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Preface

In spring of 2010, Howard Kaplan invited me to compile a volume on sociological methodology for
the Springer series, Handbooks of Sociology and Social Research. 1 proposed causal analysis for the
focus of a new volume because (1) causal explanation is a common goal of social research, (2) the
nature and practice of causal analysis has been a topic of methodological debate for decades, and (3)
the literature on causality has moved quickly in the last 20 years to a point where a volume-length
assessment by a diverse collection of scholars would be of considerable value to readers in sociology
and in the social sciences more broadly.

After selecting causal analysis as the focus of the volume, I recruited contributors with established
track records of publishing sophisticated and readable methodological scholarship, most of whom
held appointments in sociology departments and/or were trained as sociologists. Contributors were
encouraged to recruit graduate student coauthors in order to expand the community of scholars in
sociology who write on methodological topics.

As a target audience, I asked contributors to write for advanced graduate students and faculty
researchers in sociology. I also recommended that contributors include conceptual and empirical
examples from sociology and from the allied social sciences whenever appropriate. To maximize
accessibility, I asked contributors to develop chapters with mathematical details and demands that
would be only as difficult as they needed to be, in recognition of the fact that too much methodological
scholarship already uses more mathematics than is necessary for the purposes at hand. As an objective
standard, I asked for chapters that required mathematical preparation that is no more advanced than is
necessary to read the typical articles published in Sociological Methodology and Sociological Methods
and Research.

I also made it clear to contributors that my goal, as Editor, was not to push for the adoption of
any particular model of causality, including the counterfactualist perspective on quantitative causal
analysis of which I am most enamored. However, I did note that, because of the shape of the recent
literature, I hoped that all chapters would engage some of the counterfactuals literature to some extent.
I indicated that such engagement could be critical and/or brief, as appropriate, and that I was inviting
a collection of scholars whom I expected would collectively disagree on the ultimate value of the
potential outcome version of the counterfactual model. As readers of the complete Handbook will
discern, I succeeded in generating a diversity of positions on this issue.

I thank the contributors to the volume for their uniformly strong dedication to their chapters. We
hope that this Handbook will strengthen the conclusions typical of social research, providing a wide
range of researchers with methodological guidance that can help them to (a) select and utilize methods
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of estimation and inference appropriately and (b) determine when causal conclusions are warranted,
based on the particular standards in the subfields in which they work. If this Handbook succeeds in
promoting these goals, then all of the credit is due to the talent and skill of the contributors to the
volume.

Ithaca, NY Stephen L. Morgan
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Chapter 1
Introduction

Stephen L. Morgan

In disciplines such as sociology, the meaning and interpretations of key terms are debated with
great passion. From foundational concepts (e.g., class and structure) to more recent ones (e.g.,
globalization and social capital), alternative definitions grow organically from exchanges between
competing researchers who inherit and then strive to strengthen the conceptual apparatus of the
discipline. For the methodology of social inquiry, similar levels of contestation are less common,
presumably because there is less scope for dispute over matters that many regard as mere technique.!
The terms causality and causal are the clear exceptions. Here, the debates are heated and expansive,
engaging the fundamentals of theory (What constitutes a causal explanation, and must an explanation
be causal?), matters of research design (What warrants a causal inference, as opposed to a descriptive
regularity?), and domains of substance (Is a causal effect present or not, and which causal effect is
most important?). In contrast to many conceptual squabbles, these debates traverse all of the social
sciences, extending into most fields in which empirical relations of any form are analyzed. The present
volume joins these debates with a collection of chapters from leading scholars.

Summary of Contents

Part I offers two chapters of overview material on causal inference, weighted toward the forms of
causal analysis practiced in sociology. In Chap. 2, “A History of Causal Analysis in the Social
Sciences,” Sondra Barringer, Scott Eliason, and Erin Leahey provide an illuminating examination
of 12 decades of writing on causal analysis in sociology, beginning with Albion Small’s 1898
guidance published in the American Journal of Sociology. The chapter introduces readers to the
main variants of causal modeling that are currently in use in the social sciences, revealing their
connections to foundational writings from the nineteenth century and forecasting advances in their
likely development.

! Then again, some methodological terms have shifting definitions that are not embraced by all, whether they are design
concepts (e.g., mixed methods and natural experiment), measurement concepts (e.g., reliability and validity), or features
of models (e.g., error term, fixed effect, and structural equation).

S.L. Morgan (<)
Department of Sociology, Cornell University, Uris Hall 358, Ithaca, NY 14853, USA
e-mail: slm45@cornell.edu

S.L. Morgan (ed.), Handbook of Causal Analysis for Social Research, 1
Handbooks of Sociology and Social Research, DOI 10.1007/978-94-007-6094-3_1,
© Springer Science+Business Media Dordrecht 2013
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In Chap. 3, “Types of Causes,” Jeremy Freese and J. Alex Kevern lay out the variety of causal
effects of concern to social scientists and some of the types of causal mechanisms that are posited
to generate them. Beginning with arrow salad, and followed by discussions of proximity, necessity,
and sufficiency, the chapter provides examples of causal effects that the social science literature has
labeled actual, basic, component, fundamental, precipitating, and surface. The chapter also draws
some of the connections to the literature in epidemiology and health-related social science, where
important methodological and substantive work has enriched the literature on causality (and in ways
still too infrequently appreciated by researchers working in the core social sciences).

Part II offers three chapters that assess some of the major issues in the design of social research. In
Chap. 4, “Research Design: Toward a Realistic Role for Causal Analysis,” Herbert Smith begins with
the principled guidelines for causal analysis supplied by the influential statisticians David Freedman,
Paul Holland, and Leslie Kish, which he then discusses alongside the design advice offered by social
scientists from the 1950s onward. Filled with examples from demography and the social sciences
more broadly, the chapter argues that many of the excesses of recent efforts to establish causality
should be replaced by more sober attempts to understand the full range of data available on outcomes
of interest.

In Chap. 5, “Causal Models and Counterfactuals,” James Mahoney, Gary Goertz, and Charles
Ragin argue for the supremacy of set-theoretic models of causal processes for small-N and case-
oriented social science. Contrary to the forecast offered by Barringer, Leahey, and Eliason in Chap. 2,
it seems rather unlikely that future innovations in set-theoretic approaches to causal analysis proposed
by Mahoney, Goertz, and Ragin will emerge from embracing probabilistic or potential outcome
models of counterfactuals. Practitioners of small-N research will find much in this chapter that will
help them bridge the communication divide that exists with large-N researchers who deploy alternative
methodologies. Large-N researchers will benefit from the same.

In Chap. 6, “Mixed Methods and Causal Analysis,” David Harding and Kristin Seefeldt explain
how using qualitative methods alongside quantitative methods can enhance the depth of research on
causal questions of importance. Stressing the value of qualitative methods for enhancing models of
selection processes, mechanisms, and heterogeneity, they develop their argument by detailing concrete
examples of success, often from the latest research on poverty, stratification, and urban inequality.

For Part III, six chapters present some of the important extensions to conventional regression-
based approaches to data analysis that may aid in the analysis of causal effects. In Chap. 7, “Fixed
Effects, Random Effects, and Hybrid Models for Causal Analysis,” Glenn Firebaugh, Cody Warner,
and Michael Massoglia explain the value of fixed effects models, and several variants of them, for
strengthening the warrants of desired causal conclusions. In Chap. 8, “Heteroscedastic Regression
Models for the Systematic Analysis of Residual Variances,” Hui Zheng, Yang Yang, and Ken Land
explain how variance-component models can deepen the analysis of within-group heterogeneity
for descriptive and causal contrasts. Both chapters offer empirical examples from stratification and
demography, which demonstrate how to estimate and interpret the relevant model parameters.

In Chap. 9, “Group Differences in Generalized Linear Models,” Tim Liao steps back to the
full generalized linear model and demonstrates the variety of group difference models that can be
deployed for outcomes of different types, paying particular attention to distributional assumptions
and the statistical tests that can rule out differences produced by chance variability. In Chap. 10,
“Counterfactual Causal Analysis and Non-Linear Probability Models,” Richard Breen and Kristian
Karlson then offer an extended analysis of the class of these models that are appropriate for binary
outcomes. Together these two chapters demonstrate how the general linear model can be put to use
to prosecute causal questions, and yet they also show how the parametric restrictions of particular
models can represent constraints on inference and subsequent explanation.

In Chap. 11, “Causal Effect Heterogeneity,” Jennie Brand and Juli Simon Thomas consider how
regression, from a potential outcome perspective, can offer misleading representations of causal ef-
fects that vary across individuals. Taking this theme further, in Chap. 12, “New Perspectives on Causal
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Mediation Analysis,” Xiaolu Wang and Michael Sobel show how models that assume variability of
individual-level causal effects, and permit general forms of nonlinearity across distributions of effects,
are incompatible with claims that regression techniques can identify and effectively estimate separate
“direct” and “indirect” effects. Together, these two chapters demonstrate that analysis can proceed
under reasonable assumptions that causal effects are not constant and additive, but the standard tool kit
offered in generic linear modeling textbooks will fail to deliver meaningful estimates. Both chapters
offer alternative solutions that are effective and less onerous than some researchers may assume.

For Part IV, three chapters cover most of the central issues in the identification of systems of
causal relationships, all united by their attention to how modern graphical models can be used to
represent them. In Chap. 13, “Graphical Causal Models,” Felix Elwert provides a careful introduction
to the burgeoning literature on causal graphs, fully explaining the utility of directed acyclic graphs
for considering whether or not causal effects are identified with the data available to an analyst.
With incisive examples from demography and health research, the chapter demonstrates when and
why common conditioning strategies impede a causal analysis as well as how identification strategies
for time-varying treatments can be developed.

In Chap. 14, “The Causal Implications of Mechanistic Thinking: Identification Using Directed
Acyclic Graphs (DAGs),” Carly Knight and Christopher Winship enrich the recent literature on causal
mechanisms in the social sciences, which is all too often cited while also being misunderstood. The
chapter clarifies the importance and promise of the empirical search for the mechanisms that generate
effects and demonstrates how mechanisms can be represented with causal graphs, all while remaining
grounded in the most prominent and convincing treatments of mechanisms from the philosophy of
science literature. The chapter also demonstrates how casual effects that remain unidentified by all
other methods may still be identified by the specification and observation of a mechanism, under
assumptions that may be no more restrictive than those commonly invoked for other models routinely
employed by others.

In Chap. 15, “Eight Myths about Causality and Structural Equation Models,” Kenneth Bollen and
Judea Pearl team up to dispel what they see as considerable misunderstanding in the literature on
the power and utility of structural equation models. Bridging their prior work, they return to the
origins of structural modeling, trace it through the modern literature on causal graphs, and provide a
convincing case that the best days for structural equation modeling are still in the future. The chapter
demonstrates both the depth of the literature before modern causal graph methodology was developed
and the contribution of the latter in clarifying adjustment criteria, mediation methodology, and the
role of conditional independence assumptions in effect identification. Here, as in other places in the
volume, the reader will find healthy disagreement with other chapters of the volume (most notably
with Chap. 12, which takes an alternative position on contributions to the mediation literature and the
value of causal graphs more generally).

For Part V, two chapters consider the emergent literature on models of influence and interference.
In Chap. 16, “Heterogeneous Agents, Social Interactions, and Causal Inference,” Guanglei Hong and
Stephen Raudenbush demonstrate how traditional assumptions of no-unit-level interference of causal
effects can be relaxed and why such relaxation may be essential to promote consistency between the
estimated model and the true processes unfolding in the observed world. The chapter demonstrates
that such modeling is possible and that it can greatly improve conclusions of research (and with
manageable additional demands on the analyst).

In Chap. 17, “Social Networks and Causal Inference,” Tyler VanderWeele and Weihua An consider
the other side of the noninterference coin: social influence that travels across network connections
that have been established, in most cases, prior to the introduction of a treatment or exposure to a
cause. Considering both the recent experimental literature and (controversial) attempts to identify
network effects with observational data, the chapter discusses the extent to which data can reveal
social influence effects that propagate through networks (and, additionally, the effects of interventions
on social networks, including those on an ego’s ties and those on the deeper structural features of
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complete networks). No reader will fail to appreciate how difficult such effect identification can be
(nor, after some independent reflection, how naive many explanatory claims from the new network
science clearly are).

For Part VI, two final chapters consider how empirical analysis that seeks to offer causal knowledge
can be undertaken, even though the identification of specific effects is not possible. In Chap. 18,
“Partial Identification and Sensitivity Analysis,” Markus Gangl explains the two most prominent
strategies to determine how much information is contained in data that cannot point-identify causal
effects. Sensitivity analysis considers how large a violation of a false maintained assumption would
have to be in order to invalidate a conclusion that rests on a claim of statistical significance.
Partial identification analysis considers how much can be said about an effect with certainty while
maintaining the most strong assumptions one can assert that all critics will agree are beyond reproach
(which, in reality, will therefore be weak assumptions). More researchers should use these techniques
than do, and this chapter shows them how.

Finally, in Chap. 19, “What You Can Learn from Wrong Causal Modes,” Richard Berk and six
of his colleagues take empirical inquiry one step further. If one knows that a simple parametrically
constrained regression model will not deliver a warranted point estimate of some form of an average
causal effect, then why step away only from the causal interpretation? One should step away entirely
from the clearly incorrect model and its entailed parametric constraints and instead allow the data to
reveal more of the full complexity that nature must have constructed. The challenge is to represent
such complexity in ways that can still be summarized crisply by a model, and the chapter shows that
the most recent developments in nonparametric and semi-parametric statistics are more powerful and
practical than many researchers in the social sciences are aware. The chapter is justified by the claim,
echoed by other chapters in the volume (especially Chap. 4) that one does not need to estimate causal
effects in order to learn something about them.

Contribution

For a volume on causality, it seems especially appropriate to ask: What effects will this one have on
research practice? It is reasonable to hope that the considerable work that was required to produce it
will generate positive effects of some form.

Forecasting these effects requires that one first consider the challenges and realities of today’s
social science research. As relatively recent entrants into the academy, social scientists aspire to
produce knowledge of the highest utility that can elucidate processes that journalists, politicians, and
others opine. Yet, it would be surprising to all if such successes were easy to come by or if the
goals of social scientists were to settle by fiat the conundrums that eminently talented thinkers could
not lay to rest before the modern social sciences were established. Accordingly, nearly all domains
of substantive research in the social sciences are rife with everyday causal controversies. Verified
causal explanations to some scholars are spurious associations to others. Deep and compelling causal
accounts to some scholars are shallow surface narratives to others.

Why are causal controversies in the social sciences so persistent? It would appear that the answer
to this question is found in the confluence of substantive domains that are largely observational
with the freedom that academic researchers have from real-world demands for action. The former
prompts researchers to ask questions for which no infallible and easy-to-implement designs exist,
and the latter, when paired with the former, has bred fields of social science that lack inquiry-ending
standards. Consider some counterexamples, where observational inquiry is productively paired with
such standards. In the law, decisions must be rendered, either by judges or by juries, and so the
concepts of “cause-in-fact” and “legal cause” have been developed to bring cases to a close. In
medical practice, a treatment must begin, which requires that a diagnosis for the relevant malady first
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be adopted. The diagnosis, this nonphysician perhaps mistakenly assumes, amounts to asserting the
existence of responsible causes in sufficient detail to pick from amongst the most effective available
treatments. In academic social science, what brings our causal controversies to conclusion in the
absence of shared routines for doing so? Too often, little more than fatigue and fashion.

I would not claim that any of the questions raised long ago by Hume, Mill, Peirce, and others have
been resolved by the contents of this volume. However, I am optimistic that this volume, when read
alongside other recent writing on causality, will move us closer to a threshold that we may soon cross.
On the other side, most researchers will understand when causal conclusions are warranted, when
off-the-shelf methods do not warrant them, and when causal questions cannot be answered with the
data that are available. We will then be able to evolve inquiry-ending standards, sustained by new
systems that promote the rapid diffusion of research findings. If we can cross this threshold, some
of the unproductive contestation that now prevails will subside, and manifestly incorrect results will
receive less attention. Fewer causal conclusions will be published, but those that are will be believed.



Part I
Background and Approaches to Analysis



Chapter 2
A History of Causal Analysis in the Social Sciences

Sondra N. Barringer, Scott R. Eliason, and Erin Leahey

Abstract In this chapter we provide an overview of the history of causal analysis in the social
sciences. We review literature published from the mid-1800s to the present day, tracing the key strains
of thought that lead to our current understandings of causal analysis in the social sciences. Given
space limitations, we focus on three of the most important strands of causal analysis — those based
on (1) constant conjunction and regularity accounts, (2) correlational and path analytic techniques,
and (3) potential outcomes and counterfactual frameworks. We then return to the complexity of a
Weberian approach, which contains nearly all of the elements of these three major frameworks into
a single case-oriented method to causal analysis. We conclude by speculating on the future of causal
analysis in the social sciences.

Introduction

A scant three decades after the United States Civil War, Albion Small, drawing largely on the work of
Wilhelm Wundt (1883) and writing in the fledgling American Journal of Sociology, told his readers
that “Radical error and persistent confusion would be forestalled, if students could be familiar from
the start with the fact that sociology is not, first and foremost, a set of schemes to reform the world”
(Small 1898: 113). Instead, this new discipline was to be focused on collecting and assessing empirical
information about society, and a keen attention to research methods was required to gain legitimacy
and success. Small went on to elaborate three stages in the “essential methodological process” (1898:
118) for this young science. The first was descriptive analysis of the basic components of the object
of study. While descriptive analysis was seen by Small as a necessary first step in sociological
understanding, the second was by its nature more interesting and important and difficult to achieve.
The second stage was causal analysis.

Causal analysis to Small meant many things — understanding causal relations, articulating cause
and effect, and explanation of some complex whole from examination of the parts. At its heart, causal
analysis to Small was the breaking apart of processes into constituent components, examining which
components produce which outcomes in isolation, and then putting it all back together “to test the
causal principles, analytically reached, by seeing whether they are applicable as explanations in a
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synthesis” (1898: 120). The key to understanding how the parts worked was, in turn, the experimental
method; “Whenever experiment can be used, it deserves preference above every other kind of causal
analysis. It is the most direct way of determining the causal relation of the parts of a phenomenon”
(1898: 121).

When put in context, these comments were remarkably insightful and prescient. Critical founda-
tions of the experimental method had yet to be laid when Small staked out this territory for sociology.
As well, concrete connections between results of experiments and the counterfactual causal effect now
commonly known as the average treatment effect (ATE) were many years over the horizon. It would
be decades before Neyman (1923) would explicitly connect results from experiments to potential
outcomes and to counterfactual causal effects,! before Fisher would publish his highly influential
Design of Experiments (1935) and before Neyman and Pearson (1928) would lay the foundation for
what would become the companion inferential infrastructure. Prior to these breakthroughs, Small’s
contemporaries such as Charles S. Peirce — perhaps best known in the social sciences for his theories
of pragmatism — and his colleagues had already articulated the benefits of randomized experiments and
began to develop accompanying theories of inference (Peirce and Jastrow 1884). While much of the
heavy lifting was yet to be done, Small, Peirce, and their colleagues clearly viewed the experimental
design as key in harnessing empirical information to address causal hypotheses and causal analysis
more generally. By this point, the path leading to current understandings of estimating counterfactual
causal effects in a potential outcomes framework was becoming well established.

In this chapter we trace that path, and others, leading to current understandings of causal analysis
in the social sciences and covering the time period from the mid-1800s to the present day. Given space
limitations, we focus on three of the most important strands of causal analysis running through this
time frame — those based on (1) constant conjunction and regularity accounts, (2) correlational and
path analytic techniques, and (3) potential outcomes and counterfactual frameworks. We then return
to the complexity of a Weberian approach, which contains nearly all of the elements of these three
major frameworks into a single case-oriented method to causal analysis. We conclude this chapter by
speculating on the future of causal analysis in the social sciences.

Regularity, Constant Conjunction, and the Birth of Configurational
Causal Analysis

While Small had one type of experiment in mind, John Stuart Mill (1882), in his quest to understand
cause and effect, was sorting out a different kind of design. Understanding Mill, however, is aided
by a brief detour into the mind of David Hume and the role of experience (e.g., Hume (1896)). At
the time, Hume was attempting to, and largely succeeding in, shifting the focus of casual analysis
away from pure logic — the predominant thinking at the time — and toward empirical experience.
In a simplification of Hume’s argument, the only way to understand cause and effect lay not
in understanding universal laws through the lens of logic but instead in repeated observations of
things that occur together regularly. However, Hume dismissed the idea that, even with observed
regularities, we could know much at all about cause and effect as some objective or lawlike properties
attributable to the object of study. Instead, the notion of cause and effect, especially causal necessity,
was intertwined with both the human mind and the object of study, which could not be separated.
Interestingly, this part of Hume’s argument was presented by Karl Pearson (1900) some years later,
but in a very different methodological context.

'Rubin writes that “Neyman (1923) in his Ph.D. thesis, appears to have been the first writer to use this potential outcome
notation” (2005: 324).
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Mill, it appears, took Hume’s assertion as a challenge and set out to show how observed
regularities could indeed reveal objective causes and effects, or so he thought. In fact, in A
System of Logic, Ratiocinative and Inductive (1882: 74), Mill writes, “The notion that what is of
primary importance . . . in a proposition, is the relation between the two ideas [italics in the original]
corresponding to the subject and predicate (instead of the relation between the two phenomena which
they respectively express), seems to me one of the most fatal errors ever introduced into the philosophy
of Logic; and the principal cause why the theory of the science has made such inconsiderable progress
during the last two centuries.” In effect, Mill was rejecting Hume’s (and Pearson’s) conclusions on
knowable causal relations.

In his theory of induction, Mill went on to describe four empirical methods that could be used to,
in part, establish what he called “physical causes” (1882: 236), all of which are based in some way
on the notion of constant conjunction. These are the methods of agreement, difference, residue, and
concomitant variation. Here we focus on the methods of agreement and difference and their lineage.
We return to the method of concomitant variation in the next section. The method of residue is of least
importance to our story and will not be addressed here.

The method of agreement focuses a researcher’s attention on a sample of cases of some
phenomenon (say, e.g., high levels of inequality) which agree on only one observed factor (say, e.g.,
high levels of market deregulation) but which vary on all other observed factors (levels of schooling,
other economic conditions, demographic distributions, etc.). The one factor in agreement across cases,
then, is considered the (potential) cause of the phenomenon.

In the method of difference, on the other hand, a researcher samples cases that differ on the
phenomenon of study (say, e.g., high vs. low levels of inequality) and examines a single potential
causal factor or conjunction of factors that differ in accordance with the phenomenon (say, e.g., high
vs. low levels of market deregulation). Or, one samples cases that differ systematically on the potential
causal factor or conjunction of factors and examines whether the phenomenon of study differs in
accordance with the factors (Mill 1882). In both instances, the remaining factors may be constant (as is
implied in Mill (1882)), or they may be nonsystematically or randomly varying relative to the factor(s)
and phenomenon of interest. Again, if that pattern is observed between the factor or conjunction of
factors and the phenomenon of study, then that (those) factor(s) is (are) considered the potential cause
of the phenomenon.

It is clear, however, that Mill understood both of these to be methods of elimination where factors —
or combination of factors — are eliminated from consideration as part of the causal story (1882). He
also understood both methods as incapable, by themselves, of establishing causal relations. Using one
or more of these methods to establish a constant conjunction empirical relation through the process
of elimination, with one or a combination of antecedents (potential causes), still leaves us a step
or two away from establishing a cause-effect relation. It is only when, after establishing a constant
conjunction relation, we “produce the antecedent artificially, and if, when we do so, the effect follows,
the induction is complete; that antecedent is the cause of the consequent” (1882: 277). In fact, he was
advocating the use of the experimental design as the final arbiter of causal relations; “Observation, in
short, without experiment . . . can ascertain sequences and co-existences, but cannot prove causation”
(1882: 277). Thus, even Mill, who is viewed in many ways as the father of the modern comparative
method in the social sciences, was in fact an advocate for the experimental design and by extension the
more general potential outcomes framework, which came many years after his time. It is difficult, as
a consequence of his writings, to not be curious of what Mill would have to say about current debates
pitting today’s versions of the comparative method, such as Ragin’s QCA and fsQCA, against the
potential outcomes framework of Rubin, Rosenbaum, Heckman, and others. In this spirit, Eliason and
Stryker (2009) show one way to combine a recent and refined rendition of Mill’s methods (Charles
Ragin’s QCA and fsQCA) with potential outcomes methods for observational, nonexperimental, data
(which we discuss later).
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Nevertheless, without the aid of experimental methods, many scholars have embraced versions
of Mill’s methods of difference and agreement and have been influential in their development,
especially in sociology and political science. Contrary to a commonly held misunderstanding of
Mill’s methods of agreement and difference, there is nothing inherent in these methods that prevents
scholars from examining conjunctural causal relations or multiple causal pathways. However, doing so
is cumbersome and requires multiple analyses on the same data for the same set of research questions.
Overcoming this issue, Charles Ragin’s (1987, 2000, 2008) methodological innovations took Mill’s
ideas to new heights, establishing rigorous methods — qualitative comparative analysis and its fuzzy-
set variant — in place of the informal approach to Mill’s methods that were common before Ragin’s
breakthroughs. (See, e.g., Theda Skocpol’s (1979) work using Mill’s methods.)

Ragin’s method of qualitative comparative analysis (QCA) and its fuzzy-set variant (fsSQCA) is a
case-centered approach to data analysis (1987, 2000, 2008). In its development, Ragin draws upon
and integrates the logic of set theory, Boolean algebra, and what Ragin calls truth tables — the
list of logically possible combinations of factors and the empirical outcome associated with each
combination. In QCA, the focus is on the cases, which are classified according to their membership in
a limited number of analyst-delineated sets. If the cases of interest are countries, sets may include poor
nations and democracies. Sets can be crisp or fuzzy. Crisp sets indicate whether a case is a member
of each set, noting membership with a value of “1” and nonmembership with a value of “0.” Fuzzy
sets indicate the degree to which a case is a member of each set, so membership can be partial (i.e.,
somewhere between “fully in the set” and “fully out of the set”). fsSQCA requires calibration that is
ideally theoretically informed (Ragin 2008).

Ragin advances Mill’s method in other ways as well: by highlighting conjunctural causal relations
(how two or more factors, or ingredients, work together) and the possibility of multiple causal
pathways, or recipes, associated with an outcome. Recipes can be assessed based on their consistency,
coverage, unique coverage, and their degree of overlap to get a sense of the most dominant recipes
(Ragin 2008). One of the key advantages of QCA is that it allows researchers to examine multi-way
conjunctions and multiple “recipes,” to use Ragin’s (1987, 2000, 2008) term, that give rise to some
outcome. Ragin (2000, 2008) has developed useful descriptive measures for evaluating the utility
of the different possible recipes. Eliason and Stryker (2009) establish a firm inferential foundation
for Neyman-Pearson style tests involving (conjunctions of) factors and hypotheses of necessary and
sufficient causal relations. These tests are based on measurement variability and are especially useful
for fsQCA analysis, given that fsSQCA is especially sensitive to simple additive variation in the fuzzy-
set scores that are, in turn, critical to the analysis itself. Some recent applications of QCA and fsQCA
include an examination of the determinants of poor employment performance in 14 countries over
time (Epstein et al. 2008), a study of the emotional consequences of interactive service work (Grant
et al. 2009), and an examination of postcolonial development in Latin American countries (Mahoney
2003).

While Ragin (2000, 2008) has made substantial progress on Mill’s original methods, the flaws
residing in the underlying logic girding this approach, constant conjunction, still pertain to QCA
and fsQCA. Recall that Mill (1882) realized that constant conjunction methods need to be combined
with experimental design-based methods to assess cause and effect. This suggests that an analysis
combining QCA/fsQCA methods with current potential outcomes methods would be a fruitful avenue
to explore in assessing causal relations in nonexperimental data. The work on female labor force par-
ticipation by Eliason et al. (2008) and Stryker et al. (201 1b) provides a preliminary framework for this.

At the same time that Mill was developing his ideas on causal relations, other scholars were arguing
that he was taking the business of empirically uncovering causes and effects a bit too far. This brings us
back to Karl Pearson, who wrote in The Grammar of Science (1900), like Hume, that an unconditional
knowledge of causes and effects was inherently beyond human understanding. Rather, all we can
experience, and all that we can understand from science, is statistical variation, association, and
empirically “the machinery of [our] perceptions” to put it in Pearson’s words (1900: 115). That is, all
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we can perceive in empirical observation is constant conjunction and our own perceptions of constant
conjunction. Cause, either as production or counterfactually construed, was simply not possible for
the human activity called science to apprehend as true empirically grounded knowledge. To Pearson,
such “routine of perception” (1900: 115) was equivalent to causation, and nothing more could be
said about it. It was not possible to understand empirically anything like necessary causation, thus
scuttling claims that current QCA and fsQCA researchers strive to make about necessary conditions
for an outcome. Moreover, Pearson argued that the best we can do in predicting how future events
follow from observing past sequences is to assess their probability distributions:

That a certain sequence has occurred and recurred in the past is a matter of experience to which we give
expression in the concept causation; that it will continue to recur in the future is a matter of belief to which
we give expression in the concept probability. Science in no case can demonstrate any inherent necessity in a
sequence, nor prove with absolute certainty that it must be repeated. Science for the past is a description, for
the future a belief; it is not, and has never been, an explanation, if by this word is meant that science shows the
necessity of any sequence of perceptions. (Pearson 1900: 113)

This statement in itself is interesting coming from Pearson, whose product moment correlation and
related covariances are the foundation for much of modern-day structural equation modeling, to which
we now turn.

The Path to Structural Equation Modeling

The path to structural equation models (SEM) can also be traced (at least) back to Mill and the method
of concomitant variation (Mill 1882). The method of concomitant variation is based on two factors
varying together, that is, based on two factors having a nonzero correlation. For Mill, the method
of concomitant variation was useful for establishing what he called permanent causes, causes that
are “indestructible natural agents, which it is impossible either to exclude or to isolate; which we
can neither hinder from being present, nor contrive that they shall be present alone” (1882: 285). Of
course, this flies in the face of the logic of the standard experimental design which is based on the
ability to manipulate treatments to assess their causal relationship with an outcome of interest. We
will elaborate on this in greater detail in the following section.

Here, what is important for our story is that Emile Durkheim — widely recognized as one of the
founders of modern-day sociology — heralded this method as the method on which to base social
scientific empirical investigation involving cause and effect (1938). In fact, Durkheim dismissed the
methods of agreement and difference as untenable in the social sciences and pressed beyond Mill
in arguing that the social sciences must adhere to the principle that “a given effect has always a
single corresponding cause” (1938: 128) (emphasis in the original). Today this argument is far from
current thinking about the complexity of causal relations. However, Durkheim cleverly sidestepped
the complexity issue by arguing that if a multitude of (conjunctions of) factors were necessary to
produce a given effect, then it is a plethora of different effects, rather than a conjunction of causal
factors, which our measurement instruments are ill equipped to distinguish. It was through Durkheim’s
influence on the social sciences and his advocacy for correlation-based causal analysis that this
method became firmly established in the social sciences. As we saw in the previous section, this
was at the opposition of Karl Pearson himself, who derived the modern-day sample estimates for the
very (partial) correlations that are the foundation of structural equation modeling. This foundation, in
turn, is based almost entirely on Mill’s concomitant variation among factors.2 However, the issue of

2Tt may be useful to note here that we do not make a strong distinction between the use of the words factors and
variables. In fact, insisting on a strong distinction between these two in practice is often fruitless and nearly always
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spuriousness, that one unobserved factor may be the cause of two observed factors with concomitant
variation (i.e., nonzero correlation), threatened to derail this approach before it even had a chance to
blossom.

Concerns of spuriousness were clearly understood by Durkheim but were not fully integrated into
his assessments of causal relations (1938). It was also clear to him that it took a combination of
imagination and logic to extract the notion of cause from the data, which he understood as knowing
how one factor produced another (1938). However, it wasn’t until George Udny Yule (1896) extended
Karl Pearson’s (1900) work on the so-called triple correlation and then Herbert Simon’s (1954)
elaboration on Yule (1932) that the issue of causal relations in the face of possible spuriousness was
tackled from this standpoint.

What Yule (1896, 1932), and then Simon (1954), did was to show how patterns of correlations with
three factors would be observed under different spurious and causal relations. This was nothing short
of revolutionary at the time, giving researchers a powerful tool to eliminate specific factors either as
the source of spuriousness or as potential causal factors. This, in turn, became one of the bases for
rendering structural equation models as so-called structural causal models in practice. However, the
elimination idea quickly got lost in practice, as many researchers, wittingly or unwittingly, used Yule’s
and Simon’s results to show (instead of eliminate) the existence of a causal relation as originally
described by Mill and then Durkheim, when in fact the method is not capable of estimating causal
effects, except under very stringent assumptions that are almost never met (Sobel 1995, 1996).

The breakthrough in turning correlational analysis into the forerunner of SEMs — path models —
was Sewall Wright’s (1920) analysis of the bone sizes of rabbits (Bollen 1989; Matsueda 2012). This
analysis was the first known attempt to translate partial correlations into path coefficients with an
accompanying causal interpretation. One of the key advantages of path analysis that it shares with
QCA is that it allows for multiple paths among observed variables toward some outcome or outcomes
of interest. As a result, path analysis is capable of modeling hypothesized routes to the same outcome,
assessing reciprocal effects, and decomposing the total effect of a hypothesized causal factor into
direct and indirect components. It wasn’t until the 1960s that sociologists interested in stratification,
including Otis Dudley Duncan (1966), Hubert Blalock (1961a, b, 1962, 1969), and William Sewell
and Robert Hauser (1975), began applying path analytic techniques to understand intergenerational
influences on career attainments. One classic example by Duncan et al. (1968) used path analysis to
model peer influences on high school student aspirations. Using path models, these researchers were
able to show that a student’s occupational aspirations intervened in the effect of socioeconomic status
on educational aspirations. A reciprocal relationship between a student’s aspirations and his peers’
aspirations was also shown.

Though scientists in other fields largely ignored Wright’s developments until the 1960s, economists
like Haavelmo (1943) were advancing simultaneous equation models, while psychologists were
building upon Spearman’s (1904) work on factor analysis. These developments in economics and
psychology were joined with path analysis by Joreskog (1973), Keesling (1972), and Wiley (1973),
who developed a coherent analytic framework, the general model for structural equations with latent
variables. This general model has two parts, (1) a structural part that shows the relationships among
variables as in path analysis, but here the variables can be latent (unobserved), and (2) a measurement
part that delineates how the latent variables are measured by observed indicators, as in factor analysis.
Joreskog and Sorbom’s LISREL computer program (2001) helped popularize these models, to such
an extent that they were often referred to as LISREL models.

misleading. Here, each can be continuous or discrete and in the most general sense refers to things that can vary or be
manipulated by a researcher. Thus, unless otherwise noted, we use variables and factors interchangeably throughout the
text. However, we do reserve the term random variable for something more specific as is often the case in the statistical
literature.
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The draw of SEM is threefold. First, structural equation modeling is ideal for understanding causal
chains — for example, how antecedent and intervening variables affect an outcome of interest. Of
course, variables in separate parts of the model can be measured at different time points, but even
with cross-sectional data, the analyst can assess a variable’s direct effect on an outcome as well as
its indirect effect through an intervening variable. Erin Leahey takes this approach to assess how
the extent to which scientists specialize (a theorized mechanism) helps explain gender differences
in productivity (2006) and earnings (2007). Second, structural equation modeling distinguishes itself
by allowing measurement models (which, like factor analysis, link latent variables with observed
indicators) and structural/causal models to be combined into a single estimable model. Researchers
no longer need to assume that their key variables are perfectly measured (an assumption that is also
necessary when an index is created from multiple variables), and measurement error itself can be
modeled and incorporated into estimation of “causal” effects. This is exemplified in Bollen and
Paxton (1998) in their study of bias in subjective ratings. In addition to these two distinguishing
characteristics, SEM also has the capacity to model multiple outcomes simultaneously, including
reciprocal effects. Structural equation models can, given enough observed variables (and thus sample
moments), accomplish all of these things (mechanisms, decomposition of total effects into direct and
indirect effects, multiple outcomes, and reciprocal effects) in one equation.

Given these advantages, it is no surprise that structural equation models (SEM) became a core
method for assessing hypothesized causal relationships in the social sciences. Bollen, largely through
his 1989 book Structural Equations with Latent Variables, helped reinvigorate SEM and its compo-
nents, path analysis and factor analysis. Bollen also emphasized the importance of theory to model
building, which characterizes SEM’s deductive and confirmatory approach to understanding causal
relationships (Bollen 1989). SEM has its own journal (Structural Equation Modeling, first published
in 1994) and an active interdisciplinary research community and discussion forum (SEMNET).
Recent advances in SEM, outlined by Matsueda (2012), include the development of distribution-free
estimators (Browne 1984), models for categorical outcomes (Muthen 1984), latent growth models
(Bollen and Curran 2006), and Bayesian approaches (Raftery 1993). Chapter 12 in this volume, by
Wang and Sobel, proposes a way to integrate direct and indirect effects into the potential outcomes
approach, which we discuss in the next section.

Although Wright (1934: 193) cautioned that “the method of path coefficients is not intended
to accomplish the impossible task of deducing causal relations from the values of correlation
coefficients,” SEM came to be seen as synonymous with causal modeling, and critics and their
cautionary tales soon surfaced. Freedman (1987) argued that causal analysis and structural equation
models were incompatible, and he discouraged causal interpretations based on SEMs. Lest researchers
forget the “pervasive presence of the assumption of causality in structural equations models,” Bollen
(1989: 40) devoted a chapter to causal assumptions and their meanings and reminded us of the limits
of causal modeling. Other SEM scholars, including Muthen (1987) and Kelloway (1998), advised
steering clear of causal language altogether. And Sobel (1995, 1996) shows explicitly why, in the
context of a potential outcomes framework, coefficients from structural equation models do not
relate to any identified causal effect, except under very stringent conditions that almost never hold
in practice. Bollen and Pearl (Chap. 15, this volume) address eight myths about causality and SEM.

By moving away from untestable assumptions, Judea Pearl claims to lay most of these concerns to
rest. In his book (2000, 2009b) and related articles (Pearl 2009a, 2010), Pearl outlines what he calls a
general theory of causation — the structural causal model (SCM) — which, he argues, subsumes most
other approaches to causality: “most if not all aspects of causation can be formulated, analyzed, and
compared” within SCM (Pearl 2009a: 98). Pearl recognizes that causal assumptions are necessary
to substantiate causal conclusions, and while such assumptions can rarely be tested individually,
when joined together, they have testable implications (2009a). He also moves away from linearity
restrictions toward nonparametric models and graphs. By introducing new notation to represent
logical possibilities (e.g., the “do” operator) and capitalizing on graphic modeling, Pearl shows that
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a coefficient estimated via SEM (but not linear regression) is indeed an effect coefficient (2009a).
For research questions that do not lend themselves to experimental testing, like the majority of
sociological research questions, Pearl relies on structural equation modeling. SEM provides the formal
machinery necessary to analyze counterfactual relationships (2009a): in essence, it involves replacing
the equation for the key explanatory variable with a constant value. Pearl formulates the counterfactual
foundations of SEMs (2009a) and argues that this structural definition of counterfactuals also serves
as the foundation for the Neyman-Rubin potential outcomes approach (2009a). In essence, Pearl’s
unifying theory combines SEM, graphical models developed for causal analysis, and the potential
outcomes framework (Pearl 2000, 2009b), the approach we turn to next.

Randomization, Experiments, and the Potential Outcomes Framework

While structural equation models (SEMs) have been extremely useful in the social sciences, they have
never been able to fully reconcile the core notion of Yule, Simon, and others that an analysis based
on partial correlations, the heart of SEMs, can only eliminate factors from the list of hypothesized
causes and can never prove a causal relation should one exist for some process under study. This is
in large part because of the spuriousness problem. SEMs in practice can rarely eliminate all possible
sources of spuriousness, except under strict constraints that almost never hold for nonexperimental
data (Sobel 1995, 1996).

As Albion Small, John Stuart Mill, Emile Durkheim, George Udny Yule, Karl Pearson, and their
contemporaries already knew, the specter of spuriousness could only be eliminated either under
randomization of observations to levels (categories) of a hypothesized causal factor (e.g., treatment vs.
control) or under a method that somehow mimics that randomization process. Physical randomization
accomplishes this by rendering cases statistically equivalent in different levels of the hypothesized
causal factor, except for those different levels whatever they may be. It is this statistical equivalence
that allows researchers to infer counterfactual causal relations from results of experiments.

The work on what would become known as the potential outcomes framework, where randomiza-
tion and counterfactuals take center stage, can once again be traced back to John Stuart Mill (1882).
Mill clearly understood the importance of randomization and experimental designs. And at the time,
experimental designs were thought to be the only route to truly randomizing observations across what
are known as treatment levels. However, at the time Mill was writing, it was widely accepted that, for
the social sciences, randomized experiments were nearly impossible to carry out.

Clearly, then, social scientists were grappling with two competing goals. Whenever possible,
experiments should be employed. However, experiments are rarely possible in the social sciences,
thus the hunt for a method that takes the core idea of the experimental design, randomization, and
marries it with the most common data available to social scientists, nonexperimental observations.

This in fact was the motivation behind Mill’s methods, especially the method of difference (Mill
1882). But the underlying foundation of these methods, as well as those of their contemporary
offspring (Ragin 1987, 2000, 2008), remains lacking. Once again, these methods were based on ideas
of eliminating possible causal factors and were incapable by themselves of revealing cause and effect.
It wasn’t until counterfactuals were at least partially understood that the theoretical foundation for
methods that mimicked the experimental design could be constructed — which in fact could reveal
specific types of counterfactual causal effects — but were instead fashioned for observational data. As
early as the late 1800s, researchers, such as Charles Peirce and Joseph Jastrow (1884), were already
developing an in-depth understanding of the benefits of randomized experiments and accompanying
theories of statistical inference. However, it wasn’t until the work of Jerzy Neyman (1923) that the
results from experiments were explicitly connected to counterfactuals and what would later become
known as the potential outcomes framework (Rubin 2005).
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The potential outcomes framework is based entirely on the theoretical and philosophical founda-
tions of counterfactual causal analysis (rather than regularity-based, or constant conjunction, causal
analysis). The theoretical statement on counterfactual causal analysis is articulated by the philosopher
David Lewis. Lewis (1973, 2000) clearly shows, as Mill all along suspected, that a causal analysis
can never succeed on a constant conjunction analysis alone. What was needed instead was an analysis
based on what would have happened had a case (person, object, etc.) experienced something other
than it did, the counterfactual. Combining the set of observed factual and unobserved counterfactual
experience(s) or condition(s) gives rise to a set of potential outcomes. The condition-outcome pair
in fact experienced by a case and observed by the researcher is of course the factual pair. All
other condition-outcome pairs not experienced by a case and inherently unobservable are considered
counterfactuals. Understanding this distinction is critical to understanding any causal analysis based
on potential outcomes.

The contemporary history of what is known as the potential outcomes framework is ripe with
competition and rather interesting backstories. But these, of course, are for another time. Here we
briefly discuss three primary approaches within the potential outcomes framework: Donald Rubin’s
causal model based on experimental designs (Holland 1986; Rubin 1974, 1977, 1978, 2005), James
Heckman’s econometric approach based on control functions (Heckman 2005), and instrumental
variable-style approaches (Angrist 1990; Angrist et al. 1996). More detailed elaborations of each
of these, as well as others, can be found in a number of the chapters in this volume including Brand
and Thomas (Chap. 11), Wang and Sobel (Chap. 12), Hong and Raudenbush (Chap. 16), and Gangl
(Chap. 18).

As noted above, the underlying logic of the potential outcomes framework is a straightforward
application of Lewis’ (1973, 2000) counterfactual approach to assessing causal effects. The fact
that we can only observe the outcome for what actually occurred and not any of the counterfactual
condition-outcome pairs for a single case is known as the fundamental problem of causal inference
(Holland 1986). While we cannot estimate the causal effect for a single case, from a sample of cases,
under varying identifying assumptions, we can estimate (aspects of) the counterfactual distributions,
along with the factual distributions. Comparison of these distributions then gives rise to different kinds
of counterfactual causal effects and inferences on those effects to the samples’ populations. The most
common by far are those involving the mean values (averages) for these distributions. However, any
component of the distributions (e.g., variances, n-tiles, etc.) can be harnessed to assess various types
of causal effects.

Donald Rubin’s Counterfactual Causal Model

Originally, Rubin’s causal model is founded on the problem of nonrandom assignment-to-treatment
levels (i.e., levels of the hypothesized causal effect) deriving from noncompliance to the assignment-
to-treatment mechanism in experimental designs (Holland 1986). In the 1970s and 1980s, the model
had been extended beyond experimental data to nonexperimental observational data (Rubin 1974,
1977, 1978, 1981, 1986). Still, the primary perspective of Rubin’s causal model is from an experiment
contaminated by a nonrandom assignment-to-treatment mechanism.

To facilitate comparison to James Heckman’s econometric control function model, it is useful
to consider the general form of Rubin’s approach as modeling two processes — one involving
the distribution(s) of the outcome(s) of interest and another involving the assignment-to-treatment
mechanism(s). The simplest form of the outcome distribution(s) model contains only an indicator for
treatment status and some sort of random error (usually normally distributed, but not necessarily so).
In fact, many of the estimators for the so-called average treatment effect (ATE) — the expected value
of the difference between the treated and non-treated outcome random variables — are obtained
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without explicit reference to an underlying statistical equation, though one is certainly there. The
same holds for another commonly estimated treatment effect, the average treatment effect on the
treated (ATT). These include the popular matching estimators such as stratification, nearest neighbor,
radius, and kernel-matching estimators (Becker and Ichino 2002). More complex specifications for the
outcome distribution(s) are also possible including models with covariates, higher order interactions,
and nonlinear effects (see, e.g., Robins et al. (2000)). However, these more complex specifications
necessarily change the meaning of the identified and estimated causal effect. Discussion of this
important issue is, however, beyond the scope of this chapter.

The model for the assignment-to-treatment mechanism often takes the form of a linear probability,
logit, or probit model, or some other model for discrete outcomes. In its simplest form, this model aims
to obtain a sample of cases not experiencing the so-called treatment but that are statistically equivalent
in other ways to cases that did in fact experience treatment. A case in the non-treated sample is then
matched to a case in the treated sample based on its proximity to the treated case as measured by
some function of the probability of experiencing treatment, known generally as the propensity score.
This creates a factual-counterfactual matched sample from which to estimate treatment effects such
as those mentioned above. One of the many breakthroughs in this approach is the theorem showing
that matching on the propensity score is as good as matching on configurations of all independent
variables included in the matching equation (Rosenbaum and Rubin 1983). The importance of this
theorem cannot be overstated for this type of analysis, as it allows us to escape the so-called curse of
dimensionality that gives rise to sparse data when matching on all independent variables is required.’

Estimated causal (treatment) effects from matched samples of this nature are good insofar as
specific assumptions hold for the studied process. It is here that we find (often considerable)
controversy in the literature. One of the most important assumptions is the stable unit treatment
value assumption or SUTVA. SUTVA simply states that there is no contamination, no information
shared, between treated and untreated matched samples on the assignment-to-treatment mechanism,
the treatment status, and the outcome distributions. All this does in practice is ensure that each case can
be considered uncorrelated on these factors from every other case. While philosophers and some other
scholars tend to gnash their teeth on SUTVA, from a random variable perspective, this assumption is
related to the nearly universal independent and identically distributed (IID) observation assumption
necessary for many forms of maximum likelihood, least squares, and Bayes estimators. The primary
exception to the IID assumption, and thus SUTVA, is when observations are clearly correlated in time
(as in time-series data), space (as in spatially correlated data), or by some other mechanism (e.g., by
sampling cases based on matched pairs such as data on dual-career couples). To be clear, a violation
of this assumption does not constitute the death knell for the Rubin’s causal model but only that these
correlations would require modification of the functions (likelihood, priors, posteriors, etc.) used to
obtain estimators for the various treatment effects of interest to account for the nature of the violation.

One of the other more important assumptions with Rubin’s causal model is that of matching on
observables. In other words, the model assumes that the researcher has as much information on the
measured variables in the assignment-to-treatment model as do the cases or as much information
on those measured variables as is necessary to accurately reflect the nonrandom process matching
cases to levels of the hypothesized causal effect. There are other assumptions underlying Rubin’s
causal model, but these are covered well in other chapters in this volume (Chap. 16 by Hong and
Raudenbush, this volume), as well as elsewhere (Morgan and Winship 2007; Winship and Morgan
1999).

3See Rosenbaum and Rubin (1983) for further details on this theorem and its utility.
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James Heckman’s Counterfactual Causal Model

Whether the matching-on-observables assumption is reasonable depends of course on the researcher’s
knowledge of the nonrandom process sorting cases into levels of the hypothesized causal effect (or
effects). It is on this important point that we find one of the main differences between Rubin’s causal
model and James Heckman’s econometric control function approach to the counterfactual causal
model (Heckman 2005; Sobel 2005). This assumption also relates to the assumption of exogeneity
of the nonrandom sorting process relative to the outcome, which Rubin’s model embraces and
Heckman’s model rejects (or at least subjects to empirical testing). Importantly, this assumption can
be understood from the standpoint of whether the assignment-to-treatment mechanism involves some
sort of self-selection whereby cases are allowed to select into, or otherwise become matched to, levels
of the hypothesized causal effect with knowledge of the expected outcome (gain or loss). This would
be the case, for example, with actors attempting to maximize (or in general change) their position on
the outcome distribution, as with those entering job training programs in order to maximize expected
market wages. When the matching or sorting process is subject to these types of mechanisms, the
exogeneity assumption is necessarily invalid which, in turn, renders Rubin’s causal model invalid as
a model of that process.

Heckman’s control function approach to causal modeling, on the other hand, “explicitly models
the relationship between the unobservables in outcome equations and selection equations to identify
causal models from data and to clarify the nature of the identifying assumptions” (Heckman 2005: 6).
This is most often achieved by modeling directly the correlated errors in the two main equations
mentioned above. By doing so, Heckman’s method accounts for the violation of the exogeneity
assumption embedded in Rubin’s causal model.

Accounting for endogeneity in the way that Heckman’s model demands, however, is not costless.
As any practitioner of this method will tell you, sample estimates of the causal effects — ATE, ATT, or
one of the many other treatment effects often obtained in these models — are very sensitive to choice
of model specification, as well as the distributional assumptions for the unobservables. While SUTVA
is an important part of the standard Heckman model, the so-called exclusion restriction assumption
common to instrumental variable estimators (discussed below and elsewhere in this volume) is
extremely important in this context. The exclusion restriction assumption states that the impact of at
least one factor (the exclusion-restricted variable) on the outcome is restricted to be indirect through
the matching equation (and thus the propensity toward levels of the hypothesized causal effect) and not
directly on the outcome itself. This places estimators from Heckman’s model highly dependent on, and
identified through, the specification of the exclusion restriction. The insightful reader will recognize
this as being remarkably close to the identifying marks of the instrumental variable approach and the
so-called local average treatment effect, to which we now turn.

Instrumental Variables and Related Methods

Instrumental variable estimators were first developed by biologists and economists analyzing equi-
librium price determination in market exchange in the 1920s as detailed by Goldberger (1972),
Bowden and Turkington (1984), and Heckman (2000). Economists used these techniques to “estimate
simultaneous equation models with jointly determined supply and demand equations from a set of
competitive markets” (Hood and Koopmans 1953; Winship and Morgan 1999: 680). The development
of instrumental variables shares some origins with the structural equation model literature, for
example, see Wright (1921, 1925) and Duncan (1975). Instrumental variable approaches have become
widespread in economics and are increasingly being employed within sociological research as a way
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to deal with nonrandom selection. For example, instrumental variables are used by Lizardo (2006)
to assess how cultural tastes shape personal networks and by Angrist (1990) to evaluate the effect of
veteran status on civilian earnings in the 1980s. Eliason et al. (2008) and Stryker et al. (2011b) use the
Angrist et al.”s (1996) approach to assess the effects of welfare state programs on female labor force
participation.

Instrumental variables (IVs) are variables (or sets of variables) that affect assignment or selection
into levels of the hypothesized causal effect but do not have direct effects on the outcome. These
variables are used to identify different types of causal effects. Both the strength and weakness of the
IV approach come from this exclusion restriction assumption. The exclusion restriction is a strength
in that, when this holds with a strong instrument (i.e., one that has a strong effect on sorting cases
into levels of the hypothesized causal effect), it aids in identifying important causal effects. This
assumption is also a fundamental weakness as it is difficult to test. Moreover, a weak instrument
causes more problems than it solves in standard IV analysis.

However, the Angrist et al. (1996) approach to obtaining instrumental variable estimates is more
informative than most, if not all, competing approaches. In this framework the population is divided
into four latent subpopulations: compliers, defiers, always-takers, and never-takers. Recall that an
instrument is a factor that influences a case to select or be matched into a level of the hypothesized
causal effect (e.g., a parent’s education as an instrument influencing a child’s decision to obtain
a college degree). Compliers are those who respond to the instrument in the way expected by the
researcher (if a parent has a college degree, then the child is encouraged to obtain a college degree).
Defiers are those who respond in the opposite direction as compliers (if a parent has a college degree,
then the child is encouraged to not obtain a college degree). Always-takers are those who always
take the so-called treatment regardless of the instrument (the level of the causal effect typically of
most interest, the child’s college degree for example). Never-takers are those who never take the
so-called treatment regardless of the instrument (the child not obtaining a college degree). In the
Angrist-Imbens-Rubin approach, and under various assumptions, a Bayes estimator is used to obtain
posterior distributions on (1) the proportion of compliers, defiers, always-takers, and never-takers in
the population, (2) the average treatment effect for compliers (CACE) under very general conditions
(and excluding the exclusion restriction assumption), (3) the local average treatment effect (LATE)
when exclusion restrictions hold for compliers, (4) a test assessing whether exclusion restrictions hold
for non-compliers, and (5) various other quantities of interest such as intention-to-treat effects (the
direct effect of the instrument on the outcome for non-compliers). As mentioned above, Eliason et al.
(2008) and Stryker et al. (2011b) use this informative approach to estimate these various quantities
of interest to assess the effects of welfare state programs on female labor force participation. They
also show the additional assumptions necessary to combine this method with Ragin’s fuzzy-set QCA
methods for cross-national time-series data that necessarily violates the IID and SUTVA assumption.
This approach opens up tremendous opportunities for scholars interested in macro-social processes.

Max Weber and the Heart of Causal Complexity

One of the most common criticisms of any of these potential outcomes approaches is that, by
embracing the experimental design as, more or less, the gold standard, empirical methods borne out of
this approach cannot easily account for causal complexity. While this critique is often overplayed by
many critics in a rush to discredit statistical analyses in general, it is nonetheless the case in practice
that the potential outcomes framework tends to focus the researcher on one or a handful of causal
effects at best, though there is nothing in the framework that necessarily restricts the analysis in such
a way.
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To better understand these critiques, we once again return the literature of the late 1800s and early
1900s. But this time, Max Weber, rather than John Stuart Mill, takes center stage. No chapter on the
history of causal analysis in the social sciences would be complete without a discussion of Weber’s
remarkable insights on the subject. As it turns out, Weber had already worried and written about nearly
all of the current-day concerns — constant conjunctions, path-dependent processes, counterfactuals,
potential outcomes, probabilistic vs. deterministic causation, inferring off the support of the data, and
so on. One of Weber’s main concerns, again a contemporary concern especially where science and
law meet, is deriving for a single case causal effects which are based on general (theoretical) social
science knowledge. So, while rarely cited as such, to give Weber his due is to recognize him as one of
the fathers of modern-day causal analysis, from almost any current sense of the term. There is almost
nothing in the current debates that Weber did not touch on in some meaningful way. As a result,
much can be learned by a (re)reading of his work in the context of current debates on causal analysis,
especially when paired with today’s understanding of complex systems and corresponding computer
power. It is not an understatement to suggest that there is a goldmine of knowledge in Weber’s writings
waiting to be tapped from the context of current perspectives and analytic capacity.*

To better understand Weber’s work on causal analyses, however, it is first instructive to understand
the work of Johannes von Kries in the late 1800s. Von Kries was also concerned with causal analysis
as could be discerned in a single case (Ringer 1997, 2002; von Kries 1888). His ideas were firmly
embedded in the language of counterfactuals, probabilities, and sequences of events. So while his,
and eventually Weber’s, idea of cause and effect is founded in part on conjoined observations
mapping out a sequence of events (constant conjunction over time if you will), their causal analysis
involved thought experiments putting together the observed sequence of events with a hypothesized
adequate cause, a counterfactual based on Weber’s notion of ideal types, and the comparison of
probabilities of at least two discrete outcomes — (1) one with the observed sequence of events,
including the hypothesized adequate cause, and (2) another with the hypothesized observed adequate
cause transformed into its ideal type, rendering the unobserved counterfactual sequence of events
and outcome upon which to compare the observed sequence. Von Kries and Weber had all of the
ingredients of a potential outcomes framework, not fashioned from an experimental design but rather
fashioned for a single case unfolding over time.

Central to this idea were the concepts of (1) adequate causation, (2) ideal types, and (3) comparison
of probabilities between (among) counterfactuals and the observed sequence of events. Adequate
causation, at first, appears similar to Hume’s understanding of sufficient causation. However, an
adequate cause, to von Kries and to Weber, was one based on probabilistic, not deterministic,
causation. Building on von Kries, Weber’s conceptualization of an adequate cause is one that,
embedded in a nexus of conditions prior to some specified outcome, increases the probability that
that outcome would happen, compared to the probability that the very same outcome would have
happened had the hypothesized adequate cause been replaced by a well-defined counterfactual based
on a well-defined ideal type constructed by the researcher (Ringer 1997, 2002). Importantly, the ideal
type, to Weber, was the defined counterfactual against which to judge factual events. Additionally,
the ideal type was defined as what the researcher — not the actor — expected from a rational actor to
affect a specified outcome to a high degree of probability (Ringer 1997, 2002). This, in turn, requires
case-specific knowledge to the point where the researcher understands what would have maximized
the likelihood of the outcome under study.

One fruitful avenue for well-defining the ideal-typical counterfactual can be found in Stryker’s
strategic narrative analysis (Pedriana and Stryker 2004; Stryker 1989, 1990, 1996; Stryker et al.
2011a). In strategic narrative, the empirical observation — a (collection of) narrative(s) of some
sequence of events — is anomalous relative to that expected under a given theory for which the
observation is a case within the scope (Walker and Cohen 1985) of the theory. The ideal-typical

4See Ringer’s (2002) insightful discussion of Weber’s contributions to causal analysis.
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counterfactual in strategic narrative is the way the sequence of events — the empirical case — should
have played out under the cause-effect structure predicted by the theory. The goal then is to understand
why the case diverged from this ideal-typical counterfactual expected under the theory. Importantly,
this is a theory-building — rather than theory-testing — method employing Weber’s conceptualization
of causal analysis and has been quite successful in that regard (Pedriana and Stryker 2004; Stryker
1989, 1990; Stryker et al. 2011a).

Still, Stryker’s tight-knit strategic narrative approach does not offer a method for calculating
comparative probabilities for the factual and counterfactual observations. Weber himself struggled
with how to obtain these probabilities in his causal analysis, eventually arguing that they were
incalculable and at best doomed to the imprecision of a subjective ordinal construct (subjective, i.e.,
relative to the researcher’s viewpoint, which Weber considered objective) . Nevertheless, given current
advances and capacities, there is nothing in Weber’s causal analysis, or in Stryker’s strategic narrative,
that would prohibit the thoughtful and replicable calculation and comparison of these probabilities.
This is especially so when one considers the problem from the standpoint of Bayesian priors and
posteriors and their relative comparisons using measures such as Raftery’s BIC (1986, 1995) modified
to suit this situation. In fact, for all future causal analyses and especially for case-based analyses in
the social sciences, we see tremendous potential in combining these causal analyses with Bayesian
probability calculations and comparative measures. It is unfortunate that current curriculums and
divisions in the social sciences, which often pit case-based against statistical research and ignore
Bayesian approaches, make this potentially fruitful synthesis all the more difficult in the practice of
current social science research.

The Future of Causal Analysis in the Social Sciences

It should be clear based on the historical narrative above that the debates over these analyses are likely
here to stay. We have been debating key components of these issues for well over a century and a
half. And, the last three decades have seen tremendous progress in moving the debates into practical
applications and toward answering important theoretical and policy questions (for examples see any
of the recent empirical works cited above and the chapters in this volume).

Our aim in this chapter has been twofold: first, to acquaint the reader with some of the main
approaches to causal analysis in the social sciences and, second, to outline some of the major historical
developments within these approaches. With this in mind, we outlined key developments in the causal
complexity, path models, and potential outcomes approaches to causal analysis. Our discussion was
necessarily selective; for a discussion of additional methods, we suggest Winship and Morgan (1999),
Gangl (2010), and Morgan and Winship (2007) to name a few.

While it is always dangerous to enter into the business of predicting directions of such debates,
we see two avenues of advancement that have potential. First, we see potential in combining current
constant conjunction-based analyses, such as Ragin’s QCA and fsQCA (1987, 2000, 2008), with
current potential outcomes analyses (Heckman 2005; Rubin 1986, 2001, 2005). A combination of
these techniques would build on the strengths of both methods. First, it would utilize the ability of
QCA and fsQCA to cull patterns from data in a way that captures the complexity of factors working
in conjunction and identifies multiple recipes associated with a given outcome. Second, it would
incorporate that ability of the potential outcomes models to estimate causal effects for the various
factors illuminated by the QCA and fsQCA techniques. A fruitful approach for combining potential
outcomes models with fsQCA is outlined in Eliason et al. (2008) and Stryker et al. (2011b).’

3See Eliason and Stryker (2009) for the foundations of the fuzzy-set goodness-of-fit tests used by Eliason et al. (2008)
and Stryker et al. (2011b).
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A second avenue for further development is an extension of any or all of the three approaches
to better conceptualize and model time within a longitudinal framework. Time is critical to causal
analysis because of the necessity of time ordering when evaluating causal relationships and is therefore
a key component of many of these techniques. The approaches outlined here vary in respect to their
attention to time, specifically whether, when, and to what degree it comes into play. Structural equation
modeling and causal complexity can accommodate measurements taken at different times, but a
concern with time was not critical to their development or applications. Recent advances, however,
integrate time more explicitly. For example, within the structural equation modeling framework,
Bollen and Curran (2004) have developed latent growth curve modeling that models change over
time by allowing both the intercept and slope of a growth trajectory to be latent. Within the causal
complexity approach, time-sensitive QCA (TQCA) is being developed (Caren and Panofsky 2005;
Ragin and Strand 2005) but applications to date are limited. Time comes into play in the estimation
of potential outcomes models because of the necessity of the treatment occurring prior to the outcome
of interest and the instrumental variable(s) being measured prior to the treatment status. Firebaugh,
Warner, and Massoglia (Chap. 7, this volume) outline how fixed effects, random effects, and hybrid
models can be used to exploit longitudinal data in the study of causal effects.

These are just two of many potential avenues for advancement in causal inference in the social
sciences. Many other advances and potential advances in causal analysis are outlined in subsequent
chapters in this book in addition to those already mentioned. Harding and Seefeldt (Chap. 6, this
volume) outline the utility of mixed methods approaches to causal analysis and argue for the potential
utility of this approach for causal analysis. Brand and Thomas (Chap. 11, this volume) outline
potential approaches for assessing heterogeneous treatment effects. Knight and Winship (Chap. 14,
this volume) discuss an alternative to the experimental or quasi-experimental framework that focuses
on establishing evidence for mechanisms that link cause and effect. Others deal with nonlinear causal
analysis (Chap. 10 by Breen and Karlson, this volume), group differences in statistical analyses
(Chap. 9 by Liao, this volume), the partial identification of estimators (Chap. 18 by Gangl, this
volume), and social networks and causality (Chap. 17 by VanderWeele and An, this volume). We
think, upon reflection, that Albion Small and his contemporaries would find tremendous satisfaction
in current vibrant debates and fruitful future directions in causal analysis in the social sciences.
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Chapter 3
Types of Causes

Jeremy Freese and J. Alex Kevern

Abstract The complexity of actual cause and effect relationships in social life can lead quickly to
confused thinking and muddled discussions. Helpful here are distinctions that allow one to speak
about some causes as different from others. Our chapter describes several distinctions among causes
that we find especially useful for social science. First, taking a broad view of what “causes” are, we
discuss some issues concerning whether causes are manipulable or preventable. Then, we consider
the distinction between proximal and distal causes, connecting these to concepts of mediation and
indirect effects. Next, we propose ways that concepts related to the distinction between necessary
and sufficient causes in case-oriented research may be also useful for quantitative research on large
samples. Afterward, we discuss criteria for characterizing one cause as more important than another.
Finally, we describe ultimate and fundamental causes, which do not concern the relationship between
an explanatory variable and outcome so much as the causes of properties of the systems in which more
concrete causal relationships exist.

The arrow salad: we have all seen examples before, and many of us have made them. One begins with
the helpful convention of using boxes and arrows to specify consequential features of a system and
the causal relations between them. But once one starts working theoretically—that is, trying to depict
how we think some corner of human affairs might actually work—the boxes and arrows proliferate.
Single-headed arrows turn into bidirectional ones as we contemplate feedback effects. Boxes are
drawn within boxes and arrows collide with other arrows in our efforts to represent dimensionality
and synergy.

The result is mess. We are left with both a vague sense that “everything causes everything else”
and an anxious recognition that this revelation does little toward actually completing any research.

Social life comprises a series of nested complex systems—individual human organisms embedded
in families, networks, and workplaces—which in turn are all embedded in nations and eras. The
central trick of social inquiry is figuring out how to make orderly, accurate statements about these
systems in the face of their enormous complexity and our limited capacity both to measure and to
intervene. Social systems are dynamic, so an outcome of interest to one researcher figures as a central
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cause of another outcomes studied by someone else. A voluminous literature considers the causes of
differences in educational attainment, another voluminous literature considers the consequences of
differences in educational attainment, and each is part of what motivates the other.

Social science explanations entail statements of cause and effect. But, as arrow salads illustrate, the
actual cause-effect relationships in the world quickly overwhelm our everyday sense of something as
“a cause” of something else. Undisciplined thinking about causes leads quickly to muddled thinking,
people talking past one another, unproductive rehashing of first principles, and confused data analysis.
Meanwhile, the professional philosophical literature on causality is often surprisingly unhelpful:
the practical-minded researcher digs in looking for clarity and instead is soon invited to consider
examples of simultaneous assassination attempts or billiard balls being rolled into time machines. No
uncontroversial general philosophical account of causality exists, and social researchers have plenty
of our own work to do while we wait.

What does exist are ways of expanding our working vocabulary of causality by means of useful
distinctions among causes. Our chapter is motivated by a conviction that one can avoid some of
the confusion that results when thinking about complex, dynamic phenomena by better appreciating
differences among causes—ways that not all the arrows in a box-and-arrows diagram are alike. In this
chapter, we articulate a few of the most important distinctions among causes that have been drawn in
the social sciences and explain why we think these are especially useful to keep at hand.

Counterfactuals, Predictability, and Manipulation

Counterfactual dependence has become an essential part of the social science toolkit for thinking
about causality. X is counterfactually dependent on Y if ¥ would be different had X been different.
In the highly influential potential outcomes framework, one is invited to think about causal effects
in terms of differences in the outcome (Y) over different states of an explanatory variable (X), even
though only one state of X is observed for each case. For example, the effect of attending a private
school for unit i is the difference between achievement had i attended a private school and achievement
had i attended a public school, when only one of these potential outcomes was actually observed and
the defensibly estimating the other is the key matter of causal inference.

Equating causality with counterfactual dependence has important limits. As it turns out, philoso-
phers can make short work of any simple version of idea (see essays in Collins et al. 2004). We will
discuss this a bit more later, but part of the issue is that relations we recognize as causal combine
two notions that typically, but not always, go together: causes produce effects, and effects depend
on causes (Hall 2004). At the same time, it is important to keep in mind that the practical baseline
for social science work is not advanced philosophy but rather commonplace intuitions. And grafting
unsystematic commonsense intuitions about causality onto social science questions yields a mess.
That this is so is evident, for example, by the need for social scientists to make clear when they intend
to talk about causal effects, as if there is honestly any other kind of “effect.” From the baseline,
counterfactual thinking provides a significant cognitive upgrade for social scientists, even if later one
may regret its limitations.

Counterfactual thinking provides especial clarity for how causal relations stand beyond association
and beyond predictability. A nice foil here is provided by the concept of Granger causality in
economics. As articulated by Granger (1969), X Granger causes Y if a time series of X is useful
for predicting subsequent Y even after conditioning on preceding Y and preceding other variables Z,
with Granger providing specific tests of this conditional association. The advantage is full explicitness
about what one means when one asserts Granger causality. The key disadvantage is that Granger
causality achieves this transparency by reducing causality to usefulness for prediction, and, depending
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on what is outside one’s data, X can Granger cause Y even though both are actually caused—in the
sense of being counterfactually dependent—by something else. In other words, X can Granger cause
Y even if X does not produce Y and independent changes in X would not yield changes in Y. From
the counterfactual perspective, then, Granger causality is not a type of cause so much as not genuine
causality at all, but rather an admirably well-operationalized form of conditional association.

Counterfactualist thinking invites thinking in terms of actual and hypothetical manipulations.
This is congenial for social scientists, who are often interested in causes precisely so they can
propose and evaluate interventions that would change outcomes. A temptation here is to take this
a step further and make potential manipulability a criterion of causality. Holland touts a slogan
“NO CAUSATION WITHOUT MANIPULATION” (capitalization in original, 1986: 959). More
specifically, he recommends a distinction between causes and attributes, in which ‘“causes are
experiences that units undergo and not attributes that they possess” (2003: 8).

Holland (1986) cites the following as an example of the “confusion between attributes and
causes” that he regards as pervasive in social science: “scholastic achievement affects the choice
of secondary school” (p. 955). Holland argues that scholastic achievement is an attribute of the
individual and not a cause of school choice because he cannot conceive of how scholastic achievement
could be experimentally manipulated. Here, one might argue that this simply reflects a failure of
experimentalist imagination on Holland’s part (see also critique by Glymour 1986).

More fundamentally, though, one can also imagine several distinct interventions that are conse-
quential for school choice only through their effect on achievement, so without the vocabulary of
talking about achievement in a causal manner, one can misapprehend how these interventions are
actually working. Similarly, one may be interested in how different policies might affect school choice
by changing the strength of the counterfactually dependent relationship between achievement and
choice. In brief, events and attributes together provide the basic nodes of causal narratives—the verbs
and adjectives, as it were, with units serving as the nouns—and outcomes may be counterfactually
dependent on either. As Pearl (2009: 361) puts frankly, “Since Holland coined the phrase ... many
good ideas have been stifled or dismissed from causal analysis” (see also Chap. 15 by Bollen and
Pearl, this volume).

Alongside Holland’s distinction between causes and attributes, one also sees distinctions made
between “causes” and “enabling conditions,” or between “events” and “conditions,” where, in some
sense, only events are asserted to be causal. In practice, our sense is this is typically not worth the
argument, except in the need to be clear that one is not doing anything incoherent being interested
in using a vocabulary of cause and effect to talk about how outcomes can depend on attributes
or conditions and how contingent attributes and conditions can be involved in the production of
outcomes. Being mindful of the distinction between events and attributes or conditions is valuable
when constructing explanations, but restricting the use of “cause” to the former seems to us overly
restrictive in practice.

Of course, whether a cause can actually be manipulated is valuable for assessing the potential for
intervention. Epidemiology uses the concept of “preventable” causes of death to refer to those causes
that can be modified by behavioral changes or relatively straightforward interventions. For example,
Danaei et al. (2009) identifies the four leading preventable causes of death as smoking (~19% of all
2005 deaths), high blood pressure (~16%), overweight/obesity (~9), and physical inactivity (~8).
Key to note among these preventable causes of death is precisely that they are not the causes of death
that are listed as primary causes of death on a death certificate or on the leading causes of death list
(e.g., isochemical heart disease, cancer, and stroke). Rather, each of these preventable causes of death
is a manipulable behavior or attribute that is linked to multiple, more proximate causes of death. In
other words, whether and how causes can be manipulated is vital for policy, but recognizing this does
not require stipulating manipulability as a criterion of what can be called a cause.
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Causal Proximity

We can illustrate the basic issue of causal proximity with an example from Leahey (2007), who begins
by noting that, on average, female academics in many fields are paid less than men and also have lower
research productivity (Leahey 2007). Imagine if someone were to argue that the entire reason female
academics are paid less than men is that they are less productive. We might then diagram the proposed
relationship between gender (G), productivity (P), and earnings (E) like this:

G—P—FE

In this case, setting aside the above concern about attributes versus causes, both gender and
productivity may be properly characterized as causes of school achievement, but productivity is a
more proximal cause and gender is a more distal cause.! In other words, the cause of a cause of the
outcome is still a cause, just a more distal one.

Distance here is a matter of the length of the chain of more proximate causes mediating the
relationship between a cause and outcome. This is not some natural fact about the world but a matter
of the level and kind of causes we are considering. For instance, Leahey proposes that gender causes
differences in the degree of specialization by academics, and degree of specialization (S) enhances
productivity. She also posits that productivity differences cause differences in visibility (V) among
academics, and differences in visibility cause differences in earnings. The best-fitting model in her
analysis ends up as:

G—>S—-P—->V-—>E

Productivity is now a distal cause relative to the newly added construct of visibility, and gender is
now several variables distal from salary. We have not changed anything about the natural world in the
move from the first diagram to this one; what we have done is potentially elaborate our theoretical
understanding.

Indeed, progress in social science often proceeds precisely by establishing intervening relationships
that make a previously inadequately understood causal relationship more distal. This is perhaps
especially so in the study of social inequalities, as typically in this area the animating questions are
not “what causes Y?” but “why do groups X differ in Y?” thereby putting the questions of whether X
is really a cause of Y and, if so, why at the fore. Competing theories of why X causes Y often turn on
different implications about more proximate causes. An important criticism of the increased emphasis
on “natural experiments” and instrumental variable techniques in causal inference is precisely that
these techniques often offer little or no leverage for analyzing mediating relationships (Morgan and
Winship 2007).

In the earlier examples, proximate causes are depicted as strictly mediating more distal causes.
Cause Z strictly mediates the causal relationship between X and Y if the causal relationship is
exclusively due to X causing Z and Z causing Y. In terms of interventions, strict mediation means
that if we were able to intervene and stop the causal influence of either X on Z or Z on Y (e.g., by
equalizing Z on all cases), then interventions on X would no longer affect Y. In other words, if a
hypothetical intervention eliminated gender differences in specialization, then we would no longer
expect to observe gender differences in productivity, visibility, or earnings.

IThere is a specific sense to the legal use of the term “proximate cause” that we leave outside the scope of this chapter.
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Fig. 3.1 Proposed

theoretical model of \‘\’

relationship between
gender and earnings among l P V -

academics (Leahey 2007) S /

More commonly, social science proceeds by identifying more proximate causes that partially, rather
than strictly, mediate the relationship between a cause and an outcome. For example, the theoretical
model that Leahey proposes for the relationship between gender and earnings is actually as shown in
Fig. 3.1.

In this model, Leahey proposes that gender differences in specialization are part, but not all, of
why gender is causally related to productivity. Also, gender differences in productivity are part, but
not all, of why gender is causally related to salary differences. The hypothetical intervention that
eliminated in gender differences in specialization may be thus expected to reduce, but not eliminate,
gender differences in salary.

The most common language for talking about partially mediating relationships is that of direct,
indirect, and total causal effects. Leahey’s theoretical model also proposes that productivity partially,
but not strictly, mediates the relationship between specialization and visibility. The total causal effect
of specialization on visibility corresponds to the change in visibility which results from a change
in degree of specialization, regardless of the mechanisms involved. The total causal effect can then
be decomposed into indirect effect(s) via specific, partially mediating, proximate cause(s), and the
remaining direct effect.

The indirect effect of specialization on visibility here is the effect changes in specialization would
have if the only way specialization affected visibility was through productivity. This is a tricky concept
for the counterfactual framework, and Pearl (2009: 132) calls the indirect effect “a concept shrouded in
controversy and mystery.” His solution is to consider indirect effects as a quantity that depends on two
separate counterfactuals. First, one estimates what values of mediator Z we would have observed under
counterfactual values of X. Then, we estimate what values of outcome Y we would have observed if X
was held to its actual values but Z was changed to their estimated values from the first counterfactual.

The direct effect of specialization on visibility is simpler: it is the effect changes in specialization
would have if those changes were somehow blocked from having any influence on productivity. An
easy way to conceptualize this in counterfactual terms is to imagine a joint intervention in which
values of X are changed but Z is artificially held constant.

What is crucial to keep in mind in such analyses is that “direct” effects here are only direct given the
variable(s) for which indirect effects are being estimated. An estimated direct effect may be entirely
mediated by more proximate causes not in the model. In other words, a direct effect is a residual
finding about how much of a distal causal relationship remains unaccounted for after specific more
proximal causes are considered. It does not imply anything further about the immediacy of the process
by which the cause brings about the outcome.

Note also that when we acknowledge that the causes of causes of an outcome are themselves causes,
we acknowledge that the number of causes of an outcome is indefinite, akin to how our number of
ancestors is indefinite and, if we go far enough back, may include most everyone alive at some point.
This makes some people suspicious. For example, Martin (2011: 38) presents two scenarios: (1) A
sells B a store and a year later, C breaks into the store and kills B and (2) in which A was a Pleistocene-
era ancestor of C, who kills B. In each case, he asks, “Did A cause the death of B?” and his answer
of “yes” leads him to conclude that, in the counterfactualist framework, “we cannot ask the question,
‘What caused B’s death?’ and bring in anything less than an infinite number of causes, with little way
of telling them apart.”
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It is the last clause that makes all the difference. Martin is correct that once one gets into (causes of)
causes of causes, historical questions like ‘What caused B’s death?” or “What caused World War 1?” do
not have a clear stopping point. Where his reasoning errs is in its suggestion that we are powerless to
draw useful distinctions among causes nevertheless. From the above, for example, we can distinguish
that C murdering B is a more proximate cause of B’s death than A’s selling him a store. In our
discussion of causal importance below, we can likewise determine that C murdering B is a more
important cause of B’s death. At the population level, these same pseudo-conundrums lead either to
causes that are so indirect that their influence on the outcome is beneath whatever threshold of trivial
(Martin’s shop-seller example) or to causes that pertain to explaining the existence of the population
rather than variation in the population (his Pleistocene example).? In other words, yes, anybody who
has watched enough time-travel movies appreciates how any single event is the culmination of a
whole plenum of things that could have happened differently, but this has no crippling implication for
the use of counterfactuals as the major conceptual workhorse for thinking about causality and causal
explanation in social science.

Causal Configurations

Perhaps the major divide in causal analysis in social science separates ‘“‘case-oriented” and
“population-oriented” (or “variable-oriented”) endeavors. Case-oriented projects “seek to explain
particular outcomes in specific cases” (Mahoney 2008: 414). Many such projects are nevertheless
comparative and seek to make general statements that apply across multiple cases. An example of
a comparative case-oriented question would be “When do austerity programs result in severe social
protests?” (see Ragin 2000). Population-oriented projects seek to make general statements about the
distribution of causal effects over populations or subgroups of populations. An example of population-
oriented questions would be “Does growing up in a bad neighborhood affect school achievement? If
so, how much is this effect, why does it exist, and does it vary in systematic ways across persons?”’

This chapter, like the rest of this volume, is predominantly concerned with causal distinctions as
they pertain to the practice of population-oriented social science. That said, case-oriented researchers
have made a vigorous effort in recent decades at articulating the logic of causal inference from
comparative case-study data, especially in terms of establishing the limitations of thinking of causal
inference for such data in statistical terms (see, e.g., essays in Brady and Collier 2010). Moreover,
one way that counterfactual frameworks are cognitively useful for population-oriented research is that
they heighten attention to the fact that the effects estimated by regression-type models, when causal,
are summaries of case-level causal effects. Populations are comprised of individual cases even if the
researcher is only interested in aggregate statements. As such, population-oriented approaches need
to be compatible with the explanation of individual cases.

Two fundamental logical distinctions that are common in case-oriented research but practically
absent in large-N variable-oriented research are necessary causes and sufficient causes. Saying that
X is a necessary cause of Y implies that some state of X is needed in order for some value of Y to
occur. To say, for instance, that contracting HIV is a necessary cause of developing AIDS is to imply
that nobody has AIDS who does not first have HIV. Saying that X is a sufficient cause of Y implies
that some state of ¥ will occur if some state of X occurs. Prior to medical developments, rabies was a
sufficient cause of mortality; every single person who contracted rabies died fairly shortly thereafter.

2By “population level” here, we mean statements intended to apply to multiple cases rather than statements about the
causes of an outcome for a single case. This is sometimes referred to as the distinction between singular causes and
general causes (e.g., Pearl 2009: 253-256).
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For a binary cause and outcome, both cases imply an empty cell in a 2 x 2 table (no HIV-free
AIDS victims; no rabies survivors). Rarely when you do large-N population-based research do you
actually see an empty cell that is not based on some mechanical aspect of the data. There are
various reasons that necessary or sufficient conditions observed in case-oriented research may be far
more elusive in population-oriented research, but two stand out. The first reason is that observing
necessary and sufficient causes demands accurate operationalization and measurement. In survey
research, for example, large samples often contain enough measurement errors that even logically
mandatory relationships will often not appear as such in survey research unless specifically imposed
by investigators. Somebody reports having never attended college and yet being employed as a
physician; somebody else reports five sexual partners in one wave of a survey and being a virgin in the
next. The second reason is that since populations encompass many more cases, they are much more
likely to include genuinely exceptional cases that negate the necessary or sufficient causal claim. Dion
(1998) suggests that “probabilistically necessary” and “probabilistically sufficient” can be used for
large N where either measurement issues or the possibility of unaccountably idiosyncratic processes
lead to relations that are still useful to talk about in quasi-deterministic terms even though observed
exceptions exist.?

What may be necessary or sufficient to produce an outcome is not a single cause but rather a
configuration of causes. Key concepts here are INUS causes and SUIN causes. A SUIN cause is a
sufficient but unnecessary part of a causal condition that is itself insufficient but necessary. Mahoney
(2008) gives the example of the democratic peace theory, in which the absence of democracy is
necessary (but not sufficient) for war. If different conditions are sufficient to undermine democracy
(e.g., “fraudulent elections,” “repression”), then these conditions are SUIN causes of war. By
undermining democracy, fraudulent elections are neither necessary nor sufficient for war, but they
do enable the possibility.

A general example of SUIN causes may be precipitating causes, events that bring about an outcome
in the presence of other enabling conditions. Riots generally follow a preceding event (like the Rodney
King beating verdict and the Los Angeles riots of 1994). Yet, that event is typically understood as not
a sufficient cause—deteriorating conditions made the area in question ripe for a riot—or a necessary
cause (other events, had they happened instead, could have triggered a riot given the same conditions).
The occurrence of some precipitating event may therefore be a necessary but not sufficient condition
for a riot, and any of a number of possible events may be sufficient but not necessary to serve as a
precipitating event.

INUS causes have received more attention. An INUS cause is an insufficient but necessary part of
a causal condition that is itself unnecessary but sufficient (Mackie 1965; sometimes “nonredundant”
is used instead of necessary here). For example, in studying when countries undertake policy reform,
rightist partisanship has been identified as an INUS cause of unpopular reform. If so, the existence of
rightist partisanship does not itself bring about reform, and unpopular reform can occur in the absence
of rightist partisanship, but there are specific conditions under which unpopular reform will happen in
the presence of rightist partisanship but not in its absence.

INUS causes are known as component causes in epidemiology (Rothman and Greenland 2005;
Johansson and Lynge 2008). The idea here is that there are many different configurations of causes
that are each sufficient to produce a disease. A component cause influences the outcome by being part
of at least some of these configurations. Having unprotected sexual intercourse is neither necessary
nor sufficient to contract HIV, yet of course many people are HIV positive who would not be had they

3 A key philosophical issue that recurs in discussing the relationship between case- and population-oriented approaches
concerns the extent to which outcomes for individual cases are truly probabilistic versus the apparently probabilism
simply reflecting inadequate information (Mahoney 2008; Lieberson 1991).
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never had unprotected sex. One possible conceptualization then is that there are various conditions
sufficient for HIV transmission to occur, and unprotected sexual intercourse is a necessary part of
some but not all of these conditions.

Population-oriented research typically works with imperfect measures on only a subset of the
actual causes that influence outcomes. When an outcome is produced by the realization of one
configuration of a large set of sufficient causal configuration and some INUS causes important to
the configuration are unobserved, then the outcome will look like it has a probabilistic relationship to
the INUS causes that we do observe. In other words, a deterministic world replete with INUS causality
is consistent with a world that can only be modeled in statistical terms with largely additive causal
relationships when the variables in the model comprise only a modest subset of all relevant causes
(Rothman and Greenland 2005 and Mahoney 2008 provide a nice juxtaposition of this point from the
perspectives of epidemiology and comparative-historical social science, respectively). There has been
some work in epidemiology on a sufficient component cause model that conceptualizes component
causes as such rather than as additive and interacting terms in a conventional model, but this work
has not yet reached the point where its applicability to practical social science research problems
has been demonstrated (e.g., Flanders 2006; VanderWeele and Robins 2007). Nevertheless, the idea
that additive models may be estimating what are really highly complex and possibly deterministic
component cause relationships allows one way of connecting the logic of population models with
case-specific explanations.

Causal Importance

In their excellent chapter on “causal asymmetries,” Wright et al. (1992) cover a variety of rationales
by which it could be asserted that one cause is “more important” than another. Obviously, such
assertions might serve a variety of rhetorical purposes. Their position, in the end, is that various
kinds of qualitative distinctions that one can make about causes do not provide systematic grounds
for declaring one cause more important than another. Rather, the only grounds on which they conclude
that claims about relative importance of causes to be consistently, coherently made is if they can be
articulated and adjudicated in quantitative terms.

In regression models that afford causal interpretations, coefficients can be interpreted as the effect
of a unit increase of x on y. Comparing the magnitude of two coefficients to determine which is the
most important cause raises the obvious problem that the magnitude of coefficients depends on what
scale we choose: we could make age an arbitrarily more or less important cause of an outcome by
changing measurement from seconds to centuries. A common approach is to allow the population
distribution of our variables to define what comprises a commensurate metric for us by using the
population distribution. The prime example here are x or fully standardized coefficients—that is,
regression coefficients based on measuring x in standard deviations.

Of course, one typically does not know the population distribution of X, but must estimate it
using the observed distribution of X in one’s sample. For standardized coefficients to make any sense
whatsoever, the standard deviations on which they are based must be meaningful quantities in terms
of the population whose parameters we are attempting to estimate. This is important to keep in mind
because, in properly specified models, sample-based regression coefficients do not actually have to be
based on representative samples in terms of X—weighted or unweighted—in order for coefficients to
be unbiased, but the same cannot be said for standardized regression coefficients.

Beyond this, many commentators have been critical of comparing standardized coefficients to
evaluate relative importance. If we are talking about comparing coefficients in a single model, one
may note the counsel of Winship and Sobel (2004: 499) that successfully estimating the effect
of one independent variable on an outcome is sufficiently difficult that “attempts to estimate the
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effects of multiple variables simultaneously are generally ill advised.” Blalock (1961: 868) more
specifically advises that it is “unwise to become involved with the problem of evaluating the relative
importance of variables which stand in some sort of causal relationship to each other”; that is, to
compare the importance of distal and proximal causes. If one is to forge ahead, the claims about the
relative importance of two causes would seem to imply a comparison of the tofal causal effects of
each variable, which would imply either a structural equation modeling approach or one based on
estimating the total causal effect of the distal and proximate cause as separate models.

A different, more questionable, idea is that comparing standardized coefficients is misguided
because it conflates the estimated effect with the variance of X, when typically researchers are
only interested in the former (King 1986: 671). The same principle that standardized coefficients
are problematic because of their dependence on the variance of X is also sometimes used to argue
that comparing standardized coefficients is especially a bad idea when comparing coefficients across
groups (Treiman 2009). To consider an applied example, Branigan et al. (2011) found that skin
color measured in objective terms (percent reflectance) has about the same estimated unstandardized
coefficient with educational attainment for white men and for black men. For purposes here, let us
presume in both cases the coefficient indeed does accurately estimate the total causal effect of skin
color differences on educational attainment (via, e.g., differential treatment by teachers or peers).

Does this imply that skin color is an equally important cause of educational differences for black
men and white men? Variation in skin color reflectance is much larger for blacks than for whites.
So while the unstandardized coefficient is the same, the standardized coefficients are much different;
if you look at the difference between the 25th and 75th percentiles for each group, the expected
education difference for black men is twice as large as it is for white men. To us, this implies that skin
color is more important cause of educational attainment for black men than white men even though
the unstandardized coefficients are the same (see also Hargens 1976), while others have drawn the
opposite conclusion from logically comparable worked examples (Treiman 2009: 110).

More broadly, we think the question of “Does X; or X, have a bigger effect on Y?” differs from
“Is X; a more important cause of X, than Y?” precisely in that the latter question depends in part on
how common the two causes are. Consider again the study that found that smoking was the leading
preventable cause of death in the United States. The sense here by which smoking is said to be
“leading” is that smoking is estimated as having killed the most people of any cause in the set of
preventable causes. We regard this as a defensible warrant for saying that it is the most important of
these causes. But this is not directly a claim about the magnitude of the size of the effect of smoking
on the mortality prospects of individuals—many behaviors are more lethal than smoking for those
who engage in them, but not as many people do. That is, the number of people killed by smoking is a
function of both (1) how lethal smoking is for those who smoke and (2) how many people smoke.

Epidemiologists refer to this sometimes as the population attributable fraction. There are
complexities here depending on particularities of the application (see Greenland and Robins 1988),
but a rough way of thinking about this quantity in counterfactual terms is to consider the difference
between the actual population distribution of the outcome and the potential distribution if X was
held constant across all cases (e.g., if no one smoked). A simple expression of this quantity can be
computed as p(X) [p (Y|X)— p (Y|~ X)].

Importance here is a population-specific determination, in that it depends on the particular
distribution of causes in the population, as well as on the distribution of anything else that would
cause the effect size to differ over individuals in the population. Populations can be divided into
strata (e.g., age groups) and effects estimated within strata; these can be used to evaluate how the
relative importance of different causes changes with actual or hypothetical changes in the population
distribution (Greenland and Rothman 2008). Of course, the magnitude of effects themselves may
change as populations change. For example, there has long been debate about how the value of an
educational credential for wages changes as the percentage of the population with that credential
increases.
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Also, outcomes are not exclusively attributed to particular causes; that is, the sum of attributable
fractions across all cases is greater than 1 (Rothman and Greenland 2005). Consider the example of
causes that operate synergistically, for example, if smoking was much more lethal among obese people
than nonobese people. Then, there would be overlap in the counterfactual survivors of an intervention
that prevented anybody from smoking and an alternative intervention that prevented anybody from
becoming obese.

The same could be said for causes that stand in a distal/proximate relationship to one another.
Presume that low physical activity is a cause of obesity and vice versa. Again, this implies overlap in
the counterfactual survivors of an intervention that increased physical activity (and reduced obesity
indirectly) and an alternative one that reduced obesity (and increased physical activity indirectly).

To give another example, in behavioral genetics, variance decomposition techniques are often used
toward generating findings about the relative importance of genetic variation versus environmental
variation, as in, for example, a report that genetic variation is more important than environmental
variation in determining height. Yet part of how genes can influence outcomes is by influencing traits
that influence the experience of environmental exposures—children who evince an early aptitude for
reading report enjoying reading more are encouraged to read more and spend more time reading
(Rutter 2006). For the variance decompositions of behavioral genetics to add to 100%, one either
needs to assume that there are no interactions or correlations between genes and environments or
that the decomposition is actually between genes and exogenous environments, that is, environmental
influences that are independent of genetic endowments (Freese 2008).

Typically, whether one cause is more distal or proximate than another does not indicate whether it
is more important in a quantitative sense. Again, the relative size of the total causal effect would seem
to be at issue, and either a distal or proximate cause can have a larger total causal effect.* In the health
disparities literature, there is a longstanding debate about the relative benefit of “upstream” (distal)
interventions versus “downstream” (proximate) ones, which turns on downstream interventions
having bigger effects on particular pathways to disease but upstream interventions potentially exerting
influence through many more pathways.

For that matter, we should underscore the crucial practical difference between changes in an
outcome under a hypothetical equalizing intervention and the changes that may be anticipated by
actually available interventions. If one can actually intervene more on A than on B—either in absolute
terms or in terms of what can be attained for the same cost—then intervening on A instead of B may
have a greater effect on the full distribution of Y even if B is a more important cause in the sense of
the attributable fraction.

For the kinds of causes that are prominent within case-oriented research, Mahoney et al. (2009)
offers a technique based on Venn diagrams that depict the sets of cases in which the cause and outcome
occur. For a necessary cause, the set of cases in which the outcome occurs is entirely subsumed within
the set of cases in which the cause occurs. The opposite is true for sufficient causes: the set of cases in
which the cause occurs is entirely subsumed in the set with the outcome. The relative importance of
two necessary or two sufficient causes, then, may be adjudged by which is closer to being a necessary
and sufficient cause, in which case the two Venn circles would be exactly coterminous. Equivalently,
of two necessary causes, the more important cause is the less common one; of two sufficient causes,
the more important cause is the more common one.

For SUIN and INUS causes, Mahoney et al. (2009) suggest that some causes are more important
than others to the extent to which they approximate necessary (for SUIN) or sufficient (INUS) causes.
This is more debatable. The implication is that any sufficient cause is more important than any INUS

4The exceptions are if the distal cause entirely determines the more proximate cause or if the distal cause is strictly
mediated by the more proximate cause. In the former scenario, the total causal effect of the distal cause must be at least
as large as the total effect of the proximate cause, whereas in the latter scenario, the reverse is true.
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cause. The tension, analogous to our discussion of quantitative comparison, comes in comparing
a rare sufficient cause to a common INUS cause. A very rare radiation exposure that is sufficient
for developing lung cancer is still hard to consider being as important of a cause of lung cancer as
smoking, even though smoking is not only an insufficient cause of lung cancer but most smokers
do not get lung cancer (example adapted from Wright et al. 1992). Again, the issue is that, because
smoking is so common, many more cases of lung cancer are attributable to it than to the radiation
exposure.

A better standard, one that makes more consistent use of the Venn diagram technique, may be
simply to judge one INUS cause as more important than another INUS cause to the extent to which
it approaches a necessary and sufficient cause—that is, to the extent to which the cause and outcome
are coterminous. If we use X to indicate the presence of the cause and Y to indicate the presence of
the outcome, this can be expressed as p(X,Y) /[p(X) + p(Y) — p (X,Y)].

Note that there is a slight difference here between the conceptualization that underlies this
formulation and that which underlies the attributable fraction. When answering the question of how
many deaths are attributable to smoking, the number of smokers who do not die is irrelevant. By
that standard, if smoking and obesity killed the same number of people each year in terms of the
attributable fraction, we would consider them equally important causes even if obesity was more
common than smoking. In terms of the Venn diagram technique, however, if smoking and obesity
killed the same number of people, this would mean they had the same overlap with the cause (i.e., that
they were equally sufficient causes), but because smoking was rarer, it would have less area outside
the cause. We would therefore judge smoking to be a more important cause than obesity because it
was closer to being a necessary cause. The broader point is that either standard provides a consistent
and coherent way of determining which of two causes is more important, but what differs is whether
what we consider important is accounting for the occurrence of a binary outcome (which is what the
attributable fraction does) or distinguishing occurrences from non-occurrences.

Causes of Causal Relationships

Lieberson (1985) distinguishes between surface causes which “appear to be generating a given
outcome” and basic causes which “actually generate an outcome” (p. 185). The hypothetical example
he provides is of a gap in income between racial groups that appears attributable to educational
differences, but reductions in the educational differences do not lead to any change in the income
gap. Lieberson’s example permits multiple interpretations, and a trivializing one would be to say just
that surface causes are not properly causes at all, but simply exemplify spurious association between
a real (“basic”) cause and the outcome.

Two more interesting possibilities, however, each call attention to distinctions arising from how
simple estimates of causal effects can be misleading given broader dynamics of the system in which
they occur. The first possibility is that the basic cause and outcome could be linked by a number of
different surface causes in such a way that what is actually generating group differences in a given
context is effectively redundant with other potential causes of group differences. Earlier, we mentioned
that causality encompasses two notions that are not entirely the same: that causes produce outcomes
and that outcomes depend on causes. Redundancy in causal systems provides one case in which the
divergence of these two notions may be clear. In a given case, for instance, an educational difference
may provide the grounds on which a minority-race candidate is passed over for a job in favor of a
majority candidate. When educational credentials are equal, however, perhaps other characteristics
that would have earlier disadvantaged minority-race candidates with less education come to the fore
(like perceived fit with existing employees), which lead again to the minority candidate being passed
over. In other words, by tracing the causal process in given cases (e.g., Bennett 2010), we might come
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to proper inferences about causes that produced the outcome in those cases that nevertheless overstate
the changes that would result from intervening on the cause.

Many information systems, like telecommunications systems, are designed to be redundant—the
system will still convey messages from A to B even if a node that is normally part of the actual
connection used to link A and B is removed. In the philosophical literature, one popular toy example
involves someone who is fatally shot after having ingested a poison that would have killed them
otherwise—one can say the shooting was the actual cause of death and yet the outcome would
have been the same had it not happened. Lieberson’s distinction between basic and surface causes
may suggest the analogous possibility at the level of social dynamics: that a mediating variable like
education may account for racial differences in one context but that disadvantages are sufficiently
redundant that interventions on education do not actually affect the ultimate magnitude of the race gap.

An alternative possibility suggested by Lieberson’s example is that the basic cause and outcome
could be linked by a mechanism implicated in the generation of the surface causes themselves,
such that addressing one surface cause leads to another surface cause emerging or increasing in
importance. Consider a democratic society that includes one region in which members of the dominant
ethnic group wish to dilute the voting power of a subordinate group. A literacy test is instituted that
accomplishes this purpose. Egalitarian-minded courts ban the use of these tests. The dominant group
responds by instituting a poll tax, which has much the same effect on participation by the subordinate
group that the literacy test did.

In this example, when the literacy test was in place, it was the surface cause of group differences in
electoral participation in the sense that it served as the proximate means whereby the group difference
was produced. Yet the difference in participation was not counterfactually dependent on the existence
of a literacy test so long as the more basic cause existed of the dominant group wishing to suppress
participation by the subordinate group and having various other available means of doing so.

In Lieberson’s example of educational differences and income differences, imagine if the basic
cause of income differences was employers being strongly disinclined to hire minority-race workers.
Educational differences may then provide a pretext for not hiring black workers, but, if education were
equalized, employers would emphasize some other criterion that disadvantaged black workers. The
difference between this example and the earlier example of causal redundancy is that here part of why
the proximate causal relations exist and are sustained is their role in preserving the relation between a
distal cause and outcome.

These more systemic interpretations of basic and superficial causes presage the concept of
fundamental cause that has become a central concept of epidemiological sociology (Phelan et al.
2010; Link and Phelan 1995). The concept has been used primarily as a potential characterization of
the inverse relationship between socioeconomic status and health. Its usage is more easily understood
against a backdrop in which some have regarded SES as simply a placeholder construct to be
supplanted by “real” causes of population health or regarded SES as a real cause but too distal to be
of value for epidemiology beyond highlighting an ignorance to be resolved by a search for mediating
variables. The problem with this view is that the relationship between socioeconomic status and health
has largely proven more robust than the more immediate causes of disease and death that prevail in
a particular population at a particular time. Roughly, what kills people changes, but that lower-status
members of society die earlier does not.

Lutfey and Freese (2005) argue that fundamental causality is thus a distinct logical type of causal
relationship. For X to be a fundamental cause of Y, X must be a distal cause with many proximate
consequences, and ¥ must be an outcome with many proximate causes. Consequently, X and Y are
typically linked by massively multiple mechanisms, and a systematic asymmetry exists among these
mechanisms such that those by which X influence Y in one direction are much greater in number and
magnitude than the mechanisms by which X influences Y in the other. In other words, the detailed
pathways by which low social standing may negatively influence health are vast and overwhelming in
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comparison to the ways that low social standing positively influences health. Then, there must exist
some “‘meta-mechanism” or “durable narrative” that accounts for the preservation of this asymmetry
as mechanisms change.

Link and Phelan emphasize “flexible resources” as a durable narrative linking SES and health: good
health is a broadly desirable end and socioeconomic status provides differential means in achieving
that end. Freese and Lutfey (2011) distinguish the claim that SES is a fundamental cause of health
from any particular theory of the durable narrative involved, and they raise the possibility of spillovers
as a durable narrative separate from “flexible resources” that may be important for understanding
enduring and robust health disparities. Regardless, note that SES as a fundamental cause is not an
academic claim devoid of policy implications: the implication is that differences in social standing and
the capacity to use means to protect health are together sufficient for health disparities. In other words,
calls to “eliminate” health disparities without addressing resource differences are likely fanciful, and
the real effect of interventions on disparities may depend on their overall effect on the capacity for
agentic behavior to protect health.

Relatedly, evolutionary biologists and psychologists sometimes distinguish proximate and ultimate
causes (Mayr 1961; Laland et al. 2011). Consider the theory that father absence influences the pace of
pubertal development because, in our species history, father absence provides a proxy for the amount
of a paternal investment a woman’s own children would receive, and the optimal pace of development
in terms of reproductive fitness is accelerated in low-investment versus high-investment environments
(Belsky et al. 1991). (Set aside whether this theory is actually true.) In this theory, father absence is
a proximate cause of differences in pubertal development. The implication is that we would expect
manipulations of father absence would lead to differences in development and that some mechanism
exists linking immediate consequences of father absence to the immediate physiological causes of
different rates of development.

But “ultimate” causes here are not the same as the “distal” causes discussed earlier, even though
both terms were contrasted with proximate causes. Distal causes in this example would be causes of
father absence. Ultimate cause, on the other hand, makes reference to the possibility of a historical
explanation for the development of the embodied physiological mechanisms responsible for the
causal relationship between father absence and pubertal development. That claim entails either direct
historical information or some theory of the “logic of history.” In this case, the logic of history is
provided by the shaping of physiology over generations by natural selection, and the theory is that the
fitness advantages associated with an adaptive timing of pubertal development caused physiological
mechanisms responsive to father absence to evolve in our species history.

Ultimate causes do not have to reference species history or natural selection. Functionalist explana-
tions trace the origins and sustenance of causal relationships to larger systemic imperatives. A classic
example here is Malinowski’s explaining the elaborate fishing rituals of the Trobriand Islanders by
their effects on reducing fears associated with an intrinsically dangerous task (Stinchcombe 1968;
Wright et al. 1992). The implication is that a counterfactualist who came ashore with Malinowski
would observe the Islanders and come away with a causal story about the fearfulness reducing effects
of the ritual. While correct, this would miss a vital part of the phenomenon, which is the role of this
causal relationship in explaining why the Islanders conduct the ritual in the first place. If Islanders
were prevented by outsiders from observing this ritual—but not from fishing!—we might expect the
development of some alternative cultural or institutional mechanism for reducing fear. Likewise, if
changes resulted in fishing no longer being as otherwise fear-provoking, the rituals may persist by
cultural inertia but would not have the same dynamic resisting their discontinuation or evolution to a
different form.
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Conclusion

Societies are enormously complex systems and so social science is an extraordinarily complex project.
A temptation toward making the enterprise more tractable is to focus on narrow questions of assessing
interventions. While obviously important, there are many puzzles to social life that cannot be reduced
to analogies of program evaluation. Even so—or especially so—questions about complex causal
relationships in social research require clear and disciplined thinking about the structure of causal
relationships if they are to be successfully engaged. In this chapter, we have focused on distinctions
that can be made among causes and have tried to explicate aspects of several of the most handy ones.
To be sure, not every complexity of social science explanation can be reduced to finding just the right
adjective to put in front of “cause,” but recognizing how fundamentally different types of causes can
be complements toward a more complete understanding of a phenomenon provides valuable cognitive
tools.
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Chapter 4
Research Design: Toward a Realistic Role
for Causal Analysis

Herbert L. Smith

Abstract For a half-century, sociology and allied social sciences have worked with a model of
research design founded on a distinction between internal validity, the capacity of designs to support
statements about cause and effect, and external validity, the extent to which the results from specific
studies can be generalized beyond the batch of data on which they are founded. The distinction
is conceptually useful and has great pedagogic value, that is, the association of the experimental
model with internal validity, and random sampling with external validity. The advent of the potential
outcomes model of causation, by emphasizing the definition of a causal effect at the unit level and
the heterogeneity of causal effects, has made it clear how indistinct (and interpenetrated) are these
“twin pillars” of research design. This is the theme of this chapter, which inveighs against the idea
of a hierarchy of research design desiderata, with causal inference at the peak. Rather, I adopt the
design typology of Leslie Kish (1987), which advocates an appropriate balance of randomization,
representation, and realism, and illustrate how all three elements (and not just randomization, the
internal validity design mechanism) are integrated aspects of meaningful causal analysis. What is
meaningful causal analysis? It depends first and foremost on getting straight why we are doing what
we are doing. Understanding why something has happened may tell us a lot about what will happen if
we were actually to do something, but this is not necessarily so.

Introduction

When it comes to social research, research design is both everything and nothing. To quote Babbie
(2010), ... research design involves a set of decisions regarding what topic is to be studied among
what population with what research methods for what purpose” (p. 117). Or, as a text on The Design
of Social Research had put it two generations earlier, “It is an old and wise saying that ‘a problem
well put is half-solved’” (Ackoff 1953: 14).

Sometimes the same point is made through contradistinction. Tukey’s (1986) sunset salvo that
“[t]he combination of some data and an aching desire for an answer does not ensure that a reasonable
answer can be extracted from a body of data” (pp. 74-75) is intended to warn off researchers who
have not done their research design homework—who do not have a problem “well put”—but who
hope to avoid facing the fact by appealing to the apparent fastness of statistics. This is not caricature.
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Ackoft’s (1953) book had plenty of good-sense advice on research design, but like many other texts on
research design, it was primarily devoted to teaching contemporary statistical practice—in particular,
the calculations required for various tests of hypotheses. Thus, 10 years later, when Campbell and
Stanley (1963) published Experimental and Quasi-Experimental Designs for Research, they had to
begin by differentiating their concept of research design from both statistics texts and Fisher’s ([1925]
1951, 1935) canonical work on the “optimal statistical efficiency” (p. 1) of experimental research
designs.

Campbell and Stanley (1963) fixed key concepts of research design. Their short book—it was
originally a chapter in a handbook (Gage 1963)—is chock-full of influential ideas. There is no
articulation of the notion of a counterfactual, but there is a strong emphasis on comparison (p.
6): of subjects both before and after an intervention or treatment and especially between groups
who have and have not been exposed to an experimental variable. There is a strong emphasis
on experimentation—witness the title—and on the role of randomization (random assignment
of subjects to groups) in the definition of an experiment. Randomization is the principal factor
dividing experimental from quasi-experimental research designs, the latter of which may have strong
comparative components, but whose validity can be jeopardized by the presence of “extraneous
variables,” including (but not limited to) “differential selection of respondents for the control groups”
(p. 5). Twelve factors that potentially jeopardize valid inference are discussed and attributed to either
internal validity or external validity.

Internal validity “is the basic minimum without which any experiment is uninterpretable: Did in
fact the experimental treatments make a difference in this specific experimental instance?” External
validity is about generalizability: “To what populations, settings, treatment variables and measurement
variables can this effect be generalized?” (p. 5). Campbell and Stanley (1963) coined the phrase
“external validity” (Shadish et al. 2002: xvii), and I am struck in rereading Campbell and Stanley
(1963) by their attentiveness to the generalizability of experimental results. Nonetheless, they did
emphasize the distinction between internal and external validity (e.g., pp. 23 and 71), and one form of
validity does emerge as more equal (“the sine qua non” [p. 5]) than the other, namely, internal validity.
This is partly Whiggish history: The primacy of internal validity as a criterion for the evaluation
of research design was never as great in the initial telling as it became in the habits of researchers
(and teachers of research methods) in the social sciences. But one way or the other, the distinction
became an invidious one, inviting first critics (Cronbach 1982; Smith 1990), then a shift in emphasis
in later versions toward external validity and “the problems of causal generalization” (Shadish et al.
2002: xix).

Campbell and Stanley (1963), however, were not overtly concerned with causation. The terms
cause, causality, and causation do not feature in the books’ index; they show up only a dozen
times in the text, comparatively late, and never with great moment. We have already encountered
their prosaic definition of internal validity—whether a treatment “make[s] a difference” or not.
Campbell and Stanley (1963) were more interested in rehabilitating the experiment as a way of
doing educational research (pp. 2—4), and they were clear about what an experiment meant: “By
experiment, we refer to that portion of research in which variables are manipulated and their effects
upon other variables observed” (p. 1). Contrast this characterization with the later Shadish et al.
(2002) version, Experimental and Quasi-Experimental Designs for Generalized Causal Inference.
The opening chapter spells out the connection between experiments and causation. The “structural
design features from the theory of experimentation” (p. xvi) are emphasized in service to a “preference
for design solutions over statistical solutions for causal inference” (p. xviii [emphasis added]).
Experimentation is still associated with manipulation (p. 2), but the question of whether causation
exists without the possibility of manipulation is treated equivocally (pp. 7-9).

I do not mean to exaggerate the differences between the two texts. Shadish et al. (2002: xvii—
xix) give their own account of the evolution from Campbell and Stanley (1963) through Cook and
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Campbell (1979) to their volume. To read Shadish et al. (2002) is to appreciate the encyclopedic
treatment of the logic of social research design, the compendium of research designs themselves, and
the extent to which even at four decades’ remove most of the key pillars and many of the details
of Campbell and Stanley (1963) still undergird the edifice. But there were developments in thinking
about causation. These explain the change in titles from Campbell and Stanley (1963) to Shadish et al.
(2002), and they also give some new perspectives on the relationship between causation and research
design. The problem of designing research to “establish causation” was once limited to the problem of
designing observational schemes and concomitant data analytic plans for avoiding threats to internal
validity. This is no longer the case.

The developments in thinking about causation that intervened between Campbell and Stanley
(1963) and Shadish et al. (2002) are summarized in an influential paper by Holland (1986). They
include the following:

* The definition of effects of causes at the unit level

» The distinction between the effects of causes versus causes of effects

* Emphasis on scientific as well as statistical methods for identifying effects of causes
e The importance of the manipulation criterion to the definition of a cause

These concepts are defined as they arise in the following four thematic sections, on (1) statistical
perspectives on research design, (2) causes of effects and the effects of causes, (3) the experimental
model, and (4) research designs above the unit level. Taken together, the four thematic sections aim to
convince that the common practice of evaluating research designs for causation or causal analysis on
the primary dimension of “internal validity” is overly simplistic and misguided. Substituting invariant,
abstract principles for reasoned assessment of the contours of real-world problems is rarely good
practice, and what is research design about, if not the good practice of research?

Three Perspectives from Statisticians

Holland’s (1986) seminal article is pithily titled, “Statistics and Causal Inference” [emphasis
added], and statistics figures prominently in how social scientists think about causation. However,
I follow Campbell and Stanley (1963) and Shadish et al. (2002) in de-emphasizing computational
statistical considerations in favor of observational frames: conceptualization of problems, delimitation
of inferential scope, appropriate comparisons, and prospects for (and meanings of) manipulation
schemes. I thus join many others in warning against the ever-seductive idea that somewhere, somehow,
there is a dominant, statistical solution that can and will solve problems of social research—that
we can eventually “outsource” comprehension of our slippery, contested human world to a “higher
power” that can slice definitively and rule categorically, with a logic grounded in mathematics. Duncan
(1984) termed this hope (or illusion) statisticism:

The notion that computing is synonymous with doing research, the naive faith that statistics is a complete or
sufficient basis for scientific methodology, the superstition that statistical formulas exist for evaluating such
things as the relative merits of different substantive theories or the “importance” of the causes of a “dependent
variable”; and the delusion that decomposing the covariations of some arbitrary and haphazardly assembled
collection of variables can somehow justify a “causal model . ...” (p. 226)

Fortunately, when prominent statisticians discuss causal inference, one rarely finds statisticism.
Rather, one encounters strong briefs on behalf of important principles of research design. As an
antidote to the siren song of statistical “methods” and “techniques” and a review of valuable ideas
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on causation and research design, I abstract from the writings of three statisticians—Leslie Kish,
David Freedman, and Paul Rosenbaum—well known for their technical contributions.!

Leslie Kish on Randomization, Realism, and Representation

Leslie Kish provided the comprehensive, definitive integration of sampling theory with the practice
of survey research (Kish 1965).> He introduced the concept of design effects—the departure of
variance estimates for complex sampling designs from those computed under the assumptions of
simple random sampling. If one adopts a narrow association of the criterion of external validity with
the details of sampling from finite populations, then Kish (1965) is the canonical source. Yet when
Kish (1987) summarized his rich scientific career, it was in a slim volume entitled Statistical Design
for Research, the first chapter of which considers the “compromises between the desirable and the
possible” for “the basic philosophical problems of all empirical sciences: how to make inferences to
large populations, to infinite universes, and to causal systems from limited samples of observations,
which are also subject to diverse errors and to random fluctuations” (p. 1).
The key features of Kish’s (1987: chap. 1) exegesis are the following:

1. An emphasis on three desiderata for research design—randomization, representation, and real-
ism—where randomization is with respect to subjects over treatments as per classical experimen-
tation; representation pertains to subjects over populations, including theoretical populations (Kish
1987: chap. 2), and realism is the correspondence (or lack thereof) between variables or constructs
as they exist in the social world and as we are able to observe, measure, and manipulate them in
our research.

2. An insistence, pace Campbell and Stanley (1963), that “there is no supercriterion that would lead
to a unique, overall, and ubiquitous superiority among the three criteria” (Kish 1987: 10); since,
for example,

3. “all relations in the physical [?] world between predictor and predicted variables are conditioned
on the elements of the population subjected to research” (Kish 1987: 13).

The presence of realism is noteworthy. In Campbell and Stanley (1963), most elements of both
realism and representation are subsumed under the rubric of external validity, of generalizability.
There is no explicit mention of construct validity (one aspect of realism), but in Shadish et al.
(2002: chap. 3) construct validity and external validity share a chapter, including explicit efforts to
differentiate them (e.g., p. 95). Any teacher who has worked with either scheme knows how difficult it
is to make concrete examples stay in their “box.” When we express skepticism about the stereotypical
psychology laboratory experiment performed on college sophomores, is it because we think that
college sophomores are not representative of the population to which we want to generalize the result?
Or is it because we think that the laboratory setting is a faithless simulacrum of the environment
within which social life and various human behaviors play themselves out—that the tasks enacted in
the experimental setting resemble their “real-world” counterpart activities in name only?

Consider the issue of the support for inference, in the data analytic sense: Are our estimates
of “effects” at various combinations of predictor values a function of information available on or
about those values? Or do they rely less on local observations and more on distant observations and
assumptions about the functional forms of conditional (if not causal) relationships? This is a statistical

My treatment is necessarily selective. These are not the only eminent statisticians who have put research design at the
forefront of thinking about causation.

2Tt is less well known that his Ph.D. was in sociology, part of a fascinating intellectual and personal background (Frankel
and King 1996).
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problem with antecedents deep in the history of the field: Pearson was concerned about the model
bias associated with parametric functions, whereas Fisher wished to avoid inefficiencies associated
with small numbers of observations (Hardle 1990: 3-5). If we lack data at points of interest because
of sampling design (inadequate sample sizes, poor coverage or survey execution), this is a problem
of representation.® If we are relying on parametric specifications of causal relationships to make
statements about the effects of causes where no alternatives to these alleged causes exist (Smith 1997:
333-334), then we have a problem with realism.

The realism criterion motivates research designs labeled observational studies (Kish 1987:
20-22) or controlled investigations (pp. 6-11). These are defined in terms of what sample surveys
and randomized experiments are not: “the collection of data—with care, and often with considerable
control—without either the randomization of experiments or the probability sampling of surveys”
(p. 6). A design that is defined as a residual category lacks aesthetic appeal, and it is more difficult to
judge the fidelity of an observational study with respect to realism than it is to evaluate an experiment,
for example, with respect to randomization. Nonetheless, by elevating the diffuse but important
criterion of realism to the level of the more familiar ideas of randomization and representation, Kish
(1987) does a real service to the practice of designing social research.

David Freedman on Research Designs for the Social Sciences

David Freedman was well known in statistics for, inter alia, his contributions to the theory of Markov
chains (Freedman 1983), the bootstrap (Bickel and Freedman 1981; Freedman 1981), and Bayesian
estimation (Diaconis and Freedman 1986). Prior to the 1980s, he was primarily known among social
scientists for his introductory statistics textbook (Freedman et al. 1978). It was (is) a gem. It began
not with the standard typology of levels of measurement but with a brief in favor of the randomized
experiment as the best mechanism for making inferences about cause and effect.

At some point, statistical practices in the social sciences caught Freedman’s eye, especially the
use of statistical methods to make inferences about causal relationships. He was not impressed with
what he saw. He railed against the penchant of social scientists to use off-the-shelf regression models
for just about everything (e.g., Freedman 1985). The use of such “models” necessitates lazy and/or
unacknowledged assumptions about functional forms and distributions of errors, both of which he
viewed as symptomatic of self-deception and pseudoscience.* As more than one social scientist
pointed out (e.g., Blalock 1991), this critique of vast swaths of social science was hardly new; social
scientists plow a tough terrain and, anyhow, what exactly is one supposed to do? Freedman was
undeterred and mocked the habit of those who engaged in special pleading to motivate “the possibility
of disentangling complex causal processes by means of statistical modeling” (Freedman 2005: 195).°

He was less forthcoming regarding how sociology and the social sciences should proceed, but here
are two themes: The first is “a reduction over the medium term in scientific aspirations” (Berk 1991:
318). This is the flavor:

We should adopt the habit of making empirical claims that are more sharply focused and perhaps more modest.
We need to take more seriously the job of comparing theory to reality. And we need to build the requisite tools:
reality tests instead of 7 tests. It is not complexity that will help us, but simplicity.

3This includes the possible overrepresentation of certain domains for their theoretical salience, their meager share of
the population notwithstanding (Smith 1990: 68).

“Bollen and Pearl (Chap. 15, this volume) take explicit issue with Freedman’s characterizations of, in particular,
recursive path models.

3 A well-known piece of Freedman’s mockery—*“The Modelers’ Responses”—appears on the same page.


http://dx.doi.org/10.1007/978-94-007-6094-3_15

50 H.L. Smith

At any given time, most interesting questions will not have empirical answers. Some do, however, and we
have to identify these. Then, different questions demand different kinds of answers. For some issues, anecdotal
evidence is the best that can be brought to bear. For others, case studies are appropriate. At times, descriptive
statistics will help: 2 X 2 tables, or even a regression equation. A formal statistical model with significance tests
may be just the right approach, on occasion. At present, such distinctions are seldom made. And typical empirical
papers, even the good ones, drift off into fantasy. Yet the real world, with all its frustrations, is where we belong
(Freedman 1991b: 358).

Note the emphasis on realism, a de-emphasis on statistics per se, and a situational preference for
observation, including the focused (case studies) and the opportunistic (anecdotal evidence). Left
ambiguous is whether any of this justifies causal statements about the real world (as per Harding and
Seefeldt, Chap. 6, this volume) or whether description is the un-shameful supper of the humble poor.°

The second piece of advice pertained to the need for “strong research designs” (Berk 1991: 318).
Freedman (1991a: 293-300) narrated the great “detective work™ that John Snow did in establishing
that cholera was an infectious, waterborne disease and that eliminating exposure to contaminated
water would short-circuit epidemics. There are many interesting elements to the story: Snow had
a theory of cholera based on observation of the natural history of epidemics. There were key
observations that accorded with his theory but not the theory of others. There were causal mechanisms
in the story, including an infection cycle, concomitant symptoms, and the release by the body
of water, with a subsequent contamination of the water supply to the detriment of others. But a
complete mechanistic account was not needed. Although the identification of the pathogen and the
full specification of the pathogenesis of cholera lay in the future, enough was known to suggest
some interventions. Snow prescribed the removal of specific pump handles, a dramatic manipulation
that makes for a good story but turns out to have itself been contaminated by some of the messy
confounding details enshrined in Campbell and Stanley (1963) (history, maturation). That’s okay;
Snow recognized that this was inconclusive. He was not content to let his causal inferences rest on
suggestive evidence or study. Although he was not able to effect an experimental intervention to
show how contaminated water caused cholera, random human affairs dealt him a natural experiment
the likes of which the rest of us can only drool over: Two different water companies, one with a clean
intake of water, the other with an intake contaminated with sewage, supplying the same neighborhoods
in London; the collection of neighborhoods diverse socially and economically; and—best of all—no
apparent rhyme or reason as to why one house was served by one water company and the neighbor
by another. The tens of thousands of houses were thus balanced across all factors save the company
furnishing their water, and the source of water for each company was singular and well differentiated.
A careful mapping of cholera deaths to houses revealed that the death rate was an order of magnitude
higher in households served by the company that drew its water downstream from sewage.

Freedman viewed experimentation as the preferred method for adducing causation, but that is
not the moral of this story. After all, this was not a randomized, controlled trial. It was a natural
experiment. Snow was certainly clever to notice it, but that was at best half of the story. There was
a lot of work involved, from the tracing of deaths to houses and of houses to water suppliers; not to
mention all of the background work required to convince himself (and others) that the assignment of
households to water companies was in essence random with respect to both the outcome of interest
and other potential confounding variables, even if there were indeed some specific and in some
sense conscious chain of events that linked each household to a water supplier (i.e., an idiographic
causal account for selection to treatment). The two take-away messages are (1) the effort to move
from causal accounts—including accounts of mechanisms—to the identification of elements subject

STf the latter, then this is a meal that, from the get-go, sociologists have been disinclined to eat on its own (Chap. 2 by
Barringer, Leahey, and Eliason, this volume).
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to manipulation and (2) the importance of hard work over a dogmatic commitment to a research
“method” or even a research design. The title of Freedman’s (1991a) essay, after all, was “Statistical
Models and Shoe Leather” [emphasis added].

Paul Rosenbaum on Elaborating Causal Theories

Paul Rosenbaum has made foundational statistical contributions to the problems of making causal
inferences from observational studies (Rosenbaum 2002), including propensity scores for balance
across groups via matching (Rosenbaum and Rubin 1983a) and sensitivity analyses to evaluate the
potential bias in a study due to unmeasured covariates (Rosenbaum and Rubin 1983b). This work
articulates with the design of observational studies (Rosenbaum 2009).

Here is an example, abstracted from Rosenbaum (1984), beginning with a verbal outline of
Rubin’s (1974, 2005) model for potential outcomes and responses. This model shows up elsewhere
in this volume. It is equivalent to the counterfactual model (Morgan and Winship 2007: chap. 2). Its
elucidation here helps set ideas that appear later in this chapter.

Potential outcomes are defined for each unit (e.g., individual) across all treatments or interventions.
They are potential outcomes because they are observed only when a unit receives the corresponding
treatment. The difference between two potential outcomes is the causal effect of a treatment, and this
effect is defined at the level of a unit. Since in general a unit is assigned to but one intervention, the
effect—difference in response given two alternative treatments—cannot be observed for any given
unit. What can be observed is the difference in average response between those units receiving the
treatment and those units receiving some other treatment.

Under what circumstances is this difference in group averages an unbiased estimate of the average
treatment effect for the data at hand? As is well known, when units are assigned to treatments at
random, as in a randomized experiment, the difference between the group averages gives an unbiased
estimate of the average causal effect of the treatment relative to an alternative treatment (or control)
condition. In an observational study, however, there are likely concomitant variables that are related to
the assignment of subjects to treatments. For those covariates—potential confounding variables—that
can be observed, causal inference for averages conditioned on these covariates (e.g., subclassification,
matching via propensity scores) relies on an assumption of strongly ignorable treatment assignment,
to wit:

e The set of potential outcomes or responses is independent of the treatment to which units are
assigned, conditional on the observed covariates.

e For all fixed values of observed covariates, there is a nonzero probability of assignment to all
treatments.’

A causal effect is thus defined by a combination of treatments and potential responses. In the case
of arandomized experiment, strong ignorability obtains. A corollary is that nothing need be said about
causal mechanisms for the purpose of inference. A theory of how a cause translates into an effect—as
per Snow and the etiology of cholera—will be useful for thinking about the particular experiment to
execute, but it is inessential for lending a causal interpretation to results.®

TThis is related to the issue of support for inference, mentioned above, and also to the manipulation criterion, to be
discussed below (Smith 1997: 333-334).

8The related question of what an experiment does or does not tell us about causal mechanisms will be taken up two
sections hence, in The Experiment as the Model for Research Design. The definitions of causal mechanisms here, as
per Rosenbaum (1984: 42), differ in some ways from canonical sociological treatments of causal mechanisms and
theory (e.g., Hedstrom and Swedberg 1998). Attempts to either integrate or differentiate these perspectives appear in
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For observational studies, however, causal mechanisms and theory are essential, for in elaborating
theories, one is led toward designs that incorporate tests that assignment to treatment is strongly
ignorable. Causal mechanisms include

1. The effects of the treatments on (typically unmeasured) responses other than the responses under study . .. ;

2. The effects of the treatments in a broader population than the one under study . . . ; and

3. The effects of closely related treatments, and, in particular, delineation of the changes in the treatment that
are inessential in the sense of not altering the treatments’ effects. .. (Rosenbaum 1984: 42).

These correspond to specifications of unaffected units, essentially equivalent treatments, and
unaffected responses (Rosenbaum 1984: 44).

To evaluate the possibly causal effects of high exposure to nuclear fallout (radiation) on mortality
from childhood leukemia, Rosenbaum (1984: 45—-47) presents leukemia mortality rates per 100,000
person-years of exposure for a period of above-ground nuclear testing (from 1951 to 1958) in Utah
counties characterized by high levels of exposure and for the same counties for the periods both
prior and subsequent. Rates (in temporal order) are 2.1, 4.4, and 2.2, which is not inconsistent with
the idea that nuclear fallout raises (doubles) rates of childhood leukemia. The design element is the
compilation, presentation, and interpretation of additional data: rates of mortality for low-exposure
Utah counties in the same three periods and for childhood cancers other than leukemia. A log-
linear model is used to test equality restrictions derived from the elaboration of the causal theory, for
example, that both before and after the period of above-ground testing, counties that were either high
exposure or low exposure during the period of testing should have mortality rates that “are essentially
equivalent ... because the active ingredient—radiation from fallout—is present at comparatively low
levels” (Rosenbaum 1984: 46). The analyses pertain only to rates at times other than that when the
treatment (nuclear fallout) was being delivered. This is because what is being tested is not the effect
of the treatment but the assumption that assignment to treatment is strongly ignorable. Because these
data show variation inconsistent with the causal theory, the assumption is not met. This weakens our
capacity to attribute the doubling of rates in high-exposure counties during the period of above-ground
testing to the effects of exposure to fallout from nuclear tests.

Summary

This section is deliberately tendentious. I have selectively emphasized ideas about research design
in the works of three prominent statisticians. I have downplayed—no equations, no notation—the
statistical rigor of their presentations.” These are not the only statisticians to dwell on research
design, and one can find many of the same ideas (perhaps less elegantly put) in the writings
(and, more important, the research) of nonstatisticians. There are also subtle differences in the
underlying philosophies of the three statisticians: Kish emphasizes a nonhierarchical equivalence in
the importance of randomization, representation, and realism (hence, in experiments, sample surveys,
and observational studies); Rosenbaum focuses on how observational studies can be shown to yield
results comparable to those of experiments; and Freedman, although quite catholic with respect to all
the ways one might study a topic, has a decided preference for randomized experiments and a tolerant
resignation toward everything else.

Goldthorpe (2001), Morgan and Winship (2007: 219-242), Smith (n.d.: 33-35), and—especially—Knight and Winship
(Chap. 14, this volume).

9Kish (1987), for example, incorporates measures of bias, of stochastic (e.g., sampling) variation, and of cost (fixed and
unit-specific) in the same equations, hence in comparable metrics.
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No matter. The purpose is to counter the notion that in studies intended to show causal relationships,
that when push comes to shove, statistical considerations must trump design considerations, if only
because the former appear sharp and definitive and the latter—randomized trials and random sampling
aside—do not.

Effects of Causes and Causes of Effects

If we go back to the adage that a problem well put is half solved, then one of the best things that
sociologists and other social scientists can do in designing their research is get clear whether they are
studying the effects of causes or the causes of effects. This powerful distinction jump-starts Holland
(1986: 945). Although the distinction dates at least to John Stuart Mill (1843) and is crisply described
in Sherlock Holmes (Kadane 2011: 349), it still has the power to astonish—and clarify. If Moliere’s
bourgeois gentleman was surprised to discover that he had been speaking prose all his life, veteran
researchers are similarly taken aback to learn that in all these years of “doing causal analysis,” they
were likely doing two demonstrably different things.

Demonstrably different in what way? A favorite way of posing the distinction (e.g., Dawid 2000) is
some variant of “If I take an aspirin, will my headache go away?” (What is the effect of a given cause?)
versus “My headache is gone. Was it because I took that aspirin?” (What is the cause of the observed
effect?) This is an unfortunate rendering of the difference, not because the topic (aspirin, headaches)
is not sociological but because the perspective is not sociological or population based. It elides the
important distinction between the effect of a cause and the cause of an effect with the problem of how
to ascribe specific outcomes to specific treatments. Better is the distinction, for example, between the
two question types:

* Why did divorce increase in the United States after 19507
* What is the effect on divorce of a change in laws bearing on the distribution of marital assets?

The questions are not the same. The first is a “cause of effects” question. The second is a question
regarding the “effect of a cause.” They are related, but being related is not the same thing as being the
same, and where they are not the same matters crucially for the design of research.

Why It Is Hard to Distinguish the Two: Causation of Cholera and of Autism

It is not always easy to know when one is studying effects of causes versus causes of effects.
Depending on the conception of the phenomenon, they can be more or less difficult to distinguish.
What, for example, was John Snow up to when he was studying the causes of cholera? He needed
a theory of what caused cholera (causes of an effect) in order to understand what might be done to
stop cholera (effect of a cause). In the crucial study cited by Freedman (1991a), Snow seems to have
gotten a “twofer”: A strong natural experiment is by definition the next best thing to a randomized
experiment and, as I note below, a randomized experiment is all but inseparable from the definition of
the average effect of a cause in a given population. Snow’s study showed convincingly what happens
when households are or are not exposed to water that has been contaminated with human waste. The
“what happens” is so dramatic that from the standpoint of causal analysis, it is “game, set, and match.”
Get rid of exposure to cholera-contaminated human waste, and you will get rid of cholera.

Freedman (1991b) points out that this is not the whole story—*“most people who were exposed to
contaminated water survived; some who drank clean water died” (p. 354)—so there is more variation
left to explain. Still, this seems more argumentative than illuminating in this case:



54

H.L. Smith

Detectives in novels practically always search from among a large number of possible candidates for single killers
(causes), or at least for several who are closely linked. Snow’s problem was of a similar nature, and he indeed
must have employed ingenious and carefully designed studies to uncover a single source. It is very different,
however, in most social science applications, where multiple causation is the rule rather than the exception and
where it is often the case that no five or six variables stand out as overwhelming favorites (Blalock 1991: 330).

Lest the usefulness of Blalock’s (1991) observation be submerged under the image of a regression

where five or six variables stand out from among many others, consider a problem in multiple
causation usually posed in terms of the “causes of effects”: Why has the prevalence of diagnoses
of autism increased so dramatically in recent decades (e.g., Jick and Kaye 2003)? Or, what are the
causes of autism? Here are results from a recent research program:

Changes in practices for diagnosing autism account for 25% of the increase in the prevalence of
autism in California between 1992 and 2005 (King and Bearman 2009).

The likelihood of a diagnosis of autism among Hispanic children in California, relative to Anglo
children, was suppressed when the antiimmigration Proposition 187 was in effect (Fountain and
Bearman 2011).

A social influence mechanism accounts for 16% of the increase in autism prevalence in California
data for the period 2000-2005. Children living very close to a child previously diagnosed with
autism are more likely themselves to be diagnosed with autism, net of personal characteristics
associated with a diagnosis of autism. Various unmeasured joint factors such as a common
toxicological environment are plausibly ruled out. For example, if a child with a diagnosis of
autism moved away in a given neighborhood, similar children in the same neighborhood are less
likely to be diagnosed with autism than if the neighborhood child earlier diagnosed with autism
had stayed. This comports better with a social contagion process—for example, mothers talking to
one another—than with exposure common to toxins in utero, the joint effects of which would not
be attenuated by geographic separation of families (Liu et al. 2010a).

Population-based studies on the concordance of autism in twins reveal that “the heritability of
autism has been wildly overestimated.... Autism is very heritable but not more than other
neurodevelopmental disorders” (Liu et al. 2010b: 335). The genetic basis of autism is more
likely a function of diffuse de novo mutations. These are more common in older parents, and the
demographic rise in the number of older parents is plausibly related to an increase over time in the
increased heritability of autism, that is, more concordance among monozygotic twins, less among
dizygotic twins, since it is the probability of a mutation, not a specific allele, that is being inherited
(Liu et al. 2010b: 337-339).

The probability of a child being diagnosed for autism increases when the mother is over age 40.
The extent of this increase varies substantially by year-specific birth cohorts of children (King et al.
2009).1°

Second children in California are more likely to be diagnosed with autism if the inter-birth interval
is short, especially if it is less than 12 months. The analysis pertains to families in which the first-
born did not have an autism diagnosis (Cheslack-Postava et al. 2011).

These are also “ingenious and carefully designed studies” (Blalock 1991: 330). One basic data

source underlies these studies: approximately a decade of client data on children diagnosed with
autism from California’s Department of Developmental Services. These are linked to the children’s
birth records to obtain further information on the families, the data are geo-coded, and environmental
measures are obtained from various sources. Plenty of twenty-first century shoe leather is thus
expended. A variety of analytic methods are employed: Retrospective case-control matching and

10paternal age—which is strongly related to maternal age—may be the biological source of the de novo mutations
(Shelton et al. 2010; O’Roak et al. 2012; Kong et al. 2012).
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analysis; covariance adjustment via generalized linear models, including event history analysis and
estimators for nested data; estimation of heritability based on concordance among different forms of
sibling pairs, including twins; and interrupted time series. Sometimes there are restrictions on the data
in order to get “sharp” measures of the effect of a cause (e.g., maternal age, birth interval). Much
attention is given to the population structure of associations (e.g., within and between cohorts) so as
to give coherent demographic or epidemiological accounts of changing prevalence over time. And
several studies emphasize mechanisms (e.g., de novo mutations, social influence).

Yet one is no closer to identifying a “single source” (Blalock 1991: 330), and the evidence appears
to be moving against the very idea. There is little if anything that would be definitively resolved
by a randomized experiment or the fortuitous discovery of a strong instrumental variable. I have
not yet discussed the Rubin-Holland “manipulation criterion,” but there is little here that admits to
intervention. Granted, one could ask what the prevalence of autism would be under standard diagnostic
criteria, equal access to services, and so on, or subsequent to a campaign to inform women of the
greater risk of an autistic child for a birth in their 40s. If the goal is to do an experiment, sure,
where there’s a will, there’s a way and idem for an instrument hunt. In this example, however, which
is illustrative of many problems not just in social epidemiology but in social sciences writ large,
recognition that one is working in the “causes of an effect” genre should free us up somewhat from
the logical (hence, design) strictures of Campbell and Stanley (1963) and the counterfactual model
(Morgan and Winship 2007: chap. 2).

We are free—or somewhat free—to go, but where? Part of the problem is epistemological. Whereas
the potential outcomes or counterfactual model provides a framework for inference about the effects
of causes, no comparable logic obtains with respect to establishing the causes of observed effects:
“No amount of wishful thinking, clever analysis, or arbitrary untestable assumptions can license
unambiguous inference about causes of effects, even when the model is simple and the data are
extensive (unless one is lucky enough to discover uniformity among units)” (Dawid 2000: 418)!!
Some progress may be possible when there is some strong information about causal mechanisms, in
which case one can sharpen the bounds on statements regarding the probability that a unit with a given
outcome owes that outcome to one treatment versus another (Dawid and Fienberg 2011). Even then,
however, “[c]ausal identification [establishing the effect of a cause] is often a form of speculative
postmortem” (Holland 2008: 97), and most of what passes for causal analysis in sociology and related
social sciences have as intent something other than reconstruction of the causes of specific outcomes
after the fact.

Delimiting Causes of Effects

The other problem is that there is no end of causes and not just in the sense of “five or six variables
[that] stand out as overwhelming favorites” (Blalock 1991: 330).

Traditional analyses of causation start by looking for the cause of an effect. I think that looking for causes
of effects is a worthwhile scientific endeavor, but it is not the proper perspective in a theoretical analysis of
causation. Moreover, [ would hold that the “cause” of a given effect is always subject to revision as our knowledge
about the phenomenon increases. For example, do bacteria cause disease? Well, yes ... until we dig deeper and
find that it is the toxins the bacteria produce that really cause the disease; and this is really not it either. Certain
chemical reactions are the real causes ... and so on, ad infinitum (Holland 1986: 959).

At a minimum, analyses of the causes of an effect should do a better job of distinguishing among
kinds of causes (Lieberson and Lynn 2002: 11-12, Chap. 3 by Freese and Kevern, this volume). This

'The “uniformity among units” is with respect to the effect of a treatment.
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is variously the distinction between proximate and distal causes, between causes that admit easily
to intervention and those that do not, and between causes that are operating at different levels of a
phenomenon.

This also leads to some advice on research design when one is seeking to establish the causes of
effects: It should be informed demographically, in the sense that Stinchcombe (1969: 60-79) elab-
orated the idea of demographic explanations of social phenomena. In the strictly mechanical sense,
this can reduce to decomposition of aggregates into rates and compositions, and/or standardization
to adjust for compositional differences, and/or simulations in which some parameters are varied and
others are held fixed. The attribution of 25% of the increase in cases of autism in California to changes
in diagnostic practice (King and Bearman 2009) is an example of this last. But the point is not merely
mechanical: One is seeking to get straight what can and should be explained (Stinchcombe 1969: 79).
Thus, compositional differences in the proportion of children born to older mothers (King et al. 2009),
along with a very specific causal mechanism for the genetic basis of autism, can account for the recent
increase in the apparent heritability of autism (Liu et al. 2010b). It is this demographic component to
the research design that explains why I have classified the work of Bearman and colleagues on autism
within the genre “causes of effects,” notwithstanding the fact that many of the specific studies have an
“effect of a cause” flavor to them as well.

Another excellent example is the framework for studying the proximate determinants of human
fertility (Bongaarts and Potter 1983). Fertility can be decomposed into four proximate causes:

* Exposure to intercourse

* Length of postpartum amenorrhea (as influenced by breastfeeding practices)
e Use of contraception (including efficacy)

* Practice of abortion

Data from these four variables account for virtually all of the variation in rates of fertility between
populations (cross-sectionally and inter-temporally), and they also explain much variation at the
individual level. Their relationships to fertility are often nonlinear and depend a great deal on one
another. For example, when the use of contraception is high, an abortion in essence averts a birth,
but when contraceptive use is nonexistent, the impact of abortion on fertility is less, since women
are being rapidly returned to exposure to pregnancy. The deterministic relationships that comprise
the proximate determinants model were derived from knowledge of biological mechanisms, logical
accounting of time intervals, plus a certain amount of empiricism (curve fitting).

Do we now know the causes of human fertility? Yes, in an accounting sense; yes, in a certain
scientific sense; but, no, in the sense that knowing how contraception affects fertility is not the same
thing as knowing what will make couples practice contraception, another “cause of effect” question,
now displaced further upstream along the causal chain (see, also, Johnson-Hanks et al. 2011: 62-63).
Nor does it tell us how defunding Planned Parenthood will (or will not) affect fertility. It does focus
studies of this “effect of a cause” on a suite of intervening mechanisms: abortion, use of contraception,
and exposure to intercourse.

Summary

Most social scientists do not recognize, unprompted, the distinction between effects of causes and
causes of effects. Most research is motivated within a framework that is decidedly cause of effect:
“What accounts for...?” But it is executed and evaluated within the epistemological framework for
estimating the effects of causes. Small wonder: Here there is a model, if not a method, that is all but
indistinguishable from the definition of an (average) causal effect.
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The Experiment as the Model for Research Design

Randomized experiments occupy a special case in the literature on research design in the social
and behavioral sciences (Campbell and Stanley 1963). Cook (2002: 275) refers to the “well-nigh
universal acknowledgement that experiments provide the best justification for causal conclusions”
and in Shadish et al. (2002: xvi), extends to other research designs the “structural design features
from the theory of experimentation.” The experiment enjoys a privileged place in Rubin’s model
because randomized assignment of subjects to treatments is the canonical statistical solution to
the fundamental problem of causal inference, the impossibility of simultaneously observing a unit
response under two alternative treatment conditions (Holland 1986: 947). Thus,

the randomized experiment’s status as the gold standard for causal inference; and the imperative to analyze
observational data by reconstructing a hypothetical randomized experiment by (among other things) separating
covariates from intermediate outcomes and balancing covariates between treatment and control groups ...
(Greiner and Rubin 2011: 775-776).

In practice, the experiment itself is more ideal—model—than method in the social sciences.
Experiments are adjudged infeasible for reasons of expense or ethical considerations, including the
problem of what would be required in effecting the assignment at random of subjects to treatments
(Winship and Morgan 1999: 659-660). The extent to which this incapacity is true rather than
trope can be debated (Cook 2002). Nonetheless, well-designed experiments in the social world do
routinely encounter problems in execution that make analysis of data—hence causal inference—less
straightforward than under ideal form (e.g., difficulties in delivering treatments as assigned [Berk and
Sherman 1988]).

Heterogeneity of Treatment Effects

It is a modest irony that the notational “breakthrough” that reinvigorated the experimental model with
respect to causal inference has also called into question the superiority of the experimental method
sui generis. The breakthrough was indexing potential outcomes at the unit level, as per Y;(1) for the
response of unit 1 under the treatment (1) condition, Y;(0) for the response of unit 1 under the control
(0) condition, and similarly with the pair of potential responses Y;(1), Y;(0) defined over all units i = 1,
..., N. A set of N unit-level causal effects can then be defined by the comparisons Y;(1) versus Y;(0)
(Rubin 2005). They cannot in general be estimated for individuals, but when random assignment of
subjects to treatment and control conditions obtains, as in an experiment, differences between the
observed means for, respectively, treated and control groups gives the average unit-level causal effect
over the set of N units.

It has long been recognized that treatment effects might be different in different parts of
a population (e.g., Campbell and Stanley 1963: 17), but the implications for the prima facie
“dominance” of the experimental method as a design for (causal) research were not in general well
apprehended (Smith 1990). A notation that emphasized individual-specific treatment effects fostered
and reinforced theoretical and empirical work that brought this heterogeneity to the fore.'> Thus, Card
(1999: 1803) notes that “[a] unifying theme” of studies on the economic return to education is that

2There are discussions of heterogeneity and interactions with respect to treatment effects in the foundational work
on randomized experiments (Fisher [1925] 1951). But heterogeneity was with reference to variance among subjects in
other factors related to the response but independent of assignment to treatment, hence on the efficiency of experimental
designs (pp. 107-109), and interactions in effects of factors were with respect to other factors in the design of the
experiment, not to characteristics of the units subject to randomization (e.g., pp. 93-99).
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this “is not a single parameter in the population, but rather a random variable that may vary with other
characteristics of individuals...”; see, also, Heckman (2001: 255) and Brand and Simon Thomas
(Chap. 11, this volume). This rethinking of what is being measured with an average causal effect
puts into question the unreflective idealization of the randomized experiment as the preferred research
design.

One “simple” answer (simple in concept, not in execution) is to do experiments on random
samples of subjects. Then the average treatment effect estimated under the experiment does pertain
to a parameter of a population. Rosenbaum (1984: 42) begins his definition of the causal effects of
treatments as follows: “Suppose, for example, that an experimenter randomly samples units from
some population for inclusion in the experiment . . ..” Aye, but there’s the rub: some population? Here
is an opportunity for social scientists: Once we get past the idea that we can somehow outsource causal
inference to special methods, we have the chance to use our experience in thinking about relationships
at the population level to better specify the real-world domains to which our causal inferences apply
(Smith 2009: 237; Sampson 2010: 491). This is the difference between treating the ““... among what
population ...” (Babbie 2010: 117) element of research design as a checklist reminder to state where
you got your data from and realizing that it is a serious part of a bigger scientific problem.

The converse is to recognize that some experimental designs involving heterogeneity have nothing
to do with population-level inference. Loring and Powell (1988) randomly assigned vignettes featur-
ing persons manifesting psychological distress to psychiatrists. The fictive persons were randomly
male or female, black or white, or not described in terms of gender and race. Psychiatrists were
randomly sampled from among strata defined by the cross-classification of their gender and race. Such
a design is pointless from the standpoint of estimating the population average effect of, say, appearing
black and male versus white and female on the diagnosis accorded an identical set of behaviors. The
psychiatric profession being what it was at the time, the population average would be very close to the
estimated parameter for the stratum of white male psychiatrists. Reweighting the estimate to account
for heterogeneity among psychiatrists as indexed by their sex and their race would barely budge the
estimate. Nor is this a case where an alternative set of weights might be used to calculate an alternative
synthetic parameter: the effect of a patient’s race on diagnosis in a world with more African-American
psychiatrists, for example. Rather, the stratified sampling design was in service to the test of a
hypothesis not about a parameter of a population but of a property of a measurement instrument:
the Diagnostic and Statistical Manual (DSM), which was supposed to promote diagnosis according
to objective behavioral criteria, not ascriptive characteristics of persons presenting with symptoms.
Being able to show that diagnosis was affected not simply by the characteristics of putative patients
but by the relationship of these (gender and race) characteristics to those of the diagnosing clinician
helps parry the common claim of those who discriminate on the basis of gender and, in particular,
race: that there is “information” in these characteristics that goes beyond the “observables.”!3

Even when there is an actual population of interest, well represented by sampling or other means,
heterogeneity of treatment effects at the unit level can be improper estimates of parameters of the
population under alternative conceptualizations of the question at hand. Or, as Heckman and Smith
(1995: 95) put it, “experiments provide little evidence on many questions of interest.” The frame for
this statement is what is variously called policy or program evaluation. Consider two elements from
these terms: The first is the idea that something is being, or will be, or could be done. This I set aside
momentarily but return to in a discussion of the manipulation criterion. The second is the question
of what is being done, because unless real-world assignment systems mesh with the randomization
mechanism of an experiment, in the presence of heterogeneity, there can be problems. “Randomization

B3Either that or that it is only white male psychiatrists who know how to use correctly this information on the empirical
incidence of psychological disorders conditional on the gender and race of the patient.
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Table 4.1 Rates of polio observed and [calculated] (per 1,000) under two research designs

Nonrandomized design Randomized experiment
Parental Parental Parental Parental
consent not consent consent not consent
accorded accorded accorded accorded
(higher (lower (higher (lower
immunity) immunity) immunity) immunity)

54 (725) [60]
Not vaccinated 44 (125) [60] Not vaccinated 46 (335) 71 (200)
Vaccinated Not observed 25 (225) Vaccinated Not observed 28 (200)

bias occurs when random assignment causes the type of persons participating in a program to differ
from the type that would participate in the program as it normally operates” (Heckman and Smith
1995: 99).

Consider a hypothetical population in which half the units would show a value of +1 for some
outcome under assignment to a new treatment and a value of O if the new treatment did not obtain.
For the other half of the population, the respective values would be —1 and 0. Random assignment of
subjects to the new treatment or not would yield average outcomes of 0 in both groups for a population
average treatment effect of 0 as well. However, if the implementation of the program were “make the
new treatment available” and units (subjects) were perfect judges of their own potentials, then half
would opt for the new treatment and evince a collective average outcome of +1, while the other half
would decline the new treatment and remain at 0. The population average outcome would be 42, as
against 0 in the absence of availability (the status quo). In this example there is nothing wrong with the
experiment per se. The (potential) problem would be in not thinking through what the experimental
effect is estimating relative to the action at hand.

An obverse problem emerges even if a treatment is to be applied universally across a population, if
the felt need to make causal inference on the basis of an experiment does not account for population
heterogeneity. The textbook statement in favor of a randomized experiment compares two designs
for assessing the effects of the Salk polio vaccine (Freedman et al. 1978). A nonexperimental design
separated second from first and third graders. Second graders were immunized, assuming that their
parents consented. Better-educated parents were more likely to consent to their child’s participation.
Better-educated parents also had children with better hygiene. Better hygiene in the early years of
childhood tends to limit exposure to the polio virus: Children with better-educated parents are on
average less likely to have built up natural immunities to the disease. When the immunized second
graders were compared to non-immunized first and third graders, who were not differentiated by prior
exposure to the virus, the effects of the vaccine were being confounded with the effects of “consent,”
a proxy for vulnerability to the virus of children in function of prior exposure. A randomized
trial, in contrast, did not differentiate by grade but instead first asked for consent, then randomized
consenters into vaccinated and unvaccinated groups. Comparison between these two gives an effect
uncontaminated by the unmeasured variable vulnerability (as manifested by consent, through the
association with education).

The nonrandomized and experimental designs basically convey the same information. Consider
Table 4.1, where rates of polio are cross-classified by whether parents consented or not and whether
students are vaccinated or not. Numbers in parentheses are numbers of children, in thousands. The
table follows Smith (2003: 463) but suppresses information on the order in which consent was
obtained and the difference between first, second, and third graders. Each design gives observations
on three rates. The similarity in rates for treated cases (25 in the nonexperimental design and 28 in
the experimental design) and for non-treated non-consenters (44 and 46, respectively) is reassuring
with respect to the assertion that confounding due to grade is minimal. The nonexperimental design
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does not feature a rate for non-treated consenters, but it does have a rate for consenters irrespective
of treatment (54), which overlaps with an observation of the rate for non-vaccinated students who
did not consent (44). Under the assumption that the overall propensity to consent is consistent with
that found among the second graders, one can calculate an implied rate absent treatment for those
who would have consented if asked, that is, 60 = ((54 x (125 + 225) — (44 x 125))/225. This would
give a treatment effect of 60 — 25 =35 from the nonexperimental design versus 71 —28 =43 from
the randomized experiment. Some of the discrepancy is attributable to choice of weights: The second
graders were more avid consenters in the nonrandomized study than were students overall in the
randomized experiment.

But rather than praising the experimental design simply for its capacity to dodge an issue of
“proper” weights, let’s consider the question of the population estimand of interest. If the vaccine
is deemed a success, one would hope to apply it universally, in which case its effects would meld
those among the enlightened parents with polio-vulnerable children to those for the less-enlightened
parents whose children had previously activated immune systems. Both tables lack information on one
cell—rates of polio among children whose parents did not consent under the counterfactual condition
that they were (or would be) vaccinated nonetheless. One assumption that could be made whether the
observed data were generated under an experimental design or not is that the potential outcome given
vaccination does not vary by consent, that is, that previous exposure to the virus is protective absent a
vaccine, but is irrelevant when a vaccine is present. In this case, the estimand is the difference between
rows (vaccinated or not) irrespective of consent or 29 = 54 — 25 for the nonexperimental design and
32 =60 — 28 for the randomized experiment. (The figure of 60 was calculated with the weights on
consent observed in the randomized experiment.) The first of these estimates is that excoriated in the
textbook (Freedman et al. 1978). It is also an appropriate answer to the relevant question of interest.

Causal Interpretations of Intervening Variables Consequent to Randomization

Reliance on randomized experiments is often contrasted with the “nonexperimental” or “econometric”
approach that “uses a variety of microdata sources, statistical methods, and behavioral models to
compare the outcomes of participants ... with those of nonparticipants” (Heckman and Smith:
85). Other examples of data analytic strategies for observational data consequent to well-elaborated
accounts of heterogeneous treatment effects are available from other fields (e.g., Morgan and Winship
2012). My interest is less in endorsing (or decrying) particular methods and analytic tools than in
reinforcing the first principle of research design: Getting the question right. This is easier to see when
there is randomization as per an experiment, but comparison of several structurally similar studies is a
reminder that our specification of the research question is the determinative element in causal interest.

Table 4.2 describes in stylized form four studies with a common three-variable structure: a
randomized variable Z and an outcome Y, and an intervening variable X that is a (causal) function of Z
and is itself a cause of Y.!* The first (/) is Snow’s natural experiment regarding water contamination
and cholera, as described above. We assume that assignment of households to water sources (hence,
contamination) is effectively at random, as per a “true” experiment. The second (2) is a study of the
effects of financial payments on recidivism among persons released from prison. It was discussed
previously by Smith (1990: 79-86) following Zeisel (1982a, b) and Rossi et al. (1982). The third
(3) is based on ideas from Morgan and Winship (2012, Appendix) on how random assignment to a
conditional cash transfer program would allow for the estimation of the effects of school type (charter

4This is the simplest structure of causal mediation analysis by Wang and Sobel (Chap. 12, this volume). Their chapter
provides a detailed formal exposition of most of the causal issues posed by the various studies illustrated in Table 4.2.
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or non-charter) on student achievement. The fourth (4) is a study in which potential voters were
telephoned at random to urge them to vote (Arceneaux et al. 2010).

Studies / and 2 differ from one another in the thinking about intervening variables. The cholera
study had no measures of intervening variables. However, we know that a contaminated water source
in large measure determines exposure to the cholera bacillus (but not completely), and that although
not everyone exposed to the bacillus gets cholera, no one gets cholera without exposure to the bacillus.
But none of this matters much: The estimated effect is so large, and so indicative of a change that could
be made, that the intervening variables can be consigned to a later science.

The recidivism study (2), however, found no effect of payments to persons released from prison on
their subsequent criminal activity. How could this be? Isn’t crime at least in part a function of desire or
need for money? In this case, data were collected on intervening variables, including work. Assuming
that people prefer leisure to work, we can infer that money for nothing depresses work. Having a
job is associated with lower rates of criminality, both theoretically and empirically. The causal effect
of work is difficult to estimate within this scheme since ex-convicts are not exposed to working at
random, and one of the causes of whether they work or not—the randomized financial payment—is
posited to have its own effect on recidivism through mechanisms other than work (Smith 1990: 85).
In the event, the causal effect of work is not at issue here.

It may be possible to make inferences about the non-work-related effects of payments to ex-
prisoners.'> Under the experimental design, former prisoners are randomly assigned to payments, or
not. We observe whether they subsequently work or not. The idea of principal stratification (Frangakis
and Rubin 2002; Chap. 12 by Wang and Sobel, this volume: sec. 5) posits that the subjects can be
classified by an unobserved propensity to act that exists prior to the randomization event and is not
affected by it. Thus, there are individuals who would work in all events, whether they were paid or
not; who would not work no matter what; and who would work if they weren’t paid but would not
work if they were paid. The groups that we can observe (the cross-classification of randomly assigned
payments by subsequent work effort) contain a convolution of these types (or strata). For example,
those who were paid and did not work are an admix of those who would not have worked no matter
what and those who would have worked had they not been paid but who decided not to work once their
monetary needs were acquitted via the experimental payments. Conversely, some of these latter types
will also feature among those observed as not receiving payments and working. This group, in turn,
also contains some people who would work no matter what. Are there also people who do not work
if not given payments but do work when they receive the (non-work-related) payments? This would
appear to contradict basic economic theory about preference for leisure rather than work, and if the
existence of such types can be ruled out, then there are methods that will allow for statements about the
(possibly different) effect of payments on recidivism for those who would work no matter what and
those who would not work no matter what. It is also possible to estimate the relative frequency of the
three unobserved strata and to put some bounds on the average effect across all three strata combined.
See especially the discussion of principal scores by Wang and Sobel (Chap. 12, this volume).

On the other hand, it is not so difficult to conjure the fourth type—persons who would sit on their
hands without money but who, when money flows for no particular reason, become motivated to work
for more money still. It is quite human to make connections among things that are not connected on
paper, and perhaps a system that is willing to pay money to ex-convicts is a system that an otherwise
cynical ex-convict is willing to invest himself in. If such types do exist, then it is far more difficult to
make causal inferences based on principal stratification. Here I am straying into theory and speculation
that are specific to a topic and in service to an analytic strategy that requires an assumption that is
independent of the design of the study (ex-convicts being randomly assigned to a payment or not).
And this is the point: The assumptions required are independent of the design. If these assumptions

13T am indebted to Xiaolu Wang for developing, clarifying, and drawing out the following points.
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are untenable, then we are back where Zeisel (1982a, b) and Rossi et al. (1982) were 30 years ago:
The idea that the ameliorative effect of financial payments on recidivism is being suppressed by the
deleterious effect on work is credible, but a positive causal effect of payments awaits not another
analysis but the design of a payment scheme that is neutral with respect to work.

One such scheme that has become increasingly popular conditions payments on behaviors deemed
positive that might otherwise be suppressed by unconditional payments (e.g., de Brauw and Hoddinott
2011). Thus, in 3 in Table 4.2, the randomized variable is designed to encourage “uptake” of the
intervening variable X (school type) while having no other effect on the outcome variable Y: The
conditional cash transfer, Z, another form of financial incentive, can only be “activated” by those who
opt for the school type (in this case or perhaps charter). This is what makes it conditional; in the
recidivism experiment (2) financial payments to randomly selected parolees were not conditional on
whether the parolees worked or not.'® Among those not selected for the conditional cash transfer,
some will choose charter schools anyhow, others will not, and although these choices are hardly
random, they will have nothing to do with a potential transfer. Among those who do receive the offer,
some will not use it (and presumably would not have chosen charter schools in the absence of the
financial incentive at which they are thumbing their noses), some will accept it but would have chosen
to send their children to charter schools anyhow, and some who otherwise would not have will now
choose charter schools by dint of the promised cash transfer. Extensions of the traditional theory of
instrumental variables to the potential outcomes model (Angrist et al. 1996) allow for the estimation of
causal effects for the intervening variable X for that slice of the study population who are (positively)
influenced by the conditional cash transfer to choose a school type that they would not have chosen
absent the money (Morgan and Winship 2007, chap. 7): This is the effect of going to a charter school
versus not going to such a school for this group.

The final study, 4, is similar in structure to 3, except that whereas X in 3 is observable independent
of assignment of Y, the variable has no meaning in 4 for those not assigned to the treatment condition
on Z: You can choose between school type irrespective of whether you are offered a conditional cash
transfer or not, but you cannot take a phone call to receive a get-out-to-vote message unless someone
makes such a call to you. Whereas it appears that persons who receive the message are far more
likely to vote than others who are identical on many observable characteristics correlated with voting
behavior (e.g., whether someone had voted in the previous election), the randomized assignment of
voters to phone calls allows for an instrumental variables estimate of the effect of getting the message.
It is quite modest. People who answer a phone call from strangers are also the type of people who
would have voted anyhow.

But what is really at issue here? In /, it is clear: Move the water intake away from sewage, and
cholera will go down dramatically. In 2, an effective intervention may or may not await a new payment
design—a way of giving parolees money that does not discourage work. In 3, we have an estimate of
a type-of-schooling effect, albeit for a thin slice of the study population. And this thin slice, folks who
will send their children to charter schools when a cash transfer is proffered, but not otherwise, is not
explicitly identified. It is also not clear what potential intervention maps onto the dichotomy charter
school versus non-charter school.!” However, if the study is reconceptualized as per / and 2, we have
an estimate of gains in achievement attendant to a conditional cash transfer program targeted at charter
schools (c¢f. Morgan and Winship 2007: 210). Similar comments apply with force to study 4: Is there

16Thus, parolees could substitute these payments for the money that would otherwise be derived from work. In contrast,
charter schools do not require additional subvention, so the conditional cash transfer is a net plus for those who are
offered it and send their children to charter schools. This distinguishes the charter school experiment from a similar
conditional cash transfer scheme in which vouchers that can be used to pay Catholic school fees are randomly tendered
(Morgan and Winship 2007).

This is without considering the possibility that heterogeneity in treatment effects obtains not only with respect to
families but also to school types—what Morgan and Winship (2012) term compositional heterogeneity.
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really a variable “affirmative receipt of a phone call with a message” (X) that has meaning absent
the decision to make phone calls to likely voters? The effect of the latter—calling likely voters—is
directly observable consequent to randomization on Z and without reference to X. This is not to argue
that the reduced form as estimated by a randomized experiment is always to be preferred (see again
study 2). But it does help in designing a study to think about what one is actually doing—in the literal
sense of the term.

The Manipulation Criterion

I have now stumbled onto the third rail of causal inference: the manipulation criterion. The stark
rendering is “no causation without manipulation” (and that in capital letters [Holland 1986: 959]). If
you can’t manipulate it, it isn’t a cause. It’s an attribute, and attributes aren’t causes.

You can see the problems. First, this is an assertion that lies completely outside the rest of the
epistemological system that has grown up around the idea of an effect of a cause. One of the two
defining statements of strong ignorability is that “at each value of [the joint distribution of covariates]
there is a positive probability of receiving each treatment” (Rosenbaum 1984: 43). This can be read
as both the need to have alternative potential outcomes to define an effect and that units be subject to
manipulation with respect to alternative treatments (Smith 1997: 333-334). On the other hand, there
is nothing in the mathematics of the statistical definition that would militate against a more capacious
verbal rendering, for example, “being observed under each treatment” in place of “receiving each
treatment.” Logical objections to the former—*“being observed”—would arise from the standpoints
of semantics and action orientation. If one grants that we are seeking to assess the effects of causes—
that “[w]hen we ask a What-if question we seek to know the effect of some cause or intervention that
we might contemplate making” (Holland 2008: 98)—then the capacity for manipulation is a must.

Second, the definition of what is or is not manipulable—what can be a cause and what is “merely”
an attribute—can be fuzzy, as Holland (2008: 100) acknowledges. The kind of people who worry
about whether they (and, more to the point, others) are “doing causal analysis” “right” are for the
most part the same people for whom what’s “in” and what’s “out” can be parsed definitively. A
standard recourse is to the experimental model, for this is where assignment and manipulation overlap
most clearly. “[CJauses are only those things that could, in principle, be treatments in experiments”
(Holland 1986: 954). The inclusion of the modifier “in principle” is of some avail: It helps bridge the
gap between hypothetical manipulations on the one hand and ethical and practical considerations on
the other. Still, the distinction between hypothetical as “possible but not yet or ordinarily realized”
and hypothetical as “rhetorical flights of fancy” is not a sharp one.

Third, and fuzziness notwithstanding, there are some attributes that are explicitly ruled out as
causes. One example is race (Holland 2008; Smith n.d.; pace Greiner and Rubin 2011). In fact, most
of the individual-level variables that show up in “causal analyses” are attributes, not causes. Greiner
and Rubin (2011) put a happy face on the manipulation criterion—that “prominent scholars” (p. 775)
and/or “some scholars” (p. 776) have embraced the contention that what cannot be manipulated cannot
be a cause, race and sex in particular—but I fear that that is a tendentious reading of the terrain. It
ignores reasoned and sustained critiques (Marini and Singer 1988), and it ignores critiques issued in
high dudgeon (Ni Bhrolchdin and Dyson 2007: 3; Russo et al. 2010: 8).'® The latter are particularly
telling because they give voice to the silent majority who have totally ignored the manipulation

18«No causation without manipulation” is the third of eight “myths” addressed by Bollen and Pearl (Chap. 15, this
volume). They tend to hold with the critics of the manipulation criterion, but at the core their myth busting targets the
irrelevance of this criterion for the practice of causal analysis via structural equation models.


http://dx.doi.org/10.1007/978-94-007-6094-3_15

4 Research Design: Toward a Realistic Role for Causal Analysis 65

criterion and have happily gone along “doing” causal analysis with an eye toward clever instruments
and/or covariate adjustment alone: “How dare you tell me that X is not a cause?” Left implicit is the
implication: “Because if X is not a cause, then how can I have been doing causal analysis? (And if I
am not doing causal analysis, what is to become of me?)”

However, it’s not about us. It’s about the world as it exists and about what might happen if
something were done and something else were not. Morgan and Winship (2007: 278-280) suggest
some ways that the counterfactual causal framework can be adapted for a world of hard-to-manipulate
“causes.” Elsewhere (Smith n.d.) I emphasize the link between causality and social action and de-
emphasize a causal account of the social world built on outcomes conditional on individual attributes.
Here I conclude the section on the experimental model and the experimental method with some
comments that are germane for the section that follows, which takes on the question of the appropriate
level of (causal) analysis:

In the social sciences we do a lot of causal analysis and very few experiments. Yet it is very difficult
to unpack the notion of causation from the notion of experimentation. For the most part, this is because
the randomization that is characteristic of our definition of experimentation—it is not for nothing that
I have referred repeatedly to randomized experiments—is the canonical solution to the fundamental
problem of causal inference: our incapacity to observe the potential outcomes of a unit under two (or
more) alternative treatments. However, the definition of an experiment is also tied up with the idea of
action, of doing things (e.g., Shadish et al. 2002: 2). This is more or less isomorphic with assignment
of subjects to treatments, but it is not complete. The statistical solution to the fundamental problem
of causal inference—randomization—is not the only solution. There are scientific solutions as well,
including circumstances under which temporal homogeneity can be assumed—that a unit will evince
the same outcome over time absent an intervention (Holland 1986: 947-948). In the physical sciences
(and elsewhere), experimentation conjures action and intervention, rather than randomization.

This would be little more than another instance of “different strokes for different folks” were it
not for our own habits in the social sciences. To keep the peace, why not drop the insistence that
to be a cause, something must be subject to manipulation? Shadish et al. (2002: 8), for example,
have a very catholic (or tautological) solution: “To be clear, we are not arguing that all causes must be
manipulable—only that experimental causes must be so”” (emphasis in the original). There are all sorts
of causes, and if the causes happen to be subject to manipulation, then they are experimental causes.
Otherwise they are not experimental causes. Except that, having executed a “causal analysis” with
nonexperimental causes—attributes that cannot be manipulated, at least not at the level of analysis—
it is the rare social scientist who can avoid pronouncing on the meaning of the estimated effect,
usually in terms of “what will happen” or “what should be done.” This is no crime. This is our job.
Unfortunately, the tendency is to use the “causal” nature of the just-effected analysis to make action
statements, even when there is no action—no potential manipulation—that conforms to the attribute
deemed causal.

Research Designs with Causes Operating Above the Individual Level

When the bank robber Willie Sutton was asked why he robbed banks, he supposedly said that he
robbed banks because that was where the money was (Rytand 1980). If one were to ask researchers
to explain why they do causal analysis at the individual level, they might or might not reply that this
is where the money is. They would certainly reply that this is where the data are.

The development, beginning in the 1970s, of comprehensive and integrated social statistics
data systems, including unit-record (individual-level) data, was motivated in part for their value in
“model construction” (Duncan 1974: 599). Social scientists recognized the potential of longitudinal
panel data to help sort out causal relations of indeterminate order, for example, the relationship
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between socioeconomic status and psychological disorder (Wheaton 1978). The collection of detailed
individual-level data, including panel data, has led to great opportunities in the modeling of causal
relationships. For example, to speak of “the effect” of disability on employment status is complicated
by the fact that disability is a “treatment” that can occur at any point in time and that some of the
“control” cases of the moment will become “treatments” at some point in the future—a classic issue
in traditional case-control retrospective designs (Farewell 1979: 27-28). Prospective panel data, plus
insights from the potential outcomes (or counterfactual) framework, admits to the identification and
estimation of an array of causal effects (Brand and Xie 2007).

When one talks about causal analyses with aggregated data, at a higher level of analysis, it is hard
to avoid conjuring an image of “the bad old days,” when relationships were examined at a higher level
of analysis faute de mieux, since everyone would have preferred to talk about processes happening at
the individual level (Firebaugh 1978). But it is less clear that the individual level is where the causes
are. Social scientists chafe against the manipulation criterion because it is an unwelcome guest at
what otherwise would be a sumptuous banquet of data, models, instruments, and estimators. In the
midst of such a feast, who wants to be reminded that most of the individual-level causes map only
weakly if at all onto the social actions that would be required to assign individuals to alternative states
(typically not at random) (Smith n.d.)? Better to think about clever designs in which the race or gender
of individuals can be made to vary (or appear to vary) so as to precipitate (or not) discrimination on the
part of others (Greiner and Rubin 2011) than to deal with the meaningless of a statement to the effect
that “your race (gender) is the cause of what is happening to you,” since redress is not possible through
individual-specific reconfiguration of attributes, and what is subject to change (action, manipulation)
often leads one away from precisely delimited measurement and analysis toward imagining other
worlds (e.g., Holland 2008: 102).

Interference Between Observations: SUTVA

There is also a fourth rail (or complementary overhead wire) to causation and research design:
the stable unit-treatment variable assumption or SUTVA. This assumption states that the potential
outcomes for a unit consequent to a treatment do not depend on the full set of treatment assignments
over all units (Dawid 2000: 413). The response that unit i will manifest under a possible treatment
should not depend on the treatment to which unit j has been assigned. When drugs are being tested
against one another for noncontagious conditions, as in the prototypical randomized clinical trial,
the assumption is reasonable: The outcome for any one trial participant has nothing to do with the
treatment to which any other participant has been assigned, including the outcomes consequent to that
treatment.

In the social sciences, however, this is rare (Chap. 16 by Hong and Raudenbush, this volume).
Assignment to treatment is rarely random, and even with adjustment for observed assignment
mechanisms, the distribution of treatments across other units is influencing both treatment choices
and outcomes (e.g., Berk 2005: 421). As James Heckman asks,

. what happens in the evaluation of the negative income tax program and the like? When you come up with
microeconomic studies you inevitably ask yourself, what would be the consequences of these things be if, in fact,
it had some larger scale adjustment? Large-scale participation of a lot of poor people could actually be changing
the labor market for the poor people. If everyone participated in training, the information taken from the training
program might be much different than if nobody did. ... I’m afraid that the assumptions required to address
these adjustments are brutal.

It’s also the case in unionism studies. You ask what happens If you go from a labor force that is 1%
unionized to one that is 30% unionized? You rapidly change the whole idea of who unionization is likely to
attract and even what would be the comparison group earnings. There’s and assumption the program is operating
in microeconomic isolation (quoted in Warner [1986] 2000: 62).


http://dx.doi.org/10.1007/978-94-007-6094-3_16

4 Research Design: Toward a Realistic Role for Causal Analysis 67

Morgan and Winship (2007: 37-40) discuss similar difficulties in the context of studies of the effect
of Catholic schooling on achievement:

For SUTVA to hold, the effectiveness of Catholic schooling cannot be a function of the number (and/or
composition) of students who enter the Catholic school sector. For a variety of reasons—endogenous peer effects,
capacity constraints, and so on—most school effects researchers would probably expect that the Catholic school
effect would change if large numbers of public school students entered the Catholic school sector. As a result,
there are good theoretical reasons to believe that macro effects would emerge if Catholic school enrollments
ballooned ... (Morgan and Winship 2007: 38)

They observe that “SUTVA is very sobering” but reject the argument “that SUTVA is so restrictive
that we need an alternative conception of causality for the social sciences,” adopting the position
instead “that SUTVA reveals the limitations of observational data and the perils of immodest causal
modeling . ..” (Morgan and Winship 2007: 38).

The problem, however, is not limited to observational data (Berk 2005: 420-422). Comparisons
are not simply (and are often not meaningfully) between outcomes consequent to treatments to which
individuals are assigned. Rather, they are between aggregated outcomes under alternative assignment
mechanisms: random assignment versus universal imposition versus choice (self-selection), one set
of labor laws versus another, universal health care coverage versus employer-based schemes, and
so on. “An obvious response to potential violations of SUTVA is to move the analysis to a more
aggregate level, i.e., a classroom, family, organization, or local labor market, at which SUTVA can
more plausibly be maintained and estimate macro treatment effects at that level...” (Gangl 2010:
40). Would that it were so obvious! Sobel (2006) shows that in the presence of plausible interference
between units, the results from the Moving to Opportunity trial—an experiment in which certain
families in highly disadvantaged public housing projects were selected at random to receive various
forms of relocation assistance—are very poorly bounded, to the point where it is impossible to say
whether the treatment is harmful or beneficial. Ludwig et al. (2008: 155-156) counter by adducing
side information on the comparative social isolation of the families involved—SUTVA was perhaps
not violated. This still begs the question of what would happen if the treatment were reconfigured so
that it were universally assigned to selective housing projects (Sobel 2006: 1405).

“A concern about shifting to the group as the analysis unit is that the substantive questions are
changed” (Berk 2005: 422). Fair enough, but the change may be for the better if the group (or higher)
level units dovetail more faithfully with what can and will be manipulated. Morgan and Winship
(2007: 38) take the view that concerns about SUTVA do not vitiate the utility of the counterfactual
model, and I agree, the possible difference being the level at which the treatments occur. Insofar as the
alternative interventions pertain to aggregations of subunits, we need to distinguish the measurements
obtained from the individual- or other lower-unit observations from the potential outcomes, which are
the joint distributions of these micro-measurements and/or summarizations, such as averages.

One such study design is a place-based randomized experiment where supra-individual units
(schools, clinics, communities, and so on) are randomly assigned to different treatment regimes
(Boruch 2005; Chap. 16 by Hong and Raudenbush, this volume). The treatment regimes are generally
“policies.” There is an inevitable vagueness here, since policies as designed and/or enunciated
are rarely the same as policies as implemented and/or enforced. This is not a bad thing, since it
encapsulates a great deal of realism that can be lost when the focus is on microlevel treatments or
interventions that bear more resemblance to an experimental ideal than to the self-selection processes
more likely to dictate treatment assignment and the rule systems (or choice sets, or policies) that
condition these microlevel assignments. Aspects of social life and social process that appear as “rules
violations” in causal inference at the level of micro causation—self-selection at the individual-level,
interference between units (SUTVA violations)—are effectively “built in” to the design.

Place-based designs, or group-level experiments, typically have low power in the statistical
sense, even when the studies themselves feature massive data collection efforts at the micro
(individual) level: The analytic sample size for inference is determined in effect by the places or
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groups or neighborhoods or schools subject to randomization (Berk 2005: 422; Sobel 2006: 1405).
Things can get worse—at least in the sense of randomization and formal statistical inference—
if there are heterogeneous treatment effects, where now heterogeneity is understood as obtaining
at the higher-order level. In a study of supposed reforms in the Chinese family planning system,
townships—administrative and geographic agglomerations of roughly 25 villages apiece—were
randomly assigned to reformed policies (including newer contraceptives) or to the status quo (Smith
2005). Data were gathered from over a hundred thousand women of reproductive age, at multiple
points in time, which allowed for the calculation of detailed statistics on what was going on within
the study’s 24 townships (randomized units). But differences between treatments across townships
cannot explain differences within townships—between villages or across women within villages. The
intervention was not occurring at these lower levels. It became evident over the course of the study
that the effect of the treatment—the new policies—depended crucially on the place of the county, a
geographic, political, and administrative unit one level up from the townships where randomization
occurred. In a county that needed to perform well to maintain its place politically, the reforms worked
as imagined. Where the county leaders were already “connected” politically for reasons outside of the
family planning establishment, there was little interest in playing along with the new reform (Merli
et al. 2004). This is useful causal information, even if—and despite the hundreds or thousands of
time-by-person observations of demographic event—the inferences are not rooted in the statistics of
the formal randomization scheme.

In fact, most causal work at the supra-individual level is comparative but does not involve
randomization and does not involve covariate adjustment, except by design (choice of units). Here
are two examples, each of which involves only two units at the macrolevel:

e Sloan et al. (1988) compare Seattle and Vancouver, to consider the effects of laws limiting the
sale and possession of handguns on handgun violence. The treatment—the presence or absence
of such a law—has no real individual-level counterpart. Granted, some people will never own a
handgun regardless of the law, and some will possess one in spite of the law, and persons in the
latter category are probably more likely to commit an act of violence using a gun, but these are
secondary matters. Laws are enacted for jurisdictions. The researchers establish that gun laws map
onto gun ownership, which is more prevalent in Seattle, where regulation is far less restrictive. On
the other hand, it is shown that laws relating to crimes committed with handguns do not vary much
between jurisdictions, which helps rule out differences in sanctions for gun violence as a cause of
Seattle’s far greater incidence of homicide and aggravated assault using firearms. But might not
people in Seattle just be more prone to crime and violence, laws notwithstanding? The evidence is
to the contrary: rates of robbery, burglary, simple assault, aggravated assault by knives and other
(non-firearm) means, and homicides by knives and other (non-firearm) means are indistinguishable
in the two cities.

e If you take fruit flies that have been eating a high-quality restricted diet and gorge them with
lower-quality food, they start to die at a higher rate. When the diet is restricted once again, within
2 days mortality plunges back to the levels enjoyed by the flies that had lived under the restricted
diet their entire lives. This and similar experiments involving animals—experiments based more
on manipulation, homogeneity of research subjects, and assumptions of temporal stability absent
interventions—buttress the contention that it is never too late to lower human mortality risks
(Vaupel et al. 2003). Prior to the reunification of Germany, age-specific life expectancy in the East
lagged those in the West, even as both increased. Soon after reunification, age-specific mortality
rates in the former East converged with those in the West. The intervention was less clear than in the
case of the fruit flies, but it plausibly involved two factors: greater wealth (since the East German
currency was immediately converted at par to the deutschmark, an incredible boon for older persons
on fixed pensions) and a standardized health care system equivalent to that that had prevailed in
the former West (Vogt and Kluge 2012; Vogt et al. 2012). Because the uniform health care system
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was rolled out in the East in a stepwise manner (but the currency revaluation was immediate and
pertained to everyone), and because it had no individual-specific cost associated with it, increases
in life expectancy could be partitioned into those associated with greatly increased economic well-
being and those associated with access to a better health care system. Each contributed about half to
elimination of the differential that had obtained prior to reunification. These are macrolevel effects.
At the individual level, we can perhaps generalize from the fruit flies—that there is also a capacity
to improve life expectancy at all ages if we adopt behaviors that are within the personal calculus,
such as diet and exercise, and that we might live longer if we do something.

The individual level may be where the data are. It may even be where the money is. It is not
necessarily where actions deemed causal are taking place. Continued attention to familiar designs for
comparative analysis can also be fruitful for causal analysis, especially when wedded to some of the
statistical design principles discussed earlier (Rosenbaum 1984; Kish 1987). VanderWeele and An
(Chap. 17, this volume) treat similar issues from the standpoint of social networks and put into relief
the dynamic nature of groups and clusters of individuals: If causation as defined at the individual level
alone is problematic because individuals are interconnected, and groups of individuals are sometimes
better conceptual “targets” for the effects of causes (Chap. 16 by Hong and Raudenbush, this volume),
it is also the case that the constitution and meaning of groups can and will vary in function of
individual-level actions.

Conclusion

We can finely tune research designs in

the search for a causal “Good Housekeeping Seal of Approval” on associations [without having accomplished
much, since] it is the use of an association for important purposes that is its enduring value, and not its status
as a causal variable. ... Being able to assert that [an] association is based on a causal connection is, in many
circumstances, merely a status symbol, one that confers importance to the finding without any consequence . . .
(Holland 2008: 101).

This is from a paragraph that begins, “Causation as a status symbol,” and it is a reminder that we can
do science, including prediction, without a great deal of distinction between that which is causal and
that which is not. Conversely, we can label as “causal,” based on adherence to formal logic systems,
relationships that are only semantically similar to the recommendations for action that follow from
the so-called causal analyses. When we do this, however, we should be aware that we may only be
gratifying our own status needs. I have thus emphasized several things that go slightly against the grain
and/or which tend to get lost in “the search for a causal ‘Good Housekeeping Seal of Approval’”:

e That design has a lot to do with being clear and articulate and little to do with calculation

» The distinction between effects of causes and causes of effects

 The utility of the manipulation criterion for parsing what is actually causal and what are, as a result,
realistic designs

* Designs at the supra-individual level as antidotes to endemic problems of action, self-selection, and
interference between units

We have a long history of useful thought regarding the role of research design in ascertaining
causation, one that has been advanced by the potential outcomes framework. However, we have
not yet drawn the full conclusion from the contemporary synthesis, since we still have the habit of
separating out “causal analysis” as a special feature of research design, one for which some methods
(randomized experimentation) are especially suited, and as something that exists in distinction to
problems of representation, description, and the like. This last tendency has two flavors. One is that
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causation is the ultimate goal in some pyramid or hierarchy of social research. The other is that it is
one desideratum among several that one attempts to optimize in research design. This is really a false
choice, since causal inference is ubiquitous across so-called methods, and causal analysis cannot be
logically separated from other desiderata of research design. Heterogeneity makes issues of theory
and sampling integral to causal inference. Manipulation and an action orientation toward causation—
elements of “realism” in the design of social research—are crucial if we hope to make meaningful
statements about causation.
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Chapter 5
Causal Models and Counterfactuals

James Mahoney, Gary Goertz, and Charles C. Ragin

Abstract This article compares statistical and set-theoretic approaches to causal analysis. Statistical
researchers commonly use additive, linear causal models, whereas set-theoretic researchers typically
use logic-based causal models. These models differ in many fundamental ways, including whether
they assume symmetric or asymmetrical causal patterns, and whether they call attention to equifinality
and combinatorial causation. The two approaches also differ in how they utilize counterfactuals and
carry out counterfactual analysis. Statistical researchers use counterfactuals to illustrate their results,
but they do not use counterfactual analysis for the goal of causal model estimation. By contrast,
set-theoretic researchers use counterfactuals to estimate models by making explicit their assumptions
about empty sectors in the vector space defined by the causal variables. The paper concludes by urging
greater appreciation of the differences between the statistical and set-theoretic approaches to causal
analysis.

In the social sciences, statistical and set-theoretic scholars adopt different approaches to causal
analysis. These differences are not well understood by either statistical or set-theoretic researchers.
In this chapter, we seek to clarify what is distinctive about statistical and set-theoretic approaches
by contrasting two approaches for causal analysis. Our purpose is not to argue that one approach is
right and the other is wrong. Instead, we suggest the two approaches are designed to address different
kinds of questions and meet different research goals. Both approaches make sense in light of some
objectives but not others.

We examine the two approaches across two broad areas: casual models and counterfactuals. First,
we compare an additive, linear causal model, which is common in statistical research, to a set-theoretic
causal model based on logic, which is often used (implicitly) in set-theoretic research. We suggest
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that while these causal models are quite different, neither is a priori correct. They are both potentially
useful ways to explain social and political phenomena. Yet, because of their differences, major hurdles
stand in the way of combining them. We suggest that a first step toward overcoming these hurdles is
appreciating what is distinctive about each.

Second, we consider the different ways in which the two approaches utilize counterfactuals and
carry out counterfactual analysis. While scholars in the statistical approach use counterfactuals for the
purpose of illustrating statistical results, they do not use counterfactual analysis for the goal of causal
model estimation itself. The standard, and implicit, use of counterfactuals in statistical research is
to discuss the estimated model and the influence of key variables. The set-theoretic approach uses
counterfactuals to estimate the model itself. The key for both is that with observational data we do not
have information for the whole k-dimensional space defined by the k causal conditions or variables.
This limitation often results in an abundance of empty sectors in the vector space defined by the causal
variables. Researchers make explicit or implicit counterfactual claims about the outcomes displayed
by cases in these sectors.

Our discussion in this chapter is not an exhaustive review of differences between the statistical
and set-theoretic approaches, even within the specific domain of causal analysis. Nevertheless, the
differences that we do describe suggest major divergences that can fuel scholarly misunderstandings
unless they are recognized and their sources are understood. On the flipside, appreciation of these
differences can provide a basis for mutual respect and learning across the statistical/set-theoretic
divide.

Causal Models

Additive-Linear Versus Set-Theoretic Models

The standard causal models used in set-theoretic and statistical research are similar and different in
nonobvious ways. To illustrate, consider the following two models:

Y =B+ BiXi +y1Ci+nCr+...+¢ (5.1)
(A AND B AND not C) OR (A AND C AND D AND E) is sufficient for Y. (5.2)

Obvious incarnations of Eq. (5.1) include the most popular general linear models such as OLS
regression as well as other models in vogue such as difference—in-differences regression. The basic
form of the equation also encompasses log-linear models and polynomial regression. While logit
models use a nonlinear function, they are linear in the exponent. Logit models are normally used
because they can treat dichotomous dependent variables, not because the analyst believes causal
patterns are nonlinear.! Looking at research published in the best journals, some member of the family
of Eq. (5.1) is the most commonly used approach to causal modeling in the statistical approach.

A key feature of Eq. (5.1) is that the researcher is interested in estimating the effect of X; on Y
(i.e., B1). Beyond the variable(s) linked to the core hypotheses (i.e., X1), the model includes control
or confounding variables (i.e., C;). A significant bivariate effect, /§1, between X and Y, is rarely
convincing; the researcher has to respond to the concern that this relationship might disappear when
controlling for variable C;.

IThere are, of course, statistical methods for estimating nonlinear models, for example, Bates and Watts (1988), but
these often are not taught or used in political science or sociology.
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Focusing on research as it is actually carried out, it is clear that variants of the basic model of
Eq. (5.1) are at the core of the statistical paradigm. Shifting the focus to methodological debates about
best practices, however, differences become apparent. Most notably, the Neyman—Rubin model or
potential outcomes framework proposes a different approach to statistical research than the general
linear model, one much more clearly linked to the ideal of a randomized experiment (see Morgan and
Winship 2007). The basic model of this framework is:

Causal effect = ?(le) — ?(X=O) (5.3)

The “causal effect” is a random variable like ¥ in Eq. (5.1), and the researchers typically are testing
the hypothesis that the causal effect is significantly different from zero. The framework is clearer than
the general linear model approach that the goal is to estimate the average causal effect of X .

While the potential outcomes framework is quite influential among statistical methodologists, it
has yet to become widespread in research practice. A key reason why is that the approach becomes
complex as one moves from dichotomous variables to continuous ones and introduces other nuances,
such as interaction terms or mediator variables. Nevertheless, many methodologists would insist that
the basic causal model for the statistical paradigm should be Eq. (5.3), not Eq. (5.1). However, the
latter dominates research practice.

Bayesian approaches are another important subcurrent among contemporary statistical methodolo-
gists. Although Bayesian analysis has been around for decades, historically it has not been much used
in social science research. Yet with recent advances in computational power and the rise of Markov
Chain Monte Carlo methods, major barriers to applied analyses have been reduced. Within political
science, a vibrant Bayesian subculture exists within statistical methodology (e.g., see Schrodt 2010
for an enthusiastic view). The Bayesian approach begins with a quite different set of assumptions and
philosophy than Eq. (5.1) (see Jackman 2009 for a good discussion).

Among statistical methodologists, in short, there is a variety of important groups, and they have
debates among themselves. Yet, in substantive research as actually practiced and published in the
social sciences, the basic model of Eq. (5.1) and its close variants are by far the most common.

Turning to set-theoretic causal analysis, we suggest that Eq. (5.2) above underlies much research.
This suggestion is not without controversy because set-theoretic researchers are often unsystematic
and do not write out equations formally. Nevertheless, we find that their arguments implicitly take a
form similar to that of Eq. (5.2). Here, set-theoretic principles replace the linear algebra and statistics
of the additive model.

We have used words to express the model, but one can also use mathematical symbols. In Eq. (5.4),
the causal model identifies two combinations of conditions that generate, that is, are sufficient for, an
outcome. The model uses logical notation and Boolean operators. The A symbol represents the logical
AND, the Vv symbol represents the logical OR, the — means the logical negation, and the — symbol
represents sufficiency:

(AANBA-C)V(ANCADANE)—Y. 5.4

One can write the same equation using the notation of set theory, where N means intersection, C
means complement of C', U means union, and C means subset or equivalent set:

(ANBNC)UuANCNDNE)CY. (5.5)
As written in Egs. (5.2, 5.4 and 5.5), these causal models look quite different from the statistical model
of Eq. (5.1). However, it is possible to write the same equation in a way that makes it seem more like

its statistical counterpoint:

(A*Bxc)+(A*xC*xDxE)=1Y. (5.6)
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When presented this way, a possible reaction to the set-theoretic/logic model is to say that it is
a way of talking about interaction terms. But as with translations between languages, the analogy
between the logical AND and multiplication in a statistical model is only an analogy and not an
identity.

Using Eq. (5.6), we can also translate the set-theoretic model into statistical terms:

Y =B1(AxBxc)+ p(AxC *D *x E) + ¢. 5.7

Is it possible to find such a model in a research article? The answer is almost certainly no. There is
nothing that prohibits statistical software from estimating such a model. However, standard statistical
advice has good reasons to reject such practices. For example, there is no intercept. Estimating
Eq. (5.7) assumes that the intercept is zero, which is something that usually requires a test, and
should not just be assumed. In contrast, the concept of an “intercept” makes little sense in the set-
theoretic/logic paradigm. Furthermore, the statistical framework views the two interaction terms as
additive in their effects, while in the set-theoretic framework they are viewed as fully substitutable.

Causal Complexity

Both statistical and set-theoretic researchers assume that causal patterns in the real world are in certain
ways quite complex. Likewise, they assume that modeling causation is itself a complex endeavor.
However, the form of causal complexity varies across the statistical and set-theoretic paradigms.

In the statistical tradition, causal complexity is seen through the fact that analysts assume that
there are always many causes of variation in a dependent variable. In Eq. (5.1), for example, there
are several independent variables included. Moreover, the error term, that is, ¢, is usually interpreted
as in part composed of unobserved independent variables. In this approach, the researcher normally
assumes that there are so many causes that it is impossible to identify all of them. It is also assumed
that omitted causal conditions are uncorrelated with those included in the estimated model.

Although there are many causes of variation in the dependent variable, the focus in statistical
research is often on one particular independent variable. In the causal model represented by Eq. (5.1),
for example, the focus is on X;; the other independent variables are treated as “controls” or
“confounders” and may not be of special interest themselves. The challenge raised by causal
complexity is to develop a good estimate of the average effect of the variable of interest, given
that there are many competing influences. This challenge is vexing because some of these other
causes affect the main independent variable of interest as well as the dependent variable (introducing
potentially spurious relationships), and thus, they need to be identified and included in the statistical
model. More generally, control variables are needed to produce homogeneous groups.’

In the set-theoretic paradigm, by contrast, causal complexity is seen in the fact that researchers
model causal patterns in which attention is often focused on combinations of causes. As illustrated
in Eq. (5.2), set-theoretic researchers frequently are looking for causal packages or recipes that
consistently produce (i.e., are sufficient for) the outcome. In other words, the focus is on identifying
sets of similar cases that share a given outcome. We see this above in Eq. (5.7), which rewrites the
set-theoretic model in statistical terms: the Bs relate to causal packages, not individual variables.

In the search for causal recipes, the role of individual variables is often downplayed, especially
when the individual variables are not necessary conditions. The question, “What is the average effect
of cause C?,” may not make much sense if the role of C varies across causal configurations. In

2This is a key point in the philosophical—statistical literature on causation as well (e.g., Cartwright 1989, 55-56).
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Eq. (5.2), for example, C sometimes must be present and sometimes must be absent for the outcome
to follow, depending on which other causal factors are present. Likewise, B matters in the combined
presence of A and in the absence of C, but in other settings it is not relevant. Hence, adequately
specifying the effect of B requires saying something about the contexts (defined by the other causal
conditions) in which B appears.

The same thing can occur with statistical interaction terms. In Eq. (5.1), we presented the most
common statistical model, but interaction hypotheses and models are not uncommon:

Y=800+B1Xi+B1Xo+ B X1 x Xo +p1Ci+Co+ ...+ ¢ (5.8)

With this model, it is possible for the impact of X to be positive in some range of X, and negative in
another range of X». Both approaches agree that in the presence of interaction effects, there is often
little one can say about the individual impact of the constituent variables of the interaction term.

A good statistician would almost never estimate a complex set-theoretic model like Eq. (5.6). To
estimate this equation, statistical practice suggests that it is important to first include all lower-order
terms such as A, AB, AC, and AD in the model. Although there are very good statistical reasons for
this practice, in set-theoretic models these reasons rarely exist. It is hypothetically possible to develop
statistical methods for modeling the kinds of configuration causal processes suggested in set-theoretic
models. But these statistical models — for example, Boolean probit and Boolean logit (Braumoeller
2003) — fall well outside of the statistical mainstream.

In fact, the causal expressions of a set-theoretic model are really not interaction terms at all. They
are particular causal combinations. In the formulation of Eq. (5.6), we do not have the generic X * X»
but rather a specific causal combination that refers to membership in A, B, and negated C (i.e., ¢).
It is membership in this specific configuration of A, B, and ¢ that is sufficient for Y. Thus, in the
set-theoretic model, the logical operator AND joins causal factors together as “packages” or what
might be called “sufficiency combinations” (to highlight the idea that the combination is sufficient for
the outcome). It encourages researchers to think about the whole package as greater than its separate
components.

Equifinality

Another difference between the causal models used in the set-theoretic and statistical paradigms
revolves around the concept of “equifinality” (George and Bennett 2005) or what Ragin (1987) calls
“multiple conjunctural causation.” Equifinality is the idea that there are multiple causal paths to the
same outcome. In a set-theoretic causal model, equifinality is expressed using the logical OR. In
Eq. (5.6), for example, there are two causal paths ABc OR ACDE; either one is sufficient for the
outcome. It is worth noting that equifinality does not require causal combinations. For example, the
following model expresses equifinality without causal conjunctions: AV B v C — Y. The distinctive
feature of equifinality is the presence of multiple paths to the same outcome, not the presence of
conjunctural causation as we discussed above.? In practice, set-theoretic causal models designed to
accommodate more than a small number of cases often include both conjunctions of causal factors
and equifinality (as in Eq. 5.6).

3We think that much of the discussion of equifinality inappropriately views its distinctive aspect as the representation
of combinations of factors. If one focuses mainly on this aspect using a statistical perspective, as do King et al. (1994,
87-89), one may believe (inappropriately) that equifinality is simply a way of talking about interaction terms.
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The presence of equifinality is not unique to set-theoretic causal models. Implicit in statistical
models such as Eq. (5.1) are thousands of potential paths to a particular outcome. The righthand side
of the statistical equation essentially represents a weighted sum, and as long as that weighted sum is
greater than the specified threshold — for example, in a logit analysis — then the outcome is predicted to
occur. With this equifinality interpretation of Eq. (5.1), there are countless ways to reach a particular
value on the dependent variable. One has equifinality in spades. Indeed, equifinality is so pervasive
that it hardly makes sense to talk about it at all.

What makes equifinality a useful concept for set-theoretic work is the fact that, in this approach,
there are only a few causal paths to a particular outcome. Each path is normally a specific conjunction
of conditions, but there are not very many of them. Within the typically more limited scope conditions
of set-theoretic work, the goal is to identify all the causal paths present in a given set of cases or at
least the most travelled paths.

In set-theoretic research, in fact, researchers normally will try to assign each case included in a
study to a specific causal path. Since the overall research goal is to explain cases, this objective is best
accomplished by identifying the causal path that each case follows. For example, Hicks et al. (1995)
conclude that there are three separate paths to early welfare state development, and their analysis
pinpoints exactly which cases followed which paths (see also Esping-Andersen 1990). In set-theoretic
research, these causal paths can play a key organizing role for general theoretical knowledge. To cite
another example, Moore’s (1966) famous work identifies three different paths to the modern world,
each defined by a particular combination of variables, and the specific countries following each path
are clearly identified.

Within statistical research, it does not seem useful to group cases according to common causal
configurations on the causal variables. While it is possible to do this, it is not a common practice
within this approach. To understand why not, it is useful to consider how the statistical Eq. (5.1)
appears when viewed through the lens of logic. In Boolean algebra, the “+” symbol stands for the
logical OR and indicates different causes or combinations that are each sufficient for the outcome.
Thus, when viewed from this perspective, the statistical Eq. (5.1) could be read as indicating that each
variable is sufficient on its own for Y. Most researchers would regard this proposition as unreasonable,
because individual factors are almost never sufficient by themselves for outcomes; only combinations
of factors are sufficient. Thus, just as Eq. (5.6) when translated into a statistical model makes little
sense, translating the algebraic—statistical model into Boolean logic is also problematic.

In fact, each variable in the statistical Eq. (5.1) is just one of many potential causes influencing the
outcome. The reality is that the overall model is the path. A nice illustration of this point comes from
multimethod work that first tests a statistical model and then uses the results to select case studies
for intensive analysis (e.g., Lieberman 2005). When selecting cases, the researcher could choose
observations on the line or off the line (or both), depending on the research goals. But the line itself
is the singular causal path for the whole population. The full causal model applies to all cases equally
and stands as the explanation for all of them.

A key conclusion about the place of equifinality in the statistical approach follows from this
discussion. Although in one sense it is correct to see statistical models as assuming extensive
equifinality, in another sense this observation is not true. With equifinality, as conventionally
understood, the researcher assigns each case to the specific causal recipe that accounts for its outcome.
This practice does not apply in the statistical approach. Here, it makes more sense to think about
individual cases in terms of their residuals — that is, how close they are to the line representing the
causal model as a whole. There is no equifinality because the model as a whole is the explanation for
the sample or population in question.
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Asymmetry

A final difference concerns symmetrical versus asymmetrical relationships. Quantitative models tend
to assume causal symmetry, whereas set-theoretic models assume causal asymmetry (Ragin 2000).

To illustrate, first consider a 2 x 2 table. Almost all statistical measures of association for 2 x
2 tables are symmetric. Flipping rows or columns does not change the nature of the association.
For statistical researchers, this is seen as a positive feature. It would be distressing if the, perhaps
arbitrary, rearrangement of dichotomous variables could overturn or alter one’s findings. In fact, the
very counterfactual definition of causality used in statistical research (see below) implies symmetry:
the researcher is no more interested in moving from zero to one than the reverse.

As we move from 2 x 2 tables to continuous variables, the symmetry of the statistical culture
is normally preserved (in research as typically practiced). For example, in OLS regression, one
estimates a model under the assumption that causal effects are symmetric. A given unit change on
X is understood to have the same effect on Y regardless of the starting point of X and regardless of
whether the value of X increases or decreases. One can easily see this with a linear regression line.
The line posits a completely symmetric effect. With logit models, a given increase on X will have
the same size of impact on the log odds Y as an equivalent decrease. Similarly, Eq. (5.3) from the
potential outcomes framework is symmetric.

By contrast, set-theoretic models normally assume asymmetric relationships built around necessity
(shared antecedents) and sufficiency (shared outcomes). For example, consider a hypothesis about a
necessary condition. When X = 0, the hypothesis has a precise prediction: the outcome should
not occur. More formally, the absence of a necessary condition yields a point prediction: P(Y =
1|X = 0) = 0. In stark contrast, when X = 1, the necessary condition model makes a vague claim:
P(Y = 1|X = 1) > 0. The presence of a necessary condition (X = 1) merely allows for the
“possibility” of ¥ = 1. All this means is that probability of ¥ = 1 is greater than zero.

We see the same basic asymmetry when thinking in terms of Y and its causes. The absence of
a necessary cause is enough by itself to explain the Y = 0 cases. By contrast, the presence of a
necessary cause is only a partial explanation for the Y = 1 cases. Work in cognitive psychology
shows that people gravitate toward single-factor necessary condition explanations for ¥ = 0 cases
but not for ¥ = 1 cases. Thus, when asked to explain failures or nonoccurrences, subjects are more
likely to resort to one-variable necessary condition explanations. When asked to explain successes,
they often have more complex, multivariate, often combinatorial explanations that may not invoke
any necessary conditions.

With sufficient conditions, the asymmetry works the other way: X = 1 generates a pinpoint
prediction, whereas X = 0 makes a vague claim merely stating the outcome is possible.* Here, the
presence of a sufficient condition does a fine job explaining any ¥ = 1 case; by contrast, the absence
of a sufficient condition says very little about a case’s value on Y, simply that P(Y = 1|X =0) < 1.

Table 5.1 is a simple and understandable illustration (at least for academics) of an asymmetric
relationship. The table contains actual data on admissions to a leading sociology department in
2009 (Vaisey 2009). The set-theoretic interpretation is that scoring above the median (620) on the
quantitative portion of the Graduate Record Exam (GRE) is a virtual (only one exception) necessary
condition for admission. In other words, it is a widely shared antecedent condition among applicants
who were admitted. This necessary condition formulation is an adequate explanation for the non-
admission of all students who scored below average. Students with low quantitative GRE scores can
explain their rejection in terms of this one variable. This is not the full story, of course, since most of
these students (counterfactually) would have been rejected even if their scores had been higher. Most

“In the social sciences, researchers rarely propose a single factor that is sufficient all by itself for a positive outcome.
Instead, multiple causes that are jointly sufficient for the outcome are grouped together.
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Table 5.1 Asymmetry in Quantitative GRE
two-way tables: admissions = 620 > 620
to a leading sociology Admit 1 34
program, 2009 .

No admit 98 209

Source: Vaisey (2009)

would have still lacked a set of conditions sufficient for admission. In this sense, their non-admission
was overdetermined. Nevertheless, their low GRE quantitative scores were enough to virtually ensure
their fate.

When considering the students who were admitted, we see that while quantitative GRE scores are
one part of the explanation, this variable alone is hardly an adequate or complete explanation. Most
students who scored above average were still not admitted; additional factors play a role in separating
the above average scorers into admissions and rejections.’

One might therefore ask about the various factors that cause admission. Assume that we have a
simple — but pretty realistic — scenario: the factors that influence admission are (1) test scores, (2)
GPA, (3) quality of undergraduate institution, and (4) letters of recommendation. A more realistic
model would add a few additional factors (e.g., writing samples), but our points can be made with
these four factors. A logit model of admission using these variables would be Y = B¢ + 1T +
B2G + B3U + B4L + e (T —test scores, G — GPA, U — undergraduate institution, and L — letters of
recommendation). A possible alternative set-theoretic model wouldbe Y = T % G % (U + L). This
model suggests the following explanation for failure: =Y = =T + =G + (=U *x —L).

With the logit model, there is a single explanation of success and failure: the weighted sum of the
causal factors is either high enough to cross some threshold of success or it is too low and leads to
failure. The whole model involves comparing zero cases with one cases. One cannot conceive writing
separate logit models for the Y = 1 and ¥ = 0 cases. By contrast, with the set-theoretic approach,
the explanations of success and failure — while related and using the same factors — have different
forms. There are two paths to success (i.e., T * G « U and T % G * L), whereas there are three paths
to failure (i.e., = T, = G, and (— U % — L)). At least three factors must be considered to achieve
success, whereas one factor is often enough to generate a failure. The set-theoretic representation
seems reasonably consistent with actual admissions procedures: committee members look for fatal
flaws to quickly eliminate most applications, whereas they consider a large range of factors and read
carefully with successful applications.

This simple example calls attention to an important feature of logic-based models:

Asymmetry of Explanation: The causal model for failure is often different from the explanation for
success.

The causes of a failure outcome are not necessarily equivalent to the absence or negation of the
causes of the success outcome. In fact, in set-theoretic studies that use formal Boolean methods,
such as Qualitative Comparative Analysis (QCA), researchers routinely arrive at quite different final
models for the success and failure cases. The following three examples illustrate this point.

1. Wickham-Crowley (1992) explores the causes of successful revolutionary guerrilla movements in
Latin America. His Boolean analysis shows that five conditions are individually necessary and
jointly sufficient for successful social revolutions (A) guerrilla attempt, (B) peasant support, (C)
strong guerrilla military, (D) patrimonial praetorian regime, and (E) loss of US support. Thus, his
causal model for success is

Successful Social Revolution=ABCDE.

SOf course, it is likely that variation in above average GRE statistical scores contributed to the outcome as well. In our
example, high quantitative GREs alone are not close to being sufficient for admission.
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By contrast, Wickham-Crowley’s explanation of failed revolutionary guerrilla movements is quite
different

Absence of Social Revolution =ABd+bce+bcD.

The asymmetry is obvious: there is one path with five factors to success, whereas there are
three paths, each containing three factors, to failure. Notice that the causal effect of some of the
individual factors depends heavily on context (i.e., the other factors with which they are combined).
For example, causal factor B (peasant support for guerrillas) is necessary for social revolution but
also helps cause the absence of social revolution when a guerrilla attempt is led against a regime
that is not patrimonial praetorian. One can also think about the asymmetry of these equations in
the following way: whereas ABd is enough to ensure the absence of social revolution, the reverse is
not true. That is, negating and then combining these three causes to arrive at abD will not produce
a social revolution.

2. Stokke (2007) considers the factors that lead targets of shaming to comply with international
fishing regimes. He examines five causal factors: (A) Advice — explicit recommendations from
the regime’s scientific advisory body; (C) Commitment — the target’s behavior explicitly violates a
conservation measure; (S) Shadow of the future — perceived need of the target to strike new deals
under the regime; (I) Inconvenience — the behavioral change is inconvenient for the target; and
(R) Reverberation — the target risks being scandalized for not complying. Stokke’s final model for
success is the following:

Success = Ai + ARS

Thus, there are two paths to success, and supportive scientific advice (A) is a necessary condition
in general for successful compliance. One can run Stokke’s data and generate a model of failure
(i.e., not Success):

Failure = IAr + Isc

Again, the equation of failure is not simply the negation of the equation for success; the equations
are not symmetric. For example, one might expect that if the presence of a factor is related to
success, then its absence should appear in the equation for failure. This does occur to some extent
with Reverberation, which is present in the equation for success and absent in one of the two paths
leading to failure. However, the factor Advice is a necessary condition in the equation for success,
but also present as a cause in one of the paths to failure. Hence, while Advice is necessary for
success, it can also contribute to failure in a certain context.

3. Mahoney (2010) argues that variations in Spanish colonialism can explain differences in long-
run levels of economic development among the Latin American countries. At the most aggregate
level, his explanation emphasizes three causal factors: (M) Mercantilist colonial core — country was
heavily settled by Habsburg Spain (1500-1700); (L) Liberal colonial core — country was heavily
settled by Bourbon Spain (1700-1821); and (W) Warfare — country experienced costly warfare
during postcolonial period. His aggregate findings can be summarized as follows:

Higher Economic Development = mL + mlw
Intermediate Economic Development = ML

Lower Economic Development = M [ + m[W

Clearly, there is not a perfect symmetry across these explanations. There are two paths to a higher
level of economic development: (1) a country can be a marginal territory during the Mercantilist
Habsburg phase of colonialism and a core region during the Liberal Bourbon phase, or (2) a
country can be marginal during both phases and then avoid costly Warfare during the postcolonial
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period. There is only one road to intermediate economic development, and it entails having been a
colonial core during both the Mercantilist and Liberal phases. For this path, the occurrence of costly
postcolonial warfare is irrelevant. Finally, there are two ways to achieve lower levels of development:
(1) a country can be a core territory during the Mercantilist Habsburg phase of colonialism and a
marginal region during the Liberal Bourbon phase, or (2) a country can be marginal during both
phases and then experience costly Warfare during the postcolonial period.

Counterfactuals

Counterfactuals are central to several different issues in social science methodology. In the statistical
approach, counterfactuals are used to define causality itself. The potential outcomes approach
formalized by Rubin (1974, 1990; see also Morgan and Winship 2007) is called the “counterfactual
approach” because it begins with a counterfactual for the individual case i. In philosophy, a
counterfactual definition of causation has a long and distinguished history (e.g., Lewis 1973; Collins
et al. 2004). In the set-theoretic approach of social science, scholars now commonly note the close
linkage between necessary conditions and counterfactuals (e.g., Goertz and Starr 2003).

In this section, however, we focus on the role of counterfactual analysis for making causal
arguments — not for defining causality or for defining types of causes. One issue concerns the role
of counterfactuals and individual cases. Set-theoretic scholars will often use counterfactual analysis
as a basis for making causal inferences about specific cases. By contrast, in the statistical tradition,
scholars do not use individual counterfactual cases for the purpose of hypothesis testing. Instead, they
use counterfactuals to articulate assumptions and to interpret the results of the statistical model.

A second issue concerns the use of counterfactuals for configurations of values on the causal
variables for which there are no cases. With observational data not all possible configurations of
values on the causal variables necessarily have empirical instances, even when each causal variable is
reduced to a relatively small number of ordinal levels or even to dichotomies. Consequently, scholars
from both approaches have the option of carrying out counterfactual analysis to specify the likely
outcomes of these cases prior to running tests on cross-case data. In the set-theoretic approach,
scholars frequently use counterfactual analysis to specify outcomes for these combinations without
cases. These decisions can have a substantial impact on the findings of cross-case analyses. In the
statistical tradition, it usually would be impossible to analyze counterfactually all configurations
of values on the independent variables (given that there may be millions of such configurations).
Moreover, researchers in this approach are reluctant to make any assumptions about counterfactual
cases beyond what can be inferred from the actual data being analyzed.

Constructing and Using Counterfactuals in Statistics

To illustrate the statistical approach to counterfactuals, it is useful to consider a standard practice in
the evaluation of a given variable in a logit or probit analysis. With these nonlinear models, there is
often no immediately transparent way of conceptualizing the size of causal effects. One solution for
analysts is to use counterfactuals to provide a sense of the magnitude of the causal effect of X on Y
for a model that is identified and warrants causal interpretation. The standard procedure is basically
the following:
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1. Set all control variables (i.e., all variables except the counterfactual X variable in question) to
the mean or median — with the mean probably being the most common option. For dichotomous
variables use the mode. This defines the “representative” case.

2. Set the counterfactual antecedent X to the minimum; a more conservative procedure is to use the
value at the 25th percentile or perhaps one or one and a half standard deviations below the mean.
This plus step (1) defines the case for which the counterfactual is being conducted.

3. Change X from the minimum to the maximum (a more conservative procedure would be to use
the 75th percentile or one or one and a half standard deviations above the mean). This is the
counterfactual.

4. Use the statistical model and estimated parameters to evaluate the counterfactual in terms of the
change in the probability of Y.

5. The change in the probability of Y in the counterfactual is used as an interpretation of the
magnitude of the causal effect of X on Y.

Countless articles and conference papers have used this procedure, though often the analyst will not
explicitly link the practice to counterfactual reasoning.

Under this procedure, X is moved from a very low value to a very high value. One can thus say
that the analyst follows a “maximum rewrite practice” or an “extreme counterfactual” approach: the
counterfactual involves maximal or extreme changes in X. This practice is carried out because it
allows the researcher to dramatically illustrate the potential impact of a change in X for Y.

The key point is that the counterfactual is used to illustrate and discuss the impact of a given
variable of interest. There is no interest in the particular counterfactual per se, that is, the specific
values of the independent variables used in the counterfactual. The choice of the counterfactual
case typically is supposed to be in the middle of the data, as illustrated by the use of the mean,
median, and mode for the control variables. The researcher almost never checks if this assumption of
a representative case does in fact lie in regions that have a lot of data points. As we shall see in the
next section, the set-theoretic approach focuses on very specific counterfactuals and specifically on
regions with no data. The fact that there are sectors of the vector space that lack cases is the main
motivation behind counterfactual analysis.

Counterfactuals in the Set-Theoretic Approach

Most discussions of counterfactuals address the selection of a specific case for counterfactual analysis,
where the researcher’s goal is to test a hypothesis or illustrate a causal effect. Yet counterfactuals
also play an important — if under-acknowledged — role in generating findings in cross-case analysis.
Because observational data rarely, if ever, include empirical instances of all possible combinations of
values on the causal variables, the analyst must choose whether to make counterfactual assumptions
regarding the cases not represented in the data set. (In set-theoretic work, such cases are often
labeled “remainders.”) It is common for researchers to carry out counterfactual thought experiments
for selected remainders, provided that theory and established substantive knowledge allow for an
informed assessment. The counterfactual assumptions made about these cases, in turn, have an impact
on findings, often generating a solution that is a superset of the solution that is found without
counterfactual analysis. With statistical analysis, by contrast, the researcher does not make any explicit
assumptions about the likely outcome in remainder cases prior to testing the statistical model.

Table 5.2 will be our main example in this section. The data are for two dichotomous independent
variables — strong left party and strong unions — and a dichotomous outcome, generous welfare state.
In this example, there are no cases for the (0,1) configuration of independent variables, that is, there
are no “‘strong left party—not strong unions” cases. An experimental researcher would certainly include
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Table 5.2 Counterfactuals Strong Generous
and model specification Row no. unions  Strong left party welfare state N
Empirical cases
1 Yes Yes Yes 12
2 Yes No No 14
3 No No No 10
Counterfactual cases
CF1 No Yes Yes 0
CF2 No Yes No 0

cases displaying all possible configurations of the causal variables. But with nonexperimental data,
the limited diversity of the real world means that it is not possible to observe all configurations.®

The remainder cases of Table 5.2 raise the following counterfactual question: Would a generous
welfare state occur if there were actual (0,1) cases with strong left parties and not strong unions? The
two possible answers to this question are represented by the CF1 and CF2 rows in Table 5.2. Prior to
running a cross-case analysis, researchers have the choice of either weighing in on the validity of CF1
versus CF2 (i.e., making a counterfactual assumption about these cases) or simply remaining agnostic
about them (i.e., not making any counterfactual assumptions). The choice is consequential.

In set-theoretic analysis, techniques such as Qualitative Comparative Analysis (QCA) “force” the
analyst to make a conscious and explicit decision about remainder cases (Ragin 2008).” It is possible
that the set-theoretic researcher will decide that one cannot reasonably say anything about these
(0,1) cases. The researcher then analyzes the data without first weighing in on the validity of CF1
versus CF2. This decision, however, can lead to overly complex and/or inconclusive findings. For
example, without making any assumptions about counterfactual cases, the evidence in Table 5.2 is
consistent with both of the following conclusions: (1) having strong left parties is sufficient by itself
for a generous welfare state, and (2) for a generous welfare state to emerge, both strong unions and a
strong left party are required. Ideally, one would like to know which of these arguments is correct.

In the language of QCA, the CF rows of the truth table shown in Table 5.2 represent a remainder —
a combination of causal conditions that lacks empirical instances. In QCA, the solution to this truth
table depends on how this remainder is treated. The most conservative strategy is to treat it as false
(excluded) when assessing the conditions for the emergence of generous welfare states (i.e., CF1) and
also as false (excluded) when assessing the conditions for the absence of generous welfare states (i.e.,
CF2). The presence of generous welfare state is assessed as

L+xU <G. (5.9

The absence of generous welfare state is assessed as

~L*U +-L%-U < -G (5.10)
—L% (U +-U) < -G (5.11)
~L <—G. (5.12)

5Obviously, the data in Table 5.2 are simplistic in various ways. With real data, for example, one might well have
“contradictory cases” in which the same configuration of values on the causal variables is associated with different
outcomes. We keep things simple here for illustrative purposes.

"Researchers who use set-theoretic ideas informally in small-N and case-study research make these same assessments,
though in a more implicit and ad hoc fashion.
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Equation (5.9) summarizes the first row of Table 5.2; Eq. (5.10) summarizes the second and third
rows; Eqgs. (5.11) and (5.12) simplify the second equation, using Boolean algebra. According to this
analysis, the combination of a strong left party and strong unions is sufficient for the emergence of a
generous welfare state. The absence of a strong left party is sufficient for the absence of a generous
welfare state.

In QCA, an alternate strategy is to treat remainders as “don’t care” combinations. (The don’t care
label reflects the origin of QCA’s truth table approach in the design and analysis of switching circuits.)
When treated as a don’t care, a remainder is available as a potential “simplifying assumption.” That
is, it will be treated as an instance of the outcome if doing so results in a logically simpler solution
for the outcome. Likewise, it also can be treated as an instance of the absence of the outcome, again,
if doing so results in a logically simpler solution for the absence of the outcome. This use of don’t
cares can be represented in equation form as follows, with the remainder term L % —U added to both
equations. The equation for presence of generous welfare state is:

LxU+Lx=-U<G (5.13)
Lx(U+-U)<G (5.14)
L<G (5.15)

The equation for the absence of generous welfare state

~L*U+—=L % =U+L*=U <—G (5.16)
~L % (U +=U) + =U * (L + —L) < =G (5.17)
—~L + -U < =G (5.18)

It is clear from these results that using the remainder as a don’t care combination in the solution for
the presence of generous welfare states leads to a logically simpler solution, while it leads to a more
complex solution for the absence of generous welfare states. Thus, a researcher interested in deriving
a more parsimonious solution might prefer the use of the remainder (the CF rows of the truth table)
as a don’t care combination in the solution for the presence of generous welfare states.

In QCA, it is incumbent upon the researcher to evaluate the plausibility of any don’t care
combination that is incorporated into a solution. Assume that the researcher in this example chose
the more parsimonious solution for the presence of generous welfare states — concluding that this
outcome is due entirely to the presence of strong left parties. It would then be necessary for the
researcher to evaluate the plausibility of the simplifying assumption that this solution incorporates,
namely, that if instances of the presence of strong left parties combined with the absence strong unions
did in fact exist, these cases would display generous welfare states. This is a very strong assumption.
Many researchers would find it implausible in light of existing substantive and theoretical knowledge.
That “existing knowledge” would be the simple fact that all known instances of generous welfare
states (in this hypothetical example) occur in countries with strong unions. Existing knowledge could
also include in-depth, case-level analyses of the emergence of generous welfare states. This case-
level knowledge might indicate, for example, that strong unions have been centrally involved in the
establishment of generous welfare states.

The important point here is not the specific conclusion of the study or whether or not having a
strong left party is sufficient by itself for the establishment of a generous welfare state. Rather, the
issue is the status of assumptions about combinations of conditions that lack empirical instances.
In QCA, these assumptions must be evaluated; don’t care combinations (remainders) should not be
grafted onto solutions in a mechanistic fashion because, after all, we do care.
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Turning now to the statistical approach, one can ask about a statistical evaluation of the data in
Table 5.2. From this point of view, one might note that the strong left party variable is perfectly
correlated with generous welfare state. That is, all 12 cases with strong left parties have generous
welfare states, whereas all 24 cases without strong left parties have not-generous welfare states. By
contrast, there is a less strong correlation between strong unions and the presence of generous welfare
states. Of the 26 cases with strong unions, only 12 of them have generous welfare states (though all
ten cases without strong unions lack generous welfare states). Hence, the strong left party variable is
a better predictor because it successfully predicts both success and failure, whereas the strong unions
variable does not (bivariate y tests confirm this).%

What about the (0,1) cases — those without data? The implicit default assumption in the statistical
tradition is that one cannot reasonably assume anything about these cases prior to specifying and
testing a statistical model. Thus, it is not possible to weigh in on the validity of CF1 versus CF2 as
part of the statistical analysis. The assumption is that the only way we can learn something about cases
with no data is by independently analyzing the cases for which we do have data. The choice to not
make any counterfactual assumptions about the remainder cases is hardly without consequences. For
example, imagine that CF2 is correct, a result that would be clear in an experiment with cases assigned
to the (0,1) configuration. Making the assumption that CF2 is correct prior to running the statistical
test would change the statistical findings substantially. With CF2, there are cases with strong left
parties that also lack generous welfare states. CF2 thus works against the statistically based finding
regarding the causal impact of strong left parties, that is, that its correlation with generous welfare
states is perfect.

Once the observed data and statistical model are used to generate findings, of course, one can then
easily estimate the predicted value of Y for the remainder cases. Indeed, the regression line represents
the expected value of Y for any value of X. Hence, one can arrive at best-guess counterfactuals about
what would have been expected to happen if cases had assumed any particular configuration of values
on the causal variables. As noted above, extreme counterfactuals posed for individual observations
may be too far away from the observed data to estimate reasonably. However, that is a separate issue
from the ability to use a statistical model to make a prediction about the value of Y given a hypothetical
set of values on the independent and control variables.

The key difference between the two approaches, therefore, is the relative willingness of researchers
to use counterfactual analysis as a basis for making assumptions about regions of their data where there
are no cases. Set-theoretic researchers are often willing to make assumptions about what would have
happened in cases for which there are no data. They believe that saying nothing about these cases is not
a neutral decision if the researcher has an independent basis for inferring something about these cases.
If there is good reason to believe that a certain outcome would have happened in a counterfactual case,
then the researcher should introduce this information into the analysis, because it could improve the
final results. Not including this information could lead to serious error.

By contrast, prior to testing a statistical model, statistical scholars virtually never make any
assumptions about configurations of causal variables for which there are no cases. This reluctance is
rooted in the belief that researchers should not speculate about cases before completing the statistical
analysis. While assigning probable outcomes to counterfactual cases could easily change statistical
results, in practice it could also introduce many biases, including biases of the investigator supporting
a favored hypothesis. In this tradition, then, the norm is to let the data speak for themselves and to
avoid imputing likely outcome values to cases for which there is no information in the data set.

81f one conducted an OLS regression (not advised for dichotomous variables), one gets an R? of 1.0 because the
strong left party variable is a prefect predictor. By contrast, the strong unions variable is not significant (Schneider and
Wagemann 2012).
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Conclusion

The standard causal models used in the statistical and set-theoretic approaches are quite different and
in many ways defy comparison. But from the perspective of a dialogue among statistical and set-
theoretic researchers, it is better to understand the differences than to fight over who is right or which
is better. The logic and Boolean ideas that form the basis of the set-theoretic model of causation are
not more or less rigorous than the probability theory and statistics that underlie the statistical model.
The set-theoretic approach emphasizes that causal factors are context dependent and operate together
as packages. Equifinality is a useful concept for this approach, given that its typical causal model
implies several causal paths to a given outcome. The set-theoretic approach is also well suited for the
analysis of asymmetrical relationships. By contrast, the statistical approach sees causal complexity in
the fact that there are a large number of causes for any outcome. Equifinality is not a useful concept
for this approach, given that its causal model implies either massive equifinality or just one causal
path.

Although counterfactuals inform leading definitions of causality in the statistical tradition,
researchers in this tradition do not normally engage in the counterfactual analysis of individual cases.
Instead, a counterfactual is presented as a way to interpret the results of the statistical estimation and
to make general claims about causal effects. More generally, researchers in the statistical tradition
do not try to make counterfactual claims about configurations of values on independent variables for
which there are no cases. These researchers are hesitant to make assumptions about cases without
data beyond what can be inferred from the actual data being analyzed. With set-theoretic research, by
contrast, counterfactual analysis is central to within-case causal analysis. For individual case studies,
counterfactual analysis is a major tool that researchers use in conjunction with process tracing when
evaluating hypotheses. In addition, set-theoretic scholars are instructed to use counterfactual analysis
to specify outcomes for these missing cases in medium-N research designs. These decisions can have
a substantial impact on the results of their cross-case analyses.

Acknowledgements We thank Stephen Morgan and Judea Pearl for helpful comments on a previous version.

References

Bates, D. M., & Watts, D. G. (1988). Nonlinear regression analysis and its applications. New York: Wiley.

Braumoeller, B. (2003). Causal complexity and the study of politics. Political Analysis, 11,209-233.

Cartwright, N. (1989). Nature’s capacities and their measurement. Oxford: Oxford University Press.

Collins, J., Hall, N., & Paul, L. A., (Eds.) (2004). Causation and counterfactuals. Cambridge: MIT Press.

Esping-Andersen, G. (1990). The three worlds of welfare capitalism. Cambridge: Polity Press.

George, A., & Bennett, A. (2005). Case studies and theory development in the social sciences. Cambridge: MIT Press.

Goertz, G., & Starr, H., (Eds.) (2003). Necessary conditions: theory, methodology, and applications. New York:
Rowman and Littlefield.

Hicks, A., Misra, J., & Ng, T. N. (1995). The programmatic emergence of the social security state. American
Sociological Review, 60, 329-350.

Jackman, S. (2009). Bayesian analysis for the social sciences. New York: Wiley.

King, G., Keohane, R. O., & Verba, S. (1994). Designing social inquiry: Scientific inference in qualitative research.
Princeton: Princeton University Press.

Lewis, D. (1973). Counterfactuals. Cambridge: Harvard University Press.

Lieberman, E. S. (2005). Nested analysis as a mixed-method strategy for comparative research. American Political
Science Review, 99, 435-452.

Mahoney, J. (2010). Colonialism and postcolonial development: Spanish America in comparative perspective.
Cambridge: Cambridge University Press.

Moore, Jr., B. (1966). Social origins of dictatorship and democracy: lord and peasant in the making of the modern
world. Boston: Beacon Press.



90 J. Mahoney et al.

Morgan, S. L., & Winship, C. (2007). Counterfactuals and causal inference: Methods and principles for social research.
Cambridge: Cambridge University Press.

Ragin, C. C. (1987). The comparative method: Moving beyond qualitative and statistical strategies. Berkeley: University
of California Press.

Ragin, C. C. (2000). Fuzzy-set social science. Chicago: University of Chicago Press.

Ragin, C. C. (2008). Redesigning social inquiry: Fuzzy sets and beyond. Chicago: University of Chicago Press.

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of
Education Psychology, 66, 688-701.

Rubin, D. B. (1990). Comment: Neyman and causal inference in experiments and observational studies. Statistical
Science, 5, 472-480.

Schneider, C., & Wagemann, C. (2012). Set-theoretic methods for the social sciences: A guide to qualitative comparative
analysis. New York: Cambridge University Press.

Schrodt, P. A. (2010). Seven deadly sins of contemporary statistical political analysis. Paper presented at the annual
meetings of the American Political Science Association, Washington, DC.

Stokke, O. S. (2007). Qualitative comparative analysis, shaming, and international regime effectiveness. Journal of
Business Research, 60, 501-511.

Vaisey, S. (2009). QCA 3.0: The Ragin Revolution Continues. Contemporary Sociology, 38, 308-312.

Wickham-Crowley, T. (1992). Guerrillas and revolution in Latin America: A comparative study of insurgents and
regimes since 1956. Princeton: Princeton University Press.



Chapter 6
Mixed Methods and Causal Analysis

David J. Harding and Kristin S. Seefeldt

Abstract Interest in and use of mixed methods research in the social sciences has grown tremen-
dously in recent years and has the potential to assist in addressing core challenges in causal inference.
We discuss ways in which the addition of a qualitative component can serve multiple roles in
causal analyses, including understanding treatment definition, concept measurement, selection into
treatment, causal effect mechanisms, and effect heterogeneity. We also describe how quantitative and
qualitative methodologies can be and have been combined in studies seeking to make causal claims,
highlighting some of the key research design decisions in integrating qualitative and quantitative
methodologies. Given the ability of qualitative research to greatly enhance quantitative studies
concerned with causality, we argue that more causal studies should incorporate mixed methods
approaches into their research designs.

Introduction

Interest in and use of mixed methods research designs has exploded in the last two decades,
both in traditional social science disciplines like sociology and political science and in applied
fields like education, nursing, public health, and social work (Bryman 2006). The result has been
an accumulation of studies and practical knowledge about combining qualitative and quantitative
methods as well as a growing cottage industry of mixed methods handbooks, textbooks, and readers
(e.g., Tashakkori and Teddlie 2003; Creswell and Plano Clark 2007; Plano Clark and Creswell 2008).
Given this existing base of knowledge on mixed methods, our objective in this chapter is narrower: to
describe the ways in which qualitative research contributes to the goals of causal inference as defined
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by the potential outcomes (or counterfactual) framework.! Our intended audiences are quantitative
researchers who wish to understand the benefits of including qualitative data and analysis in research
seeking to make causal inferences and qualitative researchers who want to increase the relevance
of their work to quantitative causal analysis. We discuss the potential for mixed methods studies
to better address core challenges in quantitative causal inference — including treatment definition,
concept measurement, selection into treatment, causal effect mechanisms, and effect heterogeneity —
that purely statistical studies cannot resolve on their own. We also describe the ways that quantitative
and qualitative methodologies can be and have been combined in studies seeking to make causal
claims, both at the research design and data analysis stages of a project.’

For the purposes of this chapter, we define qualitative research as research that provides detailed
information on social, cultural, and economic processes as they are experienced by their participants
and collected using primarily open-ended or subject-driven data collection procedures. The studies
we examine primarily use fieldwork approaches that rely on ethnographic, unstructured interview,
or focus-group data.> Both quantitative and qualitative data can be longitudinal and both can be
selected to be representative of a well-defined population (Fearon and Laitin 2008), although of
course small sample sizes may limit generalizability in either case. Qualitative data are typically
well suited to understanding process, or how events or outcomes unfold step by step over time, and to
understanding interpretation, or how individuals understand and interpret their own actions, decisions,
experiences, and circumstances as well as those of others (Lofland and Lofland 1995). We illustrate
below how greater understanding of process and interpretation can improve our capacity to make
causal inferences.

The promise of mixed methods research is based on a number of premises, which we briefly discuss
here so that the reader is aware of our assumptions. First, all methods have strengths and weaknesses,
but their strengths and weaknesses are often complimentary (Roth and Mehta 2002; Axinn and Pearce
2006; Gerring 2007; Greene et al. 1989; Mahoney and Goertz 2006). As a result, bringing multiple
methodologies to bear on a research question produces a more complete and convincing answer.
Perhaps the most commonly invoked version of this argument is that while quantitative studies of
well-defined populations are well suited to establishing generalizable associations between causes
and effects, qualitative methods are well suited to uncovering and describing the mechanisms through
which effects come about (e.g., Fearon and Laitin 2008). Second, both qualitative and quantitative
data can be used for either theory generation or theory testing (King et al. 1994; Mahoney 1999,
2000, 2008; Brady and Collier 2010). Both types of methods can be used to explore the associations
between concepts that are the basis for theory construction. Similarly, both types of methods can be
used to examine patterns in empirical data to see if those patterns match with the patterns predicted
by various theories.

Third, all methodological traditions have rigorous standards for evaluation, although there may be
more or less consensus among practitioners of a given methodology on what exactly those standards
are, and often practitioners of other methodologies are ill-informed of what these standards are and

'Within the scholarly literature, a lively debate has emerged as to what constitutes mixed methods research and
whether or not it constitutes a stand-alone method and perspective, rather than simply the combining of quantitative
and qualitative methods. Engaging in this discussion is beyond the scope of the chapter, but see Small (2011) for an
overview of the issue.

’In so doing, we should not be misunderstood as arguing that qualitative research cannot also stand on its own as
a method for causal analysis under appropriate assumptions (just as quantitative analysis only produces valid causal
inferences under appropriate assumptions).

3 A mixed methods study could also use comparative historical methods that rely on data from archival research. This
chapter does not discuss in detail this approach or some of the challenges particularly associated with it, such as case
selection in small-n research. For a discussion of this and other issues related to comparative historical methods, see
Mahoney and Goertz (2006) and Goertz and Mahoney (2012).
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how to evaluate whether they are met (Mahoney and Goertz 2006). For example, just as quantitative
researchers have at their disposal a set of statistical procedures for assessing measurement reliability,
qualitative researchers have a set of procedures that allow them to assess the degree to which the
presence of the researcher in the social setting or the researcher’s own social status in relation to
research subjects has influenced the data collected. Fourth, most of the core methodological challenges
are similar but not identical across methodologies (King et al. 1994; Gerring 2007), although the
ideal resolution will vary by method and by the research setting at hand. For example, researchers
from all traditions consider carefully the definition of the units of analysis, the selection of cases, the
reliability and validity of measurement of concepts or constructs, and the appropriate comparisons
to make across cases to answer a particular research question (Ragin and Becker 1992). This last
premise means that qualitative and quantitative methods are commensurable, that they can be used,
evaluated, and understood together in a common framework, even though terminology sometimes
makes translation difficult and even though different research practices are appropriate for different
methodologies (Greene et al. 1989; Mahoney 2008; Mahoney and Goertz 2006; for a dissenting view,
see Sale et al. 2002).

We begin by reviewing the logic of causal analysis in qualitative research, on the assumption
that other chapters in this volume discuss in sufficient detail the potential outcomes framework now
commonly used in quantitative causal research. We then describe the roles that qualitative research
can play in causal studies within the potential outcomes framework, paying particular attention to
treatment definition, concept measurement, selection into treatment, causal effect mechanisms, and
effect heterogeneity. Where possible, we illustrate these roles with recent mixed methods studies,
some of which use randomized experimental designs while others use observational data. In the latter
category, we include studies that were not explicitly framed as making causal claims but which were
strengthened by the addition of a qualitative component. Next, we turn to the ways that quantitative
and qualitative methods can be integrated in practice, both in the research design and data analysis,
again relying on illustrative examples wherever possible. We conclude by arguing that more frequent
use of mixed methods approaches will improve causal inference research designs.

Causal Analysis in Qualitative Research

Causal analysis in qualitative research is typically based on at least one of three logics, which
Mahoney (1999, 2000) calls nominal comparison, ordinal comparison, and within-case analysis (also
called narrative appraisal). Although Mahoney develops this framework for comparative historical (or
“macrocausal”) analysis, we believe these logics also apply equally well to analysis of qualitative
data collected via fieldwork. We will argue, as does Mahoney, that the strongest and most convincing
qualitative research designs rely on a combination of these logics. The first two logics involve
cross-case analysis. Nominal comparison involves comparing and contrasting cases with different
configurations of causal factors and outcomes in order to examine necessary and/or sufficient causes
(Mahoney 2000).* This approach has been criticized as being overly deterministic (e.g., Lieberson
1991, 1994), as the idea of necessary and sufficient conditions assumes a deterministic logic that is at

4According to Mahoney, a sufficient but not necessary cause is one experienced only by cases that had the outcome,
but not all the cases with the outcome experience the cause. A necessary but not sufficient cause is one that all cases
with the outcome experience, but not all those that experience the cause have the outcome. A necessary and sufficient
cause is one experienced only by those with the outcome. If one has only cases that experienced the outcome, then at
most one can make claims about necessary but not sufficient causes (see Harding et al. 2002 for an example). Mahoney
(2000) argues that nominal comparison is particularly effective at eliminating alternative explanations. These ideas have
been formalized and extended to more complex causal configurations by Ragin in his Qualitative Comparative Analysis
(QCA) and “fuzzy set” Boolean algebra methods (Ragin 2000, 2008; see also Mahoney 2008).



94 D.J. Harding and K.S. Seefeldt

odds with the probabilistic logic of quantitative research (Mahoney 2000).> For those uncomfortable
with deterministic logic, ordinal comparison is more compatible with a probabilistic logic. This
approach permits anomalous cases and focuses on the most common patterns, as a quantitative
researcher would. Ragin’s fuzzy set QCA methods also allow for ordinal treatments and are designed
to determine the complex configurations of sufficient causes that lead to the outcome (Ragin
2000, 2008).

Because a mixed methods analysis typically employs its quantitative portion to compare and
contrast across cases, in this chapter we focus primarily on the logic of within-case analysis for
qualitative research (Mahoney 1999). The idea is to use the detailed information about a case to
examine the links between causes and effects. The emphasis is on detailed information. Whereas
quantitative data typically include a large number of cases with a relatively small amount of
information on each case, qualitative data typically provide a relatively large amount of information
on a smaller number of cases.

Two variants of within-case analysis described by Mahoney (2000) are process tracing and pattern
matching. In process tracing, the researcher uses the in-depth information about the case or subject
to understand how causes and effects are linked (see also Gerring 2007; Brady and Collier 2010).
By examining how actions, events, or experiences build upon one another over time, the researcher
traces the steps in the causal chain.® In pattern matching, hypotheses about the patterns in the data that
should exist if a particular cause is at work are described, and then detailed data for the case can be
examined to see if the hypothesized patterns occur. For example, a particular cause might be expected
to work through a particular process or have particular effects in other domains distinct from that of
the outcome.

Combining the logics of cross-case and within-case analysis is where the strength of qualitative
methods for causal analysis lies. The weakness of the cross-case logic is in difficulties of dismissing
alternative explanations, just as in quantitative research. Yet within-case analysis can be particularly
effective at ruling out alternative explanations. By process tracing, the researcher can see whether the
potential alternative explanation plays a role in the causal links leading to the outcome (Harding et al.
2002; Brady and Collier 2010). Pattern matching can be used to examine whether patterns that should
be associated with a potential alternative explanation are in fact present in the events of the case or the
experiences and perspectives of the subject.

Conversely, the weakness of within-case analysis is that patterns or processes that seem to be
consistent with a particular causal conclusion may or may not be present in other cases. Yet the cross-
case logic is designed to protect against this problem by explicitly comparing and contrasting. For
those interested in causal inference, the strongest qualitative research is that which compares and
contrasts across cases — not just on the presence or absence of particular causal factors, alternative
explanations, or outcomes, but also on the processes and patterns that are revealed by in-depth data,
what we term “comparative process tracing” (Mahoney (2000) calls this “causal narrative”). The
researcher compares cases with similar or different outcomes to see whether similar or different
processes are evident. When qualitative research takes such cross-case comparisons seriously, it is
also particularly commensurable with quantitative research in the potential outcomes tradition. That
tradition’s focus on categorical treatments provides a natural set of comparisons for a qualitative
research design.

SParticularly when one has many cases, one will likely find cases that do not fit with the modal patterns. However, such
anomalous cases can help to elaborate one’s causal model or define the circumstances or types of cases or subjects to
which it applies (just as outliers do in quantitative research).

6 Although the literature on causal analysis in ethnography is considerably less developed, a similar logic has been
proposed, albeit using different terminology. For example, Tavory and Timmermans (2012) discuss “a continuous stream
of events in sequences,” and Lichterman and Reed (2012) discuss “chains of action.”
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An example of comparative process tracing comes from Mario Small’s (2009) research on
organizations, social networks, and social inequality. Although the larger project is a mixed methods
study of child care centers and mothers that employs individual and organizational surveys, individual
qualitative interviews, and participant observation, we focus here on the qualitative data generated in
the interviews and participant observation. Small’s goal is to understand how features of organizations
like child care centers affect the social networks of their members as well as the resources to
which they have access via these social networks and through interorganizational connections.
Small and his research team observed child care centers and interviewed 67 mothers with children
in the centers. The data are comparative in that different centers had different organizational
characteristics, such as formal rules and procedures and informal practices. Comparing across centers
with different organizational characteristics allowed Small to understand how different organizational
characteristics led to different social networks and access to different resources among the mothers.
These comparisons explicitly involved tracing the processes that created the links between center
characteristics, social networks, and resources by understanding how individual mothers created social
ties and accessed the resources they needed to solve problems in their everyday lives. The analysis
revealed that seemingly simple organizational characteristics like the rules for pick-up and drop-off
of children affected who the mothers interacted with and what resources they could draw from their
network ties formed at the center.

One common criticism of qualitative research that we do not discuss extensively here is lack
of generalizability. This is closely linked to perceptions of qualitative research as being based on
small sample sizes or unrepresentative samples. While qualitative research does often have smaller
sample sizes and typically selects cases based on considerations other than representativeness (such
as representation of key categories of cases or subjects in the data), this is not uniformly the
case. Moreover, the importance of generalizability relative to other factors, particularly ruling out
alternative explanations, is unclear in causal analysis. For example, in quantitative analyses involving
natural experiments, researchers typically sacrifice generalizability in favor of identification. This is
most evident in instrumental variables analyses that estimate the local average treatment effect, a
parameter for which the population to which it applies is often impossible to define precisely (Angrist
et al. 1996).

In sum, the most important strength of qualitative methodology for causal analysis is its ability
to understand processes or mechanisms. As Lin (1998) notes, although analysis of quantitative data
can show “whether two or more phenomenon are linked consistently, it does not explain why the
link exists” [p. 167]. Although it is certainly possible to analyze mechanisms using quantitative
methods, given the relatively small amount of information available about each case, the challenges
are immense. For example, it is difficult to sort out convincingly that a certain variable in a quantitative
analysis is a mechanism unless the data set contains measures of all possible mechanisms, lest the
researcher attribute the role of one mechanism to another unobserved mechanism with which it
is correlated.” The researcher must be able to anticipate and measure accurately all hypothesized
mechanisms.

Using a qualitative approach, however, provides the researcher data on possible mechanisms,
including those that the researcher may not have suspected ahead of time. The reason is that
qualitative data typically provides the researcher with much more detail about each case. Such
detailed information allows for both greater likelihood of detection of multiple mechanisms as well
as the ability to consider more complex configurations and interactions of mechanisms and causal

7 Although it is possible to use instrumental variables analysis to addresses this concern, the researcher generally needs
to have one instrument per mechanism.
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factors. Moreover, qualitative data often include information about the perspectives, interpretations,
and decision-making of subjects themselves, which can inform our evaluation of causal hypotheses
(see, e.g., Miles and Huberman 1994; Lin 1998; Staggenborg 2008).8

Multiple Roles for Qualitative Methods in Mixed Methods Causal Analysis

In this section, we describe five roles that qualitative research can play in mixed methods research
studies that seek to make causal inferences. These roles do not constitute a comprehensive list, but they
do illustrate the importance of qualitative research for correct interpretation of causal effect estimates
and for understanding the social, economic, and cultural forces generating such effects.’

Elucidating Selection Processes

One of the core implications of the potential outcomes framework for causal inference is that
how subjects come to be in one treatment category or another is critical for understanding how to
estimate causal effects from observational data (Winship and Morgan 1999). Whether one is working
with instrumental variables, regression discontinuity designs, matching, fixed effects, or some other
method, the analyst must make assumptions about the selection processes that determine treatment
assignment. The primary concern is which factors determine treatment assignment and whether
such variables are otherwise correlated with the outcomes, in which case they are confounders, or
whether such variables are only correlated with the outcome through treatment, in which case they are
instruments. Typically arguments about the validity of assumptions about treatment assignment rest
either on results from prior research studies or on knowledge of institutional rules and practices.
Consider some examples from research on neighborhood effects, which seeks to estimate the effect
of living in poor neighborhoods compared to more advantaged neighborhoods. Because families
make decisions about which neighborhood to live in based in part on their expectations about future
outcomes in different neighborhoods, this field of research faces considerable challenges in producing
estimates of neighborhood effects that are free from selection bias. One approach has been to rely
on previous research on residential mobility and residential choice (e.g., Sampson and Sharkey 2008)
to understand the factors that determine residential location. This approach may be unsatisfactory,
however, when one cannot be confident that previous research has identified all factors determining
treatment assignment or when one cannot be confident that selection processes identified in previous
research apply to the population of the current study. In such cases, observational, ethnographic, or
interview data that specifically probe in an open-ended fashion how study subjects come to receive
one treatment or another may be important for understanding how to correctly model treatment

8Surveys that collect information repeatedly and frequently could potentially obtain similarly detailed information
and lead to an understanding of causal mechanisms. An example of such a study is the Relationship Dynamics and
Social Life study, which, after a baseline interview, collected weekly information over the internet or telephone about
relationships and pregnancy intentions from a sample of young women (Barber et al. 2011). However, quantitative
studies with such frequent data collection are expensive and challenging to implement and are therefore very rare.

Other authors have offered different typologies of the possible roles of qualitative research in mixed methods studies
more generally. For example, Fearon and Laitin (2008) discuss three roles: (a) narrative accounts of causal processes,
including interpretive data from key actors, (b) identifying omitted variables, and (c) evaluating measurement reliability
and validity. Greene et al. (1989) describe five purposes of mixed methods research: triangulation, complementarity,
development, initiation, and expansion.
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assignment when estimating causal effects. Such qualitative data and analysis can identify which
selection processes are related to confounders or to instruments and increase confidence that selection
processes are well understood.

Another approach has been to rely on natural experiments or quasi experiments that use
instrumental variables estimation to harness exogenous sources of variation in the treatment based
on institutional rules or procedures. In the neighborhood effects literature, the Gautreaux housing
mobility study is the most prominent example of a quasi-experimental design (see Rubinowitz and
Rosenbaum (2000) for an overview). A lawsuit against the Chicago Housing Authority and the
US Department of Housing and Urban Development (HUD) over segregation in Chicago’s public
housing resulted in a court-ordered housing voucher program that allowed participants to move to the
city or the suburbs. The researchers argued that because families on the waitlist overwhelmingly
took the first unit available, the randomness in the ordering of the waitlist provided a source of
exogenous variation in whether families moved to the city or the suburbs. As a result, differences
in child and parent outcomes between city and suburban participants could be attributed to differences
in those social environments rather than to preexisting family differences. Critics countered that
the assignment to city or suburb may not have been entirely random, instead reflecting family
preferences to some degree. For example, a correlation between pretreatment and posttreatment
neighborhood characteristics was discovered (Keels et al. 2005; Votruba and Kling 2008). Rubinowitz
and Rosenbaum (2000) report that only 19% of eligible families who were accepted into the Gautreaux
program moved as a result and suggest that this low number was due to program screening, self-
selection, and difficulties finding appropriate housing units. If any of these three factors operated
differently for those offered city vs. suburban units, selection bias would result.

We do not wish a to take a stand on the specifics of this debate, but rather to note that qualitative
research focusing on the treatment assignment process would have gone a long way toward resolving
controversies over the quasi-random nature of moves to city or suburb and differential selection into
treatment.'? Observation in the administrative offices or interviews with housing counselors could
have illuminated the processes by which available units were assigned. Interviews with program
participants could have shed light on participants’ decision-making about which housing units to
accept, how much choice they had to decline undesirable units, and whether they exercised those
options. Note, however, that this would require interviews with both city and suburban movers and
with families initially deemed eligible but who did not end up leasing a housing unit under the
program.

Qualitative analysis of treatment assignment or selection processes has other potential benefits.
We often assume that selection processes operate similarly for all subjects, but this may not always
be the case. Certainly in the case of neighborhood effects, different racial and economic groups
have different constraints on their residential mobility and face different choice sets for housing
and neighborhoods (Sampson and Sharkey 2008). Qualitative research on institutional or individual
selection processes would likely uncover such heterogeneity where it was not suspected a priori.
Randomized experiments are also not immune from differential selection processes. Noncompliance
occurs when subjects defy the treatment assigned by the researcher and take another treatment. For
example, it is not uncommon in field experiments in the social sciences for some participants in the
control group to gain access on their own to the resources provided to the treatment group. Qualitative
research that follows subjects through treatment assignment and follow-up data collection would
help to illuminate the sources of noncompliance, differential noncompliance by subgroups, and the
validity of assumptions needed to produce estimates when noncompliance is present. In other words,
treatment assignment can be viewed as a social process to be investigated by qualitative methods

10 Although the Gautreaux evaluation did include a qualitative component, it started too late to study these selection
processes.
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just like any other process. In contrast to the other roles for qualitative methods we discuss next, the
potential for qualitative data and analysis to elucidate selection processes has been the least exercised
in contemporary research and represents an important domain for future mixed methods research.

Mechanisms: The Why and How of Treatment Effects

For many social scientists, causal inferences are incomplete without evidence on why and how the
treatment affects the outcome. At least as far back as Durkheim’s discussion of Mills’ method
of concomitant variation (Durkheim 1982 [1901]), it has been argued that eliminating alternative
explanations is not the only criteria for causal inference, but rather the processes through which the
causal effects come about should also be demonstrated. As discussed above, qualitative methods
are especially well suited to studying processes and mechanisms. By comparing how processes
vary across treatment groups and how those in different groups experience the treatment received,
qualitative research can contribute to causal inference.

As an example, consider the Moving to Opportunity housing mobility experiment, a follow-up
to the Gautreaux study discussed above. Based on the results of Gautreaux, HUD funded a housing
mobility experiment that randomly assigned willing residents of public housing in five cities to three
treatment groups: (1) a control group, (2) an unrestricted housing voucher, and (3) a housing voucher
with housing counseling and restrictions on the neighborhood poverty rate. Because the offer of a
housing voucher was randomly assigned and individuals with vouchers ended up in lower poverty
neighborhoods than the control group, MTO researchers could use the variation in neighborhoods
created by the vouchers to estimate neighborhood effects among the MTO families. MTO results and
their interpretation have been extensively described elsewhere (e.g., Goering and Feins 2003; Orr et al.
2003; Kling et al. 2007; Sanbonmatsu et al. 2006), so here we focus on one example of the role of
qualitative research in the MTO evaluation.

One of the most surprising findings to emerge from the MTO study was that girls who moved to
more advantaged neighborhoods exhibited fewer risky behaviors (substance use, problem behaviors,
arrests) but boys who moved to more advantaged neighborhoods exhibited more risky behaviors. What
were the processes that led to less risky behavior among girls, and what were the processes that led
to more risky behavior among boys? Employing a comparative process tracing research design that
allowed for comparison of social processes across cases defined by treatment status, two teams of
qualitative researchers conducted in-depth unstructured interviews with both control group families
and experimental group families. They focused on the adolescents’ daily lives, experiences in their
neighborhoods, and social networks, domains that were not easily studied from the survey research
on MTO. Based on interviews in Chicago and Baltimore, Calmpet-Lundquist et al. (2011) found
that girls’ leisure and recreation activities matched well with the social environment and cultural
expectations of more advantaged neighborhoods, allowing them to take advantage of the greater safety
and opportunities of more advantaged neighborhoods. Girls in more advantaged neighborhoods also
made friends at school and work rather than in the community, exposing them to a different set of
peers. Among boys, a different set of social processes occurred. Boys who moved to more advantaged
neighborhoods were separated from male role models left behind in their former neighborhoods,
engaged in public leisure activities like hanging out and playing sports that put them at greater risk
of contact with police, and lost the opportunity to develop “street smarts” that they would be more
likely to need to navigate dangerous streets when they returned to poor neighborhoods. Based on
interviews in Los Angeles, Boston, and New York, Briggs et al. (2010) found that girls in high poverty
neighborhoods were at especially high risk of sexual pressure, violence, and harassment compared to
the experimental group girls who moved to more advantaged neighborhoods. As a result, the girls
in the experimental group had fewer mental health problems and less risky behavior. Treatment
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group boys, on the other hand, faced greater stress and social exclusion in the more advantaged
neighborhoods they lived in, leading to more risky behaviors than the control group boys who stayed
in the inner city. These studies illustrate the importance of qualitative research for understanding the
social and cultural processes through which the MTO treatment effects were generated.

Sources of Effect Heterogeneity

As quantitative causal inference has become more sophisticated, interest in heterogeneous treatment
effects has grown. This reflects in part a substantive interest in variation in treatment effects across
groups. For example, Brand and Xie (2010) find that the effects of college education on income are
largest for those least likely to go to college, which has important implications for social mobility. This
also reflects new realizations about the complexities of estimating causal effects in the presence of
effect heterogeneity, particularly when the structure of such heterogeneity is unknown or unobserved.
For example, in the presence of effect heterogeneity, regression-based estimates of causal effects
produce a variance weighted average treatment effect rather than the average treatment effect for
the population (Morgan and Winship 2007: Chapter 5). Instrumental variables estimators also fail to
estimate the average treatment effect in the presence of effect heterogeneity, instead producing the
local average treatment effect, or the treatment effect for those whose treatment status was changed
by the instrument (Angrist et al. 1996). Thus, careful causal studies must take effect heterogeneity
seriously.

Qualitative research methods are well equipped to uncover the dimensions and sources of effect
heterogeneity, particularly when they are unknown in advance. Because qualitative data collection is
typically open-ended and unstructured (as compared to a survey), unanticipated findings more easily
emerge from the data through a detailed consideration of subjects’ experiences. Consider the New
Hope Evaluation, a mixed methods study of the impacts of an antipoverty program in Milwaukee
that provided low-income families with incentives and supports to encourage employment, including
income subsidies, child care, and subsidized health insurance as well as case management services.
The random assignment evaluation examined parent and child outcomes, including employment,
welfare use, behavior problems, and school performance, using survey and administrative data. The
study also included a random subsample of 43 families who participated in longitudinal qualitative
interviews over the course of the evaluation. Gibson-Davis and Duncan (2005) describe the important
role that the qualitative interviews played in the study, one of which was to identify previously
unrecognized subgroups for which there were large variations in treatment effects. Analysis of the
qualitative interviews identified three groups based on families’ employment barriers. One group
had a large number of barriers that the New Hope treatment could not reasonably be expected
to overcome, including substance abuse problems, abusive relationships, and children with severe
behavior problems. Treatment effects for families in this group were found to be zero in the
quantitative data, as both treatment and control subjects had poor outcomes. A second group had
no barriers to employment. Here too there were no treatment effects of the New Hope intervention, as
families in both the treatment and control groups who had no barriers to employment did well. It was
only in a middle group, those with one employment barrier, where the New Hope interventions made
a significant difference in earnings. This is an example of findings from the qualitative component of
a mixed methods study informing analysis of quantitative data.

Qualitative methods are also well suited to investigating the processes generating effect heterogene-
ity through comparative process tracing. One example discussed above is the MTO study of gender
differences in the effects of residential mobility and neighborhood context. In that project, strong
but puzzling findings from a quantitative analysis were explained by qualitative research. Another
example comes from the New Hope evaluation. Here too treatment effect heterogeneity was found by
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child gender. Preadolescent boys in New Hope treatment families showed significant improvements
in teacher-reported school achievement and behavior compared to control group boys, but no such
treatment effect was found for girls. To resolve this puzzle, qualitative researchers paid particular
attention to gender differences in their interviews with parents. They discovered that treatment group
parents with both boys and girls devoted more of the program resources to their sons than their
daughters because they perceived greater threats to boys’ than girls’ safety and development in their
low-income neighborhoods. Parents worried that boys were more likely to be negatively affected
by gangs and neighborhood violence than girls, and so devoted program resources such as after
school program subsidies to sons rather than daughters. These findings were later corroborated in the
quantitative analysis of New Hope data as well as nationally representative survey data, and survey
questions on daily activities that might inform quantitative analyses about exposure to neighborhood
risk factors were added to future New Hope surveys (Gibson-Davis and Duncan 2005).

Understanding Variable Measurement from Survey and Administrative Data

Most quantitative causal analysis relies on data from surveys, administrative data, or both. Incor-
porating a qualitative component into a project can aid in evaluating the reliability and validity
of measurement of key variables by collecting data from participants (either research subjects or
institutional actors recording administrative data) on the interpretations and procedures that generate
the data. Survey questions can have multiple interpretations and meanings to respondents, and
different respondents may interpret the same question differently. Because qualitative data collection
is more open-ended, there is room for respondents to explain their answers to close-ended questions
or to provide information about their experiences and perspectives that would indicate whether
data from close-ended survey questions are accurately capturing what is intended.!" For example,
in a mixed methods study of adolescent boys based on both in-depth interviews and nationally
representative survey data from the National Longitudinal Study of Adolescent Health (Addhealth),
Harding (2007, 2010) asked interview subjects to complete selected questions from the Addhealth
survey questionnaires and then debriefed their responses. This led to a greater understanding of
how the words in the survey questions were understood by adolescent boys, which questions were
potentially confusing and which aspects were typically confused, and therefore which survey items
were likely to be valid measures and which concepts they measured.

Administrative data may also benefit from close scrutiny through qualitative investigation. One
option is to observe the data generation process or to interview the individuals who enter the data
and make decisions about how information should be recorded in administrative databases. Often
administrative rules are not specific enough to cover all eventualities or are not fully or consistently
implemented in practice. A severe discrepancy between data entry rules and practices can lead to
incorrect interpretation of data extracted from administrative records if the researcher only has access
to the written rules. In order to detect variation in data entry, multiple individuals entering data must
be observed or interviewed. A second option is to collect data directly from a subset of subjects
via qualitative interviews and then compare this information with administrative records to look for
discrepancies. For example, in the Michigan Study of Life After Prison, researchers were concerned
that residential histories collected from administrative data on parolees might be incomplete (e.g.,
missing residences for more serious offenders or drug-involved offenders or missing residences with

""Open-ended questioning that attempts to discern how respondents arrive at the answer to a survey question is a tool
used in cognitive interviewing, a method for diagnosing problems with survey questions (see Presser et al. 2004). For a
review of methods for testing and evaluating survey questions, see Schaeffer and Presser (2003).
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only short stays). Through in-depth longitudinal interviews with parolees, they were able to compare
reports directly from subjects with what parole agents recorded in administrative data for the same
subjects and assess agreement, thereby providing information on the completeness of administrative
records and on the types of offenders or residences most likely to be incorrect or missing (Harding
et al. forthcoming). In this case, privileging the qualitative interview reports on residences over the
administrative records is justified by the greater trust between interviewer and subject than between
parole agent and parolee.

Treatment Definition and Program Fidelity

Even when it is clear who is assigned to which treatment category in a causal inference study, it is not
always clear what each treatment constitutes. For example, if the treatment is exposure to a particular
social context, it may not be clear which aspects of that context are driving any treatment effects
detected. In the MTO study discussed above, subjects experienced neighborhoods with different
poverty rates, but researchers also wanted to understand what about those neighborhoods actually had
an effect on the subjects. Qualitative interviews about the daily experiences of children and parents
in the treatment and control groups revealed that one of the key changes when moving to a more
advantaged neighborhood was decreased exposure to violence and victimization and the decrease in
stress that resulted (Kling et al. 2005). In this instance, understanding what the treatment actually
changed in subjects’ daily lives and how they interpreted and understood those changes was critical
to understanding the processes generating treatment effects.

In program evaluation research, qualitative methods are often used to evaluate program fidelity, or
the extent to which the program components received or experienced by the participants match what
the program’s designers intended, usually called an “implementation” or “process’ evaluation, as part
of the larger design. This can be accomplished by observing programming as it is happening or by
interviewing subjects about their experiences with the program, either in conjunction with other types
of qualitative data or as the sole qualitative component in the design. Whether or not the quantitative
estimates from a program evaluation can be interpreted as program effects will hinge closely on
program fidelity as the program was actually implemented. In random assignment evaluations, a
major goal of the process component is to understand whether or not the program or intervention was
implemented as intended and thus represents a true test of the intervention (Sherwood and Doolittle
2003). For example, in the New Hope evaluation discussed above, qualitative interviews revealed
that most program participants were not using the services provided as the program model intended.
Rather than a continuously used bundle of benefits, participants used the services selectively and
intermittently. Participants weighed particular program services in cost-benefits terms and some also
eschewed program services they found demeaning, such as community service jobs (Gibson-Davis
and Duncan 2005).

Another example comes from the Building Strong Families (BSF) program evaluation. BSF is
a counseling program for young unwed couples with new children that seeks to improve their
relationship quality, encourage marriage, and stabilize relationships. It is primarily a group counseling
and relationship-skills education program that also includes referrals to other services and case
management and counseling from “family coordinators.” Implemented in eight sites around the
county, it is still undergoing an evaluation of its long-term impacts. However, qualitative research
on program implementation has already been conducted. In addition to site visits and observation
with program staff, researchers also conducted focus groups with participants and interviews with
those who initially enrolled but did not participate or dropped out quickly. Among other findings,
the qualitative analysis revealed important differences across sites in the form and content of services
received. While it was known in advance that some sites were creating new programs from scratch,
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others were embedding BSF within existing programs, and others were primarily recruiting BSF
participants from current clients, the implications of this variation in program delivery were not
revealed until the qualitative research was completed. Family coordinators provided different services
in different sites. In some, they primarily encouraged participation in group sessions and provided
referrals to other service providers, while in others they did more individual counseling (Dion
et al. 2008).

Integrating Qualitative and Quantitative Methods

Conducting a mixed methods study requires a number of decisions regarding how qualitative and
quantitative methods will be integrated in the research design. The handbooks and readers listed above
provide a number of typologies of mixed methods research design configurations, so we limit our
discussion to three dimensions along which mixed methods research designs vary. We believe these
are particularly central to addressing the causal inference challenges discussed above: (1) sample
selection, including (1a) random vs. purposive sampling of qualitative subjects or cases and (1b) the
nesting of qualitative and quantitative samples, (2) the sequencing of qualitative and quantitative data
collection and analysis, and (3) “researcher-driven” vs. “subject-driven” approaches to qualitative data
collection and analysis. As Small (2011) also argues, such research design decisions must be made
based on the role that the qualitative component is expected to serve in a mixed methods causal study
and the causal inference challenges it is intended to address.

Subject or Case Selection: Random Samples vs. Purposive Samples

We highlight two dimensions along which sampling in mixed methods studies may vary. The first
dimension is whether the qualitative sample is drawn using purposive sampling techniques common
in qualitative research or is drawn based on principles of random or representative sampling more
frequently used in statistical research. (Although nearly all of the studies that we use as examples
utilize some variation of a random sample for the quantitative component of the study or are
randomized control trials, we note that other sample designs for the quantitative component may
also be appropriate.)

Qualitative researchers interested in studying a particular event or outcome often select cases
that have experienced that event or outcome, which falls under the rubric of purposive sampling
in qualitative research but is often derided as “selecting on the dependent variable” by quantitative
researchers. Moreover, qualitative researchers often select cases that are anomalous or otherwise
provide analytical leverage for a particular question, while quantitative researchers will typically select
cases at random from the population of interest because of their focus on generalizability (Mahoney
and Goertz 2006). Rather than enter into this debate (see, e.g., Achen and Snidal 1989; King et al.
1994), we posit that how qualitative cases are selected in a mixed methods study depends upon the
role that researchers expect the qualitative data to play in elucidating or developing causal claims.

For example, if the goal of the qualitative research is to understand selection into treatment,
researchers may wish to interview a sample of individuals who are “treated” as well as individuals
who are part of the target population but who fail to participate in the treatment or intervention. If
the goal is to obtain more detailed and nuanced information about the experiences and outcomes of a
variety of individuals participating in an intervention in order to understand the various mechanisms
driving the outcomes, then researchers might design a qualitative sample by selecting cases at random
from the larger population participating in the intervention or collect both qualitative and quantitative
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data from all individuals in the study. In other instances, it might be appropriate to draw upon sampling
strategies more typical of qualitative studies, such as purposive sampling. If an outcome of interest was
experienced only by a certain subset of individuals or an unexpected finding emerges from analyses
of the quantitative data, then researchers might seek to examine the cases (or a subset thereof) that
experienced the outcome or have certain characteristics that are associated with the outcome in the
quantitative data.

The New Hope evaluation, described earlier, randomly sampled from all participants when
designing the qualitative piece of the evaluation, although the decision to do so was arrived at
after much discussion. Gibson-Davis and Duncan (2005) describe the debates among researchers
involved with the evaluation. Some members of the team wished to explore experiences of only
experimental group families or “exemplar” cases, those who went through the intervention and used
the services in the way that program designers had envisioned. These families were thought to be
more “interesting” from the standpoint of learning more about how the intervention itself operated.
Eventually, though, the investigators abandoned this strategy, deciding instead to randomly select
cases from both experimental and control groups and conduct in-depth interviews with those cases.
According to Gibson-Davis and Duncan, doing so proved important since as they noted, “Our a
priori theoretical expectations about “interesting” and “uninteresting” situations proved depressingly
inaccurate in the light of what subsequent analysis of both quantitative and qualitative data revealed to
be truly interesting situations for understanding New Hope program impacts” (p. 290). By selecting
cases randomly, the researchers had access to a wide range of subjects and were able to explore further
some of the unexpected findings from the quantitative analyses, such as the heterogeneity in treatment
effects between boys and girls discussed above. If the researchers had only selected “exemplar” cases,
they may not have been able to make a strong case that parents devoted more resources to boys
than girls.

While Gibson-Davis and Duncan (2005) argue that more qualitative studies (and presumably by
extension mixed methods studies) should use random sampling techniques, it may not always be
desirable to do so. At times, researchers may be interested in understanding more about a phenomenon
that is somewhat rare or only occurs among certain types of individuals. If so, then a more in-
depth examination of that subgroup may be needed. Using purposive sampling, Seefeldt (2008)
conducted in-depth interviews with a subsample of respondents who were part of the Women’s
Employment Study, a panel survey of current and former welfare recipients. She was interested in
understanding more about the choices women made about searching for and taking higher-paying
jobs. Analyses of the survey data found that, net of sociodemographic characteristics and various
barriers to employment, working in jobs in which higher level skills were performed (such as
supervising others) was associated with subsequent movement into a better paying job (Johnson and
Corcoran 2003). Since Seefeldt wanted to examine why some women were able to obtain these higher-
paying jobs while others who also worked steadily did not, she selected her qualitative sample from
among those women with fairly regular employment records, excluding those who never worked or
worked only sporadically.

Subject or Case Selection: Nested vs. Non-nested Samples

Another dimension along which mixed methods sampling can vary is whether or not the qualitative
sample is drawn from the sample used for the quantitative component. Qualitative samples that are
embedded within a larger quantitative sample are said to use “nested” designs (Small 2011). Yet
depending on the role of the qualitative component, a mixed methods study need not collect both
types of data from the same respondents.
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The qualitative samples in both the New Hope and the Women’s Employment Study used nested
designs, whereby a condition for selection into the qualitative sample was participation in the larger
study (see Lieberman 2005). An advantage of a nested design is that multiple types of data are
collected from the same individuals or households. This may be particularly useful for researchers
who wish to learn more about selection processes or treatment effects on a select group of individuals
(e.g., those who were part of a specific intervention) or who want to understand cases that are outliers
in statistical models. However, as Small (2011) notes, it is not always practical, feasible, or even
necessary for a qualitative sample to be nested within a larger quantitative sample. For example,
a researcher wishing to conduct a qualitative study using respondents from a completed nationally
representative sample might find it prohibitively expensive to track down respondents who may be
scattered across the country.

Respondent burden might also be a reason to employ different samples in a mixed methods design,
particularly if both arms of the study call for repeated data collection. In the Moving to Opportunity
Study, which did use a nested design, researchers noted concerns that respondents would become
“burned out” and thus not complete later surveys. To minimize the impact of this possibility, they
limited the sample size of the qualitative component. The Three City Study, a multiyear observational
study of the effects of welfare reform on low-income families, used separate samples for survey
and ethnographic data collection, although the two groups were closely aligned on demographic
characteristics and with respect to the types of neighborhoods in which they lived. Both components
had intensive data collection efforts. Survey sample members completed up to three surveys, and those
with preschool children completed additional surveys and time diaries and were also videotaped and
observed interacting with their children. Those in the ethnographic component were interviewed one
to two times a month during a 12- to 18-month period and then every 6 months for approximately two
more years (Cherlin et al. 2004). Although not explicitly discussed by the investigators, it is likely
that had the design called for a nested ethnographic sample, those respondents would have found
themselves greatly inconvenienced by their participation in the study, and response rates might have
suffered.

Which design — nested or non-nested — is preferable should ultimately depend upon the purpose of
the qualitative component of a mixed methods study. Among any of the five roles that a qualitative
research can play (i.e., elucidating selection processes, explaining mechanisms, explaining sources
of treatment heterogeneity, evaluating variable measurement, and understanding the treatment and
program fidelity), it is not always the case that nested designs are more advantageous than non-nested,
or vice versa. When the treatment constitutes a particular intervention, such as in New Hope or MTO,
a nested design will likely prove most useful, since researchers will want to be able to understand,
for example, treatment effect heterogeneity among participants or program fidelity to the specific
intervention being evaluated. In other instances, however, a non-nested design may provide insight
into these issues. Small (2009) used a non-nested design in the portion of his study examining mothers’
network ties made through child care centers. While he analyzed survey data from a large dataset
to document the percentage of mothers who made ties via a child care center, the purpose of the
qualitative interviews with mothers was to understand the processes through which these types of ties
do or do not get formed. As such, interviewing the same women was not crucial.

Sequencing of Qualitative and Quantitative Data Collection

Qualitative data collection in a mixed methods study might be collected prior to, concurrent with, or
at the end of quantitative data collection and/or analysis. Particularly when the phenomenon being
studied is not well understood, an exploratory qualitative pilot study before beginning larger data
collection efforts may be useful. Researchers can use findings from the qualitative component to
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inform development of survey questions and analyses of the resulting data (Tashakkori and Teddlie
1998). While Small’s (2009) study of child care centers and their impact on social ties combines
qualitative and quantitative data in a number of ways, he began his work with a small pilot study.
Having previously observed that parents using a child care center in Boston were also making
connections to work and social services through conversations that occurred at the center, Small later
interviewed child care center providers in both a middle class and a poor neighborhood in New York,
gathering more information and refining his theory about how this type of organization was able to
generate social ties. Using the knowledge gained from the pilot and additional qualitative work, Small
was subsequently able to develop a survey of child care providers and add questions to the survey
component of the Fragile Families and Child Wellbeing Study (an observational study of unmarried
parents and their children described further below) to test his ideas on larger samples using quantitative
data. In this example, using the qualitative data for theory construction and development of measures
for key concepts necessitated collecting and analyzing qualitative data prior to the quantitative data.
Other mixed methods studies collect qualitative and quantitative data concurrently. Such an
approach allows researchers to have two sources of data, each with its own strengths, that were
collected at roughly the same time. Although the Three City Study collected survey and ethnographic
data at different intervals, all data were collected between 1999 and 2001 (an additional survey
was fielded in 2005). Since researchers were interested in examining the effects of welfare reform,
such a concurrent design allowed for two types of data that were both collected during the years
following passage of welfare reform. Alternatively, a mixed methods study may launch the qualitative
component toward the end of the study, so that unanswered questions or anomalous findings from the
quantitative data can be explored further. As noted earlier, Seefeldt (2008) employed such a design,
interviewing a subset of Women’s Employment Study respondents at the conclusion of the study,
when puzzles about the mechanisms driving heterogeneity in employment advancement opportunities
for former welfare recipients remained. Of course, if resources allow, alternating between quantitative
and qualitative data collection and analysis can allow results from each method to inform the other.

Subject- vs. Researcher-Driven Approaches

A final dimension we consider in the design of a mixed methods causal study is the extent to
which the qualitative component is subject-driven or researcher-driven. By subject-driven we mean
qualitative research that is guided by principles of grounded theory (Glaser and Strauss 1977),
whereby researchers enter into their fieldwork with a research topic in mind but no specific research
questions and few preconceptions about what they will discover. What researchers learn using a
subject-driven approach depends upon the topics the respondents themselves raise during the course
of an interview or ethnographic encounters. Subject-driven methods are particularly common in, but
not unique to, pilot studies. Researcher-driven methods, by contrast, impose more structure on the
design by identifying specific questions that researchers hope the qualitative data will answer. To
address these questions, data collection instruments, while generally not close-ended like surveys, ask
all respondents similar questions about previously determined topics. Of course, few if any studies
follow either approach completely, and all qualitative research is to some extent subject-driven, so it is
perhaps more accurate to categorize an individual study’s qualitative component as falling somewhere
along a continuum from completely subject-driven to completely researcher-driven. The following
examples illustrate these different design approaches but also demonstrate how subject-driven and
researcher-driven designs can serve different purposes in mixed methods causal studies.

The Three City Study ethnography employed what the researchers termed “structured discovery” in
its approach to gathering qualitative data. Although not purely subject-driven, the structured discovery
method called for interviews and observations focused on a particular set of topics but with enough
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flexibility so that individual ethnographers could pursue interesting and unexpected topics as they
arose. Using this approach, the ethnography uncovered histories of sexual abuse among many of the
poor women who were interviewed. The survey component of the study also asked about abuse, but
only in sufficient detail to capture prevalence rates. When the study began, understanding the role of
abuse in women’s lives was not a central focus. Rather, it emerged through the ethnographic interviews
(Burton et al. 2009). The study team was able to develop and refine theories about how experiences
of various types of abuse (sexual, physical, childhood, adult) influenced different types of union
formation (e.g., cohabitation, serial relationships, relationship avoidance). Finding an association in
the survey data between experiences of abuse and union formation, the study team turned to the
ethnographic data. By coding the qualitative data, specific hypotheses were developed about the timing
and types of abuse experienced and the processes through which they influenced union formation.
Then the researchers tested these hypotheses with multivariate analyses of the survey data (Cherlin
et al. 2004). Although these analyses cannot conclusively demonstrate that experiencing abuse is a
central cause of variation in relationship patterns, the combination of the qualitative and quantitative
data helps to further our understanding of why and how low-income women end up in certain types
of relationships rather than others and suggests new potential sources of effect heterogeneity for other
causes.

The qualitative components of the Fragile Families and Child Wellbeing study and the Women’s
Employment Study used much more structured methods when gathering data. The Fragile Families
qualitative component used a preset list of topics that covered a standard set of domains. While the
ordering and wording of questions asked varied, interviewers were trained using a very detailed
interview guide to ensure consistency across interviews (Gibson-Davis et al. 2005). Similarly,
qualitative interviews in the Women’s Employment Study used a semi-structured interview guide
with specific probes for follow-up, but all interviewers covered a very similar set of questions
(Seefeldt 2008).

Even with a more structured approach, new and perhaps unexpected findings can emerge from
qualitative research that can then be used to generate hypotheses that can subsequently be tested with
survey data. For example, an emerging finding from the first wave of the survey data from the Fragile
Families study was that the majority of unmarried parents said that they planned to marry. Yet 1 year
later, few had done so (Harknett and McLanahan 2004). The qualitative component explored this
disjuncture between aspirations and behavior, finding that even though most unwed parents continued
to aspire to marriage, they had a lengthy list of requirements they had to meet before becoming
married. Many of these were financial, including having enough money saved to afford a “respectable
wedding” and to purchase a home (Gibson-Davis et al. 2005). With later waves of the survey data,
researchers were able to test this “financial expectations” theory, finding that positive changes in
earnings were associated with an increase in the odds of becoming married, while becoming poor
was associated with a decreased likelihood of marriage among cohabiting couples (Gibson-Davis
2009). While the latter analyses could have been accomplished without the aid of the qualitative
component, the qualitative data provide a more nuanced understanding of the social and cultural
processes generating the quantitative findings. It may not just be increased earnings themselves that
are important, but rather the symbolism of what the earnings represent: stability and thus a readiness
to marry (Gibson-Davis 2009).

Both the Fragile Families and Three City Study mixed methods analyses illustrate how well an
iterative process, whereby researchers look back and forth between researcher-driven and subject-
driven data collection, can be a productive exercise, allowing for additional analyses beyond what
might be completed if just researcher-driven data alone were examined. In other instances, however,
researcher-driven quantitative data may have already been mined for their usefulness, yet unanswered
questions and puzzles remain. Conducting qualitative research after exhausting the possibilities for
causal inference from the quantitative data may prove beneficial in untangling remaining questions
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or puzzles, whether they be related to effect heterogeneity, causal processes, or treatment definition.
Thus, considerations of sequencing and researcher-driven vs. subject-driven data collection often go
hand in hand.

Finally, process and implementation studies can also be subject- or researcher-driven in that
researchers can determine the extent to which their observations focus on a predetermined set of
activities (researcher-driven) or whether observations are carried out in a more ethnographic vein,
whereby researchers observe an intervention or setting without any preexisting notions as to what
should occur (subject-driven). In some circumstances, checklists of activities that are expected to be
carried out or information that should be imparted to participants may be important for researchers
who are interested in documenting adherence to a specific model for the intervention or program.
In other instances, less structured observations of program activities may be appropriate when
researchers need to understand what the intervention entails.

Conclusion

This chapter highlights the significant contributions that mixed methods studies can make to studies
seeking to make causal claims. Qualitative research can help researchers understand selection
processes, mechanisms through which causal effects occur, underlying causes of effect heterogeneity,
measurement of variables from survey or administrative data, and treatment definition and program
fidelity. Of these roles, mixed methods studies have most frequently taken advantage of qualitative
methods to understand causal mechanisms and effect heterogeneity, while their potential for con-
tributing to understanding of selection processes and variable measurement appears to have been least
exploited. In designing a mixed methods study, researchers have at their disposal a variety of options
for selecting a qualitative sample, deciding when and how often to conduct qualitative research during
the study’s data collection period, and structuring the design so that findings emerge naturalistically
from subjects or are structured ahead of time by researcher hypotheses. Such research design issues
should be made based on the roles that the qualitative component is expected to play in the causal
analysis that the larger study seeks to undertake.

Given the ability of qualitative research to greatly improve quantitative studies concerned with
causality, we argue that more studies should incorporate a mixed methods approach into their design.
The examples this chapter has reviewed, both experimental and observational, illustrate the power
of qualitative methods to contribute to causal inference in mixed methods studies. In some cases,
results from the qualitative component, or results generated from a sequential back and forth between
qualitative and quantitative analysis, represent some of the signature findings of the studies we have
reviewed. The sources of effect heterogeneity by child gender in MTO and New Hope, the role of
sexual abuse in union formation among poor women in the Three City Study, and the symbolic
importance of economic advancement for marriage decisions among poor unwed parents in Fragile
Families are just some examples. Indeed, this evidence suggests that given the power of qualitative
methods to address key challenges in causal inference, researchers seeking to make causal claims
would be remiss not to include a qualitative component in studies seeking to make causal claims.
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Chapter 7
Fixed Effects, Random Effects, and Hybrid Models

for Causal Analysis

Glenn Firebaugh, Cody Warner, and Michael Massoglia

Abstract Longitudinal data are becoming increasingly common in social science research. In this
chapter, we discuss methods for exploiting the features of longitudinal data to study causal effects.
The methods we discuss are broadly termed fixed effects and random effects models. We begin by
discussing some of the advantages of fixed effects models over traditional regression approaches
and then present a basic notation for the fixed effects model. This notation serves also as a baseline
for introducing the random effects model, a common alternative to the fixed effects approach. After
comparing fixed effects and random effects models — paying particular attention to their underlying
assumptions — we describe hybrid models that combine attractive features of each. To provide a deeper
understanding of these models, and to help researchers determine the most appropriate approach to
use when analyzing longitudinal data, we provide three empirical examples. We also briefly discuss
several extensions of fixed/random effects models. We conclude by suggesting additional literature
that readers may find helpful.

Introduction

The problem of causal inference is fundamentally one of unobservables. — Charles Halaby (2004: 508)

Fixed effects models provide a way to estimate causal effects in analyses where units (individuals,
schools, neighborhoods, etc.) are measured repeatedly over time. The beauty of the fixed effects
method is that it can eliminate the effects of confounding variables without measuring them or even
knowing exactly what they are, as long as they are stable over time. In this chapter we describe the
kinds of confounding variables that the fixed effects method eliminates and demonstrate how the
method does so. We also compare the fixed effects method to its closest cousin and chief alternative,
the random effects method, and discuss recent hybrid methods that combine appealing features of the
two methods.
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The chapter unfolds as follows. The first section establishes essential notation for the fixed effects
model. From this notation, it is relatively easy to demonstrate the advantage of fixed effects models
over more conventional regression methods for dealing with omitted-variable bias. The second section
introduces the random effects model and compares it with the fixed effects model, highlighting the key
differences across the models. The third section describes a hybrid model that contains features of both
the fixed effects and random effects models. We follow this by summarizing the guiding principles for
choosing between fixed effects and random effects models. We then provide empirical illustrations
of the different models, including tests that allow researchers to compare fixed and random effects
coefficients and models directly. We conclude by briefly outlining extensions of the fixed effects model
to different types of data and response variables and provide annotated references for those who
are interested in further reading on fixed effects, random effects, and hybrid models for analyzing
longitudinal data.

The Fixed Effects Model

To understand the fixed effects model, it is useful to begin with the linear regression model for
quantitative dependent variables. The standard regression model can be expressed in the following
generic form, where X = 1 X, + B Xp + - + B Xk:

Vi =+ BX; +é& (7.1

Y; is the value of the dependent variable for the ith unit, « is an intercept, 8 is a row vector of regression
coefficients, X is a column vector of the K causes of Y, and ¢ is a random disturbance. We assume that
¢ has a mean of zero and constant variance and that it is uncorrelated with the variables in X. We also
assume (for now) that Y is a quantitative variable.

Estimation of the standard regression model is complicated by the possibility of omitted-variable
bias resulting from the failure of the researcher to include all possible K causes of Y in the empirical
model. The size of the bias depends on the magnitude of the effects of the omitted causes and the
strength of the correlation between the measured and unmeasured causes. The penalty paid for the
omission of causal variables can be severe (Leamer 1983). Indeed, because of its pervasiveness and
the danger it poses to the estimation of causal effects, omitted-variable bias is a transcendent issue
in social science methodology, a problem that is particularly acute with regard to nonexperimental
research designs (our focus here). Method texts would be much shorter, and estimation procedures
much simpler, if it were always easy to identify all causes of Y and to measure them without error.

With these points in mind, we restate Eq. (7.1), this time distinguishing the measured (X) and
unmeasured (X*) causes of Y:

Y = o+ BX; + B*X} + e (7.2)

In this equation, unlike (7.1), the vector X includes only a subset of the causal variables; the
unmeasured causes are in vector X*. Because some of the causal variables are missing, the regression
of Y on X will generally result in biased estimates of the coefficients in f.

Consider how we might alleviate this bias. The most common approach in nonexperimental
research is to try to reduce the size of the vector X*, that is, to try to measure all the causes we can.
Assuming we can measure at least some of those causes, we have several options: We can add them
directly as predictors in the standard regression model, we can use them as tools to match individual
units (as in propensity score methods), or we can use both matching and regression (see Ho et al.
2007).
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In social science research, however, it is virtually impossible to identify and measure all causal
variables. It is sometimes possible nevertheless to alleviate omitted-variable bias by reducing or
eliminating the association between the unmeasured causes and the cause or causes that we are
interested in. One of the most common methods is through random assignment. Although random
assignment figures most prominently in experiments in the social sciences, randomization provides
the basis for other social science methods as well, such as the use of instrumental variables (Firebaugh
2008, chapter 5). The attractive feature of randomization is that it can alleviate the biasing effects of
confounding variables without actually measuring them (or even knowing what they are).

Random assignment is not, however, the only tool social scientists have for alleviating the
confounding effects of unmeasured causes. Indeed, since many social scientists use secondary data,
randomization might not even be an option. However, if the data under consideration are longitudinal,
the fixed effects approach can also alleviate the effects of confounding variables without measuring
them (Allison 2005; Halaby 2004; Hsiao 2003; Wooldridge 2010) — and it can do this even in the
absence of random assignment. To show how this is possible, we first revise Eq. (7.2) to represent an
analysis based on panel data withz=1, 2, ...., T measurements for each unit:

Y=o+ BXi + B*X + B X" + &4 (7.3)

By modeling different intercepts for each point in time, the term «, allows for period effects (those not
accounted for by other aspects of the model) that change the response variable by the same amount
for each unit. And by appending the subscript “#” to the appropriate “i”” in Eq. (7.2), we are permitting
values to change for the ith unit over time. Thus, for example, Y}, denotes the value of Y for unit i at
time 7.!

The critical point of this new notation is to subdivide the unmeasured causes into those that change
over time (the X;, variables) and those that are constant over time (the X; variables). For the latter,
we include the subscript 7, to indicate that the causes vary from unit to unit, but not the subscript .
(For convenience, we often assume below that the units are persons, but they could be neighborhoods,
ethnic groups, classrooms, nations, corporations, and so on.) Date of birth, for example, varies across
individuals, but is a constant for any given individual. Educational attainment, by contrast, varies
both across persons and over time because individuals can add to their education. The vector of time-
invariant causes (X;) often includes important causes that are hard to measure and hence are likely
to remain unmeasured in many analyses, such as individual-level personality traits, or geographic
features in the case of nations.

The Bsin Eq. (7.3) have no subscript 7, meaning that the coefficients are constant over time. Hence,
for each of the stable unmeasured causes X;, the product f*X/* is constant over time. It follows that
the sum of these products is also constant over time for persons, although it varies across persons.
In other words, B* X[ = BYX + B3 X% + -+ + B X, = i, where p; is a constant for the ith
individual.

Substituting u; for B* X in Eq. (7.3), we have:

[L
1

Y=o+ wi +BXi + B X + ei (7.4)

If all the unmeasured causes are constant over time, then X ;" is empty by definition, and Eq. (7.4)
reduces to:

Yii=o; + i + ﬂXit + & (7.5)

Because time is nested in the units, it might seem more natural to use the notation ¥;; instead, as in Raudenbush (2009).
We nonetheless follow convention in the fixed effects literature and place the subscript *“i” before the “¢.”
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Equation (7.5) is the foundational fixed effects model. It is sometimes referred to as a “two-way
fixed-effects model” because it allows for both period-specific («;) and unit-specific (u;) fixed effects.
The key is the term p;, a term that varies across persons but is constant for each person over time (note
that the term has no subscript for time). This term, then, captures all relevant differences between
persons that are stable over time and are not accounted for by the other independent variables in
the model. Because we have multiple observations for each person, we have sufficient degrees of
freedom to include dummy variables for the p; Hence, one common way to estimate a fixed effects
model is with person-specific dummies. Observe that the dummy variables remove the stable effects
(constant Bs) of time-invariant unmeasured causes (constant X;s) even when we do not know what
those causes are. As a result, the fixed effects approach is less prone to bias because its assumptions
about unmeasured causes are more realistic than the assumptions that we usually need to make about
those causes. We refer to this as the fixed effects advantage (Firebaugh 2008, p. 136):

Fixed effects advantage. The fixed effects approach replaces the typically unrealistic assumption that the

measured and unmeasured causes are uncorrelated with the less restrictive assumption that the unmeasured
causes are constant, and their effects are stable.

In sum: The fixed effects approach removes the effects of time-invariant causes, whether those
causes are measured or not. That is a powerful feature because it means that fixed effects methods can
alleviate omitted-variable bias in a less-than-fully-specified model. Moreover, fixed effects models
eliminate this bias even when we do not know what a fully specified model would look like. It is
important to keep in mind, however, that the fixed effects approach does not remove the biasing
effects of time-varying confounders, so the key assumption of the method is that unmeasured causes
are constant.

Fixed effects models are especially useful, then, in instances where there are important causes of ¥
that are hard to measure and that tend to change slowly, or not at all, over time, a common situation in
nonexperimental research. For research on individuals, difficult-to-measure enduring causes might
include personal traits such as ambition, work ethic, determination, or physical attractiveness.
In research on crime, it might be important to control for individual differences in the propensity
to commit crime, yet that is hard to measure directly. Likewise, in studies of corporations, “corporate
culture” is an important, yet difficult-to-measure, concept. In the case of cross-national research, there
are many examples of country characteristics that are slow to change yet difficult to measure with
standard social science data — factors such as a country’s history, geographic location, and access to
seaports. As these examples illustrate, across the social sciences, the most troublesome unmeasured
causes very often are slow-to-change, hard-to-measure traits. Thus, the ability of fixed effects models
to alleviate the biasing effects of such causes is a very attractive feature.

What Is Sacrificed in Fixed Effects Models?

As Allison (2005: 3) observes, “The essence of a fixed effects method is captured by saying that each
individual serves as his or her own control ... [whichis] accomplished by making comparisons within
individuals.” As is often the case with estimation methods, model strengths and weakness are often
related. While personal comparisons are powerful, a great deal of information can be lost by focusing
only on variation within individuals, thereby ignoring the variation across individuals. Because fixed
effects models remove the effects of all time-invariant causes — measured as well as unmeasured —
the standard fixed effects model is unable to estimate the effects of time-invariant measured causes.
Whether this presents a problem for researchers is, of course, related to the substantive questions
of interest. If the causes of interest are time-invariant, standard fixed effects is not appropriate (this
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limitation often can be overcome, however, by using hybrid models [described later] or instrumental
variables). In contrast, if the causes of interest are all time-varying, then the inability to estimate
time-invariant predictors becomes inconsequential.

The fixed effects focus on within-unit variance — the feature that makes it attractive — also reduces
its statistical power. As estimated in the fixed effects method, the p;-term is an ignorance term,
that is, it is a fitted value for each unit that reflects unit differences without indicating why the
units are different. Although this strategy makes fixed effects an effective method for alleviating the
confounding effects of unmeasured time-invariant causes, it involves the loss of information. Hence,
the fixed effects method is often less efficient than estimation methods that are based on between-unit
variance as well as on within-unit variance.

The primary alternative approach to estimating causal effects with panel data is the random effects
method which, unlike the fixed effects method, makes use of between-unit as well as within-unit
variance. While the random effects method potentially can deliver more powerful tests of hypotheses
and narrower confidence intervals, it is more vulnerable to omitted-variable bias from unmeasured
time-invariant causes. We now consider the random effects model in more detail.

The Random Effects Model

For the random effects model, we start with Eq. (7.5), the same as the foundational equation for the
fixed effects model:

Yie = o+ ui +BXi +&iy (7.6)

The difference between random effects and fixed effects boils down to this question (Nerlove 1971):
Do we treat ( as a random variable? In both models, p; represents the composite effect of unmeasured
traits that vary across individuals. In the fixed effects approach, we treat the p; as fixed constants and
omit all between-person variance from the model. The random effects approach, on the other hand,
declares the y; to be drawn from a random variable p with fixed variance that can be estimated from
the data.

The random effects and fixed effects approaches differ, then, in the way they estimate the
individual-specific term (Hsiao 2003; Wooldridge 2010). The random effects approach treats this
individual-specific effect as randomly varying, whereas the fixed effects approach treats it as fixed
for each individual. The usual assumption of the random effects model is that ; has a zero mean
and constant variance and that it is independent of the Xs and of ¢;;. We also assume, as we did
for the fixed effects model, that the §s are constant over time (though they might vary across units:
see below) and that ¢;; is a zero-mean error term that is independent of the Xs as well as with the
random variable .

The random effects method can be thought of as regression with a random constant term for the
person-specific intercepts (Greene 2003). That is, one way to handle the ignorance term represented by
1 is to assume that the intercept for each person is a random variable consisting of a mean value plus
a random error. For this model to provide unbiased estimates, however, the regressors in the model
must be uncorrelated with that random variable; otherwise the estimated effects of those regressors
will be inconsistent.

Unlike a fixed effects approach, random effects estimation does not discard variation across
individual units. The additional information inherent in the between-unit variation implies several
advantages for the random effects approach over the fixed effects approach. One advantage is smaller
sampling variability and thus narrower confidence intervals. In addition, the random effects method
can estimate the effect of measured causes that do not vary over time — something the standard fixed
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effects method cannot do, as we noted earlier. Moreover, with respect to measured causes that do vary
over time, the random effects method allows coefficients to vary across individuals. This is done by
inserting §; in place of B in Eq. (7.6) and assuming that B, is a vector of normally distributed random
variables with a common mean and variance (Allison 2005: 27).

The virtues of the random effects method come at a potentially steep price, however. The random
effects method assumes that the time-invariant individual differences are drawn from a random
variable u, rather than treating them as fixed values. Therefore, it does not automatically remove
the effects of the time-invariant causes that are bundled up in the u; term — and thus does not enjoy
the aforementioned fixed effects advantage. Absent that feature, the random effects method must —
like most methods common to the social sciences — assume that the unmeasured causes in u; are
uncorrelated with measured causes. That is often a difficult assumption to make and, if it is not true,
the results will be subject to omitted-variable bias.

Ideally we would like a method that retains the fixed effects advantage — sweeping away the effects
of all unmeasured time-invariant confounders — while also adding the attractive features of the random
effects approach. To some extent this is possible by using random effects models that are centered in
the way described in the next section.

Hybrid Model: The Centered Random Effects Model

We make three points in this section. First, fixed effects models can be estimated by centering each unit
around its mean. Second, random effects models can be estimated by centering in the same manner.
Third, centered random effects models possess the fixed effects advantage of eliminating the effects
of unmeasured time-invariant causes. As a result, centered random effects models replicate the results
of fixed effects models for regression coefficients and their standard errors, while being more flexible
than the standard fixed effects model.

Centering to Estimate Fixed Effects Models

To move to a consideration of centering around the mean, we note first that fixed effects models can
be estimated using change scores instead of dummy variables. This is easiest to see in the case of two
observations for each person. Substituting =1, 2 into Eq. (7.5) yields these equations for time 1 and
time 2, respectively:

Yio =1 + i +BXi1 +en (7.7a)
Yio=o+pw +BXi2+ e (7.7b)
Subtracting (7.7a) from (7.7b), we have:
Yio =Yy = (2 —a1) + B(Xi2— Xi1) + (ei2 — &i1) (7.8)
Observe that Eq. (7.8) can be estimated by regressing change in Y on change in the Xs. The y-intercept

is the difference in the y-intercepts at time 1 and time 2, and the Ss are the effects of the change in X
on the change in Y. The u; have differenced out, meaning that the model alleviates omitted-variable
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bias arising from time-invariant confounders. Moreover, if &;; and ¢;, both satisfy the assumptions of
the standard regression model, their difference (¢;, — ;1) will satisfy those assumptions as well, and
Eq. (7.8) can be estimated using ordinary least squares.

In estimating the model in (7.8), suppose that we replaced the values of the Ys and the Xs
with values that were centered around their respective unit-specific means. More formally, let

xi; = Xi; — X; be called the deviation score. Then, Eq. (7.8) could be rewritten as:

Yiz —yi1 = (@2 —ay) + B(x;2 — x;1) + (8i2 — €11) (7.9)

In the case of two observations per unit, then, it is easy to see that, instead of estimating the fixed
effects model by regressing change in Y on change in the Xs, we would get the same results by
regressing differences in unit-specific deviation scores for Y on differences in unit-specific deviation
scores for the Xs. This is the case because the difference in the deviation scores is the same as the
difference in the values themselves, for example, x;» — x;; = (X;2 — )?i) —(Xi1 — )?i) = X;» — Xi1.

Although there is nothing to be gained by using the deviation score fixed effects method of Eq. (7.9)
in place of the simple change score fixed effects method of Eq. (7.8), the deviation score method
becomes preferable when there are multiple observations for each unit. Moreover, readily available
software packages make it easy to estimate fixed effects models using deviation scores. In SAS, for
example, this can be accomplished by using the ABSORB command in PROC GLM (Allison 2005);
in STATA, if the data are in the wide form, unit-specific means across multiple observations of a given
measure can be obtained by using the “egen” command combined with the “rowmean” option.

In general, then, with repeated data points, fixed effects models are estimated using unit-specific
deviation scores. That point bears on our discussion here because there is nothing to prevent one from
also using unit-specific deviation scores in the estimation of random effects models — as we elaborate
in the next section on the centering of random effects models.

Before that discussion, however, there is a final point to be made about fixed effects models:
In differencing out the effects of constant unmeasured variables, the fixed effects model in (7.8) also
differences out the effects of constant measured variables. As noted earlier, this is problematic when
the causal variables of interest are time-invariant. It is possible nonetheless to use the fixed effects
model to estimate whether or not the effect of a constant trait has changed over time. To see this
through notation, consider that the term S(X;» — X;1) in Eq. (7.8) assumes that the effect of the Xs
did not change over time. To permit the effects to change, we replace B(X;» — X;1) with the term
B,Xi» — B, X1 and rewrite Eq. (7.8) as:

Yio =Y =(a—a) + Br(Xio—Xi1) + (B —B)Xi1 + (852 — &i1) (7.10)

To illustrate, suppose we want to investigate the effect of gender on earnings in the United
States. Consistent with Eq. (7.10), we regress the change in earnings on the determinants of earnings
measured at time 1 (X ;1) and on the change in those determinants from time 1 to time 2 (X ;2 — X ;7).
Although we cannot estimate the causal effect of gender because the term X;;—X;; drops out for
gender, we can determine whether the gender effect has changed over time, since gender at time 1
(X;1) does not difference out in Eq. (7.10) — in other words, even though we cannot estimate either
B1 or B, for gender, we can estimate whether they are different. So if we know that males have an
earnings advantage, and we code the gender dummy variable as 1 for men and O for women, a positive
coefficient for the gender dummy would indicate a growing gender effect and a negative coefficient
would indicate a declining gender effect. In that way, we can at least determine whether the gender
gap is widening or narrowing, which may have important substantive implications.
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Centering to Estimate Random Effects Models

To retain the ability to remove unmeasured time-invariant confounders while allowing for variation
across individuals, suppose we include both the within- and between-person variation in the time-
varying predictors as separate predictors in our regression model. In other words, we decompose the
time-varying predictors into two parts — a deviation score for the within-person variation, and a mean
value for each person to capture between-person variation — and enter those components as separate
predictors in the regression equation. The regression coefficients for the within-person component will
be identical to the coefficients in the standard fixed effects model, thereby retaining the fixed effects
advantage. At the same time, because the model incorporates between-person variation, this “hybrid”
model retains the virtues of the random effects approach.

Note that we retain the fixed effects advantage by differencing out the unit-specific means from
each time-varying predictor. In the literature on multilevel models, the subtraction of unit-specific
means is called group-mean centering (Raudenbush and Bryk 2002). Because the term “unit” can refer
to individuals or to organizations such as schools or to spatially defined areas such as census tracts
or cities, unit-specific means could exist at different levels of aggregation, with some units possibly
nested within others. Regardless of the specific level of analysis, because each predictor is expressed
as the deviation from its unit-specific mean, by centering around the unit means the model differences
out the effects of all unmeasured time-invariant causes at that level, thereby eliminating that source of
bias at that level.

In estimating random effects models with group-mean centering, the first step is to create a data
set consisting of unit-specific means, and deviations from those means, for each of the time-varying
predictors in the model (there are software programs that will do this automatically). This procedure
is applied only to the predictors, not to the dependent variable. As noted above, the deviation scores
capture the within-person variance and the means provide the between-person variance. Then we
regress the dependent variable on the random variable ;& and on the means and deviation scores for
the Xs (see Raudenbush 2009, equation 7).

This type of hybrid fixed effects-random effects model gives the same estimates for the time-
varying predictors as the fixed effects model does (Allison 2005; Raudenbush 2009). Why, then, use
this method in place of the standard fixed effects method? First, the hybrid model allows for the
estimation of the effects of time-invariant as well as time-varying predictors. Second, by permitting
random intercepts for each person, the hybrid model gives estimates of between-person effects. This
is important because the between-person coefficients can be compared with the corresponding within-
person coefficients to test whether the person-specific effects (the ;) are in fact independent of the
time-varying causes in the model — the key assumption of the random effects model. If there are no
differences (so the assumptions of the random effects model hold), then the more flexible random
effects method is preferred over the fixed effects method. By using the hybrid model, then, we can
determine whether it is appropriate to use the more efficient random effects method in place of the
fixed effects method.

Types of Observable and Unobservable Causes

As we have seen, the fixed effects approach is most appropriate when the causal variables of interest
change over time and the unmeasured causes are stable. In contemplating the use of a fixed effects
model for a particular analysis, then, it is useful to begin by thinking about the nature of the likely
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observable and unobservable causes (see also Chap. 3 by Freese and Kevern, this volume). Two basic
conditions should be satisfied:

1. The causes we are most interested in should change over time.
2. By contrast, unobservable causes should be constant over time.

With regard to the first condition, we have already noted that standard fixed effects models cannot
be used to estimate the effects of ascribed characteristics such as gender or race. This problem is not
fatal, however, since the effect of such causes can be estimated using hybrid models. In reality, the
problem researchers are more likely to face with fixed effects analysis is a limited amount of change —
rather than the absence of change — in the key variables of interest. The issue is one of variance, as
variables must, of course, vary to determine their effects. The fixed effects coefficient is based on
within-unit variance, that is, on change over time. If we want to estimate the effect of schooling on
income in the United States, for example, we must remember that the vast majority of adults in the
United States complete their formal education by age 30, so fixed effects analyses using a sample of
largely middle-aged adults is likely to understate the effect of schooling on (say) income because
incomes generally continue to increase in the post-schooling years. Although the lack of variance
on the predictor is clear in this example, it might be less obvious in other instances, and researchers
should be alert to the potential problem.

We have addressed the second condition earlier as well. The point we want to stress now is
that the assumption of constant unobservables is very often quite defensible. As Allison (2005)
points out, the confounders that are hardest to measure are often time-invariant, or nearly so. In any
case, in nonexperimental research, the assumption — embedded in random effects models — that the
unmeasured causes are uncorrelated with measured causes generally requires a much bigger leap of
faith than the assumption that those causes are not changing over time (as assumed in fixed effects
models). Although the operative variance in fixed effect models is smaller, it is often more telling,
since it has been purged of the enduring effects of the unmeasured — and often hard-to-measure —
time-invariant traits of the units under consideration.

Illustrations

Determinants of Wages in the United States

We illustrate the fixed effects, random effects, and hybrid models using wage data from a portion
of the National Longitudinal Survey of Youth (NLSY79). In conjunction with the Bureau of Labor
Statistics (BLS), data collection for the NLSY79 began in 1979 on a nationally representative sample
of 12,686 young men and women who were 14-22 years old. We focus here on a subset of 10 survey
waves collected annually from 1983 to 1992, when the respondents were ages 18-35. Our dependent
variable is the logged hourly wage rate for a respondent’s current or most recent main job.?

To provide a baseline for the fixed effects, random effects, and hybrid models, we begin with results
from a simple OLS regression with basic controls. Suppose we modeled the logged hourly wages for
young adult workers in the United States as a function of job tenure (number of weeks on current job,
logged), hours worked per week, age and age squared, and years of education, with dummy variables
for race, urban residence, gender (male = 1), marital status (married = 1), parental status (living with
child under age 10 = 1), and work status (full-time = 1). We also include nine dummy variables for
time, one each for years 1983 through 1991.

2To adjust for inflation across the 10 years of data collection, all wages are standardized using the consumer price index
to obtain wages in 1983 dollars.
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Table 7.1 Predicting logged hourly wage rate across model specification: NLSY79 (1983-1992)

OLS regression Random effects Fixed effects
Cross Pooled
sectional Wi/time
(1992) dummies
Model 1 Model 2 Model 3 Model 4
Job tenure (in weeks, 0.97%#*:* 0.827%#: 0.56%** 0.44%#%*
logged) (.04) (01) o1 (.01)
Hours worked per week —0.05%** —0.06%** —0.06%** —0.06%**
(.01) (.002) (.002) (.002)
Full time worker 2.81%%* 2.86%** 2.02%%%* 1.68%#%*
(.24) .07) (.06) (.06)
Age 1.18 1.07%#%* 1.26%** 1.28%#**
77 (.06) (.06) (.08)
(Age)? —0.02 —0.02%#: —0.02%** —0.02%**
(.01) (.001) (.001) (.001)
Years of education 0.76%%** 0.63%** 0.68%** 0.77%%*
(.03) (.01) (.01) (.03)
Marital status 0.7 1% 0.67%#*:* 0.5 #** 0.4 %**
(.14) (.04) (.04) (.05)
Children under age 10 0.24 —0.12%* —0.11%* —0.09
(.14) (.04) (.05) (.05)
Urban residence 1.627%%* 1.43%#%* 0.96%** 0.607%**
(.16) (.04) (.05) (.06)
Male 2.16%** 2.18%#** 2.43%%% -
(.13) (.04) 0.7) -
Race (white omitted)
African American — 1.8 %%** —1.29%#*:% —1.30%** -
(.15) (.04) (.08) -
Hispanic —0.48%* —0.28%** —0.15 -
17) (.05) (.09) -
Intercept —1.75 — 1.3 % —1.46%** — 1,343
(1.19) (.08) (.08) (.17)
R? 0.27 0.26 - -
Variance components
Intercept - - 0.10%%* -
- - (.00) -
Residual - - 0.15%** -
_ _ (.00) _

Notes: *p < .05; **p <.01; ***p <.001; All models (other than Model 1) include dummy variables
for survey wave (wave 10 omitted); Sample size for Model 1: 7,155 respondents; Sample size for
Models 2—4: 83,725 person observations clustered in 11,743 respondents (average of 7.1 waves per
respondent); All coefficients and standard errors multiplied by 10

With the NLSY data, we could have added more predictors, but a relatively basic model serves
our purposes here. Table 7.1 presents estimates for the predictors described above for two OLS
regressions. First, to show what the results would look like if we regressed wages on the predictors
for a given year, we regressed hourly wages in 1992 on job tenure, hours worked per week, and the
other predictors in 1992 (model 1 in Table 7.1). Cross-sectionally, variance in the predictors across
individuals accounts for 27% of the variance in log hourly wages across individuals. Because of the
relatively large sample, almost all predictors have statistically significant effects; the only exceptions
are age and age squared and resident children under age 10. Other things equal, full-time workers
earn more than part-time workers, and workers who have been in their current job longer tend to earn
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higher hourly wages than those who were recently hired. On the other hand, controlling for full-time
versus part-time status and the other variables in the model, those who work longer hours tend to have
diminished hourly wages.

Education has a significant positive effect on wages. Workers who are married tend to earn more
than those who are not, with the effect of being married being about the same as the effect of an
additional year of education. Men tend to earn more than women and whites tend to earn more than
Hispanics and (especially) African Americans. Urban residence has a positive effect on earnings; in
fact, the OLS coefficients in this cross-sectional model indicate that the wage gap between urban and
rural workers is almost as large as the wage gap between whites and African Americans. In this OLS
model, women need nearly three more years of education than comparable men to match their wages,
and African Americans need over two more years of education than comparable whites to match
their wages.

The second model in Table 7.1 also employs OLS regression, but this time we use the pooled
(i.e., panel) data, which allows us to make use of variance over time as well as variance across
individuals. In this model, we include dummy variables for time (not shown) but not for individuals.
Including dummy variables for individuals would create a fixed effects model, which we do not want to
estimate yet, because our purpose is to create baseline estimates against which to compare the results
of fixed effects and random effects models. Given the larger sample size we expect the coefficients in
the second model to attain statistical significance, and they all do.?

The switch from cross-sectional to panel data does not change the results dramatically. The
coefficients for the three work variables — job tenure, hours worked per week, and full-time versus
part-time work status — remain about the same, except that the effect of job tenure is somewhat
attenuated. The effects of marital status and gender are about the same. The effect of urban residence
declines by about 12%, and the effect of education declines by about 17%. The coefficient for resident
children under age 10 is now negative (as opposed to zero) and statistically significant, but the effect is
marginal. The most noteworthy changes involve the wage gaps between whites and minorities, which
in the panel data are about 30% narrower for African Americans and whites and about 40% narrower
for Hispanics and whites.

Even if we added many more predictors to these OLS models, we could never realistically claim
that we have included every difference between workers that could affect their earnings. What we want
to know, then, is how well the OLS findings from the panel data hold up when we add the person-
specific term p; either as a random variable (as in the random effects model) or as a fixed value (as in
the fixed effects model). Those results are also reported in Table 7.1, as models 3 and 4 respectively.

Three patterns immediately stand out. First, adding the u; term affects the results substantially.
The results for models 3 and 4 differ from the results for model 2 more than the results for model 2
differ from those in model 1. In other words, the OLS estimates for the panel data are closer to the OLS
estimates for the cross-sectional data than they are to the fixed effects and random effects estimates
for the panel data. This observation is noteworthy because it indicates that estimation method (fixed
or random effects versus OLS) is more important here than the size and structure of the data (panel
data over 10 years versus cross-section data for a single year).

Second, the estimated effects of the predictor variables are not always smaller in the random effects
and fixed effects models than they are in the analogous OLS model. While some of the estimated
effects are attenuated by the addition of the y; term, the estimates for other predictors are larger in the
random effects and fixed effects models. Specifically, the random effects and fixed effects estimates
are smaller for job tenure, full-time work status, marital status, and urban residence and larger for age
and years of education.

3Because our purpose is to compare the results for the fixed effects, random effects, and hybrid models to a simple
OLS baseline model, we do not adjust the OLS standard errors for clustering. In any case, adjusting the standard errors
scarcely affects the results.
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Table 7.2 Comparing df Chi-squared  p-value
random- and fixed-effects
coefficients and models Hausman test 17 1,207.22 <0.001
Using centered scores
Job tenure 1 381.52 <0.001
Hours per week 1 2.07 0.150
Full time worker 1 195.43 <0.001
Age 1 6.31 0.012
(Age)? 1 4.04 0.045
Years of education 1 20.19 <0.001
Marital status 1 9.59 0.002
Children under age 10 1 1.01 0.310
Urban residence 1 123.84 <0.001
Full model 9 1,236.27 <0.001

Note: Wald y? tests of equality of coefficients. p-values of
<0.05 suggest that coefficients are not equal and random-
effects estimates are not consistent

Third, differences between the fixed effects estimates and the pooled data OLS estimates are
consistently larger than the differences between the random effects estimates and the pooled data
OLS estimates. Thus, when coefficients shrink with the addition of the u; term, they decrease more
for the fixed effects; and when they increase with the addition of the p; term, they increase more for
the fixed effects model. For example, the estimated effect of education on wages is 0.63 in the OLS
panel model, 0.68 in the random effects model, and 0.77 in the fixed effects model, whereas the effect
of job tenure on wages is 0.82 in the OLS model, 0.56 in the random effects model, and 0.44 in the
fixed effects model.

The fundamental question becomes, which estimates most accurately represent causal effects?
Consider the impact of job tenure on wages. If we suppose that workers who move from job to
job tend to have unmeasured traits that differ from the traits of workers who stay where they are —
perhaps those who jump from job to job have a weaker work ethic, or do not get along well with
others — then the cross-worker comparison of the wages of short-term and long-term workers could
be a misleading gauge of causal effects because it fails to separate out the difference-in-workers effect
from the length-of-time-in-a-job effect. To find the true length-of-time-in-a-job effect, it would seem
more appropriate to rely on variance within workers, as the fixed effects model does. By ignoring
between-worker variance, we of course reduce the power of our models, but statistical power is not a
major concern here, given the size of our sample.

More generally, how do we decide between the models? While it is clear that, in this case, the panel
models are superior to the cross-sectional OLS model, and the fixed and random effects models are
superior to the OLS panel model, there is still the choice to be made between the fixed and random
effects methods. Should we assume, as in the random effects approach, that u is independent of the
covariates? To answer this question empirically, we employ two approaches for comparing fixed and
random effects models, one based on the Hausman test and the second utilizing the hybrid model
outlined above. Both of these approaches, summarized in Table 7.2, are estimated as Wald )(2 tests
with k — 1 degrees of freedom.

Perhaps the most widely used, the Hausman specification test (Hausman 1978) compares an
estimator known to be consistent when unobserved person-specific differences are time-invariant
(the fixed effects estimator) with an estimator that is efficient under the null hypothesis that those
unobserved differences across persons are orthogonal to the predictor variables (the random effects
estimator). The Hausman test compares results from the fixed and random effects models to determine
if there is sufficient evidence to reject the null hypothesis that the unobserved person-specific
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differences are orthogonal to the regressors in the model. If we fail to reject the null hypothesis,
then we assume that the unobserved heterogeneity is uncorrelated with the regressors, and thus that
the random effects estimates are consistent. Otherwise, if we reject the null hypothesis — as we do in
Table 7.2 — then we conclude that the random effects estimates are not consistent, and we reject them
in favor of the fixed effects estimates.

For an alternative to the Hausman test, we can estimate the previously described hybrid model that
contains both fixed and random effects estimators. The advantage of this approach is that it enables a
direct comparison of estimates, coefficient by coefficient. When the wage model is estimated in this
fashion, we find that the fixed and random effects coefficients in fact are significantly different for most
of the predictors; the only exceptions are hours worked per week and resident children under age 10
(Table 7.2). Also, as in the Hausman test, we can test all of the time-varying variables simultaneously
(final line in Table 7.2). When we do this, we find that the two tests point to the same conclusion (note
the similar Chi-squared values). In the example under consideration, then, there is sufficient evidence
that the random effects model should be rejected in favor of the fixed effects model.

Family Size and Children’s Intellectual Development

For a second example, it is instructive to examine the results of an exchange in the April, 1999,
issue of the American Sociological Review. In the lead article in that issue, Guo and VanWey (1999)
apply fixed effects methods to investigate whether a child’s intellectual development is affected by
the number of siblings in a family. As they note, there is an extensive and contentious literature on
that issue, stemming from the observation that children from larger families tend to have lower test
scores and acquire less schooling. What is unclear, however, is whether family size has a causal effect
on intellectual development. Perhaps it is the case that parents who choose to have more children
are inherently different in a way that also affects motivation for schooling, so their children would
have had lower test scores (the dependent variable in the Guo-VanWey study) regardless of number
of siblings. This is precisely the sort of question that fixed effects models are well positioned to
address, since the fixed effects models can sweep away the confounding effects of hard-to-measure
persistent differences between couples who choose large families versus those who choose to have
fewer children.

Contrary to earlier findings (e.g., Blake 1981; Downey 1995), the family fixed effects models
of Guo and VanWey show limited support for the “dumber by the dozen” claim (Zajonc 1975).
If we accept the Guo-VanWey results, the obvious implication is that previous findings supporting
the claim that more children lead to lower test scores were distorted by omitted-variable bias. In
their commentaries, Phillips (1999) and Downey et al. (1999) note several limitations of the Guo-
VanWey study, and Downey et al. (1999) offer alternative explanations for the results presented by
Guo and VanWey. We note that these criticisms are quite consistent with some of the issues discussed
earlier in this chapter. One criticism, for instance, is that the results are based on small incremental
changes in family size over time. This is the problem of limited within-unit variance which, as noted
earlier, is not unusual in fixed effects analyses. A second potential problem raised by Downey et al.
1999 (and also addressed earlier in this chapter) is that fixed effects models remove only the effects
of time-invariant unmeasured confounders. The failure to sweep away the effects of unmeasured
changing family characteristics could be problematic if these characteristics change as additional
children are added to the family. Third, the fixed effects models utilized by Guo and VanWey do not
control for differences between siblings that might affect decisions parents make about whether to
have more children (“difficult” children, for example, might discourage further childbearing). If these
temperament differences are associated with differences in children’s academic achievement, this
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would bias the fixed effects estimates of family size on educational achievement. Finally, Downey
et al. (1999) argue that the results of Guo and VanWey miss most of the family size effect because
their sample omits closely spaced siblings, where we would expect the strongest size effects (a charge
that Guo and VanWey dispute in their rejoinder).

In a subsequent study based on Norwegian data, Black et al. (2005) report findings that, consistent
with those of Guo and VanWey (1999), undermine the notion that family size has a causal effect on
children’s academic development. Although Black et al. (2005) investigate the effect of family size
on completed schooling rather than on test scores, their study is nonetheless noteworthy because of
its magnitude. Using administrative files consisting of all children and parents aged 16-74 at some
point during the interval 1986 to 2000, the authors matched individuals to their children, resulting in a
population of 1,427,100 children from 647,035 families. To remove children who had not completed
their schooling, the analysis is restricted to those who were at least 25 years of age in 2000. With a
sample this size the authors are able to overcome many of the limitations of prior analyses of family
size effects. There is, for example, enough statistical power to separate the effects of birth order from
the effects of family size, a problem that had vexed prior studies. More to the point here, because a twin
birth occurs in about one of every 65 families in this population, the authors were able to investigate
the causal effect of family size by using the birth of twins as a source of exogenous variation in family
size. The coefficient is negative and statistically significant, but negligible in magnitude. In line with
the findings of Guo and VanWey (1999) for the United States, then, Black et al. (2005) find that family
size has little causal effect on academic achievement in Norway.

Estimating the Effect of a Particular Cause: Incarceration and Wages

As a final illustration, we estimate the causal effect of incarceration on wages by adding a dummy
variable for incarceration to our previous fixed effects model of wages. This application of the fixed
effect model differs from the previous examples because we are interested in only one effect —
the effect of incarceration — and the effect of incarceration pertains only to a small subset of the
population. This illustration, then, touches upon two important practical issues: the use of fixed effects
models to estimate the “effect of a cause” (Morgan and Winship 2007) and the issue of severely limited
variance on the focal variable.

Because more than 700,000 individuals are released from American prisons each year (Glaze
2011), the reintegration of ex-inmates into American society has become a pressing national issue.
We know that ex-inmates are more likely to be unemployed and to earn lower wages when they are
employed (Pager 2003; Western 2006). However, the question of how much these differences reflect
the causal effect of being in prison is not an easy one to answer because inmates are not a random
sample of American adults. Compared to the rest of the U.S. adult population, a prisoner is more
likely to be male, young, poor, unemployed, a member of a racial or ethnic minority, and to have a
low level of education (Western 2006: 16—18).

To provide a fixed effects estimate of the causal effect of incarceration on wages, we added
a dummy variable coded 1 for all years after an individual is released from prison. Correctional
confinement is measured in the NLSY using an annual residence item, and our measure of ex-inmate
status is coded 1 for all survey waves after a respondent is last interviewed in prison. It is coded O for
all pre-prison waves and for all waves among the never-incarcerated respondents. For our purposes
here, we drop respondents from the regression models during the waves they were interviewed while
incarcerated. Given that most respondents in the NLSY have never been incarcerated, the incarceration
values consist of a string of zeros for most respondents. In this case, then, the use of a fixed effects
approach represents a classic example of limited variance on the variable of interest.
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Table 7.3 Fixed effects Fixed effects model
estimates of the effect of
incarceration on wages:

All respondents ~ Only ex-inmate sample

NLSY79 (1983-1992) Sample 1 Sample 2
Ex-inmate status —0.65* —0.58%*
(.26) (.27)
Job tenure (in weeks, logged) — 0.45%%* 0.38%#*
(01) .07)
Hours worked per week —0.06%** —0.03*
(.00) (.01)
Full time worker 1.66%%* 0.12
(.06) (:32)
Age 1.3]%** 1.37%#*
(.08) (.45)
(Age)? —0.02%3#: —0.02%*
(.00) (.01)
Years of education 0.79%*% 0.08
(.03) (.22)
Marital status 0.39%#: —0.08
(.05) (:32)
Children under age 10 —0.12% 0.25
(.05) (.28)
Urban residence 0.57%*%* 0.55
(.06) (.38)
Intercept —1.39%** —0.96
(17) (97)
Person-observations 83,240 2,601
Persons 11,730 499

Notes: *p <.05; **p <.01; ***p <.001; Both models include dummy
variables for survey wave (wave 10 omitted). All coefficients and standard
errors multiplied by 10

Table 7.3 reports the results when the ex-inmate dummy is added to the fixed effects model in
Table 7.1. Sample 1 in Table 7.3 utilizes the full sample of NLSY respondents. Consistent with
Western (2002), we find that incarceration depresses wages, though perhaps not as much as one might
expect. The estimated causal effect of incarceration is somewhat larger in absolute size than the effect
of urban residence, and somewhat smaller than the effect of an additional year of education.

Yet, as discussed at various points in this chapter, the fixed effects approach focuses on individual
change. This raises the issue of how best to estimate the effect of a single cause when, as here, most
subjects contribute no variation on that cause. In the current analysis, how do our estimates change
when we examine only respondents with a history of incarceration?

The second sample in Table 7.3 reports the fixed effects estimates when we restrict the analysis to
ex-inmates. Although the new estimates draw upon dramatically fewer cases — 499 respondents (2,601
person-observations) as opposed 11,730 respondents (83,240 person-observations) — the coefficient
for the incarceration variable remains statistically significant, and is similar in magnitude (Table 7.3).
This reflects that fact that the original estimate of the incarceration effect (Table 7.3, sample 1) is based
on the 499 ex-inmates, since those respondents are responsible for all the variation on incarceration.
In other words, as specified in our model, the incarceration parameter represents within-person change
in earnings attributable to incarceration. That effect can only be estimated among those with variance
on incarceration status. Because those individuals are the same in models 1 and 2, there are only minor
differences in the incarceration slopes across the two samples.
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Moreover, because the ex-inmates supply all the variation for the incarceration variable, the
standard errors for the incarceration coefficient are virtually the same for the two samples. Thus our
conclusion regarding the causal effect of incarceration on wages is the same whether we include or
exclude the 11,231 respondents who were never incarcerated. Our conclusions about the effects of
the other predictors differ, not surprisingly, across the two samples. Based on the ex-inmates sample
we would conclude that wages are determined only by job tenure, hours worked per week, and age,
in addition to the incarceration effect; the other predictors in the model — education, full-time worker
status, and so on — have no effect on wages in the fixed effects estimates for ex-inmates.

Extensions and Further Reading

In this chapter, we have introduced readers to the fundamentals of fixed effects, random effects, and
hybrid fixed effects-random effects models by focusing on the general linear regression model for
continuous dependent variables. We conclude our chapter on fixed effects models by noting extensions
of the fixed effects and hybrid models to other types of dependent variables and pointing interested
readers to some of the key literature describing fixed effects, random effects, and hybrid models in
greater detail. Before doing so, however, we first point out a fixed effect method that most researchers
are familiar with, and perhaps have even used, without realizing that it belongs to the fixed effects
family of models.

Growth Rate Models

Rate of growth over a time interval often is calculated based on values at the end points of the interval.
When that method is used, the rate of growth of ¥ from time 1 to time 2 is logY;» —logY;; (where log
denotes natural logarithm), so regressing growth rates on growth rates is in effect the regression of
change scores on change scores.

Because this type of growth rate model regresses change on change, it is the same model as in
Eq. (7.8) above, except that the variables in the growth rate model are logged. In both cases, the
i have been differenced out, sweeping away potential omitted-variable bias arising from stable
confounders. Hence, like other members of the fixed effects family, growth rate models of this type
enjoy the fixed effects advantage.

In addition to rate of change, growth rate models can also include initial level as a regressor. Recall
that the parameter attached to X at time 1 is B, — 8 in the fixed effects model (Eq. 7.10 above). By
adding X at time 1 to the growth rate equation, then, we can determine whether the effect of the growth
rate of a predictor on the growth of a dependent variable depends on the initial level of the predictor.
This specification of the model can be especially useful for investigating the presence of ceiling or
floor effects, or of scale economies or diseconomies.

Fixed Effects and Hybrid Models for Categorical Dependent
Variables and Beyond

Fixed effects can be utilized with logistic regression models for categorical dependent variables, in
Cox regression models for event history data, and in Poisson models for count data, as we now see.
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Categorical Dependent Variables

The fixed effects estimator is sometimes referred to as the “within estimator” because it relies solely
on within-unit change over time. Should we then include units that do not change over time? The
question arose earlier with respect to a categorical predictor (incarceration), where incarceration can
be viewed as a “treatment” that applies only to a subset of the population. The question arises in
the case of categorical dependent variables because estimates will differ depending on whether we
apply logistic regression to all the units, resulting in population-averaged estimates, or apply logistic
regression only to the units that change, yielding subject-specific estimates.* Indeed, unlike fixed
effects estimation for continuous dependent variables — where there are multiple ways to obtain the
same results — the options for subject-specific fixed effects estimates are limited when the dependent
variable is categorical. One possibility is conditional logistic regression (Allison 2005, chapter 3), a
method that yields subject-specific estimates by in effect limiting the sample to those individuals who
changed on the response variable over the period of observation. In these fixed effects models, then,
information is lost in two ways: first by restricting the analysis to within-unit change and second by
excluding units that did not change on the response variable.

Event History Data and Analysis

Event history analyses investigate the occurrence and timing of events. The events can be either
repeatable (e.g., divorce) or nonrepeatable (e.g., death). Event history data consist of the record of
events for individuals over a fixed interval of time, so we know when events occurred (or approx-
imately so) and their sequence. Because some individuals contribute multiple spells, treating each
data point as a separate and unique observation, when they are in fact related, results in downwardly
biased standard errors. To solve this problem, Allison (1996) suggests the application of Cox’s partial
likelihood method with each individual treated as a separate stratum. The result is a fixed effects model
that alleviates both the nonindependence-of-observations problem as well as the problem of omitted-
variable bias due to unmeasured time-invariant predictors. As with other fixed effects methods, the
partial likelihood fixed effects approach can result in a significant loss of statistical power because it
is restricted to within-unit variance.

Count Data

Fixed effects methods are also available for panel data where the response variable is based on counts
that are highly skewed to the right. For instance, criminologists studying arrest data often find that
number of arrests in a given year is a highly concentrated event, with a few individuals accounting for
most arrests (Wolfgang et al. 1972). Undergraduate class size in many research universities very often
is also highly skewed. This results in the well-known “size dilemma” in that, with many small classes
and a few huge ones, most students are experiencing huge classes, even though large classes are the
exception. Poisson models and negative binomial models have been developed to handle such skewed
response variables. Fixed effects and hybrid models with panel data are available for both Poisson
and negative binomial distributions. As in the hybrid models described earlier, the hybrid models

4A subject-specific coefficient estimates the change in Y for a particular individual if the predictor variable were
increased by one unit. A population-averaged coefficient estimates the change in Y for the whole population if the
predictor variable were increased by one unit for everyone. The two estimates are equivalent for linear models, but not
for nonlinear models, such as logistic regression models (see Allison 2005, chapter 3).
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here are formed by including two terms — a unit-specific mean, and a deviation from that mean — for
each of the predictors. Allison (2005, chapter 4) describes these models, along with SAS programs to
estimate them.

Suggestions for Further Reading

In our view, one of the best places to start is Paul Allison’s Fixed Effects Regression Methods for
Longitudinal Data Using SAS (2005). This excellent book contains separate chapters on fixed effects
and hybrid models for categorical dependent variables (chapter 3), for count data (chapter 4), and for
event history analysis (chapter 5). Each chapter provides plenty of examples rooted in actual data,
along with the SAS commands used to generate the output. Even those not proficient in SAS can
gain much from this reader-friendly book, as it provides a nice balance of theory and application.
Although the SAS programs in the book will become dated over time as the software changes, this
book will remain an important reference for social researchers interested in fixed effects methods and
applications.

Another user-friendly, but shorter, exegesis of fixed effects models is available in Halaby (2004).
Halaby’s review chapter is a good source for readers seeking more detailed information on tests for
comparing fixed effects and random effects results, and on the application of fixed effects approaches
in models with lagged dependent variables.

Firebaugh’s Seven Rules for Social Research (2008) describes fixed effects models in the context of
the fifth rule, “Compare like with like.” Fixed effects models compare like with like by matching units
to themselves at different points in time. In line with Allison (2005), Halaby (2004), and the current
chapter, this treatment of the fixed effects approach stresses its potential for alleviating omitted-
variable bias.

Hsiao (2003) provides a more detailed econometric treatment of fixed and random effects models in
his Analysis of Panel Data. The book is logically organized, beginning with analysis of covariance and
proceeding to simple fixed and random effects models before addressing the complications added by
heteroscedastic and autocorrelated disturbances. The book also includes chapters on dynamic models
with variable intercepts, simultaneous equation models (including instrumental variables approaches),
variable-coefficient models, and models for discrete response variables, truncated and censored data,
and incomplete panel data.

Raudenbush and Bryk (2002) discuss fixed effects and random effects models in the context of
multilevel models in their book Hierarchical Linear Models. The book, which is widely used in
graduate seminars on multilevel modeling, goes into considerably more detail than space permits in
the present treatment. Readers may find the book an appropriate extension of our chapter. For example,
the book devotes an entire chapter to hypothesis testing, which affords the readers an opportunity to
learn about a variety of robustness and model specificity tests. The book also devotes one chapter to
individual change and a different chapter to organizational change. This allows the authors to direct
considerable attention to some of the nuanced differences between fixed, random, and hybrid effects
models, depending on the population of interest.

Of recent substantive applications of fixed and random effects models in sociology, we note two
that are especially useful because of the templates they provide for researchers. Teachman (2011)
demonstrates how to implement random and fixed effects techniques to approximate hazard models,
that is, models where the researcher is interested in the time that it takes for a particular event to occur.
Teachman argues that if the data are treated as discrete-time (i.e., pooled data in which the event in
question either does or does not occur at each interval), the resulting database can be modeled using
any procedure appropriate for binary outcomes (e.g., logit). Teachman combines this reasoning with
multilevel modeling techniques for nominal data to show how to construct a multilevel discrete-time
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hazard-rate model to examine marital dissolution, a repeatable event. Although the example he uses
involves events clustered within individuals, he notes that the same logic applies to other types of
clustering, such as individuals clustered within geographic units. Teachman explains in detail why
results in this framework can vary across different model specifications: logistic regression, random
effects model, fixed effects model, and a Generalized Estimating Equations (GEE) model. He also
includes both the SAS and STATA code used to estimate the models he presents.

Readers who prefer to work within a structural equations framework should refer to Bollen and
Brand’s (2010) discussion of a general panel model that includes fixed effects and random effects
models as special cases (see also Chap. 15 by Bollen and Pearl, this volume). The key insight is
that random and fixed effects specifications can be modeled by imposing restrictions within a general
structural equations model (SEM) framework. Using this strategy enables researchers to specify and
test a sequence of nested models that can be compared using likelihood ratio and fit statistics that are
readily available in standard SEM software. The authors present the classic random and fixed effects
models as path diagrams and outline a series of steps researchers can use to build up to those models.
Readers who are unclear about the nature of the relationship between time-varying and time-stable
observed and unobserved variables will find these figures very useful. Bollen and Brand also discuss
how their general SEM panel model can incorporate lagged effects, and they detail a number of tests
of model fit that can help researchers decide which model specification most closely represents the
data under consideration.
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Chapter 8
Heteroscedastic Regression Models for the Systematic
Analysis of Residual Variances

Hui Zheng, Yang Yang, and Kenneth C. Land

Abstract Conventional linear regression models assume homoscedastic error terms. This assumption
often is violated in empirical applications. Various methods for evaluating the extent of such
violations and for adjusting the estimated model parameters if necessary are generally available in
books on regression methodology. Recent developments in statistics have taken a different approach
by examining the data to ascertain whether the estimated heteroscedastic residuals (from a first-
stage regression model of the conditional mean of an outcome variable as a function of a set of
explanatory variables or covariates) are themselves systematically related to a set of explanatory
variables in a second-stage regression. These extensions of the conventional models have been given
various names but, most generally, are heteroscedastic regression models (HRMs). Instead of treating
heteroscedasticity as a nuisance to be adjusted out of existence to reduce or eliminate its impact on
regression model parameter estimates, the basic idea of HRMs is to model the heteroscedasticity itself.
This chapter systematically reviews the specification of HRMs in both linear and generalized linear
model forms, describes methods of estimation of such models, and reports empirical applications of
the models to data on changes over recent decades in the US income distribution and in self-reported
health/health disparities. A concluding section points to similarities and complementarities of the
goals of the counterfactual approach to causal inference and heteroscedastic regression models.

Introduction

Conventional normal error linear regression models and their extensions to generalized linear models,
linear mixed (fixed and random effects) models, and generalized linear mixed models are essential
work tools for social research that can be modified and adapted in various ways to embody various
aspects of the counterfactual paradigm for causal inference (Morgan and Winship 2007; Guo and
Fraser 2010). However, conventional linear regression models assume homoscedastic error terms.
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This assumption often is violated in empirical applications, and statistics textbooks typically describe
various procedures for evaluating the extent of such violations and for adjusting the estimated
model parameters if necessary. Recent developments in statistics' have taken a different approach
by examining the data to ascertain whether the estimated heteroscedastic residuals (from a first-stage
regression model of the conditional mean of an outcome variable as a function of a set of explanatory
variables or covariates) are themselves systematically related to a set of explanatory variables in a
second-stage regression. The explanatory variables in this second-stage regression could be the same
as those in the first stage, but need not be.

Most generally, these extensions of the conventional models are termed heteroscedastic regression
models (HRMs) (Smyth 1989), although the terms variance function regression models (Western and
Bloome 2009), double hierarchical generalized linear models (Lee and Nelder 2006), and generalized
additive models for location, scale, and shape (Rigby and Stasinopoulos’s 2005) have been used by
various authors. What HRMs allow an analyst to do is look inside the strata or cells defined by the
regressors of conventional regression models and model that internal variability. Thus, instead of
treating heteroscedasticity as a nuisance to be adjusted out of existence to reduce or eliminate its
impact on regression model parameter estimates, the basic idea is to model the heteroscedasticity
itself. This is a development in statistics of which social scientists should be aware, as it can lead to
many new analyses and empirical discoveries. This chapter systematically reviews the specification
of HRMs in both linear and generalized linear model forms, describes methods of estimation of such
models, and reports empirical applications of the models to data on changes over recent decades in
the US income distribution and in self-reported health/health disparities. A concluding section points
to similarities and complementarities of the goals of the counterfactual approach to causal inference
and heteroscedastic regression models.

The Basic Model Specification of HRMs

Conventional linear regression models estimated by ordinary least squares are based on the assumption
that the residual error terms of the models are independently and identically distributed with constant
or homoscedastic variance and, especially important for small samples for which asymptotic statistical
properties of estimators do not apply, that the errors have normal probability distributions (see, e.g.,
Fox 2008: 187-219). Violations of these assumptions affect estimators of the standard errors of
regression coefficients and reduce the statistical efficiency of conventional least-squares estimators.
A variety of statistical methods have been developed for diagnosing and correcting nonconstant
error variances (Fox 2008: 272-277), including transformation of the response variable to stabilize
the variance, using weighted least-squares estimation within a generalized least-squares framework,
White’s (1980) heteroscedasticity-consistent covariance estimator, and Long and Ervin’s (2000)
modified White’s estimator.

The key feature of HRMs is that they treat violations of homoscedasticity as more than a data
problem that needs to be corrected in order to obtain well-behaved estimators. Rather, these violations
are viewed as being of potential substantive importance and regression models to account for them
are specified and estimated. HRMs regard the residual variance of a regression as representing
within-group heterogeneity. Group here means each category of a covariate. For example, “gender”
has two groups: men and women. Conventional linear regression examines conditional means or
expected differences in outcomes between groups treated as regressors or between-group differences
(e.g., men vs. women, black vs. white, higher educated vs. lower educated). By regressing the residual

'Developments in statistics that are relatively unknown to most social scientists.
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variance from the conventional linear regression on a set of covariates, HRMs test the heterogeneity
within groups or within-group heterogeneity (e.g., within men and within women) for systematic
differences. For example, a conventional linear regression model estimates how men and women
differ in means of monthly salaries; HRMs, in addition, permit an examination of differences in
the distribution or variances of monthly salaries between men and women. Comparing conditional
means and conditional variances of the salary distribution across gender portrays a more complete
picture of gender differences in income. This is also substantively meaningful as within-group income
heterogeneity may represent within-group income insecurity for sociologists (e.g., Western et al.
2008) or return to unobserved skills and compositional changes in the distribution of skilled workers
for economists (Lemieux 2006).

Assuming the outcome variable y; is normally distributed, that is, y; ~ N ( Vis oiz), HRMs have two
parts, including a linear regression for the mean, y; and a generalized linear regression for the residual
variances, 07

yi=x"iB or yi=x';B+e (8.1)
log (07) = ZiA. (8.2)

where observations on individual sample members are indexed by i, x; is a P x 1 vector of covariates,
and z; is a Q x 1 vector of covariates (possibly equal to x;), with residual random error term e; for y;.
The quantity o7 is the square of the corresponding residuals é7 from the first regression. The vector
B, describes the association between one unit increase in the explanatory variable x,, and the outcome
variable y. The vector A, describes the association between one unit increase in the explanatory
variable z, and the log variance of y. The parameter vector A summarizes the relationship between the
covariates z and within-group variability. From a substantive viewpoint, the first regression describes
how covariates affect the y; response variable and account for the deviations of the within-group
sample means from the average or grand mean (which can be termed the between-group difference),
while the second regression explains how covariates affect the within-group variability of the response
variable around the group means (which can be termed the within-group heterogeneity).

In sum, while conventional linear regression models assume that the residual variances are constant
or homoscedastic across levels of covariates, HRMs allow residual variances to be heteroscedastic and
to covary with explanatory variables/covariates.

Methods of Estimation

Four methods have been developed to estimate heteroscedastic regression models: a two-stage
approach (Nelder and Lee 1991), maximum likelihood (ML) estimation (Aitkin 1987), restricted
maximum likelihood (REML) estimation (Smyth et al. 2001), and Bayesian estimation (Fahrmeir
and Lang 2001; Rigby and Stasinopoulos 2005; Lee and Nelder 2006; Western and Bloome 2009).

Two-Stage Method

As suggested by its name, the two-stage method developed by Nelder and Lee (1991) involves
two steps.

First, using the notation of Eq. (8.1), it regresses the outcome variable y; on a set of covariates x;
using a linear regression model if y;, or a transformation of y; (e.g., log y;), is normally distributed.
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This step produces a vector of least-squares estimate regression coefficients ,é , which evaluate the
contributions of x; to the explanation of variance in the conditional expected values or conditional
means of the outcome variable. .

Second, using the notation of Eq. (8.2), it calculates the residuals (éi =y;—x'; ﬂ) from the Step 1

regression, for each sample respondent i, and computes the squared residuals, é2, denoted as o?. For
normally distributed errors, the squared residuals will have a gamma distribution, which is positively
or right-skewed. So A is estimated in generalized linear model form—as a gamma regression of o7
on the z; using a log link function (Nelder and Lee 1991). This step produces estimates of a set of
coefficients A which evaluate the contributions of these variables to the explanation of variance in the
logarithm of the residual variances log (07).

This method can be implemented in standard software, for example, Stata and SAS. It produces
consistent point estimates but incorrect standard errors for the parameters A because it does not take
into account the uncertainty in the estimates of B. The estimates of f are also inefficient, because
they do not take into account the heteroscedasticity of the y; within groups defined by z (Western and
Bloome 2009).

Maximum Likelihood Estimates

Aitkin (1987) suggested iterating the two-stage method to obtain maximum likelihood (ML)
estimators for the heteroscedastic regression model. Given observations (y;, x;, z;), i=1, ..., n,
and an outcome variable y; ~ N (J;, 012), following model (8.2), the log-likelihood is

1 1
1(B.2) = =3 D logoi=> 3 (yi = x'sf)’ o}
- % ZZM—% > i —x'iB)/ expEiA), (8.3)

This log-likelihood function suggests that the estimates of 8 and A are dependent on each other.
To obtain the maximum likelihood estimates of A, we first complete the two steps in the two-stage
method and save the fitted values, 6? = exp(7 ,-i), from the second step gamma regression. We then
fit a weighted linear regression of y; on x; with weights 1/ 6?. Estimates of the residuals é; from Step 1
are then updated, Step 2 is computed, and so forth until convergence. So, for given A, ,3 is a weighted
least-squares estimate with weights 1/67. For given , A is a maximum likelihood estimate obtained
from a gamma distribution of él-z (Aitkin 1987).

This estimation can be performed with standard software. The ML estimator may perform poorly in
small samples “because variance estimation does not adjust for degrees of freedom and a biased score
vector is used for estimation” (Western and Bloome 2009: 301), in which case a restricted maximum
likelihood (REML) estimator or Bayes estimator (which will be described below) can be used.

Restricted Maximum Likelihood Estimates

Compared to maximum likelihood estimation, restricted maximum likelihood estimation (REML)
has several advantages (Smyth 2002). First, it produces less biased estimators and appropriate degree
of freedom correction in small samples (also see Tunnicliffe Wilson 1989). Second, it is related to
Bayesian marginal inference (Harville 1974) and less sensitive to outliers in the mean model (also see
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Verbyla 1993). Third and most importantly, it yields unbiased and consistent estimators for variance
coefficients in situations where ML estimators are inconsistent (also see Smyth et al. 2001).

Smyth (2002) used restricted maximum likelihood estimation to estimate the variance parameters
A using a marginal likelihood function. An explicit algorithm was given for REML scoring which
produces the REML estimates and their standard errors and likelihood values. This algorithm included
a Levenberg-Marquardt restricted step modification to ensure the REML likelihood increases at each
iteration (Smyth 2002: 837-838). This method is quite complex and requires specialized calculations
(e.g., decomposition of the REML information matrix and O(n) computation) and can be implemented
in S-Plus and R.

Bayesian Estimates

Western and Bloome (2009) applied Bayesian inference to estimate the variance regression
parameters. The Bayesian approach provides advantages particularly for small samples where the
nonnormality in the distribution of A coefficients may lead to inaccurate estimates by using the ML
method. “The Bayesian model combines the normal likelihood for y; with a prior distribution for the
coefficients, 8, and a hierarchical prior for the variance coefficients, A (Western and Bloome 2009:
302). As laid out earlier, the heteroscedastic regression model in Egs. (8.1) and (8.2) is given prior
distributions for 8 and A:

B~ N(a, V), A~ N(b, W) with W, ~ Gamma™" (wo, w;)

Western and Bloome (2009) use a noninformative prior by setting the prior mean vectors, a and b, to
zero. They also assume V, the P x P prior covariance matrix, is diagonal with large prior variances.
A is given a hierarchical prior to ensure the sample data dominates the estimation of the variance
coefficients. They also experimented with a nonhierarchical prior on A but this approach performed
poorly in small samples. W, the O x Q prior covariance matrix, is also diagonal and the prior variances
follow an inverse gamma distribution. The Bayesian method can be estimated by using MCMC
software (e.g., BUGS, R2ZWinBUGS).

Comparative Performance of the Estimation Methods

Western and Bloome (2009: 303-305) compared these four estimation methods—two-stage, ML,
REML, and Bayesian—by performing a Monte Carlo experiment. They compared the bias of point
estimates on B and A and the sampling variance of these point estimates across different sample sizes.
In general, they found REML and Bayesian estimators perform better than two-stage and ML methods
especially in small samples, where the two-stage method poorly estimates the mean coefficients, S,
and ML yields poor estimates of the variance coefficients, A. But when sample size increases, the
performance of all four estimators improves, and the difference among them narrows. The two-stage
estimator is still the least efficient, because the sampling variances of point estimates are larger than
those retrieved from the other three estimators. It can be improved by iterating the two steps and
using weighted least-squares regression to estimate $ with weights 1/67, which are retrieved from
the gamma regression on the log of the squared residuals. In the empirical application, if the sample
sizes are very large, the adjustments in the REML made for the loss of degrees of freedom resulting
from estimation of the regression parameters will be very small (Zheng et al. 2011).
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Generalized Linear Mixed Forms of HRMs

The linear regression form of HRMs described above has been extended to generalized linear mixed
forms of HRMs by several authors. Smyth (1989) developed an approach termed double generalized
linear models (DGLM) for heterogeneous regression—the simultaneous estimation of conditional
means and variances in both linear and generalized linear models (see also Smyth 2002; Smyth
et al. 2001). Lee and Nelder (2006) extended the DGLM framework to one of double hierarchical
generalized linear models (DHGLM), in which random effects can be specified for both the mean
and variance, heteroscedasticity between clusters can be modeled via random effects in the dispersion
model, and heterogeneity between clusters can be modeled in the mean model. Alternative methods
that accomplish similar things include Rigby and Stasinopoulos’s (2005) generalized additive models
for location, scale, and shape (GAMLSS) and Goldstein’s (2003) multilevel modeling framework.
There are a number of differences in the statistical model specifications and estimation algorithms
developed in the DHGLM and GAMLSS approaches to heteroscedastic regression. For instance,
the DHGLM approach uses the (hierarchical or) h-likelihood algorithm of Lee and Nelder for
model estimation. The h-likelihood is a form of extended quasi-likelihood that has the advantage
of eliminating integration (e.g., MCMC iterations) for many model specifications by means of a first-
order Laplace approximation, but may not always give good results. By comparison, the GAMLSS
model and approach to estimation is based on maximization of a penalized likelihood, but there are
several possible choices for the penalty function.

Empirical Application I: Earning Insecurity and Income Inequality

Heteroscedastic regression models have been applied to the studies of the impact of incarceration on
earnings insecurity and the trend in income inequality by Western and his colleagues (e.g., Western
et al. 2008; Western and Bloome 2009). The residual variance in these studies can be interpreted as
measuring within-group income risk or insecurity.

Incarceration and Earning Insecurity

Prior research studies were focused on the impact of incarceration on the mean earnings of ex-
offenders (e.g., Western 2002); as these released prisoners face limited job opportunities and mostly
find jobs in the secondary sector of the labor market where job tenure is quite short, incarceration
may affect their earnings variability as well (Western and Bloome 2009). Based on the 1979 cohort
in the National Longitudinal Survey of Youth (NLSY79), Western and Bloome (2009) investigated
how incarceration may affect both the mean and variance of log earnings for 517 male respondents
who were in prison at some time from 1983 to 2000. As these are panel data, they were able to
detect changes in the mean and variance of log earnings before and after incarceration. They used a
fixed effects model for the mean to account for the unobserved time-constant heterogeneity across the
respondents. They used mean-deviated explanatory variables for the variance regression; therefore,
the intercept represents the average log residual variance. The key explanatory variable, “previously
incarcerated,” is a dummy equal to O in all years up to release from prison and 1 afterwards. The
results are displayed in Table 8.1.

As the REML and Bayes estimates are quite close, we focus on the interpretation of Bayes
estimates. The key interest here is the impact of incarceration on the mean and variance of log
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Table 8.1 Heteroscedastic REML Bayes

regression of mean and

va%iance of log earnings on B 2 p A

incarceration status and Intercept .086 —.147 .085 —.149

other individual covariates (.018) (.027) (.018) (.025)

among incarcerated men, Previously incarcerated —.326 464 —.329 435

NLSY79, 1983-2000 (.056) (.086) (.056) (.078)

(standard errors in Currently incarcerated —.460 .196 —.462 178

parentheses) (050)  (.076)  (.051)  (.071)
Years of schooling .041 —.119 .038 —.107

(.032) (.050) (.032) (.042)

Work experience .010 —.017 .010 —.017

(.003) (.004) (.003) (.004)
Source: Western and Bloome (2009)

earnings for men who have been incarcerated. Incarceration reduces the average annual earnings by
28% ((1 —e3*)*100) and increases the residual variance of log earnings by 54% ((e** —1)*100).
Therefore, incarceration increases the income variability or insecurity for ex-prisoners. Even among
these formerly incarcerated men, education and work experience are associated with higher levels of
average annual earnings and lower levels of earning variability.

Trends in Income Inequality

Besides the application to studies of earning risk or income insecurity, the parameters from the
heteroscedastic regression can also be used to study trends in inequality (e.g., income inequality).
Western et al. (2008) measured income inequality as the variance of log income and use standard
variance decomposition technique to examine the relative contribution of between-group and within-
group inequality to the trends in income inequality from 1975 to 2005 based on the March Current
Population Survey (CPS) for the years 1976-2006. In order to apply decomposition techniques, all
explanatory variables should be categorized. For example, years of education should be recoded into
three or four categories: less than a high school diploma, high school diploma or some college, and
a bachelor diploma or more. Then all the categorized covariates are cross classified to form groups.
Between-group inequality represents the differences in income across these groups, and within-group
inequality represents heterogeneity in income within each group.

Because they were interested in how income inequality changed from 1975 to 2005, Western et al.
(2008) estimated heteroscedastic regressions for each year instead of pooling all 21 years together.
The heteroscedastic regressions can be denoted:

Vi = x'1iBs

log (O—tzl) = Z’tikt ’
where ¢ denotes year, ranging from 1975 to 2005. After estimating all the 8, and A, coefficients for
each year, they predicted the mean and residual variance of income for each group in each year (i.e.,
the y,; and 6,21-, where j demotes group). Each group j has a compositional weight or cell proportion,

75, giving the fraction of individuals falling into this group. Then the total variances in income can
be written (Western et al. 2008):

J J
j=1 J=l1
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where B, is between-group component (weighted sum of squared group deviation or between-group
variance 7, ) and W, is within-group component (weighted sum of residual variance or within-group

variance 0;; ) Group deviation 7;; is the deviation of the group mean from grand mean, that is, 7;; =

ytj -
With estimates at two time points, =0, 1, changes in total variance can be written in the
following way:

Vi—Wy
=B —By+W—-W,

J J
E Ty — JT()j rlj + E (7‘1] FOJ)JT()]
1 j=1

~.

B1—By
J J
A2 A2 A2
+ § :(”11' — ;) 61 + § :(011' _C’o;)m)j
Jj=1 Jj=1
Wi—Wo
J J J
A2 ~2 A2
E : T1j — Toj (rlj +Ulj) + § :(rlj ’"0])770] + § (Ulj Uoj)ﬂoj
j=1 j=1 j=1
Ec Ep Ew
=FEc+ Ep+ Ew (8.5)

The change in the between-group variance B; — By is associated with a compositional effect

(Z]J:l (1 — m)j)flzj) and a socioeconomic effect (Z]J:l (flzj ’"0]) m)]). The change in the

within-group variance W, — W is associated with a compositional effect (Z =1 (mr1; — 1o j)c}fj) and

a socioeconomic effect (Zj_l (012] 631.) 71’0]‘). In sum, Eq. (8.5) indicates that changes in income

inequality V; can be decomposed into (8.1) a compositional effect that changes the distribution of
population across groups (i.e., Ec, or changes in m;;) (8.2) a socioeconomic effect that changes the
gradient of socioeconomic status on between-group inequality (i.e., Ep, or changes in 7, ) and (8.3)
a socioeconomic effect that changes the gradient of socioeconomic status on within- group disparities
(ie., E,, or changes in 67,).

They also standardlzed adjusted variances by fixing m;, 72 j, or &tzj at baseline time point, for
example, t = 0. Adjusted variances can be interpreted as the variance we could observe if population
compositions, between-group variances, or within-group variances remained unchanged at their
t =0 values. Additionally, they calculated an explanatory variable’s (e.g., income or education)
socioeconomic effect or compositional effect by fixing its regression coefficients or weights at t = 0.
The heteroscedastic regression model was estimated, with standard errors for the decomposition and
standardization quantities constructed from the Bayesian posterior simulation.

The results from the decomposition technique are displayed in Table 8.2. Table 8.2 separates
socioeconomic and compositional effects on the growth of income inequality from 1975 to 2005
in the USA. In general, the increasing income inequality is mainly driven by the changes in the mean
and dispersion of group incomes (i.e., socioeconomic effect), rather than compositional changes in
the population. Demographic change further balances the increasing income gap between groups and
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Table 8.2 Decomposition 1975-1985  1985-1995  1995-2005
of the change in variance Change in variance 260 072 037
of log annual income for B
families with children etween-group 150 049 002
under age 18 Socioeconomic effect .084 .061 .046
Compositional effect .066 —.012 —.044
Within-group 110 .023 .035
Socioeconomic effect 128 .026 .030
Compositional effect ~ —.018 —.002 .005

Source: Western et al. (2008)

Table 8.3 The contribution of education effects, educational attainment, and within-group
variance to the change in variances in the incomes of families with children, 1975-2005

Change in variance Percent of
1975-1985 1985-1995 1995-2005 change explained
Change in income variance .260 .072 .037
Change associated with
Educational inequality in 026 018 .002 12.4
incomes (.008) (.008) (.008)
Educational attainment —.050 —.048 .006 —25.0
(.002) (.004) (.006)
Benchmark within-group 157 .023 .051 62.5
variance (.013) (.016) (.015)

Adapted from Western et al. (2008)

income dispersion within groups in some periods. Between-group income inequality contributes a bit
more to the growth of income inequality from 1975 to 1995 than within-group income inequality,
which, however, explains most of the increased income inequality from 1995 to 2005.

Table 8.3 gives an example of using standardization techniques to capture the contribution of an
individual covariate and its corresponding population composition to the growth of income inequality.
Rising educational inequality in incomes only accounts for 12.4% of the increase in income variance
from 1975 to 2005, which is outweighed by the equalizing impact of rising educational attainment on
income inequality. The most striking finding is that within-group variance (i.e., dispersion of income
within socioeconomic groups) accounts for 62.5% of the growth of income inequality in the last three
decades.

Empirical Application II: Health Dispersions Across Age-Period-Cohort
Time Dimensions

Zheng et al. (2011) estimated HRMs within recently developed hierarchical age-period-cohort
(HAPC) models. More specifically, they embed HRMs within HAPC framework. This facilitates
the decomposition not only of between-group inequality® into age, period, and cohort components
(i.e., variations in the conditional mean of an outcome across age, period, and cohort) but also a
similar APC decomposition of within-group inequality (i.e., variations in the conditional variance or
dispersion of an outcome across age, period, and cohort).

2In the context of APC analysis, groups are defined by the age, time period, and cohort categories.
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Hierarchical Age-Period-Cohort Models

Consider the three time dimensions—age, time period, and birth cohort—the distinction of which
is crucial for proper inference in studies of temporal change in many social domains. Age effects
represent the variation across different age groups brought about by physiological changes, accumu-
lation of social experience, and/or role or status changes. Period effects represent variation over time
periods that affect all living age groups simultaneously—often resulting from shifts in social, cultural,
economic, or physical environments. Cohort effects are associated with changes across groups of
individuals who experience an initial event such as birth or marriage in the same year or years;
these may reflect the effects of having different formative experiences for successive age groups in
successive time periods (Yang 2010).

One common goal of APC analysis is to assess the effects of one of the three factors on some
outcomes of interest net of the influences of the other two (Mason and Fienberg 1985). Conventional
linear regression models fit to aggregate population rates or proportions suffer from the model
identification problem due to the exact linear dependency among age, period, and cohort variables
(period = age + cohort) in such data (Mason et al. 1973). A recently developed modeling approach,
hierarchical APC (HAPC) models, has been used to avoid this problem using microdata and a multi-
level modeling framework. The HAPC approach conceptualizes time periods and cohort memberships
as social historical contexts, within which individuals are embedded and ordered by age, and then
models them as random as opposed to fixed effects additive to that of age (Yang and Land 2006,
2008; Yang 2006).> This contextual approach broadens the theoretical foundation of APC analysis,
helps to deal with the identification problem, and also accounts for potentially correlated errors.

Note that the individual-level data available in survey designs allow age intervals to differ from
period and cohort intervals. Unequal age, period, and cohort intervals then break the exact linear
dependency of the three variables in the APC accounting model suited for aggregate population level
data. This solution to the identification problem alone is unsatisfactory for two reasons (Yang 2010).
It is still embedded in the simple linear regression model which assumes linearity and additivity of the
three variables and does not completely avoid the identification problem. The results may be sensitive
to the choice of interval widths as longer widths may allow a higher degree of overidentification. And
more importantly, simple linear models do not account for potential correlated errors of individual
sample respondents grouped into periods or cohorts. Ignoring multilevel heterogeneity in the data
may lead to underestimated standard errors.*

The HAPC approach utilizes unique features of the multilevel survey design and presents a more
thorough solution. It begins with the recognition that in this design, respondents are nested in, and
cross classified simultaneously by, the two higher-level social contexts defined by time period and
birth cohort. A reasonable alternative to the linear model then is a different family of models—a
family of mixed (fixed and random) effects or hierarchical models—that do not assume that all age,
period, and cohort effects are fixed and additive and therefore avoid the identification problem and
can statistically characterize contextual effects of historical time and cohort membership. The HAPC

3As a general rule for statistical modeling, if the interpretation of a class of effects can be extended beyond the data
being analyzed, a random effects specification of the effects is preferred; if the effects are limited to the data being
modeled, then a fixed effects specification may be more appropriate (Hilbe 2009: 503). Applied to age-period-cohort
analysis, since the age range for humans is bounded, it follows that they are best conceived statistically as fixed effects.
By comparison, the effects of time periods and birth cohorts in any finite dataset generally can be extended and thus are
appropriately specified as random effects.

4The problem of underestimation of standard errors can be corrected by application of heteroscedasticity-robust
estimators (White 1980), but this does not address other conceptual problems of conventional linear regression models
for age, period, and cohort effects (Yang and Land 2008).
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model, and, specifically, the cross-classified random-effects model (CCREM) form of this model,
satisfies these criteria and can accommodate covariates at both individual and contextual levels to aid
better conceptualization of specific social processes generating observed patterns in the data.

This HAPC-CCREM approach to APC analysis can be illustrated with a linear mixed effects or
hierarchical regression model for data on an outcome variable y for which we specify variability
associated with individuals, cohorts, and periods as follows:

Level 1 or “within-cell” model:

Vi = Bojk + Bix1ix + Baxaje + -+ Bpxpgk + €. ey ~ N (0,07) (8.6)
Level 2 or “between-cell” model:
Bojk = Yo + uoj +vok, uoj ~N(,7) vo ~ N(0,1,) (8.7)

Combined or mixed effects model:

Yik = Yo + BiXi + Baxoje + - + BpXpijx + uoj + vor + e (8.8)
for
i=1,2, ..., ny individuals within cohort j and period k
j=1, ..., J birth cohorts
k=1, ..., K time periods (survey years),

where within each birth cohort j and survey year k, respondent i’s outcome, yji, is modeled as a
function of explanatory variables/covariates X1, X2k, - - ., Xpjj, (Which are grand mean centered for
continuous variables and usually include grand mean centered age and possibly higher-order functions
of age such as age-squared), and the intercept varies by birth cohort and time period.

In this CCREM, By, is the intercept or “cell mean,” that is, the mean y of individuals who belong
to birth cohort j and were surveyed in year k; B, ... B, are the level 1 fixed effects; ;i is the random
individual effect, that is, the deviation of individual ijk’s y from the cell mean with defined covariates,
which are assumed normally distributed with mean 0 and a within-cell variance o%; y; is the expected
mean at zero values of all level-1 variables averaged over all periods and cohorts; uo; is the residual
random effect of cohort j, that is, the contribution of cohort j averaged over all periods, on Bojx,
assumed normally distributed with mean O and variance t,,; and v is the residual random effect of
period k, that is, the contribution of period k averaged over all cohorts, assumed normally distributed
with mean 0 and variance t,. In addition, Bo; = yo + uo; is the cohort y score averaged over all
periods with all individual-level covariates at grand mean level, and Boxr= Yo + vo is the period y
score averaged over all cohorts with all individual-level covariates at grand mean level.

The HAPC-CCREM model specified in Egs. (8.6), (8.7), and (8.8) is a random intercepts model
that specifies that significant random variation across cohorts and periods occurs only in the intercepts
and not in the slopes of regressors at of the individual level. The specification of such a model for
a specific empirical application should be preceded by preliminary testing using standard methods
(see, e.g., Raudenbush and Bryk 2002) to determine whether or not there is evidence of random
variation across time periods or cohorts in the level-1 slope coefficients. If there is evidence of such
significant variation, then the model should be modified to incorporate this variation.

Zheng et al. (2011) integrated the HR model with the HAPC model by using the HAPC model
to estimate Eqs. (8.1) and (8.2) of the heteroscedastic regression model. This intersection of the two

SRespondents in the repeated cross-section sample surveys are cross classified by both the time periods of the surveys in
which they responded and the birth cohorts to which they belong. Each cell is an intersection of a cohort and a period.
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models facilitates the estimation of cohort and period random effects in the context of a repeated
cross-section survey research design across a broad range of ages—so that the question of the relative
contributions of the age, time period, and birth cohort temporal dimensions is relevant. We illustrate
this integrated HAPC-HR model by reference to Zheng et al.’s (2011) empirical application to trends
in health disparities.

Application of HAPC-HR Models to Health Disparities

In addition to a large body of demographic and epidemiologic research on age variation and temporal
trends in health and mortality which has addressed between-group health disparities (variation in
group-specific expected or mean levels of health outcomes across APC), there are three standard
approaches to the study of changes in within-group health disparities (variation in health dispersion
across APC): (1) across the life course (e.g., House et al. 1994; Dannefer 2003), (2) across cohorts
(e.g., Chen et al. 2010; Yang and Lee 2009; Warren and Hernandez 2007), and (3) across time
periods (e.g., Pappas et al. 1993; Goesling 2007). The limitation of prior research is that it has
treated these three approaches separately; however, they are intertwined with each other. For example,
an increase in health disparities across time periods may result from either cohort replacement in
which cohorts with larger within-cohort health disparities succeed cohorts with smaller within-cohort
health disparities or an aging society wherein the elderly, who usually have larger within-age health
disparities than younger people, increase their proportionate share in the population structure, or from
some combination of the two. Similarly, a widening health disparity with age may be confounded
with the temporal patterns. That is, period patterns in health disparities may affect age variations
in health disparities. And a widening health disparity across age groups may also be influenced by
cohort patterns. Some studies have tried to disentangle age and cohort patterns in health disparities
and found distinct age effects and cohort variations in mean levels of health and also changing health
disparities by education, income, gender, and race over life course and across birth cohorts (Chen et
al. 2010; Lauderdale 2001; Lynch 2003; Yang and Lee 2009). Lynch (2003) also found each pattern is
suppressed when the other one is ignored. However, an integrated model that simultaneously assesses
the effects of age, period, and cohort on both between- and within-group health disparities has not
heretofore been presented prior to Zheng et al. (2011).

Their analysis is based on annual data from the National Health Interview Survey (NHIS) for the
24-year period 1984-2007. The outcome variable, self-rated health, has remained largely unchanged
across periodic revisions of the NHIS questionnaires, which facilitates the analysis of trends. It has
five response categories: poor, fair, good, very good, and excellent.

The nature of the self-rated health outcome variable—in the form of a five ordered response
categories (poor, fair, good, very good, and excellent)}—complicates the specification and estimation
of the combined HAPC-HR model. This model was described above in a linear mixed effects
regression format. Because the equal-intervals assumption of the five-point scale is, in fact, a good
specification for the self-rated health responses in the NHIS data, they apply this specification to
the NHIS data by scaling the self-rated health outcome variable as a five-point scale with responses
numbered from 1 to 5.

With respect to the two-step algorithm for estimation of the model stated above, analysis of the
estimated conditional expectation function or mean outcome variable describes how the age, period,
and cohort temporal dimensions affect the reported health outcome. These regressions tell us about
differences in mean levels of self-reported health among groups defined by age, time periods, and
birth cohorts as well as other measured covariates. These differences in group-specific means are the
topic of study in prior studies of health status and the HAPC model permits the decomposition of
temporal changes therein into age, period, and cohort components. By comparison, the integrated
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HAPC-HR analysis of the regression model for the logarithm of the residual variances explains
how dispersions of self-reported health status change temporally within these groups, that is, health
disparities changes across age, period, and cohort. It is the detection of these temporal changes in
within-group variations and their decomposition into age, period, and cohort components that are
made possible by the integrated HAPC-HR model.

Figure 8.1 displays the sample means of self-rated health in the NHIS for the years from 1984
to 2007 after adjusting for sample weights and smoothing the annual estimates with a three-point
moving average, but without controlling for individual-level covariates and disentangling age-period-
cohort effects. Overall, for the whole sample, self-rated health increased from 1984 to 1990, decreased
until the mid-1990s, increased afterwards, and decreased again after the late 1990s.

Figure 8.2 portrays the observed variance in self-reported health in the NHIS from 1984 to 2007
without controlling for individual-level covariates and disentangling age-period-cohort effects, but
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Table 8.4 Estimated
HAPC-HR models of
self-rated health, NHIS,
1984-2007

H. Zheng et al.

B A

Coefficient  se Coefficient  se
Fixed effects
Intercept 3.281%**  0.009 0.403***  0.022
Age —0.142%%  0.002 0.071%***%  0.005
Age2 0.034**% 0,001 —0.041*%**  0.001
Male 0.030***  0.003  —0.009* 0.005
White 0.165%**%  0.003  —0.080***  0.004
Married 0.022**% 0,003  —0.024***  0.004
Education 0.060***  0.000 —0.026%**  0.001
Employed 0.388***  0.003 —0.338***  0.004
Income/10000 0.065***  0.001  —0.042***  0.001
Redesign —0.061**%*  0.009 —0.068**%*  0.008
Redesign* male ~ —0.021°***  0.005 0.016* 0.007
Random effects
Cohort
1899 0.027* 0.012 0.201***  0.033
1905 —0.005 0.010 0.124%*%  0.029
1910 —0.008 0.009 0.030 0.027
1915 0.002 0.008 —0.003 0.025
1920 —0.005 0.007  —0.021 0.024
1925 —0.020%* 0.007  —0.029 0.023
1930 —0.009 0.007 —0.024 0.022
1935 —0.001 0.006 —0.029 0.022
1940 0.003 0.006 —0.041 0.022
1945 —0.009 0.006 —0.066** 0.021
1950 0.007 0.005 —0.088***  (0.022
1955 0.018***  0.005 —0.103***  0.022
1960 0.023**% 0,006 —0.097***%  0.023
1965 0.003 0.006 —0.066%* 0.024
1970 —0.006 0.007  —0.039 0.025
1975 —0.026%*%*  0.008 0.044 0.027
1980 —0.007 0.009 0.077%* 0.029
1985 0.012 0.011 0.129***  0.033
Period
1984 —0.011 0.007 0.018** 0.006
1985 —0.006 0.007 0.005 0.006
1986 0.006 0.008 —0.005 0.006
1987 —0.007 0.007  —0.009 0.006
1988 —0.013 0.007 0.006 0.006
1989 0.008 0.007  —0.008 0.006
1990 0.020%* 0.007 0.000 0.006
1991 0.017* 0.007  —0.006 0.006
1992 0.002 0.007  —0.008 0.006
1993 —0.005 0.007 0.006 0.006
1994 0.004 0.007 0.001 0.006
1995 —0.012 0.007 0.000 0.006
1996 —0.004 0.008 0.001 0.007
1997 0.025%**%  0.007 —0.004 0.006
1998 0.025%* 0.008 —0.005 0.006
1999 0.025%* 0.008 0.000 0.006
2000 0.015 0.008 0.003 0.006

(continued)
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Table 8.4 (continued) B A
Coefficient se Coefficient se
2001 0.007 0.008 0.002 0.006
2002 0.003 0.008 0.001 0.006
2003 0.002 0.008 0.000 0.006
2004 —0.023** 0.008 —0.005 0.006
2005 —0.021** 0.008 —0.004 0.006
2006 —0.011 0.008  —0.001 0.007
2007 —0.046%** 0.008 0.011 0.007
Variance  se Variance  se
Variance
components
Cohort 0.0002*  0.000 0.008** 0.003
Period 0.0003** 0.000 0.000 0.000
Model fit
BIC 1941250
—2 Res log pseudo- 2351732
likelihood

Source: Zheng et al. (2011)
*indicates p < .05; **indicates p < .01; ***indicates p < .001

adjusting for sample weights and applying a three-point moving average to smooth the estimates.
Overall, for the whole sample, self-reported health disparity decreased from 1984 to 1990, leveled off
until around 1995, decreased afterwards, and then rose again after 1998—1999.

Table 8.4 reports estimates of parameters, standard errors, and model fit statistics, for the HAPC-
HR models of self-rated health in NHIS data from 1984 to 2007. The results were obtained using
the maximum likelihood estimation method described above. The 8 column presents the results for
the first-stage regression of the HAPC-HR model (which estimates variations in mean health across
groups), and A column presents the results for the second-stage regression of the HAPC-HR model
(which estimates variations in dispersion of health across groups).

As shown in 8 column, consistent with findings from previous studies, being male, white, married,
more educated, having a job, and more income are associated with better self-rated health. The
estimates of residual variance components at level 2 indicate significant period and cohort effects
net of the effects of individual-level covariates, while the period effect is larger than cohort effect as
reported in the “Variance Components” section.

The top graph in Fig. 8.3 clearly portrays this quadratic age dependence of the conditional mean
of self-rated health. Figure 8.3 also contains graphs of annual and smoothed estimates of cohort and
period effects on mean self-rated health from the HAPC part of the integrated model. These show that
late baby boomers born between 1955 and 1964 generally have better self-rated health than earlier
or later birth cohorts. An exception is the 1899-1904 cohort, whose relatively large positive effect
may be due to the selective survival effect as well as the small number of respondents from this early
cohort in the NHIS data. In addition, before 1998, the period-to-period changes in self-rated health
exhibit a very slight increase accompanied by cycles up and down, with a significant decline after
1998. Comparing the graphs of the estimated cohort and period effects in Fig. 8.3 to the overall trends
in Fig. 8.1 and the number of significant 8 coefficients and the size of residual variance components
by cohort and period in Table 8.4, it is clear that periods explain modestly more than cohorts of the
overall trend in self-rated health from 1984 to 2007.

As a key output of the HR part of the integrated model, the A column in Table 8.4 shows how
individual-level covariates affect within-group health disparities. The estimated within-group health
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disparities for males, whites, married persons, the more highly educated, employed individuals, and
those with more income are smaller than those of their counterparts, that is, females, blacks, unmarried
persons, the less educated, unemployed individuals, and those with less income. In addition,
the integrated HAPC-HR model yields estimates of expected or predicted variations in health
disparities across age, period, and cohort (or within-age, within-period, and within-cohort health
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disparities). The estimates of residual variance components at level 2 indicate significant cohort
and nonsignificant period effects net of the effects of individual-level covariates as reported in the
“Variance Components” section.

Graphs of these estimated effects are shown in Fig. 8.4. After controlling for demographic and
socioeconomic statuses, estimated health disparities in the young adult ages are relatively small,
indicating that almost everyone is relatively healthy. But health disparities increase with age, reaching
a peak around age 55 as shown in the top figure in Fig. 8.4, after which a decline sets in.
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Figure 8.4 also shows that within-cohort health disparities decreased from the 1899-1904 cohort
to the 1925-1929 cohort, leveled off in cohorts born in the Great Depression and World War II,
and then decreased in baby boomer cohorts followed by substantial increases in post-baby boomer
cohorts (this increasing trend is most pronounced in recent cohorts). After controlling for individual-
level covariates and age and cohort effects, the estimates of within-period health disparities graphed
in Fig. 8.4 are very flat between 1984 and 2007. When compared with Fig. 8.2, it appears that cohort
effects contribute to the fluctuations of crude variance in self-rated health over time. For example, the
recent increase in health disparities after circa the year 2000 in Fig. 8.2 corresponds to the increasing
proportions of post-baby boomer cohorts (born after 1964) in the population—cohorts that have
larger within-cohort health disparities than the preceding cohorts as seen in Fig. 8.4. The number
of significant A coefficients by cohort and period in Table 8.4 further confirms this argument. The
statistically insignificant variance component for the period effects in Table 8.4 also implies that the
variance in self-rated health does not significantly vary across periods.

These findings suggest net of the effects of age and individual-level covariates; in recent decades,
cohort differences in the conditional means of self-rated health have been less important than
period differences that cut across all cohorts. By contrast, cohort differences of variances in these
conditional means have dominated period differences. In particular, post-baby boomer birth cohorts
show significant and increasing levels of within-group disparities. These findings illustrate how the
integrated model provides a powerful framework and lens through which to identify and study the
evolution of variations in social inequalities across the age, period, and cohort temporal dimensions.
Accordingly, this model should be broadly applicable to the study of social inequality in many
different substantive contexts.

Discussion and Conclusion

This chapter has reviewed the specification of HRMs in both linear and generalized linear model
forms, described methods of estimation of such models, and reported empirical applications of the
models to data on changes over recent decades in the US income distribution and in self-reported
health/health disparities. These empirical applications have demonstrated the potential of HRMs to
reveal new insights into the evolution of both between-group and within-group heterogeneity across
dimensions of time.

The question remains as to how these recently developed statistical models can be related to the
counterfactual paradigm of causal inference in the social sciences. This question lies beyond the
objectives of this chapter, and we regard it as an important topic for systematic methodological study.
Some possibility directions can, however, be sketched.

The literature on counterfactual causal inference has defined a number of estimators of treatment
effects, with the average treatment effect—the difference in the expected value of an outcome variable
for those who are exposed to a treatment state and the expected value of the outcome for those who
are not exposed—being the simplest and most basic. Conventional regression models as estimators of
causal effects also have been studied. Two complications in the interpretation of estimates of treatment
effect coefficients in regression models have been identified (Morgan and Winship 2007: 136-138).
First, consider a fixed slope coefficient, §, of a binary variable for treated versus untreated subsamples
in conventional normal error regression model with control variables introduced as adjustments for
omitted variables. Then the ordinary least-squares estimator of § is unbiased and consistent only
under the assumption that § is truly constant across individuals. Second, the residual error term of
the regression model cannot be interpreted independently of decisions about the specification of the
control variables and this complicates the definition of when a net covariance between the treatment
and the error term can be assumed to be zero.
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Focusing on heteroscedastic regression models in the form of normal error linear regression models
or their generalized linear model extensions, it can be anticipated that these two complications occur at
the two points of the analysis—that is, in regression analyses of both between-group heterogeneity and
within-group heterogeneity. In the counterfactual causal analysis literature to date, various weighted
regression methods have been developed to address the first stage of an HRM, that is, regression
models for between-group heterogeneity. These methods have been shown to produce adjusted
regression coefficient estimators that can be interpreted as adjusting the regression model to make
it similar to what matching methods produce and thus as producing estimators of average treatment
effects and/or their extensions. Some literature also suggests using matching procedures to select
matched treatment and control cases whereby produce balanced data and then apply regression to
this balanced data (e.g., Ho et al. 2005; Morgan and Winship 2007: 158). It can be anticipated,
accordingly, that methodological analyses of estimators of the second stage of an HRM will show
that weighting methods and matching as a data preprocessor similarly should be applied. The details
of such methodological analyses and the optimal weighting methods are yet to be explored.

Regression models assume the covariates of interest are net independent of the error term, or
the so-called “unconfoundedness,” “selection on observables,” or “conditional mean independence”
assumption. Although heteroscedastic regression models directly model the estimated heteroscedastic
residuals from the first-stage regression, it cannot eliminate the possibility that the estimated within-
group heterogeneity from the second-stage regression may be due to unobservables and sample
selection, that is, controlling for unobservables and adjusting for sample selection (if data allow)
may change the observed within-group heterogeneity pattern. In this sense, heteroscedastic regression
models cannot simplistically assume causal inference as they cannot rule out omitted variable bias
and sample selection bias. A possible methodological development by incorporating instrumental
variable estimation or other methods into the second-stage regression may be explored. All of these
possibilities, however, do not imply that heteroscedastic regression models cannot warrant causal
inference at all, but rather that HR models can provide unbiased and consistent estimates when the
conditional mean independence assumption is valid and proper weighting method has been applied.

Based on estimates from HR models, Western et al. (2008) further employed decomposition and
standardization method to explore research questions concerning trends in income inequality such as
“what would happen if the effects of covariates or population composition (weights) with regard to
the covariates were fixed at a certain level?”” This approach is essentially a counterfactual analysis
although they did not use this term. Zheng et al. (2011) further explored how the within-group
heterogeneity may change across three time dimensions: age, period, and cohort. As these time
components tend to be regarded as exogenous, casual inference is actually warranted in their model.
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Chapter 9
Group Differences in Generalized Linear Models

Tim F. Liao

Abstract This chapter deals with making comparisons between fixed groups in the framework of
generalized linear models. First, we briefly introduce generalized linear models, the most common
type of regression models. Next, we discuss a simple system for analyzing group differences in
regression. We primarily focus on two types of comparisons—analyzing differences in the parameter
vectors of the linear predictor and differences in the underlying distributions for the groups in the
model. To illustrate such comparative methods for group differences, we perform analyses using real-
world data. Theoretically, group differences in regression estimates can be viewed as an example
of conditional causality. Practically, testing group differences in regression may see many useful
applications in social science research.

Introduction

This chapter deals with the topic of making group comparisons in regression analysis. By “group com-
parisons,” we mean examining the differences in certain statistical properties between fixed groups.
“Regression analysis™ refers to analysis applying any member of the family of statistical models
known as generalized linear models or their extensions. For comparing underlying distributions, the
framework of generalized linear models is convenient because certain models may assume different
statistical distributions. Making proper comparisons is fundamentally important in conducting
empirical sociological research, because “virtually all theories with empirical ramifications imply
some form or another of comparison” (Lieberson 1985: 45). This chapter presents a systematic method
for making comparisons between fixed groups in the regression setting, following the principles
for such purposes in Liao (2002). We do, however, go beyond the earlier treatment by examining
more closely distributional differences between groups and between link functions as well as effects
decomposition in the systematic component.

Most often, data analysts seek to compare parameters across fixed social groups such as gender,
race, and nationality by testing their hypothesized equality. This, however, represents only one, albeit
arguably the most common, type of comparison. In addition, one may be interested in comparing
across groups the statistical distribution underlying the data or link functions for the groups under
comparison. Indeed, researchers must ascertain that it is the parameters instead of the distributions or
link functions that give rise to group differences.
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Typically, the statistical distribution generating a random variable or its link to the predictor
variables is assumed to be the same for one social group versus the distribution assumed for another
group. This, however, is not necessarily true. For example, the distribution underlying the random
variable in one group may be normal, while the distribution in another may be lognormal. It is also
theoretically possible that the distributions generating the random variable in two different groups
are two different members of the exponential family when applying the generalized linear model.
Sometimes, the differences between two or more empirical distributions may be of substantive interest
to the researcher, thereby needing close examination. Even if the researcher may not be interested in
distributional differences per se, distributional sameness must be established before any comparisons
of parameters become sensible.

By the same token, most often we assume not only identical distributions but also identical
link functions for the groups under comparison. In such a situation, the researcher is interested in
the variations in parameter estimates. In other words, we typically compare parameter estimates of
some or all independent variables across groups. When latent variables are present in our statistical
models, parameters in the measurement models can also be tested for equality across groups. It is the
researcher’s decision as to which type of comparisons to make or which sets of comparisons between
parameters to make in a model. In this chapter, we focus on group comparisons in regression analysis
where either the underlying distributions can be different, the link functions can be different, the
regression parameters can be different, or any combinations of these differences.

Whether the statistical property under comparison is the distribution or the parameter, by making
comparisons between fixed groups, we in effect make a causal argument. It is not the most common
type of direct causation (as in X — Y or X causes Y) I imply here (I use “—" to indicate causality in
this chapter). Instead, for our purposes in the chapter, we are interested in conditional causality. In a
typical regression setting, the data analyst intends to study how the outcome variable Y depends on
a set of certain explanatory variables Xs. Such a design implies causality of X; — Y, that is, the kth
independent variable X; causes Y. The implied causality can be a strong or a weak version, and the
researcher may follow Davis’ (1987: 16) suggestions of the following four types of causal order:

(la) Y starts after X freezes.

(1b) X is linked to an earlier step in a well-known sequence.
(1c) X never changes and Y sometimes changes.

(1d) X is more stable, harder to change, or more fertile.

The causal relationship described concerns with a temporal order in (1a) and a logical order in (1b).
Fixed groups in sociological research can be categorized by the situation in (1c). Finally, two types
of causal relations are described in (1d): one type has the cause variable more stable and less likely
to change than the effect variable, while the other type has the cause variable more consequential and
productive in having results than the effect variable. It is possible to further differentiate among the
four types of causal relations, with (1c) implying the strongest causation, (1a) and (1b) causation of
medium strength, and (1d) the weakest causation. We leave to the reader to determine what causal
roles their X variables perform. For the consideration in the chapter, we suggest that when analyzing
differences between groups, memberships in the groups either never change (1c) or in the event that
they do, they take precedence over all of the other X variables in the regression analysis.

Therefore, of interest here is a type of conditional causality. Conditional causality is discussed in
the data analytical literature, as conditional causal modeling (Brée et al. 1995) or even conditional
Granger causality for time series data (Chen et al. 2006) when causal effects can be indirect. For the
purposes of this chapter, we define conditional causality as X — Y | G, or the causal effect of X; on
Y is conditional upon G, where X} can be any of the independent variables in the regression analysis,
Y the dependent variable, and G the grouping variable. Ideally, G represents fixed groups, or at least
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groups that are formed prior to the X variables take on their current values recorded in the data. Note
that the fixed group G is not the cause of interest in this chapter; rather, the data analyst’s causal focus
is on the X variables and how they may differ between fixed groups.

Differences in Generalized Linear Models

An overwhelming majority of regression analysis in sociology and in the larger social sciences applies
a member of the family of generalized linear models (McCullagh and Nelder 1989; Liao 1994).
Examples of such models include the classical linear regression, logit model or logistic regression,
probit model, Poisson or negative binomial regression, and gamma regression. Panel data analysis,
which has been increasingly popular in recent years, applies a group of models that extend generalized
linear models to allowing for clustering of individuals over time. This family of models is known as
generalized linear mixed models. The same framework also includes clustering in a spatial or social
dimension and thus extends to multilevel modeling.
Generalized linear models take the following form:

E(Y) =,
n =g, (CRY)
=X

where the Y vector is an i.i.d. random variable with a probability distribution belonging to the
exponential family. The explanatory variables X, a matrix, and the parameter vector § form a linear
predictor v, which is related to p, the expected value vector of Y, by a certain link function g(-).

The framework of generalized linear models views the outcome or response Y as having two
components, a systematic and a random component. In other words,

outcome = systematic component + random component

The systematic component is defined by our substantive understanding of mechanisms at work
through B and by our explanatory variables X in our regression model or substantive mechanism =
causal model. This component takes the same form for all generalized linear models. The random
component in the observed random i.i.d. variable Y, on the other hand, is defined by some probability
distribution (in the exponential family) or random mechanism => probability model. The link between
the random and systematic components is specified by a monotone, differentiable link function.

We can further define the random component and the link function a bit more formally. The random
component of generalized linear models follows the distribution that belongs to the exponential
family:

y8 —b()

100 = { (4555

+d%wﬂ ©.2)

where 6 is the canonical parameter, v is the scale factor, and a(¥), b(#), and c(y, V) are
known functions definable for each member of the exponential family. Without going through the
mathematics showing the details of these functional definitions, for example, the normal, the binomial,
the Poisson, the negative binomial, and the gamma distributions can be shown to belong to the
exponential family.
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Table 9.1 A summary Distribution
of some common

distributions and link Link function  Binomial Gamma Normal  Poisson
functions of the Logit v/ (canonical)
generalized linear models Probit v
Cloglog v
Identity v v v
Inverse v (canonical)
Log V4 v’ (canonical)
Square root v

The link function defines the relation between the expected Y (or p) and v, the linear predictor
based on a set of independent variables and their parameter estimates. The link distinguishes the
members of the family of generalized linear models, and there are many possible link functions for
these models. The most common link functions include the following:

Identity: n=pw.
Logarithm: vy =In(p).

Logit: N = In{pw/(1-p)}.
Probit: n=>o""(p).

Reciprocal: n=1/p.

For a particular member of the exponential distribution, there exists one or more than one link
function, as shown by some example distributions in Table 9.1. This point will become clear in a later
section.

Each cell with a checkmark in Table 9.1 indicates a specific statistical model. For example, when
the underlying distribution is binomial and when the link function is logit, we have the logit model;
when the underlying distribution is normal and when the link function is identity, we have the classical
linear regression model. Therefore, differences in generalized linear models may come in three forms:
there can be differences in the random component or the random distribution of Y, in the systematic
component or X3, and in the link function between the two components. Social science researchers are
mostly interested in § estimates between different fixed social groups, assuming statistically controlled
X. We demonstrate through a real-world example in later sections that differences in generalized linear
models can appear in all three forms.

For researchers interested in testing equality between vectors of parameters, the typical null
hypothesis is of the form

Ho: By = B,
which can be generalized to the form for multiple groups
Ho: By =B, =--=B¢

where it is hypothesized that B, for g =1 to G are all equal. A general test in the form of likelihood
ratio test can be simply applied for such hypothesis (Liao 2002):

LRT = —2 (L — Ly) (9.3)

where Ly is the log-likelihood of the restricted model and Ly is the log-likelihood of the unrestricted
model. When a model is restricted, all B, parameters take on the same values for all G groups. When
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a model is unrestricted, the B, parameters can vary by taking on unique values for different groups.
Following the likelihood proposed by Liao (2002), Eq. (9.3) can be expressed by expanding Ly into
multiple G groups such that

G
LRT = —2 (L(,B) -> L(,Bg)) (9.4)
1

The LRT in Eq. (9.4) follows a y? distribution and has an asymptotic large sample property
(i.e., when the sample size gets larger, the statistic asymptotically approaches a true x> distribution).
Note that the LRT of Eq. (9.4) testing differences in the systematic component of generalized linear
models can only be valid when the other two parts (i.e., the random components and the link functions)
are constant across fixed groups. It is also sensible that differences are tested one type at a time—the
distribution, the link function, and the f vector—so that we can identify the differences uniquely.

An Illustrative Example

For illustrating how we may study differences in generalized linear regression models, we use a sample
of the 2011 March Current Population Survey (CPS) data. The outcome variable of concern here is
total personal earnings. To facilitate the presentation and the pedagogical purposes here, the original
2011 March CPS sample is selected by the following steps.

First, only those in the civilian labor force were selected. This resulted in a subsample of 100,683
cases from the original CPS sample of 204,983 cases. To avoid the potential bias from using the
income of heads of household or householders to study individual incomes, a 20% random sample
was drawn from within the households. With this random sample selection, the personal earnings
of individuals are better represented. To further simplify the presentation of gender differences, only
whites and those who were in full-time employments were chosen. The resulting sample has a size of
3,267, consisting of 1,834 men and 1,433 women. Gender will be our focus for examining differences
in regression models of total personal earnings.

We are interested in using a total income or earnings variable instead of a variable such as hourly
wages, which sometimes is used in research on inequality (such as when investigating the effect of
union membership, see Western and Rosenfeld 2011). As we know, many individuals’ earnings cannot
be reported hourly. To construct a reasonably informative and correctly specified model of earnings,
we include the obvious explanatory variables of age, education, and occupation. We further include
marital status, region of the country, and metropolitan residence, factors studied in previous research
even though the earlier research focus was primarily on earnings and race (Thomas 1993). This gives
us six independent variables plus gender.

Age is used as a continuous variable. Education is recoded into five categories: “less than high
school” (the reference category), “high school diploma,” “some college or associate degree,” “bach-
elor’s degree,” and “graduate or professional degree.” Occupation is recoded into five categories:
“managerial,” “professional,” and “other.” Marital status is recoded into a dummy variable, 1 if
married with spouse present, 0 otherwise. Region of the country is recoded into a dummy variable, 1 if
living in the South, 0 otherwise. Metropolitan residence is also a dummy variable, coded 1 if residing
in a metropolitan area, 0 otherwise. The regression models presented later in the chapter will all have
total personal earnings as the dependent variable and these six independent variables on the right-hand
side, estimated separately by gender so that gender differences in income effects can be studied.
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Before conducting any regression analysis, however, let us take a look at the difference in the
mean values of total personal earnings between the sexes. The earnings variable has these descriptive
statistics:

Men: mean = $52,982.37, median = $38,800, standard deviation = $77,952.94
Women: mean = $34,525.33, median = $30,000, standard deviation = $27,406.75

It is obvious that for both gender groups the mean is much greater than the median, indicating a
right-skewed distribution. It is also clear that the male sample has a higher mean or median and a
greater standard deviation or variance than the female sample. However, a statistical test is required
to formally assess the difference between the two sample means.

A two-sample #-test produces a t-statistic of 8.559 on 3,265 degrees of freedom, rejecting the null
equal-mean hypothesis at the 0.001 level at least. A Levene test of variance homogeneity acquires
an F( 365y = 82.735, rejecting the null hypothesis that the variances are equal at the 0.001 level at
least, and a Brown-Forsythe test that replaces the mean in the Levene test with the median obtains an
F 32650 = 59.018, also rejecting the null hypothesis at the 0.001 level at least.

Because the equal variance assumption for the standard two-sample #-test of the difference between
two sample means is violated, we move on to conduct a two-sample #-test with unequal variances,
obtaining a t-statistic of 9.422 on 2,382.51 degrees of freedom (Satterthwaite’s adjustment) or
2,383.13 degrees of freedom (Welch’s adjustment). In either case, the null hypothesis of equal means
is rejected because the #-statistic now is even greater than the test statistic assuming variance equality.

A Naive Regression Analysis of Gender Differences

Because the variable of total personal earnings is a continuous or metric variable, we naturally chose
OLS linear regression for the initial analysis. Income and earnings variables most often are skewed to
the right. The total personal earnings variable from the March 2011 CPS is also skewed to the right
for both sexes, with their mean values greater than their medians as reported earlier.

A popular practice in analyzing such data is that of transforming such variables by the natural
logarithm. For two important reasons, we do not take that approach here. First, one man had negative
earnings and 39 men had no earnings at all; two women had negative earnings and 30 women had
no reported income. Omitting of these cases would truncate the distribution and lose information.
Another common practice that assigns the zero income observations a small value smaller than one
would result in a heap of cases with a large negative value. This is not desirable either. Second, as
it will become clear later in the chapter, distributions other than the normal can be used to model a
skewed income distribution.

With this in mind, an OLS linear regression model is fit to both sexes, with the results presented
in Table 9.2. Note that here we adopt a common practice of estimating models for fixed groups
separately. An alternative popular practice is to include interactions between the grouping variable
and explanatory variables of interest in the model. The results are the same, but the latter approach
becomes cumbersome when a large number of independent variables may differ in their effects
across groups. The method of estimation by group has the advantage of clarity and ease for visual
comparison. For the sake of space, we only present this practice here.

The estimates in Table 9.2 indicate that men and women differ more than just in the mean and
variance of their earnings. The effects of the explanatory variables are different between the two sexes
as well. But how different are these estimates? Are the differences statistically significant? There are
two types of hypotheses one can test: By = Prr and By = pr. Our focus is on the second testing
situation. We will, however, illustrate how the first test is done below as well.
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Table 9.2 OLS regression Males Females
estimates of the 2011 CPS

personal earnings by sex Age 668 47 46197
(172.2) (58.93)
Metro 7,566+ 5,617%*
(4,467) (1,566)
South —10,216%* 164.5
(3,813) (1,380)
Married 16,388 5,265%*
(4,757) (1,484)
High school —214.0 6,646%*
(5,348) (2,337)
Some college 6,031 12,134%*
(5,673) (2,354)
Bachelors 18,976%* 22,089%3*
(6,633) (2,679)
Graduate 34,664%* 31,129%*
(8,857) (3,196)
Professional 9,643+ 6,845
(5,825) (1,695)
Managerial 25,864 %% 16,806%*
(5,305) (1,984)
Constant —597.7 —9,434%:*
(8,067) (3,360)
N 1,834 1,433
R-squared 0.113 0.283

Note: Standard errors in parentheses
#p <0.05, Tp<0.1

While the estimates for the dummy variable of graduate/professional degree holders are both
significant and seem different between the two sexes, is the difference between the estimates
really significant statistically speaking, given their respective (sizable) standard errors? This is
a question we cannot answer without conducting a formal test. Assuming fixed groups (and
independent estimates), we can perform a simple Wald test on these estimates by applying

A NV A N L A
(,BM — ,BF) [var(ﬂp) + var(ﬂp)] 1 (,BM - ,BF) on the two estimates from the table (Liao
2004). We obtain (34,664—31,129)%(8,857>+3,196%) = 0.141 on one degree of freedom. The
result is not statistically significant at the 0.05 level because the cutoff value is 3.84. Let us try
another pair of estimates, those of the region of the American South. In this case, one of the
two estimates is not statistically different from zero. By applying the formula above, we have
(—10,216—164.5)%(3,813%4+1,380%) = 6.553. In this case, the estimates for the two sexes are
statistically significant at the 0.05 level. Note that here our outcome variable is continuous or metric.
If it is dichotomous, a logit or probit model is commonly applied. However, the comparison of logit
or probit estimates across groups (by way of the Wald test above) may be complicated by different
residual variances between groups and must be analyzed with an adjusted test (Allison 1999).

Now let us test the second hypothesis of 8, =B . The classical Chow test can be applied here
(Chow 1960). The Chow test, which is an F-test, takes the form of

(SSEg — SSEy) /(K + 1)

F k) = 9.5
RFLNANZ2EHD ™ SSEG /(N1 + Ny — 2(K + 1) 0
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where SSER is the sum of squared error (or residual) from the restricted model where the two sets
of parameters are constrained to be equal and SSEy is the sum of squared error from the unrestricted
model where the two sets of parameters are not constrained to be equal. N; is the sample size of
the first group, N is sample size of the second group, and K is the number of explanatory variables.
In addition to the two models estimated and reported in Table 9.2, to obtain SSEg, we must estimate
another combined model where both men and women are included in the same model run and the
dummy variable of sex is not included in the estimation. By applying (9.6) to the results from
the three estimated models, we have

(1.1059%*13 — (9.8748¢*'% 4 7.7161e 1)) /(10 + 1)
(9.8748¢ 12 + 7.7161e+11) /(1,834 + 1,433 —2(10 + 1))

Fii3045 = =11.432

For Fj; 3045, we have a cutoff value for the 0.05 level of 1.792. The obtained statistic is much greater
than the cutoff value, in fact statistically significant at least at the 0.000001 level (in effect virtually
zero). Using a statistics program such as Stata, one can easily find out the cutoff and significance
levels.

We in fact can obtain the same conclusion without using the Chow test. We can apply the likelihood
ratio test of (9.4) presented in an earlier section. This is calculated as —2 x (—40,479.03164)—
(—2 x(—23,149.32491)+ -2 x (—16,438.01118)) =1,783.391. The critical value for the 0.05 level
on 11 degrees of freedomis 19.675. The value 1,783.391 rejects the null hypothesis of equal parameter
sets between men and women at a level that is close to zero. Note that tests based on the x>
distribution are sample size dependent. Here the sample size should not raise a big concern since
it is moderately large.

Differences in Distributions

In the section above, we saw that the two sex-specific distributions of total personal earnings have
not only rather distinctive means but also very different dispersions. Do the two income variables
have the same underlying distribution? Do they both follow the normal distribution? To answer
these questions, we can perform the classical Kolmogorov-Smirnov test designed to test differences
between two empirical distributions and graph normal quantile plots. The Kolmogorov-Smirnov test
is a nonparametric test for the equality of one-dimensional continuous probability distributions. Here
we have a two-sample situation and the null hypothesis is that the two empirical samples are drawn
from the same distribution. The test statistic D is defined as

Dy, N, = supy [Fin (V) — Fa.n, (3)]

where sup,, is the supremum of the set of distances and F 51 and F y, are the empirical distribution
functions of the first and second samples, respectively. Applying the Kolmogorov-Smirnov test to the
CPS data, we obtain D = (.185, with a p-value smaller than 0.001, thus rejecting the null hypothesis
that the two empirical distributions are drawn from the same underlying distribution. Note that the
ideal situation for performing the test is when there are no tied values (or all values are unique). This,
of course, is impractical with income data (or with most other social science data). The test, on the
other hand, is robust enough for testing situations where there are ties.

Next, we examine the relation between the two empirical distributions and the normal distribution.
This can be routinely achieved by the normal quantile plot. We graph the two plots side by side and
present them here.
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Fig. 9.1 Normal quantile plots by sex

A few words about how to interpret normal quantile plots are in order. We plot the quantiles of two
distributions—typically one empirical and one theoretical though both can be empirical (in that case,
it is called a quantile-quantile plot)—against each other. If the two distributions are identical, the plot
follows the 45° line. If the plot shows a flatter trend than the 45° line, the distribution plotted on the
horizontal axis is more dispersed than the distribution on the vertical axis. If the plot shows a steeper
trend, the distribution on the vertical axis is more dispersed. These normal quantile plots often display
curves, suggesting that one of the distributions—the empirical distribution when it is plotted against
the theoretical distribution—is distributed less normally. Note that quantiles are not marked on the
axes though grids based on quantiles can be requested (and they will make the plot messier looking).
Also note that the straight line in the plot actually is not the 45° perfectly fitting line; rather, it is a line
that passes through the first and the third quartiles by convention.

From the two plots in Fig. 9.1, we see that for the CPS males, their total personal earnings
distribution deviates from the normal quantiles severely, largely because the male earnings distribution
is extremely skewed. The deviation of the female distribution from the normal quantiles is much
milder (as shown by the smaller amount of deviation from the straight line) even though it is less
dispersed (as shown by the flatter trend). The findings from the normal quantile plots further indicate
that these two observed distributions are not drawn from the same underlying distribution and that the
male distribution certainly does not follow the normal distribution. The female distribution conforms
to normality better even though it has narrower dispersion than a normal distribution.

We can also plot the kernel density for the two empirical distributions and present the two density
curves in Fig. 9.2. Here we see that the male total personal earnings distribution is very right-skewed,
while the female distribution is only mildly skewed to the right. It is also obvious that, while there is
a lot of overlapping, the mass of the female curve is located to the left of the male counterpart.

As a next step, we model the two samples differently, assuming the gamma distribution for the
male sample and for now keeping the normal distributional assumption for the female sample. The
support for the gamma distribution is y € [0,00), and by definition, any negative values have a gamma
density of 0. Therefore, merely a few negative values will not affect much the estimation of a
gamma regression. We present in Table 9.3 the results from the generalized linear model with the
gamma distribution for the males and the normal distribution for the females, using the identity link
in both models.
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Fig. 9.2 Kernel density distribution by sex

Table 9.3 Generalized

. - Males Females
linear model estimates
of the 2011 CPS personal Age 874.5% 461.9%*
earnings by sex: gamma (152.5) (58.93)
distribution for men and Metro 3,705 5,617+
normal distribution (2,420) (1,566)
for women South —2,052 164.5
(2,298) (1,380)
Married 11,179%* 5,265%*
(3,982) (1,484)
High school 2,691 6,646%*
(2,575) (2,337)
Some college 6,524% 12,134%*
(3,178) (2,354)
Bachelors 20,081°%* 22,089%3*
(5,631) (2,679)
Graduate 36,438%** 31,129%*
(12,155) (3,196)
Professional 3,789 6,845%*
(5,242) (1,695)
Managerial 22,645%%* 16,806%*
(6,735) (1,984)
Constant —5,502 —9,434%**
(5,098) (3,360)
N 1,834 1,433
Log-likelihood —21,542.034 —16,438.011

Note: Standard errors in parentheses
#p <0.05, Tp<0.1
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The estimates for men and women reported in the table are comparable because the identity link
function is present in both estimated models. Does the gamma regression give a better fit to the male
data than the classical linear regression does? Because the only thing we altered in the new model is the
distributional assumption while keeping the other elements of the generalized linear model unchanged,
we can simply compare the log-likelihood values from the two models. The log-likelihood function is
the natural logarithm of the likelihood function. Because the estimation of a generalized linear model
is achieved when its likelihood is maximized, the final value of the likelihood is obtained when the
model parameters produce a distribution that gives the observed data the greatest probability (or the
likelihood of having been observed). Therefore, a log-likelihood function value that is closer to O (or
less negative) describes a better-fitting model. The generalized linear regression assuming a normal
distribution and an identity link for the males gives a log-likelihood value of —23,149.325, while the
value becomes —21,542.034 when a gamma distribution and an identity link are assumed. Clearly, the
gamma distribution fits the observed data much better.

Would a gamma distribution do better for the generalized linear model for women as well? To
assess the difference between the two distributional assumptions, we estimated the models with a
gamma distribution and with a normal distribution while keeping the rest of the model unchanged. The
generalized linear regression, assuming a normal distribution for the females, gives a log-likelihood
value of —16,438.011, while the value becomes —16,283.195 when a gamma distribution and an
identity link are assumed. Therefore, the gamma distribution assumption also provides a better fit for
the observed data for the female sample even though the improvement is not as great as that for the
male sample. In the next section, we will consider a gamma regression for both sexes.

Having two generalized linear models with the same link function makes comparing parameter
estimates across groups possible because the same link function leads to the same measure-
ment scale. In the current case, both models were estimated with the identity link. Take, for
example, the effect of marital status, which is statistically significant at the 0.01 level in both
samples. Do the two estimates differ significantly? By applying the Wald test introduced earlier,
we have (11,179 —5,265)%/(3,982% + 1,484%) = 1.936, which is not statistically significant at the
0.05 level. How about age effect difference then? Applying the Wald test again, we obtain
(874.5—461.9)%/(152.5% + 58.93%) = 6.369, which is statistically significant at the 0.05 level. Note
that the likelihood test for the difference between the two vectors of B, and B that we performed in
the last section cannot be conducted here because the unrestricted model combining both samples is
undefined due to the assumption of a distributional difference. That is, even though the link functions
in the two models are identical, we cannot fit a combined model within which some cases are assumed
to follow one distribution, while the others are assumed to follow another distribution.

Differences in Link Functions

For certain generalized linear models, more than one link function is available under the same
distributional assumption. The regression assuming a gamma distribution, for example, has three link
functions to choose from, the identity, the inverse or reciprocal, and the log link function (Table 9.1).
The same kind of decision-making faces researchers analyzing binomial data, with the choices of
including the common logit and probit links to choose from.

Czado and Raftery (2006) proposed a method of formally using Bayes factors to choose link
functions while accounting for link uncertainty. Without their algorithm, however, researchers have
been using the Bayesian Information Criterion (BIC) for choosing link functions. We present BIC and
deviance in Table 9.4. Deviance is a core part of Czado and Raftery’s (2006) method. Because our
models have the same degrees of freedom and parameters, these two statistics are equivalently useful.
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Table 9.4 Generalized

X Males Females
linear models of the 2011 ) ) - -
CPS personal earnings by Link function = BIC Deviance BIC Deviance
sex: assuming a gamma Identity —12,628.86 1,069.622 —9,853.279 481.142
distribution for sexes and Logit —12,622.65 1,075.833 —9,857.753  476.668
three link functions Reciprocal —12,582.69 1,115.801 - -

Note: The estimation of a gamma regression with a reciprocal link for
the female sample had convergence problem

It appears that the differences between link functions are not very large. For the gamma regressions
estimated, the logit link is the winner out of the three choices for the male sample, while the identity
link is better than the logit link for the female sample. Because the difference between the identity
link and the logit is not large for either sample even though it is slightly greater for the male sample,
we use the identity link for the analysis of both samples below.

Decomposition of Differences in the Systematic Component

We fitted a generalized linear model with a gamma distribution and an identity link to both the male
and the female samples and present the estimates in the first two columns of Table 9.5. To perform
a test of the hypothesis that 8, = 7, we must estimate a restricted model. To save space, we do
not present that model in the table. As one may suspect, the estimates from that model fall halfway
between the estimates in the first column for the males and those in the second column for the females.

The restricted model has a log-likelihood of —37,911.394. The restricted model involves two
separate sets of estimates for the two sexes, yielding the two log-likelihoods of —21,542.034
and —16,438.011, respectively. Applying Eq. (9.4), we obtain —2 x (—37,911.394 — (—21,542.034 —
16,438.011)) = 172.33. The critical value for the y* distribution on 11 degrees of freedom at the 0.01
level is 24.725 and at the 0.001 level is 31.264. Therefore, we reject the null hypothesis that B, = £
at the 0.001 level at least. Readers interested in testing equality of pairs of estimates can easily apply
the Wald test illustrated in an earlier section.

We may want to revisit the earnings gap we tested earlier with a two-sample #-test without assuming
variance equality. Now that we have fitted two gamma regressions, we can decompose this mean
difference in total personal earnings between the sexes by applying a decomposition procedure. This
popular procedure is known in the literature as the Blinder-Oaxaca decomposition, or simply the
Oaxaca decomposition (Blinder 1973; Oaxaca 1973). The purpose of the procedure is to divide
income differentials between social groups into a component that is “explained” by human capital
type of background group differences such as education and a residual component that cannot
be explained by such income determinants (which can include unobserved factors). Approximate
variance estimators also exist, with certain variants initially proposed by Oaxaca and Ransom (1998).
A popular implementation of the Oaxaca decomposition is a threefold decomposition, taking the
form of

E(Y)) — E(Y2) = [E(X)) — E(X2)] B2 + E(X2) (B1 — B2)
+ [E(X1) — E(X2)] (B1 — B2) (9.6)

where 1 and 2 represent two social groups, such as males and females in the current application.
Thus, the difference in the expected Y is decomposed into three parts: the differential that is due to
group differences in the explanatory variables (or the endowment effect), the differential that is due to
group differences in the parameters (or the coefficient effect), and the differential that is due to group
differences in both (or the interaction effect).
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Table 9.5 Generalized linear model estimates of the 2011 CPS personal earnings by sex:
gamma distribution with identity link for both sexes

Males Females Endowment Coefficient Interaction
Age 874.5%* 461.9%* —354.9661 18,629.1%* —361.791
(152.5) (58.93) (199.472) (6,724.26) (238.537)
Metro 3,705 5,617+* 45.738 35.244 .5482005
(2,420) (1,566) (52.246) (2,098.06) (32.639)
South —2,052 164.5 6.217 —735.450 —27.864
(2,298) (1,380) (13.656) (692.335) (49.472)
Married 11,179%* 5,265%* —55.187 4125.92 —79.947
(3,982) (1,484) (79.296) (2,576.51) (123.791)
High school 2,691 6,646%* 100.400 —124.1067  —12.908
(2,575) (2,337) (63.224) (881.186) (91.884)
Some college 6,524+ 12,1343 —529.176** —280.668 60.905
(3,178) (2,354) (149.687) (1,131.97) (246.006)
Bachelors 20,081%:* 22,089%:* —23.087 718.989 —5.787
(5,631) (2,679) (216.635) (1,068.32) (54.973)
Graduate 36,438 31,129%* —467.5961 910.181 —187.630
(12,155) (3,196) (255.666) (1,106.47) (248.298)
Professional 3,789 6,845%* —822.383%* —889.781 396.763
(5,242) (1,695) (203.446) (1,378.54) (616.440)
Managerial 22,645%:* 16,806%* 461.102%* 920.792 215.409
(6,735) (1,984) (201.654) (912.621) (230.585)
Constant —5,502 —9,434%: —3,187.049
(5,098) (3,360) (5,373.25)
Total 18,481.88%#: —1,638.94%*%  20,123.1%** —2.302
(1,981.18) (525.069) (2,018.84) (701.320)
N 1,834 1,433

Log-likelihood =~ —21,542.034  —16,438.011

Note: Standard errors in parentheses
Entry in the total row between “males” and “females” column: total personal earnings difference
#p <0.05, Tp<0.1

We apply (9.6) to the CPS data and present the results in the third, the fourth, and the fifth columns
of Table 9.5. To make sense of the threefold decomposition, let us begin from the row with the “total”
heading. The first entry in the row is the difference in the two-sample group means studied earlier.
On the average, that amount of a man’s total personal earnings was $18,481.88 more than a woman’s,
according to our 20% within-household sample of the 2011 CPS data. Let us now move onto the three
components of this total difference (though we can ignore the total interaction effect because it lacks
statistical significance).

The most profound findings are revealed by the other two total effects, the endowment and the
coefficient effects. The total endowment effect suggests that given the observed levels of relevant
demographic and socioeconomic characteristics, men should have earned on the average $1,638.94
less than women did. According to the total coefficient effect, however, they actually earned $20,123.1
more than women did. Such decomposition results suggest serious wage discrimination. We may
want to zero in and examine which particular factors are at work. From column 3, we see that there
were a greater number of women with some college education or associate degrees, and there were
a greater number of women professionals. However, from the next column, we see that women were
significantly underpaid overall, but especially in terms of the seniority factor of age. The conclusion of
discrimination can only be made if the model is correctly specified because omitted variables would be
subsumed under the constant term. The Oaxaca-type decomposition, assuming no important variables
omitted from the model, can be useful for fine-tune group differences.
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Conclusion

In this chapter, we have presented a systematic method of studying group differences in generalized
linear model type of regression analysis. We examined differences in distributions, in link functions,
and in the systematic component of the model in terms of the explanatory variables and their
parameters. Whereas differences in the systematic component are the type that draws the most
attention from researchers, we must not ignore potential differences in the other two types—the
underlying distribution and the link function.

We demonstrated that differences in the systematic component reflect the overall mean difference
in the response variable. Assuming no model specification error in omitted variables, such differences
can be further analyzed by an Oaxaca type of decomposition so that the difference in Y can be broken
down into the components of differences in X, differences in $, and differences in their interactions.
Such exercises can be useful for sociologists who are interested in not just differences in outcome
variables but also what may be responsible for explaining such differences.

At the outset of the chapter, we proposed to view the case of causal regression analysis among fixed
social groups as a type of causality or rather conditional causality expressed as X — Y | G. When we
study causal or associative differences in fixed social groups G, we actually assume such conditional
causality is at work. Even though most researchers are interested in X — Y, when fixed groups are
present, conditional causality of X — Y | G must be investigated, not only in terms of the differential
effects of X, but also in terms of the potential differences in the underlying distribution and in the link
function.
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Chapter 10
Counterfactual Causal Analysis and Nonlinear
Probability Models

Richard Breen and Kristian Bernt Karlson

Abstract Nonlinear probability models, such as logits and probits for binary dependent variables, the
ordered logit and ordered probit for ordinal dependent variables and the multinomial logit, together
with log-linear models for contingency tables, have become widely used by social scientists in the past
30 years. In this chapter, we show that the identification and estimation of causal effects using these
models present severe challenges, over and above those usually encountered in identifying causal
effects in a linear setting. These challenges are derived from the lack of separate identification of the
mean and variance in these models. We show their impact in experimental and observational studies,
and we investigate the problems that arise in the use of standard approaches to the causal analysis of
nonexperimental data, such as propensity scores, instrumental variables, and control functions. Naive
use of these approaches with nonlinear probability models will yield biased estimates of causal effects,
though the estimates will be a lower bound of the true causal effect and will have the correct sign. We
show that the technique of Y-standardization brings the parameters of nonlinear probability models
on a scale that we can meaningfully interpret but cannot measure. Other techniques, such as average
partial effects, can yield causal effects on the probability scale, but, in this case, the linear probability
model provides a simple and effective alternative.

Introduction

Many of the outcomes encountered in social research are categorical, ordinal, or counts. Several
models have been developed to deal with data of these sorts: they include log-linear models for
contingency tables; logit and probit models for binary dependent variables; cumulative probability
models, such as the ordered logit and ordered probit, for ordinal dependent variables; and the
multinomial logit for unordered polytomous categorical outcomes. Although many social scientists
believe that coefficients from these models can be interpreted in the same way as coefficients from
linear models, this is not so. In nonlinear probability models like the logit, probit, ordered logit,
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ordered probit, and multinomial logit, the mean and variance are not separately identified, and
consequently, the identification and interpretation of causal effects in the nonlinear framework are
less clear-cut than in linear models.

We begin this chapter by presenting nonlinear probability models and discussing some of the
consequences of this lack of separate identification of the mean and variance. We do this using the
standard latent variable derivation, but we also show that the resulting problems do not depend on
interpreting or motivating the models in this way. We then turn to the analysis of causal effects,
and we consider the use of nonlinear probability models in a range of scenarios, beginning with
randomized control trials and moving to observational studies. We show how the lack of separate
identification of the mean and variance in these models adds to the already formidable difficulties
of identifying causal effects. We show, however, that the method of Y-standardization (Winship and
Mare 1984) can be used to give us an estimate of a causal effect measured in standard deviations of
the underlying latent variable. If causal effects on the probability scale are required, however, then the
linear probability model is a convenient and easily implemented solution. Throughout this chapter, we
make no reference to problems of statistical inference: the interest here is identification.

Nonlinear Probability Models and Log-Linear Models

Probably the most popular nonlinear probability model is the logit, and so we use it to motivate our
discussion of the problems inherent in these models.
Assume an underlying latent variable regression model:

Y*=B0+B1X+BZ+e (10.1)

where Y* is an unobserved continuous latent variable, X and Z are predictors, and e is an i.i.d. error
term.! The dependent variable may be unobserved either because it is a fundamentally unobservable
construct (such as an attitude or a propensity) or because, although it could be observed in its
continuous form, we have observed it only partially (e.g., we might know only whether respondents’
incomes exceeded a given value or not).

We observe the manifest variable Y according to a threshold rule:

*
Y:lwhen)( >T (10.2)
Y = 0 otherwise

Here 7 is a threshold parameter, often set equal to zero for identification. Nonzero thresholds are
in any case absorbed into the intercept of the logit model that follows.

To derive the logit model, we impose a distributional assumption on the error term in (10.1): we
assume that it follows a logistic distribution. We may then write the error term in (10.1)ase = o - u
where o is a scalar, often called a scale factor or scale parameter, and u is a standard logistic random
variable with mean 0 and standard deviation, 77/ +/3. The role of the scale factor is to allow the standard
deviation of e to be greater or smaller than that of the standard logistic. Then we can write the logistic
response model:

'In general, we do not use a subscript to indicate individual observations except where its omission might lead to
confusion.
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exp [ﬂo-l—ﬁlf-i-ﬂzz:l
pr(Y* > 1) = pXTp Lz =
1+ exp[—° X+ ] (10.3)
X z
logit(Y = 1) = Pot PiX + 5 =by+ b X +bZ
o

The probit model can be derived in the same way, but this time under the assumption that the
error term in (10.1) is normally distributed and that u ~ N (0, 1). The ordered logit and probit can be
generated in the same way, except that, in these cases, we observe the latent variable a little more fully
because we know the interval of the distribution of Y* into which a given observation falls. But, once
again, these models estimate b = /0 with o being a scale factor.

The multinomial logit model is slightly more complicated than the models for a binary or ordinal
outcome because it has an equation for a latent variable for each of the J alternatives:

Ui=V;+eg; forallj=0,...,J—1

U, the latent index, depends on an observed (by the social scientist) part, V, an unobserved part, ¢,
assumed to be a draw from a standard type I extreme value (Gumbel) distribution. Option is preferred
to option k if &; < g + V; — Vi, and McFadden (1974) showed that the probability of this is given

by P; = exp(V;) / > ; exp(V;). Assuming that V is linear in observed covariates, we can substitute

x'B; for V; to get the usual multinomial logit model. Train (2009: 44-6) makes the model more
general by writing U; = V; +0¢; where o is a scale factor that allows the error to have a nonstandard
standard deviation: o is common to all the J alternatives but may vary across different samples. So

this yields P;; = exp(X'f; /o) /Z] exp(X’'B;j /o), and once again, we recover b; = B;/o for
j=1,...,J—1 with a constraint such as by = 0 to secure identification.

Nonlinear Probability Models

Because the coefficients of nonlinear probability models are equal to the underlying 8 divided by the
scale factor, they are said to be identified “only up to scale” (Cameron and Heckman 1998: 281) and
only return the latent variable model 8 when the error term of that model has a scale factor equal to
one—something, which, of course, we cannot know.? There is a literature (Amemiya 1975; Allison
1999; Swait and Louviere 1993; Mood 2010) pointing to the difficulties of interpretation that this lack
of identification entails. For example, in Egs. (10.1) and (10.3), if we take Z to be a confounder of the
X —Y*and X — Y relationship, we might fit the following model:

logit(Y =1)=co+ 1 X (10.4)

with the goal of comparing c, the gross, or unconditional, effect of X, with its partial or conditional
effect, by. The latent variable counterpart to (10.4) is

Y*'=y+nX+v (10.5)

2Indeed, when we apply these models, we also assume that the latent error has a given distribution (e.g., logistic), and
we cannot know whether this is an accurate assumption either. But, in general, it seems that these models are more
robust (at least when we are concerned about comparisons of parameter values across models or samples) to violations
of the assumption about the distributional form of the error than they are to violations of the assumptions about the
standard deviation of that distribution (Cramer 2007).
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and here we can write sd(v) = {7/+/3, where ¢ is a scale factor and 77/ +/3 is the standard deviation of
the standard logistic distribution.> Comparing Eqs. (10.3) and (10.4), the ratio or difference between
by and ¢; will not equal that between ; and y; from Egs. (10.1) and (10.5), because b; = /0 and
¢1 = y1/c . That is, the true difference in coefficients of the latent variable model will be confounded
with the different scale factors, reflecting the different residual variation in the two models, (10.1)
and (10.5) (Karlson et al. 2012).

A similar, but even more serious, difficulty arises when we try to compare across groups such as
sexes, birth cohorts, countries, or ethnic groups. We can consider (10.1) to apply to one group and

Y*=ay+ o X +aZ +w with sd(w) = a)n/«/g

to the other. If we observed only a dichotomized realization of Y*, a comparison of two logit models
(or a single model with interactions of X and Z with a dummy variable indicating group) cannot
recover the true difference between the corresponding o and 8 parameters because, as in the cross-
model comparisons, this is confounded by the difference in scaling: ¢ in the first group and w in the
second (Allison 1999).

Nonlinear probability models can be derived without the use of latent variables, and so we might
hope that the problems of interpretation discussed thus far might be avoided. In the case of a binary
response variable, Y, we can write its expected value as a function of a linear combination of predictor
variables:

E(Y|X.Z) = g(bo+ b1 X + b 7) (10.62)

and the choice of the link function g(.) can give rise to, for example, the logit model when g(by +
b1 X +byZ) =exp(lby + b1 X + by Z) /1 4 (exp(byp + b1 X + b2 Z)).

In this case, there are no underlying parameters of the latent variable model to be recovered,
and the b parameters can be interpreted as effects of the predictor variables on the model’s linear
prediction or linear index function, defined as g~! (pr(Y = y)), where pr(Y =y) is the predicted
probability under the model. Denote this by L(Y). In the case of the logit, L(Y) is the log of the
odds, pr(Y = 1) /pr(Y = 0), and b; is the ratio of the log odds of ¥ =1 rather than ¥ =0 among
observations with the same value of Z but differing by one unit in their value of X. Despite this
more direct interpretation, the same problems manifest themselves. Comparing the coefficient for X
in model (10.6a) (and assuming g(.) is the logistic function) with the coefficient for X in

exp(co + c1X)

EY|X) = , 10.6b
%) 1+exp(co + c1X) ( )
we find that
72/3
=[b1+b 10.7
c =i+ 2ml]\/712/3+b§var(Z|X) (109

where m is E(Z|X), usually recovered via the linear regression:

E(Z|X)=mo+mX

3We can write the standard deviation of the error in this way even though, given that we assumed e in Eq. (10.1) had a
logistic distribution, v will almost certainly not have a logistic distribution.
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In a linear model, the total effect of X is equal to its direct effect plus its indirect effect, with the
latter given by the product of the effect of X on Z and the effect of Z on Y. In the nonlinear probability
model with binary Y, however, those terms make up part of the unconditional effect, but there is also
an extra term (the term under the square root sign in (10.7)) whose size depends on both the size
of the effect of the variables omitted from (10.6a) to yield (10.6b) and their conditional variance.
Furthermore, this term is present even when the omitted variable, Z, is independent of X because then

(10.7) reduces to
72/3
=b,|————— 10.8
“ 1\/712/3 + bivar(Z) (10.8)

(Winship and Mare 1984; Yatchew and Griliches 1985). Unlike linear models, even when X and Z are
orthogonal, the coefficient of X will vary, depending on whether Z is included or not. And, as (10.8)
shows, the unconditional effect, ¢, will be smaller than the conditional effect, b;, when X and Z are
uncorrelated. When X and Z are correlated, we often assume that the inclusion of Z, in so far as it
mediates the effect of X on the outcome, will cause the coefficient of X to shrink. But the term under
the square root sign in (10.7) is less than one, and so this will tend to mask the reduction in the effect
of X.

Equations (10.7) and (10.8) can be derived from the latent variable interpretation of the logit.
The error variance of Eq. (10.5) depends on the error variance of the full model, Eq. (10.1), and the
variance of the omitted term involving Z:

var(v) = o - var(u) + f3var(Z|X) = o (var(u) + byvar(Z|X))

In terms of the coefficients from the latent variable model, we have the path analytic decomposition
y1 = B1 + Bamy, and, given ¢; = y1/¢, by = B1/0, and b, = B, /0, we can write this as

Clé' = (b] + bzml)O' =

Cl% = (b + bzml)% = c; = (by + bomy)

o -sd(u)
o \/(Var(u) + bivar(Z|X))

by the definition of the scale factors. Recalling that u# has the standard logistic distribution, we get
(10.7) because the o term cancels from the top and the bottom of the expression.

When X and Z are independent, the logit coefficient for X in the reduced model, c;, will always lie
between zero and by, its coefficient in the full model (Gail 1986). This is because, given that y; =
in this case, by = 1 /0 and ¢; = B, /¢ and, since Eq. (10.1) explains as much or more of the variance
in Y* than Eq. (10.5), 0 < ¢. But it follows that, if b; =0, ¢; will also equal zero because f; = 0.
That is, failing to control for a variable like Z, uncorrelated with X, will never lead one to find an effect
when none is present (Hauck et al. 1991).4

The difficulties sketched above also apply to the ordered logit and probit and to the multinomial
logit (see Karlson et al. 2012; Breen et al. 2012).

“But Robinson and Jewell (1991: 239) point out that “to test the null hypothesis of no treatment effect in a randomized
study, it is always as or more efficient to adjust for the covariate [Z in our example] ... when logistic models are used”
(parentheses added by authors).
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Table 10.1 Log-linear Panel A: X by Y by Z table
model in which Y is related 7=0 7=
toX and Z and X and Z are

X=0 X=1 X=0 X=I
Y=0 4228 1772 3,000 1,000
Y=1 1772 2228 3,000 3,000

Panel B: X by Z table

independent

X=0 X=1
Z=0 6,000 4,000
Z=1 6,000 4,000
Panel C: X by Y table

X=0 X=1
Y=0 17,228 2,772
Y=1 4772 5,228

Log-Linear Models

Log-linear models have been extensively used by sociologists and others to model data in the form
of contingency tables, in which each cell contains a count of the number of cases having a particular
combination of values on a set of categorical variables. They are often derived under the assumption
that the cell counts follow a Poisson distribution (but see Fienberg 1977 for a more complete
discussion of the distributional assumptions that can underlie these models), and, as we might expect,
because of the close relationship between the Poisson and binomial, the problems explained above
also apply to log-linear models, as the example in Table 10.1 shows.

Panel A of Table 10.1 shows a cross-tabulation of three binary categorical variables, X, ¥, and Z. Y
is related to both X and Z but, as panel B shows, X and Z are independent. In panel A, the odds ratio
involving X and Y given Z equals 3 at both Z=0 and Z= 1, but when we ignore Z (i.e., we collapse
the table over the Z margin), the odds ratio (shown in panel C) is 2.86. The difference is not large, but
this is because it depends on the variance of Z, and since Z is a dummy variable, this can never exceed
0.25 (which is the value it takes in this case).

In the conventional log-linear notation, the comparison here is between two models: the first is (YX)
(YZ) (ZX) and the second (YX) (ZX).> Even though Z is unrelated to X, removing the YZ association
from the model nevertheless causes the XY relationship, as measured by their odds ratio, to change.
Hauck et al. (1991), who present a similar example, call a variable like Z a “maverick” because its
omission biases the estimate of the odds ratio, but it is not a classic confounder in the sense of being
associated with both treatment (X in our example) and outcome (Y). Hauck et al. (1991) also point
out the two conditions under which a maverick’s exclusion will not change estimates of the XY odds
ratio. We have already met the first in our discussion of nonlinear probability models: when X has no
effect on Y, omitting Z cannot artificially induce an effect. The second condition is that omitting Z
will be inconsequential when X and Z are conditionally independent given Y. That is, Z and X should
be independent at any (and all) value(s) of Y. In the example shown in Table 10.1, this does not hold:
the XZ odds ratio at both levels of Y is 0.795.

30r, equally, (YX), if we collapse the three-way table over the Z margin.
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Identification in Nonlinear Probability and Log-Linear Models

The parameters of nonlinear probability models can be interpreted in two ways. In the first, we view
them as estimates of the underlying parameters of the true latent variable model. As such, they are
identified only up to scale. Under the second interpretation they tell us the effect of predictor variables
on the categorical outcome, expressed on the scale of the model’s linear index function, such as
log odds ratios in the case of the logit. The parameters of log-linear models are usually interpreted
in terms of log odds ratios too. Under both interpretations the estimates are more sensitive to the
particular specification of the model than is the case with linear models because they will be affected
by the inclusion or exclusion of predictors, whether or not these predictors are correlated with the
predictor of interest. In this sense, the properties of coefficients from these models are very similar to
those of the standardized regression coefficient (Blalock 1967a, b; Kim and Mueller 1976) and of the
correlation coefficient (Achen 1977; Breen et al. 2012).

Nonlinear Probability Models and Causal Effects

Potential Outcomes in Nonlinear Probability Models

We define individual causal effects using the potential outcomes or counterfactual approach (for recent
expositions see Morgan and Winship 2007; Imbens and Wooldridge 2009; Gangl 2010). Let ¥ be a
continuous response variable and X a treatment with J discrete values. Under the stable unit treatment
value assumption, we define potential outcomes for each individual unit, indexed by i, as

Yix = Yix=0Yix=1,..Yix=y-1), j=0,....,J—1 (10.9)

These are the outcomes when X takes the values O through J— 1, respectively. In the binary
treatment case average causal effects are given by E(Y; x=1 — Yi x=¢): this is the average of the
difference in each unit’s potential outcomes. But, because we only observe one of the potential
outcomes for each unit in a study, our ability to recover the average causal effects depends on how well
we can proxy the unobserved individual potential outcomes with the observed outcomes for another
individual, who is similar in terms of observed and unobserved characteristics. In other words, we
would like to use the observed differences in average outcomes between similar units that did and
did not receive treatment in place of the unobserved difference in the expected values of the potential
outcomes. We obtain unbiased estimates of average causal effects in this way if

vx [ [x (10.10a)
Condition (10.10a) says that the values of the potential outcomes are unconditionally independent

of treatment assignment, X. This is a strong condition, and we would normally be justified in supposing
it held only in the case of random assignment to treatment. A weaker assumption is

Yx[ [ x|z (10.10b)

(10.10b) says that the potential outcomes are independent of treatment conditional on some set
of observed covariates Z. Z stands for one or more confounders of the Yx — X relationship such that
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controlling for them is sufficient to render Yy and X independent. Z need not always comprise the full
set of Yy — X confounders, and there may be more than one set, Z, for which (10.10b) holds true.
Given (10.10b), we write

E[Y;x=1—Yix=0lZi] = E[Yi x=1|Zi] — E[Y; x=0|Zi]
=EWYi|Zi,X; =1)— E(Yi|Z;, X; =0) (10.11)

(10.11) tells us that, in this case, when we condition on Z, we can use the difference in the averages
of the observed values of ¥ among those who did and those who did not receive treatment, X, to
estimate the mean difference in potential outcomes Yx. But note that this derivation relies on an
assumption of linearity in the relationship between the outcome and the predictors, X and Z, allowing
us to set the expected difference of the potential outcomes equal to the difference in their expected
values.

Now suppose that Y is a categorical or ordinal outcome: how would we apply the potential
outcomes interpretation of causal effects? In nonlinear probability models, the probability pr(Y =y)
is, by definition, a nonlinear function of the model’s predictors. However, L(Y) is a linear function
and so we might consider using this in deriving the counterfactual causal model. We define potential
outcomes as L(Y); x=;,j =0,...,J — 1 and we can write the counterpart to (10.11) as

E[(L(Y;x=1) — L(Y; x=0))|Z"i]
= E[L(Y; x=1)|Z";] — E[L(Y; x=0)|Z'i]
=E(L(Y)IZ'.X; = 1) = E(L(Y)|Z'i. X; =0) (10.12)

The set of control variables Z’ plays the same role in (10.12) as Z in (10.11). In the case of the
logit, the first part of (10.12) is the average of the conditional log odds ratios for each unit based on
their potential outcomes:

£ (log % [Pr(Yil = 1|Z:i)i| y [Pr(Yz‘o = 0|Z/z‘)“)
pr(Yi = 0|Z';) pr(Yio = 11Z";)
while the final part of (10.12) is the conditional average of the log odds ratios among those who did
and those who did not receive treatment.

( %|:pr(Y:1|Z/,X:1):| [pr(Y:O|Z’,X:0)}})
E | log X
pr(Y =0|Z",X =1) pr(Y =112, X =0)

The latent variable equation underlying a nonlinear probability model is also usually linear (see
Eq. 10.1), and so we have two possible metrics on which the response might be measured and thus
two metrics for causal effects. The first is the unobserved latent variable, Y*, and the second is the
linear response index, L(Y). Throughout we will use both metrics, depending on the question at hand.

In this chapter we consider three broad situations in which we want to estimate causal effects:
when (10.10a) holds, as occurs in randomized controlled trials; when (10.10b) holds, as we might
assume in an observational study; and when neither holds (often a more plausi