PROBABILISTIC METHODS FOR STRUCTURAL DESIGN



SOLID MECHANICS AND ITS APPLICATIONS
Volume 56

Series Editor: G.M.L. GLADWELL
Solid Mechanics Division, Faculty of Engineering
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

Aims and Scope of the Series

The fundamental questions arising in mechanics are: Why?, How?, and How much?
The aim of this series is to provide lucid accounts written by authoritative research-
ers giving vision and insight in answering these questions on the subject of
mechanics as it relates to solids.

The scope of the series covers the entire spectrum of solid mechanics. Thus it
includes the foundation of mechanics; variational formulations; computational
mechanics; statics, kinematics and dynamics of rigid and elastic bodies; vibrations
of solids and structures; dynamical systems and chaos; the theories of elasticity,
plasticity and viscoelasticity; composite materials; rods, beams, shells and
membranes; structural control and stability; soils, rocks and geomechanics;
fracture; tribology; experimental mechanics; biomechanics and machine design.

The median level of presentation is the first year graduate student. Some texts are
monographs defining the current state of the field; others are accessible to final
year undergraduates; but essentially the emphasis is on readability and clarity.

For a list of related mechanics titles, see final pages.



Probabilistic Methods
for Structural Design

Edited by

C. GUEDES SOARES

Instituto Superior Técnico,
Lisbon, Portugal

3"

SPRINGER SCIENCE+BUSINESS MEDIA, B.V.



A C.IP. Catalogue record for this book is available from the Library of Congress.

ISBN 978-94-010-6366-1 ISBN 978-94-011-5614-1 (eBook)
DOI 10.1007/978-94-011-5614-1

Printed on acid-free paper

All Rights Reserved

© 1997 Springer Sciencet+Business Media Dordrecht

Originally published by Kluwer Academic Publishers in 1997

Softcover reprint of the hardcover 1st edition 1997

No part of the material protected by this copyright notice may be reproduced or
utilized in any form or by any means, electronic or mechanical,

including photocopying, recording or by any information storage and

retrieval system, without written permission from the copyright owner.



In Memory of

Prof. Julio Ferry Borges
and

Prof. Jodo Tiago de Oliveira



FOREWORD

This book contains contributions from various authors on different important topics
related with probabilistic methods used for the design of structures.

Initially several of the papers were prepared for advanced courses on structural
reliability or on probabilistic methods for structural design. These courses have been
held in different countries and have been given by different groups of lecturers. They
were aimed at engineers and researchers who already had some exposure to structural
reliability methods and thus they presented overviews of the work in the various
topics.

The book includes a selection of those contributions, which can be of support for
future courses or for engineers and researchers that want to have an update on specific
topics. It is considered a complement to the existing textbooks on structural reliability,
which normally ensure the coverage of the basic topics but then are not extensive
enough to cover some more specialised aspects.

In addition to the contributions drawn from those lectures there are several papers that
have been prepared specifically for this book, aiming at complementing the others in
providing an overall account of the recent advances in the field.

It is with sadness that in the meanwhile we have seen the disappearance of two of the
contributors to the book and, in fact two of the early contributors to this field.

Prof. Ferry Borges, who had his career at the National Civil Engineering Laboratory,
in Lisbon and later became also Professor at the Technical University of Lisbon, passed
away as a consequence of a continued illness. However, he has been active with
lectures and conference participation until the later moments of his life. Ferry Borges
was co-author of one of the earliest textbooks in structural reliability and he has been
very active in the field of civil engineering codes in Europe, participating in many
international bodies in that area.

Prof. Tiago de Oliveira, very much known by his contributions on the statistical
theories of extremes has always shown an interest on how those models and methods
that could be used in engineering and in particular in structural reliability analysis. One
can find this association for example in the first ICOSSAR Conference organised by
Freudenthal in 1972. Tiago de Oliveira, who started his academic career at the
University of Lisbon, moved later to the New University of Lisbon and he was very
committed to the Academy of Sciences in Lisbon, when he passed away from a heart
attack.

These two gentlemen had an important impact on their generations in their specific
field of activity and they have been the inspiration of several important contributors
who came later. Therefore 1 am very pleased to dedicate this book to their memory.
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The book starts with the basic aspects of structural design, which set the stage to later
contributions and define the boundaries in which reliability based methods, can be used
as a tool for design. With the continued improvement of the computational techniques,
the emphasis in real problem solving has shifted towards the modelling and in this
connection the quantification of model uncertainties is very important. Response
surfaces are being used more widely for situations in which the limit state functions
require relatively heavy computational schemes.

The limit state conditions are a result of different modes of collapse. An important one
results from fatigue, which is dependent on many random factors and thus can be
described by different probabilistic formulations. Another important mode of collapse
is the buckling collapse, which can occur, in diftferent types of components. The case
of columns and plates is dealt with here. Finally, reference is also made to more
complicated collapse modes that are represented by implicit formulations, which
require special techniques to handle.

Having considered the reliability of components, it is necessary to analyse the case of
structural systems. To deal with structures it is necessary to model also the loads, in
particular their extreme values and their combined values, and these are the topics of
the next two contributions.

A recent and rapidly expanding field of activity is the application of stochastic
processes to model the variability of loading and material properties, as well as the
assessment of reliability. Stochastic finite elements are able to cope with the variability
of these properties and they are being applied to different types of problems.

Having covered various tools for reliability analysis of structures, design and
maintenance are the next type of subjects of interest. Reliability methods are very
useful to design and calibrate design codes, and an overview is provided of several
developments in the field. Also, the specific aspects of seismic design are presented as
well as reliability based maintenance.

Several topics are covered in this book, including modelling of uncertainty, prediction
of the strength of components, load modelling and combination, assessment of
structural systems, stochastic finite elements and design considerations. It is hoped that
such a series of contributions will be found useful for practitioners as well as for
researchers.

Carlos Guedes Soares
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BASIC CONCEPTS OF STRUCTURAL DESIGN

J. FERRY BORGES
Laboratério Nacional de Engenharia Civil
Lisboa, Portugal

1. Introduction

In the last 15 years several international documents have been published dealing with
the basic concepts of structural design.

The Joint Committee on Structural Safety, JCSS, approved in November 1976 the
Common Unified Rules for Different Types of Construction and Materia which were
published in 1978 as volume 1 of the International System of Unified Standard Codes of
Practice for Structures (Bulletins d' Information n® 124/125 of the Euro-International
Committee for Concrete, CEB). According to a recommendation of the Economic
Commission for Europe of the United Nations Economic and Social Council, the JCSS
prepared the General Principles on Reliability for Structural Design which were used
by ISO in the revision of ISO 2394. These General Principles were published with the
General Principles on Quality Assurance for Structures in Volume 35 of the Reports of
the International Association for Bridge and Structural Engineering, IABSE, in 1981.

The Commission of the European Communities in a first draft of the Eurocode n° 1
( EUR 8847, 1984), followed these general principles, which were further used in the
drafting of Eurocodes 2 to 8. '

In 1988 the JCSS, recognizing the need to update the existing documents, prepared
a Commentary on ISO 2394 published by CEB in Bulletin d’Information n° 191, July
1988. The CEB-FIP Model Code 1990 (CEB Bulletin d’Information n® 203, July 1991)
adopted the new concepts without deviating from the design operational rules of the
previous Recommendations.

In the framework of the Construction Products Council Directive 89/106/EEC,
Interpretative Documents on the essential requirements adopted in this Directive have
been prepared. The Interpretative Document ID 1 concerns Mechanical Resistance and
Stability. Intended to be a guideline to the preparation of CEN Standards, ID 1
expresses basic concepts directly related to structural design.

The main steps of the evolution of the methods adopted in the design of buildings
and other civil engineering works correspond to the introduction of the following
general concepts:

- ultimate and serviceability limit states
— probabilistic formulation of structural safety
— essential requirements and performance criteria

1
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2 J. FERRY BORGES

— quality assurance and quality management
— hazard scenarios and risk analysis

~ risk management and technical insurance
~ basic variables. Types of knowledge.

The concepts of limit state and of probabilistic safety were first presented in a thesis
by Max Mayer published in 1926 entitled Safety in Constructional Works and its
Design According to Limit States Instead of Permissible Stresses (1). Although the
fundamental ideas were well expressed in this thesis, the concept of limit state was
introduced in codes only in the middle forties, (in the Soviet Union). Pioneer work on
probabilistic safety in structural engineering is due to Freudenthal (2) and Torroja (3) in
the late forties. The design method based on partial factors, suggested by Torroja, was
first implemented in the CEB recommendations of 1963 (4).

The fundamentals of the probabilistc methods for structural design are not
presented in this lecture, which covers concepts of a more general character. However
the concepts which are presented form a convenient introduction to the probabilistic
approach.

2. Requirements and Performance Criteria

The notions of requirement, performance criteria and limit state are intimately related.
Requirements are general conditions imposed on the behaviour of the construction by
the owner, the user or the authorities. In order to derive methods of evaluation
(analytical or experimental) to be used in design, requirements have to be transformed
into performance criteria. Requirements indicate the needs in general terms;
performance criteria are technical conditions which express the requirements. Limit
states define the borders between acceptable and unacceptable performance.

As in many other technical activities, the guidance to building engineers is usually
given by means of standards. They are usually expressed in a prescriptive way,
indicating how things should be done, and not justifying the reasons for doing so, and
not stating the aims to be attained. The drawbacks of this presentation were first
recognized in the aviation industry which in 1943 recommended that codes should be
stated in terms of objectives rather than specifications. That is, the code should spell out
what is to be achieved and leave the designer to choose how this will be achieved (5).

Lists of human requirements in housing have been presented by Blachere in 1966
(6). In 1970, the CIB set up the Working Commission W60 - Performance Concept in
Building; in 1982 they published a comprehensive state-of-the-art review of the
performance approach in building practice.

One of the first wide applications of the performance concepts to housing was
carried out in the Operation Breakthrough by the National Bureau of Standards in 1970
(7). This operation, sponsored by the Department of Housing and Urban Development,
was based on two main concepts:
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The adoption of performance criteria for evaluation of prototype innovative and
technologically advanced housing systems, and the use of quality assurance provisions
that establish general requirements and guidelines for the quality of production units.

The Committee on Housing Building and Planning of the Economic Commission
for Europe of the United Nations, under the project aimed at international
harmonization of standards and control rules for building and building products, has
further developed the performance concept. Since 1978 this Committe has been
concerned about defining human requirements. In 1981 they published (8) a list of 20
requirements related to the housing user, and 5 requirements for the limitation of
harmful effects or nuisances produced by the building and affecting its surroundings.
The Compendium of Model Provisions for Building Regulations details these
requirements (9).

In the field of structural behaviour, ISO 2394 indicates three fundamental
requirements: safety, serviceability and durability.

In the commentary to this document, the Joint Committee on Structural Safety
enlarged the list of requirements by considering, in parallel to the safety requirement,
the structural insensitivy requirement (limited damage due to expected and unexpected
hazards) and further requirements on economy, adaptability, esthetics, etc.

3. Quality Assurance

According to the ISO Standards, series 9000, quality assurance is a set of planned
activities which lead to the guarantee that a product or a service satisfies established
requirements.

In the planning of quality assurance, four levels are usually identified:

Level 1 - Activity limited to the quality control of the final product.

Level 2 - Includes the control of the production process.

Level 3 - Extends the control to the production management, including production

programming, definition of responsibilities, documentation and auditing.

Level 4 - Conducts the whole management process, including flow of information,

motivation, professional upgrading, etc.

The choice of the quality assurance level should depend on the importance of the
risks to be avoided.

The activities to be carried out in any quality assurance program are:

— plan the activity (written specification)

— follow the established plan (respect the planning)

— record all steps (written control)

The implementation of quality systems in an organization is influenced by many
factors such as the objectives of the organization, the product or service under
consideration and the specific experience of the organization. The international
standards of the series 9000 aim to clarify the relationship among the principal quality
concepts and to provide guidelines that can be used for internal quality management
purposes (ISO 9001/3). These ISO standards are adopted as national standards by
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several countries. That is the case for Portugal, with the Normas Portuguesas NP-
3000/0/1/2/3, published in 1986, and for the U.K. with the British Standards BS 5750,
Prts 0, 1,2, and 3, published in 1987. The following comments refer to the British
Standards.

BS 5750 Part 0 concerns principal concepts and applications. It is divided into
Section 0.1 - Guide to selection and use and Section 0.2 - Guide to quality management
and quality system elements.

A vocabulary on quality terms is given in ISO 8402. However in BS 5750 it was
deemed convenient to redefine some terms considered of particular importance such as:
quality policy: the overall quality as formally expressed by the management; quality
management: the aspect of the whole management function that determines and
implements the quality policy; quality sytem: the organizational structure,
responsibilities, procedures, processes and resources for implementing techniques and
activities that are used to fulfil requirements for quality.

As is shown by these definitions, there is an intimate relationship between quality
assurance and management. Quality systems may be used in two different situations;
contractual and non-contractual. In the first case, it is contractually required that certain
quality system elements be part of the suppliers’ quality system. In the second case,
quality assurance is applied by the initiative of the producer as an adequate
management policy.

Although quality assurance is extensively implemented in many different
industries, its use in building and particularly in structural engineering is limited

As indicated, an early document in this field was published by the Joint Committee
on Structural Safety in 1981. This document considered that the basic concepts of
quality assurance are: the functional requirements, the use and hazard scenarios, the
structural concept, the responsibility and the control.

4. Hazard Scenarios and Risk Analysis

Rational structural design should be based on adequate idealization of the structural
system and of its behaviour. Risk analysis is a very useful tool on which to base
economic and engineering decisions.

It is particularly adequate for dealing with catastrophic low probability high-
consequence events, as presented in nuclear, chemical and oil industries (10). The
methods of risk analysis are permeating every branch of construction.

To carry out risk analysis it is necessary to identify the assumed hazards, to
estimate their probability of occurrence during a reference interval of time, and to
estimate the probability of the loss, or amount of damage which corresponds to the
occurrence of each hazard. The different amounts of loss are obtained by combining
these probabilities. These probabilities, including information derived form other
sources, mainly concerning human behaviour, should guide economic and technical
decisions. In several cases, not only the central values of the risk function, but also the
extreme values corresponding to small and high fractiles are paramount for guiding the
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decisions. This is particularly so when distinction is made between the interests of
individuals and society.

In risk analysis the following five phases may be defined:

I. identification of the hazard

I1. analysis of the hazard

I1L. risk estimation

IV.assessment of consequences

V. risk evaluation and control

Thus, it is necessary first to identify the hazard scenarios, to search for cause and
effect relationships, what may be done within disaster planning activities. Historic
information, possibly obtained by consultation of data bases, or by interviews with
people involved, may be useful.

In generic risk analysis, accident logic trees are usually adopted. Giannini, Pinto
and Rackwitz exemplify how to deal with them into structural problems (11).

Logic trees are formed by two parts, the first one describing alternative hypotheses
concerning combination of actions, types of hazards, mechanical models, etc., and the
second part describing the physical states of the sub-systems in which the structure is
divided.

The tree should contain all the possible sequences through which the structure may
pass, and the quantitative probabilistic assessment of each sequence. The last column
identifies the different damage states (limit states) and indicates the final probabilities of
these being exceeded.

The probabilistic assessment should be obtained by a combination of frequentist
and subjective approaches. The human intervention in the process should be considered
by including strategic decisions and procedures, as well as human errors, (due to
omission and commission).

The probability distribution function which defines the risk should be obtained by
combining the probability of occurrence of the hazard with the probabilities of the
consequent damages.

Finally, risk evaluation and control may be based on the comparison of risk in other
systems, identification of attitudes to safety and risk, impact of risk (at different social
levels), and benefit studies, particularly those concerning investing in increased safety.

5. Risk Management and Technical Insurance

For a specific activity, the aim of risk management usually consists in increasing the
benefit and in reducing the loss and/or in reducing the corresponding risk. To achieve
these aims potential strategies may be followed (12):
I. eliminating or avoiding the possible occurrence of the hazards at the origin.
II. avoiding the hazard acting in the system, e.g. by modifying the project concept,
I1I. controlling or reducing the losses, e.g. by adopting safety measures,
IV.adopting a design which corresponds to a sufficiently small risk,
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V. accepting the possibility of occurrence of the loss and preparing to reduce its

consequences.

These strategies may be combined.

These rules are of a general character. For structural design, their implementation
may be exemplified: for a hazard consist the of the impact of a car against the column
of a building possible strategies are:

I. prevent cars from approaching the building,

II. install a protection for the column that would prevent the impact,

I11. create a bracing system to avoid the collapse of the building if the column fails,

IV.design a sufficiently robust column, with a small probability of failure by
impact,

V. assume that the column may fail, but avoid installing services on it, to reduce
the cost of a possible failure.

Risk evaluation should be based on overall costs. Overall costs should be obtained
by adding the usual production costs and the non-quality costs including: prevention,
assessment, controlling, testing, observation of the behaviour, commissioning,
professional liability insurance, all risk and other insurances, and other administrative
charges.

Life-cycle cost is the total cost of a system over its life time. To obtain the values
over the life time, annual values should be discounted and integrated (13). Discounting
involves converting cash-flows that occur over time to equivalent amounts at a common
date. This common point is usually the starting point of the life-cycle cost analysis.
When estimating benefits and costs in monetary terms it is necessary to consider
inflation. Distinction should be made between current money (which is adjusted by
taking inflation into account) and constant money (which is not adjusted by the effects
of inflation or deflation).

6. Basic Variables. Types of Knowledge

As an introduction to probabilistic methods for structural design particular attention is
due to the concept of probability. In probabilistic reliability, it is assumed that the basic
variables which represent the actions, the mechanical properties of the materials and the
geometry of the structural elements are probability distribution functions, or in more
general terms, stochastic processes. If their randomness may be neglected, variables
may be assumed to be deterministic. Furthermore it is generally accepted that
probabilities are not only a counterpart of frequency but also a subjective measure of
degree of confidance. By the adoption of the Bayesean approach, a priori information
canbe....... the theory of probabilities is a powerful tool to base decisions (14).

The theory of fuzzy sets is an alternative way to idealize the dispersion of variables.
Criated in 1965 by Zadeh, it gives mathematical expression to the imprecision of
knowledge usually expressed by language. The interest in fuzzy sets, fuzzy control and
fuzzy systems is rapidly growing (15) and finding application on many multiple
scientific and technical branches (16): cognitive engineering (17) and architecture (18).
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From a conceptual point of view, fuzziness and randomness are completely distinct,
one belonging to set theory and logic, and the other to measure theory. Fuzziness
concerns the modelling of inexactnesses due to human perception processes, and
randomness concerns statistical inexactness due to the occurrence of random events.
However approaches for combining the two concepts have been established, leading to
the theory of fuzzy random variables (15).

The theory of games, in the field of decision theory, is due to von Neumann and
Morgenstern (19). The simplest and most typical problem of the theory of games is the
two person game. Consider two players A and B, each one having the possibility of
making a finite number of choices. The payments of player B to player A are defined
by a matrix a;. The game consists in player A choosing a and player B choosing a
column of the matrix. Each player tries to minimize his losses and maximize his
winnings.

Both players know the matrix, but each one ignores his adversary's choice. The
hypothesis that the adversary will try to minimize his losses and maximize his winnings
may be adopted as a convenient base for decisions.

Let us analyse each player's choices and their consequences. When A chooses row

i, he is sure to receive at least min(a,j).; trying to receive as much as possible, this
J

player will be interested in choosing that row i for which the min(aij)v is maximum.
J

Thus will aim at max(min(aij ) j) . Likerwise, when B chooses column j, he is sure to

pay no more than max(a,.j,) Thus will aim at max(min(aij ) j). .
i i
The decision rules that consists in choosing these maxima or minima are called max
min and min max respectively.

If matrix a; is such that

max(min(,),), = min(a;) = v 1)

the game is called strictly determined and has the value v. In this case it can be proved
that the indicated stategies are the most convenient for both players.

In general max(a,.j), is differennt from min(a,.j).. In this case it is no longer
1 1

possible to define a deterministic choice (pure strategy) for which the game has the
same value for the both players. However this aim can be secured by using a more
involved strategy.

Let us consider for instance a very simple game defined by the following matrix

A=|a a,, a; =a,, a,,=0 10 ,
a,a,| ay=7? ?=0][01 @
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In this case. Suppose that A decides, in a random way, to choose row 1 with probability
p and row 2 with probability 1-p. If then B chooses column 1, the expected value of A's
income will be

v =pa, +(l-pla, =p 3)

If, however, B chooses column 2, the expected value of A's income will be

v, =pa, + (I-p)a,, = 1-p “4)

Thus, A can choose a strategy for which the expected value of his income is
independent of the decisions of B. In the present case he has to take

v, =v, = p=l-p=1/2, 5)

B could think the same and make his payments independent of A's decisions. It is
obvious that the expected value of A's income equals to the expected value of B's
payments. .

A strategy including a random choice is called a mixed strategy.

A strategy is optimal for A when he obtains an expected v that cannot be reduced
by the choices of B. For non-strictly determined games it can be proved that optimal
strategies are mixed strategies. The main object of the Theory of Games is to find
optimal strategies.

Note that the decision rules derived from the Theory of Games are entirely different
from those corresponding to a probabilistic idealization. If, for example, in the above
instance of the game, A is convinced according to probabilities that he can estimate
that B is making choices in a random way, A will no longer consider the minimax rule
as convenient and may prefer to use Bayes's theorem.

The theory of games is based in strategic choices of the values of the variables and
these are different from the probabilistic concepts that are the basic tools of structural
safety assessmente.

Thus, four types of knowledge have been identified: deterministic, probabilistic,
fuzzy and strategic. They correspond to different theoretical formulations.

7. Rational Decisions and the Concept of Utility

The design of structures on a purely economic basis corresponds to the decision rule:
minimize the expected value of the overall cost. This simple economic criterion may be
improved by introducing the concept of utility. The first definition of utility was
presented by Daniel Bernoulli in the sentence: the utility of an additional profit is
inversely proportional to the existing wealth this implies that the concept of utility is
dependent on the status of the person that perceives it.
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The following definition of utility is due to von Neumann (19). Consider a set of
outcomes, 0, ...0, . The correspondence between these outcomes and a set of real
numbers p,...u, , utilities, is established in the following way.

It is assumed that an order of preferences can be established to the outcomes 9, .
Thus the outcomes can be ordered in the following way:

6, <0, <..<H <6, <..<0, 6)

Where the sign < means that if it is possible to choose between outcomes 6; and
0,,,, the second one is chosen. The concept of utility allows one to quantify these

preferences. This quantification assumes a personal rational behaviour; the scale of
utilities is arbitrary and only measures the relative value of the preferences.

Given the outcomes 6, and 6,, the utility p, expressed as a function of utility 1,
is given by

1 (8,) = 1, ©) '7” ™

Here p is a probability in a game which consists in obtaining the outcome 6, with
probability p and outcome 6, with probability 1-p. The value of p is chosen by the
person who is defining the scale of utilities which reflects his preferences.

The type of outcome O, is not specified. For economic problems outcomes are

usually amounts of money. In this case the indicated definition allows one to relate a
scale of monetary values to a scale of utilities. In general this relation is non linear.

The shape of the curve reflects the utility for a given person of a given amount of
money, Fig. 1. This utility depends in a large measure on the fortune owned. The scale
of amounts of money should be expressed in national or regional currencies, such as
dollar or European units.

UTILITY CURVE 1

curve 2

/ AMOUNT OF MONEY ($)
A (FORTUNE OWNED)

Figure 1. Relationship between utility and amount of money (fortune owned).




10 J. FERRY BORGES

We may illustrate the relationship between utility and money shown in Fig. 1 by
considering the behaviour of people agreeing or refusing to participate in a probabilistic
game. One player may decide to gamble, even if he knows that the expected value of
the winnings is smaller than the cost of participating in the game (such gambler
considers the utility of large amounts of money more than proportional to the utility of
small amounts (curve 1). On the other hand a player may decide not to gamble even
knowing that the expected value of the winnings is larger than the cost of participating
in the game (considers the utility of large amounts of money less than proportional to
the utility of small amounts (curve 2).

The usefulness of the concept of utlity implies that those who have a decision to
take are able to assign utilities to the various possible consequences of their choices. In
many areas of human activities this may not be possible. However the concept of utility
is a step toward the quantification of decision rules as compared with simple monetary
terms. The theory is particularly useful in formulating trade-offs in problems which
deal with engineering compromises.

Sometimes, utility and monetary gain are equivalent: expected utility equals
expected gain, and optimizing the gain coincides with optimizing utility. After a
number of cases, the average gain per case will approach the expected gain. The
decision rule is rational. In the long run any other rule will give a smaller gain.

On the other hand, the decision maker may be in a situation where only once or a
few times in a life time, has he to deal with a case of personal importance for him. A
prudent decision maker will prefer the safe to the unsafe, while the daring decision
maker will prefer the opposite if there is a greater gain to be made by this choice. The
choice of the prudent will tend to move to a smaller gain than the expected one, but
‘with a smaller probability of the expected value being exceeded. The choice of the
daring one will do the opposite.

These types of choices may be expressed by non-linear relationships between utility
and gain, such as shown in figure 1.

8. Implementation of Basic Concepts

The vast Eurocodes programme and the great amount of work involved in it, gives it a
special role in the guidance of other structural codes.

A first example of this assertion is the draft: D 01 European Greenhouse Standard
prepared by the International Society of Horticultural Science, dated June 1991 (20).
This document is based on the draft of Eurocode 1, June 1990 and on the drafts of the
other Eurocodes available to this date.
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TABLE 1. Document D 01 introduces three classes of greenhouses according to Table 1:

Design Classification

Class Minimum Design Life, R (years)

Gl 15
G2 10
G3 5
TABLE 2
Factors
Adjustment
Factor Classification

Wind Snow Factor

0906 0.710 0.925

0.873 0.612 0.900

0.815 0.445 0.850

For these classes Table 2 shows the adjustment factors on the 50 year recurrence of
interval wind velocities and snow loads. The transformation of wind velocities to
different recurrence intervals is carried out according to Eurocode 1. The characteristic
actions thus obtained are multiplied by a classification factor, also indicated in the table
2.

According to D01, after applying these factors, the designer should follow the usual
Eurocode rules.

It is possible to compute the theoretical probabilities of failure which correspond to
each class by adopting the methods and tables presented in (21 and 22). This
computation leads to the following values (Table 3):

TABLE 3
Class Min. design life, Yearly probability Probability of failure
R, Years of failure in R years
Gl 15 5x10% 75x10%
G2 10 10x10* 100x10*

G3 5 43x10° 215x10*
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Glasshouses G2 have the probability of failure in 10 years of 102 which would
correspond to a theoretical mean life time of the order of magnitude of 1000 years and
not 10 years as suggested by their label. The situation is similar in the other cases. The
reference to life time is meaningless.

The aim of introducing safety classes should be to optimize the overall cost. This
optimization should not be based on probabilistic reliability alone, and should include
quality assurance and economic considerations. The reference to design life is
misleading. Designing for useful life is usual for electric components and similar
products (23), and involves the concept of durability. Present knowledge in civil
engineering is insufficient to quantify this criterion.

A further comment on D 01 concerns the numerical values of the adjustment
factors. It is excessive to define these factors by three significative figures. It is
considered that the drawbacks and omissions of D 011 mainly follow from omissions
of Eurocode 1. Recently the decision was taken to prepare a first section on Basic
Principles to be included in EC 1. This section should deal with risk analysis, quality
assurance and safety differentiation.

A second example of draft of standard which is based on the Eurocodes is the
document CEN/TC 152 N30 - Fairground and Amusement Park Machinery and
Structures - Safety dated June 1991 (24). This draft covers a broad variety of structures
and machinery. In contrast to the standard on greenhouses, this standard is concerned
mainly with the safety of persons, public, passengers and personal, and not with an
economic optimization at the expense of reduced safety. The document produced by TC
152 is based on past experience and risk analysis. The list of references includes the set
of Eurocodes, a large number of European norms and ISO Standards. However it
excludes the ISO basic standards on Quality Assurance, series 9000. As the principles
of quality assurance are in fact followed, the reason for this omission is not understood.

The draft deals with hazard identification, risk assessment and risk reduction in
general terms. Risk reduction is detailed for the different types of machinery and
structures. Static structural design follows the general principles of the Eurocodes.
Design actions are subject to adaptations due to the special nature of the devices.
Aspects such as location, duration and period of installation, supervision by an operator
and possibilities of protecting and strengthing are duly considered. The document
covers design, manufacture and supply, operation and installation, and approval,
examination and test procedures. The style concerning design is prescriptive.

The publication of these drafts was the main reason for the approval by CEN TC
250, in the London September 1991 meeting, of Resolution n°® 32 requiring Structural
Eurocodes design rules to be dealt with in TC 250 only.

They two examples mentioned call the attention for the need for defining a policy
concerning the coordination of the Eurocodes, not only between them, but also with
other documents to which they are related.
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9. Conclusions

Probabilistic methods of structural design have a firm theoretical supprot, and may be
implemented at different levels compatible with the importance of the problems to be
solved. However they should be considered as one of several means of promoting
safety. Risk management and quality assurance, associated with probabilistic
reliability, lead to improved solutions and permit the adequate treatment of problems,
such as design optimization and safety differentiation. The strict formulation within
probabilistic reliability of these two problems is in general unsatisfactory, from both
technical and economic points of view.

Eurocode 1 should include the presentation of the most important basic concepts
according to a current formulation. In the future it would then be easy to improve the
specific drafts of the various standards in this field. There is no practical difficulty in
introducing these concepts, as the present method of partial factors of safety is
compatible with the broad formulation indicated.

Cranston, in his paper Reflections on Limit State Design (25) summarizes the
controversy concerning the use of states design and probabilistic methods which has
been taking place in the UK during the last 25 years. This paper shows how difficult it
is to introduce new concepts in engineering practice, even if these are simple, logic al
and clear. It is recognized that most of critical comments were pertinent when first
presented. However they are presently superseded, not by the return to the allowable
stress design method, but by the new basic concepts which have been described here.

At the TC 250 London meeting, a resolution was adopted expressing the need for
all CEN/TC's to be made aware of the Agreement clauses requiring Structural
Eurocodes design rules to be dealt with in- TC 250 only. The aim of this resolution is to
stop work on structural design rules outside TC 250, in particular the work concerning
greenhouses.

However, from our point of view, the main reason for the unsatisfactory orientation
of the draft concerning greenhouses is due to the omission in the Eurocodes of guidance
on how to deal with safety differentiation problems which are basically economic.

At the London meeting. Breitschaft presented a list of arguments expressing the
importance of the Structural Eurocodes for the European Community and for CEN. In
this list it is indicated that approximately 35 TC's are concerned with questions of
structural design. To give guidance to these various problems, and to deal with the
numerous mandates received from the Communities, it is imperative to draft the new
Basic Principles less strictly than in the past, making use of the most important
concepts dealt with here. Franco Levi (26), expresses the point of view that civil
engineering codes should not serve merely as a basis for day-to-day design and
execution" but they should also work as an objective record of the significant progress
made by research everywhere, and as a carefully compiled compendium of what has
been done to meet social needs in the field of building".

However we should not forget the convenience of preparing, in parallel to design
standards, guidelines on design, execution and use which may include information from
different sources, outside the strict field of standardization. Design standards should be
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concise, open and covering the fundamentals, to the guidelines: design aids, details
and general information. Recent progress in information technology allows an
efficient storage and retrieval of large volumes of information: multilingual texts,
drawings, photographs, and videos; this material can be supported by advanced expert
systems. The hardware and the software needed to progress along these lines is avail-
able. The problem is to share this task in the most efficient way.

10. Acknowledgment

The collaboration in the revision of this paper by. Castanheta and E. Cansado de
Carvalho, respectively research coordinator and principal researcher of LNEC, is kindly
acknowledged.

11. References

1. Mayer, Max: Die Sicherheit der Bauwerke und ihre Berechnung nach
Grenzkraften instate nach Zulassigen Spanungen, Vorlag von Julius Springer,
Berlin 1926 (English and Spanish translations published by ANATOMIC,
Madrid, 1975). :

Freudenthal, A. M.: The safety of structures, Proceedings of the American Society

of Civil Engineers, Vol. 71, no 8, October, 1945. ‘

Torroja, E. et Paez, A.: La Determinacion del Coeficiente de Securidad en las

Distintas Obras, Instituto Técnico de la Construccion e del Cemento, 1949.

Recommandations Pratiques a I'Usage des Constructeurs. Bulletin d'Information

nQ 39. Comité Europeen du Beton, Paris 1963.

Sande, T: Risk in Industry, Chapter 12 of Risk and Decisions, edited by Singleton,

W.T. and Hovden, J., John Wiley and Sons, Chichester, 1987.

Blachere, G.: Savoir Batir, Eyrolles, Paris, 1966.

Pfrang, E. O.: Operation Breakthrough, National Bureau of Standards,

Washington, December 1970.

International Harmonization of the Technical Content of olden Regulations,

Committee on Housing Building and Planning, Economic Commission for

Europe, HBP/WP.2/R.144, Geneva, March 1981.

9. Compendium of Model Provisions for Building Regulations, Economic
Commission for Europe, ECE/HBP/55, Add. 1 and 2, New York, 1984, 1987.

10. Waller, R.A. and Covello, V.T. (Editors): Low-Probability High-Consequence Risk
Analysis, Advances in Risk Analysis, Plenum Press, New York 1984.

11. Giannini, R., Rackwitz, R., Pinto, P.E.: Action Scenarios and Logic Trees, Joint
Committee on Structural Safety, JCSS, Working Document, IABSE, Zurich,
March, 1991.

12. Borges, J. F.: The Concept of Risk in Building Pathology, CIB Was, Building
Pathology, Lisbon, October, 1991.

13. Borges, J. F. and Castanheta, M.: Structural Safety, Course 101, 3rd edition,
Laboratorio Nacional de Engenharia Civil, Lisbon, 1985.

14. Ditlevsen, O. Bayesian Decision Analysis as a Tool for Structural Engineering
Decisions, Joint Committee on Structural Safety, JCSS, Working Document
published by 1A8SE, Zurich, February 1991.

® NS W A W N



BASIC CONCEPTS OF STRUCTURAL DESIGN 15

15.
16.
17.
18.
19.
20.

21.
22.

23.
24.

25.
26.

Pedrycz, W.: Fuzzy Control and Fuzzy Systems, Control Theory and Applicatlon
Series, John Wiley & Sons Inc. New York 1989.

Gupta, M. M. and Sanchez, E. (Editors): Fuzzy Information and Decision
Processes, North-Holland Publishing Company, Amsterdam 1982.

Blockley, D.I.: Analysis of structural sailures, Proceedings of the Institution of
Civil Engineers, Part 1, Vol. 62, February 1977.

Gero, J.S. and Oguntade, 0.0.: Fuzzy Set Evaluators in Architecture, Computer
Report CR 29, University of Sydney, 1978.

Von Neumann, V. and Morgenstern, O.: The Theory of Games and Economic
Behavior, Princeton University Press, Princeton, 1953.

Greenhouses: Design, Construction and Loading, Draft D 01 European
Greenhause Standard, International Society for Horticultural Science, Scientific
Working Group, June 1991 .

Borges, J. Ferry and Castanheta: M. - Structural Safety, Course 101, 2nd Edition,
Laboratorio Nacional de Engenharia, Lisbon, 1971.

Borges, J. Ferry and Castanheta, M.:. Reliability and Structural Risks in Codifying
Wind Actions, Laboratory Nacional de Engenharia Civil, Lisbon, September 1991.
Schwob, M. et Peyrache, G: - Traite de Fiabilite, Masson & C., Paris 1969.
Fairground and Amusement Park Machinery and Structures, Draft European
Standard CEN/TC 152 N30, June 1991.

Cranston, B.: Reflections on Limit State Design, Structwirl Safety Session, ACI
Fall Meeting, November 1990, Revised March 1991, Paisley College, Scotland.
Levi, F.: The World of Civil Engineering and the Eurocodes, L'Industria Italiana
del Cemento. no 658, Settembre 1991.



QUANTIFICATION OF MODEL UNCERTAINTY IN

STRUCTURAL RELIABILITY

C. GUEDES SOARES

Instituto Superior Tecnico
Universidade Técnica de Lisboa
1096 Lisboa, Portugal

ABSTRACT The different types of uncertainties are considered and their differences
are identified. Various methods of statistical analysis of data are reviewed and their
usefulness and domain of applicability are identified. The common methods of
representing model uncertainties are indicated and several examples of assessment of
model uncertainties indicate how the principles described can be applied. -

Introduction

The formulation of reliability based structural design implies the recognition that the
physical variables considered in engineering are subjected to some variability and thus
should be treated as random variables. The earlier treatments of reliability dealt with the
uncertainty due to the randomness of the physical variables i.e., with their fundamental
or inherent variability.

Soon after it was realised that the description of the random variables was made
through parameters that had to be estimated from the analysis of samples of data.
However the statistical methods for estimating parameters from samples also yield
confidence intervals to the estimated values i.e., the parameters can also be considered
as uncertain quantities and the uncertainty of the estimates depends on the size of the
sample that is used. The scope of reliability analysis was expanded then, including both
the fundamental uncertainty of the variables as well as the statistical uncertainty of the
parameters that describe those variables. In this context the use of Bayesian
formulations was particularly useful (Cornell, 1972).

A source of differences in the calculated values of the reliability index of a given
problem are the different methods of making the relevant engineering predictions. For
any engineering problem there are often several methods available of different degree
of sophistication and accuracy, ranging from the simple ones based on analytical
formulations to the complicated ones based on numerical methods. Although the
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physical problem is the same, the predictions made with the different engineering
theories will be different. This has been recognised as an additional source of
uncertainty, which has been called model uncertainty and has been incorporated in
reliability formulations.

While the inherent or fundamental variability of a physical phenomenon cannot be
changed, the model uncertainty of a mathematical model can be reduced by improving
the model i.e. by making more realistic assumptions and by including more physical
effects in the model.

While in earlier formulations (Ang and Comell, 1975), this uncertainty was called
subjective and was generally estimated by engineering judgement, more recently
quantitative methods have been adopted and it has became clear that this source of
uncertainty needs to be represented systematically when developing reliability
formulations, together with the models of fundamental uncertainty.

This work will address the topic of model uncertainty dealing with methods to
quantify it and to incorporate it in a structural reliability analysis. The assessment of
model uncertainty is very much dependent on the problem at hand so that various
examples will be included from load modelling, response analysis and strength
modelling, to illustrate possible ways of handling its assessments.

Uncertainty Classification

While physical laws describe the regularity of phenomena, relating the expected values
of the different quantities of interest, the uncertainty analysis describes the fluctuations
that can be superposed on that regularity. In developing and applying physical laws it is
always important to assess their limits of applicability and to compare them with
experimental evidence. In doing so it is vital to be able to distinguish between the
systematic mismatches that result from inapplicability of the theories and those that are
simply a result of natural variability.

A better knowledge of the effect of some variables in the physical processes and a
detailed analysis of the measuring methods led to a more widespread treatment of
different types of uncertainties. Three basic types have been considered, namely the
fundamental or intrinsic variability of physical phenomena, the uncertainty associated
with the models used in the analysis and the statistical uncertainty associated with the
estimation of the values of the parameters of probabilistic distributions as described by
several authors in relation with structural reliability (Benjamin and Cornell, 1970; Ferry
Borges and Castanheta, 1971; Ang and Tang, 1975, 1984; Thoft-Christensen and Baker,
1982; Augusti, Baratta and Casciati, 1984; Madsen, Krenk and Lind, 1986 ; Melchers,
1987).

The fundamental uncertainty concerns the random nature of some physical
phenomena, which is described by representing the physical quantities as random
variables or as random processes, depending on whether it is important or not to
account for time variation.
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Model uncertainty describes the limitations of the theoretical models used in the
analysis. They are the mathematical models of the physics of load, load effect or of
structural capacity assessment, whose uncertainty is often related with the level of detail
used in describing the phenomenon studied.

Finally, statistical uncertainty results from the estimation of the parameters of the
probabilistic models from limited samples of data. It can be quantified with the methods
of classical statistics, although the inclusion of statistical uncertainty in parameter
estimation is the subject of Bayesian statistics (Cornell, 1972).

Often the values of the parameters that govern probability distributions are
estimated from samples of data. Different assertions can be made about a population
assuming that it is described by a given probabilistic model with the estimated values of
the parameters. Bayesian statistics recognise that the parameter values are themselves
random and include the effect of that uncertainty on the uncertainty of the predictions.
Bayesian analysis also provide the framework to incorporate model uncertainty in the
analysis.

Statistical uncertainty and Bayesian formulations can also cover the uncertainty of
the probabilistic model adopted instead of only its parameters. Increased amount of data
will generally decrease this type of uncertainty and clarify which probabilistic model
better describes a set of data.

The method of assessing uncertainty depends on the type under consideration and in
the case of model uncertainty it depends very much on the type of problem under study.
Generally speaking fundamental and statistical uncertainty can be assessed by applying
classical statistical methods to the analysis of data. However model uncertainties,
although using also classical statistical methods, have to apply them to different types
of situations. Of particular interest are the cases in which model uncertainties cannot be.
quantified objectively but are assessed on the basis of expert opinion (Cooke, 1991).

Formulations of Model Uncertainties

An important part of the work on model uncertainty is concerned with the mathematical
models adopted to describe loads, load effects or strength capacity. These problems are
more important in the design situation than in the analysis case because the former
methods are of a more simplified nature. Furthermore, since at the design stage often
many parameters that are the result of fabrication procedures are not known, the design
formulations represent explicitly only a limited number of variables, becoming less
accurate when the unrepresented variables exhibit values out of their normal range. The
differences between the formulations in these situations have been explored in a
specific example dealing with analysis and design of a plate subjected to collapse by
compressive loading in Guedes Soares, (1988a).

To assess the model uncertainty of the mathematical models of physical phenomena
it is necessary to compare the results of the method under consideration with the
predictions of a more sophisticated one or with experimental results. In the later case it
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must be ensured that the experimental variability is quantified and deducted from the
total uncertainty.

The first formal treatment of this type of uncertainties is due to Ang and Cornell
(1975), who represented it by a random variable B which operates on the model

prediction X to yield an improved estimate of the variable X :

X=BX

The variable B represents the model error, so that its mean value and standard
deviation quantifies the bias and the uncertainty of the model. Ang and Comell used to
call these the subjective uncertainties because most often they were based on
engineering judgement.

More recently Ditlevsen (1982) dealt with the incorporation of model uncertainty in
advanced first order second moment calculations and showed that a representation
invariant to mathematical transformations of the limit state function is of the form:

X=aX+b

where a and b are normally distributed random quantities. Comparison with the
previous equation shows that it is basically a generalisation that adds a constant term.

Lind, (1976) dealt with model uncertainty in strength calculations emphasising that
the choice between two calculation methods of different degree of sophistication should
be made on the basis of economic considerations. This means that the model
uncertainty of an approximate calculation method should be weighted against the extra
benefits and costs of a more refined model. Lind determined the model uncertainty by
comparing the predictions of two calculation methods of different degree of
sophistication.

However, in most cases the model uncertainty has been derived from comparisons
between model predictions and experimental results as for example with beam columns
(Bjordhovde, Galambos and Ravindra, 1978); with the collapse of stiffened cylinders
(Das, Frieze and Faulkner, 1982); with the fatigue capacity of welded joints (Engesvik
and Moan, 1983); with the compressive strength of stiffened plates (Guedes Soares and
Soreide, 1983); with the compressive strength of plate elements (Guedes Soares,
1988b); or with the collapse strength of different types of structural components
(Faulkner, Guedes Soares and Warwick, 1987 and Smith, Csenki and Ellinas, 1987).

Most of the initial treatments of model uncertainty dealt with strength formulations.
However applications to load effect predictions have also been presented. In Guedes
Soares and Moan, (1983) the model uncertainty in the theories of wave kinematics were
derived from comparisons with measurements. The uncertainty in wave spectra was
examined by Haver and Moan, (1983) and its effect on the responses was studied by
Guedes Soares, (1991). The uncertainty in long term formulations of wave heights and
wave induced responses was considered by Guedes Soares, (1986) and Guedes Soares
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and Moan, (1991) respectively. The uncertainty in the calculation of transfer functions
for motions and loads was studied in the case of ships by Guedes Soares, (1991) of TLP
platforms by Eatock Taylor and Jefferys, (1986) and of semi submersible platforms by
Incecik, Wu and Soylemez, (1987).

Very often the design methods involve several parameters so that the model
uncertainty can only be adequately represented in its whole range of variation by
multiple regressions. Bjordhovde, Galambos and Ravindra, (1978) described the bias of
a design equation for axially compressed tubular columns as a function of column
slenderness. Guedes Soares, (1991) modelled the bias of the transfer functions of wave
induced loads in ships as a regression of ship heading, block coefficient and speed.
Therefore the basic formulations of the model uncertainty indicated in the two previous
equations have very often to be extended to the multivariable case using a problem
dependent formulations.

In these cases the observed variability is a result of both the model uncertainty and
of the measurement uncertainty of the experimental method. The model uncertainty can
only be isolated if the measurement uncertainty is identified and quantified.

Measurement Uncertainty

The problem of experimental errors has been considered for a long time and methods
are available to quantify it (Mandel, 1964). Generally one wants to measure a material
property that has an inherent variability with a measurement equipment which is in fact
an engineering system that responds to some external effect. As such, even if the
external effect would be absolutely identical, in repetitive trials one would expect that
some variability of measurements would be apparent. This is the measurement
uncertainty which cannot be eliminated but which can be reduced by repetitive
measurements of the same physical quantity which is known to be constant.

Using this procedure, one is able to quantify the uncertainty of a given measurement
method and when applying it to a series of measurements in a sample of specimens with
physical variability, one can often separate the uncertainty of the measurement method
from the variability of the measured physical property.

Many of the variables used in engineering models are evaluated trough
measurements. However, measurements may be subjected to random and to systematic
errors which need to be quantified. Measurements can be described by their accuracy
and precision which can only be assessed in repeatable and reproducible measurements.

The repeatability of measurements is determined from the closeness of the
agreement between the results of successive measurements of the same quantity
subjected to the same conditions as regards the method of measurement, the observer,
the measuring instrument, the location, the conditions of use, and in addition the
measurement must be made over a short period of time. The reproducibility of
measurements is defined as the closeness of the agreement between the measurements
of the same parameter, when they are carried out under changing conditions, as regards
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the factors mentioned previously. Both concepts can be quantified by the dispersion of
the results.

The precision of a measurement is the closeness of the agreement between the
results of applying the experimental procedure several times under the same prescribed
conditions. The accuracy is the closeness of the agreement between the results and the
true value of the measured parameter. Thus, while imprecision is quantified by the
dispersion of the results about the sample mean, inaccuracy is reflected by the shift of
the sample mean from the true mean. The quantification of the bias and uncertainty of a
measuring process is a prerequisite to the correct derivation of the natural variability of
the quantities that are being measured.

Measurement uncertainties can be represented by an uncertain factor B that

multiples the correct value of the variable X to yield the measured value X:

X =BX

If the measurement error and the measured variable are statistically independent, the
mean and the uncertainty of the variables are given by:

X = Bm,
Vi=vi+V}?

where m_ is the true mean of X, X is the mean of the measurements, ¥ is the
coefficient of variation of the measured values, ¥, and V, are the coefficient of

variation of the measurement error and of the variable itself. If the mean of the variable
is known, we can define the bias of the measurements from the expected value of the
variable i.e.:

B=X/m,
In this case the variance of B is given by:

VB8] = VX _vix)

m? Nm}

where the variance of the mean is the variance of the variable divided by the number of

observations N. This expression shows clearly that the measurement uncertainty will
decrease with increasing number of observations.

An interesting situation that happens often is the indirect observation in which case

the value of X is estimated from measuring Y:
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X=a+bY+¢

where a and b are regression coefficients and € is a normally distributed random
variable with zero mean and standard deviation o, which quantifies the dispersion

relative to the regression line. Considering a and b and o, as constants, the statistical
moments of X are given by:

X=a+bY
ViX]=b'c? +o?

Guedes Soares (1990b) discusses of this problem, while Guedes Soares, (1988a)
provides an example of an analysis of experimental results in which the measurement
uncertainty is separated from the randomness of the parameters.

Statistical Analysis of Data

The various examples referred here indicate clearly that in most cases it is not necessary
to assess model uncertainty based only on engineering judgement and that in most cases
a quantitative approach can be adopted. Therefore, model uncertainties are objective
uncertainties that are associated with physical models and which can be quantified
based on the results of experimental or numerical studies. Model uncertainty can in fact
be quantified by traditional methods of statistical analysis of data, as briefly
highlighted hereafter.

Statistical analysis of data is the basic approach of characterising the fundamental
uncertainty of physical variables. Often model uncertainty is assessed from comparisons
between theoretical predictions and measurements. These comparisons produce a set of
data which can be analysed by various methods of statistical analysis that are covered in
textbooks on statistics.

A brief overview is provided here of the main techniques so that can be used to
quantify model uncertainty, referring where appropriate examples of aplication in the
assessment of model uncertainty.

Sets of data can be appropriately characterised by descriptive statistics, which are
ways of summarising data. Common ones are the mean, median, variance, range and
the histogram. However, if the sets are random samples from a certain population, the
descriptive statistics can also be used to draw inferences about the population. The two
main problems in statistical analysis are the estimation of the parameters and the testing
of hypothesis. An important inference is the specification of the probabilistic model of a
population, which is a function of parameters to be estimated from samples of observed
data.

The inferences that can be extracted from data are point estimates, interval estimates
or tests of hypothesis. An estimate may yield different values for different samples,
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according to a sampling distribution. One is generally interested in estimators that are
consistent, unbiased and have minimum variance. They should also extract the
maximum information from the data available as do maximum likelihood estimators.

The classical statistical inference is based on assumptions concerning the form of
the population distribution, providing methods to quantify the population parameters.
Generally the assumption of normal distribution is underlying the statistical tests but in
some cases the previous experience may be too limited or the sample size may be too
small to justify the choice of the distribution type.

Another useful field of statistics is concerned with distribution free inferences both
for testing and for estimating (Siegel, 1956; Gibbons, 1971; Conover, 1978). These
methods are based on functions of the sample observations which do not depend on the
specific distribution function of the population from which the sample was drawn.
Inferences that do not depend on the value of parameters are called non-parametric,
although this name is also used to denote all distribution-free inferences to distinguish
them from the parametric inferences of classical statistics.

The main requirements for non-parametric tests are only that the population be
continuous and that the sample is random. The choice between the different methods
must be based on the their power, that is on their sensitivity to changes in the factors
tested and on their robustness or sensitivity to reasonable changes of magnitude of
extraneous factors. In general parametric tests are more precise and non-parametric
ones are more robust, which is particulary important for small samples.

A fundamental assumption in statistical analysis is that the data analysed results
from random sampling the population. Thus in analysing a new type of data it may be
worthwhile to conduct a preliminary analysis to check the randomness and the
independence of the samples of data. For this purpose there are different non-parametric
tests based on runs. The data must be transformed in a succession of dichotomous
symbols which can even be + and -, depending on whether the observation is larger or
smaller than the preceding one. A run is defined as a succession of one or more
identical symbols which are followed and proceeded by a different one. There are tests
based on the total number of runs or on the length of the longest run. Whenever these
are too small or too large the hypothesis of randomness must be rejected although due
to different types of lack of randomness.

Another hypothesis in which statistical analysis is often based is that the data results
from independent observations. This assumption can also be tested with non-parametric
tests based on rank order statistics. These are defined as sets of numbers which result
when each original observation is replaced by the value of an order preserving function.
Still an important problem is to ensure that all samples that are used in a study are
drawn from the same population. In classical statistics use can be made of the F test to
check that all samples are from a normal distribution having the same variance but
different means. An application of several non-parametric tests to analyse load effect
data can be found for example in Guedes Soares and Moan, (1982).

To check the adequacy of a probabilistic model it may be necessary to estimate the
location, scale and shape parameters. The estimation of parameters can be made by the
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method of moments of regression or of maximum likelihood. The latter is generally
more efficient but also more complicated to apply. In Guedes Soares and Henriques
(1994) a case was presented in which the estimation of the parameters of the Weibull
distribution describing wave data by the method of moments was providing clear
differences from the results of the other methods. Non-parametric tests can also be used
to check for the symmetry of a distribution, as well as for the goodness of fit.

The Chi-square and the Kolmogorov-Smirnov tests, which are commonly applied,
are also non-parametric tests. While the first one deals with histograms the latter is
based on cumulative distribution functions. Although the Chi-square test is used more
often, the Kolmogorov-Smirnov test is often preferable, specially for small samples.
The Chi-square test groups the data, loosing thus some information. In fact the choice
of the number of intervals can change the result of the test. Furthermore it is limited to
sample sizes that give an adequate number of observations in each interval.

Interest is often not limited to the analysis of only one variable but is directed to
several variables or to the effect that they can have on the outcome of a given process.
In these cases regression analysis provides a framework to determine the relationship
between random variables (Draper and Smith, 1966; Morrison, 1969). The regression
equation indicates the expected value of the dependent variable conditional on the value
of the regressed or independent variable. A measure of the uncertainty is provided by
the standard deviation of the residuals or the standard error.

Most common are the linear regressions which can be simple or multiple if applied
to one or to several variables respectively. However, non-linear regressions can also be
used whenever applicable. Examples of applications of simple regressions are found in
Guedes Soares, (1986) and in Jastrzebski and Kmiecik, (1986) while the results of
multiple regressions can be found in Antoniou, Lavidas and Karvounis, (1984) and in
Guedes Soares and Moan, (1988).

Regression methods are frequently used to analyse data from unplanned
experiments such as might arise from observation of uncontrolled phenomena or from
historical records, examples of which can be found in Guedes Soares, (1986);
Jastrzebski and Kmiecik, (1986); Antoniou, Lavidas and Karvounis, (1984) and on
Guedes Soares and Moan, (1988).

Statistical design of experiments refers to the process of planning the most efficient
way of data collection for a given problem so that the statistical analysis may lead to the
maximum amount of relevant information (Winer, 1970; Montgomery, 1984). It
involves the three basic principles of replication, randomisation and blocking.

Replication means the repetition of one basic experiment or process outcome, which
allows one to identify the error due to that effect. This is important to allow conclusions
about whether the observed differences in the data are really statistically different. In
addition it allows an improved estimate of the effect under study because the sample
mean has a smaller variance.

Randomisation is the cornerstone underlying the use of statistical methods, requiring
that the allocation of the collected data and the sequence in which it is done be random.



2% C. GUEDES SOARES

Blocking intends to increase the precision of the experiment by selecting the
portions of the data that are more homogeneous than the whole set. Blocking involves
making comparisons among the conditions of interest of the effects within each block.

Statistical design of experiments has been used recently with the planning of fatigue
tests (Sorensen et al, 1992, Engelund et al, 1993).

Examples of Applications

The assessment of model uncertainty is made with procedures that are developed on a
case by case basis. Depending on the problem at hand, on the information available and
in the uncertainties to deal with, different formulation are advisable. Therefore, in this
section reference is made to some applications in order to illustrate a spread of
possibilities.

MODEL UNCERTAINTY IN SPECTRAL FORMULATIONS

There are different types of structures that are subjected to dynamic excitation and
response. Since the environmental excitation is normally of random nature, such as in
the case of wind load, earthquakes or ocean waves, a common approach to the solution
of this kind of problem has been to adopt a spectral formulation. The excitation is
modelled as a Gaussian process and as a such is liable of being represented by a
spectrum. The linear response to this excitation is a response spectrum that is obtained
as the product of the input spectrum and the transfer function which represents the
systems characteristics.

These are different models of theoretical spectra adopted to describe the wind
velocity (Forristal, 1988). The case of ocean waves, will be considered in detail having
however in mind that this illustrates a methodology that could also be applied to other
excitations and other structures.

Short term sea states are usually modelled as ergodig random processes which
become fully described by a variance spectra. These spectra, which are estimated from
records of wave surface elevation, have a shape that depend on the characteristics of the
sea state.

Developing sea states are described by a Jonswap spectrum (Hasselman, et al.,
1973) and fully developed sea states by a Pierson-Moskowitz model (Pierson and
Moskowitz, 1964). Whenever in an ocean area there coexists two wave systems the
spectrum often exhibits two peaks in which case one can adopt the 6 parameter
formulation of Ochi and Hubble, (1976), or the 4 parameter proposal of Guedes Soares,
(1984).

When performing predictions for design, which is a main interest in engineering,
one does not know which type of sea state will occur and thus, which type of wave
spectrum is applicable. By choosing one of them, the prediction may be affected by a
model error.
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In addition to the type spectrum one can also account for the variability of the
spectral ordinates around the mean spectrum which is described by the theoretical
models. Haver and Moan (1983) have studied the uncertainty of the spectral
formulations of single peaked sea states and analysed the variability of the spectral
ordinates showing that they were generally independent of the frequency.

This variability can be represented by a unit mean random variable / that multiplies

the mean spectral ordinate at the frequency S(o,):
S((n,.) = §(co,.)(1+ei)

This formulation, which was adopted by Guedes Soares, (1991) for the case of
ocean spectra, can be generalised for any other spectral formulations of structural
response, and thus it is described hereafter for illustration purposes.

Wave spectra are of interest to calculate the response of a marine structure to a
given sea state. Thus, often the quantity of interest is the variance of the response R

which is given by the area under the response spectrum S, (c)) :

R=["5,()do = [ 50)H*()do

where H(o) is the response amplitude operator.

That value of variance is obtained for a specific type of spectrum that is denoted by
¢ 0. It can be considered as an uncertain quantity because the exact shape of the

spectrum depends on the random variable R and in addition it depends on the model
uncertainty about which type of spectrum is the correct one. The model uncertainty can
be separated from the fundamental uncertainty of R by conditioning. Thus the marginal

distribution of response variance f, R(r) is given by:

£ = [ £(r0) £, @)

where the conditional distribution is assumed to be Gaussian with a mean value of

and a variance of:

Cro =O. f[S((o) Hz(co)]zdm

where the estimates of the spectral ordinates are assumed to be independent and
identically distributed with a variance o, .
The variance of the marginal distribution of R, is given by:
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~\2
e j[o;,e +(n, -i7) ]fe(e) o
where the first term is the variance conditional on the type of spectrum and the second

term represents the contribution of model uncertainty. The mean of the conditional
distribution is p, and the mean of the marginal one is:

§ = [rf20) dr=Ju, £,©) ao
If one decides to use one model of spectrum for the whole analysis, this implies

adopting the expected value of p, instead of . Thus, the model error in that
formulation can be described by an uncertain quantity:

b =

F =

which has a model uncertainty of G ;.

In some situations of assessing the wave loading in offshore structures, it is not
enough to have a description of the sea surface elevation process as described by a
wave spectrum. In fact in the estimation of the hydrodynamic loads on offshore
structures it is necessary to use a wave theory to predict the distribution of velocity and
acceleration of the wave particles at different water depth. The wave particle movement
is then transformed into the forces that are being induced in infinitesimal elements of
the structure, through the Morison equation.

There are various wave theories available, from the Airy theory, which is a linear
one valid for small amplitudes to the Stokes fifth order or the Stream function, which
are applicable to large wave amplitudes. Outside the two extreme situations of small
and large amplitudes there is a range of wave heights and water depths in which various
theories could be applicable with different degrees of error. The model uncertainty of a
specific theory could be established from comparison with measurements when they are
available, as was done for example in (Guedes Soares and Moan, 1983).

Although this problem was originally formulated for the response of marine
structures to wave spectra, the general framework is applicable to other cases such as
for example the response of tall buildings or bridges to wind gust loading the response
of structures to earthquake excitation.

MODEL UNCERTAINTY IN TRANSFER FUNCTIONS

The prediction of the properties of the response parameters require the knowledge of
the transfer function H(o)) as indicated in the previous section. The engineering



QUANTIFICATION OF MODEL UNCERTAINTY IN STRUCTURAL RELIABILITY 29

models adopted to calculate H(m) will have different degrees of accuracy and

uncertainty.
In general the model uncertainty of a theory can be assessed by comparing its
predictions with experimental results. Defining the model error ¢, as a function of

frequency o , one has:
H(o) =d¢(0)H(0) + (o)

where I:I(a)) is the measured value, H(u)) is the theoretical prediction and € represents

an experimental error of zero mean value.
Often the model error can have a general form of:

@)=Y 0"

i=0

where a;, are regression coefficients to be determined from the analysis of data. The
regression equation will indicate the mean of the model error. The standard deviation of
the regression residuals will indicate the model uncertainty.

In the application of this formulation to the responses of ships to wave excitation, it
was found that the constant model error ¢ =a, would be adequate for practical
purposes (Guedes Soares, 1991). However, the transfer functions depend on the relative
wave direction and the adequacy of the transfer function theories depend on ship speed
and geometry. Thus a global description of the dependence of ¢ on those variables was
obtained by a regression analysis.

The uncertainty in the calculation of transfer functions for motions and loads of TLP
platforms was studied by Eatock Taylor and Jefferys, (1986) and of semi submersible
platforms by Incecik, Wu and Soylemez, (1987), although the uncertainty of the
predicted transfer functions was not modelled explicitly.

Winterstein et al, (1993) and Sorensen et al (1993) have adopted models similar to
those to model the uncertainty of transfer functions of offshore structure.

MODEL UNCERTAINTY IN LONG-TERM DISTRIBUTIONS

In the design of marine structures, either of ships or of ocean or offshore platforms
one often requires the distribution of load effects for time spans of the order of the
structure's lifetime, i.e. the long-term distribution.

To obtain them one starts from shorter periods of stationary that correspond to sea
states. The probability of exceeding the amplitude x in any of them is given by the
Rayleigh distribution (Longuet-Higgings, 1952, 1983):
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Os(x|R) = exp(‘ %)

which is conditional on the value of the response variance R.
The probability of exceedance in the long-term is obtained as a marginal
distribution:

0,(x)= I: 0.(xIR) fr(r) w(r)dr

where w(r) is a weighting factor that depends on the mean period of the response in

each sea state, and f R(r) is the probability density function of the response variance.

This long-term probability distribution is constructed from the evaluation of the
integral at several levels x. However very often a theoretical distribution is fitted to the
calculated points to make easier the future analysis. Common distributions are the
Weibull and the log-normal which yield different extreme value predictions. Thus the
choice of one of them will involve a model uncertainty.

The problem of the statistical uncertainty in the fitting of a Weibull distribution to
wave data has been discussed by Guedes Soares and Henriques, (1994).

One can use a Bayesian approach to deal with both model and statistical uncertainty
as adopted for example by Edwards, (1984) who studied the structural reliability of a
simple system subjected to a loading that could be described by either a normal, a log-
normal or a Weibull distribution. The probability of each of the probabilistic models
was assessed from the data in the classical Bayesian way, and the posterior distribution
was obtained including and nor including the effect of statistical uncertainties.

A similar problem was tackled by Guedes Soares (1989) dealing now with
predictions of extreme values of significant wave height as predicted from long-term
distributions or by other methods. Since in extreme predictions there is often not
enough data to allow the reliable use of the classical Bayesian methods to assess the
conditional probabilities of the models, it was proposed there that expert opinions could
be used to assess those probabilities and to predict an estimate that accounted for the
model uncertainty as assessed by experts.

MODEL UNCERTAINTY IN COMPRESSIVE PLATE STRENGTH

In addition to various sophisticated numerical methods available for the analysis of the
compressive strength of plates, there are several design methods available also as
reviewed in (Guedes Soares, 1988b). In the formulation of a design method one must
ensure that a reasonable degree of accuracy is maintained without unnecessarily
complicating the calculation procedures. This objective can be achieved if the design
equations only include the most important physical variables.

The number of variables included in the design equation must be such that the
strength predictions are always within a narrow scatter band independently of the value
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of the variables not represented in the equation. The single most important parameter
that governs plate strength is the reduced slenderness:

e

where b and ¢ are the plate breadth and thickness o, and E are the material yield stress

and Young modulus.

After having analysed the sensitivity of plate strength to each of the variables, it was
concluded that the simplest design method should include only the plate slenderness B,
because the plate strength can change by as much as 60% over the useful range of
slenderness. If any improvement of accuracy is desired, explicit account must be given
to the variables that can produce changes of 20% in the plate strength. Thus
consideration should be given to residual stresses, initial distortions and boundary
conditions (Guedes Soares, 1988b).

The model uncertainty B, of one specific method ¢, that depends explicitly only of
plate slenderness has been assessed from comparisons with experimental results. This
approach was also adopted to asses the effect of residual stresses and initial
imperfections. The strength of a plate without defects is given by ¢,B, and the

degrading effect of the residual stresses and of the initial distortions are given by R
and Ry respectively.
The formulation adopted to predict the compressive plate strength is given by:

¢ = Z: = (¢bBb)(RrBr)(Ra Bra)

where o, is the ultimate stress, B, and B; are modelling errors which affect the
reduction factors for the effect of weld induced residual stresses and initial distortions
respectively. The exact form of each expression is given in (Guedes Soares, 1988b) but
for the present purposes it is enough to indicate how the modelling factors were
determined. While B, and B, turned out to be constants, B, resulted in a linear
multiple regression on plate slenderness, intensity of residual stresses and amplitude of
initial distortions.

For code purposes simpler design equations are wanted and in that case the three
model errors can be combined in one only as indicated in (Guedes Soares, 1988b).

To obtain a design equation that depends only on plate slenderness, it is necessary
that the effect of the other parameters is taken at their expected values. Expressing the
design equation:
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d(B.1.8,) = 4, (B)- B(B..8,)

one aims at determining the bias factor B which will depend on the distributions of the
governing parameters. Its mean value and variance is given by weighting the model
error B by its probability of occurrence:

B=[[[B(pn.5,). (3.5, )dp dn aB,

o7 = [[[{B(Bm.5,)-BY 7(B.n.3,)aB an o,

where f (B,n,ﬁ,,) is the joint probability density function of the variables ,1,5,. This
function represents the probability that for a given ship the typical plates of the midship
section have a specified value of B,n and §,. It is assumed that these effects are
independent so that:

7(Bn.8,) = £,().£:(n). £, 5,)

Furthermore, when applying these equations to plates of aspect ratio slightly
smaller than unity a further model uncertainty is introduced (Guedes Soares, and
Faulkner, 1987).

MODEL UNCERTAINTY IN THE COMPRESSIVE STRENGTH OF STIFFENED
CYLINDERS

As occurs with plates, there are also several simple expressions for the design of
stiffened cylinders under different load combinations. The model error of any method
can be expressed as the ratio of the experimental result to the predicted value.

In (Faulkner, Guedes Soares, and Warwick, 1987) there is a summary of the model
uncertainty of various code design methods. It was found that the modelling error in
that case can have a mean value ranging from 0.80 to 1.70 and the coefficient of
variation would range from 0.13 to 0.43. However, a good design method should have
an uncertainty around 10 to 15% at most.

Das, Faulkner and Zimmer, (1992) have reviewed various codified ultimate strength
formulations for orthogonally stiffened cylindrical strength shell components by
comparison with available experimental results in order to establish model uncertainty
factors associated with these formulations.

They used experimental results produced in the mid 1960s in an aerospace research
programme and obtained in the 1970s and early 1980s in the scope of offshore
structures research. The aerospace tests were mainly conducted in the elastic range and
the majority of them used high strength aluminium allow models. The stringers in the
models were large in number and closely spaced. They were machine finished leading
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to minimal residual stresses and initial imperfections. The offshore models were of
steel, and had considerable initial imperfections due to the fabrication procedure.

The model uncertainty of four design methods were determined from comparisons
with this data. They were the methods in the ABS Model Code for Tension Leg
Platforms, the API Bulletin ZU, the DnV Classification Note 30.1 and the European
Convention of Constructional Steelwork recommendation. Stiffened shells have several
collapse modes which makes a detailed account of their model uncertainty too long to
be included here. However it was shown that the bias and uncertainty of the different
methods was significantly different, and an interesting conclusion of the study was that
for some methods there was a clear dependency between the modelling error and the
collapse load, which resulted from an incorrect modelling of the slenderness effect. This
is a feature that should be avoided in developing design methods that are calibrated
probabilistically.

Concluding Remarks

There are presently available several good algorithms for calculating the reliability
index for different kinds of problems in an efficient manner. The widespread
application of the existing technology to practical problems requires that work be
developed in probabilistic modelling of the different problems.

Of particular importance is the consideration of the model uncertainty of the
different engineering theories that are used in analysis and in design.

Although the assessment of model uncertainty is very much problem dependent, this
work has discussed the main problems encountered, the basic tools that are used and
several examples have been described from different engineering disciplines.
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RESPONSE SURFACE METHODOLOGY IN
STRUCTURAL RELIABILITY
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1. Brief Review

We first propose to trace some streams of thought which have contributed directly to
what we now call Response Surface Methodology (abbreviated to RSM). A
mathematical description of RSM is given in section 2.

During the period 1930-1950 and in various practical studies such as growth rates in
nutrition of pigs, probit analysis or crop yield to fertilizer levels, some revealing
requirements for RSM were mentioned, [1] - [3]. The main purpose was to gain an
insight into the observed behavior of the process under investigation and to obtain the
determining setting of the variables involved.

The pioneering works of Box [4] - [7], produced a set of statistical procedures in
two main areas dealing with the design of experiments and regression analysis. The
most successful applications were obtained in the fields of chemistry and chemical
engineering. The dominant assumption was clearly that the response can be
approximated by polynomial functions. One reason for the popularity of polynomial
models lay in their conceptual and computational tractability.

During the period 1950 - 1970 the major topics of research on RSM were marked by
significant probabilistic guidelines ;

— Robbins and Monro [8] introduced the stochastic approximation for finding an
optimum in the presence of outliers ; they also included multi-dimensional
aspects.

— The comparative analyses of growth curves in Biometrics performed by Rao, [9]
adopted a multivariate approach. The response function arose from the projection
onto a family of orthogonal polynomials. The coefficients of these expansions
served for subsequent analyses and prediction purposes.

— Keefer and Wolfowitz [10] laid the theoretical foundation for a concept of
optimal design based almost exclusively on linear models and with an optimality
criterion which used the generalized variance among parameters.

During the last decade, Response Surface Methodology has gained robustness for

modelling in various technical applications such as material design, electronic error
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detection and structural integrity. In particular, the introduction of non-linear models,
and the increasing numerical potential of electronic computers have affected the
evolution of techniques. The concept of Response Surface arose from a system
description of the physical process (INPUT ---> TRANSFER FUNCTION
---> OUTPUT).The main objective was to provide flexible analytical formulations as
surrogates for the original models in order to perform subsequent uncertainty and
sensitivity studies. The user friendly nature of this approach was partly explained by its
reliance on geometrical concepts. Moreover, for safety assessment of mechanical
systems, the suggested formal modelling turned out to be effective when implementing
reliability indices from FORM/SORM methods.

At the present time there are probabilistic mechanics packages such as ; RPEJ
(Evaluation of Jackets from a Probabilistic Redundant Analysis), and RASOS
(Reliability Analysis Systems for Offshore Structures), which contain extensive
implementations of RSM (environmental loadings, limit state functions, ...).

2. Definitions and Basic Concepts

The Response Surface Methodology (RSM) is a formal representation based on
geometrical ideas. It leads to the investigation of the properties of a physical process.
That means the required response Y (random variable, vector or procéss) is considered
as the output of a system, which varies in response to the changing levels of several
input variables.

INPUT ) TRANSFER ) RESPONSE

X, © f,IL.1I
Y

A response (hyper-) surface is selected :
- X = {X1, Xy, ... X} is a finite representative set of stimuli random variables or

processes.
0 = {0, 6,,., ®p} is the available statistical information on X (free or

parametric distribution functions, fourier series, normalized moments, ...),
f is an explicit analytical function of X given ® ; note f(X/®), serves as an
approximation for Y.
IL...I1 is a metric in a functional space containing Y and f(X/®) which gives some
measure of the goodness of fit of the approximation.

Note that it is mathematically more correct to use the terminology of response
hyper- surface when n>2. As long as there is no ambiguity, we will use the usual term
response surface whatever the dimension of the space of the basic variables.
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2.1 CRITERIA FOR BUILDING RESPONSE SURFACES.
2.1.1 Physical Meanings

The selection of the set of stimuli must be based as far as possible on some
understanding of the underlying mechanism.

As an example, the usual Morison equation for computing loads for marine
structures can be viewed as a response surface,

1

1
5PDCq uglug| + 77D Cu'; M

fy =

Here f; is the force per unit span separated into drag and inertial components, p is
the water density, D is the cylinder diameter, and u, is the instantaneous flow velocity.

This equation generally predicts the main trends in measured data quite well, once
an appropriate joint distribution function of the drag and inertia coefficients can be
provided depending of the sea-state parameters. Nevertheless, some interesting
characteristics of the flow are not represented with enough accuracy (e.g. high
frequency content, gross vortex shedding effects, ...). So when applying the response
surface ft , unfortunately we miss some sources of response problems for an offshore

platform. That confirms the need to validate extensions by using the NARMAX
modelling techniques (Non linear Auto-Regressive Moving Average with eXogenous
inputs) ; this is especially important for non linear effects [13].

The concept of limit state for structural systems also needs to be formally introduced
with its physical interpretation. It is a mathematical way of separating the relevant
determining variables for the system into desirable and undesirable domains of the
variations ; that is a way of constructing a boundary of a failure domain. Here a failure
event is defined to be structural damage which has socio-economic consequences. The
problem is to estimate the failure costs, its impact on the target risk, and the risk levels
which society is willing to tolerate. Discussions of these issues must often take place
among professionals with various backgrounds and feelings.

The detailed discussion reported in [14], illustrates the respective codified reliability
meanings for the design of reinforced concrete structures based on “elastic" or
alternatively "plastic" ultimate limit states.

2.1.2 Distribution Effects

Another essential criterion is given under the term distribution effects [15]. The output
distributions change, depending on the different assumptions selected to describe the
statistical properties of X, and to fit the function f. The selection should reflect how the
statistics are well transferred through the response surface.

When predicting the stochastic response of offshore platforms under Morison type
non linear random wave loading, many researchers suggest approximating the drag
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component of the Morison equation f; by polynomial functions of the instantaneous

flow velocity.
Let X be a random variable with probability density fy. Let us consider Y = g (X),

where g is differentiable and bijective. Then the density fy exists and has the form,

O =rxe! o) @)

1 _
G I )
g

A consistent approximation of f; with respect of the density output must also be a

good approximation to its derivative with respect to u,. If the approximations are linear,
quadratic or cubic, then their derivatives will be constant, linear or quadratic,
respectively. The discrepancy between these three last functions is generally high on the
edges of their definition interval. Consequently, their effects in changing the upper and
lower tails of the velocity density will be quite different. In particular the skewness and
kurtosis coefficients may not be well estimated. The choice of a polynomial of low
order, so tractable for the computational procedure, although apparently appropriate for
an approximation of the response surface itself, can lead to an erroneous probability
density output. '

In support of this warning we summarize the conclusions of an extensive numerical

analysis [16] :

— a linear approximation of the drag loading failed to predict response moments in
quasi-static cases.

— a cubic expansion yielded good estimates of the response variance for any kind of
excitation, but could not accurately predict fourth order moments of the response,
in drag-dominated quasi-static cases.

— it was claimed that a fifth order approximation is needed in order to assess
accurately the first four response moments for any kind of excitation.

This example shows that the distribution effects significantly influence the

construction of response surfaces as input criteria.

For problems with several variables, one must ensure that the Jacobian,

X
(WY;) is properly modelled, in order to prevent the main distribution effects. As

is well known, the input and output p.d.f are related according to,

D(X)
D(Y)

Py ) = P (£ )
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2.1.3 Goodness of Fit Measure

The first concern is the selection of the basic variables and especially their ranking. The
usual metrics called sensitivity and uncertainty importance measures are based on
second order statistics. They are useful for obtaining the main contributors to the
response by evaluating their corresponding contributions to the output variance [17],
[18]. Their sensitivity to the presence of outliers of input distributions make them
questionable as absolute measures of uncertainty importance. To overcome this
problem we may use measures based on the shifts in the quantiles of the output
distribution [19], or on information theoretical entropy [20].

Uncertainty modelling leads to the regression techniques. Let us consider the
regression model,

Y={X/®)+€

where € is a random vector or process error. The function f'is a prescribed function of
which the parameters are to be estimated. Usually it is assumed that the random vector
€ is distributed according to the Gaussian distribution with zero mean and diagonal
covariance matrix. Under this assumption, the maximum likelihood and the least
squares estimate are identical. As a consequence, the metric L7 is shown to be the most
efficient. However the L] metric, e.g. the integral of the absolute values of the
residuals, provides most likely estimates when errors are doubly exponentially
distributed [21].

In the previous subsection some requirements were given in order to prevent the
main distribution effects from the additional fitting of the partial derivatives of f with
respect to X . The metric of the Sobolev space [22],

i=1,...n}

in the form,

hi= Jhif, + %

i=1,..

Lz

is appropriate as it allows the least squares error on the partial derivatives to be
introduced too.
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2.1.4 Complexity Reduction and Computational Tractability

Engineers prefer models that are simple and easy to compute ; for such one may use the
new techniques of probabilistic mechanics, and the new and powerful computers and
algorithms. The RSM integrates these objectives as criteria.

An increase of the complexity level in stochastic modelling has to be viewed with
care. It is always a time consuming option when computing, and one which does not
necessarily ensure more realistic results. As an example, in North Sea conditions and
among the Stokes model family, the simple Airy wave model is shown to contain the
essential random structure of the inputs to be considered for structural reliability of
jacket platforms under quasi-static loads [23].

Another way to simplify the problem is to consider a subset D which envelops the
hyper-surface defined by f and which is easier to compute. For example convex
polytopes, ellipsoids, cylinders, ..., are possible candidates for describing the safety
region. As a consequence this leads to a conservative approach in structural safety,
provided (see 2.1.1) the physical interpretation of the new domain D remains consistent
with what is called a failure domain.

2.2 SELECTION OF THE BASIC VARIABLES
For a time invariant system which survives only for realizations of a random vector X,
interior to a subset Dy of a probability space, its probability of failure has the form,

Pf=I . dF 3)

py *
where Fy is the probability distribution function of X. The topology of the

complementary failure domain Df‘ can arise from the use of RSM (e.g. limit state
functions, ...).

Practically there is a choice to be made on the representative stimuli. Usually we
know only a part of the underlying distribution Fy ; we call this the ®- set throughout

this presentation. So the main objective for providing a safety measure is to evaluate,

Pypper = Sup {P (D2) , P verifiesthe ©— set] @)

This question is closely related to the so-called General Moment Problem in its
mathematics (geometrical approach, convex analysis) [24], [25]. A basic technique for
finding various properties of Pypper is to use Chebychev's inequalities, and the possible
extensions of them.

In particular the proposed bounds are attained by distributions consisting of discrete
point - masses. These forms can be translated as the strongest assertion possible in the
absence of any further information on the initial distribution. For example the
conventional Chebychev inequality leads to the statement :
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Let Dx = [-B, B] and the © - set have E(X) = 0, E(X?) = 1, then we have Pupper =

1
-

B

The selection of the basic variable X is now presented to illustrate the key factors
which act upon the safety measure. They are introduced by means of examples which
are intentionally academic and simple. These exercises are significant because they give
concrete expression to different concepts at a preliminary stage.

2.2.1 Dimension Space

An increase in dimension makes the system dependent on supplementary variables and
consequently more unsafe.

This can be illustrated as follows. Let us consider a safety domain in the form of an
open hypercube,

Enp = {xeR" / |xi| < B,i=l,...,n}, B=>1

given the set ® of statistical properties E(Xj) =0 and E(Xiz)= 1 whatever i. The

complementary E.f,,ﬁ is called the failure domain. We are concerned with evaluating,

Pl.lpper = Sup{ P (E:.B) ) P given(-) }

From the Chebyshev and Boole inequalities this becomes,
c L . n
PELp) < 2 P(X;| = B) < min(, B_z)
Moreover there exists a probability measure of finite support, satisfying ®, and
which attains the upper bound ;

n
— If — <1, we consider P concentrated on the origin and the 2n centers of the

1
hypercube faces. Each center point has an identical mass equal to ;BT Then P

satisfies the ©-set. As only the origin is in the safety domain, we have
1 n

P(Ef g)=2n — =—.
B 22 p2

n
- If — > 1, it is sufficient to take P with equal distribution of the total mass

concentrated on points which are the images of the 2n centers of the hypercube



46 J. LABEYRIE

. . . .. vn
faces by the similarity transformation with center O and ratio——. The ©. set

p

properties are satisfied. All the mass points are in the failure area and
=C \_
then, P("'n, 8 )=1.

Finally the safety measure is given by,

Puper = min(l,B%) ©)

This shows that the probability of failure increases quickly with the dimension »
(e.g. with the number of selected basic variables).

It is thus important to find the minimum set or parameters which allow the system
response to be controlled. We recommend a preliminary ranking of the importance of
the various input parameters by measuring their effect on the safety measure.

2.2.2 Correlation Effects

The statistical properties of X are to be addressed with care. We emphasize correlation
effects. Let us now consider the hypercube E,p and the set © (see 2.2.1), given the

additional statistical information on the covariance matrix V = (E(Xin)) ij-
Let M* be the set of definite positive matrices with diagonal terms equal to 1. The
trace function Tr M-1V defined on M* is convex and thus reaches its minimum on a

unique matrix M interior to M%. such that the product Ml vM s a diagonal
matrix.
A result due to Whittle [26] ensures that,

1

. 1 —_
Pypper = min (I,B—zTr M V) ©)

Without loss of generality an equicorrelation (o< p<1) is assumed for illustration.
The covariance is a combinatorial matrix of the form,
V=_(O-pld+pA

where ajj = I whatever i,j. As A? = nA, the matrix V" is a linear combination of the
two matrices Id and A. We obtain,

T+(n-Dp—41-p
Vo 5 g4 Y
V72 1-p Id + o A
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1/2

Considering the diagonal term d of V"% | the matrix M =
1

, is definite positive

with diagonal terms equal to 1 ; it verifies M~ vm = d? 14

Thus Tr M~! V =nd? and from €q.(6) we have,
2
n d’ . (n-1)y1-p + J1+(n-1p
Pypper =min(l, 5 ) = min(l, [ Iy ] ) Q)

The probability of failure is a decreasing function of p(o<p<1), and varies from
. n . 1
mm(l,Ez—) to min (l,-B—z).

It follows that the more the control variables are correlated, the safer is the system.
Compared with the previous one, this new case contains additional statistical
information which reduces the probability of failure. The statistical properties of the ®-
set must be provided meaningfully. It is important to avoid an arbitrary increase in
safety index by specifying the whole distribution without justification. The subject is
clearly relevant to the Bayesian approach, e.g. a priori knowledge and measure of its
effects.

2.2.3 Independence Assumption

Another feature is to assume the variables Xj to be independent. We discuss the

effect of this assumption on the safety measure. Let P be a probability measure which
satisfies the new ©. set. From the independence property and Chebyshev inequality we

have,
P (E,p) = i':] P(X;| < B)
2 (1 - )"
> (-3

Moreover the lower bound is reached by considering the following probability of a
vector with independent components. Each component Xj with support on the

respective i - axis of RM takes the values -B, O, B with the associated masses

1 1
—5,1-—5,—5 . As adirect consequence it follows that,

2p B” 2p

upper

1
Prer = 1-(1-—)" ®
B2



48 J. LABEYRIE
n

B*
safer than under zero-correlation. Equation (8) shows that Pupper depends on (1-1/p%)
raised to the power n, not n/B? as in (6).

1
Since 1—(1——2)" < independence of the basic variables makes the system

2.2.4 Typology of Distributions

Let X be a random variable with zero mean and standard deviation equal to 1. The
safety domain is taken in the form of an interval (-oc, B[.

We consider the three typical classes of distributions : normal (standard case),
double exponential (asymptotic extreme model or Fisher Tippett I), exponential (tail
behavior).

1
The associated one sided Chebychev inequality gives Pypper =

1+ B2 '
An upper bound under the additional assumption of continuous unimodal
4
distribution, takes the form Pupper = ———— ; it is derived from Gauss inequality
2
9(1+B<)
[27].

Table 1 shows that different assumptions lead to significantly - different safety
measures. This simple but significant example leads to the following requirement : there
is a need to specify distribution functions for the basic variables. This can be a difficult

task in practice, but it is necessary for finding the class in which the system lies.
TABLE 1. A comparison of distribution assumptions on the safety measure

Pupper B
2 3 4
Normal 0,0228 0,0014 0,00003
Double exponential 0,0422 0,012 0,0033
Exponential 0,0498 0,018 0,0067
Gauss inequality 0,089 0,044 0,026
One sided Chebychev 0,2 0,1 0,059
inequality

In particular the Pearson and Johnson distribution types cover a large area. They
allow us to take into account smoothness conditions by considering continuous and
bounded nth derivatives. This question is related to the so-called extremal distributions

investigated in the past by statisticians trying to find generalizations of Chebychev's
inequalities.

2.3 CHOICE OF AN APPROXIMATION FUNCTION

The most popular assumption is classically that the response can be modelled by a
polynomial expression. Mathematically, assuming that f is a continuous function and
the set X varies in a finite range, the Weierstrass approximation theorem ensures that
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one can approximate f by a polynomial function to any desired accuracy. This result is
an asymptotic one. It means that generally the corresponding polynomial order will be
very large. Polynomials of low order can be used as local approximations, and they can
then be pieced together as splines.

2.3.1 Algebraic Forms of Response Functions

A safety domain is a subset of RD. Its boundary is defined by the response surface.
Table 2 presents the main approximation functions for such representations.

The exact form of f is generally unknown , it must be chosen to meet several
conflicting requirements :

— the function should describe the data with reduction in storage,
the function is required to be meaningful, in the sense that it is based as far as
possible on some understanding of the underlying mechanism,
the function is to be used for inference purposes,
the function can be fitted simply and accurately,

TABLE 2. Families of response hyper-surfaces

1. Polynomials tl n
Zatlw X1 Xy
- hyperplane T oaX;
0<i1<n
- quadratic T a ; Xi X.
(by convention Xq=1) osi,jsn 1) J

2. Exponentials [28] % P.(X) ( X
Z P exp(<a;,X>)

a; frequencies, Pj (X) polynomial
<6,X>=01X] +..+6 Xp

3. Spline Interpolations [29] (piecewise polynomial)
4.¢(f(X)) or f(d(X;),....6(X,) finteriorto 1., 2. or 3.

¢ scale function (logarithmic, inverse,...)

A problem is said to be well posed in the sense defined by Hadamard [30] when its
solution

i. exists,

ii. is unique,

ili. depends continuously on the initial data and with respect to small perturbations.

For the problem of finding a response surface, physical and/or practical arguments
are used to postulate that a solution must exist. The two other conditions (ii) and (iii) are
undoubtedly very questionable. The uniqueness is more the consequence of the choice
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of a mathematical model. In particular, various inference models can give quite
different responses. The condition (iii) is very often critical. Many situations fail to
satisfy the required criteria. This is due to the sensitivity of a solution and, in particular,
on the high order statistics, to uncertainties in the data.

Part of the ill-posedness of RSM problems may be overcome by introducing a
priori information, and by using a Bayesian approach.

2.3.2 A specific example

Consider an offshore structure buffeted by waves. The safety margin on a failure mode
is determined by a response surface ; the set of basic variables includes the strengths of
the structural elements and the loads acting on the structure. To set up a computational
model, the loads exerted by the waves must be replaced by equivalent concentrated
forces applied at the nodes of the model.

Schematically, these forces are found by following the path

Wave variables : kinematic Morison Concentrated
heigh H, period | > field > forces = | nodal forces
T, direction 6

The kinematic field corresponding to the waves can be represented through a
random linear combination of deterministic vectors. From these we calculate the
Morison forces, and from these we compute the concentrated nodal forces by using
energy considerations in a finite element model [31].

The total external force Fy, at a a node N is obtained as a linear combination of the
form,

n -
0
A FY n=x10

Here Aj are random multipliers which depend on the basic variables (e.g. : A] =

Oﬁ,g CMm HZ /T where Omg marine growth screen effect, CM inertia coefficient, H

1
extreme wave height, T associated wave period), and ?i«) are deterministic vectors
which depend mainly on the structure topology and on the wave location on the
structure.
This example illustrates a procedure for constructing response surfaces which
combines the stochastic modelling of the basic variables with a deterministic approach
in which the successive transfer functions are derived from physical considerations.
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3. Applications

3.1 STOKES MODELS IN WAVE MODELLING

Stochastic process modelling has proved to be efficient for introducing different time
scales for wind generated waves [32]. The latter are normally the dominant loads for an
offshore structure. There are single wave models for the mechanical push over analysis,
sea-state descriptions relevant for the resonant response due to second order sum-or
difference- frequency wave loads or for the fatigue behavior. The so-called sea-states
are well identified as stationary components of a piecewise second order stationary
ergodic and regular enough random process [33].

One way of describing a stochastic process is to specify its n-dimensional joint
probability laws, for all values of n=1,2,3,.... The basic role which the Gaussian process
plays in stochastic modelling arises from the fact that :

— many physical systems can be approximated by Gaussian processes,

— many questions can be answered in a closed form for Gaussian processes more

easily than for other processes.

Alternatively, one may give an explicit formula for the value of the process at each
index point in terms of a family of random variables whose probability law is known.

There exist several mathematical models (ex : Stokes, Boussinesq, Miche, ...) for
predicting the time evolution of the wave propagation. Physical reasoning and data
observations allow a classification based on deterministic criteria. But these theoretical
models have to be introduced in a reliability analysis, and must be regarded as
stochastic models due to their sensitivity to random or uncertain parameters. This has
significant effect on the safety domain topology and its probability measurement. The
following formal geometrical representation of the wave kinematics leads to a new
approach.

Take axes O(U,Z,V), where the origin O is taken at the mean sea level, the axis OZ

> o5 o
is vertical and upwards, and OU is the wave directional axis. Let OU , OZ , OV be

unit vectors along the three axes.
Suppose t=time, and X, z are the dimensionless variables,

x=U/l, z=1+Z/d

where / is the width of the structure (diameter of a cylinder containing the platform),
and d is water depth.

The small amplitude plane harmonic progressive waves known as Airy waves are
derived from a velocity potential,
H g cosh(kdz
5 oshikdz) sin(klx - ot + (p)

& coshkdz)
o® cosh(kd) ©)

¢(x, z, t) =
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where H is the wave height, k is the wave number, ® is the pulsation and ¢ is the phase
angle. The variables k and ® are linked together by the one to one dispersive relation
02 = gk tanh(kd).

The associated velocity vector for Airy Waves is in the wave plane ; it can be

- -
written in the form A(cos o OU + sin o OZ)- Denote by H(O, 1) the similarity with

5
center O and ratio 4, and by R(OV,a)  the rotation about the OV -axis through the
angle .

A formal geometrical expression of the velocity vector follows,

Vairy = H(0O,A) « R(OV ,a) OU
tan o = tanh(kdz) tan(kIx — ot +¢) (10)

_ H o cosh(kdz) sinz(klx—wtﬂp)
2 COSh( kd) COSh2 (de)

The similarity ratio A and the rotation angle a are random functions indexed by
(x,z,t). Their stochastic fluctuations depend on the couple of random variables (H,k).
The range and statistics of k are well adapted to approximate the vector

- d - id
W=R(OV,a) OU by its normalized first order Taylor expansion W " around the
mean wave number k . We obtain after some algebraic operations and differentiations,

=y

W(k) = W(K) + (k=) % W(E) + o(k)

-
W(l) - H(O,

Yo [Id+H(O,y)oR(O_)V,£)] s R(OV,a) OU  (11)
1+y2 2

where,

o = k). v = (k-1) (1)

ok

The goodness of fit of the approximation can be measured by the inner product of
the two vectors. It is given by considering in the wave plane, the distance between the
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point on the unit circle with angle a—-qa , and the straight line of equation
[U+yz = 0]

- -
Introducing into eq.(10) the approximation W D instead of W, we see that the
velocity field corresponding to the Airy model has the following response surface,

Viy = HA + VB (12)
where A and B are deterministic orthonormal vectors defined by,

- - - - - T -

A = R(OV,a) OU, and B=R(OV, —2-) A

and the coefficients p and v are random functions.

A

e

4. Remarks:

— Due to the statistics of &, the random variable y has zero mean and narrow
range. It follows that v is small compared to i . Consequently A represents the
main axis for the velocity vector. The component following B leads to

fluctuations of the velocity vector inside a narrow sector around A.
— The scalar velocity intensity A contains the factor,

.2
klx — ot
a(x,z,t)=\F— sm( X — ® +<P)

cosh? (kdz)

It is a function of the random variable k, which varies weakly at points interior to
the support of k. There it may be concentrated at its value for k = k. Equation (10)
shows that there is a deterministic linear relationship between A and the random
Ho cosh(kdz)

2 cosh(kd)
variation and the normalized moments of the intensity vector vary with the profile index
z only, and not at all with the indices x and .

function which depends only on z. This means that the coefficient of

— Note that the non linear term V "\7" in the drag component of the force per unit

span given by the Morison equation has the form }\p(A+ yﬁ) ; it s a
random linear combination of deterministic vectors.
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The corresponding velocity field for n™ order Stokes waves can be expressed as a
combination of the different orders,

™M=

- n - - -
Vi = T Vi = T H(OA) ° R(OV,a;) OU
1=

i=1

e
For each component V; , we may apply the same formal geometrical representation
as defined for the Airy kinematic field. The issue of an extension of the Airy model can

be addressed by considering the projection of each component on the two vectors A
and B. It can be shown that [23],

Vrlth =Py A+ Vv, B

M:l

B = (ui cos A —v; sinﬁ) (13)

s

(ui sinA; + v; CosA )

V(n)

[0
—_

where we have ﬁ =0; - Q (z(i - l)g).

Then wave velocity models can be presented with their associated response curves.
They are basic inputs, due to causality considerations, for the reliability analysis of
offshore structures. The proposed formal geometrical approach allows us to specify the
stochastic properties following space/time indices to be considered. It also gives us the
opportunity to introduce complexity in wave modelling only when necessary.

4.1 NON LINEAR MECHANICAL BEHAVIOUR

There are softwares which will perform a structural analysis under the assumptions of
non linear elastoplastic behaviour and large displacements. The approach is essentially
deterministic. The connection with reliability analysis is not direct. A safety measure
needs explicit limit state functions and their derivatives in the space of the basic random
variables.

The pseudo-random sampling approach and typically the Monte Carlo analysis, can
be used with efficiency in such a case, but the computer time increases quickly with the
problem dimension [34].

An alternative procedure uses quadratic response surfaces [35]. Quadratic
polynomial approximations for response surfaces are simple to apply in finite element
methods, and lead to numerical stable computation. Let f{X) be a limit state function
and X = (X1,...,Xn) be the vector of stimuli. An iterative least square method combined
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with an adaptive mesh of the safety domain uses at each step (k) a quadratic
approximation of f{X) of the form,

Q¥ =z &¥x; x;

0<i,j<n "

One example of this formulation concerns the codified design reliability of the
buckling curves of a steel tubular cross section under compressive load [36]. It is used
to compare different codes such as API RP2A-LRFD and EUROCODE3.

4.2 STOCHASTIC DESIGN OF FIBROUS COMPOSITE LAMINATES

The reliability of unidirectional composite laminated materials considered by Tsai/Wu
[37], is based on a simplified fibre failure mode under tensile or compressive load. The
limit state functions are represented by quadratic polynomials. Safety indices can be
computed from the well known FORM/SORM methods. A numerical analysis of
graphite epoxy material has been performed [38]. It is shown how the nominal safety
factors are very sensitive to the design problem which arises from the lack of
dimensional invariance in defining safety margins. This concerns the different types of
safety factors such as ultimate strength (I), in plane - load (II), dimensional factor (III).
This question is important when the safety measure is highly sensitive to the parameters
of the basic variables.

A more complete criterion introduced by Hashin [39], considers in addition, the
failure of the matrix material between the fibres due to transverse or shear stresses. This
interfibre failure mode can cause large scale collapse. Their analysis illustrates how to
modify a preliminary response surface in order to extend its physical meaning. Friction
due to compression on the crack surface increases the shear strength. Thus the quadratic
polynomial limit state is modified by introducing some friction coefficients [40].
The latter are determined by fitting experimental data of a test specimen under
transverse compression. They show that the use of too classical criteria can lead to
incompletely designed structures.

5. Combination of Sensitivity Analysis Techniques

The extensive review [41] on sensitivity analysis techniques, states in particular the
respective limits for use in radioactive waste disposal. We make some suggestions
based on lessons drawn from structural reliability analyses of marine structures.

The Fourier Amplitude Sensitivity Test (FAST) [42], is basically a second order
uncertainty and sensitivity technique. The Fourier series representation allows us to
obtain the ratios of the contributions of the individual input variables to the variance of
the model response. It gives a second order measure of importance for ranking the
variables.
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Perturbation techniques usually use Taylor’s series to approximate models. It is a
local approach which gives valuable results when the input variables have small ranges,
and the relationship between the input and output variables is relatively smooth. The
computation of derivatives needs specialized techniques, such that Green's functions or
kernel non-parametric methods [43].

Monte Carlo analysis starts from a pseudo-random sampling approach to represent
the system inputs. The well known Latin Hypercube Sampling provides a full coverage
of the range of each input variable, but it remains questionable how far the selected
samples are representative of the whole underlying distribution. Otherwise the Monte
Carlo techniques are particularly appropriate for analysing problems in which large
uncertainties occur and where the transfer functions are non linear.

The Response Surface Methodology has been detailed in the previous sections. As a
consequence the use of such techniques in structural reliability analysis needs to extend
the conventional form which is too concentrated on polynomial approximations. Often,
we can combine different techniques : Taylor's expansions around the mean wave
number ; responses curves based on a geometrical visualisation of the vector kinematic
field ; Monte Carlo simulations ; all these items can be combined to make the total
investigation more meaningful.
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HENRIK O. MADSEN
Det Norske Veritas AS,
Tuborg Parkvej 8,
DK-2900 Hellerup,
DENMARK.

1. Introduction

In many metallic structures, flaws are inherent due to, e.g., notches, welding
defects and voids. Macro cracks can originate from these flaws, and under
time varying loading grow to a critical size causing catastrophic failure.
The conditions governing the fatigue crack growth are the geometry of the
structure and crack initiation site, the material characteristics, the envi-
ronmental conditions and the loading. In general, these conditions are of
random nature. The appropriate analysis and design methodologies should
therefore be based on probabilistic methods.

In recent years, considerable research efforts have been reported on prob-
abilistic modeling of fatigue crack growth based on a fracture mechanics
approach, see, e.g., (Arone, 1983; ASCE Committee, 1982; Bolotin, 1981;
Ditlevesen, 1986; Madsen, 1983; Kozin and Bogdanoff, 1981; Lin and Yang,
1983; Ortiz and Kiremidjian, 1986). In particular, stable crack growth has
been studied. This Chapter presents a stochastic model for the stable crack
growth phase for which linear elastic fracture mechanics is applicable. A
common model is formulated for constant and variable amplitude load-
ing. The model is developed for a semi-elliptical surface crack and for a
through-the-thickness crack. Uncertainties in the loading conditions, in the
computation of the stress intensity factor, in the initial crack geometry, and
in the material properties are included.

The probability that the crack size exceeds a critical size during some
time period is of interest. It is demonstrated how this event can be formu-
lated in terms of a limit state function with a corresponding safety margin,
and how the probability of failure can be calculated by a first- or second-
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order reliability method (FORM or SORM). The critical crack size may
refer to growth through the thickness or to a size where a brittle fracture
or plastic collapse occur. The critical crack size can be modeled as a deter-
ministic or as a random quantity.

Inspections are frequently made for structures in service. Some inspec-
tions result in the detection of a crack, while others give no detection. The
size of a detected crack is measured either directly or indirectly through
a non destructive inspection method, where the measured signal is inter-
preted as a crack size. Neither the measurement nor the interpretation are
possible in an exact way, and the resulting inspection result is consequently
of random nature. When the inspection does not reveal a crack, this does
not necessarily mean that no crack is present. A detectable crack is only
detected by a certain probability depending on the size of the crack and on
the inspection method. Whether or not a crack is detected, the inspection
provides additional information which can be used to update the reliability
and/or the distribution of the basic variables. This can lead to, e.g., modi-
fications of inspection plans, change in inspection method, or a decision on
repair or replacement. This Chapter describes inspection results in terms of
event margins and formulates the updating in terms of such event margins
and the safety margin. The use of first-order reliability methods to perform
the calculations is demonstrated. A similar formulation and calculation is
introduced to evaluate the reliability after a repair.

Reliability against fatigue damage caused by fatigue crack growth is
obtained through a combination of design requirements, inspections and
repair or replacement strategies. Each of these efforts introduce cost, and
it is of considerable interest to select the solution leading to the smallest
expected life time cost including the expected cost of failure. This problem
can be formulated as an optimization problem, where the optimization
variables for a given strategy are the design parameters, the inspection
times and the inspection intervals. The optimal solution can be updated as
information about inspection results and repair becomes available.

2. Fatigue crack growth model

In a linear elastic fracture mechanics approach, the increment in crack
size, Aa, during a load cycle is related to the range of the stress intensity
factor, AK, for the load cycle. A simple relation which is sufficient for most
purposes was proposed by Paris and Erdogan, (Paris and Erdogan, 1963)

Aa=C(AK)™, AK >0 (1)

The crack growth equation is formulated without a positive lower threshold
on AK below which no crack growth occurs. The equation was based on
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experimental results, but is also the result of various mechanical and energy
based models, see, e.g., (Irving and McCartney, 1977; Paris and Erdogan,
1963). C and m are material constants. A possible dependence of C' on the
average stress in one load cycle is not included here.

The crack increment in one cycle is generally very small compared to
the crack size, and Eq. (1) is consequently written in a “kinetic” form as

da

—=C(AK)", AK>0 2
o = C(AK) 2)
where N is the number of stress cycles. The stress intensity factor K is
computed by linear elastic fracture mechanics and is expressed as

K = oY (a)V7a (3)

where o is the far-field stress and Y (a) is the geometry function. The ge-
ometry function depends on the overall geometry, including the geometry
of the crack and the geometry of a possible weld. To explicitly account
for uncertainties in the calculation of K, the geometry function is written
as Y(a) = Y(a,Y), where Y is a vector of random parameters. Insert-
ing Eq. (3) in Eq. (2) and separating the variables leads to the differential
equation
da

Y(a,Y)™(y/ma)™

where ag is the initial crack size. The equation is applied both for constant
and for variable amplitude loading, thus ignoring possible sequence effects.

Egs. (1) to (4) describe the crack size as a scalar a, which for a through-
the-thickness crack is the crack length. For a surface crack, a description of
the crack depth, crack length and crack shape is necessary. It is common
practice to assume a semi-elliptical initial shape, and to assume that the
shape remains semi-elliptical during the crack growth. In that case the crack
depth @ and the length 2¢ describe the crack. The differential equation
Eq. (2) is replaced by a pair of coupled equations, (Shang-Xian, 1985)

= C(Ac)™dN , a(0) = ag (4)

& = Cu(AoYa(a e Y)VFD)" | a(0) = ag (5)
dC m —
= CelAoYe(a, e, Y)VAQ™ | c(0)=co (6)

where Y, and Y, are the geometry functions for the deepest point and for the
end point of the crack at the surface, respectively. The material constants
C, and C. may differ due to variation in stress field tri-axiality. The failure
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Figure 1. Experimental results.

criterion can refer to a critical value of either a or ¢ individually, or to a
function of a and ¢. The equations are conveniently rewritten as

dc _ Cc Yc(a, ) Y)\/E " 7
da = Cy \Ya(a,c,Y)va g
% = [Ca(AcYa(a, ¢, Y)Vra)™] ™! (8)

which are solved simultaneously. The first equation gives c as a function of a
and the initial values ag and cg, but independent of the loading and number
of stress cycles. The solution for ¢ may be inserted in Eq. (8) which is then
of the same form as Eq. (2). For reasons of simplicity in the presentation,
the following is limited to a through-the-thickness crack of size a.

Numerous experimental results exist for crack growth under constant
amplitude loading. Fig. 1 from (Kozin and Bogdanoff, 1981) shows ex-
perimental results reported in (Virkler et al., 1979) for 64 center cracked
specimens made of 2024-T3 aluminum. The experiments were highly con-
trolled and performed by the same laboratory using the same equipment
and the same personnel.

To capture the essential stochastic behaviour demonstrated by the ex-
perimental results we introduce the material parameter C' as a random vari-
able. To also capture the irregularity and intermingling of the sample curves
in Fig. 1 we modell C as a spatial random process, see e.g. (Ditlevesen, 1986;
Ortiz and Kiremidjian, 1986).
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A damage function ¥(a) is introduced from Eq. (4) as
[ dz )
oo Y&, Y (Vra)™

The stress ranges are denoted S; = Aoy, and solution of Eq. (4) gives

¥(a)

CS™N, constant amplitude loading

¥(a) =C/ONSmdN= (10)

N
C Z S, variable amplitude loading
i=1

The crack growth equation Eq. (1) has here been directly extrapolated to
variable amplitude loading where the appropriate value of S is inserted for
each stress cycle. It must be emphasized that this is an extrapolation be-
yond experimental experience, and possible sequence effects are neglected.
It is observed that the only difference between the two cases of constant and
variable amplitude loading concerns the loading statistics. The crack length
after N stress cycles, ay, is obtained by solving Eq. (10) with respect to a.

It follows from Eq. (10) that if failure is defined by crack growth beyond
a critical size ac, the following equation is valid at failure under constant
amplitude loading

¥(ac)

C
where K is a constant independent of the loading. This relation is in agree-
ment with the S-N curves generally applied in fatigue calculations.

One way to define a damage index D in terms of the crack size is

_ v
¥(ac)

From this definition and Eq. (10) it follows that damage increases linearly
from zero to one with the number of stress cycles. It can further be shown
that the damage increment in one stress cycle of range .S; is 1/N(S;), where
N (S;) is the number of cycles to failure under constant amplitude loading.
Damage accumulation is thus in agreement with Miner’s rule, and the S-N
approach and fracture mechanics approach are very similar.

Let the failure criterion be taken as exceedence of a critical crack size
ac in a time period with N stress cycles,

NS™ =

=K (11)

(12)

ac —an <0 (13)
V¥ (a) is monotonically increasing and the failure criterion can be written as

VU(ac) — ¥(an) = /a:C Y (z, Y)(f:(\/ﬁ)

__CS™N <0  (14)
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for constant amplitude loading. The safety margin M is defined as

ac dz
M= / _CS™N 15
ew Y(z,Y)"(/mz)™ (15)
and failure takes place when M < 0.
For variable amplitude loading, the safety margin becomes similarly

ac dz
M= e

where the sum of the m’th power of the stress ranges has been replaced by
its expected value. This is a good approximation in most practical applica-
tions.

The stress range distribution is often chosen as Weibull for long or short
term stress response to environmental loading. For a Weibull distribution
of stress ranges, the distribution function is

_ _ CNE[ST (16)

Fs(s) =1—exp [—- (%)B] , §>0 (17)

and the safety margin becomes

ac dz
M =
/uo Y(z,Y)™(y/rz)™

— CNA™ (1 + %) (18)
where I'(-) denotes the Gamma function. For B = 2 the stress range distri-
bution becomes of Rayleigh type, which is generally used for stress response
modelled as a fairly narrow-band Gaussian process.

3. Failure criteria and basic variables

The previous section has shown an important case where a limit state for-
mulation can be applied for reliability analysis against fatigue crack growth
beyond a critical size. In this section some generalizations are presented.
Two separate types of failure criteria are envisaged, (ASCE Committee,
1982)

ac —any <0 (19)

Kic — K(an) <0 (20)

In the first case, a critical crack size ac is selected perhaps based on service-
ability considerations. In the second case, failure occurs when the stress in-
tensity factor K exceeds the fracture toughness Kjc; then the crack growth
becomes unstable and rapid failure occurs. Four cases are considered, cor-
responding to the two failure criteria and constant or variable amplitude
loading.
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Crack growth beyond critical size under con-

Case 1: stant amplitude loading

Brittle fracture under constant amplitude load-
Case 2: .

ing
Case 3: Crack growth beyond critical size under variable

ase J- amplitude loading

Brittle fracture under variable amplitude load-

Case 4:

ing
The safety margin for case 1 was given in Eq. (14) as

ac dz
= - m™N 1 21
M /ao Y V) (Jre)™ cS , case (21)
For case 2, the safety margin is
M=Kic-Y(an,Y)(om + g)\/ﬂ'a]\] , case 2 (22)

where o0, is there average far-field stress including possible residual stresses.
For case 3, the safety margin was given in Eq. (16) as

ac dz
M= e

— —CNE[S]"] , case 3 (23)
For case 4, failure occurs if
case 4 (24)

where o = o (t) is the far-field stress. This is illustrated in Fig. 2. Failure
does not occur in the time period [0, T if the stress process o(t) is below
the time varying threshold £(t) = Kjc/{Y (a(t))\/ma(t)} in [0,T]. This
probability is approximated by, see e.g. (Madsen et al., 1986)

K Tyt d
el ]

Ty is the random life time and v} (£(t)) is the mean upcrossing rate of
the level £(t) by the process o(t) at time ¢. This mean upcrossing rate is
computed by Rice’s formula, (Rice, 1954)

v = [T 6 - &) frslet), 6)ds
+(€(1) /{.( €)f o (E(t), 5)d (26)
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Figure 2. Illustration of failure event for brittle fracture under variable amplitude
loading.

where a “dot” denotes a time derivative. In this application, the time deriva-
tive & can be neglected; Eq. (26) therefore reduces to

vHE®) = [ ofale®, 0)d0 (21)
For a life time T, the failure criterion can be stated as
T;-T<0 (28)

The distribution function for T is given in Eq. (25) as a function of mate-
rial, loading and crack size parameters.

4. Parameter estimation for material properties

The value of m in the crack growth equation Eq. (1) is predicted from
theoretical models as m = 2 or m = 4. Statistical estimation of m from ex-
perimental results generally results in other values and m should be treated
as a random variable in addition to C.

Several studies, e.g. (Gurney, 1978), report a high negative correlation
between m and InC'. This is also demonstrated in the study (Tanaka et
al., 1981) where crack propagation data for 25 identical specimens under
identical loading conditions have been collected. The least square estimates
m and C for m and C have been computed for each specimen, and a joint
distribution for m and C has been estimated. The 25 tests are for plane
bending of a 0.04% Carbon steel and the following sample statistics are
obtained

m=2.85 s, =0284 V, =0.100 (29)

InC = —20.164 Sjuc = 1.067 Fminc = —0.971 (30)
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An “over bar” denotes a sample mean, s denotes a sample standard
deviation, V denotes a sample coeflicient of variation and r denotes a sample
correlation coefficient. A standard test does not reject an assumption of bi-
normality for (m,InC). Based on these results, m and InC are expressed
in terms of two independent and standardized normal random variables U,
and U, as

m = + 0.100MmU; (31)

InC =InC + 1.067(=0.971U; + 0.239U5) (32)

thus giving a coefficient of variation of 10% for m, a standard deviation of
1.067 for In C and a correlation coefficient of —0.971 between m and InC.
The statistical uncertainty in the estimates in Egs. (29) and (30) is thus
ignored. In (Madsen, 1984) a fatigue reliability analysis which includes this
statistical uncertainty, is reported.

The negative correlation between m and In C is not a physical property
but follows form the mathematical form of the crack growth equation. An

alternative form is
da AK\™
&= =Co (TQ) (33)

where Ky is a fixed reference value of the same dimension as K. Cy then
has the same dimension as da/dN. The constant C in Eq. (1) is

C=CoK;™; InC=InCo—mlnK, (34)

It follows that if the scatter in Cp is negligible, then In C' and m are linearly
related. Otherwise In C' and m are expected to be negatively correlated.
m and InCy can be made uncorrelated by a suitable choice for Ky. A
choice of Ky = 38.4 MPa together with the results in Eqgs. (29) and (30)
imply that m and In Cy are uncorrelated, and the variance of In Cy is 0.065,
corresponding to a standard deviation of 0.26. In (Ditlevsen and Olesen,
1986) a similar analysis was performed for the data shown in Fig. 1. The
coefficient of variation of m was found as 6% and the same value was found
for the standard deviation of In Cy. Both uncertainties in m and in C are
thus important and roughly of the same magnitude.

5. Reliability updating based on inspection results

Structures in service are often inspected to detect cracks before they be-
come critical. Let a crack be detected after n; stress cycles and its length
measured as

a(n;) = 4 (35)
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Figure 8. Inspection reliability for MPI.

A; is generally random due to measurement error and/or due to uncertain-
ties in the interpretation of a measured signal as a crack length. Measure-
ments of the type Eq. (35) can be envisaged for several times corresponding
to different values of n;.

For each measurement Eq. (35), an event margin can be defined as

Aj+zx da

H;(z) =CST"n; —/
i(®) 1 a0 Y(a, Y)"(yma)™ ’
These event margins are zero for z = 0 due to Eq. (35).
A second type of inspection result is that no crack is detected. For an
inspection at a time corresponding to n; stress cycles, this implies

a(ni) < Ay (37)

expressing that the crack length is smaller than the smallest detectable
crack length Ag;. Ag; is generally random since a detectable crack is only
detected with a certain probability, depending on the crack length and
on the inspection method. The distribution of Ag; is the distribution of
the length of undetected cracks. This distribution is provided through the
probability of detection curves (pod curves) for which experimental results
exist for various inspection methods. Fig. 3 shows experimental data and a
pod curve for magnetic particle inspection (MPI). Information of the type
Eq. (37) can also be envisaged for several times. If Ay is deterministic,
however, and the same for all inspections, the information in the latest
observation contains all the information of the previous ones. For each
measurement Eq. (37) an event margin M; can be defined a