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PREFACE
I am pleased to present volume forty-five of Advances in Clinical Chemistry

series for the year 2008.

In the first chapter of this volume, the role of gonadal inhibins as diagnostic

markers in human pathophysiology is explored. This chapter highlights the

development of specific immunoassays that helped to elucidate this important

hormone in biochemical control systems. The clinical utility of plasminogen

activators and their inhibitors is reviewed with respect to their pleiotropic roles

in neoplastic growth including fibrinolysis, cell migration, and angiogenesis.

Special emphasis is put on their role in breast cancer. The continuing evolution

of multiple analyte profiling is also explored in this volume with respect to its

useful andwidespreadapplication in complexbiological systems.An interesting

chapter evaluates the use of immune biomarkers in clinical trials. This chapter

includes multiplex, genomic and proteomic technology for cytokine analysis.

Biochemical indices of brain function are explored through the use of dietary

modulation in another chapter that brings together biochemical and physio-

logic aspects ofmental health. The role of gonadotropins inAlzheimer’s disease

is explored in a chapter that comprehensively reviews etiologic, epidemiologic,

and pathologic evidences in the literature. The use of gonadotropins as specific

therapeutic targets is also investigated. A chapter on kynurenines explores

the important biochemical and pathophysiologic roles of this key enzymatic

pathway in immunosuppression. Lastly, the prognostic significance of tumor-

associated macrophages as a human defense mechanism is reviewed with

respect to their pro- or antitumor activity.

I extend my appreciation to each contributor of volume forty-five and also

thank colleagues who contributed to the peer review process. I extend my

most sincere thanks to my editorial liaison at Elsevier, Ms. Pat Gonzalez, for

her advice and continued support.

I hope the first volume of 2008 will be enjoyed by our readership. As

always, I warmly invite comments on past volumes and suggestions for

future review articles for the Advances in Clinical Chemistry series.

In keeping with the tradition of the series, I would like to dedicate volume

forty-five to my brother Keith.

GREGORY S. MAKOWSKI
xiii
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1. Abstract

Over the past 75 years, many publications have focused on measurement

of inhibin concentration and/or activity in biological samples in order to
Inc.
rved.
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understand its role in physiology and disease. This chapter highlights the

accomplishments within this area of research over the past decade including

development of specific inhibin assays. Inhibin A is a marker of dominant

follicle and corpus luteum activity and decreases in polycystic ovary syndrome

(PCOS). Inhibin A increases in gestational diseases such as pre‐eclampsia and

fetal Down’s syndrome, and this increase in inhibin A improves early diagnosis

of both conditions. The measurement of inhibin A in women with threatened

abortion provides useful information about the likelihood of pregnancy loss.

Inhibin B increases markedly in women with granulosa cell tumor and appears

closely related to gametogenesis in men, that is, reflecting Sertoli cell activity.

On the contrary, Inhibin B decreases in womenwith declining ovarian function

and correlates with female response to ovulation induction. This review

evaluates the biochemical significance of inhibins including their use in clinical

practice.
2. History and Background

Inhibin is a gonadal hormone that exerts specific negative feedback on

pituitary secretion of follicle stimulating hormone (FSH). The existence of

inhibin was postulated in 1923 by Mottram and Cramer who observed

hypertrophy of pituitary cells after irradiation of the testis of adult rats [1].

McCullagh [2] subsequently investigated this phenomenon by injecting

a water‐soluble extract from bovine testes and found that it could inhibit

hypertrophy of the pituitary and thus named the active, water‐soluble
principle ‘‘inhibin’’ [2].

The concept of inhibin was refined after the discovery of two separate

pituitary hormones, FSH and luteinizing hormone (LH), which together

regulate the gonadal function. Klinefelter et al. [3] observed that serum levels

of FSH were elevated in oligo‐ or azoospermic men. Heller and Nelson [4]

suggested that the increased serum levels of FSH were caused by a lack of

utilization of FSH by the defective seminiferous tubules. Some groups [5, 6]

showed that the injection of water‐soluble testicular extracts into rats

could suppress peripheral FSH levels. de Jong and Sharpe [7] also found

FSH‐suppressing activity in ovarian follicular fluid. Little, however, was

understood about the mechanism of action of inhibin on pituitary cells

until Franchimont et al. [8] demonstrated that the addition of inhibin‐
containing preparations to pituitary cells caused an increase in the secretion

of cGMP and a decrease in cAMP secretion. This finding was then followed

by Jenner [9] who speculated that the decrease in cAMP in incubated

hemipituitaries is followed by a decrease in the synthesis of FSH.
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The combination of an FSH radioimmunoassay (RIA) and an in vitro

primary pituitary cell culture led to the purification of inhibin from

bovine [10] and porcine [11–13] follicular fluids. Cloning established the

protein sequence of inhibin as a 32‐kDa dimeric glycosylated molecule con-

sisting of an � and a � subunit. It soon became clear that there were two

forms of inhibin. Each contains a common � subunit associated with either

�A (inhibin A) or �B (inhibin B) subunits that also possess a high degree of

homology (Table 1) [12]. Inhibin A and inhibin B were found to be equipo-

tent in the rat pituitary cell bioassay [14], but in the sheep pituitary cell

bioassay [10], inhibin A was much more potent than inhibin B. During the

purification in bovine, it became clear that there was a large amount of free

� chain inhibin that had no bioactivity [10] and could potentially interfere

with quantitative assay unless the models were specifically configured to

ignore its presence. Initially, inhibin was identifiable as a distinct entity

only by bioassays [15–18]. These, of course, were of limited specificity, and

generally unsuitable for use with complex body fluids. The development of

highly specific and sensitive immunoassays proved essential in advancing the

study of inhibin in physiologic as well as pathophysiologic conditions.

The original Monash RIA [19] was widely used in physiological studies

before it was realized that it was detecting mostly free � subunits rather than

dimeric bioactive inhibin forms in human body fluids [20]. The breakthrough

in our understanding of the biology of inhibin came when Groome

and collaborators established a specific immunoassay for the measurement

of dimeric inhibin A in the menstrual cycle [21]. An assay for measurement of

dimeric inhibin B was also subsequently developed by this group [22]. Both

assays have been found to be useful for many clinical applications, some

of which are detailed below.
TABLE 1

SCHEMATIC REPRESENTATION OF PRECURSOR AND MATURE FORMS OF INHIBIN A AND

INHIBIN B AND MATURE FORMS OF ACTIVIN

Structure Molecular weight (kDa)

�‐Subunit precursor � Chain pro þ �N þ �C 55

pro‐�C pro þ �C 26

�‐Subunit precursor �A Chain pro�A þ �A 58

�B Chain pro�B þ �B 58

Mature forms Inhibin A � þ �A 32

Inhibin B � þ �B 32

Activin A �A þ �A 28

Activin B �B þ �B 28

Activin AB �A þ �B 28



4 TSIGKOU ET AL.
During the purification of inhibin from porcine follicular fluid, two

research groups isolated a protein that displayed FSH‐releasing activity

from the gonadotrophs in vitro [23–26]. This protein was termed ‘‘activin,’’

signifying its antagonistic eVect to inhibin. The discovery of new genes

related to the inhibin � subunit through the use of degenerate polymerase

chain reaction (PCR) cloning methods further complicated the inhibinstory.

There are now three known types of bioactive activins: activin A, activin AB,

and activin B (Table 1). Three recently identified activins (C, D, and E) are

not known to have any bioactivity and have a relatively restrictive tissue

distribution. Activin has proven relevant to diverse research fields, including

cell biology, developmental biology, and endocrinology. Activin bioassays

have the same problems as inhibin, that is, a lack of specificity.

During purification of inhibin, another weak inhibitor of FSH secretion

was identified, named follistatin, which was purified from both porcine [27]

and bovine follicular fluid. It was soon realized that follistatin acted by

binding to activin and thus neutralizing its actions. The protein is expressed

abundantly in the granulosa cells of healthy antral follicles. Shimonaka et al.

[27] demonstrated by double ligand blotting technique that activin A has two

binding sites for follistatin, whereas inhibin A has one. From this, it can be

shown that follistatin interacts with inhibin A and activin A through

the common � subunit. Follistatin has the ability to neutralize activin‐
induced FSH release from pituitary cell cultures but this bioassay, like

those for inhibins and activins, is susceptible to interference [28]. A number

of immunoassays for total follistatin have now been established [29].

Another activin‐binding protein of 70 amino acids (aa) has been identified

as a follistatin‐related gene (FLRG) product, based upon its primary

sequence homology to follistatin and its modular architecture, which is

remarkably similar to that of follistatin [30, 31]. Like follistatin, FLRG

also interacts physically with activin A. This interaction prevents binding

to activin receptors (ActRs) [31, 32], thus suggesting a regulatory role on

activin‐mediated cellular processes.

Both activin and inhibin have been classified as members of the transform-

ing growth factor‐� (TGF‐�) superfamily [23, 25, 28, 32–34]. They are synthe-

sized as large precursors containing a signal sequence, a pro‐domain of

variable size, and a mature C‐terminal segment that ranges from 110 to 140

aa in length.Within the mature segment, there are seven cysteine residues that

are invariant across the superfamily.

Inhibin A consists of an � subunit disulfide linked to a �A [�þ �A] subunit,

and inhibin B consists of an � subunit and a �B [� þ �B] subunit (Table 1).

Activin A contains two �A subunits, activin B has two �B subunits, and

activin AB has one �A and one �B subunit (Table 1). cDNAs for the �, �A,
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and �B subunits have been cloned from porcine, human [9, 32, 35], bovine

[36, 37], rat [38], mouse [39], and Xenopus [40] cDNA libraries.

In humans, the � and �B subunits are encoded by individual genes and have
been assigned to chromosome 2. �A subunit gene has been assigned to

chromosome 7 [35, 36]. The subunits are produced as large precursors con-

taining an N‐terminal signal peptide targeting the polypeptides to the endo-

plasmic reticulum (ER), a pro‐region, and a mature C‐terminal domain,

which is found in the bioactive dimers [41]. The pro‐regions, which are needed
for correct folding and/or dimerization of the subunits, are cleaved from the

mature bioactive inhibin and activin proteins before secretion [42]. However,

there is an exception identified in the 56 kDa bovine inhibin [37] and the 65

and 55 kDa human inhibin [14] in which either the fully or partially processed

pro‐regions are cleaved after secretion. Recombinant inhibins of 55–65 kDa

show bioactivity comparable to that of the 32 kDa inhibin [43], indicating that

the cleavage of the pro‐region is not required for bioactivity.

The � subunit is unique to inhibin molecules. It is synthesized as a 53 kDa,

366 aa (depending on species) precursor containing an 18 aa signal sequence,

a 43 aa pro‐region, also called a pro‐�, and a 305 aa mature form. The mature

form is itself divided into a 171 aa N‐terminal segment (�N) and a 133–134 aa

C‐terminal segment (�C). Unlike the � chain, however, the mature (�C)
fragment has sites for glycosylation, and usually shows mono‐ and diglyco-

sylation [41].

The genomic organization of the human [35], rat [38], mouse [39], and bovine

[37] � subunit gene has been determined. In these species, only one inhibin �
subunit gene has been found, containing two exons and a single intron of about

2 kilobases (kb) located in the sequence encoding the pro‐region.
The mammalian mRNA for both � subunits encodes �400 aa polypeptide

chains, which, like the � subunit, includes a signal sequence, a pro‐region and

a C‐terminal mature region (Table 1). The mature �A subunit has 116 aa, and

the �B has 115 aa. These proteins are characterized by the cleavage of the

mature region from the C‐terminal of the large precursor, and by the

presence of nine cysteine residues in the mature region. These are involved

in disulfide linkage; eight of these cysteine residues are involved in intra‐
subunit disulfide linkage, and the remaining one is used for the inter‐subunit
disulfide linkage. Recent studies show three new activin � chains [44–46]

named activin �C, �D, and �E subunits. The �C subunit was cloned from a

human liver cDNA library and shows about 50% homology with the �A and

the �B subunit. The �D was cloned from Xenopus liver cDNA and shows 60%

homology with �C [45], while the �E subunit was cloned frommouse liver [46]

and shows 60% homology with �D and �C.
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3. Inhibins in Women’s Reproductive Function

3.1. EFFECTS OF INHIBIN ON PITUITARY FSH SECRETION

It is clear from the preceding section that inhibin acts as an endocrine

signal generated from the gonads to provide a monitor of gonadal activity to

control pituitary FSH secretion. In addition, the � and the �B subunits, but

not the �A subunit, were found to be localized in the cytoplasm of FSH‐ and
LH‐immunoreactive gonadotropes. This suggests that the gonadotropes are

sources, as well as targets, of inhibin‐related peptides, where their expression

is modulated by ovarian factors [47, 48].

Passive immunoneutralization of inhibin stimulated FSH� mRNA levels

and FSH secretion in rats [49], whereas the addition of inhibin to cultured

pituitary cells suppressed FSH� mRNA levels [50]. Pituitary activin has been

demonstrated to play an autocrine role inmaintaining FSH�mRNA levels and

FSH secretion in vitro [51], and exogenous activin stimulated FSH� mRNA

levels within 2 hours in cultured cells [49]. Activin has also been shown to

increase GnRH receptor expression through a specific transcriptional activin

response element [52]. Thus, activin could influence FSH synthesis indirectly

through enhancement of GnRH signaling. Furthermore, follistatin can block

GnRH‐induced FSH secretion in vitro, suggesting that some of the actions of

GnRH on FSH may involve local activin stimulation [53].

Immunoneutralization of activin B in primary pituitary cell cultures

resulted in suppression of FSH secretion, while follistatin has recently been

shown to exert the same eVect in vivo [54] and in vitro [55]. In rats, inhibin B is

synthesized in the pituitary and both � and �B subunits and mRNA are

present in rat gonadotropes [56]. Thus, all the components of an activin B

driver, follistatin modulator, and inhibin B inhibitor system are present

within the pituitary, allowing autocrine control of FSH synthesis and

secretion.

The past years have seen rapid changes and increases in the use of transgenic

mouse technology for studyingmammalian development [57–60]. Threemouse

models in which the regulation of FSH expression by inhibins and activins has

been evaluated have been developed by Matzuk et al. [60]. Mice lacking the

inhibin � subunit demonstrate increased FSH concentrations, and this

confirms the known function of inhibins [60].

Mice deficient in activin receptor type II have markedly suppressed pitui-

tary and serum concentrations of FSH. Thus, this receptor appears to be the

major pituitary receptor through which activins regulate FSH synthesis and

secretion. In addition, the suppressed FSH synthesis in the activin receptor

type II‐deficient mice leads to hypogonadal phenotype in both sexes.
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In general, although eVects of the gonadal peptides could be measured in

specific biological experiments, the overall regulatory role appeared to be less

powerful than that of the sex steroids and GnRH. The ability, however, of

activin and inhibin preferentially to modulate FSH provides an attractive

basis to explain some of the divergent secretory profiles of LH and FSH

during the reproductive cycle.

3.2. INHIBIN DURING THE MENSTRUAL CYCLE

The ovary is responsible for the circulation of inhibin A and inhibin B in

healthy women [61]. Inhibin is secreted by the granulosa cells of the develop-

ing follicles in the corpus luteum in response to gonadotropins and various

other factors. These include insulin‐like growth factor (IGF), TGF‐�, and
activin, while FSH‐induced inhibin secretion is suppressed by epidermal

growth factor (EGF), TGF‐�, and follistatin [13, 62, 63].

In the follicular phase of the menstrual cycle, both ovaries secrete similar

amounts of inhibin. In the luteal phase, most of the inhibin is secreted by the

corpus luteum [61]. Dimeric inhibins were assayed by Groome et al. [21] for the

first time in healthy women throughout the menstrual cycle. The inhibin

A plasma concentration remains low (<10 pg/ml) during the early follicular

phase, then shows a small midfollicular phase peak. The concentration rises

rapidlywith ovulation to amaximumof�60 pg/ml. The inhibinAconcentration

falls synchronously with the drop in progesterone during the late luteal phase.

Inhibin B is diVerent in that the plasma concentration is high in the early

follicular phase and falls in the late follicular phase during the days before

ovulation (Fig. 1). There is no increase in its concentration in the midcycle

LH peak. Two days later, there is a short‐lived peak of the hormone concen-

tration before the concentration drops to a low level by the middle of the

luteal phase. The plasma inhibin B concentration subsequently remains low

during the luteal phase [22].

The expression of inhibin � and �A subunit mRNAs in granulosa cells

increases with follicular development [64]. Dimeric inhibin A levels in the

follicular fluid increase as the preovulatory follicles mature [21], coincident

with the late follicular phase raise in peripheral serum inhibin A concentra-

tions. Conversely, the expression of �B subunit mRNA in granulosa cells and

levels of inhibin B in follicular fluid are highest in immature follicles present

during the ovary follicular phase of the menstrual cycle, when peripheral

serum concentrations of inhibin B are also increased [23, 65, 66]. Hence, the

data demonstrate a clear inverse correlation between similar plasma levels of

inhibin B and the corresponding FSH concentration. This suggests that

the developing follicles secrete inhibin B, suppressing FSH secretion in the

follicular phase, whereas inhibin A is secreted from the luteal cells, which

control FSH in the luteal phase.
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FIG. 1. Serum inhibin B concentration in women’s reproductive function.
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3.3. CONTROL OF INHIBIN B BY FSH IN GNRH‐DEFICIENT WOMEN

It is diYcult to distinguish the relationship between inhibin and FSH, as

gonadotrophin stimulation is known to promote inhibin secretion, which, in

turn, exerts a negative feedback on FSH. The study conducted by Welt et al.

[67] used a model of GnRH‐deficient women to explore the relationship

between FSH and inhibin B secretion during the luteal-follicular transition

by manipulating FSH levels via changes in the frequency of exogenous GnRH

administration. The GnRH pulse frequency was either increased from every

4 hours in the late luteal phase to every 90 min on the day of menses to mimic

normal cycling women or kept constant at a late luteal phase frequency

through the first 6 days of the subsequent cycle. The slower rate of rise in

FSH observed in the group in which the GnRH pulse frequency was main-

tained at the slow luteal phase frequency was associated with significantly

lower inhibin B levels in the early follicular phase. Hall et al. [68] suggest

that there may be a critical rate of rise in FSH required for inhibin B

stimulation. In these studies, the diVerence in the inhibin B responses to

varying FSH levels was evident before changes were apparent in estradiol

levels, indicating that inhibin Bmay be an important early prognostic indicator

of follicular response during ovulation induction therapy [67, 69, 70].
3.4. INHIBINS AND ACTIVIN A IN OVULATION INDUCTION

Several studies have reported an increase in total immunoreactive inhibin

(ir‐inhibin) levels after the administration of exogenous gonadotropins for

ovulation induction [71]. These studies have noted a correlation between the
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inhibin response and the number of follicles stimulated as well as a decline in

the inhibin response with increasing reproductive age. More detailed informa-

tion has come from studies employing pituitary downregulation with GnRH

analogue before stimulation with recombinant FSH for in vitro fertilization

(IVF), as this regimen creates a hormonal environment that allows the impact

of high doses of FSH on ovarian inhibin secretion to be selectively elucidated.

In a study of women with normal ovarian function participating in such an

IVF treatment protocol, Lockwood et al. [70] demonstrated that both inhibin

A and inhibin B were significantly suppressed in association with pituitary

desensitization, whereas levels of pro‐�C and activin A were largely

unaltered. Levels of both inhibin A and inhibin B rose markedly during

stimulation with FSH. The positive correlation observed between inhibin

A levels in the late follicular phase and the number of follicles larger than

10 mm suggests that inhibin A may be useful as a marker of dominant follicle

development in IVF. These data indicate that ovarian production of dimeric

inhibin A and inhibin B in women is gonadotropin dependent, whereas the

regulation of pro‐�C may have a significant gonadotrophin‐independent
component [72, 73]. Casper et al. [74] also investigated the concentrations

of inhibin/activin in women undergoing stimulation with recombinant FSH

for IVF treatment. There was no change in activin A levels with rFSH

stimulation, which is in agreement with Lockwood et al. [70]. In women

with sonography‐detected leading follicle >17 mm in diameter, levels

of inhibin A, pro‐�C, and estradiol increased significantly, but not that of

inhibin B. In patients without adequate follicle development during FSH

stimulation, serum levels of inhibins remained low and did not significantly

deviate, indicating a possible marker of follicular development.

Other potential applications of inhibin assays in relation to IVF have been

proposed. Eldar‐Geva et al. [75] found that serum inhibin B concentrations

measured during the early stage after administration of fixed‐dose recombi-

nant human FSH treatment provided an early predictor of the number of

recruited follicles. Lindheim et al. [76] reported that the measurement of

inhibin A may be used to identify the women undergoing natural‐cycle
embryo transfer who should be prepared for egg retrieval. Lockwood et al.

[70] found initially a rise in maternal serum inhibin A levels and then a rapid

decline in pregnancies in embryonic failure, indicating a possible clinical

application in the diagnosis of failed pregnancies.
3.5. PREMATURE OVARIAN FAILURE

Inhibin A and inhibin B are dramatically reduced in women with premature

ovarian failure (POF) [77]. Serum levels of both inhibins are as low as in normal

postmenopausal women matched for time elapsed since last menstrual period,
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and do not correlate with patient age, length of amenorrhoea, or serum gonad-

otropin levels [77]. In addition, circulating levels of inhibin A, inhibin B, and

pro‐�C are reduced after oophorectomy. Women with amenorrhoea induced

byGnRH analogue treatment or by antineoplastic chemotherapy still produce

inhibin A and pro‐�C [73]. This probably reflects a residual ovarian function

and hormone synthesis.

Welt et al. [78] demonstrated high inhibin B serum concentrations in

women with presumptive autoimmune oophoritis, who developed multiple

follicles with low to undetectable estradiol levels in circulation. These

data may provide further evidence for an important role of inhibin B and

inhibin A in the negative feedback control of FSH. In addition, the normal

inhibin A and inhibin B production in the absence of estradiol precursors and

estradiol provide insight into the selective dysfunction of the theca cells in

autoimmune oophoritis.
3.6. INHIBIN AND ACTIVIN IN POLYCYSTIC OVARY SYNDROME

One of the most common causes of female infertility is the PCOS, aVecting
approximately 6-8% of women of reproductive age [79]. PCOS is character-

ized by an excessive number of small antral follicles in the ovaries that fail to

produce a dominant follicle on a regular basis, and by dissociation in LH and

FSH release [79].

Inhibin A and inhibin B are produced by the granulosa cells of human

ovary. Since the � subunit is also expressed by the theca interna cells in

addition to the granulosa cells, the levels of � subunit mRNA in the ovary are

higher than those of � subunit mRNA [80].

Levels of inhibin B have been found to be either increased [81] or unchanged

[82–85] in women with PCOS, and this disagreement might be due to the large

range of inhibin B levels seen in PCOS and also to the confounding eVect of
obesity—an independent factor that reduces inhibin B concentration [84–85].

In addition, women with clomiphene‐resistant PCOS show no pattern of

regular inhibin B pulsatility when compared to normal individuals [81].

We have also observed that inhibin A concentrations are consistently lower

in women with PCOS (Tsigkou et al., unpublished data), confirming previous

findings in a large, well‐characterized sample of women with PCOS [82]. The

low circulating levels of inhibin A and the lack of increase in inhibin B levels

despite the numerous antral follicles in women with PCOS converge to the

same pathophysiological mechanism, which is the insuYcient production of

dimeric inhibins by the many small follicles that fail to reach dominance and

ovulation [86].

MagoYn and Jakimiuk [86] investigated follicular fluid concentrations of

inhibin A, inhibin B, and activin A in women with regular cycles and in
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women with PCOS. In both control ovaries and polycystic ovaries, they

found that concentrations of inhibin B were approximately tenfold higher

than those of activin A. There was no diVerence in activin A concentration

between PCOS and control follicles. In control ovaries, the inhibin A and

inhibin B concentrations in dominant follicles were significantly higher than

in cohort follicles, while inhibin A concentrations were lower in PCOS

follicles than in normal cohort follicles. However, there was no diVerence
in inhibin B concentrations between PCOS follicles and normal cohort

follicles [86].
3.7. REPRODUCTIVE AGING

One of the areas of increasing interest in female reproductive endocrinology

is the hormonal environment during the early phase of reproductive aging,

a time when there is a selective rise in FSH levels. Given that no significant

changes have been observed in ovarian steroid secretion at this time, it has

been postulated that early decreases in ovarian inhibin secretion might

account for the monotropic FSH rise seen in older ovulatory women [87].

Initial studies measuring total ir‐inhibin demonstrated that inhibin levels

were decreased in perimenopausal women and were undetectable in postmeno-

pausal women [88]. An increase in activin A secretion was also observed during

reproductive aging in women [89]. In a correlative study employing dimer‐
specific ELISAs, Klein et al. [90] reported that higher early follicular phase

FSH levels in a group of older, ovulatory women (aged 40–45 years) were

associated with significantly lower mean inhibin B concentrations compared to

those in younger cycling controls [90]. Burger et al. [88] identified a fall in

inhibin B circulating during the follicular phase and no changes in estradiol

and inhibin A as the most significant endocrine observation of reproductive

aging. These observations were also confirmed by Welt et al. [69].

Danforth et al. [91] reported a fall in circulating inhibin A during the luteal

phase of women undergoing the menopause transition [91]. The decrease in

inhibin B levels demonstrated in these women of advanced reproductive age

likely reflects the presence of a diminished follicular pool. The association

between decreased inhibin B and elevated FSH concentrations suggests that

inhibin B may be an important regulator of the monotropic FSH rise that

occurs with aging, as well as being a biochemical index of prenatal follicles.

This concept of inhibin B acting as a marker of reproductive age is supported

by clinical data. These show that women with low day 3 serum inhibin

B levels demonstrate a poorer response to ovulation induction and are less

likely to conceive a clinical pregnancy through assisted reproductive technology

than do women with high day 3 inhibin B levels [92]. By contrast, Klein
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et al. [90] observed no diVerence in the day 3 inhibin A levels between older and

younger women.

Seifer et al. [92] investigated whether inhibin B might be the physiological

basis for the clomiphene citrate challenge test, commonly used to assess

ovarian reserve. Clomiphene citrate blocks estradiol eVects on the pituitary

and induces increased FSH levels after treatment. The findings of this study

demonstrated a decrease in inhibin B serum concentrations and a negative

correlation with FSH levels in women with diminished ovarian reserve on

day 3 and day 10. Taken together, these data suggest that inhibin B levels

reflect the number of follicles present, whereas inhibin A may be a marker of

the quality of a mature follicle.

Previous studies indicate that the menstrual cycles of older reproductive

age women are characterized by a selective elevation of FSH associated with

early development and ovulation of a dominant follicle. A study by Klein

et al. [90] examined follicular fluid hormones and growth factors in the

dominant follicle during unstimulated cycles of older ovulatory women.

This was analyzed for estradiol, progesterone, testosterone, androstenedi-

one, inhibin A and inhibin B, total activin A, total follistatin, IGF‐I, IGF‐II,
IGF‐binding protein‐2 (IGFBP‐2), IGFBP‐3, and vascular endothelial

growth factor (VEGF) concentrations. They demonstrated that the domi-

nant follicles from older women contain normal concentrations of steroids,

inhibin A and inhibin B, IGF‐II, IGFBP‐2, and IGFBP‐3; increased

concentrations of follistatin, activin A, and VEGF; and decreased concen-

trations of IGF‐I. The elevated follicular fluid activin A may be related to the

early ovulation observed in older women, whereas elevated VEGF may be

related to the meiotic spindle abnormalities observed in the oocytes of older

reproductive age women.
4. Pregnancy

During pregnancy, the placenta is the main source of inhibin and high

serum levels of inhibin are reported [93–96]. There is a rapid decrease in

inhibin concentration after delivery [97–101]. Specifically, total inhibin rises

after ovulation, peaks at 9–10 weeks of gestation, reaches a plateau at �15

weeks, and then rises again in the third trimester.

Inhibin A is the principal (bioactive) form in pregnancy [96]. However,

inhibin B levels are extremely low during early gestation, as neither the

corpus luteum nor trophoblasts secrete this protein into circulation.

Although inhibin �B subunits have previously been detected in the placenta

[102–104], their level of expression is considerably lower than that of either �
or �A [104, 105]. Although the �B is heavily expressed in the amnion [102],
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the virtual absence of inhibin B from circulation suggests that if the amnion

synthesizes inhibin B, it should have a local action, possibly involving pros-

taglandin synthesis [102, 103]. The corpus luteum is known to make a

significant contribution to the circulating inhibin concentrations during

pregnancy [103, 106, 107, 108]. It has been demonstrated that treatment

with exogenous human chorionic gonadotropin (hCG) produces a marked

rise in the peripheral concentration of ir‐inhibin [104].

Illingworth et al. [95] demonstrated that stimulation and maintenance of

luteal function with hCG resulted in an increase in inhibin A concentration.

In contrast to inhibin A, concentrations of inhibin B continued to fall in the

late luteal phase despite maintenance of luteal function. This suggests

that the corpus luteum is not a source of inhibin B and that the peak of

inhibin B seen early in the normal luteal phase represents the passage of

inhibin B from the follicular fluid into circulation rather than de novo

synthesis [95]. The absence of detectable mRNA for the �B subunit in either

luteinized granulosa cells or the corpus luteum of women has been reported

[64, 106].

It has been demonstrated that inhibin and activin influence hormonogenesis

in cultured placental tissue, with activin increasing hCG and progesterone

production. Activin measurements have been carried out by several groups

using a bioassay [109] or an RIA [110] despite the diYculties of measuring

activin due to its high aYnity binding to follistatin. With the development of a

total (bound þ free) assay [111], Muttukrishna et al. [94] measured activin A

throughout the pregnancy. By 8 weeks of gestation, serum activin A concen-

trations were higher than those during the normal menstrual cycle. The con-

centrations of activin A did not vary significantly during the remainder of the

first and second trimesters. After 24 weeks, there was an increase in inhibin A

and activin A near term, suggesting a role for these proteins in labor. Further-

more, studies confirm the presence of pro‐�C, follistatin [112, 113], inhibin A,

and activin A in circulation during pregnancy [114, 115].

4.1. INHIBIN IN ABNORMAL PREGNANCY

There are identifiable diVerences in inhibin A production during normal

pregnancies compared with abnormal pregnancies (Figs. 2 and 3). Seifer et al.

[116] compared inhibin A and inhibin B levels in 19 women with confirmed

ectopic pregnancy and in 24 women of similar gestational age with

ultrasound‐confirmed intrauterine pregnancy [116]. Both total and dimeric

inhibin levels in the patients who had ectopic pregnancies were less than 60%

of those in women with normal intrauterine pregnancy. We have noted this

diVerence with respect to spontaneous abortions, as there was no diVerence
in inhibin B levels in women undergoing a miscarriage compared with

normal gestational controls [117].
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4.2. PRE‐ECLAMPSIA

Pre‐eclampsia is one of the most serious conditions during pregnancy, as it

markedly increases the risk of prenatal morbidity and mortality of both

mother and fetus. Pre‐eclampsia is defined as hypertension with proteinuria,

edema, or both induced by pregnancy after 20 weeks of gestation [118].

Intense eVort has been devoted to develop screening tests for pre‐eclampsia

and biochemical markers that could predict the subsequent development of

disease [119–133]. Inhibin A and pro‐�C subunit levels are increased in pre‐
eclampsia and show a positive correlation with hCG; thus inhibin Amight be
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a paracrine modulator or, at least, an additional marker of the placental

overgrowth that characterizes this disease [114]. There is a significant increase

in the levels of mRNA for inhibin � and �A in the placenta of those with pre‐
eclampsia compared with controls, suggesting that the placenta is a source of

the increased serum inhibin levels in pre‐eclampsia [125, 134]. Serum activin A

and inhibin A concentrations are tenfold higher in women with severe

pre‐eclampsia compared with gestational age‐matched controls [126]. Further-

more, studies have demonstrated that activin A and inhibin A concentrations

are elevated prior to the onset of pre‐eclampsia [129]. It has been observed that

inhibin A is increased at midtrimester [122, 123] with a twofold increase in the

median amongwomenwho later developed pre‐eclampsia [124], while inhibinA

may be altered already in the first trimester (Table 2).

A combined measurement of maternal serum inhibin A and other utero‐
placental markers may be an eVective means of screening for pre‐eclampsia in

the second trimester of pregnancy [130]. The combination of the values of

inhibin A, free � subunit of hCG, and uE3 to form a screening test would

detect an estimated 55% of aVected pregnancies, with a false positive rate of 5%
[124]. There is no diVerence in serum inhibin B levels observed between healthy

controls and patients at risk but who did not develop hypertension [117].

Hamasaki et al. [131] evaluated maternal serum ir‐inhibin concentrations

in women with pre‐eclampsia, and assessed the correlation between serum

ir‐inhibin and hCG. The study found that there were no significant diVer-
ences in maternal characteristics between the pre‐eclamptic group and the
TABLE 2

POSSIBLE CLINICAL APPLICATIONS OF INHIBIN A AND ACTIVIN AMEASUREMENT DURING PREGNANCY

IN MATERNAL SERUM

Phase of gestation Predictive/diagnostic marker References

First trimester

Impending abortion Inhibin A Luisi et al. [162]

Florio et al. [163]

Pre‐eclampsia Inhibin A Zwahlen et al. [164]

Second trimester

Down’s syndrome Inhibin A Malone et al. [165]

Fetal demise Activin A (amniotic fluid) Petraglia et al. [166]

Pre‐eclampsia Inhibin A/activin A Florio et al. [167]

Third trimester

Pre‐eclampsia Inhibin A/activin A Muttukrishna et al. [168]

Pregnancy‐induced hypertension Inhibin A/activin A D’Antona et al. [169]

Intrauterine growth restriction Inhibin A/activin A Florio et al. [134]

Preterm delivery Activin A Farina et al. [170]
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control group. The pre‐eclamptic group had significantly higher concentra-

tions of serum ir‐inhibin and hCG compared with the control group. The

serum concentrations of ir‐inhibin correlated positively with those of hCG.

Pre‐eclamptic patients displayed high serum levels of ir‐inhibin and

hCG, and this might reflect hyperplasia of trophoblastic cells.

Also, urinary concentrations of activin A and inhibin A are altered in pre‐
eclampsia and the relationship between uterine vein and peripheral vein

concentrations of these hormones in pre‐eclamptic patients [132]. Urinary

activin A and inhibin A are raised in groups 2 and 3 pre‐eclamptic patients,

thus suggesting that these proteins may rise in patients before the onset of the

clinical symptoms of pre‐eclampsia.
4.3. DOWN’S SYNDROME

Total or partial trisomy of chromosome 21 is responsible for the occur-

rence of Down’s syndrome, which is the most common and severe abnor-

mality at birth. Down’s syndrome is characterized by an alteration in the

secretion of placental and fetal proteins and steroids. Hence, the measure-

ment of maternal serummarkers has been shown to be useful in the screening

for Down’s syndrome [133, 135, 136]. Numerous pregnancy‐associated
maternal serum markers for Down’s syndrome have been evaluated. EVorts
to improve biochemical screening have centered on the search for a better

marker in order to improve the detection rate or to reduce the number of

false positives.

The levels of dimeric inhibin A are elevated in the maternal serum of

women carrying a Down’s syndrome pregnancy [135, 137], whereas

inhibin B, pro‐�C [138], and activin A levels [124] are not altered, at least

between 16 and 19 weeks of gestation. These changes suggested a possible

clinical role for measuring inhibin A levels in the biochemical screening of

Down’s syndrome.

Wenstrom et al. [139, 140] compared all combinations of �‐fetoprotein
(AFP), free � subunit of hCG, unconjugated estriol (uE3), and inhibin A.

They concluded that the best triple test for screening was AFP, free � subunit

of hCG, and inhibin A. In further studies, this group concluded that the

multiple‐marker test plus inhibin was superior to the traditional multiple‐
marker screening test and two other analyte combinations, with lower false‐
positive rates and increased detection of all aneuploidies in a high‐risk
population [140]. Subsequent data confirmed these observations [141].

In Down’s syndrome pregnancies, median inhibin A levels were found to

be significantly elevated in placental extracts and in maternal serum, when

compared with the levels in uncomplicated pregnancies. Median activin A

was also elevated in placental extracts and in maternal serum [142].
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A dissociation between inhibin and activin subunit mRNA levels and the

corresponding protein levels in maternal serum, and an increase in inhibin A

levels that is not explained by mRNA upregulation has been reported in

Down’s syndrome [143]. In an addition to this study, ovarian cortex tissue

from term pregnancies was examined. Only the � subunit mRNA was

expressed at a higher level than in the placenta, suggesting that the ovary

could be a source of inhibin pro‐�C during pregnancies [143]. Table 2 lists

possible clinical applications of the measurement of inhibin A, inhibin B, and

activin A in pregnancy.
5. Inhibins in Men’s Reproductive Function

The physiological role of inhibin in men became clearer since the availabil-

ity of specific inhibin A and inhibin B ELISAs led to the demonstration that

the predominant form in the male is inhibin B [144, 145]. There is general

agreement that the major source of inhibin in the testis is the Sertoli cell, and

in culture of rat Sertoli cells a linear relationship exists between the number

of cells in culture and the inhibin levels secreted into the medium [146]. These

cells respond to FSH by the increased production of inhibin. At high doses,

FSH produces an excess of free � subunits [146]. Thus, in testicular damage,

elevated levels of free � subunits can be detected in the circulation [145].

Further support for these concepts emerged from a prospective study of the

eVects of chemotherapy on the testis and its influence on serum FSH and

inhibin B levels [147]. In the same study, it was shown that following sper-

matogenetic damage, inhibin B levels decreased as FSH levels increased.

They also noted that an increase in pro‐�C levels, which contributed to the

maintenance of ir‐inhibin levels measured by an assay, detects both inhibin

and subunit products (Fig. 2).

There is a positive relationship between the levels of inhibin B in the

circulation of rats and the number of Sertoli cells present in the testes in a

variety of experimental states [148]. These results highlight the possibility

that inhibin B levels in serum may provide an index of Sertoli cell function.

Indeed, several earlier studies using a bioassay for inhibin strongly suggested

that testicular damage in rats was accompanied by a change in Sertoli cell

function reflected by a decrease in inhibin secretion [149].

There are limited data from in vitro approaches to indicate the importance

of inhibin‐related proteins in a paracrine action in the testis. Activin A has

been shown to stimulate spermatogonial mitosis when these cells are co‐
cultured with immature rat Sertoli cells in vitro [150]. The role of activin A

in the maintenance of an unusual form of mitochondria was found only in

meiotic and postmeiotic germ cells in the testis and ovary [151], and these
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mitochondria are termed ‘‘condensed’’ forms. When primary spermatocytes

are placed in culture, the condensed forms are lost or change back to the

orthodox forms found in spermatogonial and somatic cells [152]. The addi-

tion of activin A to the culture medium maintains the mitochondria in the

‘‘condensed’’ state, indicating that activins produced by the germ cells or by

the Sertoli cells can exert a paracrine and autocrine function [153].

Inhibin B secretion in the adult is partly, but not completely, under

gonadotrophin control. Administration of GnRH to men with hypogonado-

trophic hypogonadism results in an increase in blood inhibin B levels from

undetectable concentrations into the normal range in many cases [154–156]

(Fig. 4). A further degree of complexity has been demonstrated by the studies

of Bilezikjian et al. who showed that significant changes in these proteins

occurred during GnRH and testosterone action on the pituitary [157]. For

instance, GnRH stimulated follistatin mRNA and decreases � subunit

mRNA levels, whereas testosterone decreases the levels of follistatin and �
subunit mRNA (Figs. 3 and 4).

In another study, the relationship between testosterone and inhibin B was

investigated [158]. In this study, administration of testosterone enanthate

resulted in a fall in inhibin B concentration and azoospermia was achieved.

It is possible that gonadotrophin secretion was more completely suppressed

by those regimes that resulted in a clear fall in inhibin B. Hence, the presence

or degree of fall in inhibin B does not predict whether azoospermia will be

achieved, but it may indicate the degree of suppression of spermatogenesis or

the step at which spermatogenesis is arrested [159].
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FIG. 4. Serum inhibin B concentration in man’s reproductive function.
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Aging in men is accompanied by a decline in reproductive function. A study

has compared inhibin B concentrations in men aged 70–85 years with those in

younger men [160]. The older men had lower inhibin B concentrations and

high FSH concentrations, although the fall in inhibin was relatively modest

(�25%) compared to the fourfold rise in FSH. The fall in inhibin B occurred at

a relatively early age; thus the concentrations were lower in the 35‐ to 55‐year‐
old age group compared with those younger than 35 years. The prevalence of

low inhibin B concentrations was increased in the 35‐ to 55‐year‐old age group,

whereas the prevalence of low testosterone concentrations appeared to rise

only in the older groups [161]. The findings need to be confirmed, however,

particularly the age at which inhibin B starts to fall. These studies indicate that

inhibin B is the physiologically important form of inhibin in men. Although

FSH stimulates inhibin B, there is also evidence for a gonadotrophin‐
independent component to its regulation in men. Inhibin B appears to play a

significant role in the negative feedback loop regulating FSH secretion and

may provide a useful marker of Sertoli cell function.
6. Conclusion

In humans, there appears to be important gender diVerences in the forms

of inhibin present in the circulation. Both inhibin A and inhibin B are present

in women, whereas only inhibin B circulates in physiological concentrations

in men. In addition, there is evidence for a gonadotropin‐independent com-

ponent to inhibin B secretion in men; in fact, a dramatic switch from a

positive to a negative relationship between inhibin B and FSH accompanies

the initiation of puberty in boys [161]. The mechanism for this diVerential
regulation in the male and female gonads is not known.

Measurement of dimeric inhibin A and inhibin B may provide sensitive

diagnostic tools for determining gonadal maturity in early puberty of both

genders, gonadal activity during reproductive life, and ovarian reserve in late

reproductive years, besides monitoring feto‐placental health at all phases of

human gestation.
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1. Abstract

The plasminogen activator system is a complex system with multiple

interactions and members participating in fibrinolysis, cell migration, angio-

genesis, wound healing, embryogenesis, tumor cell dissemination, and me-

tastasis in a variety of solid tumors. Increased levels of uPA and/or PAI‐1 in

primary tumor tissues of breast cancer patients correlate with tumor aggres-

siveness and poor clinical outcome. Patients with high tumor tissue antigen

content of uPA and/or PAI‐1 have a worse probability of disease‐free and

overall survival than patients with low levels of both of the biomarkers,

serving as prognostic markers. The clinical utility of uPA and PAI‐1 has
Inc.
rved.
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been proven on the highest level of evidence (LOE‐I). Next to being clinically

useful prognostic factors allowing estimates of the course of disease in early

breast cancer, uPA and PAI‐1 may also serve as predictive factors predicting

response to systemic therapy. Node‐negative primary breast cancer patients

with high uPA/PAI‐1 levels benefit significantly from adjuvant chemotherapy.

The aim of the ongoing NNBC‐3 trial is to determine the benefits of a

sequential anthracycline–docetaxel regimen in high‐risk node‐negative breast
cancer patients compared to the current standard of anthracycline‐based
chemotherapy. At present, uPA and PAI‐1 provide the unique opportunity

to allow validated and clinically relevant risk assessment of breast cancer

patients, over and above that provided by established risk factors. Therefore,

in the evidence‐based, annually updated AGO guidelines for breast cancer

management, the German Working Group for Gynecological Oncology

(AGO) has recommended both biomarkers as risk‐group‐classification mar-

kers for routine clinical decision making in node‐negative breast cancer, next
to established clinical and histomorphological factors.
2. The uPA/PAI‐1 System

The plasminogen activator system, also known as the fibrinolytic system,

consists of the serine protease‐type plasminogen activators uPA (urokinase‐
type plasminogen activator) and tPA (tissue‐type plasminogen activator), the

high‐aYnity cell surface‐associated receptor for uPA (u‐PAR; CD87), the

plasminogen activator inhibitors type 1 and 2 (PAI‐1, PAI‐2), and the proen-

zyme plasminogen which is activated by uPA or tPA into the proteolytically

active serine protease plasmin. Although uPA and tPA are quite similar in

structure and have common inhibitors and physiological substrates, their

physiological roles are distinct [1]. This system is not only highly specific in

catalyzing plasminogen into plasmin by tPA present in the blood stream

(in the presence of fibrin) but is also eVective in tissues when uPA is attached

to its cellular receptor uPAR leading to activation of nearby plasminogen

and subsequently to degradation of extracellular fibrin and other matrix

proteins by the newly generated plasmin [2–5].

The plasminogen activator system is a complex system with multiple

interactions among its members and also with constituents of the extracellu-

lar matrix. Traditionally, the role of tPA was primarily in fibrinolysis and

that of uPA in cell migration, especially in angiogenesis, wound healing,

embryogenesis, tumor cell dissemination, and metastasis [6–10]. The func-

tional role of the plasminogen inhibitors is no longer simply to inhibit

plasminogen activators: for PAI‐1, a role in promoting cycles of attachment

and detachment of the cell from the extracellular matrix that is independent
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of its role as an enzymatic inhibitor of uPA was revealed; PAI‐2 has an

unidentified role in the regulation of cell death, where it can alter gene

expression, influence the rate of cell proliferation and diVerentiation, and
inhibit programmed cell death (apoptosis) in a manner independent of

urokinase inhibition [11,12].

Well‐balanced production and activation of uPA/PAI‐1 system compo-

nents therefore can lead to changes in degradation of the extracellular matrix

and also aVect cell adhesion, angiogenesis, cell proliferation, and cell inva-

sion, not only under physiological conditions but also under pathological

conditions such as cancer (Fig. 1). Expression of uPA and PAI‐1 is often

higher in the epithelial and stromal cells of the tumor tissue than in the

surrounding normal tissue pointing to the fact that in cancer, regulation of

uPA‐mediated extracellular proteolysis does involve a complex interplay

between cancer cells, nonmalignant stroma cells, and components of the

plasminogen activation system [13].
3. Clinical Relevance of uPA and PAI‐1 in Breast Cancer

Elevated expression of uPA and PAI‐1 at the mRNA and protein level was

demonstrated in basically every solid malignant tumor type examined, such

as cancer of the breast, ovary, esophagus, stomach, colorectum, kidney, lung,

or liver. Increased levels of uPA and/or PAI‐1 in primary tumor tissues

correlate with tumor aggressiveness and poor patient outcome [9]. Among

all of the articles published in the scientific literature on this subject, most

data regarding the prognostic and predictive value of uPA/PAI‐1 and their

impact on clinical decision making are available for breast cancer. These data

consistently show that high levels of uPA and/or PAI‐1 determined in

primary tumor tissue extracts by protein analysis or mRNA screening are

associated with poor clinical outcome of the patient [14–22].
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3.1. PROGNOSTIC IMPACT OF UPA AND PAI‐1

In primary breast cancer, the validation process demonstrating the clinical

utility of uPA and PAI‐1 was achieved by several, mostly European, research

centers. In 1988, DuVy et al. were the first to show that the serine protease uPA

has a prognostic impact onbreast cancer patients. They demonstrated that high

enzymatic activity of uPA in primary breast cancer tissues correlates with

tumor size, number of lymph nodes involved, and with shorter disease‐free
survival when compared to patients with low uPA activity [23].

Soon after this initial observation, Jänicke et al. demonstrated in 1989 that

determination of the uPA antigen content in primary tumor tissue by enzyme‐
linked immunosorbent assay (ELISA) also allows prediction of the course of

disease in patients who did not receive any adjuvant treatment [24, 25]. At the

sametime, italsobecameapparent thatnotonly theantigen levelofuPAbutalso

that of PAI‐1 possesses prognostic value in node‐negative and node‐positive
breast cancer patients [26]. Amodel was then developed which still is of clinical

relevance: Patients with high tumor tissue antigen content of uPAand/or PAI‐1
have a worse probability of disease‐free and overall survival than patients with

low levels of both of the biomarkers [27–29]. Regarding risk‐group assessment,

the combinationofuPA/PAI‐1 (both lowvseither/orbothhigh)was found tobe

superior to either factor taken alone. Furthermore, based on multivariate ana-

lyses, uPA and PAI‐1 are statistically independent of established prognostic

factors such as tumor size, tumor grade, steroid hormone receptor status, or

menopausal status [29]. As a prognostic factor, uPA/PAI‐1 is superior to

the oncoprotein HER2 and thus renders statistically independent, clinically

important information [30, 31]. Other international research groups reported a

similarprognostic impactof uPAandPAI‐1 inbreast cancer [31–34].Moreover,

the published interaction between PAI‐1 and vascular endothelial growth

factor (VEGF) warrants further investigation into the relationship between

biomarkers of angiogenesis and those of the protease cascade [34, 35].

In order to achieve the highest level of evidence (LOE‐I) for clinical utility of
a cancer‐associated biomarker, according to the ASCO tumor marker utility

grading system (TMUGS) [36], clinical significance of a prognostic (or predic-

tive) cancer biomarker must be evaluated either by a prospective randomized

clinical trial or a large meta‐analysis. Regarding this guideline, for uPA/PAI‐1,
both the criteria were fulfilled by: (1) a prospective randomized multicenter

breast cancer therapy trial (Chemo N0) in which a total of 689 patients were

enrolled in 14 study centers in Germany and Slovenia between 1993 and 1998

[37]; (2) a large meta‐analysis conducted by the EORTC Receptor and Bio-

marker Group, comprising 8377 breast cancer patients from 18 independent

datasets [38] (EORTC ¼ European Organisation for Research and Treatment

of Cancer; a trans‐European cancer foundation based in Brussels, Belgium).
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In the Chemo N0 trial (Fig. 2), uPA and PAI‐1 antigen content were

determined in primary tumor tissue extracts by commercially available

ELISA kits obtained from American Diagnostica Inc., Stamford, CT,

USA. Patients with low uPA and PAI‐1 content were allocated to the

observation arm; patients with high uPA and/or PAI‐1 content were rando-

mized to either adjuvant chemotherapy with six cycles of CMF (cyclophos-

phamide/methotrexate/5‐fluorouracil) or observation only. By comparing

the two observation arms (low vs high uPA/PAI‐1), the prognostic impact

of uPA/PAI‐1 could be evaluated in a prospective fashion. The first interim

analysis of the Chemo N0 trial after a median follow‐up time of 32 months

demonstrated a statistically independent prognostic impact of uPA/PAI‐1
with regard to disease‐free survival. Also, previously optimized cut‐oV values

for uPA and PAI‐1 to discriminate between low and high uPA/PAI‐1 were

confirmed [37]. A second analysis after a median follow‐up time of 50 months

comprising 647 patients consolidated the prognostic impact of uPA/PAI‐1
regarding disease‐free and overall survival. This analysis revealed that node‐
negative breast cancer patients presenting with low uPA/PAI‐1 in their

primary tumor tissues have a low‐risk profile with a 5‐year overall survival
rate of �95% even in the absence of any adjuvant systemic therapy [39].
3.2. PREDICTIVE IMPACT OF UPA AND PAI‐1

Next to being clinically useful prognostic factors allowing estimates of the

course of disease in early breast cancer, uPA and PAI‐1 may also serve as

predictive factors predicting response to systemic therapy. As yet, only few

studies have been published looking at the predictive impact of uPA and
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PAI‐1 regarding response or failure to chemotherapy or endocrine therapy in

breast cancer. For instance, in the palliative setting, it was shown that

metastasized breast cancer patients with high levels of uPA and PAI‐1 in

their primary tumor tissue responded poorly to palliative endocrine tamoxi-

fen therapy, compared to patients with low levels of both factors [40, 41].

In the neoadjuvant setting, Pierga et al. looked at the correlation between

PAI‐1 levels determined in drill biopsy tumor tissue samples taken before

anthracycline‐containing neoadjuvant chemotherapy and in tumor biopsies

taken after chemotherapy at the time of primary surgery in a small collective

of 69 patients. No association was found between initial PAI‐1 levels and

clinical response to primary chemotherapy [42].

In early breast cancer, the improvement in clinical risk assessment and

therapy benefit prediction gained by combining uPA and PAI‐1 was evalu-

ated by Harbeck et al. [29]. For this, uPA and PAI‐1 levels were prospectively
measured by ELISA in tumor tissue extracts of 761 patients with primary

breast cancer. The criterion either alone or by both factors has identified with

high sensitivity the patients at high risk for disease recurrence while keeping

more than half of the patients in the low‐risk group. More interestingly, a

significant interaction between uPA/PAI‐1 and adjuvant systemic therapy

was demonstrated suggesting a benefit from adjuvant therapy in high‐risk
breast cancer patients as defined by uPA/PAI‐1.Harbeck et al., in a subsequent

study of 3424 primary breast cancer patients from breast cancer centers in

Munich, Germany, and Rotterdam, The Netherlands, evaluated the predictive

impact of uPA/PAI‐1 regarding response to adjuvant chemo‐ and endocrine

therapy [43]. It was shown that patients with high uPA/PAI‐1 levels had an

enhanced benefit from adjuvant chemotherapy compared to those with low

levels of the biomarkers. No corresponding interaction between endocrine

therapy and low or high uPA/PAI‐1 levels was observed. The uPA/PAI‐1‐
dependent benefit from adjuvant chemotherapy was subsequently validated

in the pooled analysis collective of the EORTC Receptor and Biomarker

Group [44].

In the prospectivemulticenter ChemoN0 trial, node‐negative primary breast

cancer patients with high uPA/PAI‐1 levels were either randomized to CMF‐
based chemotherapyor toobservationonly, thereby lookingat the clinical value

of a therapeutic intervention in high uPA/PAI‐1 patients. Already after a short

follow‐up period of 32 months, a considerable and statistically significant

benefit from adjuvant CMF chemotherapy was also observed in high uPA/

PAI‐1 node‐negative breast cancer patients, which was still valid after a longer

median follow‐up time of 50 months [37, 39]. This prospective randomized

multicenter clinical trial therefore not only validated the prognostic value of

uPA/PAI‐1 in node‐negative breast cancer patients but also demonstrated their

predictive impact at the highest level of evidence, LOE‐1.



UPA AND PAI-1 IN BREAST CANCER 37
4. Methods for Determination of uPA and PAI‐1

In the majority of published retrospective studies, quantification of uPA

and PAI‐1 antigen levels in tumor tissue extracts was performed using the

commercially available ELISA kits [27]. These assays were also used for

the prospective Chemo N0 clinical trial where routine tissue analysis for

clinical decision making within the trial was conducted in six diVerent
laboratories [37]. Consequently, for routine use, quantitative determination

of uPA and PAI‐1 antigen content by ELISA using these assays is recom-

mended, employing protein extracts from fresh‐frozen primary breast cancer

tissue samples. These assays can also be applied to assess protein extracts

obtained from small breast cancer biopsies, such as core biopsy specimens or

cryostat sections [45]. The uPA and PAI‐1 ELISA tests have been standar-

dized and quality assured by the Receptor and Biomarker Group and the

PathoBiology Group of the EORTC [46–48].

At present, PCR‐based mRNA analysis of uPA and/or PAI‐1 messenger

expression has not reached the level of clinical routine, mainly due to the lack

of validated, multicenter clinical studies. Still, such studies should be encour-

aged as recent publications, although on a few patient collectives only,

indicated feasibility of such a test system for breast cancer tissue uPA/PAI‐1
analysis, which would be independent of protein expression or internalization

of uPA/PAI‐1 complexes by the cells [49–52].

Likewise, no validated multicenter clinically relevant breast cancer immu-

nohistochemistry studies, using uPA and/or PAI‐1 directed antibodies and

routinely processed paraYn‐embedded formalin‐fixed breast cancer specimens,

have been conducted so far.

Consequently, harmonization of various detection and quantification sys-

tems for uPA and PAI‐1 at the gene and protein level is one of the current

tasks of the EORTC PathoBiology Group. In this context, we would like to

mention that in addition to mRNA and protein expression, epigenetic modi-

fication of CpG islands within the promoter region of the uPA gene is also

an indicator of tumor aggressiveness; still, prospective breast cancer trials

observing uPA DNA‐methylation as a stratification factor have not yet

been conducted [53, 54].
5. Clinical NNBC‐3 Trial

As a consequence of the results of the Chemo N0 breast cancer trial, a

number of clinical questions were answered but others still remain open

regarding prognosis and therapy response prediction of breast cancer patients.
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Breast cancer patients with low levels of uPA and PAI‐1 comprising about

half of the node‐negative breast cancer patients have a rather low risk of disease

recurrence (<10%) and therefore are not subjected to adjuvant systemic chemo-

therapy. In contrast, patientswithhighuPAand/or PAI‐1 levels, who are at risk
to develop metastasis do benefit from adjuvant systemic therapy.

A second prospective multicenter phase III therapy trial, the NNBC‐3 trial
(Node Negative Breast Cancer 3-trial) is now open for patient recruitment

[Principal investigators: Prof. Dr. Christoph Thomssen (‘‘Leiter der Kli-

nischen Prüfung’’ according to German law), University of Halle; and

Prof. Dr. Nadia Harbeck, Technical University of Munich, Germany]. The

two main aims of this trial are: (1) to compare risk assessment and clinical

outcome based on tumor biological factors uPA/PAI‐1 to that based on

established, clinical and histomorphological factors; and (2) to optimize the

adjuvant chemotherapy regimen for high‐risk node‐negative breast cancer

patients. The NNBC‐3 trial is an intergroup trial conducted in cooperation

with the AGO (German ‘‘Arbeitsgemeinschaft Gynäkologische Onkologie’’),

the EORTC PathoBiology Group, and the German Breast Group. By end of

October 2007, recruitment was at 2022 patients who came from 97 clinical

centers in Germany and France. Node‐negative primary breast cancer

patients aged 18–70 years with a tumor size between 0.5 and 5 cm are eligible

for the trial. Recruitment centers are allowed to select risk assessment criteria

either using established clinical and histomorphological criteria or using

determination of uPA/PAI‐1 in primary tumor tissue extracts. Risk assess-

ment by established factors takes the recommendations of the St. Gallen 2005

consensus meeting into account (Fig. 3A) [55]: Using these criteria, a node‐
negative breast cancer patient fulfilling any of the following criteria is

regarded as being at high risk for disease recurrence: (1) age <35 years,

peritumoral vascular invasion, tumor grade 3, steroid hormone receptors

PgR�/ERþ or PgR�/ER�, or HER2‐positive, or (2) tumor grade G2 and

tumor size >2 cm.

The second option for risk assessment is based on the presence of the tumor

biological factors uPA and PAI‐1 in the primary tumor tissue. However, for

risk assessment, node‐negative primary breast cancer patients are first classi-

fied according to tumor grade. Patients with G1 tumors are considered at low

risk and allocated to the observation arm; all G3 tumor patients are consid-

ered at high risk and therefore are randomized in the chemotherapy arm. For

patients with G2 tumors, further risk stratification according to uPA/PAI‐1
is appropriate. Patients with 35 years of age or above and low uPA/PAI‐1 are

considered at low risk and thus allocated to the observation arm. Patients with

35 years of age or above and high uPA and/or PAI‐1, or those younger than 35

years of age, are randomized to one of the two chemotherapy regimens.
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In the NNBC‐3 trial, all patients defined as being at high risk for disease

recurrence are randomized to either six cycles of FE100C (5‐fluorouracil/
epirubicin/cyclophosphamide) every three weeks or to three cycles of

FE100C followed by three cycles of docetaxel every three weeks. Node‐
negative patients defined as being at low risk for disease recurrence are

allocated to the observation arm and receive endocrine therapy according

to the AGO guidelines if applicable [56].

The overall aim of the trial is to compare both risk stratification methods—

the clinical and histomorphological and the tumor biological one—and

to determine the benefit of a sequential anthracycline–docetaxel regimen in

high‐risk node‐negative breast cancer patients.
We would like to mention that another clinical therapy trial, the ADEBAR

trial (AdjuvantDocetaxel versus Epirubicin‐BasedRegimenTrial), has already

been completed in which �1500 high‐risk node‐positive breast cancer patients
with more than three involved axillary lymph nodes were enrolled. Patients

recruited in 198 centers were randomized to either six cycles of FE120C or to six

cycles of a three‐weekly sequential anthracycline–docetaxel regimen. Testing

for uPA and PAI‐1 was an optional translational research subprotocol

intended to evaluate the benefit of adding taxane to anthracycline‐based
chemotherapy in the two risk groups according to the uPA/PAI‐1 status.

The ADEBAR trial was closed for patient recruitment in spring 2005; clinical

results and thus also results of the uPA/PAI‐1 subprotocol are still pending.
6. Current Use of uPA/PAI‐1 in Clinical Decision Making

Tumor biological factors uPA and PAI‐1 were validated at the highest

level of evidence regarding their prognostic and predictive impact in primary

breast cancer. Therefore, the German Working Group for Gynecological

Oncology (AGO) recommends both biomarkers for risk‐group‐classification
and routine clinical decision making in node‐negative breast cancer next to

the established clinical and histomorphological factors. These recommenda-

tions were first issued in 2002 in the annually updated evidence‐based AGO

guidelines (www.ago‐online.org) (Fig. 4) [56].
Still, although substantial and consistent data have been published and

prospective clinical therapy trial evidence validating these prognostic factors

and demonstrating the benefit of adjuvant chemotherapy in high uPA and/or

PAI‐1 node‐negative breast cancer patients is available, these tumor

biological markers have until recently not been integrated in international

guidelines, such as the St. Gallen conference consensus [55]. While the clinical

validity is not being disputed, one reason for the limited worldwide
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FIG. 4. AGO 2006 Breast Cancer Treatment Guidelines: prognostic (A) and predictive (B)

factors for clinical routine use.
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acceptance is certainly the necessity of fresh‐frozen tumor tissue for prepara-

tion of tumor tissue extracts and ELISA testing, which is not available as a

standard of care in many countries of the world, including USA. This is

rather surprising since for many years fresh‐frozen breast cancer tissue was

set aside for steroid hormone receptor testing by the DCC or EIA test.

Moreover, mRNA testing employing cDNA‐microarray technology also

requires fresh breast cancer tissue for analysis [57, 58]. Based on the level I

evidence, the most recent ASCO guidelines 2007 have included uPA and

PAI-1 as markers which are recommended for use in practice.

We want to stress again, that to date uPA and PAI‐1 are the only breast

cancer‐associated biomarkers whose clinical utility was demonstrated by a

prospective clinical trial (Chemo N0) with a second confirmatory trial

(NNBC‐3) on its way.
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Regarding prospective gene signature validation in breast cancer patients,

the first clinical therapy trials have just been launched, such as TAILORx

(Trial Assigning IndividuaLized Options for Treatment, Rx), using the

16‐gene disease recurrence score [59], or MINDACT (Microarray In Node‐
negative Disease may Avoid Chemo Therapy) using a 70‐gene signature for
risk assessment [57]. Thus, at present, only uPA and PAI‐1 provide the

unique opportunity to allow validated and clinically relevant risk assessment

in breast cancer patients, over and above that provided by the traditional and

established risk factors.
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1. Abstract

The advent of multiparameter technology has been driven by the need

to understand the complexity in biological systems. It has spawned two

main branches, one in the arena of high‐content measurements, primarily

in microscopy and flow cytometry where it has become commonplace to

analyze multiple fluorescence signatures arising from multiple excitation

sources and multiple emission wavelengths. Microscopy is augmented by

topographical content that identifies the source location of the signature.
Inc.
rved.
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The other branch involves multiplex technology. Here, the intent is to

measure multiple analytes simultaneously. A key feature of multiplexing is

an address system for the individual analytes. In planar arrays the address

system is spatial, in which aYnity reactions occur at defined locations.

In suspension arrays, the address is encoded as a fluorescent signature in

the particle assigned to a specific reaction or analyte. Several hybrid systems

have also been developed for multiplexing.

In the commercial regime, the most widespread applications of multiplex-

ing are currently in the areas of genome and biomarker analysis. Planar chips

with fixed arrays are now available to probe the entire genome at the level of

message expression and large segments of the genome at the level of single

nucleotide polymorphism (SNP). In contrast, suspension arrays provide the

potential for probing segments of the genome in a customized way, using

capture tags that locate specific oligonucleotide sequences to specific array

elements.
2. Introduction

High‐content analytical techniques are rapidly being introduced into both

research and clinical laboratories in response to a shift in perspective from

the analysis of individual molecules to the analysis of complex biological

systems. The task of undertaking large‐scale analysis of biological interac-

tions has been driven in part by recent advances in combinatorial chemistry,

genomics, and proteomics. The proliferation of these approaches has been

made possible by the expanding availability of tools that include reagent

collections, shared databases, and analytical algorithms as well as miniaturi-

zation, automation, and cost‐eVective strategies that together are producing
platforms for genome‐scale analysis.

The power of multiple analyte profiling is in the utilization of technical and

informational synergies in parallel systems, often in real time, revealing

information among related analytes that may not be fully appreciated in

conventional iterative assays. Simultaneous measurement of a number of

diVerent characteristics, a process that is referred to as multiparametric

analysis, is beginning to be exploited in a number of applications. In multi-

plexing approaches, multiple sets of data are collected in a single reaction

volume where each data set reports a unique analyte. For example, dozens

and potentially hundreds of analytes can be measured simultaneously in

microsphere‐based systems [1]. Multiple bead sets are uniquely color coded

with spectrally distinct fluorophores or with multiple levels of a single fluor-

ophore, each engineered to monitor a reaction with a unique analyte. Beyond

the rapid accumulation of data, these systems oVer the ability to integrate
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qualitative findings with robust analytical techniques for quantifying complex

interactions among molecules.

This chapter reviews several platforms and applications of multiple analyte

profiling which have matured substantially over the past decade, largely due

to the impact that high‐content platforms have had in genomics research.

The utility of flow cytometry has been appreciated in nearly every area of

experimental biology for over 30 years. A newly emerging class of flow

cytometry‐based applications is proving to be a highly eVective tool set for

the biophysical research laboratory. The breadth of performance, particularly

in the area ofmultiprotein assembly, and the amenability of flow cytometry to

multiplexing strategies is a focus of this chapter.
3. Multiple Analyte Profiling Platforms

Fluorescence‐based cell, particle, and planar array assays are now routine

practice in a variety of diagnostic screening applications including biomarker

assays, genotyping, and immunologic profiling. In the context of bioanaly-

tical platforms, information content refers to data capture capacity. It is

driven by throughput (the analytical rate) and the biological complexity of

the data (the diversity of the reagents and targets). High content specifically

refers to making multiple measurements on, for example, a single cell popu-

lation, whereas multiplexing would allow simultaneous measurements on

multiple cell populations. The analysis of surface markers on blood leuko-

cytes for vaccine development is an example of a high‐content, multiplexed

measurement [2]. Increasingly, multiplex formats are being advanced to

increase information content for existing applications and for developing

new approaches for conducting mechanistic studies of complex physiological

processes.
3.1. PLANAR ARRAYS AND HYBRID BEAD‐BASED SYSTEMS

Spatially addressable fluorescence‐based planar arrays for high‐content
assays revolutionized the field of genomics research. Within a decade of

implementation, nucleic acid microarrays became the technological corner-

stone for large‐scale surveys of genes, transcripts, expression libraries, and

SNPs. DNA microarrays are now providing excellent tools for exploring the

gene expression patterns of tens of thousands of genes simultaneously.

The use of planar DNA microarrays represents a hallmark technology of

multiplex analysis that has matured by building on the fundamental concept

of simultaneous detection of multiple analytes to reduce time, labor, and cost

as compared with single reaction‐based methods. Implementation of early
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DNA biochip array technologies soon became restricted by a rigid fabrica-

tion protocol, large feature sizes, and high‐detection limits requiring large

amounts of sample [3]. The introduction of techniques for in situ transcrip-

tome amplification [4, 5] and cell‐free in situ expression from PCR products

[6], and the development of microfluidics handling and droplet microspotting

[7, 8] have expanded the applications in systems with limited abundance of

analyte. Further, advances in on‐chip micromachining, and the availability

of a growing variety of substrate chemistries have increased the flexibility of

planar array constructions and their integration with other analytical

systems.

Protein arrays for immunoassay applications soon became to the field of

proteomics what DNA microarrays were to genomics. Clinical applications

using planar arrays for human and veterinary disease surveillance, diagnos-

tics, prognostics, and therapeutics management are now commonplace.

Immunoassay techniques exploit the wide diversity and biological specificity

of antigen binding by immunoglobulins, and aYnity ligands include mono-

clonal antibodies or their ligand‐specific domains.Microarray immunoassays

using spotting techniques require picoliter amounts of analyte, and reaction

volumes in the microliter range typically confer good signal‐to‐noise ratios

and short diVusion distances that result in reduced reaction times [9].

The immunoassay is the conventional ‘‘gold standard’’ for protein mea-

surement, with the enzyme‐linked immunosorbent assay (ELISA) format

reliably demonstrating detection limits of proteins in solution in the pico-

gram per milliliter range over a dynamic range of 3 logs of concentration.

There are many options for labeling and signal enhancement that are

founded on the detection of ligand binding through the association of the

ligand with a fluorescent, colorimetric, histochemical, or radioactive readout.

Other formats that are based on immunoassay principles include flow cyto-

metry and immunohistochemical and fluorescence microscopy.

Multiplex cytokine analysis provides a prime example of how multianalyte

profiling confers context to the analysis of proteins beyond the measurement

of abundance to include interaction, and modification by other antagonistic

and synergistic proteins that is not achievable by single protein measure-

ments. Protein planar microarrays are a validated platform for profiling

analysis on a scale that far exceeds conventional ELISA methods [10–12].

The rapid adoption of flow cytometry‐based assays for conducting multi-

plexed cytokine studies deserves some consideration. Current bead array

technologies can easily accommodate 100 analytes simultaneously. A study

comparing solid phase and bead‐based cytokine assays using the same anti-

body pairs in each assay demonstrated improved detection limits using a bead‐
based multiplexed assay compared with ELISA analysis. The dynamic range

of the bead‐based assay in this comparative study also improved by 1 log [13].
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Some recent examples of multiplexing strategies that have gone beyond

descriptive science and into functional strategies for clinical disease manage-

ment include vaccine development [14], isolation, and characterization of

nucleic acid aptamers for research tools and therapeutics [15], the identifica-

tion of tumor autoantigens and the advent of immunotheranostics [16],

pharmacogenetic profiling for point‐of‐care diagnostics [17], and new paral-

lel systems approaches for investigating, monitoring, and treating multifac-

torial polygenic diseases such as rheumatoid arthritis [18]. The introduction

of cell‐based microarrays has transformed cytogenetics from an in vitro‐
based platform for descriptive assays into an avenue for the development

of in vivo‐based analytical tools for mechanistic molecular biology [19].

Planar protein arrays have been used in high‐throughput mechanistic

studies of kinome profiling [20–22], systematic searches for antibody specifi-

cities [23], comprehensive studies of protein phosphorylation [24], carbohy-

drate recognition studies (functional glycomics) [25], DNA–protein binding

interactions [26], RNA interference assays [27, 28], and ligand binding assays

for G‐protein–coupled receptors [29]. Microarrays using mixed protein

suspensions or whole lysates from stimulated cells representing a full comple-

ment of intracellular proteins have recently been used to construct a com-

prehensive phosphorylation profile of CD3‐ and CD28‐mediated signaling

components [30].

A novel extension of the planar array concept for highly parallel genomic

assays using fluorescence‐based fiber‐optic technology has been developed.

Bundled, light‐conducting fiber‐optic strands (6000–50,000 per bundle), each
chemically etched with a 3‐�m well at the terminus, are configured into

standard 96‐, 384‐ or 1536‐well spacing formats. The microwell array is

capable of accommodating microspheres, each containing up to thousands

of copies of a unique probe. The interrogation of extremely small sample

volumes within the 3‐�m wells has pushed the detection limit in this system

into the zeptomolar range, or as few as 600 target DNA molecules [31].

The multiplexed assay detects up to 1536 SNPs from a single DNA sample.

In genotyping assays, up to 300,000 data points can be generated per day and

robotics platforms are capable of increasing throughput to over 1.5 million

genotypes per day [32, 33].

The principles of microfluidics platforms for flow‐through bead‐based
analytical systems have been reviewed by Buranda et al. [34] where multiplex

analyses have been created in microcolumns with individual beads detecting

individual analytes. Microchip‐based immunoassay systems utilize porous

microbead arrays positioned on silicon wafer platforms within microcavities,

each serving as a miniaturized reaction vessel and analysis chamber. The

utilization of porous beads allows for the application of a thick layer of

capture reagents. A liquid chromatography system introduces solutions via
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pressure‐driven flow or capillary forces at a rate of 2 ml/min through a flow

cell enclosing the silicon platforms. Colorimetric and fluorescent optical

signals are acquired in near real‐time digital analysis. A microchip‐based
system for point‐of‐care cardiac risk assessment has been described [35, 36]

in which multianalyte analysis is conducted in 30 nl volumes with assay

characteristics that are comparable and in some cases superior tomacroscopic

analytical platforms. In the cardiac risk assessment system, the detection

limit for C‐reactive protein, a major participant in the acute phase re-

sponse, was 1 ng/ml compared with limits reported for other automated

assay systems ranging from 5 to 80 ng/ml. The quantification and identifica-

tion of electrolytes, sugars, proteins, antibodies, and toxins has also been

demonstrated in this format.

High‐throughput systems for label‐free interrogation of microarrayed

proteins by surface plasmon resonance imaging are capable of real‐time

biomolecular imaging of protein–DNA interactions on planar arrays with

1 s time resolution and subpicogram sensitivity [37, 38]. Aside from obviating

the need for labeling, the advantages over competing techniques include low

reagent requirements, minimal expense of mass‐producing sensor chips com-

pared with glass components of other systems, and simple requirements for

grating‐based sensing optics [39]. Arrays for real‐time analysis of clinically

relevant protein–protein (HPV E6, E6AP, and p53) and peptide–antibody

interactions in complex biological fluids (anti‐HCV antibodies in patient‐
derived sera) have recently been reported using surface plasmon resonance

imaging [40, 41]. The technique has shown eYcacy for detecting conforma-

tional properties of target proteins in a study using anti‐Bax antibody chips

to detect conformation‐specific epitope alterations in cancer cells treated

with an apoptosis‐inducing ligand [42]. High‐throughput screening applica-

tions of surface plasmon resonance have also been demonstrated in identify-

ing small molecule inhibitors targeting protein–protein interactions [43],

and in identifying new protein–protein interactions derived from a

proteome‐wide protein expression library [44].
3.2. HIGH‐CONTENT CELLULAR IMAGING

Imaging of complex physiological cellular processes has been adapted to

high‐content, high‐throughput platforms. Detection systems include micros-

copy, fluorescence macroconfocal detectors, and fluorometric imaging plate

readers. A recent review of automated cellular‐imaging platforms [45] reveals

that modern automated fluorescence and laser scanning platforms are capa-

ble of generating over 50,000 data points per day, and automated confocal

systems >1 million data points per day. Throughput capacity combined

with multiparametric biological measurements has expanded the use of
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image‐based platforms into functional analysis of biological systems. For

example, high‐content multiplex image analysis has been developed for

simultaneous profiling of cell signaling pathways of up to 13 signaling

molecules per CD33‐positive myeloid cell isolated from cancer patient popu-

lations [46]. Phosphoprotein signaling profiles in the same study were used in

both disease classification and target leads. In another multiplexed fluores-

cence microscopy application, detection and quantification of nuclear

factor‐�B (NF‐�B), p38 and c‐JUN translocation in response to inflamma-

tory stimuli was used to distinguish compound selectivity among these

pathways [47].

Resolution options allow for multicontent screens for imaging cell popula-

tions (e.g., phenotypic data) and subcellular events (e.g., protein trans-

locations) in the same sample. In principle, sets of cell images obtained

under a variety of optical environments (various fluorescence filter arrange-

ments, brightfield/darkfield imaging) would provide comprehensive informa-

tion about cell morphology and spatial distribution of any number of optical

signals that is unachievable with any other single technology. Improvements

in the spectral resolution of fluorochrome tags for simultaneous tracking of

more events and better analytical algorithms for tracking events in multidi-

mensional spaces will continue to move this technology to the forefront of

high‐content analytical methods.
3.3. SUSPENSION ARRAYS/FLOW CYTOMETRY

A growing number of assays have been adapted to flow cytometry bead‐
based platforms with the capacity to function as multiplexed systems.

In addition to the improved analytical performance for many assays, bead‐
based assays oVer rapid analysis, high throughput, and robust quality con-

trol parameters [48]. Bead‐based systems can accommodate a high diversity

and a growing density of array features. For example, beads have been

coated with authentic biological materials, such as lipid bilayers, to construct

surface display libraries for the study of virus‐specific antibodies [49], plasma

proteins [50, 51], and interaction of cholera toxin with cell surface receptors

[52]. A summary of the features of bead‐based arrays and planar arrays is

presented in Table 1.

As discussed previously, bead‐based multiplexed platforms for serology

profiling have the potential to replace many ELISA‐based assays. A recent

study of antibodies against recombinant HPV proteins reported highly re-

producible (R2 ¼ 0.97) bead‐based assay results with a dynamic range of 1.5

orders of magnitude and antibody detection at serum dilutions >1:1,000,000

and a CV of <5.4%. In this example and others, concordance with conven-

tional ELISA approaches was high [59–61].



TABLE 1

COMPARISON OF PLANAR AND BEAD‐BASED ARRAY FORMATS

Planar Bead‐based

Probe density (no. of

analytes)

Tens of thousands Maximum of 100

Throughput (samples/day) Hundreds [53] Thousands [52]

Processing Image processing Standard flow cytometry

Automation Under development [54] Available [55]

Flexibility Fixed array (new parameter

requires new production)

Flexible (new parameter,

add a new bead)

Quality control Complex validation and

analysis [56, 57]

Statistically robust [58]

Sensitivity with impure or

complex samples

Superior to ELISA [54] Comparable to ELISA [54]

Production/Instrumentation Specialized, single use

facility

Standard, multiuse flow

cytometry
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Microspheres have been readily adapted to flow cytometry‐based multi-

plexing platforms due to their inherent stability, uniformity, and capacity for

fluorescent dye uptake and retention. Surface chemistries are available for

covalent coupling (via carboxyl, amine/hydrazide, and maleimide groups),

noncovalent linkages, species‐specific anti‐IgG, and high/low‐density
streptavidin‐coated fluorophores for assay optimization. Other aYnity tags

(glutathione‐GST, Ni2þ‐6x‐histidine, and protein A and G) are available for

linking capture proteins to microspheres. The breadth of bead technology

continues to expand as new optically addressable particle‐encoding
approaches are explored.

Bead sets are commercially available for the simultaneous interrogation

of up to 100 unique analytes. Planar array formats provide higher probe

density; however, the throughput potential of planar arrays may not yet be

fully realized because of limitations in processing and automation (see

Table 1). In principle, implementation of any highly multiplexed immunoas-

say is limited only by inherent characteristics of assay chemistries that result

in loss of quantitative response. For example, bead‐based multiplex plat-

forms are likely to face the same challenges as solid phase arrays with regard

to the use of multivalent and cross‐reactive immunological reagents, optimi-

zation across multiple assay conditions, and technical aspects of detection

parameters to preserve overall sensitivity and specificity. Perlee et al. and

others [56, 23] have recently reviewed these challenges and proposed stan-

dard methods for the validation and integration of data from diVerent
measurement technologies, including those for planar multiplexed antibody
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protein arrays. Among the issues they have identified are antibody cross‐
reactivity under highly multiplexed conditions, robust statistical approaches

to data management, quality control testing of reagents, and real‐time moni-

toring of assay quality indicators (sensitivity, dynamic range, and platform

precision). Other specific technical considerations for building bead‐based
assays are discussed in Section 5.4.

Jacobson et al. [62] used an assay model of microspheres covalently

coupled with biotinylated BSA bound with titrated amounts of streptavidin,

R‐phycoerythrin (PE‐SA) to demonstrate how non‐bead‐associated fluores-

cence determinations and instrument properties significantly aVect bead

array statistical sensitivity analysis and detection limits of the assay. The

report details the eVective use of instrument settings and statistical methods

by using population parameters from each bead set for optimizing the

quantification of ligand in array systems.

Iannone et al. [63] explored the eVects of bead substrate binding site

density on the Kapp for soluble binding ligands using a nuclear receptor

binding domain (PPAR� LBD) with an interacting synthetic peptide

(PGC‐1�) coupled to microsphere populations, each with a unique density

of bound peptide. The study demonstrated that low‐density (<200,000 mole-

cules per microsphere) aYnity for receptor–peptide interaction decreased

proportional to peptide density, while high‐density (>200,000) aYnity did

not vary. The matrix eVects of avidity arising from high‐local concentrations
of neighboring immobilized peptides in close proximity increased the proba-

bility that the receptor will rebind another peptide rather than becoming free

in solution (by dissociation). These eVects can significantly reduce the appar-

ent oV‐rate, resulting in higher‐apparent aYnities. Avidity eVects can be

exploited by intentionally coupling to high density and increasing assay

sensitivity, but the increased avidity eVect could reduce potential selectivity

of assay. The study findings have important practical implications for

optimizing conditions for multiplexed analytes with diVering aYnity

characteristics.

Flow cytometry enables the simultaneous quantitative analysis in individ-

ual cells or particles of multiple optical markers of biochemical expression or

physiological response. Microsphere‐based studies of complex molecular

interactions have been appreciated for nearly a decade [64]. Even the most

inexpensive modern instruments can measure five optical parameters at once

(three fluorescence and two light scatter signals). Flow cytometry is thus an

inherently high‐content quantitative methodology. It is also a sensitive tech-

nology, capable of detecting fluorescent molecule concentrations as low as

10–100 pM, and as few as hundreds to thousands of molecules on a cell or

bead. Moreover, due to the optical configuration, the laser in a flow cyt-

ometer excites only a very small volume of the sample fluid immediately
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surrounding the cell or the bead [55]. This allows discrimination of free and

particle‐bound fluorescent probe over a large range of probe concentration

up to at least several hundred nanomolar. Consequently, homogeneous (no

wash) assays may be implemented to streamline sample processing.

In systems representing the current standard of high‐throughput flow

cytometry, accurate quantitative measurements have been demonstrated in

endpoint microassays at rates of 20–40 samples/min over a 4‐decade range of
fluorescence intensity using input cell concentrations of 1–20 million/ml and

source well volumes of 5–15 �l [55]. Typical sample volumes of 1–2 �l allow
scarce quantities of test cells or reagents to go a long way. Novel develop-

ments in sample delivery, data collection, and advanced analysis packages

for processing algorithms, graphics, and multiplatform capabilities continue

to add value to the utility of flow cytometry. Specific applications using flow

cytometry‐based multiplexing techniques are presented in detail in Section 5.
4. Fluorescence Technology

Fluorescence‐based assays for high‐density and high‐content screening

provide multidimensional readouts including intensity, lifetime, anisotropy,

and spectral characteristics, each of which has been exploited by various

analytical approaches that monitor changes in at least one of the fluorescence

parameters. The use of fluorescence readout has some inherent disadvan-

tages, most notably, autofluorescence and quenching from nonbiological

interactions with the target. Each of these scenarios can also result in deteri-

oration of other parameters such as fluorescence polarization.
4.1. FLUORESCENCE‐BASED ASSAYS

Measurement of integrated fluorescence intensity within a sample well,

such as in flow cytometry‐based assays, scales linearly with fluorescence

quantum yield, and the major advantage of this approach, is straightforward

detection and analysis. Fluorescent probes allow for the measurement of a

wide variety of extrinsic cellular characteristics, and an expanding number of

fluorescent probes is increasing access to a diversified set of cell‐associated
structures and physiological processes. A comprehensive discussion of the

use of fluorescent probes as tools for flow cytometry has recently been

published [65].

Flow cytometry is unique among fluorescence‐based bioanalytical plat-

forms in its ability to make simultaneous correlated optical measurements on

individual particles at high rates. Exposure of a cell or a bead to excitation

light occurs during a brief (a few microseconds) passage through an
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illumination source in a nearly constant velocity flow stream. Under these

highly uniform detection conditions and due to the extremely transient

nature of fluorescence from organic molecules, flow cytometry is highly

suitable for applications requiring precise measurements, such as DNA

content between cells that may vary by only a few percent.

Modern flow cytometry is presently amenable to assay miniaturization

down to 8 �l with the introduction of platforms such as HyperCyt®. In recent

studies from our laboratory, we routinely analyzed up to 3000 cells from

each sample well with an average sampling time of �1.5 s. HyperCyt® has

been successfully adapted to cell‐based end point assays [66], and studies

investigating cell–cell adhesion [48, 67], and fluorescent ligand binding to

cellular receptors [68, 69].

Fluorescence polarization utilizes linearly polarized light for excitation,

and the emission is detected to infer changes in molecular orientation and

mobility. Biological phenomena such as binding or cleavage will produce a

change in polarization or anisotropy due to changes in mass or lifetime of

the labeled analyte. Polarization readouts are limited by fluorescence quen-

ching and autofluorescence and the range of molecular mass is limited by the

fluorophore lifetime [70]. For example, protein–protein interactions have an

upper limit of 50 kDa using fluorescein or rhodamine labels (fluorescence

lifetime ¼ 4 ns). Multiplexed fluorescence polarization assays have been

described for identifying selective steroid hormone receptor ligands [71, 72],

and for screening inhibitors for ribonuclease H activity of HIV‐1 reverse

transcriptase [73].

It is worthwhile to explicitly compare flow cytometry and fluorescence

polarization assays. While both flow cytometry and fluorescence polarization

are homogeneous modes of detection, they are remarkably diVerent with

respect to their experimental implementation. Generally speaking, fluores-

cence polarization assays require that both binding components be at con-

centrations in the vicinity of the dissociation constant of the binding

interaction [70]. Under these conditions, a significant fraction of the fluores-

cent component will be bound to the nonfluorescent component. The fluo-

rescent component in polarization assays is usually a small molecule whose

molecular rotation is slowed by the interaction with the larger molecule. The

size limit depends on the fluorescence lifetime of the probe, usually a few

nanoseconds, which for practical reasons limits the size of the small molecule

to <10 kD.

For flow cytometry, neither the lifetime of the fluorescence probe nor the

rotation of the probe contributes to the detection sensitivity. Rather, detec-

tion has to do with observing fluorescent signals associated with the particle.

The flow cytometer detects a pulse of fluorescence associated with the

particle when there is bound fluorophore as compared with the fluorescence
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associated with the solution surrounding the particle [65]. In microplate

assays with 10 �l volumes, flow cytometry typically requires 1 pmol or less

of the particle‐associated assay component. Our experience suggests that it is

preferable to associate the most precious component with the particle and

that the quantity of material required is dependent on the aYnity of the

association with the particle rather than the aYnity between interaction of

the assay components.
4.2. FLUORESCENT LABELS

For multiplexing applications, the practical limitations of using multiple,

distinguishable fluorophores are simultaneously defined by the extent of

overlap in emission spectra, the diversity of available excitation sources,

compatibility with common optical filter sets, and the chemical properties

of the dyes. A number of comprehensive technical reports and handbooks for

the use of fluorescent probes are available from commercial suppliers [74, 75].

Fluorescein, a commonly used fluorophore, has high absorbance and

high fluorescence quantum yield characteristics and exhibits good water

solubility. The excitation maximum for fluorescein is closely paired with

the 488 nm spectral line of the argon‐ion laser and is therefore well‐suited
for flow cytometry. Amine‐reactive fluorescein conjugates are widely used

for labeling proteins. Disadvantages include photobleaching and pH sensi-

tivity (pKa �6.4), and a broad emission spectrum that limits utility of the

fluoresceins in multicolor experiments.

The rhodamine dyes are less sensitive to pH; however, their planar confor-

mation leads to low water solubility and a tendency to dimerize with other

labeled species. Low‐molecular‐weight cyanins and rhodamine derivatives

absorb and emit at longer wavelengths compared with fluorescein, and are

useful in combination for applications requiring dual color analysis [75].

The newer series of Alexa and BODIPY dyes include derivatives that span

the visible spectrum. The Alexa series of dyes were largely developed to

address the limitations of organic fluorochromes with regard to photostabil-

ity, pH sensitivity, and stability of emission characteristics upon conjugation

[76]. Alexa dyes have relatively high quantum yields and excitation maxima

that closely match the wavelengths of commonly used excitation sources.

Semiconductor nanocrystals referred to as quantum dots (QDs) are robust

bright light emitters that oVer some advantages over organic fluorochromes,

particularly for multiplexing applications [77]. Quantum dots exhibit size‐
dependent emission wavelength characteristics. Because multiple QD series

can be detected by a single laser, multiparameteric analysis can be performed

with single laser systems thus expanding the multiplexing abilities of the most

basic cytometry instrumentation. The full impact of QD technology for
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multiplex applications, however, is in polychromatic flow cytometry systems.

In principle, QD colors and intensity combinations can be maximized to

encode millions of analytes simultaneously [78].

The characteristically narrow and symmetrical emission spectra of QDs

are particularly suited for multiplex applications that must be optimized by

compensation to reduce spectral overlap using conventional fluorophores.

Quantum dots can simultaneously be used with the common organic fluor-

ochromes with no emission overlap or sensitivity compromise into the QD

channels. Technical considerations and detailed compensation requirements

for using QD/organic fluorochrome combinations are summarized in a num-

ber of technical reports on QDs [78–80].
5. Flow‐Cytometry High‐Content Profiling Applications

Performing multiple optical measurements on discrete particles carried in a

sample stream is a traditional element of cytometry‐based analytical

approaches performed in populations of cells. While the flow cytometry

platform has always had the analytical power for high‐content multipara-

metric measurements, a correspondingly large‐capacity analytical substrate

format for multiplex was not available. Fluorescence‐encoded microsphere

sets were largely pioneered through the eVorts of the Luminex Corporation.

The technology provided the substrate for extending traditional cellular

analysis into particle analysis while bringing the multiplexing concept of

the planar microarray into suspension assays.

Multiplexed particle‐based assays are now common in clinical diagnostics

applications and are becoming increasingly appreciated for their utility in

discovery research. Table 2 is a summary of commercially available bead sets

that have been fully optimized for multiplex clinical and research

applications.
5.1. PRINCIPLES OF MULTIPLEXING FOR SUSPENSION ARRAYS

The new fluorescence and bead technologies discussed in Sections 3.3 and

4.2., when paired with the inherent multiparametric features of flow cytome-

try aVorded by the use of multiple lasers and highly resolved signals to

multiple detectors, make this technology uniquely suited to multiplexing.

The components that determine content analysis in multiplexing applications

include the analytes, the addressing strategy, and how the interrogation is

applied to produce the assay readout.

In contrast to spatially addressed planar arrays, suspension arrays are

monitored by interrogation at optical addresses, specific to each reagent or



TABLE 2

MULTIPLEX BEAD SETS AND COMMERCIAL SUPPLIERS

Application Suppliers

Adhesion Molecule Panels R&D Systems

Allergy testing BD Biosciences, ImTech

Apoptosis BD Biosciences

Autoimmune markers (human, mouse) Rules Based Medicine, Inc., SmartBead

Technologies (Pronostics)

Cancer Markers Rules Based Medicine, Inc.

Cardiac markers Rules Based Medicine, Inc., Beckman Coulter

Cytokine profiling Qiagen, BD Biosciences, R&D Systems, Bio‐Rad,

BioSource, LINCO, Upstate, Rules Based

Medicine, Inc., Bioergonomics

Endocrine markers LINCO, Rules Based Medicine, Inc.

Gene expression BioSource, Marligen Biosciences

Genotyping/Genetic disease screening MiraiBio, Marligen Biosciences, TmBioscience,

Ambion Diagnostics, Tepnel Lifecodes,

Illumina

HLA DNA typing Tepnel Lifecodes, One Lambda

Infectious disease Rules Based Medicine, Inc., Proactive Medical

Technologies

Isotyping Upstate, Rules Based Medicine, BD Biosciences

Metabolic markers Rules Based Medicine, Inc, LINCO,

R&D Systems

Phosphoprotein quantification BD Biosciences, Upstate, BioSource

Ser/Thr Kinase Qiagen

Transcription factors/nuclear receptors Bios, Marligen Biosciences

Tissue Typing One Lambda

Th1/Th2 Beckman Coulter, BD Biosciences

Bead sets for custom conjugation Qiagen, Spherotech, Pierce, Bang’s Laboratories,

Polysciences, Inc.
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bead set and fluorophore combination. The interrogation process in a multi-

plexed assay can address the capture components or the detection reagents.

In assays where multiple reagents are coupled to the same bead, the

corresponding ligands are coupled to unique fluorochromes. For low com-

plexity bead sets using bead populations identified by unique fluorescent

labels, an analyte‐dependent signal is generated by detection reagents carry-

ing a second type of signal. Larger populations of bead sets can be con-

structed from ratiometric staining with a combination of dyes and a signal

generated by detection reagents coupled to a third type of dye [52].

The diversity and flexibility of bead‐based suspension array technology

oVers a platform for high‐throughput analytical approaches for a variety of

applications that are reviewed in Sections 5.2 , 5.3, and 5.4. Cell‐based assays
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are also amenable to simultaneous multiplexing of several cell populations

and high‐content analysis of several features of display or response in each

cell population.
5.2. MULTIPLEXED NUCLEIC ACID ENDPOINT ASSAYS

In the most straightforward nucleic acid analysis, the assay chemistry is

followed by the readout or detection step. In situ amplification strategies

present an opportunity to incorporate a detectable label into the immobilized

target, in addition to increasing the abundance of analyte. Other systems

couple the signal detection to the hybridization event, using structural or

enzymatic approaches, to activation of a quenched fluorophore [81–84].

Luminex xMAP® is an example of a commercially available bead array

platform [85]. The technology is based on internally dyed microspheres using

two fluorochromes with spectrally distinct properties. Reporter molecules

coupled to a third fluorochrome provide the detection signal for the biomo-

lecular interaction on the microsphere surface. Nucleic acid detection che-

mistries commonly include direct hybridization of a labeled PCR amplified

target to capture probe‐bearing microspheres for each sequence.

Solution‐based chemistries involve the enzymatic incorporation of a cap-

ture sequence that allows annealing to a complementary sequence on the

microsphere. Alternatively, sequence‐based enzymatic methods include

sequence‐discriminating DNA polymerases and DNA ligases, and processes

such as allele‐specific primer extension (ASPE), oligonucleotide ligation

assays (OLAs), and single base chain extensions (SBCE). Single nucleotide

discrimination is a common application for direct hybridization techniques

that has recently been validated using solution bead‐based technology in

genotyping assays for polymorphisms. In a study of 21‐plex and 34‐plex
assays for SNPs located near the ApoE locus, a total of 181 genotypes were

determined and confirmed by sequence analysis [86]. The SBCE approach

was used to analyze 20 multiplexed SNPs in 633 patient samples with greater

than 99% agreement in genotype assignments to gel‐based OLA results [87].

In the same report, the assay was converted to an ASPE format to overcome

some of the technical diYculties of SBCE. Fifteen SNPs were characterized

from 96 samples, totaling 1440 genotypes. The ASPE assay was 98.7%

concordant with the OLA findings.

Genetic disease screening using a bead‐based platform and ASPE assays

has identified five mutations in the cystic fibrosis transmembrane regulator

(CFTR) gene [88]. In another prospective study in 400 newborns, the geno-

types of 27 mutations in CFTR were reported [89]. A multiplexed bead‐based
hybridization assay has been described for identifying a total of six mutations

related to clinical manifestations of hypercoagulable states or aberrant
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platelet phenomena and bacterial colonization of indwelling catheters [90].

In a study of acute lymphoblastic leukemia (ALL), a technique was described

for combining multiplex PCR with direct bead‐based hybridization in a

single multiplex reaction to report seven fusion transcripts of chromosomal

translocations occurring in ALL [91].

Multiplexed bead‐based flow cytometry has been broadly applied to the

identification, detection, and discrimination of bacterial, viral, and fungal

pathogens. In a recent review [85] of the agents that have been studied with

the xMAP® technology alone, eight references of studies conducted between

1998 and 2004 described bead‐based multiplex platforms in the analysis of

over 27 microbial pathogens.

Multiplexed bead‐based analysis for the detection of combined viral and

bacterial agents has been reported in assay panels for diVerential diagnosis
among groups of diseases, including commonly occurring pathogens in

children, sexually transmitted infections, and for blood bank screening of

infectious agents [92]. Typing of human papillomaviruses (HPV) to discrimi-

nate between high‐ and low‐risk genotypes in a single reaction has recently

been reported using bead‐based multiplexed assays and type‐specific oligo-

nucleotide probes. Up to 100 HPV types were assayed simultaneously, and

all were detected with high specificity and reproducibility. Detection limits

ranged from 100 to 800 pg of PCR product, and the technique was validated

with conventional methods [93]. These examples have important implications

for the utility of multiplexing platforms in large‐scale epidemiological stud-

ies, particularly considering the fact that cytometry instrumentation is

becoming more accessible in resource poor settings.
5.3. MULTIPLEXED PROTEIN ENDPOINT ASSAYS

The ELISA has been the conventional assay standard for quantitative

analysis of protein, and several readout modes have been adapted to this

platform (fluorescence, chemiluminescence, and absorbance). Immunoassay

sensitivity can be in the picograms per milliliter range depending on the

aYnity and specificity of the reagents, and since ELISA assays perform serial

measurements in individual wells, cross‐reactivity between reagents is not an

issue. Automation‐compatible microwell formats for ELISA and the related

ELISpot assays have improved the throughput of the assay. A number of

reports have evaluated the use of bead arrays with regard to performance

equivalency to ELISA in cytokine analysis [94–96]. In these studies, the

correlation in findings between multiplex bead‐based studies and ELISA

varies widely, but the majority of studies compare the techniques favorably.

Perhaps the greatest influence of multiplexed bead array approaches has

occurred in the area of cytokine assays. Because cytokine profiles have been
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used as readout systems for disease and therapeutic monitoring, immunolog-

ic profiling has a number of important clinical applications. Table 3 presents

a summary of these and other multiplexed bead‐based applications.

Multiplexing provides comprehensive profiles within a timeframe not

possible with iterative assays requiring large amounts of assay material.

In a recent study of a large population living in an area endemic for an

intracellular parasitic disease, a multiplexed microsphere‐based assay was

used to quantify nine cytokines simultaneously and to evaluate disease

progression associated with a common Th1/Th2 response paradigm [108].

In this and other infectious disease applications, cytokine profiling by

economically and technically feasible means has the potential to enable

large population studies of disease mechanisms.
TABLE 3

FLOW CYTOMETRY MULTIPLEX BEAD‐BASED APPLICATION

Application Sytems/processes

Selected

references

Antibody profiling Serotyping, seroconversion,

chronic disease monitoring, anti‐
viral antibodies, therapeutic

monitoring, seroconversion,

vaccine development

[59–61, 97, 98]

Epitope profiling Virus typing, T cell phenotyping,

epidemiologic surveillance

[16, 92]

Cytokine profiling Inflammatory cytokines, drug

eYcacy monitoring, anti‐tumor

immune responses, biothreat

monitoring

[13, 94–96,

99–102]

Nucleic acid analysis Sequence detection (gene

expression, detection of PCR

products), single nucleotide

polymorphisms, microRNA

analysis, RNA–protein

interactions

[33, 81, 83, 85–88,

90, 91, 93, 103]

Cytogenetics Quantification of genomic copy

number, gene rearrangement,

allelic determination of leukocyte

antigens

[104, 105]

Mechanistic studies,

pharmacodynamic

profiling

Protease inhibitor screening,

phosphorylation profiling, cell

signaling, ligand binding

[64, 68, 69, 106,

107]
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5.4. MULTIPLEX ASSAYS OF MOLECULAR ASSEMBLIES

The potential of flow cytometry in the arena of molecular interactions is

just beginning to emerge [64]. Numerous studies have already described the

interactions of many classes of molecules where binding aYnity, kinetics, and

even enzymatic activity have been reported [109]. These approaches are now

being extended into the domain of multiplexing.

Recently a novel system has demonstrated the first multiplex flow

cytometry‐based protease assay with suYcient selectivity for measuring spe-

cific protease activity for two diVerent classes of proteases [106]. Using a

bead‐based assay capable of interrogating 12 individual substrates simulta-

neously, the findings have applications for pharmaceutical screening of

protease inhibitors and proteases involved in disease states. One disadvan-

tage of this approach is that the use of microspheres limits the substrate

concentration to the micromolar range, requiring either a high‐aYnity pro-

tease or high concentrations of a lower aYnity protease. If high‐aYnity

substrates are constructed, the cost and/or time associated with assay devel-

opment may be considerable. The time resolution capabilities of this assay

make it an attractive format for resolving the kinetic steps of binding,

catalysis, and enzyme release and rebinding phenomena.

In our laboratory, we have developed a novel and generalized approach to

investigate G‐protein–coupled receptor molecular assemblies that have mul-

tiplex implications [107]. We solubilized a fusion protein consisting of the �2‐
adrenergic receptor and green fluorescent protein (GFP) for bead‐based flow

cytometric analysis in two diVerent formats. In one case, the �2‐adrenergic
receptor GFP fusion protein was bound to beads displaying a conjugated

ligand, dihydroalprenolol. This format permits analysis of the Kd (dissocia-

tion constant) for the fusion protein binding to the ligand and, in competition

with other �2‐adrenergic receptor ligands, provides Kd values for agonists

and antagonists. The other format involved beads displaying chelated nickel

that bound purified hexahistidine‐tagged G‐protein heterotrimers. These

beads were able to bind the binary complex of agonists with �2‐adrenergic
receptor GFP fusion protein. The dose‐response curves of ternary complex

formation between ligand, receptor, and G protein revealed maximal assem-

bly for ligands previously classified as full agonists and reduced assembly for

ligands previously classified as partial agonists [110]. These beads could be

used in a mechanistic mode to show that guanosine 50‐3‐O‐(thio)triphos-
phate‐induced dissociation rates of the ternary complex were the same for

full and partial agonists. Taken together, these results suggested that the

association rather than the dissociation of the signaling complex was what

diVerentiated partial agonists from full agonists.
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When performed simultaneously with color‐coded beads, the two assemblies

discriminated between agonist, antagonist, or inactive molecule in a manner

appropriate for high throughput, small volume drug discovery. This is because

the ligandbeadswere sensitive to the presenceof all ligands,while theG‐protein
beads were sensitive only to agonists, and discriminated full and partial ago-

nists. From a quantitative perspective, these studies show applications of flow

cytometry for measurements of numbers of binding interactions per particle,

the binding constants, and the rate constants, all in a homogeneous format.

These types of assemblies can be further generalized, not only to other

G‐protein–coupled receptor protein–protein interactions but also to other

types of assemblies and other signal transduction components. Thus, we have

described an application for other elements of signal transduction cascades

such as protein kinases. In our experiments, two hexahistidine‐tagged activin

receptor like kinases (ALKs) were expressed in E. coli, purified and bound to

nickel beads. A fluorescent kinase ligand that binds to the ATP binding site

of these kinases with nanomolar aYnity was developed. Binding of the

fluorescent kinase ligand with kinase on the bead made the beads bright,

and inhibitors decreased the brightness. A test panel of 17 nonfluorescent

kinase inhibitors, spanning two orders of magnitude aYnity for the kinases,

gave Kd values for the kinases that correlated well with a fluorescence

polarization assay. Results were obtained for the kinases in duplex using

colored beads and an autosampler to send beads from a 96‐well plate to a

flow cytometer in a format suitable for high‐throughput screening.
Another multiplex application has been developed as a collaboration for

the NIH RoadmapMolecular Libraries Initiative to study the Bcl‐2 family of

proteins, which in part governs apoptosis. The human genome contains six

genes that encode anti‐apoptotic Bcl‐2 family members. Each of these pro-

teins can be bound to endogenous proteins that contain a conserved peptidyl

domain, the Bcl‐2 homology region 3 (BH3). Pro‐apoptotic family members

include both multidomain proteins, including Bak, and ‘‘BH3‐only’’ pro-
teins, including Bim. These pro‐apoptotic BH3 peptides that dock at this site

in Bcl‐2 and Bcl‐XL also increased apoptosis of leukemia and lymphoma cells

in culture and in Severe Combined Immunodeficiency (SCID) mice [111–113].

The binding of a fluorochrome‐conjugated BH3 peptides to Bcl‐2 family

proteins thus provides the basis for the construction of fluorescence assays,

suitable for high‐throughput screening. Our collaborators have described two

fluorescent peptides, F‐Bim and F‐Bak, that bind to six and four members of

the Bcl‐2 family, expressed as GST fusion proteins, respectively. The team has

already devised procedures for producing multi‐milligram quantities of pur-

ified recombinant proteins and devised a generic fluorescence polarization

assay, using F‐Bim [114]. They have performed a preliminary screen of
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�10,000 compounds with Bfl‐1 and F‐Bim, demonstrating the suitability of

this homogeneous assay for the high‐throughput environment. Using these

reagents and observations as a starting point, we have developed a multiplex

analysis byHyperCyt® high‐throughput flow cytometrywhere all sixmembers

of the family can be screened simultaneously, using color‐coded beads dis-

playing glutathione. These beads have been produced with high‐surface den-
sity of glutathione that appears to stabilize the interaction of the proteins with

the bead surface and allow the construction of the mixtures of the multiplexed

assays [115]. We are currently working on suspension arrays for other families

of proteins. For example, we have succeeded in displayingGST fusion proteins

of low‐molecular‐weight G proteins that bind fluorescent derivatives of GTP.

The experimental conditions for flow cytometry require that one compo-

nent be attached to a particle. As mentioned previously, it is advisable to

build the assay so that the more precious component is associated with the

particle. Typically, the association is through an epitope tagging scheme,

likely to be the same one that was used in the purification of that assay

component. The less expensive component is then provided at concentrations

near the Kd of the binding interaction. Thus, one component is displayed at a

concentration of tens of thousands of molecules per particle, on thousands of

particles, in volumes of a few microliters. We typically use a picomole of

protein or less per assay when the assays are performed in multiwell plates, in

total quantities that can be hundreds of times lower than, for example, a

fluorescence polarization assay. In addition, in some cases, we have been able

to perform flow cytometric analyses without purification of the protein at all

[116]. In this case, the protein of interest is captured on the flow cytometry

bead by epitope recognition. Rather than removing the protein from the

bead for further purification, it is sometimes possible to display it directly for

subsequent interaction with the fluorescent component. Experience suggests

that this may be more applicable when the fluorescent component is purified

as would be the case for the binding of a fluorescent ligand to a protein

displayed on a bead.
5.5. THROUGHPUT

The throughput of multiplex assays in flow cytometry is worth consider-

ing. Under optimal conditions, flow cytometers are capable of detecting tens

of thousands of events per second. To a first approximation, the data

acquisition capabilities are largely insensitive to the number of parameters

that are detected. Thus, at one extreme, the flow cytometer could detect 10 or

more parameters for each particle, functioning in a high‐content mode. The

prime example of this type of assay is to detect simultaneously many individ-

ual signals such as the levels of multiple phosphoproteins in cells [117].
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Moreover, flow cytometry is equally adept at performing both high content

and multiplex simultaneously. A well‐known example of this type of appli-

cation is where multiple antibodies are used to discriminate immunological

diverse populations of white blood cells [2]. Here, the information content as

well as the multiplex information is encoded by the antibodies. If there are

additional colors that are available for detection, they may be used to

measure the cell responses to a stimulus, for example the concentration of

intracellular calcium, in individual cell populations.

In the high‐throughput mode, multiplexing is subjected to diVerent limita-

tions. At one end of the spectrum, the limitation comes from the number of

addresses in a suspension array that can be encoded.With four log decades of

sensitivity in a typical flow cytometer, it has been practical to encode 10 color

levels and 10 addresses. With two‐color encoding, 100 addresses have been

achieved. With a sampling rate of 10,000 events per second and 200–500

events per address for adequate sampling statistics, the sampling time for a

100‐plex suspension array is theoretically only 2–5 s, with a flow rate of 1 �l/s
and a particle density of 10,000 per �l. We have observed that it is entirely

practical to sample 20‐plex bead populations with a sampling time of�1 s on

the HyperCyt® platform. The sampling time is expected to increase linearly

with the multiplicity of the array. On the other hand, for complex molecular

interactions, the biology of the assembly is more likely to limit the multi-

plicity of the array because of the limited specificity of the reagents rather

than the technological aspects of sampling or detection.
6. Future Directions

The application of multiplexing to functional genomics or proteomics is

now beginning to shift into high gear [118]. The potential will be recognized

in the areas of protein–protein, protein–ligand or small molecule, and

protein–RNA/DNA interactions. While there are perhaps 10 times as many

proteins expressed as genes, when posttranslational modifications and splice

variants are accounted for, it is likely in the foreseeable future that specific

families of proteins, protein domains, or the protein‐binding elements of

RNA or DNA will be arrayed for multiplexing. These arrays are expected

to probe family relationships involving specificity and aYnity of the molecu-

lar interactions, rate constants for their assembly and disassembly, and

discovery of small molecules. These small molecules will be used as probes

for the molecular assemblies, as leads in drug discovery for therapeutics, and

potentially as imaging agents for diagnostics.
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1. Abstract

Immune monitoring of biotherapy clinical trials has undergone a consid-

erable change in recent years. Technical advances together with new insights

into molecular immunology have ushered a new genre of assays into immune
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monitoring. Single‐cell assays, multiplex profiling, and signaling molecule

detection have replaced formerly used bulk assays, such as proliferation

or cytotoxicity. The emphasis on immune cell functions and quantitation

of antigen‐specific T cells has been playing a major role in attempts to estab-

lish correlations between therapy‐induced alterations in immune responses

and clinical endpoints. However, this has been an elusive goal to achieve, and

there is a special need for improving the quality of serial monitoring to ensure

that it adequately and reliably measures changes induced by administered

biotherapy. In this respect, monitoring performed in specialized reference

laboratories operating as good laboratory practice (GLP) facilities and

strengthening of interactions between the clinical investigator, the clinical

immunologist, and the biostatistician are crucial for successful use of immune

monitoring in clinical studies.
2. Introduction

A wide variety of biologic agents from cytokines to dendritic cell (DC)‐
based vaccines have been used in clinical trials for patients with cancer,

infectious diseases, or autoimmune syndromes. In general, the current interest

in the clinical application of biologics to therapy of human diseases reflects the

need for more eVective, less toxic, and preferably natural ways of treatment,

especially with conditions that are refractory to standard therapies. Biologic

agents as therapeutics aim at amodification of biologic responses, often of the

host immune system, to improve the host capability to recover and reacquire

normal homeostasis. Because most biologics target molecular and cellular

immunologic pathways, there is frequently a requirement for assessments of

the direct or indirect eVects they exert in vivo. Hence, immunologic monitor-

ing has slowly emerged as an advisable adjunct to clinical trials with biologic

agents. By and large, immunologic monitoring is not a protocol‐mandated

requirement but rather falls under the ‘‘correlative’’ studies category. This is

because in phase I and phase II trials, safety/toxicity or clinical eYcacy are the

primary endpoints, respectively, and immunologic or biologic responses to

therapy are considered as secondary endpoints. Nevertheless, immune moni-

toring is important for, ideally, it may be able to relate clinical responses to a

specific immune mechanism, to predict subject responsiveness to therapy, or

even to help estimate disease free or overall survival. The possibility that

immune measures may serve as biomarkers or as surrogate endpoints of

clinical responses has recently gained in popularity.

The immune system is exquisitely well prepared to handle insults by

pathogens and to control autoimmunity [1, 2]. It is ready to respond to

‘‘danger’’ originating within or outside the body [3]. In pathologic conditions,
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the immune system becomes compromised, even dysfunctional, and many

biologic therapies attempt to restore its integrity and upregulate immune

surveillance. Some biologic therapies target innate or natural immunity in

hope of upregulating surveillance functions of the immune cells, such as

monocytes, natural killer (NK) cells, or NKT cells [4]. Other biologic thera-

pies preferentially aim at enhancing adaptive immune responses to selectively

target those T or B lymphocytes that are responsible for protection against

specific insults [5, 6]. Much has been learned about the immune system and its

dysregulation in disease; however, the complexity of cellular and molecular

interactions within the system, especially between innate and adaptive im-

munity, and the existing crosstalk with neural, endocrine, and hormonal

networks complicate the interpretation of signals generated as a result of

particular immune‐based therapies. It is, therefore, a foregone conclusion

that the interpretation of immune monitoring results will be diYcult, often

intuitive and not always informative.

In recent years, many sophisticated technologies have been introduced for

measuring immune responses at the population as well as single‐cell level.
Older ‘‘bulk’’ assays have been largely replaced by single‐cell assays, espe-
cially in measurements of antigen‐specific T‐cell responses. Capabilities exist
for assessment of immune reactivity in situ, that is, at the tissue site of disease,

as well as in the lymph nodes or peripheral circulation. Technologies currently

available for measuring immune responses of patients enrolled in biotherapy

trials are numerous and sophisticated. This includes high‐throughput technol-
ogies such as arrays, multiplex formats, proteomics, genomics, high‐content
screening by flow cytometry, imaging, or tissue microarrays (see Table 1).

Most of these technologies originated in research laboratories, and today

most are not validated for use in monitoring. Immune monitoring of patients

participating in clinical trials represents a drastic departure from the research
TABLE 1

TECHNOLOGIES AVAILABLE FOR ADAPTATION TO IMMUNE MONITORING OF PATIENTS TREATED

WITH BIOTHERAPIES

1. Genomic analysis: DNA arrays

2. RT‐PCR for molecular markers of disease

3. Serum/plasma and tissue proteomics, including antibody microarrays andmultiplexing

for cytokines and chemokines

4. Immune polymorphisms

5. High‐content screening by flow and imaging cytometry

6. Tissue microarrays and immunocytochemistry

7. Assessment of immune infiltrates into tissues

8. Assessments of cell apoptosis vs. necrosis
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environment. A technology or a method that works well in a research lab-

oratory has to undergo a stringent scrutiny and considerable refinement in

order to meet criteria for its use in monitoring. While the new ‘‘state‐of‐the‐
art’’ technologies oVer possibilities for rapid screening of multiple samples and

for profiling (i.e., simultaneous detection) of many immune biomarkers, none

had been formally validated. This means that the application of these technol-

ogies to assessments of patient samples represents clinical research that has not

yet achieved acceptance as monitoring. These technologies are mentioned but

not discussed in detail here, and the reader is referred to the summary of a

Workshop on Cancer Biometrics [7] for an excellent review for their use and

potential.

The purpose of this chapter is to describe requirements for the process of

immune monitoring, starting with selection of methods that are applicable to

reliable serial assessments, continuing with their performance under defined

quality assurance (QA) or quality control (QC) conditions, and ending with

recommendations for results interpretation. The entire monitoring enterprise

requires support that can only be provided in a specialized laboratory oper-

ated to handle and reliably test serial specimens and, preferably, functioning

as a good laboratory practice (GLP) facility.
3. Rationale for Immune Monitoring

‘‘Monitoring’’ refers to serial specimen acquisition and testing. The rationale

for immune monitoring rests on the premise that therapeutic interventions

achieve their eVects as a result of modification(s) in one or more components

of the patient’s immune system. These therapy‐induced modifications occur

gradually, and the expectation is that by serially measuring immune biomar-

kers that undergo changes relative to the pretherapy baseline level, it might

be possible to define immunologic mechanisms responsible for biologic and

possibly also clinical activity of the therapeutic agent. As biologic agents

have a bell‐shaped activity curve that shifts depending on the dose and time

of their delivery, serial monitoring is necessary to define the optimal biologic

dose (OBD) of a therapeutic agent, which often is distinct from the maximal

tolerated dose (MTD). The latter is utilized to define toxicity of drugs, but

because most biologic agents have no or little toxicity, the OBD is the

appropriate measure of their eVects. Since, however, biologic agents are

likely to have multiple biologic (and clinical) eVects, the definition of OBD

may not be straightforward, depending on more than one immunologic

assay. The major objective of serial immune monitoring is to establish a

correlation between phenotypic and/or functional changes in immune cells

induced by therapy and clinical responses. The major unanswered question,
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however, concerns the origin of immune cells to be tested. Peripheral

bloodmononuclear cells (PBMC) representing less than 2% total bodymono-

nuclear cells are most commonly employed, although it appears that cells

derived from the disease site (e.g., site of infection, tumor, tumor‐draining
lymph nodes, fluid from an inflamed joint, or interstitial fluid from injured

sites) best reflect the extent of alterations induced by disease. Thus, whenever

available, such specimens should be collected, banked, and evaluated in

parallel with peripheral blood.
3.1. REQUIREMENTS

A brief description of requirements that underlie the principles of immune

monitoring is provided to orient the reader. Specimens collected from sub-

jects prior to, at defined intervals during, and at the end of therapy are

delivered to the laboratory. The specimens usually consist of peripheral blood

collected into heparinized tubes, but may include tumor or other tissues,

body fluids (e.g., pleural or peritoneal fluids, ascites), as well as especially

collected interstitial fluids from sites of cannulation [8]. The specimens for

immune monitoring are harvested at intervals specified in the clinical proto-

col and have to arrive at the laboratory no later than 24 hours after harvest.

This requires an overnight delivery of specimens originating at a distant

location. The specimens are bar‐coded and processed immediately upon

arrival. The separated cells are either cryopreserved at �80 �C in 2 ml

cryovials and banked or are immediately tested in assays that cannot be

performed with cryopreserved/thawed cells. The monitoring laboratory is

cognizant of assays that have to be performed on fresh as opposed to

cryopreserved/thawed cells and will be prepared to handle the specimens

accordingly.

Changes occurring in the immune cell phenotype or function in response

to therapy may be diYcult to detect, unless sensitive and reliable monitoring

assays are available. To decrease interassay variability of assays, immune

monitoring is generally performed with ‘‘batched’’ specimens, representing

the entire collection of samples obtained from one subject throughout

therapy. This type of design mandates that all collected specimens be cryo-

preserved under controlled conditions, thawed with a minimal loss of viabil-

ity, and tested in the same assay. It also requires that the monitoring

laboratory has the capability to perform cryopreservation, bank, and main-

tain samples at a large scale for prolonged periods of time. An assay ‘‘reli-

ability’’ in this context depends on the selection for monitoring of those

immunemarkers/functions that are least aVected by cryopreservation/thawing.
This has to be a priori ascertained by the monitoring laboratory through

comparisons of fresh and frozen specimens tested in the same assay. Experience
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shows that the correctly performed process of freezing/thawing of immune or

other cells is by far the most crucial determinant for preserving their true

functional potential and, hence, for successful monitoring.
3.2. SIGNIFICANCE

Immune monitoring of clinical trials is a complex and demanding enter-

prise requiring considerable resources. Its translational role in bridging basic

immunologic insights with clinical endpoints, however, cannot be overem-

phasized. There is increasing awareness of the fact that biologic therapies

occupy an important place among available clinical modalities for treatment

of human disease. Their true impact on disease processes cannot be unra-

veled without a better understanding of immune mechanisms that these

therapies target and possibly alter. Without reliable immune monitoring to

help identify and define these mechanisms, biotherapy is unlikely to achieve a

strong scientific foundation it deserves. Additionally, immune biomarkers

identified by well‐done monitoring might well prove to be significant surro-

gates of disease development, activity, or progression, and as such play a

key role in clinical practice. Immune monitoring represents a valuable

component of future research in translational science and clinical medicine.
4. Selection of Assays for Immune Monitoring

Technical advances and new insights into immunologic mechanisms have

led to the recent development of many new types of immunoassays that lend

themselves to use in monitoring (Table 2). Today, clinical investigators have

a choice between phenotypic vs. functional, specific vs. nonspecific, and

direct vs. indirect immune assays. The range and sophistication of currently

available assays, which can potentially be used for monitoring, predicate that

careful consideration is required for selection of the assay that best fits with

the hypothesis being tested and with the laboratory expertise. It is essential to

remember that immunologic monitoring of serially collected and batched

samples is more demanding and rigorous than the performance of individual

research assays. To monitor credibly, the laboratory has to have method-

ology in place that is selected for optimal performance and consistently

provides reliable results. Thus, the selection involves a consideration of the

assay attributes, including its throughput, required equipment, cost, and the

expertise level necessary for its routine performance. Occasionally, a clinical

investigator may request an assay that is especially applicable to a given

clinical protocol or is newly available and thus interesting. In all instances, it

is critical to select an assay that can accurately measure therapy‐induced



TABLE 2

ASSAYS CURRENTLY AVAILABLE FOR IMMUNE MONITORING OF BIOTHERAPY TRIALS
a

Assay type Sample type

Phenotypic markers

Cells: T, NKT, B, NK, M, DC, PMN, tissue cells

Absolute cell numbers Whole blood, body fluids, tissue biopsy

Cell proportions (percentages) Whole blood, body fluids, tissue biopsy

Cellular subpopulations Whole blood, body fluids, tissue biopsy

Single‐cell quantification Isolated cells

Morphology, cytology Isolated cells

Functional assessments

Delayed‐type hypersensitivity (DTH) Skin test read at 48 hours

Proliferation MNC, tissue cells, isolated cell subsets

Cytotoxicity (CTL, ADCC, NK, LAK) MNC or isolated cell subsets

Suppression (treg) MNC or isolated cell subsets

Migration (chemotaxis) Isolated cell subsets

Signaling, signal transduction Tissue biopsy, isolated cells

Superoxide generation MNC, tissue cells, tissue biopsy

Enzymatic activity MNC, tissue cells, tissue biopsy

Apoptosis or necrosis MNC, tissue cells, tissue biopsy

Cellular products

Immunoglobulin levels Serum, plasma, body fluids, supernatants

Cytokine/chemokine levels Serum, plasma, body fluids, supernatants

Cytokine receptors (soluble) Serum, plasma, body fluids, supernatants

Other soluble surface molecules (e.g., HLA, �2m) Serum, plasma, body fluids, supernatants

Ligands (e.g., FasL, TRAIL) and growth factors Serum, plasma, body fluids, supernatants

Enzymes (e.g., metaloproteinases, arginase, IDO) Serum, plasma, body fluids, supernatants

Neopterin Serum, plasma, body fluids, supernatants

aThe assays listed are available to be individually adapted to immunemonitoring for phase I/II

clinical trials. Many are not commercially available, and their use as an immunologic endpoint in

phase III clinical trials would require formal validation.
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changes in the frequency and/or function of immune cells. The selected assay

should be easily adaptable to serial testing with a minimal loss of accuracy,

have a high throughput to accommodate large‐volume testing, and lend itself

to automation. These requirements are imposed by the nature of monitoring

which has to accommodate batched serial samples from many time points

collected on protocols that enroll multiple subjects. The investigator and the

laboratory personnel are generally required to devote considerable time and

eVort to assay selection, as the decision may determine not only scientific/

correlative results of testing, but may also have significant financial impact.

Therefore, selection of a monitoring assay is an important step with con-

sequences that are likely to aVect results emerging from a clinical trial and,

ultimately, will have impact on the field of biotherapy as a whole.
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4.1. USE OF CRYOPRESERVED VS. FRESHLY HARVESTED SPECIMENS

The first decision facing a monitoring laboratory is the selection of assays

that can be performed with cryopreserved cells or frozen samples of body

fluids without compromising cellular functions or analyte integrity, respec-

tively. In monitoring, serially collected specimens are processed, cryopre-

served/frozen, and batched for testing upon thawing. This is by design

because the only reliable way to determine diVerences between pretherapy

and posttherapy results is to test these samples in the same assay. Conse-

quently, the ability to reliably bank body fluids or cryopreserve immune cells

for testing at the time therapy is already completed is the key to success.

However, certain immunologic assays, notably those that measure cytotox-

icity, cannot be reliably performed with cryopreserved cells [9]. It is necessary

to compare fresh and cryopreserved/frozen specimens to ascertain that a test

gives the same results when performed in parallel with either type of speci-

men. Assays accompanied by documentation showing they are reliable when

performed with cryopreserved/thawed specimens are the best candidates for

serial monitoring. Conversely, assays that must be performed on freshly

harvested samples require documentation of interassay variability so that

therapy‐induced changes in immune parameters can be distinguished from

assay‐related spurious diVerences.
4.2. SINGLE‐CELL ASSAYS: TETRAMERS, CFC, ELISPOT

In subjects with cancer treated with therapeutic antitumor vaccines, three

single‐cell assays for detection of antigen‐specific eVector T lymphocytes

can be used for immune monitoring: enzyme‐linked immunospot (ELISPOT)

assay cytokine flow cytometry (CFC), and tetramer binding. Each assay is

capable of measuring the frequency of vaccine‐specific or tumor‐specific
T cells in a mononuclear cell specimen. All three have been rapidly replacing

bulk‐culture assays, such as cytotoxicity (i.e., 51Cr‐release assay), prolifera-

tion (i.e., 3[H] thymidine incorporation), or cytokine production. All three

are based on T‐cell receptor (TCR) recognition of cognate peptides presented

by MHC class I or class II molecules on the surface of antigen‐presenting
cells (APC) to the responder T cells. However, no consensus exists as to

which of these three assays should be selected to best monitor vaccination

results. The common perception that these assays are equivalent, that is,

provide the same results, is not correct. Using all three assays, we measured

the frequency of the melanoma peptide‐specific CD8þ T cells in the periph-

eral circulation of subjects with metastatic melanoma who had received

multiepitope DC‐based vaccines [10]. A concordance between the three

assays was determined using a 3 � 3 scatter plot matrix design constructed

for each of the four peptides tested in all three assays before and after
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vaccination therapy was completed. The three single‐cell assays were not

found to be concordant in measuring the frequency of immune eVector
cells in the peripheral blood of vaccinated subjects. The results for tetramer

staining were consistently higher than those obtained with the ELISPOT

or CFC assay [10].

Reflecting upon the observed data and the assay characteristics, it becomes

clear that result concordance should not be expected. The ELISPOT assay

measures production of cytokines (most commonly either IFN‐� or IL‐5)
by individual T cells in the plated population with a theoretical detection

sensitivity of 1/100,000 cells. CFC identifies single responding T cells

(1/50,000) with a cytokine expression in the Golgi zone. Tetramer binding

detects peptide‐specific T cells expressing the relevant TCR with a theoretical

detection sensitivity of 1/10,000 cells. The assays not only have diVerent
sensitivities of detection, but also diVer in specificity. ELISPOT and CFC

are antibody‐based and, by definition, are highly specific. In contrast, tetra-

mers, which are complexes of peptides sitting in grooves of four MHC

molecules held together by a streptavidin‐biotin scaVold [11], bind to

T lymphocytes expressing the relevant TCR with variable aYnity. Tetramers

might easily dissociate or nonspecifically bind to B cells, monocytes, or

apoptotic cells [12, 13]. Thus, tetramer specificity needs to be carefully

controlled. While separation of relevant (e.g., CD8þ or CD4þ) T‐cell sub-
populations by antibody‐charged columns or gate dumping of irrelevant cells

in flow cytometry enhances tetramer‐binding specificity, these procedures are
costly, labor/time consuming, and thus not readily applicable to serial moni-

toring. Further, T cells that bind tetramers may not be functional, as TCR

signaling could be compromised, as often happens in cancer or chronic

infections, such as HIV‐1 [14, 15]. This reduces the tetramer‐binding assay

to a phenotypic category because it detects T cells that bind tetramers but are

not always functional [16]. CFC measures cytokine expression in a cell

and not its secretion (although it is commonly assumed that the expressed

cytokine would be secreted) and, strictly speaking, is also not a functional

assay. Before flow cytometry, responder T cells are incubated for a few hours

with a stimulant in the presence of Brefeldin or Monensin to block cytokine

secretion [17]. While necessary, this step allows for undesirable amplification

of response, as interactions in culture might increase the frequency of

responding cells in the tested population. Cell permeabilization necessary

for intercellular staining of a Golgi‐based cytokine might introduce problems

with immunodetection in CFC assays. ELISPOT is based on the similar

principle as CFC, only it measures cytokine secretion from stimulated respon-

der cells that are plated as a monolayer of individual cells on a nitrocellulose

membrane to avoid cell‐to‐cell contact and allow for adequate spot display.

Only ELISPOT measures function of individual responder cells by identify-

ing those that produce and secrete the measured cytokine. ELISPOT also
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does not require cell permeabilization or the use of a flow cytometer for

cytokine detection.
4.3. ELISPOT AS A MONITORING ASSAY

Which of these three assays is to be selected for immune monitoring of

antigen‐specific T‐cell frequencies in a clinical trial? This frequently asked

question can now be rationally answered as follows. Because it is always

preferable to measure function rather than phenotype, ELISPOT would be

an assay of choice. However, CFC and tetramer‐binding assays are flow

cytometry‐based and thus allow for surface labeling of responder cells and

their identification. It is possible to select CD8þ or CD4þ T‐cell subsets on
antibody‐charged columns prior to ELISPOT [18], and two‐color ELISPOT

now available oVers a possibility of identifying T cells simultaneously pro-

ducing two cytokines [19]. In addition, supernatants from ELISPOT wells

can be collected and tested for cytokine levels in multiplex assays. On the

other hand, tetramer binding can be combined with both surface staining to

determine cellular phenotype and intracytoplasmic staining for the detection

of cytokine production [16]. While most informative, especially in situations

when some of tetramer‐binding cells do not express cytokines, this rare‐event
analysis is time‐consuming, labor‐intensive, and thus, not the best choice

for serial monitoring. The recommended solution would be to monitor by

ELISPOT or CFC (but not both), depending on considerations, such as

sample numbers, time, labor, cost, and access to a flow cytometer. Tetramer

binding could be used as a confirmatory assay in situations where it is

important to demonstrate a functional deficiency of tetramer‐binding
T cells. The fact that tetramers have to be custom‐made and pretitered for

every peptide further limits their application to monitoring. In the author’s

experience, ELISPOT performed under strictly controlled, preferably GLP,

conditions is most likely to provide accurate estimates of the frequency of

functionally competent eVector T cells in batched, serial samples obtained

from subjects enrolled in clinical studies. Compared with CFC and tetramer

binding, the cost of ELISPOT is reasonable enough to permit its use in a

high‐volume testing. However, the ELISPOT assay is not easy to standardize,

and responder–stimulator interactions might result in unacceptably high

background spot counts in which case the assay becomes uninterpretable.
4.4. ATTRIBUTES OF SELECTED ASSAYS

Selection of a ‘‘right’’ assay for immune monitoring is a diYcult process.

An assay that accurately records therapy‐induced changes in one or more

immune parameters may not always be applicable to high‐throughput serial
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testing. The single‐cell assays described above are complex in execution,

diYcult to analyze and interpret, and are relatively costly. It follows that

their use should be judicious and carefully planned. Whatever assay is

selected, it should have most, if not all, of the following attributes when

performed under defined standard conditions: specificity, sensitivity preci-

sion, accuracy, and robustness. However, immunologic assays are often cell‐
based and thus especially troublesome to standardize, as discussed below,

and may not be as precise or robust as chemical assays. For example, it is not

unusual to see CVs greater than 20% in cellular assays. Functional assays are

likely to be more diYcult and expensive to perform than phenotypic assays.

Cellular assays are always more complex to execute and interpret than

titrating or measuring concentrations of soluble analytes in body fluids.

Assay standardization, which is a requirement for serial immune monitoring,

is expensive and requires special expertise. Ultimately, an investigator faced

with a choice has to make an informed selection based on the hypothesis to

be tested and monitoring tools that are most likely to accomplish the task.
5. Profiling of in Immune Biomarkers

Immune responses involve cascades of balanced interactions between anti-

gens, immune cells, and their products. An imbalance or perturbation of the

immune network may be more readily detectable if several rather than one

functional or phenotypic markers are measured. Technologic advances now

allow for a simultaneous assessment of multiple biomarkers, providing an

investigator with a ‘‘profile,’’ which may be more informative than a single

assay. For example, cytokines and chemokines, soluble products of immune

cells, are known to function as networks of several biologically related media-

tors, and measurements of a single cytokine in biologic fluid are seldom

informative. The preference for simultaneous definition of several mediators

contributing to an immune response has led to the development of microarrays

and multiplex assays.
5.1. MULTIPLEXING FOR CYTOKINES

Cytokine, gene, or protein profiling, whether by multiplex immunoassays,

microarrays, or proteomics technologies, is especially well suited to evalua-

tions of cytokine circuits. The potential for capturing polarization in the

cytokine repertoire or diVerences in patterns of their production by immune

or tissue cells and of relating them to a specific clinical situation has a treme-

ndous appeal. Systemic and local therapies with cytokines are becoming

increasingly common, and there is a need for monitoring cytokine levels in
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relation to clinical endpoints. It is expected that such monitoring will expand

our knowledge of the cytokine biology and rapidly provide a wealth of

clinically useful information about cytokine involvement in human disease.

Today, multiplex assays have all but replaced traditional enzyme‐linked
immunosorbent assays (ELISA) for cytokines allowing us to simultaneously

measure proinflammatory cytokines, Th1‐ vs. Th2‐type cytokines, growth‐
promoting as opposed to suppressive cytokines, and so on, in a small (0.5 ml)

sample of body fluid. Multiplex bead immunoassays designed to work in

conjunction with a Luminex‐type instrument utilize sets of distinct fluores-

cently labeled microspheres, each covalently linked to a cytokine‐specific
antibody [20, 21]. A combination of diVerent color‐coded beads (up to 100)

in one tube allows for a simultaneous assessment of several cytokines.

A flow‐based instrument equipped with a reporter and classifying lasers

and associated optics measures reactions that occur on the surface of colored

microspheres. A high‐speed digital signal processor eYciently manages the

fluorescent output. The intensity of measured fluorescence is directly propor-

tional to the concentration of the cytokine present in the specimen. The result

is a quantitative profile of as many as 20–30 cytokines that might be espe-

cially useful for assessments of cytokine imbalance in disease. The thera-

peutic goal of shifting the balance from Th1 to Th2 cytokines can be more

clearly defined using ‘‘cytokine profiling.’’ Specifically, in the Th1‐dominant

diseases characterized by excess production of such Th1 cytokines as IL‐2 or
IFN‐� (i.e., autoimmunity, graft vs host disease), the desirable outcome

would be a shift toward a Th2 cytokine profile. Conversely, in cancer, HIV

or allergy considered to be Th2‐dominant diseases, with excess of IL‐4, IL‐5,
IL‐10 production, a therapeutically driven shift toward the Th1 profile might

correlate with immune and perhaps clinical recovery [22, 23]. It has been

suggested that measuring cytokines and other growth factors in serum is not

as useful as profiling them in situ, at the disease site. To this end, a technology

exists collecting interstitial fluids via special catheters to be tested for multiple

cytokines/chemokines by a microassay method, as recently described [8].

The multiplex antibody‐coated bead assays for cytokines are referred to as

‘‘cytokine arrays.’’ Several other assays utilizing a microarray format for rapid

detection of cytokine profiles in biologic samples are available as recently

reviewed [24, 25]. Their advantages are that numerous cytokines/chemokines

can be simultaneously detected in a small sample volume with a high

throughput.
5.2. GENOMICS AND PROTEOMICS

Microarray formats can of course be applied to measuring proteins other

than cytokines including peptides, small molecules, or metabolic by‐products
present in body fluids. Under the heading of proteomics, these technologies
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are currently used to define biomarkers that would qualify as ‘‘surrogate

markers’’ of disease and provide a signature of disease state. It is expected

that pathologic changes on the one hand and therapy‐induced alterations on

the other in cells or tissues will be reflected in distinct protein patterns

detectable in cells or body fluids. Proteomic technologies that are able to

discriminate between normal and pathologic protein patterns are likely

to become very useful for mapping changes that accompany therapy or

are associated with a disease progression. Proteomic methods involve pro-

tein quantification and their characterization, including posttranslational

modifications or protein–protein interaction profiles [26, 27].

Although proteomics‐based screening for biomarkers is commonly a com-

ponent of clinical trials with biologic agents, its application tomonitoring will

depend on highly validated and characterized methods of sample analysis.

Similarly, assessments of gene expression profiles using array‐based technol-

ogies, referred to as genomics and widely used today in eVorts to provide a

genetic phenotype of a disease state, are not yet ready for use in monitoring.

Nevertheless, both genomics‐ and proteomics‐based technologies are gaining

increasingly important place in screening for immune alterations and will likely

become major components of monitoring in the future, provided current

correlative studies validate their reliability and clinical utility [7, 28, 29].

Detection of diVerences in gene expression, using microarrays now widely

available from commercial vendors, in immune cells prior to and after

therapy is likely to help in identifying molecular targets responsible for a

response. Similarly, a combination of two‐dimensional PAGE with mass

spectrometry allowing for simultaneous analysis of many hundreds of pro-

teins in body fluids or tissues may enable us to discriminate disease‐
associated from therapy‐induced eVects. Rapid and cost‐eVective screening

for the expression of multiple genes coding for cytokines, activation markers,

components of major signaling pathways, or other cellular products oVers
a powerful new approach to obtaining an integrated view of disease

mechanisms and cellular processes. Specifically, measuring T‐cell activation,
or identifying changes in T‐cell diVerentiation, proliferation, and survival in

response to biotherapy represents an important advance in understanding

molecular mechanisms of immune response. In addition, examining up‐ or
downregulation of gene expression as well as protein analysis capturing

distinct protein patterns could identify biomarkers of prognosis or surrogate

markers correlating with clinical responses. These potential applications of

genomics and proteomics to monitoring of research clinical trials are being

actively explored. But to the best of the author’s knowledge, none of these

‘‘state‐of‐the‐art’’ technologies have yet been qualified for monitoring of

biotherapy trials based on the feasibility, reproducibility, and standardization

criteria usually applied to assays selected for diagnosis, early detection,

monitoring of therapy, or prevention and risk assessment.
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5.3. POLYCHROMATIC FLOW CYTOMETRY

The availability of monoclonal antibodies labeled with various chromato-

phores with excitation wavelengths spanning the entire light spectrum has

revolutionized flow cytometry. This technology is used for examining cells,

including immunocytes, in body fluids or in culture. The presence and/or

levels of expression of surface or intracytoplasmic markers in immune cells

can be reliably assessed by flow cytometry. Newer applications of flow to

measuring cellular functions such as proliferation, cytotoxicity, apoptosis, or

cytokine expression are replacing more traditional culture‐based methods

[30–32]. Single‐cell assays, such as tetramer binding or CFC, as discussed

above, allow for examination of individual antigen‐specific immune cells and

their quantification. Further, this multiparameter technology facilitates

simultaneous analysis of the phenotype and function and lends itself to

high‐content screening [33].

Flow cytometry‐based assays are now widely accessible and are highly

accurate. A large array of variously labeled monoclonal antibodies are

commercially supplied, allowing for the assessment of the proportions of

immune cells positive for up to 9–12 markers. A combination of activation

markers, growth receptors, cytokine receptors, costimulatory molecules, and

so forth, on distinct and identifiable subsets of PBMC provides a powerful

tool for monitoring. However, from the practical viewpoint, monitoring for

simultaneous expression of more than five markers is too labor‐intensive,
especially in its data analysis aspect, and in the author’s monitoring labora-

tory four‐color flow cytometry assays are routine, while flow with five or

more colors is used for confirmatory/research purposes. Changes not only in

proportions of cells expressing a given set of markers but also in levels of

expression of individual molecules or even changes in their phosphorylation

following exposure to an activating signal can be quantified by flow cytometry.

This feature makes multiparameter flow cytometry a useful approach for

testing the predicted mechanisms of action of a biologic agent. Quantitative

flow analysis can be greatly enhanced by the use of molecular equivalents of

soluble fluorochrome (MESF) units instead of mean fluorescence intensity

(MFI) in every assay. By adding a mixture of four types of beads with known

fluorescence intensities and unlabeled blank beads control, a standard cali-

bration curve is generated each time the assay is performed. The curve

transformsMFI values intoMESF units and defines the interassay variability

of the assay (e.g., <2% with n ¼ 30). This method is particularly useful for

assessments of individual cellular components such as activation markers or

signalingmolecules in lymphocytes. Phenotyping of cells by flow cytometry can

be done on fresh or cryopreserved specimens, and it has been extensively used

in monitoring of biotherapy trials. However, calibration of the instrument and
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compensation for chromatic interference are the key to successful and reliable

flow cytometry.

6. The QA/QC Program and Assay Quality

An assay selected for use in monitoring has to be executed under condi-

tions that will consistently provide acceptable data. Immune monitoring of

patients enrolled in biotherapy trials should only be performed in labora-

tories with established QA and QC programs that meet the GLP standards.

QC of immunologic assays, especially cellular assays is diYcult and that of

serial immunologic measures represents a special challenge. Therefore, a

rigorously operated QA/QC program is a requirement for a monitoring

laboratory. Such a program generally consists of several components, includ-

ing a manual of regularly updated standard operating procedures (SOP),

policy manual, personnel training, instrument maintenance, reagent and

temperature control, secure data base, adverse event review, quality review,

and proficiency testing. Currently, no model QC program exists for immu-

nologic monitoring, and the laboratories are encouraged to follow the GLP

guidelines oVered by professional groups, such as College of American

Pathologists or the departments of health in some states. No proficiency

testing programs are available for most immunologic assays, except those

designed for flow cytometry or hematology (i.e., the leukocyte count and

diVerential). Participation in these is highly recommended. Largely, however,

the monitoring laboratories are required to establish their own QA/QC

program to ensure that acceptable data are generated in compliance with

the GLP standard. In cases where this is not possible, services of a reference

immune monitoring laboratory can be sought. Advantages of a central

laboratory operated as a GLP facility are listed in Table 3. Such facilities

exist in large medical centers or may be associated with National Institutes of

Health (NIH‐) supported cooperative groups.
TABLE 3

ADVANTAGES OF A CENTRAL LABORATORY OPERATED AS A GLP FACILITY

� QA/QC program in place, assuring the quality and reliability of monitoring
� State‐of‐the‐art technologies in use
� Scale‐up and high‐throughput assays available
� Assay development and standardization
� Decreased cost of monitoring due to the large assay volume
� Result interpretation by a clinical immunologist in conjunction with statisticians aware

of immune‐based analyses
� Banking of samples which are accompanied by clinical outcome data for future research
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6.1. QA/QC IN PRACTICE

Sample arrival, log in, and processing performed according to an existing

SOP have to be organized to meet the specimen collection schema(s) in a

clinical protocol(s). Arrival of serial specimens is recorded manually and

electronically. Blood samples for immunologic monitoring should be rou-

tinely collected in the morning to avoid diurnal variability. Tissue samples

and body fluids are processed diVerently than blood, and the laboratory has

to be prepared to handle these specimens as they arrive. Specimens must

reach the laboratory within 24 hours of collection to be processed. A history

of each sample is maintained, and problems are documented in writing and

reviewed. Arriving specimens are directed to be tested fresh or cryopreserved.

The decision to use fresh or cryopreserved cells in a given assay is made prior

to a clinical protocol initiation and is based on results of preliminary com-

parative studies of the assay performance with fresh vs. cryopreserved cells.

Cryopreservation, using a rate‐control freezing device, is a routine but extre-
mely important step in monitoring as is banking of cryopreserved specimens

in liquid N2 vapors. Both are performed under stringent controls because

subsequent testing depends on the quality of cells that are stored frozen and

thawed for testing. Similarly, aliquoted body fluids that are banked and

batched for future testing must be protected from temperature fluctuations

or inadvertent equipment failure. Hence, temperature‐control program has

to be in eVect around the clock. An automated temperature‐control system is

advisable. The above‐described activities are components of the QA/QC

program that is necessary for reliable immune monitoring.
6.2. ASSAY STANDARDIZATION

Standardization is performed prior to the introduction of an assay for

monitoring. As the major function of serial monitoring is to document

changes from baseline upon treatment, the importance of assay reproduci-

bility cannot be overemphasized. The standardization data are obtained by

repeatedly performing the assay with cells or body fluids obtained from

healthy donors under previously established optimized invariant conditions

to establish the mean, median, and 80% normal range and coeYcient of

variation. The intraassay variability is also determined, as batching of speci-

mens in one assay is a usual operating procedure. A set of appropriate

controls is selected, and these depend on the type of specimen. For example,

in assays performed with fresh PBMC, which are collected at various time

points, interassay variability is of concern. Therefore, a cryopreserved lot of

vialed PBMC obtained from a normal donor can be prepared, its range
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of reactivity determined, and thawed cells used in the assay to monitor day‐
to‐day variability. With fresh cells, it is always advisable to include fresh

control cells obtained from a healthy volunteer. In this respect, it is necessary

to have in place an IRB approval for drawing blood from consented normal

donors and to maintain a pool of such donors for QC purposes.

Batching of serial samples obtained from one patient in the same assay

may dispense with concerns of interassay variability; however, even with this

monitoring strategy in place, it is necessary to control for day‐to‐day diVer-
ences to ensure the assay performs equally well for all patients on the

protocol, whose batched specimens are likely to be tested on diVerent days.
The data obtained from control samples and evaluated in parallel with each

patient sample can help to ensure the results validity. Whenever available,

universal standards (such as e.g., cytokine standards available from NIH or

WHO) should be regularly included in the monitoring assays.
6.3. ASSAY VALIDATION

Assay ‘‘standardization’’ should not be confused with assay ‘‘validation.’’

The former is a requisite part of the QC program, while the latter is a formal

evaluation of an assay performed as defined in the Bioanalytical Method

Validation issued by FDA in May 2001 (21CFR part 58) and qualifying it

to be used in phase III clinical trials as an immunologic endpoint. Validation

consists of a series of experiments designed to evaluate accuracy, precision,

selectivity, sensitivity, reproducibility, and stability characteristics of the

method. While validation criteria are well defined for chemical assays, immu-

nologic assays do not always fit into these criteria. Nevertheless, because no

separate guidelines exist for immunologic assays, those developed for chemi-

cal assays are generally followed. Validation of immunologic assays is expen-

sive and faces a number of problems, especially with cell‐based assays, which

are typically lacking in precision. Further, no reference standards for cellular

assays are currently available. In contrast, validation of immune assays

measuring soluble products, such as immunoglobulins or cytokines, can

follow recommendations for the development of chemical assays.
7. Interpretation of Immune Monitoring Assays

Serial immune monitoring is aimed at the accurate identification of

changes in the immune profile established at baseline during the course

of therapy. Not unexpectedly, there are many pitfalls. Even when the mea-

surements of samples collected over time are made simultaneously and
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accurately in one assay, it is possible to miss the change, especially when it

peaks, simply because sampling intervals are not correct, so that the relevant

samples are missing. A separate concern is that of biologic variability existing

within and among individuals. Immune responses are subject to environ-

mental, hormonal, and neurologic as well as pathologic changes [34, 35].

Therefore, the discrimination of therapy‐related alterations from biologi-

cally mediated normal responses to infections, stress, or endocrine activity

might be very diYcult. Often, this might require a parallel assessments of

nonimmunologic biomarkers.
7.1. STATISTICAL ANALYSIS

Results obtained from serial monitoring require statistical analysis. In

preparation for such analysis, the data have to be purged of possible errors

made during data entry. A monitor intimately familiar with the assays is

assigned the task of screening for outliers. These are identified and checked

against the laboratory records (worksheets). Next, the statistician responsi-

ble for the analysis should generate a summary data statement in which

missing data points or variations from the protocol schema are flagged to

be checked against the laboratory records. This is a very important compo-

nent of the analysis because changes in the timing of samples relative to the

treatment as well as departures from the sampling sequence specified in the

protocol are likely to have profound eVects on the final results. Once

the statistician is satisfied with the completeness and accuracy of the data

set, he initiates the analysis that he had selected together with the investigator

responsible for the clinical trial. The selected analysis depends on the

trial objectives, its design, and hypotheses tested, but since pre‐ and post-

treatment changes are generally measured, the object of the analysis is to

determine the significance of changes from pretherapy baseline. Several

statistical methods are available for this type of analysis as previously

described [36].

The statistician performing the analysis of immune monitoring results has

to be intimately familiar with the assay(s) that had been used. This is often a

problem, which can, however, be easily remedied by including the clinical

immunologist in the design, execution, and analysis of biotherapy clinical

trials which include immune monitoring. Interpretation of immunologic data

is not straightforward: it requires knowledge of the assays performed as well

as the biologic agent used for therapy and its mode of action. It is necessary

to be cognizant of the hypothesis being tested in the trial and putative

mechanisms that might mediate immunologic activity or its absence, as

when, for example, suppressive mechanisms counterbalance stimulatory

activity of a therapeutic agent. For this reason, immunologic results might
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appear counterintuitive, and expertise is needed to provide a correct inter-

pretation. Individuals who direct immunomonitoring laboratories are in a

position to help with assays selection, their timely and accurate execution

and, by being in touch with the statistician, also with the data analysis.

Close interactions between the biostatisticians, clinical investigator, and the

laboratory are hallmarks of successful monitoring.
7.2. INTERPRETATION DISCREPANCIES

Given the stringent requirements and demands good monitoring imposes,

it is not surprising that to date few significant correlative studies have

emerged from immune monitoring. Further, immunologic results obtained

in various academic centers testing similar or the same immune therapies

rarely agree. The data interpretation becomes challenging when two diVerent
assays give results that do not correlate. For example, delayed‐type hyper-

sensitivity (DTH) test, which is the only available in vivo correlate of cellular

immunity in man often does not correlate with results of ex vivo T‐cell assays.
A positive DTH response read as induration (not erythema) at the test site 48

hours after intradermal application of an antigen signifies existing immunity

[37]. A concomitant absence of proliferative ex vivo T‐cell response might be

due to the assay sensitivity and thus may not be biologically significant.

Another test, for example, cytokine production, might be positive. On the

other hand, a negative DTH test accompanied by a positive ex vivo response

to the same antigen could indicate in vivo suppression that is not detected

with isolated T cells in a test tube. When results of two ex vivo assays do not

correlate, the tendency is to depend on one and neglect the other. However,

the observed discrepancy could signify a loss/gain of a specific immune

function in which case an important biologic event is missed. More relevant

to monitoring is the situation when changes from the baseline only weakly

correlate with a clinical endpoint or when large individual variability in the

magnitude of immune response exists among subjects. The latter is a com-

mon finding, and the use of robust fitting statistics might correct for between‐
patient diVerences. In some individuals, immune response to treatment

may be delayed relative to others, and here also statistical modeling might

simplify interpretation. Overall, while discrepancies are expected between the

DTH and ex vivo assays, those between two monitoring ex vivo assays are

troublesome. It is, therefore, preferable to avoid monitoring of the same

function, for example, cytotoxicity, using two diVerent assays. Monitoring

based on the hypothesis which targets a specific immune mechanism or

activity should be restricted to one, at most two, carefully selected assays.

Interpretation of results from such a hypothesis‐driven study will be simpler,

and results are more likely to correlate with clinical outcome. On the other
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hand, currently popular microarrays, serving as screening tools, may identify

biomarkers that correlate with clinical endpoints or can be used as surrogate

markers. When achieved, this would represent a significant advance in moni-

toring. As always, the availability of data from adequate numbers of subjects

together with the ability of a selected monitoring assay to discriminate

responders from nonresponders will determine the level of significance. It

should be remembered that both can be and should be determined prior to

the clinical trial based on the available preliminary data.
8. Conclusions

Immune monitoring of serially collected samples from clinical protocols is

demanding, resource consuming, and costly. It is, however, necessary for

ensuring that clinical endpoints are correlated to the immunologic mechanisms

potentially responsible for therapy‐induced changes. Linking correlative im-

munologic studies with clinical endpoints, however, has been a major problem.

One reason could be that requirements for extensive laboratory support in the

context of existing QA/QC program have not been met. Serial studies are

especially diYcult to perform reliably, and a GLP facility specializing in im-

mune monitoring is an appropriate venue for such studies. A schema for

immune monitoring as it should be optimally performed in support of clinical

trials is included below.While there are many steps, the selection of assays that

are most likely to capture the underlying immune mechanisms is of critical

importance. Yet, this is not a simple task because interactions between immune

cells, cytokines, antibodies, and other biologically significant immune products

and the host are not fully understood. Interpretations of monitoring results

require statistical analysis capable of modeling therapy‐induced changes in

multiple cellular interactions over time. It is expected that when these require-

ments are adequately addressed and immune monitoring becomes an integral

part of all biotherapy trials, the so far tenuous goal of establishing immune

correlates of clinical responses will be fulfilled.

The future of immune monitoring includes introduction of new assays

targeting signaling molecules, activation pathways, apoptosis antigen proces-

sing, and regulatory T lymphocytes (Treg). Also, antigen‐specific responses

will be playing an increasingly important role and will become validated to

meet regulatory requirements. Immune measures are beginning to be looked

upon as biomarkers of disease progression and outcome. This trend is likely

to continue given the emerging evidence that phenotypic and functional

attributes of immune cells as well as their products can serve as surrogate

markers of disease progression or responses to therapy. Multiplex formats
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Hypothesis relevant to immune mechanisms

Immune endpoint(s) defined based on pre-clinical data
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screening vs confirmatory
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monitoring laboratory available
GLP facility recommended

Batch-testing of serial specimens 
high-throughput assays preferable

Assay results: analysis, interpretation

Correlation with clinical end points
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and microarrays are slowly replacing conventional immune assays and allow

for the definition of immune profiles, which appear to be more informative

and biologically relevant. With a better understanding of immune mechan-

isms and their involvement in human disease, it will be possible to eliminate

the practice of using multiple assay panels and replace it with the hypothesis‐
driven monitoring dependent on one or a small number of selected assays.

Most of these alterations in the practice of monitoring are already in prog-

ress, and in its new format, immune monitoring is well poised to continue

serving the field of biotherapy.
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1. Abstract

Stress is associated with both psychological and biological adaptation.

Chronic stress, however, impairs adaptation, and may finally lead to illness,

in part through unhealthy changes in nutritional behavior. This chapter

shows how physiological and psychological stress responses are aVected by
Inc.
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diVerent food ingredients, and how stress aVects health behavior, for exam-

ple food choice. It becomes obvious that nutrition is closely linked to food

choice and that food ingredients aVect a broad range of neuroendocrine and

related psychological processes, which regulate adaptation to chronic stress.

Thus, dietary modification may become a valuable tool to modify the

susceptibility to stress and stress‐related disorders.
2. Introduction

Stress may aVect health not only through its direct biological eVects but
also through changes in health behaviors [1, 2]. One such health behavior is

food choice. Stress may lead to illness through unhealthy changes in nutri-

tional behavior. In psychology literature, food choices have often been

considered as one of the range of health‐related behaviors that might be

responsive to life stress or emotional well‐being either inadvertently or as a

deliberate strategy for coping with stress [3, 4].

Stress is associated with biological changes, such as adrenaline‐induced
glycogenolysis, slowed gastric emptying, autonomic shunting of blood from

gut to musculature, and activation of the hypothalamic–pituitary–adrenal

(HPA) axis [5, 6]. Increases of corticotropin‐releasing hormone (CRH),

adrenocorticotropic hormone (ACTH), and cortisol levels in anticipation

of or during stressful stimulation are interpreted as allostatic [7]. The diver-

sity of health implications now associated with control and consequences of

the release of cortisol, together with its sensitivity to psychological stress, has

given this major human adrenal glucocorticoid (GC) hormone much impor-

tance in behavioral medicine [8]. There is evidence that the HPA axis as well

as peripheral cortisol metabolism may be diVerently regulated according to

sex and age factors [9, 10].

The HPA axis is closely associated with systems responsible for caloric

flow in the body [11–13]. Only recently animal studies have revealed evidence

for fasting‐induced attenuation of pituitary‐adrenal responses to stress.

A prolonged fasting of 4 days decreased cortisol responses to stress in

sheep isolated from the flock compared with stressed sheep fed ad libitum

[14]. Rats fasted for 14–24 hours showed a blunted corticosterone response to

novelty [15] and reduced ACTH levels following restraint stress compared

with controls [16, 17]. However, despite lower ACTH levels, restraint stress

after fasting was associated with an increased corticosterone response in the

latter experiments [17]. In humans, fasting induced changes in adrenocortical

responsiveness [18]. Fasting for 3 days led to reduced cortisol increases

following insulin‐induced hypoglycemia. Fasting for 24 hours was without

any eVect (Fig. 1).
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HPA axis function can profoundly influence expression of appetite and

regulation of body weight [6], whereas HPA axis activity can be modified by

changes in feeding patterns [19]. Systematic studies demonstrated an associ-

ation between meals and the midday increase in plasma cortisol [20]. Also,

increases in plasma cortisol could occur in some subjects after breakfast, the

midday meal, or an evening meal, the greatest eVect occurred after the

midday meal [21].
3. Meal Composition

Food ingestion is a well‐known inducer of several peptides that may, in

turn, directly influence the activity of the HPA axis [22]. Animal studies

indicated that both the food intake and the light–dark cycle represent inde-

pendent synchronizers for the circadian periodicity of cortisol secretion [23].

In addition, meal timing, food composition, and the duration of premeal

fasting have been shown to exert an important eVect on cortisol secretion

[24, 21]. Cortisol secretion elicited by stress or smoking is abolished by mild

food deprivation in men [12]. Normal physiological variations in cortisol in
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humans have a significant direct influence on macronutrient metabolism

[25, 26]. Cortisol seems to increase lipolysis and proteolysis, as well as

increasing gluconeogenesis, thereby raising the contribution of protein and

fat to energy substrate supply, while protecting glycogen stores. Further, the

ability of cortisol to increase plasma free fatty acid (FFA) levels may underlie

the emerging link between cortisol and abdominal obesity, together with its

associated metabolic syndrome [27].

In humans, it has been found that food ingestion, particularly proteins,

can stimulate �1‐adrenoreceptors, possibly via the activation of neurotrans-

mitter amines [28]. There is much evidence that adrenal steroids influence

macronutrient selection by increasing appetite for carbohydrates (CHOs),

primarily, and for fat, and regulating the timing of eating in rodents [29, 30].

Also, stress may alter macronutrient selection. Women tend to prefer high‐
fat or sweet foods when moderately stressed [31, 32]. Women who were high

cortisol reactors to stress ate more food than low reactors during recovering

from stress [33]. On the rest day, however, high reactors tended to eat less and

low reactors tended to eat more, eliminating the diVerence between groups.

The high cortisol reactors tended to consume more sweet foods than low

reactors, across days [33]. Also cortisol reactivity may be a marker for

vulnerability to stress‐induced eating, and thus may help to explain who

eats more vs who eats less after stress [33].
3.1. CARBOHYDRATE

Diets with high CHO content may prevent deterioration of mood in stress‐
prone subjects when submitted to a stressful task [34]. DiVerent studies

indicated that CHO supplementation results in significantly lower plasma

levels of tryptophan and the branched‐chain amino acids (leucine, isoleucine,

and valine) by 120 min of exercise [35, 36]. The rise in plasma tryptophan

levels is believed to be the result of attenuation in FFA levels as a result of the

CHO supplementation. Increasing levels of plasma FFA result in increased

plasma levels of tryptophan by displacing tryptophan from albumin [36, 37].

In contrast, declines in plasma branched‐chain amino acid levels during

CHO supplementation and exercise are thought to be due to the maintenance

of plasma insulin levels during exercise [37, 38].

Studies indicated that CHO supplementation results in lower plasma levels

of both amino acids tyrosine and phenylalanine. Since movement of these

amino acids into muscle and liver can also be enhanced by insulin [36, 39].

CHO supplementation also influences the hormonal responses to exercise.

Also, CHO supplementation during prolonged exercise attenuated increases

in plasma cortisol and decreases in plasma insulin [35, 40]. The magnitude of

decline in plasma insulin levels during CHO supplementation appears to be
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greater in women compared with the decline previously described in men

[35]. Glucose load leads to a rapid rise in insulin levels in nondiabetics, and

thereby to an increased transport of tryptophan into the central nervous

system. This is followed by an increased synthesis of serotonin, which is

known to have a stimulatory influence on the HPA axis at the hypothalamic

level [41]. Following Trier Social Stress Test subjects with high blood glucose

levels showed the well‐established response pattern of a twofold increase in

free cortisol levels [42, 43]. Human studies suggest that ready availability of

energy is a prerequisite for significant acute stress responses of the HPA

axis [12].
3.2. FAT

Feeding rats chronically a high‐fat diet increased their basal and stress‐
induced HPA activity [44]. Continuous high‐fat feeding may act as a chronic

stressor, not only enhancing baseline adrenocortical activity but also increas-

ing neuroendocrine stress responses. Feeding rats with high‐fat diet resulted
in a lower anxiety level in an elevated plusmaze paradigm compared with

feeding with high‐CHO diet [45]. Feeding rats a diet with a high fat content

reduces some of the behavioral and physiological responses to psychosocial

and physiological stressors such as social defeat and administration of the

endotoxin lipopolysaccharides [46]. Furthermore, the defeat‐induced desen-

sitization of central nervous 5‐hydroxytryptamine (5‐HT)1A receptors, which

normally occurs in animals on a diet with a high CHO content, is absent in

animals on a high‐fat diet [46]. Hypothalamic levels of 5‐HT also decrease

immediately after consumption of a fat meal [47]. A high‐fat diet has suppres-
sive eVects on the thermoregulatory and behavioral responses to stress [46].

Serum brain‐derived neurotrophic factor has been found to be negatively

correlated with the severity of depressive symptoms [48]. Brain‐derived neu-

rotrophic factor expression can be inhibited by physical and psychological

stress [49] and a diet high in saturated fat and sucrose [50, 51].

It has been suggested that dietary fat is a prime contributor to the

development of obesity [46]. For any given body mass index, mortality

is higher if fat is distributed centrally (visceral adiposity) compared with a

more generalized pattern of distribution [52]. This has renewed interest in the

factors that control adipose tissue distribution in addition to adipose tissue

mass and function [53]. Although men tend to progressively increase abdom-

inal fat deposits with increasing total adiposity at each age, a tendency to

develop diVerent obesity phenotypes throughout the lifespan occurs more

clearly in women, particularly after the menopausal age [54]. The response of

the HPA axis to a high‐lipid/protein meal or high‐CHOmeal in obese women

depends on their pattern of body fat distribution and that the activation of
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the HPA following the ingestion of large amounts of complex CHO may

have some pathophysiological relevance, specifically in women with the

abdominal obesity phenotype [55]. In obese women, diVerent mechanisms

may be responsible for the regulation of the HPA axis following a high‐lipid/
protein meal or high‐CHOmeal, depending on their phenotype [55]. It is well

known that catecholamines are involved in the regulation of the HPA axis

[56]. Animal studies on norepinephrine turnover have shown that food intake

stimulates sympathetic nervous system activity [57].
3.2.1. Monounsaturated Fatty Acids
In vitro addition of physiological concentrations of exogenous FFAs con-

firms that the stimulation of chromogranins B (CGB) binding properties is

mainly due to monounsaturated fatty acid (MFA) classes. Oleic acid alone

mimicked the in vivo situation by increasing the aYnity constant of CGB for

cortisol (threefold) and reducing the number of binding sites (twofold),

whereas saturated fats did not enhance the binding [58]. Addition of mono-

unsaturated FFAs to purified human CGB enhanced CGB binding activity

in a concentration‐dependent fashion [59].
3.2.2. Polyunsaturated Fatty Acids
Polyunsaturated fatty acids (PUFAs) are long‐chain n‐3 and n‐6 fatty

acids (FAs) of plant and marine origin. These essential FAs cannot be

synthesized in the human body. Due to their greater availability and low

cost, there is excessive consumption of n‐6 FA in developing countries. Junk

food is also loaded with n‐6 FAs and trans‐FAs. The ideal ratio of n‐3 to n‐6
PUFA is �1:1, according to the conclusion of an international panel of lipid

experts [60]. The biological importance of PUFAs derives in part from their

role as precursors of important second messengers (prostaglandins, prosta-

cyclins, and leukotrienes) [61, 62] and as constituents of structural lipids in

cellular membranes, which influence the activities of membrane‐linked func-

tional molecules (receptors, enzymes, and transporters) [63, 64]. The presence

of large amounts of n‐3 PUFAs in the brain is indicative of the major role

that these compounds play in the structure and function of this organ [65].

Fish provide varying amounts of n‐3 PUFA in the form of docosahexaenoic

acid (DHA) and eicosapentaenoic acid (EPA). There is a significant negative

correlation between worldwide fish consumption and prevalence of depres-

sion [66]. Frequent fish consumption in the general population is associated

with a decreased risk of depression and suicidal ideation [67]. Further, fish

consumption is significantly associated with higher self‐reported mental

health status [68]. Also, higher concentrations of DHA in mother’s milk

and greater seafood consumption both predicted lower prevalence of post-

partum depression [69]. A number of investigations have found a decreased
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n‐3 PUFA content in the blood of depressed patients [70–73]. In fact, EPA

content in red blood cells phospholipids is negatively correlated with the

severity of depression, while the ratio of n‐6 PUFA arachidonic acid to EPA

positively correlates with the clinical symptoms of depression [70]. In addi-

tion, a negative correlation between adipose tissue DHA and depression has

been observed. Mildly depressed subjects had 34.6% less DHA in adipose

tissue than nondepressed subjects [74].

n‐3 PUFAs are an essential component of central nervous system mem-

brane phospholipidacyl chains and as such they are critical to the dynamic

structure of neuronal membranes [75]. DHA is continuously secreted by

astrocytes, bathing the neuron in n‐3 PUFA [76]. The binding of serotonin

to the astroglial 5‐HT2A receptor can mobilize DHA to supply the neuron

[77]. Alterations in membrane lipids can alter function by changing fluidity.

An optimal fluidity is required for neurotransmitter binding and the signal-

ing within the cell [78]. n‐3 PUFA can alter neuronal fluidity by displacing

cholesterol from the membrane [79].

Chronic dietary deficiency in �‐linolenic acid impairs performance in

learning ability and motivational processes [80]. Also, reduction in n‐3
PUFA intake results in a reduction of n‐3 PUFA content throughout the

brain cells and organelles along with a compensatory rise in n‐6 PUFA acid

content. This alteration is accompanied by a 40% reduction in the Na/K‐
ATPase of nerve terminals, an enzyme that controls ion transport produced

by nerve transmission and that consumes half the energy used by the brain

[65]. A 30% reduction in the average densities of synaptic vesicles in the

terminals of the hippocampal CA1 region has also been observed as a result

of an n‐3 PUFA deficiency combined with a learning task [81]. Deficiency of

n‐3 PUFA also results in a 30–35% reduction in phosphatidylserine concen-

tration in the rat brain cortex, brain mitochondria, and olfactory bulb [82].

n‐3 PUFA deficiency induces changes at several levels of the dopaminergic

mesocortico limbic pathway [83]. In animal studies, n‐3 PUFA‐deficient diet
resulted in a reduction of the dopaminergic vesicle pool [84] along with a

40–60% decrease in the amount of dopamine in the frontal cortex and an

increase in the nucleus accumbens [84, 85]. Further, n‐3 PUFA deficiency in

rats reduced the release of dopamine from the vesicular storage pool under

tyramine stimulation by 90% than in receiving an adequate n‐3 PUFA intake

[84] (Table 1).

The amount of n‐3 PUFAs in the diet might act on the regulation of

cerebral gene expression [83, 87]. Addition of PUFA to purified human

CGB enhanced CGB binding activity in a concentration‐dependent fashion
[59]. Garrel et al. [88] showed that CGB and cortisol levels did not indicate

any changes by the consumption of n‐3 and n‐6 FAs.



TABLE 1

CONSEQUENCES OF OMEGA‐3 DEFICIENCY IN THE CENTRAL NERVOUS SYSTEM [86]

Parameters showing decrease Parameters showing increase

1. Blood–brain barrier integrity 1.Dopamine content in nucleus accumbens

2. Dopamine content in frontal cortex 2. Pre/postsynaptic dopamine receptor

DR2 in nucleus accumbens

3. Dopamine vesicle pool 3. Serotonin receptor (5‐HT2) density in

frontal cortex (compensatory response)

4. Fluidity at surface polar membrane

5. Glucose uptake by neurons

6. Hippocampal CA1 pyramidal neuron

cell body size

7. Neuronal cytochrome oxidase activity

8. Normal cerebral microperfusion

9. Normal inhibitory control over nucleus

accumbens dopamine

10. Phosphatidylserine in cortex, olfactory

bulb, and mitochondria

11. Pre/postsynaptic dopamine receptor

DR2 in frontal cortex

12. Na/K‐ATPase at nerve terminal

13. Vesicular monoamine transporter

14. Dopamine release from vesicle storage
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Clinical trial demonstrated that 4 months of treatment with 9.6‐g n‐3
PUFA can be of benefit in the treatment of bipolar disorder. Also, n‐3
PUFA had significant eVect in lengthening remission and in treating depres-

sion [89]. A double‐blind, placebo‐controlled study (n ¼ 22) showed that the

addition of 2 g EPA to standard antidepressant medication enhances the

eVectiveness of that medication compared with the medication plus placebo

after 3 weeks of treatment. EPA had an eVect on insomnia, depressed mood,

and feelings of guilt and worthlessness [90]. In a 12‐week, randomized,

double‐blind, placebo‐controlled trial, patients who experienced persistent

depression, despite ongoing standard pharmacotherapy received 1 g EPA.

The patients showed a 53% reduction on Hamilton depression scores. Intake

of 1 g EPA dose led also to improvements in depression, anxiety, sleep,

lassitude, libido, and suicidal ideation [91].
3.3. PROTEIN

There is some evidence that maintaining a very high‐protein diet may

chronically stimulate the HPA axis [92] and increase release of vasoactive

hormones [93]. Increased HPA activity and cortisol release have been linked



DIETARY MODIFICATION OF BRAIN FUNCTION 107
to increased risk of insulin resistance, hypertriglyceridemia, and hypercho-

lesterolemia [94, 95]. Hypercholesterolemia can be caused by high intake of

animal protein [96]. Reducing the CHO:protein ratio of diets chronically has

also been associated with deterioration in mood [97, 98]; this deterioration

may be caused through poor acceptability of the foods by subjects [99].

After a protein‐rich meal (30–40% energy as protein) salivary cortisol

increases substantially (approximately one‐and‐a‐half‐ to twofold on aver-

age). The increase begins toward the end of a 30‐min meal period and peaks

at �1 hour after the start of the meal. After �2 hours, salivary cortisol levels

declined and were no longer significantly diVerent from those seen either in

the absence of a meal or after a low‐protein meal [100]. Greater than 5%

protein (as percentage total energy) is required to detect a reliable increase in

salivary cortisol [100]. Results of studies measuring plasma cortisol suggest

that at least 10% protein may be needed for reliable stimulation of cortisol

[101]. A meal intake of at least 20 g of protein may be necessary; moreover,

the higher the intake of protein, the greater the secretion of cortisol is likely

to be [100, 101]. This acute stimulation of cortisol release may be part of a

homeostatic mechanism in response to a high influx of amino acids [100].

Previous studies indicated that postmeal plasma cortisol levels could be

aVected by the proportions of macronutrients consumed. Meals containing

20–40% protein (as percentage total energy) produced a greater plasma

cortisol response than meals with high CHO or fat levels [102]. By compari-

son, meals containing 10% protein resulted in weaker secretion of plasma

cortisol [101], and protein‐free glucose or fat loads did not stimulate cortisol

release [23]. There is some evidence that maintaining a very high‐protein
diet may chronically stimulate the HPA axis [92] and increase release of

vasoactive hormones [93].
3.4. ANTIOXIDANT

Oxidative stress is one of themost important factorsmediating the deleterious

eVects of aging on behavior and neuronal function [103]. The central nervous

system appears to be especially vulnerable to the eVects of oxidative stress,

partially as a result of additional factors such as increases in the ratio of oxidized

glutathione to total glutathione [104], significant lipofuscin accumulation [105]

with B‐cell leukemia/lymphoma 2 increases [106], increases in membrane lipid

peroxidation [107], reductions in glutamine synthetase [108], reductions in

redox‐active iron [105, 109], and alterations in membrane lipids [110].

Most dietary agents used to alter behavioral and neuronal eVects with

aging included nutritional supplements such as vitamins C and E, garlic

[111], herbal supplements (e.g., ginseng, Ginkgo biloba, and ding lang) [112].
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Long‐term (from 6 to 15 months of age) feeding of F344 rats with an

AIN‐93 diet supplemented with strawberry or spinach extract (1–2% of the

diet) or vitamin E (500 IU) retarded age‐related decrements in cognitive and

neuronal function comparedwith anAIN‐93 diet alone. Results indicated that

the supplemented diets could prevent the onset of age‐related deficits in several
indices (e.g., cognitive behavior and Morris water maze performance) [113].
3.5. PHYTOCHEMICALS

Fruits, vegetables, and common beverages as well as herbs and plants have

been shown to be rich sources of microchemicals with diVerent healthy

eVects. They are most eVective at ameliorating age‐related deficits (e.g.,

signal transduction, motor performance, and cognitive behavior) [114].

Food chemists and natural product scientists have identified hundreds of

phytochemicals, for example, carotenoids, chlorophyll, flavonoids, and

sulfides. They have the potential, for example, to modulate stress. Persons

who eat green or yellow vegetables everyday show a lower incidence of stress

syndrome (irritation, sleeplessness) than those who do not eat them

daily [115].

Human studies indicated that �‐carotene suppresses the secretion of

CRH dose dependently [116]. It is also suggested that the eVective site of

�‐carotene is the hypothalamus, where �‐carotene suppressed the secretion

of CRH induced by exercise stress, and consequently the secretion of ACTH

in the pituitary. As CRH stimulates the sympathetic neuron [117], �‐carotene
also inhibited the stimulation of noradrenaline and adrenaline secretion

through the suppression of CRH secretion [116].

Rats that were fed diets containing extracts high in both falvanoid and

total antioxidant activity for 6 weeks before being subjected to 48 hours of

exposure to 100% normobaric O2 showed no loss in striatal muscarinic or

cerebellar GABAergic receptor sensitivity [118]. These oxygen‐induced
decreases in neuronal function have been shown to be sensitive to aging

and have been associated with behavioral deficits [113].

Recent studies indicated preventive eVects of garlic extracts for brain

atrophy [119] as well as learning and memory impairments [120] in the

senescence‐accelerated mouse.
3.6. VITAMINS

Chronically insuYcient vitamin supply for vitamin C, thiamin, riboflavin,

cobalamin, and folate causes many unfavorable psychometric changes [121].

Administration of folic acid, vitamin C, and to a lesser extent thiamin, as

compared with placebo, in men with an initial suboptimal folate status, led to
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a decreased emotional lability, increased activeness and concentration,

higher extroversion and lower introversion, greater self‐confidence, and a

markedly improved mood [121]. In volunteers with an initial mild‐to‐moderate

vitamin C deficiency, supplementation led to decreased nervousness, less

depression, and increased emotional lability [121].
3.6.1. Folic Acid
Recent studies indicate the importance of folate in nervous system devel-

opment. Folate is important in 1‐carbon metabolism [122], contributing

carbon atoms to purines, thymidine, and amino acids. In addition, methyla-

tion reactions involving folate may be important in the formation and

maintenance of neuronal and glial membrane lipids [123]. Clinical trials

indicate that folate supplementation (15 mg/day) for 6 months improve

outcome in depressed and schizophrenic patients treated with standard

pharmacotherapy [124]. Intake of folic acid has been linked to other psychi-

atric conditions as well as to deficits in learning and memory, particularly in

the elderly [125]. The mechanism by which folate modifies mood is hypothe-

sized to be related to its role in 1‐carbon metabolism [122]. In the form of

methylenetetrahydrofolate, the methyl donor in methionine synthesis from

homocysteine, folate may help maintain adequate methionine pools for

S‐adenosylmethionine synthesis [126]. The link to mood involves the role

of S‐adenosylmethionine as a cofactor in methylation reactions in catechol-

amine synthesis and metabolism [127].
3.6.2. Vitamin B6
The physiologically active forms of vitamin B6 are enzymatic cofactors in

many reactions of mammalian nitrogen metabolism, including the metabo-

lism of most amino acids and neurotransmitters. Indeed, a dietary deficiency

of vitamin B6 aVects tissue concentrations of amino acids and neurotrans-

mitters in rats and humans [128, 129]. In general, vitamin B6 deficiency leads

to a decrease in the concentrations of most amino acids. Brain amino acids

most commonly reported to be aVected by deficiency are serotonin, dopa-

mine, and �‐aminobutyric acid (GABA) [128, 129]. Studies indicated that

excess dietary vitamin B6 aVects brain and serum concentrations of some

amino acids and binding properties of cortical serotonin receptors in a

biphasic pattern [130]. Also, large doses of vitamin B6 can aVect central

nervous system function [130, 131] and neurotransmitter concentration

[132]. Further, high concentrations of pyridoxal phosphate suppress activa-

tion of transcription, while vitamin deficiency enhances responsiveness to

steroid hormone [133], decreased GABA, and increased central nervous

system irritability [134]. Also, pyridoxine is essential in the conversion of
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l‐dihydroxyphenylalanine to dopamine. Side eVects of excessive l‐dihydroxy-
phenylalanine include dystonia and dyskinesia [134] (Fig. 2).
3.6.3. Vitamin B12
Lack of cobalamin may lead to severe neurologic disorders, which have

been described in strict vegetarians, especially in infants and toddlers

[136, 137]. A wide variety of neurologic symptoms and signs have been

described, such as ataxia, loss of cutaneous sensation, diminished or hyper-

active reflexes, dementia, loss of memory, psychoses, and disturbances of

mood [138, 139]. In contrast, complete or partial improvement, following

vitamin B12 supplementation, has also been reported in memory loss [139],

depression [140], and psychosis [141].
3.6.4. Vitamin C
Ascorbic acid aVects the regulation of the levels of the circulating thyroid

and adrenal cortical hormones [142]. Ascorbic acid is essential for optimal

steroid hormone functions and this suggests an involvement of ascorbic acid

in steroid synthesis mechanisms [143]. Vitamin C depletion led to a signifi-

cant increase in plasma cortisol without an increase in ACTH [144]. In

animal studies, ascorbic acid deficiency caused an increase in plasma cortisol

concentration [145]. In rats, vitamin C pretreatment enhanced the release of

endogenous GC such as to delay the turnover of the tracer cortisol in plasma

[146]. In humans, there was a distinct increase of plasma cortisol about

2 hours after vitamin C application. This increase was concomitant with an

increase in urinary 17‐hydroxycorticosteroids [147].
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3.6.5. Vitamin E
Vitamin E, as the major chain‐breaking lipid‐soluble antioxidant, would

be expected to be important for functional integrity of all biological mem-

branes. The neuropathological changes of vitamin E deficiency in humans

are very similar to those in rats and rhesus monkey [148], and the resulting

neurological syndrome is characterized by areflexia, peripheral neuropathy,

cerebrallar involvement with gait and limbio ataxia, and decreased propio-

ception and vibration sense [149]. A defect in the fast anterograde and

retrograde axonal transport has been reported in vitamin E‐deficient rats

[150]. Cerebellum seems to be active in the metabolic utilization of vitamin E.

This could be the reason for cerebellar damage during experimental

vitamin E deficiency and for the incidence of cerebellar symptoms in clinical

vitamin E deficiency [151].

3.7. MINERALS AND TRACE ELEMENTS

Certain minerals’ balance is crucial for a healthy nervous system and

neuronal susceptibility. Several reports suggested that the body electrolytes

(sodium, potassium, calcium, and magnesium) and the level of some trace

elements play an important role in stress susceptibility.
3.7.1. Iodine
Intrauterine iodine deficiency is well established as the cause of cretinism

and lesser degrees of cognitive and motor disability [152]. There is a sugges-

tion that low serum thyroxine (T4), secondary to iodine deficiency, is linked

to poor intellectual performance of the people residing in iodine‐deficient
areas [153]. Triiodothyronine seems to be the active hormone with respect to

neurological development in the fetus and is synthesized in the brain from

thyroxine transported from fetal plasma across the blood–brain barrier [154].

Despite good evidence that maternal thyroxine contributes substantially to

fetal thyroxine in the later weeks of pregnancy [155], further maternal trans-

fer is insuYcient for fetal requirements if hypothyroidism is severe [156].

Hypothyroid patients show slowing of intellectual function and speech and

have memory deficits [157]. Epidemiological studies indicate that school‐
aged children living in iodine‐deficient villages were found to have poorer

levels of IQ, cognitive, and motor function than school children in iodine‐
suYcient villages [158–163].
3.7.2. Iron
Iron is involved in numerous neurological functions. Iron deficiency is

strongly related to the severity of anemia with a 50% decrease in muscle

myoglobin content, cytochrome oxidase activity, and electron transport
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capacity in skeletal muscle, concurrent with a 50% decreased oxygen trans-

port capacity because of anemia [164]. The physiological manifestations of

iron deficiency have also been noted in immune function, thermoregulatory

performance, energy metabolism, and exercise or work performance

[165, 166]. Restless legs syndrome has been described as being causally

related to iron‐deficiency anemia [167]. The brain obtains iron primarily via

transferrin receptors expressed on endothelial cells on the brain microvascu-

lature [168, 169]. The rate of iron uptake into the brain is increased when the

iron status of the subject is low and is decreased when the iron status is higher

[170]. Regions of the brain rich in iron, that is, the substantia nigra, globus

pallidus, and nucleus accumbens, are far less aVected by dietary iron defi-

ciency than are other regions such as the cortex or the striatum that have less

iron content [171]. Iron deficiency during lactation in the rat results in

significant loss of regional brain iron that is distinct from those regions

that lose iron with dietary restrictions later in life [172]. Restoration of

brain iron with later aggressive dietary iron repletion also resulted in incom-

plete restoration of abnormalities in dopamine metabolism and in behaviors

related to dopamine [172, 173].
3.7.3. Magnesium
Magnesium supplementation has been beneficial in a wide variety of

conditions, such as neuropsychiatric disorders, ischemic heart disease and

cardiac arrhythmias, asthma, diabetes, and chronic fatigue, in which magne-

sium deficiency has not always been substantiated [174, 175]. Extra‐ and

intracellular magnesium levels have been shown to be genetically controlled

in humans [176], and genetic diVerences in magnesium utilization may

account for diVerences in vulnerability to magnesium deficiency and diVer-
ences in body response to stress [177].
3.7.4. Zinc
Zinc is a trace mineral that is involved with RNA and DNA synthesis and

is critical to cellular growth, diVerentiation, and metabolism [178, 179]. In the

central nervous system, zinc is concentrated in the synaptic vesicles of specific

glutaminergic neurons, which are found primarily in the forebrain and

connect with other cerebral cortices and limbic structures. During synaptic

events, zinc is released and passes into postsynaptic neurons, serving as a

neurotransmitter [180]. Zinc deficiency may compromise behaviors necessary

for cognitive functioning including activity and attention [178, 181]. In

psychiatric patients, zinc deficiency may aVect emotionality and response

to stress [182, 183]. Studies of severe zinc deprivation in monkeys before

weaning showed that zinc‐deficient animals were emotionally less mature;

this was demonstrated by their diYculty with separation and the increased
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protective behavior by their mothers [184]. The association between zinc

deficiency and an increased risk of anxiety and depression may be related

to the stress reaction observed in zinc‐deprived animals [185].

In the trials done on Chinese children and Mexican‐American children

from Texas, it was found that zinc‐supplemented children demonstrated

superior neuropsychological performance, particularly in reasoning, when

compared with controls [186, 187]. In contrast, in a further study [188],

Bangladeshi infants supplemented with zinc had slightly lower developmen-

tal scores, possibly because of micronutrient imbalance.
4. Meal Frequency

Timing of meal can influence the eVects of meals on cognitive behavior.

Early studies indicate that stunted and previously malnourished 9‐ and

10‐year‐old Jamaicans performed less well on tests of short‐term memory

and problem‐solving ability when they had not eaten breakfast than when

they had eaten amorningmeal [189]. Undernourished children’s performance

on a test of verbal fluency was significantly better when they had consumed a

school breakfast than when they had not [190]. Experimental evidence sug-

gests that omitting breakfast negatively aVects cognitive functioning [191].
5. Meal Size

The degree to which lunchmoderates subsequent cognitive performance and

moodmay bemediated bymeal size. In a study investigating the eVects of meal

size on attention and mood indicated that subjects who ate a larger than usual

lunch made more errors on attention and search tasks than those who ate a

normal‐sized lunch, or one smaller than usual [192]. No diVerences in mood

were noted as a function of meal size. Graig and Richardson [193] found that

youngmenmade significantly more errors on a letter‐cancellation project after

eating a large lunch but tended to make fewer errors after small lunch. Perfor-

mance improved to a greater degree after the small lunch in subjects who

typically ate a heavy lunch than in those who ate a light lunch. Afternoon

snacks may also have positive eVects on cognitive performance [194].

The eVects of an evening meal on cognitive performance and mood indi-

cated that subjects had stronger feeling and were more proficient and

interested 1–3 hours after meal consumption than subjects who did not

consume the meal [195]. Additionally, 90 min after the meal, the subjects

who had eaten the meal completed more sentences on a logical‐reasoning
task than those who had not eaten.
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6. Appetite

Appetitive behavior is complex and multifaceted. Stress reactivity, both

physiological and psychological, may distinguish overeaters from underea-

ters [196]. There is much evidence from animal studies that HPA axis func-

tion can profoundly influence expression of appetite and regulation of body

weight [6]. The recently discovered new gut peptide, ghrelin, an endogenous

ligand for the growth hormone secretagogue receptor [197], seems to be

involved in the control of food intake and energy balance. In fact, centrally

injected ghrelin produces a sustained food intake in rodents, and ghrelin

blood concentrations and mRNA expression in the stomach are increased by

fasting and decreased by feeding [198]. Recent data have suggested a possible

stimulatory eVect of ghrelin on the HPA axis activity in experimental animals

[199]. In humans, gherlin has a positive eVect on glucose levels and negative

eVects on insulin concentrations [200]. Ghrelin concentrations are decreased

in human obesity [201].

The stress‐sensitive adrenal steroids modulate neurotransmitters which

aVect appetite, such as �‐noradrenergic systems, neuropeptide Y (NPY), and

galanin [29]. Exposure to stress increases NPY [202], which can increase

appetite [203].
7. Emotion

Emotional arousal has been associated with both increased or decreased

food intake and weight [204, 205]. Self‐reported increases in negative

mood (mood reactivity) during the stressor were also significantly positively

related to caloric consumption, whereas mood reactivity on the control day

was not related to consumption that day [33]. Cortisol reactivity and mood

are two somewhat independent indices of stress reactivity and found that

both were related to eating after stress, but not after rest [33]. Psychophysio-

logical response to stress influences subsequent eating behavior [33]. It is

possible that women more vulnerable to stress, in their mood responses and

cortisol reactivity, may be at particular risk of stress‐induced eating

and weight gain [33].

In humans, McCann et al. [206] examined the eVects of variation in

workload on food intake and serum lipids with a small group of female

oYce workers. The workers reported a higher energy intake and a higher

percentage of energy as fat in two high‐workload periods compared with the

normal work period. Higher energy intake was reported from a study of

dietary habits associated with exam time among university students [207].

The dietary data support modest increases in energy, fat, and sugar intake in
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periods of high work stress compared with periods of low work stress

[206, 208]. Either prolonged or frequent work stress could result in increasing

the likelihood of weight gain and increased cardiovascular risk [208]. Also,

behavioral factors as one of the psychobiological mechanisms can aVect
health [208]. Individual variability in dietary responses to stress in relation

to levels of dietary restraint has been identified in a number of experimental

studies [209–212]. Restrained eaters did not just eat more overall, they

specifically ate more sweet and fatty foods in the high‐work‐stress session,
and the hyperphagic response was greater among those who had a larger

increase in perceived stress between the low‐ and high‐workload sessions,

implicating emotional reactions in the response [208].
8. Metabolic Acidosis

Chronic metabolic acidosis (CMA) is a frequent acid‐base disturbance

generated by extrarenal loss of base (e.g., diarrhea), increased acid produc-

tion (e.g., organic acidosis such as ketoacidosis), or impaired renal acid

excretion (i.e., renal failure and inherited or acquired forms of renal tubular

acidosis). The modern Western‐type diet in humans, which is rich in animal

protein, has been implicated as a cause of lifelong mild CMA with secondary

bone catabolism caused by the induction by this diet of an obligatory daily

acid load (endogenous acid production) due largely to endogenous oxidation

of cationic and sulfur‐containing amino acids [9]. Plasma bicarbonate con-

centration decreases progressively when endogenous acid production is

increased by menu changes among normal foodstuVs in normal subjects

[213]. CMA has also been shown to cause a significant increase in corticoste-

roid excretion [214, 215]. In a small human study, experimental‐induced
acidosis was also associated with an increase in cortisol excretion [216]

however, another similar study in humans did not show any increase in

cortisol secretion, although plasma aldosterone levels significantly increased

[217]. Also, hyper‐GC response to CMA has been demonstrated in humans

[214] and rats [216]. GCs lead to a dramatic decrease in bone mineral density,

either when endogenously in excess or when administered exogenously [218].

The mechanism by which GCs decrease bone density is multifactorial.

The osteopenia appears due to a complex combination of direct eVects
on bone formation [219–222] and resorption [219, 220, 223], and indirect

eVects on calcium homeostasis, including decreased intestinal calcium

absorption [223].

Animal and human studies suggest that metabolic acidosis stimulates an

increase in cortisol production [214–216]. CMA can increase cortisol produc-

tion and both acidosis and cortisol induce osteopenia. In muscle, acidosis is
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known to stimulate protein and essential amino acid breakdown through the

ubiquitin–proteasome proteolytic pathway, a mechanism that requires GCs

[214]. A very mild Western diet‐induced CMA (a degree of acidosis that

would not be recognized by applying diagnostic acid‐base criteria found in

textbooks) results in a state of increased cortisol secretion and plasma

concentration and provides several novel findings in humans regarding the

possible causality of the Western diet in the etiology of osteoporosis [224].

Ingestion of neutralizing alkali per se, as exchanged for chloride in the

absence of other experimental maneuvers (e.g., concomitant potassium sup-

plement), can result in urinary calcium retention and suppression of bio-

chemical markers of bone resorption [224].

GCs decrease bone formation via suppression of osteoblast maturation

and promotion of apoptosis [222]. They inhibit production of osteoprote-

gerin, a soluble neutralizing receptor produced by osteoblasts, which limits

osteoclastogenesis [225]. GC‐induced osteopenia in vivo has been well char-

acterized [222, 226], although the exact mechanism of induction of the

resultant loss of bone mineral is not entirely understood. In general, there

appears to be an uncoupling of bone remodeling to favor bone resorption

over bone formation [223]. The net osteopenia observed in vivo after GC

treatment is probably due to a complex combination of direct eVects on bone

formation and resorption as well as indirect eVects to inhibit intestinal

calcium absorption and increase renal calcium excretion [220, 223, 227].

Ingestion of an ordinary acidogenic Western diet to normal young adult

subjects results in a mild CMA in association with a state of increased

cortisol secretion and plasma concentration, altered divalent ion metabolism,

and increased bone‐resorptive indices [224]. In humans, CMA results in

hypersecretion of cortisol [216]. Previous studies reported a nonsignificant,

77% increase in urinary cortisol excretion in acid‐fed compared with

nonacid‐fed human subjects [228].
9. Glucocorticoids

GCs are also known to aVect development [229, 230], memory [231, 232], fear

and anxiety [233], and the immune system [234–236]. For example, acute eleva-

tions of GCs enhance immune responses in rats to provide important immuno-

protective eVects [237].Many studies find a positive correlation between plasma

GCs and the expression of feeding behavior. Food intake is normally highest at

the time of day when baseline GCs show a peak, and intensity of feeding can be

shifted with GC treatment [11]. Food intake may be mediated through

GC‐induced stimulation of NPY [13, 238–240], and catecholamines [13], or

through inhibition of the anorexigenic peptide CRF [241, 242].
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GC levels above the seasonal baseline are generally correlated with protein

utilization and muscle tissue breakdown [243, 244]. Experimental manipula-

tions confirm the involvement of elevated GC levels in such metabolic

changes: GC administration induces protein loss and muscle atrophy in a

variety of species [245–248]. GCs may also promote gluconeogenesis through

enhanced substrate delivery. Studies in dogs suggest that cortisol treatment

enhances de novo glucose synthesis through increased amino acid uptake in

the liver [249, 250]. Studies in a variety of vertebrate species verify the role of

GCs in the acute provisioning of glucose. Treatment with GC equivalents

increases plasma glucose in birds [251, 252] and can reverse hypoglycemic

eVects of insulin injections [253]. It is important to note that GC manipula-

tions may not always aVect plasma glucose levels [254, 255].

GCs support a heightened physiological state by promoting availability of

lipid energy from adipose tissue stores [11, 234]. For example, cortisone

administration significantly reduces the stored triglyceride fraction of adi-

pose tissue in lizards [256]. Also, GCs increase lipogenesis and fat deposition

in the liver [252, 256, 257]. GCs may contribute to this process of FA

oxidation by making available amino acids for use as citric acid cycle inter-

mediates [258]. Further, GCs may promote fat mobilization by inhibiting

glucose uptake in adipose tissue [234].

In relation to health, dysfunction of the HPA axis has been implicated in

particular in dysphoric disorders, such as major depression [259], whereas

hypercortisolemia in Cushing’s syndrome is accompanied by physical symp-

toms, such as accumulation of abdominal adipose tissue, together with

muscular atrophy of the limbs, providing powerful evidence of the well‐
established metabolic and nutritional consequences of chronic hypercortiso-

lemia [94]. Normal physiological variations in cortisol level in humans have a

significant direct influence on macronutrient metabolism [25, 26]. Also, the

ability of cortisol to increase plasma FFA levels may underlie the emerging

link between cortisol and abdominal obesity, together with its associated

metabolic syndrome [27].

In healthy males, exogenous GC administration increased daily food

intake compared with placebo [260]. Cushing’s patients, with elevated corti-

sol levels selected high‐fat foods twice as often as normal weight subjects

and three times as often as overweight controls [261]. Laboratory test indi-

cated that among healthy women, high cortisol reactors ate significantly

more food following a cognitive stress task compared with low cortisol

reactors [33]. In an earlier study [262], subjects undergoing a stressful task

before a meal showed increased plasma cortisol during the task, which was

then followed by a suppressed cortisol response to the meal. Cortisol clearly

plays an important role in energy regulation, increasing available energy

through gluconeogenesis and lipolysis. Adrenalectomy and GC receptor
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antagonists prevent or reverse obesity [263], whereas administering cortico-

sterone leads to increased appetite for sucrose [264], hyperphagia, and weight

gain [265]. In cancer patients, prednisolone significantly increased appetite,

compared with a control group [266]. In healthy men, administering cortisol

for 4 days led to slightly increased energy expenditure but dramatically

increased food intake [260].

Approximately 90–95% of plasma cortisol is bound to CBG, albumin, and

erythrocyte membranes [267], whereas only the free fraction is thought to be

physiologically active. Cortisol in saliva is a valid measure of free cortisol

levels and is easily sampled repeatedly without distress [8, 267].
10. Monoamine

Serotonin (5‐HT) is involved in the regulation of the HPA axis in mam-

mals [268, 269]. In several studies, the ratio of 5‐hydroxyindoleacetic acid

(the major 5‐HTmetabolite) to 5‐HT brain concentrations has been found to

correlate with plasma levels of cortisol, suggesting that the action of brain

5‐HT on the HPA axis is stimulatory [270, 271]. An increased activity of

serotonergic neurons in the brain is an established consequence of stress, and

a decline activity of these serotonergic neurons has been demonstrated in

disturbances of mood and depressive disorders [272]. Increased brain 5‐HT

activity appears to be a prerequisite for maintaining control over cognitive

information processes [273] and is involved in learning and memory [274].

As brain 5‐HT secretion increases under stress [275, 276], chronic stress may

result in frequently elevated concentrations of cerebral 5‐HT. As 5‐HT

function increases under acute stress, brain 5‐HT concentrations may be

exhausted under continuous stress exposure. As a consequence, the seroto-

nergic system of subjects prone to stress (high‐stress‐vulnerable subjects) may

become more sensitive to dietary‐induced alterations in L‐tryptophan avail-

ability because of compensatory receptor sensitization [277, 278]. Depletion

of the precursor of 5‐HT synthesis, tryptophan, has been found to increase

depressive mood in healthy subjects and subjects with a prior history of

depressions [279].

5‐HT is synthesized from the essential amino acid L‐tryptophan and the first

and rate‐limiting step in the biosynthesis of 5‐HT is the hydroxylation of

L‐tryptophan to 5‐hydroxytryptophan. Since the enzyme tryptophanhydroxy-

lase, catalyzing the hydroxylation of L‐tryptophan, does not seem to be

saturated by L‐tryptophan in vivo, the rate of this reaction appears to be re-

stricted by L‐tryptophan availability in mammals [280]. Elevated dietary intake

of L‐tryptophan has been reported to result in increased brain levels of

L‐tryptophan and elevated rates of 5‐HT synthesis and metabolism [281, 282].
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The carrier transporting L‐tryptophan across the blood–brain barrier is

nonspecific, also transporting other large neutral amino acids (LNAAs; i.e.,

tyrosine, phenylalanine, leucine, isoleucine, and valine). Brain levels of L‐tryp-
tophan will thus not only depend on plasma levels of L‐tryptophan, but also on
plasma levels of other LNAA competing for the same carrier [280, 281].

A CHO‐rich, protein‐poor diet increases the ratio of plasma tryptophan to

the sum of the other LNAAs, giving tryptophan an advantage in the competi-

tion for access into the brain [34, 283–285]. Markus et al. [286] found that a

CHO‐rich, protein‐poor food diminished the depressive mood and cortisol

response to controllable as well as uncontrollable laboratory‐induced stress in

highly stress‐prone human subjects. Acute stress elevates brain L‐tryptophan
concentrations [287], an eVect that appears to be mediated by a stress‐induced
elevation of sympathetic activity and circulating plasma catecholamines [288].

An activation of the sympathetic system stimulates lipolysis, resulting in elevat-

ed plasma levels of nonesterifiedFAs, competingwith L‐tryptophan for binding
to albumin and thus elevating the plasma pool of free L‐tryptophan available

for uptake into the brain [268]. Sympathetic activation may also increase brain

L‐tryptophan uptake by aVecting the permeability of the blood–brain barrier

[268].

Tyrosine is the precursor to the catecholamine neurotransmitters dopa-

mine, norepinephrine, and epinephrine. Analogous to the ability of trypto-

phan to stimulate serotonin production, elevating tyrosine concentrations in

brain catecholamine neurons (particularly dopamine and norepinephrine

neurons) can stimulate transmitter production. This eVect occurs in actively

firing neurons but not in catecholamine neurons that are quiescent or

firing slowly [289, 290]. Tyrosine administration to depressed patients im-

proved their mood, but although catecholamine production was enhanced,

the treatment did not elevate mood [291]. Growdon et al. [292] showed that

tyrosine elevated dopamine production in the central nervous system of

patients with Parkinson’s disease, a serious, debilitating disorder, the cause

of which is thought to involve a loss of dopamine neurons and which is

typically treated by administering the immediate dopamine precursor,

L‐dopa. Further, tyrosine administration appears to improve cognition and

performance in soldiers under stressful conditions [293, 294].
11. Stress

The key hormonal pathway that governs the endocrine response to stress is

the HPA axis. Elevation of serum corticosterone, the endpoint of stress‐
induced activation of the HPA system, is frequently used as a stress indicator,

and a convincing number of studies have found several measures indicative
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of a hyperactive HPA axis in depressed patients [295]. Compared with con-

trols, women with anorexia nervosa [296], bulimia nervosa [297], binge eating

disorder [298], and the night eating syndrome [299] had higher basal cortisol.

Exaggerated cortisol responses to stress have been observed in women with

anorexia nervosa [300], bulimia nervosa [301], and obesity [302]. Eating is

thought to be suppressed during stress because of anorectic eVects of CRH,

and increased during recovery from stress because of appetite‐stimulating

eVects of residual cortisol [33, 303]. Cortisol secretion is a major component

of the stress response [301], and it has been implicated as a potential mediator

for increased energy intake in healthy males [260] and females [33].

Typically, responses to stress result in anorexia and, if the stress is suY-
ciently persistent, weight loss. The longstanding view is that stress produces

sympathetic arousal that results in reductions rather than increases in eating.

For example, in rats, both a single social defeat stressor [304] and a 2‐ hour
immobilization stressor [305] resulted in a significant reduction of food

intake and body weight. Overeating has been observed in rats following a

stress, following a period of caloric restriction [306] only in those given highly

palatable food [307]. In humans, dieters are more likely to report stress

hyperphagia compared with nondieters who are more likely to report

stress hypophagia [308].

The chronic mild stress procedure in rats decreased sucrose intake per unit

body weight, while sucrose intake in a nonstressed control group did not

change [309].There was not any correlation between body weight and sucrose

intake. Sucrose intake was reduced while body weight remained unaVected
[309]. The largest eVect was obtained after 2 weeks of the stress protocol, this

eVect was attenuated afterward [309]. D’Aquila et al. [310] also observed a

recovery of ‘‘reward behavior’’ in the chronic mild stress model. Overeating

of ‘‘comfort foods’’ in humans may be stimulated by cortisol in response to

stress, which can result in abdominal obesity [311].

Although acute elevation of cortisol plays a protective role during stress,

persistently elevated levels promote insulin resistance and abdominal obesity

[312, 313]. Insulin resistance might be followed by both dyslipidemia and

elevated blood pressure [314]. Cortisol secretion as a response to perceived

stress is a powerful factor regulating disease‐generating events in the periph-

ery. This seems to be particularly the case when the HPA axis functions with

low reactivity and poor feedback control [315]. Most studies have observed

that chronic stress overactivates the HPA axis and fuels insulin release, in

turn activating abdominal fat storage [316].

Stress has been implicated as a primary trigger of overeating [317]. Delay

in gastrointestinal transit time (an indirect measure of gastric emptying and

intestinal motility) has been observed in lean participants, but not the obese,

after exposure to both active and passive coping tasks [318].
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Self‐reported retrospective [319, 320] and prospective data [206, 208, 321]

suggest that food choice does change under stress, with a tendency toward a

relative increase in sugary, fatty (often snack‐type) foods. Grunberg and

Straub [32] extended the usual laboratory paradigm by providing partici-

pants with a range of foods diVering in taste qualities (sweet, salty, and

bland), although these were still snack foods presented incidentally to the

main task of viewing a film (used for stress induction). In the stressed group

men ate less than men in the control group. In women there were no signifi-

cant diVerences, although stressed women did show a trend toward a modest

increase in consumption of sweet and bland foods with no change in intake of

salty foods. These gender diVerences may have reflected diVerences in dietary

restraint, which is higher in women [322–324].

Women and restrained eaters consume more calories and fat under stress

[206, 208] and shift their food choices away from meal‐type foods, such as

meat and vegetables, toward snack‐type foods [308]. In contrast, men and

unrestrained eaters show either little diVerence or a reduction in food intake

under stress [32, 325]. Stress did increase intake of sweet fatty foods in

emotional eaters. In addition, women scored more highly on emotional

eating than men [320]. There is evidence that snack consumption may be

more susceptible to stress than meals [308, 326]. An alternative neurohor-

monal mechanism for stress‐induced preferential selection of sweet fatty

foods is suggested by evidence that such highly palatable foods can them-

selves relieve stress through release of endogenous opioids [327, 328]. Stress

changed people’s perception of saccharin’s bitterness and sweetness, as it

does in rats [329], but the direction of change depended on aspects of

temperament such as trait arousability, pleasure, and dominance.

Psychological stress seems to increase oxidative stress [330]. Early studies

indicate that psychological stress decreases DNA repair [331] and inhibit

radiation‐induced apoptosis [333] in human blood cells. This may mean that

oxidative damage may persist during psychological stress and may in-

crease the likelihood of a pathological development [330]. In contrast to the

tendency of chronic stress to elevate baseline cortisol, it appears to decrease

testosterone, both in animals and in humans [334, 332].
12. Conclusion

Modification of the diet and changes in frequency cause changes in endo-

crine and monoamine synthesis. These changes may aVect the susceptibility
to stress. In general, foods of plant origin have to be preferred. Reduction

and modification of dietary fat may be helpful. In particular, a diet rich in

MFAs and n‐3 FAs is advisable. Further, a large part of the diet has to be of
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complex CHOs. These modifications can produce consistent changes in

cortisol and its binding globulin. Cortisol reactivity and mood are two

somewhat independent indices of stress reactivity, and it was found that

both were related to eating after stress. Further dietary modification may

aVect the availability of L‐tryptophan. L‐tryptophan has been reported to

result in increased brain levels of L‐tryptophan and elevated rates of 5‐HT

synthesis and metabolism. Increased brain 5‐HT activity appears to be a

prerequisite for maintaining control over cognitive information processes

and involvement in learning and memory. A decline activity of these seroto-

nergic neurons has been demonstrated in disturbances of mood and depres-

sive disorders. Not only modification of the diet but also timing of meal can

influence the eVects of meals on cognitive behavior. Also, omitting breakfast

negatively aVects cognitive functioning. Further, the eVects of meal size on

attention and mood indicated that subjects who ate a larger than usual lunch

made more errors on attention and search tasks than those who ate a normal‐
sized lunch or one smaller than usual. Performance improved to a greater

degree after the small lunch in subjects who typically ate a heavy lunch than

in those who ate a light lunch. Further, afternoon snacks may also have

positive eVects on cognitive performance.

For positive influences of stress, mood, and cognitive function plant foods

might be preferred. They are rich in phytochemicals and vitamins, which

show a variety of positive eVects on health. Also, consumption of green and

yellow vegetables everyday may lower the incidence of some stress syn-

dromes (e.g., irritation and sleeplessness).
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1. Abstract

For decades, Alzheimer’s disease (AD) has been linked to aging, gender,

and menopause. Not surprisingly, this led most investigators to focus on the

role of estrogen. While undoubtedly important, estrogen is unlikely the key

determinant of disease pathogenesis. Rather, it appears that estrogen may
Inc.
rved.
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work in conjunction with a novel determinant of disease pathogenesis, namely

gonadotropins. The fact that gonadotropins, specifically luteinizing hormone,

play a pivotal role in disease is apparent from significant etiological, epidemi-

ological, and pathological evidences. Moreover, targeting gonadotropins

appears to have beneficial actions as a therapeutic regimen.
2. Introduction

Dementia, a syndrome of many causes, defined as an acquired deterioration

in cognitive abilities that impairs the successful performance of activities of

daily living, is the result of disorders of cerebral neuronal circuits and is a

consequence of the total quantity of neuronal loss as well as the specific

location of such loss [1]. Themost common cognitive ability lost with dementia

is memory. In western countries, AD is the commonest cause of dementia,

followed by vascular dementia, Parkinson’s disease, and dementia due to

alcoholism and drug/medication intoxication. Increasing age, however,

appears to be the single strongest risk factor for dementia. Disabling memory

loss increases with each decade above 50 years and, at autopsy, is most often

associatedwithmicroscopic changes of AD. Today, whether or not dementia is

an inevitable consequence of normal human aging remains a topic of contro-

versy. Nevertheless, while some centenarians retain intact memory function

with no evidence of clinically significant dementia, and while AD can occur at

any age, we know that significant memory loss is seen in �10% of all persons

above 70 years and AD is the causal factor in more than half of them. While a

subtle cumulative decline in episodic memory, also termed as ‘‘benign forget-

fulness of the elderly,’’ is a natural part of normal aging, a significant portion of

individuals with a mild cognitive problem, also referred to as mild cognitive

impairment, that interferes with daily activities will progress to frank dementia,

usually caused by AD. Depending on the cause of dementia, anatomically

specific patterns of neuronal degeneration occur which dictate the clinical

symptomatology. AD first involves the entorhinal cortex, spreads to the hip-

pocampus, and eventually causes a relatively diVuse cortical degeneration [2].

It primarily presents with memory impairment and progresses to language

deficits, with aphasia or other disturbance of language, and visuospatial defi-

cits. If made after careful evaluation, a clinical diagnosis of AD is confirmed at

autopsy 90% of the time [1]. Even though there is, at present, no definitive

treatment for AD, it is important to detect. A diagnosis of ADwould allow the

treating physician to discontinue all unnecessary medication as well as identify

and treat new intercurrent illness, find alternate ways to obtain history at

ensuing visits, ensure the patient’s medication is taken correctly, and help the

patient and patient’s family to deal with the disease.
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Cognitive impairment results in a diminished quality of life and reduces the

capability of the individual to live independently. This poses a serious public

health problem. The increasing life expectancy of our population inevitably

carries with it a rising incidence of cognitive symptomatology and age‐related
illnesses. The current number of 4 million individuals aVected with AD in

the United States today, if unchecked, is expected to rise to an estimated

14 million by the year 2050 [3].

Our incomplete understanding of the molecular mechanisms involved in

cognitive decline and the pathogenesis of AD has impeded the development

of eVective therapy. Despite a large number of studies aimed at forestalling

the onset and progression of AD, current therapeutic management studies

have been, at best, limited to palliative treatment. It is crucial that we develop

strategies to prevent, halt, or even reverse, decline in cognitive function in

order to improve the quality of life of our aging population and avert a rise

in health care costs. To achieve this goal, the molecular mechanisms involved

in cognitive decline must be deciphered and better understood. Only then can

successful diagnostic tools and therapeutic strategies for neurodegenerative

diseases such as AD be devised. Here we review current knowledge, clinical

and experimental, of the role of a changing hormonal environment during

menopause and andropause in the pathogenesis of AD and, inevitably, the

new direction in therapeutic options to which this understanding points.

In patients with AD, there is a progressive decline in episodic, working,

and spatial memories [4, 5] which refer to the conscious recollection of facts

and events. There is diminished capacity to form large‐scale representations
of the environment and diYculty in learning and orienting to unfamiliar

settings [6, 7]. The mechanisms responsible for this type of behavioral decline

have yet to be delineated. What has been described is the associated selective

neuronal degeneration aVecting the hippocampus and, to a lesser extent,

other cortical brain regions. The hippocampus, a highly plastic area of the

brain, is crucial in the modulation of the types of memory and cognition

aVected in AD. Importantly, the hippocampus is also one of the most

age‐sensitive areas in the brain. It is thought that greatly diminished plastic

capabilities of this region lead to impairments in cognitive output.
3. Hypothesized Pathogenic Mechanisms of AD

The early appearance of histopathologic lesions in the hippocampus has

been hypothesized to be one of the mechanisms that lead to cognitive

dysfunction in AD. However, the etiologic events that lead to the two well‐
characterized histopathologic lesions of the disease, namely neurofibrillary

tangles composed of hyperphosphorylated tau protein and senile plaques
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composed of amyloid‐� (A�) protein, are incompletely understood. None-

theless, of the several hypotheses put forward to explain the pathogenesis

of AD, the amyloid hypothesis has gained most attention. This is due to the

finding that early onset AD results from mutations in either the amyloid‐�
protein precursor (A�PP) or the presenilins 1 and 2, proteins involved in the

processing of A� [8]. However, studies using animal models do not support

this theory. In transgenic rodent models that overexpress mutant A�PP,
despite large depositions of A� in the brain, there is little or no neuronal

loss [9]. In fact, there is increasing evidence to support the theory that A�
deposition is a consequence rather than a causative factor in AD pathogenesis

[10–13]. Other theories being considered as plausible explanations for

the hallmark brain lesions seen in AD are tau phosphorylation [14–16], oxida-

tive stress [17], metal ion dysregulation [18], and inflammation [19]. Tau, a

microtubule‐associated protein, serves to assemble and stabilize the microtu-

bule. Tau hyperphosphorylation impairs its capacity to bind to microtubules

and prevents the microtubules from functioning normally. Accumulating evi-

dence supports the concept that oxidative stress generated by various mechan-

isms may be a major factor that contributes to the initiation and promotion of

neurodegeneration [17, 20, 21]. Transition metals, such as iron, copper, alumi-

num, and zinc, have been found in high concentrations in the brains of patients

withADand studies suggest their involvement in the etiopathology of the brain

changes seen in AD [22, 23]. Overall, these studies indicate that the environ-

mental conditions inAD, exacerbated by imbalances in several metals, have the

potential to catalyze and stimulate free radical formation and enhance neuronal

degeneration. Other associated findings in AD include decreased cortical levels

of acetylcholine, the enzyme choline acetyltransferase, nicotinic cholinergic

receptors, and reduced norepinephrine in brainstem nuclei [2]. Each of these

mechanisms, while they may have a role in the disease process in AD, cannot,

when considered alone, suYciently explain the spectrum of abnormalities

found in AD [24]. The search therefore continues for a causative factor that

would be present at the time of onset of the disease, predating the clinical

features as we know them today, and which would serve as an initiator of the

pathologic process and evolution of the disease.
4. Gender Dichotomy in AD: Role of Sex Steroids

Investigation of the epidemiological trends unique to AD yields conflicting

data [25, 26]. The fact remains, however, that there is a higher prevalence

[27–30] and incidence [31] of AD in aging women. There is also a higher

incidence of A� plaques in brains of women as compared with men [32]. This

gender‐based disease predisposition is specific to AD and is not found in

other degenerative diseases, such as Parkinson’s disease, where men have a
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higher prevalence and progression of disease. This has, naturally, focused

attention on the roles played by diminishing levels during aging and repro-

ductive senescence of estrogen and, to a lesser extent, testosterone, in the

pathogenesis of AD.

The part played by sex steroids, and estrogen in particular, in age‐related
cognitive decline and AD has gained prominence due to a number of lines of

evidence suggesting that postmenopausal estrogen deficiency may contribute

to both the benign cognitive decline [33–35] and the etiology of AD in women

[36, 37]. These findings are supported by epidemiological and observational

studies indicating that hormone replacement therapy (HRT) lessens the risk of

AD in postmenopausal women [38–42]. It is interesting, however, that reports

suggest HRT to be protective only when administered during a ‘‘critical

period,’’ that constitutes the climacteric years. HRT is almost completely

ineVective when given later during the postmenopausal years, during the latent

preclinical stage of AD, the disease itself occurring much later in life [43–47].

The observed gender diVerences, in addition to the reported capacity of

HRT to reduce AD risk in postmenopausal women, have led researchers to

investigate a possible role for estrogen in the pathogenesis of AD. It is

already known that estrogen has a proven ability to act as a neuroprotective

agent by lowering the brain levels of A� [48], ameliorating the nerve cell

injury caused by A� [49], and promoting synaptic plasticity and growth of

nerve processes [50–52]. Additionally, estrogen is capable of reducing oxida-

tive stress, increasing cerebral blood flow, and enhancing cholinergic func-

tion and glucose transport into the brain [53]. These eVects are all known to

exert a positive impact on the amelioration and prevention of AD. Several

studies have been carried out on the eVects of adrenal steroids on hippocampal

plasticity [54–56]. One study in embryonic rat hippocampal cells suggests that

a metabolite of dehydroepiandrosterone (DHEA)may be responsible for some

of the functions ascribed to estrogens [57].

In men, although cessation of gonadal hormone secretion is not abrupt

during midlife, levels of testosterone decrease gradually with aging. There is

some evidence to show that higher levels of estradiol, arising through aroma-

tization of testosterone, in elderly men may protect against some decline in

memory during normal aging [58, 59]. Some authors go so far as to suggest

that testosterone replacement therapy may alleviate memory loss in elderly

men [60, 61].

Despite the large body of evidence supporting a role for estrogen in

preventing age‐related cognitive decline as well as AD, there have been recent

contradictory studies [62]. While reduced estrogen levels have been reported

in patients with AD as compared to controls [39], HRT using estrogen and

progestin resulted in little improvement in cognitive function [40]. One must

also consider the fact that a ‘‘critical period’’ in HRT‐based protection

against AD suggests that falling levels of steroid hormones that accompany
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menopause/andropause cannot suYciently account for patterns of AD sus-

ceptibility. Such inconsistent results merely reflect our incomplete

understanding of the basic mechanisms in AD. They do, however, raise

questions regarding an authentic role of sex steroids in the disease process.

Add to this the fact that steroid hormone changes do not account for the

observation that, in Down’s syndrome, where serum levels of estrogen and

testosterone are comparable to those in the general population, males are at a

significantly higher risk for developing precocious AD‐type pathology and

cognitive alterations, and at an earlier age, than females [63]. This reversal in

Down’s syndrome of the normally female gender‐based predisposition to AD

cannot therefore be explained on the basis of lowered sex steroid levels.

The Women’s Health Initiative (WHI) Memory Study, which reported

negative cognitive eVects following HRT with conjugated equine estrogen at

an AD‐vulnerable age, has raised the most recent and significant challenge to

estrogen’s protective role in AD etiology. The WHI study [46, 64], which

demonstrated that HRT in postmenopausal women does not improve cogni-

tive performance and may actually increase the risk of developing AD, has

raised new questions concerning the role of sex steroid hormones in age‐
related cognitive decline, concurrent neuronal dysfunction, and the develop-

ment of AD [46, 65–67]. Many hypotheses have been postulated to justify the

results of the WHI study. Some aspects related to the form (estradiol vs

conjugated equine estrogen) and the route of administration (oral vs trans-

dermal) of estrogen, the choice of progestin (natural vs synthetic progestins),

the high doses administered, and the type of treatment regimen (continuous

vs cyclic) might be deserving of consideration (reviewed in [68–70]).

The investigators also suggest that the negative results may be linked to the

increased risk of stroke reported in the steroid treatment group. The

relationship between microinfarcts in the brain and susceptibility to AD is

most likely to be related but has not yet been well characterized [71].

It would seem, therefore, that even in the face of evidence supporting the

protective role of estrogen on cognition and AD, the current controversy

clearly reveals that falling levels of steroid hormones that accompany

menopause/andropause cannot suYciently explain patterns of age‐related
cognitive decline and AD susceptibility.
5. A Gonadotropin Evidence‐Based Hypothesis for AD:
High Gonadotropin vs Low Estrogen

In light of some findings challenging the protective role of estrogens in AD,

as detailed above, it is our view that the evidence, so far, points to the

probability that the diVerential eVects of HRT may be, at least partially,
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dependent on secondary hormonal changes in gonadotropins such as lutei-

nizing hormone (LH). In support of this hypothesis, the levels of gonado-

tropins including LH are highest during perimenopause and early

menopause [72], when HRT has been observed to be most successful in

preventing dementia [73, 74].

Each hormone of the hypothalamic‐pituitary‐gonadal (HPG) axis, includ-

ing hypothalamic gonadotropin releasing hormone (GnRH), LH, follicle

stimulating hormone (FSH), estrogen, progesterone, testosterone, activin,

inhibin, and follistatin, is involved in regulating reproductive function by

participating in a complex feedback loop. Hypothalamic secretion of GnRH

initiates the feedback process by stimulating the anterior pituitary to secrete

the gonadotropins, LH and FSH. These gonadotropins then bind to recep-

tors on the gonads and stimulate oogenesis/spermatogenesis as well as

the production of the sex steroids. Sex steroids complete the negative

feedback loop by decreasing GnRH and gonadotropin secretion from the

hypothalamus and pituitary gland (reviewed in [75]).

The balance of this feedback loop can shift duringmenopause (and ‘‘andro-

pause’’) and result in an increase in the production of gonadotropins such as

LH and FSH. In postmenopausal women, changes mediated by decreased

action of estrogen [76] result in large increases in the concentration of serum

LH and FSH [77]. Likewise, men (but to a lesser degree than women) also

experience an increase in these hormones as their reproductive function

declines during andropause [78]. Surprisingly, despite these well‐documented

hormonal changes, the eVects of loss of negative feedback and consequent

increased circulating gonadotropins on the aging brain remain largely

unexplored. This may be because these hormones are traditionally considered

to be involved in peripheral nervous system and not CNS function.

Evidence suggests, however, that gonadotropins such as LH also have CNS

function. It is recognized that significant elevations of LH are found in

vulnerable neuronal populations in AD as compared to controls [76]. LH,

like estrogen, is capable of modulating cognitive behavior [79]. Luteinizing

hormone receptors (LHR) are present in the brain [80–82] and, like estrogen

receptors, are highly expressed in the hippocampus [80], which, as detailed

above, is an age‐sensitive, highly plastic area of the brain, crucial in the

modulation of the types of cognition aVected by aging and severely deterio-

rated in AD. LH itself has been found in the cytoplasm of pyramidal neurons

of normal subjects, but in increased concentrations in AD brain compared to

control [83]. This is likely due to the fact that LH and FSH are present in the

cerebrospinal fluid of postmenopausal women (with LH higher than FSH in

its cerebrospinal fluid to serum ratio) [84] as well as the fact that LH is known

to cross the blood‐brain barrier [79], again suggesting eVects outside the

reproductive system [85]. A study attempting to elucidate the downstream
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consequences of binding of brain LH to its receptors showed increased

expression of steroidogenic acute regulator protein, which regulates the first

step in steroidogenesis, in vulnerable neurons and other cell types in AD brains

as compared to controls [86]. Of particular importance was the finding that

steroidogenic acute regulator expression colocalizedwithLHRexpression. The

authors suggest that LH binding to LHR in AD susceptible neurons induces

potentially pathogenic signaling events in the brain and that the LH‐regulated
steroidogenic pathways may play a role in AD. LH represents the only factor,

thus far, that explains the gender predisposition in the incidence of AD as well

as its reversal in Down’s syndrome [87]. In the normal population, where

women have a higher prevalence of AD, LH is higher in women but in

Down’s syndrome, where serum LH is higher in men despite, sex steroid levels

being comparable to the general population, men are at a higher risk of

developing AD‐type changes [88]. LH, unlike other hormones of the HPG

axis, is highest during perimenopause and early menopause [72] when HRT

has been observed to be most successful in preventing dementia [73].

As a consequence of these observations, there is growing evidence supporting

a role for gonadotropins, particularly LH, in AD pathogenesis [89]. A twofold

increase in circulating gonadotropins has been reported in patients with AD

compared to age‐matched controls [90, 91]. Of paramount importance in eluci-

dating disease pathogenesis is the understanding of regional and temporal

selectivity of neuronal death in AD. Lei et al.[80] have shown that regional

expression of LH receptors in the brain corresponds to regional vulnerability

seen in AD with the highest neuronal density being in the hippocampus. We

have found correspondingly significantly elevated LH in vulnerable neuronal

regions in AD as compared to controls [83]. Such increases appear to be a very

early change, serving to predict neuronal populations at risk of degeneration

and death. Elevations in LH parallel the ectopic expression of cell cycle and

oxidative markers that represent one of the initiating pathologic changes pre-

cedingneuronal degenerationbydecades [92, 93]. The highest concentrations of

thehormone, humanchorionic gonadotropin,which ishomologous toLH,also

correspond to the time of most rapid cell proliferation (i.e., the fetal period).

This leads us to suspect that neuronal elevations inLHcouldplay amajor role in

the mitogenic abnormalities documented in AD [83].

While AD is not traditionally characterized as a disease of cell division, it

has been postulated that the unscheduled initiation of a mitotic division cycle

in a mature, normally postmitotic neuron leads to abortive reactivation of a

variety of cell cycle components and ultimately to the demise of the cells in

AD [94–96]. The involvement of cell cycle‐related events in the etiology of

AD is supported by neuronal changes such as the ectopic expression of

numerous markers of the cell cycle [97], organelle kinesis [98], and cytoskele-

tal alterations including tau phosphorylation [99]. Reactivation of the mitotic
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signaling pathways by extracellular receptor kinase (ERK) and by mitogen‐
activated protein kinase (MAPK) [16, 100, 101], which are coincidentally

also known to be upregulated by gonadotropins, including LH [102], lend

even more compelling support to this theory. Furthermore, such mitotic

alterations are not only one of the earliest neuronal abnormalities in the

disease [97, 101, 103], but also would lead to all of the other pathological

changes reported in the disease [94]. LH is a powerful mitogen [102], and

given the temporal and spatial overlap with mitotic changes in AD [83]

(unpublished observations), it is likely that elevations in LH are responsible

for inappropriate cell cycle reentry in neurons [83, 94]. Admittedly, this does

not preclude the involvement of the other hormones of the HPG axis that

also exhibit significant changes in serum concentrations later in life.

In testing the hypothesis that LH plays a role in cognition and AD, we

have shown in experimental studies that, while LH did not alter A�PP
expression in a neuroblastoma cell line, LH did alter A�PP processing

toward the amyloidogenic pathway in vitro by increased secretion and insol-

ubility of A�, decreased secretion of A�PP, and increased levels of A�PP‐
C99 [104]. In the same study, treatment with leuprolide acetate, a selective

GnRH agonist that has been shown to markedly reduce LH by downregulat-

ing the pituitary GnRH receptors [104, 105], led to 3.5‐ and 1.5‐fold reduction

in total brain A� 1–40 and 1–42 concentrations, respectively, in C57B1/6Jmice

[104]. We have recently found that by experimentally abolishing LH using

leuprolide acetate in an animal model of AD, the A�PP transgenic mouse

improved cognitive performance and decreased A� deposition [106]. Addi-

tionally, overexpression of LH in a transgenic mouse model leads to cognitive

deficits and neuronal function/plasticity changes, the eVects of which are

believed to be receptor specific [107]. These findings, together with data

indicating that LH modulates A�PP processing in vivo and in vitro [104]

toward amyloidogenic pathways, indicate that LH may play a crucial and

direct role in age‐ and AD‐related cognitive and associated neuronal function

decline. Even more compelling evidence that LH may be a key player in AD is

seen in the results of a recently completed phase II clinical trial (http://

clinicaltrials.gov/ct/show/nct00076440?orden¼6) which show evidence of sta-

bilization in cognitive impairment and activities of daily living in female AD

patients treated with high doses of leuprolide acetate (http://www.secinfo.com/

d14D5a.z6483.htp, pp. 56–64).
6. Conclusion

Several reports in the literature support a protective role for estrogen on

cognition and preventing AD. Results of animal and human studies, how-

ever, indicate that the ‘‘window of opportunity’’ for HRT is at the time of
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menopause or immediately after ovariectomy. HRT administration

following a considerable delay after menopause or ovariectomy has little

beneficial eVect on cognition. As a consequence of these observations, and

the fact that LH concentrations are significantly higher in AD patients than

in age‐matched controls, there is growing evidence supporting a role for

gonadotropins, particularly LH, in AD pathogenesis. The regional and

temporal selectivity of neuronal cell death in AD, the regional expression

of LH receptors, and the LH concentration in vulnerable brain areas lend

credence to this theory. Gender dichotomy in AD prevalence, as well as

gender reversal in Down’s syndrome, makes it reasonable to believe that

the observed beneficial eVects of HRT are mediated, at least in part, through

LH suppression. The most compelling evidence, however, is the response to

high dose leuprolide acetate, a selective GnRH agonist, seen in female AD

patients who show stabilization of cognitive impairment [108, 109]. In order

to fine‐tune this therapy, the intricate molecular mechanisms involved in

producing this response, the eVect on neuronal mediators, and structural

changes in vulnerable brain regions have to be pursued.
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1. Abstract

In the past years, it has been shown that kynurenines pathway is a

regulator of both the innate and the adaptive immune responses. Particular-

ly, the initial enzyme of this pathway, indoleamine 2,3‐dioxygenase (IDO), is

implicated in maintaining tolerance during pregnancy, and also can be

expressed in tumors to avoid the immune attack. In this chapter, we will

describe how the kynurenine pathway aVects the immune system with im-

portant implications both in physiology and in pathology. The incorrect

activation or blockade suppressive properties of the kynurenine pathway

are also implicated in a number of other diseases such as AIDS or autoim-

mune diseases.
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2. Introduction

Most of the research eVort in the immune system has been oriented to

discover the mechanisms that activate the cellular and the humoral

responses. However, it is beyond any doubt that there are also peripheral

mechanisms that maintain tolerance and participate in health and disease.

For example, self‐reactive T cells that escape clonal deletion in the thymus

must be suppressed by peripheral tolerance to avoid autoimmune diseases.

Also, during evolution, a mechanism of maternal tolerance has been

developed to avoid fetal rejection. DiVerent mechanisms that contribute to

peripheral tolerance have been described [1], and seem to act in an over-

lapping fashion. The kynurenines pathway has recently joined this selected

group [2], and its importance is progressively being unraveled.

Tryptophan (Trp) is the rarest of the 20 amino acids found in proteins, and

is an essential amino acid in animals. Apart from being one of the bricks that

constitute proteins, it is the precursor of important molecules such as

serotonin, melatonin, and nicotinamide adenine dinucleotide (NAD). Kynur-

enine was initially isolated by Kotake in 1926 and Trp degradation products

through the route initiated by IDO are collectively known as kynurenines. The

kynurenine pathway was initially situated in the context of the immune system

as a part of the antitumoral [3] and intracellular antimicrobial [4] defense

machinery. More recently, the kynurenine pathway has been shown to be a

regulator of both the innate and the adaptive immune responses.

Although there is controversy related to the mechanism involved in sup-

pression, and even in the type of immune cells that express IDO activity, it is

fairly clear that the kynurenine pathway plays a pivotal role in regulating the

balance between activation and inhibition of the immune system. In this

chapter, we will describe how the kynurenine pathway aVects the immune

system with important implications both in physiology and in pathology.
3. Trp‐Kynurenine Degradation Pathway

Trp metabolism through the kynurenine pathway is summarized in Fig. 1.

Kotane discovered the enzyme that catalyzed the conversion of Trp to

N‐formylkynurenine and named this enzyme Trp pyrrolase, renamed after

as Trp 2,3‐dioxygenase (TDO, EC 1.13.11.11) [5]. This is one of the two first

enzymes that initiate Trp degradation through the kynurenine pathway; the

other is IDO (EC 1.13.11.17) [6, 7]. These enzymes are the rate‐limiting

enzymes of the Trp degradation pathway and are tightly regulated.

Both enzymes catalyze the oxidative cleavage of the indole ring of Trp
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rendering N‐formylkynurenine, which loses the formyl group to form the

more stable product kynurenine. This reaction occurs spontaneously in acidic

conditions or catalyzed by arylformamidase (EC 3.5.1.9). The aromatic

ring of kynurenine is hydroxylated by the flavin‐dependent kynurenine

3‐monooxygenase (EC 1.14.13.9) yielding 3‐hydroxykynurenine. Both kynu-

renine and 3‐hydroxykynurenine undergo the conversion to anthranilic acid

or 3‐hydroxyanthranilic acid by a reaction catalyzed by kynureninase (EC

3.7.1.3). Alternatively, kynurenine and 3‐hydroxykynurenine can be desami-

nated by the vitamin B6‐dependent enzyme kynurenine aminotransferase

(EC 2.6.1.7), rendering kynurenic acid or xanthurenic acid, respectively.

3‐Hydroxyanthranilic acid can be furthermetabolized by 3‐hydroxyanthranilic
acid oxidase (EC 1.13.11.6) to the unstable intermediate aminocarboxymu-

conic semialdehyde, which is rapidly metabolized to either quinolinic acid

or picolinic acid, or totally oxidized to CO2 and H2O. Quinolinic acid is a

precursor of NADþ that links this degradation pathway with the intracellular

redox status.
3.1. COMPARISON BETWEEN IDO AND TDO

TDO and IDO are the enzymes that generate kynurenine from Trp in

humans. These two enzymes notably diVer in terms of location, structure,

substrate specificity, and regulation [8]. TDO is a constitutive hepatic enzyme

consisting of a homotetramer of 167 kDa subunits noncovalently bounded [9].

It shows substrate specificity for L‐Trp, which binds with low aYnity and uses

O2 in the oxidative ring cleavage. TDO activity is induced by Trp; other

inducers are kynurenine, hystidine, tyrosine, and phenylalanine. It has been

observed that the enzymatic activity increases after a protein‐rich meal and

is maintained several hours afterwards [10]. In addition, the gene has a gluco-

corticoid response element [11].

IDO is a 45‐kDa monomeric enzyme with high aYnity for Trp, though

other indoles such as 5‐hydroxy‐Trp and serotonin can also serve as sub-

strates. In addition to O2, superoxide anion can be a source of oxygen in the

oxidative reaction.
3.2. DISTRIBUTION OF THE KYNURENINE PATHWAY ENZYMES

TDO is a hepatic enzyme, while IDO has a wider tissue distribution, with

high activity in lungs, small intestine, and placenta, and lower activity in

stomach and spleen [12]. In extrahepatic tissues, Trp is mainly metabolized

to kynurenine by IDO. Not all the enzymes of the kynurenine pathway are

simultaneously expressed in tissues, but hepatocytes are the only cells

containing all the enzymes of the kynurenine pathway leading to complete
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oxidation of Trp and also to NADþ synthesis [10, 13]. It has been shown that

enzymes of the kynurenine pathway are diVerently expressed in tissues

depending on the species [14]. In human astrocytes and neurons, there is a

low activity of kynurenine 3‐hydroxylase, kynureninase, and kynurenine

3,4‐dioxygenase, and in lungs there is no detectable activity of kynurenine

3‐hydroxylase [15]. Because of the absence of these enzymes, the production

of the neurotoxic quinolinic acid is very limited in the brain in normal

situations [15], but can be produced during inflammation [16]. In the immune

system, monocytes have high kynurenine 3‐hydroxylase, kynureninase, and
3‐hydroxyanthranilic acid oxidase activities [15]. Once induced by IFN‐�,
these cells also have high IDO activity, degrading Trp to quinolinic acid and

producing NADþ[17].
NADþ is an essential cofactor in many cellular reactions, and crucial for

DNA repair and maintaining the redox balance. Significant amounts of

NADþ are formed through the TDO‐mediated kynurenine catabolic route

in the liver [10, 13], but other cells such as astrocytes and neurons depend on

extracellular sources of this cofactor [15]. IFN‐�‐stimulated macrophages can

produce NADþ, protecting themselves against free radical production [17]. In

diets with normal supply of niacin, this route is secondary for the synthesis of

NADþ and NADPþ, but Trp becomes important as a precursor of NADþ in

niacin‐deficient diets. In chronic insuYcient supply of Trp and niacin, a

vitamin‐deficient disease, pellagra, can occur.
4. Biochemistry of IDO

4.1. MOLECULAR BIOLOGY OF THE INDO GENE

The Indo gene is situated in the short arm of chromosome 8, and consists

of 10 exons that span 15 kbp [18]. There are no reports on alternative splicing

or other posttranscriptional modifications. The human Indo cDNA encodes

a single protein of 403 amino acids and 42 kDa [19], which presents 61%

homology with murine IDO [20]. This protein has high hydrophobic amino

acid content and 5% of carbohydrates [21].

The Indo gene has been conserved during the past 600 million years of

evolution related with the Trp metabolism, and in other species has even

evolved to perform diVerent functions such as the oxygen transport in

IDO‐like myoglobin protein found in some gastropod mollusks [22]. Immu-

noregulation of T‐cell immunity was not the initial role of such an ancient

enzymatic activity, although it might have been recruited later in evolution

for such purposes. We can therefore place this gene in the category of innate
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immunity based on its appearance before the evolutive merge of the adaptive

immunity [23]. During adaptation, Indo gene could have served as a bridge

between innate and adaptative immunity, participating in the antiparasitic

and antibacterial defense developed by macrophages, and in the modulation

of T cells by dendritic cells (DCs).
4.2. CATALYTIC PROPERTIES OF IDO

IDO is a heme‐monooxygenase very diVerent from other human heme‐
monooxygenases such as cytochrome P‐450 [24]. The X‐ray crystal structure

of human IDO shows two �‐helical domains with the heme group between

them. The catalytic mechanism consists of the binding of O2 to the ferrous

heme, and the binding of L‐Trp that enables the interaction between the –NH

group of indole and the proximal atom of dioxygen producing N‐formyl

kynurenine [24]. In the absence of a reducing environment, Fe2þ is easily

oxidized to Fe3þ by inactivating the enzyme. Dihydroflavin mononucleotide

or tetrahydrobiopteridine has been proposed as a cofactor that maintains

IDO‐iron in a reduced state in vivo [25].

IDO has a wide substrate specificity, and catalyzes the oxidation of L‐ and
D‐Trp; however, high concentrations of L‐Trp inhibit the activity of the

enzyme [26]. 1‐Methyl‐Trp is a Trp analog that competitively inhibits IDO

[27], but not TDO. 1‐Methyl‐Trp inhibits transport system L [28], therefore

blocking the Trp entry into the cell and aVecting protein synthesis and pro-

bably also aVecting immune functions. In addition, it has been shown that

1‐methyl‐Trp can modulate DCs function independently of its action on IDO

[29]. This compound is frequently used in the IDO enzyme research.
4.3. POSTTRANSLATIONAL REGULATION OF THE IDO ACTIVITY

IDO is highly induced during maturation of monocyte‐derived DCs [30, 31],

but full IDO activation requires further stimulation, mainly by IFN‐�, which
implies a posttranslational regulation by some type of IDO activator [32]. For

example, even though mouse splenic DCs express IDO protein at comparable

levels, only the CD8�þ subset has IDO activity after exposure to IFN‐� [33].

Orabona et al. [34] showed that IFN‐� induces in CD8þ DCs the expression

of the transcription factor IFN regulatory factor (IRF)‐8, which induces

IDO expression and downregulates the membrane protein adapter DAP12.

The downregulation of DAP12 is necessary for full IDO activity, which

implies that the loss of DAP12 expression could be a hallmark of the

IDO‐competent DCs.
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Another mechanism of regulation of the IDO function is through

modification of either the apoprotein or the cofactor. Nitric oxide (NO) is

an IDO functional modifier acting at these two levels, in general, decreasing

IDO activity during inflammation [35]. Also, some antioxidants such as

pyrrolidine dithiocarbamate, a NF‐�B inhibitor, decrease IDO activity post-

translationally [36]. Another mechanism of regulation of the IDO activity is

through the supply of the prosthetic group heme to the apoenzyme: the

inhibitor of the heme biosynthesis, succinylacetone, can also inhibit IDO

activity without aVecting protein content [36].
5. IDO Induction

5.1. INDUCTION OF IDO BY IFNS

IDO is induced by cytokines, mainly IFN‐�, in many tissues [3, 37].

In general, the eVect of IFN‐� inducing IDO expression is more pronounced

than the one provoked by IFN‐�/�, and even the capacity of IFN‐� to induce

IDO activity has been used in bioassays to measure this cytokine activity [38].

Professional antigen‐presenting cells (APCs) such as monocytes, macro-

phages, and DCs, express IDO following IFN‐� exposure [37, 39, 40], and

the maturation of monocytes to macrophages increases the capacity of

IFN‐� to induce IDO [41]. Also, CD4þ can express IDO upon stimulation

with IFN‐� [42] and IFN‐� [43]. As IFN‐� is the most potent IDO inducer,

the mechanism will be discussed in detail in the following paragraphs.

5.2. INDUCTION OF IDO BY CYTOLYTIC T‐LYMPHOCYTE‐ASSOCIATED ANTIGEN

4‐IMMUNOGLOBULIN FUSION PROTEIN

CD80 (B7–1) and CD86 (B7–2) are surface molecules present on DCs that

interact with two counterreceptors expressed by lymphocytes (CD28 or

CTLA‐4). Cytolytic T‐lymphocyte antigen‐4 (CTLA‐4) is a negative regula-

tor of T‐cell activation transiently expressed on T cells after activation that

can bind CD80 and CD86 on DCs. The binding of the CTLA‐4‐Fc fusion

protein to CD80 induces IDO expression in DCs [44, 45], and also in CD4þ
T cells [46]. The mechanism of IDO induction in DC is indirect; CTLA‐4‐Fc
induces IFN‐�that, in an autocrine or paracrine fashion, leads to IDO expres-

sion, Trp depletion, and conceivably immunosuppression. DCs obtained

from mice deficient in either IFN‐� or signal transducer and activator of

transcription 1 (STAT1) do not produce kynurenine after CTLA‐4‐Fc treat-
ment in vitro [44]. In addition to the soluble form (CTLA‐4‐Fc), also CTLA‐4
anchored in the membrane of regulatory CD4þ can induce IDO expression

in DCs [47].
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5.3. INDUCTION OF IDO BY UNMETHYLATED CYTIDYL

GUANOSYL OLIGODEOXYNUCLEOTIDES

The toll‐like receptors (TLR) are membrane proteins that bind to

pathogen‐expressed molecules. The receptor, TLR9, binds cytidyl guanosyl

(CpG) oligodeoxynucleotides present in the genome of bacteria and viruses,

but not in human genome. This receptor is expressed by B lymphocytes and

plasmacytoid DCs; and after TLR9 activation, there is an induction of

IFN‐�, IFN‐�, and other proinflammatory cytokines initiating the innate and

adaptive immune responses [48]. Also, bacterial DNA and its synthetic

immunostimulatory oligodeoxynucleotide analogs induce IDO, which is one

of the defense mechanisms against intracellular pathogens [49]. However, the

binding of bacterial DNA to TRL9 in lungs produces intense IDO expression,

provoking TH1 and TH2 suppression [50].

The activation of TH1 cells by synthetic CpG‐rich oligodeoxynucleotides

has been shown to have therapeutic activity in mouse models of cancer, and

infectious and asthma/allergy diseases; and for this reason, several clinical

trials have been initiated using CpG‐rich oligodeoxynucleotides [48]. How-

ever, repeated systemic administration of CpG‐rich oligodeoxynucleotides

causes lymphoid follicle destruction and immunosuppression [51] that could

be related, at least in part, to the kynurenine pathway activation. For this

reason, applications using CpG‐oligodeoxynucleotides as adjuvants in vac-

cines for human use should consider this possible immunosuppression [52]

and evaluate kynurenine production.

The eVect of CpG oligodeoxynucleotides on IDO expression is related to

the route of inoculation, which aVects the cell type first encounter and the

type of microenvironment [52]. Systemic administration of CpG oligodeox-

ynucleotides could induce IDO expression, provoking an activation of the

kynurenine pathway and leading to T‐cell suppression [53, 54]. However,

subcutaneous application of antigen plus CpG oligodeoxynucleotides

enhances antigen‐specific T‐cell activation in local lymph nodes [54].
5.4. INDUCTION OF IDO BY 4‐1BB

4‐1BB (CD137) is a member of the tumor necrosis factor (TNF) receptor

superfamily expressed on the surface of activated T cells and other leukocytes

including natural killer (NK) cells and mature DCs [55]. 4‐1BB‐mediated

costimulation greatly enhances T‐cell‐mediated immune responses helping

in eradicating stabilized tumors and virus clearance [56, 57]. But the same

4‐1BB costimulation produces opposite results, inducing tolerance and

improving autoimmune diseases [55]. In a mouse model of rheumatoid

arthritis, the administration of an anti‐4‐1BB agonist antibody induces
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IFN‐�‐mediated IDO expression in macrophages and DCs [58]. This enzyme

leads to Trp depletion and produces kynurenines causing depletion of

antigen‐specific CD4þ cells. This prevents the development of collagen

type II‐induced arthritis in the mouse model. Interestingly, in vivo adminis-

tration of the IDO inhibitor 1‐methyl‐Trp completely abolishes the thera-

peutic eVect of the agonist anti‐4‐1BB monoclonal antibody. Similarly, the

anti‐4‐1BB antibody improves experimental autoimmune uveoretinitis by

IDO‐dependent mechanisms [59].
5.5. SIGNALING PATHWAYS INVOLVED IN IDO INDUCTION

The Indo gene promoter has several response elements that confer respon-

siveness to IFN‐�/�, and more potently to IFN‐�. In the promoter region of

the Indo gene, there are two very important sequence elements, interferon‐
stimulated response element (ISRE) found in IFN‐�/�‐inducible genes, and
interferon‐� activating site (GAS) found in IFN‐�‐inducible genes, and there

is also anMHC‐II X,Y box‐like motif [18, 60]. The presence of these elements

confers responsiveness to inflammatory cytokines, mainly to IFN. Both

IFN‐�/� and IFN‐� induce IDO in monocytes, but IFN‐� is the most potent

because the ISRE region is less stimulated by IFN‐�/� [60]. Upon binding to

its receptor, IFN initiates the Jak‐STAT signaling pathway that activates

specific DNA sequences in the cell nucleus (Fig. 2). STAT1 can bind directly

to the GAS element and indirectly, through the IRF‐1, to the ISRE element.

There is a cooperative action between IRF‐1 and STAT1 to mediate IDO

induction upon stimulation with IFN‐� [61]; and, for example, mice deficient

in IRF‐1 or IFN‐� cannot induce IDO during infection [62].

There are also IFN‐�‐independent mechanisms to induce IDO and not

mediated through the STAT1 or IRF‐1 pathway. Lipopolysaccharide (LPS)

stimulates IDO expression and acts synergically with other cytokines such as

TNF‐�, in a mechanism involving NF‐�B and/or the activity of the p38

mitogen‐activated protein kinase[63].
6. Measurement of Kynurenines in Human Biological Fluids

There are several commercially available antibodies to detect IDO protein;

however, this enzyme is posttranslationally regulated, so the immunological

detection does not necessarily imply activity [64], and the enzymatic activity

should be measured when studying functionality. IDO activity is easily

inactivated in vitro by oxygen, which oxidizes Fe2þ of the heme group to

Fe3þ. To measure IDO activity in cellular extracts, it is necessary to reduce

the Fe3þ, usually with methylene blue plus ascorbic acid [26]. Catalase is also
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added to eliminate the hydrogen peroxide produced by the reducing system.

In these conditions, Trp is readily converted to formylkynurenine by IDO

enzyme (Fig. 1). Boiling the reaction product for several minutes eliminates

the formyl group rendering kynurenine. Then, Trp and kynurenine are

usually simultaneously measured by high‐performance liquid chromatogra-

phy using reversed phase C18 columns [65]. Trp is detected by its natural

fluorescence at an excitation wavelength of 285 nm and an emission wave-

length of 365 nm, and kynurenine is measured using an ultraviolet detector

set at a wavelength of 360 nm. Some authors have measured kynurenine by a

colorimetric method using the Ehrlich reagent; however, it is very unspecific

and prone to react with many compounds that interfere and mislead the

quantitation [66]. There are physiological variations in the serum concentra-

tions: Trp and kynurenine concentrations are 15% higher in men than in

women [65], and intense exercise increases serum levels of kynurenine [67].

An indirect form to estimate IDO activity is quantifying the kynurenine/Trp

ratio in biological fluids [59].

Quinolinic acid is a neurotoxic kynurenine metabolite involved in several

neurodegenerative disorders [68]. For this reason, diVerent methods have
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been developed to quantify this compound in brain tissue and cerebrospinal

fluid (CSF), usually by gas chromatography‐mass spectrometry [69, 70]; and

there is a regional variation of concentration in the brain [71]. Specific

antibodies have been used in immunohistochemistry to detect cells capable

to synthesize quinolinic acid. Probably due to the diVerent sensitivity of both
methods, in normal brain tissue quinolinic acid can be quantified, but it is not

immunologically detected [68]. In inflammatory neurological diseases, where

the concentration of quinolinic acid can rise several hundred times, this

compound can be detected by immunohistochemistry in tissues [68].

Kynurenines are mainly eliminated by renal excretion [72, 73]. Thus,

alterations in kidney function cause retention of kynurenines. Indeed, a

marked elevation of kynurenine and quinolinic acid in serum and CSF in

renal failure patients has been observed [70, 74]. This elevation causes

an accumulation of kynurenines in diVerent tissues, probably playing a role

in the pathogenesis of the uremic syndrome [75]. It can be postulated that

these compounds might be involved in the relative immunosuppression that

aVects patients suVering from chronic kidney disease.
7. Nitric Oxide and the Kynurenine Pathway

NO is generated from l‐Arg by the enzyme nitric oxide synthase (NOS).

There are three NOS isoenzymes, two of them (eNOS and nNOS) are constitu-

tive and produce low quantities of NO and the third form is inducible (iNOS)

and produces large quantities of NO. This compound has important immuno-

modulatory properties [76]. In enzymes carrying the heme group, NO can bind

to this prosthetic groupmodifying the catalytic activity, either activating [77] or

inhibiting [78], depending on the enzyme. Alternatively, NO can form perox-

ynitrite that reacts with tyrosine residues producing nitrotyrosines, which

change the protein properties [79]. As IDO is a heme‐protein, NO can bind its

heme prosthetic group, inhibiting IDO enzyme activity [80–82]. Similarly,

extensive IDO protein nitration due to elevated peroxynitrites output, as

produced by iNOS, inhibits IDO activity [35, 82, 83]. This inhibition aVects
the entire kynurenine pathway as IFN‐�‐induced synthesis of NADþ by

macrophages is markedly increased in the presence of an NOS inhibitor [17].

NO favors IDO degradation by the proteasome [84], which could be related to

IDO nitration because nitration of tyrosine residues in proteins induces

accelerated degradation of modified proteins by the proteasome [85].

However, low micromolar concentrations of NO, as produced by eNOS,

stimulate IDO activity, even when there is IDO protein nitration [35]. Coex-

pression of eNOS and IDO is found in human monocytes [86, 87] and in

placenta [2]. As a result, eNOS can participate in the immune tolerance in

an IDO‐dependent fashion. However, when there is an inflammatory attack,
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in which iNOS is induced as a part of the immune response, the high NO

production deactivates the immunosuppressive IDO enzyme, thus favoring a

more intense immune response [35].

NO interferes with the tolerogenic eVect of kynurenines in the immune

system, as demonstrated in a murine model of type 1 diabetes mellitus.

Certainly, the high expressionof peroxynitrites inDCs inpredisposednonobese

diabetic (NOD)mice provokes the inactivationof STAT1 in these cells [88]. The

blockade of this signaling route impairs the IFN‐�‐mediated Trp degrading

pathway,which interfereswith the tolerance to self‐antigens [88].Restorationof

this blockade allows IDO expression inDCs and the development of tolerance.

Kynurenine metabolites also modulate iNOS expression, but while picolinic

acid can increase [89], 3‐hydroxyanthranilic acid can inhibit IFN‐�‐dependent
iNOS mRNA expression and activity in macrophages [90].
8. Role of IDO in the Defense Against Infectious Pathogens

One of the most simple and ancient host defense against pathogens is the

depletion of nutrients, such as iron‐chelating proteins. The kynurenine path-

way, by depleting Trp, can locally impair the growth of microbes. Soon after

the discovery of IDO, it was observed that this enzyme is notably induced in

mouse lung after an intraperitoneal administration of bacterial LPS [91],

leading to Trp degradation and increased plasma kynurenine levels [92].

IFN‐� inhibits IDO‐dependent growth of group B streptococci [93], intracel-

lular pathogens (e.g., Chlamydia psittaci, Leishmania donovani, and Toxo-

plasma gondii) [94, 97], and viruses (e.g., cytomegalovirus or Herpes Simplex

Virus) [95, 96]. This eVect is mediated by increased Trp degradation, and

inhibition could be reversed by the addition of Trp excess. Infection with

Candida albicans produces an IFN‐�‐dependent IDO induction in DCs and

polymorphonuclear neutrophils that inhibits fungi growth, and in this case

the antioxidant properties of IDO and kynurenines have a central role [98].

TNF‐� can increase the IFN‐�‐dependent IDO induction, potentiating the

antiviral action of this cytokine [96]. IDO expression induced by IFN‐� in

airway epithelial‐like cells provokes exaggerated IL‐6 and IL‐8 responses to

TNF‐� and LPS challenge [99]. This could help to explainwhy respiratory viral

infections can increase inflammatory responses to concurrent or secondary

bacterial challenges, thereby worsening respiratory distress [99].
9. IDO as an Immunosuppressive Molecule

As it has been mentioned before, earlier literature considered the Trp

degrading pathway a mechanism to inhibit pathogens growth and tumor

proliferation. This point of view was challenged in 1998 when Munn and
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Mellor [2] demonstrated that Trp degradation protected mice fetuses from

maternal rejection. Soon later, it was shown that cells express IDO to limit

T‐cell proliferation in response to antigens: transfection of Indo gene into

tumor cell lines confers them the capacity to inhibit T‐cell responses [100].
Since then, a considerable amount of evidence has been accumulated regard-

ing the immunosuppressive role of the kynurenine pathway and its role in

developing tolerance (summarized in Fig. 3).
9.1. IDO‐MEDIATED SUPPRESSION BY INNATE IMMUNITY

Macrophages are the first defense line against pathogens, and the binding

of bacterial molecules to receptors on the surface macrophages triggers the

generation of the respiratory burst and phagocytosis. However, macro-

phages can also downregulate T‐cell response, which is, at least in part,

mediated by the kynurenine pathway. Monocytes diVerentiated to macro-

phages with macrophage colony stimulating factor (M‐CSF) and suppress

the proliferation of CD3‐stimulated T cells [101]. To reach this suppressive

state, macrophages should be induced to synthesize IDO, mainly by IFN‐�.
T cells induce IDO in macrophages by an IFN‐�‐dependent mechanism,

which implies that these cells should be immunocompetent and previously

activated. The order of cytokine treatment in culture is crucial, because when

monocytes are previously treated with IFN‐� they do not achieve this T‐cell
IDO
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FIG. 3. Immunosuppressive eVect of the kynurenine pathway. IFN‐� can induce the kynurenine

pathway in antigen‐presenting cells (APCs) producing immunosuppression in the microenviron-

ment, and can also induce suppression at distance by migration of tolerogenic APCs to lymphatic

nodes or by inducing regulatory T cells.
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suppressive function once diVerentiated with M‐CSF [102]. T‐cell arrest is
mediated exclusively by IDO induction without participation of any other

macrophage inhibitory mechanism since addition of purified IDO protein

also impairs the proliferation of phytohemagglutinin‐stimulated T cells [103].

Stimulated T cells can initiate a response entering cell cycle, but they are

halted at the middle of G1 when there is IDO activity in the microenviron-

ment [101, 102]. This arrested situation of T cells cannot be overridden by

Trp restoration only, but a second round of stimulation together with Trp

addition is also necessary [101].

NK cells are another tool of the innate defense that can also be inhibited by

the kynurenine pathway. Trp depletion can downregulate Ag‐specific T‐cell
clonal expansion leading to suppression in response. Also, kynurenine inhi-

bits phytohemagglutinin‐stimulated NK cells proliferation [103], probably

through cytotoxic mechanisms [104]. However, the NK‐cell response, which
does not need a clonal expansion, is downregulated by a direct eVect on the

NK‐cell killing capability [105]. In this case, kynurenines seem to exert an

eYcient suppressive eVect; and eVectively, kynurenine can inhibit NK‐cell
responses induced by IL‐2 and IL‐12 [105]. Suppression is achieved at con-

centrations and for periods of time that do not cause cytotoxicity, but impair

the upregulation of specific activatory surface receptors that bind triggering

ligands on target cells. Indeed, L‐kynurenine prevents the IL‐2‐induced upre-

gulation of the activating cellular receptors NKp46 andNKG2D, responsible

for NK‐cell triggering, and consequently decreases killing capacity of NK

cells [105]. The suppressive eVect of kynurenine is transient as NK cells regain

the phenotype and function after the metabolite removal. A similar eVect on
NKp46 is observed when L‐kynurenine is present during IL‐12 stimulation

of NK cells.
9.2. IDO‐MEDIATED SUPPRESSION BY ADAPTIVE IMMUNITY

DiVerent murine models have demonstrated that the functionally active

kynurenine pathway suppresses T‐cell‐mediated immune responses. DCs are

the most important APCs, specialized to induce or to suppress T‐cell
responses [106]. As it occurs with other cell types, IFN‐� induces functional

IDO enzyme in DCs—an eVect that is enhanced by CD40 ligand and LPS

[107]. Of special interest is the demonstration by Grohmann et al. that

CTLA‐4‐Ig upregulates IDO in murine DCs via an IFN‐�‐dependent mech-

anism [44]. Plasmacytoid DCs do not express IDO and are not tolerogenic

under basal conditions; there are multiple ligands and cytokines that induce

the expression of IDO giving a tolerogenic phenotype to plasmacytoid DCs

in mice [108]. CD28‐Ig also induces IDO in plasmacytoid DCs in SOCS3‐
deficient mice through IFN‐�‐induction and the IFN‐like actions of IL‐6
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[108]. More recently, it was reported that CD200R ligation by the soluble

CD200‐Ig fusion protein induces IDO in plasmacytoid DCs through an

IFN‐�/�‐elicited signaling pathway [109].

Maturation of human monocyte‐derived DCs with TNF‐� plus PGE2

induces IDO expression [30, 110]. Munn et al. [40] have shown that a popula-

tion of nonadherent human DCs, characterized by CD123 and CCR6 expres-

sion, produces IDO protein, but the enzyme is only active after stimulation

with IFN‐�. However, other authors have challenged these findings [111], and

although this discordance has been attributed to the methodology used to

diVerentiate DCs in culture [112], to detect IDO function and protein, and to

analyze DCs function of T‐cell stimulation [112, 113], the controversy is

maintained [113]. Furthermore, DCs comprise a heterogeneous population,

in which the diVerentiation and maturation culture conditions are very impor-

tant in order to attain IDO‐mediated suppression, as observed in the case of

macrophages [102]. Moreover, not all the types of DCs have IDO activity [40,

111, 112]. For example, when maturation is induced with CD40 ligand, DCs

express inactive IDO, which is even downregulated by IFN‐�. On the contrary,

the addition of IL‐10 together with CD40 ligand and IFN‐� generates mature

DCs expressing fully active IDO enzyme.

In spite of this controversy, there are strong evidences that some popula-

tions of DCs express IDO conferring them immune suppressive capacity

[33, 34, 40, 107], which can suppress T‐cell proliferation in an allogeneic

mixed lymphocyte reaction [100] and induce regulatory CD4þ cells [114].

These IDO expressing DCs behave in a dominant fashion, that is, they can

suppress T‐cell response to antigens presented by neighboring IDO negative

cells. This eVect has been demonstrated in vitro using simultaneously IDO

negative and positive DCs in a mixed lymphocyte reaction [115]. This domi-

nant suppressive eVect can be crucial in cancer hosts, where the presence of

IDO positive DCs in lymph draining nodes could induce suppression in the

surrounding media thus facilitating the tumoral metastasis [115, 116].

Other enzymes of the kynurenine pathway are also induced during matu-

ration of DCs. Studies with microarrays have shown that maturation of

human DCs with TNF‐� and polyl:C induces coordinately in less than

24 hours a cluster of genes involved in Trp metabolism: IDO, kynureninase,

kynurenine monooxygenase, and tryptophanyl tRNA synthetase [31]. The

final Trp degrading enzyme 3‐hydroxyanthranilic acid oxidase that produces

quinolinic acid is downregulated in these conditions. Recently, Belladonna

et al. have shown that murine splenic DCs express all the enzymes necessary

to synthesize quinolinic acid, a reaction that is enhanced by the addition of

IFN‐� [117]. Murine CD8‐DCs subsets do not have IDO activity, but when

these cells are stimulated with IFN‐� in presence of kynurenine, these cells

acquire suppressive properties. This implies that, independently of Trp
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concentrations, DCs can be induced to create tolerance if there is enough

supply of kynurenines.

The possibility of generating DCs expressing active IDO or even other

enzymes of the kynurenine pathway is an important point as DCs have been

used in cancer immunotherapy trials, and generating tolerogenic DCs could

lead to opposite results than the expected ones. In our experience, clinical

grade DCs generated with standard protocols with GM‐CSFþ IL‐4 and

matured with TNF‐� and poly I:C do not express active IDO (unpublished

observations). Nevertheless, when using DCs in clinical trials it would be

wise to check IDO expression by measuring Trp consumption and the

kynurenine concentration in the culture supernatants.
9.3. MECHANISM OF SUPPRESSION

Since the discovery of the role of IDO as an immunosuppressive molecule [2],

several hypotheses have arisen to explain its mechanism of action. The initial

theory proposes that Trp depletion in the T‐cell surrounding microenviron-

ment causes functional suppression of lymphocytes [32]. This hypothesis has

been recently critically discussed [113, 114], because there are some caveats to

explain immunosuppression, particularly in vivo. Other hypotheses suggest that

Trp metabolites, mainly kynurenine, induce suppression [104]. Finally, the

third hypothesis is that Trp metabolism modifies APCs properties [32, 118].

Probably this third mechanism is indirect and mediated by the first two.

Independently of the mechanism involved, an important fact is that it is

initiated by an antigen‐specific response, so it is not a general immunosuppres-

sion. Moreover, most likely, these mechanisms are not mutually exclusive and

can be synergistic, and in some situations suppression may be mainly the result

of elevated kynurenine metabolites rather than the depletion of Trp, and vice

versa. However further research is needed to clarify these possibilities, particu-

larly to define precisely the concentration of Trp in the microenvironment and

the distribution of the Trp metabolites that can have diVerent functions.
9.3.1. The Trp Depletion Theory
IDO induction in allogeneic mixed lymphocyte reaction provoked Trp

depletion, driving to T‐cell arrest. Supplementation with high Trp concen-

tration to IDOþ macrophages prevents suppression [101]. As a possible

explanation of the mechanism involved, Munn et al. [119] proposed the

conserved amino acid sensitive GCN2 kinase pathway as the molecular

target of IDO suppression in T cells. Trp depletion causes a rise in uncharged

tRNA in T cells, and GCN2 contains a regulatory domain that binds the

uncharged forms of tRNA. As a result, there is an activation of GCN2 kinase

in T cells that initiates a highly conserved downstream signaling pathway,
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termed integrated stress response. This pathway leads to T‐cell anergy.

However, Fallarino et al. [114] showed that it is not Trp depletion alone,

but the combined action of Trp depletion and kynurenines that is necessary

to downregulate T‐cell CD3� expression through a GCN2 kinase‐dependent
mechanism. Furthermore, some authors have found that T cells can

proliferate in Trp‐deprived medium [103].

To achieve an eYcient T‐cell suppression, the concentration of Trp in the

medium should be below 1 �M [101]. IDO is an intracellular enzyme with

cytoplasmic location [120], and macrophages need a very eYcient transport

system to import Trp from the surrounding medium (Fig. 4) [121]. There is a

widely distributed amino acid transporter system for Trp and other neutral

amino acids, named L‐system. This L‐system has a Km for Trp of 23.6 �M,

which is too high to decrease the concentration of this amino acid to the

extent needed to suppress T cells [28]. However, during monocytes
Trp transporters 
L-system: Km = 23.6 µM 
Macrophage specific: 
Km = 0.3 µMIDO

Trp

Trp

Trp tRNA 
synthetase 
Km = 2.3 µM

Km = 40 µM

tRNATRP

Kynurenine

Interstitium: 
approx 20 µM

Free Trp pool 
(0.7 µM)

Other routes

Lymphocyte

“Tryptophan sink” >30 µm

Macrophage

Metabolites

Kynurenines

FIG. 4. Generation of an immunosuppressive environment by antigen‐presenting cells (APCs).

Trp is internalized from the medium by two types of transporters: A L‐system, and another more

specific of macrophages and with a higher aYnity for Trp. Inside the cell, Trp is derived for the

synthesis of proteins and transferred to a tRNA by a Trp tRNA synthetase, or directed to the

kynurenine pathway by indoleamine 2,3‐dioxygenase (IDO), which is the first enzyme of this

route, to be further metabolized to diVerent kynurenines. Both the kynurenines and Trp

depletion can provoke arrest of activated T cells.
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diVerentiation to macrophages, another transporter with high aYnity for

Trp is highly induced [122], which is not expressed in T cells. This transporter

expressed in macrophages has a Km for Trp of 0.2–0.3 �M, so it has the

capacity to eYciently import Trp in the range of amino acid concentrations

necessary to produce T‐lymphocyte arrest. Considering that the Km of the

IDO enzyme is 40 �M for l‐Trp [21], this enzyme works at suboptimal

substrate concentration. This implies that the velocity of Trp degradation

decreases as the concentration of Trp diminishes.

Neither the amino acid transporter nor the IDO are polarized during the

synaptic contact between T lymphocytes and IDO expressing cells. For this

reason, the proposed ‘‘Trp sink’’ is not limited to the boundary between these

cells, but must measure at least double of the average T‐lymphocyte size

(Fig. 4). This point is challenged by the observation made by Terness et al.

[113] that a local Trp decrease could be quickly compensated by gradient

diVusion from the surrounding tissue and plasma, a flow that it is particularly

intense in human placenta [123, 124]. Also, positron emission tomography

shows that amino acids diVuse in few minutes from the vascular compartment

to irrigated tumors, but not to poorly irrigated or necrotic tumors.
9.3.2. Immune Modulatory Function of Kynurenine

Pathway Metabolites
Trp metabolism produces diVerent kynurenines, some of them with

important tolerogenic properties; the provoked suppression can be specific

for certain T‐cell subpopulations: 3‐hydroxyanthranilic acid and quinolinic

acid induce apoptosis in murine thymocytes and TH1 cells, but not in TH2

cells [125]. The apoptosis is mediated by caspase‐8 and the mitochondrial

release of cytochrome C. This suppression is also observed in human T cells,

showing that kynurenines suppress irreversibly allogeneic T‐cell proliferation
in vitro [104]. l‐Kynurenine inhibition of proliferation occurs only at the early

stages of cell activation [103], which is in accordance with previous data

showing that macrophage‐dependent arrest of T cells specifically aVects the
initial transition from quiescence to proliferation [102]. These Trp catabolic

products exert a cytotoxic action on CD3þ cells, mainly when activated.

B and NK cells are also susceptible to these compounds [104].

As we have mentioned before that Trp addition can reverse IDO‐mediated

macrophage suppression [101], which apparently rules out significant con-

tributions from kynurenines since more Trp yields more metabolites, yet it

restores T‐cell proliferation [126]. Enzymes of the Trp metabolism induced

during DCs maturation [31] lead to an accumulation of kynurenine,

3‐hydroxykynurenine, and 3‐hydroxy‐anthranilate. The concentration of

individual kynurenines needed to achieve suppression is higher that those

that can be found in vivo, but when there are several kynurenines together in
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the medium the suppression is achieved at more physiological concentrations

[104]. DCs are more resistant to the toxic actions of kynurenines than

lymphocytes and NK cells [104, 125]. Undoubtedly, the increase of Trp

metabolites is accompanied by a decrease in the concentration of this

amino acid. Apart from their cytotoxic eVect, kynurenines cooperate with

Trp depletion in developing a tolerogenic microenvironment aVecting T‐cell
response capacity. The suppressive eVect of l‐kynurenine and picolinic acid

on T‐ and NK‐cell proliferation is potentiated by Trp depletion [103].

IDO expressing DCs mediate activation of GCN2 kinase in peripheral

CD4þ CD25� cells, which participate in acquiring a regulatory phenotype

Foxp3 þ. This eVect can be mimicked by stimulating CD4þ lymphocytes in

a conditioned medium low in Trp and with kynurenines. This suggests a

relevant role of toxic Trp metabolites in DCs‐induced suppression.
10. Protective Role of IDO in Rejection of the Fetus
During Pregnancy

Fetus can be considered from an immunological point of view as a semi-

allogeneic transplant; having half of the genes from the father, fetus should

be rejected by the maternal immunocompetent system. Nevertheless, evolu-

tion has found the mechanism to avoid this attack by maintaining the general

immune competence. This is one of the most intriguing questions in biology.

In 1998, Munn et al. showed the implication of IDO in protecting fetus from

the maternal attack in a mouse model [2]. The administration of the IDO

inhibitor, 1‐methyl‐Trp, to pregnant mice during allogeneic gestation

increased the rate of abortion of allogeneic fetuses a few days after implanta-

tion. The blockade of IDO permits the recognition of fetal antigens by T cells,

provoking an intense inflammatory response with antigen‐independent com-

plement deposition and hemorrhage [127]. In syngeneic pregnancy, where the

fetuses have the same antigens as the mother, this IDO inhibitor did not have

any eVect and the fetuses developed normally. The immunology of placenta-

tion [128] and the development of pregnancy is diVerent between human and

mouse, and we have to be cautious when extrapolating result from mice

experiments.

In humans, IDO is produced as early as day 6 by blastocysts, and thereaf-

ter throughout pregnancy by syncytiotrophoblasts, extravillous cytotropho-

blasts, and macrophages in the villous stroma and in the fetal membranes

[129]. This enzyme is induced by the hormones that are highly produced

during pregnancy, such as chorionic gonadotrophin [130]. IDO enzyme is

fully active as demonstrated in the cultures of placenta explants [129], pro-

ducing local Trp depletion and kynurenines production. Furthermore, some
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authors have found decreased serum Trp concentration during pregnancy

accompanied by an increase in the kynurenine/Trp ratio, which suggests an

increased IDO‐dependent Trp degradation. However, the degree of change

of these compounds is not very high and there is a great overlap between

diVerent situations. At the end of pregnancy, there is a lower serum kynur-

enine concentration due to a lower Trp concentration.

The activation of the kynurenine pathway can aVect the mood of the

mother after delivery. Trp is the precursor of the neurotransmitter serotonin,

whose synthesis could be compromised by Trp availability during pregnancy.

As a result of the activation of the kynurenine pathway, there is a decrease of

Trp, particularly at the end of term and in the early puerperium. Several

studies have demonstrated that depression and anxiety symptoms in the early

puerperium are associated with an increased catabolism of Trp [132].

As the kynurenine pathway seems to play an important role in pregnancy as

an immunosuppressive mechanism, a defect in the activation could lead to

complications and even abortion. As it has beenmentioned before, ligation of

CTLA‐4 expressed by T‐regulatory cells to the B7 molecules on DCs from

normal pregnant women induces IFN‐�‐dependent IDO expression, but

is decreased in DCs from women suVering spontaneous abortion [133].

Preeclampsia is an important complication that occurs during the second

half of pregnancy, a condition characterized by a relative failure of the

uteroplacental circulation. This occurs as a result of an exacerbated inflam-

matory activity, that also happens, but with much lower intensity, in normal

pregnancy. There are evidences that IDO may impair the normal maternal

systemic inflammatory response during normal pregnancy, and this inhibition

becomes disrupted in preeclampsia [131]. The activity and mRNA expression

of IDO in term placentas is lower in preeclampsia compared to normal

pregnancy, which is reflected by lower plasma kynurenine/Trp ratios [131].

However, Trp degradation pathway is not the only mechanism that pro-

tects the fetus from immune maternal attack. Mice lacking Indo gene can

deliver allogeneic and syngeneic puppies with similar success rates, and

1‐methyl‐Trp does not aVect pregnancy outcome in these knockout mice

[134]. These data call for the existence of other controls of both innate and

adaptive immunity during pregnancy. There are other suppressive molecules

expressed in placenta, such as the nonclassical MHC class I antigen HLA‐G
[135], probably providing redundant mechanisms to create a protective

microenvironment. Both HLA‐G and IDO suppress T‐cell response by inde-
pendent and complementary mechanisms [136]. In fact, there is a relationship

between IDO and HLA‐G; we have shown that 1‐methyl‐Trp increases the

expression of HLA‐G in APCs [137], leading to decreased NK cytotoxicity

and T‐cell proliferation [138].
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11. Clinical Implications of the Immunosuppression Provoked
by the Kynurenine Pathway

11.1. CANCER IMMUNE EVASION BY IDO EXPRESSION

Tumor cells have great plasticity and employ diverse immunosuppressive

tools to escape from the host attack, which are common to diVerent cancer
cell types independently of the acquired oncogenic mutations [139]. Further-

more, very likely, tumors employ the machinery used by the fetus to avoid

maternal rejection. One of these tolerogenic mechanisms is the expression of

IDO and production of kynurenines. Certainly, as early as in 1956, Boyland

and Williams [140] observed increased Trp metabolism with kynurenine

excretion in patients with cancer. In addition, the expression of IDO and

kynurenine production has been shown in many diVerent human tumor cell

lines exposed to IFN‐� [3, 141]. Positron emission tomography has demon-

strated increased Trp captation by brain tumors, which metabolized this

amino acid to kynurenine [142].

After the discovery of the immunosuppressive role of IDO in pregnancy,

Mellor andMunn soon postulated that tumor cells could employ this enzyme

to evade the immune system attack [23]. Evidence of this new hypothesis came

initially from the use of the IDO inhibitor 1‐methyl‐Trp, which increases

T‐cell attack against tumors. This compound can increase the allogeneic

T‐cell response to Lewis lung carcinoma cells when present in the medium;

and in vivo administration caused growth delay in syngeneic mice [143]. An

obvious question is: can depletion of a nutrient be beneficious for tumoral

growth? The answer comes from the hypothesis of cancer immune editing

[144]. Trp depletion can negatively aVect tumor growth [3], but if tumor cells

were less sensitive to Trp deprivation than T lymphocytes, this nutrient

shortage could give a notorious advantage to their survival. Cancerous cell

elimination by immune cells could make a selective pressure where some

tumor cells express IDO enzyme helping to evade tumor surveillance [145].

As a result, IDO expression can be beneficial for the tumor even if it was

initially noxious, due to its role as an immunosuppressive molecule [146]. The

expression of IDO in tumor cells has been shown to be an independent

prognostic factor of impaired survival in patients with serous advanced

ovarian cancer [147] or colorectal cancer [148]. In endometrial cancer, IDO

expression positively correlates with surgical stage, myometrial invasion,

lymph‐vascular space involvement, and lymph node metastasis, but not

with the histological grade. Patients with high IDO expression have signifi-

cantly impaired overall survival and progression‐free survival [149]. If the

induction of IDO in tumor cells is also kept under the control of IFN‐�, then it
can be turned on precisely when activated lymphocytes are approaching.
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Uyttenhove et al. [139] have demonstrated variable IDO expression in

primary human tumors: while being high in prostate, colorectal, pancreatic,

and cervical tumors, it is almost absent in choriocarcinomas and testicular

seminomas. By elegant experiments, this group demonstrated the role of

IDO in tumor evasion: transfection of the immunogenic mouse tumor cell

line P815 with IDO made it resistant to rejection even in preimmunized mice,

and systemic treatment of mice with 1‐methyl‐Trp delayed tumor outgrowth.

Interestingly, the eVects observed with this IDO inhibitor were dependent on

the presence of functional T cells.

Bin1‐Amphiphysin2 is a cancer suppressor gene that participates in the

traYc control of vesicles and in signal transduction [150, 151], and the lack

of Bin1 expression in some cancers is related to the expression of Indo gene

[150]. When Bin1 is repressed, IFN‐� increases STAT1 and NF‐�B‐depen-
dent Indo transcription provoking an overproduction of IDO protein, which

favors the immune escape of the tumor cells [150]. The enzyme cyclooxygen-

ase‐2, highly expressed in many tumors [152], is another possible inductor of

IDO [153], as cyclooxygenase‐2 inhibitors suppress IFN‐�‐mediated IDO

expression [154]. It was demonstrated in a mouse model of breast cancer

that administration of the cyclooxygenase‐2 inhibitor celecoxib decreased

IDO expression and improved the response to the tumor. Furthermore, there

was a direct correlation between cyclooxygenase‐2 and IDO expression in

primary human breast cancer specimens, although the clinical significance

has not been established yet [153].
11.1.1. APCs in Tumor Draining Lymph Nodes Can be Induced to

Express IDO
Even though some tumor cells can express IDO suppressing activation of

T cells in the tumoral microenvironment, there is still capacity to develop an

immune response outside the tumor itself [155]. However, the tumoral

microenvironment can induce the expression of IDO in infiltrating APCs,

mainly DCs, which could be an eYcient mechanism to overcome the

adaptive immunity allowing tumor survival [126]. The presence of IDO

positive infiltrating cells has been demonstrated immunohistochemically in

some tumors such as hepatocarcinoma [156], breast, colon [40], and nonsmall

cell lung carcinoma [157]. In the latter case, the infiltrating cells expressing

IDO were eosinophil granulocytes.

It is well known that the analysis of the tumoral cells in the sentinel lymph

node in patients with cancer is an important aid in the prognosis and

therapeutic approach [158]. Additionally, the presence of plasmacytoid

DCs expressing IDO in tumor draining lymph nodes has been reported in

patients with melanoma [116], even in absence of tumoral cells. The immu-

nohistochemical detection of IDO expressing DCs in the sentinel node at the
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moment of diagnosis indicates adverse prognosis in this disease [115].

These mononuclear cells expressing IDO present in tumor draining lymph

nodes may confer an advantage to the tumor to escape the immune response.
11.1.2. Measurement of the Kynurenine Pathway in Patients

with Cancer
An increased Trp catabolism in both solid and hematological cancers,

reflected by decreased Trp concentration or, less frequently, by increased

kynurenine levels has been documented. Probably the increased kynurenine

formation is associated with an ineVective activation of the immune system

as it is usually associated with increased neopterine levels and bad prognosis

[159, 160]. Indeed, lower Trp/kynurenine ratio correlates in some studies with

the deterioration in quality of life [159, 161, 162]. Examples of tumors where

the kynurenine pathway is frequently activated are carcinomas of bladder

[163], colon, and breast [164] as well as melanoma [160] and lymphomas

[164]. In a study of patients with gynecological cancer, it was shown that

there was a decrease of circulating Trp but not kynurenine, compared to

healthy controls [165]. Patients with disseminated melanoma have lower

serum Trp concentration than the cancer‐free population [160].

Treatment of cancer with biological modifiers can induce this immunosup-

pressive pathway, potentially with negative eVects in the clinical outcome.

For example, patients undergoing a phase I toxicity trial of recombinant IL‐2
had decreased plasma Trp levels and corresponding increased urinary kynur-

enine and neopterin, indicating activation of the immune system and, partic-

ularly the kynurenine pathway [166]. The treatment of patients with

advanced malignancies in a phase I trial with TNF and IFN‐� therapy pro-

voked a clear increase of IDO in monocytes, accompanied with kynurenine

and neopterin excretion in urine [167].
11.1.3. Effect of the Combination of IDO Inhibitors with

Chemotherapeutic Drugs
As it was indicated before, both tumors and APCs, either spontaneously or

after cytokine stimulation, can express IDO, which can drive to immune

suppression. For this reason, therapeutic approaches to treat cancer patients

should overcome the tolerance molecular tools that tumor cells employ.

IDO inhibitors slow down tumor growth [139, 143, 150], but a complete

remission was achieved with a combination of an IDO inhibitor and classical

chemotherapeutic drugs, as demonstrated by Muller et al. in a mouse model

[150]. The benefit of this therapeutical approach seems to be based on the

activation of the immune system and on the toxicity of the drug. The eVec-
tiveness of this therapeutic approach requires an intact T‐cell response, as
CD4þ depletion impairs the eVectiveness of the treatment.
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As the aim of immunotherapy is to use the adaptive immune system to

provoke an eVective response to tumor cells, the IDO enzyme can be a

therapeutic target to potentiate T‐cell response in cancer immunotherapy

[32]. An immune therapeutic approach to treat tumors is the use of DC‐based
cancer vaccines. DCs used for therapeutic vaccination in melanoma patients

express IDO, and can attract or induce FoxP3þ regulatory T cells at the site

of application [168]. The combination of this treatment with drugs that

inhibit IDO has provided encouraging results reducing primary tumor

burden, preventing metastasis, and increasing survival in a mouse model of

breast cancer [153]. DiVerent molecules are being tested as inhibitors of IDO

looking for a favorable pharmacokinetics and eYciencies [150, 169].

As we have mentioned before in the case of pregnancy, the kynurenine

pathway probably is not the only mechanism that tumors use to evade the

immune system. The knowledge of how tumor cells actively and passively

evade the immune system will provide in the next future new, and probably

safer, therapeutic approaches to treat patients with advanced cancer [150].
11.2. AUTOIMMUNE DISEASES

A clear failure of the mechanisms of self‐tolerance occurs in autoimmune

diseases, where T and/or B lymphocytes react against their own organism

causing tissue damage. This is provoked by alterations in the equilibrium

between immune activation and suppression. We will show some examples

where the kynurenine pathway seems to play a role, mainly in the treatment

of these diseases:

1. Multiple sclerosis is a disease characterized by relapsing and remitting

T‐cell‐mediated autoimmune inflammation of the central nervous system

(CNS). The activation of the kynurenine pathway seems to play a role in

the remission of this disease, thus controlling the clinical course of the

disease. IFN‐� treatment is usually employed in relapsing‐remitting multiple

sclerosis patients and provokes an increase in the kynurenine/Trp ratio [170].

Experimental autoimmune encephalomyelitis is a murine model of the dis-

ease, where it has been observed that IDO expression by macrophages/

activated microglia contributes to remission [171, 172], but mice lacking the

IFN‐� receptor did not recover from the disease [173]. During the recovery

phase, the higher IDO expression is reflected by an increased serum kynur-

enine/Trp ratio [171]. Also, 1‐methyl‐Trp exacerbated symptoms of the

disease in this animal model [171, 172]. Myelin‐specific T cells are suspected

to cause multiple sclerosis, and when stimulated with tolerogenic altered self‐
peptides express IDO, which can have suppressive properties [174]. Certain-

ly, several kynurenines suppressed proliferation of myelin‐specific T cells and

inhibited production of proinflammatory TH‐1 cytokines [174]. The
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synthetic analog of kynurenines, N‐(3,4,‐dimethoxycinnamoyl)anthranilic

acid, not only has these actions in vitro but also, more importantly, oral

treatment greatly ameliorated experimental autoimmune encephalomyelitis

in mice.

2. Rheumatoid arthritis is a destructive and painful autoimmune disease

that attacks the joints. In rheumatoid arthritis, there is an activation of the

kynurenine pathway [175], whose importance has been shown by the demon-

stration that 4–1BB antibodies amelioration of rheumatoid arthritis in a

mouse model is through the IFN‐�‐dependent IDO induction [58]. The

recombinant CTLA‐4‐Ig fusion protein (abatacept) has been approved to

treat autoimmune rheumatoid arthritis, and the clinical benefits can be

related to the capacity of this molecule to induce IDO‐mediated immuno-

suppression, as we have described in previous paragraphs.

3. Type 1 diabetes mellitus is a T‐cell‐mediated autoimmune disease that

results in the destruction of the insulin‐producing � cells of the pancreatic

islets of Langerhans. Transplantation of isolated human islets is a possible

treatment for human diabetic subjects, although it is necessary immunosup-

pressive therapy to avoid both recurrence of autoimmunity and allorejection

[176]. NOD mouse is a model of autoimmune disease where there is a

predisposition to develop type 1 diabetes as a result of a deficiency of both

peripheral and central tolerance. Adenoviral gene transfer of IDO to predia-

betic NOD mouse pancreatic islets allows the prolongation of islet graft

survival into NODscid recipient mice [177]. However, this treatment does

not impair the onset of the disease. Apart of the benefits of IDO induction in

ameliorating the disease, NO‐mediated disruption of the IDO‐inducing path-
way can provoke type 1 diabetes mellitus in NOD mice [88].
11.3. TRANSPLANTATION

As it has been described before, the IDO enzyme, via Trp depletion,

suppresses adaptive T‐cell responses in inflammation, host immune defense,

and maternal tolerance. However, its role in solid organ transplantation

remains unclear. Several groups have investigated the role of IDO expression

in diVerent models of transplantation. A possible role for IDO in modulating

the response to a graft was first suggested by the finding that overexpression

of IDO in donor pancreatic islets prior to transplantation extended survival

in an animal model [177]. In rats, it has been described that IDO‐induced Trp

metabolites (kynurenine, 3‐hydroxykynurenine, and 3‐hydroxyanthranilic
acid) suppress the T‐cell response and prolong skin allograft survival [178].

Also, data obtained from studies of endothelial cells in graft rejectionsug-

gest that the variable expression of IDO in diVerent endothelial cells is
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important not only in the regulation of graft rejection but also could be a

potential therapeutic strategy [179, 180]. In addition, available experimental

data indicate that IDO may participate in the mechanism of spontaneous

donor‐specific tolerance of liver grafts [181]. Finally, a recent report found

upregulation of IDO in renal biopsies from rejection episodes, a finding

absent in nonrejected grafts [182], probably associated with immune activa-

tion. Moreover, acute rejection in patients after kidney transplantation is

associated with increased serum and urinary kynurenine/Trp ratio.

In summary, based on these findings it appears that cells expressing IDO

can inhibit T‐cell responses and hence induce tolerance in some models of

transplantation. Further studies will be needed to evaluate whether the

kynurenine/Trp could be useful in monitoring allograft rejection.
11.4. HIV IMMUNOESCAPE BY INDUCING KYNURENINE PATHWAY

Usually after a viral infection, most viruses are either eliminated or sup-

pressed, persisting as a low‐damaging latent infection. After infection with

HIV, there is a cytotoxic T‐lymphocyte and antibody response, but the virus

is not definitively eliminated [183]. HIV‐1 infection can persist without

clinical manifestations for years, despite an apparently functioning host

immune system. The virus can induce some tolerogenic mechanisms that

may protect itself from immune attacks, such as FAS‐ligand expression

or downregulation of MHC. Regulatory T cells expressing high levels of

CTLA‐4 and with suppressive activity are increased in tissues from patients

suVering HIV infection and SIV‐infected macaques. The administration of

antibody that blocks CTLA‐4 in SIV‐infected macaques treated with antire-

troviral therapy decreased IDO expression and the level of the suppres-

sive cytokine TGF‐� in tissues [184]. An important eVect is that CTLA‐4
blockade was associated with decreased viral RNA levels in lymph nodes

and increased eVector function of both SIV‐specific CD4þ and CD8þ
T cells. Also, some HIV strains can induce IDO in macrophages [185] and

microglia [186], and the immunosuppressive properties of IDO could

help virus to avoid cellular immunity. As IDO‐expressing infected macro-

phages are protected from the immune system, this could also serve as a

stable viral reservoir. For this reason, pharmacological modulation of this

enzyme could help in therapy, as in a murine model, IDO inhibition with

1‐methyl‐Trp facilitates cytotoxic lymphocyte response against virus‐infected
macrophages [187].

The kynurenine pathway can also influence the low hemoglobin levels

found in HIV‐1‐positive patients [188]. It is rather speculative, but probably,
that Trp degradation arrests proliferation of not only T cells but also other
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cells such as erythroid progenitor cells [188]. In addition to participating in

the immune evasion of the virus, the kynurenine metabolite quinolinic acid

can mediate in the neurological pathogenesis of the disease. Quinolinic acid is

an endogenous agonist of the N‐methyl‐D‐aspartate receptor, a subtype of

the glutamate receptor in brain. Macrophages infected with HIV‐1 produce

quinolinic acid, and therefore provoke neuronal dysfunction in these

patients. Elevated levels of quinolinic acid associated with the severity

of neurological symptoms have been found in the CSF of patients with

AIDS‐related dementia complex [189].

Determination of Trp and kynurenine in serum reflects the activation of

the kynurenine degrading pathway in this disease [190–192], and the ratio

correlates with the serum concentration of IFN‐� [190]. Patients infected

with HIV show increased kynurenine/Trp ratio, which is more noticeable in

symptomatic patients [190]. This ratio reflects the stage of the disease and

correlates with CD4þ count, the classical parameter of evaluation AIDS

patients [191]. Treatment with antiretroviral therapy increases Trp and

decreases kynurenine concentrations [192]. It remains to be explored whether

treatment with antiretroviral drugs inhibits IDO and other enzymes of the

kynurenine pathway.
11.5. CARDIOVASCULAR DISEASES

Inflammation and immune activation play a role at all stages of the patho-

genesis of atherosclerosis and cardiovascular disease. Accordingly, inflam-

mation markers are elevated in patients with clinical and subclinical

atherosclerosis and predict cardiovascular events. Interestingly, enhanced

Trp degradation and increased serum kynurenine/Trp ratio has been repo-

rted in patients with coronary heart disease compared with healthy controls,

indicating an activated cellular immune response. The enhanced Trp degra-

dation in these patients has been correlated with enhanced neopterin

formation [193].

Macrophages are critically involved in plaque formation and in this cell

type IFN‐� induces IDO activity, which degrades Trp via the kynurenine

pathway. IFN‐� is a central player in atherogenesis and in the develop-

ment and progression of cardiovascular disease. It appears that in car-

diovascular disease, biochemical reactions induced by IFN‐� may have

detrimental consequences for host cells [194]. Finally, in a porcine model

of cardiac arrest, the potential use of the Trp degradation rate as a means of

estimating the extent of immune activation was evaluated. Results sug-

gested that the kynurenine/Trp ratio could serve as a marker of immune

activation [195].
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11.6. NEUROLOGICAL AND PSYCHIATRIC DISEASES

Several lines of evidence suggest a link between the immunological network

and neuroendocrine functions with consequences in the psychological status

of patients. In fact, in chronic inflammatory diseases, mood disorders and

related symptoms are observed. These are also observed as adverse eVects of
the administration of cytokines such as IFN‐� and IL‐2 that are employed to

treat pathologies, such as hepatitis C and cancer. Intriguingly, the most

serious side eVects are symptoms associated with depression: fatigue, drowsi-

ness, irritability, loss of appetite, and cognitive deficits. Finally, in animals,

the administration of proinflammatory cytokines induces changes in the

behavior that resemble the vegetative symptoms of depression in humans.

The neurotransmitter serotonin is synthetized by the tetrahydrobiopterin‐
dependent Trp 5‐hydroxylase and appears to play a role in depression

symptomatology. In depressed people, changes in serotonin and its receptors

have been described. In addition, evidence exists for a dysregulation of the

noradrenergic system and a hyperactive hypothalamic–pituitary–adrenal

axis in depression:

1. Trp is a source of serotonin generation. Consequently, in states of

persistent immune activation, availability of Trp is decreased due to the

IDO activity and leads to reduced serotonin production and serotonergic

dysfunction [196, 197]. Indeed, increased degradation of Trp and low serum

levels of Trp correlate with neuropsychiatric abnormalities such as cognitive

decline and depressive symptoms especially in long‐lasting chronic diseases

[199]. But also, increased degradation of Trp has been demonstrated in

patients with depression [196]. This same mechanism is responsible for the

depressive states associated with cytokine therapy and those patients devel-

oping more pronounced depressive symptoms show a more marked increase

in Trp metabolism [200].

2. Another mechanism that may contribute to the development of neuro-

logic/psychiatric disorders is the accumulation of neuroactive kynureninemeta-

bolites such as quinolinic acid, which is an N‐methyl‐D‐aspartate (NMDA)

receptor agonist in situations of Trp depletion [201]. An increase in quinolinic

acid is associated with features of depression [189].

3. Proinflammatory cytokines by stimulating IDO lead to Trp depletion,

and thus aVect serotonin metabolism. Also, IL‐1, IL‐2, and TNF‐� influence

noradrenergic activity and IL‐1, IL‐6, and TNF‐� are stimulators of the

hypothalamic–pituitary–adrenal axis. Altogether, administration of cyto-

kines may induce alterations in the brain resembling those found in depressed

patients, which leads to the hypothesis that cytokines induce depression by

their influence on the serotonin, noradrenergic, and hypothalamic–pituitary–

adrenal system [202, 203]. In summary, activation of IDO appears to be an
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important link between the immune system and the pathogenesis of

depression.

Impairment in dopaminergic neurotransmission is crucial in the pathogen-

esis of schizophrenia, suggesting a disequilibrium between dopaminergic and

glutamatergic neurotransmission. The immune system may have eVects on
glutamatergic neurotransmission mediated by the kynurenine pathway.

Glutamatergic hypofunction is mediated by the NMDA‐receptor antago-

nism. The only endogenous NMDA‐receptor antagonist identified is kynure-

nic acid. This metabolite also blocks the nicotinergic acetylcholine receptor

and increased kynurenic acid levels can explain psychotic symptoms and

cognitive deterioration [204].

In schizophrenia, there is a shift to increased type 2 immune response with

two functional consequences: downregulation of the expression of IDO

(located in astrocytes and microglial cells) while TDO is upregulated. Also,

the TH1/TH2 imbalance is associated with a high activation of astrocytes

and imbalance in the activation of astrocytes/microglial cells, which leads to

accumulation of kynurenic acid. This happens because astrocytes lack the

enzymatic machinery for the normal metabolism of Trp and further produc-

tion of quinolinic acid. Thus, kynurenic acid accumulates in the CNS, while

the metabolic pathway in microglial cells is blocked. Accordingly, an increase

in TDO activity has been observed in critical CNS regions of schizophrenics.

These mechanisms result in an accumulation of kynurenic acid in critical

CNS regions of schizophrenics compared to controls [205]. Thus, the

immune‐mediated glutamatergic–dopaminergic dysregulation may lead to

the clinical symptoms of schizophrenia.
12. Conclusions

Since the discovery of IDO in maintaining pregnancy in mice [2], consid-

erable amount of evidence has shown that the kynurenine pathway induces

an active tolerogenic state, helping in the regulation of the quality and

intensity of the specific immune response [32]. There is a tight regulation of

IDO expression that depends on the multiple incoming signals and also on

the capacity of a functional immune system to decide whether this enzyme is

active or not. The eVect is not restricted to a localized microenvironment but

can act at distance and maintaining the specificity by means of regulatory

T cells and tolerogenic DCs [32]. However, the mechanism of immunosup-

pression and the type of DCs that can express IDO should be further clarified

[112, 113]. Alterations of this pathway have been implicated in some diseases

such as autoimmune diseases. The discovery that tumor cells can use this



IMMUNOSUPPRESSION ROUTED VIA THE KYNURENINE PATHWAY 185
metabolic route as a mechanism to evade the immune attack [206] opens a

new perspective in the treatment of this disease. For example, drugs that

inhibit this pathway emerge as a type of immunomodulator that would help

conventional drugs to treat tumors. Very promising are the results obtained
TABLE 1

CLINICAL IMPLICATIONS OF THE KYNURENINE PATHWAY

Disease

Evidence

in humans Mediator References

Cancer Tumor

cell lines

"IDO, "Kyn [3, 140]

Brain Yes "Trp captation [141]

Lewis lung

carcinoma

Yes 1MTrp increases

T cell response

[143]

Ovary Yes "IDO [147]

Colorectum Yes "IDO [148]

Melanoma Yes "Kyn [160]

Bladder Yes "Kyn [163]

Breast, lymphoma Yes "Kyn [163, 164]

Autoimmune

diseases

Multiple sclerosis Yes "IDO, "Kyn/trp [170–172, 174]

Rheumatoid

arthritis

Yes "Kyn/trp [175]

Type 1 diabetes No [88, 176, 177]

Transplantation Pancreatic islets No Overexpression

of IDO

[177]

Rat skin allografts No "Kyn [178]

Graft rejection Yes IDO [179, 180]

Liver graft Yes IDO [181]

Kidney

transplantation

Yes "IDOkyn/trp

relates to

rejection

[182]

AIDS Yes "IDO leads to

virus immune

escape

[186, 188–192]

"Kyn/trp

Cardiovascular

diseases

Coronary

heart disease

Yes "Kyn/trp [193]

Cardiac arrest No "Kyn/trp [195]

Neurological and

psychiatric diseases

Depression Yes #Trp [196, 198,

202, 203]

"Quinolinic acid

"Proinflammatory

y cytokines

Schizophrenia Yes "Kynurenic acid [204, 205]
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by Muller et al. [150] combining IDO inhibitors and conventional cytotoxic

drugs. The results obtained by cancer vaccines, that are nowadays rather

limited, would also be improved by the use of IDO inhibitors. Considering

how important this pathway is in the diseases, some of them mentioned in

this chapter (summarized in Table 1), it is very likely that the measurement of

the degree of activation of this pathway will be introduced in the routine in

clinical laboratory in the near future [207].
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1. Abstract

The macrophage is an important component of the human immune defense

mechanism. Cancer cells secrete a variety of chemoattractants that attract

macrophages and cause them to accumulate in the tumor tissue, wherein the
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macrophage becomes a tumor‐associated macrophage (TAM). Recent

evidence has shown that the function of tumor stromal TAMs can be

modified by cancer cells and the factors they secrete. TAMs are directed

toward stimulating tumor growth and progression and thus have protumor-

igenesis activity. However, there is also limited evidence that TAMs still play

an important role in the killing and destruction of cancer cells, inhibit cancer

metastasis, and have antitumor activity. Whether TAMs show protumori-

genesis or antitumor activity depends on interaction with cancer cells, other

stromal cells, and the tumor microenvironment. Gene expression profiles of

TAMs, cancer cells, and other stromal cells are altered by cell–cell interac-

tions. This phenomenon results in positive or negative regulation of angio-

genesis, tumor cell proliferation, apoptosis, cancer cell migration and

invasion, and the secretion of a variety of cytokines or factors. Whether

TAMs have a positive or negative eVect also depends on the macrophage

activation state, the status of tumor development, and the anatomic locus of

macrophage infiltration. Understanding of the mechanisms that regulate

TAM function is essential in designing therapies to promote antitumor

activity in humans. Although limited evidence from both animal and

human studies indicates a potential role for TAMs in cancer treatment, the

clinical usefulness of these therapies require further studies.
2. Introduction

Cancer progression is a complex multistep process that consists of trans-

formation, tumor growth, invasion, and metastasis. Recent evidence shows

that the stromal extracellular matrix and stromal cells (including fibroblasts,

inflammatory cells, and endothelial cells) play an important role in promoting

tumor progression [1]. Cancer progression is therefore not exclusively regu-

lated by the disruption (overexpression or underexpression) of oncogenes

and tumor suppression genes in cancer cells, but also depends on the stromal

compartment to create a more tumor‐promoting microenvironment. The

interaction between cancer cells and stromal cells has been recently shown

to promote tumorigenesis [1, 2].

It is now becoming clear that the inflammatory cells present in the tumor

microenvironment play an indispensable role in the cancer progression.

Substantial evidence suggests that stromal cells adjacent to cancer cells,

including fibroblasts and inflammatory cells, such as macrophages, neutro-

phils, and lymphocytes, can interact with the cancer cells and express

angiogenic factors [3–5].

The macrophage is a major component of the stromal cells around tumors.

Initially, these macrophages were considered to have a cytotoxic eVect after
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activation by a variety of stimulators and to play an important role in

immune defense against microbiologic pathogens or cancer cells. However,

recently, tumor‐associated macrophage (TAM) function was shown to be

modified by cancer cells and to be switched to facilitate tumor growth and

metastasis. Furthermore, recent studies have also demonstrated that interac-

tions occur between TAMs and cancer cells and between TAMs and other

stromal cells, and that these interactions change the gene expression profile of

TAMs, cancer cells, and other stromal cells. In this chapter, we will focus on

the protumorigenesis (stimulating tumor progression) and antitumor eVects
of TAM and the eVects of the interactions between TAMs and cancer cells or

other stromal cells on the regulation of the expression of genes that are

responsible for the tumor progression or tumor inhibition. Finally, we will

discuss the clinical implications of using activated macrophages or gene

therapy to activate TAMs in the treatment of human cancers.
3. Association Between TAM Density and Patient Prognosis

The macrophage is an important component of the inflammatory cells

within the tumor stroma. Evidence suggests that macrophages may account

for the major part of the host leukocyte infiltrate in the majority of human

malignant tumors [3]. Several investigators had counted the macrophage

number in cancer surgical specimen under microscopy by immunohisto-

chemical staining, and they reported that the percentage of macrophages in

human malignancies is between 10% and 65%. These macrophages are

referred to as TAMs. TAMs are mainly derived from peripheral blood

monocytes, which are recruited into the tumor mass by several cytokines,

such as macrophage chemotactic proteins secreted by cancer cells [4]. TAMs

can also proliferate in the stroma of the tumor in response to stimulation from

cancer cells [5]. On activation, TAMs can release a vast diversity of growth

factors, proteolytic enzymes, cytokines, and inflammatory mediators, many

of which are key agents in tumor progression, angiogenesis, and metastasis.

Recently, TAMswere shown to be an important interface between tumor cells

and the immune system, andmay promote neoplastic growth and progression

in several ways, including increasing cancer cell proliferation, enhancing

angiogenesis, facilitating cancer cell invasion andmetastasis, and suppressing

human immune responses [6–8].

The association between TAM density (determined by average of macro-

phage counts under 400� field microscopy) and tumor proliferation, angio-

genesis, and the clinical course and outcome of human cancer has been

investigated in a number of studies. A high TAM density has been reported

to correlate with a high proliferation index of cancer cells in breast cancer,
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prostate cancer, and endometrial cancers [9–11]. TAM density was also

reported to be associated with the diVerentiation of cancer cells and tumor

size in a variety of human cancers, including breast cancer, bladder cancer,

and glioma [12–14]. An association between macrophage infiltration and

tumor‐associated angiogenesis has also been demonstrated [14–20]. TAM

density has been shown to correlate with tumor microvessel density (MVD)

in a variety of human cancers, including endometrial, ovarian, breast, pros-

tate, bladder, melanoma, and central nervous system malignancies [14–20].

Tsutsui et al. [21] showed that TAM density correlated with MVD and

vascular endothelial cell growth factor (VEGF) protein expression in 249

patients with invasive ductal carcinoma. Takanami et al. [22] demonstrated

that TAM infiltration was associated with MVD angiogenesis in pulmonary

adenocarcinoma. Other studies showed that TAM density was associated

with expression of angiogenesis factors, including interleukin‐8 (IL‐8), tumor

necrosis factor‐� (TNF‐�), VEGF, and hypoxia inducible factor 2� (HIF‐ 2�)
[23–26]. An association between TAMs and tumor invasiveness and metas-

tasis has also been demonstrated in human cancer, including breast cancer:

patients with a high TAM density show a trend to higher regional lymph

node metastasis [21]. The association between TAM density and clinical

outcome has been examined in several studies. Extensive TAM infiltration

has been shown to correlate with a poor prognosis in a variety of human

carcinomas, including breast, cervix, bladder, and prostate cancers and

glioma [6, 10, 11, 13, 14]. Leek et al. [6] showed that a higher CD68‐positive
macrophage index was significantly associated with a worse prognosis for

both relapse‐free and overall survival in 101 breast cancer patients. Lee et al.

[12] showed that in 75 breast cancer patients diVuse TAM infiltration was

associated with a high tumor grade, tumor necrosis, and large tumor size,

and indicated a poor prognosis. Furthermore, Volodko et al. [9] and Goede

et al. [27] demonstrated that intensive TAM infiltration was strongly asso-

ciated with a high tumor grade and poor prognosis in invasive ductal carci-

noma of the breast. In prostate cancer, Lissbrant et al. [10] showed that TAM

density correlated positively with tumor angiogenesis and a shorter survival

time. Salvesen et al. [11] reported that in 60 cervical cancer patients both

TAM density and tumor cell VEGF protein expression were significantly

increased in patients with an aggressive tumor, and that a high average

macrophage counts in the tumor correlated with high cancer cell proliferative

activity and decreased survival. In addition, Fujimoto et al. [28] showed an

association between TAM density, IL‐8 protein expression, and microvessel

count (MVC) in 80 cervical cancer patients, and that high level of IL‐8
expression by TAMs was an indicator of poor prognosis. Hanada et al. [13]

showed that, in 63 bladder transition cell carcinoma patients, a high TAM

density correlated with tumor invasiveness, tumor stage, tumor grade, vascular



PATHOPHYSIOLOGY OF TUMOR‐ASSOCIATED MACROPHAGES 203
invasion, and distant metastasis, and was associated with an adverse prog-

nosis. In lung cancer, Koukourakis et al. [17] showed that a high TAM

density was linked to a poor prognosis in 141 non‐small cell lung cancer

(NSCLC) patients. To evaluate the prognostic role of TAM in lung cancer,

Chen et al. [16] measured TAM density in 41 NSCLC tumor surgical speci-

mens by immunohistochemical staining with anti‐CD68 antibodies, and

correlated TAM density with intratumoral MVC, tumoral IL‐8 expression,

and clinical outcome. They found that TAM density correlated significantly

and positively with tumoral IL‐8 expression and intratumoral MVC. A high

TAM density was also associated with a short relapse‐free survival. Consis-
tent with this, Takanami et al. [22] showed that high TAM density was

significantly associated with a high microvessel density and a poor prognosis

in 113 lung adenocarcinoma patients. Other studies have shown that a high

TAM density is an adverse prognostic indicator in uveal melanoma, prostate,

endometrial, bladder, and lung cancer (by univariate or multivariate analysis)

[10, 11, 13, 17, 29], although a few studies found no association between TAM

density and clinical outcome in several human cancers, such as astrocytomas

and ovary cancers [30, 31].

How TAMs contribute to an adverse prognosis in lung cancer has under-

gone extensive investigation, and these studies have identified several diVerent
possible mechanisms linking TAMs to tumor progression or invasion in

human solid cancers (Fig. 1). First, several studies have demonstrated an

association between increased tumor vascularity and macrophage infiltration

in several human cancers [18–20], suggesting that TAMs enhance the angio-

genic potential of tumors. Macrophage infiltration has been shown to corre-

late with vessel density in endometrial, ovarian, breast, and central nervous

systemmalignancies [14–20]. The angiogenesis factors secreted by TAMs have

been shown to be chemokines [IL‐8, migration inhibitory factor (MIF), etc.],

VEGF, TNF‐�, thymidine phosphorylase, and a variety of cytokines, includ-

ing granulocyte macrophage colony stimulating factor (GM‐CSF), transform-

ing growth factor‐� (TGF‐�), transforming growth factor‐� (TGF‐�), IL‐1,
IL‐6, and prostanoids [32–34]. In addition, TAMs may enhance angiogenesis

by increasing procoagulant activity and fibrin deposition [35]. On the other

hand, studies have shown that a lack of macrophages may result in decreased

angiogenesis and thereby cancer cell death [6, 36]. Second, TAMs have been

reported to produce growth factors, such as epidermal growth factor (EGF),

platelet‐derived growth factor (PDGF), and transforming growth factor‐�
(TGF‐�), cytokines (IL‐6, L‐1, and TNF‐�), and ornithine, which can

enhance tumor cell replication and growth [34]. Third, TAMs can enhance

cancer cell invasion and dissemination by increasing the production of

cytokines (TNF‐�, IL‐1), extracellular matrix‐degrading proteinases [such

as matrix metalloproteinases (MMPs)], and plasminogen activator [37, 38].
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FIG. 1. A possible mechanism by which tumor‐associated macrophages (TAMs) contribute to

protumorigenesis eVects and an adverse prognosis in cancer patients. After education by the

tumor microenvironment, TAMs may express and secrete a variety of factors, which enhance

cancer cell growth, invasion, metastasis, angiogenesis, signal transduction, and inflammation,

and inflammation can stimulate tumorigenesis or metastasis. G0S2, G0/G1 switch gene 2; EGF,

epidermal growth factor; MMP‐1, matrix metalloproteinase‐1; TIMP‐1, matrix metalloprotei-

nase tissue inhibitor‐1; ICAM, intracellular adhesion molecule; STC‐1, stanniocalcin‐1; CSF‐1,
colony stimulation factor‐1; PDGF, platelet‐derived growth factor [34, 49]. (This figure is

modified from Fig. 1 in Ref. [49] with permission.)
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For example, urokinase‐type plasminogen activator (uPA) is a serine protease

involved in extracellular matrix degradation. Upregulation of uPA expression

has been reported in TAMs in several human cancers, and this can subse-

quently enhance tumor angiogenesis, invasion, and metastasis [39, 40]. Fur-

thermore, uPA levels have been shown to correlate with reduced relapse‐free
and overall survival in breast cancer [41]. MMPs are a family of matrix‐
degrading enzymes, which includes collagenase (MMP‐1), gelatinase A

(MMP‐2), stromelysin (MMP‐3), matrilysin (MMP‐7), gelatinase B (MMP‐9),
and other MMPs. TAMs can produce most forms of MMPs, and MMP‐9
produced by TAMs was shown to correlate with the metastatic potential of

a variety of human cancers [42–44]. MMP‐9 can degrade basement mem-

brane type IV collagen, elastin, gelatin, and other glycan core proteins, and

can directly accomplish cleavage of galectin‐3, transforming growth factor‐�
(TGF‐�), and plasminogen, that is, activities that can substantially regulate

tumor cell invasion and angiogenesis. Macrophage colony stimulating factor

(M‐CSF) is another agent by which TAMs can promote cancer cells inva-

siveness and metastasis. M‐CSF can convert TAMs into mature functional
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osteoclasts, which can increase bone resorption and facilitate bone metastasis

of human cancers [45]. Fourth, TAMs can induce expression of inhibitory

prostaglandin E2 (PGE2) and cytokines (IL‐10), which suppress cell‐
mediated immune responses and inhibit cytotoxic T cell function and nature

killer (NK) cell and lymphokine‐activated killer cell cytotoxicity, and this can

further promote tumor growth and expansion [46–48]. Other possible

mechanisms contributing to the protumor function of TAMs are that

TAMs may promote the epithelial–mesenchymal transition of cancer cells

(our unpublished data showed that the TAMs can increase epithelial–

mesenchymal transition‐related genes expression in lung cancer cell after

coculture). Finally, TAMs were also reported to be able to induce resistance

of cancer cells to chemotherapeutic and hormone‐therapeutic agents [49].
4. Antitumor Activity of TAMs and the Association Between
High TAM Density and a Good Prognosis

The tumoricidal activity of activated macrophages has been studied for

several decades. In contrast to the protumor eVect of TAMs in human

cancers, some investigations showed that TAMs may have important anti-

tumor activity in human malignancy. Macrophages can become tumoricidal

for cancer cells after they are activated by antibodies, cytokines [such as

interferon‐� (IFN‐�)], or lipopolysaccharide (LPS). The tumoricidal eVects
of TAMs after activation include direct cytotoxicity against cancer cells and

indirect cytotoxicity due to the secretion of products that can induce anti-

tumor eVects of other immune‐related cells.

Macrophages form an important part of the immune cell or inflammatory

cell infiltrate in tumors and are found in virtually all human malignancies.

Although current evidence suggests that TAMs can be ‘‘educated’’ in the

tumor microenvironment and subsequently reprogrammed to suppress host

defense against cancer or to produce tumor growth‐promoting factors, they

have been shown to have tumoricidal eVects in certain circumstances in some

human cancers. As described above, most studies have shown that TAMs

have protumorigenesis activity, may promote invasion activity, and were

negatively associated with the patient survival in a variety of human cancers.

However, some investigations showed that TAMs are associated with good

patient prognosis in human cancers, including gastric and prostate cancers

[15, 50]. Shimura et al. [15] showed that, in 85 prostate cancer patients, high

TAM density correlated negatively with clinical stage and was associated

with decreased lymph node metastasis and with a good prognosis. Migita

et al. [50] showed that, in 104 gastric cancer patients, TAM density was

higher in patients with intestinal‐type disease rather than diVuse‐type and
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in those without liver metastasis than in those with liver metastasis, and

suggested that TAM density correlated with a better clinical outcome. In

lung cancer, Kerr et al. [51] showed that a high TAM density was associated

with tumor regression and a favorable prognosis. Furthermore, Funada et al.

[52] reported that peritumoral macrophage infiltration was associated with

less lymph node metastasis and a good prognosis in colorectal cancer

patients.

Welsh et al. [53] recently evaluated the relationship between tumor islet

macrophages (TAMs that invade and infiltrate into the tumor nest, which

may play a cytotoxic eVect against cancer cell) and survival in 175 patients

with surgically resected NSCLC. An increased tumor islet macrophage den-

sity or increased islet/stromal macrophage ratio was associated with longer

survival in both early and advanced lung cancer groups. In contrast, increas-

ing stromal macrophage density was an independent predictor of the reduced

survival. The tumor islet macrophage density and tumor islet/stromal mac-

rophage ratio were favorably independent prognostic indicators in patients

with NSCLC. Islet TAM density had the greatest eVect: 5‐year survival was
52.9% in patients with an islet macrophage density greater than the median

value of 131 cells/mm2, but only 7.7% when the density was less than the

median. Interestingly, patients with a high islet TAM density, but incomplete

resection, survived markedly longer than patients with a low islet TAM

density but complete resection. Similarly, Ohno et al. [54] showed that a

high islet TAM density was associated with increased survival in gastric

carcinoma patients. These results suggest that TAMs in diVerent microana-

tomical areas or TAMs with diVerent phenotypes in tumors may have

diVerent functions (protumor activity or antitumor activity). Stromal macro-

phages play a role in enhancing stromal formation and angiogenesis, which

can subsequently promote tumor growth and metastasis [14–20]. On the

other hand, tumor islet macrophages have cytotoxic eVects and can inhibit

tumor growth and spread [53, 54]. The tumor microenvironment can also

modify TAM phenotype. Stromal TAMs express proteinase and proangio-

genesis factors and promote tumor growth and metastasis in a variety of

human cancers. In contrast, tumor islet TAMs express nitric oxide synthase

and TNF‐�, both of which have tumoricidal eVects against prostate cancer

[13]. Furthermore, islet TAMs can present tumor‐associated antigens to cyto-

toxic T cells, which play an important role in the tumor cell destruction [54].

Macrophage infiltration was shown to correlate positively with CD8 T cell

infiltration in gastric cancer [54].

The possible antitumor activity of TAMs may involve several mechanisms

(Fig. 2). First, activated macrophages can kill cancer cells by direct cellular

cytotoxicity, which involves direct contact between the macrophage and

cancer cell and the translocation of lysosomal organelles from cytotoxic
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FIG. 2. Potential antitumor functions of tumor‐associated macrophage (TAM) against cancer

cells. After interaction with cancer cells, TAMs may enhance cancer cell phagocytosis, tumor cell

lysis, and tumoricidal activity by direct cytotoxicity and antibody‐dependent cytotoxicity, induc-
ing apoptosis, expressing and secreting a variety of factors and cytokines, and other unknown

mechanisms. The tumor islet macrophage is a cytotoxic phenotype TAM [49, 53]. (This figure is

modified from Fig. 2 in Ref. [49] with permission.)
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macrophages into the cytoplasm of cancer cells, with subsequent tumor lysis

[34]. Second, macrophages can cause antibody‐dependent cellular cytotoxicity
by binding to antibody‐coated cancer cells via their Fc receptor. TAMs have

been shown to express CD16 (one type of Fc receptor) and have been

suggested to play an important role in antibody‐dependent tumor cytotoxicity

[34, 55]. Third, many macrophage secretory products, such as ecosanoids

(prostaglandins and leukotrienes), cytokine (IL‐1, TNF‐�), free radicals,

NO, and enzymes (arginase), have cytotoxic or cytostatic activity against

cancer cells [56–59]. Fourth, activated macrophages can induce apoptosis of

cancer cells. This macrophage‐induced apoptosis has been demonstrated in

lymphoma, mastocytoma, and fibroblast cell lines [60–62]. Other factors may

also contribute to the antitumor activity of TAMs, such as the expression of

macrophageMIF, GM‐CSF, and IL‐2. Several studies have shown that MIF

mRNA and protein levels are higher in tumors than in surrounding normal

tissues and that cancer patients with tumor expression of MIF have a better

prognosis than those lacking MIF expression [63–65]. Shinohara et al. [66]

showed that transfection of the murine GM‐CSF gene into human colon

cancer cells increases their sensitivity to TAM‐mediated tumor cell lysis

in vitro. Incubation with GM‐CSF induces CD11b expression on macro-

phages and increases the attachment of TAMs to cancer cells, thus increasing

their tumoricidal activity [66]. IL‐12 secreted by macrophages was also

shown to be important for tumoricidal activity. Narvaiza et al. [67] showed
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that cotransfection of IL‐12 and IFN‐�‐inducible protein‐10 (IP‐10) into

murine colorectal adenocarcinoma cells resulted in total tumor eradication.

Finally, although tumor islet macrophages have potential antitumor activity

and have prognostic significance in NSCLC, the biologic explanation for

their antitumor eVect is still unclear. Further studies are needed to clarify the

antitumor mechanism of tumor islet macrophages in NSCLC.
5. Polarization of TAM into M1 and M2 Phenotype Macrophage
in Tumor Microenvironment

Recent evidence has demonstrated that polarization of TAMs into diVer-
ent phenotype subsets (M1 or M2) may play an important role on regulation

of their function in tumor microenvironment. Cells belonging to the

monocyte–macrophage lineage have long time been recognized to be hetero-

geneous, and macrophage heterogeneity is likely to reflect the plasticity and

versatility of these cells in response to exposure to microenvironmental

signals. Cytokines and microbial products profoundly and diVerentially
aVect the function of mononuclear phagocytes. Mononuclear phagocytes

often function as control switches of the immune system, securing the balance

between pro‐ and anti‐inflammatory reactions. Depending on the activating

stimuli, these cells can develop into diVerent subsets: classically (M1) or

alternatively (M2) activated mononuclear phagocytes (including M2a,

M2b, and M2c), and the molecular and functional characterization of

which is a current topic of investigation. Evidence has also shown that

IFN‐� with LPS or TNF can polarize macrophage into M1 phenotype,

which can induce Th1 response, type 1 inflammation, and involved in killing

of pathogen or tumor cells. In contrast, IL‐4, and IL‐13, immunocomplex

and toll‐like receptor, and IL‐10 had been shown to be able to polarize

macrophage into M2a, M2b, and M2c phenotype, respectively, which

involves in the Th2 response, allergy, killing of parasite, immunoregulation,

matrix deposition, remodeling, and tumor promotion. The surface receptor,

arginine metabolism, cytokine and chemokine secretion, and transcriptional

program are diVerent from each other (Fig. 3) [68].

In summary, TAMsplay a complex andmultifaceted role in the regulation of

tumor growth and development. They have been shown to be directly tumor-

icidal and to stimulate the antitumor activity of other immune‐related cells in

several studies. However, there is accumulating evidence that cancer cells can

modify the tumoricidal activity of TAMs and can sometimes even reprogram

TAM activity in a protumorigenesis direction, that is, promote the growth,

survival, andmetastasis of the tumors themselves. There is substantial evidence

that the interactionbetweenTAMsand cancer cells canmodify the extracellular
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FIG. 3. Polarization of tumor‐associated macrophage (TAM) into M1 or M2 phenotype

macrophage by signals from tumor and the microenvironment. Cancer cell and tumor microen-

vironment can modify the TAMs function by producing diVerent cytokines. IFN‐�, lipopolysac-
charide (LPS), or tumor necrosis factor (TNF) can polarize TAM intoM1 phenotype, and IL‐10,
IL‐4, and IL‐13 can polarize TAM into M2 phenotype macrophage. M1 phenotype macrophage

can induce Th1 response and had antitumor eVects, while M2 phenotype macrophage can induce

Th 2 response which had tumor‐promotion eVects.
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matrix and enhance cancer cell invasion andmetastasis. Thus, TAMsmay have

either positive or negative eVects on tumor growth, and their eVects on tumor

progression and invasionmay depend on the tumormicroenvironment, tumor‐
derived regulation, the diVerentiation of TAMs into cytotoxic macrophages,

and other unclear molecular immunologic mechanisms. Further investigations

are needed to elucidate the mechanism of regulation of TAM function in

human malignancies, including lung cancer, and this may help in the future

design of adjunctive therapy for human malignancy.
6. Effect of TAMs on Cancer Cells

It is becoming clear that inflammatory cells in the tumor microenviron-

ment play an indispensable role in the cancer progression. This may explain

why many cancers arise at sites of chronic irritation and inflammation [69].
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Among these inflammatory cells, which include monocytes/macrophages,

lymphocytes, neutrophils, and mast cells, the macrophage is the pivotal

inflammatory cell within the tumor stroma. Recently, a number of reports

have shown that TAMs constitute an important interface between tumor

cells and the immune system, and that they might influence neoplastic growth

and progression in several ways [6–8]. Tumor‐infiltrating macrophages

(TIMs) have also been shown to correlate with vessel density in ovarian [30]

and breast [19] cancer and other malignancies [14], and have been associated

with VEGF and epidermal growth factor receptor (EGFR) expression in

cancer cells [70]. TIMs can be activated in malignant tumors and this may

contribute to tumor angiogenesis [71, 72], and there is also a significant

correlation between the number of infiltrating macrophages and angiogene-

sis [10, 28]. A high density of TAMs has been associated with angiogenesis

and an adverse prognosis in lung adenocarcinoma [22].

Angiogenesis is required for tumor growth, progression, and metastasis

[73, 74]. Several studies have demonstrated that a high intratumoral MVC

correlates with tumor advancement, systemic metastasis, and prognosis in

several human cancers, including melanoma, breast cancer, colon cancer,

and lung cancer [75–78]. Angiogenesis is a complicated process that

involves the degradation of the basement membrane and invasion of the

stroma by endothelial cells, which then proliferate, migrate, and become

organized into a capillary structure [79]. This process is regulated by

the local activity of a variety of angiogenic factors, such as IL‐8, VEGF,

and basic fibroblast growth factor (bFGF) [74, 80, 81]. Our previous study

[82] demonstrated that the presence of infiltrating macrophages in sections

from lung cancer patients is accompanied by increased levels of IL‐8
mRNA and positively correlated with tumor angiogenesis and negatively

with patient survival.

The interaction between the tumor and surrounding stromal cells, such as

macrophages, fibroblasts, and endothelial cells, is complex. In this chapter,

we mainly focus on the interaction between cancer cells and TAMs. It has

been shown that macrophages are attracted by monocyte chemotactic pro-

tein‐1 and TGF‐�1 secreted by tumor cells and that tumor production of

TGF‐�1 is responsible for activating macrophages [83]. On activation, TAMs

release a vast diversity of growth factors, proteolytic enzymes, cytokines, and

inflammatory mediators. Many of these are key agents in angiogenesis.

White et al. [32] showed increased expression of angiogenic cysteine‐amino

acid‐cysteine (CXC) chemokines, such as IL‐8, in macrophages after cocul-

ture with NSCLC cells, indicating that cancer cells can stimulate inflamma-

tory cells to express increased amounts of angiogenic factors. Using a human

monocyte cell line model, THP‐1, and an in vitro coculture apparatus
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(Transwell), we also demonstrated that marked IL‐8 mRNA expression

(4.5‐fold increase) is induced in macrophages after interaction with lung

cancer cells [82]. TAM‐derived angiogenic factors include VEGF, bFGF,

platelet‐derived endothelial cell growth factor, TNF‐�, and IL‐8 [70, 84].
However, TAMs are not the only source of increased angiogenic factors in

the tumor microenvironment. The study of Liss et al. [83] showed that tumor

cells themselves can be activated by macrophages and secrete angiogenic

factors, which might contribute to tumor angiogenesis in head and neck

squamous cell carcinomas. Our previous study [82] also revealed that IL‐8
expression in cancer cells can be dramatically increased after interaction

with macrophages. In this interaction, IL‐8 expression was synergistically

increased in both macrophages and cancer cells. Which cell is the predomi-

nant source of the angiogenic factors is still controversial. However, it is

certain that TAMs play an important initiator role in the regulation of IL‐8
expression in cancer cells. In addition, the amplification and propagation of

IL‐8 expression in cocultures is seen not only with the cancer cells mentioned

above, but also with other tumor cell types (osteosarcoma and hepatoma)

[82], and it has been suggested that increased IL‐8 expression may be a

common feature of the cancer cell/macrophage interaction.
7. Possible Regulatory Mechanism of Gene Expression in TAMs
or Cancer Cells After the TAM–Cancer Cell Interaction

Paracrine regulation between cancer cells and TAMs has been observed

and may play an important role in the tumor angiogenesis [82, 83]. Further-

more, using macrophage‐cocultured cancer cells to sensitize naı̈ve cancer

cells, it was demonstrated that not only paracrine, but also autocrine regula-

tion was seen in the lung cancer cells/TAMs cocultures [85]. This autocrine

eVect is also seen with diVerent lung cancer cell lines [82], suggesting that

autocrine regulation of IL‐8 expression is a rather general phenomenon in the

lung cancer cells. This suggests that autocrine regulation might play a crucial

role in the tumor progression, particularly in cancer cells that have not

interacted directly with TAMs but have been stimulated by TAM‐activated
cancer cells. It is well known that TNF‐� activates angiogenic factors in

several human tumor cell types and in vascular endothelial cells [84, 86], and

a previous report hinted that TNF‐� and IL1‐�, produced by activated

macrophages, are involved in tumor progression and angiogenesis in human

malignant melanoma [84]. Moreover, TNF‐� and IL1‐�, secreted by acti-

vated monocytes and macrophages, enhance the production of IL‐8 and

VEGF in tumor cells in vitro [71, 83, 84, 87]. Our previous report [82] also
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showed that protein levels of NF‐�B, TNF‐�, and IL1‐� were elevated in

both the TAMs and lung cancer cells after coculture and that IL‐8 expression
was still induced in cancer cells in the absence of macrophages by exogenously

added recombinant human TNF‐� and IL1‐�. These findings show that

TNF‐� and IL1‐� are involved in IL‐8 mRNA induction in cancer cells/

TAMs cocultures through autocrine and paracrine regulation. Using a re-

porter gene assay and electrophoretic mobility shift assay (EMSA), we also

found that both NF‐�B and AP‐1 are involved in controlling IL‐8 gene

expression in lung cancer cells cocultured with TAMs. This multiple control

of IL‐8 gene expression in cocultures is consistent with the results of a

previous study [88]. We can conclude that autocrine and paracrine eVects on
tumor angiogenesis are mediated, in part, through the NF‐�B pathway and

can be modulated by TNF‐� and IL1‐�.
As illustrated in Fig. 4, cancer cells attract macrophages that may produce

inflammatory cytokines, such as TNF‐� and IL1‐�, which are then secreted

into the surrounding environment. Increased TNF‐� and IL1‐� levels might

induce lung cancer cells to activate NF‐�B and subsequently increase IL‐8
expression in cancer cells. Interestingly, lung cancer cells might regulate

the production of IL‐8 by themselves or by adjacent lung cancer cells, and

induce more IL‐8 production in an autocrine fashion, which would induce

more angiogenesis in lung cancer.
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FIG. 4. Possible interactions betweenmacrophages and cancer cells. Macrophages may first be

attracted by chemokines derived from cancer cells, then the activated macrophages produce

angiogenic factors, such as tumor necrosis factor‐� (TNF‐�) and interleukin1‐� (IL1‐�), and
stimulate the cancer cells to produce more angiogenic factors and other factors. Meanwhile,

stimulated cancer cells, by providing TNF‐�, IL1‐�, or other factors, may also stimulate

neighboring cancer cells and macrophages to produce angiogenic factors and other factors.

The autocrine and paracrine eVects on cancer cells after interaction with macrophages are

mediated partly through the NF‐�B pathway, which may be involved in regulating cell invasion,

adhesion, signal transduction, inflammation, and angiogenesis.



PATHOPHYSIOLOGY OF TUMOR‐ASSOCIATED MACROPHAGES 213
8. Effect of TAMs on Stromal Cells in the
Tumor Microenvironment

In addition to cancer cells, TAMs interact with stromal cells, including

fibroblast and endothelial cells, in the tumor microenvironment. It has been

shown that fibroblasts play a prominent role in the tumor progression and

metastasis [89]. Cocultures of fibroblasts and NSCLC cells show increased

levels of IL‐8 mRNA and protein in both the cancer cells and fibroblasts [88],

demonstrating that cancer cells stimulate stromal cells to express larger

amounts of angiogenic factors. However, little is known about the eVect of
TAMs on fibroblasts. Our previous study [85] demonstrated that both fibro-

blasts and bronchial epithelial cells sensitized by macrophages show a signif-

icant increase in IL‐8 mRNA levels. However, in contrast to the results

obtained from the cancer cell/TAMs cocultures, induction of IL‐8 expression
in normal lung fibroblasts and bronchial epithelial cells might be not through

TNF‐� or IL1‐�. It is reasonable to speculate that other pathways regulate

IL‐8 induction in fibroblasts or bronchial epithelial cells. In terms of endo-

thelial cells, as far as we are aware, no reports have been published about

their interaction with TAMs. Nevertheless, our unpublished data show that

several important angiogenic factors are induced in endothelial cells after

interaction with TAMs.
9. A Global View on Changes in Gene Expression in Cancer
Cells After Interaction with TAMs

To examine the global changes in protumorigenic gene expression in cancer

cells after interaction with TAMs, microarray approach is a good choice [90].

Using this system, we are able to perform large‐scale analyses of the genes

involved in the interaction between cancer cells and TAMs, and this infor-

mation should help in exploring the complex interactions between cancer

cells and TAMs that orchestrate the process of tumor progression and

metastasis. In our previous study, 50 genes showing significant up-regulation

in cancer cell after their interaction with macrophage were identified using

cDNA microarray [16]. Most of these changes had never been previously

reported in cancer cell/macrophage cocultures. However, many of the genes

involved had been previously reported to be associated with angiogenesis and

metastasis, including IL‐6 [91], IL‐8 [82], MMP‐9 and uPA receptor [92],

stanniocalcin‐1 (STC‐1) [93], intracellular adhesion molecule‐1 (ICAM‐1)
[94], and MMP‐1 [95]. As mentioned above, the interaction between macro-

phages and cancer cells can upregulate IL‐8 expression. This process is

mediated, in part, through the NF‐�B pathway [82, 85]. The microarray
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analysis further supported the idea that IL‐6, IL‐8, M‐CSF, MMPs, and

ICAM‐1 are involved in the NF‐�B pathway [96, 97]. Because inflammatory

cells may be involved in regulating the production of angiogenic factors by

cancer cells, anti‐inflammatory agents may have the potential to impede IL‐8
induction and suppress angiogenesis initiated by inflammatory cells. Some

nonsteroidal anti‐inflammatory drugs (NSAIDs), such as aspirin, have been

shown to reduce the risk of developing colorectal and breast cancers [98, 99].

We have tested several anti‐inflammatory drugs commonly used clinically in

our previous studies and found that most inhibit the expression of angiogenic

factor IL‐8 [16, 82, 86]. Although their possible mechanisms of action are

quite diVerent [100–105], their inhibitory eVect is, for the most part, finally

mediated through the NF‐�B pathway (Fig. 4). On the basis of the above

results, TAMs might therefore be a potential target of chemotherapy using

anti‐inflammatory agents.
10. Implication of TAMs in Immunotherapy of Human Cancers

Since macrophages can infiltrate tumor tissue or have a tendency to be

recruited to the tumor site, this suggests a new approach to cancer immuno-

therapy. Macrophages are known to have antitumor activity and are thought

to have the potential to mediate tumor cytotoxicity and to stimulate anti-

tumor eVects of other immune‐related cells. However, in the majority of

human cancers, cancer cells can escape these macrophage‐associated defense

mechanisms. The possible mechanisms by which cancer cells escape

macrophage‐associated antitumor activity include [106–108]: (1) cancer

cells do not express specific surface antigens that can be recognized by

macrophages; (2) TAMs are modified by the tumor microenvironment,

loose their cytotoxicity toward cancer cells, and are even redirected to

protumorigenesis pathways; (3) after interaction with cancer cells, TAMs

become suppressive for tumor‐specific T‐ and NK‐cell cytotoxicity.
Although there is evidence that the antitumor activity of TAMs can be

suppressed and their protumorigenesis activity stimulated by the tumor

microenvironment in the majority of human cancers, there is still a lot of

potential to enhance antitumor activity by stimulation or activation of

TAMs. A number of basic and clinical studies (including clinical trials)

using activated macrophages in the immunotherapy of human cancers have

been reported (reviewed in Ref. [109]).

One approach is to activate macrophages using biological response modi-

fiers, such as muramyl tripeptide phosphatidylethanolamine (MTP‐PE),
GM‐CSF, M‐CSF, or IFN‐�, both in vivo (injection of patients with

biological response modifiers) or in vitro (adoptive transfer of macrophages
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treated with biological response modifiers). Asano et al. [110] showed that

liposomal MTP‐PE increased cytokine expression in monocytes and pro-

longed relapse‐free survival time in osteosarcoma patients with lung metas-

tasis in a Phase II clinical study. GM‐CSF therapy in patients with

lymphoma, breast cancer, or neuroblastoma was shown to increase

antibody‐dependent cytotoxicity and endogenous TNF‐� levels [111], but

produced no clinical response (regression of tumor) in Phase I and II studies

[109]. In terms of adoptive cellular immunotherapy, although biological

responses, including increases in cytokine levels, have been shown, clinical

responses have been almost absent [112–114].

The second approach is to use gene transfer to induce and enhance the

antitumor eVect of TAMs. Recently, genetic modification of tumor cells with

cytokines, adhesion molecules, or MHC molecules has resulted in activation

of immune cells, induction of immune responses, and facilitation of cancer cell

recognition and killing. DranoV et al. [115] showed that transfection of the

GM‐CSF gene into murine melanoma cells initiated an eVective and long‐
lasting anti‐tumor response. Sanda et al. [116] also showed that vaccination

with prostate cancer cells transfected with GM‐CSF resulted in a significant

increase in tumor‐free survival of mice inoculated with the tumor. Morita

et al. [117] showed that transfection of M‐CSF into Lewis lung carcinoma

cells prolonged the survival of mice injected with the transfected carcinoma

cells compared to those injected with nontransfected cells and prevented lung

metastasis. Dong et al. [118] showed that inoculation of mice with human

prostate cancer cells transfected with IFN‐� inhibited tumor growth and

lymph node metastases. In animal studies, increased TAM infiltration of the

tumor and inhibition of angiogenesis were found to correlate with GM‐CSF
production. In addition to these animal studies, several human clinical trials

of gene therapy have been recently performed [119–122]. Treatment of

patients with renal cell carcinomawith irradiated autologous GM‐CSF trans-

fected renal cell carcinoma cells resulted in a decrease in lung metastasis [120].

Vaccination with irradiated autologous melanoma cells transfected with the

GM‐CSF gene also resulted in extensive cancer cell destruction in melanoma

patients [119]. Furthermore, using the tendency of TAMs to accumulate

around the tumor nest, several investigators have started to transfect macro-

phages with genes encoding colony stimulation factor‐1 (CSF‐1), INF‐�,
tumor antigens, antiangiogenic agents, and prodrug activation enzymes to

enhance tumoricidal eVects [123–126]. The results showed that these macro-

phages can eVectively deliver gene therapy to the tumor mass but the clinical

response remains to be determined. In conclusion, although a number of

animal or human studies have demonstrated that gene therapy can enhance

the tumoricidal eVect of TAMs or other immune‐related cells, further clinical

trials are required to elucidate its eVectiveness in human cancer.
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11. Concluding Remarks

Macrophages can be recruited to tumors by a variety of cytokines secreted

by tumor cells and become TAMs that can play a role in stimulating tumor

growth and progression or, in contrast, in killing tumor cells and inhibiting

metastasis. The exact role that TAMs play in the tumor depends on the state

of macrophage activation, modification of macrophage function by the

tumor microenvironment, the status of tumor development, the anatomic

locus of macrophage infiltration, and the gene expression profile and pheno-

type of the TAMs. How TAMs are ‘‘educated’’ in the tumor microenviron-

ment to show protumorigenesis or antitumor activity is a complex process

and still under investigation. The interactions between TAMs and cancer

cells and between TAMs and other stromal cells have recently been shown to

be important in the modification of TAM function. The gene expression

changes seen after interaction between cancer cells, TAMs, and other stromal

cells may be involved in the regulation of the protumorigenesis or antitumor

eVects of TAM. The ability to direct TAMs toward antitumor eVects may be

helpful in the treatment of human cancer, and limited clinical studies have

shown a potential eVect of this immunotherapeutic treatment. Further stud-

ies to understand the mechanism of the modification of TAM function in the

tumor are needed and should provide important information that may

permit the development of more potent immunotherapies for human cancers.
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