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Acknowledgments, aims and scope of this research
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The Interdisciplinary Studies in Economics and Management series of books has been
instrumental in reporting about the results generated in a joint effort of the group
of researchers in mathematics and management science that joined in the Joint Re-
search Program (Spezialforschungsbereich) on “Adaptive Systems and Modeling in
Economics and Management Science” funded by the Austrian Science Foundation
under grant SFB 010. The aim of the SFB reports in this series has been to present
the joint findings of this group in a manner that both is interesting for readers with a
background in economics and management and mathematics and statistics and allows
non-expert readers to grasp the ideas of modern management science. Following the
interdisciplinary dialogue that has been going on between the researchers both aspects
are covered in an integrated way, hopefully providing a better access to modern topics
in management.

So far, three volumes of SFB publications have appeared in this series:

• Josef A. Mazanec, Helmut A. Strasser: A Nonparametric Approach to
Perception-Based Market Segmentation: Foundations. 2000.

• Christian Buchta, Sara Dolnicar, Thomas Reutterer: A Nonparametric Approach
to Perceptions-Based Market Segmentation: Applications. 2000.

• Herbert Dawid, Karl Dörner, Georg Dorffner, Thomas Fent, Martin Feurstein,
Richard Hartl, Andreas Mild, Martin Natter, Marc Reimann, Alfred Taudes:
Quantitative Models of Learning Organizations. 2002.

This volume completes the previous volumes on market segmentation, product
positioning, and target marketing and organizational learning with contributions of
SFB 010 on modeling consumer behavior, modeling financial markets, agent-based
simulation model, and statistical modeling and software development.

The Jubiläumsstiftung der Wirtschaftsuniversität Wien, founded in 1997 to mark
the 100th anniversary of the WU Wien, is particularly engaged in fostering all types
of research crossing disciplinary borders. By initiating a new series of publications
devoted to these principles the WU-Jubiläumsstiftung wants to set an example that a
major investment into an interdisciplinary style of research pays off. The authors left
no stone unturned to fulfill this “benchmark” function.

A. Taudes, June 2005



Contents

List of Contributors 13

Introduction
General scientific concept: aims of SFB 010 15

I Modeling Consumer Behavior 21

Basic Concepts and a Discrete-Time Model 23
1 Purpose and Modules of the Artificial Consumer Market as a Simula-

tion Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2 The ACM Macro Structure . . . . . . . . . . . . . . . . . . . . . . . 25
3 Set Theory, Brand Choice, (Dis)satisfaction and Adaptive Preferences 27
4 The ACM Micro Structure: Tracing the Individual Consumer . . . . . 29
5 A Formal Description of the Discrete-Time Model . . . . . . . . . . . 34
6 Attitude Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7 Dynamics of Perceptions . . . . . . . . . . . . . . . . . . . . . . . . 38
8 Measuring the State of a Consumer . . . . . . . . . . . . . . . . . . . 40
9 Choice of a Product . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
10 Word-of-mouth communication . . . . . . . . . . . . . . . . . . . . 43

A Continuous-Time ACM Model and Experiment 45
1 Description of the Continuous Artificial Consumer Market (CACM) . 45

1.1 Dynamics of the Perceptions . . . . . . . . . . . . . . . . . . 46
1.2 Ideal-Point Model . . . . . . . . . . . . . . . . . . . . . . . 49

2 Application and Results . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.1 Experimental Market Scenario and Model Calibration . . . . 50
2.2 Maximizing Profits under Alternative Advertising Impact

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Capturing Unobserved Consumer Heterogeneity Using the Bayesian Het-
erogeneity Model 57
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2 The General Heterogeneity Model . . . . . . . . . . . . . . . . . . . 57

7



8

2.1 Bayesian Estimation of the Heterogeneity Model under Het-
erogeneous Variances . . . . . . . . . . . . . . . . . . . . . . 58

2.2 Bayesian Model Comparison through Model Likelihoods . . . 62
3 An Illustrative Application from Conjoint Analysis . . . . . . . . . . 63

3.1 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 The Design Matrix . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4 Model Identification for the Selected Model . . . . . . . . . . 65

4 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . 67

II Modeling Financial Markets 71

Non-linear Volatility Modeling in Classical and Bayesian Frameworks
with Applications to Risk Management 73
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2 Description of Models . . . . . . . . . . . . . . . . . . . . . . . . . 75
3 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4 Maximum Likelihood Framework . . . . . . . . . . . . . . . . . . . 77

4.1 Estimation of Models . . . . . . . . . . . . . . . . . . . . . . 78
4.2 Out-of-Sample Loss Function Performance . . . . . . . . . . 78
4.3 VaR Application . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Bayesian Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.1 Basic Concepts and Notations . . . . . . . . . . . . . . . . . 87
5.2 Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3 MCMC Posterior Simulation . . . . . . . . . . . . . . . . . . 89
5.4 Bayesian Comparison Results . . . . . . . . . . . . . . . . . 90

6 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . 93

Expectation Formation and Learning in Adaptive Capital Market Models 99
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2 A Basic Capital Market Model . . . . . . . . . . . . . . . . . . . . . 101
3 Learning and Stability for the Homogeneous Agent Model . . . . . . 103

3.1 Sample Autocorrelation Learning . . . . . . . . . . . . . . . 103
3.2 Learning by Exponential Smoothing . . . . . . . . . . . . . . 105

4 Consistent Expectations Equilibria . . . . . . . . . . . . . . . . . . . 106
5 Adaptive Belief Systems . . . . . . . . . . . . . . . . . . . . . . . . 108
6 Conclusions and Discussion . . . . . . . . . . . . . . . . . . . . . . 110

III Agent-Based Simulation Models 113

The Artificial Economy: A Generic Simulation Environment for Hetero-
geneous Agents 115
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



9

2 The Simulation Manager . . . . . . . . . . . . . . . . . . . . . . . . 116
2.1 A Typical Simulation Cycle . . . . . . . . . . . . . . . . . . 116
2.2 Using XML for Simulation Settings . . . . . . . . . . . . . . 117

3 Agent Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.1 Wrapping Agents . . . . . . . . . . . . . . . . . . . . . . . . 119
3.2 How Agents Are Controlled during Simulations . . . . . . . . 120
3.3 Using XML for Defining Agent Interfaces . . . . . . . . . . . 121

4 Communication Structures . . . . . . . . . . . . . . . . . . . . . . . 122
5 Dynamic Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6 Control Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Disruptive Technologies: the Threat and its Defense 127
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3 Simulation Setup and Experimental Design . . . . . . . . . . . . . . 132
4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5 Defending Disruption . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.1 Model Extensions . . . . . . . . . . . . . . . . . . . . . . . 139
5.2 Experiments and Results . . . . . . . . . . . . . . . . . . . . 140

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Agent-Based Simulation of Power Markets 145
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
2 Market agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
3 The Aggregated Demand–The Consumer . . . . . . . . . . . . . . . 147
4 Modeling of the Producers . . . . . . . . . . . . . . . . . . . . . . . 149
5 Simulation of the Austrian Electricity Market . . . . . . . . . . . . . 152
6 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . 155

A Simulation Model of Coupled Consumer and Financial Markets 159
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
2 Overview of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

2.1 Integration and Stochasticity . . . . . . . . . . . . . . . . . . 161
2.2 Bounded Rationality and Information Usage . . . . . . . . . 162
2.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
2.4 Fundamental Value and Stock Price Inflation . . . . . . . . . 163
2.5 Managerial Compensation . . . . . . . . . . . . . . . . . . . 163

3 The Integrated Markets Model . . . . . . . . . . . . . . . . . . . . . 164
3.1 The Consumer Market . . . . . . . . . . . . . . . . . . . . . 164
3.2 The Financial Market . . . . . . . . . . . . . . . . . . . . . . 166

4 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
4.1 Model Parameters . . . . . . . . . . . . . . . . . . . . . . . 168
4.2 The Metropolis Algorithm . . . . . . . . . . . . . . . . . . . 169
4.3 Markov Chain Model Exploration . . . . . . . . . . . . . . . 170



10

4.4 Ideal Parameters . . . . . . . . . . . . . . . . . . . . . . . . 173
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5 Share Price Inflation and Product Hype . . . . . . . . . . . . . . . . . 178
5.1 Hypist Traders . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 179
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6 Managerial Compensation . . . . . . . . . . . . . . . . . . . . . . . 182
6.1 Compensation in the Integrated Markets Model . . . . . . . . 183
6.2 Risk Aversion . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 184
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Product Diversification in an Artificial Strategy Environment 195
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
2 Diversification Strategies . . . . . . . . . . . . . . . . . . . . . . . . 196
3 The Artificial Strategy Environment . . . . . . . . . . . . . . . . . . 200

3.1 Internal Factors . . . . . . . . . . . . . . . . . . . . . . . . . 200
3.2 External Factors . . . . . . . . . . . . . . . . . . . . . . . . 202
3.3 Cash Flow and Investment . . . . . . . . . . . . . . . . . . . 205

4 Simulation Experiments and Results . . . . . . . . . . . . . . . . . . 205
5 Conclusions and Further Research . . . . . . . . . . . . . . . . . . . 210

IV Statistical Modeling and Software Development 219

Parameter Estimation and Forecasting under Asymmetric Loss 221
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
2 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
3 Location estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
4 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Identification of multivariate state-space systems 233
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
2 ARX, ARMAX and State-Space Systems . . . . . . . . . . . . . . . 233
3 Parameterizations of State-Space Systems . . . . . . . . . . . . . . . 235

3.1 Data Driven Local Coordinates (DDLC) . . . . . . . . . . . . 238
3.2 Separable Least Squares Data Driven Local Coordinates . . . 239
3.3 Orthogonal Data Driven Local Coordinates (orthoDDLC) . . 239

4 Future Research Topics . . . . . . . . . . . . . . . . . . . . . . . . . 239

Factor Models for Multivariate Time Series 243
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
2 The Basic Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 243
3 Quasi-Static Principal Components Analysis (Quasi-Static PCA) . . . 245
4 Dynamic PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246



11

5 Quasi-static Frisch Model . . . . . . . . . . . . . . . . . . . . . . . . 246
6 Dynamic Frisch Model . . . . . . . . . . . . . . . . . . . . . . . . . 248
7 Reduced Rank Regression Model . . . . . . . . . . . . . . . . . . . . 248

Detecting Longitudinal Heterogeneity in Generalized Linear Models 253
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
2 Generalized Fluctuation Tests in the Generalized Linear Model . . . . 254

2.1 Empirical Fluctuation Processes . . . . . . . . . . . . . . . . 254
2.2 Test Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 256
2.3 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . 256

3 The Boston Homicides Data . . . . . . . . . . . . . . . . . . . . . . 257
4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Ensemble Methods for Cluster Analysis 261
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
2 Aggregation Based on Prototypes . . . . . . . . . . . . . . . . . . . 262
3 Aggregation Based on Memberships . . . . . . . . . . . . . . . . . . 264
4 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . 266

Open and Extensible Software for Data Analysis in Management Science 269
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
2 R: An Environment for Statistical Computing . . . . . . . . . . . . . 270

2.1 The language S . . . . . . . . . . . . . . . . . . . . . . . . . 270
2.2 Features of R . . . . . . . . . . . . . . . . . . . . . . . . . . 270
2.3 R Package Management . . . . . . . . . . . . . . . . . . . . 271

3 R and Management Science . . . . . . . . . . . . . . . . . . . . . . . 272
3.1 Market Segmentation, GLIMMIX and FlexMix . . . . . . . . 272
3.2 Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . 273

4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274



List of Contributors

Christian Buchta, Josef Mazanec, Ulrike Schuster, Jügen Wöckl
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Part I

Modeling Consumer Behavior



Introduction
General scientific concept: aims of SFB 010

Alfred Taudes

Special research area SFB 010 has been a major cooperative effort of researchers
of Viennese universities and their partners to increase understanding of Adaptive In-
formation Systems and Modeling in Economics and Management Science. Between
1997 and 2003, the research group aimed at improving

• quality of forecasting of economic time series

• capabilities for modelling consumer behaviour explanation of financial markets
and investment decision processes

• explanation of financial markets and investment decision processes

• efficiency of organizational structures and planned organizational change

• adaptivity of management decision support systems

• theory of neural pattern recognition and the pattern recognition methodology
for large-scale applications

through the development of an Artificial Economy (AE) to support strategic and tac-
tical decisions of firms and to study industry evolution.

The concept of an AE has been used as a generic term, which can be interpreted
at different levels as:

1. any mathematical model of economic phenomena

2. an economic model with learning agents

3. an economic model with learning agents in which the outcome of the interaction
is determined by simulation.

Within the SFB all three levels of an AE have been considered and integrated. Re-
search in the first two categories focused on data-analysis and analytical modelling, in
the work done on the third level both the modelling of learning behavior and simula-
tion were central. This definition of an AE relaxes standard assumptions like complete
information and full rationality: rational decision makers are replaced by agents who
have incomplete information, but are able to learn from empirical observations.

Introducing boundedly rational decision makers who update their believes on the
basis of learning rules, opens the door for many ad hoc assumptions on both the level
of ”irrationality” and the learning algorithm. In order to avoid any arbitrary approach,
work within the SFB strictly followed the two principles:

15
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1. any learning rules used are based on empirically observed behavior of real-
world agents;

2. AE models are calibrated in this way that they generate artificial time series that
mimic stylized facts observed in real markets.

These considerations motivated the SFB’s broad definition of an AE given above:
methods of advanced data analysis provide the basis for modelling markets and an-
alytical/forecasting capabilites of agents, while agent-based simulation models allow
the study of strategies and development of industries in an evolutionary setting.

In order to achieve the objectives set, expertise from both applied Initiatives and
statistical and tools Initiatives is required and interaction among the initiatives is nec-
essary. Thus, SFB 010 had an organizational structure covering three application-
oriented initiatives focusing on marketing, production and strategy and finance, re-
spectively, and two methodologically oriented initiatives (see Figure 1)

Figure 1: The SFB’s Organizational Structure

The basis for the research performed in the individual projects has been the meta-
level model of an AE shown in Figure 2. The meta-level of an AE developed by the
SFB builds on the competencies of the researchers within the SFB and the state of
knowledge on AEs in the literature. The AE consists of a product market, where sev-
eral Artificial Firms (AFs) compete in an oligopolistic setting. Each AF consists of
four adaptive agents: a corporate strategy agent, a production agent, a marketing agent
and a corporate finance agent. Each agent builds a model of its respective environment
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(technology space, customer perceptions and preferences, financial market) using a
particular learning style, makes decisions regarding his functional strategy and inter-
faces with the other agents in order to integrate the domain-specific strategies into the
AF’s corporate strategy. Thus the AF determines its production program and market
operation and implements the financial decisions.

Figure 2: The SFB’s Artificial Economy Meta Model

Through market research data the marketing agent infers profitable positions in
the space of customer perceptions and preferences, derives sales forecasts and sug-
gests technical specifications of products to be offered. The task of the production
agent is to estimate costs of product development and production programs. It builds
its expectations based on knowledge about a space of cost functions characterizing the
available technologies, where it has to choose between learning by doing, experimen-
tation and imitation (benchmarking). Both the marketing and the production agents
provide time series of sales and cost estimates for the corporate finance agent, who
calculates the Net Present Value of the strategies thus defined. It also makes financial
decisions based on its observation of the financial market (such as risk-adjusted inter-
est rates). Based on the firm’s overall strategy in terms of a harmonized production,
marketing and financial program, the actual sales, costs and profits are calculated on
the basis of the competitors’ actions and provided as feedback to the AF. Then, it is
natural to analyze what different strategies might emerge under different environmen-
tal settings and which strategies are successful under what conditions.

The motivations for this type of model of an AE are as follows:
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Focus on managerial issues involving different function areas: This design de-
cision has been based on the nature of the common projects, the integration of previous
work and the competencies of the researchers within the SFB. A complete model of an
AE, encompassing detailed models of, e.g., a labor market or government intervention
has not been judged feasible, but rather a model of Artificial Markets (AM). We feel
that this focus has been a unique selling proposition to the SFB, as most other works
on AEs have a macroeconomic policy focus and deal with firms’ strategies in a rather
simple way, e.g. by assuming no product innovation at all.

Use of adaptive models: It is another unique feature of the SFB’s AE model as
compared to previous approaches that the AF’s agents are capable of inventing new
strategies through learning. The appropriate modelling has been done in cooperation
between the methodologically oriented and the application-oriented Initiatives. Of par-
ticular interest are experiments with different levels of “bounded rationality”, ranging
from simple imitative or adaptive response behavior to rationality based on heuristics
developed in management science.

Development of a common computing environment: A common framework to
facilitate distributed software development and to enable simulations of the AM model
is indispensable for such a project. The simulation environment has been implemented
using an object-oriented style of programming, allowing for distributed objects (over
a cluster of workstations or even the Internet).

Definition of a realistic, data-driven environment: The empirical validation of
results obtained via the simulation of Artificial-Life models is a difficult task. This
topic has been partially addressed through a careful definition of the AF’s environ-
ment – via the integration of knowledge about the topology of the respective search
spaces gained in empirical studies using advanced data-analytic methods. The goal
has been to develop models that are simple enough to allow a controlled simulation
and validation but nevertheless realistic enough to derive findings transferable to real-
world settings. Another criticism of Artificial-Life simulation models is the lack of
reliable data on micro level behavior. One way to deal with this problem is to com-
pare the characteristics of the time series generated on the macro level with those of
empirically observed time series. This has been another area of cooperation between
the methodologically oriented and the application-oriented Initiatives.

The SFB’s spectrum of research approaches has been the basis of four integrative
projects, each one combining the efforts of several initiatives, where the task of the
application-oriented initiatives has been the development of relevant theories, agents
and modelling environments, while the methodology-oriented groups have been fo-
cusing on computing, simulation, learning, time series and data analysis.

Project Unobserved Heterogeneity dealt with cross-sectional heterogeneity as
typically found in marketing data and longitudinal heterogeneity (structural change).
Encompassing Initiatives 1, 2 and 3 a broad range of models including mixture mod-
els, non-parametric methods and clustering by ensemble methods were investigated.
Also integrated models capturing both types of heterogeneity and the test of the mod-
els against artificially generated data have been pursued.

In project Empirical Capital Market Analysis a number of hitherto unexplained
stylized facts observed in financial markets has been studied using methods from fi-
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nance, statistics and agent-based computing by Initiatives 1, 2, and 6. A major topic
of this effort was the study of stochastic volatility, other areas of research have been
the modelling of conditional distributions for asset returns, factor models and return
and volatility forecasts and the empirical analysis of the governance structure of in-
vestment funds.

Project Agent-based Computational Economics aimed at using the SFB’s AE to
study firms’ strategies and industry evolution by agent-based simulation models. In
particular, the effect of organizational structures for new product development, tech-
nology management, managerial incentive structures, benchmarking, product portfo-
lio etc. has been investigated.

While the phenomena studied in this project were observed in different industries,
project Energy Markets put an emphasis on the currently transforming energy sector.
This development necessitates novel forms of forecasting, risk management, market
design and strategy (capacity, cooperation, market entry). Respective methods applied
here have been time-series analysis and agent-based simulation.

This reader contains work done in all four projects, organized into the sections:
Modeling Consumer Behavior, Modeling Financial Markets, Agent-Based Simulation
Models, and Statistical Modeling and Software Development.



Basic Concepts and a Discrete-Time Model

Christian Buchta and Josef Mazanec

1 Purpose and Modules of the Artificial Consumer Market as a Simulation En-
vironment

It is not the purpose of the Artificial Consumer Market (ACM) to mimic any “real”
consumer population. Rather it aims at constructing an artificial environment at the
marketing front end of the Artificial Firm that puts the AFs under challenge to function
and survive as learning organizations. Therefore, the ACM duplicates only a selected
number of typical properties of consumer markets that are deemed crucial for the
success of marketing strategies.

The simulation environment contains two modules: (1) the Artificial Consumer
Market (ACM) and (2) analytical and strategic marketing agents of the Artificial Firms
(AFs) including recent methodology for conjoint analysis (Frühwirth-Schnatter and
Otter, 1999) and perceptions-based market segmentation (Mazanec and Strasser, 2000;
Buchta et al., 2000).

The simulation environment introduces the refinements needed to comply with
contemporary consumer theory and structural equation models of buyer behav-
ior (Howard and Sheth, 1969; Engel, Kollat and Blackwell, 1973; Howard, 1977;
Mazanec, 1978; Kroeber-Riel, 1980; Bagozzi, 1986; Myers, 1996). Particularly, it
distinguishes between the brand attributes (which are only observable to the AFs as
binary yes/no reactions) and the underlying latent attitude dimensions. This leads to
a multi-level system for the different “languages” of advertising and consumers ex-
pressing their everyday experience, the consumers’ choice criteria rooted in long-term
memory, and the jargon of the R&D engineers in the AF. The ACM models the brand
perceptions on three levels: latent attitudinal dimensions, verbal response generating
probabilities and (redundant sets of) observable indicators of the latent dimensions.
The consumers’ acquire product comprehension by being exposed to market com-
munication about (modifications of) brand attributes. These bundles of perceived at-
tributes are indicative of a set of unobservable latent attitude dimensions. Thus, the
consumers preserve a condensed brand profile in a latent attitude space, which is im-
perfectly retrieved by the AFs owing to the consumers’ limited ability to express their
brand evaluations. This is a very realistic setting that puts the AFs under pressure to
explore the attitude space by trial and error. The degree of ambiguity of the brand
attribute indicators is systematically adjustable. It may be subject to experimentation
with “would-be worlds” (Troitzsch, 1999) confronting the AFs with an either easily
decodable or a rather fuzzy consumer response. Discovering the type of a “learning
organization” that is more likely to survive under these challenges is an intriguing
research question.

The Artificial Consumer Markets-Artificial Firm interface tackles this problem
by providing a link between the latent attitudinal dimensions and the technical fea-
tures, which is unknown to the AF. Both the AF’s product improvement program and
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market communication influences the consumers’ brand perceptions, attitudes and
choices. Both the product features detected during consumption and the advertising
stimuli are input to the consumer’s sensory, perceptual and evaluative systems. As
consumers dislike to persist with an inconsistent attitudinal system they have to settle
to a “compromise” post-choice attitude. Reconciling and weighting the technology-
induced and the advertising-caused positions in attitude space also allows for simu-
lating “technology-driven” vs. “market-driven” environments. Production/technology
and marketing/promotion set mutual restrictions and reinforce or dampen each other.
The brand perceptions and choice model makes a distinction between the consumers’
(directly unobservable) abstract product comprehension (“long-term memory”) and
the observable consumer and advertising vocabulary. The attributes of the obser-
vational language (“short-term memory”) are subject to communicative persuasion
and periodically measured in consumer surveys. Advertising-induced changes in the
strength of belief regarding a brand possessing a particular attribute are nonlinearly
fed back into the long-term memory.

To sum up the following conceptual building blocks characterize the ACM:

• According to the tradition of product positioning theory the consumers’ brand
perceptions and evaluations (attitudes) are modeled as points in a latent space,
which is unknown to the competing firms and can only be figured out by pro-
cessing observable attribute assignments. Thus the ACM differentiates between
the consumers’ redundant and fuzzy manner of talking about a particular prod-
uct class and the managers’ and product engineers’ condensed “expert” lan-
guage. Brand perceptions are initialized in a segment-specific manner.

• Preferences are incorporated into the brand space as “ideal points”; unlike con-
ventional ideal-point models, however, the ACM employs a modified unidi-
rectional model to allow for irrelevant attitude dimensions without having to
distinguish between desired and undesirable dimensions. The preferences are
segment-specific and not necessarily linked to the consumer perceptions of ri-
valling brands.

• The consumers’ “cognitive algebra” comprises compensatory as well as non-
compensatory choice rules. Consumers in the ACM follow simple rules requir-
ing very modest assumptions about the consumers’ information processing and
attitude formation. These rules are operative on the disaggregate level and char-
acterize what economists may term a boundedly rational being. It is imperative
that the ACM does not imply just one built-in decision mechanism but allows
for a variety of rules and consumer heterogeneity in terms of decision styles.

• The ACM consumers develop pre-choice and post-choice attitudes towards the
competing brands. They form consideration sets of acceptable brands based on
the expectations aroused by advertising and on their personal preferences. They
make random decisions in case of several brands being equally attractive and
equally priced.
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• Attitude change depends on confronting the brands’ technology induced eval-
uation with the perceptual profile aroused by advertising. Consumers who pur-
chase a brand contribute to disseminating the product comprehension and the
knowledge about the brand’s technological quality. The technological proper-
ties are not part of the consumer language and never experienced individually
and isolated from each other. Rather the consumers experience them ’holisti-
cally’ by building a technology induced attitude, which may diverge from the
expectations mediated by advertising.

• Market communication happens through media advertising and through word-
of-mouth. Advertising carries nontechnical persuasive information. According
to what is known from communication research word-of-mouth fulfills a dou-
ble function. The communicator’s (opinion leader’s) relay function guarantees
that knowledge about the brands’ technical properties gets disseminated. At the
same time the communicators influence the recipients’ decision making by re-
porting their valuing of the brands’ performance. This is achieved by spreading
their personal (dis)satisfaction experience.

• The (dis)satisfaction experienced after buying a brand governs the consumer’s
intention to repurchase, the propensity to spread word-of-mouth messages, and
the persuasibility regarding future advertising. A consumer who finds his ex-
pectations fulfilled is likely to develop loyalty. In the ACM this is equivalent
to keeping a brand in one’s evoked set of purchasing alternatives despite one
or more competing brands becoming more attractive. A disappointed consumer
may (temporarily) ban the brand from his consideration set of buying alterna-
tives; then it is disregarded irrespective of its advertising pressure. Disappoint-
ment nourishes the consumers’ reactance to persuasive advertising. Personal
communication is more likely to occur for more extreme (dis)satisfaction lev-
els. Exaggerated advertising claims and unfulfilled promises thus feed dissonant
information into personal communication channels and also provoke dissonance
of the non-buyers receiving such messages.

• A number of sensitivity parameters governs the depth and accuracy of the con-
sumers’ information processing and cognitive effort. These parameters cap-
ture the influence of the involvement in the product class (Kroeber-Riel, 1980,
p. 315). There is no separate variable for brand involvement (Mühlbacher,
1988). The involvement is consumer-specific to allow for experimental settings
with different involvement segments.

2 The ACM Macro Structure

Figure 1 highlights the macro structure. It assists in describing the ACM dynamics
and the data flow between the levels of latent constructs and observable indicators.

It is important to generate starting values of the ACM according to a scenario deter-
mined by the experimental design. Many experiments require an “equal opportunities”
scenario, where no brand/firm benefits from some in-built competitive advantage, but
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Figure 1: ACM macro structure

lives on its own analytical skills and imaginative strategies. Another requirement is
the tuning of the measurement models, as the ACMs should also differ with respect
to the accessibility of the latent attitude dimensions. One market may exhibit a “sim-
ple structure” in factor-analytic terminology, others may be rather obscure in terms of
the perception indicators available to the AFs. Hence a “classic” factorization scheme
comes to mind first. It expresses the observable product attributes as non-linear com-
binations of a small set of (attitudinal) factor scores. The loadings matrix introduces
intercorrelations into the perceptual attributes assuming orthogonal factors and un-
correlated attitudinal dimensions. Thus, experimental variations of the empirical ac-
cessibility of the brand attitudes in the initial period may either set the values of the
loadings matrix or define the desired intercorrelations of perceived attributes. Alter-
natively, a nonlinear mapping by means of some neural network architecture may be
applied.

The ACM macro structure in Figure 1 originates from combining a factor-analytic
model (which is very ordinary in product positioning theory) with a simple proba-
bilistic independence model for generating the binary observables. As an extension,
a latent-variable threshold model (Long 1997; Fahrmeir and Tutz, 1997) may be em-
ployed that allows for experimenting with group-specific or individual threshold pa-
rameters. The consequence is that the product attributes are not measured on pseudo-
interval rating scales. They get squashed into probabilities, which lead to either af-
firmative or negative consumer response in terms of yes-no statements. The loadings
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matrix determines the distinctness of the consumers’ attitudinal system. By setting
their values the experimenter may create a product class where the attitudinal dimen-
sions are easy or hard to recognize by the AFs.

For the initial period it is imperative to set out with a scenario that conforms pre-
cisely with the experimental design. As mentioned above this will most frequently be a
setting, where no brand or firm outperforms the other AFs because of implicit compet-
itive advantages. The AFs product improvement and promotional spending decisions
in the initial period change the brands’ positions in the consumers’ latent attitude
space. The mass communication via media advertising uses non-expert, unprecise and
emotionally loaded vocabulary. Through this language filter the AFs initiate changes
of the brand positions in attitude space. If an advertising claim loses its sustained me-
dia support, the probabilities (beliefs) decay and the strengths of the perceived brand
attributes decrease drastically.

Product variations and changes in the brands’ technical features become known to
the buyers and to those consumers receiving messages from buyers through personal
communication. The consumers do not directly recognize these technical features,
which are defined in production expert language. But they make a technology-based
evaluation resulting in a technology induced attitude. The technical features are linked
to the consumers’ latent attitude space via a non-linear transformation held constant
during a series of simulation cycles but unknown to the AFs. They have to figure
out how technology influences the consumers’ product evaluation as best they can.
By sorting, filtering, and weighting all these evaluative materials (“reconciling”) the
consumers arrive at a post-purchase and/or post-communication attitude. Again it is
reflected by the brand’s position in the latent attitude space. And again, it is not directly
observable, but has to be measured by verbal (or pictorial) indicators. In compliance
with standard psychometric modeling the necessary strength of belief must grow ex-
ponentially for generating unity values on the measurement level with near-certainty.

3 Set Theory, Brand Choice, (Dis)satisfaction and Adaptive Preferences

In earlier versions of the simulation environment the consumers followed a cognitive
algebra that allowed for three different rules of brand choice: compensatory, and non-
compensatory conjunctive or disjunctive. Product perceptions and preferred attributes
were involved in the consumers’ utility calculus; product knowledge was subject to
learning, preferences were fixed. Also the consumers did not have a memory of their
brand choices made in past periods. Refinements regarding the role of preferences
in the consumers’ brand choice decisions are now implemented. It is straightforward
to introduce variable preferences dependent on adaptive aspiration levels. While the
’learning of preferences’ is still a largely unexplored notion in traditional economics
(Brenner, 1999, p. 117) the Artificial Consumer Market functions more realistically
as far as these perceptual and preferential dynamics are concerned. Preferences are
portrayed in the latent attitude space as “ideal points”. A consumer’s ideal point for a
product class indicates the combination of his desired levels of each attitude dimen-
sion. This is equivalent to an aspiration level that varies according to the consumer’s
product knowledge and experience. An unrealistically high aspiration level cannot be
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maintained without continuing disappointment. A modest aspiration level easily ful-
filled by an average purchase alternative is likely to rise as consumers learn to acquire
better value for money.

Any combined marketing-production model benefits from the numerous studies
that have been conducted in (service) quality research. Most of the empirical studies
were inspired by the SERVQUAL model (Parasuraman, Zeithaml and Berry, 1985,
1988; Zeithaml and Berry, 1988). Irrespective of all the critical comments, which are
rightly brought forward against the SERVQUAL concept, it has its merits as far as
it triggered off a lively discussion about the construct of “perceived (service) qual-
ity”. One of the lessons seems to be that a construct “perceived quality” separate from
the construct of attitude toward products or services is highly superfluous (Mazanec,
1997). However, the discussion clarified the views about “transaction-specific” ver-
sus long-term attitudes and reiterated the need for focusing on attitudinal (pre and
post-choice) dynamics. The conceptualization of “perceived quality” as a discrepancy
between expectations and experiences (expectancy-disconfirmation approach) raised
a number of criticisms, mainly from the measurement point of view. A “performance-
only” concept (cf. SERVPERF as propagated by Cronin and Taylor, 1994) seems
to be clearly preferable in perceived quality field research. In a simulation environ-
ment like the ACM the experimenter need not care about the consumers’ ability of
correctly remembering their pre-purchase expectations after acquiring consumption
experience. He is in control of modeling brand expectations and performance inde-
pendently of when and how often they are measured. While perceived quality may
be dispensable, the (dis)satisfaction construct is not. The ACM consumers pursue the
expectancy-disconfirmation paradigm (Cardozo, 1965; Oliver and DeSarbo, 1988) by
deriving (dis)satisfaction from (un)fulfilled product claims. The dynamic aspects of
(dis)satisfaction are consistent with equity theory (Oliver and Swan, 1989a,b) regard-
ing the adaptation of consumers’ aspiration levels to the market reality (Trommsdorff,
1998). The gradual adaptation of expectations characterizes a smoothly evolving mar-
ketplace (Johnson, Anderson and Fornell, 1995). For achieving structural breaks in a
simulation run exogenous shocks leading to a disruption in the consumers’ preferences
are admissible in the ACM.

Actually, the concept of (dis)satisfaction plays a central role in the consumer
model. It is the key factor for conducting the joint marketing and production sim-
ulation experiments. The brand positions in the (latent) attitude space are governed
by the competitors’ communicative and technological actions and the consumers’ re-
actions. The AFs are put under pressure to coordinate and harmonize their market
communications and product improvement decisions, as two different organizational
units are in charge of these processes. The AFs may conduct a “perceived quality”
or a satisfaction study where they try to measure the gap between expectations and
performance. The ACM provides this information about consumer (dis)satisfaction in
a very realistic manner. It is worded in the consumers’ fuzzy language the same way
their latent brand attitudes are reflected by a redundant set of observable indicators
for perceived attributes. A composite (unidimensional) measure of (dis)satisfaction
complements this set of attribute-specific indicators.

The consumers on the artificial market experience product (dis)satisfaction when
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the technical/functional product features (fail to) match the advertising claims. Hence
they build up loyalty, or suffer from dissonance. Consumer theory never makes gener-
alizable propositions on a measurement level higher than ordinal. For the simulation
experiments a more precise specification is required to implement relationships such
as “the higher the amount of dissatisfaction the lower the probability of repurchase”. It
is of paramount importance, however, to realize that a theory-driven gain in precision
always excels an arbitrary parameterization. For incorporating the consequences of
brand (dis)satisfaction the consumer model takes recourse to elementary “set theory”.
The concept of consideration sets with its numerous variants originates from Howard
and Sheth’s concept of the “evoked set” (1969), the individual consumer’s group of
purchasing alternatives comprising not more than 5 to 7 product brands. In the sequel
consumer research invented a variety of “sets” (see the whole zoo of awareness, inert,
inapt, consideration, or choice set concepts explained by Crompton, 1992 or Goodall,
1991).

Hauser and Wernerfelt (1990) summarize results on the “consideration set phe-
nomenon” and admit that it “is critical to the predictive ability of quantitative models”
(p. 393f.). The ACM artificial consumers resemble their real counterparts in forming
brand sets according to their stage in the purchase-repurchase cycle. The consumers
on the ACM do not keep records of their intrinsic brand choice probabilities. Rather
than bookkeeping they like to follow very simple decision rules. They build consid-
eration sets of equally attractive buying alternatives that exceed their aspiration levels
in terms of (price weighted) brand attribute dimensions. A second filter works in ab-
solute terms, as consumers discard a brand surpassing their reservation price for the
product class. Consumption experience, either self-made or mediated through word-
of-mouth, changes the consumers’ composition of consideration sets. Thus learning
effects are responsible for two dynamic phenomena: They lead consumers (1) to (tem-
porarily) barring a brand from their consideration sets where it does not come up
to the expectations solicited by advertising; or, (2) they make consumers maintain a
high-performing brand in their sets even when competing brands advertise more at-
tractive brand profiles. Fairly elaborate learning regimes for the consumer agents in the
AE such as adjusted components of Thomas Brenner’s “Variation-Imitation-Decision”
(VID) model (1999, pp. 71–89) have been adopted. The consumers communicate with
each other about their brand usage experience and also exhibit imitative behavior by
recognizing other peoples judgments of product quality.

4 The ACM Micro Structure: Tracing the Individual Consumer

The ACM microstructure is easily apprehensible on the disaggregate level of pur-
chasing and consumption by watching an individual consumer’s trajectory through
these processes. Figure 2 highlights the stages in the consumer’s decision making.
Particularly, it indicates the feedback loops which govern the adaptive behavior of the
consumers on the ACM. The loops are “intra-personal”, such as aspiration level adap-
tation or accumulating reactance against persuasive advertising, or “inter-personal”
such as spreading word-of-mouth messages to fellow consumers. In a realistic set-up
of an ACM the AFs are facing the rationality restrictions imposed on the consumer’s
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brand choice. Satisficing behavior instead of utility maximization prevails in the brand
evaluation stage and ties are broken up by random selection on the disaggregate level
of the individual consumer. In the post-choice evaluation, however, the consumers are
relentless in comparing expectations and actual brand performance. In this stage they
also reward over-fulfillment of advertising promises. This is consistent with the global
objective of the Artificial Economy project. If one aims at analyzing the AF’s poli-
cies of developing a coordinated approach to corporate planning, the consumers on
the ACM should be particularly sensitive to a misfit in the AF’s technology-marketing
policies.

Process advertising messages, update the perceived brand attributes
according to the relative advertising pressure, weight with reactance,

form a new pre-purchase attitude

Build the choice set by removing brands exceeding the reservation price

Build the consideration set according to the advertising claims and the
aspiration level, remove brands remembered to fall short of expectations

and add those experienced as satisfactory

Process word-of-mouth communication from buyers, learn about the
technical features and from the buyers' satisfaction

Select one brand, compare expectations and performance, experience
satisfaction and add the brand to the long-term set, or suffer from

dissatisfaction and bar the brand from the long-term set

Launch word-of-mouth activities and release information on the brand
purchased, tell about the degree of (dis)satisfaction

Eliminate dissonance caused by inconsistent product experience, word-of-
mouth and advertising, reconcile the brand profiles into a consonant (post-

purchase) attitude

Update the reactance level

Adapt the aspiration level

Figure 2: Communication, learning and decision-making on the ACM
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It has been emphasized previously that it is the authors’ ambition to conceive the
ACM as parsimonious as possible and to avoid unnecessary simulation parameters. To
accommodate all the empirical phenomena itemized in Figure 2 several modification
are applied to the standard ideal-point model (cf. Myers, 1996; Hruschka, 1996). The
consumers decide on the brands to enter their consideration sets according to a mod-
ified version of the ideal-point model, named the Unidirectional Ideal-Point Model
with threshold (see Figures 3 and 4). The UIPM combines a spatial approach for rep-
resenting attitudes with aspiration level learning.
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Figure 3: Unidirectional ideal-point model with threshold d1 = d2 = 0 (city-block
metric)

Imagine two (price weighted) attribute dimensions d1and d2 in a latent attitude
space with a city-block metric. The attitude scores increase from left to right and
from bottom to top. Focus on the right upper quadrant first, indicated by ++. The
ideal point d1 denotes an individual or group-specific aspiration level thus introducing
preferences into the brand space. Contrary to the conventional ideal-point model there
are no spherical, elliptical or diamond-shaped iso-preference curves surrounding an
ideal point. Over-fulfillment of the aspiration level neither increases nor decreases a
brand’s likelihood of entering the consideration set. This means that the consumers in
the ACM are unaware of any product attributes exhibiting an inverse u-shaped utility
function. They are more likely to accept a brand the more it approaches their aspiration
levels “from below”. Brands exceeding that level are equally welcome (unless over-
priced) and induce the consumers to raise their aspirations.
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Figure 4: Moving along an attitude dimension

Figure 4 shows how the attractiveness of a brand develops moving along an atti-
tude dimension. It stays meaningless before it crosses the irrelevance-relevance thresh-
old and then gains more and more strength of belief until it reaches the aspiration level
needed for being considered an attractive buying alternative. Unidirectionality is not
an illegal simplification. It captures one of several ACM features that may be inter-
preted as criteria of bounded rationality. Any product attribute can be reformulated to
comply with this simple cognitive algebra. (If you like your tea (beer) neither luke-
warm nor boiling (frozen) you look for claims promising “adequate temperature” that
will move your expectations closer to your aspiration level.) Unidirectionality is in
conformity with the measurement model of binary indicators for the latent attitude
dimensions. To assume a realistic usage of binary attributes, the “zero” answer should
be able to capture the composite meaning of “does not fit” and “irrelevant”. If a con-
sumer rates a brand and more indicators of an attitude dimension get unity values, the
brand’s position shifts toward positive infinity. Somewhere in this shift the aspiration
level ought to become relevant for determining the consumer’s preferences where the
origin of the attitude space is a natural threshold.

In principle, an adaptive aspiration level may also be introduced into the conven-
tional, i.e. “n-directional”, ideal-point model. If the attitude space exhibits a city-block
metric the aspiration level does no longer collapse into the ideal point. Instead, it sur-
rounds the ideal point in a diamond-shaped iso-preference curve. The brands inside
the “diamond” area are equally eligible for consideration. This results in two separate
dynamic effects: (1) the shifting of the ideal point dt → dt+1 when expectations rise,
and (2) the changing of the “satisficing threshold” when tolerance grows or shrinks.

In Figure 3 brand q1 will enter the consideration set of a consumer pursuing an
aspiration level (ideal point) d1 in the ++ quadrant. Because of the dimension rele-
vance threshold at zero (origin of the coordinate system) the situation is different in
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the other three quadrants. For a consumer with an aspiration level d3 neither of the
two dimensions is relevant for his brand preferences. For a person characterized by
d2 in the second and d4 in the fourth quadrant only one of either d1 or d2 influences
the consideration set. Movements along the relevant dimensions (see the arrows for
the most preferred brands) change the consumer’s willingness to consider this brand.
As one brand at least exceeds any of the aspirations consumers will learn to raise their
expectations.
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Figure 5: Noncompensatory schemes in the unidirectional ideal-point model (city-
block metric)

The UIPM follows a compensatory approach. However, there is ample empirical
evidence (Bettman, Luce and Payne, 1998) that suggests to relax the rather strong
assumption of a fully compensatory scheme. The brand’s excellent position in one
attitudinal dimension may offset poor performance in another dimension once it has
passed the relevance threshold. In the consideration stage, however, over-fulfillment
by exceeding the aspiration level in one dimension does not further contribute to make
the brand enter the set of acceptable buying alternatives or to compensate for par-
tial failure in another dimension. A random choice occurs if the acceptable brands
also charge identical prices below the consumer’s reservation price. The consumer’s
inability or unwillingness to make meticulous judgments in the pre-choice stage is
one concrete aspect of the operationalization of “bounded rationality”. In the post-
purchase stage the consumption experience enforces a higher level of awareness for
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the brand attributes including the evaluative dimensions that may have been ignored
or neglected previously. A larger amount of cognitive effort is subjectively justified.
Consumer learning in the post-choice phase benefits from a richer and more reliable
input than just advertising or word-of-mouth.

Noncompensatory choice rules are needed to achieve a realistic mixture of deci-
sion styles in the consumer population. Figure 5 demonstrates how a conjunctive or a
disjunctive decision rule (Hruschka, 1996; Roberts and Lilien, 1993) conforms with
the aspiration level concept. An additional satisfaction threshold is needed to imple-
ment these rules. Under the conjunctive regime the consumer expects an acceptable
brand to offer a (modest) minimum performance in each relevant (i.e. with aspira-
tion > 0) evaluative dimension. The disjunctive rule decider requests a (fairly high)
performance in at least one relevant dimension. Thus the “ideal point” marks the con-
sumer’s preferences and sets the aspiration target; the satisfaction threshold controls
the brands’ entrance into the consideration set. In his post-purchase reasoning the non-
compensatory consumer is likely to increase his cognitive effort. The satisficing prin-
ciple is welcome to facilitate choice. Once the choice has been made much more fac-
tual knowledge assists in readjusting what may be desired (aspiration level) and what
is satisfactory for becoming a new choice alternative. Both, aspiration level and sat-
isficing threshold, are subject to learning with a nice option of convergence when the
brand comprehension and the consumers’ capability of discriminating among brands
evolve.

The following composition of consideration sets results from the aspiration levels
together with the UIPM, conjunctive and disjunctive decision styles in Figure 5:

Table 1: Composition of consideration sets by decision styles.
Ideal point UIPM conjunctive disjunctive

d1 q1 q1, q2, q3 q1, q2, q3, q6, q7

d2 q1, q7 q1, q2, q3, q7, q8 q1, q2, q3, q7

d3 all all all
d4 q1, q2, q6 q1, q2, q3, q4, q5, q6 q1, q2, q6

5 A Formal Description of the Discrete-Time Model

In the following sections we present a formalized view of the simulation environment,
on the one hand by discussing the assumptions and constructs of the ACM, and on the
other, by giving proper interface definitions and an overview of the model’s calibration
needs. Although the latter is closely linked to the definition of market scenarios, we
defer such a discussion to future work. Let us start with an overview of the “technical”
assumptions of the ACM:

• In a simulation the set of consumers and the set of firms participating in the
market is constant.
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• The firms operate on a single product class given a fixed technological environ-
ment, in the sense that there is a bound to product improvement.

• Market time is thought of as synchronization points for information exchange,
as well as periods of information processing. A period is divided into (consec-
utive) steps of information processing.

• The firms are assumed to act on segments of consumers. A segment is targeted
with exactly one product (brand), and the product is available only to the con-
sumers of a segment. Alternatively, we may assume inseparable markets where
all the products are visible and available for all the consumers. A product is a
bundle of technical (feature), advertising (claim, budget), and price information.

• The term brand, in the sense of the name (identifier) of a product (cf. Kotler,
1986) is meant to represents the firm’s long-term concept of a product, which
we use synonymously with product. We assume a fixed set of brands and that
each firm’s set of brands is constant for a simulation.

• A consumer responds with the choice of exactly one product, and is periodically
surveyed on the perceptions and evaluations of the products on the market.

• A market-wide reservation price and a reference price for advertising and the
production input factors must be set.

In the following discussion we require an extensive notation: consumer, product
and attribute indices will be used as one block, followed by comma separated step and
time indices. Following common usage, vectors (scalars) will be in lowercase bold
(normal) type, matrices in uppercase bold. In a matrix context vectors are always of
“column” type but for the scalar product of two vectors we use the “dot” notation.
Variables that denote memory constructs will have a bar to express that they are (ex-
ponential) time averages, and variables of the interface level will be set in a different
type.

6 Attitude Formation

Transformation: Initially, let us denote the following non-linear mapping from the
reals to the unit interval as the squashing function, and assume in the context of vectors
and matrices it is a function of their elements, i.e.

ϕ(x) :=
1

1 + exp(−x)
, x ∈ R. (1)

Note, we will also need the linear transformation 2ϕ(x) − 1 to the interval (−1, +1),
which is equivalent to the hyperbolic tangent function. Further, we agree to denote the
inverse function by ϕ−1(·).

Basic Model: Let qij,∗,t ∈ RL, denote the ith consumer’s attitude to product j
(the position in the latent space of attitudes), in the ∗th step of attitude formation in
period t, and pij,∗,t ∈ (0, 1)K , K ≥ L the consumer’s (manifest) perception of the
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product. On the one hand, a consumer’s perception changes in response to advertis-
ing, pij,0,t → pij,1,t (pre/post-advertising perception), and on the other, the attitude
changes in response to product experience, qij,0,t → qij,1,t (pre/post-purchase/word-
of mouth attitude). Attitudes and perceptions are related via the (noisy) non-linear
mappings:

qij,0,t := Aiϕ
−1(pij,1,t) + εεεi,t, Ai ∈ R

L×K , (2)

pij,2,t := ϕ(Biqij,1,t), Bi ∈ R
K×L. (3)

Thus, a product’s position in attitude space is a (usually information reducing) pro-
jection of a consumer’s perception, and vice versa. Note that the linear mappings are
meant to differ at most between groups of consumers, as well as the independent noise
components εil,t ∼ N(0, σi) with σi � 1. Finally, attitude formation is ‘embedded’
in time by pij,0,t+1 := pij,2,t, and we can summarize the cycle of the basic model by
the following steps of information processing

pij,0,t → pij,1,t → qij,0,t → qij,1,t → pij,2,t = pij,0,t+1.

Let us assume AiBi = E (the L × L identity matrix). Obviously, this is a simpli-
fication of the unknown effect of information reduction: in fact, if we assert to know,
say, Ai we would have to make a choice with respect to Bi each time the attitude
changes. By the above assumption we hypothesize that the (transformed) perceptions
live in a linear subspace, and if advertising tries to influence consumers ‘out’ of this
space they ‘reconcile’ to the ‘closest’ perception in this subspace. The corresponding
vector is known to be the orthogonal projection onto the subspace of Ai

1, and fol-
lowing from above, this is the linear mapping BiAi. and, we see that the effect of
advertising is just BiAi(ϕ

−1(pij,1,t)− ϕ−1(pij,0,t)). Obviously, there is no effect if
pij,1,t is orthogonal to the subspace. More general, the angle of this vector with its
projection gives us a measure of the loss in effectiveness due to ‘disorientation’. We
conjecture the latter becomes more likely if L � K , and advertising does not bother
to learn the consumers’ perceptual redundancies.

Techitude: A product’s technical features (attributes) pppj,t ∈ (0, 1)K̃ , are con-
densed into a position in attitude space in the same way as above. Let cij,t ∈ {0, 1}
denote if the product was chosen, and thus the information is available, assume the
same type of noise as above, and let us define the position as

q̃ij,0,t :=

{
Ãϕ−1(pppj,t) + ε̃̃ε̃εi,t, Ã ∈ RL×K̃ : cij,t = 1

qij,0,t : else
. (4)

Note, the step index indicates the situation after purchase but before word-of-mouth
communication. By the latter a consumer may obtain additional information (see
Equation (34) in Section 10), but if he does not, his attitude is pre-defined to remain
the same (see Equation (5)).

1From the singular value decomposition A = LWM we see that a perception is projected onto the
coordinate system of the manifest space M, the coordinates are weighted by W, and then are projected
onto the coordinate system of the latent space L.
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Reconciliation: A consumer adjusts his current expectation (pre-purchase/post-
advertising attitude) to new information on the performance of a product (either ac-
quired directly by consumption (usage), or indirectly by word-of-mouth communica-
tion), but only on relevant attitudinal dimensions. Let us denote a consumer’s current
aspiration level on the lth dimension as d̄il,t ∈ R, define zero to be the threshold
of relevance, and the rate of adjustment as ηi1 ∈ (0, 1] (depending on a consumer’s
involvement), and let us define the change in attitude as

qijl,1,t :=

{
ηi1q̃ijl,1,t + (1 − ηi1)qijl,0,t : d̄il,t > 0

qijl,0,t : else
. (5)

Note, now the step index indicates the situation after word-of-mouth communication.
Desire: The consumers are assumed to adapt their aspiration levels d̄i,t ∈ RL

to their current market induced desires which are as strong as ‘reasonably possible’.
Further there may be (temporary) external influences to change a desire dddi,t ∈ RL.
Let ηi4 ∈ [0, 1] denote the rate of adaptation to the current desires (depending on
involvement), J the set of products, and let us define the change in aspiration as

d̄i,t+1 := ηi4 max
j∈J

(qij,0,t) + (1 − ηi4)(d̄i,t + dddi,t). (6)

Note, the market induced desires are advertising biased. Thus, if we want to model
a more ‘consolidated’ view of the market, as suggested in Section 4, we can use the
‘reconciled’ attitudes that include information obtained by word-of-mouth, i.e. q̃ij,1,t.

For ease of notation, let us define the threshold indicator function, and assume that
in the context of vectors and matrices it is a function of their elements, i.e.

ψ(x) :=

{
1 : x > 0
0 : else

, x ∈ R. (7)

(Dis)satisfaction: We assume that the performance of a product is compared with
the pre-purchase expectation, which leads to the overall feeling of (dis)satisfaction.
Let us assume the intensity of this feeling depends on a consumers involvement ηi2 ∈
(0, 1], and is subject to saturation effects, i.e.

sij,0,t :=

{
2ϕ
(
ηi2ψ

(
d̄t

) · (q̃ij,0,t − qij,0,t)
)− 1 : cij,t = 1

0 : else
. (8)

Note, first if no information is available because the product was not chosen, cij,t = 0,
the feeling is ‘neutral’. Second the differences in performance and expectation are
noticed only on relevant attitudinal dimensions, and they are compensable. Third, we
transform by the hyperbolic tangent function (see Equation (1)), because the feeling
has a direction which entails specific responses. Finally, the step index indicates the
situation before word-of-mouth communication.

The responses to the experience of (dis)satisfaction are threefold: first, past (cur-
rent) experience can influence the current (future) choice process(es) to the effect of
a different composition of the set of products considered (see Section 9), second, it
determines the reactance to advertising which dampens the change in the perception
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of a product (see Section 7), and third it determines the propensity to communicate by
word-of-mouth (see Section 10).

After word-of-mouth a consumer’s feeling of (dis)satisfaction adopts the current
intensity and direction if the intensity exceeds the remembered level, but otherwise
the memory decays. Let ηi3 ∈ [0, 1) denote the persistence of the memory (depending
on involvement), and let us define the change in memory as

s̄ij,t+1 :=

{
sij,1,t : |sij,1,t| > |s̄ij,t|
s̄ij,tηi3 : else

. (9)

Note, a consumer ignores a contradictory experience of lower intensity, but due to
the memory decay he will not persist in a contradiction for long. Alternatively, asym-
metric conditions for involvement dependent adjustments could be considered, e.g.,
−sij,1,t > (1 − ηi3)|s̄ij,t| would model a sensitivity to dissatisfaction which is the
higher the higher the involvement (persistence).

Reactance: The arousal of reactance is confined to the feeling of dissatisfaction
but a consumer attempts to avoid contradictions, i.e.

rij,t+1 := |min(0, min(sij,1,t, s̄ij,t))|. (10)

Satitude: Let us assume that the experience of (dis)satisfaction with a product
is also measurable in the space of perceptions — that corresponds to expectation-
performance indicators based on the disconfirmation approach to perceived quality
measurement (see Section 8). Thus we assume that attitudinal differences are pro-
cessed (projected) in the same way as attitudes, but on irrelevant dimensions a con-
sumer’s feeling is either “neutral” or “irrelevant”. Let us define the perceived (latent)
(dis)satisfaction as

p̀ij,t := 2ϕ(Biq̀ij,t) − 1,

q̀ijl,t :=

{
q̃ijl,1,t − qijl,0,t : d̄ijl,t > 0

0 : else
. (11)

Note, the transformation is the same as in Equation (8). For convenience we may refer
to the perceived (intensity of) (dis)satisfaction as a satisception.

7 Dynamics of Perceptions

Let us discuss the manifest level of the model of attitude formation in this section.
Technical features and perceived attributes, were introduced to live on the interval
(0, 1). This is on the one hand a convenience for modeling technical improvement,
and on the other, in the case of advertising, a necessity (see below). Further, we can
postulate parsimonious measurement models, if we interpret these variables as proba-
bilities (see the next section).

Response: In response to advertising consumers change their beliefs (percep-
tions), but such change is subject to saturation effects, and therefore we need bounded
variables. In the following we will use the subscripts introduced in the previous sec-
tion with equal meaning. Let mijk,t ∈ (−1, 1) denote the impact of the kth claim for
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the jth product on the ith consumer, ϑ0 the persistence of belief in the case of a zero
or negative impact, and let us define the change in belief as

pijk,1,t :=

{
pijk,0,t + (1 − pijk,0,t)(1 − rij,t)mijk,t : mijk,t > 0

pijk,0,tϑ0 : else
. (12)

Note, first, in case of dissatisfaction advertising is met with scepticism, i.e. the impact
is dampened by reactance (see Equation (10)). Second, the impact is proportional to
the current gap (unused potential) of belief 1 − pijk,0,t, and therefore the stronger
the lower the current belief. Conversely, the higher the current belief the higher the
loss in credibility: −pijk,0,t(1−ϑ0). Finally, remember that the pre-advertising belief
of the current period is just the post-word-of-mouth belief of the previous period,
i.e. pijk,0,t = pijk,2,t−1.

Impact: We assume that the impact of advertising is decomposable and subject
to saturation effects. On the one hand, let bj,t ∈ R

+
0 be the advertising budget for

product j, and nj,t the number of consumers addressed with the same message (size
of a segment). On the other let mjk,t ∈ {0, 1} indicate if the kth claim is contained in
the jth message. Finally, let sij,t ∈ {0, 1} denote if consumer i is addressed with the
jth message, and remember the threshold indicator function ψ(·) from Equation (7).
Note that replacing an index by a dot we use as a shorthand for summation. A claim’s
impact on consumer i depends on its intensity which is determined by a number of
attention effects, and the responsiveness of a consumer (see Equation (14) below), i.e.

mijk,t := φ

⎛
⎜⎝sij,tmjk,t

⎛
⎝ 1

max
(
1,
∑

j′∈J
ψ (sij′,tmj′·,t)

)
⎞
⎠ϑ1

(
1

max(1, mj·,t)

)ϑ2
(

maxk′∈K(
∑

j′∈J
sij′,tmj′k′,t)

max(1, sij,t

∑
j′∈J

sij′,tmj′k,t)

)ϑi3

bj,t

nϑ4

j,tb0

; ϑi5

⎞
⎠ . (13)

Note, first, the more messages compete for the attention of a consumer the less the
effect of a message, where no claim at all (or a zero budget) does not qualify as a com-
peting message. Second, the fewer claims a message contains the sharper its focus and
consequently its effect. Third, the fewer messages that contain a claim the higher the
focus on that claim. For the choice of parameters we suggest 0 ≤ ϑi3 � ϑ1 < ϑ2 ≤ 1,
where we think that modeling diversion of attention effects is mandatory. Fourth, the
scale factor b0 ∈ R+ models the reference price (cost) of a contact per consumer,
and it is assumed that the consumers of a segment are contacted with the same in-
tensity (frequency). Fifth, the parameter ϑ4 ∈ [0, 1], models economies of scale ef-
fects that depend on the number of consumers addressed (with the same message).
Finally, the impact of a claim depends on the responsiveness of a consumer, denoted
by ϑi5 ∈ (0, 1].

Responsiveness: The following function captures the idea of a thresholded and
saturable response to a claim’s intensity:

φ(x; ϑ) := ϑ − exp(−ϑx), x ∈ R
+
0 , ϑ ∈ (0, 1]. (14)
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Note, first, that an increase in a claim’s intensity, ceteris paribus by increasing the
advertising budget, leads to a smaller increase in impact, ∂2φ

∂x = −ϑ2 exp(−ϑx) <
0, but the proportions of two claims’ intensities are smaller than their proportions
of impacts if the latter are positive: x2/x1 ≤ φ(x2)/φ(x1), x2 ≥ x1, φ(x1) ≥ 0.
Second, the maximum impact is bounded by ϑ (saturation level), which at the same
time determines the threshold of ineffective claim intensity. Note, there is a level of
responsiveness, such that ϑ = exp(−ϑ) ≈ 0.56714 and a ‘budget’ per consumer equal
the reference price (cost) has just zero impact (assume a single claim, a single product
and no economies of scale effects).

We conclude this section by mentioning that a similar interpretation holds for the
current level of a technical attribute (feature) pij,t: there is an unused potential for
improvement (of an existing technology) 1−pij,t. Note, for an evolving or disruptive
technology we suggest to model a continuous change or sudden structural breaks of
the set of dimensions, but this is part of future work.

8 Measuring the State of a Consumer

In this section we present a general concept for measuring the internal states of the
consumers. Remember, we assume that a consumer is regularly surveyed on his per-
ception of and (dis)satisfaction with a product, and that this information is available
to the firms.

Perceptions: The strength of belief in product attributes is measured on a binary
scale. Let xijk,t ∈ {0, 1} denote the ith consumer’s stated belief, i.e. the agreement to
the item describing the kth attribute of the jth product, and assume the variable pijk,2,t

is the probability to ‘agree’. Thus, belief measurements are binomially distributed
random variables:

Pr(Xijk,t = 1) := pijk,2,t. (15)

Note, according to the interpretation we suggest below, a zero (one) measurement can
be thought of as indicating a ‘low’ (‘high’) belief, but given a single measurement this
is ‘pointless’ information.

Satisfaction/Satisception: Similarly, the intensity and direction of the overall and
attribute specific (dis)satisfaction of a consumer, is measured on a five-point bipo-
lar scale. Let yij,t, zijk,t ∈ {−2,−1, 0, 1, 2} denote the ith consumer’s stated over-
all (dis)satisfaction with product j, and with the product’s kth attribute, respectively.
Now, remembering the transformation according to Equation (1), let us return to the
unit interval, i.e. s′ij,1,t := (1+ sij,1,t)/2 and p̀′ijk,t := (1+ p̀ijk,t)/2, and assume we
repeat a binary measurement with these probabilities four times and report the sum
minus two as the scale values. Thus, (dis)satisfaction measurements are modeled as
Bernoulli distributed random variables:

Pr(Y′
ij,t = z) := B(s′ij,1,t, 4), (16)

Pr(Z′
ijk,t = z) := B(p̀′ijk,t, 4), (17)

where z ∈ {0, 1, . . . , 4}, and the variables are transformed to yij,t := y′
ij,t − 2, and



41

zijk,t := z′ijk,t − 2, such that the scales are “polarized” at zero. Remember, zero
indicates a “neutral”, as well as an “irrelevant” response (compare Equation (11)).

9 Choice of a Product

In the present section we discuss the process of consideration and choice set formation.
We will assume one basic scheme, which can be varied by putting more emphasis
on price or product ‘quality’. The other modeling choice concerns different decision
styles. Let us begin with the latter.

Utility: Under the modified ideal point decision rule the total attractiveness, or
‘utility’ of a product, is the sum of its contributions on the attitudinal dimensions, i.e.

uij,t := 1 · max
(
0, min

(
qij,0,t, d̄i,t

))
. (18)

Note that a utility of zero would be ambiguous if a zero threshold of relevance could
be ‘fulfilled’. Although this is in fact only cosmetic, we have defined the threshold
indicator function in this sense (see Equation (7)).

For a conjunctive decision rule we assume that the satisfaction levels are lower
than the aspiration levels. Let β1 ∈ [0, 1) denote the lowering factor, 1 a l × 1 vector
of ones, and let the utility indicate if there is not a single relevant dimension where the
desired level is not satisfied, i.e.

uij,t := ψ
(
1 · d̄i,t

)− ψ
(
ψ
(
d̄i,t

) · (1− ψ
(
qij,0,t − β1d̄i,t

)))
. (19)

Note, if none of the dimensions is relevant there is nothing to indicate. This is in
compliance with the first definition of utilities.

For a disjunctive decision rule we assume, again, a lowering of the aspiration lev-
els, β1 � β2 ≤ 1, but the consumers further concentrate on important dimensions,
i.e. the satisfaction levels are defined as

d∗il,t :=

{
β2 maxl′∈L(d̄il′,t) : d̄il,t ≥ β2 maxl′∈L(d̄il′,t)

0 : else
. (20)

Now, let the ‘utility’ indicate if there is at least one relevant and important dimension
where the desired level is satisfied, i.e.

uij,t := ψ
(
ψ
(
d∗

i,t

) · ψ (qij,0,t − d∗
i,t

))
. (21)

Note again, if none of the dimensions is important then nothing is to be indicated.
Further, if there are no marked differences in the aspiration levels then all relevant
dimensions will be considered important and thus ‘satisfiable’.

Ranking: In the context of (initial) conjoint-measurements (product development)
we need a preference ordering of the products instead of choice information. Let
oij,t ∈ {1, 2, . . . , |J|} denote the rank number the ith consumer assigns to product j,
and assume he arrives at such a number by comparing the utility of a product against
all the others’, i.e.

oij,t := |J| −
∑

j′∈J\j

ψ(uij,t − uij′,t). (22)
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Note, ties in the utilities are preserved, and as a consequence the rank numbers need
not be contiguous. We think, this is an appropriate assumption given the possibility of
noncompensatory evaluation styles.

Choice: Let us now present the basic scheme of consideration set formation. Ini-
tially, we may assume that a firm is able to exclude a consumer from the purchase of its
own competing products (brands) which it offers to a different segment. Let ι ∈ {0, 1}
indicate the assumption of market separability, remember that sij,t indicates the seg-
ment membership, and let us define the set of available products as

Ji,t := {j : sι
ij,t = 1, j ∈ J}. (23)

We assume, a consumer makes a pre-selection among the alternatives by considering
only the products that are priced below the consumer’s reservation price, where we
denote the latter by wi0 and by wj,t the price demanded for product j, i.e.

Ji,0,t := {j : wj,t ≤ wi0, j ∈ Ji,t}. (24)

Note if this result is in an empty set a consumer ignores the reservation price
Ji,0,t = Ji,t. Next he excludes products that are remembered as highly dissatisfy-
ing in past periods (see Equation (9)). Let oij,t ∈ {−1, 0, 1} be a stochastic indicator,
with Pr(Oij,t = −1) := max(0,−s̄ij,t), and define the reduced set as

Ji,1,t := Ji,0,t \ {j : oij,t = −1, j ∈ Ji,0,t}. (25)

Note, if this results in an empty set, a consumer is assumed to ignore the feeling of
dissatisfaction Ji,1,t = Ji,0,t. Alternatively, he may ‘trade’ dissatisfaction against the
violation of reservation price, if possible. Nevertheless, if the reservation price has
the implicit interpretation of a consumer’s budget constraint considering overpriced
products is only a last resort, as assumed above. Next, the utilities from above come
into play for further set reduction, i.e.

Ji,2,t :=

{
j : uij,t ≥ max

j′∈Ji,1,t

(uij′,t), j ∈ Ji,1,t

}
. (26)

Then the set is ‘enlarged’ by products that have been (told to be) highly satisfactory in
the past. Let Pr(Oij,t = 1) := max(0, s̄ij,t), and define the enlarged set as

Ji,3,t := Ji,2,t ∪ {j : oij,t = 1, j ∈ Ji,0,t} (27)

Note, the latter set we refer to as the long term consideration set because, in effect,
these products do not take part in the utility based reduction step. Next, this set is
reduced to the products with minimum price, where we denote by βi,3 ∈ [0, 1] the
price sensitivity of a consumer, i.e.

Ji,4,t :=

{
j : βi,3wj,t ≤ min

j′∈Ji,3,t

(wj′,t), j ∈ Ji,3,t

}
. (28)

Finally, a consumer chooses, with probability 1
|Ji,4,t| , one among the products in the

choice set. Remember, cij,t ∈ {0, 1} indicates if consumer i has chosen product j.
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For illustration of the utility maximizing (satisficing) step of set formation see Figure
5 and Table 1 in Section 4.

In the case of a decision process based on price weighted utilities, the above
scheme needs two modifications: first, we have to consider that the utilities of all the
alternatives could be zero. Thus, let us define the price weighted utilities as follows

u′
ij,t :=

{ uij,t

wj,t
: ∃j′ : uij′,t > 0, j′ ∈ Ji,1,t

1
wj,t

: else
. (29)

Second, we assume that a further reduction to minimum priced products is omitted.

10 Word-of-mouth communication

In this section we discuss the modeling of word-of-mouth activities of consumers. We
think this is an important part of the model, because it will be interesting to see the
difference in market response if the consumers interact more or less frequently and
thus the information base is different.

First, let the probability that consumer i ∈ I contacts consumer i′ �= i, which
is indicated by the variable hii′,t ∈ {0, 1}, depend on κi ∈ {0, 1, . . . , |I| − 1}, the
average number of contacts of a consumer, i.e.

Pr(Hii′,t = 1) :=
κi

|I| − 1
. (30)

Note that the probabilities are meant to differ at most between groups of consumers.
Alternatively the contact structure may be fixed over some time, e.g. Pr(Hii′,t =
1) := hii′,t−1, t > 0.

Second, we assume that the propensity to communicate about a product depends
on the current intensity of (dis)satisfaction. Note that ignoring the direction is a sim-
plification as negative experience generates a greater desire to communicate than a
positive one. Let vij,t, wij,t ∈ {0, 1} denote the stochastic communication indicators
of the sender and the recipient, respectively, where

Pr(Vij,t = 1) :=

{ |sij,0,t| : cij,t = 1
0 : else

, (31)

Pr(Wij,t = 1) :=

{
0 : cij,t = 1
1 : else

. (32)

According to this definition a sender has nothing to say about a product he has not
consumed (chosen), and only if a recipient currently has no consumption experience,
he fills the gap with the information provided by a sender. Note, as a variant we may
assume that the propensity of a recipient to ‘fill in’ is 1− |s̄ij,t|, i.e. the more ‘neutral’
his feeling about a product the less prejudiced he is.

Third, the set of consumers from which consumer i receives information on the
jth product is composed of the consumers he has a contact with, that communicate
about the product, and from which he accepts the information, i.e.

Iij,t := {i′ : max(hii′i,t, hi′i,t) = vij,t = wij,t = sι
ij,t = 1, i′ ∈ I \ i}. (33)
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Note, for separable markets we assume that a consumer is not interested in products
that are not available to him.

Fourth, let us assume two effects of word-of-mouth communication: on the one
hand the sender’s (dis)satisfaction intensities become known to the recipient, and on
the other, the sender’s technology induced position in attitude space. Finally, let us
assume a simple averaging of the information obtained from multiple senders

q̃ij,1,t :=

{
q̃ij,0,t : cij,t = 1 ∨ Iij,t = ∅

avgi′∈Iij,t
(q̃i′j,0,t) : else

, (34)

and

sij,1,t :=

{
sij,0,t : cij,t = 1 ∨ Iij,t = ∅

avgi′∈Iij,t
(si′j,0,t) : else

. (35)

Remember from Section 6, if a consumer does not acquire new information on a prod-
uct’s technical characteristics, not even by word-of-mouth, he ‘fills in’ with his current
attitude and his current experience of (dis)satisfaction is ‘neutral’. Note, obviously we
assume that the recipient, does not base the feeling of (dis)satisfaction on the commu-
nicated technical characteristics of a product but takes the view of the sender(s). We
think this is a realistic assumption of the reinforcement effect of personal communi-
cation.
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A Continuous-Time ACM Model and Experiment

Ulrike Schuster and Jürgen Wöckl

The ACM outlined in section 1 is intended to accommodate autonomous agents.
These agents must be capable of adapting their behavior or even their decision rules.
Periodic reanalysis and reassessment of strategy occur in discrete time. If a simulation
experiment requires a large number of evaluations of market response this may be
unnecessarily tedious and time-consuming. Therefore, an alternative is offered in this
section.

In principle the model introduced here corresponds to the artificial consumer
market (ACM). The main difference concerns the structure of time. In contrast to the
discrete approach of the ACM in this model time is implemented as a continuous
variable. The temporal development of the quantities in the CACM is described by
differential equations instead of discrete transition functions at each discrete time
step as it is implemented in the ACM. In order to derive the evolvement of a specific
quantity the applied differential equations have to be integrated over time. During the
simulation process also the continuous-time quantity in the CACM requires a small
but still existing discretisation to enable numerical integration.

In this study a simple Euler integration method with a constant discretisation has
been used to resolve the numerical integrals. The discretisation can be chosen arbi-
trarily with the only requirement that it should be smooth enough to provide proper
results. From this point of view the discrete approach converges to the continuous one
by reducing the increment for the Euler integration task.

1 Description of the Continuous Artificial Consumer Market (CACM)

The continuous model is designed to emulate the consumer behaviour concerning
different brands acting in a segmented market. All firms offer the same type of product
but emphasize different attributes which leads to a positioning of each firm in the
product attribute space. The consumers are split up in groups of special aspiration
patterns (APAT) and each consumer group has a specific ideal point which constitutes
the desired features, the so called aspirations (ASP).

At the beginning of the simulation the consumer perceptions (PCEP) regarding
the product features are located in the origin. Due to the firms’ advertising efforts the
perceptions which are related to the emphasized physical properties of the product are
moving in a direction induced by the advertising claim.

In order to decide in favor of a brand the consumers consider price-weighted per-
ceptions which are called attitudes (ATT). The brands are rated by the consumers by
measuring the distance between aspirations and perceptions. In particular the distance
represents an inverse measure of the utilities (UTI) of each consumer for each product.
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The choice process (CHOICE) is based on this utility measure.

ASPAPAT

ATTPCEP

Idealpoint-Model
(distance function) UTI CHOICE

Figure 1: Application flow of the model

1.1 Dynamics of the Perceptions

Advertising impact function (aif)

The brand-specific advertising budgets affect the growth process of the consumers’
perceptions concerning the position of the firms in the market. Therefore an s-shaped
log-reciprocal advertising function is used (see also Hruschka, 1996, p. 214). In the
following the indices i denote the aspiration groups, j the brands, k the product at-
tributes and t the time.

aif(budgetj) = exp

{
α − β

budgetj

}
. (1)

For the purpose of calibrating the model a special rule is appropriate. In fact the
advertising impact function is adjusted in such a manner that the impact of the adver-
tising budget is 1 at the mature market equilibrium.

aif = exp

{
α − β

budgetm

}
= 1

⇒ α =
β

budgetm
,

where budgetm denotes the mature advertising budget.

Differential equation of the perception dynamics

The perception dynamics are driven by the advertising budgets invested. The differen-
tial equation consists of two parts where the first describes the growth of the percep-
tions of the advertised attributes starting at 0 up to 1 dependent on the actual relative
advertising budget. The second part describes the decay due to the forgetting of the
product attributes by the consumers. The appropriate function b(·) is defined later.

The differential equation responsible for the temporal modification of the percep-
tions p of those attributes which are advertised is the following:

dpijk(t)

dt
= aif(budgetj) (1 − pijk(t)) − b(t, budgetj) pijk(t) ⇒ (2)

pijk(t) =

∫ t

start

(
aif(budgetj) (1 − pijk(t)) − b(t, budgetj) pijk(t)

)
dt, (3)
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where start denotes the starting time of the simulation.
Figure 2 shows the advertising impact and the solution of the differential equation

for the perceptions for a special advertising budget.
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Figure 2: Schematic representation of the advertising impact function (left) and the
temporal development of the perceptions for budgetj = 90 (right)

It can be proved that the differential equation describing the dynamics of the per-
ceptions converges to a stationary value, namely limt→∞ pij(t) = p̄ij . This is valid
for dpij

dt = 0:

aif(budgetj)(1 − pijk(t)) − b(t, budgetj)pijk(t) = 0

⇒ ¯pijk(t) =
aif(budgetj)

aif(budgetj) + b(t, budgetj)
. (4)

Calculation of attitudes

In the CACM the attitudes att are assumed to arise from the price-weighted percep-
tions:

attijk(t) =
pijk(t)

price∗j
, with price∗j =

pricej

1
J

∑J
j=1(pricej)

.

Forgetting rate concerning relative budgets

The function of the forgetting rate is formulated for relative budgets. Further, it must
be considered whether an attribute is advertised or not:

• non-advertised attribute:

b(t, budgetj) = b0 (5)
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• advertised attribute:

b(t, budgetj) =
1

1 + F(t, budgetj)
, (6)

with

F(t, budgetj) = budgetj(t)
∫ t

start

budgetj(τ)∑
j(budgetj(τ))

f(t − τ)dτ. (7)

The function f(t − τ) is defined by:

f(t − τ) = e−b0 (t−τ) (8)

⇒ F(t, budgetj) = budgetj(t)
∫ t

start

budgetj(τ)∑
j(budgetj(τ))

e−b0 (t−τ)dτ. (9)

The function F describes a mathematical convolution of former budgets with
weighting function f(t − τ) which is chosen in such a way that smaller weights are
imposed on past relative budgets than on actual budgets. In the actual implementation
the weighting function is defined as an exponential function.

In order to calculate the actual value for the forgetting rate an Euler integration
method is used where the same step-size as for the integration of the perception rates
is chosen. Therefore, both integration methods are running synchronously.

Transition from discrete to continuous time

All of the above mentioned equations can be interpreted as time-discrete. Let the time
intervals of the discretisation converge to zero then the model migrates to the contin-
uous one.

pijk(t + 1) = pijk(t) +

f(pijk(t),budget
j
)︷ ︸︸ ︷

[aif(budgetj) (1 − pijk(t)) − b(t, budgetj) pijk(t)] ∆t,

pijk(t + 1) − pijk(t) = f(pijk(t), budgetj)∆t,

lim
∆t→0

∆pijk(t)

∆t
= f(pijk(t), budgetj)

⇒ dpijk(t)

dt
= f(pijk(t), budgetj).
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Convergence of “oblivion”

In this section the convergence of the intergral (7) is demonstrated.
The function b(·) corresponds to the forgetting rate and should be small but greater

than zero for finite budgets. A small forgetting rate is equivalent to a stationary value
of the perceptions close to 1 (equation (4)). Thus the codomain of the perception is
the interval [0, 1]. But to reach the upper bound of the perception of 1 an infinite
advertising budget would be required. In contrast the long-term or even infinite input
of a finite budget does not yield the same effect. In order to provide this property of the
model the function F should reach high values for high budgets in the former periods,
but should never become infinite.

In the following the convergence of the integral over an infinite time horizon is
shown. The budget of the former periods (budgetτ)) is estimated using the supremum
of the function.1

b̄ = sup
j,τ∈[0,∞)

(
budgetj(τ)

)
< ∞,

lim
t→∞

∫ t

0

b̄ · e−b0(t−τ)dτ =
b̄

b0
lim

t→∞(1 − e−b0t) =
b̄

b0
. (10)

As the factor of the relative budget
budget

j
(τ)

P
j(budget

j
(τ))

in equation (9) may reach the

maximum value of 1 this limit is valid in cases of absolute as well as relative budgets.

1.2 Ideal-Point Model

To measure the satisfaction of a consumer with a product the distance between the
appropriate aspiration point and the attitude, thus the price-weighted perception, is
determined by using the Euclidian norm.

Calculation of utilities

The utility of the consumers in each aspiration group i with respect to each product j
can be measured with the aid of the proportional distance between the appropriate as-
piration point and the attitude corresponding to brand j. The utilities uti are calculated
by dividing the maximum distance by the respective one:

utiij =
max(distanceij)

distanceij
,

thus the smaller the distance the higher the utility.

1As the advertising budget in each period is upper-bounded, the function budgetj(τ) can be estimated
using the supremum.
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Calculation of market shares

The volume of the market share MAij of brand j is calculated from the consumers of
aspiration group i:

MAij =
utiij∑
i utiij

.

The market shares of each aspiration group i must sum up to 1.

Calculation of profits

To calculate the profits for each brand in the market the sales must be determined first:

• sales of brand j in segment i:

salesij = NC,i · MAij · pricej ,

where NC,i denotes the number of consumers in segment i

• profit for brand j:

profitj =

(∑
i

NC,i · MAij

)
· pricej − budgetj .

Profit serves as a target function in optimization tasks.

2 Application and Results

2.1 Experimental Market Scenario and Model Calibration

The model described above is used to explore optimal defensive strategies for a brand
directly attacked by a new brand that enters a mature market. Three different firms
located in three different market segments are considered. It is assumed that after half
of the time period of interest a new brand enters the market and settles down in a
segment yet occupied by a firm. Now this incumbent is allowed to defend itself by
changing its price and advertising budget while the other two brands are assumed to
show no reaction in case of a new entry because their segments aren’t affected.

All brands are assumed to start at consumer perceptions of a value of 0.1 for each
of the product attributes. That leads to a disadvantage for the entrant. While its con-
sumer perceptions start at 0.1 all other incumbents’ perceptions have already devel-
oped over time. Each of the three initial brands demands the same price of 3 units and
advertises with identical budgets of 90 units. The entrant is hypothesized to join the
market with a somewhat smaller price of 2.5 units but higher advertising expenditures
of 150 units in order to compensate for lost time. Without loss of generality prices are
restricted to the interval [1, 4] and budgets to [0, 200]. As there’s no boundary solution
with respect to the optimization this constitutes a reasonable range.
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Optimal defensive strategies under variable advertising impact functions are ana-
lyzed. For the first one (aif 1) the parameters in equation (1) are specified as α = 0.5
and β = 45, for the second function (aif 2) α = 1 and β = 90 are assumed, and in the
third advertising impact function (aif 3) the parameters are set to α = 2 and β = 180.

Figure 3 exhibits the shape of the advertising impact functions.
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Figure 3: Advertising impact function for different parameters α and β, represented
by solid (aif 1), dashed (aif 2), and dotted/dashed lines (aif 3).

Also the temporal development of the perceptions is illustrated for the incumbent
as well as the entrant budget for each of the three advertising impacts (Fig. 4).
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Figure 4: Comparison of the temporal development of the perceptions for incumbent’s
and entrant’s budgets (90 [solid line] and 150 [dashed line] units respectively) under
variable advertising impact functions (from left to right: aif 1, aif 2 and aif 3)

The advertising impact is responsible for the entrant’s competitive strength. Under
the first two advertising impact functions the entrant is unable to catch up the percep-
tual development of the incumbent in the past time period. In contrast with a stronger
advertising impact (aif 3) the entrant manages to reach the same perceptual level as
the incumbent but in a much shorter time span.
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Target function

Price-budget combinations which lead to a maximum profit are considered to be opti-
mal defensive strategies:

ZFj = profitj → max
price

j
,budget

j

(profitj).

Therefore, the profit of the attacked brand is used as target function.

2.2 Maximizing Profits under Alternative Advertising Impact Functions

Optimization of the incumbent given an entrance strategy

In this section the emphasis is put on the incumbent’s reaction in case of a fixed en-
trance strategy.

In order to find the optimal defensive strategy a surface plot is created which shows
the profits of the incumbent for different price-budget combinations (Fig. 5 and Fig.
6).
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Figure 5: Surface plots of the profits of the incumbent for several price-budget combi-
nations under a fixed entrance strategy (from left to right: aif 1, aif 2 and aif 3)
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Figure 6: Upright projection of the results shown in figure 5

As the figures demonstrate there is no unique optimum. Different price-budget
combinations obviously result in the same optimal profit for the incumbent.

Irrespective of the advertising impact it is advised to the incumbent to reduce its
price as a reaction to a new entry. Concerning advertising expenditures it will de-
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pend on the aif if the budget shall be increased or decreased. Only one of the incum-
bent’s optimal strategies is considered. It is characterized by medium-sized budgets
and prices for each of the three advertising impact functions. The specific values are
presented subsequently.

In case of a weaker advertising impact (aif 1 and aif 2) the price should be reduced
from 3 to about 2.5 (aif 1) or 2.4 units (aif 2) and also the budget should be decreased
from 90 to approximately 80 (aif 1) or 70 units (aif 2). In case of aif 3 obviously the
optimal reaction consists of a smaller price reduction (mean optimal price of 2.7 units)
but here the incumbent should raise its advertising budget to 110 units.

A comparison of the results for the three advertising impact functions shows no
significant difference for aif 1 and aif 2. But in contrast for aif 3 instead of lowering
the budget an increase of the advertising efforts is recommended. Concerning the price
reaction the difference is less distinct. Prices should still be reduced but not as drastical
as under aif 1 or aif 2.

Optimization of the entrant given the optimal incumbent strategy

In the section above the entrance strategy is arbitrarily but reasonably chosen and the
incumbent tries to maximize its profit by changing price and advertising expenditures.

On the other side also the entrant strategy can be optimized given the incumbent’s
price and budget. Therefore the mean optimal price-budget combination for the in-
cumbent is determined in a first step. Afterwards it is assumed that the incumbent will
react like this when facing a new entry. Given the fixed incumbent strategy the optimal
entrance strategy can now be calculated.

Figures 7 and 8 show the profits of the entrant for different combinations of prices
and budgets.
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Figure 7: Surface plots of the profits of the entrant for several price-budget combina-
tions under the optimal incumbent’s strategy (from left to right: aif 1, aif 2 and aif
3)

For the entrant again no unique optimum can be specified. Because a single op-
timum is needed for each advertising impact mean prices and budgets are calculated
from the set of optima and used as strategy recommendations. Under aif 1 optimal
price and budget approximate 2.3 and 140 units respectively. With a growing adver-
tising impact optimal entrance prices tend to increase while advertising expenditures
more or less stay the same (aif 2: mean price of 2.4 units, mean budget of 140 units;
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Figure 8: Upright projection of the results shown in figure 7

aif 3: mean price of 2.6 units, mean budget of 140 units).
Further research could concern the derivation of stationary strategies for both the

incumbent and the entrant. This can be realized by simultaneously optimizing incum-
bent and entrant strategies by alternately updating optimal prices and budgets until
convergence to a stable strategy is reached. Another topic of interest for future investi-
gations is the comparison of optimal defensive strategies under a varying time of entry.
A third line of research regards disaggregated markets where different distributional
patterns of the consumer aspirations are studied.
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Capturing Unobserved Consumer Heterogeneity Using
the Bayesian Heterogeneity Model

Sylvia Frühwirth-Schnatter, Regina Tüchler, and Thomas Otter

1 Introduction

In the analysis of panel data from marketing one often is forced to deal with un-
observed heterogeneity. Unobserved heterogeneity may be either cross-sectional or
longitudinal. Cross-sectional heterogeneity means that important parameters such as
preferences differ between the consumers whereas longitudinal heterogeneity means
that important parameters such as preferences change over time.

From a methodological point of view, a broad range of methods are available to
capture unobserved heterogeneity, namely non-parametric methods such as perception
based market segmentation (Mazanec and Strasser, 2000; Buchta et al., 2000) and
clustering by ensemble methods (Dolničar and Leisch, 2003; Dimitriadou et al., 2001),
see also the chapter on ensemble methods for cluster analysis by Kurt Hornik and
Friedrich Leisch in this volume.

In our own contribution we discuss a hierarchical parametric modelling approach
toward unobserved heterogeneity based on mixture models, especially mixtures of
random effect models. Following the seminal paper by Allenby et al. (1998), a num-
ber of authors pursued this approach, see e.g. Lenk and DeSarbo (2000), Frühwirth-
Schnatter et al. (2004) and Otter et al. (2004b).

2 The General Heterogeneity Model

The data are described by a mixture of random effects model:

yi = X1
i α + X2

i βi + εi, εi ∼ N(0, σ2
ε,iI), (1)

where yi is a vector of Ti observations for subject i = 1, . . . , N , X1
i is the Ti × d

design matrix for the d × 1 vector of the fixed effects α and X2
i is the design matrix

of dimension Ti × r for the r × 1 random effects vector βi. I is the identity matrix.
Due to unobserved heterogeneity the random effects βi are different for each sub-
ject i. The unknown distribution π(βi) of heterogeneity is approximated by a mixture
of normal distributions βi ∼ ∑K

k=1 ηkN(βG
k , QG

k ) with the unknown group means
βG

1 , . . . , βG
K , the unknown group covariance matrices QG

1 , . . . , QG
K and the unknown

group probabilities η = (η1, . . . , ηK).
There are two different approaches to model the error variances σ2

ε,i: homogeneous
variances where

σ2
ε,i ≡ σ2

ε , ∀i = 1, . . . , N, (2)

and consumer specific, heterogenous variances where

σ2
ε,i =

σ2
ε

λi
, ∀i = 1, . . . , N, (3)
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with gamma distributed factors λi:

λi ∼ G(
ν

2
,
ν

2
). (4)

Note that marginally with respect to λi the variance model (3) and (4) implies the
following marginal distribution for yi:

yi = X1
i α + X2

i βi + εi, εi ∼ tν(0, σ2
εI). (5)

Verbeke and Lesaffre (1996) study model (1) with the groups covariances being
the same for all groups. A similar heterogeneity models is discussed in Allenby et al.
(1998) however without considering fixed effects. Lenk and DeSarbo (2000) extend
(1) to observations from distributions from general exponential families.

Model (1) includes many other models as a special case, especially the aggregate
model for K = 1 and QG

k ≡ 0. The popular latent class model (LCM) is that special
case where K > 1 and QG

1 ≡ . . . ≡ QG
K ≡ 0. Finally, the random coefficient

model (RCM), which is also called hierarchical Bayes model is that special case where
K = 1 and QG

1 �= 0.

2.1 Bayesian Estimation of the Heterogeneity Model under Heterogeneous
Variances

Bayesian estimation of the heterogeneity model via MCMC methods is discussed by
Allenby et al. (1998), Lenk and DeSarbo (2000) and Frühwirth-Schnatter et al. (2004).
Estimation is carried out for a fixed number K of groups using Markov Chain Monte
Carlo methods.

Let yN = (y1, . . . , yN) denote all observations. One introduces discrete latent
group indicators SN = (S1, . . . , SN ), with Si taking values in {1, . . . , K} and
thereby indicating which group consumer i belongs to, with the unknown probabil-
ity distribution Pr(Si = k) = ηk. Following the principle of data augmentation
(Tanner and Wong, 1987), the parameter vector of the unknown model parameters
φ = (α, βG

1 , . . . , βG
K , η, QG

1 , . . . , QG
K , σ2

ε) is augmented by the individual parameters
βN = (β1, . . . , βN) and the group indicators SN . Under heterogeneous error vari-
ances the vector λN = (λ1, . . . , λN ) has to be added in a further data augmentation
step.

A straightforward way of Bayesian estimation of the heterogeneity model via
MCMC methods is Gibbs sampling from full conditional distributions. That sampler
is discussed in Lenk and DeSarbo (2000) and Allenby et al. (1998). For a heterogene-
ity model with homogeneous error variances the parameters SN , η, α, (βG

1 , . . . , βG
K),

βN , (QG
1 , . . . , QG

K) and σ2
ε are sampled in turn from the corresponding full condi-

tional distributions. It has been demonstrated in Frühwirth-Schnatter et al. (2004) that
such a full conditional Gibbs sampler is sensitive to the way model (1) is parameter-
ized. There exist two ways to parameterize the model, depending on whether X 1

i and
X2

i have common columns or not. The partly marginalized Gibbs sampler suggested
in Frühwirth-Schnatter et al. (2004) where the random effects βN are integrated out
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when sampling SN , α, and (βG
1 , . . . , βG

K) turned out to be insensitive to the parame-
terization.

In Frühwirth-Schnatter et al. (2004) the partly marginalized Gibbs sampler was
introduced for homogeneous error variances. This sampler may easily be extended to
deal with heterogeneous error variances. The MCMC sampling steps are the follow-
ing.

MCMC Sampling Algorithm:

(i) Sample SN conditional on yN , φ and λN .

(ii) Sample η from p(η|SN ).

(iii) Sample α, βG
1 , . . . , βG

K and βN conditional on yN , SN , QG
1 , . . . , QG

K , σ2
ε and

λN .

a) Sample α and βG
1 , . . . , βG

K conditional on yN , SN , QG
1 , . . . , QG

K , σ2
ε and

λN .

b) Sample βN conditional on yN , α, βG
1 , . . . , βG

K , SN , QG
1 , . . . , QG

K , σ2
ε and

λN .

(iv) Sample QG
1 , . . . , QG

K and σ2
εi

conditional on yN , α, βG
1 , . . . , βG

K , βN and SN .

a) Sample QG
1 , . . . , QG

K conditional on yN , α, βG
1 , . . . , βG

K , βN and SN .

b) Sample σ2
ε conditional on yN , α, βG

1 , . . . , βG
K , βN , SN and λN .

c) Sample λN conditional on yN , α, βG
1 , . . . , βG

K , βN , SN and σ2
ε .

Details on the Sampling Steps:

The marginal heteroscedastic random effects model:

The marginal model with the random effects βN integrated out writes as fol-
lows:

yi = Z∗
i α∗ + ε∗i , ε∗i ∼ N(0, Vi). (6)

We introduce the indicators D
(k)
i , that take the value 1 iff Si = k and zero

otherwise, to define the design matrix Z∗
i = (X1

i X2
i D

(1)
i . . . X2

i D
(K)
i ) for the

parameter vector α∗ = (α′ (βG
1 )′ . . . (βG

K)′)′ and the individual model error

covariances matrices Vi = X2
i QG

1 D
(1)
i (X2

i )′+. . .+X2
i QG

KD
(K)
i (X2

i )′+σ2
ε,iI .

(i) Sampling the switching variable SN :

The indicators S1, . . . , SN are conditionally independent given yN ,λN and φ
and we sample Si from the discrete distribution:

p(Si = k|yi, φ, λi) ∝ p(yi|α, βG
k , QG

k , σ2
ε , λi) · ηk,

where the likelihood is obtained by using the heteroscedastic model representa-
tion (6) with the random effects βN integrated out. The likelihood is therefore
normally distributed with N(yi; X

1
i α + X2

i βG
k , X2

i QG
k (X2

i )′ + σ2
ε,iI).
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(ii) Sampling the weights η:

Since η depends only on the switching variable SN sampling η conditionally
on yN , φ, SN , λN and βN simplifies to sampling from the posterior p(η|SN ).
This posterior is Dirichlet distributed D(e0,1 + N1, . . . , e0,K + NK), where
Nk = #(Si = k) and D(e0,1, . . . , e0,K) is the prior Dirichlet distribution for
the weights η.

(iii) Sampling the fixed effects α, the group specific means βG
1 , . . . , βG

K and the ran-
dom effects βN :

The conditional posterior of α∗ = (α′ (βG
1 )′ . . . (βG

K)′)′ and βN =
(β1, . . . , βN) partitions as follows:

p(α∗, βN |yN , θ, λN , SN ) =

(
N∏

i=1

p(βi|α∗, yi, θ, λi, Si)

)
p(α∗|yN , θ, λN , SN ),

where θ = (QG
1 , . . . , QG

K , σ2
ε). Therefore we sample α∗ from the marginal

model in step (iii a) and βN from the full conditional distribution in step (iii b).

(iii a) Sampling α and βG
1 , . . . , βG

K :

From the marginal heteroskedastic model (6) we see that the posterior of α∗ is
normally distributed:

p(α∗|yN , θ, λN , SN) ∝ N(A∗
N · a∗

N , A∗
N ),

where

(A∗
N )−1 =

N∑
i=1

(Z∗
i )′V −1

i Z∗
i + (A∗

0)
−1,

a∗
N =

N∑
i=1

(Z∗
i )′V −1

i yi + (A∗
0)

−1a∗
0.

The vector a∗
0 is the mean parameter and A∗

0 is the covariance matrix of the prior
normal distribution of α∗.

(iii b) Sampling the random effects βN :

The individual parameters βi are conditionally independent and have a normal
posterior distribution:

p(βi|yi, α, βG
Si

, QG
Si

, σ2
ε) ∼ N(Ci · ci, Ci)

with

C−1
i = (σ−2

ε I)(X2
i )′X2

i + (QG
Si

)−1,

ci = (σ−2
ε I)(X2

i )′(yi − X1
i α) + (QG

Si
)−1βG

Si
.
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(iv a) Sampling the covariance matrices QG
1 , . . . , QG

K:

The group specific covariances QG
k for k = 1, . . . , K and the variance of the

model equation σ2
ε are conditionally independent given α, βN , βG

1 , . . . , βG
K , SN

and yN .

The covariance matrices are sampled for each group separately. from the in-
verted Wishart distribution p(QG

k |βN , βG
k , Si = k) ∼ IW (νQ

k , SQ
k ) with

νQ
k = νQ

0 + Nk/2,

SQ
k = S Q

0 + 1/2

(
N∑

i=1

D
(k)
i (βi − βG

k )(βi − βG
k )′

)
,

where D
(k)
i = 1 iff Si = k and zero otherwise, Nk = #(Si = k) and νQ

0 and
S Q

0 are the parameters of the prior inverted Wishart distribution of QG
k .

(iv b) Sampling of the error variance parameter σ2
ε :

Applying Bayes theorem yields the posterior inverted gamma distribution for
σ2

ε .

p(σ2
ε |yN , α, βN , λN ) ∝ IG(ν ε

N , S ε
N ),

where the parameters are defined as

ν ε
N = ν ε

0 +
1

2

(
N∑

i=1

Ti

)
,

S ε
N = S ε

0 +
1

2

(
N∑

i=1

‖yi − X1
i α − X2

i βi‖2
2 · λi

)
.

A priori σ2
ε follows an inverted gamma distribution with parameters ν ε

0 and S ε
N .

(iv c) Sampling the individual parameters λN = (λ1, . . . , λN ):

The individual parameters λi are conditionally independent. We derive the fol-
lowing posterior gamma distribution for each subject specific parameter:

p(λi|yi, α, βi, σ
2
ε) ∝ G(ν λ

i , S λ
i ),

where

ν λ
i =

ν λ
0

2
+

T

2
,

S λ
i =

ν λ
0

2
+

1

2

(‖yi − X1
i α − X2

i βi‖2
2 · 1/σ2

ε

)
and ν λ

0 is prior parameter.
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In this algorithm only steps (i) and (iii) deviate from standard full conditional
Gibbs sampling. The marginal heteroscedastic model, where the individual parameters
βN are integrated out, serves to obtain SN from p(SN |φ, yN , λN ). The model’s rep-
resentation as a switching random effect model is exploited to derive a blocked Gibbs
sampler to sample α, βG

1 , . . . , βG
K and βN from p(βG

1 , . . . , βG
K , α, βN |SN , QG

1 , . . . ,
QG

K , σ2
ε , yN , λN ).

Finally, to deal with the unidentifiability problem due to the arbitrary labeling of
the groups discussed in Celeux et al. (2000), Frühwirth-Schnatter (2001) and Stephens
(2000), the random permutation sampler suggested in Frühwirth-Schnatter (2001) is
applied.

2.2 Bayesian Model Comparison through Model Likelihoods

Model selection based on model likelihoods follows a long tradition in Bayesian
econometrics initiated by Zellner (1971) and has been applied by various authors for
selecting the number of components in mixture models, see among others Chib (1995)
and Frühwirth-Schnatter (2004). Previous applications to model selection problems
arising for the heterogeneity model appeared in Lenk and DeSarbo (2000), Frühwirth-
Schnatter and Otter (1999), Otter et al. (2002), Tüchler et al. (2002) and Otter et al.
(2004b).

Different heterogeneity models M1, . . . , ML are compared through their poste-
rior probabilities:

P (Ml|yN) ∝ p(yN |Ml)P (Ml),

where the model likelihood p(yN |Ml) is identical with the integrated likelihood func-
tion p(yN |φ) for model Ml:

p(yN |Ml) =

∫
p(yN |φ)p(φ)dφ. (7)

φ = (α, βG
1 , . . . , βG

K , η, QG
1 , . . . , QG

K , σ2
ε) is the vector of unknown model parame-

ters. Note that in (7) p(yN |φ) is the marginal likelihood, where all latent variables like
SN , βN and, for heterogeneous error variances, λN are integrated out. For homoge-
neous variances this is the product of N multivariate normal distributions, whereas for
heterogeneous errors this is a product of N multivariate t-distributions.

The computation of the model likelihood p(yN |Ml) is non-trivial because it in-
volves a high-dimensional integration. Model likelihoods have been estimated from
the MCMC output using methods such as the candidate’s formula (Chib, 1995), im-
portance sampling based on mixture approximations (Frühwirth-Schnatter, 1995) and
bridge sampling (Meng and Wong, 1996). For computing the model likelihoods we
apply here the method of bridge sampling, which has proven to be robust against la-
bel switching and more efficient than other methods in the context of mixture models
(Frühwirth-Schnatter, 2004).
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3 An Illustrative Application from Conjoint Analysis

3.1 The Data

Our application comes from conjoint analysis, a procedure that is focused on obtain-
ing the importance of certain product attributes and their significance in motivating
a consumer toward purchase from a holistic appraisal of attribute combinations. Our
data come from a brand - price trade off study in the mineral-water category. Each of
213 Austrian consumers evaluated their likelihood of purchasing 15 different product-
profiles offering five different brands of mineral-water at different prices on 20 point
rating scales. The goal of the modelling exercise is to find a model describing con-
sumers’ heterogeneous preferences towards the different brands of mineral water and
their brand-price trade offs.

Applying the general heterogeneity model to these data we follow up previous
work on the same data using the random coefficient model based on normal errors
(Frühwirth-Schnatter and Otter, 1999), the latent class model based on normal errors
(Otter et al., 2002), the general heterogeneity model based on normal errors (Tüchler
et al., 2002).

3.2 The Design Matrix

Our fully parameterized design matrix consists of 15 columns corresponding to the
constant, four brand contrasts (of the brands Römerquelle – RQ, Vöslauer – VOE,
Juvina – JU, Waldquelle – WA), a linear and a quadratic price effect, four brand by
linear price and four brand by quadratic price interaction effects, respectively. We
used dummy-coding for the brands. The fifth brand Kronsteiner (KR) was chosen as
the baseline. We subtracted the smallest price from the linear price column, and com-
puted the quadratic price contrast from the centered linear contrast. Therefore, the con-
stant corresponds to the purchase likelihood of Kronsteiner at the lowest price level, if
quadratic price effects are not present. The investigations of these data in Otter et al.
(2002) indicated that a specification with fixed brand by quadratic price interactions is
preferable and is therefore chosen for the rest of this paper.

We carried out 30000 MCMC iterations and based our inference on the last 6000.
The group specific means βG

k and the fixed effects α are a priori normally distributed
with N(b0, B0) and N(a0, A0), respectively. The prior means b0 and a0 are equal
to the population mean of the RCM model reported in Frühwirth-Schnatter and Ot-
ter (1999) and for the information matrices we choose A−1

0 = B−1
0 = 0.04 · I .

The prior distribution of the groups covariances is an inverted Wishart distribution
IW (νQ

0 , SQ
0 ). We choose νQ

0 = 10 and then derive SQ
0 from E(QG

k ) = (νQ
0 − (d +

1)/2)−1SQ
0 , where E(QG

k ) was computed by individual OLS estimation and d is the
dimensionality of QG

k . The prior on η is the commonly used Dirichlet distribution
D(1, . . . , 1). We stay noninformative about the error variances σ2

ε and choose the in-
verted gamma distribution IG(0, 0).
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3.3 Model Selection

We estimated various models for our data, the general heterogeneity model, varying
the number of groups K , the special case of the LCM, also varying the number of
groups K and the special case of the RCM. We also investigated, whether we should
use homogeneous or heterogeneous variances.

Table 1 shows estimates of the logarithm of model likelihoods for all these models
based on homogeneous variances, whereas Table 2 shows estimates based on hetero-
geneous variances.

We see that the RCM (column Q �= 0, line K = 1) is clearly preferred to all
LCMs (column Q = 0), but is outperformed by the general heterogeneity model (col-
umn Q �= 0, line K > 1), regardless of the assumption made concerning the variances.
The specification chosen for the variances exercises has a considerable influence on
the number of optimal classes. Under the assumption of homogeneous variances the
optimal latent class model has seventeen classes, whereas the number reduces to four-
teen under heterogeneous errors. Also the general heterogeneity model has a different
number of optimal classes, namely two under heterogeneous errors and three under
homogeneous errors.

The optimal model out of all models under consideration is a general heterogeneity
model with heterogeneous error variances and K = 2 classes.

Table 1: Bayesian model selection for the mineral water data; log of the model likeli-
hoods based on the normal distribution (rel. std. errors in parentheses)

log p(yN |Model)
K QG

k �= 0 QG
k = 0

1 -9222.36 (0.05) -10077.31 (0.00)
2 -9165.66 (0.06) -9881.49 (0.01)
3 -9161.27 (0.06) -9733.98 (0.02)
4 -9165.73 (0.08) -9669.98 (0.05)
...

...
16 - -9464.77 (1.16)
17 - -9460.61 (1.19)
18 - -9465.79 (1.33)

The MCMC draws may be explored to indicate overfitted models with too many
groups. This is illustrated in Figure 1 where we see posterior draws of the group spe-
cific parameters corresponding to the price coefficient and one of the brands obtained
under assuming homogeneous error variances. The left hand side figure corresponds
to the number of classes selected by the model likelihood. The right hand side figure
is a plot where an additional class is added. We find the same number of simulation
clusters as before, as the data do not support an additional class. The widely spread
simulations overlaying the three clusters indicate that parameters are sampled from
their prior because the additional class is empty on many iterations.
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Table 2: Bayesian model selection for the mineral water data; log of the model likeli-
hoods based on the t4-distribution (rel. std. errors in parenthesis)

log p(yN |Model)
K QG

k �= 0 QG
k = 0

1 -9101.52 (0.05) -9980.21 (0.00)
2 -9028.81 (0.06) -9727.13 (0.02)
3 -9043.96 (0.06) -9576.97 (0.03)
4 -9045.86 (0.06) -9522.18 (0.05)
...

...
...

12 - -9332.96 (0.08)
13 - -9329.49 (0.08)
14 - -9326.26 (0.08)
15 - -9327.27 (0.08)

The preference of a model with heterogenous variances is also supported by Figure
8 which shows considerable differences among the individual variances σ2

ε,i for 15
randomly selected consumers by means of their posterior distribution.

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5
−8

−6

−4

−2

0

2

4

6

8

10

12

price

R
Q

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5
−8

−6

−4

−2

0

2

4

6

8

10

12

price

R
Q

Figure 1: General heterogeneity model based on homogeneous variances, K = 3 (left)
against K = 4 (right); posterior draws of group specific means obtained from random
permutation sampling for the price against RQ

3.4 Model Identification for the Selected Model

Model selection pointed toward a general heterogeneity model with heterogeneous er-
ror variances with K = 2 classes. We proceed with estimating the group specific pa-
rameters for this model. As the model includes a discrete latent structure, we have to
identify a unique labelling subspace to avoid biased estimates of the group specific pa-
rameters βG

1 , .., βG
K , QG

1 , .., QG
K , η1, .., ηK and SN . To achieve a unique labelling we

apply the method of Permutation sampling described in Frühwirth-Schnatter (2001).



66

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

seps

Figure 2: General heterogeneity model based on heterogenous variances with K = 2
classes; posterior densities of individual variances for 15 randomly selected consumers

The sampler is restricted to a unique labelling subspace by introducing a constraint
Rg : g(βG

1 , QG
1 , η1) < . . . < g(βG

K , QG
K , ηK), where g is an appropriate function of

the group specifics.
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Figure 3: General heterogeneity model based on heterogenous variances with K = 2
(left) and based on homogeneous variances with K = 3 (right); posterior draws of
group specific means obtained under constrained sampling for the price against RQ

We are now going to illustrate how to achieve a unique labelling for the opti-
mal heterogeneity model. First we analyze the output of the Random Permutation
Sampler graphically. The Random Permutation Sampler explores the unconstrained
posterior distribution and samples from each labeling subspace with equal probabil-
ity 1/K . This can be seen in Figure 1, where the group specific mean of the price
is plotted against the one of RQ. Though there is no association between individual
MCMC chains and group specific parameters by definition of the Random Permuta-
tion Sampler—estimates from any chain integrate over between group differences—
two clusters and possible constraints to separate these may be found by visual inspec-
tion. On the left-hand side of Figure 3 we see the output of the model that has been
identified by separating the two groups by a restriction on the groups specific price
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parameter.
In Table 3 we give resulting estimates for the group specific means and the group

weights. We have two big groups of nearly equal size, one collecting very price sen-
sitive consumers whereas the consumers of the other group tend to value the ”high-
image” brands RQ and VOE. Moreover, they are less price sensitive.

It is interesting to compare these results with the optimal heterogeneity model un-
der homogeneous errors. On the right-hand side of Figure 3 we see the MCMC output
of a model that has been identified by separating the first group from the remaining
two by the constraint price1 < price2,3 and by dividing the second group from the
third one by RQ2 > RQ3. In Table 4 we give resulting estimates for the group spe-
cific means and the group weights. We still have two big groups of nearly equal size,
that have a similar meaning as the groups found under heterogeneous errors. The ad-
ditional group is the smallest one and consists of consumers who are neither price
sensitive nor brand conscious.

Table 3: Posterior estimates of the group specific means βG
k and the group specific

weights ηk for a heterogeneity model with heterogeneous errors and K = 2 (std. dev.
in parentheses)

βG
k βG

k

K = 1 K = 2 K = 1 K = 2

const 14.78 12.43 RQ · p -0.71 -0.04
(0.67) (0.75) (0.16) (0.15)

RQ 5.44 5.65 V OE · p -0.85 -0.02
(0.65) (0.84) (0.16) (0.16)

V OE 5.3 5.17 JU · p -0.38 0.07
(0.65) (0.97) (0.16) (0.16)

JU 1.28 0.38 WA · p -0.58 -0.1
(0.66) (0.97) (0.15) (0.13)

WA 2.24 1.1
(0.68) (0.78)

p -2.72 -0.82
(0.15) (0.15) E(ηk|yN)

p2 -0.03 0 0.58 0.42
(0.07) (0.06) (0.04) (0.04)

4 Summary and Outlook

The purpose of this paper has been to illustrate a hierarchical parametric approach to-
ward capturing unobserved heterogeneity based on mixtures of random-effects models
and its practical implementation based on a fully Bayesian approach. A careful eval-
uation of various special cases of this general model for a conjoint study in the min-
eral water market demonstrated first, that strong preference heterogeneity is present,
second that the hierarchical Bayes model as well as the latent class model are outper-
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Table 4: Posterior estimates of the group specific means βG
k and the group specific

weights ηk for a heterogeneity model with homogeneous errors and K = 3 (std. dev.
in parentheses)

E(βG
k |yN ) E(βG

k |yN )

Effect k=1 k=2 k=3 Effect k=1 k=2 k=3
const 14.99 12.16 13.38 RQ·p –0.78 –0.29 0.11

(0.79) (0.79) (1.49) (0.20) (0.22) (0.46)
RQ 5.45 7.57 0.17 VOE·p –0.89 –0.29 0.49

(0.77) (0.85) (1.72) (0.20) (0.24) (0.54)
VOE 5.23 6.91 –0.46 JU·p –0.54 0.16 –0.18

(0.78) (0.94) (2.08) (0.21) (0.21) (0.51)
JU 1.83 0.02 1.76 WA·p –0.67 –0.08 –0.38

(0.81) (0.94) (1.64) (0.18) (0.18) (0.38)
WA 2.35 1.09 2.66

(0.81) (0.92) (1.72)
p –2.87 –1.09 –0.85

(0.18) (0.18) (0.42) E(ηk|yN )

p2 0.01 –0.08 –0.15 0.46 0.44 0.10
(0.09) (0.07) (0.18) (0.05) (0.05) (0.03)

formed by the mixture approach in their ability to capture this heterogeneity, and third
that also the observation variances are definitely heterogeneous.

Focus of this contribution has been entirely on capturing cross-sectional hetero-
geneity. Otter et al. (2004a) extend the hierarchical parametric approach based on
mixtures of random-effects models in order to deal both with cross-sectional as well
as longitudinal unobserved heterogeneity. For alternative work on capturing longitu-
dinal heterogeneity we refer to the contribution of Achim Zeileis in this volume.

A certain disadvantage of a mixture of random-effects models is that representa-
tion of heterogeneity in terms of the variance-covariance matrix QG

k is rather highly
parameterized, especially for high-dimensional preference vectors. A further interest-
ing line of research is to find a representation of heterogeneity, that is more parsimo-
nious than a fully unrestricted covariance matrix QG

k . First ideas on how to achieve a
more parsimonious representation of heterogeneity based on using Bayesian variable
selection ideas on the Cholesky factors of QG

1 are found in Tüchler and Frühwirth-
Schnatter (2003).
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Tüchler, R. and Frühwirth-Schnatter, S. (2003). Bayesian parsimonious estimation of
observed and unobserved heterogeneity. In Verbeeke, G., Molenberghs, G., Aerts,
M., and Fieuws, S., editors, Statistical Modelling in Society. Proceedings of the 18th
International Workshop on Statistical Modelling, pages 427–431, Leuven, Belgium.
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Part II

Modeling Financial Markets



Non-linear Volatility Modeling in Classical and
Bayesian Frameworks with Applications to Risk
Management

Tatiana Miazhynskaia, Engelbert Dockner, Sylvia Frühwirth-Schnatter and
Georg Dorffner

1 Introduction

Modeling and forecasting volatility of financial time series has become a popular re-
search topic for the last several years. There are two main reasons for this devel-
opment. The first is the rapid growth of financial derivatives that require volatility
forecasts to calculate fair prices. The second arises from today’s new global financial
architecture that places more emphasis on measuring and managing financial market
risks. Consequently, following the regulations of the Bank for International Settle-
ments, many of the banks (and other financial institutions) have to measure their mar-
ket risks on a regular basis. The need to improve the management of financial risks
has also led to a uniform measure of risk called Value-at-Risk (VaR). The VaR of a
portfolio of risky assets is the maximum potential loss of this portfolio for a given
horizon and a given loss-probability. Increasing availability of financial data and rapid
advances in computer technology have spurred the development of various VaR mod-
els that are applied in risk management.

To quantify the VaR of a position we need to calculate the corresponding quantile
of the returns distribution. If the returns distribution satisfies specific assumptions the
estimation of the VaR requires the estimation of the conditional standard deviation
only. In case of normal and t-distributions the VaR of a portfolio is determined by a
forecast of the standard deviation of the portfolio returns. Hence many VaR models
are directly linked to modelling conditional variances.

The most famous model of this type, widely used in practice, is the GARCH model
(Bollerslev, 1986) where conditional variances are governed by a linear autoregressive
process of past squared returns and variances. This model captures several “stylized
facts” of asset return series such as heteroskedasticity (time-dependent conditional
variance), volatility clustering and excess kurtosis. Later studies (e.g., Nelson, 1991;
Glosten et al., 1993; Alles and Kling, 1994; Hansen, 1994) have found that there exist
additional empirical regularities that can not be described by the classical GARCH
model, such as the leverage effect, negative skewness, or fat tails of conditional distri-
butions. While traditional GARCH models only allow for constant higher order mo-
ments, Alles and Kling (1994) demonstrated that for different financial series higher
order moments are time-varying.

All these insights led to the development of an enormous number of models gen-
eralizing the classical GARCH model in some directions. One possible approach is to
allow for non-linear dependencies in conditional varainces. A nice review of nonlinear
approaches can be found in Swanson and Franses (1999). But in spite of the wide class
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of non-linear models, there is still no clear answer about the importance of non-linear
dependencies in volatility modelling. As a central theme of our SFB project we have
tried to address the question of ”how much” non-linearity is included in financial data.

As a tool for non-linear regression we used neural network-based (NN) modelling,
so called recurrent mixture density networks, describing the conditional mean and
variance by multi-layer perceptrons (the same approach was applied by Schittenkopf
et al., 1999, 2000; Bartlmae and Rauscher, 2000). For NN modelling, the conditional
moments can be approximated with an arbitrary accuracy if the size of the neural
network models is not restricted (Hornik et al., 1989).

NN modelling provides a very general framework and has become a rather popu-
lar methodology in financial modelling. To add to the literature from above, we men-
tion more recent papers such as Boero and Cavallil (1997), Dunis and Jalilov (2002),
González and Burgess (1997), Poh et al. (1998), Yao et al. (2000), where the NN ap-
proach was found to be very useful. As a semi-parametric non-linear model, neural
networks have the following important advantages over the more traditional paramet-
ric models. They do not rely on restrictive parametric assumptions such as normal-
ity, stationarity, or sample-path continuity, and they are robust to specification errors
plaguing parametric models. Moreover, NN models are sufficiently flexible and can
easily encompass a wide range of securities and fundamental asset price dynamics.

In addition to the linearity issue of conditional variances we concentrate also on
the modelling of conditional distributions. We compare three different density spec-
ifications: 1) the standard GARCH gaussian model and its non-linear generalization
using a normal distribution; 2) the GARCH model and its non-linear neural network
generalization with a Student’s t-distribution; and 3) linear and non-linear recurrent
mixture density models, which approximate the conditional distributions by a mixture
of Gaussians (two components). All models allow for heteroskedastic data, while the
model with t-distribution permits conditional leptokurtosis. But only the linear and
non-linear mixture models allow the higher moments to be time varying.

To check how stable the relative performance of our models is, the empirical anal-
ysis is based on stock index return series from different financial markets. We used
return series of the Dow Jones Industrial Average (USA), FTSE 100 (Great Britain)
and NIKKEI 225 (Japan) over a period of more than 12 years.

The purpose of this paper is to empirically compare the performance of linear
and non-linear NN models under different conditional density specifications. This
leads us to the important question of how to characterize the performance of a model,
i.e., which performance measure to use. We apply traditional measures but introduce
model selection on the basis of the costs of value at risk forecasts as well as on the
basis of Bayesian inference.

A fundamentally different approach to model selection is provided by the Bayesian
methodology. Point estimates for parameters are replaced by distributions in the pa-
rameter space, which represent our knowledge or belief about the value of the param-
eters. The Bayesian framework allows different models to be compared using only
the training data. Moreover, the Bayesian approach is more powerful with complex
models than is the maximum likelihood one. In the ML-approach the problems of
local optima and over-fitting sometimes lead to rather doubtful estimators and, conse-
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quently, to unclear results in model performance. The principle to avoid unnecessary
complexity is implicitly embodied in the Bayesian framework.

Our paper is divided into two main parts. In the first we compare models under the
maximum likelihood approach. The models are evaluated with respect to their likeli-
hood as well as with respect to their volatility forecasting performance. Due to their
length, the original return series are split into several parts and each of the models is
estimated separately on every part. Thus, we can not only compare the models with
respect to performance results but also apply statistical tests to find out whether the
differences in performance are significant. In that respect we continue the work of
Schittenkopf et al. (1999) and Schittenkopf et al. (2000), comparing non-linear and
non-gaussian volatility models for data from different financial markets. Moreover,
we derive dynamical VaR predictions by each of our models for three different ho-
mogeneous portfolios. To evaluate the quality and accuracy of these VaR models we
apply a number of standard statistical back-testing procedures. Additionally, we check
the efficiency of VaR measures on the basis of economic costs resulting from VaR pre-
dictions together with corresponding capital requirements.

In the second part of the paper, we apply Bayesian analysis to our models and
perform model comparison based on posterior model probabilities. The literature on
Bayesian analysis applied to NN models is relatively thin. We mention the approach in
MacKay (1992), based on Gaussian approximations, and the hybrid Monte Carlo algo-
rithm applied by Neal (1996). Posterior inference in NNs is plagued by multimodality
issues. Besides trivial multimodality due to relabeling, there is inherent multimodality
due to non-linearity. As a consequence, there is little hope for the normal approxi-
mation with these models and we need to turn to simulation methods. First attempts
to apply the hybrid MC to our models show its practical limitations because of the
recurrent structure in the variance equation and consequently, rather expensive com-
putations of the energy gradient are necessary. Thus, we mainly adopt the approach of
Müller and Insua (1998) combining Metropolis-Hastings (MH) steps for simulating
model parameters with Gibbs sampling of hyper-parameters.

The rest of the paper is organized as follows. In the next two sectionS we present
the models and the data that are used in the empirical analysis. Sections 4 is devoted
to the maximum likelihood framework, including model evaluation based on VaR ap-
plications. In the section 5 we discuss the Bayesian model selection issues. Finally,
Section 6 concludes the paper.

2 Description of Models

As a benchmark we use the classical GARCH(1,1) model (Bollerslev, 1986) with
conditional normal distribution and an AR(1) process for the mean equation of the
returns rt, i.e.

rt = µt + et, et ∼ N(0, σ2
t ),

µt = a1rt−1 + a0,
σ2

t = α0 + α1e
2
t−1 + β1σ

2
t−1.

One possible extension of this GARCH model is to substitute the conditional nor-
mal distribution by a Student’s t distribution with ν degrees of freedom in order to
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allow for excess kurtosis.
The second direction of the extension of the classical GARCH model is to allow

for non-linear dependencies in the conditional mean and in the conditional variance.
As a tool for non-linear regression we use neural network-based modelling by means
of a recurrent mixture density network that describes conditional mean and variance
by multi-layer perceptrons (MLP) (see Bishop, 1994; Schittenkopf et al., 2000, for a
detailed discussion).

In the simplest case a MLP with one input unit, one layer of hidden units and one
output unit is defined by the mapping

f̃(xt) = g

⎛
⎝ H∑

j=1

vjh(wjxt + cj) + sxt + b

⎞
⎠ , (1)

where H denotes the number of hidden units, wj and vj the weights of the first and
second layer, s the shortcut weight, and cj and b the bias weights of the first and
second layer. In general, the activation function h of the hidden units is chosen to be
bounded, non-linear, and increasing as, e.g., the hyperbolic tangent or logistic sigmoid
function. The activation function of the output unit may be unrestricted, e.g. g(x) = x.
In general, a MLP can approximate any smooth, non-linear function with arbitrary
accuracy as the number of hidden units tends to infinity (Hornik et al., 1989). In such
a way, the MLP can be interpreted as a non-linear autoregressive model of first order
and can be applied to predict the parameters of a conditional density of the return
series.

Recurrent mixture density network models RMDN(n) approximate the conditional
distributions of returns by a mixture of n Gaussians:

ρ(rt|It−1) =

n∑
i=1

πi,tk(µi,t, σ
2
i,t), (2)

where k(µi,t, σ
2
i,t) is the Gaussian density and the parameters πi,t, µi,t, and σ2

i,t of
the n Gaussian components are estimated by three MLPs. The MLPs estimating the
priors and the centers are standard MLPs (1) with rt−1 as input. The MLP estimating
the variances is recurrent and has the form

σ2
i,t =

H∑
j=1

vijh

(
wje

2
t−1 +

n∑
k=1

γjkσ2
k,t−1 + cj

)
+si0e

2
t−1+

n∑
k=1

sikσ2
k,t−1+bi. (3)

The activation function h of the hidden units is chosen to be hyperbolic tangent.
The most appealing feature of RMDN models is the time-dependence of the

higher-order moments (skewness and kurtosis), that is in contrast to the properties
of GARCH and GARCH-t models.

We note that an RMDN model with one Gaussian component (n = 1) can be
interpreted as a non-linear extension of a GARCH model.

There are two other models that must be introduced in order to analyze the in-
fluence of linear and non-linear functions and density specifications on the perfor-
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mance of return series models (Schittenkopf et al., 2000). The first one is the non-
linear GARCH model in the framework of a RMDN with a t-distribution replacing
the weighted sum of normal densities in (2). These models will be called RMDN(n)-t
models. The second one is the nonlinear GARCH model in which only linear func-
tions are allowed. More precisely, in all three MLPs estimating the parameters of the
mixture model the activation function h of the hidden units are supposed to be linear.
These linear mixture models are referred to as LRMDN(n) models in the following.
LRMDN(1) is again the classical GARCH model. We limited ourselves to the cases
n = 1 and n = 2, mainly focusing on the non-linearity aspects.

Altogether, we concentrate on six models according to two dimensions: linearity
and distribution:

type of distribution linear non-linear
Gaussian GARCH(1,1) RMDN(1)

t distribution GARCH(1,1)-t RMDN(1)-t
mixture of Gaussians LRMDN(2) RMDN(2)

3 Data Sets

In our numerical experiments we used three data sets related to different financial
markets:

1. daily closing values of the Dow Jones Industrial Average (DJIA);

2. daily closing values of the FTSE 100 traded at the London Stock Exchange;

3. daily closing values of the Japanese index NIKKEI 225.

The index series were taken from public sources. The sample period for all data
sets was 13 years from 1985 to 1997. All data were transformed into continuously
compounded returns rt (in percent).

In order to take care of stationarity issues and increase the reliability of the empir-
ical analysis, all time series were divided into overlapping segments of a fixed length
of 700 trading days, where the first 500 returns of each segment form a training set,
the next 100 returns form a validation set and the remaining 100 returns are used
for testing. The training sets are used to optimize the parameters of each model. The
validation sets are used for an “early stopping” strategy to avoid overfitting for the
neural network models and independent test sets are used for out-of-sample model
performance evaluation. The test sets are not overlapping.

4 Maximum Likelihood Framework

A comprehensive presentation of the results in this section can also be found in the
technical reports Miazhynskaia et al. (2003a,b).
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4.1 Estimation of Models

We fitted GARCH(1,1), RMDN(1), GARCH(1,1)-t, RMDN(1)-t, LRMDN(2) and
RMDN(2) models to each of the training sets separately. The number of optimized pa-
rameters of a particular model is 5 for the GARCH(1,1) model, 26 for the RMDN(1),
6 for the GARCH(1,1)-t, 27 for the RMDN(1)-t, 16 for the LRMDN(2), and 54 for
the RMDN(2). The number of hidden units of the MLPs in the RMDN-models was
chosen to be H = 3. The parameters of all models were optimized with respect to the
average negative log likelihood of the sample

L = − 1

N

N∑
t=1

log ρ(rt|It−1),

where N denotes the sample size and ρ(rt|It−1) is the conditional probability density
function of the corresponding distribution. We refer to L as the loss function of a data
set, since we will make use of values of L calculated for data sets which were not used
to estimate the model parameters.

The optimization routine was a scaled conjugate gradient algorithm. We performed
optimization of RMDN models with several parameter initializations in an attempt to
approach a global optimum. For the models with t distribution, the degrees-of-freedom
parameter was additionally optimized by a one-dimensional search routine.

Since the main goal of this work is out-of-sample diagnostic, i.e., comparison of
model performance on a non-used data set (test set), we are interested in obtaining
models with optimal generalization performance. However, all standard neural net-
work architectures such as the fully connected multi-layer perceptron are prone to
overfitting (see, e.g., Geman et al., 1992; Reed, 1993): while the network seems to
become better and better, i.e., the error (in our case - the value of the loss function) on
the training set decreases. In order to prevent the RMDN models from overfitting the
training data, the generalization error is estimated by the performance of the model
on a validation set and an “early stopping” strategy (Prechelt, 1998) is applied . More
precisely, the model parameters are optimized with respect to the loss function on the
training set and after each iteration the loss function on the validation set is calculated.
Finally, the RMDN model on the optimization iteration t∗ is selected, where

t∗ = arg min
t0<t<T

Lvalidation(t),

with t as an iteration number; T is the number of all iterations performed; and t0 is
the minimal iteration number chosen to avoid artefact behaviour of the loss function
on the validation set in such a way that the parallel value of the loss function on the
training set of a simpler (less parametrized) model is beaten.

4.2 Out-of-Sample Loss Function Performance

We investigated out-of-sample performance of the models, i.e. error values on data
sets disjoint from the training data. The parameters of the models were estimated by
the procedure described above using training and validation sets and then, keeping the
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parameters fixed, we computed the error measures on the test sets of the correspond-
ing segments. Favor to the out-of sample criterion for model comparison was given
because in this case possible overparametrizations may be neglected.

In spite of the numerous different starting values in the optimization procedure for
the neural network models, for single cases we obtained values for the loss function
that were three to five times larger than the average level. Based on the smooth be-
haviour of the loss function for other models on the same test set, we considered such
models to be ”non-indicated” over-fitting cases and deleted these test sets parallel for
all data sets from the analysis. After elimination we were left with 24 test sets for
model evaluation.

The performance of the models on each of the test sets for the DJIA data with
respect to the loss measure is summarized in Fig.1. For convenience all the results
are presented with respect to the functional form of the conditional variance equa-
tion (linearity versus non-linearity) and the conditional distribution specification. We
compare the performance of the Gaussian model with that having a t distribution and
the mixture of Gaussians. Thus, three lines in the upper panel of the figure give the
values of the relevant statistic for the linear models GARCH(1,1), GARCH(1,1)-t and
LRMDN(2). The bottom panels present non-linear models RMDN(1), RMDN(1)-t
and RMDN(2). Based on Fig.1, we can draw the following preliminary conclusion:
in general, the differences between the models over the most test sets are negligible.
On single sets (test set 5,6 and 10-12) the linear and non-linear Gaussian models show
the worse results, while the models with Student’s t distribution exhibit the smallest
likelihood values. If we compare the upper and the lower plots in Fig.1, it is obvious
that the linear models and their non-linear neural network generalizations reach equal
likelihoods. Single cases, like test set 11, where the non-linear RMDN(1) model shows
a loss value close to 1.6 against 1.2 for the linear GARCH(1,1), and the sets 23-24,
where the non-linear mixture density RMDN(2) behaves significantly worse than its
linear version, are due to the problems with the maximum likelihood estimation of the
non-linear models.

In order to be statistically consistent in the model selection process, we tested
the hypothesis of higher/lower errors by performing parametric and nonparametric
tests. More precisely, we performed a paired t-test and a matched pairs signed rank
Wilcoxon test (paired Wilcoxon test) for our loss measures. The application of the
paired tests is appropriate for the following reasons: The error measures of each model
vary considerably with the actual segment of the underlying return series but the dif-
ferences between the error measures of different models are rather small. Therefore
the differences can only be detected if a paired test which takes into account the cor-
relations between the error measures, is applied. Additionally, for the paired t-test it
is assumed that the differences are normally distributed which is not always the case
and whereas for the paired Wilcoxon test it is only assumed that the distribution of the
differences is symmetric. Because of this fact our conclusions are mostly based on the
results of the paired Wilcoxon test.

The results of the paired test for the DJIA return series are summarized in Ta-
ble 1. The column “mean” gives the mean value of the corresponding statistic over
all test sets. The minimal mean value of the loss function 1.184 is reached by the
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Figure 1: DJIA: The loss function values for the linear (in the upper figure) and non-
linear (in the lower figure) models with different conditional distributions.

Table 1: DJIA daily returns: Loss function statistics. Mean values (second column), p-
values for the paired t-tests (above the diagonal) and p-values for the paired Wilcoxon
signed rank tests (below the diagonal).

Model Mean 1 2 3 4 5 6
1: GARCH(1,1) 1.249 - 0.165 0.002 0.073 0.019 0.778
2: RMDN(1) 1.278 0.710 - 0.001 0.012 0.009 0.385
3: GARCH(1,1)-t 1.184 0.000 0.000 - 0.025 0.007 0.004
4: RMDN(1)-t 1.209 0.004 0.004 0.015 - 0.776 0.050
5: LRMDN(2) 1.214 0.008 0.010 0.000 0.103 - 0.090
6: RMDN(2) 1.255 0.265 0.230 0.000 0.032 0.391 -

GARCH(1,1)-t model. The p-values of both paired tests between this model and all
other models are less than 0.025, indicating that these differences are significant, i.e.
GARCH(1,1)-t significantly outperforms all other models. Its non-linear generaliza-
tion RMDN(1)-t is among the best when the value of the loss function is considered,
but the p-value of the Wilcoxon test for the differences between this model and the
linear mixture density model LRMDN(2) is 0.103 (or even 0.776 by t-test). Hence,
the performance of the RMDN(1)-t does not differ statistically much from the LR-
MDN(2) performance over all test sets. The third group of models consists of both
Gaussian and non-linear mixture models. The performance of this group with respect
to the loss values is the worst. It seems that on average linearity plays some positive
role since linear models have smaller values for the loss function compared to their
non-linear counterparts, but the differences are mostly not significant (the p-values
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between linear and non-linear models are 0.710, 0.015 and 0.319 for the Gaussian,
Student-t and the mixture of Gaussians conditional distributions, respectively).
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Figure 2: FTSE 100: The loss function values for the linear (in the upper panel) and
non-linear (in the lower panel) models with different conditional distributions.

Table 2: FTSE 100 daily returns: Loss function statistics. Mean values (second col-
umn), p-values for the paired t-tests (above the diagonal) and p-values for the paired
Wilcoxon signed rank tests (below the diagonal).

Model Mean 1 2 3 4 5 6
1: GARCH(1,1) 1.189 - 0.227 0.028 0.389 0.457 0.612
2: RMDN(1) 1.217 0.153 - 0.125 0.830 0.190 0.214
3: GARCH(1,1)-t 1.179 0.012 0.007 - 0.250 0.111 0.083
4: RMDN(1)-t 1.215 0.831 0.059 0.048 - 0.325 0.364
5: LRMDN(2) 1.184 0.648 0.107 0.236 0.394 - 0.635
6: RMDN(2) 1.187 0.855 0.094 0.107 0.927 1.000 -

Table 2 together with Fig.2 show the results for FTSE 100 returns with respect to
the loss function. The graphical plots give no preferences to any model or any class of
models. With respect to the average statistics, the linear models GARCH(1,1)-t and
the mixture LRMDN(2) outperform all other models, but their advantage appeared
to be not significant comparing with all other models (the p-values of the Wilcoxon
test between LRMDN(2) and all other models are above 0.107). Moreover, according
to the paired tests, there is no statistical difference between the linear and non-linear
mixture models at all (the corresponding p-value of the Wilcoxon test is 1.00). The
non-linear model with Student-t shows the lowest mean value of the loss function
over all test sets.
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Figure 3: NIKKEI 225: The loss function values for the linear (in the upper panel) and
non-linear (in the lower panel) models with different conditional distributions.

Model Mean 1 2 3 4 5 6
1: GARCH(1,1) 1.598 - 0.643 0.000 0.001 0.002 0.011
2: RMDN(1) 1.597 0.367 - 0.001 0.002 0.004 0.022
3: GARCH(1,1)-t 1.557 0.000 0.001 - 0.531 0.207 0.058
4: RMDN(1)-t 1.559 0.002 0.003 0.840 - 0.421 0.124
5: LRMDN(2) 1.565 0.004 0.007 0.253 0.253 - 0.300
6: RMDN(2) 1.571 0.016 0.021 0.174 0.109 0.242 -

Table 3: NIKKEI 225 daily returns: Loss function statistics. Mean values (second col-
umn), p-values for the paired t-tests (above the diagonal) and p-values for the paired
Wilcoxon signed rank tests (below the diagonal).

Out-of-sample diagnostics for the NIKKEI 225 series are given in Fig.3 and Table
3. As in the case with FTSE 100 data, the graphical plot of the likelihood values
over all test sets in Fig.3 gives no clear preferences to any model. But the results of
the paired statistical tests with respect to the loss function show a dominance of the
linear and non-linear models with t-distribution. The mixture models are ranked next,
but their performances relative to the models with t-distribution are not significantly
worse (the corresponding p-values are more than 0.109). But both gaussian models
again show the lowest efficiency with respect to all error measures.

4.3 VaR Application

After having evaluated the statistical performance of the different models we are going
to apply them to a standard risk management problem.

A primary tool for financial risk assessment is the Value-at-Risk (VaR) method-
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ology, where VaR is a measure of the maximum potential loss of a portfolio with a
given probability over a pre-specified horizon. As soon as the probability distribution
of the returns is known, a VaR can be calculated using the (100 − p)% percentile r∗p
of this distribution. Hence, VaR = today’s price · (exp(r∗p) − 1). For a more detailed
discussion on VaR see, for instance, Dowd (1998) and Duffie and Pan (1997).

Our analysis proceeds in the following way: the parameters of each model are fixed
within every segment and we compute a forecast of tomorrow’s return distribution as
well as the corresponding VaR estimates given the past data for every point in the
test part of this segment. We chose p = 1% so that the significance level is 99% and
compute daily VaR for an investment in the three indices. In such a way, we get a
VaR series for the whole data samples. Comparing the realized losses with the VaR
estimates, we determine the indicator variable θt as the outcome of a binomial event:
either the one-day actual loss Lt is less than the VaRt estimates (a success), or the
actual exceeds the loss estimates (a failure), i.e.

θt =

{
1, if Lt < VaRt,
0, otherwise.

(4)

We assess now the quality and accuracy of the VaR predictions of our six models.

Backtesting Evaluation of VaR Forecasts

The first group of tests is based on statistical evaluation of the indicator series {θt}.
Such testing is often referred to as ”back-testing” (Dowd, 1998).

Test 1: Basle Traffic Light. This is the back-testing framework developed by the
Basle Committee on Banking Supervision. Any bank must hold regulatory capital
against its market risk exposure. These capital charges are based on VaR estimates
generated by the banks’ own VaR models and a multiplication factor defined by su-
pervising authorities according to the traffic light concept of the Basle Committee on
Banking Supervision. According to this concept, internal banks’ models are classified
into three zones. The classification into green, yellow or red zones depends on how
often the actual losses exceed the daily 99% VaR predictions over a period of n trad-
ing days. Based on such classification, the necessary capital reserves are assigned. The
green zone implies that a multiplication factor of 3 is applied to the VaR value, yellow
results in a higher (add-on) factor between 3 and 4, while red means rejection of the
model.

Our back-testing period covers the sample period with n = 2300 that exceed the
250 days that are typically used in practice. The results of the hypothetical classifica-
tions are listed in Table 4.

All the models for FTSE 100 data are in acceptable zones. For other markets the
models with t-distribution together with mixture density networks yield the most re-
liable risk estimates. Among the non-gaussian models, the linear mixture density net-
work performs best. The gaussian models are mostly rejected. This test also indicates
the bad performance of the RMDN(2) model on the DJIA data set.
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Table 4: Classification according to the Basle rules. The column ”fails” lists the num-
ber of failures in the whole sample for the corresponding index.

DJIA FTSE 100 NIKKEI 225
Model fails zone fails zone fails zone
GARCH(1,1) 45 red 32 yellow 39 yellow
RMDN(1) 48 red 26 green 43 red
GARCH(1,1)-t 30 green 29 green 35 yellow
RMDN(1)-t 39 yellow 25 green 32 yellow
LRMDN(2) 30 green 27 green 27 green
RMDN(2) 44 red 30 green 34 yellow

Test 2: Proportion of Failures. Kupiec (1995) presents a more sophisticated approach
to the analysis of exceptions based on the observation that a comparison between daily
profit or loss outcomes and the corresponding VaR measures give rise to a binomial
experiment. The outcomes of the binomial events θt in (4) are distributed as a series
of draws from an independent Bernoulli distribution and the verification test is based
on the proportion of failures (PF) in the sample. For more details, see Kupiec (1995).

Table 5 summarizes the performance of our models with respect to the proportion
of failures test. The column denoted by ”failures” lists the number of failures in the
whole sample for the corresponding index. The next column shows whether the null
hypothesis H0 : p∗ = 0.01 can be rejected at the 5% significance level. The results
shown in the table are consistent with the previous test.

Table 5: PF test. The largest number of failures that could be observed in the samples
without rejecting the null H0 at the 5% confidence level is 32 for a sample size of 2300
points.

DJIA FTSE 100 NIKKEI 225
Model fails H0: fails H0: fails H0:

p∗ = 0.01 p∗ = 0.01 p∗ = 0.01

GARCH(1,1) 45 rejected 32 not rejected 39 rejected
RMDN(1) 48 rejected 26 not rejected 43 rejected
GARCH(1,1)-t 30 not rejected 29 not rejected 35 rejected
RMDN(1)-t 39 rejected 25 not rejected 32 not rejected
LRMDN(2) 30 not rejected 27 not rejected 27 not rejected
RMDN(2) 44 rejected 30 not rejected 34 rejected

Economic Costs of VaR Forecasts

The common downside of the tests above is that all of them only count the number
of violations of the actual loss with respect to the VaR forecast. Hence, a model with
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many small violations will be rejected while a model with few large violations will
be accepted. Moreover, financial institutions prefer VaR models that are not only able
to pass a back-testing procedure but that provide small VaR predictions. Otherwise
banks have to hold to much risk capital. Therefore, to check the efficiency of the VaR
measure we developed a new test, providing a quantitative basis for the incorporation
of VaR prediction into regulatory capital requirements.

Any financial institution must hold regulatory capital to cover its potential mar-
ket risk exposure. We used dynamically computed daily VaR estimates generated by
our VaR models and assumed for simplicity that capital reserves equal to the VaR
estimates will be held for 1 day. When the actual portfolio loss Lt does not exceed
the predicted loss for this day, the bank only faces opportunity costs by not being
able to properly invest the capital held to satisfy the capital requirements. We com-
pute these costs as lost interest yield VaRt · (ei/250·1 − 1) with some interest rate i.
In the case that the portfolio loss Lt is greater than the VaRt estimates, banks need
additional capital and face capital charges as a penalty, so that the lost interest yield =
VaRt · (ei/250·1 − 1)+ Penalty, where, e.g., Penalty = 1.2 · (Lt − V aRt) · ei/250·1 to
cover higher transaction costs of capital transfers.

 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7

  GARCH(1,1)

     RMDN(1)

GARCH(1,1)−t

   RMDN(1)−t

    LRMDN(2)

     RMDN(2)

relative value

DJIA
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NIKKEI 225

Figure 4: Lost Interest Yield

According to this strategy, we calculated the lost yield over the entire test period
and then scaled it to remove the dependency on the portfolio size. These relative lost
interest yields are depicted in Fig 4.

For all markets the best model is the linear mixture density network. In general,
this test clearly rejects linear and non-linear gaussian models and favors the mixture
density models over the models with t-distributions.

5 Bayesian Approach

In this section we consider our models in the Bayesian framework. To make the pos-
terior simulation process easier, we simplify the model specifications. Since we con-
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centrate on non-linearity issues in volatility modelling, we assume an AR(1) process
for the conditional mean for all the models. Moreover, for the mixture models we
use constant mixture proportions and in equation (3) the mixture variance as lagged
variance is taken. We do not fix the number of hidden nodes H and investigate the
”degree of non-linearity” in the data, varying H = 1, 2, 3. As activation functions we
take the logistic for hidden nodes function and the unrestricted activation function for
the output unit, assuming positivity of the parameters (vij , si0, si1, bi) to guarantee
the positivity of the predicted variances.

We start the Bayesian inference with defining a prior distribution over the model
parameters. The next step is to apply Markov chain Monte Carlo (MCMC) simulations
to obtain posterior distributions of the parameters. And, finally, we apply a Bayesian
models selection method (bridge sampling) to compute the model likelihoods and
posterior model probabilities, to do model selection.

The Bayesian inference on GARCH-type models has been first implemented using
importance sampling (see Kleibergen and van Dijk, 1993). More recent approaches
include the Griddy-Gibbs sampler by Bauwens and Lubrano (1998), reversible jump
MCMC in Vrontos et al. (2000) and the Metropolis-Hastings algorithm with some
specific choice of the proposal distribution (Geweke, 1995; Kim et al., 1998; Müller
and Pole, 1998; Nakatsuma, 2000).

Unlike in the mentioned literature, we adopt a hierarchical structure for the
GARCH models. This is partly motivated by our intention to have a common approach
for all models (so as, GARCH models are the particular case of the non-linear NN
model), partly by our belief that hierarchical modeling provides a simple and general
way of being weakly informative and to remain proper. For the Student-t distribution,
the degrees of freedom is also a parameter to be estimated, and, following Geweke
(1993), we choose an exponential prior density. To generate posterior samples for the
model parameters we used the multivariate random walk Metropolis algorithm.

The literature on Bayesian analysis for NNs models is relatively thin. MacKay
(1992) developed the first approaches, based mainly on Gaussian approximations to
the posteriors. Bishop (1995) reviews many of these earlier attempts. Of special rele-
vance is the work of Neal (1996). He applied a hybrid Monte Carlo algorithm, which
combines the MH algorithm with methods from dynamical simulation sampling tech-
niques. Müller and Insua (1998) use a multivariate version of MCMC and marginalize
over some parameters to increase performance. Posterior inference in NNs is plagued
by multimodality issues. Besides trivial multimodality due to relabeling of the hidden
units, there is inherent multimodality due to non-linearity. As a consequence, there is
little hope for normal approximation with these models and we need to turn to MCMC
methods. First attempts to apply the hybrid MC for our models show its practical lim-
itations because of the recurrent structure of our models and, consequently, rather
expensive computation of the energy gradient. Thus, we mainly follow the Müller and
Insua (1998) approach combining Gibbs sampling of hyperparameters with random
walk MH for the NN parameters. We let the proposal variance depend on the current
hyperparameter value.

Open questions in the NN community are the selection of the “optimal” size of
the network and the identification of the hidden units. The classical model selection
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methods may be misled by local modes. More recently, Müller and Insua (1998),
Marrs (1998) and Holmes and Mallick (1998) have addressed the issue of selecting
the number of hidden neurons from a Bayesian perspective. In particular, they ap-
ply the reversible jump MCMC algorithm of Green (1995) to feed-forward sigmoidal
networks and radial basis function networks to obtain joint estimates of the number
of neurons and weights. Their results indicate that it is advantageous to adopt the
Bayesian framework and MCMC methods to perform model order selection. We ap-
ply the bridge sampling technique to compute the model evidences for different NN
sizes and choose the ”optimal” size of the network based on Bayes factors. Unlike
the known literature, we select identifiability constraints based on the posterior scatter
plots of the NN parameters after random permutation of the hidden nodes (the same
approach as in Frühwirth-Schnatter (2001)).

Many issues about posterior multimodality and computational strategies in NN
models are of relevance in the wider class of mixture models. Important references in
the Bayesian literature on mixture models include Diebolt and Robert (1994), Robert
(1996), Frühwirth-Schnatter (2001) and Richardson and Green (1997). We applied
data augmentation for mixture models (see Diebolt and Robert, 1994) to generate the
posterior samples for the mixture proportions.

At the beginning of the next section we provide a very short review of the main
concepts of Bayesian model selection. For more details on the techniques presented
here, see, e.g., Carlin and Louis (1996), Gilks et al. (1996), Tierney (1994), Chib and
Jeliazhov (2001), Brooks (1998), Kass and Raftery (1995).

5.1 Basic Concepts and Notations

All the complex models may be viewed as the specification of a joint distribution
of observables (data) which we denote by Y and unobservables (model parameters)
which we denote by θ. The traditional approach to Bayesian model selection is con-
cerned with the following situation. Suppose the observed data Y are generated by a
model Mi, one of a set M of competing models. Each model specifies the data like-
lihood f(Y |θi, Mi) as the distribution of Y apart from an unknown parameter vector
θi of dimension ni. Under prior densities π(θi|Mi) the marginal distribution of Y is
found by integrating out the parameters

p(Y |Mi) =

∫
f(Y | θi, Mi)π(θi |Mi) dθi. (5)

By analogy with the data likelihood function, the quantity p(Y |Mi) is called the model
likelihood. Typically, these probabilities will be extremely small, since any particular
data set of significant size will have low probability, even under the correct model.

We assume no prior preferences between our models (prior model probabilities are
equal). Then the model likelihoods yield posterior model probabilities as p(Mi|Y ) =
p(Y |Mi) /

∑n
k=1 p(Y |Mk).

The model with greater likelihood value is declared to have better performance.
The integral (5) is analytically tractable in only certain restricted problems and

sampling based methods must be used to obtain estimates of the model likelihoods
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(for a review of Bayesian model selection methods see Miazhynskaia et al. (2003c)).
We chose the bridge sampling technique for model likelihood computation (see, e.g.,
Meng and Wong (1996) and Kaufmann and Frühwirth-Schnatter (2002) for details).
As an input for the bridge sampling algorithm we used the samples from parameter
posterior distributions, obtained with the help of MCMC simulations.

5.2 Priors

The starting point for the Bayesian inference is a prior distribution over the model
parameters. Choice of suitable priors is generally a contentious issue. One wants the
priors to reflect one’s believes about parameter values and at the same time to use
non-informative (flat) priors that do not favor particular values of the parameters over
other values. The standard choice for non-informative priors are Jeffreys priors (Jef-
freys, 1961) based on the expected Fisher information in the model. But such non-
informative priors are typically improper in that they do not have finite integrals. This
often leads to the non-integrability of the posterior parameter distribution as well,
making the Bayesian model selection (based on the normalizing constant of the pos-
terior) questionable. Therefore, we concentrate on proper priors for all model param-
eters.

Because of the difficulty in interpreting the parameters for the neural network mod-
els we adopt a hierarchical prior structure (Neal, 1996) that enables us to treat the
priors’ parameters (hyperparameters) as random variables drawn from suitable distri-
butions (hyperpriors). A convenient form for these hyperpriors is the inverse Gamma
distribution with some fixed shape and mean parameters. To guarantee the positivity in
the variance equation we work with the logarithmic transformation of the parameters
(b, s0, s1, v1, . . . , vH ).

• N(0, 10) for mean parameters a0 and a1;

• logN(κj ,
1
τj

), j = 1, 3, for three linear variance parameters b, s0, s1, κ =

(−2.0,−2.0,−0.2);

• N(0, 1
τj

), j = 4, 6, for the hidden weights (w, γ) and biases c;

• logN(0, 1
τ7

) for the hidden-ouput weights v;

• hyperpriors τj ∼ Ga(ξj , ωj), j = 1, 7;

• degrees of freedom ν ∼ Exp(0.1);

• mixture coefficients η1, . . . , ηn ∼ Dirichlet(1, . . . , 1).

Although GARCH parameters are rather tractable we used a hierarchical prior
structure for them in order to have more variability and to apply a universal approach
over all models considered. After preliminary tuning, we fixed the hyperprior shape
parameters at ξ1:7 = 10, ω1:3 = 1, ω4:6 = 0.2, ω7 = 1. The priors’ centers κ were
fixed reflecting our representation of GARCH parameters.
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5.3 MCMC Posterior Simulation

The next step in the Bayesian procedure is the inference of the parameter vector θ
and hyperparameters τ conditional on data Y via the posterior density p(θ |Y ). Us-
ing Bayes theorem, this density takes the form p(θ |Y ) = c · f(Y | θ)π(θ) for some
normalizing constant c, likelihood function f(Y | θ) and prior density π(θ).

For many realistic problems, evaluation of p(θ |Y ) is analytically intractable,
so numerical or asymptotic methods are necessary. In this article we adopt the
MCMC sampling strategies as the tool to obtain posteriors. The idea is based on
the construction of an irreducible and aperiodic Markov chain with realizations
θ(1), θ(2), . . . , θ(t), . . . in the parameter space, equilibrium distribution p(θ|Y ), and
a transition probability K(θ′′, θ′) = π(θ(t+1) = θ′′ | θ(t) = θ′), where θ′ and θ′′

are the realized states at time t and t + 1, respectively. Under appropriate regularity
conditions, asymptotic results guarantee that as t → ∞ then θ(t) tends in distribution
to a random variable with density p(θ|Y ), and the ergodic average of an integrable
function of θ is a consistent estimator of the (posterior) mean of the function. For the
underlying statistical theory of MCMC see Tierney (1994).

The best known MCMC procedures are Gibbs sampling (when we have com-
pletely specified full conditional distributions) and the Metropolis-Hastings (MH) al-
gorithm which provides a more general framework. For an introduction to MCMC
simulation methods we refer to Chib and Greenberg (1996) and Geweke (1999).

Because of the conjugate hyperpriors’ form, we obtain the posterior distribution
p(τ |Y, θ) =

∏
p(τi | θ(i)) to be a Gamma distribution with shape ξi + k and mean

ξi+k

ξi/ωi+
P

k
j=1(θ

(i)
j −κj)2

, where θ(i) denotes the parameters directed by the hyperparam-

eter τi.
Because of the autoregressive structure of the variance equation there is no prop-

erty of conjugacy for all model parameters. To sample from the posterior p(θ|Y, τ) we
applied the random walk Metropolis algorithm with a Student-t distribution as a pro-
posal for the mean parameters and the degrees of freedom and with Gaussian proposal
for the variance parameters, where the variances of the proposal distributions were
tuned to come close to an “optimal” acceptance rate in the range of 20-40%. After
initial exploratory runs of the Markov chain we checked for correlation between the
parameters. The blocking update of highly correlated parameters was implemented to
increase the efficiency and improve the convergence of the Markov chain.

To sample mixture coefficients π1, . . . , πn we applied MH with proposal distribu-
tions constructed from the ”classical” approach to mixture models (Stephens, 1997):
introducing the missing component indicators SN = (S1, . . . , SN ) for every point
from the data set Y = (y1, . . . , yN) of the model unknowns, we can take as proposal
for the mixture coefficients Dirichlet(1+N1, . . . , 1+Nn), where Nk = �(SN = k).

One of the most important issues for neural network models with H ≥ 2 as well
as for mixture models is their unindentifiability due to the invariance of relabeling
the hidden units (mixture components). To cope with this problem, we applied the
following strategy (Kaufmann and Frühwirth-Schnatter, 2002): during posterior sim-
ulations we performed random permutation of the hidden units’ weights (components)
and then by constructing scatter plots for MCMC output we checked for the possible
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identification and the identification conditions.
Finally, we used the resulting posterior output as an input to the bridge sampling

algorithm to compute the model likelihood. To reduce the space of unknowns, we
integrated out the hyperparameters and obtained p(θ(i)) ∝ tk(κi, ωi, ξi), where tk

denotes multivariate t distribution with mean κi, variance ωi ·Ek and degrees of free-
dom ξi.

5.4 Bayesian Comparison Results

In the empirical application we used the same stock index prices, transformed in return
series, as before. Contrary to the maximum likelihood approach, the data were used
as a single set.

We first investigated the degree of non-linearity in the data controlled by the num-
ber of hidden nodes of the fitted non-linear models. We performed complete Bayesian
analysis of the RMDN(1) model with Gaussian and t distributions for three cases
H = 1, 2, 3. The resulting model likelihood values are presented in Table 6. The case
H = 0 means linear GARCH models.

normal distribution t distribution
H DJIA FTSE 100 NIKKEI 225 DJIA FTSE 100 NIKKEI 225
0 −5776.1 −5547.0 −6810.3 −5549.9 −5512.5 −6633.1
1 −5772.9 −5549.4 −6794.5 −5546.8 −5514.9 −6629.8
2 −5757.8 −5556.8 −6788.9 −5548.7 −5517.4 −6630.5
3 −5761.6 −5559.1 −6791.3 −5551.8 −5520.3 −6633.1

Table 6: Model likelihoods (logarithm) for GARCH(1,1) and RMDN(1) models for
different number of hidden nodes. The case H = 0 corresponds to the linear GARCH
models.

It follows that in the framework of the gaussian distribution we observed clear non-
linearity for DJIA and NIKKEI 225 return series. Introducing one hidden unit leads
to a significant improvement in the model likelihood. The RMDN(1) model with two
hidden units has the best performance. But the model with three hidden units becomes
over-complex and is punished by smaller model evidence.

The optimality of the case H = 2 for the data sets is supported by clear identifi-
cation of two hidden units in the non-linear part of the model (see scatter plots in Fig.
5). Based on this, we used v1 < v2 as the identification condition to remove the muti-
modality in parameter posteriors (see plots on Fig. 6). For FTSE 100 series there is no
identification for the second hidden unit (Fig. 5, the second row), which agrees with
the results from Table 6, where the non-linear models (with H ≥ 1) reached smaller
model likelihoods compared to the linear GARCH model.

One hidden unit is enough to explain possible non-linearity in all data sets (Table
6, models with t-distribution) and there is no clear identification fo the second hidden
unit on the scatter plots.

For mixture models LRMDN(2) and RMDN(2) we clearly identified two compo-
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Figure 5: Scatter plot of non-linear parameters, model RMDN(1),H = 2.

nents based on the condition of the mixture priors η1 < η2.
To get some assessment of the robustness of the results above to the prior ”infor-

mativity”, we repeat the MCMC simulations varying the hyperprior means ω1:3 of the
linear variance parameters from 0.5 (the most vague priors) to ω1:3 = 5 (the most
informative priors). The shape of the posterior density remains essentially unchanged
with a slight bias to the prior mean when making the prior more informative. We cal-
culated posterior model probabilities within these four cases of the hyperprior mean
values. The results averaged over all data sets are the following:

• 0.23 for the most vague priors with ω = (0.5, 0.5, 0.5);
• 0.34 for the case ω = (1, 1, 1);
• 0.31 for ω = (2, 2, 2);
• 0.12 for the most informative priors with ω = (5, 5, 5).

In such a way, Bayesian model selection punishes unnecessary vague as well as too
informative priors which do not give the best generalization.

Varying priors’ width for non-linear parameters, we found a great influence of
the hyperpriors on the posterior parameter distribution as well as on model likelihood
values. We do not want to be very uninformative on the NN parameters and prefer to
keep their range comparable to the scale of described variables (conditional variance)
and be not on the limits of the sigmoid activation function. That is, we repeat the
whole MC simulations for the model RMDN(1) for all data sets, taking even more
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Figure 6: Posterior parameter distributions for non-linear parameters before and after
identification. Data set NIKKEI 225, model RMDN(1), H = 2.

informative priors on the NN weights (ω4:7 = 1) and keeping the same hyperprior
means for the linear parameters (ω1:3 = 1). In Fig. 7 we plot the posterior distributions
of the non-linear parameters for the model RMDN(1) for two different hyperprior
means. There is a significant influence of the hyperpriors on the posterior distributions.
The posterior plots for FTSE 100 data are again symmetrical around 0. Moreover,
posterior parameters’ variances in this case are clearly held by the priors, drastically
increasing with the priors width. The average posterior model probabilities for these
cases are 0.09 for ω4:7 = 1 and 0.91 if we use the vaguer priors.

In such a way, taking the best case within every model with respect to the hyper-
prior specification and the number of hidden units, we present in Table 7 the main
result of this section – the model likelihood values over all data for the models con-
sidered.

Again, the conditional density specification plays the dominant role in the model
performance. The gaussian distribution clearly underestimates conditional fat-tails ob-
served in the data. Further, non-linearity issues are of much less significance. For
FTSE 100 data we obtained clear preference for linear models for all types of distribu-
tions considered. For DJIA and NIKKEI 225 series we found significant non-linearity
under the gaussian conditional distribution which is described best by the neural net-
work model with two hidden units. For other density specifications non-linearity is
not so pronounced, mostly hidden by the fat-tails of the distributions. Finally, there
does not exist a single best model for all equity markets within the models considered.
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Figure 7: Posterior density plots for non-linear parameters under two hyperparameter
widths. Model RMDN(1) with H = 1. The left panel for data set FTSE 100, the right
panel for NIKKEI 225.

Table 7: Logarithm of model likelihood

Model DJIA FTSE 100 NIKKEI 225
GARCH(1,1) -5776.1 -5547.0 -6810.3
RMDN(1) -5760.1 -5549.4 -6788.9
GARCH(1,1)-t -5549.9 -5512.5 -6633.1
RMDN(1)-t -5546.8 -5514.9 -6629.8
LRMDN(2) -5566.4 -5499.0 -6647.8
RMDN(2) -5566.5 -5501.2 -6644.7

For FTSE 100 return series the best models are the mixture of gaussians with some
superiority of the linear LRMDN(2). For DJIA and NIKKEI 225 data the models with
t-distribution are still best with some advantage of the non-linear RMDN(1)-t model.

6 Discussion and Conclusions

We analyzed the importance of non-linearity and non-gaussian distributions in clas-
sical GARCH models. The empirical analysis was based on return series of stock in-
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dices from different financial markets. We consider our models in two fundamentally
different estimation frameworks: maximum likelihood and Bayesian. First, within the
maximum likelihood framework the models were evaluated with respect to the likeli-
hood performance as well as with respect to the prediction of the VaR for a portfolio
position. Second, we applied full Bayesian inference to our models, including a hierar-
chical prior specification, MCMC implementation for the different parameter groups
and model likelihood computation.

Summing up, we can derive the following conclusions:

• The conditional density specification plays the dominant role in the model
performance. All statistical tests clearly confirmed the conclusion that non-
gaussian models significantly dominate the gaussian ones. The gaussian dis-
tribution underestimates conditional fat-tails observed in the data.

• Non-linearity issues are of much less significance. Non-linearity found in DJIA
and NIKKEI 225 data under the gaussian distribution is mostly explained by
fat-tailed conditional distributions. But the Bayesian framework shows that we
still have some preference for the non-linear RMDN(1)-t model for DJIA and
NIKKEI series.

• The maximum likelihood framework mostly favors the linear GARCH(1,1)-t
and LRMDN(2) models over all data sets considered, but the significance of
its superiority differs between the markets. In the Bayesian framework, we did
not find a single best model for all equity markets as well. For FTSE 100 re-
turn series the best model is a mixture of gaussians with clear superiority of
linear LRMDN(2), while for DJIA and NIKKEI 225 data the models with t-
distribution are the best and the non-linear version outperforms the GARCH
model.
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Expectation Formation and Learning in Adaptive
Capital Market Models

Engelbert J. Dockner and Leopold Sögner

1 Introduction

One of the distinguishing features of financial markets are the traded contracts that
require forward looking behavior of agents. Mainstream financial economics uses the
framework of rational expectations to model this behavior. In a market in which agents
have rational expectations and the efficient market hypothesis holds, prices are only
driven by unexpected events. Hence, one can argue that any price dynamics is entirely
driven by unanticipated shocks.

While the concept of rational expectations is the leading paradigm in capital mar-
ket analysis, there are problems arising from its applications. One major shortcoming
is the degree of sophistication in terms of expectation formation that is required for the
agents and their knowledge about unconditional moments of the returns distributions.
For that reason financial economists have started to look at models with boundedly
rational agents where the process of expectations formation includes experience and
learning.

The objective of this paper is to present some alternative examples of how the pro-
cess of expectation formation can be modelled. The problem with bounded rationality
is that many alternative models can be used to describe the process of expectation
formation in a plausible way, i.e. there are too many degrees of freedom. Hence, it is
sensible to formulate research focusses that (i) analyze under which alternative expec-
tations hypotheses equilibrium prices in a financial market still converge to the rational
expectations equilibrium and (ii) that explore if alternative theories of expectation for-
mation and the resulting market dynamics are capable of explaining stylized facts in
financial markets? We are going to explore both of these questions in this paper.

The first part of the paper investigates consistency, learning and stability in mod-
els with bounded rationality. In contrast to rational expectations models, this class of
models skips the assumption that agents know both the dynamics of the economic
system and its stochastic properties. The results demonstrate how different learning
dynamics can result in instability or in stable but very different paths compared to the
rational expectations dynamics. In terms of explaining stylized facts in financial mar-
kets models with homogenous agents are investigated (see Pötzelberger and Sögner,
2003a, 2004), and it is demonstrated that they exhibit a poor performance.

The second part of the paper describes discrete choice models, which provide an
alternative approach to model heterogeneous beliefs in a financial market. These mod-
els are capable of producing time series that possess properties frequently found in
asset returns, such as excess kurtosis and volatility clustering.

In financial market models with rational expectations all agents know the corre-
sponding equations of the economic model and have sufficient skills to consistently
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calculate the unconditional expectation. Ever since the concept was introduced by
Muth (1961) it was clear that it is highly demanding since perfectly informed agents
with high computational skills to solve their optimization problems are required.
These agents are rational in their decision process (since the optimal strategies are
derived from maximizing the agents’ utility functions) and in their learning process
(since the agents are able to form their expectations in a statistically correct way). As
a result of interactions of rational agents at the level of markets the rational expecta-
tions equilibrium (REE) is derived. Therefore, the rational expectations equilibrium is
a natural consequence of the rational agent paradigm.

As an alternative to rational expectations bounded rationality models have been
proposed. They are based on behavioral foundations (see Sargent, 1993; Arthur et al.,
1997) or discrete choice models (see Brock and Hommes, 1997, 1998). However, all
models with non-rational agents allow for many degrees of freedom. For example the
process of inference of new information can be modelled by means of linear rules,
non-linear techniques, genetic algorithms, and even ad-hoc rules. Every forecasting
technique can result in different equilibrium behavior, if equilibria of the system exist.
To get some feeling for the implications of these degrees of freedom we can ask our-
selves if the equilibrium paths arising from non-rational agents with simple forecast-
ing rules do converge to any stable behavior or the corresponding rational expectations
equilibrium. The goal of this work is to show that stability need not hold.

Before we proceed with our results let us define the concepts of learning, the
perceived law and the implied actual law. Therefore, let us consider an economic
system of the form xt = f(ye

t+1), i.e. the state variable xt ∈ Rn is a function of
the one period ahead forecast of yt := (yt,1 yt,2)

′ ∈ Rm. yt,1 are the endogenous
variables and yt,2 are exogenous. If yt,2 is stochastic then its distribution is F (yt,2).
The index t is the time index, where only discrete time systems are investigated in
this paper. For rational expectations models f(.) and the properties of the exogenous
variables are assumed to be known by all agents, such that we can – at least in principle
– solve for xt. In the bounded rationality literature the function f(.) is assumed to be
unknown to the agents, such that predictions are needed. An agent’s approximation of
f(.) and the dynamics of yt – called perceived law – can be motivated by the fact that
the dynamics of an economic system may be very complex such that agents prefer to
work with simple forecast models and check whether the predictive power of these
forecast models is sufficient and consistent with the data (see, e.g., Sargent, 1993,
chapter 2; Hommes and Sorger, 1998).

Let us assume that agent i, i = 1, . . . , n, believes in a functional relationship
between yt, yt−1 and ε̃t:

yt = gi(yt−1, ε̃i,t) . (1)

Equation (1) and a specification of ε̃i,t is called the perceived law of agent i.1 If all
agents use the same perceived law, then the forecasts of the agents are homogenous.

The reader should note that we have used ε̃i,t in equation (1). This is because the

1In this article we work with yt = yi,t for all agents i = 1, . . . , n. I.e. all agents know the relevant
variables in xt = f(ye

t+1). An extension to yt �= yi,t is straightforward but makes the notation much
more complex.
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actual noise yt,2 ∼ F (yt,2) can but need not agree with the agents’ believes ε̃t,i ∼
F̃i(ε̃i,t), which e.g. comprises the case where agents believe in a stochastic setting
despite yt,2 being empty or purely deterministic.

The one step ahead forecast of yt for agent i based on equation (1) and the infor-
mation available when xt will be determined, Ft−1, is derived by2

ye
i,t+1 = E

i(g(g(yt−1, ε̃i,t), ε̃i,t+1)) , (2)

where Ei is the agent’s belief of the conditional expectation. Ei can but need not
exactly correspond to the conditional expectation operator under the perceived law
consisting of gi(.) and Fi(ε̃i,t). A composition of f(.) and equation (2) results in the
implied actual law.

In a further step learning can be introduced to an economic model. Within this
paper we assume that the agents use parametric models. For learning with non-
parametric models we refer the reader to Chen and White (1998). Thus, let us as-
sume that the perceived law is a parametric model, such that gi(.) is a function of the
vector of model parameters θi. Learning in this context means nothing more than a
systematic update of the estimates of θi, denoted by θi,t. A model with boundedly ra-
tional agents, where the perceived law for gi(.), Fi(ε̃i,t) is updated systematically by
some learning algorithm is called adaptive model. If these updates are modified model
parameters θi,t, we have a parametric adaptive model.

After we are equipped with these technical definitions, let us relate these defini-
tions to a specific application. In this work we shall consider a standard capital market
model. The model structure – or variations of it – has already been used in a lot of
models investigating learning and capital markets (see, e.g., Arthur et al., 1997; Brock
and Hommes, 1998). From an empirical point of view this model is interesting since
mean-variance maximization is actually applied in finance and from a theoretical point
of view it is interesting since different learning results arise from similar settings. For
example with least squares learning rules, Bray (1982), Blume et al. (1982), Blume
and Easley (1982), Marcet and Sargent (1989), Schönhofer (1997), and Routledge
(1999) derived conditions for the system to converge to the rational expectations equi-
librium.

This paper is organized as follows: Section 2 describes a simple capital market
model. Section 3 investigates two learning schemes with homogenous agents. Sec-
tion 4 discusses Hommes-Sorger consistency in these settings. Section 5 presents a
short introduction to adaptive belief systems and finally Section 6 concludes.

2 A Basic Capital Market Model

Asset Demand and Market Clearing: Consider n agents which at time t invest their
wealth wi

t (i ≤ n) in a risky asset with price pt and in a risk-free asset paying interest
r. The risky asset pays a stochastic dividend dt in period t, where dt has a finite second
moment. The agents observe and receive their dividend payment when the price pt is
determined by the market clearing mechanism. This implies that at time t the agents

2As usual in economics we assume that this integral exists.
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observe previous prices and dividends. If qi
t−1 denotes the amount of the risky asset

held by agent i, then the budget constraint becomes wi
t = (1 + r)wi

t−1 + (pt + dt −
(1 + r)pt−1)q

i
t−1. Agents choose the quantities qi

t by maximizing

E
i(wi

t+1) −
ζi

2
VAR i(wi

t+1), (3)

where Ei(.) and VAR i(.) denote the beliefs of agent i of the conditional expectation
and the conditional variance of wi

t. pt is held fixed. The parameter ζi is a measure of
risk-aversion of agent i. (3) is maximized for

qi
t =

Ei(pt+1 + dt+1) − pt(1 + r)

ζiV
i(pt+1 + dt+1)

. (4)

The market clearing price pt is implicitly given by the equilibrium equation S =∑n
i=1 qi

t; where S is the constant supply of the asset. Then the market price is derived
from

pt =
1

1 + r

(
n∑

i=1

E(pt+1 + dt+1)

ζiVAR i(pt+1 + dt+1)
− S

)
1

1/
∑n

i=1 ζiVAR i(pt+1 + dt+1)
.

(5)
For homogenous forecasts we derive

pt =
1

1 + r

(
E

(1)(pt+1 + dt+1) − S∑n
i=1 1/ζi

VAR (1)(pt+1 + dt+1)

)
, (6)

where (1) stands for the representative forecast. Let us abbreviate the mean and the
variance of dt byµ and σ2

d . The mean and the variance of pt are denoted by η and σ2
p .

Furthermore we use λ for 1/(1 + r); c for S/
∑n

i=1(1/ζi). Then the map

pt = λ
(
E

1(pt+1 + dt+1) − cVAR 1(pt+1 + dt+1)
)

(7)

provides us with a map of the form xt = f(ye
t+1), where yt,1 = pt and yt,2 = dt.

Rational Expectations: With perfectly rational agents E(1)(pt+1 + dt+1) is equal
to the conditional expectation E(pt+1 + dt+1|Ft−1); Ft−1 = σ(ps, ds|s ≤ t − 1).
V(1)(pt+1 + dt+1) has to be equal to V(pt+1 + dt+1|Ft−1). Then (7) becomes

pt = λ (E(pt+1 + dt+1|Ft−1) − cV(pt+1 + dt+1|Ft−1)) . (8)

Using (8) and the assumption of an iid dividend process with finite second moment
results in the constant

pREE =
1

r
(E(dt) − cV(dt)) =

1

r
(µ − cσ2

d) , (9)

which is the rational expectations equilibrium (REE) for iid dividends. For first-order
autoregressive dividends, the reader is referred to Tay and Linn (2001).
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3 Learning and Stability for the Homogeneous Agent Model

Perceived Laws: In Sections 3 and 4 we shall use linear forecasts, where the agents’
beliefs are homogeneous. Let us assume that (pt) is an autoregressive process of order
one:

pt − η = β(pt−1 − η) + εp,t , (10)

where the independent and identically distributed innovations (εp,t) have mean 0 and
variance σ2

p. η denotes the mean of pt, while the parameter β ∈ (−1, 1) refers to the
first order autocorrelation of the price process. For the dividends the agents assume an
iid process with mean µ and noise εd,t, with variance σ2

d, i.e.

dt = µ + εd,t , (11)

where the agents assume that εp,t and εd,t are independent. Under these assumptions
the perceived laws are given by (10) and (11).

3.1 Sample Autocorrelation Learning

Since neither pt nor dt are in the agents’ information set at period t the asset demand
function (4) requires a two-step ahead forecast for prices and dividends. From (10)
and (11) we can derive the belief E(1)(pt+1) = β2pt−1 + (1 − β2)η, while for the
conditional variance belief Pötzelberger and Sögner (2004) use VAR (1)(pt+1) = (1−
β2)σ2

p . Inserting these expressions into (6) yields

pt = λ
(
β2pt−1 + (1 − β2)η + µ − c((1 − β2)σ2

p + σ2
d)
)
. (12)

To embed this model into our general definitions the state variable of interest xt = pt,
yt = (pt dt)

′ and error terms ε̃t = (ε̃p,t εd,t)
′. The parameters of the forecast models

(10) and (11) are θ = (µ, η, σ2
p, σ2

d, β)′. If learning is applied, θ is going to be updated
at every period t. In this case the parameters in the implied actual law (12) have to be
replaced by their corresponding estimates θt =(µt, ηt, σ

2
p,t, σ

2
d,t, βt)

′.
Pötzelberger and Sögner (2004) applied sample autocorrelation learning to derive

the unknown model parameters. More precisely, θt is obtained from

p̄t :=
1

t

t−1∑
ι=0

pι = ηt , (13)

where the sample mean of dividends d̄t = µt is calculated in the same way. The first
order autocovariance is derived from

COV t(pt, pt−1) :=
1

t − 1

t−1∑
ι=1

(pι − p̄t) (pι−1 − p̄t−1) . (14)

The sample variance of prices is derived from

VAR t(pt) :=
1

t

t−1∑
ι=0

(pι − p̄t)
2

, (15)
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such that the conditional variance of prices is derived from

σ2
p,t := (1 − β2

t )VAR t(pt) . (16)

The coefficient β is estimated by the first order autocorrelation coefficient:

γt :=
COV t(pt, pt−1)√

VAR t(pt)
√

VAR t−1(pt−1)
= βt . (17)

The fact that the autocorrelation coefficient stays within the interval [−1, 1] by the
Cauchy-Scharz inequality is essential in the proof of Proposition 1. Therefore, the
results cannot be applied to a β estimated by least squares. The sample variance of
dividends VAR t(dt) = σ2

d,t is derived from (15) by using dt for pt.
This ends up into the vector of estimated parameters θt resulting in the implied

actual law with sample autocorrelation learning

pt =
1

1 + r

(
αp,t + β2

t (pt−1 − αp,t) + αd,t − c(σ2
p,t + σ2

d,t)
)

. (18)

For this random dynamical system Pötzelberger and Sögner (2004) show that the se-
quence of prices either converges to a constant real number or diverges to −∞ or
some given lower bound. A sufficient condition for convergence of (pt) to z/r, where
z := µ − cσ2

d and zt := µt − cσ2
d,t, is given in the following Proposition.

PROPOSITION 1 (Pötzelberger and Sögner, 2004) Let the sequence (zt) con-
verge to z and let

|p0 − z

r
| ≤ ν ≤ r

c
, (19)

and
sup

t
|zt − z| ≤ rν − cν2 . (20)

Then the sequence of prices (pt) derived from (18) converges.

In case the dividend process, (dt), is iid Proposition 1 provides a sufficient condition
to convergence to the REE (see equation (9)). The sufficient condition for convergence
states that a sequence of prices converges if the initial value of the price sequence is
sufficiently close to the steady-state equilibrium and a random variable derived from
the dividend process is not too volatile to push the price trajectory out of the attract-
ing region. Since these conditions are only sufficient, Pötzelberger and Sögner (2004)
also provide a numerical analysis, to demonstrate that price paths can diverge if our
conditions for convergence are not met. Therefore, the market price can even diverge,
and the region of convergence could become very small (depending on the underly-
ing parameters), even in a quite simple setting. A further insight of this analysis is
that the support of the dividend process has to be bounded to guarantee convergence
(convergence with probability one, given some distribution of the dividend process
with support supp(dt)). This implies that the often applied assumption of normally
distributed variables in economics and finance is in conflict with almost sure conver-
gence to the rational expectations equilibrium in this model.
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3.2 Learning by Exponential Smoothing

As an alternative to sample autocorrelation learning Pötzelberger and Sögner (2003a)
and Pötzelberger and Sögner (2003b) applied parameter estimation by exponential
smoothing. This setting can be interpreted as a simple way to approximate bounded re-
call. By this algorithm prices remain stochastic. I.e. Pötzelberger and Sögner (2003b)
investigate the question of stability and the impact of learning in a stochastic setup,
when only limited information is used to construct estimators.

Already Muth (1961) designed the rational expectations concept to fit to stochas-
tic equilibrium behavior as well, while by the work of Stokey and Lucas (1989) the
idea of modeling stochastic equilibrium by the concepts of ergodicity and stationarity
has become a familiar concept in economics. Pötzelberger and Sögner (2003b) inves-
tigate the above capital market model when θ is estimated by means of exponential
smoothing with a smoothing parameter 0 ≤ ν ≤ 1. Then

η̂t = (1 − ν)

∞∑
i=0

νipt−i, (21)

µ̂t = (1 − ν)

∞∑
i=0

νidt−i, (22)

(η̂t) and (µ̂t) satisfy
η̂t = νη̂t−1 + (1 − ν)pt, (23)

µ̂t = νµ̂t−1 + (1 − ν)dt. (24)

The variance terms are derived from

ŝ2
p,t = (1 − ν)

∞∑
i=0

νi(pt−i − η̂t)
2 , (25)

where ŝ2
d,t = σ̂2

d,t is derived equivalently; σ̂2
p,t = (1 − β̂4)ŝ2

p,t in this setting. The
autocorrelation coefficient can be calculated from

β̂t−1 :=
γ̂t−1

ŝp,t−2ŝp,t−1
, (26)

where ŝp,t−1 =
√

ŝ2
p,t−1 and

γ̂t = (1 − ν)
∞∑

i=0

νi(pt−i − η̂t)(pt−i−1 − η̂t−1) , (27)

σ̂2
t−1 = σ̂2

d,t−1 + (1 − β̂4)ŝ2
p,t−1. The implied actual law of the price process with

exponential smoothing is

pt = λ(β̂2
t−1pt−1 + (1 − β̂2

t−1)η̂t−1 + µ̂t−1 − cσ̂2
t−1) . (28)
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By defining a process Yt :=(pt, pt−1,η̂t−1, µ̂t,σ̂
2
d,t,ŝ

2
p,t−1,γ̂t)

′ ∈ R7 and ϕ =
E(dt)λ/(1 − λ), a sufficient condition for ergodic prices can be derived:

PROPOSITION 2 (Pötzelberger and Sögner, 2003b) Let 0 < ν, λ < 1 and let
V > 0 with

V ≤ 1

8c

⎡
⎣−1 +

√
1 +

(
1 − λ

λ

)2
⎤
⎦ . (29)

Define

U =
1 − λ

8cλ
(30)

Ū =
1 − λ

4cλ
(31)

U =
1 − λ

8cλ
+

√(
1 − λ

8cλ

)2

− V + 4cV 2

4c
(32)

B = 2V + V 2 (33)

R = 6U + 8U2 + 2V + 4V 2 (34)

Γ = max{λν + (1 − ν) + 4ν(1 − ν)(λc + 1)Ū , λcν} (35)

Λ+ =
1

max{√λ(1 − ν), ν} − 1 . (36)

If (i) (dt) is iid with bounded support contained in [E(dt) − V, E(dt) + V ], (ii) the
initial values satisfy, p1, p0, η̂0 ∈ [ϕ − U, ϕ + U ], µ̂1∈ [E(dt) − V, E(dt) + V ],
σ̂2

d,1∈ [0, 4V 2], ŝ2
p,0∈ [0, 4U2] and |γ̂t)| ≤ ŝ2

p,0, where ϕ = E(dt)λ/(1 − λ), (iii)

0 ≤ Γ < Λ+ and (iv) Γ <
√

7Λ+ − B
R , then the process (Yt) is ergodic. Note that the

quantities defined above satisfy U > 0, B > 0 R > 0, Λ+ > 0 and U ≤ U ≤ Ū .
Furthermore, there is a ζ > 0 such that Γ <

√
7(Λ+ − ζ) − B

R .

The intuitive explanation of Proposition 2 can be given as follows. To ensure that
prices are ergodic conditions (i) on the exogenous parameters r, S, ζi, (ii) on the ini-
tial values of pt and θ̂t, and (iii) on the support of the dividend process have to be
fulfilled. Similarly, as with sample autocorrelation learning, simulation experiments
show that convergence to a stationary limit distribution need not be attained if these
conditions are not met. Last but not least Pötzelberger and Sögner (2003b) checked
whether ergodic price paths match the stylized facts of excess kurtosis and volatility
clustering. Simulation experiments show, that these properties cannot be derived in
this model setup.

4 Consistent Expectations Equilibria

Hommes and Sorger (1998) investigated the question under which conditions the
agents’ model parameters can be said to be consistent with some state variables ob-
served in a deterministic setting. In their seminal work the authors defined consistency
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by ”parameters of a linear model being in line with state variables generated from the
implied actual law”. The idea behind the consistent expectations concept is that agents
try to approximate a complex system by simple linear rules. Thus, by the consistent
expectations concept, the requirement that agents know the implied law of motion of
the economic system has been dropped. The consistent expectations concept can re-
sult in a set of equilibria including the rational expectations equilibrium but allows for
other behavior in equilibrium that has been excluded by the stringent assumption of
rational expectations.

In Sögner and Mitlöhner (2002) the consistent expectations concept is adapted to
a stochastic setting where the limit behavior corresponds to a fixed point. For this
special application the parameters under consideration are those of the perceived laws
of prices and dividends, (10) and (11), respectively. An equilibrium will be called
consistent if the state variable follows the implied actual law, (12) in our case, and the
parameters θ fulfill restrictions on the moments of prices and dividends.

By using the definitions of Subsection 3.1, we can derive the asymptotic sample
means, variances and the covariance by t → ∞. Now the parameters µ and η have
to be equal to the asymptotic sample means of pt and dt in a consistent expectations
equilibrium. Moreover, the parameters σ2

p and σ2
d have to be equal to the correspond-

ing asymptotic sample variances. Sögner and Mitlöhner (2002) define a consistent
expectation equilibrium (CEE) as follows:

DEFINITION 1 (Sögner and Mitlöhner, 2002) A consistent expectations equilib-
rium is a pair {(pt)

∞
t=0; θ}, where θ := (η, µ, β, σ2

d, σ2
p) is a vector of the parameters.

This pair has to satisfy the following conditions:

1. The sequence (pt)
∞
t=0 fulfills the implied law of motion.

2.a The asymptotic sample average of the prices p̄t→∞ and the asymptotic sample
average of dividends d̄t→∞ are equal to η and µ.

2.b The asymptotic sample variance of the prices VAR t→∞(p2) and the asymptotic
sample variance of dividends VAR t→∞(d2) fulfill: VAR t→∞(p2) = σ2

p/(1 −
β2) and VAR t→∞(d2) = σ2

d .

3. For sample autocorrelation coefficients γt,j the following is true:
sgn(γj, t→∞) = sgn(βj), j ≥ 1

If these conditions hold Sögner and Mitlöhner (2002) derive a unique consistent ex-
pectations equilibrium for the capital market model described by equation (12). By
assuming an independent identically distributed dividend process the consistent ex-
pectations equilibrium is equal to the rational expectations equilibrium, i.e. they derive
the result that the rational expectations equilibrium with iid dividends of this capital
market model can also be obtained by a weaker equilibrium concept, where agents
do not know the actual law of motion of the system and the characteristics of the
stochastic dividend process.

When considering the model investigated in Subsection 3.2, we observe that nei-
ther the REE concept nor the CEE concept can be applied to ergodic prices. How-
ever, the CEE concept can be augmented easily. First, Hommes and Sorger (2001)
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extended their concept to stochastic consistent expectation equilibria (SCEE), where
ergodic state variables and constant parameters – equal to some proper sample means
– characterize a SCEE. We shall call this type of CEE, SCEE of type I. But also this
concept cannot be applied directly. Nevertheless, if (Yt) is ergodic, the distribution
of prices exhibits an invariant measure and the expectation of the model parameters
exists. Note that with exponential smoothing E(pt) = E(ηt) holds for ergodic prices
(where E(.) is the expectation operator). More precisely, consider that the process (Yt)
satisfies Yt ∈ L1(P ), a natural extension to the definition of a stochastic consistent
expectations equilibrium is given by:

DEFINITION 2 (Type II SCEE) A consistent expectations equilibrium is a pair
{(pt)

∞
t=0; θ̂t}, where θ̂t := (η̂t, µ̂t, β̂t, σ̂

2
d,t, ŝ

2
p,t) is a stochastic parameter vector. This

pair fulfills the following conditions:

1. The process Zt = (pt θ̂t)
′ is ergodic with Zt ∈ L1(P ).

2. The model parameters satisfy:3 E(pt) = E(η̂t), E(dt) = E(µ̂t), V(pt) =
E(ŝ2

p,t), V(dt) = E(σ̂d,t) and E[(pt − E(pt))(pt−1 − E(pt))] = E(γ̂p,t).

Therefore, if (Yt) fulfills the requirements of Proposition 2, the stochastic capital mar-
ket equilibrium satisfies the properties of a type II SCEE.

5 Adaptive Belief Systems

As a an alternative model to the CEE framework we quickly present the adaptive
belief system that was introduced to the literature by Brock and Hommes (1997) and
Brock and Hommes (1998). The most important characteristic of these models are
the way in which agents choose their forecasting rules. In general it is assumed that
there are at least two different types of trades, i.e. fundamentalists and chartists. Both
types use simple forecasting rules. For example the fundamentalists might use the
fundamental value of the asset as forecast while the chartists use some simple trend
chasing rule. The two populations of different traders do not remain constant over
time but change according to a performance measure attached to each forecasting
rule. If according to this performance measure the forecasting rule of the chartists is
consistently higher than that of the fundamentalists, investors start to migrate into the
direction of chartists. This migration of traders influences the equilibrium prices.

The starting point of the model formulation for adaptive belief systems is the as-
set model described in Section 2. We add to this general formulation some specific
assumptions.

A1. Investors share homogenous beliefs about conditional variances i.e. Vit(pt+1 +
yt+1) ≡ Vt(pt+1 + yt+1), ∀i, t.

A2. Eityt+1 = Etyt+1, ∀i, t (if, for example, yt follows an AR1-process Etyt+1 =
a1 + a2yt)).

3Note that E[(pt − E(pt))(pt−1 − E(pt−1))] = E[(pt − E(pt))(pt−1 − E(pt))] for an ergodic pt

in L1(P ).
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A3. Beliefs about future prices are given by Eitpt+1 = Etp
∗
t+1 +

fi(xt−1, xt−2, . . . ), ∀h, t, where xt = pt − p∗t denotes the deviation of the
price from its fundamental value.4

On the basis of the three assumptions stated we are able to derive an equilibrium
system in the deviations of the actual prices from its fundamental value,

Rxt =

N∑
i=1

nitfit, (37)

where nit is the fraction of investors that uses the same forecasting rule i. All together
there are N different forecasting rules available.

The forecasting rules are chosen on the basis of a simple discrete choice model
in which we can interpret nit as the probability that at time t the forecasting rule i is
chosen. We specify these probabilities as

nit = probability that forecasting rule i is chosen at time t (38)

= exp(βUi,t−1)/Zt, (39)

Zt =
∑

i

exp(βUi,t−1),

where Ui,t−1 is a measure of fitness of the forecasting rule and 1/β can be interpreted
as a measure of uncertainty.

In order to define a measure of fitness for the forecasting rule, one has to identify
a performance concept. For that reason let us define

ρt := EtRt+1 = Etxt+1 − Rxt = xt+1 − Rxt

which is the excess return given rational expectations and let

ρit := EitRt+1 = Eitxt+1 − Rxt = fit − xt+1 + ρt

be the belief of investor type i. Moreover for investor i we can define risk-adjusted
profits as

πit := π(ρt, ρit) ≡ ρtq(ρit) − ζ

2
q(ρit)

2
Vit(Rt+1), (40)

where q(.) is the demand for the risky asset,

q(ρht) =
ρit

ζVit(Rt+1)

derived from the investors maximization problem maxq{ρitq − ζ
2q2Vt(Rt+1)}. If as

measure of fitness past differences between utility in case of the REE forecasting rule
and that of the investor i are chosen, we get

Uit = dπ(ρt−1, ρi,t−1) + ηUi,t−1, (41)

4We denote the solution to our asset pricing model which satisfies the no bubbles condition as the
fundamental value p∗t .
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with

dπ(ρt−1, ρi,t−1) = πi,t−1 − πt−1 = − 1

2ζ(Vi,t−1(Rt) + σ2
δ )

(xt − fi,t−1)
2,

where the parameter η measures the influence of past profits on the current level of
fitness.

These specifications fully characterize the adaptive belief system. Depending now
on different assumptions about the forecasting rule, different variations of the model
can be derived. In a model with constant expected dividend payments E(dt) = d̂,
Brock and Hommes (1998) and Brock and Hommes (1997) use two different types
of traders: chartists with the forecasting rule fit = gixt − 1 + bi where gi and bi

are constants, and fundamentalists with the rule fit ≡ 0. Under these assumptions
it can be shown that there exists a nonlinear deterministic reduced form system in
xt that fully characterizes equilibrium behavior. Gaunersdorfer (2000) fully analyzes
this system and explores a route to chaos. In particular if the intensity β is sufficiently
high, chaotic price dynamics may arise in the reduced form system. Moreover as is
pointed out in Gaunersdorfer and Hommes (2002) the simulated price paths from the
adaptive belief system is capable of explaining some stylized facts such as volatility
clustering. Hence, one can argue that the adaptive belief system embedded in a simple
asset market model is an attractive alternative to existing rational expectations models.

6 Conclusions and Discussion

The early literature on least squares learning, e.g., Bray (1982), Blume et al. (1982),
Blume and Easley (1982), has often been used to support rational expectations equi-
libria by the fact that for these settings convergence to the rational expectations equi-
librium is attained under fairly mild restrictions. However, our analysis shows that
the learning of variances introduces an important source of instability to this class of
capital market models. All our setups share the property that due to strong distortions
by the random dividend process the estimate of the variance of dividends increases.
If a distortion is strong enough the quadratic terms in the estimates of the variances
of prices and dividends become dominating in (12), such that (pt) is forced to exhibit
unstable behavior. Thus, the main insight of Section 3 is that learning can but need not
result in stability. For a stable solution consistent equilibria can be derived.

Since the homogenous agent setups did not provide us with paths exhibiting excess
kurtosis and volatility clustering, we investigated adaptive belief systems, where the
fraction of forecast functions applied depends on some fitness measure.

Bibliography

Arthur, B., LeBaron, B., and Palmer, R. (1997). Time series properties of an artificial
stock market. SSRI Working Paper, 1997(9725).

Blume, L. E., Bray, M., and Easley, D. (1982). Introduction to the stability of rational
expectation equilibrium. Journal of Economic Theory, 26:313–317.



111

Blume, L. E. and Easley, D. (1982). Learning to be rational. Journal of Economic
Theory, 26:340–351.

Bray, M. (1982). Learning, estimation, and the stability of rational expectations. Jour-
nal of Economic Theory, 26:318–339.

Brock, W. A. and Hommes, C. H. (1997). A rational route to randomness. Economet-
rica, 65(5):1059–1095.

Brock, W. A. and Hommes, C. H. (1998). Heterogeneous beliefs and routes to chaos
in a simple asset pricing model. Journal of Economic Dynamics and Control,
22:1235–1274.

Chen, X. and White, H. (1998). Nonparametric adaptive learnig with feedback. Jour-
nal of Economic Theory, 82:190–222.

Gaunersdorfer, A. (2000). Endogenous fluctuations in a simple asset pricing model
with heterogeneous agents. Journal of Economic Dynamics and Control, 24:799–
831.

Gaunersdorfer, A. and Hommes, C. (2002). A nonlinear structural model of volatility
clustering. Technical report, University of Vienna.

Hommes, C. and Sorger, G. (1998). Consistent expectation equilibria. Macroeconomic
Dynamics, 2:287–321.

Hommes, C. and Sorger, G. (2001). Stochastic Consistent Expectation Equilibria.
Mimeo, University of Amsterdam.

Marcet, A. and Sargent, T. J. (1989). Convergence of least squares learning mechanics
in self-referential linear stochastic models. Journal of Economic Theory, 48:337–
368.

Muth, J. F. (1961). Rational expectations and the theory of price movements. Econo-
metrica, 29:315–335.
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Part III

Agent-Based Simulation Models



The Artificial Economy: A Generic Simulation
Environment for Heterogeneous Agents

David Meyer and Alexandros Karatzoglou

1 Introduction

Agent-based simulations are often implemented by using an object-oriented style of
programming, allowing for detailed modeling of the artificial actors. In the following,
we consider an agent-based economic simulation in which economic entities (firms,
(groups of) consumers, investors, markets, and the like) can be thought of as interact-
ing agents. A typical simulation combines several agents, defines their relationships,
and observes their resulting interactions over time. After the simulation design has
been defined (Richter and März, 2000), running a simulation usually amounts to writ-
ing a control program in one’s favorite programming language, named the Simulation
Manager (see below), that coordinates a set of previously implemented, autonomous
agents.

One might wish that the agents would have standardized interfaces so that they
automatically have the same bindings allowing their use in simulations as modu-
larized components. General mechanisms for providing standardized interfaces (like
CORBA) do exist, but usually require advanced programming skills. Our objective,
then, is to provide an easy-to-use mechanism suitable for use in data-analytical en-
vironments like MATLAB (The Mathworks, Inc., 2003), Octave (Eaton, 2003), or R
(R Development Core Team, 2003), as they offer convenient ways to analyze simula-
tion results and are also (typically) used for implementing objects and methods. We
also deal with varying parameters in controlled experiments and provide a scheduling
scheme to determine the order of invocation within a single experiment (design) and
the number of runs (periods) per design.

Consider the simple introductory example involving two competing firms, named
Firm "A" and Firm "B", respectively, operating in a consumer market (see Figure 1).
Each firm could be modularized itself, having agents responsible for marketing, pro-
duction, and finance. Market coordination and clearing may be performed by a con-
sumer market agent, which models a (disaggregated) consumer population. In addi-
tion, a global environment, representing the common knowledge of all agents, is typi-
cally involved: this environment may be stored, e.g., in an SQL database, thus solving
problems arising from simultaneous access by different agents (such as transaction
control), or managed by an information broker similar to the one described in Wilson
et al. (2000)—but these mechanisms are highly specific to the simulation design.

As an extension to Meyer et al. (2001) and Meyer et al. (2003), our software also
offers a simple yet flexible communication system which can be used for direct in-
formation exchange between the agents, without the need of using a database. Also,
there might be a need for dynamic creation of agents (when, e.g., new department or
daughter firm agents shall be created) and/or communication channels (e.g., when two
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Simulation
Manager

Firm "A"

Marketing
Agent

Production
Agent

Finance
Agent

Firm "B"

Marketing
Agent

Production
Agent

Finance
Agent

Global Environment (Consumer Surveys, Sales Data, Prices, ...)

Consumer Market

Figure 1: A simple simulation with two competing firms, each consisting of 3 agents
for marketing, production and finance, respectively.

firms decide to collaborate). Both can be done at runtime during a simulation run.
The remainder of this chapter is structured as follows: First, we describe how the

specification of the simulation settings is done in XML for a generic simulation man-
ager, supporting multiple design specifications. Then, we explain the “normalization”
of agent interfaces via a wrapping technique, thus allowing the simulation manager to
treat all agents the same way. Section 4 deals with SIMENV’s communication mecha-
nism, and is followed by a section on mechanisms for dynamic simulation setups. The
last section treats the remaining control mechanisms (such as the meta-agent, handling
of random number generation, and e-Mail notifications).

2 The Simulation Manager

2.1 A Typical Simulation Cycle

A complete simulation includes several designs with (typically) different parameter
settings and/or a modified set of agents. Designs can be run repeatedly. Figure 2
sketches a typical simulation for a single design. After the simulation manager and
the agents have been initialized, the simulation enters the main loop: after updating
the time index, all agents—grouped by phase—are run for one cycle. All agents of
one phase need to complete their tasks before the next phase is entered. When the last
phase is done, the next loop is entered. Upon completion of the final cycle, a cleanup is
performed. This is repeated (usually with changing parameter sets) a specified number
of times.

Our implementation of a generic simulation manager behaves just as described,
handling “unified” agents. Because agents can be implemented in different program-
ming languages (such as R and MATLAB) on possibly different platforms (such as
Windows and Linux) depending on the user’s needs or skills, the simulation man-
ager has to be capable of operating in a technically heterogeneous environment, and
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Set Time Index

PHASE 1:
Run All Firm Agents

PHASE 3:
Run Statistics Module

PHASE 2:
Run Consumer Market

Start Agents

Start Simulation Manager

Read XML Specifications

Cleanup/Finish

Figure 2: A typical simulation cycle

therefore is implemented in JAVA (Gosling et al., 2000), a platform independent pro-
gramming language, that offers good support for network communication. Although
simple in design, we consider it powerful enough to be used as a ready-made tool.
It is capable of dealing with an arbitrary number of agents in different phases (e.g.,
a market clearing agent should only be started when all “normal” agents are done)
by varying an arbitrary set of parameters through different designs. These parame-
ters (such as market/product characteristics, initial prices, and budgets) are offered by
the simulation manager to the agents at the beginning of each new design block by
using a simple broadcast mechanism. Information can either be public (propagated
to all agents) or private (propageted to specific agents). Usually, public information
also includes technical information, like the current period (updated at the begin of
each cycle), or the agent identifier (which the agent might include in its output in-
formation). The simulation components are specified in a definition file read by the
simulation manager at startup.

2.2 Using XML for Simulation Settings

The SIMENV framework is based on an object-oriented approach. Conceptually, we
assume the existence of agent classes with methods (functions) and attributes (param-
eters). A simulation setup consists of assigning one or more instances of these classes
to run levels, along with a certain number of parameters. These assignments can vary
from design to design. We use XML to define these settings: the Extensible Markup
Language (World Wide Web Consortium, 2000). For example, the definition file for
a sample simulation including firms and consumers with two designs might look as
follows:
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<?xml version = "1.0"?>
<!DOCTYPE simulation SYSTEM "simulation.dtd">

<simulation>

<alldesigns repeat = "20" cycles = "30">
<agent name = "consumer" level = "2" instances = "100">
<p name = "reservprice">5</p>
<p name = "budget">10</p>

</agent>

</alldesigns>

<design name = "A">

<agent name = "firm" level = "1" instances = "2">
<p name = "type">mass</p>
<p name = "budget">100</p>

</agent>

</design>

<design name = "B">
<agent name = "firm" level = "1" instances = "2">
<p name = "type">niche</p>
<p name = "budget">50</p>

</agent>

</design>

</simulation>

The tags are described in the following:

• The first two lines form the XML header, which is common to all XML files;
the specific structure is defined in the “simulation.dtd”-file, indicated in the
second line.

• The document starts with the <simulation> root tag. This tag has several pa-
rameters, which are described in Section 6 on control structures. <simulation>
may contain an arbitrary number of

• <design> tags with the parameters:

– name for identification in log files,

– repeat for design replications, and

– cycles for the number of periods.

For convenience, parts common to all designs can be put into an (optional)
<alldesigns> section, as has been done for the consumer agents. Each
<design> tag may contain an arbitrary number of

• <agent> tags with the attributes name, (number of) instances, and level

(the phase, in which the agent is scheduled to run). Parameters common to all
agents can be put into an optional <allagents> section. For each <agent> tag,
an arbitrary number of
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• <p> tags specify the parameters for this particular agent, the name attribute this
time indicating the parameter name. Each agent “inherits” the parameters from
the corresponding <agent> section in the <alldesigns> section, if any, as
well as all parameters from a possibly existing <allagents> section.

If the same parameters exist both in general sections (<alldesigns> or
<allagents>) and the <design> sections, the more specific parameters overrule the
more general ones. By using this rather general framework, one is able to specify
whole design plans in a flexible way. Simple design plans (like the full-factorial plan)
are usually created in an automated way, but the structure also enables more elabo-
rated, fractional plans: if one is not interested in the influence of all possible factor
combinations, it is possible to reduce the number of parameter combinations by fol-
lowing certain design rules (see, e.g., Dey and Mukerjee, 1999), thus substantially
reducing the simulation time needed. So far, we described how parameters are spec-
ified in simulations. Now, we move to the agents’ side to see how the methods are
defined.

3 Agent Specification

One of the basic motivations for SIMENV was the need for integrating agents imple-
mented in (possibly heterogeneous) high-level programming environments. To make
such agents “simulation-aware”, we need

1. a translator which accepts generic method calls from the simulation manager
and passes the corresponding method call to the agent, and

2. an interface definition which describes the corresponding translation mappings.

3.1 Wrapping Agents

First, we describe the program acting as an intermediary, translating the simulation
manager’s JAVA calls to the native method calls in the agent’s programming envi-
ronment. This program “wraps” the agent and exports through JAVA a standardized
interface (we refer to this program as the wrapper). The translation of the agents’ in-
terface is stored in an XML-based interface definition format, which (mainly) defines
one-to-one correspondences to the JAVA interface calls.

The whole concept is illustrated in Figure 3: a typical simulation takes several
agents, defines their relationships, and observes the resulting interactions between the
objects over time. The agents interact with the environment and subsequently with
each other. The whole simulation is coordinated by a central agent that starts and syn-
chronizes the simulation components (agents). The central coordinating agent (simu-
lation manager) makes the JAVA calls to the wrapper, and the latter—initially having
parsed the XML interface definition of the agent—translates the call and executes the
interpreter command as if it were typed at the command prompt. Note that SIMENV
currently targets interpreter-based environments only, redirecting their standard input
and standard output devices. Compiled code (from, e.g., C or Fortran programs) can
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Figure 3: A simple simulation with two agents

be integrated using a command shell as “interpreter”, which subsequently is used to
call (execute) binary programs instead of making function calls.

3.2 How Agents Are Controlled during Simulations

Before we can use XML to define agent interfaces, we have to look at an agent’s
simulation “life” to derive the functionality to be handled by the wrapper. It can be
summarized in the following steps:

1. Start of the interpreter (MATLAB, R, . . . ).

2. Loading of the agent’s source code.

3. Setting of some variables by the manager (like the data base name).

4. Initializing of variables, opening of a database connection, etc.

5. Action loop (executed several times):

(a) setting of periodic information (like the time index) by the simulation
manager,

(b) execution of task function,

(c) possible retrieving of results by the simulation manager.

6. Cleaning up (saving of results, closing of database connections), and finally
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7. Quitting from the interpreter.

From this “life-cycle”, we derive the specification for an appropriate interface.

3.3 Using XML for Defining Agent Interfaces

The agent’s interface is reduced to six main methods: start, boot, init, action,
finish and stop, corresponding to the main steps just mentioned, and two help-
ing methods: setattr and getattr, for information passing. In addition, we require
a printdone-method, along with the definition of a donestring, both needed for
communication control: each command string sent to the interpreter is immediately
followed by the command defined by printdone, which should print a specified OK-
message. If this string is detected by the wrapper, an OK-signal is sent to the simu-
lation manager which subsequently can assume that the command has been executed
completely and that the agent is ready for more commands.

The interface specified in the example XML file below defines a simple R agent:

<?xml version = "1.0"?>
<!DOCTYPE wrapper SYSTEM "wrapper.dtd">

<wrapper>

<start>R --quiet --vanilla</start>
<boot>source(”Ragent.R”)</boot>
<init>init()</init>
<action>action()</action>
<finish>finish()</finish>
<stop>q()</stop>

<setattr>assign(‘‘<name/>’’,<value/>)</setattr>
<getattr>print(<name/>)</getattr>

<printdone>printdone()</printdone>
<donestring>OK</donestring>

</wrapper>

The tags are described in the following:

• The <start> tag defines the start-command (in ‘quiet’ mode), executed as a
shell command.

• The <boot> tag (optional) typically encloses a command for loading files into
the interpreter.

• <init>, <finish> and <action> specify user-defined functions (for ini-
tialization, cleanup and the main action method, respectively); <init> and
<finish> are optional.

• The <setattr> tag contains a method call that sets the various attributes of the
agent (e.g., TIME or NAID). It takes 2 parameters: <attrname/> and <value/>,
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which are empty tags and play the role of placeholders. They are replaced by
real values provided by the simulation manager before the command is exe-
cuted. It should be called as many times as necessary to set all agent parame-
ters. Note that the implementation could, of course, be simplified by an ordinary
variable assignment like <name/> = <value/> as in the example, but the use
of a separate function allows the mapping from the generic variable names to
the specific variable names of the implementation, thus preserving the agent’s
name space.

• <getattr> defines the complementary function to <setattr>: the implemen-
tation should simply print the requested value; it is parsed and returned to the
client.

• <printdone>, as mentioned above, should simply print a defined OK-message
enabling flow control. This message must be specified in the <donemessage>

tag. Note that for this method, one should implement an extra function and not,
for example, simply use a print statement.

In addition to the parameters specified in the “simulation.dtd”, the simula-
tion manager offers some internal information to all agents (using the specification
in <setattr>). Agents of course are free to choose to use or not to use this infor-
mation. This is another reason why we recommend implementing explicit functions
for the parameter handling, allowing to keep the name space clean and to filter un-
used information. Currently, the public information set includes: TIME (the current
time index), SEED (the current seed to be used for random number generation), NAID
(the agents’ internal unique identifier), and ANAME (the agents’ full name). In addi-
tion, NRID (the current replication), NDID (the unique internal design identifier), and
DNAME (the optional design name) are passed to the special meta agent (see Section
6). The <wrapper> tag has an optional parameter: separator, which can be used
to replace the dot separator (".") by another character, as the dot is not allowed in
variable names in all programming environments.

On the other hand, the simulation manager may also retrieve some information
from the agent (as specified in <getattr>): currently, only three variables—CTRL,
CTRL.TARGET, and CTRL.PARAMETERS—are scanned. These “control” variables are
used to pass commands to the simulation manager and are described in Section 5 on
dynamic settings.

4 Communication Structures

Evidently, agents must be enabled to interact, for it is the outcome of this interplay
which is of interest in agent-based simulations. In addition, there are simulation se-
tups explicitly focused on the study of communication structures and cooperation.
One possibility is the use of a database, modeling the agents’ global environment. But
databases clearly have two main disadvantages: the simulation performance signifi-
cantly decreases, while on the other hand the implementation complexity increases.
The user (scientist) is forced to take care of database design to avoid redundancies,
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and to account for transaction control in the agents’ program code to avoid concur-
rency problems. Therefore, we offer an alternative facility for information exchange,
namely the specification of direct communication channels from one agent to another
or to a group of agents. These channels can subsequently be used for the transmission
of character-string messages. Note that this is not a too severe restriction as charac-
ter strings can encode data objects of great complexity when one uses a structuring
meta-data language like XML. For example, Meyer et al. (2004) have designed an
XML-based format for statistical data allowing, e.g., for multidimensional arrays and
recursive, tree-like list structures, which should suffice for most applications.

We distinguish three types of channels: “one-to-one”, “one-to-group”, and “one-
to-all” (or “broadcast”). “one-to-one” relates one instance of a class to another instance
of (possibly the same) a class. A “one-to-group” relation targets all instances of a class
(again, possibly the own class). “broadcast” informations obviously are passed to all
instances in the simulation.

Collection and delivery of mails is done in one step after the agents’ init phases
(allowing dynamic initializations like random-generated start scenarios) and after all
action calls of one level. The Simulation Manager collects mails by applying the
getattr call of the sender agents on each registered communication variable. At the
target side, delivery is done by setting a variable with a unique name to the message
string using the setattr method of the target agent When the target agent does not
exist, the message is ignored.

5 Dynamic Settings

Some kind of simulations, in particular in the context of evolutionary research and
network industries, necessitate a dynamic setup, that is, agents and/or communica-
tion channels are created and discarded during the simulation. These dynamics are
handled by the SIMENV framework using special control variables at the agent side:
CTRL, CTRL.TARGET, and CTRL.PARAMETERS, which can be used by agents to alter
the initial setting defined in the XML design file. Currently, four CTRL commands are
handled: "start" and "stop" for the instantiation of new agents, and "commAdd"

and "commRemove" for the construction and destruction of communication channels.
CTRL variables are scanned and possible commands are executed right before message
exchange takes place.

6 Control Issues

In addition to the basic functionality so far described, the simulation framework offers
several control facilities. First, a “meta” agent can be defined, which differs from other
agent in several ways:

• It is only created once at the beginning of the simulation, that is, “survives”
the beginning of new replications and designs unlike the other agents which are
restarted at these occasions.
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• It has full information on the simulation schedule, that is, in addition to TIME

also gets NDID/DNAME (design number/design name) and NRID (replication num-
ber).

• The init, finish, and action methods are replaced by several other meth-
ods, allowing the meta agent to perform tasks other agents cannot: <preSim>
and <postSim> are called before/after a simulation is started/stopped,
<preDesign> and <postDesign> before and after designs, <preRepeat> and
<postRepeat> before and after replications, and <preRun> and <postRun>

at the beginning and at the end of every period. Typical applications for these
methods are database management (initialization, cleanup between designs) and
logging.

• The meta agent is passive: it can receive messages (e.g., for logging purposes),
but is not able to send messages or to start agents, as it is not expected to influ-
ence the simulation itself.

Further, the <simulation> tag allows the specification of additional parameters, such
as:

• seed for the control of the agents’ random number generators,

• mailserver, mailto, and mailfrom for sending optional status emails (e.g.,
in case of abnormal termination of a simulation),

• timeout for detecting non-terminating agents (due, e.g., to programming errors
or dead locks)

7 Summary

In this work we introduced SIMENV, a generic simulation framework suitable for
agent-based simulations featuring the support of heterogeneous agents, hierarchi-
cal scheduling, and flexible specification of design parameters. One key aspect of
this framework is the design specification: we use a format based on the Extensi-
ble Markup Language (XML), that is simple-structured yet still enables the design of
flexible models, with the possibility of varying both agent population and parameter-
ization. Further, the tool allows the definition of communication channels to single or
group of agents, and handles the information exchange. Also, both (groups of) agents
and communications channels can be added and removed at runtime by the agents,
thus allowing dynamic settings with a agent population and/or communication struc-
tures varying during the simulation time. A further issue in agent-based simulations,
especially when ready-made components are used, is the heterogeneity arising from
both the agents’ implementations and the underlying platforms: for this, we presented
a wrapper technique for mapping the functionality of agents living in an interpreter-
based environment to a standardized JAVA interface, thus facilitating the task for any
control mechanism (like a simulation manager) because it has to handle only one set
of commands for all agents involved. Again, this mapping is made by an XML-based
definition format.
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Disruptive Technologies: the Threat and its Defense

Christian Buchta, David Meyer, Andreas Mild, Alexander Pfister, and Alfred
Taudes

1 Introduction

Based on extensive long-term studies of the disk drive and other industries, Chris-
tensen (1997) introduced the concept of “disruptive technology”. According to Chris-
tensen, initially such a technology is employed in a novel market segment, and, when
judged according to the features most relevant to the incumbents’ current customers,
is inferior to the technology used by the incumbents in the established market seg-
ment. Nevertheless, over time the firms using the disruptive technology are able to
successfully invade the established market segment from the lower end of the market
and industry leadership changes. Christensen’s finding provides empirical support to
the resource-based and organizational learning perspective of the theory of the firm,
whereas other approaches in general predict advantages for incumbents due to learn-
ing by doing, economies of scale and scope, network economies of scale, etc. (see,
e.g., Klepper and Simons, 1997; Rumelt, 1981; Mas-Colell et al., 1995).

Table 1 provides an example of a disruptive technology: 5.25 inch disk drives were
used in the early eighties’ desktop computers and, initially, were inferior to the 8 inch
drives used in minicomputers in terms of capacity, access time and cost/MB – the
features most relevant to a minicomputer user. However, by 1986 industry leadership
changed from CDC, the leading 8 inch vendor, to the new entrant Seagate, and most of
the firms that were producing 8 inch drives vanished (see Christensen, 1993, p. 543).
Christensen also demonstrates that it is the incumbents who are leading in “sustain-
ing technologies”, i.e. innovations that follow the current trajectory of technological
improvement, and are trying to find new technical solutions to tackle the flattening of
the current technology’s S-curve. Thus, technological (in)competency cannot explain
the failure of industry leaders, but this is rather done by factors rooted in the way new

Table 1: Disruptive Technology 5.25 Inch Drives (Christensen 1993, p.15)

Feature 8 Inch Drives 5.25 Inch Drives
(Minicomputer) (Desktop Computer)

capacity (MB) 60 10
peripheral volume (inch3) 566 150

weight (pounds) 21 6
access time (ms) 30 160

cost/MB ($) 50 200
unit cost ($) 3000 2000
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product development projects are valued. Empirical evidence suggests the following
causes for disruption:

Market Segment Overlap: Disruption can only occur if consumers of different seg-
ments have basically the same needs with different feature weights, though.
As shown in Table 1, lower system price can compensate for inferior product
features. Learning by entrant firms must be faster than the adaptation of the
customers’ needs, allowing them to follow the new, disruptive trajectory of im-
provement to catch up with the incumbents from below (Christensen and Bower,
1996).

Incentives: If an incumbent considers switching to the trajectory of a new disruptive
technology early, it has to deal with the fact that important current customers
are given up for highly insecure new markets. Initially, these are too small to
support the growth rate of the incumbent’s current organization and—given the
current organizational design—offer lower margins (Christensen and Bower,
1996).

Organizational Inertia: An organizational design is adapted to the needs of the
firm’s customers (Hauser and Clausing, 1988) and frames the way the en-
vironment is seen and how problems are solved. This makes radical change
hard and time-consuming. Also, an integrated firm is conflict-ridden and hard
to manage if the degree of commonality (economies of scope) is low. Hen-
derson and Clark (1990), for instance, show that incumbents often fail when
confronted with architectural innovations rather than with the introduction of
new components as the internal distribution of labor and communication chan-
nels have to change. Frequently, disruptive technologies entail new architectures
based on standard, off-the-shelf components (Christensen, 1997, see). Similarly,
Tushman and Anderson show that in the minicomputer and airline industries,
competence-destroying innovations were made by new firms while competence-
enhancing ones were made by incumbents (Tushman and Anderson, 1986).

Given these empirical findings, Christensen suggests that disruptive technologies
can best be tackled by continuous monitoring of potentially overlapping market seg-
ments, long-term projections of technological trajectories and, to provide the appro-
priate learning environment, the setup of a completely separated, independent new
organization in the market segment where disruption is expected to originate.

Several authors have developed formal models to study disruption: Adner (2002)
formulates a market-driven model to analyze market conditions under which disrup-
tion occurs. Adner introduces the concepts of preference symmetry and preference
overlap to characterize the relationship between preferences of different market seg-
ments. Using an agent-based computer simulation with myopic firms, he identifies
different competitive regimes: convergence, isolation, and disruption. Focusing on the
market conditions under which these regimes arise, Adner uses a simplified technolog-
ical model: firms can move freely to reach any position within a certain distance, i.e.,
there are no predefined technological trajectories in his model (for a similar “history-
friendly” model of the computer industry, see Malerba et al., 1999).
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Nault and Vandenbosch (2000) identify conditions under which an entrant is able
to outperform an incumbent in a rational, game-theoretic setting. In their view, dis-
ruptive technologies lead to a next-generation product with a greater market response
and, therefore, higher cash flows. They define capability advantages as lower launch-
ing costs for the next-generation product. Under the condition that the entrant has a
capability advantage in a disruptive technology, it is able to outperform the incumbent
even though both technologies are available to both firms at the same time and both
players are perfectly rational.

This article endeavors to add another important aspect to the explanation of the
emergence of disruption and its defense: using rational, myopically optimizing firms,
we study the influence of organizational inertia and technological efficiency on the
emergence of competition between an incumbent and an entrant using a new tech-
nology. This new technology is characterized by its efficiency and is also available to
the incumbent. While technological efficiency determines the speed of improvement
offered by a technology per se, organizational inertia determines the speed at which
an organization can be adapted so as to actually reach a desired product position. We
thus endogenize the cost differences exogenous to the Nault & Vandenbosch model
and characterize each technology via a simplified S-curve model. Using an agent-
based simulation, we study the effect of technological efficiency under various market
conditions and organizational structures and identify four competitive scenarios: en-
trant failure, diverse and duopolistic competition, and disruption. These competitive
scenarios show robustness for all parameter combinations other than technological ef-
ficiency and organizational inertia. We then study realistic ways of defending industry
leadership. We increase rationality of firm agents by increasing the planning horizon
and allowing the setup of a daughter company in the case of a perceived threat of
leadership loss. Respective simulations show that simple forecasting techniques allow
the incumbent to pre-detect a threatening entrant product, to create a new startup firm
intercepting the entrant, and to defend leadership as a group of firms, at the price of
lower profits caused by more intense competition, though.

The remainder of this article is organized as follows: in the next section, we present
our model of technologies, describe the market structure and consumers’ behavior and
define the firms’ decision-making process (agent design). On this basis, the third sec-
tion presents the structure of the agent-based simulation and the experimental design.
In the results section, we look at the outcome of our experiments. Then, we discuss
model extensions dealing with defensive incumbent strategies. In the final section, we
draw conclusions and discuss the managerial implications of our findings.

2 Model

Our model consists of 3 components: technology, market and a firm’s decision. The
technology part connects product performance (features) to a firm’s investment, i.e. the
movement of the product position in the feature space as a function of the investment
of the firm. The market describes the consumers’ choice, their preferences and market
dynamics. In the firm’s decision part, we describe the firm’s objective function and
decision-making process. In the following, let i, j, k, l denote indices of consumers,
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firms, technologies, and features, respectively.

Technology

A technology αk is a vector that specifies a linear trajectory of possible product po-
sitions in a two-dimensional feature space that are reachable through investments in
product development over time:

αk = λk(sin δk, cos δk), (1)

where δk ∈ (0, π/2) describes the direction (feature mix), and λk > 0 the efficiency
of the technology, i.e. the larger λk, the higher the feature levels of a product for a
given investment sum.

There are two technologies available: at first, only α1 used by the incumbent is
available. α2 is the (potentially) disruptive technology and the only choice available
to the entrant. By the time of entry τ , the incumbent firm is free to choose either of the
two technologies. Let us denote technology choice by index variables cj,t ∈ {0, 1, 2},
where c1,t = 1, t < τ for the incumbent and c2,t = 2, t ≥ τ for the entrant. A
zero choice indicates absence of a firm from the market, as in the initial period of a
simulation (t = 0).

The total investment in the current technology of a firm, Ej,t, is the sum of invest-
ments ej,t over time. In the basic version of the model, we assume that the incumbent
has to give up its former technology and forfeit its prior investments, if it decides to
switch to the disruptive technology:

Ej,t =

{
Ej,t−1 + ej,t if cj,t = cj,t−1

ej,t otherwise,
(2)

where we assume that in the initial period of a simulation Ej,0 = 0.
A firm’s product position, a vector with components xj1,t, xj2,t, is defined as the

firm’s effective investment multiplied by the technology chosen:

xj,t = ln(1 + Ej,t)αcj,t . (3)

This means that, using a logarithmic transformation of the total investment, we sug-
gest a simplified S-curve model where successive investments in a technology show
decreasing returns to scale.

A firm’s total cost consists of two components: fixed cost and investment cost.
Regarding the fixed cost, we assume a factor γ > 0 on total investments. Through the
investment cost, we model organizational inertia by introducing a factor κ ≥ 1 that
scales the investments of a firm without inertia:

Cj,t = γEj,t + κej,tej,t. (4)

Thus, while a level of κ = 1 describes a situation where a firm is faced with linear in-
creases in cost for linear improvements of its technological position in a single period,
κ > 1 punishes fast technological progress by exponentially increasing investment
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cost. This implies reaching a specific level of investment within more periods is less
costly for inert organizations. However, as a consequence of the simplified S-curve
model, a linear increase in a firm’s position leads to an exponential increase in total
cost, even if the firm is not inert. Therefore, cost acts as a bound on investments.

Market

Following Adner (2002), we assume that the behavior of a consumer is guided by a
Cobb-Douglas utility function with two arguments: product performance yij,t ≥ 0
and price pj,t > 0 with the parameter β > 0 balancing the importance of product
performance versus price:

uij,t = y
(1−β)
ij,t (1/pj,t)

β (5)

Product performance depends on the feature levels xjl,t, performance thresholds
dil,t > 0, and the relative preferences for the features η ≥ 0, again in the form of
a Cobb-Douglas function:

yij,t =

{
1 + (xj1,t − di1,t)

η(xj2,t − di2,t)
1−η if xjl,t > dil,t, l ∈ {1, 2}

0 otherwise
. (6)

We assume that a consumer considers a product for choice only if its utility exceeds an
overall utility threshold u > 0, i.e. uij,t > u, and chooses one unit of the product with
maximum utility (denoted by si,t ∈ {1, 2}). Ties are broken with equal probability,
and in order to avoid artificial results, we assume that consumers are also indifferent
between products with too small a difference in utilities. From the definition of the
utility function it follows that the choice set is empty if the available products do not
satisfy the performance and implicit price thresholds.

Parameters η, β and u describe general market conditions and are thus assumed
equal for all consumers. Consumer heterogeneity is introduced by a distribution of
(di1,t, di2,t).

We study both time-constant and adaptive consumer thresholds. Using time-
invariant preferences, consumers are not influenced in their preferences by techno-
logical progress, i.e. di,t = di,0. In the case of adaptive consumer behavior, which we
indicate by the switch variable ζ ∈ {0, 1}, the minimal performance thresholds are
adapted according to direction and rate of improvement of the product purchased, that
is such that, with ρt(xI) =

xI,t

xI,t−1
for arbitrary index set I ,

ρt+1(dil) =

{
ρt(xci,tl) if ζ, xci,tl,t−1 > 0
1 otherwise

. (7)

holds. This means that if the features of a product increase by, say, 10%, the buyers
of this product also increase their minimal performance requirements by the same
percentage in the next period. In case the product is just launched, consumers do not
change their requirements as there was no improvement.
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Firm’s Decision

Besides technology choice, in each period of time a firm has to decide on a proper
level of investment and price. We assume the firms to be: 1) well-informed (they know
the consumers’ utility functions and their competitors’ past actions), 2. rational (they
make optimal best response decisions), and 3. myopic (they have a one-period forecast
horizon).

The equations from the preceding paragraphs can be reformulated so as to express
a consumer’s reservation price for a product as a function of a firm’s investment and
price, given the consumer’s current preference and the utility of the competitor’s prod-
uct. By reservation price we mean the maximum price a consumer is willing to pay
for a product, which is all we need to know in order to define a demand function. For
ease of presentation, let D̂cj,t,t denote the demand forecast of firm j using technology
cj,t in period t, based on the information about the market up to period t−1. Then we
can summarize the profit maximization problem of a firm as follows:

π̂j,t = pj,tD̂cj,t,t − Cj,t → max
cj,t, ej,t, pj,t

(8)

s.t. c1,t = 1 if t < τ,

c2,t = 0 if t < τ,

c2,t = 2 if t ≥ τ,

ej,t ≤ Fj,t.

By Fj,t we denote a firm’s current funds, that is cumulated profits plus initial funds.
Although the constraint on investments implies that we do not consider the possibility
of external funding, we can always relax this constraint by a proper choice of Fj,0.
Further, we assume that a firm leaves the market if it does not expect a positive profit
or if it runs out of funds.

3 Simulation Setup and Experimental Design

Based on the definitions given in the previous section, the emergence of different
competitive scenarios is studied using the following simulation scheme:

The first step is to initialize the population of consumers and firms. Next, the in-
cumbent enters the market with technology α1. For the first three periods, the incum-
bent can act as a monopolist, and in the fourth period the entrant joins the market with
the new technology α2 �= α1, which from this time on (τ = 4) is also available to
the incumbent. The firms calculate their profit-maximizing strategies (including the
option to leave the market) according to Equation 8, and consumers then make their
utility-maximizing choices (including the option not to buy) according to Equations
5 and 6. In the case of adaptive preferences, the buyers further adapt their thresholds
according to Equation 7. Finally, the market outcome is evaluated in terms of market
shares and profits.

The parameters held constant are as follows: the market consists of 100 consumers
where a consumer’s thresholds of acceptable product performance are drawn from a
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uniform distribution over the rectangle (0, 3) × (0, 3). Note that we hold the distri-
bution constant across different simulations. For the overall utility threshold of the
consumers, we assume a level that scales the reservation prices at zero surplus per-
formance properly: we decided to use u−1/β = 3 (approximately the mean of the
component sums). For parameter η we choose a level of 0.5, meaning that for a con-
sumer, both dimensions are equally valuable. Thus, we do not model segments of
relative preference as in Adner (2002), but a potentially competitive market that is
segmentable by the firms’ choices of technology, investments, and price.

With regard to the firms, we assume initial funds of 1000 monetary units and a
fixed cost factor γ = 0.2, which ensures unconstraint investments and proper scaling
with reservation prices (so that initially the incumbent can make a profit). We fur-
ther assume a considerable bias of the incumbent technology in favor of feature two
(δ = π/10) and a balanced entrant technology (δ = π/4). That is, given the same
level of total investment and equal efficiency, the entrant technology outperforms the
incumbent’s with respect to the second feature but is inferior in the first. Thus, the
new technology fulfills Christensen’s criterion of potentially disruptive technologies
(Christensen, 1997).
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Figure 1: An illustration of the market space

Figure 1 illustrates the key features of the market so far defined. The consumers’
performance thresholds are drawn as crosses. The lines mark the technological trajec-
tories for the incumbent (close to the vertical axis) and the entrant technology (45◦),
respectively. Points on these lines depict product positions corresponding to linearly
increasing levels of total investment (0, 1, 2, . . .) given equal technological efficiency.
Thus, the market volume grows quadratically in the inner of the rectangle as the firms
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develop their products over time. The shaded areas illustrate that the utilization of the
entrant technology implies a better market coverage, i.e., for equal levels of effective
investments the number of potential buyers of the product based on this technology
is always greater than for the other one (allowing for variations in the distribution of
thresholds). Further, the ratio of exclusive to competitive market coverage is clearly in
favor of the entrant technology.

We study the influence of specific model parameters on the competition between
an incumbent and an entrant firm. Four competitive regimes can be distinguished ac-
cording to technology choice and market shares:

Entrant Failure: The incumbent sticks to the initial technology but the entrant fails
to capture a reasonable share of the market (≤ 30%), or even does not enter the
market.

Diverse Competition: The incumbent sticks to the initial technology, and the entrant
can equal the incumbent in terms of market share (≈ 50%).

Disruption: The incumbent sticks to the initial technology but the entrant is able to
outperform the incumbent, i.e., the entrant gains a considerable share of the
market (≥ 70%), or even may force the incumbent out of the market.

Duopolistic Competition: The incumbent switches to the entrant technology and
thus competes with the entrant on a similar product. Therefore, we expect the
market shares to be rather identical (≈ 50%).

Table 2: Design Factors

Factor Levels
λ2 0.4, 0.6, . . . , 1.8
κ 1.0, 1.1, . . . , 1.3
β 0.5, 0.7
ζ 0,1

Table 2 shows a full factorial design of the model parameters we consider rel-
evant for market outcome. As we conjectured that relative technological efficiency
and organizational inertia are key determinants of the market outcome, we decided
to search these parameters with a reasonably high resolution while economizing on
the levels of price sensitivity. Thus, with λ1 = 1 the range of λ2 includes entrant
technologies that are inferior, equal, and superior in terms of the incumbent’s tech-
nological efficiency. Especially, we expect a considerable influence on the decision
to switch and, thus, on the market outcome. With respect to organizational inertia
κ, we analyze levels between 1.0 (no inertia) and 1.3 (high inertia). Note that in the
present setting, differentials in inertia are meaningless for the incumbent’s technology
choice at t = τ , because information on the entrant product is not available by that
time. By variation of β, we study the effect of high (0.5) and low (0.7) price elastic-
ity, modeling the market’s receptiveness to innovation. Further, we compare markets
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with consumers adapting their performance thresholds (ζ = 1) to markets with static
consumers (ζ = 0). We expect adaptation to act in favor of the incumbent because
initially, as a monopolist, it is able to thin out the low end of the market and thus could
block out the entrant.

4 Results

The model was implemented in the mathematical language Octave (Eaton, 2003), and
the results were analyzed using the R software for statistical computation and graphics
(R Development Core Team, 2003). The source code of the implementation is avail-
able upon request from the authors. A total simulation time of 20 periods proved suf-
ficient to get a clear picture of the market outcome. Further, since our model is rather
deterministic (random product choices should be rare except in duopolistic competi-
tion where they act as stabilizers on market share), the simulation was run repeatedly
mainly in order to determine a proper calibration of the random search: using 1000
steps and a restriction on the upper search range provided stable results.
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Figure 2: An illustration of a scenario

Figure 2 shows the outcome of a scenario with parameter combination λ2 = 1.1,
κ = 1.1, β = 0.5, and ζ = 1: the incumbent’s results are shown as solid lines,
the entrant’s are presented using dashed lines. Utilization of the initial (incumbent)
technology is indicated by circles whereas lines marked with crosses indicate the use
of the new (entrant) technology. The upper left graph shows profit over time, i.e., the
success of a firm’s actions. It can be seen that the entrant outperforms the incumbent
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from the fifth period on, since the incumbent does not switch to the new technology.
In the upper right and lower right diagrams, we see that this outperformance results
from both a higher unit price and a higher number of units sold. These higher unit
prices can be demanded because of higher product performance resulting, in turn, from
higher investments (see the lower left diagram). The gap in investments also results
in differences in market coverage, and therefore the entrant has a larger number of
(exclusive) buyers (see Figure 1).
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Figure 3: Results for static scenarios

Figure 3 shows aggregate results for all parameter combinations with static per-
formance thresholds ζ: we plot the entrant’s average market share (vertical axis) for
different levels of efficiency of the entrant’s technology (horizontal axis). The average
market share (in terms of profit) is defined as the mean of the shares from periods
11 to 20, i.e. when the market has already stabilized. Points marked with an ‘x’ (‘o’)
indicate a (no) switch of the incumbent to the entrant technology and points marked
with a ‘+’ the failure of the entrant to enter the market (in the beginning of scenario
κ = 1.3, β = 0.7). The subplots represent the results for different combinations of
the remaining design factors: from left to right, the level of organizational inertia κ
increases, from top to bottom the level of price elasticity β decreases.

First, we notice that the entrant is never able to outperform the incumbent if no
organizational inertia exists (κ = 1.0), i.e., there exists no level of λ2 where disrup-
tion occurs. The reason for this is the following: if the new technology is efficient
enough, the incumbent switches (without exception in t = 4) and duopolistic compe-
tition emerges, which is characterized by rather balanced market shares. In case the
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market is targeted by different technologies, entrant failure or diverse competition is
the outcome: the more inferior the entrant’s technology is, the smaller is its market
share. This is due to the fact that low investments result in a higher market coverage
of the incumbent (see Figure 1).

All scenarios with κ > 1 show a different pattern as compared to the scenarios
with κ = 1: now, we observe a range of efficiency in between diverse and duopolistic
competition, where the incumbent does not consider it profitable to switch technology
and subsequently looses a significant share of the market to the entrant, i.e., where
disruption occurs. Obviously, the disruptive range does not considerably depend on
whether consumers adapt their performance thresholds or not. In the case of adapta-
tion, closer inspection reveals that—although the incumbent is able to maintain ex-
clusive coverage of a small part of the market—he cannot catch up with the entrant,
because the incumbent technology does not follow the main direction of the market
and, therefore, the entrant’s market is almost exclusive. Conversely, in the case of
static consumer thresholds and disruption, the whole incumbent market is competitive
whereas the entrant’s one is by far more exclusive. Further, in the long run, the entrant
captures part of the incumbent market since both firms lack the incentive to offer a
distinguishable product to these consumers (see Figure 1).

Table 3: Summary of results

ζ β κ λ t
failure diverse disruption duopolistic switch

(≤ 30%) (≈ 50%) (≥ 70%) (≈ 50%)
0 0.5 1.0 0.4–0.6 (0) 0.7–0.7 - 0.8–1.8 -

1.1 0.4–0.7 (0) - 0.8–1.0 1.1–1.8 4
1.2 0.4–0.7 (0) 0.8–0.8 0.9–1.1 1.2–1.8 4
1.3 0.4–0.7 (0) 0.8–0.8 0.9–1.1 1.2–1.8 4

0 0.7 1.0 0.4–0.6 (0) 0.7–0.7 - 0.8–1.8 -
1.1 0.4–0.7 (0) 0.8–0.8 0.9–1.1 1.2–1.8 4
1.2 0.4–0.7 (0) 0.8–0.8 0.9–1.2 1.3–1.8 4
1.3 0.4–0.7 (1) 0.8–0.8 0.9–1.2 1.3–1.8 4

1 0.5 1.0 0.4–0.6 (0) 0.7–0.7 - 0.8–1.8 -
1.1 0.4–0.7 (1) 0.8–0.8 0.9–1.0 1.1–1.8 4
1.2 0.4–0.8 (2) - 0.9–1.1 1.2–1.8 4
1.3 0.4–0.8 (3) 0.9–0.9 1.0–1.1 1.2–1.8 4

1 0.7 1.0 0.4–0.6 (0) 0.7–0.7 - 0.8–1.8 -
1.1 0.4–0.7 (0) 0.8–0.8 0.9–1.1 1.2–1.8 4
1.2 0.4–0.7 (1) 0.8–0.8 0.9–1.2 1.3–1.8 4
1.3 0.4–0.7 (1) 0.8–0.8 0.9–1.2 1.3–1.8 4

Table 3 gives a summary of the ranges in the market outcome (distinguished by
share and technology choice) for λ, switching times, and the number of no-entry fail-
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ures (in parentheses). It further shows important aspects of our model: first, the break-
points for switching do not increase with higher levels of inertia. Therefore, we are
inclined to conclude that in our model disruption is mainly a result of myopic deci-
sion making. To understand this, notice that in the absence of organizational inertia
investments are concentrated on the time of entry, which is rather similar to making a
single, long-term decision, whereas with increasing inertia investments become more
and more distributed over time. Now, as the firms have only a one-period horizon, they
loose more and more their sense of long-term optimality. To be precise, the long-term
levels of total investment are the lower the higher the level of organizational inertia,
and that is—besides disruption—clearly suboptimal.

Another important aspect of the present model is that the occurrence of disruption
does not depend on possible differences in organizational inertia because we observed
that switching takes place when there is no competitive information available, i.e. on
the time of entry. Thus, even if the entrant is assumed to be less inert than the incum-
bent our results hold, only the range of efficiencies with disruptive market outcomes
increases. Our experiments for this setup have shown that in the case of duopolistic
competition, the market shares of the entrant are slightly higher if price sensitivity is
low, since the entrant can demand higher premium prices. Further, among the adaptive
scenarios, there are cases of no entry as well as cases where the incumbent leaves the
market (in t = 18), and thus the entrant’s market share goes up. Clearly, low price
sensitivity and a high differential in inertia is not in favor of the incumbent.

5 Defending Disruption

In the previous setting, we have detected conditions under which an incumbent firm
may fail in detecting a new, disruptive technology because it underestimates its effi-
ciency. In addition, even when the incumbent becomes aware of the peculiar situation,
its ‘defending’ strategy—switching to the entrant technology—is often not practical
due to risk considerations not incorporated in our framework: a real incumbent firm is
unlikely to sink all its former investments, resulting in giving up its leading position
in the high-end of the market, with the additional risk of failure due to inappropriate
organization and cost structures.

As we have learnt so from our basic model, incumbant failure is mainly caused
by too short a planning horizon. It thus seems promising to increase rationality in this
direction and to allow internal differentiation in the sense that a group of firms can
pursue different technological trajectories. This resembles Christensen‘s suggestion
based on empirical evidence, who adivses incumbant managers facing threat from
disruptive technology the following:

1. Try to predict the technological path of the entrant product in order to assess its
competitive threat potential.

2. When a potential competitor is detected, do not try to change your firm, but cre-
ate a new, efficient entrant instead and accept possible cannibalization effects.
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We now explain how these suggestions are operationalized in our artificial environ-
ment, and present the results of “corresponding” experiments.

5.1 Model Extensions

Better Forecast of the Entrant’s Product Position

First, we allow the incumbent to make a better forecast of the entrant position. In the
basic model, the incumbent’s estimate of the future entrant position was just its current
position. We now replace this crude guess by a model-based approach, assuming that
each dimension of the entrant technology follows an exponential model, that is, given
the entrant’s product xE,t = (f1,t, f2,t), we assume:

fi,t = ait
bi , i = 1, 2 (9)

which is a simple linear regression model accounting for decreasing positional gains
on the technology path, that is, assumes a simplified S-curve model. We need at least
two observations to estimate the two parameters ai and bi. Note that this is not the
actual mechanism implemented in our base model: the incumbent does not know the
exact characteristics of the entrant’s product. Using this model, the incumbent is able
to make a prediction of the entrant’s future position. To keep things simple, we use the
average of the entrant product’s last two prices as an estimate for the future price. For
its own product, the incumbent assumes an investment rate increase of 10%, which
is what approximately happened in the base simulations (in real life situations, the
incumbent simply uses the figures from its investment plan. The aim here is a conser-
vative, worst-case estimation of the future situation). Now, as the demand function is
supposed to be known, the incumbent can forecast the optimal price for its product,
and also the future profits and market shares. This allows the incumbent to assess the
entrant product for any future period.

Cloning of the Entrant Firm

In our simulation, the incumbent considers the entrant technology as perilous in period
t if its market share in period t + 3 drops to under 50%. But instead of switching to
the new technology, we assume the incumbent has the ability to create a new firm
similar to the entrant—which will be called ‘clone’ in the following—with the same
technology, but with 80% of the incumbent’s budget. (We choose 80% because we
want to explore an experimental setting in which the clone’s investments in the first
period are maximized. When the clone has normal—optimizing—behavior, the budget
size effectively does not matter, because only a small part of it is used.) The role of
this ‘cloned’ firm is to catch up with the entrant’s position and thus to participate in
the better product performance and the new market segment. On the other hand, the
incumbent can no longer choose to switch to the new technology on its own.
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5.2 Experiments and Results

In order to see whether the new defense mechanism is effective, we run the simulation
within the parameter ranges of κ, entrant λ, and incumbent budget associated with
disruptive outcomes in the basic model. Alternatively, we test the assumption of a
more ‘aggressive’ clone, investing its whole endowment in the first period to make up
the initial technological disadvantage. We stop the simulations after 30 periods (there
is no considerable change in the figures in later periods). The experimental setup thus
follows the full-factorial design defined by the factors in Table 4.

Table 4: Experimental Design Factors
factor levels
incumbent budget 100 1000 10000
entrant λ 0.6 0.8 1.0 1.2
κ 1.1 1.2 1.3
aggressive? YES NO

In all cases where the entrant has the potential to defeat the incumbent (which is
not the case for most settings with λ = 0.6), the pursuing firm catches up with the en-
trant and finally gets half of the market. Hence, the incumbent-clone group survives in
all settings. However, the consolidated profits are lower if the pursuing firm is created
than if it is not. This is due to the more pronounced price competition, initiated by
the clone which tries to reach the entrant firm, and aggravated by the incumbent firm
lowering its price in response to the advent of the entrant firm. The price level is also
higher in the basic model when the incumbent switches to the entrant technology, re-
sulting in a duopolistic competition which is well known to have a higher equilibrium
price than settings with full competition (Cournot game). This also explains why the
profits of incumbent and clone combined are lower than the cumulated profits of the
entrant at the end of the simulation. Finally, neither λ nor the incumbent starting bud-
get are of great influence, except the trivial effects that the overall cumulated profits
increase with λ (i.e., the product’s efficiency), and the cumulated profits are higher in
the case of huge incumbent starting budgets.

As to the final market shares, the picture has more nuances: here, the value of λ is
most influential, whereas κ and incumbent starting budget are not. For λ = 0.6, the
entrant—most of the times—is not menacing: no clone is created, and the incumbent
keeps the whole market. For λ ≥ 0.8, however, the incumbent’s assessment of the fu-
ture situation leads to the creation of a clone. For λ = 0.8, the incumbent still stays in
the leading position, but for λ ≥ 1, it vanishes from the market at the end of the simu-
lation (!) and the market becomes a duopoly with entrant and clone firm. Interestingly,
the results for settings with aggressive investing behavior do not show an advantage
for the clone: despite the faster catching-up, it is not able to defeat the entrant whose
budget is already important enough to survive periods without (or with low) profits.
On the contrary, due to the exponentially increasing costs, the clone makes a huge loss
in the first period which it can never recover in future periods.
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6 Conclusions

We have analyzed the influence of organizational inertia and technological efficiency
on the emergence of competition between an established firm and an entrant and stud-
ied simple and effective means of defending industry leadership. We have assumed
that the firms maximize their profit expectation for the next period based on full infor-
mation of the needs of the entire consumer market and the competitor’s current product
position and price, and that the incumbent has the choice to switch to the new entrant
technology. Technologies are modeled as linear trajectories of possible product po-
sitions in a two-dimensional feature space. A simplified S-curve model describes the
relationship between a firm’s investments and its technological progress, which comes
at increased fixed and investment cost. The firms are faced with a highly competitive
market of compensatory, utility-maximizing consumers with differing minimum per-
formance requirements. We have studied the influence of differentials in technological
efficiency on the entrants’ success under different market conditions and levels of or-
ganizational inertia.

Using an agent-based computer simulation, we have shown that the entrant is never
able to outperform the incumbent if organizational inertia does not exist. This is an in-
teresting finding as we expect organizational inertia to be higher for larger companies
and/or complex industries: reducing an organization’s complexity is, therefore, advis-
able to large companies that are faced with potential entrants. This is consistent with
Christensen’s suggestion that firms should not pursue the development of potentially
disruptive technologies within their existing organization but ought better outsource
this task to a new company.

Furthermore, we have found that outperformance of the incumbent firm depends
on a specific range of the entrant’s (relative) technological efficiency. If the new (dis-
ruptive) technology’s efficiency is too low, the entrant is not able to reach a satisfactory
product performance and thus is unable to capture a significant share of the market.
On the other hand, if the efficiency is very high, it is more attractive to the incumbent
to switch to the new technology than to continue with its initial one. The result is
a duopolistic market where price competition between similar products prevails. Fi-
nally, we have found that differentials in organizational inertia expose the incumbent
to an increased risk of early failure.

Both results regarding technological efficiency and organizational inertia are rather
independent of the demand structure. In contrast to Adner, we therefore conclude that
the phenomenon of disruption does not necessarily occur as a result of changes in
consumer preferences, but that technological and organizational aspects seem to be
more important.

Finally, experiments with an extended model have shown that the use of even sim-
ple forecasting techniques, applied to the positions of the entrant technology, allow the
detection of threatening competitors. The creation of a new firm similar to the entrant
assures the survival of the consolidated firm group, but leads to lower profits due to
intense competition, and may cause severe cannibalization effects: when the incum-
bent has a technology which is less efficient than the entrant’s, it vanishes from the
market. The message of this finding is clear and has already been applied by leading
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high-tech firms (see, e.g., Brown and Eisenhardt, 1998): an incumbant under threat by
disruptive technologies does not have to be overly innovative himself. Rather technol-
ogy management is important in the sense that the development of entrants has to be
closely watched and that a homogeneous, centrally controlled firm structure has to be
given up. Managerial advice is thus, that the firm should organize as a patch work of
small, independent units pursueing different technologies independently, also compet-
ing with each other. Strategy in such a framwork resembles to the close monitoring of
technological developments in other market segments, the forecasting of technologi-
cal positions to detect threats, and the making of appropriate portfolio decisions—that
is, setup of new units, also including the acquisition of successfull entrants. However,
while survivial can be secured in this way, it is the consumers who benefit from more
intense competition and lower prices.
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Agent-Based Simulation of Power Markets

Thomas Steinberger and Lucas Zinner

1 Introduction

Simulations using artificial agents to model the dynamics of new developing markets
have already been proved to be a useful tool to analyze these changing markets (Bunn
and Oliveira, 2001; Tesfatsion, 1997, see, e.g.,). The development of a framework
which includes the various components of a market such as producers, consumers,
networks or different clearing mechanisms is aimed to gain insights into the results
depending on the different strategies of the main players in these markets. The
modular framework enables us to study certain phenomena by changing parts and
leaving others unchanged. We are especially interested in the producers part in this
market and therefore made rigorous simplification with respect to consumers and for
instance power lines compared to real world scenarios.

The simulation environment is based on the MASS – MATLAB Aided Simulation
System developed by Scherrer (2001), and is intended to be the base of a tool which
should provide useful information in the decision making process. In a first step we
aim in generating close to real world time series concerning the prices over time as
well as usage rates of power plants using demand curves as an external parameter. By
changing parameters such as fuel prices or price sensitivity of consumers we try to
estimate chances in a developing market.

The simulation depends mainly on the interaction of different agents representing
consumers, producers, markets and regions. All of them are acting with respect to
their utility function. Each of these agents is implemented as a MATLAB program.
The communication is based on a message system which is coordinating the data of
the different agents. During the clearing process three kind of products are traded,
namely certain volumes of constant load offers for a period of 24 hours, 16 hours and
7 hour called Base, Peak and Superpeak.

The consumers communicate a demand in the form of 3 quantities. This is
exogenously specified on the basis of a load curve. The demand is (weakly) price
flexible thereby.

The production agents are equipped with a certain portfolio of power plants and
an associated cost structure and put day ahead trading offers for the three groups of
loads, namely Base, Peak and Superpeak, in the form of price-quantity pairs. The
producer puts its offer knowing the expected demand as well as prices and quantities
of its competitors and/or results of the previous day. In each simulation step the
budget of the producer is updated according to its costs and sold quantities.
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The inquired quantity is supplied at each time. In case the offers are not sufficient,
a so-called generator of last load resort (GLR) ensures the covering of the demand. The
price setting of the GLR is likewise exogenously given. His capacities are quasi un-
limited and thus his prices form upper bounds for the prices of the production agents.

2 Market agent

The market program (the market) provides on the one hand the completion of the
trade in all regions and is responsible on the other hand for the organization of
the simulation itself. In each simulation step it passes on the mean of the expected
demand of the region for each of the three groups of loads to the producers. After
receipt of all offers from the producers, namely pairs of price and quantity for each
group of loads, a supply curve is formed. By intersecting this with the demand curve
the size of the market and the price for each of the 3 groups of loads is determined.

The market conveys price and volume per group of loads with the appropriate
quantity requirements of the individual producers to the consumer. The consumer
order the corresponding quantities from the producers themselves.

The market can be cleared either as pool or OTC. In the pool model only one cost
per group of loads and region for all producers and consumer is determined by the
intersection of supply and demand curve. Within the OTC trading framework only
the overall traded volume is determined by the market. Each producer receives its
required price, whereas the consumer price is calculated as weighted means of the
producers prices.

In the available version only one market is implemented, which manages the
clearing for everyone in the regions. The transportation net is only very rudimentarily
implemented. Within a region there are neither restrictions of capacity nor costs
for transportation. Between the regions the interconnecting capacities are externally
given. Costs of the transportation are likewise not implemented at present. An
extension of the simulation plans connections of several markets, which are coupled
exogenously to a certain degree.

One simulation step from the market agent point of view:

The market requests the consumers of all regions in a ‘call for offer’ message to spec-
ify their demand.
After receipt of all demand curves the market calculates a mean demand for each re-
gion and sends these and the request to put an offer in a ‘call for offer’ message to all
producers. If all offers arrived, the aggregated supply curves for each region are com-
puted and the market clearing is accomplished. In an ’offer’message the consumers of
each region receive the offers as well as the market price and the size of the market.
As soon as the trade was completed by the consumers, the market receives a ‘close’
message and the next trading day is opened, as described above.
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Figure 1: Typical load curve for 6 days in the summer, beginning on Monday

3 The Aggregated Demand–The Consumer

For each region an aggregated demand is given, i.e. the consumer side is not
particularly modelled in the sense of a strategic behavior. According to its demand
the consumer buys electricity beginning with the cheapest offer of a certain producer
ascending until its need is covered.

The demand is characterized by a diurnal, a weekly and a yearly variation (see Fig-
ure 1). For instance the aggregated demand of a simulation of the Austrian electricity
market is set at the initialization by approximately 53 TWh per year with maximum
daily peaks in the winter of approximately 10 GW and in the summer of approximately
7.5 GW. The minimal demand ranges between approximately 3 GW respectively 2
GW. Additionally an annual increase in the consumption of 2% is assumed.

Since the strong diurnal variation of the load plays an essential role for energy
supply, it is not

possible, even for long-term simulations, to restrict oneself averaged daily loads.
On the other hand an hourly trade would slow down the simulation due to the
computing intensity. An simulation over 10 years would need about 87600 simulation
steps. Therefore 3 groups of loads are derived from the daily load curve, namely
Base, Peak and Superpeak, which are traded together.
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Base denotes the load, which is constantly demanded for an entire day of 24 hours.
Peak denotes the load, which is constantly demanded additionally to Base during a
period of for example 16 hours, whereby the duration is a selectable parameter.
Superpeak denotes the load, which additionally to base and peak is constantly
demanded during a short, likewise selectable, period of for example 7 hours (see
Figure 1).

The daily demanded energy corresponds to the sum of the demanded energy
of the 3 groups of loads. Always the whole demand is satisfied, since a so-called
generator of last resort (GLR) supplies arbitrary energy quantities at a price specified
at the beginning of the simulation.

At the end of a simulation step the consumer submits the estimated demand of its
region for Base, Peak, and Superpeak for the next day to the market agent. From this
a linear demand curve is formed, by assigning these loads to the prices of the GLR
where for the price 0 an for instance 10% increased demand is assumed. This short
term price elasticity is determined with its own parameter.

The estimated demand, which the consumer submits for the three groups of loads,
does not have to agree with the actual demand for two reasons. First of all the demand
depends to a certain extend on the actual price of the respective electricity product
obtained in the market clearing process. Secondly the estimated demand is affected
by certain noise. The order of magnitude of this error is likewise adjustable with a
parameter. Thus we have modelled the uncertainty of the estimation of the day ahead
load without paying attention to the complicated details of balancing load and supply
in the network. The risk, which lies in an over or an underestimation of the load is
carried by the producers.

A simulation step from the view of the consumer:

After receipt of the ‘call for offer’ message the consumer computes the demand
curves (Figure 1) for Base, Peak and Superpeak for its region and sends these in a
‘demand’ message to the market.

In the ‘deal’ message the consumer receives all necessary information to complete
the trade with the respective producers. First the actual volume is calculated for all
three groups of loads by the size of the market and the given prediction error. There-
upon each producer receives a ‘deal’ message with the volumes and the prices for
the three groups of loads. The price corresponds thereby either to the market clearing
price (pool) or the one offered by the producer (OTC). The volumes correspond to the
volumes offered by the producers for all except the marginal one. If there are several
marginal supplies, the inquired quantity of electricity is partitioned according to their
offers.
When trading is completed, the consumer sends a ‘close’ message to the market.
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4 Modeling of the Producers

Each producer is implemented as an own MATLAB program and is assigned to one
region. Within this region there is no restriction concerning the interconnection ca-
pacities. To supply electricity into other regions, restrictions of capacity have to be
considered. During the initialization of the simulation the portfolio of power plants
of the individual producers is specified. From an external cost table (see Table 1) the
producer calculates his costs for generation, i.e. his variable costs and his fixed costs.
These data were raised from generally accessible sources and examined for plausibil-
ity (see Schneider, 1998).

The restriction on 7 types of power stations is strong simplifying. Furthermore
we do not consider the costs of heating up and cooling down power stations or the
no-load operation costs. In addition it is supposed that the costs of a type of power
station are the same for all producers. The variable costs of thermal power stations
are calculated in each simulation step using exogenously given fuel prices.

In Table 1 the installed capacity of all types of power stations is indicated. For
hydro power stations the actual capacity depends strongly on the water level. We
implement this technical restriction by defining an availability-variable (in per cent of
installed capacity). Further technical restrictions are given for storage power stations.
Here we give a minimum and a maximum value for the energy per day, which must
resp. can be delivered. These values are indicated in per cent of the installed energy
(installed capacity*24). The minimum energy must be delivered to prevent overfilling
of the reservoir and the maximum energy may not be exceeded to prevent emptying
the reservoir of the storage power plant. At present the minimum and maximum
energy for storage power stations are externally given and no detailed modelling of
the water level is made. It is supposed that all power stations are always available (no
repair and maintenance times).

The determination of an offer by the producer:

All prices and loads are discretized. The prices are divided into 20 steps between the
smallest variable costs of the producer and the prices of the GLR. The prices of the
GLR are given and can be different for each group of loads. The capacities are set for
each producer in 5%–steps between 0 and the installed capacity.

The production agent receives information from the market-agent in each
simulation step containing the demand in the three groups of loads Base, Peak and
Superpeak. The producer is requested by the market for an offer (i.e. a pair of price
and quantity) for the 3 groups of loads.

Two different price setting strategies are implemented, Marginal Pricing and Best
Response Pricing.

Marginal Pricing: The price is determined by the production costs of the respective
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Figure 2: Technical constraints (maximum load, maximum energy, and minimum en-
ergy) for different types of power stations for a producer per day

energy quantity plus an additional charge, which is selectable as parameters and can
be interpreted as amount of coverage for short or long-term planning.

Best Response Pricing: For putting his offer the producer uses the following knowl-
edge:

• his price-quantity pairs of the previous day,

• the estimated demand in the 3 groups of loads

• his calculated production costs and capacities

• the prices and quantities of the other producers of the day before.

With this knowledge he performs a local optimization, by computing his expected
profit, if he in- resp. decreases the price resp. the quantities by a unit under the
assumption that the other producers behave exactly the same as on the day before.
The power stations are optimally used under the constraints maximum load, minimum
energy and maximum energy (Figure 2).



152

Table 2: Initial parameter for the aggregated load curve of the Austrian electricity
market

Annual Annual fr, sa, su against Winter min/max Summer Base, Peak,
Load Growth rest of week in % in GW min/max in GW Superpeak in hours

53TWh 2% 90, 70, 50 ∼ 3 / ∼ 9, 5 ∼ 2, 5 / ∼ 7 24, 16, 7

Remarks:

• The local optimization was selected, in order to prevent too strong short term
fluctuations in the offer behavior.

• In each simulation step the agent computes 729 alternatives and selects from
these that one, which maximizes his profit in the next time step under his con-
straints. To reduce the computation time we accept a small error in computing
the production costs. The production costs of the three groups of loads are not
independent, but for optimization we neglect these dependencies and use the
loads of the day before.

• The agent tries to only maximize his profit for the subsequent day, i.e. the cost
function is exclusively aligned to the daily profit and not to possibly different
use (e.g. market power, customer connection).

• The lower bound for the prices of the production agent is his production costs.
It is not possible to dump consciously.

A simulation step from the view of a producer:

• After receiving the ‘call for offer’ message the producer calculates the optimal
price-quantity pairs for all three groups of loads as described in the paragraph
above. The quantity of 0 is also possible and stands for no offer. These pairs are
communicated to the market in an “offer”-message.

• In a “deal” message from the consumers all information is contained which the
producer needs to compute his new budget and his best response offers for the
next day.

5 Simulation of the Austrian Electricity Market

As a first application and as a test for the made simplifications a simulation of the
Austrian electricity market was implemented. It should be also clarified whether the
simulation system is already powerful enough, to reproduce important stylized facts.
The demand side of the Austrian electricity market was initialized thereby as in Table
2.

The production side was simplified extremely. There are only two producers, one
with very high portion of hydro power, corresponding to the VerbundAG, and a sec-
ond producer that sums up all other Austrian power producers. OTC was selected for
market clearing and the offers are put by means of Best Response Pricing.

The following stylized facts should be reproduced by the simulation:
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Table 3: Parameters of the producers in the simulation of the Austrian electricity mar-
ket

Producer Power plant Total capacity
13 5 1 0 3 6981

P1 Hydro old Storage old Brown coal Gas/Steam GT MW
6 1 5 5 0 10.472

P2 Hydro old Storage old Brown coal Gas/Steam GT MW

1. Baseload has to be cheaper than Peakload and this again has to be cheaper than
Superpeak.

2. The prices for the individual products are approximately 20 Euro/MWh for
Base, approximately 30 Euro/MWh for Peak and up to 50 Euro/MWh for Su-
perpeak.

3. In long-term simulations a general price increase should be obtained because of
removing over-capacities.

4. Likewise due to the worse relationship between installed capacity and consump-
tion the price should be tendentious higher in winter than in summer.

These four price-referred stylized facts are particularly meaningful, since the prices
depend on very many factors and additionally are affected by a strategic optimization
of the production agents.

5. The usage rate of the individual types of power station should agree with usage
rates at the Austrian market.

In the following figures (Figures 3 and 4) it is to be recognized that the above-
mentioned points 1–4 are met by the simulation environment. In Figure 3 the con-
sumer prices for the three groups of loads are shown for a period of 20 years. The
consumer price of a group of loads is, under the assumption of OTC trade, the sum
of the prices of the producer weighted with the quantity of electricity, bought at the
respective producer. An annual growth of demand of 2% and an unchanged installed
capacity is supposed, so that the over-capacities are reduced in course of time. It can be
seen clearly that point 1 of the stylized facts is fulfilled, i.e. Baseload is cheaper than
Peakload and this again is cheaper than Superpeak. In addition the long-term price
increase (point 3) of all three electricity products is apparent. The yearly variation in
the prices with higher prices in the winter and lower prices in the summer (point 4) is
particularly clear in the second half of the simulation run, i.e. in the second 10 years.
In the first years the price series are less regular probably because of Best-response-
dynamic. In general, the price level for all three groups of loads is somewhat too
low, particularly in the first half of the simulation run. The Base price reaches hardly
20 Euro/MWh and also Peak shows lower prices than 30 Euro/MWh. Likewise Su-
perpeak hardly obtains prices over 40 Euro/MWh. The reasons for this are not totally
clear. One reason could be that the actually available amount of energy is higher in the
simulation than in reality (due to the simplifications, we described in chapter 3) on the
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Figure 3: The consumer prices for the three groups of loads for a period of 20 years

other hand it is possible that the production costs were set too low, or that the price
setting mechanism is responsible.

In Figure 4 the usage rate of the different types of power plants is shown. It can
be seen that the entire energy provided by the hydro power stations is sold. The usage
rate of the hydro power stations is somewhat too high, it lies in the yearly cut at ap-
proximately 5000 full load hours in reality. This is because our data report the actual
water level of the rivers only very rudimentarily. The small usage rate of the storage
power stations reflects their meaning as a supplier of peakload again. The usage rate
of the coal power stations agrees in the order of magnitude with the reality. In prin-
ciple a more exact modelling of the power plant portfolio of the individual producers
should improve simulation results, since electricity market is strongly determined by
technical basics.

Figure 5 indicates exemplarily, of which kind the statements could be, which one
can expect from a simulation like this. The development of the budgets of the two pro-
ducers is shown under the assumption that the demand increases annually by 2% and
no capacities are added. In the first picture a constant fuel price is supposed, in the sec-
ond picture gas price increases by 2%, while the other fuel prices remain constant and
in the third picture an annual increase by 2% for all fuel prices is supposed. Thereby
the development is surprising, when gas price increases and the other fuel prices stay
constant. The better performance of P2 in this scenario might have to be attributed to
the fact that P1 must fall back toward the end of the simulation to fuel-intensive small
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Figure 4: The usage rate of the different types of power plants

gas turbines.

6 Conclusion and Outlook

The simulation environment implemented at present can be seen only as a first step.
Accordingly extensions and improvements are possible into almost all directions. It
is the more amazing that with this simple means a satisfying picture of some parts of
the electricity market is possible. This might be due to the underlying structure of the
simulation environment. The decision to deal three electricity products daily is well
justified and seems to be successful. Likewise the simple modelling of the demand
side is not a large disadvantage. In the following the most important extensions and
improvements are described briefly.

An implementation of accurate information about the used power stations seems
particularly important. On the one hand exact data for the cost structure are important,
on the other hand the technical side should be modelled in more detail. Of particular
importance is the problem of heating up and cooling down thermal power units. In
addition a more exact view of storage and pump-storage power stations is important.
Maintenance and repair times and costs should be modelled. The transmission
network between the individual regions is implemented only very rudimentarily.
Only transmission capacities are restricted, but for example no transmission costs are
implemented yet.
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Figure 5: The development of the budgets of two competing producers under different
assumption of fuel prices and with annually by 2% increasing demand
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A scientifically founded analysis of simulation results can not be limited on
“visual inspection” of individual trajectories. Testable hypotheses must be set up and
examined at the results or other statistically founded methods have to be used.

The two methods of the price setting used so far are improvable. Marginally pric-
ing appears too rigid and best response pricing produces unnatural fluctuations in the
price time series. Some attempts with Machine Learning methods (e.g. Q-learning al-
gorithm) were not successful. Although the theoretically necessary assumptions are
not fulfilled, these methods are used extensively (Harp et al., 2000). Maybe agents
with given, however adaptive strategies are working better.

Bibliography

Bunn, D. W. and Oliveira, F. S. (2001). Agent-based simulation: An application
to the new electricity trading arrangements of england and wales. IEEE-TEC on
Evolutionary Computation, Special Issue: Agent Based Computational Economics,
5(5):493–503.

Harp, S. A., Brignone, S., Wollenberg, B., and Samad, T. (2000). SEPIA: a simulator
for electric power industry agents. IEEE Control Systems Magazine, 20(4):53–69.

Scherrer, W. (2001). MASS – MATLAB Aided Simulation Systems. Inst. of Econo-
metrics, OR and System Theory, TU Vienna, Internal Report.

Schneider, L. (1998). Stromgestehungskosten von Großkraftwerken. Öko-Institut,
Werkstattreihe 112.

Tesfatsion, L. (1997). How economists can get alive. In Arthur, W., Durlauf, S.,
and Lane, D., editors, The Economy as an Evolving Complex System, volume II.
Addison-Wesley, Reading, Mass.



A Simulation Model of Coupled Consumer and
Financial Markets

Brian Sallans, Alexander Pfister, Alexandros Karatzoglou and Georg Dorffner

1 Introduction

The study of economic phenomena involves not just the domain of economics, but
also dynamical systems theory, game theory, the theory of adaptive learning systems,
psychology and many others. Beginning with the seminal work of Herbert Simon
(1982), there has been a realization that classical economic theory, based on rational
equilibria, is limited. In reality, economic agents are bounded both in their knowledge
and in their computational abilities. Recent work in simulation-based computational
economics has sought to implement boundedly rational economic actors as learning
agents, and to study the implications on the resultant economic systems. See Tesfatsion
(2002) for a review of agent-based computational economics.

In this chapter we describe and study a discrete-time agent-based economic model
which incorporates three types of boundedly rational agents: Production firms, Con-
sumers, and Financial traders. These three agents operate in two coupled markets: a
consumer market and a financial equities market. In the consumer market, produc-
tion firms offer goods for sale, and customers purchase the good. The financial eq-
uities market consists of stock traders who can buy and sell shares in the production
firms. The two markets are coupled through the production firms, which try to increase
shareholder value. They might do this by increasing profits, or by taking actions which
directly boost their stock price. Each firm explicitly implements a boundedly-rational
agent which learns from experience, and has limited knowledge and computational
power.

The other simulation work described in this collection generally takes a more de-
tailed look at a single agent type or market. Models of consumers (Baier and Mazanec,
1999; Buchta and Mazanec, 2001), financial traders (Gaunersdorfer, 2000; Pfister,
2003), and production firms (Natter et al., 2001; Dawid et al., 2002) have been studied
previously. The focus is on a single type of actor (firm, consumer or trader), with the
other actors modeled as exogenous inputs or simple random processes. These models
are appropriate for the study of intra-market phenomena like market segmentation,
stock market volatility clustering or strategic decision making.

In contrast, this work takes an integrative approach, by simplifying and linking
simulation models of consumers, stock markets and firms. While the individual agents
are simpler than others being studied, the interaction between agent types and markets
gives the model rich and interesting dynamics. Specifically, we build on the work of
Steiglitz et al. (1995), Arthur et al. (1997), Brock and Hommes (1998), Gaunersdorfer
(2000), Dangl et al. (2001) and Pfister (2003) in financial market modeling; Baier and
Mazanec (1999) and Buchta and Mazanec (2001) in consumer modeling; and Tesauro
(1999) and Natter et al. (2001) in production firm modeling. The goal is to simplify
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and integrate these previous models, while still retaining their empirical behavior. In
addition, the integrated model can address new phenomena that can not be investigated
in separate models.

The purpose of integration is to allow us to study the mutual influence of the two
markets. In particular, because the firms learn to act based on feedback from the finan-
cial market, we can examine the influence of the financial market on production firm
behavior. Given rational expectations of firms and financial traders, one might expect
that it does not matter whether a firm bases its actions on its own estimate of future
performance, or on its stock price (the shareholders estimate of future performance).
This would be the case if firms and traders were fully rational, since both would have
the same estimate of the value of a firm and its actions. However, when both are only
boundedly rational, then their estimators might be in disagreement. In this case the
financial market could have a positive or negative influence on firm performance. The
type and degree of influence will depend on how firms and stock traders estimate fu-
ture performance. Further, if more sophisticated compensation schemes are used (such
as stock options), then both stock market value and volatility can have an influence on
firm behavior.

Before we use the model to investigate inter-market effects, we have to satisfy
ourselves that it behaves in a reasonable way. We validate our computational model
by comparing its output to known “stylized facts” in consumer and financial markets.
Stylized facts are robust empirical effects that have been identified in a number of
examples of real markets. Successful reproduction of empirical phenomena suggests
that the dynamical properties of the model are similar to those of the real markets
that it tries to emulate. We can then use the model to better understand the underlying
dynamics and causes behind the observed effects. For example, by looking at what
model parameter settings encourage particular behavior, we can get some insight into
the underlying mechanism which causes it.

We also describe a novel validation technique based on Markov chain Monte Carlo
(MCMC) sampling. By using the technique, we can investigate how model parame-
ters influence model behavior, even for large parameter spaces. We can explicitly in-
vestigate how different model parameters are correlated, and under what conditions
the model reproduces empirical “stylized facts”. This new validation and exploration
technique is widely applicable to agent-based simulation models, and is an important
contribution of this work.

In this chapter we begin by giving an overview of the results that have come from
this work. We then describe the integrated markets model (IMM) itself. After describ-
ing the model in detail, we explain the model exploration and validation technique
based on MCMC sampling. We describe a number of stylized facts, and show simu-
lation results from the integrated markets model. Using MCMC exploration, we show
that the dynamics of competition in the consumer market are an important part of
the overall dynamics in the financial market. Similarly, the dynamics of the financial
market have an impact on the learning abilities of firms in the consumer market.

After specifying and validating the model, we give two examples of interactions
between the consumer market and the financial market. First, we introduce an addi-
tional stock trader which bases its behavior on product position rather than profits. We
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show that a minority of these traders in the market can have a significant influence on
the firm’s behavior.

The second example explores managerial compensation. We begin by showing
that the integrated markets model replicates both known empirical behaviors from the
compensation literature, and theoretical behaviors from optimal contract theory. We
then use the model to generate new hypotheses about the usefulness of stock option
compensation in a competitive market, based on their influence on exploration and
risk-taking.

2 Overview of Results

Our implementation and use of the IMM has given rise to a number of interesting
results in the areas of market behavior, feedback effects, model validation and man-
agerial compensation. We give an overview of the most interesting results here. The
details and supporting evidence are the subject of the remainder of this chapter.

2.1 Integration and Stochasticity

One of the fundamental results of this work is simply that such an integrated model
is possible. In previous work on consumer and financial markets, agent types from
outside of the market in question were replaced by simple stand-ins such as random
processes. In the integrated model, there are no such random processes. All of the de-
cisions made in the model are deterministic, based on agents maximizing their utility
within the bounds of their knowledge.

In our model, a constant random influx of new information to the stock market is
replaced by highly predictable fundamental information with occasional unpredictable
shocks. Despite this, the stock market simulation has the same degree of unpredictabil-
ity as other simulated markets. This is due to a combination of heterogenous trading
strategies in the market, and the difficulty in predicting the timing and direction of
these occasional shocks. The simulated stock market is also qualitatively similar to
real stock markets in terms of volatility clustering and volume-volatility correlations.

An interesting effect can be seen in the tradeoff between firm learning and au-
tocorrelations in the market returns. Fundamentalist traders trade based on profits of
the firms. If the firms do very well or very poorly, profits are easy to predict, and the
returns of the stock market becomes more autocorrelated. There is a regime in which
the performance of the firms is variable, causing a decrease in the autocorrelation of
market returns. In particular, the parameter controlling the length of the firm’s mem-
ory trades off against the parameter controlling what kind of information (profits or
stock price) is used to make decisions. When firm memory is short, or more difficult
(stock) information is used by the firms to make decisions, firm performance is uni-
formly bad. When firm memory is long, and reliable (profit) information is used, firm
performance is uniformly good. Memory lengths and reliance on stock information
trade off against one another when the goal is to have decorrelated stock returns.
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2.2 Bounded Rationality and Information Usage

The firms successfully make use of both profit- and stock-based information to make
decisions and learn over time. In the consumer market, we see reasonable behavior in-
cluding price competition and market segmentation. The managers learn to maximize
their compensation over time.

Despite this, we can see the effect of bounded rationality, both in the consumer and
the financial markets. The clearest example is the volatility of stock markets. Because
of the inclusion of both fundamentalist and technical traders, the market price does
not converge to the equilibrium price, but rather oscillates around it.

A more interesting example can be seen in the behavior of the firms. In the model,
because the stock price is constructed from firm profits, both the profits and the stock
price contain the same underlying information about firm performance. Given an un-
limited memory and knowledge, a firm should therefore have the same performance
whether its source of information is stock price or profits. Instead, we see that the
firm performs best with a mixture of both sources of information. Further, some stock
market structures are better than others from the point of view of firm performance.
Specifically, there was an intermediate value for the influence of fundamentalist stock
traders which gave the best firm performance. Because of the bounded rationality of
the firms, the form of the information they receive, not just the content, is important.

2.3 Validation

Model complexity is always an issue. It is especially pressing in our case, because of
the number of different agent types present in the integrated model. Even with each
agent-type only requiring a few parameters, the total number of parameters quickly
adds up. This makes it difficult to assess model sensitivity to parameters, and to find
reasonable parameter settings.

In order to combat this problem, we introduce a novel model validation and ex-
ploration technique based on a Markov chain Monte Carlo sampling algorithm. This
method samples model parameters according to how well the model reproduces be-
havior based on empirical “stylized facts” from real markets. Using this technique, we
can explicitly see how a parameter influences model behavior, and how parameters
interact to cause model effects.

During validation, we found that high kurtosis of marginal stock returns, and
volatility clustering are very robust features of our artificial market. All reasonable pa-
rameter combinations produced these features. The one exception was that the stock
market simulation was sensitive to the number of fundamentalists in the market. In
a market with 20% fundamentalists, the returns look Gaussian. If the proportion of
fundamentalists drops below 10% the stock price collapses. The heterogeneity of the
market traders is necessary to maintain market liquidity and trading volume, and com-
pensates for the lack of arbitrary randomness in our model.

We also found that our artificial stock market exhibited a positive correlation be-
tween volatility and trading volume, as seen in real markets. This occurs because when
the stock price is volatile, more traders want to adjust their portfolios, and volume
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increases. Similarly, when the market has high volume, more trades can be made,
allowing for larger adjustments to the stock price.

2.4 Fundamental Value and Stock Price Inflation

The goal of building an integrated markets model is to use it to study feedback and
interaction effects between the consumer and financial markets. We have already men-
tioned several effects where the behavior in one market influences the stylized facts
seen in the other market.

We have also investigated the ability of the stock market to integrate multiple
information sources, and to influence the performance of the firms. One form of feed-
back occurs when financial traders base their valuation judgments on some aspect of
the firm’s performance in the consumer market. Previous stock-market models have
shown evidence of short-term stock market “bubbles” caused by technical trading.
Our simulations show that traders with alternative and conflicting “fundamental” val-
uations can explain periods of sustained stock price inflation, which outlast short term
dynamic fluctuations.

We found that when managers are rewarded based on stock performance, they will
extract from the stock price information about these conflicting ideas of fundamental
value. Moreover, they will consistently cater to the valuation theory over which they
have the most direct control. In our case, we show that firms will develop “trendy”
products which elicit investor excitement, even when this sacrifices profits.

As a byproduct, we also show that the stock market can integrate conflicting ideas
of what constitutes fundamental “value”, and that these separate ideas can then be
extracted from the stock signal by the firm.

2.5 Managerial Compensation

Optimal contracts are a major subject of theoretical study. Unfortunately, it is very
difficult to confirm theoretical contract results with empirical evidence, because of
difficulties in gathering and analyzing the empirical data. We show that the integrated
model can be used as an alternative to empirical tests to check theoretical predictions .
The simulation model is more realistic than theoretical models, in that it incorporates
bounded knowledge and learning, and operates over many repeated trials. However,
it is more accessible than empirical studies, because we have access to the “ground
truth”. We also use the model to generate new hypotheses, to be explained by theory
and tested empirically.

In particular, we use the model to test the predictions of principal-agency theory
with respect to the effect of stock options on firm risk taking. The simulation model
tests these predictions under conditions that are quite far removed from the theoretical
models: The firms are boundedly rational and have no prior knowledge of consumer or
stock market preferences. This indicates that the effect of stock options is quite robust,
and does not overly rely on the assumptions of the theoretical models.

Although the effect of stock options is as predicted by principal-agency theory,
the mechanism in our model is quite different. In theoretical models, managers know
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the probable outcomes of their actions and the risks that they take. They are willing
to gamble, because stock options insulate them from negative consequences. This re-
sults in a higher expected return, although with higher risk. In our simulation model,
managers must experiment to discover the outcomes of their actions. They are will-
ing to experiment because the stock options insulate them from failed experiments.
Experimentation results in finding more effective strategies, and a higher return. This
alternative mechanism is not suggested by theoretical models.

The theoretical mechanism requires a priori knowledge, while the simulated mech-
anism will only occur when managers must learn consumer and stock market prefer-
ences. We also show that learning and knowledge acquisition are influenced by the
timing of stock option grants. We find that options are most effective when they are
introduced in response to a need to learn new behavior, rather than being included as
a standard part of a compensation contract.

3 The Integrated Markets Model

In this section we give a brief overview of the integrated markets model. The reader
is directed to Sallans et al. (2003) for a detailed description of the model and vali-
dation results. For completeness, the model parameters and equations are included as
Appendix A.

The model consists of two markets: a consumer market and a financial equities
market. The consumer market simulates the manufacture of a product by production
firms, and the purchase of the product by consumers. The financial market simulates
trading of shares. The shares are traded by financial traders. The two markets are
coupled: The financial traders buy and sell shares in the production firms, and the
managers of firms may be concerned with their share price. The traders can use the
performance of a firm in the consumer market in order to make trading decisions.
Similarly, the production firms can potentially use positioning in product space and
pricing to influence the decisions of financial traders (see Figure 1).

The simulator runs in discrete time steps. Simulation steps consist of the following
operations:

1. Consumers make purchase decisions.
2. Firms receive an income based on their sales and their position in product space.
3. Financial traders make buy/hold/sell decisions. Share prices are set and the mar-

ket is cleared.
4. Every Np steps, production firms update their products or pricing policies based

on performance in previous iterations.

We describe the details of the markets, and how they interact, in the following sections.

3.1 The Consumer Market

The consumer market consists of firms which manufacture products, and consumers
who purchase them. The model is meant to simulate production and purchase of non-
durable goods, which the consumers will re-purchase at regular intervals. The product
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Figure 1: The integrated markets model. Consumers purchase products, and financial
traders trade shares. Production firms link the consumer and financial markets, by
selling products to consumers and offering their shares in the financial market.

space is represented as a two-dimensional simplex, with product features represented
as real numbers in the range [0,1]. Each firm manufactures a single product, repre-
sented by a point in this two-dimensional space. Consumers have fixed preferences
about what kind of product they would like to purchase. Consumer preferences are
also represented in the two-dimensional product feature space. There is no distinction
between product features and consumer perceptions of those features.

Firms

The production firms are adaptive learning agents. They adapt to consumer prefer-
ences and changing market conditions via a reinforcement learning algorithm (Sutton
and Barto, 1998). In each iteration of the simulation the firms must examine market
conditions and their own performance in the previous iteration, and then modify their
product or pricing.

A boundedly rational agent can be subject to several kinds of limitations. Our
model explicitly implements limits on knowledge, and representational and compu-
tational power. These limits manifest themselves in the firm’s representation of its
environment and its knowledge of its competitors.

The firms do not have complete information about the environment in which they
operate. In particular, they do not have direct access to consumer preferences. They
must infer what the consumers want by observing what they purchase. Purchase infor-
mation is summarized by performing “k-means” clustering on consumer purchases.
K-means is a common clustering technique used in consumer market research. The
current state information consists of the positions of the cluster centers in feature
space, along with additional state information such as whether or not the previous
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action was profitable or boosted stock price, and where the competitors products are
located.

This information gives a summary of the environment at the current time step.
Firms make decisions based on a finite history of states of some length. This limited
history window represents an additional explicit limit on the firm’s knowledge.

In each iteration the firms can take one of several actions. The actions include
taking a random action, doing nothing, raising or lowering product price, or moving
the product in feature space. The random action was included to allow the firm to
explicitly choose to take a “risky” exploratory action.

A firm’s manager seeks to modify its behavior so as to maximize an external re-
ward signal. This reward signal can be viewed as the managers compensation for its
actions. The influence of this reward signal on the firm’s behavior will be the focus of
our investigation, and is described in section 6.1.

Given the reward signal, the firm learns to make decisions using a reinforcement
learning algorithm (Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998). Given the
reward signal at each time step, the learning agent attempts to act so as to maximize
the total (discounted) reward received over the course of the task. The discounting
indicates how “impatient” the manager is to receive her reward. It can also be related
to the interest rate for a low-risk investment or the rate of inflation.

Consumers

Consumers are defined by their product preference. Each consumer agent is initial-
ized with a random preference in product feature space. During each iteration of the
simulation, a consumer must make a product purchase decision. For each available
product, the consumer computes a measure of “dissatisfaction” with the product. Dis-
satisfaction is a function of product price and the distance between the product and
the consumer’s preferred product. Given dissatisfaction ratings for all products, each
consumer selects from this set the product with the lowest dissatisfaction rating.

3.2 The Financial Market

The financial market model is a standard capital market model (see, e.g., Arthur et al.,
1997; Brock and Hommes, 1998; Dangl et al., 2001). Myopic investors maximize their
next period’s utility subject to a budget restriction. At each time step agents invest their
wealth in a risky asset (a stock or index of stocks) and in bonds, which are assumed
to be risk free. The risk free asset is perfectly elastically supplied and earns a risk free
and constant interest rate. Investors are allowed to change their portfolio in every time
step.

As in Brock and Hommes (1998); Levy and Levy (1996); Chiarella and He (2001,
2002) the demand functions are derived from a Walrasian scenario. This means that
each agent is viewed as a price taker (see Brock and Hommes, 1997; Grossman, 1989).

As in many other heterogeneous agent models we assume that two kinds of in-
vestors exist: Fundamentalists and chartists. The two types of investors differ in how
they form expectations of future prices. Additionally investors have different time
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horizons which are modeled via the time length agents look back into the past.
Fundamentalists determine their price expectations according to a model based on

fundamental information, which in our model are past dividends. They calculate a fair
price and expect that the current price will gradually move towards it at some fixed
rate. A fundamentalist assumes that the fair price is a linear function of past dividends.
Chartists use the history of the stock prices in order to form their expectations. They
assume that the future price change per period equals the average price change during
the previous periods.

In our model we want to focus on the formation of expectations about prices and
not on the formation of expectations about variances. Therefor we assume homoge-
neous and time independent expectations about the variance.

The market uses a sealed-bid auction, where the clearance mechanism chooses
the price at which trading volume is maximized. The first step is to construct supply
and demand curves based on the transaction requests. Then, a price is found which
maximized the volume of shares traded. Note that there may be a range of prices that
would maximize volume. We select the maximum price in this range. If there are buy
orders but no sellers then the share price is set to the maximum bid. If there are only
sell orders then the price is set to the minimum ask. If there are no orders in a time
period, then the price remains unchanged. Each trader specializes in a single firm, and
only buys or sells shares in this firm. Each trader is initialized with a supply of shares
in its firm of interest.

Let us have a look at the timing of the events within the financial model. The first
step is the formation of expectations. Based on past prices and dividends an investor
forms his/her expectation about the distribution of the next period’s price and dividend.
The trading agent is then able to determine the demand function, which is submitted
to the stock market via limit buy orders and limit sell orders. After the orders of all
agents are submitted the stock market calculates this period’s equilibrium price At the
end of the period the current dividend is announced and becomes public information.

4 Model Validation

One goal of constructing agent-based economic models is to gain some insight into the
mechanisms that cause observed market behaviors. Agent-based economic models of-
fer a kind of economic laboratory, in which parameters can be changed, and the results
observed. Useful models will reproduce known market behaviors for reasonable pa-
rameter settings. Knowing the behavior of the model in different parameter regimes is
therefore important both for validating that a model is reasonable, and using the model
to understand economic phenomena. However, in complicated models with many pa-
rameters, it may be difficult to discover relationships between model parameters, and
find regions in parameter space where the model has interesting behavior.

We will validate our model by confirming that it can indeed reproduce empirically
observed market behaviors, or “stylized facts”. In this section we propose a novel algo-
rithm for exploring the relationship between model parameters and stylized facts. The
algorithm is based on Markov chain Monte Carlo (MCMC) sampling. We describe a
number of empirical phenomena that have been observed in consumer and financial
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markets, and give corresponding simulation results. We show that a number of stylized
facts within the two markets can be reproduced by our model under reasonable param-
eter settings. We further show that the behavior of each of the markets is dependent on
the dynamics of the other market. In other words, the integrated model is not simply
two separate models joined together. The behavior of each market is intimately tied
to the parameters and dynamics of the other market. We explore the mechanisms be-
hind some stylized facts by examining correlations between model parameters. More
details about the model and its validation can be found in Sallans et al. (2003).

4.1 Model Parameters

Although it has been our intention to keep the model simple, the firm’s learning al-
gorithm and trader’s decision rules have tuning parameters. Parameter values must be
selected before a simulation can be run. These parameters have been introduced in
earlier sections describing each of the agents in the model. Using preliminary simula-
tions, some of the parameters were found to have a large influence on the outcome of
the simulation, and others were found to be relatively unimportant. All parameters are
summarized in Table 1. The “value” column indicates the value used for simulations
(see section 4.3). The values of parameters in the first group (above the double line)
were found using the Markov chain simulation technique described in the next sec-
tion. Those in the second group were found to be relatively unimportant. These values
were set based on initial trial simulations, and held fixed for all simulation runs.

Table 1: Parameters for Integrated Markets Simulator

Parameter Description Range Value
αφ strength of profitability reinforcement [0, 1] 0.47
αp strength of stock price reinforcement [0, 1] 0.53
N Number of cluster centers N 2
ν product update rate R ≥ 0 0.03
γ reinforcement learning discount factor [0, 1] 0.83

Hs History window length for firms N 3
Nf Proportion of fundamentalists [0, 1] 0.57
Nc Proportion of chartists [0, 1] 0.43
αf Fundamentalist price update rate [0, 1] 0.18
αn Chartist price update rate [0, 1] 0.36
K Number of bins N 10
Np product update frequency N 8
Sf base salary R ≥ 0 0
λ reinforcement learning rate R ≥ 0 0.1
ε reinforcement learning temperature [0, 10] 5 → 0.2

αc Consumer feature/price tradeoff [0, 1] 0.5
MAXDISi Maximum dissatisfaction for consumer i [0, 1] 0.8

f inverse fair dividend yield R 50
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We would like to understand the effect of parameters on model behavior. We could
“grid” the space of parameters, and then run a large number of repetitions of the sim-
ulator, one for each grid point. However, this approach would very quickly become
infeasible with more than a few parameters. Ten parameters, each taking on one of ten
values, would require 1010 runs to cover the grid. Many of these parameter combina-
tions will not be of particular interest.

Instead we would like a way to focus computational power on areas of parameter
space that are “interesting”. We will define as interesting areas where a stylized fact
is well-reproduced. To this end, we will adapt Markov chain Monte Carlo sampling to
do a “directed” random walk through parameter space.

4.2 The Metropolis Algorithm

Consider the problem of evaluating the expected value of some multivariate function
with respect to a probability distribution or density. In some cases (such as linear func-
tions and Gaussian distributions) expectations can be computed analytically. In many
cases this is not possible. Monte Carlo algorithms allow for the approximate evaluation
of expectations in more difficult circumstances. In the following, bold face will denote
a vector and subscripts will denote elements of a vector or set: x = 〈x1, ..., xJ 〉. Given
a set of multivariate samples {x1, ...,xN} from a distribution P (x), we can approxi-
mate the expected value of a function f(x) as follows:

E[f(x)]P (x) ≈ 1

N

N∑
i=1

f(xi) (1)

Before this approximation can be employed, we need a set of samples
{x1, ...,xN} ∼ P (x). In many cases we do not have a closed-form distribution from
which samples can be drawn. The Metropolis algorithm (Metropolis et al., 1953) is a
method for drawing a set of samples from a distribution P (x). Further, we need not
have access to P (x), but only need an unnormalized energy function Φ(x), where:

P (x) =
exp{−Φ(x)}∑
x′ exp{−Φ(x′)} (2)

Given an initial point x0, the ith step of the Metropolis algorithm operates as
follows:

1. Select a dimension k. Select a proposed sample x from a proposal distribution
Prk(x;xi−1). The proposal distribution can be a function of the previous point,
and leaves all of the elements of xi−1 unchanged except for the kth element.

2. Set xi ← x with probability min{1, exp{−(Φ(x)−Φ(xi−1))}}. This is called
accepting the proposed sample. Set xi ← xi−1 otherwise (rejecting the pro-
posed sample).

Note that when a proposal is rejected, the old point is added to the sample in
its place. In the algorithm as described above, the proposal distributions should be
symmetric. That is, ∀k∀x∀x′ Prk(x;x′) = Prk(x′;x).
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In the limit, the sequence of samples will converge to a unique stationary distri-
bution with marginal distribution P (x). Thus the set of samples can be used for the
approximation in Eq.(1). In practice, the speed of convergence of the chain to the sta-
tionary distribution will depend on the dimensionality of x, the energy function of
interest and the proposal distribution. Assessing convergence can be problematic. If a
non-convergent set of samples is used, then the estimate will be biased. The algorithm
can also be extended to include non-symmetric proposal distributions.

4.3 Markov Chain Model Exploration

In our application, we do not want to evaluate expectations of a function. Instead, we
want to find settings for model parameters that reproduce stylized facts. The Metropo-
lis sampler has the following property: Samples are more likely to be drawn from
low-energy areas.

Given a stylized fact, we can define an energy function such that low energy cor-
responds to good reproduction of the fact. Then, we implement a Metropolis sampler
using this energy function. In the limit, parameter samples are drawn according to
the normalized probability distribution defined by the energy function. In practice, we
will not generate Markov chains which are sufficiently long to reach the equilibrium
distribution. But even without theoretical guarantees on the distribution of sampled pa-
rameters, the sampler can find good model parameter settings, and reveal interesting
correlations between model parameters. The Metropolis sampler acts as a “directed”
random walk through parameter space, avoiding high energy areas.

We have constructed energy functions for several stylized facts including:
learning-by-doing in the consumer market, low autocorrelations in stock returns, high
kurtosis in marginal returns, and volatility clustering. The sampler operated over the
parameters in the first group of Table 1. We used symmetric Gaussian proposal distri-
butions over real-valued parameters, and uniform distributions over discrete parame-
ters. It was assumed that the energy function took on a value of +∞ wherever parame-
ters fell outside of their valid range, ensuring that such values would be rejected by the
sampler. One thousand samples were drawn using the Metropolis sampler. While this
is too short to allow for convergence, we can still examine the sample set to identify
regions where stylized facts are well-reproduced, and look for significant correlations
between parameters.

As it turns out, two of the four Markov chain experiments were uninteresting.
These were the runs trying to achieve high kurtosis in the stock market returns, and
getting high autocorrelations in the absolute stock returns. The simulated stock market
had both of these features for almost all parameter values, and there were no interest-
ing correlations or relationships between parameters for these energy functions. The
only parameters of interest were the proportion of fundamentalists and chartists. If the
number of chartists fell below 20%, the returns looked Gaussian. This suggests that
high kurtosis and volatility clustering are very robust features of the artificial stock
market, and are driven by the interaction between fundamentalists and chartists.

In the sections below, we show the results for two energy functions: The “learning-
by-doing” effect, and low-autocorrelations in the stock market returns.
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Learning by Doing

The “learning-by-doing” effect (Argote, 1999) encapsulates the idea that firms gain
knowledge and optimize their behavior over the course of performing a task. Empir-
ically, costs go down, and efficiency and profits go up as a function of the number
of units of a particular product produced. Our model explicitly includes learning by
doing in the production firm. As the firm produces its product, it learns what sells
in the marketplace and at what price. This results in an increase in profits over time.
Note that this is very different from models which include a “learning” component
in populations of agents, implemented as an evolutionary algorithm. Our individual
firms learn over the course of the task.

We investigated which parameter settings influence the learning-by-doing effect
using our adapted Metropolis algorithm. The energy function was the negative profits:

E =
1

Zp

∑
i

T∑
t=2

−(φi,t) (3)

where i indexes the firms, and Zp is simply a scaling factor designed to bring the
energies into a reasonable range (set to 10000 for our simulations).

We found that the learning effect was quite robust to parameter settings. In general,
firms learned to perform well in the market place for almost all parameter settings
(Figure 2).
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Figure 2: The “Learning by Do-
ing” effect was robust across al-
most all parameter settings. The
bar graph shows the per-time-
step profits of the firms sampled
by the Metropolis algorithm.
The vertical line shows mean
profits achieved by a randomly-
behaving firm. The learning
firms do better than a randomly
acting firm for nearly all param-
eter settings.

There was a significant negative correlation between the proportion of fundamen-
talist traders Nf in the simulation, and the adaption rate αf of the fundamentalists.1

Note what this implies: Two parameters of the stock market are correlated when
trying to maximize a quantity from the consumer market (profits). This suggests that
the feedback mechanism from the stock market to the production firms (via stock
price) is having an influence on the behavior of the firms in the consumer market,

1Significance was measured in the following way: First, the sequence of parameter values was subsam-
pled such that autocorrelations were insignificant. Given this independent sample, the correlations between
parameters could be measured, and significance levels found.
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and that some intermediate behavior of the financial market is optimal from the point
of view of firm learning. This may be because of an exploration/exploitation trade-
off: A certain amount of noise or uncertainty in the financial market could help the
firms avoid shallow local minima and prompt them to find products and prices that
are clearly winning in the consumer market. Too much noise can inhibit learning. The
proportion and adaptation rate of the fundamentalists influences the volatility of the
financial market, and therefore the noise in a firm’s reward signal.

Low Predictability and Volatility Clustering

A fundamental feature of financial markets is that they are not easily predictable. The
perfect market hypothesis claims that new information is immediately factored into
prices, so that the price at any given time reflects all prior knowledge. Under this as-
sumption, it is in principle impossible to predict market movements. In practice, it has
been found that many financial return series have insignificant autocorrelations. Un-
like most artificial stock markets, our model does not include any extrinsic noise (such
as randomized trading strategies (Gaunersdorfer, 2000; Raberto et al., 2001), or a ran-
domized dividend process (Arthur et al., 1997)). Interestingly, the autocorrelations are
nevertheless very low. This is due to a combination of heterogenous trading strategies
in the market, and the difficulty in predicting shocks in the consumer market.

Unlike price movements, price volatility is highly autocorrelated. Empirically,
market volatility is known to come in “clusters”. That is, periods of high or low volatil-
ity tend to follow one another. This is the basis of conditional heteroskodacity models,
which predict volatility in the next time step based on volatility in previous time steps.
In our model technical traders will tend to adjust their market position during large
price movements. This will in turn cause greater price movements. Similarly, when
the price is near the fundamental price, fundamentalists are satisfied and hold their
stock. This in turn stabilizes prices, and causes the chartists to hold their stock as well.

We investigated which parameter settings lead to low autocorrelations in the re-
turns of the artificial stock market. The energy function used was the squared error
between the actual autocorrelations in the returns, and an idealized set of autocorrela-
tions:

E =

A∑
i=1

(vi − v∗i )2 (4)

where vi denotes the autocorrelation at lag i, and v∗
i is the idealized autocorrelation.

We used A = 5, and v∗ = {−0.05, 0.0, 0.0, 0.0, 0.0}. That is, a slight negative auto-
correlation at the first lag, and zero autocorrelation thereafter.

After sampling with this energy function, we found significant correlations be-
tween some sampled production firm parameters. This is particularly interesting, be-
cause it indicates that the statistical properties of the stock returns are substantially
affected by the dynamics in the consumer market. Specifically, there is a significant
negative correlation between the firm’s “history depth” parameter Hs, and the weight-
ing placed by the firm on profits αφ (at the 95% confidence level). That is, in order
to get low autocorrelations in the stock returns, it is best to have either a short history
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depth, or to place the most weight on improving the stock price (at the expense of
profits).

This is likely related to how hard it is for the firms to learn to do well in the market.
Recall, the sampler is trying to find parameter values for which the stock returns have
low autocorrelations. That is, the sampler prefers stock prices that are unpredictable. If
the firms do very well or very poorly, then their fundamental price is predictable, and
the stock returns have higher autocorrelation. There is a regime in which firms have
variable performance. The amount of information available to firms (the history length
Hs) and the kind of information available (profits or stock price) appear to trade-off
in determining firm performance.

This suggests an alternative to previous models that required a continuous influx
of random information, or the continuous use of randomized decisions. In our model,
fundamental information is predictable for long periods of time, interspersed with
occasional unpredictable shocks. When the shocks are absent, return series from the
market become autocorrelated. These occasional but unpredictable shocks drive the
market dynamics, and are sufficient to decorrelate the market returns.

4.4 Ideal Parameters

We identified a set of parameter settings for which all of the stylized facts were well
reproduced (see Figure 3 and column “Value” in Table 1). We did this by intersect-
ing the histograms of parameter values from the MCMC simulation runs, and finding
common parameter settings. Since nearly all parameter settings gave good kurtosis
and volatility clustering behavior, these have been omitted from the figure for clarity.
After identifying a set of parameter settings for which all of the stylized facts were
well reproduced we ran 20 repetitions of the simulation at these ideal parameter set-
tings. The simulation consisted of two competing firms, 50 stock traders, and 200
consumers.

The “ideal” parameter values are reasonable. There are no parameters which must
take on extreme or unlikely values in order to get good simulation behavior.

The following sections show stylized facts reproduced by simulation runs at the
ideal parameter settings.

The Learning Effect

Figure 4 shows simulated profits as a function of time, across the 20 simulation runs
at the parameter settings specified in Table 1. Median profits increase as a function
of time, indicating that firms learn to identify good product positions and prices. The
increase is significant at the 5% level, as tested with a Wilcoxon signed rank test.

Autocorrelations of Returns

Figure 5 shows autocorrelations of returns and absolute returns for the artificial mar-
ket. The autocorrelations were computed for the last 2000 periods of each runs, and
averaged over 20 runs. For these plots, pt is stock price at time t, and returns at time
t are defined as rett = log(pt/pt−1). There are small negative autocorrelations in the
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Figure 3: Histograms of parameter values from Markov chain Monte Carlo sampling.
The plot for each parameter shows three histograms: black for the “learning-by-doing”
energy function (Section 4.3), white for the low-autocorrelations energy function (Sec-
tion 4.3), and gray for the intersection of the other two. Each histograms includes the
top 30% of samples from the MCMC sampler, ranked by the negative energy. The
curve shows a Gaussian fit to this intersection. The “ideal” parameters were taken to
be the means of these best-fit Gaussians.

first few lags, followed by zero autocorrelations. The kurtosis of the market returns
was quite high at 57.8. The error bars show 95% confidence bounds.

Fundamental Price

In financial markets, it is generally assumed that share price oscillates around a “fun-
damental” fair value, or fundamental price. This price can be related to dividends, cash
flow or profits made by the firm. Empirically, it has been shown that models of the
fundamental price can account for some of the variance in share price (Shiller, 1981;
Fama and French, 1988; Kim and Koveos, 1994). Computational models of stock mar-
kets have typically assumed either a static fundamental price, or a simple time-varying
price such as a first-order autoregressive process (Arthur et al., 1997; Gaunersdorfer,
2000). Because our model includes a consumer market, our fundamentalist traders
construct a fundamental price based on the actual past profits of the firm.

Figure 6 shows a simulated stock price and the associated fundamental price, as
calculated by the fundamentalist traders, from a sample run. The simulation used the
parameter settings from Table 1. The fundamental price is the equilibrium price in a
market of only fundamentalist traders. The fundamental price shown was rescaled and
translated to compensate for the adaptation rate of the fundamentalists.
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Figure 4: “Learning by Doing” in the consumer market. The plot shows median profits
as a function of time, across 20 simulation runs. The longer a firm stays in the market,
the higher its profits.
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Figure 5: Autocorrelations of log returns and absolute log returns in the artificial stock
market.

This sequence shows several aspects of the artificial stock market. First, the stock
price roughly reflects the underlying fundamental price. The price differential is due to
the number of stocks held by the traders initially (in our case 120). Second, the stock
price oscillates at a higher frequency than the underlying fundamental price. Despite
this, fundamental price information is incorporated slowly, due to the adaption rate αf

less than 1.0. Large stock price changes lag behind similar changes in the fundamental
price. Third, large changes in fundamental price lead to high volatility in the stock
price. Fourth, the stock price tends to over- or under-shoot and then oscillate after a
large change.

For this run, the proportion of fundamentalists was quite high (Nf = 0.57). It is
interesting that, under our model, decreasing the proportion of fundamentalists tends
to also decrease the kurtosis of the returns. In a market with only 20% fundamentalists,
the returns look Gaussian. If the proportion of fundamentalists drops below 10%, the
stock price collapses. The heterogeneity of the market traders is necessary to maintain
market liquidity and trading volume.
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Figure 6: Fundamental price (thick line) and stock price (thin line) from a section of a
single run of the integrated markets model. The fundamental price has been translated
and rescaled to compensate for the adaptation rate of the fundamentalist traders.

If the fundamental price remains static over a long period of time, then the share
price tends to decay in a deterministic way to the fundamental price. The variation in
fundamental price due to the dynamics in the consumer market is an integral part of
the stock returns in our model.

Volatility and Trading Volume

There is a known positive correlation between volatility and trading volume in finan-
cial markets (Karpoff, 1987). That is, periods of high volatility are also those of high
trading volume.

Our integrated model exhibits the same behavior. There is a correlation between
volatility and trading volume. High volume and high volatility are interrelated, and
each can significantly predict the other, although the effect of high volatility on trad-
ing volume is longer lasting. Figure 7 shows average cross-correlations and 95% con-
fidence intervals for stocks from the 20 runs of the simulator, with parameters set as
in Table 1.

4.5 Discussion

In this section we have described an integrated model consisting of three agent types:
production firms, consumers and financial traders. The agents operate in two coupled
markets: a consumer market and a financial market. The model builds on previous
work by simplifying and integrating previous models of consumers, firms and traders.
We have found that for a particular reasonable setting of the parameters, a large num-
ber of stylized facts can be reproduced simultaneously in the two markets. We have
also indicated in which parameter regimes the model does not perform well with re-
spect to different stylized facts.

We have shown that it is possible to incorporate a profit signal from a competitive
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Figure 7: Cross correlation between trading volume and absolute returns. The figure
was generated by averaging 45-day periods of volume and absolute returns for 40
stocks (20 runs, 2 firms per run). Cross correlations were measured for each stock. The
plot shows mean cross correlations and 95% confidence intervals. The plot shows that
volatility and trading volume are interrelated, with each being a significant predictor
of the other, although the effect of volatility on trading volume is longer-lasting.

consumer market endogenous to the model itself. This endogenous profit signal pro-
vides some of the low-frequency and large-scale variability seen in the financial mar-
ket model. The fundamental information is correlated with stock market returns. Our
model demonstrates that a market that follows deterministic fundamental information
can still have low autocorrelations, despite the fact that the fundamental information
itself is highly autocorrelated. In fact, the shocks provided by changes in fundamentals
are necessary to achieving low autocorrelations in stock market returns.

We have introduced a new model validation technique based on Markov chain
Monte Carlo sampling, and used the new technique to investigate under which model
parameter regimes the model exhibits realistic behaviors. We have shown that this
technique can highlight interesting correlations between model parameters and offer
insights into the mechanisms underlying the behavior of the model. We feel that this
technique has wide applicability to other agent-based models, and is an important
contribution of this chapter.

We have demonstrated that the combined model is more than just the sum of its
parts. The behavior of each of the markets is substantially influenced by the dynamics
of the other market. Firm performance in the consumer market is significantly affected
by how the firm estimates future performance. Firms operate best given a mixture of
performance-based and stock-based pay. This offers an example of the influence of
the form, and not just the content, of information in a boundedly rational system.
Similarly, the statistical properties of the stock market are best for intermediate values
of firm parameters.
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In the next sections, we use the integrated model to investigate inter-market styl-
ized facts that are beyond the reach of individual models. These include product hype
in the financial market and managerial compensation schemes.

5 Share Price Inflation and Product Hype

In the previous section we have seen that the two markets can have a significant impact
on one another. In this section we explore the extent to which the financial market
can reconcile different views of “fundamental value”, and the extent to which these
different views influence the behavior of the firm. In particular, we would like to see
if conflicting views of fundamental value can account for long-term price inflation.
In order to do this we introduce a new type of trader. More details can be found in
(Sallans et al., 2002).

A stock market “bubble” is said to occur when the price of a stock rises signifi-
cantly above its fundamental price. Previous agent-based market models have shown
bubble formation simply as a consequence of the dynamics of the market. That is, a
bubble can form because of random fluctuations, and then be inflated due to trend-
following traders. However, these type of “dynamic” bubbles are relatively short term.
Technical trading can not sustain the price inflation when the “fundamental” traders
begin to sell their shares.

In real markets, we have recently seen bubbles which lasted over several years.
That is, valuation of shares in certain markets was significantly above their “funda-
mental” value, in terms of the profitability or cash flow of the firm, over a prolonged
period. However, these shares were only overvalued according to a profit-based valu-
ation. This leaves open the possibility that traders were acting rationally, but on alter-
native definitions of “fundamental value”. In this section we experiment with traders
who have conflicting definitions of fundamental value, and see to what extent they can
cause and sustain stock price inflation above fundamental value.

5.1 Hypist Traders

Hypists are meant to simulate traders who base their trading decisions on what they
think will be “the next big thing”. Like the other traders, hypists base their buying and
selling decisions on predicted price movements. However, the Hypist bases its buying
decision solely on the position of the firm’s product in product space (see Figure 8).

Like the consumers, each hypist is initialized with a fixed preferred point in prod-
uct space. If a firm moves its product closer to this preferred point, the hypist assumes
that the stock price will increase. Otherwise, the hypist assumes that the stock price
will decrease. The distance is measured as Euclidean distance in product feature space.
If the price is predicted to increase in the future, it tries to buy, and bids pt(1+margin).
Otherwise, it tries to sell with an offer of pt(1 − margin).

One might ask if this is a realistic model of the way some financial traders be-
have. We would argue that the recent “dot-com” phenomenon demonstrates exactly
this kind of effect. For example, Subramani and Walden (2001) have shown evidence
for positive cumulative abnormal returns to shareholders following immediately after
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Figure 8: Hypist decision making. If the product moves closer to the hypist’s preferred
product, it will buy. If it moves away, it will sell.

“e-commerce” announcements by publicly-traded firms during the period October 1,
1998 to December 31, 1998. We would argue that some of these e-commerce investors
were not simply trend-followers, but believed that producing e-commerce products
added to the fundamental underlying value of the company.

5.2 Simulation Results

To investigate the effect of alternative valuations on price inflation and firm behavior,
we ran three sets of simulation. In the first set the production firms ignored their stock
price when making decisions (αsp = 0). In the second, the financial market did influ-
ence reward (αsp = αas = 0.5), but there were no hypist traders in the market. In the
third set of simulations, αsp = αas = 0.5, and there were hypists in the market. Each
set of simulations consisted of twenty repetitions with different random initializations
of consumer and hypist preferences.

Each repetition contained 2 firms, 50 traders and 200 consumers. When hypists
were present, hypist product preferences were Gaussian distributed around a mean of
[0.1 0.9].

The mean profitability when firms ignored the stock market (the “no market in-
fluence” condition) was 2459.8. With no hypists in the marketplace it fell to 1861.7.
With hypists in the marketplace, the mean profitability dropped further to 1461.9. Both
drops are statistically significant (at the 1% level estimated with a Wilcoxon signed
rank test).

This result suggests that the stock-price based reward is distracting the firm from
focusing on improving profitability. However, it does not tell us whether or not the firm
was ignoring profits in order to explicitly boost stock price, or if the stock information
simply added noise to the decision process. We would also like to know if “hypist”
product placement information was integrated into the stock price and used by firms.

We can confirm that product placement information is incorporated into the stock
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price by hypists and used by firms by examining product movement decisions made
during the simulations. We computed the angle between the actual direction of product
movement, and the movement direction that would have been preferred by hypists.
Without hypists the mean angle is 90.8. With hypists it is 87.5. This difference is
significant (at the 1% level, estimated with a Wilcoxon signed rank test).

Figure 9 shows the placement of products in the last 2000 iterations of the sim-
ulation. Large circles indicate clusters of consumer preferences. The small circle at
[0.1 0.9] shows the mean hypist product preference.
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Figure 9: Product placement and movement during the last 2000 iterations of the sim-
ulations. Panels (a) and (b) show product placement relative to customer clusters and
hypist preferences in a market without and with hypists. The three large circles in-
dicate clusters of consumer preferences. The small circle at [0.1 0.9] indicates the
average hypist product preference.

When hypists are present in the market, they do not dominate product movement.
The firms still try to select products that are profitable in the consumer market. How-
ever when hypists are present, many more products are located near their preferred
product. That is, the firms are decoding the hypist preferences from their influence on
the stock price, and attempting to satisfy their definition of “value”.

So far we have seen that the stock market can successfully integrate two different
views of “fundamental price”, and the firms are able to extract this information from
the stock price and act on it. Implicitly this shows that the firm’s performance and
product positioning also influenced its stock price, since stock price is the only feed-
back mechanism that could influence product placement. We can also look explicitly
at the stock price as a function of having or not having hypists in the marketplace.

Figure 10 shows the share price of the two firms, averaged across firm and aver-
aged across the 20 trials. First notice that the average stock price rises in all cases.
This is consistent with the fact that average profitability rises over the course of the
simulation. When there is no market influence, profits are higher, and stock price is
similarly higher. In this case, fundamentalist traders are driving a sustained increase
in the stock price.

When the profits are lower, but there are only “profit” fundamentalists and chartists
in the market, the stock price is depressed. Even though the firms have an interest in
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Figure 10: Average stock price with no market influence (middle line), and with (top
line) and without (bottom line) hypists. In general, the market value of firms rises over
the course of the simulation. However, the rate of growth in firm value is dramatically
greater when hypists are present in the financial market.

boosting their stock price, they can not sustain more than a short-term stock price
increase in the face of the “profit” based fundamentalists. There can be short term
“bubbles” due to market dynamics, but no sustained stock price increase.

When hypists are present in the market the stock price rises much faster than in
either of the other two cases, and shows a sustained increase. This indicates that the
firms are explicitly sacrificing profits to boost their stock price. They can afford to do
this, because the hypist traders sustain a high stock valuation despite a lack of profits.
Because the firms can explicitly control product position, and only implicitly control
profitability, they prefer to cater to the hypist traders rather than the fundamentalists.
There are an equal number of hypists and fundamentalist in the market, but the firms
sacrifice profits in order to adjust their product positioning.

5.3 Discussion

In this section we have experimented with the idea of alternative fundamental valua-
tions as a source of sustained stock price inflation. We have shown that the artificial
stock market can integrate multiple “fundamental price” signals, and that the firms can
extract and use this information. Although the hypists constitute a minority of traders,
they can sustain a high stock price valuation, even in the face of lower profits. More-
over, the firms prefer to cater to view of “fundamental” value that they can directly
control, rather than the one that can only be increased indirectly.

These results suggest an alternative mechanism for stock bubble formation. In-
stead of depending on short term market dynamics, we suggest that alternative views
of “fundamental price” can account for long-term price inflation. These results also
suggest that boundedly rational firms will be very tempted to “game” the market, by
identifying and catering to definitions of fundamental value which they can directly
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control.

6 Managerial Compensation

Designing compensation for top-level managers is an important aspect of firm gov-
ernance. Understanding compensation contracts is therefore of great general interest.
Specifically, we focus on the role of stock options as part of a compensation contract.

Theoretical models of compensation address the problem of how to craft contracts
which maximize firm value. Principal–agency models have achieved some promi-
nence as a model of contracts, including those between managers and owners of a
company (Holmström, 1979). The key feature of principal–agency models is that the
principal is limited in terms of the observability of the agent’s actions, effort, results,
or preferences. The principal therefore delegates decision making to the agent. Alter-
natively, compensation models can focus on how contracts or instruments are valued
by managers as opposed to unrestricted traders (see for example Hall and Murphy
(2002)).

Typically, the manager in a theoretical model of compensation is assumed to be
a fully rational economic actor. It has complete knowledge and understands the con-
sequences of its actions, at least probabilistically. It can therefore assess the riskiness
of alternative actions, and weigh this against possible gains in its compensation. This
assumption results in analytic models for which the contract can be found which op-
timizes the gain by the firm’s owners (Bushman and Indjejikian, 1993; Baiman and
Verrecchia, 1995; Choe, 1998).

One limitation of principal–agency models is there restriction to rational agents.
Empirical work seeks to address this limitation by studying the influence of compen-
sation in actual firms. However, real firms are complicated. It is difficult to control
for all variables in an empirical study. Empirical studies of compensation have led to
conflicting and inconclusive results (Murphy, 1999).

Computational economic models bridge the gap between theoretical and empirical
economics. On one hand, a computational model can be used to test the predictions of
theory under conditions which are too complex to be addressed analytically. On the
other hand, computational models can be used to give insight into complex systems
and suggest new hypotheses to be tested in empirical studies. Computational mod-
els offer an environment which is complex but controlled, where all assumptions are
explicitly encoded in the model.

In this section we study management compensation using the IMM. The man-
agers of the firms in the IMM try to optimize their own compensation. Depending on
their contract, they might do this by increasing profits, or by taking actions which di-
rectly boost the value of their stock-based compensation. Thus, as in principal-agency
models, the problem of moral hazard still exists in the IMM. However, each manager
explicitly implements a boundedly-rational agent which learns from experience, and
itself has limited knowledge and computational power. We supplement the classical
principal-agency framework by considering issue of limited knowledge, learning from
experience, exploration versus exploitation of existing knowledge, and asymmetry be-
tween different sources of information for the decision-making agent.
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Under the IMM, the role of the compensation contract is somewhat different than
under a principal-agency framework. The manager does not start with intimate knowl-
edge of the consumer or financial market. Rather, it must learn what the markets want
through experience. The manager receives feedback in terms of profits and movements
in stock price. These two measures give the manager two different views of firm per-
formance. Because these two estimators are generated by two different populations
of boundedly-rational agents (consumers and stock traders respectively), they do not
necessarily agree.

In the next section, we use the IMM to test some predictions of empirical studies of
compensation and theoretical models of contracts. Then we generate new hypotheses
that can be tested empirically. In the following section section we describe the different
compensation schemes examined, and simulation results.

6.1 Compensation in the Integrated Markets Model

Owners of a company delegate authority to a manager. The goal of the owners is to
encourage the manager to increase the (risk-adjusted) value of their company. The
goal of the manager is to maximize its compensation.

In the IMM, each manager seeks to modify its behavior so as to maximize an
external payment signal. This payment takes the form of a fixed cash salary, a variable
amount based on the firm’s profitability, and a variable amount due to change in the
value of the firm’s stock.

A manager in the IMM is rewarded once in every time period, using a combination
of cash and and stock-based bonuses. Specifically, the manager’s compensation is
based on a profit-based cash bonus, a stock grant, and a stock option.

The profit-based bonus is proportional to the profits of the firm, the stock grant
bonus is proportional to the change in stock price, and the value of the stock option
bonus is the change in value of the stock option held by the manager. The value of
the stock option is computed using the Black–Scholes formula. It is dependent on
the current stock price; the strike price; the risk-free interest rate; the volatility of the
underlying stock; and the time periods until the option vests.

6.2 Risk Aversion

In order to assess the worth and riskiness of an action, managers estimate two quanti-
ties. First, they estimate the expected discounted payment they will receive after taking
an action given the current world state. Second, they estimate the variance of this dis-
counted payment, again using stochastic dynamic programming. Given this estimate
of expected value and variance of value, the manager selects which action to perform
based on its risk-adjusted expected discounted value. The risk penalty associated with
an action is the above-average variance of the payoff associated with that action.

The reader should note that both the value and risk used by the manager are esti-
mates, based on past experience. Unlike many analytic models, we do not assume that
the manager has a priori perfect knowledge of value or risk. In fact, the quality of the
estimates will be influenced by the actions taken by the manager, which in turn are
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influenced by the estimates.

6.3 Simulation Results

In this section we present simulation results from the IMM. First we test some predic-
tions of theoretical compensation models and empirical studies. We then propose new
hypotheses based on simulation experiments.

Comparison to Empirical Studies

There have been a number of empirical studies of compensation, testing whether or
not different compensation contracts improve firm performance. Overall, these studies
have been somewhat inconclusive (Murphy, 1999). In contrast, studies of when and
options are used, and their effect on market volatility have been more conclusive.

Simulations with the IMM have successfully reproduced empirical stylized facts
from the compensation literature. First, it is known that stock-option grants are corre-
lated with an increase in stock market volatility (Rajgopal and Shevlin, 2002). By ma-
nipulating the proportion of profit- and stock-based bonus, we can observe the effect
on the financial market. Figure 11 shows the volatility of the simulated stock market
as the proportion of stock-based bonus is increased. There is a significant trend, indi-
cating that as the proportion of stock-based pay increases, the volatility of the market
also increases.
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Figure 11: Stock price volatility as a function of proportion of profit-based pay
(alphaas). As the proportion of profit-based pay increases, the volatility of the stock
price decreases. The outer lines show linear fits at the 95% confidence level.

Second, it is known that fewer stock options are granted under highly volatile
market conditions (Core and Guay, 1999). We have simulated different volatility con-
ditions by changing the mixture of different trader types in the stock market. We have
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found that the optimal stock-option grant is indeed lower under more volatile mar-
ket conditions. Figure 12 shows the profits obtained by the firms under two different
market conditions. The first curve is for 30% chartists, and the second curve is for
70% chartists. The latter leads to a significant increase in market volatility. While the
overall profits go down in the more volatile market, the peak of the curve shifts to the
left, indicating that under more volatile market conditions, lower stock-based pay is
optimal.

Figure 12: Firm profits under two market conditions. The “Fund” axis shows the pro-
portion of fundamentalist traders. The axis alphaas shows the proportion of compen-
sation coming from profit-based pay. We test two conditions, a low-volatility mar-
ket (70% fundamentalists) and a high-volatility market (30% fundamentalists). In the
more volatile market, the optimal pay package has more profit-based pay and less
stock-based pay.

Risk Aversion and Options

Because they limit down-side risk, stock options become more valuable in volatile
conditions. This is reflected in option pricing models such as Black–Scholes (Black
and Scholes, 1973). Because of this, it has been theorized that executive stock options
should reduce risk aversion. That is, a manager’s risky actions will result in stock price
volatility, increasing the value of the options. Empirical studies suggest that in some
industries, stock options can lead to more risk-taking behavior (Rajgopal and Shevlin,
2002). However, there are other conflicting and inconclusive results. To add to the
confusion, it is not entirely clear how executive options should be valued (Hall and
Murphy, 2002), or if this mechanism is even considered when awarding options. See
Murphy (1999) for a review of executive compensation.

We simulated the use of options with risk-neutral and risk-averse managers. We
also used two different market conditions: one where the firms can quickly modify
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their products, and one where the products can only be modified slowly. For each
market condition we did three types of simulations: One with risk-neutral managers,
one with risk-averse managers, and one with risk-averse managers with stock options.
The results are shown in Figure 13. For the options, the option duration was 250
periods; and the options were granted slightly out of the money at 1.05 times the
current stock price.
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Figure 13: The effect of stock options on risk aversion. Mean and standard error of
per-time-step profits are shown for six conditions: N??, risk neutral; A??, risk averse;
?S?, slow product movement; ?F?, fast product movement; ??N, no stock options; ??O,
stock options. The risk-averse managers cause mean profits to drop, and the variance
of the profits to be reduced. In the slow market case, options boost expected profits
and profit volatility. In the fast market conditions, the options also boost profits, but
not as much as in the slow market case.

In both market conditions, the risk-averse managers have much worse perfor-
mance, and lower variance in their achieved profits. The effect of risk aversion is
reduced by adding stock options to the manager’s compensation. In the case of the
slow-market condition, the average profits achieved by the firm are equivalent to the
risk-neutral case. The performance with stock options in the fast-market condition is
slightly inferior to the performance in the slow-market condition (p = 0.04).

The simulated stock options have the effect predicted by principal–agent theory.
The behavior of the risk-averse manager leads to lower but more stable profits on
average. The use of stock options boosts both expected profits and profit volatility.

Our purpose for doing these simulations is twofold. First, we would like to “sanity-
check” our model. According to theory, awarding stock options should increase risk-
taking. We would like to confirm that our managers act in the expected way. Second,
theoretical models which predict this behavior make strict assumptions about the ra-
tionality of managers. Empirical studies are inconclusive. To our knowledge, this is
the first attempt to validate the predictions of principle-agency theory in a boundedly-
rational, learning system. The IMM tests how robust this prediction is to limitations on
rationality imposed by learning, limited memory and imperfect estimation of reward
and risk. The simulation results show that this behavior does indeed occur in systems
with these limitations. This suggests that the risk-enhancing effect of options is quite
robust.
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It is interesting to note that, although the effect of stock options appears to be ro-
bust, the mechanism by which this effect occurs is quite different under our model
than under theoretical models. In theory, managers know the probable outcomes of
their actions. Given options, they are willing to gamble on risky outcomes, because
the options insulate them from negative outcomes. In our simulation model, the man-
agers must learn the outcomes of their actions. Given options, they are willing to try
risky experiments to acquire new knowledge. This distinction between gambling with
known risks, and experimenting to acquire new knowledge, suggests the simulation
experiments of the next section.

Market Competition and Options

In this section we model a scenario which is difficult to address with an analytic model:
How stock options influence the performance of a new competitor entering a market
dominated by an incumbent firm. The incumbent has the benefit of prior experience in
the market. This could also be seen as a disadvantage: The competitor does not have
to overcome old habits. In this scenario, learning market preferences, and reacquiring
knowledge are crucial to firm performance.

Hypothesis 1: The incumbent will have an inherent advantage because of its prior
knowledge of the market.

Hypothesis 2: Options will help the incumbent, because they will promote experi-
mentation.

Hypothesis 3: Options will help the entrant for the same reason.

We modeled three scenarios: The incumbent and entrant have no stock options,
the entrant receives stock options with the incumbent having none, and both the en-
trant and the incumbent having stock options (see Figure 14). In the last scenario, the
incumbent receives its options when the entrant arrives. All managers are risk averse,
and all simulations run for 5000 iterations. The entrant enters the market at iteration
2000.

Given no options, the incumbent on average does better than the new entrant. This
supports hypothesis 1. The incumbent firm does better on average than the new entrant
(significant at the 1% level according to a t test). The results also support hypothesis
2. When the entrant is granted options, it does as well as the incumbent. The results of
hypothesis 3 are mixed. When options are granted to the incumbent at the beginning
of the simulation, it does no better than when it had options (the difference is not
significant at the 5% level, according to a t test). However, when options are granted
only after the new entrant appears, it does better on average than without options
(significant at the 5% level, according to a t test).

This suggests that encouraging risk-taking is not enough, but rather the incumbent
manager needs to be encouraged to experiment specifically after the new threat ap-
pears. This is followed by a period of new experimentation and learning, which results
in the boosted profits. Figure 15 shows average profits versus time for the incumbent
firm for both stock options conditions. Initially, there is no difference in performance
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Figure 14: Results of a new entrant in the market. The bar graphs show the average per-
time-step profits and standard errors for four scenarios: no stock options (NO OPT); an
entrant firm with options (ENT OPT); both with options (BOTH OPT); and both with
options, where the incumbent firm has options granted at the time the new entrant
arrives (time t = 2000) (BOTH OPT 2000). The incumbent is black, and the new
entrant is white. The new entrant was always granted stock options from time t = 1.
The averages were taken over the time from the arrival of the new entrant (time t =
2000) to the end of the simulation (time t = 5000). Options granted to the entrant
help it to compete with the incumbent. Options helped the incumbent when they were
granted at the time that the new entrant arrived.

between the two. It is only after a period of experimentation and learning that the
performance difference is seen.

We can therefore make a new prediction to be tested using empirical data: While
options will help a new entrant be competitive in a new market, they will be most
effective in helping the incumbent when they are granted after the new entrant appears.
This suggests that re-examination of compensation is particularly important when a
firm is facing new competition. Encouraging risk-taking at this time can be particularly
helpful.

6.4 Discussion

In this section we have presented a computational economics model of managerial
compensation. We have simulated risk-averse managers with and without stock-option
compensation, and shown that the computational model confirms the predictions of
principal agency theory. In particular, stock options encourage risk taking in otherwise
risk-averse managers, and can boost overall profits.

This work shows that these effects are quite robust, occurring in our model in the
presence of learning and incomplete knowledge. However, we also show that alter-
native mechanisms could explain the effect of stock options. Under our simulation
model, it is not gambling on known risks which causes a boost to expected profit.
Rather, profits are increased because of a willingness to experiment with new strate-
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Figure 15: Effect of learning on the granting of stock options. The dotted line shows
the average profits of the incumbent when options are granted from the start of the
simulation. The solid line shows the average profits of the incumbent when options are
granted only starting at time t = 2000, when the new entrant appears. After a period of
learning and exploration in the new environment, the second scenario produces greater
profits.

gies and learn whether or not they are effective. That is, under our model, the fact that
the managers begin with incomplete knowledge is crucial to understanding the effect
of options.

Prompted by this alternative mechanism, we simulated the scenario of a new en-
trant appearing to challenge an incumbent firm. We show that stock options can boost
the competitiveness of the entrant, and also help the incumbent to fight off competi-
tion. In the latter case, the options are most effective when they are introduced as a
response to the new competition. This is because the options encourage experimenta-
tion and learning in the new competitive environment. Based on these results, we have
suggested new empirical studies to test the influence of stock options on knowledge
acquisition.

7 Conclusions

In this chapter we have presented an integrated markets model. The model incorpo-
rates consumers, stock traders and firms. We have shown that the integrated model can
reproduce a number of empirical stylized facts from both the consumer and financial
markets.

Studies with the integrated model have shown that the two markets can have a large
impact on one another. Product development can be influenced by the preferences of
consumers, the behavior of stock traders, and the compensation given to managers.
The properties of the stock market are influenced by the responsiveness of the firms, as
well as the behavior of stock traders. The model has suggested alternative mechanisms
for the low autocorrelations of stock return series; for prolonged periods of stock price
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inflation; and for the effectiveness of stock option compensation.
We believe that our current work demonstrates the merits of simulating models of

multiple markets. Feedback effects are of paramount importance in many economic
situations. Gathering empirical data on these effects is a difficult challenge, because of
the need to collect simultaneous data from multiple sources. Through computational
simulations, we can begin to study cross-market phenomena. Using the integrated
markets model as a tool, we can explore the mechanisms underlying known cross-
market phenomena, and suggest new hypotheses to be tested empirically.
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Product Diversification in an Artificial Strategy
Environment

Roland Bauer, Albert Schwingenschlögl, and Rudolf Vetschera

1 Introduction

The relationship between research on corporate strategy and economic theory has al-
ways been a delicate one (Besanko et al., 1996; Khanna et al., 2000). On one hand,
in neoclassical economic theory, most problems and phenomena that characterize cor-
porate strategy do not exist. At the focus of corporate strategy, there is the quest for
sustainable, above average profit. This quest is a direct contradiction to the neoclassi-
cal equilibrium, in which only the most efficient firms survive, and even those firms
have zero profit.

The fact that neoclassical economics renders strategy more or less obsolete has
directed researchers on corporate strategy to focus their attention, and thus base their
strategy recommendations, on the differences between the assumptions of economic
theory and economic reality.

Apart from the bounded rationality of actors (Schoemaker, 1990; Amit and Schoe-
maker, 1993; Greve, 1998), one obvious source of such differences is the lack of per-
fect markets. Consequently, much of the literature on strategy can be interpreted as
a search for market imperfections. This is clearly evident in the literature inspired
by Porter’s five competitive forces (Porter, 1998a), which describes imperfections of
product markets and leads to the conclusion that a firm (or, more in line with Porter’s
arguments, an industry) is able to achieve sustained profits only if its product markets
are imperfect. Similarly, the resource based view of strategy (Barney, 1986; Peteraf,
1993; Wernerfelt, 1984) can be seen as a quest for imperfections in factor markets.

However, in their quest to exploit the differences between the assumptions of eco-
nomic theory and existing markets, strategy research with a few notable exceptions
(e.g., Karnani, 1984; Khanna et al., 2000; Vining and Meredith, 2000; Bruggeman
and Nuallain, 2000) has abandoned much of the analytical rigor that characterizes
economic models. This development is quite natural, since most of the market im-
perfections that play a dominant role in strategy result from the dynamics and the
complexity of the systems involved, which defy most of the analytical tools available
today.

While complex, dynamic systems cannot easily be analyzed with analytical mod-
els, they still might be amenable to quantitative studies using simulation models, espe-
cially agent-based models. Such models are increasingly being used to analyze com-
plex, dynamic systems in economics (Holland and Miller, 1991; Judd, 1997; Tesfat-
sion, 2000) or organization theory (Carley, 1995), which share many common traits
with strategy. Thus simulation models based on agent technology might also be useful
tools for analyzing corporate strategy.

Several benefits can be expected from this approach. First of all, while most of
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the strategy literature commonly refers to economic concepts like productivity, de-
mand, or preferences, most of these concepts and even more their relationships are
only ambiguously defined. Incorporating them into simulation models requires a pre-
cise definition of the concepts and their interactions. An explicit, formal definition can
be subject to rigorous analysis and criticism by other researchers, leading to a constant
refinement of models.

The ambiguity of concepts and verbal methods of analysis leads traditional strat-
egy research to consider only relationships between a limited number of variables,
thus ignoring the very complexity that invalidates many of the assumptions of eco-
nomic theory. Consequently, traditional strategy literature tends to overestimate the
generalizability of results. By representing complex relationships in simulation mod-
els, we expect to be able to gain insight into the particular settings in which our results
are applicable, and those settings where they are not.

By providing a precise, formal definition of concepts computer simulation mod-
els might also form an excellent docking point for empirical research. While there
has always been a tendency in the strategy literature to perform empirical studies on
hypotheses derived from theory, this empirical research often has led to inconclusive
results. The precise definition of concepts embodied in a formal model could help to
identify subtile differences in the operationalization of concepts, which are one cause
of these mixed results.

In the present paper, we use an agent-based simulation model to study one central
question of strategy research, the impact of diversification on corporate performance
under different conditions of the competitive environment. The research goals of this
paper are therefore twofold:

• From a methodological point of view, the aim of this paper is to study the ap-
plicability of agent-based modeling to strategy research. We want to study if
agent-based models can replicate common results of strategy research, which
were obtained using other methods, and possibly improve upon them.

• This potential improvement of existing results can lead to substantive results.
Specifically, we expect that agent-based models, which require a precise and
formal specification of the concepts involved, will allow us to delineate more
precisely the conditions under which results are actually applicable.

The remaining part of this paper is structured as follows: in section two, we in-
troduce the concept of diversification and review empirical evidence which leads us
to the research hypotheses studied in this paper. Section three introduces the Artificial
Strategy Environment used for the simulation experiments. Section four presents the
experimental setup and the results. Section five concludes the paper by summarizing
its main results.

2 Diversification Strategies

The composition of the portfolio of business units is one of the most important strate-
gic questions at the corporate level. There has been a long debate in the strategy lit-
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erature on the benefits of diversification into a broad range of different businesses
vs. following a more focused, core-competence oriented strategy. While some au-
thors (Keats and Hitt, 1988; Wiggins and Ruefli, 2002) found only weak empirical
evidence for benefits of diversification, others argued that diversification is indeed
beneficial provided that a firm diversifies into products that react differently to busi-
ness cycles (Amit and Livnat, 1989), or products that use similar resources (Markides
and Williamson, 1996), and when possible synergies are adequately managed (Hill,
1995). Others argued that rather than following a pure diversification or core com-
petence strategy, firms should aim for a modest amount of diversification to find an
optimum balance between reducing competition by differentiation and maintaining
legitimacy by similarity to other firms (Deephouse, 1999).

The dichotomy between diversification and focused strategies was extended by
Miles and Snow (Miles et al., 1978), who added the frequency of new product intro-
ductions as an additional parameter and thus distinguished four basic strategies:

• The prospector strategy has a strong focus on diversification and innovation.
Firms following this strategy are characterized by high rates of innovation and
introduce highly diversified products.

• The analyzer strategy is also characterized by high innovation rates, but unlike
in the prospector strategy, new products are more similar and build on common
core competencies.

• The defender strategy combines a core competence focus with low innovation
rates. Firms using this strategy focus on continuous development and refinement
of existing core products.

• The fourth strategy combines low innovation rates with a high degree of di-
versification between products. It was labelled reactor by Miles and Snow, who
attributed the wide diversification to a lack of clear focus rather than a conscious
strategic choice.

Miles and Snow further argued that these strategies would fit to different environ-
ments. A prospector strategy should be most appropriate in a dynamic, growing en-
vironment, while a defender strategy would be more suitable in a stable environment,
and the analyzer strategy takes a middle position.

By considering the strategy type and its fit to the environment as the main factors
influencing a firm’s performance, we make two important assumptions:

Firstly, we consider “diversification” as a one-dimensional concept, which can be
measured using the dispersion of a firm‘s products in feature space. In the empirical
literature, a distinction is often made between the degree (extent) and the type (re-
lated vs. unrelated) of diversification. However, there is strong empirical evidence that
these concepts are highly related (Palich et al., 2000; Hoskisson et al., 1993; Keats
and Hitt, 1988) and thus we consider product similarity as an adequate indicator of
diversification.

Secondly, by focusing on diversification and thus on current strategy, we deliber-
ately ignore some historical facts, which might also influence a firm’s performance.
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One central argument of the resource based view of strategy (Wernerfelt, 1984; Amit
and Livnat, 1989) is that the initial endowment of a firm with resources and the way
these resources are managed over time have a considerable impact on performance.
In order to isolate the impact of diversification, we consider only firms with identical
initial resource endowments. However, firms in our model can follow different paths
over time according to their strategy and operational decisions.

There is already considerable empirical evidence on the relationship between strat-
egy, environment and performance, on which we can base our research hypotheses. On
the one hand there are some studies which directly address the relationship between
diversification and performance (Chatterjee, 1991; Bettis, 1981; Varadarajan, 1986;
Amit and Livnat, 1989; Grant et al., 1988). On the other hand, there is empirical re-
search on configurational theories that often refers to the typology of Miles and Snow
(Miles et al., 1978) and therefore focuses on the match between firm strategy and its
external environment (Lengnick-Hall and Wolff, 1999; Doty and Glick, 1993; Burnes,
1997; Hambrick, 1983; Segev, 1989).

Studies in the former area often produce inconclusive results. Researchers have
identified three possible relationships between diversification and performance:

• In the linear model, an increase in diversification is assumed to (uncondition-
ally) increase performance.

• The u-shaped model assumes an optimal level of diversification beyond which
further diversification will reduce performance. This optimum level of diversi-
fication is often associated with the maximum of related diversification.

• In the bounded model, diversification ceases to have a positive impact on per-
formance after a certain extent, but does not have a negative impact.

Similar differences exist with empirical research based on configurational theories.
Doty and Glick (1993) criticize the lack of systematic empirical research on the theory
of Mintzberg (1979) of five ideal types of organization which is the most prominent
configurational theory. In contrast the typology of Miles and Snow seems to be moder-
ately supported by empirical research (Doty and Glick, 1993); for a review see Zahra
and Pearce (1990). Additionally, Segev (1989) suggests a wide congruence of Miles
and Snow‘s strategy types with Porters Cost Leadership and Differentiation strategy.

Therefore, we base our analysis mainly on the typology of Miles and Snow, which
we modify to more precisely operationalize the strategy parameters. Since Miles and
Snow do not assign the reactor strategy to any type of environment and because empir-
ical findings show that this strategy is of little relevance in practice (Slater and Olson,
2001), we only consider three distinct types of strategies:
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Table 1: Strategy types

Frequency of new Range of new products
product introduction Wide Narrow
Often Diversifier Variator
Rarely — Core Competence

• diversifier,

• variator, and

• core competence firm.

Diversifying firms, which are similar to the prospector strategy of Miles and Snow,
have a very high probability for developing new products and they try to launch very
different products to ensure the coverage of the complete feature space as far as pos-
sible. Variators correspond to the analyzer strategy of Miles and Snow. They have the
same rate of innovation, but their products are less dispersed in feature space. Core
competence focused firms are exactly the opposite of diversifiers. They focus only on
a small sector of the feature space and hardly ever launch a new product.

Core competence firms are the only strategy in this framework with a low innova-
tion rate. The fourth possible combination, a low innovation rate combined with a high
degree of diversification, can hardly be considered as a relevant strategy and therefore
is not analyzed. Table 1 summarizes the key characteristics of the three strategy types.

Comparing the core competence strategy to the high innovation strategies, its
likely advantages are lower costs for production and product development. On the
other hand, a core competence focus causes firms to compete in few closely related
markets and therefore they have a higher operating risk (Amit and Livnat, 1989) as
markets may break away instantly due to disruption or a change in consumer prefer-
ences (D’Aveni, 1999). Thus, like in the typology of Miles and Snow, core competence
firms should perform better in a stable environment, while the other two types should
fit better into a more dynamic environment.To test the “fit” between strategies and
environments, a performance measure is needed. In this study, we use the average op-
erating cash flow of firms. Based on the predictions for Miles and Snow’s typology,
we formulate:

Hypothesis 1: In a more dynamic environment, firms following a diversification
strategy will have a higher aggregated cash flow than firms following a core compe-
tence strategy. In a more static environment, this relationship will be reversed. Firms
that follow a variator strategy will always perform in between the two other types.

The main advantage of a core competence strategy in a stable environment is the
possibility to obtain lower costs, which can be passed on to the consumers. We there-
fore expect:

Hypothesis 2: Firms following a core competence strategy will have lowest unit
costs and charge lowest prices followed by firms pursuing a variator and then a diver-
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sification strategy.
It should be noted that hypothesis 2 is formulated without referring to different

types of environment. However, lower costs will be of advantage only in stable en-
vironments, while in more rapidly changing environments, the greater flexibility of
diversifiers should pay off. Their broader product portfolio should also enable them to
stabilize profits even in turbulent environments. Therefore, we formulate:

Hypothesis 3: In a more dynamic environment, firms following a diversifier strat-
egy will have a lower variation of their cash flows over time than firms following a core
competence strategy, firms following a variator strategy will take a middle position.

3 The Artificial Strategy Environment

The artificial strategy environment used for our simulations provides a tool for ana-
lyzing the impact of different strategies in an environment characterized by imperfect
markets and bounded rationality of actors. Each firm is represented by one agent,
which makes the operational and strategic decisions for that firm. The agents are em-
bedded in an environment, which represents both the internal technological and cost
related as well as the external, market-related conditions under which the agent has to
operate.

3.1 Internal Factors

Products and costs

Following earlier research (Natter et al., 2001; Krishnan and Ulrich, 2001), we charac-
terize products by n-dimensional feature vectors. The similarity of products can thus
be measured by their distance in feature space. This distance can be considered as a
measure of product diversification similar to the spread in industry classification codes
that is often used in the empirical literature (Amit and Livnat, 1989).

We denote a firm’s product portfolio at time t by St. Each product k ∈ St is
characterized by its feature vector fk = (fk,1, fk,2, . . . , fk,N ), where N is a constant.
The number of units of product k produced in period t is xk,t.

It is possible to represent product innovations in this framework as long as these
innovations concern features already contained in the vector. This does not restrict the
generality of the model, since at the beginning of the simulation some attributes can
be zero for all products.

One important aspect, which the cost function needs to capture is the effect of
synergies when related products are manufactured using the same core competencies.
To model this effect, we introduce the firm’s current “focus of knowledge” Et. Et is a
point in the feature space, its location is determined over time as

Et = λEt−1 + (1 − λ)Ft (1)

where

Ft =

(∑
k∈St

xk,s · fk,1∑
k∈St

xk,s
, . . . ,

∑
k∈St

xk,s · fk,N∑
k∈St

xk,s

)
(2)
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is the weighted average of features of all products manufactured in the current period.
Parameter λ represents the relative importance of past vs. current experience.

Each unit of product k enters the firm’s cost function with a weight of

ck,t = 1 + γk,t ·
√∑

n

(fk,n − En,t)2 (3)

where γk,t is a scaling parameter. Thus a product located exactly at the firm’s “focus
of knowledge” is a standard product, which is used as a reference value for manufac-
turing costs. The more a product differs from this (hypothetical) standard product, the
higher are its unit costs.

To allow for (dis-)economies of scale, we specify the firm’s total costs in period t
similar to Karnani (1984) as :

Kt = βt

(∑
k∈St

xk,t · ck,t

)α

(4)

where βt is a parameter denoting the overall efficiency of the firm. It should be noted
that for α �= 1, cost function (4) makes it impossible to allocate costs correctly to
products. Thus any production decision which the agent makes will necessarily be
based on approximate unit costs.

In addition to these variable costs, we also consider fixed costs at two levels: fixed
costs of individual products Kpk are incurred whenever product k is manufactured at
all, and corporate fixed costs Kc are always incurred. The value of Kpk is determined
as a random number when product k is introduced and remains constant over time. Kc
is generated at the beginning of the simulation and is also constant.

Learning and investment effects

Over time, the cost position of a firm will change due to learning and productivity
enhancing investments. In our model, this corresponds to a change in parameter βt,
which is varied over time according to the following equation:

βt = β0 ·
(∑

τ<t

∑
k∈Sτ

xk,τ

1 +
√∑

n(fk,n − En,τ )2

)β1

· 1

1 + ln
(
1 +

∑
τ<t Iτ

) (5)

The first term in equation (5) represents learning effects and the second the effects
from productivity enhancing investments. Learning is modeled as a standard learning
curve (Belkaoui, 1986) with a learning rate of r = 2β1 where β1 < 0. By weighting
the amount manufactured of each product by its distance to the focus of knowledge, we
take into account that products which are dissimilar to other products also contribute
less to organizational learning.

The second factor represents the effects of productivity enhancing investments Iτ

in periods τ < t, for which we assume decreasing returns to scale.
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Short run production and marketing decisions

In each time period, the agent has to make short run decisions on the quantity and
price of each product. Products can not be stored between periods.

In its planning process, the agent takes the following information into account:

• the plan of the previous period,

• a demand forecast for the next period,

• cost information,

• the total production capacity.

The plans of the previous period are stored in the agent’s memory. The actual
amount sold, on which the forecast is based, is determined by the market model. We do
not assume that the agent has perfect information about the cost function (4), but uses
a standard cost accounting system, which allocates the observable total costs to the
products. The production capacity at the beginning of the simulation is exogenously
given. During the simulation, the agent can increase this capacity by investments.

The production and sales plans of an agent are developed in two stages. At the first
stage, the agent considers each product individually and determines a target volume
and a target price for each product. Both target volume and target price are dynami-
cally adjusted using data of the previous period, forecasts for the demand of the current
period and simple heuristics. At the second stage, all products are considered simulta-
neously to take into account capacity restrictions. Production capacity is allocated to
products based on their relative contribution margins and their target volumes.

3.2 External Factors

Product lifecycles

The external environment consists of different groups of consumers (markets). Firms
do not perform a segmentation of consumers, they manufacture products with specific
features and offer them to all consumers in the same way. Each product can be sold on
different markets and it is possible that several products of one firm compete against
each other in the same market. Products are commodities which every customer (who
is part of the relevant market) purchases exactly once in every period (Adner and
Levinthal, 2001).

Markets are modeled at the aggregate level, not at the level of individual con-
sumers. Each market is characterized by a point in feature space, which represents the
ideal product for a group of consumers. These ideal points are not known to firms and
move in feature space. Both the probability and maximum distance of a movement
are exogenously given parameters of the simulation. By changing these parameters,
the experimenter can deliberately expose firms to different environmental scenarios.
During the simulation, new markets are created, while existing markets may decline
and eventually vanish.
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A market follows a product lifecycle as it is commonly assumed in the corporate
strategy literature (Porter, 1998b; Onkvisit and Shaw, 1989). We denote the maximum
size of market m by gm and the relative size at time t with respect to its maximum
size by zt.

Product lifecycles are usually defined in terms of four phases: an introduction
phase characterized by slow growth, a growth phase in which sales rapidly increase, a
maturity phase in which sales stabilize at a high level and a phase of decline, in which
the market deteriorates.

The first three phases thus form an s-shaped curve. These phases are modeled by
a differential equation of the relative size of the market as:

z′t = δ0 · zt + δ1 · zt · (1 − zt) (6)

where δ0 represents the adoption rate of innovators and δ1 the adoption rate among
imitating users of the product (Bass, 1969).

While the parameters δ0 and δ1 have a convenient interpretation in terms of the
diffusion process, they cannot be related directly to the duration of the product lifecy-
cle. Solving equation (6) under the starting condition z0 = 0, we obtain the time path
for zt as

zt =
δ0

(
e(δ0+δ1)t − 1

)
δ0e(δ0+δ1)t − δ1

(7)

Using equation (7), the point in time at which the market reaches a certain fraction
q of its ultimate size gm can be determined and this relationship is used to calibrate
the product lifecycle in the simulation.

For the last phase of the product lifecycle, a progressive decline in a product’s
market size is generated by the differential equation

z′t = −δ2(1 − zt) (8)

Market shares

The market share submodel determines how many units of its products each firm sells
on each market. The total demand observed by a firm is the aggregated demand for a
product on all markets.

Corporate strategy is a meaningful concept only if there are market imperfections
and markets are not in equilibrium. We therefore assume that it is possible to sell
similar products at different prices in one market, although the number of items sold
will be influenced by their price. The quantity of each product is also influenced by
the fit of the product’s features to the market’s ideal point.

Consumers follow a satisficing strategy. They perform only a limited, random
search among suppliers and make their purchase at the first supplier who meets their
aspirations with respect to price and product features.

The aggregate demand function of market m is specified as:

D(p) = st · (ln(p) − ln(p)) (9)
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where p is a limit price and st = g · zt represents the current size of the market.
The price asked by firm i is denoted by pi. Without loss of generality, we assume

that firms are numbered in ascending order of prices, i.e. p1 < p2 < . . . < pI . There
are

vi = D(pi) − D(pi+1) (10)

customers who have a reservation price between pi and pi+1. These customers would
buy the product from any of the firms 1, . . . , i. Assuming that these customers are
randomly split among those firms, each firm can sell its product to

Ni =
D(pi) − D(pi+1)

i
(11)

customers in this segment. Thus firm i can sell at most

yi =
∑
j≥i

D(pj) − D(pj+1)

j
(12)

units. The actual number of product sold by firm i is then given by min(xi, yi), since
a firm cannot sell more products than it has produced.

To take into account different product features, one could consider a mismatch
between a product’s features and the market’s ideal point as an opportunity cost to
customers (Prietula and Watson, 2000). We use a different approach, which is more
consistent with the demand structure defined above. Denote the Euclidean distance of
the feature vector of product k to the ideal point of the market by dk. We then define
a coefficient gk for product k as

gk = max

(
1 − dk

dmax
; 0

)
(13)

where dmax is a model parameter which represents the maximum distance a customer
will accept. Features at this distance correspond to a “functionality threshold” (Adner
and Levinthal, 2001) for the product. Customers in each segment are split in propor-
tion to gk. Thus the number of potential buyers of product k in segment i is given by

Ni · gk∑
κ≤i gκ

(14)

Substitution between markets

Whenever a new market is created, it is randomly assigned to one of two types:

• Independent markets, which consist entirely of new customers and do not di-
rectly affect the size or structure of existing markets.

• Disruptive markets, which reduce the customer base of existing markets.
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A disruptive market will divert a fraction of an existing market’s potential size gm

towards itself. In that case, an existing market is randomly selected and a randomly
determined fraction of that market’s total size is transferred to the new market. It
should be noted that this diversion takes place at the level of potential, not actual
customers. Thus the actual loss of sales will depend on the stage of the affected market
as described by variable zt. By increasing the probability of disruptive markets, the
experimenter can create a more turbulent environment for the firms.

3.3 Cash Flow and Investment

From a firm’s sales revenues and costs, the cash flow can be determined. Free cash
flows are used by the firm to implement its strategy. Specifically, they can be used to

• introduce new products,

• extend production capacity, or

• improve the efficiency of production.

The frequency of new product introductions is determined by the strategy of an
agent.The following algorithms are used in the model by the three strategy types to
position products.

For the initial product portfolio, core competence focused firms and variators
launch their products between the two markets that have the smallest distance in fea-
ture space. So they have a chance to compete in at least two markets with their narrow
product portfolio. Diversifiers determine the extreme consumer preferences that exist
in the markets and spread their products evenly between these coordinates.

In positioning new products during the simulation, variators take the past product
performance into account. Features of new products are positioned in the direction of
the two most successful current products. This way they adapt their product portfolios
to consumer preferences without increasing dispersion.

Core competence focused firms use the same algorithm for positioning a new prod-
uct, but have a much lower innovation rate. Diversifiers deliberately try to increase dis-
persion and calculate the direction that allows them to move as far as possible away
from their current knowledge focus.

When firms do not develop new products, they can use their free cash flows to
invest into additional capacity or productivity improvements. For these investment de-
cisions, firms calculate the impact of their investment alternatives on the total cash
flow for the next period and select the investment which will lead to the highest rev-
enues.

4 Simulation Experiments and Results

To test the hypotheses formulated above, the four environmental settings shown in
Table 2 were analyzed. In each experiment, 6 firms compete against each other, where
two firms each follow the diversifier, variator and core competence strategies. The
firms retain their strategies throughout the experiments.



206

Table 2: Types of experiments

Nr. Market Life Cycles Shift in Consumer Preferences Market Size

1 long slow small
2 long slow large
3 short fast small
4 short fast large

For each setting, 100 experiments of 250 time periods were run. To take into ac-
count start-up effects of the model, the first 20 periods of each run were discarded
from the following analyses.

The simulation results indicate that the different strategies obtain the expected
distribution of products in feature space. Figure 1 shows the distribution of product
features obtained for the diversifier and core competence strategies at the end of one
representative experiment. Figure 2 shows that diversifiers shift their knowledge focus
much faster and thus can react better to changing customer requirements than core
competence firms.
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Figure 1: Product features of different firm types

Hypotheses 1 referred to the performance of the different strategy types. Figure
3 shows box plots of the cumulated cash flows of the different strategy types in the
four environments in the 100 experiments. The figure clearly indicates that there are
performance differences between firms, and the ranking of strategy types is dependent
on the type of environment.

In the more stable environments, core competence firms perform better, while in
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Figure 2: Movement of knowledge focus over time

the other two environments diversifiers are superior. Our results also indicate that this
effect is moderated by market size. The performance advantage of core competence
firms in stable environments is more accentuated when the total market size is small.
On the other hand, market size has less influence on the advantages of diversifiers in
dynamic environments.

To test the statistical significance of these results, a nonparametric Wilcoxon
signed rank test was used since the observed average cash flows do not fulfill normal-
ity assumptions. The results shown in Table 3 confirm that the observed differences
are statistically significant.

As expected, performance of the variator strategy is in between that of the di-
versifier and the core competence strategies, except for the stable environments in
experiments 1 and 2.

If one compares the competitive situation in this environment setting with the other
experiments, this outcome is not very surprising. In the dynamic environments of ex-
periments 3 and 4, the variator clearly outperforms the core competence focused firm
because of its ability to adapt the product portfolio to changing consumer preferences.
In experiments 1 and 2, these advantages do not exist due to stable market condi-
tions. Moreover, the variator launches its initial products the same way as the core
competence focused firm. This causes the variator to compete against the core compe-
tence focused firm in terms of prices and increases the disadvantage of its weak cost
position. In experiment 2, capacity restrictions prevent core competence firms from
capturing the entire market, which leaves more opportunities for variators.

Hypothesis 2 predicted that core competence firms would achieve lower costs,
leading to lower prices for their products. Figures 4 and 5 clearly confirm this hy-
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Figure 3: Average Cash Flow of different strategy types in different environments (100
runs, average over periods 21–250)
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Table 3: Wilcoxon tests for cash flow differences

Exp Div > Var Div > CC Var > CC Median

V + = 3010 V + = 743 V + = 159 mdiv = 6.626
1 V − = 2040 V − = 4307 V − = 4891 mvar = 1.821

p = 0.048 p = 1 p = 1 mcc = 50.829
V + = 2407 V + = 1529 V + = 1102 mdiv = 359.120

2 V − = 2643 V − = 3521 V − = 3948 mvar = 474.856
p = 0.658 p = 0.9997 p = 1 mcc = 632.308
V + = 4327 V + = 4873 V + = 3505 mdiv = 209.4594

3 V − = 723 V − = 177 V − = 1445 mvar = 90.16545
p < 0.001 p < 0.001 p < 0.001 mcc = 64.3703
V + = 4275 V + = 4612 V + = 3634 mdiv = 378.2

4 V − = 775 V − = 438 V − = 1416 mvar = 252.773
p =< 0.001 p < 0.001 p < 0.001 mcc = 159.7932

pothesis. Core competence focused firms have the lowest unit costs and charge lowest
prices, followed by variators and diversifiers.

This cost leadership strategy of core competence firms seems to be less successful
in dynamic environments. But a sensitivity analysis performed on our parameter set-
tings indicates that this is not always the case. The relative performance of the differ-
ent strategy types in a dynamic environment is strongly influenced by the reservation
prices of consumers.

Figure 6 illustrates the effects of low reservation prices on environment 3, i.e. a
small market with rapid innovation cycles and fast movement of consumer prefer-
ences. In the standard parameter setting for environment 3, the reservation prices are
uniformly distributed between 3 and 100 whereas in the additional experiment they
vary only between 3 and 15.

Increasing the price sensitivity of consumers (“Price-Competition” in Figure 6)
leads to a reversal in the order of firm performance. This effect can be explained by
the higher costs of variators and diversifiers. In this setting only core competence firms
manage to fulfill the demand of consumers for low-cost products.

The relationship between reservation price and performance is illustrated in Figure
7. For low reservation prices, core competence firms are able to adjust very well to the
environment and increase their cash flows rapidly with increasing reservation prices.
But after a certain threshold is reached and consumers become less concerned with
prices, their performance ceases to improve. On the other hand, diversifiers and varia-
tors exhibit a more regular relationship between reservation prices and performance.

In accordance with the standard argument of strategy literature, hypothesis 3 pre-
dicted that diversifiers would have more stable cash flows than less diversified firms.

However, Figure 8 indicates exactly the opposite situation: diversifiers exhibit the
highest variance of cash flows, followed by variators, and core competence firms have
the most stable cash flows.

But a more detailed analysis of results reveals that it is misleading to consider vari-
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ations in cash flow as a risk that should be avoided. Figure 9 shows the development of
cash flows over time for the three strategy types in a representative run. While the core
competence firms indeed exhibit the lowest variation in cash flows, their cash flows
are also low compared to diversifiers. Core competence firms in this run tend to focus
on a small and stable niche market, while diversifiers are able to quickly exploit any
new opportunities emerging in the dynamic environment. This leads to more frequent
changes in their cash flows, but often these changes are increases, not decreases. Thus,
a high variance in this case is an indicator of opportunities, not risks.

5 Conclusions and Further Research

In this paper, we have used an agent-based computational model to study a classical
question of strategy research, the impact of diversification strategies on firm perfor-
mance. Starting from the typology of Miles and Snow, we defined three prototypical
diversification strategies and studied their performance in different environments.

The results from this exercise on one hand show the viability of agent-based mod-
els as an instrument of strategy research. Our simulations to a significant extent con-
firmed existing results of the strategy literature. This correspondence of results can be
seen as a validation of our model.

But the results go beyond those of traditional strategic analysis and thus indicate
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the potential of agent-based models to obtain new results in this field. We have identi-
fied market size as a moderating variable, which mitigates the performance advantage
of core competence strategies in stable environments. Perhaps even more interesting
is the result that the commonly assumed performance advantage of highly diversified
firms in dynamic environments might cease to exist if the market is characterized by
strong price competition. This effect could explain the current wave of divestitures
one can observe in the economy.

The main purpose of this simulation exercise was to serve as a feasiblity study for
the use of agent-based models in strategy research. Thus, more and richer applications
of this methodology can be expected in the future. The present study has identified
several promising areas.

It has indicated that results taken for granted in the existing strategy literature
are in fact dependent on specific parameter settings and might be weakened or even
eradicated in different settings. Thus one important research task is to more precisely
delineate parameter ranges for which given results hold. This will require a systematic
analysis of parameter space as well as the inclusion of additional dimensions (like
the number of competing firms) in the model. These extensions can lead to more
substantial contributions of agent-based modeling to research on corporate strategy.
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Parameter Estimation and Forecasting under
Asymmetric Loss

Thomas Steinberger and Lucas Zinner

1 Introduction

In this paper we assume that the process generating observed data is approximately
described by an element of some parametric class of models. We are interested in fore-
casting and hence seek statistics, such that the distribution is near the true parameter,
assuming the model is correct. But the main goal is not to find the best estimator for
the model parameters, but to give a forecast which minimizes the risk under certain
loss functions.

Granger (1993) stated that “asymptotically, if we believe that a particular criterion
... should be used to evaluate forecasts then it should also be used at the estimation
stage of the modelling process”. This is also one of the starting points of Weiss (1995)
where various aspects of Grangers suggestion are discussed, especially methods are
given to estimate the parameters and to produce forecasts using general cost functions.
Although it seems convincing that knowledge of the cost function should be incorpo-
rated in the estimation procedure of the model parameters there are by best knowledge
of the authors no rigorous proofs for this suggestion, meaning that there is no result
which states explicitly that in some sense estimating the model parameters as well as
evaluating the forecasts with the same criterion is superior to what we call plug-in pro-
cedure, meaning that one estimates the model parameter under the minimal variance
criterion and then use the special loss function to evaluate the forecast.

There is quite a large amount of literature considering the question of optimal pre-
diction under certain asymmetric criteria starting with the paper of Granger (1969). In
Christoffersen and Diebold (1996, 1997) the optimal prediction problem under gen-
eral loss structures, especially under the linlin criterion, are studied and the optimal
predictor is characterized. All these papers have in common that the parameter models
are assumed to be known.

It is a well known fact that the use of the least square error criterion implies that
the conditional expectation is the optimal predictor in the sense that it minimizes the
expected cost conditional on the information set. In the regression model under nor-
mality assumption due to the Gauss–Markov Theorem the optimal predictor for the
least square error criterion is given by estimating the parameter via OLS for instance
and then insert this parameter into the forecast equation. The natural question arising
is, if this procedure remains optimal in case the risk should be minimized under a lin-
lin criterion. It is a result by Koenker and G. Bassett (1978a) that in the non-Gaussian
case the regression quantile is sometimes superior to the least square error criterion
for the parameter estimation in the sense that it gives an asymptotically unbiased es-
timator which converges in distribution to a Gaussian random variable with smaller
covariance. But it is not at all clear if the regression quantile minimizes the risk.
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2 Concept

We consider the static system

yt = g(xt, β) + εt, t = 1, 2, . . . , T, (1)

where g(·) is a function of the exogenous variable xt and the parameter β with
bounded Jacobian with respect to β. For convenience of presentation we assume that
g(·) contains an additive constant, meaning g(xt, β) = β0 + g̃(xt, β1).

The disturbance εt is assumed to be intertemporally independently distributed with
mean zero and covariance Σ. Furthermore we assume that the distribution of εt de-
noted by F is absolute continuous and has positive at least continuous density f with
bounded first derivative a.s.

In addition to the assumption above we assume that the distribution is invariant
under linear transformations, meaning that

x ∼ F (µ, σ) implies that x−µ
σ ∼ F (0, 1) where we denote the later by Φ with

according density φ.

Recall that the linlin loss function L is defined by

L(y − x) =
a(x − y) x > y
b(y − x) x ≤ y

with a, b > 0 and set a
a+b = θ.

We define the risk R to be the expected loss, namely R(x) = E(L(yT+1, x)).
Note that R(·) is strictly convex due to the assumption on the density f .

Given the true parameter of the model the optimal predictor is the unique solution
of the minimization problem

min
x∈R

E(L(yT+1, x)),

in the linlin case this best forecast is given by F−1(θ), which is a straightforward
consequence of the first order condition. We shall denote the optimal forecast by yopt
which means that

d

dx
R(x)

∣∣∣
x=yopt

= 0.

Note that
yopt = E(yT+1) + σΦ−1(θ) = g(xt, β) + σΦ−1(θ) (2)

where Φ is the F (0, 1) c.d.f.

In many application the main problem is in the construction of ex ante predictions,
usually the model parameters are unknown and have to be estimated. The purpose
of the paper is to compare different forecasts which are known to converge to yopt

meaning that the following asymptotic expansion holds

x − yopt =
ax√
T

+ OP (T−1)
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where ax is a random variable with mean zero and variance Σx. In order to do this we
take a second order Taylor series expansion of the risk around yopt as T → ∞ . For a
random variable x we get

R(x) = R(yopt) +
1

2
R′′(yopt)(x − yopt)

2 + OP (x − yopt)
3

since R′(yopt) = 0. Furthermore R′′(x) = (a + b)f(x) and therefore

R(x) = R(yopt) +
a + b

2
f(yopt)(x − yopt)

2 + OP (x − yopt)
3

Though the risk turns out to be the sum of the risk taking the optimal predictor which
cannot be omitted plus terms coming from parameter estimation of the model. Due to
the assumption that x converges to yopt for T → ∞ the crucial rule in the asymptotic
is played by the second term in the Taylor expansion.

Then we get

R(x) −R(yopt) =
a + b

2T
f(yopt) a2

x + OP (T−3/2).

Though if T → ∞ we gain that asymptotically

TE
(R(x) −R(yopt)

) ≈ a + b

2
f(yopt)Σx (3)

The size of the term on the right hand side above is our benchmark for different fore-
casts.

The two forecast we want to compare are briefly described as follows. Set µ =
E(yT+1). First, since yopt = µ + σΦ−1(θ) we estimate µ respectively β and σ by
standard methods, for instance OLS or Maximum Likelihood, to get β̂ resp. σ̂ and
finally set ŷ = ŷT+1 = g(xT+1, β̂) + σ̂Φ−1(θ). This is what we call plug-in proce-
dure. More precisely we assume that the following asymptotic expansion holds for the
parameter estimators σ̂ and β̂ , namely(

σ̂

β̂

)
=

(
σ

β

)
= +

1√
T

(
a0

a1

)
+ OP (T−1) (4)

where (
a0

a1

)
∼ N(0, Ω) with Ω =

(
Ω11 Ω12

Ω21 Ω22

)
.

Furthermore we expand the model function g around the true parameter β,

g(xT+1, b) = g(xT+1, β) + G(b − β) + O(b − β)2

where G′ = ∇βg(xT+1, β). Hence using the Mann–Wald Theorem

ŷ − yopt =
1√
T

Ga1 +
1√
T

Φ−1(θ)a0 + OP (
1

T
).
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Inserting this into (3) we get

E
(R(x) −R(yopt)

)
=

=
a + b

2T
f(yopt)

(
Φ−1(θ)Ω11 + 2Φ−1(θ)GΩ12 + GΩ22G

′
)

+ OP (
1

T 3/2
).

Secondly we define β̃ = (β̃0, β̃1)
′ to be the minimizer of

∑T
t=1 L(yt − u0 −

g̃(xt, u1)) over all u0, u1 in the parameter space and define the forecast ỹ =
g(xT+1, β̃). Again we assume that

β̃ =

(
β̃0

β̃1

)
=

(
β0 + σΦ−1(θ)

β1

)
+

1√
T

(
b0

b1

)
+ OP (T−1)

where (
b0

b1

)
∼ N

(
0,

Σ11 Σ12

Σ21 Σ22

)
.

Hence

ỹ − yopt =
1√
T

Gb1 +
1√
T

Φ−1(θ)b0 + OP (
1

T
).

and our benchmark inequality becomes

E
(R(x) −R(yopt)

)
=

=
a + b

2T
f(yopt)

(
Φ−1(θ)Σ11 + 2GΣ12 + GΣ22G

′
)

+ OP (
1

T 3/2
).

Proposition 2.1 Assume that the asymptotic expansion (4) holds and that the estima-
tors σ̂ and β̂ are efficient in the sense that Ω equals the Fisher Information matrix,
then the plug-in forecast ŷT+1 = g(xT+1, β̂)+ σ̂Φ−1(θ). is best possible with respect
to our criterion.

Proof. The proof is straightforward, since under the assumption above ŷT+1 =
g(xT+1, β̂) + σ̂Φ−1(θ) attains the Cramer–Rao Lower Bound, see Caines (1988),
p.301 for details. �

3 Location estimator

We consider the model

yt = µ + εt where εt ∼ F (0, σ).

We start with the OLS plug-in procedure and estimate µ and σ by

µ̂ =
1

T

T∑
t=1

yt and σ̂2 =
1

T

T∑
t=1

(yt − µ̂)2.
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Then it is a well know fact that

µ̂ = µ + a1√
T

+ OP (T−1) with a1 ∼ N(0, σ2)

σ̂2 = σ2 + b1√
T

+ OP (T−1) with b1 ∼ N(0, σ4 − σ2) and hence

σ̂ = σ + c1√
T

+ OP (T−1) with c1 ∼ N(0, Σ)

where σ4−σ2

4σ2 = Σ and σ4 = E(ε4) . Though the OLS plug-in forecast is given by
ŷ = µ̂ + σ̂Φ−1(θ). Furthermore note that

f(yopt) = f(F−1(θ)) =
1

σ
φ(Φ−1(θ)).

Inserting this into (3) we get

lim
T→∞

TE
(R(ŷ)− R(yopt)

)
= limT→∞ a+b

2σ φ
(
Φ−1(θ)

)
E
(
µ̂ − µ + (σ̂ − σ)Φ−1(θ)

)2
= limT→∞ a+b

2σ φ
(
Φ−1(θ)

)(
E
(
µ̂ − µ

)2
+ Φ−1(θ)2E(σ̂ − σ)2

)
= a+b

2σ φ
(
Φ−1(θ)

)(
σ2 + Φ−1(θ)2Σ

)
.

Here we used the fact that σ̂ and µ̂ are asymptotically independent.

Secondly, denote by µ̃ the minimizer of
∑T

t=1 L(yt − m) over all m ∈ R and
define the forecast ỹ = µ̃. It is well known, see for instance Koenker and G. Bassett
(1978b), p. 42, that

√
T (µ̃ − yopt) ∼ N(0, Ω) where

Ω =
ab

(a + b)2
σ2

φ
(
Φ−1(θ)

)2 .

Inserting this into (3) we get

lim
T→∞

TE
(R(ỹ) −R(yopt)

)
= limT→∞ a+b

2σ φ
(
Φ−1(θ)

)
E
(
ỹ − yopt

)2
= ab

2(a+b)
σ

φ
(
Φ−1(θ)

) .
Hence the OLS plug-in procedure is superior if

a + b

2σ
φ
(
Φ−1(θ)

)(
σ2 + Φ−1(θ)2Σ

)
<

ab

2(a + b)

σ

φ
(
Φ−1(θ)

) . (5)

It is straightforward to check that in the Gaussian case Σ = σ2/2. Hence the inequality
above can be rewritten as

φ
(
Φ−1(θ)

)2(
2 + Φ−1(θ)2

)
<

2ab

(a + b)2
= 2θ(1 − θ) (6)
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Figure 1: 1
σ2 φ

(
Φ−1(θ)

)
E
(
y − yopt

)2
for 0 < θ < 1 where y is either ŷ or ỹ. The

doted line indicates the case y = ŷ where σ is known, the solid line y = ŷ where σ
has to be estimated as well, finally the dashdoted line gives y = ỹ.

Figure 1 indicates that in the Gaussian case the OLS plug-in procedure is superior
to direct forecast.

But we show that inequality (5) fails in the double exponential case for certain θ,
more precisely when the density is defined by

f(x, µ, σ) =
1

σ
√

2
exp

(
−
√

2|x − µ|
σ

)
. (7)

A straightforward calculation yields that Σ = 5σ2/4 Assuming without loss of gener-
ality that θ < 1/2 gives φ

(
Φ−1(θ)

)
= θ

√
2. Now (5) becomes

2θ2
(
1 + 5Φ−1(θ)2/4

)
< θ(1 − θ) (8)

Of course the left hand side of (8) is bounded from below by 2θ2. Hence the inversed
inequality in (8) holds at least if 1/3 ≤ θ ≤ 2/3. Let us finally note that (8) remains
true for θ close to zero or 1. Furthermore if σ is known, the second term in the bracket
on the left hand side of (8) vanishes and inequality holds for θ = 1/3 and θ = 2/3.

The reason why in the non-Gaussian case the direct forecast ỹ is superior to the
OLS estimator ŷ is fact that here the OLS estimator for µ and σ are non–optimal with
respect to their asymptotic behavior. Instead, knowing the distribution family given by
(7) one could estimate µ and σ by Maximum Likelihood, namely

µ̂L = argmin
m∈R

T∑
t=1

|yt − m| = median
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Figure 2: 1
σ2 φ

(
Φ−1(θ)

)
E
(
y − yopt

)2
for 0 < θ < 1 for the double exponential case

where y is one of the forecasts considered. Especially, the doted line and the solid
line indicates the case y = ŷ resp y = ŷL where σ is either known or not, finally the
dashed line gives y = ỹ, which is seen to be superior to the OLS case for certain θ.

and

σ̂L =

√
2

T

T∑
t=1

|yt − µ̂L|.

Then (µ − µ̂L, σ − σ̂L) ∼ N(0, ΩL) where

ΩL =

(
E

(
− ∂2 log f(x, µ, σ)

∂µi∂σj

)i,j

i+j=2

)−1

=

(
σ2

2 0
0 σ2

)
.

We note that partial derivatives of log f(x, µ, σ) exist a.e. with respect to F . It is
straightforward to see that the crucial benchmark-inequality (6) with µ̂L instead of µ̂
resp ŷL = µ̂L + σ̂LΦ−1(θ) instead of ŷ becomes

2θ2
(
1/2 + Φ−1(θ)2

)
< θ(1 − θ) (9)

or equivalently since Φ−1(θ) = 1√
2

log(2θ) for θ ≤ 1/2

θ
(
1 + log2(2θ)

)
< 1 − θ. (10)

Of course, if θ = 1
2 equality holds and furthermore using ML estimators is superior to

OLS. If θ < 1
2 the right hand side of (10) is strictly decreasing whereas the left hand
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side of (10) is increasing. Hence the ML estimation plug-in procedure is superior to
direct estimation as indicated by figure 2. Independently of θ the ML plug-in proce-
dure is superior to OLS which can be seen by comparing the left hand side expressions
in (8) and (9) also indicated by figure 2.

In fact the ML-estimation plug-in procedure is best possible. To see this recall that
we have to minimize Σx in (3) where

Σx ≥ (1, Φ−1(θ))I−1(µ, σ)(1, Φ−1(θ))′

where I(µ, σ) denotes the information matrix and the right hand side gives the
Cramer-Rao lower bound for any estimator x = u(y1, . . . , yT ) of µ + σΦ−1(θ),
see Caines (1988), p. 301 Hence in any case where the ML–estimator achieves the
Cramer-Rao lower bound the ML–estimation plug-in procedure is best possible. This
is true in the Gaussian as well as in the double exponential case.

4 Linear Regression

As a second example for our method we consider a regression model, namely

yt = β1 + β2xt + εt where εt ∼ F (0, σ).

We assume that

lim
T→∞

1

T

T∑
t=1

(xt − x̄)2 > 0 with x̄ =
1

T

∑
xt. (11)

We start with the OLS plug-in procedure. Therefore we estimate

β̂1 =
1

T

T∑
t=1

(yt − β̂2xt)

β̂2 =

∑T
t=1(yt − ȳ)(xt − x̄)∑T

t=1(xt − x̄)2

σ̂2 =
1

T − 2

T∑
t=1

ε̂2
t =

1

T − 2

T∑
t=1

(yt − β̂1 − β̂2xt)
2

where ȳ = 1
T

∑
yt. It is well known that

Var(β1 − β̂1) =
σ2
∑

x2
t

T
∑

(xt − x̄)2
, Cov(β1 − β̂1, β2 − β̂2) =

−σ2x̄∑
(xt − x̄)2

,

Var(β2 − β̂2) =
σ2∑

(xt − x̄)2
and Var(σ̂2) =

2σ4

T
.

We set µ̂ = β̂1 + β̂2xT+1. A straightforward calculation gives

E(
√

T (µ − µ̂))2 =
σ2
∑T

t=1(xt − xT+1)
2∑T

t=1(xt − x̄)2
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We set

lim
T→∞

∑T
t=1(xt − xT+1)

2∑T
t=1(xt − x̄)2

= Vx

and note that µ̂ and σ̂ are asymptotically independent. Thus

µ̂ = µ +
aµ√
T

+ OP (T−1) with aµ ∼ N(0, σ2Vx)

and assuming normality of the errors

σ̂ = σ +
aσ√
T

+ OP (T−1) with aσ ∼ N(0, σ2/2).

Though the OLS plug-in forecast is given by ŷ = µ̂+ σ̂Φ−1(θ). Inserting this into (3)
we get

lim
T→∞

TE
(R(ŷ) −R(yopt)

)
=

(a + b)σ

4
φ
(
Φ−1(θ)

) (
2Vx + Φ−1(θ)2

)
.

Secondly, denote by β̃1, β̃2 the minimizer of
∑T

t=1 L(yt − b1 − b2xt) over all
(b1, b2) ∈ R2 and define the forecast ỹT+1 = β̃1 + β̃2xT+1. Since by assumption (11)
the matrix

Q = lim
T→∞

1

T

(
T

∑
xt∑

xt

∑
x2

t

)
.

is positive definite the result of Koenker and G. Bassett (1978b), p. 43, applies, namely
that √

T

(
β̃1 − β1 − σΦ−1(θ)

β̃2 − β2

)
∼ N(0, Ω ⊗ Q−1)

where

Ω =
ab

(a + b)2
σ2

φ
(
Φ−1(θ)

)2 .

Furthermore since(
T

∑
xt∑

xt

∑
x2

t

)−1

=

( P
x2

t

T
P

(xt−x̄)2
−x̄P

(xt−x̄)2
−x̄P

(xt−x̄)2
1P

(xt−x̄)2

)

we get
lim

T→∞
TE(ỹT+1 − yopt)

2 = VxΩ

Inserting this into (3) we get

lim
T→∞

TE
(R(ỹ) −R(yopt)

)
=

ab

2(a + b)

σVx

φ
(
Φ−1(θ)

) .

Again the plug-in procedure is superior if

(a + b)σ

4
φ
(
Φ−1(θ)

) (
2Vx + Φ−1(θ)2

)
<

ab

2(a + b)

σVx

φ
(
Φ−1(θ)

) .
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or equivalently if

φ
(
Φ−1(θ)

)2(
2Vx + Φ−1(θ)2

)
< 2θ(1 − θ)Vx. (12)

Completely analog to section 3 above we can state that in the double exponential
case for certain θ the corresponding inequality fails, more precisely the corresponding
inversed inequality holds at least if θ ∈ [1/3, 2/3], but remains true for θ close to zero
or 1. Again if σ is known, the second term in the bracket on the left hand side of (12)
vanishes and the interval where (12) fails is sharp.

The main result of Koenker and G. Bassett (1978a) implies that for distributions
for which the median is superior to the mean as an estimator of location, the LAE es-
timator is preferable to the OLS estimator in the general model. In case of the double
exponential distribution the Maximum Likelihood estimator for the parameters is ex-
actly the LAE and in fact one gains estimators β1L and β2L for β1 and β2 respectively,
more precisely

(β1L, β2L) = argmin
(b1,b2)∈R2

T∑
t=1

|yt − b1 − xtb2|

and

σ̂L =

√
2

T

T∑
t=1

|yt − β1L − xtβ2L|.

with

√
T

(
β1L − β1

β2L − β2

)
∼ N(0, ΩL ⊗ Q−1) with ΩL =

σ2

4 φ
(
Φ−1(1/2)

)2
which results in

lim
T→∞

TE
(R(ŷ) −R(yopt)

)
=

(a + b)σ

4
φ
(
Φ−1(θ)

) (
Vx + 2 Φ−1(θ)2

)
.

The benchmark inequality becomes

θ
(
Vx + log2(2θ)

)
< (1 − θ)Vx

and the same argument following inequality (10) shows that Maximum Likelihood
plug-in procedure is superior to direct forecast.
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Identification of multivariate state-space systems

Thomas Ribarits and Manfred Deistler

1 Introduction

Apart from traditional identifiability analysis, questions of parameterization do not at-
tain much attention in econometrics. In the linear dynamic case a major reason for this
fact seems to be that mainly AR(X) models are used, where parameterization problems
are simple. However, for ARMA(X) and state-space models, parameterization issues
are important for the properties of model selection and estimation procedures. Iden-
tification of such models may still cause problems and the idea is that such problems
can be mitigated by ‘intelligent’ parameterizations. Another issue connected with pa-
rameterization is the curse of dimensionality in the multivariate case.

The problem of parameterization is concerned with the relation between transfer
functions and parameters. To be more precise, we consider a parameter space T ⊆
Rd, a set of transfer functions U and a surjective mapping π : T → U , attaching
transfer functions to parameters. The first questions in this context are identifiability,
i.e. injectivity of π, and for the identifiable case continuity and differentiability of the
inverse mapping ψ : U → T ; see Deistler (2001) for details.

The paper is organized as follows: In Section 2, the main advantages and disadvan-
tages arising from the use of ARX, ARMAX and state-space models are considered. It
will be argued that some of the disadvantages of ARMAX and state-space modelling
can be mitigated by the choice of appropriate parameterizations. Section 3 presents
parameterizations for state-space models, including very recent parameterization ap-
proaches. Finally, Section 4 contains possible directions for future research activities.

2 ARX, ARMAX and State-Space Systems

We consider a linear dynamic relation of the form

yt =
∞∑

j=0

Ljut−j +
∞∑

j=0

Kjεt−j Lj ∈ R
s×m, Kj ∈ R

s×s (1)

where yt denotes the s-dimensional observed output, ut denotes the m-
dimensional observed input and the εt form the white noise innovations process with
Σ = Eεtε

′
t; note that K0 = Is. Furthermore, (ut|t ∈ Z) is assumed to be uncorre-

lated with (εt|t ∈ Z). Thus,
∑∞

j=0 Ljut−j is the best linear approximation of yt by
(ut|t ∈ Z).

Relation (1) can more conveniently be written as

yt = l(z)ut + k(z)εt (2)

where l(z) =
∑∞

j=0 Ljz
j is the transfer function from ut to yt and k(z) =

233
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∑∞
j=0 Kjz

j is the transfer function from εt to yt. Note that z denotes a complex
variable as well as the backward shift operator.

In most cases it is assumed that l(z) and k(z) are rational, and in this case they
can be represented by a ‘common denominator matrix’ a(z) as l(z) = a−1(z)d(z)
and k(z) = a−1(z)b(z), where a(z) =

∑p
j=0 Ajz

j , d(z) =
∑r

j=0 Djz
j and b(z) =∑q

j=0 Bjz
j are polynomial matrices of suitable dimensions. Equation (2) can then be

rewritten in ARMAX representation

a(z)yt = d(z)ut + b(z)εt (3)

It is very common to choose b(z) = Is in (3), resulting in an ARX model of the
form

a(z)yt = d(z)ut + εt (4)

An alternative approach is to rewrite (2) is in terms of a state-space representation.
Starting from (3), the following can easily be shown: Assume w.r.o.g. that a(0) =
A0 = Is and put xt = (yt−1, . . . , yt−p, ut−1, . . . , ut−r, εt−1, . . . , εt−q)

′. Then (3)
can immediately be written in terms of the (in general) nonminimal state-space system

xt+1 = Axt + But + Kεt

yt = Cxt + Dut + εt (5)

where the matrices A, B, C, D and K are composed of the blocks −A1, . . . ,−Ap,
D0, . . . , Dr, B0, . . . , Bq , Is, Im and many zero matrices. This nonminimal state-space
system can always be reduced to a minimal one, where xt has minimal dimension, n
say, among all state-space representations of (2). From now on we will thus assume
that xt in (5) denotes the n-dimensional state and that A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rs×n, D ∈ Rs×m and K ∈ Rn×s are parameter matrices.

In the sequel we will always assume that (l, k) satisfies the stability condition, i.e.
(l, k) has no pole for |z| ≤ 1. In addition, we assume that k satisfies the minimum
phase condition, i.e. k has no zero for |z| < 1; for an appropriate definition of poles
and zeros of rational matrices see e.g. chapter 2 in Hannan and Deistler (1988). We
always assume that Σ > 0.

Let UA be the set of all rational and causal s × (m + s) transfer functions (l, k)
where (l, k) is stable, k(0) = I and k satisfies the minimum phase condition. Identifi-
cation in this context is mostly considered in a semi-nonparametric framework mean-
ing that in a first step a suitable model subclass of the (infinite dimensional) model
class UA is determined by a data driven model selection procedure. Each of these
subclasses is described by a finite dimensional parameter space. In a second step, the
real valued parameters corresponding to the subclass are estimated by ‘parametric’
procedures.

Despite the fact that identification of linear dynamic systems is a quite mature sub-
ject by now, there are still some practical problems in applying identification routines
for ARMAX and state-space models. As a consequence, in many applications ARX
modelling is still preferred. The reasons for this fact are the following:
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1. In ARX modelling the structure of the parameter spaces is much simpler than in
the case of ARMAX or state-space models. The ARX(p, r) model class, where
p and r denote the prescribed maximum degrees of a(z) and d(z), respectively,
can be parameterized by simply considering all entries in the coefficient ma-
trices of a(z) and d(z) as free parameters, if no stability assumption has been
imposed. By imposing the stability assumption deta(z) �= 0, |z| ≤ 1, we obtain
an open subset of this parameter space. Note that in particular every point in
the parameter space is identifiable. For state-space or ARMAX models, how-
ever, the parameterization problem is much more involved and the parameter
spaces may have a quite complicated structure. Additionally, commencing e.g.
from an identifiable parameterization of a state-space model of state dimension
n, models of state dimension n̄ < n are in general not identified.

2. ARX modelling may be preferable because MLEs coincide with least squares
estimates. Hence, the MLE is given explicitly and least squares formulas are
robustly implemented in any standard piece of software. For state-space or AR-
MAX models, however, in general the MLE has to be determined by using more
involved and less reliable iterative numerical optimization algorithms. In con-
trast to the ARX case, a major additional problem is that the likelihood function
may have many local optima and that conventional optimization algorithms are
prone to converge to these local optima if the starting values are chosen inap-
propriately.

On the other hand, the more general class of state-space or ARMAX models
clearly allows for a more flexible and parsimonious parameterization, resulting in less
parameters in a number of applications. Note again that every rational and causal
transfer function can be described by an ARMAX or by a state-space system, and in
this sense both approaches are equivalent.

Given the greater flexibility of ARMAX and state-space systems, the improvement
of identification procedures for these model types is still an important task, in particu-
lar with respect to the issues raised in the list above. A key issue for this improvement
is the choice of appropriate parameterizations, which should ideally be of a simple
structure (1) and lead to numerically well conditioned estimation procedures (2).

In the sequel, we restrict ourselves to parameterization problems for state-space
models.

3 Parameterizations of State-Space Systems

In the sequel we assume that a particular model subclass of UA has already been
determined by means of some model selection procedure (such as information criteria
or test procedures). Of course, there are many ways in which one can break UA into
subclasses, and we will consider the particular case where the subclasses are M(n) ⊂
UA, denoting the subset of all transfer functions of order n. It is well known that
each transfer function of order n can be represented in terms of a minimal state-space
realization of the form (5), where the state dimension is equal to n. Conversely, every
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minimal state-space system (5) of state dimension n corresponds to a transfer function
in M(n).

Let S(n) denote the set of all state-space systems (A, B, C, D, K) for fixed s, m
and n satisfying the stability condition

|λmax(A)| < 1 (6)

and the minimum phase condition

|λmax(A − KC)| ≤ 1 (7)

where λmax denotes an eigenvalue of maximal modulus. Let Sm(n) ⊂ S(n) de-
note the subset of all minimal (A, B, C, D, K) ∈ S(n). The mapping

π : Sm(n) → M(n) (8)

(A, B, C, D, K) �→ zC(I − zA)−1(B, K) + (D, I) (9)

is surjective, but not injective. This is because the classes of observationally equiv-
alent minimal state-space systems (A, B, C, D, K) are characterized by linear nonsin-
gular state transformations, i.e. all state-space systems in the set E(A, B, C, D, K) =
{(TAT−1, TB, CT−1, D, TK), det(T ) �= 0} are mapped onto the same transfer
function by π and, conversely, if (l, k) = π(A, B, C, D, K), then the entire inverse
image π−1(l, k) ⊂ Sm(n) is given by E(A, B, C, D, K).

Of course, there are a number of desirable properties of a parameterization; see
Deistler (2001). In particular, continuity is important: As is well known, M(n) is a
real analytic manifold of dimension 2ns + m(n + s) (with boundary points) which
cannot be continuously parameterized with one coordinate mapping ψ in the MIMO
case. We now discuss the following parameterizations commencing from M(n):

• Full state-space parameterization. Here, Sm(n) is used as a parameter space,
i.e. all entries in minimal state-space matrices (A, B, C, D, K) ∈ Sm(n) are
considered as parameters; see e.g McKelvey (1995). Note that Sm(n) is open
and dense in S(n). Of course in this situation we do not have identifiability;
for (l, k) ∈ M(n) the classes of observational equivalence E(A, B, C, D, K) in
Sm(n) are manifolds of dimension n2. For criteria functions which are constant
along equivalence classes then of course the optimum is not unique. In other
words, this approach is particularly simple, but has the drawback that there are
n2 essentially unnecessary coordinates.

• Canonical forms. A second possibility is the use of canonical forms which
reduce the number of free parameters to be estimated. Canonical forms are
mappings c : M(n) → Sm(n), selecting from every equivalence class
E(A, B, C, D, K) = π−1(l, k), (l, k) ∈ M(n) a unique representative. This
approach is currently most often used when maximum likelihood-type estima-
tion procedures are employed. Important examples are the echelon canonical
form—see chapter 2 in Hannan and Deistler (1988)—and balanced canonical
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forms such as Ober’s Lyapunov and stochastically balanced canonical forms—
see Ober (1991) or Ober (1996)—and McGinnie’s minimum phase balanced
canonical form; see McGinnie (1993). Both echelon and balanced canonical
forms lead to a partition of M(n) into pieces of different dimension which are
parameterized separately; for s = 1 and echelon forms, M(n) is parameterized
directly.

In case of echelon forms the pieces, Vα ⊂ M(n) say, are defined by the so
called Kronecker indices α which specify a special selection of basis rows
from the Hankel matrix of the transfer function. The state-space matrices
(A, B, C, D, K) then are defined via these basis rows. A main advantage of
echelon forms is that certain entries in (A, B, C, D, K) are fixed to be zero or
one and all other entries are free parameters. There also exist echelon ARMAX
forms and there is a simple one-to-one relation between the free parameters in
both forms. One piece Vα ⊂ M(n) is open and dense in M(n) and this Vα is
called a generic neighborhood. From a numerical point of view, echelon forms
seem to be sometimes problematic. In particular, they have been found to be
inferior in many simulation experiments when compared to balanced canonical
forms; see Ribarits (2000).

Balanced canonical forms are obtained from an SVD of the Hankel matrix of the
transfer function by imposing additional restrictions. Again, there is a generic
neighborhood, Vδ ⊂ M(n) say, (which differs from the generic neighborhood
Vα for echelon forms), which is open and dense in M(n). As opposed to ech-
elon forms, here the entries in (A, B, C, D, K) are rather complicated trans-
formations of the free parameters, however as a tradeoff the parameter spaces
are simpler; for example, the minimality requirement for the state-space sys-
tem translates into strict positivity of the singular values of the Hankel matrix,
and the differences of these singular values form a part of the vector of free
parameters. This simplicity of parameter spaces may also be an advantage for
specification search; see e.g. Bauer and Deistler (1999). A disadvantage of bal-
anced compared to echelon forms is that for the first in general more pieces are
needed to cover M(n); even for s = 1, for balanced forms M(n) cannot be
described by a single parameter space.

• The description of the manifold M(n) by local coordinates. The most common
approach here is a choice of local coordinates obtained from selections of basis
rows of the Hankel matrix of the transfer function which correspond to the so
called structural indices α. This approach is similar to echelon forms, for in-
stance with respect to properties of parameters and parameter spaces. However,
the pieces Uα ⊂ M(n) are now all of the same dimension 2ns + m(n + s) and
they are all open and dense in M(n). Hence, they are overlapping. A particular
piece Uα and its parameterization coincides with the generic neighborhood Vα

for echelon forms and its parameterization. This ‘overlapping description’ of
M(n) is available for state-space and ARMAX systems; see also chapter 2 in
Hannan and Deistler (1988).
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• Data driven local parameterizations. The choice of parameterizations influ-
ences in particular the numerical properties of identification procedures. These
properties depend in general on the ‘true’ transfer function. The main idea of
data driven local parameterizations is to choose the parameterization in a data
driven way out of uncountably many possibilities in order to obtain favorable
properties. This was the motivation for the introduction of the parameterization
by data driven local coordinates or, briefly, DDLC by McKelvey et al. (2004). A
modification of DDLC has been introduced and analyzed in Ribarits (2002) and
is called separable least squares data driven local coordinates; see also Ribarits
et al. (2003). A further extension of DDLC called orthoDDLC is subject to future
analysis; see Ribarits (2002). These parameterizations will be discussed in more
detail below.

In the sequel we provide a brief discussion of the data driven local parameteriza-
tions DDLC, slsDDLC and orthoDDLC.

3.1 Data Driven Local Coordinates (DDLC)

Here we commence from a given initial estimator and its equivalence class
E(A, B, C, D, K) ∈ Sm(n). The idea now is to avoid the drawback of n2 essen-
tially unnecessary coordinates by only considering the ortho-complement to the tan-
gent space to E(A, B, C, D, K) at the given (A, B, C, D, K) as a parameter space.
Clearly, the parameter space will then be of dimension 2ns + m(n + s) rather than
n2 + 2ns + m(n + s) and thus has no unnecessary coordinates. (A, B, C, D, K) is
called ‘the initial system’ which may be obtained e.g. by some other preliminary es-
timation procedure. For a detailed presentation see McKelvey et al. (2004). Note that
similar ideas can already be found in Wolodkin et al. (1997) in an LFT-type parame-
terization setting.

It has been shown in Ribarits et al. (2004, 2002) that DDLC can be interpreted as
a system of local coordinates for the manifold M(n), containing uncountably many
coordinate charts. The use of DDLC thus offers the possibility to choose one ‘conve-
nient’ out of uncountably many coordinate charts, and this choice can be performed in
each step of a numerical search procedure: For any given (A, B, C, D, K) ∈ Sm(n),
one can choose an observationally equivalent state-space system and apply the DDLC
construction at this system, yielding a parameterization for an open neighborhood of
transfer functions.

The idea of DDLC was to improve numerical properties of estimation algorithms,
which was a major motivation for including it into the system identification toolbox
in MATLAB 6.x in the standard case when no particular parameterization is chosen by
the user. However, as has been discussed in Ribarits (2002) and Deistler and Ribarits
(2001), there are still numerical difficulties and potential drawbacks of DDLC. A main
tool for a careful analysis of DDLC is the investigation of topological and geometrical
properties of the parameterization; see Ribarits and Deistler (2002) and Ribarits et al.
(2004).

Recently, a modification of the DDLC concept has been introduced in Ribarits et al.
(2003):
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3.2 Separable Least Squares Data Driven Local Coordinates

The idea here is to combine the DDLC philosophy with the method of ‘separable least
squares’, leading to an alternative analogous parameterization which can be used for a
suitable concentrated likelihood-type criterion function. The new parameterization is
called slsDDLC (for separable least squares data driven local coordinates). An obvious
consequence is the reduction of the dimension of the parameter space, and preliminary
simulation studies in Ribarits and Deistler (2003) indicate that slsDDLC has numerical
advantages as compared to e.g. the more commonly used echelon canonical form and
to conventional DDLC.

Results concerning geometrical and topological properties of the parameterization
are derived in Ribarits et al. (2003) and Ribarits (2002).

The new identification method using slsDDLC seems to be very promising, in
particular if slsDDLC is used in combination with so called subspace identification
techniques (see, e.g., Deistler, 2001) which often yield good starting values for the
optimization of the likelihood function. However, the behaviour of both slsDDLC and
DDLC when no good initial estimates are available, i.e. when the initial transfer func-
tion estimate is ‘far’ from the ‘true’ transfer function, is still unclear. There are a num-
ber of open questions regarding this ‘global’ perspective, e.g. the question whether it
is possible to obtain state-space systems in the course of the numerical search proce-
dure which lead to more and more ill-conditioned estimation problems if we do not
adapt (sls)DDLC.

This question has also been the main motivation for another modification of DDLC:

3.3 Orthogonal Data Driven Local Coordinates (orthoDDLC)

OrthoDDLC has been briefly introduced in Ribarits (2002). The terminology is moti-
vated by the fact that the optimization of the likelihood function is restricted to a subset
of the set of balanced stable allpass systems; see e.g. Hanzon and Peeters (2000) or
Peeters et al. (1999). These systems have the property that the corresponding state-
space matrices (A, B, C, D), if arranged appropriately, form an orthogonal matrix.
OrthoDDLC seems to be a promising approach, but still has to be worked out in more
detail and simulation studies have to be carried out.

4 Future Research Topics

Currently, the concepts of data driven local parameterizations outlined in Section 3
above have only been considered for the stationary case, i.e. the case of stable transfer
functions (l, k). Extensions to the parameterization and estimation problem for unit
root systems – with an emphasis on cointegration – are a subject of future research.

The main aim of cointegration analysis is to decompose the observed variables into
a stationary part and a part generated by a few common trends, where the economically
relevant information lies in the cointegrating relations. DDLC and slsDDLC could be
applied e.g. in the following situations:

• The DDLC philosophy could be applied to maximum-likelihood type estima-
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tion of cointegration models incorporating restrictions arising e.g. from a pri-
ori knowledge on cointegrating relations. In the classical AR-framework of Jo-
hansen (1995) this would amount to new slsDDLC estimation procedures for
reduced rank regression models where additional restrictions are incorporated.

• Recently, parameterizations for general unit root processes in the state-space
framework have been introduced, which highlight the (polynomial) cointegra-
tion properties; see Bauer and Wagner (2003). The minimal state-space systems
considered are of the form (5), where no observed inputs ut are present now
and the matrix A can have eigenvalues on the unit circle implying that the cor-
responding transfer function k(z) has poles at these locations. One particular
feature of the parameterization is that it splits the parameters into a part corre-
sponding to the stationary subsystem and a part corresponding to the subsystem
with the unit roots only. Therefore, the stationary subsystem can be parameter-
ized using any parameterization for stationary systems, and the possibility of
using DDLC and slsDDLC would have to be investigated in this context.
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Factor Models for Multivariate Time Series

Eva Hamann, Manfred Deistler and Wolfgang Scherrer

1 Introduction

The analysis of multivariate time series is an important issue in many research areas,
such as economics, finance, signal processing and medicine. Multivariate time series
are modeled jointly when the relation between the single time series or comovements
are important. In general, the number of free parameters, which is a measure of the
complexity of the model class considered, increases with the number of observed vari-
ables. E.g., in a general VAR(p) model, the dimension of the parameter space is pro-
portional to the square of the output dimension. This fact causes problems for actual
applications, when the number of parameters to be estimated is large compared to
sample size (the so-called curse of dimensionality). Factor models mitigate this prob-
lem.
In this contribution we give a short introduction to different kinds of factor models,
emphasizing problems of identifiability and estimation. The following types of factor
models will be discussed:

• Quasi-Static Principal Components Analysis (Quasi-Static PCA)

• Dynamic PCA

• Quasi-Static Frisch model

• Dynamic Frisch model

• Reduced Rank Regression model

There has been an increasing interest in factor models recently. In macroeconomics,
based on the seminal paper by Sargent and Sims (1977), factor models have been fur-
ther developed and used for analyzing a relatively large number of time series. For
instance, to study dynamical movements of sectoral employments for the U.S. econ-
omy, to analyze business cycles in Europe and the U.S. or to obtain a forecast by
combining many predictors, see e.g. Forni and Reichlin (1998) and Stock and Wat-
son (1999). Factor models have a relatively long tradition in finance econometrics, see
e.g. Chamberlain and Rothschild (1983). The outline of this contribution is as follows.
First, the general model is presented in some detail. In the remaining sections identi-
fiability and estimation problems for the particular model classes considered here are
discussed.

2 The Basic Framework

Here we restrict ourselves to the stationary case. For instance, cointegration models,
which might be interpreted as factor models generating integrated series are not
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considered.

The idea, here is, that the n–dimensional vector of observed variables yt is driven
by a linear combination of a small number, say r � n, of, in general, unobserved
variables, so-called factors, and an n–dimensional noise component ut. Hence, the
model may be written as

yt = Λ(z)ξt + ut, (1)

where z denotes the backward shift as well as a complex variable, Λ(z) =∑∞
j=−∞ Λjz

j is an n × r dimensional linear dynamic filter, ŷt = Λ(z)ξt denotes
the latent variables and Eξtu

′
s = 0 for all s, t ∈ Z. The filter Λ(z) can be seen as a

dynamic generalization of the loading matrix Λ of a static factor model. If we assume
that the spectral densities fξ and fu resp. of (ξt) and (ut) resp. exist, then the spectrum
of the process (yt) is given by

fy(λ) = Λ(e−iλ)fξ(λ)Λ∗(e−iλ) + fu(λ), (2)

where Λ∗(z) =
∑∞

j=−∞ Λ̄′
jz

−j . Throughout the contribution, we assume that
fy(λ) > 0, rank(Λ(e−iλ)) = r and fξ(λ) > 0 a.e.
An important special case of (1) is the quasi static factor model, where the factor
loading matrix is constant (i.e. not dependent on z),

yt = Λξt + ut. (3)

In this case the variance covariance matrix of (yt) is of the form

Σy = ΛΣξΛ
′ + Σu, (4)

where Σy = Eyty
′
t > 0, rank(Λ) = r, Σξ = Eξtξ

′
t > 0 and Σu = Eutu

′
t. All

processes considered are assumed to have mean zero. Otherwise, one would have to
add a constant on the right hand side of Equations (1) and (3).

For identification of factor models, as described in Equation (1), the number of
factors r, Λ(z) and in many cases also fξ, fu and the unobserved factor processes (ξt)
are of interest. Unless stated explicitly otherwise, we consider a semi non-parametric
setting. Factor models pose a fundamental identifiability problem. In general, for given
fy or Σy the quantities of interest are not unique. Without further assumptions, every
Λ(z) is compatible with a given fy, or in other words, fy (or Σy) give no restrictions
for Λ(z) (or for Λ). In this case, for every Λ(z) one can find suitable spectral densities
fξ and fu or covariance matrices Σξ and Σu which fulfill Equations (2) or (4). There-
fore, additional structure has to be imposed in order to make identification meaningful.
This leads to the PCA, Frisch and Reduced Rank Regression models discussed below.
For these classes the following issues arise, when identifiability is analyzed:

1. Identifiability of r

2. Identifiability of fŷ(λ) = Λ(e−iλ)fξ(λ)Λ∗(e−iλ) and fu(λ)

3. Identifiability of Λ(e−iλ) and fξ(λ)
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Once identifiability is guaranteed in estimation and inference one is concerned with:

1. Inference for r

2. Inference for the free parameters in Λ(e−iλ), fξ(λ) and fu(λ)

3. Estimation of ξt

Often factor models are used for analysis, but they may also be used for forecasting. In
this case a forecasting model for factors and eventually also for the noise component
has to be identified. The models we consider in this context are of ARX type. E.g.

ξt+1 = A(z)ξt + B(z)xt + εt+1, (5)

where A(z) and B(z) are polynomial matrices in z, the stability condition

det(I − z(A(z))) �= 0 for all |z| ≤ 1 (6)

holds, εt is white noise, xt are (observed) inputs and Extε
′
s = 0 for all t, s ∈ Z.

3 Quasi-Static Principal Components Analysis (Quasi-Static PCA)

Here we commence from Equations (3) and (4), where the additional structural as-
sumption is imposed that ŷt is obtained by minimizing Eu′

tut = tr(Σu) over all rank
r matrices Λ. This is done by performing an eigenvalue decomposition of the matrix
Σy = OΩO′, where Ω = diag(ω1, . . . , ωn) and 0 < ωi ≤ ωj for all i > j. It can be
shown that the optimal decomposition in this sense is given by

Σy = O1Ω1O
′
1︸ ︷︷ ︸

Σŷ

+ O2Ω2O
′
2︸ ︷︷ ︸

Σu

, (7)

where Ω1 is the r×r north west block submatrix of Ω and Ω2 is (n−r)×(n−r) south
east block submatrix of Ω and O1 and O2 are defined accordingly. This decomposition,
i.e., Σŷ , Σu is unique for ωr > ωr+1. However, the factors, ξt, and the factor loadings
Λ are not unique. This is discussed in detail in Section 5. A special choice is given by

yt = O1ξt + ut, (8)

where ξt = O′
1yt and ut = yt − O1O

′
1yt = O2O

′
2yt. Note that, here, the factors ξt

are measurable (linear) functions of the observed variables yt.
The number of factors r cannot be determined from the observed process (yt), since
for every r, 1 ≤ r ≤ n, such a decomposition may be constructed. However, there are
several rules of thumbs for choosing r from data. A simple but reasonable procedure
is to plot the eigenvalues of Σy and to look for a natural cutting point. Another pro-
cedure is to look at the eigenvalues of the correlation matrix of yt and to attribute the
eigenvalues, which are smaller than one to the noise part.
Estimation in the Quasi Static PCA is straight forward. Λ, Σu and ξt are simply esti-
mated by replacing Σy by the sample variance covariance matrix Σ̂y = 1

T

∑T
t=1 yty

′
t

in Equation (7). Here, T denotes sample size. Also forecasting of factors as described
above is straight forward.
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4 Dynamic PCA

For the dynamic generalization of the PCA considered above we commence from the
spectral density fy rather than the covariance Σy and its eigenvalue decomposition,
see Brillinger (1981)

fy(λ) = O1(λ)Λ1(λ)O∗
1(λ)︸ ︷︷ ︸

fŷ(λ)

+ O2(λ)Λ2(λ)O∗
2(λ)︸ ︷︷ ︸

fu(λ)

. (9)

The model analogous to Equation (8) then is of the form

yt = O1(z)ξt + ut, (10)

where ξt = O∗
1(z)yt and ut = yt − O1(z)O∗

1(z)yt = O2(z)O∗
2(z)yt. It is shown in

Brillinger (1981) that this decomposition gives the minimal noise, in the sense that
Eu′

tut is minimal, among all decompositions where rk(Λ(z)) = r a.e.
Similar to the Quasi Static case the number of factors r is not identifiable from the
process (yt). In practise, r is chosen from data by inspecting the eigenvalues ωi(λ)
of the spectral density fy(λ). The factors ξt = O∗

1(z)yt again are linear functions
of the observed process (yt). However, in general, the filter O∗

1(z) is two-sided and
non-rational. Thus, naive forecasting of the factors by a model of the type (5) yield
infeasible forecasts for yt. This problem could be solved, in principle, by restriction
to factors obtained by causal filters O∗

1(z). However, this problem has not been solved
completely see Forni et al. (2003).
As in the Quasi Static case, estimation of Λ, fu and ξt is done by replacing fy by
some estimate in Equation (9). However, estimation of spectra is more demanding
than estimation of variance covariance matrices. In particular, for large n relatively
large sample sizes are needed for reliable estimates.

5 Quasi-static Frisch Model

Here we consider Equation (3) together with the following additional assumption:

Σu is diagonal. (11)

Of course, in the case that ut is white noise this condition is equivalent to the condition
“fu is diagonal”. By this assumption the noise part represents the (static) individual
effects for each component of yt and the factor part the (static) common features
between the components of yt. Note, that for given latent variables ŷt, the components
of yt are conditionally uncorrelated. Identifiability here is more demanding compared
to the PCA case. At this point, in more general terms, the question of solvability and
of uniqueness of solutions of Equation (4) arises. Consider first the question whether
Σy can be uniquely decomposed as the sum of Σŷ = ΛΣξΛ

′ and Σu. For given n

and r, the number of equations (i.e. the number of free elements in Σy) is n(n+1)
2

because of the symmetry of Σy . The number of free parameters on the right hand side

is nr− r(r−1)
2 +n. Now, let B(r) = n(n+1)

2 −(nr− r(r−1)
2 +n) = 1

2 ((n−r)2−n−r),
then the following cases might occur:
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• B(r) < 0: In this case we might expect non-uniqueness of the decomposition

• B(r) ≥ 0: In this case we might expect uniqueness of the decomposition

The argument can be made more precise, in particular, for B(r) > 0, generic unique-
ness can be shown, see Scherrer and Deistler (1998).
Once Σŷ is uniquely determined from Σy suitable conditions on Λ and Σξ may be
imposed in order to obtain uniqueness of Λ and Σξ from Σŷ . If Σξ is assumed to be
the identity matrix Ir then Λ is unique up to postmultiplication with r × r orthogonal
matrices, corresponding factor rotation. For a detailed discussion of different kinds of
rotations see Lawley and Maxwell (1971). If no assumption on Σξ is imposed, then Λ
is unique up to postmultiplication with arbitrary non singular matrices. Unless stated
otherwise we will assume Σξ = Ir.
Note that in the Frisch model, as opposed to PCA, the factors ξt, in general, cannot
be obtained as a function of the observations yt. Thus, for estimation of factors, the
factor process has to be approximated by a (linear) function of yt.

We consider two methods, one has been discussed in detail in Thomson (1951)
and the other one has been proposed in Bartlett (1937, 1938).

1. The regression method investigated by Thomson:
The idea, here, is to estimate ξt by a linear function of yt such that the vari-
ance of the estimation error, ξt − ξ̂t, is minimal. Therefore, ξ̂t is given by the
regression of ξt onto yt,

ξ̂T
t = Λ′Σ−1

y yt, (12)

since by the above assumptions

Eytξ
′
t = E[(Λξt + ut)ξ

′
t] = Λ. (13)

As can easily be seen, this estimator is biased in a certain sense, since
E(ξ̂T

t |ξt) = Λ′Σ−1
y (Λξt + E(ut|ξt)) �= ξt.

2. Bartlett’s method:
In his method Bartlett suggests to minimize the sum of the standardized residu-
als with respect to ξ̂t, i.e.,

min
ξ̂t

(yt − Λξ̂t)
′Σ−1

u (yt − Λξ̂t). (14)

Thus, the estimate for ξt is given by

ξ̂B
t = (Λ′Σ−1

u Λ)−1Λ′Σ−1
u yt. (15)

This estimate is unbiased in the same sense as above, if E(ut|ξt) = 0 holds true,
since E(ξ̂B

t |ξt) = (Λ′Σ−1
u Λ)−1Λ′Σ−1

u (Λξt + E(ut|ξt)) = ξt.

There is no general rule which method to apply. The decision can be based upon the
properties the factor estimates should possess. Generally one can say, that Bartlett’s
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estimate is unbiased but at the expense of a higher variability than Thomson’s estimate.

In the case where ξt and ut and, thus, yt are white noise, estimates of Λ and Σu

may be obtained by Maximum Likelihood (ML) estimation. The negative logarithm
of the Gaussian likelihood, up to a constant, has the form

LT (Λ, Σu) =
1

2
T log(det(ΛΛ′ + Σu)) +

1

2

T∑
t=1

y′
t(ΛΛ′ + Σu)−1yt =

=
1

2
T log(det(ΛΛ′ + Σu)) +

1

2
T tr((ΛΛ′ + Σu)−1Σ̂y). (16)

A likelihood ratio test for the number of factors has been suggested in Anderson and
Rubin (1956).

Forecasts for the factors ξt may be obtained by ARX models (5). However, note
that there is no general rule which factor estimates yield the best forecasts for yt.

6 Dynamic Frisch Model

Here Equation (1) together with the assumption

fu is diagonal. (17)

is considered. Again ut represents the individual influences and ξt the comovements.
The only difference to the previous section is that Λ is now a dynamic filter and the
components of ut are orthogonal to each other for all leads and lags.

A rather complete structure theory is presented in Scherrer and Deistler (1998).
Concerning estimation and specification neither a complete theory nor general meth-
ods are available. See, however, Watson and Engle (1983), Geweke (1977), Beghellis
et al. (1990), Forni et al. (2000) and Forni and Lippi (2001).

7 Reduced Rank Regression Model

Here we consider a regression model of the form

yt+1 = F Gx̃t︸︷︷︸
=ξt+1

+ut+1, t ∈ Z, (18)

where the m̃-dimensional vector process (x̃t) of explanatory variables contains pos-
sibly lagged inputs xt and lagged observed variables yt and (ut) denotes the n-
dimensional noise process. In addition we assume:

(i) (xt) and (ut) are uncorrelated, i.e. Extu
′
s = 0 ∀s, t

(ii) (xt) is (weak sense) stationary with a non-singular spectral density
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(iii) (ut) is white noise with Eutu
′
t > 0

(iv) a stability assumption analogous to (6)

The major assumption however is that β = FG is of rank r < min(n, m̃). Thus,
F ∈ Rn×r and G ∈ Rr×m̃ and Gx̃t can be interpreted as the r-dimensional factor
process (ξt+1), the matrix F can be interpreted as the corresponding factor loading
matrix. Models of this kind have been analyzed in Anderson (1958). In Anderson’s
paper, where no lagged endogenous variables as regressors are considered, it has been
shown that the maximum likelihood estimate is obtained by an OLS estimation of β
followed by a weighted singular value decomposition, where only the largest r singu-
lar values are kept.
As far as identifiability is concerned, note that F is unique only up to postmultipli-
cation by a nonsingular matrix and an analogous statement holds for G and ξt+1. We
use the singular value decomposition of β

β = UΣV ′ (19)

where U and V are orthogonal matrices of dimensions n and m̃, resp., and Σ ∈ Rn×m̃

is the matrix of singular values, σi, i = 1, . . . ,min(n, m̃), arranged in decreasing
order. The strictly positive singular values are assumed to be different and the singular
vectors, corresponding to these positive singular values, are unique up to sign change
and suitably normalized in order to obtain uniqueness.
Let β̂ denote the OLS estimator of β and let β̂ = Û Σ̂V̂ ′ denote its singular value
decomposition. The reduced rank estimator of β, denoted as direct estimator, then is
given by

ˆ̂
βD = Û1Σ̂1V̂

′
1 (20)

where Σ̂1 ∈ Rr×r is the matrix formed from the r largest singular values of Σ̂ and Û1

and V̂1, resp., are formed from the first r columns of Û and V̂ , resp.
An alternative procedure, denoted as the indirect procedure, is obtained by performing
the SVD for a suitably weighted matrix, see Anderson (1958); Deistler and Hamann
(2003). For a canonical correlations analysis one would consider

Σ−1/2
y yt+1 = Σ−1/2

y βΣ
1/2
x̃ Σ

−1/2
x̃ x̃t + Σ−1/2

y ut+1. (21)

Replacing the population second moments by their sample counterparts, consider the
SVD

Σ̂−1/2
y β̂Σ̂

1/2
x̃ = Û Σ̂V̂ ′ (22)

where β̂ is the least squares estimator. Note, Û , Σ̂ and V̂ are different from Û , Σ̂ and
V̂ mentioned above. Retaining only the r largest singular values one obtains (using an
obvious notation)

ˆ̂
βI = Σ̂1/2

y Û1Σ̂1V̂
′
1Σ̂

−1/2
x̃ , (23)

where again Û1, Σ̂1 and V̂1 are different from Û1, Σ̂1 and V̂1 in Equation (20).
Furthermore, note that (23) is the ML estimate if there are no lagged variables of yt
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contained in x̃t.

For the reduced rank model considered here, a complete model specification con-
sists of selection of input variables out of a possible large set of candidate inputs,
specification of the dynamics of the inputs and outputs and the number of factors.
Data-driven model selection may be done by an AIC or BIC-type criterion of the form

AIC(m̃, r) = log det Σ̂u(m̃,r) + d(m̃, r)
2

T

BIC(m̃, r) = log det Σ̂u(m̃,r) + d(m̃, r)
log T

T
, (24)

where d(m̃, r) = nr + rm̃ − r2 is the number of free parameters in β for a given
specification and Σ̂u(m̃,r) is the one step ahead (in sample) prediction error variance
covariance matrix corresponding to the specification indicated and to one of the
estimation procedures described above. For further details on the procedure we refer
to Deistler and Hamann (2003).

Closely related to the approach described above is the use of state space mod-
els where the state dimension is smaller than the minimum of the input and output
dimension resp.
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Detecting Longitudinal Heterogeneity in Generalized
Linear Models

Achim Zeileis

1 Introduction

Structural change is of central interest in many fields of research and data analysis: to
learn if, when and how the structure of the data generating mechanism underlying a set
of observations changes. In many situations, it is known with respect to which quantity
the structural change might occur, e.g., over time or with the increase of an explanatory
variable like income or firm size. These situations have in common that the structural
changes lead to longitudinal heterogeneity within the observations where the timing
and pattern of the change is typically unknown. One of the simplest examples for such
a structural change is a time series whose mean changes at a single breakpoint. Such a
time series is depicted in Figure 1 giving the number of youth homicides per month in
Boston between 1992(1) and 1998(5). The plot suggests that the number of homicides
varies around a constant mean up to about 1996 but drops to a lower mean at the end
of the sample. To assess whether there is evidence for such a structural change or not,
a statistical test is needed: given a model (in the example: constant mean number of
homicides) it is tested whether the data support the hypothesis that there is a stable
structure against the alternative that it changes over time.
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Figure 1: Number of youth homicides per month in Boston
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In parametric models, structural change is typically described by parameter insta-
bility. If this instability is ignored, parameter estimates are generally not meaningful,
inference is severely biased and predictions lose accuracy. For the standard linear re-
gression model, tests for structural change or parameter instability have been receiving
much attention, both in the statistics and the econometrics literature. Starting from the
recursive CUSUM test of Brown et al. (1975), a large variety of tests has been sug-
gested most of which can be broadly placed into two different classes: generalized
fluctuation tests (Kuan and Hornik, 1995) that do not assume a particular pattern of
deviation from the hypothesis of parameter constancy, and F tests (Andrews, 1993;
Andrews and Ploberger, 1994) that are built for a single shift alternative (of unknown
timing).

However, the situation where the relationship between the dependent variable and
explanatory regressors is not well described by a simple linear regression and a gen-
eralized linear model (GLM) is more appropriate has not yet been studied in detail
in a structural change context. In practice, this is important when the longitudinal
heterogeneity of choice data, ratings on a discrete scale or counts (as in the Boston
homicides example) is to be investigated. Therefore, we describe in Section 2 how
the class of generalized fluctuation tests can be extended to the GLM which is sub-
sequently applied to the Boston homicides data in Section 3 and a brief summary is
given in Section 4.

2 Generalized Fluctuation Tests in the Generalized Linear Model

In the simple linear regression model, the generalized fluctuation tests fit the model to
the data via ordinary least squares (OLS)—or equivalently via maximum likelihood
(ML) using a normal approximation—and derive a process which captures the fluc-
tuation of the recursive or OLS residuals (Brown et al., 1975; Ploberger and Krämer,
1992; Chu et al., 1995a), of the recursive or rolling/moving estimates (Ploberger et al.,
1989; Chu et al., 1995b), or of M-scores which includes ML scores (Nyblom, 1989;
Hansen, 1992; Hjort and Koning, 2002; Zeileis and Hornik, 2003). For these empirical
fluctuation processes, the limiting process under the null hypothesis of structural sta-
bility is known and therefore boundaries can be chosen that are crossed by the limiting
process (or some functional of it) only with known probability α. Hence, if the empir-
ical fluctuation process exceeds these boundaries the fluctuation is improbably large
and the null hypothesis of structural/parameter stability has to be rejected. Hjort and
Koning (2002) and Zeileis and Hornik (2003) also show how the idea of using ML
scores for capturing structural instabilities can be used in more general parametric
models and in particular in GLMs. Below, we first construct the empirical fluctua-
tion processes based on ML scores for the GLM and then outline how these can be
visualized and aggregated to test statistics.

2.1 Empirical Fluctuation Processes

Consider the GLM like in McCullagh and Nelder (1989). To fix notation, we assume
n independent observations of a dependent variable yi and a vector of regressors or
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covariates xi. The observations of the response variable are distributed independently
according to a distribution F (θ, φ) where θ is the canonical parameter and φ is the
dispersion parameter common to all yi. The following relationship is assumed for the
covariates and the mean µi of the responses:

µi = h(ηi) = h(x

i βi) (i = 1, . . . , n), (1)

where h(·) is the inverse link function, β is the vector of regression coefficients and ηi

is the linear predictor. For this model, the hypothesis of structural stability becomes

H0 : βi = β0 (i = 1, . . . , n)

which is tested against the alternative that (at least one component of) βi varies over
“time” i.

The true vector of regression coefficients β0 under the null hypothesis is usually
unknown and estimated by ML whereas φ is treated as a nuisance parameter (or is
known anyway). The resulting score function for β is

ψ(yi, xi, β) = xi h′(x

i β) V (µi)

−1(yi − µi), (2)

where h′(·) is the derivative of the inverse link function and V (µ) is the variance
function of the model. These scores yield the usual ML estimate β̂n via the first order
condition

n∑
i=1

ψ(yi, xi, β̂n) = 0. (3)

The corresponding covariance matrix Jn is given by

Jn =
1

n

n∑
i=1

h′(x

i β)2w(φ) V (µi)

−1xix


i . (4)

where the function w(·) is determined by the distribution F (for more details see
McCullagh and Nelder, 1989).

It can be easily seen that the scores ψ have zero mean under the null hypothe-
sis and one would expect systematic deviations from zero in the case of longitudinal
structural changes over i. To capture such changes it is natural to consider the empiri-
cal fluctuation process of partial sums of the scores.

Wn(t, β) = n−1/2

�nt�∑
i=1

ψ(yi, xi, β). (5)

Under H0, the behavior of the empirical fluctuation process Wn(·, β̂n) is governed by
a functional central limit theorem:

Ĵ−1/2
n Wn(·, β̂n)

d−→ W 0(·), (6)

where Ĵn is some consistent covariance matrix estimate and W 0(·) denotes the stan-
dard Brownian bridge. For a proof see Zeileis and Hornik (2003).
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2.2 Test Statistics

Given an empirical fluctuation process efp(t) = Ĵ
−1/2
n Wn(t, β̂n), we have to judge

whether the fluctuation in efp(·) is extreme compared to the fluctuation of a Brownian
bridge W 0(·). To accomplish this, the empirical fluctuation process is typically aggre-
gated to some test statistic by some scalar functional λ(·) which is able to measure the
fluctuation. This is then compared to the distribution implied by applying the same
functional to a Brownian bridge. Formally, it can be shown that

λ(efp)
d−→ λ(W 0). (7)

A typical choice for λ would be the maximum of the absolute values of the empirical
fluctuation process which is also used in the application to the Boston homicides data
in Section 3. Given a critical value cα for this test statistic, every component of the
process which exceeds cα can be seen to violate H0 at level α which can be used for
carrying out the significance test visually as described in the following.

2.3 Visualization

In their seminal paper Brown et al. (1975) point out that the generalized fluctuation
test framework

[. . . ] includes formal significance tests but its philosophy is basically that
of data analysis as expounded by Tukey. Essentially, the techniques are
designed to bring out departures from constancy in a graphic way in-
stead of parametrizing particular types of departure in advance and then
developing formal significance tests intended to have high power against
these particular alternatives. From this point of view the significance
tests suggested should be regarded as yardsticks for the interpretation of
data rather than leading to hard and fast decisions. (Brown et al., 1975,
pp. 149–150)

This emphasizes two points we will use in the application in the following section:
first, visualization of fluctuation tests is important, and second, the tests are not only
significance tests but also explorative tools. In a structural change framework, it is
usually not only of interest to find some model that fits the data but also to be able
to identify and interpret the structural changes which are of high interest for practi-
tioners and researchers. One example for such a situation is the Boston homicide data
described above where it is not only of high interest if but also when the intervention
became effective.

As indicated above, rejection of the null hypothesis by the generalized fluctuation
test is closely related to the situation that the empirical fluctuation process exceeds a
boundary that was derived from the limiting process W 0. In the simplest case, this
boundary is constant and equal to cα. If the empirical fluctuation process crosses this
boundary there is evidence (at significance level α) for a structural change. Further-
more, the shape of the process conveys information about the type of change: in the
case of a single abrupt shift in the coefficients βi the mean function of the process will
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have a single peak at about the time of the shift, thus allowing for visual identification
of the breakpoint.

3 The Boston Homicides Data

To address the problem of continuing high homicide rates in Boston, in particu-
lar among young people, a policing initiative called the “Boston Gun Project” was
launched in early 1995. This project implemented what became known as the “Opera-
tion Ceasefire” intervention in the late spring of 1996 which aimed at lowering homi-
cide rates by a deterrence strategy (Kennedy et al., 1996). To test whether this project
was effective in lowering the number of youth homicides we apply the results estab-
lished for the generalized fluctuation test above to the data from Figure 1. As is natural
for count data, a Poisson GLM is used to describe the mean monthly number of youth
homicides and its stability is assessed using the empirical fluctuation process efp(t)
which can be seen in Figure 2. As the process crosses its boundary c0.05 indicated
by the horizontal lines, there is evidence for a decrease of the number of homicides.
Furthermore, the intervention seems to have become effective gradually as there is no
sharp peak in the process but rather a longer time of increased fluctuation. However,
the change seems to have occurred around early 1996 when the Operation Ceasefire
was implemented (dotted vertical line). The corresponding p value is < 0.0001.
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Figure 2: Poisson CUSUM test for Boston homicides data

All computations have been carried out using the R system for statistical comput-
ing (R Development Core Team, 2003) and in particular the package strucchange

(Zeileis et al., 2002).
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4 Summary

In this article, we address the problem of detecting longitudinal heterogeneity in gener-
alized linear models which is accomplished by a formal significance test for parameter
instability accompanied by visualization techniques which allow for carrying out the
test graphically and exploring the structure of the data.
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Ensemble Methods for Cluster Analysis

Kurt Hornik and Friedrich Leisch

1 Introduction

Ensemble methods create solutions to learning problems by constructing a set of in-
dividual (different) solutions (“base learners”), and subsequently suitably aggregat-
ing these, e.g., by weighted averaging of the predictions in regression, or by taking
a weighted vote on the predictions in classification. Such methods, which include
Bayesian model averaging (Hoeting et al., 1999), bagging (Breiman, 1996) and boost-
ing (Friedman et al., 2000) have already become very popular for supervised learning
problems (Dietterich, 2002).

Employing ensemble methods for cluster analysis can be attractive or even neces-
sary for several reasons, the main three being as follows (see e.g. Strehl and Ghosh,
2002):

• To improve quality and robustness of the results. In general, aggregation yields
algorithms with “low variance” in the statistical learning sense so that the re-
sults obtained by aggregation are more “structurally stable”. For example, many
clustering algorithms are sensitive to random initializations, choice of hyper-
parameters, or the order of data presentation in on-line learning scenarios. An
obvious idea for possibly eliminating such algorithmic variability is to con-
struct an ensemble with (randomly) varied characteristics of the base algorithm.
This idea of “sampling from the algorithm” is used e.g. in the voting and vot-
ing/merging approaches of Dimitriadou et al. (2002, 2001), see also Section 3.
Another idea is to try to improve quality via varying the data by resampling or
reweighting. “Bagged Clustering” (Leisch, 1999), see also Section 2, constructs
bootstrap samples; a similar approach is used in Dudoit and Fridlyand (2002).
Other possible strategies include varying the “features” used for clustering
(e.g., using various preprocessing schemes), and constructing “meta-clusterers”
which combine the results of the application of different base algorithms as an
attempt to reduce dependency of results on specific methods.

• To reuse existing knowledge. In applications, it may be desired to reuse legacy
clusterings in order to improve or combine these. Typically, in such situations
only the cluster labels are available, but not the original features or algorithms.

• To accommodate the needs of distributed computing. In many applications, it is
not possible to use all data simultaneously. Data may not necessarily be avail-
able in a single location, or computational resources may be insufficient to use a
base clusterer on the whole data set. More generally, clusterers can have access
to either a subset of the objects (“object-distributed clustering”) or the features
(“feature-distributed clustering”).

261
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To fix notations and terminology, suppose we are given a set X of n objects, each
holding the measurements on the same variables or features. A K-clustering of X
assigns to each xi in X a (sub-)probability K-vector C(xi) = (µi1, . . . , µiK) (the
“membership vector” of the object) with µi1, . . . , µiK ≥ 0,

∑
k µik ≤ 1. Formally,

C : X → M ∈ R
n×K ; M ≥ 0, M1 ≤ 1.

This framework includes both “crisp” (where each C(xi) is a unit vector) and fuzzy
clustering, as well as incomplete (e.g., completely missing) results where

∑
k µik < 1.

Changing the labels (which correspond to the columns of the membership matrix M )
amounts to replacing M by MΠ, where Π is a suitable permutation matrix. Finally, a
clusterer is an algorithm producing a clustering.

Given an ensemble of clusterings, the following key distinction can be made for
possible aggregation strategies to determine a “consensus” clustering. If each clus-
tering is of the vector quantization type, aggregation can be based on the underlying
prototypes (provided that these are available). Otherwise, if only the memberships
are available, aggregation can proceed by finding a suitable clustering which “opti-
mally represents” the base clusterings. “Bagged Clustering” and “Voting” are two very
promising examples from these two aggregation categories, and will be described in
more detail in Sections 2 and 3, respectively.

2 Aggregation Based on Prototypes

A large number of partitioning algorithms represent clusters by one prototype ck for
each cluster and (for crisp partitions) assign each observation xi to the cluster of the
closest prototype. Hence, the cluster memberships µik can be written as

µij =

{
1, ∆(xi, cj) = mink ∆(xi, ck)
0, otherwise

for a suitable distance measure ∆. Fuzzy partitions assign memberships inversely pro-
portional to distance (or ranks of distance). The well known K-means algorithm uses
Euclidean distance as ∆ and cluster means as prototypes.

If we are given B clusterings of the same set of objects X with K prototypes each,
we may view the set of B × K prototypes cbk as a new data set that can be used to
assess the structural stability of the clusterer. Prototypes that show up often indicate
“typical” clusters, while rare prototypes may indicate random fluctuations.

The bagged clustering algorithm (Leisch, 1999) uses this approach to find struc-
turally more stable partitions: By repeatedly training on new data sets one gets differ-
ent solutions which should on average be independent from training set influence and
random initializations. A collection of B training sets can be obtained by sampling
from the empirical distribution of the original data X , i.e., by bootstrapping (Efron
and Tibshirani, 1993).

The complete algorithm works as follows:

1. Construct B bootstrap training samples X1, . . . ,XB by drawing with replace-
ment from the original sample X .
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2. Run the base clusterer (K-means, competitive learning, . . . ) on each set, result-
ing in B×K prototypes c11, c12, . . . , c1K , c21, . . . , cBK where K is the number
of prototypes used in the base method and cij is the j-th prototype found using
Xi.

3. Combine all prototypes into a new data set C = {c11, . . . , cBK}.

4. Run a hierarchical cluster algorithm on C, resulting in the usual dendrogram.

5. Let c(x) ∈ C denote the prototype closest to x (minimum distance ∆). A parti-
tion of the original data can be obtained by cutting the dendrogram at a certain
level, resulting in a partition C1

B, . . . , Cm
B , 1 ≤ m ≤ BK , of set C. Each point

xi ∈ X is now assigned to the cluster containing c(xi).

Bagged clustering combines the prototypes using hierarchical clustering because dif-
ferent data structures (convex, not convex, . . . ) can be accounted for using different
linkage methods and the resulting dendrograms can be easily interpreted by practition-
ers. But many other techniques could be used instead. Unfortunately it is not possible
to compare prototypes of partitions directly (e.g., c11 with c21 etc.) due to the rela-
belling problem, see also Section 3 below for a more detailed discussion of this most
important problem for all cluster ensemble methods.
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Figure 1: Cassini problem: 200 centers placed by bagged clustering (left) and final
solution (right) by combining the 200 centers using hierarchical clustering.

Throughout this paper we use a 2-dimensional artificial data set called “Cassini”
to demonstrate some aspects of cluster ensembles. The data set has 3900 objects in
3 groups (see Figure 1): 900 in the interior, 1500 each in the outer groups, all drawn
uniformly from the respective shapes. The problem is “hard” for VQ-type base clus-
terers due to non-convexity of the outer groups, e.g., for the K-means algorithm with
K = 3 the correct solution is a local minimum only, the global minimum of the K-
means objective function splits one of the outer groups into two halves and ignores
the inner group.

We apply the bagged cluster algorithm to this data using B = 10 bootstrap train-
ing samples and K-means as base method with K = 20 centers in each run. The
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Figure 2: Cassini problem: Hierarchical clustering of 200 bagged cluster centers using
single linkage. The upper plot shows the usual dendrogram. The lower plot shows the
height of the splits together with their first differences, which can be used to determine
the number of clusters (here 3).

left plot in Figure 1 shows the resulting 200 centers. We then perform hierarchical
clustering (Euclidean distance, single linkage) on these 200 points, see Figure 2. The
three-cluster partition which results from cutting the dendrogram into its three main
branches can be seen in the right plot in Figure 1. It recovers the three clusters without
error. Note that direct hierarchical clustering of this data set is infeasible due to its
size.

3 Aggregation Based on Memberships

If aggregation is to be based on cluster memberships M1, . . . , MB only, a natural way
to proceed is by looking for clusterings which “optimally represent” the ensemble.
(Note that due to possible relabeling we cannot simply compute average member-
ships.) Suppose that d(M, M̃) measures dissimilarity (or distance) between two clus-
terings C and C̃ with corresponding membership matrices M and M̃ , respectively.
Given d, we can for example look for Ms which minimize average dissimilarity, i.e.,
which solve

M∗ = argmin
M∈M

∑B

b=1
d(M, Mb)
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over a suitable set M of membership matrices M . If M contains all crisp clusterings,
Gordon and Vichi (1998) call M ∗ the median partition, if M = {M1, . . . , MB} it is
the medoid partition.

We refer to this minimization problem as the (simple) cluster ensemble prob-
lem. Many extensions are possible, such as minimizing

∑
b ωbd(M, Mb) + λΦ(M),

where the ωb are weights quantifying “importance”, and Φ can e.g. measure fuzziness,
thus converting the above hard-constrained simple problem into a soft-constrained ex-
tended one. Also, one could consider criterion functions resulting in yet more robust
solutions, such as the median or trimmed mean of the distances d(M, Mb).

Unfortunately, the simple cluster ensemble problem is computationally very hard.
Even if “only” crisp solutions are sought, it would in general be necessary to search
all possible crisp clusterings (the number of which is of the order (K + 1)n) for
the optimum. Such exhaustive search is clearly impossible for most applications. Lo-
cal strategies, e.g. by repeating random reassigning until no further improvement is
obtained, or Boltzmann-machine type extensions (Strehl and Ghosh, 2002) are still
expensive and not guaranteed to find the global optimum.

Gordon and Vichi (1998) use the Rand index (Rand, 1971) as distance measure
d, while Krieger and Green (1999) use the Rand index corrected for agreement by
chance (Hubert and Arabie, 1985). Solving for M ∗ is NP-hard in both cases, hence
the corresponding mathematical programming problems scale bad in the number of
observations. Krieger and Green (1999) propose a greedy search algorithm together
with “smart” initialization.

The situation can considerably be improved if more information on the structure of
the optimal clustering is available. Dimitriadou et al. (2002) use the distance measure

dDWH(M, M̃) = min
Π

‖M − M̃Π‖2

where the minimum is taken over all permutation matrices Π. In the crisp case, dDWH

counts (a multiple of) the number of differently labeled objects after optimal relabel-
ing. For this distance measure, one can show that the optimal (fuzzy) solution M ∗ to
the cluster ensemble problem is of the form

M =
1

B

∑B

b=1
MbΠb

for suitable permutation matrices Π1, . . . ,ΠB . In the all-crisp case, the aggregated
memberships are obtained by simple majority voting after relabeling, which motivates
the name “voting” for the proposed framework. Simultaneous determination of the
permutation matrices still being computationally hard, the above representation moti-
vates a greedy forward aggregation algorithm where in each step b, a locally optimal
Π∗

b for relabeling is determined, and the optimal aggregationM ∗
b of M1Π

∗
1, . . . , MbΠ

∗
b

is obtained by on-line averaging. The locally optimal permutation matrix can be deter-
mined via linear programming using the so-called Hungarian method for solving the
weighted bi-partite graph matching problem (e.g., Papadimitiou and Steiglitz (1982)).
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Formally,

Π∗
b = argmin

Π
dDWH(M∗

b−1, MbΠ)

M∗
b = (1 − 1/b)M∗

b−1 + (1/b)MbΠ
∗
b

The final M∗
B is the consensus clustering obtained by “voting”.

Figure 3 shows the improvements on the Cassini problem obtained by successive
voting using K-means with K = 3 clusters as the base learner. Figure 4 demonstrates
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Figure 3: Aggregation by voting on k-means

how voting on the aggregated results of B = 50 runs of K-means, Hard Competitive
Learning, and an on-line version of fuzzy C-means further improves performance,
resulting in (almost) perfect learning of the underlying structure.

4 Summary and Outlook

The main focus of this paper is on aggregation strategies for cluster ensembles. It
may be desirable to subject the thus obtained consensus clustering to further computa-
tions, such as for collapsing labels representing similar groups, using for example the
“Merging” procedure in Dimitriadou et al. (2001). Cluster ensembles can also be used
for tuning hyper-parameters of clustering algorithms, such as determining the number
of clusters to be employed (Dudoit and Fridlyand, 2002).

Cluster ensembles have already been successfully employed in a wide range of
application domains, including market segmentation (Dolničar and Leisch, 2003) and
the analysis of fMRI data (Barth et al., 2003). Nevertheless, there is still room for
substantial improvements of the underlying theory. For example, it is currently not
known under which conditions to solutions to the (unconstrained) cluster ensemble
problem can be represented as convex combinations (“weighted voting”) of the possi-
bly relabeled membership matrices (including the result of Dimitriadou et al. (2002)
as a special case), or can be computed in polynomial time. Such knowledge could re-
sult in the construction of substantially more efficient aggregation algorithms, making
large-scale application problems computationally tractable.
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Figure 4: Aggregation by voting on voting on k-means, Hard Competitive Learning,
and fuzzy c-means
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Open and Extensible Software for Data Analysis in
Management Science

Kurt Hornik and Friedrich Leisch

1 Introduction

Management science deals by definition with the analysis and possible solution of
managerial problems using “scientific” methods. In the information age, knowledge is
increasingly stored and provided by computers. Terms like “knowledge warehouse”
for the database of an enterprise are a good symptom for the central place data play
in management today. In many cases making managerial decisions is not constrained
by the availability of data, but by the ability to efficiently use the information flood
modern computers create.

This turns (significant branches of) management science more and more into a
computational science relying on efficient software for data analysis and decision sup-
port. Of course management science is not the only discipline affected by this change
of paradigm. E.g., statistics also has shifted from a mainly mathematical discipline to
a science with strong roots in both mathematics and computer science. The computer
is not a mere tool for efficient data handling, it has enabled us to think about prob-
lems in new ways and many techniques would be impossible without it. The popular
Bayesian models in marketing science rely on Markov Chain Monte Carlo sampling.
Simulation-based techniques can help to fill gaps in understanding theoretical and
mathematical procedures as well as provide numerical approximations to computa-
tionally infeasible exact solutions.

Complicated numerical algorithms must often be used even when we have sound
theoretical results. Implementation of these procedures can be just as difficult as the
construction of proofs. However, while publication of research papers is based on the
verification or proper referencing of proofs for every theorem, there is a tendency to
accept seemingly realistic computational results, as presented by figures and tables,
without any proof of correctness. Yet, these results are critical for justifying the pro-
posed methods and represent a substantial percentage of the content in many journal
articles. In this paper we will discuss how an open source environment for data anal-
ysis can help to efficiently reuse knowledge concerning the computational aspects of
data analysis in management science, and how to make computational research re-
producible (Buckheit and Donoho, 1995; Schwab et al., 2000; Leisch and Rossini,
2003).

269



270

2 R: An Environment for Statistical Computing

2.1 The language S

Statistical computing is concerned with turning statistical ideas into software. In doing
so, state-of-the-art methodology from theoretical statistics, mathematics and computer
science is to be utilized. To be able to satisfy the typical needs in statistical comput-
ing, software environments employed must provide a variety of features, including a
scripting language for extending the base system and interactive usage, interfaces to
programming languages such as C or Fortran, support for adequate high-level rep-
resentation of complex statistical data types and the “generic” statistical operations
performed with these (i.e., support for functional object-oriented programming), and
a powerful graphics system.

The most prominent software environment for data analysis and graphics which
meets the above requirements is the S system which has been developed by John
Chambers and colleagues at Bell Laboratories over the past 30 years. The results
of this development effort have been recognized by the Association of Computer
Machinery Software System Award 1998 to John Chambers (“for the S language
. . . which has forever altered the way how people analyze, visualize and manipu-
late data . . . ”). The books by Becker et al. (1988), Chambers and Hastie (1992) and
Chambers (1998)—also commonly referred to as the “Blue”, “White” and “Green”
books—describe key features of the S language. A commercial implementation of
the S language called ‘S-PLUS’ is available from Insightful Corporation (http:
//www.insightful.com).

R (R Development Core Team, 2003) is an open source implementation of the
S language released under the GPL (“GNU S”) and freely available from http:

//www.R-project.org. It is being developed for the Unix, Windows and Macintosh
families of operating systems by an international development team (“R Core”), cur-
rently consisting of 16 individuals, including the authors of this paper. New versions
of R are made available twice per year (spring/fall). Since 2003 the Vienna-based “R
Foundation for Statistical Computing” acts as copyright holder, see also Hornik and
Leisch (2002). It is a not for profit foundation whose general goals are to provide sup-
port for the continued development of R, the exploration of new methodology, and
teaching and training of statistical computing.

2.2 Features of R

An R distribution provides a run-time environment with graphics, a debugger, access
to certain system functions, the ability to run programs stored in script files, and func-
tionality for a large number of statistical procedures, see Section 3 below. The data
analytic techniques described in such popular books as Venables and Ripley (2002),
Pinheiro and Bates (2000), or Therneau and Grambsch (2000) have corresponding
R packages (MASS, nlme, and survival). In addition, there are packages for boot-
strapping, various state-of-the-art machine learning techniques, and spatial statistics
including interactions with GIS. Other packages facilitate interaction with most com-
monly used relational databases, importing data from other statistical software, and
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dealing with XML.
R provides a rich resource of both low-level graphics functions and high-level vi-

sualization tools such as contour, mosaic, and condition plots. Low-level functionality
includes drawing of lines, points and polygons with fine control of color and line types.
Mathematical annotation in plot text is available via input expressions reminiscent of
TEX constructs (Murrell and Ihaka, 2000). Users can create new visualization tools
using the existing graphics components as building blocks. Production quality output
can be rendered on-screen or in a variety of common formats, e.g., Postscript, PDF,
PNG and JPEG.

Recent developments of R’s graphics capabilities feature the introduction of two
new packages called grid and lattice, which represent a move away from the tradi-
tional pen-and-paper rendering model. They involve a redesign of the graphics layout
capabilities plus some support for interaction, and an implementation of Trellis graph-
ics.

The core of R is an interpreted computer language which allows branching and
looping as well as modular programming using functions. Most of the user-visible
functions in R are written in R. It is possible for the user to interface to procedures
written in the C, C++, or FORTRAN languages for efficiency. Data structures include
arrays, lists, and data frames (a construct designed to hold measurements in a cases by
variables layout). Many statistical models can be expressed compactly using formula
notation. R supports an object-oriented paradigm which allows users to define their
own classes and methods, however, R is a functional language with an evaluation
model which is based on Scheme (Gentleman and Ihaka, 2000). In essence, everything
in R is an object and hence users can easily perform computations on the language.

2.3 R Package Management

In addition to providing an implementation of the S language, two of the key strengths
of R are its system for bundling extensions into so-called “packages”, and its facili-
ties for quality control which can be applied to both the base system and the extension
packages. Packages gather meta-information, R code and documentation, and possibly
much more, including data sets, demos, additional (non-R) code that needs to be com-
piled or interpreted, additional documentation, and self-tests for correct functionality,
in a structured layout. There are tools for “checking” them and “building” them into a
package source file which subsequently allows for distribution and typically also for
plug-and-play installation of the package on all supported platforms, also from within
R. It is even possible to automatically update installed packages via the web.

The quality control suite include various tools for analyzing R code and documen-
tation which detect common coding errors or problems and verify completeness and
correctness, facilities for computing on packages, and run-time mechanisms for the
documented examples as well as additional regression or verification tests. They form
the core of a rigorous quality assurance system for both the R base system and existing
repositories of R extension packages, most notably the CRAN repository: changes to
the R source code are acceptable only if they pass a standard suite of quality control
tests (“make check”). Packages distributed via CRAN must pass a similar suite (“R
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CMD check”, the mechanism for checking packages mentioned above) upon entry,
and the tests are re-run on a daily basis for both the current release and development
versions of R on all packages in the repository, with various procedures to remedy de-
tected problems in place. By the time of a release (currently, new R releases are made
every 6 months), all distributed packages must pass the test suite, ideally without any
warnings.

3 R and Management Science

R offers researchers in management science access to an amazingly complete collec-
tion of state-of-the-art computational tools for data analysis, including

• linear and generalized linear models, nonlinear regression, random and mixed
effects, multinomial logit models

• classical parametric and nonparametric tests
• time series modelling (ARIMA, GARCH, . . . )
• hierarchical, partitioning and fuzzy clustering, feature maps
• finite mixtures models and latent class regression
• factor analysis, correspondence analysis, structural equation models
• regression and classification trees, bagging, random forests
• neural networks, support vector machines
• smoothing, generalized additive models, MARS
• bootstrap

and much more.
As a comprehensive overview of all R packages that may be useful in management

science is far beyond the scope of this paper, we will concentrate on two particular
examples which are very important, e.g., in marketing science: market segmentation
and structural equation models.

3.1 Market Segmentation, GLIMMIX and FlexMix

Market segmentation tries to group heterogeneous consumer populations into (more)
homogeneous subpopulations. There are two fundamentally different ways of deter-
mining segments in a marketplace: If management knows exactly which consumer
characteristics are relevant for grouping individuals, the market can simply be split up
on the basis of these criteria., this also known as a priori segmentation (e.g., Mazanec,
2000). If, however, management does not have enough prior knowledge to suggest rel-
evant grouping characteristics, segments have to be found or constructed on the basis
of information provided by those customers. Typically such information would be the
result of an empirical survey or, for instance, a database resulting from a customer loy-
alty program. This information is used to compute groups of similar customers based
on available data and known as a posteriori segmentation.

Most clustering methods can be (and have been) used for market segmentation,
recent improvements include our own work on cluster ensembles, see chapter “En-
semble Methods for Cluster Analysis” in this volume. Wedel and Kamakura (2001)
recommend finite mixture models and latent class regression as state-of-the-art, see
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also Williams (2000).
Numerous applications of mixture models have been proposed in the marketing

literature, including many extensions and special cases. E.g., mixtures of multinomial
logit models can be used for estimating choice models that account for unobserved
consumer heterogeneity and mixture models with concomitant variables were used
by Gupta and Chintagunta (1994) for profiling market segments based on purchase
behavior with respect to demographic variables.

There exists an abundance of software packages for estimating finite mixture mod-
els. Most packages, including the commercial GLIMMIX package1 accompanying
Wedel and Kamakura (2001), are stand-alone applications which can handle a few
special cases only. Usage requires familiarization with the software and the tedious
task of data import/export into the mixture modelling software. Especially a compar-
ison of different model specifications or model estimation methods is difficult. Fur-
thermore, for post-processing and visualization of results these have to be exported
to the user’s favorite data analysis environment. This is at least inconvenient, because
users have to learn many different tools and spend a lot of time transferring data from
one program to another. However, the mere existence of software implementing the
methods proposed by Wedel and Kamakura (2001) is probably one of the key factors
that makes the book a central references in market segmentation, as interested readers
can easily try the models on their own data.

FlexMix (Leisch, 2003) is an R package for finite mixtures of regression models
containing the GLIMMIX models as a special case. The main design principle was
to create an open framework for fitting finite mixtures with the EM algorithm that
can easily be extended. If an R function for maximum likelihood estimation of the
parameters of a mixture component is implemented in R, plugging it into FlexMix is
straightforward. This makes it an ideal tool for both practitioners and method develop-
ers. FlexMix uses the usual formula notation for model specification in S (Chambers
and Hastie, 1992), hence integrates smoothly into the comprehensive computational
environment R and is easy to use for practitioners already using R (or S-PLUS) for
data analysis. In addition, method developers can rapidly try out new mixture models,
as they only have to provide the M-step of the EM algorithm, with all data handling
and user interfaces already taken care of by FlexMix.

Two of the main advantages of using an R extension package rather than a stand-
alone application are: R is a general purpose statistical computing environment, hence
it can be used for all steps of data analysis, not only the fitting of mixture models. Both
R itself and most extension packages (including FlexMix) are open source, hence can
be re-used and easily be extended by other users.

3.2 Graphical Models

Structural equation models (SEMs, e.g., Bollen, 1989) are a good example how strong
the interaction between theoretical research and applications on the one hand, and
software implementations on the other hand, can be. This class of models is more
commonly known as “LISREL models” in management science, named after the most

1Science Plus Group (formerly ProGAMMA), http://www.scienceplus.nl/
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popular software package2 implementing the model. SEMs analyze the relationships
among observed and unobserved variables, e.g., the effects of consumer attitudes and
intentions on product choice, see Leeflang et al. (2000) and references therein for
examples.

Closely related to SEMs are the so-called graphical models (e.g., Edwards, 2000),
which can be used to deal with concepts like causality and conditional independence
(e.g., between brands and choices given the partitions in a market segmentation). How-
ever, although graphical models have now been around for a long time and have shown
to have a wide range of potential applications, software for graphical models is cur-
rently only available in a large number of specialized packages, such as BUGS, CoCo,
DIGRAM, MIM, TETRAD and others3. Therefore, we have started an initiative called
“gR” (“gRaphical Modeling in R”, (http://www.R-project.org/gR/) by an SFB-
sponsored workshop (gR2002) in Vienna with the purpose of providing next genera-
tion graphical models in R.

Bringing graphical modeling into R provides much more than “just” algorithmic
challenges. The current modeling facilities of R are based on a variant of the formula
calculus by Wilkinson and Rogers (1973) also used in GLIM. This is at least inconve-
nient, but in fact insufficient, for specifying graphical models. In addition, modeling
currently always occurs as fitting models to given data: there is no notion of com-
puting on abstract model objects per se. In a Bayesian context, fitting can be seen as
determining a sampler, which does not integrate with the current views of fitted mod-
els. Via the gR project, a new system for statistical modeling with R will have to be
developed.

4 Conclusions

Software development has become an important part of management science, although
often only “behind the scenes”. More and more papers present results that are based
on complicated simulations or numerical techniques and the percentage of research
related to computations is continuously increasing. Although many researchers would
never call themselves “software developers” they spend considerable amounts of time
programming simulation studies or writing a prototype implementation of a new al-
gorithm to be able to benchmark it against the state-of-the-art.

Reproducibility of results and incremental development by reuse of available
knowledge have been two of the main principles of science throughout the centuries.
If we want to make the computational aspects of management science adhere to these
principles, open source software can help a lot. To reproduce tables and figures which
are the result of complicated computations, a superficial description of how the results
were obtained is in many cases not sufficient to reproduce them. In fact, often only the
code used to obtain the results will allow others to verify them.

Proposing a new data analytic technique in a paper without providing a reference
implementation of the algorithm means that everybody who wants to try the method

2Scientific Software International, http://www.ssicentral.com/
3See http://www.R-project.org/gR/ for a link collection
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has to reinvent the wheel by reimplementation. Providing code as proprietary soft-
ware is much better than nothing, but hinders incremental improvements because it is
hard to try modifications of existing techniques. The success of open source software
projects like the Linux operating system or the R environment for statistical computing
are based on the fact that anybody can and may improve the existing code (Torvalds,
1999; Dafermos, 2001). Obviously closed source code cannot be part of the scientific
output if computations shall be reviewed by the scientific community, hence conve-
nient tools for distributing scientific open source software are needed. R provides both
a comprehensive environment for data analysis as well as the mechanism to easily
share methodology via its packaging system.
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