for this example. With n = 82 observations and p = 2 regression variables, 
Table A2.5 shows that, to be definitely significant at the 5% level on a 
two-sided test, V would have to be less than about 1.52. Hence there is 
little concern about autocorrelation for this example.

Table 8.2

Analysis of Variance for Polynomial Trend Models Fitted  
to the Time Series of Minimum July Temperatures in Uppsala

Source of 
Variation

Sum of 
Squares

Degrees of 
Freedom

Mean 
Square F-ratio

Significance 
(p-value)

Time  31.64  1 31.64 10.14 0.002
Time2  29.04  1 29.04  9.31 0.003
Time3   9.49  1  9.49  3.04 0.085
Time4   2.23  1  2.23  0.71 0.400
Error 240.11 77  3.12

Total 312.51 81

Note: The first four rows of the table show the extra sums of squares 
accounted for as the linear, quadratic, cubic, and quartic terms 
added to the model.
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Figure 8.12 shows plots of the original series, the fitted quadratic 
trend curve, and the standardized residuals (the differences between the 
observed temperature and the fitted trend values divided by the esti-
mated residual standard deviation). The model appears to be a very satis-
factory description of the data, with the expected temperature appearing 
to increase from 1900 to 1930 and then remain constant, or even decline 
slightly. The residuals from the regression model are approximately nor-
mally distributed, with almost all of the standardized residuals in the 
range from −2 to +2.

The Mann-Kendall test using the statistic S calculated using equation 
(8.14) also gives strong evidence of a trend in the mean of this series. The 
observed value of S is 624, with a standard deviation of 249.7. The Z-score 
for testing significance is therefore Z = 624/249.7 = 2.50, and the probabil-
ity of a value this far from zero is 0.012 for a random series.

8.6  More-Complicated Time Series Models

The internal structure of time series can mean that quite complicated models 
are needed to describe the data. No attempt will be made here to cover the 
huge amount of literature on this topic. Instead, the most commonly used 
types of models will be described, with some simple examples of their use. 
For more information, a specialist text such as that of Chatfield (2003) should 
be consulted.

The possibility of allowing for autocorrelation with a regression model 
was mentioned in the last section. Assuming the usual regression situation, 
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Figure 8.12
A quadratic trend (---) fitted to the series of minimum July temperatures in Uppsala (top graph), 
with the standardized residuals from the fitted trend (lower graph).
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where there are n values of a variable Y and corresponding values for vari-
ables X1 to Xp, one simple approach that can be used is as follows:

 1. Fit the regression model

 yt = β0 + β1x1t + … + βpxpt + εt

  in the usual way, where yt is the Y value at time t, for which the val-
ues of X1 to Xp are x1t to xpt, respectively, and εt is the error term. Let 
the estimated equation be

 ŷ = b0 + b1x1t + … + bpxpt

with estimated regression residuals

 et = (yt − ŷt)

 2. Assume that the residuals in the original series are correlated 
because they are related by an equation of the form

	 εt = αεt−1 + ut

  where α is a constant, and ut is a random value from a normal dis-
tribution with mean zero and a constant standard deviation. Then it 
turns out that α can be estimated by α̂, the first-order serial correla-
tion for the estimated regression residuals.

 3. Note that from the original regression model

 yt − αyt−1 = β0(1 − α) + β1(x1t − αx1t−1) + … + βp(xpt − αxpt−1) + εt − αεt−1

or

 zt = γ + β1v1t + … + βpvpt + ut

  where zt = yt − αyt−1, γ = β0(1 − α), and vit = xit − αxit−1, for i = 1, 2, …, p. 
This is now a regression model with independent errors, so that the 
coefficients γ and β1 to βp can be estimated by ordinary regression, 
with all the usual tests of significance, etc. Of course, α is not known. 
The approximate procedure actually used is therefore to replace α 
with the estimate α̂  for the calculation of the zt and vit values.

These calculations can be done easily enough in most statistical packages. 
A variation called the Cochran-Orcutt procedure involves iterating using 
steps 2 and 3. What is then done is to recalculate the regression residuals 
using the estimates of β0 to βp obtained at step 3, obtain a new estimate of 
α using these, and then repeat step 3. This is continued until the estimate 
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of α becomes constant to a few decimal places. Another variation that is 
available in some computer packages is to estimate α and β0 to β1 simultane-
ously using maximum likelihood.

The validity of this type of approach depends on the simple model εt = 
αεt−1 + ut being reasonable to account for the autocorrelation in the regression 
errors. This can be assessed by looking at the correlogram for the series of 
residuals e1, e2, …, en calculated at step 1 of the above procedure. If the auto-
correlations appear to decrease quickly to approximately zero with increas-
ing lags, then the assumption is probably reasonable. This is the case, for 
example, with the correlogram for Southern Hemisphere temperatures, but 
is less obviously true for Northern Hemisphere temperatures.

The model εt = αεt−1 + ut is the simplest type of autoregressive model. In 
general these models take the form

 xt = μ + α1(xt−1 − μ) + α2(xt−2 − μ) + … + αp(xt−p − μ) + εt (8.17)

where μ is the mean of the series, α1 to αp are constants, and εt is an error 
term with a constant variance that is independent of the other terms in the 
model. This type of model, which is sometimes called AR(p), may be reason-
able for series where the value at time t depends only on the previous values 
of the series plus random disturbances that are accounted for by the error 
terms. Restrictions are required on the α values to ensure that the series is 
stationary, which means, in practice, that the mean, variance, and autocor-
relations in the series are constant with time.

To determine the number of terms that are required in an autoregressive 
model, the partial autocorrelation function (PACF) is useful. The pth partial 
autocorrelation shows how much of the correlation in a series is accounted 
for by the term αp(xt−p − μ) in the model of equation (8.17), and its estimate is 
just the estimate of the coefficient αp.

Moving-average models are also commonly used. A time series is said to 
be a moving-average process of order q, MA(q), if it can be described by an 
equation of the form

 xt = μ + β0zt + β1zt−1 + … + βqzt−q (8.18)

where the values of z1, z2, …, zt are random values from a distribution with 
mean zero and constant variance. Such models are useful when the autocor-
relation in a series drops to close to zero for lags of more than q.

Mixed autoregressive-moving average (ARMA) models combine the fea-
tures of equations (8.17) and (8.18). Thus an ARMA(p,q) model takes the form

 xt = μ + α1(xt−1 − μ) + … + αp(xt−p − μ) + β1zt−1 + … + βqzt−q (8.19)

with the terms defined as before. A further generalization is to integrated 
autoregressive moving-average models (ARIMA), where differences of the 
original series are taken before the ARMA model is assumed. The usual 
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reason for this is to remove a trend in the series. Taking differences once 
removes a linear trend, taking differences twice removes a quadratic trend, 
and so on. Special methods for accounting for seasonal effects are also avail-
able with these models.

Fitting these relatively complicated time series to data is not difficult, as 
many statistical packages include an ARIMA option, which can be used 
either with this very general model, or with the component parts such as auto-
regression. Using and interpreting the results correctly is another matter, and 
with important time series, it is probably best to get the advice of an expert.

Example 8.3: Temperatures of a Dunedin Stream, 1989 to 1997
For an example of allowing for autocorrelation with a regression model, 
consider again the monthly temperature readings for a stream in Dune-
din, New Zealand. These are plotted in Figure 8.2, and also provided in 
Table 8.3.

The model that will be assumed for these data is similar to that given 
by equation (8.12), except that there is a polynomial trend, and no exog-
enous variable. Thus

 Yt = β1M1t + β2M2t + … + β12M12t + θ1t + θ2t2 + … + θptp + εt (8.20)

where Yt is the observation at time t measured in months from 1 in Janu-
ary 1989 to 108 for December 1997; Mkt is a month indicator that is 1 when 
the observation is in month k, where k goes from 1 for January to 12 for 
December; and εt is a random error term.

This model was fitted to the data by maximum likelihood using a 
standard statistical package, assuming the existence of first-order auto-
correlation in the error terms so that

	 εt = αεt−1 + ut. (8.21)

Table 8.3

Monthly Temperatures (°C) for a Stream in Dunedin, New Zealand, 1989–1997

Month 1989 1990 1991 1992 1993 1994 1995 1996 1997

Jan 21.1 16.7 14.9 17.6 14.9 16.2 15.9 16.5 15.9
Feb 17.9 18.0 16.3 17.2 14.6 16.2 17.0 17.8 17.1
Mar 15.7 16.7 14.4 16.7 16.6 16.9 18.3 16.8 16.7
Apr 13.5 13.1 15.7 12.0 11.9 13.7 13.8 13.7 12.7
May 11.3 11.3 10.1 10.1 10.9 12.6 12.8 13.0 10.6
Jun  9.0  8.9  7.9  7.7  9.5  8.7 10.1 10.0  9.7
Jul  8.7  8.4  7.3  7.5  8.5  7.8  7.9  7.8  8.1
Aug  8.6  8.3  6.8  7.7  8.0  9.4  7.0  7.3  6.1
Sep 11.0  9.2  8.6  8.0  8.2  7.8  8.1  8.2  8.0
Oct 11.8  9.7  8.9  9.0 10.2 10.5  9.5  9.0 10.0
Nov 13.3 13.8 11.7 11.7 12.0 10.5 10.8 10.7 11.0
Dec 16.0 15.4 15.2 14.8 13.0 15.2 11.5 12.0 12.5
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Values of p up to 4 were tried, but there was no significant improve-
ment of the quartic model (p = 4) over the cubic model. Table 8.4 therefore 
gives the results for the cubic model only. From this table, it will be seen 
that the estimates of θ1, θ2, and θ3 are all highly significantly different 
from zero. However, the estimate of the autoregressive parameter is not 
quite significantly different from zero at the 5% level, suggesting that it 
may not have been necessary to allow for serial correlation at all. On the 
other hand, it is safer to allow for serial correlation than to ignore it.

The top graph in Figure 8.13 shows the original data, the expected 
temperatures according to the fitted model, and the estimated trend. 
Here the estimated trend is the cubic part of the fitted model, which is 
−0.140919t + 0.002665t2 − 0.000015t3, with a constant added to make the 
mean trend value equal to the mean of the original temperature obser-
vations. The trend is quite weak, although it is highly significant. The 
bottom graph shows the estimated ut values from equation (8.21). These 
should, and do, appear to be random.

There is one further check of the model that is worthwhile. This 
involves examining the correlogram for the ut series, which should show 
no significant autocorrelation. The correlogram is shown in Figure 8.14. 
This is notable for the negative serial correlation of about −0.4 for values 

Table 8.4

Estimated Parameters for the Model of Equation (8.20) Fitted 
to the Data on Monthly Temperatures of a Dunedin Stream

Parameter Estimate
Standard 

Error Ratioa P-Valueb

α (Autoregressive)  0.1910 0.1011  1.89 0.062

β1 (January) 18.4477 0.5938 31.07 0.000

β2 (February) 18.7556 0.5980 31.37 0.000

β3 (March) 18.4206 0.6030 30.55 0.000

β4 (April) 15.2611 0.6081 25.10 0.000

β5 (May) 13.3561 0.6131 21.78 0.000

β6 (June) 11.0282 0.6180 17.84 0.000

β7 (July) 10.0000 0.6229 16.05 0.000

β8 (August)  9.7157 0.6276 15.48 0.000

β9 (September) 10.6204 0.6322 16.79 0.000

β10 (October) 11.9262 0.6367 18.73 0.000

β11 (November) 13.8394 0.6401 21.62 0.000

β12 (December) 16.1469 0.6382 25.30 0.000

θ1 (Time) –0.140919 0.04117619 –3.42 0.001

θ2 (Time2)  0.002665 0.00087658  3.04 0.003

θ3 (Time3) –0.000015 0.00000529 –2.84 0.006

a The estimate divided by the standard error.
b Significance level for the ratio when compared with the standard 

normal distribution. The significance levels do not have much 
meaning for the month parameters, which all have to be greater 
than zero.
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six months apart, which is well outside the limits that should contain 
95% of values. There is only one other serial correlation outside these 
limits, for a lag of 44 months, which is presumably just due to chance. 
The significant negative serial correlation for a lag of six months indi-
cates that the fitted model is still missing some important aspects of the 
time series. However, overall the model captures most of the structure, 
and this curious autocorrelation will not be considered further here.

Example 8.4: Rainfall in Northeast Brazil, 1849–1987
For another example, consider the data shown in Table 8.5 and displayed 
in Figure 8.15. These are yearly rainfall amounts recorded in rain gauges at 
Fortaleza in the northeast of Brazil, from 1849 to 1987 (Mitchell 2008). The 
question to be considered is what is an appropriate model for this series.
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The fitted model (—) for the monthly temperature of a Dunedin stream with the estimated 
trend (---) indicated (top graph), and estimates of the residual components ut in the model (bot-
tom graph).
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The correlogram for the estimated random components ut in the model for Dunedin stream 
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The correlogram for the series is shown in Figure 8.16. A first-order 
autoregressive model and other models including more autoregres-
sive terms and moving-average terms were fitted to the data using the 
ARIMA option in a standard statistical package, and it was apparent that 
the first-order autoregressive model is all that is needed. This model was 
estimated to be

 xt = 143.28 + 0.2330(xt−1 − 143.28) + εt (8.22)
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Figure 8.15
Rainfall (cm/year) measured by rain gauges at Fortaleza in northeast Brazil for the years 1849 
to 1987. The horizontal line shows the mean rainfall for all years.

Table 8.5

Rainfall (cm/year) Measured by Rain Gauges at Fortaleza in Northeast Brazil, 
1849–1987

Year Rain Year Rain Year Rain Year Rain Year Rain Year Rain Year Rain

1849 200.1 1869 147.0 1889 78.4 1909 101.5 1929 123.0 1949 188.1 1969 180.3
1850 85.2 1870 162.8 1890 153.4 1910 205.1 1930 110.7 1950 111.4 1970 119.2
1851 180.6 1871 145.9 1891 107.7 1911 137.3 1931 113.3 1951 74.7 1971 209.3
1852 135.6 1872 225.6 1892 121.1 1912 244.6 1932 87.9 1952 137.8 1972 129.9
1853 123.3 1873 205.8 1893 143.0 1913 190.5 1933 93.7 1953 106.8 1973 233.1
1854 159.0 1874 148.7 1894 250.5 1914 151.2 1934 188.8 1954 103.2 1974 251.2
1855 127.3 1875 158.1 1895 249.1 1915 53.0 1935 166.1 1955 115.2 1975 177.8
1856 177.0 1876 156.9 1896 214.4 1916 132.8 1936 82.0 1956 80.6 1976 141.7
1857 173.4 1877 46.8 1897 183.9 1917 207.7 1937 131.3 1957 122.5 1977 194.1
1858 145.7 1878 50.3 1898 86.3 1918 131.9 1938 158.6 1958 50.4 1978 178.5
1859 135.7 1879 59.7 1899 241.4 1919 65.6 1939 191.1 1959 149.3 1979 98.5
1860 171.6 1880 153.9 1900 94.0 1920 184.7 1940 144.7 1960 101.1 1980 109.5
1861 144.5 1881 142.3 1901 154.5 1921 249.6 1941 91.6 1961 175.9 1981 190.3
1862 146.8 1882 124.6 1902 87.8 1922 159.5 1942 78.0 1962 127.7 1982 99.9
1863 145.2 1883 150.8 1903 78.9 1923 151.3 1943 104.2 1963 211.0 1983 81.6
1864 109.8 1884 104.7 1904 113.6 1924 184.7 1944 109.0 1964 242.6 1984 203.1
1865 123.8 1885 130.7 1905 118.9 1925 113.7 1945 175.0 1965 162.9 1985 206.6
1866 247.8 1886 139.9 1906 143.0 1926 157.1 1946 172.4 1966 128.9 1986 214.0
1867 83.2 1887 132.0 1907 69.7 1927 119.5 1947 172.6 1967 193.7 1987 115.1
1868 128.9 1888 73.6 1908 83.4 1928 99.5 1948 138.4 1968 138.5
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where the autoregressive coefficient of 0.2330 has an estimated standard 
error of 0.0832 and is highly significant (t = 2.80, p = 0.005).

The estimated values for the errors εt in the model are approximately 
normally distributed, with no significant serial correlation. The model of 
equation (8.22) therefore seems quite satisfactory for these data.

8.7  Frequency Domain Analysis

The analyses considered so far in this chapter are called time domain anal-
yses. They are concerned with modeling the observations directly, with 
models that are intended to explain the components of an observation xt 
taken at time t. There is, however, another approach that is used extensively, 
particularly in areas such as electrical engineering, meteorology, and geo-
physics. This is called frequency domain analysis, or spectral analysis. 
Basically, this alternative approach involves attempting to determine how 
much of the variation in a series is associated with cycles of different lengths. 
For example, with a 100-year series, it is possible to partition the observed 
variance into components associated with cycles with lengths of 100 years, 
50 years, 33.3 years, 25 years, and so on down to 2 years, the cycle lengths 
being 100/k, for k equal to 1, 2, …, 50.

This type of analysis has obvious benefits if it cycles in the original 
series that are of interest. For example, a large part of the variation in the 
sunspot series (Figure 8.4) is associated with an 11-year cycle. However, 
many time series analysts find this approach more generally useful for 
understanding the structure of series.

An introduction to frequency domain analysis of time series is provided 
by Chatfield (2003). Unfortunately, standard statistical packages often fail to 
provide any options for doing the required calculations, so specialist software 
may need to be obtained by those interested in attempting this approach.
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Figure 8.16
Correlogram for the Fortaleza, Brazil, rainfall series, 1849–1987. The 95% limits for the autocor-
relations of a random series are shown by the broken horizontal lines.
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8.8  Forecasting

There are many reasons for carrying out time series analysis. These include 
an interest in understanding the structure of the series, deciding whether 
there is evidence of a significant trend, or deciding whether the mean of 
the series has changed at some point in time due to some outside influence. 
Often, however, the analysis is conducted in order to be able to make sensible 
forecasts of future values of the series, preferably with some idea of the size 
of the forecasting errors that are likely to occur.

Forecasting of a time series using statistical methods involves extrapolat-
ing from the known past and present values into the future. Extrapolation 
is always dangerous, so anyone who attempts this can expect to be seriously 
wrong at times. With time series, the problem is that the model may change 
for some unexpected reason in the future. Or, indeed, the model may be 
wrong anyway, although it fits the existing data quite well. Actually, models 
will seldom be exactly correct anyway. Hence, extrapolating an approximate 
model into the future will probably lead to larger forecasting errors than 
the model itself suggests. Having said all this, the fact is that it is sometimes 
very useful to have some idea of what the future values of a time series are 
likely to be. There is therefore a large amount of literature on this topic.

Some of the methods that are often used, and are available in standard 
statistical packages, include the following:

 1. A trend curve is fitted to the available data and then extrapolated 
into the future. The trend curve might in this case be linear, a poly-
nomial, or perhaps some more complicated function.

 2. Exponential smoothing is used, where the estimate of the mean of a 
series at time t is the weighted average of past values given by

 x̂t = αxt + α(1 − α)xt−1 + α(1 − α)2xt−2 + … + α(1 − α)nxt−n

  or equivalently,

 x̂t = αxt + (1 − α)x̂t−1 (8.23)

  where α is a smoothing constant with a value between 0 and 1. The 
value of α can be chosen by minimizing the prediction errors for 
the existing data, and equation (8.23) can then be used to predict into 
the future, with the actual value of xt replaced by its estimate from 
the equation. Exponential smoothing can be extended to situations 
with trend and seasonal variation using something called the Holt-
Winters procedure (Chatfield 2003).

 3. An ARIMA model (Section 8.6) can be fitted to the data and then 
extrapolated forward. This requires the identification of an appropri-
ate model, which is then predicted forward in time. There are some 
statistical packages that attempt to do this completely automatically.
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It would be nice to be able to say which of these methods is generally best. 
However, this seems impossible because it depends upon the particular cir-
cumstances. A detailed discussion of the matters that need to be considered 
is given by Chatfield (2003).

8.9  Chapter Summary

Time series analysis may be important because it gives a guide to the •	
underlying process producing a series. It may be necessary to know 
whether apparent trends and changes in the mean of a series are 
real, to remove seasonal variation in order to estimate the under-
lying changes in a series or to forecast the future values of a series.

The components that often occur in time series are a trend (a tendency •	
to increase or decrease), seasonal variation within the calendar year, 
other cyclic variation, excursions away from the overall mean for 
relatively short periods of time, and random variation. These compo-
nents are displayed in a number of examples that are presented.

Serial correlation coefficients measure the tendency for observations •	
to be similar or different when they are different distances apart in 
time. If this tendency exists, then it is also called autocorrelation. A 
plot of the serial correlation coefficients for different distances apart 
(lags) is called a correlogram.

A random time series is one in which each of the observations is •	
an independent random value from the same distribution. There 
are a number of standard nonparametric tests for randomness. The 
runs above and below the median, the sign test, and the runs up and 
down test are described and illustrated on a time series of minimum 
July temperatures in Uppsala from 1900 to 1981. None of the tests 
give evidence of nonrandomness.

The change-point problem involves determining whether there is any •	
evidence of a change in the mean of a time series, without knowing 
when the change may have occurred. This requires a proper allowance 
for multiple testing if all possible times of change are considered.

The detection of trend in an environmental time series is a common •	
problem. In testing for trend, it is important to decide what time 
scale is important.

When serial correlation is negligible, regression analysis is a useful •	
tool for detecting trend. A regression model is set up that includes 
an allowance for trend, and the significance of the estimated trend is 
tested using the usual regression methods. The Durbin-Watson test 
can be used to see whether there is serial correlation in the regression 
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residuals. If there is evidence of serial correlation, then the analysis 
can be modified to allow for this.
The Mann-Kendall test is a test for monotonic trend in a series when •	
there is no serial correlation. It can be modified to accommodate sea-
sonality in the series being tested, with a correction for serial cor-
relation between seasons if necessary.
Some more complicated approaches to time series modeling are •	
described: regression models with serially correlated residuals, 
autoregressive (AR) models, moving average (MA) models, mixed 
auto regressive-moving average (ARMA) models, and integrated auto-
regressive moving average (ARIMA) models.
Frequency domain analysis (spectral analysis) is briefly described.•	
Methods for forecasting the future values of a time series (extrapo-•	
lating a fitted trend, exponential smoothing, and the use of ARIMA 
models) are briefly described.

Exercises

Exercise 8.1
The data shown in Table 8.6 are pH values read at quarterly intervals for 
the years 1980 to 1989 for a lake. Carry out the seasonal Mann-Kendall 
test to see whether there is any evidence of trend in the pH values, and 
report your conclusions.

Exercise 8.2
Fit a regression model to the data in Table 8.6 to test for trend, using the 
approach shown in Example 8.2, and report your conclusions. Allow for 
seasonal effects by treating the four quarters of the year as the four levels 

Table 8.6

Quarterly pH Values for a Lake

Year Jan–Mar Apr–Jun Jul–Sep Oct–Dec

1980 5.5 7.7 6.3 4.7
1981 5.8 4.1 7.2 3.2
1982 4.6 5.2 5.2 4.4
1983 7.1 6.9 5.6 6.1
1984 5.7 5.2 4.0 5.2
1985 6.6 5.5 5.3 6.3
1986 6.4 6.2 5.7 8.0
1987 6.6 5.5 5.7 4.5
1988 4.5 6.1 5.2 5.0
1989 6.6 4.9 7.0 6.6
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of a factor. Once you have decided on an appropriate model for the trend 
(none, linear, quadratic, etc.), run the Durbin-Watson test to make sure 
that serial correlation in time does not have to be allowed for.

Exercise 8.3
Table 8.7 shows values for the wheat yield in bushels per acre for Plot 2B 
of the Broadbank field at Rothamsted Experimental Station, for each of 
the years 1852 to 1925 (Andrews and Herzberg 1985). During the period 
covered, this plot was fertilized with farmyard manure only. Carry out 
analyses on this series similar to the ones shown in Examples 8.1 and 8.2 
and report your conclusions concerning any trends, cyclic components, 
or serial correlation in the series.

Table 8.7

Yearly Wheat Yields (bushels/acre) from Plot 2B  
at Rothamsted Experimental Station, 1852–1925

Year Yield Year Yield Year Yield Year Yield

1852 1.92 1872 2.29 1892 2.37 1912 1.39
1853 1.26 1873 1.82 1893 2.52 1913 1.70
1854 3.00 1874 2.72 1894 3.23 1914 2.26
1855 2.51 1875 2.12 1895 3.17 1915 2.78
1856 2.55 1876 1.73 1896 3.26 1916 2.01
1857 2.90 1877 1.66 1897 2.72 1917 1.23
1858 2.82 1878 2.12 1898 3.03 1918 2.87
1859 2.54 1879 1.19 1899 3.02 1919 2.12
1860 2.09 1880 2.66 1900 2.36 1920 2.39
1861 2.47 1881 2.14 1901 2.83 1921 2.23
1862 2.74 1882 2.25 1902 2.76 1922 2.73
1863 3.23 1883 2.52 1903 2.07 1923 1.51
1864 2.91 1884 2.36 1904 1.63 1924 1.01
1865 2.67 1885 2.82 1905 3.02 1925 1.34
1866 2.32 1886 2.61 1906 3.27
1867 1.97 1887 2.51 1907 2.75
1868 2.92 1888 2.61 1908 2.97
1869 2.53 1889 2.75 1909 2.78
1870 2.64 1890 3.49 1910 2.19
1871 2.80 1891 3.22 1911 2.84
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9
Spatial-Data Analysis

9.1  Introduction

Like time-series analysis, spatial-data analysis is a highly specialized area in 
statistics. Therefore, all that is possible in this chapter is to illustrate the types 
of data that are involved, describe some of the simpler methods of analysis, 
and give references to works where more information can be obtained. For 
more-detailed information about many of the methods considered in this 
chapter, see the book by Fortin and Dale (2005).

The methods of analysis that are considered in this chapter can be used to:

 1. Detect patterns in the locations of objects in space
 2. Quantify correlations between the spatial locations for two types 

of objects
 3. Measure the spatial autocorrelation for the values of a variable mea-

sured over space
 4. Study the correlation between two variables measured over space 

when one or both of those variables displays autocorrelation

To begin with, some example sets of data are presented to clarify what exactly 
these four items involve.

9.2  Types of Spatial Data

One important category of spatial data is quadrat counts. With such data, the 
area of interest is divided into many square, rectangular, or circular study 
plots, and the number of objects of interest is counted, in either all of the 
study plots or a sample of them. Table 9.1 gives an example. In this case, 
the study area is part of a beach near Auckland, New Zealand; the quad-
rats are circular plots in the sand with an area of 0.1 m2; and the counts are 
the numbers of two species of shellfish (pipis, Paphies australis, and cockles, 
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Austrovenus stutchburyi) found down to a depth of 0.15 m in the quadrats. 
These data are a small part of a larger set obtained from a survey to estimate 
the size of the populations, with some simplification for this example.

There are a number of obvious questions that might be asked with 
these data:

Are the counts for pipis randomly distributed over the study area, •	
or is there evidence of either a uniform spread or clustering of the 
higher counts?
Similarly, are the counts randomly distributed for cockles, or is there •	
evidence of some uniformity or clustering?
Is there any evidence of an association between the quadrat counts for •	
the two species of shellfish, with the high counts of pipis tending to be in 
the same quadrat as either high counts or low counts for the cockles?

A similar type of example, but with the data available in a different format, 
is presented in Figure 9.1. Here what is presented are the locations of 45 nests 

Table 9.1

Counts of Two Species of Shellfish from Quadrats in an Area (200 × 70 m)  
of a Beach in Auckland, New Zealand

Distance from 
Low Water (m)

Distance along Beach (m)

0 20 40 60 80 100 120 140 160 180 200

Counts of Pipis (Paphies australis)
 0 1 0 4 0 0 0 3 0 2 0 0
10 0 0 0 0 104 0 0 0 1 0 0
20 7 24 0 0 240 0 0 103 1 0 0
30 20 0 0 0 0 0 3 250 7 0 0
40 20 0 2 4 0 222 0 174 4 0 58
50 0 0 11 0 0 126 0 62 7 6 29
60 0 0 7 0 0 0 0 0 23 7 29
70 0 0 0 0 89 0 0 7 8 0 30

Counts of Cockles (Austrovenus stutchburyi)
 0 0 0 1 0 0 0 0 0 0 0 0
10 0 0 0 0 7 0 0 0 0 0 0
20 0 0 0 0 9 0 0 3 6 0 0
30 0 0 0 0 0 0 0 0 0 0 0
40 1 0 0 5 0 0 0 7 0 0 10
50 0 0 0 0 0 7 0 10 1 1 19
60 0 0 0 0 0 0 0 0 0 0 2
70 0 0 0 0 2 0 0 2 0 0 16

Note: The position of the counts in the table matches the position in the study area for 
both species, so that the corresponding counts for the two species are from the 
same quadrat.
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of the ant Messor wasmanni and 15 nests of the ant Cataglyphis bicolor in a 240 × 
250-ft area (Harkness and Isham 1983; Särkkä 1993, Figure 5.8). Messor (spe-
cies 1) collects seeds for food, while Cataglyphis (species 2) eats dead insects, 
mostly Messor ants.

Possible questions here are basically the same as for the shellfish:

Are the positions of the •	 Messor wasmanni nests randomly located 
over the study area, or is there evidence of uniformity or clustering 
in the distribution?
Similarly, are the •	 Cataglyphis bicolor nests random, uniform, or clus-
tered in their distribution?
Is there any evidence of a relationship between the positions of the •	
nests for the two species, for example, with Messor wasmanni nests 
tending to be either close to or distant from the Cataglyphis bicolor 
nests?

In this second example there is a point process for each of the two spe-
cies of ant. It is apparent that this could be made similar to the first example 
because it would be possible to divide the ant study area into quadrats and 
compare the two species by quadrat counts, in the same way as for the shell-
fish. However, knowing the positions of the points instead of just how many 
are in each quadrat means that there is more information available in the 
second example than there is in the first.

A third example comes from the Norwegian research program that was 
started in 1972 in response to widespread concern in Scandinavian countries 
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Figure 9.1
Location of 45 nests of Messor wasmanni (species 1) and 15 nests of Cataglyphis bicolor (species 2) 
in a 240 × 250-ft study area.
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about the effects of acid precipitation (Overrein et al. 1980; Mohn and Volden 
1985), which was the subject of Example 1.2. Table 1.1 contains the recorded 
values for acidity (pH), sulfate (SO4), nitrate (NO3), and calcium (Ca) for lakes 
sampled in 1976, 1977, 1978, and 1981, and Figure 1.2 shows the pH values in 
the different years plotted against the locations of the lakes.

Consider just the observations for pH and SO4 for the 46 lakes for which 
these were recorded in 1976. These are plotted against the location of the 
lakes in Figure 9.2. In terms of the spatial distribution of the data, some ques-
tions that might be asked are:

Is there any evidence that pH values tend to be similar for lakes that •	
are close in space, i.e., is there any spatial autocorrelation?
For SO•	 4, is there any spatial correlation and, if so, is this more or less 
pronounced than the spatial correlation for pH?
Is there a significant relationship between the pH and SO•	 4 measure-
ments, taking into account any patterns that exist in the spatial dis-
tributions for each of the measurements considered individually?

63
pH

SO4

62

61

60

La
tit

ud
e

59

58

57
4 5 6 7 8 9

Longitude
10 11 12 13

4 5 6 7 8 9
Longitude

10 11 12 13

63

62

61

60

La
tit

ud
e

59

58

57

Figure 9.2
Values for pH and SO4 concentrations (mg/L) of lakes in Norway plotted against the latitude 
and longitude of the lakes.
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In considering these three examples, the most obvious differences between 
them are that the first concerns counts of the number of shellfish in quadrats, 
the second concerns the exact location of individual ant nests, and the third 
concerns the measurement of variables at lakes in particular locations. In 
addition, it can be noted that the shellfish and lake examples concern sample 
data in the sense that values could have been recorded at other locations in 
the study area, but this was not done. By contrast, the positions of all the ant 
nests in the study area are known, so this is population data.

9.3  Spatial Patterns in Quadrat Counts

Given a set of quadrat counts over an area, such as those for the pipis in 
Table 9.1, there may be interest in knowing whether there is any evidence 
for a spatial pattern. For example, there might be a tendency for the higher 
counts to be close together (clustering) or to be spread out over the study area 
(uniformity). The null hypothesis of interest is then randomness, in the sense 
that each of the counts could equally well have occurred in any of the spatial 
locations. This question has been of particular interest to those studying the 
spatial distribution of plants, where distributions may appear to be random 
for some quadrat sizes but not for others (Mead 1974; Galiano et al. 1987; Dale 
and MacIsaac 1989; Perry and Hewitt 1991; Perry 1995a, 1995b, 1998).

A particular hypothesis that it is sometimes of interest to test is complete 
spatial randomness, in which case the individual items being counted over a 
large area are each equally likely to be anywhere in the area, independently 
of each other. Then, it is a standard result that the counts in quadrats will 
have a Poisson distribution. That is, the probability of a count x is given by 
the equation

 P(x) = μx exp(−μ)/x! (9.1)

where μ is the expected value (mean) of the counts.
One of the characteristics of the Poisson distribution is that the variance 

equals the mean. Therefore, if x and s2 are the mean and variance, respec-
tively, of a set of quadrat counts, then the variance-to-mean ratio R = s2/x 
should be approximately 1. Values of R that are much less than 1 indicate that 
the counts are more uniform than expected from the Poisson distribution, so 
that there is some tendency for the individuals to spread out evenly over the 
study area. On the other hand, values of R much larger than 1 indicate that 
the counts are more variable than expected from the Poisson distribution, 
so that there is a tendency for individuals to accumulate in just a few of the 
quadrats, i.e., clustering.

A standard test for whether R is significantly different from 1 involves 
comparing
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 T = (R − 1)/√[2/(n − 1)] (9.2)

with the t-distribution with n − 1 degrees of freedom (df). If a significant 
result is obtained, then R < 1 implies some evenness in the counts, while 
R > 1 implies some clustering in the counts.

Even when the quadrat counts do not follow a Poisson distribution, they 
can be randomly distributed in space, in the sense that the counts are effec-
tively randomly distributed to the quadrats, independently of each other. In 
particular, there will be no tendency for the high counts to be close together, 
so that there is some clustering (positive spatial correlation), or for the high 
counts to be spread out, so that there is some evenness (negative spatial cor-
relation). This hypothesis can be tested using a Mantel matrix randomization 
test (Mantel 1967).

If quadrat counts tend to be similar for quadrats that are close in space, 
then this can be expected to show up in a positive correlation between the 
spatial distance between two quadrats and the absolute difference between 
the counts in the quadrats. The following test is designed to see whether this 
correlation is significantly large.

Suppose that there are n quadrats, and let the spatial distance between 
quadrats i and j be denoted by dij. This distance can be calculated for every 
pair of quadrats to produce a matrix
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of geographical distances. Because of the way that it is calculated, this matrix 
is symmetric, with di,j = dj,i and with zeros down the diagonal, as shown.

A second matrix
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can also be constructed such that the element in row i and column j is the 
absolute difference

 ci,j = •ci − cj• (9.5)

between the count for quadrat i and the count for quadrat j. Again, this 
matrix is symmetric.

Given these matrices, the question of interest is whether the Pearson cor-
relation coefficient that is observed between the pairs of distances (d2,1, c2,1), 
(d3,1, c3,1), (d3,2, c3,2), …, (dn,n−1, cn,n−1) in the two matrices is unusually large in 
comparison with the distribution of this correlation that is obtained if the 
quadrat counts are equally likely to have had any of the other possible alloca-
tions to quadrats. This is tested by comparing the observed correlation with 
the distribution of correlations that is obtained when the quadrat counts are 
randomly reallocated to the quadrats.

Mantel (1967) developed this procedure for the problem of determining 
whether there is contagion with the disease leukemia, which should show up 
with cases that are close in space and tending to be close in time. He noted 
that, in practice, it may be better to replace spatial distances with their recip-
rocals and see whether there is a significant negative correlation between 
1/di,j and ci,j. The reasoning behind this idea is that the pattern that is most 
likely to be present is a similarity between values that are close together 
rather than large differences between values that are distant from each other. 
By its nature, the reciprocal transformation emphasizes small distances and 
reduces the importance of large differences.

Perry (1995a, 1995b, 1998) discusses other approaches for studying the dis-
tribution of quadrat counts. One relatively simple idea is to take the observed 
counts and consider these to be located at the centers of their quadrats. The 
individual points are then moved between quadrats to produce a configura-
tion with equal numbers in each quadrat, as close as possible. This is done 
with the minimum possible amount of movement, which is called the dis-
tance to regularity, D. This distance is then compared with the distribution 
of such distances that is obtained by randomly reallocating the quadrat 
counts to the quadrats, and repeating the calculation of D for the random-
ized data. The randomization is repeated many times, and the probability, Pa, 
of obtaining a value of D as large as that observed is calculated. Finally, the 
mean distance to regularity for the randomized data, Ea, is calculated, and 
hence the index Ia = D/Ea of clustering. These calculations are done as part of 
the SADIE (Spatial Analysis by Distance IndicEs) programs that are available 
from Perry (2008).

Example 9.1: Distribution and Spatial Correlation for Shellfish
For an example, consider the pipi and cockle counts shown in Table 9.1. 
There are n = 88 counts for both species, and the mean and variance for 
the pipi counts are x = 19.26 and s2 = 2551.37. The variance-to-mean ratio is 
huge at R = 132.46, which is overwhelmingly significant according to the 
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test of equation (9.2), giving T = 872.01 with 87 df. For cockles, the mean 
and variance are x = 1.24 and s2 = 11.32, giving R = 9.14 and T = 53.98, again 
with 87 df. The variance-to-mean ratio for cockles is still overwhelmingly 
significant, although it is much smaller than the ratio for pipis. Anyway, 
for both species, the hypothesis that the individuals are randomly located 
over the study area is decisively rejected. In fact, this is a rather unlikely 
hypothesis in the first place for something like shellfish.

Although the individuals are clearly not randomly distributed, it 
could be that the quadrat counts are, in the sense that the observed con-
figuration is effectively a random allocation of the counts to the quad-
rats without any tendency for the high counts to occur together. Looking 
at the distribution of pipi counts this seems unlikely, to put it mildly. 
With the cockles, it is perhaps not so obvious that the observed configu-
ration is unlikely. At any rate, for the purpose of this example, the Mantel 
matrix randomization test has been applied for both species.

There are 88 quadrats, and therefore the matrices in equations (9.3) 
and (9.4) are of size 88 × 88. Of course, the geographical distance matrix 
is the same for both species. Taking the quadrats row by row from 
Table 9.1, with the first 11 in the top row, the next 11 in the second row, 
and so on, this matrix takes the form

 

D =

0 0 20 0 40 0 211 9
20 0 0 0 20 0 193 1

. . . .
. . . .

. . . .

. .

…

…

…

.. .
. . . .
. . . .
. . .

…

…

…193 1 174 6 156 5 20 0
211 9 193 1 174 66 0 0… .





























with distances in meters.
For pipis, the matrix of absolute count differences takes the form

 

C =

0 1 3 29
1 0 4 30

1 0 4 30
29 30 26 0

…

…

…

…

…

…

…

. . . .
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. . . .





























The correlation between the elements in the bottom triangular part 
of this matrix and the elements in the bottom triangular part of the 
D matrix is −0.11, suggesting that as quadrats get farther apart, their 
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counts tend to become more similar, which is certainly not what might 
be expected. When the observed correlation of −0.11 was compared with 
the distribution of correlations obtained by randomly reallocating the 
pipi counts to quadrats 10,000 times, it was found that the percentage of 
times that a value as far from zero as −0.11 was obtained was only 2.1%. 
Hence, this negative correlation is significantly different from zero at the 
5% level (p = 0.021).

To understand what is happening here, it is useful to look at 
Figure 9.3(a). This shows that, for all except the farthest distances apart, 
the difference between quadrat counts can be anything between 0 and 
250. However, for distances greater than about 150 m apart, the largest 
count difference is only about 60. This leads to the negative correlation, 
which can be seen to be more-or-less inevitable from the fact that the 
highest pipi counts are toward the center of the sampled area. Thus 
the significant result does seem to be the result of a nonrandom distri-
bution of counts, but this nonrandomness does not show up as a simple 
tendency for the counts to become more different as they get farther 
apart.

For cockles, there is little indication of any correlation either positive 
or negative from a plot of the absolute count differences against their 
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Figure 9.3
Plots of pipi and cockle quadrat-count differences against the differences in distance between 
the quadrats and the reciprocals of these distances.
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distances apart that is shown in Figure 9.3(b). The correlation is 0.07, 
which is not significant by the Mantel randomization test (p = 0.15).

For these data, the use of reciprocal distances as suggested by Mantel 
(1967) is not helpful. The correlation between pipi count differences and 
the reciprocal of the distances separating the quadrats is 0.03, which is 
not at all significant by the randomization test (p = 0.11), and the correla-
tion between cockle count differences and reciprocal distances is −0.03, 
which is also not significant (p = 0.14). Plots of the count differences 
against the reciprocal distances are shown in Figures 9.3(b) and (d).

There are other variations on the Mantel test that can be applied with 
the shellfish data. For example, instead of using the quadrat counts, these 
can just be coded to 0 (absence of shellfish) and 1 (presence of shellfish), 
which then avoids the situation where two quadrats have a large differ-
ence in counts, but both also have a large count relative to most quadrats. 
A matrix of presence–absence differences between quadrats can then be 
calculated, where the ith row and jth column contains 0 if quadrat i and 
quadrat j either both have a shellfish species, or are both missing it, and 1 if 
there is one presence and one absence. If this is done, then it turns out that 
there is a significant negative correlation of −0.047 between the presence–
absence differences for pipis and the reciprocal distances between quad-
rats (p = 0.023). Other correlations (presence–absence differences for pipis 
versus distances, and presence–absence differences for cockles versus dis-
tances and reciprocal distances) are close to zero and not at all significant.

One problem with using the Mantel randomization test is that it is 
not usually an option in standard statistical packages, so that a special 
computer program is needed. One possibility is to use the program RT 
available from the Web site www.west-inc.com.

The SADIE approach was also applied to the pipi and cockle data, 
using a Windows program called RBRELV13.exe (Perry 2008). Included 
in the output from the program are the statistics D (the distance to regu-
larity), Pa (the probability of a value for D as large as that observed occur-
ring for randomly allocated quadrat counts), Ea (the mean distance to 
regularity for randomly allocated counts), and Ia = D/Ea (the index of non-
randomness in the distribution of counts). For pipis, these statistics are 
D = 48,963, Pa = 0.26, Ea = 44,509, and Ia = 1.10. There is no evidence here of 
nonrandomness. For cockles, the statistics are D = 5704, Pa = 0.0037, Ea = 
2968, and Ia = 1.92. Here, there is clear evidence of some clustering.

In summary, the above analyses show that there is very clear evi-
dence that the individual pipis and cockles are not randomly distributed 
over the sampled area because the quadrat counts for the two species do 
not have Poisson distributions. Given the values of the quadrat counts 
for pipis, the Mantel test gives evidence of structure that is not as simple 
as the counts tending to become more different as the distance apart 
increases, while the SADIE analysis based on the distance to regularity 
gives no evidence of structure. By contrast, for cockles, the Mantel test 
approach gives no real evidence of nonrandomness in the location of 
counts, but the SADIE analysis indicates some clustering. If nothing else, 
these analyses show that the evidence for nonrandomness in quadrat 
counts depends very much on how this is measured.
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9.4  Correlation between Quadrat Counts

Suppose that two sets of quadrat counts are available, such as those shown 
in Table 9.1 for two different species of shellfish. There may then be interest 
in knowing whether there is any association between the sets of counts, in 
the sense that high counts tend to occur either in the same locations (positive 
correlation) or in different locations (negative correlation).

Unfortunately, testing for an association in this context is not a straightfor-
ward matter. Besag and Diggle (1977) and Besag (1978) proposed a random-
ization test that is a generalization of Mead’s (1974) test for randomness in the 
spatial distribution of a single species, which can be used when the number 
of quadrats is a multiple of 16. However, this test is not valid if there is spatial 
correlation within each of the sets of counts being considered (Manly 2007, 
sec. 10.6).

One promising method for handling the problem seems to be along the 
lines of one that is proposed by Perry (1998). This is based on an algorithm for 
producing permutations of quadrat counts with a fixed level of aggregation 
and a fixed centroid over the study region, combined with a test statistic based 
on the minimum amount of movement between quadrats that is required to 
produce counts that are all equal. One test statistic is derived as follows:

 1. The counts for the first variable are scaled by multiplying by the sum 
of the counts (M2) for the second variable, and the counts for the sec-
ond variable are scaled by multiplying by the sum of the counts (M1) 
for the first variable. This has the effect of making the scaled total 
count equal to M1M2 for both variables.

 2. The scaled counts for both variables are added for the quadrats 
being considered.

 3. A statistic T is calculated, where this is the amount of movements of 
individuals between quadrats that is required to produce an equal 
number of scaled individuals in each quadrat.

 4. The statistic T is compared with the distribution of the same statistic 
that is obtained by permuting the original counts for variable 1, with 
the permutations constrained so that the spatial distribution of the 
counts is similar to that of the original data. An index of association, 
It(2)1 = T/Et(2)1, is also computed, where Et(2)1 is the mean of T for the 
permuted sets of data. The significance level of It(2)1 is the propor-
tion of permutations that give a value as larger or larger than the 
observed value.

 5. The observed statistic T is also compared with the distribution that 
is obtained by permuting the original counts for variable 2, again 
with constraints to ensure that the spatial distribution of the counts 
is similar to that for the original data. Another index of association is 
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then It(1)2 = T/Et(1)2, where Et(1)2 is the mean number of steps to regular-
ity for the permuted sets of data. The significance level of It(1)2 is the 
proportion of permutations that give a value as large or larger than 
the observed value.

The idea with this approach is to compare the value of T for the real data 
with the distribution that is obtained for alternative sets of data for which 
the spatial distribution of quadrat counts is similar to that for the real data 
for each of the two variables being considered. This is done by constraining 
the permutations for the quadrat counts so that the distance to regularity is 
close to that for the real data, as is also the distance between the centroid of 
the counts and the center of the study region. A special algorithm is used 
to find the minimum number of steps to regularity. Perry (1998) should be 
consulted for more details about how this is achieved.

If the two variables being considered tend to have large counts in the same 
quadrats, then T will be large, with any clustering in the individual variables 
being exaggerated by adding the scaled counts for the two variables. Hence, val-
ues of It(2)1 and It(1)2 greater than 1 indicate an association between the two sets 
of counts. On the other hand, values of It(2)1 and It(1)2 of less than 1 indicate a ten-
dency for the highest counts to be in different quadrats for the two variables.

Apparently, in practice It(2)1 and It(1)2 tend to be similar, as do their signifi-
cance levels. In that case, Perry (1998) suggests averaging It(2)1 and It(1)2 to get 
a single index It, and averaging the two significance levels to get a combined 
significance level Pt.

Perry (1998) suggests other test statistics that can be used to examine 
the association between quadrat counts, and is still developing the SADIE 
approach for analyzing quadrat counts. See Perry (2008), Perry et al. (2002), 
and Perry and Dixon (2002) for more about these methods.

Example 9.2: Correlation between Counts for Pipis and Cockles
To illustrate the SADIE approach for assessing the association between 
two sets of quadrat counts, consider again the pipi and cockle counts 
given in Table 9.1. It may be recalled from Example 9.1 that these counts 
clearly do not have Poisson distributions, so that the individual shell-
fish are not randomly located, and there is mixed evidence concerning 
whether the counts themselves are randomly located. Now the question 
to be considered is whether the pipi and cockle counts are associated in 
terms of their distributions.

The data were analyzed with the computer program SADIEA (Perry 
2008). The distance to regularity for the total of the scaled quadrat counts 
is T = 129,196 m. When 1000 randomized sets of data were produced 
keeping the cockle counts fixed and permuting the pipi counts, the 
average distance to regularity was Et(2)1 = 105,280 m, giving the index 
of association It(2)1 = 129,196/105,280 = 1.23. This was exceeded by 33% 
of the permuted sets of data, giving no real evidence of association. On 
the other hand, keeping the pipi counts fixed and permuting the cockle 
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counts gave an average distance to regularity of Et(1)2 = 100,062, giving 
the index of association It(1)2 = 129,196/100,062 = 1.29. This was exceeded 
by 3.4% of the permuted sets of data. In this case, there is some evidence 
of association.

The conclusions from the two randomizations are quite different in 
terms of the significance of the results, although both It(2)1 and It(1)2 sug-
gest some positive association between the two types of count. The rea-
son for the difference in terms of significance is presumably the result 
of a lack of symmetry in the relationship between the two shellfish. In 
every quadrat where cockles are present, pipis are present as well. How-
ever, cockles are missing from half of the quadrats where pipis are pres-
ent. Therefore, cockles are apparently associated with pipis, but pipis are 
not necessarily associated with cockles.

9.5  Randomness of Point Patterns

Testing whether a set of points appears to be randomly located in a study 
region is another problem that can be handled by computer-intensive meth-
ods. One approach was suggested by Besag and Diggle (1977). The basic idea 
is to calculate the distance from each point to its nearest neighbor and calcu-
late the mean of these distances. This is then compared with the distribution 
of the mean nearest-neighbor distance that is obtained when the same num-
ber of points are allocated to random positions in the study area.

An extension of this approach uses the mean distances between second, 
third, fourth, etc., nearest neighbors as well as the mean of the first nearest-
neighbor distances. Thus, let Qi denote the mean distance between each point 
and the point that is its ith nearest neighbor. For example, Q3 is the mean of 
the distances from points to the points that are third closest to them. The 
observed configuration of points then yields the statistics Q1, Q2, Q3, and so 
on. These are compared with the distributions for these mean values that are 
generated by randomly placing the same number of points in the study area, 
with a computer simulation being carried out to produce these distributions.

This type of procedure is sometimes called a Monte Carlo test. With 
these types of tests, there is freedom in the choice of the test statistics to be 
employed. They do not have to be based on nearest-neighbor distances and, 
in particular, the use of Ripley’s (1981) K-function is popular (Andersen 1992; 
Haase 1995).

Example 9.3: The Location of Messor wasmanni Nests
As an example of the Monte Carlo test based on nearest-neighbor dis-
tances that has just been described, consider the locations of the 45 nests 
of Messor wasmanni that are shown in Figure 9.1. The values for the mean 
nearest-neighbor distances Q1 to Q10 are shown in the second column of 
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Table 9.2, and the question to be considered is whether these values are 
what might reasonably be expected if the 45 nests are randomly located 
over the study area.

The Monte Carlo test proceeds as follows:

 1. A set of data for which the null hypothesis of spatial randomness is 
true is generated by placing 45 points in the study region in such a 
way that each point is equally likely to be anywhere in the region.

 2. The statistics Q1 to Q10 are calculated for this simulated set of data.
 3. Steps 1 and 2 are repeated 5000 times.
 4. The lower-tail significance level for the observed value of Qi is calcu-

lated as the percentage of times that the simulated values for Qi are 
less than or equal to the observed value of Qi.

 5. The upper-tail significance level for the observed value of Qi is cal-
culated as the percentage of times that the simulated values of Qi are 
greater than or equal to the observed value of Qi.

Nonrandomness in the distribution of the ant nests is expected to 
show up as small percentages for the lower- or upper-tail significance 
levels, which indicates that the observed data were unlikely to have 
arisen if the null hypothesis of spatial randomness is true.

The last two columns of Table 9.2 show the lower- and upper-tail signif-
icance levels that were obtained from this procedure when it was carried 
out using an option in the computer package RT (Manly 2007). It is appar-
ent that all of the observed mean nearest-neighbor distances are somewhat 
large, and that the mean distances from nests to their six nearest neighbors 
are much larger than what is likely to occur by chance with spatial ran-
domness. Instead, it seems that there is some tendency for the ant nests to 

Table 9.2

Results from Testing for Randomness in the Location of Messor wasmanni Nests 
Using Nearest-Neighbor Statistics

i Observed Value of Qi Simulated Mean of Qi

Percentage Significance Levela

Lower Tail Upper Tail

 1 22.95 18.44 99.82 0.20
 2 32.39 28.27 99.14 0.88
 3 42.04 35.99 99.94 0.08
 4 50.10 42.62 99.96 0.06
 5 56.58 48.60 99.98 0.04
 6 61.03 54.13 99.56 0.46
 7 65.60 59.34 98.30 1.72
 8 70.33 64.26 97.02 3.00
 9 74.45 68.99 94.32 5.70
10 79.52 73.52 94.78 5.24

a Significance levels were obtained using an option in the computer package RT (Manly 
2007).
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be spaced out over the study region. Thus the observed configuration does 
not appear to be the result of the nests being randomly located.

9.6  Correlation between Point Patterns

Monte Carlo tests are also appropriate for examining whether two point 
patterns seem to be related, as might be of interest, for example, with the 
comparison of the positions of the nests for the Messor wasmanni and Cata-
glyphis bicolor ants that are shown in Figure 9.1. In this context, Lotwick and 
Silverman (1982) suggested that a point pattern in a rectangular region can 
be converted to a pattern over a larger area by simply copying the pattern 
from the original region to similar sized regions above, below, to the left, and 
to the right, and then copying the copies as far away from the original region 
as required. A test for independence between two patterns then involves 
comparing a test statistic observed for the points over the original region 
with the distribution of this statistic that is obtained when the rectangular 
“window” for the species 1 positions is randomly shifted over an enlarged 
region for the species 2 positions. Harkness and Isham (1983) used this type 
of analysis with the ant data and concluded that there is evidence of a rela-
tionship between the positions of the two types of nests. See also Andersen’s 
(1992) review of these types of analyses in ecology.

As Lotwick and Silverman note, the need to reproduce one of the point 
patterns over the edge of the region studied in an artificial way is an unfor-
tunate aspect of this procedure. It can be avoided by taking the rectangular 
window for the type 1 points to be smaller than the total area covered and 
calculating a test statistic over this smaller area. The distribution of the test 
statistic can then be determined by randomly placing this small window 
within the larger area a large number of times. In this case, the positions 
of any type 1 points outside the small window are ignored, and the choice of 
the positioning of the small window within the larger region is arbitrary.

Another idea involves considering a circular region and arguing that if 
two point patterns within the region are independent, then this means that 
they have a random orientation with respect to each other. Therefore, a dis-
tribution that can be used to assess a test statistic is the one that is obtained 
by randomly rotating one of the sets of points about the center point of the 
region. A considerable merit with this idea is that the distribution can be 
determined as accurately as desired by rotating one of the sets of points 
about the center of the study area from zero to 360 degrees in suitably small 
increments (Manly 2007, sec. 10.7).

The method of Perry (1998) that has been described in Section 9.4 can be 
applied with a point pattern as well as with quadrat counts. From an analysis 
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based on this method, Perry concluded that there is no evidence of associa-
tion between the positions of the nests for the two species of ants that are 
shown in Figure 9.1.

9.7  Mantel Tests for Autocorrelation

With a variable measured at a number of different positions in space, such 
as the values of pH and SO4 that are shown in Figure 9.3, one of the main 
interests is often to test for significant spatial autocorrelation, and then to 
characterize this correlation if it is present. The methods that can be used in 
this situation are extensive, and no attempt will be made here to review them 
in any detail. Instead, a few simple analyses will be briefly described.

If spatial autocorrelation is present, then it will usually be the case that 
this is positive, so that there is a tendency for observations that are close in 
space to have similar values. Such a relationship is conveniently summa-
rized by plotting, for every possible pair of observations, some measure of 
the differ ence between two observations against some measure of the spa-
tial dif ference between the observations. The significance of the autocorre-
lation can then be tested using the Mantel (1967) randomization test that is 
described in Section 9.3.

Example 9.4: Autocorrelation in Norwegian Lakes
Figure 9.4 shows four plots constructed from the pH data of Figure 9.2. 
Part (a) of the figure shows the absolute differences in pH values plot-
ted against the geographical distances between the 1035 possible pairs 
of lakes. Here, the smaller pH differences tend to occur with both the 
smallest and largest geographical distances, and the correlation between 
the pH differences and the geographical distances of r = 0.034 is not sig-
nificantly large (p = 0.276, from a Mantel test with 5000 randomizations). 
Part (b) of the figure shows the absolute pH differences plotted against 
the reciprocals of the geographical distances. The correlation here is 
−0.123, which has the expected negative sign and is highly significantly 
low (p = 0.0008, with 5000 randomizations). Part (c) of the figure shows 
0.5(pH difference)2 plotted against the geographical distance. The reason 
for considering this plot is that it corresponds to a variogram cloud, in 
the terminology of geostatistics, as discussed further below. The correla-
tion here is r = 0.034, which has the correct sign but is not significant (p = 
0.286, with 5000 randomizations). Finally, part (d) of the plot shows the 
0.5(pH difference)2 values plotted against the reciprocals of geographical 
distances. Here the correlation of r = −0.121 has the correct sign and is 
highly significantly low (p = 0.0006, with 5000 randomizations).
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The significant negative correlations for the plots in parts (b) and (d) 
of Figure 9.4 give clear evidence of spatial autocorrelation, with close 
lakes tending to have similar pH values. It is interesting to see that 
this evidence appears when the measures of pH difference are plotted 
against reciprocals of geographical distances rather than plotted against 
the geographical distances themselves, as is commonly done with geo-
statistical types of analysis.

By contrast, when plots and correlations are produced for the SO4 
variable, for which the data are shown in the lower part of Figure 9.2, 
then spatial autocorrelation is more evident when the measures of SO4 
differences are plotted against the geographical distances rather than 
their reciprocals (Figure 9.5). However, the spatial autocorrelation is alto-
gether stronger for SO4 than it is for pH, and is highly significant for all 
four types of plots:

 1. for absolute SO4 differences plotted against geographical distances, 
r = 0.30, p = 0.002;

 2. for absolute SO4 differences plotted against reciprocal geographical 
distances, r = −0.23, p = 0.002;

 3. for half-squared SO4 differences plotted against geographical dis-
tances, r = 0.25, p = 0.0008; and

 4. for half-squared SO4 differences plotted against reciprocal geo-
graphical distances, r = −0.16, p = 0.012.
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Figure 9.4
Measures of pH differences plotted against geographical distances (measured in degrees of lat-
itude and longitude) and reciprocals of geographical distances for pairs of Norwegian lakes.
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9.8  The Variogram

Geostatistics is the name given to a range of methods for spatial data analy-
sis that were originally developed by mining engineers for the estimation of 
the mineral resources in a region, based on the values measured at a sample 
of locations (Krige 1966; David 1977; Journel and Huijbregts 1978). A char-
acteristic of these methods is that an important part is played by a function 
called the variogram (or sometimes the semivariogram), which quantifies 
the extent to which values tend to become more different as pairs of observa-
tions become farther apart, assuming that this does in fact occur.

To understand better what is involved, consider Figure 9.5(c). This plot was 
constructed from the SO4 data for the 46 lakes with the positions shown in 
Figure 9.2. There are 1035 pairs of lakes, and each pair gives one of the plot-
ted points. What is plotted on the vertical axis for the pair consisting of lake i 
with lake j is
 Dij = 0.5(yi − yj)2

where yi is the SO4 level for lake i. This is plotted against the geographical 
distance between the lakes on the horizontal axis. There does indeed appear 
to be a tendency for Dij to increase as lakes get farther apart, and a variogram 
can be used to quantify this tendency.
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Figure 9.5
Measures of SO4 differences plotted against geographical distances (measured in degrees of lat-
itude and longitude) and reciprocals of geographical distances for pairs of Norwegian lakes.
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A plot like that in Figure 9.5(c) is sometimes called a variogram cloud. The 
variogram itself is a curve through the data that gives the mean value of Dij as 
a function of the distance between the lakes. There are two varieties of this. 
An experimental or empirical variogram is obtained by smoothing the data 
to some extent to highlight the trend, as described in the following example. 
A model variogram is obtained by fitting a suitable mathematical function to 
the data, with a number of standard functions being used for this purpose.

Typically, a model variogram looks something like the one in Figure 9.6. 
Even two points that are very close together may tend to have different val-
ues, so there is what is called a “nugget effect,” with the expected value of 
0.5(yi − yj)2 being greater than zero, even with h = 0. In the figure, this nugget 
effect is 3. The maximum height of the curve is called the “sill.” In the figure, 
this is 10. This is the maximum value of 0.5(yi − yj)2, which applies for two 
points that are far apart in the study area. Finally, the range of influence is 
the distance apart at which two points have effectively independent values. 
This is sometimes defined as the point at which the curve is 95% of the dif-
ference between the nugget and the sill. In the figure, the range of influence 
is 4.

There are a number of standard mathematical models for variograms. One 
is the Gaussian model, with the equation

	 γ (h) = c + (S − c)[1 − exp(−3h2/a2)] (9.6)

where c is the nugget effect, S is the sill, and a is the range of influence. When 
h = 0, the exponential term equals 1, so that γ(0) = c. When h is very large, 
the exponential term becomes insignificant, so that γ(∞) = S. When h = a, the 
exponential term becomes exp(3) = 0.050, so that γ(a) = c + 0.95(S − c).

Other models that are often considered are the spherical model with 
the equation
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A model variogram with the nugget effect, the sill, and the range of influence indicated.
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the exponential model with the equation

	 γ(h) = c + (S − c)[1 − exp(−3h/a)] (9.8)

and the power model with

	 γ(h) = c + Ahw (9.9)

For all of these models, c is the nugget effect. The spherical and exponential 
models also have a sill at S, but for the power model, the function increases 
without limit as h increases. For the spherical model, the sill is reached when 
h = a, for the exponential model a is an effective range of influence as γ(a) = c + 
0.95(S − c), and for the power model the range of influence is infinite.

A variogram describes the nature of spatial correlation. It may also give 
information about the correlation between points that are separated by dif-
ferent spatial distances. This is because if Yi and Yj are values of a random 
variable measured at two locations with the same mean μ, then the expected 
value of half of the difference squared is

 E[0.5(Yi − Yj)2] = 0.5E[(Yi − μ)2 − 2(Yi − μ)(Yj − μ) + (Yj − μ)2]

 = 0.5[Var(Yi) − 2Cov(Yi,Yj) + Var(Yj)]

Hence, if the variance is equal to σ2 at both locations, it follows that

 E[0.5(Yi − Yj)2] = σ2 − Cov(Yi,Yj)

As the correlation between Yi and Yj is ρ(Yi,Yj) = Cov(Yi,Yj)/σ2, under these 
conditions, it follows that

 E[0.5(Yi − Yj)2] = σ2[1 − ρ(Yi,Yj)]

Suppose also that the correlation between Yi and Yj is only a function of their 
distance apart, h. This correlation can then be denoted by ρ(h). Finally, note 
that the left-hand side of the equation is actually the variogram for points 
distance h apart, so that

	 γ(h) = σ2[1 − ρ(h)]. (9.10)

This is therefore the function that the variogram is supposed to describe in 
terms of the variance of the variable being considered and the correlation 
between points at different distances apart. One important fact that follows 
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is that, because ρ(h) will generally be close to zero for large values of h, the 
sill of the variogram should equal σ2, the variance of the variable Y being 
considered.

The requirements for equation (9.10) to hold are that the mean and vari-
ance of Y be constant over the study area, and that the correlation between 
Y at two points depend only on their distance apart. This is called second-
order stationarity. Actually, the requirement for the variogram to exist and 
to be useful for data analysis is less stringent. This is the so-called intrinsic 
hypothesis, that the mean of the variable being considered be the same at all 
locations, with the expected value of 0.5(Yi − Yj)2 depending only on the dis-
tance between the locations of the two points (Pannatier 1996, app. A).

Example 9.5: Variograms for SO4 Values of Norwegian Lakes
Figure 9.7 shows experimental and model variograms estimated for the 
SO4 data from Norwegian lakes that are shown in Figure 9.2. The experi-
mental variogram in this case was estimated by taking the maximum 
distance between two lakes and dividing this into 12 class intervals cen-
tered at 0.13, 0.39, 0.73, …, 3.85. The values for 0.5(yi − yj)2 were then aver-
aged within each of these intervals to produce the points that are plotted. 
For example, for the interval centered at 0.13, covering pairs of points 
with a distance between them in the range from 0.00 to 0.26, the mean 
value of 0.5(yi − yj)2 is 0.29. An equation for this variogram is therefore

 ˆ( ) . ( ) ( )
( )

y h y y N hi j

i

N h

= −
=

∑0 5 2

1

 (9.11)

where γ̂ (h) is the empirical variogram value for the interval centered at 
a distance h between points, N(h) is the number of pairs of points with a 
distance between them in this interval, and the summation is over these 
pairs of points.
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Figure 9.7
Experimental and model variograms found for the SO4 data on Norwegian lakes displayed in 
Figure 9.2.
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The model variogram for Figure 9.7 is the Gaussian model given by 
equation (9.6). This was estimated using a program produced by the U.S. 
Environmental Protection Agency called GEOPACK (Yates and Yates 
1990) to give

	 γ(h) = 0.126 + 4.957[1 − exp(−3h2/2.0192)] (9.12)

This is therefore the model function that is plotted in Figure 9.7. The 
nugget effect is estimated to be 0.126, the sill is estimated to be 0.126 + 
4.957 = 5.083, and the range of influence is estimated to be 2.019. Essen-
tially, this model variogram is a smoothed version of the experimental 
variogram, which is itself a smoothed version of the variogram cloud in 
Figure 9.5(c). Some standard statistical packages allow function fitting 
like this and other geostatistical calculations.

9.9  Kriging

Apart from being a device for summarizing the spatial correlation in data, 
the variogram is also used to characterize this correlation for many other 
types of geostatistical analyses. There is a great deal that could be said in this 
respect. However, only one of the commonest of these analyses will be consid-
ered here. This is kriging, which is a type of interpolation procedure named 
after the mining engineer D. G. Krige, who pioneered these methods.

Suppose that, in the study area, sample values y1, y2, …, yn are known at 
n locations and that it is desired to estimate the value y0 at another location. 
For simplicity, assume that there are no underlying trends in the values of Y. 
Then kriging estimates y0 by a linear combination of the known values,

 ŷ a yi i0 =∑  (9.13)

with the weights a1, a2, …, an for these known values chosen so that the estimator 
of y0 is unbiased, with the minimum possible variance for prediction errors.

The equations for determining the weights to be used in equation (9.13) are 
somewhat complicated. They are derived and explained by Thompson (1992, 
chap. 20) and Goovaerts (1997, chap. 5), among others, and are a function of 
the assumed model for the variogram. To complicate matters, there are also 
different types of kriging, with resulting modifications to the basic proce-
dure. For example: Simple kriging assumes that the expected value of the 
measured variable is constant and known over the entire study region; ordi-
nary kriging allows for the mean to vary in different parts of the study region 
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by only using close observations to estimate an unknown value; and kriging 
with trend assumes a smooth trend in the mean over the study area.

Ordinary kriging seems to be what is most commonly used. In practice, 
this is done in three stages:

 1. The experimental variogram is calculated to describe the spatial 
structure in the data.

 2. Several variogram models are fitted to the experimental variogram, 
either by eye or by nonlinear regression methods, and one model is 
chosen to be the most appropriate.

 3. The kriging equations are used to produce estimates of the vari-
able of interest at a number of locations that have not been sampled. 
Often this is at a grid of points covering the study area.

Example 9.6: Kriging with the SO4 Data
The data on SO4 from Norwegian lakes provided in Figure 9.2 can be 
used to illustrate the type of results that can be obtained by kriging. A 
Gaussian variogram for these data is provided by equation (9.12) and 
displayed graphically in Figure 9.7. This variogram was used to estimate 
the SO4 level for a grid of points over the study region, with the results 
obtained being shown in Table 9.3 and Figure 9.8. The calculations were 
carried out using GEOPACK (Yates and Yates 1990), which produced the 
estimates and standard errors shown in Table 9.3 using the default val-
ues for all parameters. The three-dimensional plot shown in Figure 9.8 
was produced using the output saved from GEOPACK.
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Figure 9.8
Three-dimensional plot of SO4 levels as estimated by applying ordinary kriging to the data 
shown in Figure 9.2, using the Gaussian variogram shown in Figure 9.7.
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9.10  Correlation between Variables in Space

When two variables Z1 and Z2 are measured over space at the same n loca-
tions and each of the variables displays spatial autocorrelation, then this 
complicates the problem of deciding whether the two variables are corre-
lated. Certainly it is not valid to calculate the correlation using the set of 
paired data values and treat this as if it were a random sample of indepen-
dent pairs of observations for the purpose of deciding whether or not the 
correlation is statistically significant. Instead, some allowance must be made 
for the effects of the autocorrelation in the individual variables.

Table 9.3

Estimated SO4 Values Obtained by Ordinary Kriging Using the Data  
Shown in the Lower Part of Figure 9.2, with the Standard Errors  
Associated with These Estimated Values

Latitude 
(°North)

Longitude (°East)

4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00

Estimation of SO4 Concentrations (mg/l)
62:30 4.93 3.31 1.53 2.57 3.22 3.50 2.63 3.15 3.93 5.10
62.00 5.29 2.93 1.80 3.56 3.78 2.82 2.48 2.23 4.57 5.37
61:30 5.37 2.58 1.75 3.09 3.20 2.16 2.62 2.93 5.10 5.36
61:00 5.12 2.80 1.54 1.59 1.39 2.28 3.39 4.23 5.78 5.03
60:30 3.14 2.95 1.76 0.79 0.52 3.76 3.51 6.80 5.68 5.36
60:00 2.36 1.96 1.48 0.80 0.79 4.24 3.69 10.32 6.09 5.52
59:30 2.17 2.14 1.58 1.12 2.48 4.99 4.02 12.66 6.47 5.37
59:00 1.50 2.03 1.57 1.95 3.89 6.75 6.70 12.03 6.22 5.58
58:30 3.74 2.70 3.23 3.67 4.89 8.12 8.70 9.46 6.17 6.43
58:00 3.74 3.70 5.50 6.08 6.41 7.14 9.37 7.98 7.72 7.60
57:30 3.74 4.13 6.46 7.03 6.66 5.57 5.77 9.97 7.60 7.60
57:00 3.74 5.50 6.11 6.81 6.27 6.81 7.40 3.74 3.74 3.74

Standard Errors of Estimates
62:30 2.41 1.71 1.16 1.23 2.36 2.58 2.53 2.44 2.65 3.10
62.00 2.07 0.81 0.55 0.51 1.90 2.21 1.99 1.70 2.29 2.80
61:30 1.93 0.43 0.58 0.63 1.68 1.71 1.15 0.78 1.55 2.46
61:00 2.01 0.00 0.83 0.46 1.35 1.35 0.48 0.64 0.64 2.08
60:30 2.45 1.01 1.04 0.73 1.01 1.11 0.53 1.03 0.49 1.81
60:00 2.51 1.59 0.72 0.73 0.62 0.62 0.68 0.96 0.51 2.00
59:30 2.67 1.80 0.44 0.54 0.53 0.49 0.61 0.68 0.71 2.22
59:00 3.10 2.02 0.51 0.48 0.51 0.47 0.85 1.10 0.70 2.36
58:30 2.32 2.29 0.64 0.48 0.45 0.55 1.53 1.93 1.52 2.63
58:00 2.32 2.44 0.81 0.47 0.75 1.35 2.16 2.40 2.49 2.96
57:30 2.32 2.73 1.50 1.21 1.59 2.11 2.67 2.96 2.95 3.10
57:00 2.32 3.00 2.38 2.11 2.33 2.67 3.09 2.32 2.32 2.32
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In the past, one approach that has been used for handling this problem 
has used an extension of the Mantel (1967) randomization test as described 
above. This approach involves calculating three distance matrices. The first 
is an n × n matrix A in which the element aij in row i and column j is some 
measure of the difference between the values for Z1 at locations i and j. The 
second matrix B is of the same size, but the element bij in row i and column 
j is some measure of the difference between the values of Z2 at locations i 
and j. Finally, the third matrix G is also of the same size, with the element 
gij in row i and column j being the geographical distance between locations 
i and j. The equation

 aij = β0 + β1bij + β2gij

is then fitted to the distances by multiple regression, and the significance 
of the coefficient β1 is tested by comparison with the distribution for this 
coefficient that is obtained when the labels of the n locations are randomly 
permuted for the matrix A.

Unfortunately, the general validity of this procedure has proved to be 
questionable, although it is possible that it can be applied under certain con-
ditions if the n locations are divided into blocks and a form of restricted 
randomization is carried out (Manly 2007, sec. 9.6). It seems fair to say that 
this type of approach is still promising, but more work is required to better 
understand how to overcome problems with its use.

An alternative approach is based on geostatistical methods (Liebhold and 
Sharov 1997). This involves comparing the observed correlation between two 
variables, with the distribution obtained from simulated sets of data that 
are generated in such a way that the variogram for each of the two variables 
matches the one estimated from the real data, but with the two variables dis-
tributed independently of each other. The generation of the values at each 
location is carried out using a technique called sequential unconditional 
Gaussian simulation (Borgman et al. 1984; Deutsch and Journel 1992). This 
method for testing observed correlations is very computer intensive, but it is 
a reasonable solution to the problem.

9.11  Chapter Summary

The types of data considered in the chapter are quadrat counts, situ-•	
ations where the location of objects is mapped, and situations where 
a variable is measured at a number of locations in a study area.
With quadrat counts, the distribution of the counts will follow a •	
Poisson distribution if objects are randomly located over the study 
area, independently of each other. The ratio of the variance to the 
mean (R) is exactly 1 for a Poisson distribution, and this ratio is often 
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used as a measure of clustering, with R > 1 indicating clustering and 
R < 1 indicating regularity in the location of individuals. A t-test is 
available to decide whether R is significantly different from 1.
The Mantel matrix randomization test can be used to see whether •	
quadrats that are close together tend to have different counts. Other 
randomization tests for spatial correlation are available with the 
SADIE (Spatial Analysis by Distance IndicEs) computer programs.
Testing whether two sets of quadrat counts (e.g., individuals of two •	
species counted in the same quadrats) are associated is not straight-
forward. A randomization test approach involving the production 
of randomized sets of data with similar spatial structure to the true 
data appears to be the best approach. One such test is described that 
is part of the SADIE programs.
Randomness of point patterns (i.e., whether the points seem to be •	
randomly located in the study area) can be based on comparing the 
observed mean distances between points and their nearest neighbors 
with the distributions that are generated by placing the same number 
of points randomly in the study area using a computer simulation.
Correlation between two point patterns can also be tested by •	
 comparing observed data with computer-generated data. One 
method involves comparing a statistic that measures the association 
observed for the real data with the distribution of the same statistic 
obtained by randomly shifting one of the point patterns. Rotations 
may be better for this purpose than horizontal and vertical trans-
lations. The SADIE approach for examining the association between 
quadrat counts can also be used when the exact locations of points 
are known.
A Mantel matrix randomization test can be used to test for spatial •	
autocorrelation using data on a variable measured at a number of 
locations in a study area.
A variogram can be used to summarize the nature of the spatial cor-•	
relation for a variable that can be measured anywhere over a study 
area, using data from a sample of locations. A variogram cloud is 
a plot of 0.5(yi − yj)2 against the distance from point i to point j, for 
all pairs of sample points, where yi is the value of the variable at 
the ith sample point. The experimental or empirical variogram is 
a curve that represents the average observed relationship between 
0.5(yi − yj)2 and distance. A model variogram is a mathematical equa-
tion fitted to the experimental variogram.
Kriging is a method for estimating the values of a variable at other •	
than sampled points, using linear combinations of the values at 
known points. Before kriging is carried out, a variogram model must 
be fitted using the available data.



Spatial-Data Analysis 233

In the past, Mantel matrix randomization tests have been used to •	
examine whether two variables measured over space are associated, 
after allowing for any spatial correlation that might exist for the indi-
vidual variables. There are potential problems with this application of 
the Mantel randomization test, which may be overcome by restricting 
randomizations to points located within spatially defined blocks.
A geostatistical approach for testing for correlation between two •	
variables X and Y involves comparing the observed correlation 
between the variables based on data from n sample locations with 
the distribution of correlations that is obtained from simulated data 
for which the two variables are independent, but each variable main-
tains the variogram that is estimated from the real data. Thus the 
generated correlations are for two variables that individually have 
spatial correlation structures like those for the real data, although 
they are actually uncorrelated.

Exercises

Exercise 9.1
Consider the data shown in Figure 2.6 with Example 2.4. These data are 
concentrations of total PCBs in samples of sediment taken from Liver-
pool Bay in the United Kingdom. Table 9.4 shows the location of the sam-
pling points and the values for the total PCBs. Use these data to calculate 
for each pair of locations D1 = geographical distance from one sample to 
another, D2 = 1/D1, D3 = 0.5(PCB/1000 difference)2, and D4 = 0.5[loge(PCB) 
difference]2. The purpose of this exercise is to examine the spatial cor-
relation in PCB and loge(PCB) values.

 1. Plot D3 and D4 against D1 and D2. Comment on whether serial cor-
relation seems to be present and whether it is more apparent for 
geographical distances or reciprocal geographical distances. Note 
that plots of D3 and D4 against D1 are variogram clouds.

 2. Use a Mantel randomization test to see whether there is a significant 
relationship between D1 and D3, D1 and D4, D2 and D3, and D2 and 
D4.

 3. Summarize your conclusions about spatial autocorrelation for PCBs 
in Liverpool Bay.

Exercise 9.2
The geostatistical methods that are discussed in Sections 9.8 and 9.9 typ-
ically require the use of special software to do the calculations required. 
Some of the larger packages have options for doing the calculations, but 
others do not. There are also some free geostatistical packages available 
from Web sites, such as the U.S. EPA package GEOPACK. Nevertheless, 



234 Statistics for Environmental Science and Management, Second Edition

it is possible to at least fit variograms in a spreadsheet program like 
Excel. This is what this exercise is about. Begin by considering the two 
variables D1 and D4 calculated for Exercise 9.1. An exponential vario-
gram is then given by

	 γ(h) = c + (S − c)[1 − exp(−3h/a)]

Table 9.4

Total PCBs in Liverpool Bay Sediments (pg/g)

Station X Y Total PCBs Station X Y Total PCBs

 0 29.0 19.0 1,444 34 28.7 34.5 5,990
 2 42.2 32.0 96 35 27.0 26.0 273
 3 42.5 34.0 1,114 36 27.0 28.5 231
 4 42.2 37.0 4,069 37 27.0 29.7 421
 5 39.5 30.2 266 38 26.8 31.0 223
 6 39.7 32.5 2,599 39 26.5 32.3 28,680
 7 40.0 35.1 2,597 40 24.8 27.3 1,084
 8 37.5 28.5 1,306 41 24.5 29.5 401
 9 37.5 31.0 86 42 24.5 32.0 5,702
10 37.5 33.2 4,832 43 24.5 34.0 2,032
11 37.5 36.0 2,890 44 23.0 26.0 192
12 35.5 27.3 794 45 22.8 27.8 321
13 35.5 29.5 133 46 22.0 30.6 687
14 35.5 31.0 1,516 47 21.8 31.5 8,767
15 35.3 32.0 6,755 48 21.8 32.9 4,136
16 35.5 33.0 3,621 49 20.5 26.5 82
17 35.7 34.0 1,870 50 20.3 27.8 305
18 33.0 27.8 607 51 20.0 29.0 2,278
19 33.0 29.0 454 52 19.7 31.3 633
20 33.2 30.8 305 53 19.2 33.8 5,218
21 33.0 31.8 303 54 17.8 27.5 4,160
22 32.8 33.0 5,256 55 17.8 28.7 2,204
23 32.8 35.2 3,153 56 17.4 30.0 143
24 31.0 29.0 488 57 17.0 32.5 5,314
25 31.0 30.2 537 58 17.0 34.0 2,068
26 31.0 31.3 402 59 15.3 28.5 17,688
27 31.0 32.7 2,384 60 14.8 31.0 967
28 31.2 33.8 4,486 61 14.5 35.6 3,108
29 29.0 27.5 359 62 12.0 28.8 13,676
30 29.0 30.0 473 63 14.2 29.0 37,883
31 28.8 31.2 1,980 64 12.6 29.6 14,339
32 28.7 32.5 315 65 11.5 29.2 16,143
33 28.7 33.4 3,164 66 13.5 28.4 13,882

Note: X = minutes west of 3° West and Y = minutes north of 53° North.
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where γ(h) is the expected value of D4 and h corresponds to the distance 
D1. This is equation (9.8) from Section 9.8. There are three unknown 
parameters: c, the nugget effect; a, the range of influence; and S, the sill. 
Based on the plots made for Exercise 9.1, it should be possible to guess 
reasonable values for these three parameters. Use the spreadsheet func-
tion minimizer (Solver in Excel) to find least-squares estimates of the 
parameters, starting with the initial guesses. Note that, apart from col-
umns for D1 and D4 in the spreadsheet, it is necessary to make up two 
further columns, one for the fitted values of γ(h) corresponding to the D1 
values, and another for the squared differences between the D4 values 
and the fitted values. Also, it is necessary to calculate the least-squares 
fit criterion, which will be the sum of squared differences for all data 
points. It is the least-squares fit criterion that needs to be minimized in 
the spreadsheet.
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10
Censored Data

10.1  Introduction

Censored values occur in environmental data most commonly when the 
level of a chemical in a sample of material is less than the limit of quantita-
tion (LOQ) or the limit of detection (LOD), where the meaning of LOQ and 
LOD depends on the methods being used to measure the chemical (Keith 
1991, chap. 10). Censored values are generally reported as being less than 
detectable (LTD), with the detection limit (DL) being specified.

Statisticians question why censoring is done just because a measurement 
falls below the reporting limit, arguing that an uncertain measurement is 
better than none at all (Lambert et al. 1991). Despite these arguments, it seems 
that censored values are inevitable in the foreseeable future in environmen-
tal data sets.

10.2  Single Sample Estimation

Suppose that there is a single random sample of observations, some of which 
are below the detection limit, DL. An obvious question then is how to esti-
mate the mean and standard deviation of the population from which the 
sample was drawn. Some of the approaches that can be used are:

 1. With the simple substitution method, the censored values are 
replaced by an assumed value. This might be zero, DL, DL/2, or a 
random value from a distribution over the range from zero to DL. 
After the censored values are replaced, the sample is treated as if it 
were complete to begin with. Obviously, replacing censored values 
by zero leads to a negative bias in estimating the mean, while replac-
ing them with DL leads to a positive bias. Using random values from 
the uniform distribution over the range (0, DL) should give about the 
same estimated mean as is obtained from using DL/2, but it gives a 
better estimate of the population variance (Gilliom and Helsel 1986).
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 2. Direct maximum-likelihood methods are based on the original 
work of Cohen (1959). With these, some distribution is assumed for 
the data, and the likelihood function (which depends on both the 
observed and censored values) is maximized to estimate popula-
tion parameters. Usually, a normal distribution is assumed, with the 
original data transformed to obtain this if necessary. These methods 
are well covered in the text by Cohen (1991).

 3. Regression-on-order-statistics methods are alternatives to max-
imum-likelihood methods, and these are easier to carry out in a 
spreadsheet, for example. One such approach works as follows for 
data from a normal distribution (Newman et al. 1995). First, the 
n data values are ranked from smallest to largest, with those below 
the DL treated as the smallest. A normal probability plot is then con-
structed, with the ith largest data value (xi) plotted against the nor-
mal score zi, such that the probability of a value less than or equal to 
zi is (i − 3/8)/(n + 1/4). Only the noncensored values can be plotted, 
but for these the plot should be approximately a straight line if the 
assumption of normality is correct. A line is fitted to the plot by ordi-
nary linear regression methods. If this fitted line is xi = a + bzi, then 
the mean and standard deviation of the uncensored normal distri-
bution are estimated by a and b, respectively. It may be necessary to 
transform the data to normality before this method is used, in which 
case the estimates a and b will need to be converted to the mean and 
standard deviation for untransformed data.

 4. With “fill in” methods, the complete data are used to estimate the 
mean and variance of the sampled distribution, which is assumed to 
be normal. The censored values are then set equal to their expected 
values based on the estimated mean and variance, and the resulting 
set of data is treated as if it were a full set to begin with. The process 
can be iterated if necessary (Gleit 1985).

 5. The robust parametric method is also a type of fill-in method. A 
probability plot is constructed, assuming either a normal or lognor-
mal distribution for the data. If the assumed distribution is correct, 
then the uncensored observations should plot approximately on a 
straight line. This line is fitted by a linear regression and extrapolated 
back to the censored observations, to give values for them. The cen-
sored values are then replaced by the values from the fitted regres-
sion line. If the detection limit varies, this method can allow for it 
(Helsel and Cohn 1988).

A Windows computer program called UNCENSOR is available on the 
Internet (www.vims.edu/env/research/software/vims_software.html) for 
carrying out eight different methods for estimating the censored data val-
ues in a sample, including versions of approaches 1 to 5 above. This is an 
updated version of an earlier program described by Newman et al. (1995). A 
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program like this may be extremely useful, as standard statistical packages 
seldom have these types of calculations as a menu option.

It would be convenient if one method for handling censored data was 
always best. Unfortunately, this is not the case. A number of studies have 
compared different methods, and it appears that, in general, for estimat-
ing the population mean and variance from a single random sample, the 
robust parametric method is best when the underlying distribution of the 
data is uncertain, but if the distribution is known, then maximum-likelihood 
method performs well, with an adjustment for bias with a sample size less 
than or equal to about 20 (Akritas et al. 1994). In the manual for UNCENSOR, 
Newman et al. (1995) provide a flow chart for choosing a method that says 
more or less the same thing. On the other hand, in a manual on practical 
methods of data analysis, the U.S. Environmental Protection Agency (US EPA 
2000a) suggests that (a) with less than 15% of values censored, replace these 
with DL, DL/2, or a small value; (b) with between 15 and 50% of censored 
values, use a trimmed mean, Cohen’s adjustment, or a Windsorized mean 
and standard deviation; and (c) with more than 50% of values censored, just 
base an analysis on the proportion of data values above a certain level.

See Akritas et al. (1994) for more information about methods for estimating 
means and standard deviations with multiple detection limits, and Helsel 
(2004) for a detailed discussion of the analysis of censored data in general.

Example 10.1: A Censored Sample of 1,2,3,4-Tetrachlorobenzene
Consider the data shown in Table 10.1 for a sample size of 75 values of 
1,2,3,4-tetrachlorobenzene (TcCB) in parts per million from a possibly 
contaminated site. This sample has been used before in Example 1.7, and 
the original source was Gilbert and Simpson (1992, p. 6.22). For the pres-
ent example, it is modified by censoring any values less than 0.25, which 
are shown in Table 10.1 as <0.25. In fact, this means that these values 
could be anywhere from 0.00 to 0.24 to two decimal places, so the detec-
tion limit is considered to be DL = 0.24.

For the uncensored data, the sample mean and standard deviation are 
4.02 and 20.27. It is interesting to see how well these values can be recov-
ered from the censored data with some of the methods in general use.

Table 10.1

Measurements of TcCB (parts per thousand million) from a Possibly  
Contaminated Site

1.33 <0.25 <0.25 0.28 <0.25 <0.25 <0.25 0.47 <0.25 <0.25 <0.25 <0.25
18.40 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 168.6 <0.25 0.25 0.25 <0.25
0.48 0.26 5.56 <0.25 0.29 0.31 0.33 3.29 0.33 0.34 0.37 0.25
2.59 0.39 0.40 0.28 0.43 6.61 0.48 <0.25 0.49 0.51 0.51 0.38
0.92 0.60 0.61 0.43 0.75 0.82 0.85 <0.25 0.94 1.05 1.10 0.54
1.53 1.19 1.22 0.62 1.39 1.39 1.52 0.33 1.73 2.35 2.46 1.10

51.97 2.61 3.06

Note: Values <0.25 are censored.
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First, consider the simple substitution methods. Replacing all of the 
censored values by zero, DL/2 = 0.12, DL = 0.24, and a uniform random 
value in the interval from 0.00 to 0.24 gave the following results for the 
sample mean and standard deviation (SD): replacement 0.00, mean = 3.97, 
SD = 20.28; replacement 0.12, mean = 4.00, SD = 20.28; replacement 0.24, 
mean = 4.03, SD = 20.27; and replacement uniform, mean = 4.00, SD = 
20.28. Clearly in this example these simple substitution methods all work 
very well.

Newman et al.’s (1995) computer program UNCENSOR was used to 
calculate maximum-likelihood estimates of the population mean and 
standard deviation using Cohen’s (1959) method. The distribution was 
assumed to be lognormal because of the skewness indicated by three 
very large values. This gives the estimated mean and standard deviation 
to be 1.74 and 8.35, respectively. Using Schneider’s (1986, sec. 4.5) method 
for bias correction, the estimated mean and standard deviation change 
to 1.79 and 9.27, respectively. These maximum-likelihood estimates are 
rather poor, in the sense that they differ very much from the estimates 
from the uncensored sample.

The regression-on-order-statistics method can also be applied assum-
ing a lognormal distribution, and it becomes apparent using this method 
that the assumption of a lognormal distribution is questionable. The cal-
culations are shown in Table 10.2, and Figure 10.1 shows a normal prob-
ability plot for the logarithms of the uncensored values, i.e., the loge(X) 
values against the normal scores Z. The data should plot approximately 

Table 10.2

Calculations for the Regression on Order Statistics

Order 
(i) Pi

a Zi Xi Loge(Xi) Fittedb

Order 
(i) Pi

a Zi Xi Loge(Xi) Fittedb

 1 0.01 –2.40 <0.25 –5.01 39 0.51 0.03 0.47 –0.76 –0.77
 2 0.02 –2.02 <0.25 –4.36 40 0.53 0.07 0.48 –0.73 –0.71
 3 0.03 –1.81 <0.25 –3.99 41 0.54 0.10 0.48 –0.73 –0.65
 4 0.05 –1.66 <0.25 –3.73 42 0.55 0.13 0.49 –0.71 –0.59
 5 0.06 –1.54 <0.25 –3.52 43 0.57 0.17 0.51 –0.67 –0.53
 6 0.07 –1.44 <0.25 –3.34 44 0.58 0.20 0.51 –0.67 –0.48
 7 0.09 –1.35 <0.25 –3.19 45 0.59 0.24 0.54 –0.62 –0.42
 8 0.10 –1.27 <0.25 –3.05 46 0.61 0.27 0.60 –0.51 –0.36
 9 0.11 –1.20 <0.25 –2.93 47 0.62 0.30 0.61 –0.49 –0.30
10 0.13 –1.14 <0.25 –2.81 48 0.63 0.34 0.62 –0.48 –0.23
11 0.14 –1.07 <0.25 –2.70 49 0.65 0.38 0.75 –0.29 –0.17
12 0.15 –1.02 <0.25 –2.60 50 0.66 0.41 0.82 –0.20 –0.11
13 0.17 –0.96 <0.25 –2.51 51 0.67 0.45 0.85 –0.16 –0.05
14 0.18 –0.91 <0.25 –2.42 52 0.69 0.48 0.92 –0.08 0.02
15 0.19 –0.86 <0.25 –2.33 53 0.70 0.52 0.94 –0.06 0.09
16 0.21 –0.81 <0.25 –2.25 54 0.71 0.56 1.05 0.05 0.15
17 0.22 –0.77 <0.25 –2.17 55 0.73 0.60 1.10 0.10 0.22
18 0.23 –0.73 <0.25 –2.09 56 0.74 0.64 1.10 0.10 0.29
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Table 10.2 (continued)

Calculations for the Regression on Order Statistics

Order 
(i) Pi

a Zi Xi Loge(Xi) Fittedb

Order 
(i) Pi

a Zi Xi Loge(Xi) Fittedb

19 0.25 –0.68 <0.25 –2.02 57 0.75 0.68 1.19 0.17 0.36
20 0.26 –0.64 <0.25 –1.95 58 0.77 0.73 1.22 0.20 0.44
21 0.27 –0.60 0.25 –1.39 –1.88 59 0.78 0.77 1.33 0.29 0.52
22 0.29 –0.56 0.25 –1.39 –1.81 60 0.79 0.81 1.39 0.33 0.60
23 0.30 –0.52 0.25 –1.39 –1.74 61 0.81 0.86 1.39 0.33 0.68
24 0.31 –0.48 0.26 –1.35 –1.67 62 0.82 0.91 1.52 0.42 0.76
25 0.33 –0.45 0.28 –1.27 –1.61 63 0.83 0.96 1.53 0.43 0.86
26 0.34 –0.41 0.28 –1.27 –1.54 64 0.85 1.02 1.73 0.55 0.95
27 0.35 –0.38 0.29 –1.24 –1.48 65 0.86 1.07 2.35 0.85 1.05
28 0.37 –0.34 0.31 –1.17 –1.42 66 0.87 1.14 2.46 0.90 1.16
29 0.38 –0.30 0.33 –1.11 –1.36 67 0.89 1.20 2.59 0.95 1.27
30 0.39 –0.27 0.33 –1.11 –1.30 68 0.90 1.27 2.61 0.96 1.40
31 0.41 –0.24 0.33 –1.11 –1.24 69 0.91 1.35 3.06 1.12 1.54
32 0.42 –0.20 0.34 –1.08 –1.18 70 0.93 1.44 3.29 1.19 1.69
33 0.43 –0.17 0.37 –0.99 –1.12 71 0.94 1.54 5.56 1.72 1.87
34 0.45 –0.13 0.38 –0.97 –1.06 72 0.95 1.66 6.61 1.89 2.08
35 0.46 –0.10 0.39 –0.94 –1.00 73 0.97 1.81 18.40 2.91 2.34
36 0.47 –0.07 0.40 –0.92 –0.94 74 0.98 2.02 51.97 3.95 2.70
37 0.49 –0.03 0.43 –0.84 –0.89 75 0.99 2.40 168.6 5.13 3.36
38 0.50 0.00 0.43 –0.84 –0.83

Note: The censored TcCB data are arranged in order from the smallest values (the censored 
ones) to the largest values.

a Pi = (i − 3/8)/(n + 1/4) is the probability used to calculate the Z scores, i.e., the probability 
of a value ≤Zi = Pi for the ith-order statistic.

b The fitted values come from the fitted regression line shown in Figure 10.1. They are only 
used for the robust parametric method.
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Figure 10.1
Normal probability plot for the logarithms of the uncensored TcCB concentrations, with a 
straight line fitted by ordinary regression methods.



242 Statistics for Environmental Science and Management, Second Edition

on a straight line if the logarithms of the TcCB concentrations are nor-
mally distributed. In fact, the plot appears to be curved, with the largest 
and smallest values being above the fitted straight line, showing that 
they are larger than expected for a normal distribution.

Ignoring the possible problem with the assumed type of distribu-
tion, the equation of the fitted line shown in Figure 10.1 is loge(X) = 
−0.83 + 1.75Z. The estimated mean and standard deviation for the log-
transformed data are therefore −0.83 and 1.75, respectively. To produce 
estimates of the corresponding mean and variance for the original dis-
tribution of TcCB concentrations is now not all that straightforward. As 
a quick approximation, equations (3.15) and (3.16) can be used. Thus the 
estimated mean is

 E(X) = exp(μ + ½σ2) ≈ exp(−0.83 + 0.5 × 1.752) = 2.01

and the estimated variance is

 Var(X) = exp(2μ + σ2)[exp(σ2) − 1]

 = exp[2x(−0.83) + 1.752][exp(1.752) − 1] = 81.58

so that the estimated standard deviation of TcCB concentrations is 
√81.58 = 9.03.

A better approach is to use the bias-corrected method that is incor-
porated into UNCENSOR, which is based on a series expansion due to 
Finney (1941), and takes into account the sample size. For the example 
data, this gives the estimated mean and standard deviation of TcCB con-
centrations to be 1.92 and 15.66, respectively. Compared with the mean 
and standard deviation for the uncensored sample of 4.02 and 20.27, 
respectively, the regression-on-order-statistics estimates without a bias 
correction are very poor, and not much better with a bias correction. 
Presumably this is because of the lack of fit of the lognormal distribution 
to the noncensored data (Figure 10.1).

Gleit’s (1985) iterative fill-in method is another option in UNCENSOR. 
This gives the estimated mean and variance of TcCB concentrations to be 
1.92 and 15.66, respectively. These are the same as the estimates obtained 
from the bias-corrected regression-on-order-statistics method, and so 
they are, again, rather poor.

Finally, consider the robust parametric method. This starts off the 
same way as the regression-on-order-statistics method, with a prob-
ability plot of the data after a logarithmic transformation, with a fitted 
regression line (Figure 10.1). However, instead of using the regression 
line to estimate the mean and variance of the fitted distribution, this 
line is now extrapolated to obtain expected values for the censored data 
values, as shown in Figure 10.2. For example, the expected value for the 
smallest value in the sample is −5.0, corresponding to a normal score of 
−2.4, the second smallest value is −4.4, corresponding to a normal score 
of −2.0, and so on. The column headed “Fitted” in Table 10.2 gives these 
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expected values for the order statistics. The robust parametric method 
simply consists of replacing the smallest 20 censored values for loge(X) 
with these expected values.

Having obtained values to fill in for the censored values of loge(X), 
these are untransformed to obtain values for X itself. The sample mean 
and variance can then be calculated in the normal way. The completed 
sample is shown in Table 10.3. The mean and variance are 3.99 and 20.28, 
respectively, which are almost exactly the same as the values for the real 
data without censoring.

Too much should not be concluded from just one example. However, 
the simple substitution methods and the robust parametric method have 
definitely worked better than the alternatives here for two reasons. First, 
the lognormal assumption is questionable for the methods that require 
this, other than the robust method. Second, the censored values are all 
very low, and as long as they are replaced by any value below the detec-
tion limit, the sample mean and standard deviation will be close to the 
values from the uncensored sample.
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Figure 10.2
The regression line from Figure 10.1 extrapolated to estimate the censored values of the loga-
rithm of TcCB values (● denotes an observed value of loge(X), and  denotes an expected value 
from the regression line).

Table 10.3

Completed Sample for the Robust Parametric Method

 1.33 0.04 0.09 0.28 0.08 0.11 0.07 0.47 0.14 0.12 0.07 0.04
18.40 0.02 0.02 0.01 0.01 0.03 0.05 168.64 0.11 0.25 0.25 0.06
 0.48 0.26 5.56 0.05 0.29 0.31 0.33 3.29 0.33 0.34 0.37 0.25
 2.59 0.39 0.40 0.28 0.43 6.61 0.48 0.10 0.49 0.51 0.51 0.38
 0.92 0.60 0.61 0.43 0.75 0.82 0.85 0.13 0.94 1.05 1.10 0.54
 1.53 1.19 1.22 0.62 1.39 1.39 1.52 0.33 1.73 2.35 2.46 1.10
51.97 2.61 3.06

Note: The filled-in values are underlined.
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10.3  Estimation of Quantiles

It may be better to describe highly skewed distributions with quantiles 
rather than using means and standard deviations. These quantiles are a 
set of values that divide the distribution into ranges covering equal per-
centages of the distribution. For example, the 0%, 25%, 50%, 75%, and 100% 
quantiles are the minimum value, the value that just equals or exceeds 25% of 
the distribution, the value that just equals or exceeds 50% of the distribution 
(i.e., the median), the value that just equals or exceeds 75% of the distribu-
tion, and the maximum value, respectively.

Sample quantiles can be used to estimate distribution quantiles that are 
above the detection limit, although Akritas et al. (1994) note that simula-
tion studies indicate that this can lead to bias when the quantiles are close 
to this limit. It is therefore better to use a parametric maximum-likelihood 
approach when the distribution is known. When the distribution is uncer-
tain, the robust parametric method can be used to fill in the censored data in 
the sample before evaluating the sample quantiles as estimates of those for 
the underlying distribution of the data.

Distribution quantiles can be estimated with multiple detection limits. See 
Akritas et al. (1994, sec. 2.6) for more details.

10.4  Comparing the Means of Two or More Samples

The comparison of the means of two or more samples is complicated with 
censored data, particularly if there is more than one detection limit. The sim-
plest approach involves just replacing censored data by zero, DL, or DL/2, 
and then using standard methods either to test for a significant mean dif-
ference or to produce a confidence interval for the mean difference between 
the two sampled populations. In fact, this approach seems to work quite well 
and, based on a simulation study of 10 alternative ways for handling cen-
soring, suggests that a good general strategy involves substituting DL for 
censored values when up to 40% of observations are censored, and substitut-
ing DL/2 when more than 40% of observations are censored (Clarke 1994). 
However, this strategy is not always the best, and the U.S. Environmental 
Protection Agency and U.S. Army Corps of Engineers (USEPA and US ACE 
1998, Table D-12) give some more complicated rules that depend on the type 
of data, whether samples have equal variances, the coefficient of variation, 
and the type of data distribution.

When it can be assumed that the data come from a particular distribution, 
comparisons between groups can be based on the method of maximum like-
lihood, as described by Dixon (1998). One of the advantages of maximum-
likelihood estimation is the approximate variances and covariances of the 
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estimators that are available. Using these, it is possible to carry out a large 
sample test for whether the estimated population means are significantly 
different, or to find an approximate confidence interval for this difference.

For small samples, Dixon (1998) suggests the use of bootstrap methods 
for hypothesis testing and producing confidence intervals, as discussed fur-
ther in the following example. This has obvious generalizations for use with 
other data distributions, and with more than two samples. Dixon also dis-
cusses the use of nonparametric methods for comparing samples, and the 
use of equivalence tests with data containing censored values.

Example 10.2: Upstream and Downstream Samples
The data from one of the examples considered by Dixon (1998) are shown 
in Table 10.4. The variable being considered is the dissolved orthophos-
phate concentration (DOP, mg/l) measured for water from the Savan-
nah River in South Carolina. One sample is of 41 observations taken 
upstream of a potential contamination source, and the second sample 
is of 42 observations taken downstream. A higher general level of DOP 
downstream is clearly an indication that contamination has occurred. 
There are three DL values in this example, <1, <5, and <10, which 
occurred because the DL depends on dilution factors and other aspects 
of the chemical analysis that changed during the study.

The number of censored observations is high, consisting of 26 in each 
of the samples, and 63% of the values overall. Given the high detection 
limit of 10 for some of the data, simple substitution methods seem defi-
nitely questionable here, and an analysis assuming a parametric distri-
bution seems like the only reasonable approach.

Dixon (1998) assumed that the data values X are lognormally distrib-
uted, with loge(X) having the same variance upstream and downstream 
of the potential source of contamination. On this basis, he obtained the 
following maximum-likelihood estimates: mean DOP upstream, 0.73 
with standard error 0.19; mean DOP downstream, 1.02 with standard 
error 0.17; mean difference between downstream and upstream, 0.24 

Table 10.4

Dissolved Orthophosphate Concentrations in Samples Upstream and Downstream 
of a Possible Source of Contamination, with Three Different Detection Limits

Sample 1: Upstream of Possible Contamination Source
1 2 4 3 3 <10 2 <10 <5 <10 <5 3

<5 <5 <10 <5 <10 <1 <10 7 <5 <1 <5 2
<10 5 5 <5 <10 <1 <5 <10 <5 14 5 2
<10 <10 7 <1 <10

Sample 2: Downstream of Possible Contamination Source
4 <5 <1 4 3 9 <10 4 <5 <10 <10 8

<10 3 <5 <5 <10 5 <5 <10 6 <5 1 4
<10 <5 <5 <10 5 4 2 <5 <10 <5 <10 <5
<1 <10 4 <5 20 <10
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with standard error 0.23. This clearly indicates that the two samples 
could very well come from the same lognormal distribution.

Dixon also applied parametric bootstrap methods for testing for a 
significant mean difference between the upstream and downstream 
samples, and for finding confidence intervals for the mean difference 
between downstream and upstream. The adjective parametric is used 
here because samples are taken from a specific parametric distribution 
(the lognormal) rather than just resampling the data with replacement 
as explained in Section 4.7. These bootstrap methods are more compli-
cated than the usual maximum-likelihood approach, but they do have 
the advantage of being expected to have better properties with small 
sample sizes.

The general approach proposed for hypothesis testing with two sam-
ples of size n1 and n2 is:

 1. Estimate the overall mean and standard deviation assuming no 
difference between the two samples. This is the null hypothesis 
distribution.

 2. Draw two random samples with sizes n1 and n2 from a lognormal 
distribution with the estimated mean and standard deviation, cen-
soring these using the same detection limits as applied with the real 
data.

 3. Use maximum likelihood to estimate the population means μ1 and 
μ2 by μ̂1 and μ̂2, and to approximate the standard error SE(μ̂2 − μ̂1) of 
the difference.

 4. Calculate the test statistic

 T = (μ̂2 − μ̂1)/SE(μ̂2 − μ̂1)

  where SE(μ̂2 − μ̂1) is the estimated standard error.
 5. Repeat steps 2 to 4 many times to generate the distribution of T 

when the null hypothesis is true, and declare the observed value of 
T for the real data to be significantly large at the 5% level if it exceeds 
95% of the computer-generated values.

Other levels of significance can be used in the obvious way. For exam-
ple, significance at the 1% level requires the value of T for the real data to 
exceed 99% of the computer-generated values. For a two-sided test, the 
test statistic T just needs to be changed to

 T = •μ̂2 − μ̂1•/SE(μ̂2 − μ̂1)

so that large values of T occur with either large positive or large negative 
differences between the sample means.

For the DOP data, the observed value of T is 0.24/0.23 = 1.04. As could 
have been predicted, this is not at all significantly large with the boot-
strap test, for which it was found that 95% of the computer-generated T 
values were less than 1.74.

The bootstrap procedure for finding confidence intervals for the 
mean difference uses a slightly different algorithm. See Dixon’s (1998) 
paper for more details. The 95% confidence interval for the DOP mean 
difference was found to be from −0.24 to +0.71.
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10.5  Regression with Censored Data

There are times when it is desirable to fit a regression equation to data with 
censoring. For example, in a simple case, it might be assumed that the usual 
simple linear regression model

 Yi = α + βXi + εi

holds, but either some of the Y values are censored, or both X and Y values 
are censored.

There are a number of methods available for estimating the regres-
sion parameters in this type of situation, including maximum-likelihood 
approaches that assume particular distributions for the error term, and a 
range of nonparametric methods that avoid making such assumptions. For 
more information, see the reviews by Schneider (1986, chap. 5) and Akritas 
et al. (1994).

10.6  Chapter Summary

Censored values most commonly occur in environmental data when •	
the level of a chemical in a sample of material is less than what can 
be reliably measured by the analytical procedure. Censored values 
are generally reported as being less than the detection limit (DL).

Methods for handling censored data for the estimation of the mean •	
and standard deviation from a single sample include (a) the simple 
substitution of zero, DL, DL/2, or a random value between zero and 
DL for censored values to complete the sample; (b) maximum like-
lihood methods, assuming that data follow a specified parametric 
distribution; (c) regression-on-order-statistics methods, where the 
mean and standard deviation are estimated by fitting a linear regres-
sion line to a probability plot; (d) fill-in methods, where the mean 
and standard deviation are estimated from the uncensored data and 
then used to predict the censored values to complete the sample; and 
(e) robust parametric methods, which are similar to the regression-
on-order-statistics methods except that the fitted regression line is 
used to predict the censored values to complete the sample.

No single method for estimating the mean and standard deviation •	
of a single sample is always best. However, the robust parametric 
method is often best if the underlying distribution of data is uncer-
tain, and maximum-likelihood methods (with a bias correction for 
small samples) are likely to be better if the distribution is known.
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An example shows good performance of the simple substitution •	
methods and a robust parametric method, but poor performance 
of other methods, when a distribution is assumed to be lognormal 
when this is apparently not true.
It may be better to describe highly skewed distributions by sample •	
quantiles (values that exceed defined percentages of the distribu-
tion) rather than means and standard deviations. Estimation of the 
quantiles from censored data is briefly discussed.
For comparing the means of two or more samples subject to cen-•	
soring, it may be reasonable to use simple substitution to complete 
samples. Alternatively, maximum likelihood can be used, possibly 
assuming a lognormal distribution for data.
An example involving the comparison of two samples upstream and •	
downstream of a potential source of contamination is described. 
Maximum likelihood is used to estimate population parameters of 
assumed lognormal distributions, with bootstrap methods used to 
test for a significant mean difference and to produce a confidence 
interval for the true mean difference.
Regression analysis with censored data is briefly discussed.•	

Exercises

Exercise 10.1
In the absence of sure knowledge about the distribution that a censored 
sample is drawn from the robust parametric method described in Sec-
tion 10.2, there is a reasonable approach for estimating the mean and 
standard deviation of the population from which the sample was drawn. 
Assume that the sample of size 25 in Table 10.5 gives measurements of 
TcCB from randomly located locations in a study area, with values of <1 
censored. Use the robust parametric method to estimate what the sample 
mean and standard deviation would have been in the absence of censor-
ing. Construct a table like Table 10.2 to estimate the censored values.

Table 10.5

Measurements of TcCB (mg/kg) from Randomly 
Located Locations in a Study Area

 1.54 <1  1.19  1.66  5.81
1.98  2.01 2.09 4.26 4.75

<1 <1 <1 <1 1.88
1.61 1.30 <1 9.44 <1
1.80 1.40 <1 <1 3.30

Note: Values <1 are censored.
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11
Monte Carlo Risk Assessment

11.1  Introduction

Monte Carlo simulation for risk assessment has been made possible by the 
increased computer power that has become available to environmental sci-
entists in recent years. The essential idea is to take a situation where there 
is a risk associated with a certain variable, such as an increased incidence 
of cancer, when there are high levels of a chemical in the environment. The 
level of the chemical is then modeled as a function of other variables, some of 
which are random variables, and the distribution of the variable of interest is 
generated through a computer simulation. It is then possible, for example, to 
determine the probability of the variable of interest exceeding an unaccept-
able level. The description of Monte Carlo comes from the analogy between 
a computer simulation and repeated gambling in a casino.

The basic approach for Monte Carlo methods involves five steps:

 1. A model is set up to describe the situation of interest.
 2. Probability distributions are assumed for input variables, such as 

chemical concentrations in the environment, ingestion rates, expo-
sure frequency, etc.

 3. Output variables of interest are defined, such as the amounts of expo-
sure from different sources, the total exposure from all sources, etc.

 4. Random values from the input distributions are generated for the 
input variables, and the resulting output distributions are derived.

 5. The output distributions are summarized by statistics such as the 
mean, the value exceeded 5% of the time, etc.

There are three main reasons for using Monte Carlo methods. First, the 
alternative is often to assume the worst possible case for each of the input 
variables contributing to an output variable of interest. This can then lead 
to absurd results, such as the record of decision for a U.S. Superfund site 
at Oroville, California, which specifies a cleanup goal of 5.3 × 10−7 μg/L for 
dioxin in groundwater, which is about 100 times lower than the drinking-
water standard and 20 times lower than current limits of detection (US EPA 
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1989b). Thus there may be unreasonable estimates of risk and unreasonable 
demands for action associated with those risks, leading to the questioning of 
the whole process of risk assessment.

Second, properly conducted, a probabilistic assessment of risk gives more 
information than a deterministic assessment. For example, there may gener-
ally be quite low exposure to a toxic chemical, but occasionally individuals 
may get extreme levels. It is important to know this, and in any case, the 
world is stochastic rather than deterministic, so deterministic assessments 
are inherently unsatisfactory.

Third, given that a probability-based assessment is to be carried out, the 
Monte Carlo approach is usually the easiest way to do this.

On the other hand, Monte Carlo methods are only really needed when the 
worst-case deterministic scenario suggests that there may be a problem. This 
is because making a scientifically defensible Monte Carlo analysis, properly 
justifying assumptions, is liable to take a great deal of time.

For examples of a range of applications of Monte Carlo methods, a special 
400-page issue of the journal Human and Ecological Risk Assessment is useful 
(Association for the Environmental Health of Soils 2000).

11.2  Principles for Monte Carlo Risk Assessment

The U.S. Environmental Protection Agency has put some effort into the 
development of reasonable approaches for using Monte Carlo simulation. Its 
guiding principles and its policy statement should be considered by anyone 
planning a study of this type (US EPA 1997a, 1997b).

In the policy statement, the conditions for the acceptance of the results of 
Monte Carlo studies are explained. Briefly these are that:

 1. The purpose and scope should be clearly explained in a “problem 
formulation.”

 2. The methods used (models, data, assumptions) should be documented 
and easily located with sufficient detail for all results to be reproduced.

 3. Sensitivity analyses should be presented and discussed.
 4. Correlations between input variables should be discussed and 

accounted for.
 5. Tabular and graphical representation of input and output distribu-

tions should be provided.
 6. The means and upper tails of output distributions should be pre-

sented and discussed.
 7. Deterministic and probabilistic estimates should be presented 

and discussed.
 8. The results from output distributions should be related to reference 

doses, reference concentrations, etc.
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11.3  Risk Analysis Using a Spreadsheet

For many applications, the simplest way to carry out a Monte Carlo risk 
analysis is using a spreadsheet add-on. Three such add-ons are Resampling 
Stats for Excel (Blank 2008), @Risk (Palisade Corp. 2008), and Crystal Ball 
(Oracle 2008). All three of these products use an Excel spreadsheet as a basis 
for calculations, adding extra facilities for simulation. Typically, what is done 
is to set up the spreadsheet with one or more random input variables and 
one or more output variables that are functions of the input variables. Each 
recalculation of the spreadsheet yields new random values for the input vari-
ables, and consequently new random values for the output variables. What 
the add-ons do is to allow the recalculation of the spreadsheet hundreds 
or thousands of times, followed by the generation of tables and graphs that 
summarize the characteristics of the output distributions. The following 
example illustrates the general procedure.

Example 11.1: Contaminant Uptake Via Tap-Water Ingestion
This example concerns cancer risks associated with tap-water ingestion 
of maximum contaminant levels (MCL) of tetrachloroethylene in high-
risk living areas. It is a simplified version of a case study considered by 
Finley et al. (1993).

A crucial equation gives the dose of tetrachloroethylene received by 
an individual (mg/kg·day) as a function of other variables. This equa-
tion is

 Dose = (C × IR × EF × ED)/(BW × AT) (11.1)

where C is the chemical concentration in the tap water (mg/L), IR is the 
ingestion rate of water (L/day), EF is the exposure frequency (days/year), 
ED is the exposure duration (years), BW is the body weight (kg), and AT 
is the averaging time (days). Dose is therefore the average daily milli-
grams dose of tetrachloroethylene per kilogram of body weight. The aim 
in this example is to determine the distribution of this variable over the 
population of adults living in a high-risk area.

The variables on the right-hand side of equation (11.1) are the input 
variables for the study. These are assumed to have the following 
characteristics:

C: the chemical concentration is assumed to be constant at the MCL 
for the chemical of 0.005 mg/L.

IR: the ingestion rate of tap water is assumed to have a mean of 1.1 and 
a range of 0.5–5.5 L/day, based on survey data.

EF: the exposure frequency is set at the U.S. Environmental Protection 
Agency upper point estimate of 350 days per year.

ED: the exposure duration is set at 12.9 years based on the average resi-
dency tenure in a household in the United States.

BW: the body weight is assumed to have a uniform distribution between 
46.8 (5th percentile female in the United States) and 101.7 kg (95th 
percentile male in the United States).

AT: the averaging time is set at 25,550 days (70 years).
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Thus C, EF, ED, and AT are taken to be constants, while IR and BW 
are random variables. It is, of course, always possible to argue with the 
assumptions made with a model like this. Here it suffices to say that 
the constants appear to be reasonable values, while the distributions 
for the random variables were based on survey results. For IR, a log-
normal distribution was used with a mean of 1.10 and a standard devia-
tion of 0.85, with values less than 0.5 replaced by 0.5 and values greater 
than 5.5 replaced by 5.5 because this gives the correct mean and approxi-
mately the correct distribution.

There are two output variables:

Dose: the dose received (mg/kg-day) as defined before
ICR: the increased cancer risk (the increase in the probability of a person 

getting cancer), which is set at Dose × CPF(oral), where CPF(oral) is 
the cancer potency factor for the chemical taken orally.

For the purpose of the example, CPF(oral) was set at the U.S. Environ-
mental Protection Agency’s upper limit of 0.051.

A spreadsheet was set up containing dose and ICR as functions of the 
other variables using Resampling Stats for Excel. Each recalculation of 
the spreadsheet then produced new random values for IR and BW, and 
consequently for dose and ICR, to simulate the situation for a random 
individual from the population at risk. The number of simulated sets 
of data was set at 10,000. Figure 11.1 shows the distribution obtained for 
the ICR. (The dose distribution is the same, but with the horizontal axis 
divided by 0.051.)

The 50th and 95th percentiles for the ICR distribution are 0.054 × 10−5 
and 0.175 × 10−5, respectively. Finley et al. (1993) note that the worst-case 
scenario gives an ICR of 0.53 × 10−5, but a value this high was never seen 
with the 10,000 simulated random individuals from the population at 
risk. Hence, the worst-case scenario actually represents an extremely 
unlikely event. At least, this is the case based on the assumed model.
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Figure 11.1
Simulated distribution for the increased cancer risk as obtained using Resampling Stats for Excel.
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11.4  Chapter Summary

The Monte Carlo method uses a model to generate distributions for •	
output variables from assumed distributions for input variables.
These methods are useful because (a) worst-case deterministic sce-•	
narios may have a very low probability of ever occurring, (b) sto-
chastic models are usually more realistic, and (c) Monte Carlo is the 
easiest way to use stochastic models.
The guiding principles of the U.S. Environmental Protection Agency •	
for Monte Carlo analysis are summarized.
An example is provided to show how Monte Carlo simulation can be •	
done with an add-on for spreadsheets.

Exercises

Exercise 11.1
Download the trial version of Resampling Stats for Excel from the Web 
site www.resample.com. This is an add-in to Microsoft Excel. Install the 
program as explained on the Web site, noting that for it to work properly 
you must activate the Analysis Toolpack and the Analysis Toolpack VBA 
under the tools/add-ins menu in Excel. Check the results of Example 11.1 
using this add-on. To do this, set up a column in Excel containing the 
fixed values for the parameters C, EF, ED, and AT, with spaces for the 
random variables IR and BW. The random variable BW (body weight) is 
assumed to have a uniform distribution between 46.8 and 101.7 kg. This 
is obtained by using the Resampling Stats function RsxlUniform (46.8, 
101.7). Just put this function in the BW cell. The random variable IR (the 
ingestion rate) is assumed to have a lognormal distribution with a mean 
of 1.10 and a standard deviation of 0.85, with values constrained to be 
within the range from 0.5 to 5.5. To generate random values from the log-
normal distribution, use the Resampling Stats function RsxlLognormal 
(1.10, 0.85). When you have all of the values for the parameters C to AT 
set up, calculate the dose as

 Dose = (C × IR × EF × ED)/(BW × AT)

in another cell. Then calculate the increased cancer risk as

 ICR = Dose × 0.051

in another cell. Highlight ICR and click RS (repeat and score) in the Resa-
mpling Stats menu. Choose 10,000 iterations. The 10,000 ICR values will 
appear in another spreadsheet. If you plot the distribution, it should look 
like Figure 11.1.
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12
Final Remarks

There are a number of books available describing interesting applications of 
statistics in environmental science. The book series Statistics in the Environ-
ment is a good starting point because it contains papers arising from confer-
ences with different themes covering environmental monitoring, pollution, 
and contamination; climate change and meteorology; water resources and 
fisheries; forestry; radiation; and air quality (Barnett and Turkman 1993, 1994, 
1997; Barnett et al. 1999). Further examples of applications are also provided 
by Fletcher and Manly (1994), Fletcher et al. (1998), and Nychka et al. (1998).

For more details about statistical methods in general, the handbook edited 
by Patil and Rao (1994) or the Encyclopedia of Environmetrics (El-Shaarawi and 
Piegorsch 2001) are good general references.

There are several journals that specialize in publishing papers on applica-
tions of statistics in environmental science, with the most important being 
Environmetrics, Ecological, and Environmental Statistics, and The Journal of Agri-
cultural, Biological, and Environmental Statistics. In addition, journals on envi-
ronmental management frequently contain papers on statistical methods.

It is always risky to attempt to forecast the development of a subject area. 
No doubt, new statistical methods will continue to be proposed in all of the 
areas discussed in this book, but it does seem that the design and analysis 
of monitoring schemes, time series analysis, and spatial data analysis will 
receive particular attention as far as research is concerned. In particular, 
approaches for handling temporal and spatial variation at the same time are 
still in the early stages of development.

One important topic that has not been discussed in this book is the han-
dling of the massive multivariate data sets that can be produced by auto-
mated recording devices. Often the question is how to reduce the data set to 
a smaller (but still very large) set that can be analyzed by standard statistical 
methods. There are many future challenges for the statistics profession in 
learning how to handle the problems involved (Manly 2000).
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Appendix 1
Some Basic Statistical Methods

A1.1  Introduction

It is assumed that readers of this book already have some knowledge of ele-
mentary statistical methods. This appendix is therefore not intended to be 
a full introduction to these methods. Instead, it is intended to be a quick 
refresher course for those who may have forgotten some of this material. 
Nevertheless, this appendix covers the minimum background needed for 
reading the rest of the book, so that those who have not formally studied 
statistics before may find it a sufficient starting point.

A1.2  Distributions for Sample Data

Random variation is the raw material of statistics. When observations are 
taken on an environmental variable, they usually display variation to a greater 
or lesser extent. For example, Table A1.1 shows the values for 1,2,3,4-tetra-
chlorobenzene (TcCB) in parts per thousand million for 47 samples from an 
uncontaminated site used as a reference for comparison with a possibly con-
taminated site (Gilbert and Simpson 1992, pp. 6–22). These values vary from 
0.22 to 1.33, presumably due to natural variation in different parts of the site, 
plus some analytical error involved in measuring a sample. As a subject, the 
main concern of statistics is to quantify this type of variation.

Data distributions come in two basic varieties. When the values that can 
be observed are anything within some range, then the distribution is said to 
be continuous. Hence the data shown in Table A1.1 are continuous because, 
in principle, any value could have been observed over a range that extends 
down to 0.22 or less and up to 1.33 or more. On the other hand, if only certain 
particular values can be observed, then the distribution is said to be discrete. 
An example is the number of lesions observed on the lungs of rats at the end 
of an experiment where they were exposed to a certain toxic substance for a 
certain period of time. In that case, an individual rat can have a number of 
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lesions equal to 0 or 1 or 2, and so on. Often the possible values for a discrete 
variable are counts like this.

There are many standard distributions for continuous data. Here, only the 
normal distribution (also sometimes called the Gaussian distribution) is con-
sidered. This distribution is characterized as being bell-shaped, with most 
values being near the center of the distribution. There are two parameters 
to describe the distribution: the mean and the standard deviation, which are 
often denoted by μ and σ, respectively. There is also a function to describe 
the distribution in terms of these two parameters, which is referred to as a 
probability density function (pdf).

An example pdf is shown in Figure A1.1 for the distribution with μ = 5 
and σ = 1. A random value from this normal distribution is one for which 
the probability of obtaining a particular value x is proportional to the height 
of the function. Thus 5 is the value that is most likely to occur, and values 
outside the range 2 to 8 will occur rather rarely.

In general, it turns out that, for all normal distributions, about 67% of val-
ues will be in the range μ ± σ, about 95% will be in the range μ ± 2σ, and 
about 99.7% will be in the range μ ± 3σ.

The normal distribution with μ = 0 and σ = 1 is of special importance. This 
is called the standard normal distribution, and variables with this distribu-
tion are often called Z-scores. A table of probabilities for this particular dis-
tribution is presented in Table A2.1 in Appendix 2, because this is useful for 
various statistical analyses.

If a large sample of random values is selected independently from a nor-
mal distribution to give values x1, x2, …, xn, then the mean of these values

 x = (x1 + x2 + … + xn)/n (A1.1)

will be approximately equal to μ. Thus x is an estimate of μ. This is, in fact, 
true for all other distributions as well: The sample mean is said to be an “esti-
mator” of the distribution mean for a random sample from any distribution.

The square of the standard deviation of the distribution, σ2, is called the 
variance of the distribution. For large samples, this should be approximately 
equal to the sample variance, which is defined to be

 s2 = [(x1 − x)2 + (x2 − x)2 + … + (xn − x)2]/(n − 1) (A1.2)

Table a1.1

Measurements of TcCB for 47 Samples Taken from Different Locations  
at an Uncontaminated Site

0.60 0.50 0.39 0.84 0.46 0.39 0.62 0.67 0.69 0.81 0.38 0.79
0.43 0.57 0.74 0.27 0.51 0.35 0.28 0.45 0.42 1.14 0.23 0.72
0.63 0.50 0.29 0.82 0.54 1.13 0.56 1.33 0.56 1.11 0.57 0.89
0.28 1.20 0.76 0.26 0.34 0.52 0.42 0.22 0.33 1.14 0.48

Note: Measurements are in parts per thousand million (per billion).
Source: Gilbert and Simpson (1992, pp. 6–22).
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where the division by n − 1 (rather than n) is made to remove a tendency to 
underestimate the population variance that would otherwise occur.

The square root of the sample variance, s, is called the sample standard 
deviation, and this should be close to σ for large samples. Hence, s2 estimates 
σ2, and s estimates σ. More generally, s2 is an estimator of the distribution 
variance, and s is an estimator of the distribution standard deviation when 
calculated from a random sample from any distribution.

The sample mean and variance are often referred to using the more con-
cise notation
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where Σ is the summation operator, indicating that elements following this 
sign are to be added up over the range from i = 1 to n. Consequently, the 
last two equations are exactly equivalent to equations (A1.1) and (A1.2), 
respectively.

The name normal implies that the normal distribution is what will usually 
be found for continuous data. This is, however, not the case. It is a matter 
of fact that many naturally occurring distributions appear to be approxi-
mately normal, but certainly not all of them. Environmental variables often 
have a distribution that is skewed to the right rather than being bell-shaped. 
For example, a histogram for the TcCB values in Table A1.1 is shown in 
Figure A1.2. Here there is a suggestion that if many more data values were 
obtained from the site, then the distribution would not quite be symmetrical 
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Figure a1.1
The probability density function (pdf) for the normal distribution with a mean of 5 and a 
standard deviation of 1.
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about the mean, which is about 0.6. Instead, the right tail would extend fur-
ther from the mean than the left tail.

There are also many standard distributions for discrete data. Here, only 
the binomial distribution will be considered, which owes its importance to 
its connection with data in the form of proportions. This distribution arises 
when there is a certain constant probability that an observation will have a 
property of interest. For example, a series of samples might be taken from 
random locations at a certain study site, and there is interest in whether the 
level of a toxic chemical is higher than a specified value. If the probability of 
an exceedance is p for a randomly chosen location, then the probability of 
observing exactly x exceedances from a sample of n locations is given by the 
binomial distribution

 P(x) = nCxpx(1 − p)n−x (A1.3)

where the possible values of x are 0, 1, 2, …, n. In this equation, nCx = 
n!/[x!(n − x)!] is the number of combinations of n things taken r at a time, 
with a! = a(a − 1)(a − 2) … (1) being the factorial function.

The mean and variance of the binomial distribution are μ = np and σ2 = 
np(1 − p), respectively. If a large sample of values x1, x2, …, xn is taken from the 
distribution, then the sample mean x and the sample variance s2, calculated 
using equations (A1.1) and (A1.2), will be approximately equal to μ and σ2, 
respectively.

An example of a binomial distribution comes from the accidental bycatch 
of New Zealand sea lions Phocarctos hookeri during trawl fishing for squid 
around the Auckland Islands to the south of New Zealand. Experience shows 
that, for any individual trawl, the probability of catching a sea lion in the net 
is fairly constant at about 0.025, and there are about 3500 trawls in a sum-
mer fishing season (Manly and Walshe 1999). It is extremely rare for more 
than one animal to be captured at a time. Suppose that the trawls during 
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Histogram of the sample distribution for TcCB for the 47 samples shown in Table A1.1, with the 
height of the bars proportional to the percentage of data values within the ranges that they cover.
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a particular season are considered in groups of 100, and the number of sea 
lions caught is recorded for trawls 1–100, 101–200, and so on up to 3401–3500. 
Then there would be 35 observations, each of which is a random value from 
a binomial distribution with n = 100 and p = 0.025. Table A1.2 shows the type 
of data that can be expected to be obtained under these conditions, with a 
histogram illustrating the results in Figure A1.3.

The results shown in Table A1.2 come from a computer simulation of the 
sea lion bycatch. Such simulations are often valuable for obtaining an idea of 
the variation to be expected according to an assumed model for data.

One of the reasons for the importance of the normal distribution is the way 
that some other distributions become approximately normal, given the right 
circumstances. This applies for the binomial distribution, provided that the 
sample size n is large enough, and a good general rule is that a binomial 
distribution is similar to a normal distribution, provided that the condition 
np(1 − p) ≥ 5 applies. This result is particularly useful because of the fact 
that—if a sample count follows a binomial distribution with mean np and 
variance np(1 − p), then, provided that np(1 − p) ≥ 5—the sample proportion 
x/n can reasonably be treated as coming from a normal distribution with 
mean p and variance p(1 − p)/n. This is a key result for the analysis of data 
consisting of observed proportions.

Table a1.2

Simulated Bycatch of New Zealand Sea Lions in 35 Successive 
Sets of 100 Trawls

1 1 2 1 3 2 1 3 2 2 2 2
3 0 2 0 3 2 1 0 1 4 2 3
3 2 4 1 4 2 2 2 1 2 3

Note: Each observation is a random value from a binomial distribution, 
with n = 100 and p = 0.025.
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Figure a1.3
Histogram of the simulated bycatch data shown in Table A1.2, with the height of each bar 
reflecting the percentage of observations for the value concerned.



262 Statistics for Environmental Science and Management, Second Edition

For the bycatch data np(1 − p) = 100(0.025)(0.975) = 2.44, which is much less 
than 5. Therefore, the condition for a good normal approximation does not 
apply. Nevertheless, the distribution observed is quite symmetric and bell 
shaped.

A1.3  Distributions of Sample Statistics

There are some distributions that arise indirectly as a result of calculating 
values that summarize samples, like the sample mean and the sample vari-
ance. These values that summarize samples are called sample statistics. Hence, 
it is the distributions of these sample statistics that are of interest. The reason 
why it is necessary to know about these particular distributions is that they 
are needed for drawing conclusions from data, for example, using tests of 
significance and confidence limits.

The first distribution to consider for sample statistics is the t-distribu-
tion. This arises when a random sample of size n is taken from a normal 
distribution with mean μ. If the sample mean x and the sample variance s2 
are calculated using equations (A1.1) and (A1.2), then the quantity

 t = (x − μ)/(s/√n) (A1.4)

follows what is called a t-distribution with n − 1 degrees of freedom (df). For 
large values of n, this distribution approaches a standard normal distribu-
tion with mean 0 and standard deviation 1.

It is important to realize what, exactly, it means to say that the quantity 
(x − μ)/(s/√n) follows a t-distribution. The meaning is as follows: If the pro-
cess of taking a random sample of size n from the normal distribution were to 
be repeated a large number of times, then the resulting distribution obtained 
for the values of (x − μ)/(s/√n) would be the t-distribution. One sample of size 
n therefore yields a single random value from this distribution.

For small values of degrees of freedom (df), the t-distribution is more 
spread out than the normal distribution with mean 0 and standard deviation 
1. This is illustrated in Figure A1.4, which shows the shape of the distribution 
for several values of df. Table A2.2 in Appendix 2 gives what are called “criti-
cal values” for t-distributions, which will be useful throughout this book. 
The values in this table mark the levels corresponding to probabilities of 0.05, 
0.025, 0.01, or 0.005. Note that because the distribution is symmetric about 
zero, Prob(t < −c) = Prob(t > c), for any critical value c.

The second distribution to be considered is the chi-squared distribution. If 
a random sample of size n is taken from a normal distribution with variance 
σ2, and if the sample variance s2 is calculated using equation (A1.2), then the 
quantity

	 χ2 = (n − 1)s2/σ2 (A1.5)
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is a random value from the chi-squared distribution with n − 1 df. The shape 
of this distribution depends very much on the df, becoming more like a 
normal distribution as the df increases. Some example shapes are shown in 
Figure A1.5, and Table A2.3 in Appendix 2 gives critical values for the distri-
butions that are needed for various purposes.

The third and last distribution to be considered is the F-distribution. 
Suppose that (a) a random sample of size n1 is taken from a normal dis-
tribution with variance σ2, and the sample variance s1

2 is calculated using 
equation (A1.2), and then (b) a random sample of size n2 is independently 
taken from a second normal distribution with the same variance, and the 
sample variance s2

2 is calculated, again using equation (A1.2). In that case, 
the ratio of the sample variances,

 F = s1
2/s2

2 (A1.6)
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will be a random value from the F-distribution with df n1 − 1 and n2 − 1. 
Like the chi-squared distribution, the F-distribution may take a variety of 
different shapes, depending on the df. Some examples are shown in Figure 
A1.6, and Table A2.4 in Appendix 2 gives critical values for the distribution.

A1.4  Tests of Significance

One of the most used tools in statistics is the test of significance, which exam-
ines the question of whether a set of data could reasonably have arisen based 
on a certain assumption, which is called the null hypothesis. One framework 
for conducting such a test has the following steps:

 1. Decide on the null hypothesis to be tested (often a statement that a 
parameter of a distribution takes a specific value).

 2. Decide whether the alternative to the null hypothesis shows any dif-
ference in a particular direction.

 3. Choose a suitable test statistic that measures the extent to which the 
data agree with the null hypothesis.

 4. Determine the distribution of the test statistic if the null hypothesis 
is true.

 5. Calculate the test statistic, S, for the observed data.
 6. Calculate the probability p (sometimes called the p-value) of obtain-

ing a value as extreme as, or more extreme than, S if the null hypoth-
esis is true, using the distribution identified at step 4, and defining 
“extreme” taking into account the alternative to the null hypothesis 
identified at step 2.

 7. Conclude that there is evidence that the null hypothesis is not true if 
p is small enough; otherwise, conclude that there is no real evidence 
against the null hypothesis.
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Form of the F-distribution for various values of the two df: df1 and df2.
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At step 7, it is conventional to use the probability levels 0.05, 0.01, and 0.001. 
Thus if p ≤ 0.05, then the test is considered to provide some evidence against 
the null hypothesis; if p ≤ 0.01, then the test is considered to provide strong 
evidence against the null hypothesis; and if p ≤ 0.001, then the test is consid-
ered to provide very strong evidence against the null hypothesis. Another 
way to express this is to say that if p ≤ 0.05, then the result is significant at the 
5% level; if p ≤ 0.01, then the result is significant at the 1% level; and if p ≤ 0.01, 
then the result is significant at the 0.1% level. There is an element of arbitrari-
ness in the choice of the probability levels of 0.05, 0.01, and 0.001. They were 
originally used in the era before computers because of the need to specify a 
limited number of levels in constructing printed reference tables that could 
be used to test significance.

Some people prefer to specify in advance the level, α, of p that will be 
considered to be significant at step 7. For example, it might be decided that 
a result will be significant only if p ≤ 0.01. The test is then said to be at the 
1% level of significance, or sometimes the test is said to have a size of 0.01 or 
1%. In that case, the above framework changes slightly. There is an additional 
step before step 1:

 0. Choose the significance level α for the test.

The last step then changes to:

 7. If p ≤ α, then declare the test result to be significant, giving evidence 
against the null hypothesis.

Step 2 in the procedure is concerned with deciding whether the test is two-
sided or one-sided. This depends on whether there is interest in differences 
from the null hypothesis in (a) either direction (i.e., the true mean could be 
either higher or lower than the mean specified by the null hypothesis) or 
(b) only in one direction (i.e., the true mean exceeds the mean specified by 
the null hypothesis). This then makes a difference to the calculation of the 
p-value at step 6. In general, what is done is to calculate the probability of a 
result as extreme or more extreme than that observed in terms of the direc-
tion (or directions) of interest. Often test statistics are such that a value of 
zero indicates no difference from the null hypothesis. In that case, the p-value 
for a two-sided test will be the probability of being as far from zero as the 
observed value, while the p-value for a one-sided test will be the probability 
of being as far from zero in the direction that indicates an effect of interest. 
The example given at the end of this section should clarify what this means 
in practice.

An important distinction is between parametric and nonparametric tests. 
In practice, this often comes down to a question of whether the population 
being sampled has a normal distribution or not. The difference between 
parametric and nonparametric tests is that parametric tests require more 
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assumptions but use the data more efficiently. As to whether or not it is rea-
sonable to assume a normal distribution, this depends very much on the cir-
cumstances. Some types of data are almost always normal or nearly normal. 
For example, measurements of lengths of body parts for animals and plants 
fall in this category. In other cases, a simple data transformation, such as tak-
ing logarithms, will change a nonnormal distribution into a normal one.

The following is a brief summary of some of the most commonly used tests 
of significance. The book by Kanji (1999) covers just about any test that is likely 
to be used, with example calculations. However, in practice, the easiest way to 
do these things is by using one of the standard statistical computer packages.

a1.4.1  The One-Sample t-Test

The purpose of this test is to see whether the mean of a random sample of 
n values from a population is significantly different from some hypothetical 
value μ. The sample mean and standard deviation (x and s) are used to cal-
culate the statistic
 t = (x − μ)/(s/√n)

As noted in Section A1.3, if the population mean is really μ, then this fol-
lows the t-distribution with n − 1 df. Hence the significance of the sample 
result can be tested by seeing whether the observed statistic is a reasonable 
value from this distribution. This test requires the assumption that the pop-
ulation being sampled is normally distributed.

a1.4.2  The One-Sample Chi-Squared Test

This test is used to see whether a set of sample counts is in reasonable agree-
ment with the frequencies expected on the basis of some hypothesis. The test 
statistic is

	 χ2 2= −∑( )O E /E

where O is an observed frequency, E is an expected frequency, and the sum-
mation is over all such frequencies. If the differences between the observed 
and expected frequencies are merely due to sampling errors, then the test sta-
tistic will be approximately a random value from the chi-squared distribution 
with n − 1 df. A significantly large value for the test statistic in comparison 
with the chi-squared distribution is evidence that the basis for calculating 
the expected frequencies is not correct. It is important to remember that the 
chi-squared test is only valid with count data. It is, for example, quite wrong 
to use this test with percentages. Also, the use of the chi-squared distribution 
requires that the expected frequencies are not too small, with most being at 
least five. For more details about this test, see Kanji (1999, test 37).
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a1.4.3  The Contingency-Table Chi-Squared Test

A contingency table is obtained when N observations are classified on the 
basis of two different criteria, and a count is made of the number of observa-
tions Oij that fall into the ith class for the first criterion of classification (row i 
of the table) and the jth class for the second criterion of classification (column 
j of the table). This is done for all values of i and j. For example, a 2 × 3 con-
tingency table is produced if 100 streams are classified as being either in the 
north or the south of a region (the two row categories) and as having low, 
medium, or high pollution (the three column categories).

The contingency-table chi-squared test is designed to see whether there is 
any evidence that the two classifications are related, i.e., whether the proba-
bility of a sample unit being in class i for the first classification varies accord-
ing to which of the classes the unit is in for the second classification. On the 
null hypothesis that the classifications are unrelated, it can be shown that the 
expected count for the cell in row i and column j of the table is Eij = RiCj/N, 
where Ri is the total observed count in row i and Cj is the total observed 
count in column j. The test statistic is then

	 χ2 2= −∑∑ ( )O E Eij ij ij
ji

/

where the double summation means adding over all the rows and columns 
in the table. If the null hypothesis of independent classifications is true, then 
this statistic will be approximately a random value from the chi-squared dis-
tribution with (r − 1)(c − 1) df, where r is the number of rows and c is the num-
ber of columns in the table. A significantly large value for the test statistic in 
comparison with the chi-squared distribution is evidence against the null 
hypothesis. As for the one-sample chi-squared test, the expected frequencies 
should not be too small when this test is used. Preferably, they should all be 
five or more. For more details about this test, see Kanji (1999, test 44).

a1.4.4  The Paired t-Test

This is used when the data are naturally paired. The null hypothesis being 
tested is that the differences between paired values have a particular mean 
value μd, which is often zero. The test statistic is

 t = (d − μd)/(sd/√n)

where d is the mean, and sd is the standard deviation of the sample differ-
ences. This statistic is compared with the t-distribution with n − 1 df. The 
test requires the assumption that the paired differences are normally dis-
tributed. Essentially, it is just the one-sample t-test calculated on differences, 
with a null hypothesis mean of zero.
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a1.4.5  The Two-Sample t-Test

This is designed to test whether the difference between the means of two 
independent samples are significantly different. The test statistic is

 t = (x1 − x2)/[sp√(1/n1 + 1/n2)]

where sample 1, of size n1, has a of mean x1, and sample 2, of size n2, has a 
mean x2. Also,

 sp
2 = [(n1 − 1)s1

2 + (n2 − 1)s2
2]/(n1 + n2 − 2)

is an estimate of variance based on pooling the variances, s1
2 and s2

2, for the 
two samples. To assess the significance of the sample mean difference, the 
calculated t-value is compared with the critical values in the t-table with n1 + 
n2 − 2 df. This test assumes that the two distributions being sampled are 
normal with the same standard deviation. For more details, see Kanji (1999, 
test 8). Test 9 in the same book also contains a variation on this test for situa-
tions where the distributions do not have the same standard deviation.

a1.4.6  The Wilcoxon Signed-ranks Test

This is a nonparametric alternative to the paired t-test. It is based on ranking 
the differences between two measurements and using sums of positive and 
negative ranks as test statistics. This test does not require a normal distribu-
tion for the differences. For more details see Kanji (1999, test 48).

a1.4.7  The Mann-Whitney u-Test

This is a nonparametric alternative to the two-sample independent t-test, 
which tests whether the two samples come from distributions with the same 
mean on the assumption that the distributions have the same shape. To use 
this test, it is only necessary to be able to rank the data in order for the two 
samples combined, and no assumption of normality is required. For more 
details see Kanji (1999, test 52).

Example A1.1: Testing the Mean Level of TcCB at a Site
As an example of a test of significance, consider the data in Table A1.1 
on measurements of 1,2,3,4-tetrachlorobenzene (TcCB) from n = 47 dif-
ferent locations at a particular site. Suppose that a mean level of 0.5 is 
considered to be acceptable, and the question is whether the mean at this 
site is significantly higher than 0.5. A one-sample t-test is used to answer 
this question.

Following the framework of steps 1–6 defined in Section A1.4, the fol-
lowing results are obtained:
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 1. The null hypothesis to be tested is that μ = 0.5, where μ is the mean 
level of TcCB over the entire site.

 2. The alternative of interest to the null hypothesis that needs to be 
detected is that μ exceeds 0.5.

 3. The test statistic used is t = (x − 0.5)/(s/√n) from equation (A1.4) 
because the data appear to follow a distribution that is reasonably 
close to normal (Figure A1.2), and this statistic measures the differ-
ence between the sample mean and the hypothetical mean of 0.5.

 4. The distribution of the test statistic is a t-distribution with 46 df if 
the null hypothesis is true.

 5. For the observed data, the mean is x = 0.599 and the standard devia-
tion is s = 0.284. The test statistic is therefore

 t = (0.599 − 0.5)/(0.284/√47) = 2.39

 6. The presence of only positive values for the test statistic indicates 
that the mean of the site is higher than 0.5. Hence it is necessary 
to find the probability, p, of obtaining a mean as large as, or larger 
than, 2.39 for the t-distribution with 46 df. To this end, Table A2.2 in 
Appendix 2 can be consulted. This does not have a row for 46 df, but 
it does show that, with 40 df, the probability of a value as large as 
or larger than 2.39 is between 0.025 and 0.01, and that with 60 df the 
probability is 0.01. It follows that the probability of a value as large 
as or larger than 2.39, with 46 df, is about p = 0.02.

 7. As the p-value is less than 0.05, it is significant at the 5% level, giving 
some evidence against the null hypothesis. It appears that the mean 
for the site is higher than 0.5.

These days, probabilities for the t-distribution are provided in spread-
sheet programs. It is therefore easy enough to determine the p-value 
accurately for a test like this, although that is not really necessary. The 
exact probability of a value from the t-distribution with 46 df equaling or 
exceeding 2.39 is, in fact, p = 0.0105.

A1.5  Confidence Intervals

Confidence limits for a parameter of a distribution give a range within which 
the parameter is expected to lie. For example, a 90% confidence limit for a 
distribution mean defines a range, which is called a confidence interval, 
within which the mean is expected to lie 90% of the time, in the sense that if 
many such intervals are calculated, then about 90% of them will contain the 
true value of the parameter.

As an example of what this means, suppose that a random sample of size 
20 is taken from a normal distribution with an unknown mean μ. Then it is 
known that
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 t = (x − μ)/(s/√n)

will be a random value from the t-distribution with 19 df. For this distribu-
tion, Table A2.2 in Appendix 2 shows that

 Prob(t > 1.729) = 0.05

and, as the distribution is symmetrical about zero, it is also true that

 Prob(t < −1.729) = 0.05.

Hence, if it is asserted that

 −1.729 < (x − μ)/(s/√n) < 1.729 (A1.7)

then this statement will be true with probability 1 − 2(0.05) = 0.9. Rearrang-
ing the left-hand side of this equation shows that

 −1.729 < (x − μ)/(s/√n)

is equivalent to

	 μ < x + 1.729(s/√n).

Similarly, rearranging the right-hand side shows that it is equivalent to

 x − 1.729(s/√n) < μ.

Thus equation (A1.7) is exactly equivalent to

 x − 1.729(s/√n) < μ < x + 1.729(s/√n). (A1.8)

Since equation (A1.7) is true with probability 0.9, equation (A1.8) must be 
true with the same probability. In this sense, equation (A1.8) gives a 90% 
confidence interval for the true population mean.

This argument can easily be generalized for a random sample of size n 
from a normal distribution to give a 100(1 − α)% confidence interval for the 
mean of the distribution of the form

 x − tα/2,n−1(s/√n) < μ < x + tα/2,n−1(s/√n) (A1.9)

where tα/2,n−1 is the value that is exceeded with probability α/2 by a random 
value from the t-distribution with n − 1 df.

The confidence interval in equation (A1.9) is one of many that can be 
derived for a parameter of a distribution, using a similar type of argument. 
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A confidence interval is a range within which a parameter will lie with a 
certain defined probability.

Example A1.2: A Confidence Interval for the Mean TcCB at a Site
Considering again the data in Table A1.1, suppose that there is interest in 
determining a 95% confidence interval for the mean level of 1,2,3,4-tetra-
chlorobenzene at the site in question. The mean and standard deviation 
for the sample of size n = 47 are x = 0.599 and s = 0.284, respectively, and 
the critical value of the t-distribution with 46 df that is exceeded with 
probability α/2 = 0.025 is t0.025,46 = 2.01 from Table A2.2 in Appendix 2. 
Hence the 95% confidence interval given by equation (A1.9) is

 0.599 − 2.01(0.284/√47) < μ < 0.599 + 2.01(0.284/√47)

i.e.,

 0.516 < μ < 0.682

A1.6  Covariance and Correlation

Suppose that a random sample of size n from a large population of items is 
taken, and two variables X and Y are measured on each of the sampled items. 
Let the values of X and Y on the ith sampled item be xi and yi, respectively.

One sample statistic that is used to measure the relationship between X 
and Y is the covariance

 c x x y y nxy i i

i

n

= − − −
=

∑( )( ) ( )/ 1
1

 (A1.10)

where x and y are the sample means for X and Y, respectively. If large val-
ues of X tend to occur with large values of Y, then cxy will be positive. Con-
versely, if large values of X tend to occur with small values of Y, then cxy will 
be negative.

Covariances as defined by equation (A1.10) are used in many statistical 
procedures, but they have a disadvantage in that there is no simple way to 
judge whether a particular value for cxy indicates that X and Y are closely 
related. Therefore, for many purposes, the covariance is adjusted so that it 
becomes the covariance between X and Y after both variables have been 
scaled to have sample standard deviations of exactly 1. The resulting statistic 
is then referred to as the sample correlation, or sometimes as Pearson’s cor-
relation coefficient, which can be shown to be the same as

 rxy = cxy/(sx sy) (A1.11)
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where sx and sy are the sample standard deviations for X and Y, as defined 
by equation (A1.2).

Values of rxy range from −1 (a perfect negative linear relationship between 
X and Y), through 0 (no linear relationship), to +1 (a perfect positive linear 
relationship). Figure A1.7 shows plots of Y values against X values for sam-
ples of size n = 25 giving various levels for the correlation.
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Figure a1.7
Examples of samples of size n = 25 with different levels of correlation between variables X and Y.
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Appendix 2
Statistical Tables

Table a2.1

Standard Normal Distribution

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.000 0.004 0.008 0.012 0.016 0.020 0.024 0.028 0.032 0.036
0.1 0.040 0.044 0.048 0.052 0.056 0.060 0.064 0.068 0.071 0.075
0.2 0.079 0.083 0.087 0.091 0.095 0.099 0.103 0.106 0.110 0.114
0.3 0.118 0.122 0.126 0.129 0.133 0.137 0.141 0.144 0.148 0.152
0.4 0.155 0.159 0.163 0.166 0.170 0.174 0.177 0.181 0.184 0.188
0.5 0.192 0.195 0.199 0.202 0.205 0.209 0.212 0.216 0.219 0.222
0.6 0.226 0.229 0.232 0.236 0.239 0.242 0.245 0.249 0.252 0.255
0.7 0.258 0.261 0.264 0.267 0.270 0.273 0.276 0.279 0.282 0.285
0.8 0.288 0.291 0.294 0.297 0.300 0.302 0.305 0.308 0.311 0.313
0.9 0.316 0.319 0.321 0.324 0.326 0.329 0.332 0.334 0.337 0.339
1.0 0.341 0.344 0.346 0.349 0.351 0.353 0.355 0.358 0.360 0.362
1.1 0.364 0.367 0.369 0.371 0.373 0.375 0.377 0.379 0.381 0.383
1.2 0.385 0.387 0.389 0.391 0.393 0.394 0.396 0.398 0.400 0.402
1.3 0.403 0.405 0.407 0.408 0.410 0.412 0.413 0.415 0.416 0.418
1.4 0.419 0.421 0.422 0.424 0.425 0.427 0.428 0.429 0.431 0.432
1.5 0.433 0.435 0.436 0.437 0.438 0.439 0.441 0.442 0.443 0.444
1.6 0.445 0.446 0.447 0.448 0.450 0.451 0.452 0.453 0.454 0.455
1.7 0.455 0.456 0.457 0.458 0.459 0.460 0.461 0.462 0.463 0.463
1.8 0.464 0.465 0.466 0.466 0.467 0.468 0.469 0.469 0.470 0.471
1.9 0.471 0.472 0.473 0.473 0.474 0.474 0.475 0.476 0.476 0.477
2.0 0.477 0.478 0.478 0.479 0.479 0.480 0.480 0.481 0.481 0.482
2.1 0.482 0.483 0.483 0.483 0.484 0.484 0.485 0.485 0.485 0.486
2.2 0.486 0.486 0.487 0.487 0.488 0.488 0.488 0.488 0.489 0.489
2.3 0.489 0.490 0.490 0.490 0.490 0.491 0.491 0.491 0.491 0.492
2.4 0.492 0.492 0.492 0.493 0.493 0.493 0.493 0.493 0.493 0.494
2.5 0.494 0.494 0.494 0.494 0.495 0.495 0.495 0.495 0.495 0.495
2.6 0.495 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496
2.7 0.497 0.497 0.497 0.497 0.497 0.497 0.497 0.497 0.497 0.497
2.8 0.497 0.498 0.498 0.498 0.498 0.498 0.498 0.498 0.498 0.498
2.9 0.498 0.498 0.498 0.498 0.498 0.498 0.499 0.499 0.499 0.499
3.0 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499

Note: The entries in the table give the probability of a standard normal variable Z having 
a value between zero and z. The rows of the table are for the first decimal place of z, 
and the columns are for the second decimal place. For example, Prob(0 < Z < 1.56) = 
0.441, using the row for 1.5 and the column for 0.06.
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Table a2.2

Critical Values for the t-Distribution

df

Upper Tail Probability

0.050 0.025 0.010 0.005

  1 6.314 12.706 31.821 63.657
  2 2.920 4.303 6.965 9.925
  3 2.353 3.182 4.541 5.841
  4 2.132 2.776 3.747 4.604
  5 2.015 2.571 3.365 4.032
  6 1.943 2.447 3.143 3.708
  7 1.895 2.365 2.998 3.500
  8 1.860 2.306 2.897 3.355
  9 1.833 2.262 2.821 3.250
 10 1.812 2.228 2.764 3.169
 11 1.796 2.201 2.718 3.106
 12 1.782 2.179 2.681 3.055
 13 1.771 2.160 2.650 3.012
 14 1.761 2.145 2.625 2.977
 15 1.753 2.132 2.603 2.947
 16 1.746 2.120 2.584 2.921
 17 1.740 2.110 2.567 2.898
 18 1.734 2.101 2.552 2.878
 19 1.729 2.093 2.540 2.861
 20 1.725 2.086 2.528 2.845
 21 1.721 2.080 2.518 2.831
 22 1.717 2.074 2.508 2.819
 23 1.714 2.069 2.500 2.807
 24 1.711 2.064 2.492 2.797
 25 1.708 2.060 2.485 2.787
 26 1.706 2.056 2.479 2.779
 27 1.703 2.052 2.473 2.771
 28 1.701 2.048 2.467 2.763
 29 1.699 2.045 2.462 2.756
 30 1.697 2.042 2.457 2.750
 40 1.684 2.021 2.423 2.705
 60 1.671 2.000 2.390 2.660
120 1.658 1.980 2.358 2.617
Inf 1.645 1.960 2.326 2.576

Note: The entries in the table give the critical values that are 
exceeded with probabilities of 0.05, 0.025, 0.01, and 0.005 
by random values from t-distributions with different 
numbers of degrees of freedom (df). For example, if T has 
a t-distribution with 12 df, then Prob(T > 2.179) = 0.025.
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Table a2.3

Critical Values for the Chi-Squared Distribution

df

Upper Tail Probability

0.1 0.05 0.025 0.01 0.005 0.001

  1 2.71 3.84 5.02 6.64 7.88 10.83
  2 4.61 5.99 7.38 9.21 10.60 13.82
  3 6.25 7.82 9.35 11.35 12.84 16.27
  4 7.78 9.49 11.14 13.28 14.86 18.47
  5 9.24 11.07 12.83 15.09 16.75 20.52
  6 10.65 12.59 14.45 16.81 18.55 22.46
  7 12.02 14.07 16.01 18.48 20.28 24.32
  8 13.36 15.51 17.54 20.09 21.96 26.13
  9 14.68 16.92 19.02 21.67 23.59 27.88
 10 15.99 18.31 20.48 23.21 25.19 29.59
 11 17.28 19.68 21.92 24.73 26.76 31.26
 12 18.55 21.03 23.34 26.22 28.30 32.91
 13 19.81 22.36 24.74 27.69 29.82 34.53
 14 21.06 23.69 26.12 29.14 31.32 36.12
 15 22.31 25.00 27.49 30.58 32.80 37.70
 16 23.54 26.30 28.85 32.00 34.27 39.25
 17 24.77 27.59 30.19 33.41 35.72 40.79
 18 25.99 28.87 31.53 34.81 37.16 42.31
 19 27.20 30.14 32.85 36.19 38.58 43.82
 20 28.41 31.41 34.17 37.57 40.00 45.32
 21 29.62 32.67 35.48 38.93 41.40 46.80
 22 30.81 33.92 36.78 40.29 42.80 48.27
 23 32.01 35.17 38.08 41.64 44.18 49.73
 24 33.20 36.42 39.36 42.98 45.56 51.18
 25 34.38 37.65 40.65 44.31 46.93 52.62
 26 35.56 38.89 41.92 45.64 48.29 54.05
 27 36.74 40.11 43.20 46.96 49.65 55.48
 28 37.92 41.34 44.46 48.28 50.99 56.89
 29 39.09 42.56 45.72 49.59 52.34 58.30
 30 40.26 43.77 46.98 50.89 53.67 59.70
 40 51.81 55.76 59.34 63.69 66.77 73.41
 50 63.17 67.51 71.42 76.15 79.49 86.66
 60 74.40 79.08 83.30 88.38 91.96 99.62
 70 85.53 90.53 95.02 100.42 104.21 112.31
 80 96.58 101.88 106.63 112.33 116.32 124.84
 90 107.57 113.15 118.14 124.12 128.30 137.19
100 118.50 124.34 129.56 135.81 140.18 149.48

Note: The entries in the table give the critical values that are exceeded with 
probabilities of 0.1, 0.05, 0.025, 0.01, 0.005, and 0.001 by random values 
from chi-squared distributions with different numbers of degrees of 
freedom (df). For example, if χ² has 4 df, then Prob(χ² > 9.49) = 0.05.
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Table a2.5

Critical Values for the Durbin-Watson Statistic

n

p = 1 p = 2 p = 3 p = 4 p = 5

d1 d2 d1 d2 d1 d2 d1 d2 d1 d2

15 0.95 1.22 0.83 1.41 0.71 1.61 0.59 1.84 0.48 2.09
20 1.08 1.29 0.99 1.41 0.89 1.55 0.79 1.70 0.70 1.87
25 1.18 1.34 1.10 1.43 1.02 1.54 0.94 1.65 0.86 1.77
30 1.25 1.38 1.18 1.46 1.12 1.54 1.05 1.63 0.98 1.73
35 1.31 1.42 1.25 1.48 1.19 1.55 1.13 1.63 1.07 1.70
40 1.35 1.45 1.30 1.51 1.25 1.57 1.20 1.63 1.15 1.69
45 1.39 1.48 1.34 1.53 1.30 1.58 1.25 1.63 1.21 1.69
50 1.42 1.50 1.38 1.54 1.34 1.59 1.30 1.64 1.26 1.69
60 1.47 1.54 1.44 1.57 1.40 1.61 1.37 1.65 1.33 1.69
70 1.51 1.57 1.48 1.60 1.45 1.63 1.42 1.66 1.39 1.70
80 1.54 1.59 1.52 1.62 1.49 1.65 1.47 1.67 1.44 1.70
90 1.57 1.61 1.55 1.64 1.53 1.66 1.50 1.69 1.48 1.71

100 1.59 1.63 1.57 1.65 1.55 1.67 1.53 1.70 1.51 1.72

Note: This table gives bounds for critical values for the Durbin-Watson statistic, V, for 
a two-sided test (for positive or negative autocorrelation) at the 5% level (n = 
number of data points, p = number of X variables in the regression). If V is less 
than 2, then it is definitely significant if V < d1, may be significant if d1 < V < d2, 
and is not significant if V > d2. If V is greater than 2, then it is definitely significant 
if 4 − V < d1, may be significant if d1 < 4 − V < d2, and is not significant if 4 − V > 
d2. For example, if there are n = 30 observations and p = 2 X variables, then to be 
definitely significant, V must be less than 1.18, or 4 − V must be less than 1.18.



279

References

Akritas, M. G., T. F. Ruscitti, and G. P. Patil. 1994. Statistical analysis of censored envi-
ronmental data. In Handbook of statistics 12: Environmental statistics, ed. G. P. Patil 
and C. R. Rao, 221–242. Amsterdam: North-Holland.

Andersen, M. 1992. Spatial analysis of two-species interactions. Ecology 91: 134–140.
Andrews, D. F., and A. M. Herzberg. 1985. Data. New York: Springer-Verlag.
Association for the Environmental Health of Soils. 2000. Human and Ecological Risk 

Assessment 2 (4). http://www.aehs.com/.
Baird, S. J. 1996. Nonfish Species and Fisheries Interactions Working Group Report. 

New Zealand Fisheries Assessment Working Group Report 96/1. Ministry of 
Fisheries, Wellington, New Zealand.

Barnett, V., A. Stein, and K. F. Turkman. 1999. Statistics for the environment 4: Statistical 
aspects of health and the environment. Chichester: Wiley.

Barnett, V., and K. F. Turkman, eds. 1993. Statistics for the environment. Chichester: Wiley.
Barnett, V., and K. F. Turkman, eds. 1994. Statistics for the environment 2: Water related 

issues. Chichester: Wiley.
Barnett, V., and K. F. Turkman, eds. 1997. Statistics for the environment 3: Pollution 

assessment and control. Chichester: Wiley.
Bennett, W. A. 2005. Critical assessment of the delta smelt population in the San Fran-

cisco estuary, California. San Francisco Estuary and Watershed Science 3: 1–71.
Berger, R. L., and J. C. Hsu. 1996. Bioequivalence trials, intersection-union tests, and 

equivalence confidence sets. Statistical Science 11: 283-319.
Bergman, H. L., J. S. Meyer, J. C. A. Marr, J. A. Hansen, M. J. Szumski, A. M. Farag, 

R. K. MacRae, T. L. Parrish, S. L. Hill, A. M. Boelter, L. McDonald, G. Johnson, 
D. Strickland, T. Dean, and R. Rowe. 1995. Guidance document for determination 
of injury to biological resources resulting from incidents involving oil. Silver Spring, 
Md.: National Oceanic and Atmospheric Administration.

Besag, J. 1978. Some methods of statistical analysis for spatial pattern. Bulletin of the 
International Statistical Institute 47: 77–92.

Besag, J., and P. J. Diggle. 1977. Simple Monte Carlo tests for spatial pattern. Applied 
Statistics 26: 327–333.

Blank, S. 2008. Resampling stats for Excel. http://www.resample.com.
Borgman, L., M. Taheri, and R. Hagan. 1984. Three-dimensional frequency-domain 

simulations of geologic variables. In Geostatistics for natural resources charac-
terizations, ed. G. Verley, A. G. Journel, and A. Marechal, 517–541. Dordrecht: 
Reidel.

Borgman, L. E., K. Gerow, and G. T. Flatman. 1996. Cost-effective sampling of spa-
tially distributed phenomena. In Principles of environmental sampling, ed. L. H. 
Keith, 2nd ed., 753–778. Washington, D.C.: American Chemical Society.

Bradley, J. V. 1968. Distribution free statistical methods. New York: Prentice-Hall.
Burk, D. 1980. Cancer mortality linked with artificial fluoridation in Birmingham, 

England. Paper presented at the 4th International Symposium on the Preven-
tion and Detection of Cancer, Wembley, U.K.



280 Statistics for Environmental Science and Management, Second Edition

Burnham, K. P., D. R. Anderson, G. C. White, C. Brownie, and K. H. Pollock. 1987. 
Design and analysis of fish survival experiments based on release–recapture. 
American Fisheries Society Monograph 5, Bethesda, Md.

Camacho-Ibar, V. F., and J. McEvoy. 1996. Total PCBs in Liverpool Bay sediment. 
Marine Environmental Research 41: 241–263.

Campbell, D. T., and J. C. Stanley. 1963. Experimental and quasi-experimental designs for 
research. Boston: Houghton Mifflin.

Carlin, B. P., A. E. Gelfand, and A. F. M. Smith. 1992. Hierarchical Bayesian analysis 
of changepoint problems. Applied Statistics 41: 389–405.

Carpenter, S. R., S. W. Chisholm, C. J. Krebs, D. W. Schindler, and R. F. Wright. 1995. 
Ecosystem experiments. Science 269: 324–327.

Carpenter, S. R., T. M. Frost, D. Heisey, and T. K. Kratz. 1989. Randomized interven-
tion analysis and the interpretation of whole-ecosystem experiments. Ecology 
70: 1142–1152.

Caselton, W. F., L. Kan, and J. V. Zidek. 1992. Quality data networks that minimize 
entropy. In Statistics in the environmental and earth sciences, ed. A.T. Walden and 
P. Guttorp, 10–38. London: Edward Arnold.

Chatfield, C. 2003. The analysis of time series: An introduction, 6th ed. Boca Raton, Fla.: 
Chapman and Hall/CRC.

Cherry, S. 1998. Statistical tests in publications of the Wildlife Society. Wildlife Society 
Bulletin 26: 947–953.

Clarke, J. U. 1994. Evaluating methods for statistical analysis of less than detection 
limit data using simulated small samples; 2: General results. In Proceedings of 
the Second International Conference on Dredging and Dredged Material Placement, 
ed. E. C. McNair, 747–755. New York: American Society of Civil Engineers.

Cochran, W. G. 1977. Sampling techniques, 3rd ed. New York: Wiley.
Cohen, A. C. 1959. Simplified estimators for the normal distribution when samples 

are singly censored or truncated. Technometrics 1: 217–237.
Cohen, A. C. 1991. Truncated and censored samples: Theory and applications. New York: 

Marcel Dekker.
Conquest, L. L., and S. C. Ralph. 1998. Statistical design considerations for monitoring 

and assessment. In River ecology and management: Lessons from the Pacific Coastal 
Ecoregion, ed. R. J. Naiman and R. E. Bilby, 455–475. New York: Springer-Verlag.

Cormack, R. M. 1994. Statistical thoughts on the UK environmental change network. 
In Statistics in ecology and environmental monitoring, ed. D. J. Fletcher and B. F. J. 
Manly, 159–172. Dunedin, New Zealand: University of Otago Press.

Dale, M. R. T., and D. A. MacIsaac. 1989. New methods for the analysis of spatial pat-
tern in vegetation. Journal of Ecology 77: 78–91.

Dauble, D. D., J. Skalski, A. Hoffman, and A. E. Giorgi. 1993. Evaluation and appli-
cation of statistical methods for estimating smelt survival. Bonneville Power 
Administration, Portland, Ore.

David, M. 1977. Geostatistical ore reserve estimation. Amsterdam: Elsevier.
Davies, O. L., and P. L. Goldsmith, eds. 1972. Statistical methods in research and produc-

tion. Edinburgh: Oliver and Boyd.
Deutsch, C. V., and A. G. Journel. 1992. GSLIB, geostatistical software library and user’s 

guide. New York: Oxford University Press.
Dixon, P. 1998. Testing for no effect when the data contain below-detection values. 

In Statistics in ecology and environmental monitoring, ed. D. J. Fletcher and B. F. J. 
Manly, 17–32. Dunedin, New Zealand: University of Otago Press.



References 281

Dobson, A. J. 2001. An introduction to generalized linear models, 2nd ed. Boca Raton, Fla.: 
Chapman and Hall/CRC.

Dominici, F., G. Parmigiani, K. H. Reckhow, and R. L. Wolpert. 1997. Combining 
information from related regressions. Journal of Agricultural, Biological, and Envi-
ronmental Statistics 2: 313–332.

Durbin, J., and G. S. Watson. 1951. Testing for serial correlation in least squares 
regression. Biometrika 38: 159–178.

Eberhardt, L. L., and J. M. Thomas. 1991. Designing environmental field studies. Eco-
logical Monographs 61: 53–73.

Edgington, E. S., and P. Onghena. 2007. Randomization tests, 4th ed. Boca Raton, Fla.: 
Chapman and Hall/CRC.

Edwards, D., and B. C. Coull. 1987. Autoregressive trend analysis: An example using 
long-term ecological data. Oikos 50: 95–102.

Efron, B. 1979. Bootstrap methods: Another look at the jackknife. Annals of Statistics 
7: 1–26.

Efron, B. 1981. Nonparametric standard errors and confidence intervals. Canadian 
Journal of Statistics 9: 139–172.

Efron, B., and R. J. Tibshirani. 1993. An introduction to the bootstrap. New York: Chap-
man and Hall.

Ellis, J. I., and D. C. Schneider. 1997. Evaluation of a gradient sampling design for 
environmental impact assessment. Environmental Monitoring and Assessment 48: 
157–172.

El-Shaarawi, A. H., and W. W. Piegorsch, eds. 2001. Encyclopedia of Environmetrics. 
Chichester: Wiley.

Fedorov, V., and W. Mueller. 1989. Comparison of two approaches in the optimal 
design of an observation network. Statistics 20: 339–351.

Ferguson, J. W., G. M. Matthews, R. L. McComas, R. F. Absolon, D. A. Brege, M. H. 
Gessel, and L. G. Gilbreath. 2005. Passage of adult and juvenile salmonids 
through federal Columbia River power system dams. NOAA Technical Memo-
randum NMFS-NWFSC-64. U.S. Department of Commerce.

Finley, B. L., P. Scott, and D. J. Paustenbach. 1993. Evaluating the adequacy of maxi-
mum contaminant levels as health-protective cleanup goals: An analysis 
based on Monte Carlo techniques. Regulatory Toxicology and Pharmacology 18: 
438–455.

Finney, D. J. 1941. On the distribution of a variate whose logarithm is normally dis-
tributed. Journal of the Royal Statistical Society B7: 155–161.

Fisher, R. A. 1935. The design of experiments. Edinburgh: Oliver and Boyd.
Fisher, R. A. 1936. The coefficient of racial likeness and the future of craniometry. 

Journal of the Royal Anthropological Institute 66: 57–63.
Fisher, R. A. 1970. Statistical methods for research workers, 14th ed. Edinburgh: Oliver 

and Boyd.
Fletcher, D. J., L. Kavalieris, and B. F. J. Manly, eds. 1998. Statistics in ecology and envi-

ronmental monitoring; 2: Decision making and risk assessment in biology. Dunedin, 
New Zealand: University of Otago Press.

Fletcher, D. J., and B. F. J. Manly, eds. 1994. Statistics in ecology and environmental moni-
toring. Dunedin, New Zealand: University of Otago Press.

Folks, J. L. 1984. Combination of independent tests. In Handbook of statistics 4: Nonpara-
metric methods, ed. P. R. Krishnaiah and P. K. Sen, 113–121. Amsterdam: North-
Holland.



282 Statistics for Environmental Science and Management, Second Edition

Fortin, M., and M. R. T. Dale. 2005. Spatial analysis: A guide for ecologists. Cambridge: 
Cambridge University Press.

Fritts, H. C. 1976. Tree-rings and climate. London: Academic Press.
Galiano, E. F., I. Castro, and A. Sterling. 1987. A test for spatial pattern in vegetation 

using a Monte Carlo simulation. Journal of Ecology 75: 915–924.
Gardner, M. J., and D. G. Altman. 1986. Confidence intervals rather than p-values: 

Estimation rather than hypothesis testing. British Medical Journal 292: 746–750.
Gelman, A., J. B. Carlin, H. S. Stern, and D. R. Rubin. 2003. Bayesian Data Analysis, 2nd 

ed. Boca Raton, Fla.: Chapman and Hall/CRC.
Gibbons, J. D. 1986. Randomness, tests of. In Encyclopedia of statistical sciences 7: 

555–562. New York: Wiley.
Gilbert, R. O. 1987. Statistical methods for environmental pollution monitoring. New York: 

Van Nostrand Reinhold.
Gilbert, R. O., T. LeGore, and R. F. O’Brien. 1996. An overview of methods for evaluat-

ing the attainment of cleanup standards for soils, solid media, and groundwa-
ter, EPA Vols. 1, 2, and 3. Report prepared for the U.S. Environmental Protection 
Agency. Pacific Northwest National Laboratory, Richland, Wash.

Gilbert, R. O., and J. C. Simpson. 1992. Statistical methods for evaluating the attain-
ment of cleanup standards. In Vol. 3: Reference-based standards for soils and 
solid media. United States Environmental Protection Agency Report PNL-7409, 
National Technical Information Service, Springfield, Va.

Gilfillan, E. S., D. S. Page, E. J. Harner, and P. D. Boehm. 1995. Shoreline Ecology 
Program for Prince William Sound, Alaska, following the Exxon Valdez oil spill; 
Part 3: biology. In Exxon Valdez oil spill: Fate and effects in Alaskan waters, ed. P. G. 
Wells, J. N. Butler, and J. S. Hughes, 398–441. Philadelphia: American Society 
for Testing and Materials.

Gilks, W. R., S. Richardson, and D. J. Spiegelhalter, eds. 1996. Markov chain Monte 
Carlo in practice. London: Chapman and Hall.

Gilliom, R., and D. Helsel. 1986. Estimation of distributional parameters for censored 
trace level water quality data; 1: Estimation techniques. Water Resources Research 
22: 135–146.

Gleit, A. 1985. Estimation for small normal data sets with detection limits. Environ-
mental Science and Technology 19: 1201–1206.

Gonzalez, L., and G. L. Benwell. 1994. Stochastic models of the behaviour of scrub 
weeds in Southland and Otago. In Statistics in ecology and environmental moni-
toring, ed. D. J. Fletcher and B. F. J. Manly, 111–123. Dunedin, New Zealand: 
University of Otago Press.

Good, P. 2004. Permutation, parametric, and bootstrap tests of hypotheses, 3rd ed. New 
York: Springer.

Goovaerts, P. 1997. Geostatistics for natural resource evaluation. New York: Oxford Uni-
versity Press.

Gore, S. D., and G. P. Patil. 1994. Identifying extremely large values using composite 
sample data. Environmental and Ecological Statistics 1: 227–245.

Gotelli, N. J., and G. R. Graves. 1996. Null models in ecology. Washington, D.C.: Smith-
sonian Institution Press.

Green, E. L. 1973. Location analysis of prehistoric Maya in British Honduras. Ameri-
can Antiquity 38: 279–293.

Green, R. H. 1979. Sampling design and statistical methods for environmental biologists. 
New York: Wiley.



References 283

Gurevitch, J., and L. V. Hedges. 1993. Meta-analysis: Combining the results of indepen-
dent studies in experimental ecology. In The design and analysis of ecological experi-
ments, ed. S. Scheiner and J. Gurevitch, 378–398. New York: Chapman and Hall.

Gurevitch, J., and L. V. Hedges. 1999. Statistical issues in ecological meta-analysis. 
Ecology 80: 1142–1149.

Haase, P. 1995. Spatial pattern analysis in ecology based on Ripley’s K-function: Intro-
duction and method of edge correction. Journal of Vegetation Science 6: 575–582.

Hairston, N. G. 1989. Ecological experiments: Purpose, design, and execution. Cambridge: 
Cambridge University Press.

Hall, P., and S. Wilson. 1991. Two guidelines for bootstrap hypothesis testing. Biomet-
rics 47: 757–762.

Harcum, J. B., J. C. Loftis, and R. C. Ward. 1992. Selecting trend tests for water quality 
series with serial correlation and missing values. Water Resources Bulletin 28: 
469–478.

Harkness, R. D., and V. Isham. 1983. A bivariate spatial point pattern of ants’ nests. 
Applied Statistics 32: 293–303.

Harner, E. J., E. S. Gilfillan, and J. E. O’Reilly. 1995. A comparison of the design and 
analysis strategies used in assessing the ecological consequences of the Exxon 
Valdez. Paper presented at the International Environmetrics Conference, Kuala 
Lumpur, Malaysia.

Hedges, L. V., and I. Olkin. 1985. Statistical methods for meta-analysis. New York: Aca-
demic Press.

Helsel, D. R. 2004. Nondetects and data analysis: Statistics for censored environmental data. 
New York: Wiley.

Helsel, D. R., and T. Cohn. 1988. Estimation of descriptive statistics for multiple cen-
sored water quality data. Water Resources Research 24: 1997–2004.

Helsel, D. R., and R. M. Hirsch. 1992. Statistical methods in water resources. Amster-
dam: Elsevier.

Highsmith, R. C., M. S. Stekoll, W. E. Barber, L. Deysher, L. McDonald, D. Strickland, 
and W. P. Erickson. 1993. Comprehensive assessment of coastal habitat, final status 
report. Vol. I, Coastal Habitat Study No. 1A. Fairbanks, Alaska: School of Fisheries 
and Ocean Sciences, University of Fairbanks.

Hirsch, R. M., and J. R. Slack. 1984. A nonparametric trend test for seasonal data with 
serial dependence. Water Resources Research 20: 727–732.

Hirsch, R. M., J. R. Slack, and R. A. Smith. 1982. Techniques of trend analysis for 
monthly water quality data. Water Resources Research 18: 107–121.

Holm, S. 1979. A simple sequential rejective multiple test procedure. Scandinavian 
Journal of Statistics 6: 65–70.

Holyoak, M., and P. H. Crowley. 1993. Avoiding erroneously high levels of detection 
in combinations of semi-independent tests. Oecologia 95: 103–114.

Horvitz, D. G., and D. J. Thompson. 1952. A generalization of sampling without 
replacement from a finite universe. Journal of the American Statistical Association 
47: 663–685.

Houghton, J. P., D. C. Lees, and W. B. Driskell. 1993. Evaluation of the condition of Prince 
William Sound shoreline following the Exxon Valdez oil spill and subsequent shoreline 
treatment. Vol. II: 1992 biological monitoring survey. National Oceanic and Atmo-
spheric Administration Technical Memorandum NOS ORCA 73, Seattle, Wash.

Hurlbert, S. H. 1984. Pseudoreplication and the design of ecological field experi-
ments. Ecological Monographs 54: 187–211.



284 Statistics for Environmental Science and Management, Second Edition

Iwamoto, R. N., W. D. Muir, B. P. Sandford, K. W. McIntyre, D. A. Frost, J. G. Williams, 
S. G. Smith, and J. R. Skalski. 1994. Survival estimates for the passage of juvenile 
chinook salmon through Snake River dams and reservoirs: Annual report 1993. 
Bonneville Power Administration, Portland, Ore.

Jandhyala, V. K., S. B. Fotopoulos, and N. Evaggelopoulos. 1999. Change-point meth-
ods for Weibull models with applications to detection of trends in extreme tem-
peratures. Environmetrics 10: 547–564.

Jandhyala, V. K., and I. B. MacNeill. 1986. The change point problem: A review of 
applications. In Statistical aspects of water quality monitoring, ed. A. H. El-Shaarawi 
and R. E. Kwiatkowski, 381–387. Amsterdam: Elsevier.

Johnson, D. H. 1999. The insignificance of significance testing. Journal of Wildlife Man-
agement 63: 763–772.

Johnson, N. L., and S. Kotz. 1969. Discrete distributions. New York: Wiley.
Johnson, N. L., and S. Kotz. 1970a. Continuous univariate distributions, 1. New York: Wiley.
Johnson, N. L., and S. Kotz. 1970b. Continuous univariate distributions, 2. New York: Wiley.
Jones, P. D., K. R. Briffa, T. P. Barnett, and S. F. B. Tett. 1998a. High-resolution palaeo-

climatic records for the last millennium: Interpretation, integration, and com-
parison with general circulation model control-run temperatures. The Holocene 
8: 455–471.

Jones, P. D., K. R. Briffa, T. P. Barnett, and S. F. B. Tett. 1998b. Millennial tempera-
ture reconstructions. IGBP Pages/World Data Center-A for Paleoclimatology 
Data Contribution Series #1998-039. NOAA/NGDC Paleoclimatology Program, 
Boulder, Colo.

Journel, A. G., and C. J. Huijbregts. 1978. Mining geostatistics. New York: Academic Press.
Kanji, G. K. 1999. 100 statistical tests. London: Sage Publications.
Keith, L. H. 1991. Environmental sampling and analysis: A practical guide. Chelsea, Mich.: 

Lewis Publishers.
Keith, L. H., ed. 1996. Principles of environmental sampling, 2nd ed. Washington, D.C.: 

American Chemical Society.
Kirkwood, T. B. L. 1981. Bioequivalence testing: A need to rethink. Biometrics 37: 

589–594.
Krige, D. G. 1966. Two-dimensional weighted moving average trend surfaces for ore 

evaluation. Journal of the South African Institute for Mining and Metallurgy 66: 
13–38.

Kutner, M. H., C. J. Nachtsheim, J. Neter, and W. Li. 2004. Applied Linear Regression 
Models, 5th ed. Singapore: McGraw-Hill Education.

Lambert, D., B. Peterson, and I. Terpenning. 1991. Nondetects, detection limits, and 
the probability of detection. Journal of the American Statistical Association 86: 
266–277.

Lawes Agricultural Trust. 2007. GenStat Release 9. Lawes Agricultural Trust, Rotham-
sted Experimental Station, U.K.

Leadbetter, M. R., G. Lindgren, and H. Rootzen. 1983. Extremes and related properties of 
random sequences and series. New York: Springer-Verlag.

Lemeshow, S., D. W. Hosmer, J. Klar, and S. K. Lwanga. 1990. Adequacy of sample size 
in health studies. Chichester: Wiley.

Lesser, V. M., and W. D. Kalsbeek. 1997. A comparison of periodic survey designs 
employing multi-stage sampling. Environmental and Ecological Statistics 4: 
117–130.



References 285

Liabastre, A. A., K. A. Carlesberg, and M. S. Miller. 1992. Quality assurance for envi-
ronmental assessment activities. In Methods of environmental data analysis, ed. 
C. N. Hewitt, 259–299. London: Chapman and Hall.

Liebhold, A., and A. Sharov. 1997. Analysis of insect count data: Testing for correla-
tion in the presence of autocorrelation. In Population and community ecology for 
insect management and conservation, ed. J. Baumgärtner, P. Bradmayr, and B. F. J. 
Manly, 111–117. Rotterdam: Balkema.

Lloyd, B. D., and S. M. McQueen. 2000. An assessment of the probability of secondary 
poisoning of forest insectivores following an aerial 1080 possum control opera-
tion. New Zealand Journal of Ecology 24: 47–56.

Loftis, J. C., G. B. McBride, and J. C. Ellis. 1991. Considerations of scale in water qual-
ity monitoring and data analysis. Water Resources Bulletin 27: 255–264.

Lotwick, H. W., and B. W. Silverman. 1982. Methods for analysing spatial processes 
of several types of points. Journal of the Royal Statistical Society B44: 406–413.

MacNally, R., and B. T. Hart. 1997. Use of CUSUM methods for water quality monitor-
ing in storages. Environmental Science and Technology 31: 2114–2119.

Madansky, A. 1988. Prescriptions for working statisticians. New York: Springer-Verlag.
Manly, B. F. J. 1992. The design and analysis of research studies. Cambridge: Cambridge 

University Press.
Manly, B. F. J. 1994. CUSUM methods for detecting changes in monitored environ-

mental variables. In Statistics in ecology and environmental monitoring, ed. D. J. 
Fletcher and B. F. J. Manly, 225–238. Dunedin, New Zealand: University of 
Otago Press.

Manly, B. F. J. 2000. Statistics in the new millennium: Some personal views. In Pro-
ceedings of the 11th Conference on Applied Statistics in Agriculture, ed. G. A. Mil-
liken, 1–13. Kansas State University, Manhattan, Department of Statistics, 
Kansas State University.

Manly, B. F. J. 2007. Randomization, bootstrap, and Monte Carlo methods in biology, 3rd ed. 
Boca Raton, Fla.: Chapman and Hall/CRC.

Manly, B. F. J., and M. Chotkowski. 2006. Two new methods for regime change analy-
sis. Archives of Hydrobiology 167: 593–607.

Manly, B. F. J., and D. MacKenzie. 2000. A cumulative sum type of method for envi-
ronmental monitoring. Environmetrics 11: 151–166.

Manly, B. F. J., and K. Walshe. 1999. The development of the population manage-
ment plan for the New Zealand sea lion. In Marine mammal survey and assess-
ment methods, ed. G. W. Garner, S. C. Amstrup, J. L. Laake, B. F. J. Manly, L. L. 
McDonald, and D. G. Robertson, 271–283. Rotterdam: Balkema.

Mantel, N. 1967. The detection of disease clustering and a generalized regression 
approach. Cancer Research 27: 209–220.

Marr, J. C. A., H. L. Bergman, J. Lipton, and C. Hogstrand. 1995. Differences in relative 
sensitivity of naive and metals-acclimated brown and rainbow trout exposed 
to metals representative of the Clark Fork River, Montana. Canadian Journal of 
Fisheries and Aquatic Science 52: 2016–2030.

McBride, G. B. 1999. Equivalence tests can enhance environmental science and man-
agement. Australian and New Zealand Journal of Statistics 41: 19–29.

McBride, G. B., J. C. Loftis, and N. C. Adkins. 1993. What do significance tests really 
tell us about the environment? Environmental Management 17: 423–432.

McCullagh, P., and J. A. Nelder. 1989. Generalized linear models, 2nd ed. London: Chap-
man and Hall.



286 Statistics for Environmental Science and Management, Second Edition

McDonald, L. L., and W. P. Erickson. 1994. Testing for bioequivalence in field stud-
ies: Has a disturbed site been adequately reclaimed? In Statistics in ecology and 
environmental monitoring, ed. D. J. Fletcher and B. F. J. Manly, 183–197. Dunedin, 
New Zealand: University of Otago Press.

McDonald, L. L., W. P. Erickson, and M. D. Strickland. 1995. Survey design, statistical 
analysis, and basis for statistical inferences in coastal habitat assessment: Exxon 
Valdez oil spill. In Exxon Valdez oil spill: Fate and effects in Alaskan waters, ed. P. G. 
Wells, J. N. Butler, and J. S. Hughes, 296–311. Philadelphia: American Society for 
Testing and Materials.

McDonald, L. L., and B. F. J. Manly. 1989. Calibration of biased sampling proce-
dures. In Estimation and analysis of insect populations, ed. L. McDonald, B. Manly, 
J. Lockwood, and J. Logan, 467–483. Berlin: Springer-Verlag.

McDonald, T. L. 2003. Review of environmental monitoring methods: Survey designs. 
Environmental Monitoring and Assessment 85: 277–292.

McIntyre, G. A. 1952. A method for unbiased selective sampling, using ranked sets. 
Australian Journal of Agricultural Research 3: 385–390.

Mead, R. 1974. A test for spatial pattern at several scales using data from a grid of 
contiguous quadrats. Biometrics 30: 295–307.

Mead, R. 1988. The design of experiments: Statistical principles for practical applications. 
Cambridge: Cambridge University Press.

Mead, R., R. N. Curnow, A. M. Hasted, and R. M. Curnow. 2002. Statistical methods in 
agriculture and experimental biology, 3rd ed. Boca Raton, Fla.: Chapman and Hall/
CRC.

Minitab. 2008. MINITAB Release 15. http://www.minitab.com.
Mitchell, T. 2008. Northeast Brazil rainfall anomaly index. Fortaleza data. http://

www.jisao.washington.edu/data/brazil.
Mohn, E., and R. Volden. 1985. Acid precipitation: Effects on small lake chemistry. In 

Data analysis in real life environment: Ins and outs of solving problems, ed. J. F. Mar-
cotorchino, J. M. Proth, and J. Janssen, 191–196. Amsterdam: Elsevier.

Montgomery, D. C. 2005. Introduction to statistical quality control, 5th ed. New York: Wiley.
Muir, W. D., S. G. Smith, R. N. Iwamoto, D. J. Kamikawa, K. W. McIntyre, E. E. 

Hockersmith, B. P. Sandford, P. A. Ocker, T. E. Ruehle, J. G. Williams, and J. R. 
Skalski. 1995. Survival estimates for the passage of juvenile chinook salmon 
through Snake River dams and reservoirs: Annual report 1994. Bonneville 
Power Administration, Portland, Ore.

NCSS Statistical Software. 2008. PASS 2008: Power analysis and sample size for DOS. 
NCSS statistical software. http://www.ncss.com.

Nelder, J. A. 1999. Statistics for the millennium: From statistics to statistical science. 
Statistician 48: 257–269.

Nelder, J. A., and R. W. M. Wedderburn. 1972. Generalized linear models. Journal of 
the Royal Statistical Society A135: 370–384.

Newman, M. C., K. D. Greene, and P. M. Dixon. 1995. Uncensor, Version 4.0. Savannah 
River Ecology Laboratory, Aiken, S.C. http://www.vims.edu/env/departments/
riskchem/software/vims_software.html.

Norton, D. A., and J. Ogden. 1987. Dendrochronology: A review with emphasis on 
New Zealand applications. New Zealand Journal of Ecology 10: 77–95.

Nychka, D., W. W. Piegorsch, and L. H. Cox, eds. 1998. Case studies in environmental 
statistics. New York: Springer-Verlag.

Oakes, M. 1986. Statistical significance: A commentary for the social and behavioural sci-
ences. New York: Wiley.



References 287

Oracle. 2008. Crystal Ball Software Suite. http://www.crystalball.com.
Osenberg, C. W., O. Sarnelle, and D. E. Goldberg. 1999. Special feature on meta-analy-

sis on ecology: Concepts, statistics, and applications. Ecology 80: 1103–1104.
Osenberg, C. W., R. J. Schmitt, S. J. Holbrook, K. E. Abu-Saba, and A. R. Flegal. 1994. 

Detection of environmental impacts: Natural variability, effect size, and power 
analysis. Ecological Applications 4: 16–30.

Overrein, L. N., H. M. Seip, and A. Tollan. 1980. Acid precipitation—Effects on forest and 
fish: Final report. Oslo: Norwegian Institute for Water Research.

Overton, W. S., and S. V. Stehman. 1995. Design implications of anticipated data uses 
for comprehensive environmental monitoring programmes. Environmental and 
Ecological Statistics 2: 287–303.

Overton, W. S., and S. V. Stehman. 1996. Desirable design characteristics for long-
term monitoring of ecological variables. Environmental and Ecological Statistics 
3: 349–361.

Overton, W. S., D. White, and D. L. Stevens. 1991. Design report for EMAP, the Envi-
ronmental Monitoring and Assessment Program. Report EPA/600/3-91/053. 
U.S. Environmental Protection Agency, Washington, D.C.

Page, D. S., E. S. Gilfillan, P. D. Boehm, and E. J. Harner. 1995. Shoreline Ecology 
Program for Prince William Sound, Alaska, following the Exxon Valdez oil spill: 
Part 1—Study design and methods. In Exxon Valdez oil spill: Fate and effects in 
Alaskan waters, ed. P. G. Wells, J. N. Butler, and J. S. Hughes, 263–295. Philadel-
phia: American Society for Testing and Materials.

Page, E. S. 1955. A test for a change in a parameter occurring at an unknown time 
point. Biometrika 42: 523–526.

Page, E. S. 1961. Cumulative sum control charts. Technometrics 3: 1–9.
Palisade Corp. 2008. @Risk 5.0. Spreadsheet add-on for Monte Carlo simulation. 

http://www.palisade.com/.
Pannatier, Y. 1996. VARIOWIN software for spatial data in 2D. New York: Springer.
Patil, G. P. 1995. Composite sampling. Environmental and Ecological Statistics 2: 

169–179.
Patil, G. P., and C. R. Rao, eds. 1994. Handbook of statistics 12: Environmental statistics. 

Amsterdam: North-Holland.
Patil, G. P., A. K. Sinha, and C. Taille. 1994. Ranked set sampling. In Handbook of sta-

tistics 12: Environmental statistics, ed. G. P. Patil and C. R. Rao, 167–200. Amster-
dam: North-Holland.

Peres-Neto, P. R. 1999. How many tests are too many? The problem of conducting 
multiple ecological inferences revisited. Marine Ecology Progress Series 176: 
303–306.

Perry, J. N. 1995a. Spatial aspects of animal and plant distribution in patchy farmland 
habitats. In Ecology and integrated farming systems, ed. D. M. Glen, M. P. Greaves, 
and H. M. Anderson, 221–242. London: Wiley.

Perry, J. N. 1995b. Spatial analysis by distance indices. Journal of Animal Ecology 64: 
303–314.

Perry, J. N. 1998. Measures of spatial pattern and spatial association for counts of 
insects. In Population and community ecology for insect management and conser-
vation, ed. J. Baumgärtner, P. Bradmayr, and B. F. J. Manly, 21–33. Rotterdam: 
Balkema.

Perry, J. N. 2008. SADIE: Spatial Analysis by Distance Indices. IACR-Rothamsted. 
http://www.rothamsted.ac.uk/pie/sadie/.



288 Statistics for Environmental Science and Management, Second Edition

Perry, J. N., and P. M. Dixon. 2002. A new method to measure spatial association for 
ecological count data. Ecoscience 9: 133–141.

Perry, J. N., and M. Hewitt. 1991. A new index of aggregation for animal counts. Bio-
metrics 47: 1505–1518.

Perry, J. N., A. M. Liebhold, M. S. Rodenberg, J. Dungan, M. Miriti, A. Jakomulska, 
and S. Citron-Pousty. 2002. Illustrations and guidelines for selecting statisti-
cal methods for quantifying spatial pattern in ecological data. Ecography 25: 
578–600.

Peterman, R. M. 1990. Statistical power analysis can improve fisheries research and 
management. Canadian Journal of Fisheries and Aquatic Science 47: 2–15.

Rasmussen, P. W., D. M. Heisey, E. V. Nordheim, and T. M. Frost. 1993. Time series 
intervention analysis: Unreplicated large-scale experiments. In Design and anal-
ysis of ecological experiments, ed. S. M. Scheiner and J. Gurevitch, 138–158. New 
York: Chapman and Hall.

Rice, W. R. 1990. A consensus combined p-value test and the family-wide signifi-
cance of component tests. Biometrics 46: 303–308.

Ripley, B. D. 1981. Spatial statistics. New York: Wiley.
Ross, N. P., and L. Stokes. 1999. Editorial: Special issue on statistical design and anal-

ysis with ranked set samples. Environmental and Ecological Statistics 6: 5–9.
Rowan, D. J., J. B. Rasmussen, and J. Kalff. 1995. Optimal allocation of sampling effort 

in lake sediment studies. Canadian Journal of Fisheries and Aquatic Sciences 52: 
2146–2158.

Särkkä, A. 1993. Pseudo-likelihood approach for pair potential estimation of Gibbs 
processes. In Jyväskylä studies in computer science, economics, and statistics 22. Uni-
versity of Jyväskylä, Finland.

Scheaffer, R. L., W. Mendenhall, and L. Ott. 1990. Elementary survey sampling, 4th ed. 
Boston: PWS-Kent.

Schipper, M., and E. Meelis. 1997. Sequential analysis of environmental monitoring 
data: Refining SPRTs for testing against a minimal relevant trend. Journal of 
Agricultural, Biological, and Environmental Statistics 2: 467–489.

Schmoyer, R. L., J. J. Beauchamp, C. C. Brandt, and F. O. Hoffman. 1996. Difficulties 
with the lognormal model in mean estimation and testing. Environmental and 
Ecological Statistics 3: 81–97.

Schneider, H. 1986. Truncated and censored samples from normal populations. New York: 
Marcel Dekker.

Schuirmann, D. J. 1987. A comparison of the two one-sided tests procedure and the 
power approach for assessing the equivalence of average bioavailability. Journal 
of Pharmacokinetics and Biopharmaceutics 15: 657–680.

Shadish, W. R., T. D. Cook, and D. T. Campbell. 2002. Experimental and quasi-experi-
mental design for generalized causal inference, 2nd ed. Boston: Houghton Mifflin.

Sherley, G., M. Wakelin, and J. McCartney. 1999. Forest invertebrates found on baits 
used in pest mammal control and the impact of sodium monofluoroacetate 
(“1080”) on their numbers at Ohakune, North Island, New Zealand. New Zea-
land Journal of Zoology 26: 279–302.

Shewhart, W. A. 1931. Economic control of quality of manufactured product. New York: 
Van Nostrand.

Siegel, S. 1956. Nonparametric statistics for the behavioural sciences. New York: McGraw-
Hill.

Skalski, J. R. 1990. A design for long-term status and trends. Journal of Environmental 
Management 30: 139–144.



References 289

Skalski, J. R., and D. S. Robson. 1992. Techniques for wildlife investigations: Design and 
analysis of capture data. San Diego: Academic Press.

Smith, V. H., and J. Shapiro. 1981. Chlorophyll-phosphorus relations in individual 
lakes: Their importance in relation to lake restoration strategies. Environmental 
Science and Technology 15: 444–451.

Solar Influences Data Analysis Centre. 2008. Yearly sunspot data. The Royal Obser-
vatory of Belgium. http://sidc.oma.be.

Stehman, S. V., and W. S. Overton. 1994. Environmental sampling and monitoring. 
In Handbook of statistics 12: Environmental statistics, ed. G. P. Patil and C. R. Rao, 
263–306. Amsterdam: Elsevier.

Stevens, D. R., and A. R. Olsen. 1991. Statistical issues in environmental monitoring 
and assessment. In Proceedings of the Section on Statistics and the Environment, 
76–85. American Statistical Association, Alexandria, Va.

Stewart-Oaten, A., and J. R. Bence. 2001. Temporal and spatial variation in environ-
mental impact assessment. Ecological Monographs 71: 305–339.

Stewart-Oaten, A., W. W. Murdoch, and K. R. Parker. 1986. Environmental impact 
assessment: “Pseudoreplication” in time? Ecology 67: 929–940.

Sullivan, J. H., and W. H. Woodhall. 1996. A control chart for preliminary analysis of 
individual observations. Journal of Quality Technology 28: 265–278.

Sutton, A. J., K. R. Abrams, D. R. Jones, T. A. Sheldon, and F. Song. 2000. Methods for 
meta-analysis in medical research. New York: Wiley and Sons.

Swed, F. S., and C. Eisenhart. 1943. Tables for testing randomness of grouping in a 
sequence of alternatives. Annals of Mathematical Statistics 14: 83–86.

Sykes, J. M. 1999. United Kingdom Environmental Change Network. London: Stationary 
Office Books.

Taylor, C. H., and J. C. Loftis. 1989. Testing for trend in lake and ground water quality 
time series. Water Resources Bulletin 25: 715–726.

Thompson, S. K. 1992. Sampling. New York: Wiley.
Thompson, W. L., ed. 2004. Sampling rare or elusive species: Concepts, designs, and tech-

niques for estimating population parameters. Washington, D.C.: Island Press.
Troendle, J. F., and J. M. Legler. 1998. A comparison of one-sided methods to identify 

significant individual outcomes in a multiple outcome setting: Stepwise tests or 
global tests with closed testing. Statistics in Medicine 17: 1245–1260.

Underwood, A. J. 1994. On beyond BACI: Sampling designs that might reliably detect 
environmental disturbances. Ecological Applications 4: 3–15.

Urquhart, N. S., and T. M. Kincaid. 1999. Designs for detecting trend from repeated 
surveys of ecological resources. Journal of Agricultural, Biological, and Environ-
mental Statistics 4: 404–414.

Urquhart, N. S., W. S. Overton, and D. S. Birkes. 1993. Comparing sampling designs 
for monitoring ecological status and trends: Impact of temporal patterns. In 
Statistics for the environment, ed. V. Barnett and K. F. Turkman, 71–85. Chich-
ester: Academic Press.

US EPA. 1989a. Methods for evaluating the attainment of cleanup standards. Vol. 1: 
Soils and solid media. Report 230/02-89-042. United States Environmental Pro-
tection Agency, Office of Policy, Planning, and Evaluation, Washington, D.C.

US EPA. 1989b. Record of decision for Koppers superfund site, Oroville, California. 
United States Environmental Protection Agency, Region IX, San Francisco, Calif.

US EPA. 1997a. Guiding principles for Monte Carlo analysis. Report EPA/630/R-97/001. 
United States Environmental Protection Agency, Risk Assessment Forum, 
Washington, D.C.



290 Statistics for Environmental Science and Management, Second Edition

US EPA. 1997b. Policy for use of probabilistic analysis in risk assessment at the US 
EPA. United States Environmental Protection Agency statement. http://www.
epa.gov/OSA/spc/pdfs/probpol.pdf.

US EPA. 2000a. Guidance for data quality assessment: Practical methods for data 
analysis. Report EPA/600/R-96/084. United States Environmental Protection 
Agency, Office of Environmental Information, Washington, D.C.

US EPA. 2000b. United States Environmental Protection Agency, Risk Assessment 
Forum. http://www.epa.gov/ncea/raf/index.ttml.

US EPA. 2002a. RCRA waste sampling draft technical guidance: Planning, imple-
mentation, and assessment. Report EPA-530-D-02-002. United States Environ-
mental Protection Agency, Office of Solid Waste, Washington, D.C.

US EPA. 2002b. Research strategy: Environmental monitoring and assessment pro-
gram. Report EPA-620-R-02-002. United States Environmental Protection 
Agency, Office of Research and Development, Research Triangle Park, N.C.

US EPA. 2006. Guidance on systematic planning using the data quality objectives 
process. Report EPA-240-B-06-001. United States Environmental Protection 
Agency, Office of Environmental Management, Washington, D.C.

US EPA and US ACE. 1998. Evaluation of dredged material proposed for discharge 
in water of the U.S.: Testing manual. Report EPA-823-B-98-004. United States 
Environmental Protection Agency, Washington, D.C.

Von Ende, C. N. 1993. Repeated-measures analysis: Growth and other time-depen-
dent measures. In Design and analysis of ecological experiments, ed. S. M. Scheiner 
and J. Gurevitch, 113–158. New York: Chapman and Hall.

Wells, P. G., J. N. Butler, and J. S. Hughes. 1995. Introduction, overview, issues. In Exxon 
Valdez oil spill: Fate and effects in Alaskan waters, ed. P. G. Wells, J. N. Butler, and 
J. S. Hughes, 3–38. Philadelphia: American Society for Testing and Materials.

Westlake, W. J. 1988. Bioavailability and bioequivalence of pharmaceutical formula-
tions. In Biopharmaceutical statistics for drug development, ed. K. E. Peace, 329–352. 
New York: Marcel Dekker.

Wiens, B. L. 1999. When lognormal and gamma models give different results: A case 
study. American Statistician 53: 89–93.

Williams, J. G., S. G. Smith, R. W. Zabel, W. D. Muir, M. D. Scheuerell, B. P. Sandford, 
D. M. Marsh, R. A. McNatt, and S. Achord. 2005. Effects of the federal Columbia 
River Power System on salmonid populations. NOAA technical memorandum 
NMFS-NWFSC-63. U.S. Department of Commerce, Washington, D.C.

Wolter, K. M. 1984. An investigation of some estimators of variance for systematic 
sampling. Journal of the American Statistical Association 79: 781–790.

Yates, S. R., and M. V. Yates. 1990. Geostatistics for waste management: User’s 
manual for the GEOPACK (V. 1.0) Geostatistical Software System. Document 
EPA/600/8-90/004. U.S. Environmental Protection Agency, Office of Research 
and Development, ADA, Oklahoma. http://www.epa.gov/ada/download/
models/geopack.pdf.

Zetterqvist, L. 1991. Statistical estimation and interpretation of trends in water qual-
ity time series. Water Resources Research 27: 1637–1648.



291

Index

A

Alternative conclusions from data, 1, 
102–103, 119, 219

Analysis of variance, 69, 70, 74–75, 112, 
193

one factor, 76
three factor, 78–82
two factor, 76–78, 107, 158–161
repeated measures, 82–83, 154–155, 

162
with monitoring data, 131–133

Assessing site reclamation, 167–178
Autocorrelation function (ACF), see 

correlogram
Autoregressive model, 196–201

B

Baseline studies, 1, 12
Bayesian inference, 119–120, 190
Before-after-control-impact (BACI) 

study, 13–14, 82, 101, 153–161, 
164, 165

Before-after designs, 162, 163
Bioequivalence, 167–176
Bonferroni correction for multiple 

testing, 83, 112
Bootstrapping, 52, 55, 108–110, 123, 190, 

245, 246
Bootstrap-t, 108–110

C

Censored data, 237–248
fill-in, 238, 242
maximum likelihood, 238, 240, 

245–246, 247
regression on order statistics, 238, 

240–241, 242

robust parametric, 238, 239, 241–244, 
248

simple substitution, 237, 240, 243, 245
Cluster sampling, 44, 54
Cochran-Orcutt procedure, 195
Coefficient of multiple determination 

(R2), 69
Components of time series, 180–182
Composite sampling, 45
Computer programs

@Risk, 251
Crystal Ball, 251
Cusum Analysis Tool (CAT), 144
EquivTest/PK, 174
GenStat, 89
GEOPACK, 228, 229, 233
MINITAB, 79, 132, 159
Power Analysis and Sample Size 

(PASS), 53, 174
Randomization Testing (RT), 216
Spatial Analysis by Distance Indices 

(SADIE), 213, 216, 218
UNCENSOR, 238–240, 242

Confidence interval, 67, 83, 103–105, 108, 
111, 119, 173, 281–283

difference between two population 
means, 52, 123, 244–246

difference between two population 
proportions, 53

population mean, 27–28, 34, 47, 50, 52, 
58, 108–110

population proportion, 31, 58
population total, 30, 35, 48
with regression coefficients, 70

Continuity correction for discrete 
distributions, 187, 189

Control charts, 190
cumulative sum (CUSUM), 140–145
Shewhart, 133–140, 150–151

Control-treatment paired (CTP) design, 
158–161



292 Index

Correlogram, 183–186, 189, 196, 198–201
Covariance, 244, 283

D

Data quality objectives (DQO), 32, 53, 
55–56

Design-based and model-based 
inference, 101–103

Deviance, 85, 89, 90
Distribution

binomial, 30, 63–64, 272–273
chi-squared, 85, 114–115, 145–149, 151, 

274–276, 278, 279
continuous, 65–68
discrete, 61–65
exponential, 66–67
F, 69, 71, 76, 275–276
gamma, 103
hypergeometric, 62–64
lognormal, 67–68, 92, 102–103, 238, 

240, 242, 246, 252, 253
normal, 19, 27, 28, 30, 31, 34, 47, 67, 69, 

76, 84, 87, 90, 92, 101, 102, 106, 
108, 114–116, 118, 134, 187, 189, 
192, 195, 198, 238, 240, 242

Poisson, 64–65, 85, 211–212, 216, 218t, 
28, 70, 72, 102, 108–109, 172, 173, 
212, 274–275, 278, 279, 281–283

Double sampling, 50–51
Durbin-Watson test, 191, 193, 205

E

Environmental monitoring, 2, 5, 6, 14, 15, 
19, 82, 105, 125–151, 162, 179, 255

designs based on optimization, 129
Environmental Monitoring and 

assessment Program (EMAP), 
125, 127, 128

rotating panel design with 
augmentation, 126–128

serially alternating design with 
augmentation, 127–128

United Kingdom Environmental 
Change Network (ECN), 125, 
126

using a CUSUM analysis, 140–145

Estimation
population mean, 24–29
population proportion, 30–32
population total, 29–30
with ratio estimation, 46–50
with stratified sampling, 33–38
with systematic sampling, 39–44
with unequal probability sampling, 

53–55
Examples

acid rain study in Norway, 6–10, 19, 
48–50, 92–95, 129–131, 132–133, 
144–145, 147–149, 151, 209–211, 
222–224, 227–228, 229–230

bracken density in Otago, 35–38
chlorophyll-a in lakes, 71–74,  

108–110
contamination uptake through tap 

water, 251–253
counts of two species of shellfish, 

207–208, 213–216, 218–219
delta smelt in the Sacramento-San-

Joaquin Delta, 18–19
dolphin bycatch in trawl fisheries, 

87–90
effect of poison pellets on 

invertebrates, 156–157, 158–161
evaluating the attainment of cleanup 

standards, 16–18, 31–32, 
177–178, 239–243

Exxon Valdez oil spill, 2–6, 19, 20, 33, 
105, 116–119

large-scale perturbation experiment, 
12–14, 105, 156

long-line fisheries bycatch, 95–96
measurements on TcCB at 

contaminated and 
uncontaminated sites, 16–18, 
239–243, 248, 269–270, 271–272, 
280–281, 283

minimum temperatures in Uppsala, 
188–189, 193–194

monitoring Antarctic marine life, 
15, 19

monitoring pH in a New Zealand 
river, 135–140

multiple tests on characters for 
Brazilian fish, 113–114



Index 293

native shrubs at reclaimed and 
reference sites, 169–171

nest positions of two species of ants, 
208–209, 211, 219–222

northern and southern hemisphere 
temperatures, 180, 184, 196

pairs of the sandwich tern on Dutch 
Wadden Island, 181, 182, 185

PCB concentrations in surface soil 
samples, 31–32, 67, 174–176

rainfall in northeast Brazil, 199–201
ring widths of Andean alders, 14–15, 

19, 150–151
salmon survival in the Snake River, 

10–12, 19, 20–21
sea lion bycatch in trawl fishing, 

272–273
survival of trout in a metals mixture, 

78–82, 106–107
soil percentages in the Corozal 

district of Belize, 28–29, 92–94
sunspot numbers, 182, 185–186
total PCBs in Liverpool Bay 

sediments, 42–44, 233–235
upstream and downstream samples 

from the Savannah River, 
245–246 

water temperatures of a Dunedin 
stream, 180–181, 184–185, 
197–199

wheat yields in Rothamsted, 205
Expected value (mean), 62, 66, 84–85, 

191–192, 211, 225–228, 238, 
242–243

Experiments
randomization, replication and 

controls, 99–101
true and quasi-experiments, 100–101

Extra sums of squares, 70

F

Finite population correction, 27–28, 30
Fisher’s method for combining p-values, 

115
Fixed and random effects, 77–78, 132
Forecasting time series, 202–203
Frequency domain analysis with time 

series, 201

G

Generalized linear model, 3, 84–90, 103
Geographical information system (GIS), 

3
Geostatistics, 222, 224–230
Goodness of fit, 85

H

Holm’s method for multiple testing, 
112–114

Horvitz-Thomson estimators, 54–55, 
117–118

I

Impact assessment, 6, 153–166
Impact-control designs, 156–157, 161–162, 

163
Impact-gradient designs, 163, 164

K

Kriging, 228–230

L

Linear regression, 68–74, 86, 101–102, 238
allowing for serial correlation, 162, 

191–192, 194–196, 197–199
with censored data, 247

Liptak-Stouffer method for meta-
analysis, 115–116, 117–119

Logistic model, 85, 86
Log-linear model, 85, 86, 87–90, 95, 

160–161

M

Mann-Kendall test for trend, 192, 194, 204
Mark-recapture sampling, 10–12, 19, 

20–21, 63
Markov chain Monte Carlo, 120
Massive data sets, 255
Matched pairs with a BACI design, 

158–161



294 Index

Maximum likelihood, 85, 196–197, 
238–240, 244–247

Meta-analysis, 4, 114–119
Misclassified sites with stratified 

sampling, 3, 4
Missing data, 6, 32, 92, 192
Monte Carlo risk assessment, 249–253

principles of the EPA, 250
using a spreadsheet, 251–253

Monte Carlo test for spatial randomness, 
219–221

Moving average models, 196
Multiple comparisons and contrasts with 

analysis of variance, 83–84
Multiple testing, 112–114, 172, 184, 190
Multistage sampling, 44–45

N

Null models in ecology, 104

O

Observational and experimental 
studies, 97–98

Overdispersion with generalized linear 
models, 87

P

Paired comparison design, 4, 5
Partial autocorrelation function (PACF), 

196
Pearson’s correlation coefficient, 183, 

213, 283–284
Population (statistical), 23, 111, 117, 

125–127, 211, 237, 251
Post-stratification, 38, 51
Probability density function, 65–68, 68, 

270–271
Pseudoreplication, 5, 82, 97, 110–112, 

154–156
Purposeful selection of sites, 2, 126

Q

Quadrat counts, 207–209, 211–219
Quality assurance and quality control 

(QA/QC), 32, 56

R

Random numbers, 24–26
Randomization test, 5, 14, 105–107, 143, 

156, 161, 217
Mantel test for autocorrelation, 

222–224
Mantel test on distance matrices, 

212–216, 231, 233
Ranked set sampling, 45–46
Ratio estimation, 46–50
Regression estimation, 48, 51
Repeated measures study design, 82–83, 

154–155, 162
Residual plots, 72–74, 81–82, 92, 132–133, 

159–160, 194, 199

S

Sample
coefficient of variation, 26
mean, 24, 27, 34, 46, 270–271
proportion, 30–31, 273
standard deviation, 26, 34, 271
units, 23
variance, 24, 26, 27, 270–271

Sample size determination, 51–53
estimating the difference between 

two population means, 52
estimating the difference between 

two proportions, 53
estimating a mean, 52
estimating a proportion, 52
with stratified sampling, 53

Sampling and nonsampling errors, 32
Sampling frame, 24
Seasonal variation, 179, 184, 192, 202
Serpentine line, 40–41, 59
Simple difference analysis with BACI 

designs, 155–157
Simple random sampling, 24, 27, 28, 33, 

39–40, 125–126
Spatial correlation, 6, 163, 164, 210, 

212–216, 217, 226, 228, 233
Standard error, 27

estimated population total, 29, 48
estimated mean and total with 

stratified sampling, 34, 40
ranked set sampling, 46



Index 295

sample mean, 27, 47
sample proportion, 30
systematic sampling, 41

Standardized residuals, 73–74, 81–82, 
132–133, 159–160, 194

Stratified random sampling, 3, 4, 33–38, 
53

Systematic sampling, 39–44

T

Targeted study, 2, 6, 16
Tests of significance, 103–105, 276–281

comparing two means with censored 
data, 244–246

contingency table chi-squared test, 
146–149, 279

for a change in a distribution, 
145–149

Mann-Kendall test for trend, 192, 194, 
204

Mann-Whitney U-test, 106–107, 280
one sample chi-squared test, 145–146, 

278

one sample t-test, 278, 280–281
paired t-test, 116–117, 169–171, 279
parametric and nonparametric, 

277–278
randomness of time series, 186–189
runs above and below the median, 

186–187, 188–189
runs up and down, 187, 189
sign test, 187, 188–189
two sample t-test, 107, 157, 280
Wilcoxon signed-ranks test, 280

Time (serial) correlation, 143–144, 155, 
156, 159, 162, 179, 180, 182–186, 
190–191, 192, 195, 198–201, 205

Two one-sided test (TOST) for 
bioequivalence, 171–176

U

Unequal probability sampling, 53–55

V

Variogram, 222, 224–231, 233–235






	Front cover
	Contents
	Preface to the Second Edition
	Preface to the First Edition
	Chapter 1. The Role of Statistics in Environmental Science
	Chapter 2. Environmental Sampling
	Chapter 3. Models for Data
	Chapter 4. Drawing Conclusions from Data
	Chapter 5. Environmental Monitoring
	Chapter 6. Impact Assessment
	Chapter 7. Assessing Site Reclamation
	Chapter 8. Time Series Analysis
	Chapter 9. Spatial-Data Analysis
	Chapter 10. Censored Data
	Chapter 11. Monte Carlo Risk Assessment
	Chapter 12. Final Remarks
	Appendix 1: Some Basic Statistical Methods
	Appendix 2: Statistical Tables
	References
	Index
	Back cover

