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   Preface  

  Engineering Mathematics Pocket Book 4th Edition is intended 
to provide students, technicians, scientists and engineers with a 
readily available reference to the essential engineering mathematics 
formulae, definitions, tables and general information needed during 
their studies and/or work situation – a handy book to have on the 
bookshelf to delve into as the need arises.   

In this 4th edition, the text has been re-designed to make informa-
tion easier to access. Essential theory, formulae, definitions, laws and 
procedures are stated clearly at the beginning of each section, and 
then it is demonstrated how to use such information in practice.   

The text is divided, for convenience of reference, into sixteen main 
chapters embracing engineering conversions, constants and sym-
bols, some algebra topics, some number topics, areas and volumes, 
geometry and trigonometry, graphs, vectors, complex numbers, 
matrices and determinants, Boolean algebra and logic circuits, differ-
ential and integral calculus and their applications, differential equa-
tions, statistics and probability, Laplace transforms and Fourier series. 
To aid understanding, over 500 application examples have been 
included, together with over 300 line diagrams.   

The text assumes little previous knowledge and is suitable for a 
wide range of courses of study. It will be particularly useful for stu-
dents studying mathematics within National and Higher National 
Technician Certificates and Diplomas, GCSE and A levels, for 
Engineering Degree courses, and as a reference for those in the 
engineering industry.   

  John Bird    
  Royal Naval School of Marine Engineering, 

HMS Sultan,       formerly University of Portsmouth    
  and Highbury College, Portsmouth        
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     1    Engineering Conversions, 
Constants and Symbols   

  1.1     General conversions 

  Length (metric) 1 kilometre (km)      �      1000 metres (m) 
 1 metre (m)      �      100 centimetres (cm) 

   1 metre (m)      �      1000 millimetres (mm) 
   1    cm     �      10      �     2 m 
   1     mm    �      10      �     3 m 
   1 micron ( μ )      �      10      �     6 m 
   1 angstrom (A)      �      10      �     10 m 

  Length (imperial)   1 inch (in)      �      2.540     cm or 1    cm     �      0.3937 in 
   1 foot (ft)      �      30.48    cm
   1 mile (mi)      �      1.609     km or 1    km     �      0.6214 mi 
   1    cm     �      0.3937 in 
   1     m    �      39.37 in      �      3.2808 ft      �      1.0936 yd 
   1    km     �      0.6214 mile 
   1 nautical mile      �      1.15 mile 

  Area (metric)   1     m 2       �      10 6 mm 2  
   1     mm 2       �      10      �     6 m 2  
   1     m 2       �      10 4 cm 2  
   1    cm2       �      10      �     4 m 2  
   1 hectare (ha)      �      10 4 m 2  

  Area (imperial)   1     m 2       �      10.764 ft 2       �      1.1960 yd 2  
  1 ft 2       �      929 cm 2  
   1 mile 2   �  640 acres 
   1 acre      �      43560 ft 2       �      4840 yd 2  
  1 ha   �   2.4711 acre   �   11960 yd 2     �   107639 ft 2  

  Volume   1 litre (l)      �      1000 cm 3  
   1 litre      �      1.057 quart (qt)      �      1.7598 pint (pt)      �   

0.21997 gal 
  1 m 3       �      1000 l 
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   1 British gallon      �      4 qt    �      4.545     l      �      1.201 US 
                  gallon 

   1 US gallon      �      3.785 l 

  Mass  1 kilogram (kg)   �   1000   g   �   2.2046 pounds (lb) 
   1 lb      �      16     oz      �      453.6     g 
   1 tonne (t)      �      1000     kg      �      0.9842 ton 

  Speed   1 km/h    �      0.2778 m/s      �      0.6214     m.p.h. 
   1     m.p.h.    �      1.609 km/h      �      0.4470 m/s 
   1 rad/s    �      9.5493 rev/min 
   1 knot    �      1 nautical mile per hour      �   

          1.852 km/h      �      1.15     m.p.h. 
   1 km/h    �      0.540 knots 
   1     m.p.h.    �      0.870 knots 

  Angular measure   1     rad      �      57.296 °  
   

  1.2     Greek alphabet 

 Letter Name  Upper Case  Lower Case 

Alpha A α  

Beta B β  

Gamma Γ γ  

Delta Δ δ  

Epsilon E ε  

Zeta Z ζ  

Eta H η  

Theta θ θ  

Iota l ι  

Kappa K κ  

Lambda Λ λ  

Mu M μ  

Nu N ν  

Xi Ξ ξ  
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Omicron  O o

Pi Π π  

Rho P ρ  

Sigma Σ σ  

Tau  T τ  

Upsilon Y υ  

Phi Φ φ  

Chi X χ  

Psi Ψ �  

Omega Ω ω  

   

  1.3      Basic SI units, derived units and common 
prefixes 

 Basic SI units 

Quantity Unit

Length metre, m 

Mass kilogram, kg 

Time  second, s 

 Electric  current  ampere, A 

 Thermodynamic temperature  kelvin, K 

 Luminous intensity  candela, cd 

 Amount of substance  mole, mol 

 SI supplementary units 

 Plane angle  radian, rad 

 Solid angle  steradian, sr 
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 Derived units 

Quantity Unit

 Electric capacitance  farad, F 
 Electric charge  coulomb, C 
 Electric conductance  siemens, S 
 Electric potential difference  volts, V 
 Electrical resistance  ohm,  Ω  
Energy joule, J 
Force  Newton, N 
Frequency  hertz, Hz 
Illuminance lux, lx 
Inductance henry, H 
 Luminous flux  lumen, lm 
 Magnetic flux  weber, Wb 
 Magnetic flux density  tesla, T 
Power watt, W 
Pressure  pascal, Pa 

 Some other derived units not having special names 

Quantity Unit

Acceleration metre per second squared, m/s 2  
 Angular velocity  radian per second, rad/s 
Area  square metre, m 2  
 Current density  ampere per metre squared, A/m 2  
Density kilogram per cubic metre, kg/m 3  
 Dynamic viscosity  pascal second, Pa s 
 Electric charge density  coulomb per cubic metre, C/m 3  
 Electric field strength  volt per metre, V/m 
 Energy density  joule per cubic metre, J/m 3  
 Heat capacity  joule per Kelvin, J/K 
 Heat flux density  watt per square metre, W/m 3  
 Kinematic viscosity  square metre per second, m 2 /s 
Luminance candela per square metre, cd/m 2  
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 Magnetic field strength  ampere per metre, A/m 
 Moment of force  newton metre, Nm 
Permeability henry per metre, H/m 
Permittivity farad per metre, F/m 
 Specific volume  cubic metre per kilogram, m3/kg
 Surface tension  newton per metre, N/m 
 Thermal conductivity  watt per metre Kelvin, W/(mK) 
Velocity  metre per second, m/s 2  
Volume  cubic metre, m 3  

 Common prefixes 

Prefix  Name Meaning

Y yotta multiply by 10 24  
Z zeta multiply by 10 21  
E exa multiply by 10 18  
P peta multiply by 10 15  
T tera multiply by 10 12  
G giga multiply by 10 9  
M mega multiply by 10 6  
k kilo multiply by 10 3  
m milli multiply by 10      �     3  
  μ micro  multiply by 10      �     6  
n nano multiply by 10      �     9  
p pico multiply by 10      �     12  
f femto multiply by 10      �     15  
a atto multiply by 10      �     18  
z zepto multiply by 10      �     21  
y yocto multiply by 10      �     24  

   

  1.4     Some physical and mathematical constants 

Below are listed some physical and mathematical constants, each 
stated correct to 4 decimal places, where appropriate.
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Quantity Symbol Value 

 Speed of light in a 
vacuum

c 2.9979    �      10 8 m/s 

 Permeability of free 
space

  μ  0 4π       �      10      �     7 H/m 

 Permittivity of free 
space

  ε  0 8.8542    �      10      �     12 F/m 

 Elementary charge  e 1.6022    �      10      �     19 C 

 Planck constant h 6.6261    �      10      �     34 J s 

  
     
� �

h
2π  1.0546    �      10      �     34 J s 

 Fine structure constant 
     
α

πε
�

e
c

2

04 �  7.2974      �      10      �     3  

 Coulomb force 
constant ke 8.9875    �      10 9 Nm 2/C2  

 Gravitational constant  G 6.6726    �      10      �     11 m3/kg s 2  

 Atomic mass unit  u 1.6605    �      10      �     27 kg 

 Rest mass of electron  m e 9.1094    �      10      �     31 kg 

 Rest mass of proton  m p 1.6726    �      10      �     27 kg 

 Rest mass of neutron  m n 1.6749    �      10      �     27 kg 

 Bohr radius  a 0 5.2918    �      10      �     11 m 

 Compton wavelength 
of electron 

  λ  C 2.4263    �      10      �     12 m 

 Avogadro constant  N A 6.0221    �      10 23 /mol 

 Boltzmann constant  k 1.3807    �      10      �     23 J/K 

 Stefan-Boltzmann 
constant

  σ 5.6705    �      10      �     8  W /m 2 K 4  

 Bohr constant   μ  B 9.2740    �      10      �     24 J/T 

 Nuclear magnetron   μ  N 5.0506    �      10      �     27 J/T 

 Triple point 
temperature 

 T t 273.16 K 

 Molar gas constant  R 8.3145 J/K mol 

Micron  μm 10     �     6 m 

 Characteristic 
impedance of vacuum 

 Z o 376.7303Ω  
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 Astronomical constants 

 Mass of earth  m E 5.976      �      10 24 kg 
 Radius of earth  R E 6.378      �      10 6 m 
 Gravity of earth’s surface g 9.8067 m/s 2  
 Mass of sun  M� 1.989      �      10 30 kg 
 Radius of sun  R� 6.9599    �      10 8 m 
 Solar effective temperature Te 5800 K 
 Luminosity of sun  L� 3.826      �      10 26 W 
 Astronomical uni t AU 1.496      �      10 11 m 
Parsec pc 3.086      �      10 16 m 
Jansky Jy 10     �     26  W/m 2 HZ 
 Tropical year    3.1557    �      10 7 s 
 Standard atmosphere atm 101325 Pa 

 Mathematical constants 

 Pi (Archimedes ’  constant)   π 3.1416
 Exponential constant e 2.7183
 Apery’s constant   ζ (3) 1.2021
 Catalan’s constant G 0.9160
 Euler’s constant   γ 0.5772
 Feigenbaum’s constant   α 2.5029
 Feigenbaum’s constant   δ 4.6692
 Gibb’s constant G 1.8519
 Golden mean   φ 1.6180
 Khintchine’s constant K 2.6855

   

  1.5     Recommended mathematical symbols 

 equal to   �  
 not equal to   �  
 identically equal to   �  
 corresponds to �

 approximately equal to   �  
approaches  →  
 proportional to   �  
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infinity �  

 smaller than   	  

 larger than   
  

 smaller than or equal to   �  

 larger than or equal to   �  

 much smaller than    		 
 much larger than   

 

plus �  

minus �  

 plus or minus   
  

 minus or plus �

 a multiplied by b ab or a      �      b or a � b

 a divided by b 
     

a
b

or a/b or ab 1�

 magnitude of a   | a |  

 a raised to power n  an

 square root of a 
    

a or a
1
2

       

 n’th root of a 
     

a orn or a a
1
n 1/n

 mean value of a       a

 factorial of a a!

sum Σ  

 function of x  f(x) 

 limit to which f(x) tends as 
x approaches a      

lim ( )
x→a

f x

 finite increment of x   � x 

 variation of x   δ x 

 differential coefficient of f(x) with 
respect to x      

df
dx

 or df/dy or f (x)�

 differential coefficient of order n of f(x) 
     

d f
dx

n

n
 or d f/dx or f (x)n 2 n
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 partial differential coefficient of 
f(x, y, …) w.r.t. x when y, … are held 
constant      

∂
∂

∂
∂

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

f(x,y,...)
or or fxx

f
x y

 total differential of f  df 
 indefinite integral of f(x) with 

respect to x      
f x dx( )∫

 definite integral of f(x) from 
x      �      a to x    �      b 

     
f x dx

a

b
( )∫

 logarithm to the base a of x  loga X

 common logarithm of x  lg x or log10 x
 exponential of x  ex or exp x 
 natural logarithm of x  ln x or loge x
 sine of x  sin x 
 cosine of x  cos x 
 tangent of x  tan x 
 secant of x  sec x 
 cosecant of x  cosec x 
 cotangent of x  cot x 
 inverse sine of x  sin    �     1 x or arcsin x 
 inverse cosine of x  cos     �     1 x or arccos x 
 inverse tangent of x  tan     �     1 x or arctan x 
 inverse secant of x  sec     �     1 x or arcsec x 
 inverse cosecant of x  cosec     �     1 x or arccosec x 
 inverse cotangent of x  cot     �     1 x or arccot x 
 hyperbolic sine of x  sinh x 
 hyperbolic cosine of x  cosh x 
 hyperbolic tangent of x  tanh x 
 hyperbolic secant of x  sech x 
 hyperbolic cosecant of x  cosech x 
 hyperbolic cotangent of x  coth x 
 inverse hyperbolic sine of x  sinh     �   1 x or arsinh x 
 inverse hyperbolic cosine of x  cosh     �     1 x or arcosh x 
 inverse hyperbolic tangent of x  tanh     �     1 x or artanh x 
 inverse hyperbolic secant of x  sech     �     1 x or arsech x 
 inverse hyperbolic cosecant of x  cosech     �     1 x or arcosech x 
 inverse hyperbolic cotangent of x  coth   �   1 x or arcoth x 
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 complex operator  i, j 
 modulus of z  |z| 
 argument of z  arg z 
 complex conjugate of z  z* 
 transpose of matrix A  AT

 determinant of matrix A |A|

vector A or  A
��

 magnitude of vector A |A |
 scalar product of vectors A and B A  •  B  
 vector product of vectors A and B A      �      B  
   

  1.6     Symbols for physical quantities 

 (a) Space and time   
 angle (plane angle)   α ,  β ,  γ ,  θ ,  φ , etc. 
 solid angle   Ω ,  ω  
length l
breadth  b
height h
thickness d, δ  
radius r
diameter d
 distance along path  s, L 
 rectangular co-ordinates  x, y, z 
 cylindrical co-ordinates r,  φ , z 
 spherical co-ordinates r, θ ,  φ  
area  A
volume V
time t

angular speed, 
dt
dθ

     
  ω  

angular
d

 acceleration, 
dt
�

  α  

      
speed, 

ds
dt

 u, v, w 
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acceleration, 

du

dt
 a 

 acceleration of free fall  g 
 speed of light in a vacuum  c 
 Mach number  Ma 

 (b) Periodic and related phenomena 

period T
frequency  f
 rotational frequency  n 
 circular frequency   ω  
wavelength λ  
 damping coefficient   δ  
 attenuation coefficient   α  
 phase coefficient   β  
 propagation coefficient   γ  

 (c) Mechanics 

mass m
density ρ  
 relative density  d 
 specific volume  v 
momentum p
 moment of inertia  I, J 
 second moment of area  I a  
 second polar moment of area  I p  
force  F
 bending moment  M 
 torque; moment of couple T
pressure  p, P 
 normal stress   σ  
 shear stress   τ  
 linear strain   ε , e 
 shear strain   γ  
 volume strain   θ  
 Young’s modulus  E 
 shear modulus  G 
 bulk modulus  K 
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 Poisson ratio   μ ,  ν  
compressibility  κ  
 section modulus  Z, W 
 coefficient of friction   μ  
viscosity η  
fluidity φ  
 kinematic viscosity   ν  
 diffusion coefficient  D 
 surface tension   γ ,  σ  
 angle of contact   θ  
work W
energy E, W 
 potential energy  E p , V,  Φ  
 kinetic energy  E k , T, K 
power P
 gravitational constant  G 
 Reynold’s number  Re 

 (d) Thermodynamics 

 thermodynamic temperature T,  Θ  
 common temperature  t,  θ  
 linear expansivity   α ,  λ  
 cubic expansivity   α ,  γ  
 heat; quantity of heat  Q, q 
 work; quantity of work  W, w 
 heat flow rate   Φ , q 
 thermal conductivity   λ , k 
 heat capacity  C 
 specific heat capacity  c 
entropy  S
 internal energy  U, E 
enthalpy H
 Helmholtz function  A, F 
 Planck function  Y 
 specific entropy  s 
 specific internal energy  u, e 
 specific enthalpy  h 
 specific Helmholz function  a, f 
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 (e) Electricity and magnetism 

 Electric charge; quantity of electricity  Q 
 electric current  I 
 charge density   ρ  
 surface charge density   σ  
 electric field strength  E 
 electric potential V,  φ  
 electric potential difference  U, V 
 electromotive force  E 
 electric displacement  D 
 electric flux   �  
capacitance C
permittivity ε  
 permittivity of a vacuum   ε  0  
 relative permittivity   ε  r  
 electric current density  J, j 
 magnetic field strength  H 
 magnetomotive force  F m  
 magnetic flux   Φ  
 magnetic flux density  B 
 self inductance  L 
 mutual inductance  M 
 coupling coefficient  k 
 leakage coefficient   σ  
permeability μ  
 permeability of a vacuum   μ  0  
 relative permeability   μ  r  
 magnetic moment  m 
resistance  R
resistivity  ρ  
conductivity γ ,  σ  
reluctance  Rm , S 
permeance Λ  
 number of turns  N 
 number of phases  m 
 number of pairs of poles  p 
 loss angle   δ  
 phase displacement   φ  
impedance Z
reactance  X
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resistance  R
 quality factor  Q 
admittance Y
susceptance B
conductance G
 power, active  P 
 power, reactive  Q 
 power, apparent  S 

 (f) Light and related electromagnetic radiations 

 radiant energy  Q, Q e  
 radiant flux, radiant power   Φ ,  Φ  e , P 
 radiant intensity  I, I e  
radiance L, L e  
 radiant exitance  M, M e  
irradiance E, E e  
emissivity e
 quantity of light  Q, Q v  
 luminous flux   Φ ,  Φ  v  
 luminous intensity  I, I v  
luminance L, L v  
 luminous exitance  M, M v  
illuminance E, E v  
 light exposure  H 
 luminous efficacy  K 
 absorption factor, absorptance   α  
 reflexion factor, reflectance   ρ  
 transmission factor, transmittance   τ  
 linear extinction coefficient   μ  
 linear absorption coefficient  a 
 refractive index  n 
refraction  R
 angle of optical rotation   α  

 (g) Acoustics 

 speed of sound  c 
 speed of longitudinal waves  c l  
 speed of transverse waves  c t  
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 group speed  c g  
 sound energy flux  P 
 sound intensity  I, J 
 reflexion coefficient   ρ  
 acoustic absorption coefficient   α ,  α  a  
 transmission coefficient   τ  
 dissipation coefficient   δ  
 loudness level  L N  

 (h) Physical chemistry 

 atomic weight  A r  
 molecular weight  M r  
 amount of substance  n 
 molar mass  M 
 molar volume  V m  
 molar internal energy  U m  
 molar enthalpy  H m  
 molar heat capacity  C m  
 molar entropy  S m  
 molar Helmholtz function  A m  
 molar Gibbs function  G m  
 (molar) gas constant  R 
 compression factor  Z 
 mole fraction of substance B  x B  
 mass fraction of substance B  w B  
 volume fraction of substance B   φ  B  
 molality of solute B  m B  
 amount of substance concentration of solute B  c B  
 chemical potential of substance B   μ  B  
 absolute activity of substance B   λ  B  
 partial pressure of substance B in a gas mixture  p B  
 fugacity of substance B in a gas mixture  f B  
 relative activity of substance B   α  B  
 activity coefficient (mole fraction basis)  f B  
 activity coefficient (molality basis)   γ  B  
 activity coefficient (concentration basis)  y B  
 osmotic coefficient   φ , g 
 osmotic pressure   Π  
 surface concentration   Γ  
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 electromotive force  E 
 Faraday constant  F 
 charge number of ion i  z i  
 ionic strength  I 
 velocity of ion i  v i  
 electric mobility of ion i  u i  
 electrolytic conductivity   κ  
 molar conductance of electrolyte   Λ  
 transport number of ion i  t i  
 molar conductance of ion i   λ  i  
overpotential η  
 exchange current density  j 0  
 electrokinetic potential   ζ  
 intensity of light  I 
transmittance T
absorbance A
 (linear) absorption coefficient  a 
 molar (linear) absorption coefficient   ε  
 angle of optical rotation   α  
 specific optical rotatory power   α  m  
 molar optical rotatory power   α  n  
 molar refraction  R m  
 stoiciometric coefficient of molecules B   ν  B  
 extent of reaction   ξ  
 affinity of a reaction A
 equilibrium constant  K 
 degree of dissociation   α  
 rate of reaction   ξ , J 
 rate constant of a reaction  k 
 activation energy of a reaction  E 

 (i) Molecular physics 

 Avogadro constant  L, N A  
 number of molecules  N 
 number density of molecules  n 
 molecular mass  m 
 molecular velocity c, u
 molecular position  r 
 molecular momentum p
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 average velocity      c u c u0 0, , ,
 average speed c , , ,u c u      
 most probable speed ˆ , ˆc u     
 mean free path  l,  λ  
 molecular attraction energy   ε  
 interaction energy between molecules i and j   φ  ij , V ij  
 distribution function of speeds  f(c) 
 Boltzmann function  H 
 generalized co-ordinate  q 
 generalized momentum  p 
 volume in phase space   Ω  
 Boltzmann constant  k 
 partition function  Q, Z 
 grand partition function Ξ
 statistical weight  g 
 symmetrical number   σ , s 
 dipole moment of molecule  p,  μ  
 quadrupole moment of molecule   Θ  
 polarizability of molecule   α  
 Planck constant  h 
 characteristic temperature   Θ  
 Debye temperature   Θ  D  
 Einstein temperature   Θ  E  
 rotational temperature   Θ  r  
 vibrational temperature   Θ  v  
 Stefan-Boltzmann constant   σ  
 first radiation constant  c 1  
 second radiation constant  c 2  
 rotational quantum number  J, K 
 vibrational quantum number  v 

 (j) Atomic and nuclear physics 

 nucleon number; mass number  A 
 atomic number; proton number  Z 
 neutron number  N 
 (rest) mass of atom  m a  
 unified atomic mass constant  m u  
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 (rest) mass of electron  m e  

 (rest) mass of proton  m p  

 (rest) mass of neutron  m n  

 elementary charge (of protons)  e 

 Planck constant  h 

 Planck constant divided by 2 π �  
 Bohr radius  a 0  

 Rydberg constant  R �  

 magnetic moment of particle   μ  

 Bohr magneton   μ  B  

 Bohr magneton number, nuclear magneton   μ  N  

 nuclear gyromagnetic ratio   γ  

g-factor g

 Larmor (angular) frequency   ω  L  

 nuclear angular precession frequency   ω  N  

 cyclotron angular frequency of electron   ω  c  

 nuclear quadrupole moment  Q 

 nuclear radius  R 

 orbital angular momentum quantum number  L, l 1  

 spin angular momentum quantum number  S, s 1  

 total angular momentum quantum number  J, j 1  

 nuclear spin quantum number  I, J 

 hyperfine structure quantum number  F 

 principal quantum number  n, n 1  

 magnetic quantum number  M, m 1  

 fine structure constant   α  

 electron radius re  

 Compton wavelength   λ  C  

 mass excess   Δ  

 packing fraction  f 

 mean life   τ  

 level width   Γ  

activity A

 specific activity  a 
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 decay constant   λ  
 half-life T1

2
1
2

, t

      
 disintegration energy  Q 
 spin-lattice relaxation time  T 1  
 spin-spin relaxation time  T 2  
 indirect spin-spin coupling  J 

 (k) Nuclear reactions and ionising radiations 

 reaction energy  Q 

cross-section  σ  

 macroscopic cross-section   Σ  

 impact parameter  b 

 scattering angle   θ ,  φ  

 internal conversion coefficient   α  

 linear attenuation coefficient   μ ,  μ  1  

 atomic attenuation coefficient   μ  

 mass attenuation coefficient   μ  m  

 linear stopping power  S, S 1  

 atomic stopping power  S a  

 linear range  R, R 1  

 recombination coefficient   α        



                    2     Some Algebra Topics   

  2.1     Polynomial division         

  Application: Divide 2x 2       �      x    �      3 by x      �      1       

 2x 2       �      x    �      3 is called the dividend and x      �      1 the divisor. The usual 
layout is shown below with the dividend and divisor both arranged 
in descending powers of the symbols. 

)
2 3

1 2 3
2 2

3 3
3 3

2

2

x

x

�

� � �

�
�

 

x x
x x

x
x

−

. .      

Dividing the first term of the dividend by the first term of the divi-
sor, i.e. 2 2x x/    gives 2x, which is placed above the first term of 
the dividend as shown. The divisor is then multiplied by 2x, i.e. 
2x(x    �      1)      �      2x 2       �   2x, which is placed under the dividend as shown. 
Subtracting gives 3x      �      3. 

The process is then repeated, i.e. the first term of the divisor, x, is 
divided into 3x, giving      �     3, which is placed above the dividend as 
shown. Then 3(x      �      1)      �      3x     �      3 which is placed under the 3x      �   3.
The remainder, on subtraction, is zero, which completes the process. 

 Thus,  (2x2       �      x    �      3)     ÷    (x      �      1)      �      (2x      �      3)        

  Application:  Divide (x 2       �      3x      �      2) by (x      �      2)       
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)
x

x

x
x

�

� � �

�
�
�

5

2 3 2
2
5 2
5 10

8

2

2
x x
x x

     

Hence
x

x

2 � �

�
�

3 2
2

x
x 5

8
x 2

� �
�      

  2.2     The factor theorem         

  A factor of (x      �      a) in an equation corresponds to a root of 
x       �       a  

  If x       �       a is a root of the equation f(x)       �       0, then (x      �      a) is a 
factor of f(x)              

  Application: Factorise x 3       �      7x     �      6 and use it to solve the cubic 
equation x 3       �      7x      �      6    �      0       

 Let f(x)      �      x 3       �      7x      �      6 

 If x      �      1, then f(1)      �      1 3       �      7(1)    �      6    �       � 12

 If x      �      2, then f(2)      �      2 3       �      7(2)    �      6    �       �     12

 If x      �      3, then f(3)      �      3 3       �      7(3)    �      6    �      0 

 If f(3)      �      0, then (x      �      3) is a factor – from the factor theorem. 

We have a choice now. We can divide x 3       �      7x     �      6 by (x      �      3) or we 
could continue our ‘trial and error ’ by substituting further values for 
x in the given expression – and hope to arrive at f(x)      �      0. 
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 Let us do both ways. Firstly, dividing out gives: 

)
x

x

2 � �

� � � �

�

� �

�
�
�

3 2

3 0 7 6
3
3 7 6
3 9

2 6
2 6

3

3 2

2

2

x

x x
x x

x x
x x

x
x

. .      

Hence,
x x

x

3 7 6
3

3 2
� �

�
� � �x x2

    

i.e. x 3       �      7x      �      6    �      (x     �      3)(x 2       �      3x      �      2) 

 x 2       �      3x      �      2 factorises  ‘ on sight ’  as (x      �      1)(x    �      2) 

 Therefore,  x3       �       7x       �       6       �       (x       �       3)(x       �       1)(x       �       2)  

 A second method is to continue to substitute values of x into f(x). 

Our expression for f(3) was 3 3       �      7(3)    �      6. We can see that if we 
continue with positive values of x the first term will predominate 
such that f(x) will not be zero. 

 Therefore let us try some negative values for x. 

 f( � 1)      �      ( � 1) 3       �      7(� 1)      �      6    �      0; hence (x      �      1) is a factor (as shown 
above).

 Also f( � 2)      �      ( � 2) 3       �      7( � 2)      �      6    �      0; hence (x      �      2) is a factor. 

 To solve x 3       �      7x      �      6    �      0, we substitute the factors, i.e. 

(x )(x )(x )� � � �3 1 2 0     

   from which, x      �      3, x      �       �     1 and x      �       �2   

Note that the values of x, i.e. 3, �1 and �2, are all factors of the 
constant term, i.e. the 6. This can give us a clue as to what values of 
x we should consider.  
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  2.3     The remainder theorem         

  If (ax 2       �      bx      �      c) is divided by (x      �      p), the remainder will be 
ap2       �      bp      �      c  

  If (ax 3       �      bx 2       �      cx      �      d) is divided by (x      �      p), the remainder 
will be ap 3       �      bp 2       �      cp      �      d              

  Application: When (3x 2       �      4x      �      5) is divided by (x      �      2) find the 
remainder       

 ap 2       �      bp      �      c, (where a      �      3, b      �       �     4, c      �      5 and p      �      2), 

 hence the remainder is 3(2) 2       �      ( � 4)(2)    �      5    �      12      �      8    �      5    �     9  

We can check this by dividing (3x 2       �      4x     �      5) by (x      �      2) by long 
division:

)
3 2

2 3 4 5
3 6

2 5
2 4

9

2

2

x

x

x
x

�

�

�
�

x x
x x

− +
−

          

  Application: When (2x 2       �      x    �      3) is divided by (x      �      1), find the 
remainder       

 ap 2       �      bp      �      c, (where a      �      2, b      �      1, c      �       �     3 and p      �      1), hence the 
remainder is  2(1) 2       �      1(1)    �      3    �       0 , 

 which means that (x      �      1) is a factor of (2x 2       �      x    �      3). 

 In this case, the other factor is (2x      �      3), 
i.e. (2x 2       �      x      �      3)      �      (x      �      1)(2x    �      3)       

  Application: When (3x 3       �      2x 2       �      x    �      4) is divided by (x      �      1), 
find the remainder       
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 The remainder is ap 3       �      bp 2       �      cp      �      d (where a      �      3, b      �      2, c      �       �     1,
d      �      4 and p      �      1), i.e. the remainder is: 
3(1)3       �      2(1) 2       �      ( � 1)(1)    �      4    �      3    �      2    �      1    �      4    �       8   

  2.4     Continued fractions 

Any fraction may be expressed in the form shown below for the 
fraction 26 55/    : 

26
55

1
55
26

1

2
3

26

1

2
1

26
3

1

2
1

8
2
3

1

2
1

8
1
3
2

1

2
1

8
1

1
1
2

� �

�

�

�

�

�
�

�

�
�

�

�
�

�
     

 The latter factor can be expressed as: 
1

A �

�

�

�

α
β

γ
δ

B

C

D      
 Comparisons show that A, B, C and D are 2, 8, 1 and 2 respectively. 

A fraction written in the general form is called a continued frac-
tion and the integers A, B, C and D are called the  quotients of the 
continued fraction. The quotients may be used to obtain closer and 
closer approximations, called  convergents . 

A tabular method may be used to determine the convergents of a 
fraction:

    1 2 3 4 5

   a   2 8 1 2

    
b

bp
bq

⎧
⎨
⎪⎪
⎩⎪⎪       

0
1    

1
2    

8
17    

9
19    

26
55     
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The quotients 2, 8, 1 and 2 are written in cells a2, a3, a4 and a5 
with cell a1 being left empty. 

 The fraction 01    is always written in cell b1. 

The reciprocal of the quotient in cell a2 is always written in cell b2, 
i.e. 1

2    in this case. 

 The fraction in cell b3 is given by 
( )

( )

a b p b p

a b q b q
,

3 2 1

3 2 1

� �

� �      

i.e.
( )
( )
8 1 0
8 2 1

8
17

� �

� �
�

 The fraction in cell b4 is given by  
(a b p) b p
(a b q b q

,
4 3 2
4 3 2

� �

� �)
    

i.e.
( )

( )
1 8 1

1 17 2
9

19
� �

� �
� , and so on.

Hence the convergents of
26
55

    are  
1
2

   ,
8

17
   ,

9
19

    and
26
55

   , each value 

approximating closer and closer to  
26
55

   . 

These approximations to fractions are used to obtain practical ratios 
for gearwheels or for a dividing head (used to give a required 
angular displacement).  

  2.5     Solution of quadratic equations by formula         

 If ax 2       �      bx      �      c    �      0 then x
b b 4ac

2a

2
�

� � �

                

Comparing 3x 2       �      11x      �      4    �      0 with ax 2       �      bx      �      c    �      0 gives a      �      3, 
b      �       �     11 and c      �       �     4 

  Application: Solve 3x 2       �      11x      �      4    �      0 by using the quadratic 
formula       
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Hence x,
( ) ( ) ( )( )

( )
�

� � � � �
�

� �

� �

11 11 4 3 4
2 3

11 121 48
6

11 169
6

11

2
 



 

13
6

11 13
6

11 13
6

�
� �

 or 
    

    
Hence,

1
or x 4

3
� �

�
�

24
6

2
6

�
          

  Application: Solve 4x 2       �      7x      �      2    �      0 giving the roots correct to 
2 decimal places       

Comparing 4x 2       �      7x      �      2    �      0 with ax 2       �      bx      �      c gives a      �      4, b      �      7 
and c      �      2 

  

Hence, x

or

�
� �

�
�

�
� 


�
� � �

7 7 4 4 2
2 4

7 17
8

7 4 123
8

7 4 123
8

2
 
( )( )
( )

. . 77 4 123
8

� .

    

 Hence,  x      �       �     0.36 or      �     1.39, correct to 2 decimal places.        

 When height s      �      16    m,  16 30
1
2

9 81� �t t2( . )     

i.e. 4.905t 2       �      30t      �      16      �      0 

  Application: The height s metres of a mass projected vertically 
upwards at time t seconds is  s ut gt� � 1

2
2   . Determine how long 

the mass will take after being projected to reach a height of 16     m 
(a) on the ascent and (b) on the descent, when u      �      30    m/s and 
g      �      9.81     m/s 2        
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 Using the quadratic formula: 

t �
� � 
 � �

�



�



( ) ( ) ( . )( )
( . )

.
.

.

30 30 4 4 905 16
2 4 905

30 586 1
9 81

30 24 21

2

99 81
5 53 0 59

.
. .�  or 

     

  Hence the mass will reach a height of 16    m after 0.59    s on the 
ascent and after 5.53     s on the descent.        

  Application: A shed is 4.0    m long and 2.0    m wide. A concrete 
path of constant width is laid all the way around the shed and 
the area of the path is 9.50     m 2. Calculate its width, to the nearest 
centimetre       

  Figure 2.1    shows a plan view of the shed with its surrounding path 
of width t metres 

2.0 m

4.0 m (4.0 � 2t)

SHED

t

t

 Figure 2.1   

  Area of path t) t( t)� � � �2 2 0 2 4 0 2( . .     

  i.e. t t t9 50 4 0 8 0 4 2. . .� � �     

  or t t24 12 0 9 50 0� � �. .     

  

Hence t �
� 
 � �

�
� 


�
� 


( . ) ( . ) ( )( . )
( )

. . .

12 0 12 0 4 4 9 50
2 4

12 0 296 0
8

12 0

2

117 20465
8

.
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 Hence, t      �      0.6506     m or  � 3.65058     m 

Neglecting the negative result which is meaningless, the width of 
the path, t       �       0.651     m  or  65     cm , correct to the nearest centimetre.  

  2.6     Logarithms           

Definition of a logarithm: If y a then x log y

Laws of logar

x
a� �

iithms: log (A B) log A log B

log
A
B

log A log B

lg

� � �

� �
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

 A n log An �

  (a)   Let x      �      log 3  9 then 3 x       �      9 from the definition of a logarithm, 

i.e. 3 x       �      3 2 , from which x      �      2  

Hence, log3  9    �      2      

  (b)   Let x      �      log 16  8 then 16 x       �      8, from the definition of a logarithm, 

i.e. (2 4 ) x       �      2 3 , i.e. 2 4x       �      2 3  from the laws of indices, from  

which, 4x      �      3 and  x �
3
4

     

  
Hence, log 8

3
416 �

                

                   Application:  Evaluate (a) log 3 9   (b) log 16  8       

  Application:  Evaluate (a) lg 0.001   (b) ln e   (c) log3
1
81           

  (a)   Let x      �      lg 0.001   �      log 10 0.001 then 10 x       �      0.001, i.e. 10 x       �      10      �     3 , 
from which x      �       �     3 

 Hence,  lg 0.001       �            �     3  (which may be checked by a calculator)     

  (b)   Let x      �      ln e      �      log e e then e x       �      e, i.e. e x       �      e 1  from which x      �      1. 

 Hence,  ln e       �       1  (which may be checked by a calculator)     
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  (c)   Let x � log3
1
81    

then 3
1
81

1
3

3
4

4x � � � �

   ,
 from which x   �     �     4 

  
Hence,  log

1
81

43 � �
                

  Application:  Solve the equations: (a) lg x      �      3   (b) log 5  x      �       �     2       

  (a)   If lg x      �      3 then log 10  x      �      3 and x      �      10 3 , i.e.  x       �       1000   

  (b)   If log 5  x      �       �     2 then x � � ��5
1
5

2
2

1
25              

  Application:  Solve 3 x       �      27       

 Logarithms to a base of 10 are taken of both sides, i.e. 

log log10 103 27x �      

  and log log10 103 27� by the third law of logarithms     

  
Rearranging gives: x 3� � �

log
log

.
.

10

10

27
3

1 43136
0 4771

…
…    

 which may be 

readily checked.       

  Application: Solve the equation 2 31 2 5x x� ��     correct to 2 deci-
mal places       

 Taking logarithms to base 10 of both sides gives: 

log10  2 x     �     1       �      log 10  3 2x     �     5  

i.e. (x      �      1)log 10  2      �      (2x      �      5)log 10  3 

x log 10  2      �      log 10  2      �      2x log 10  3      �      5 log 10  3 

x(0.3010)    �      (0.3010)    �      2x(0.4771)    �      5(0.4771) 

i.e. 0.3010x      �      0.3010    �      0.9542x    �      2.3855 

Hence 2.3855      �      0.3010    �      0.9542x    �      0.3010x 

2.6865    �      0.6532x 

  
from which,  correct to 2 decimal placex 4.11� �

2 6865
0 6532
.
.

, ss.
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  Application: Solve the equation x 3.2       �      41.15, correct to 4 sig-
nificant figures       

 Taking logarithms to base 10 of both sides gives: 

 log 10  x 3.2       �      log 10  41.15 

 3.2 log 10  x      �      log 10  41.15 

  
Hence, xlog

log .
.

.10
10 41 15
3 2

0 50449� �
    

Thus, x       �      antilog 0.50449      �      10 0.50449       �       3.195  correct to 4 
 significant figures. 

  Graphs of logarithmic functions 

A graph of y   �   log10 x is shown in  Figure 2.2    and a graph of y   �   loge x 
is shown in  Figure 2.3   . Both are seen to be of similar shape; in fact, 
the same general shape occurs for a logarithm to any base. 

0.5

0

2 31

�0.5

�1.0

3

0.48

2

0.30

1

0

0.5

�0.30

0.2

�0.70

0.1

�1.0y � log10x

x

y

x

 Figure 2.2   

 In general, with a logarithm to any base a, it is noted that: 

  1.    loga  1      �      0   
  2.    loga  a      �      1   
  3.    loga  0  →       �      �       
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  2.7     Exponential functions         

2
y

1

0 1 2 3 4 5 6

6
1.79

5
1.61

4
1.39

3
1.10

2
0.69

1
0

0.5
�0.69

0.2
�1.61

0.1
�2.30

�1

�2
y � logex

x

x

 Figure 2.3   

  The power series for e x  is:  

e 1 x
x
2!

x
3!

x
4!

x
2 3 4

� � � � � � ... (1)    

   (where 3!      �      3    �      2 � 1 and is called  ‘ factorial 3 ’ )   

 The series is valid for all values of x.       

  Graphs of exponential functions 

  Figure 2.4    shows graphs of y      �      e x  and y      �      e      �     x        

20

y

16
y � e�x

y � ex

12

8

4

0�1 21 3 x�2�3  Figure 2.4   
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33.4 4 5 6

v = 250e−t /3

 Figure 2.5   

 A table of values is drawn up as shown below.

   t 0 1 2 3 4 5 6

   e      �     t/3 1.00 0.7165 0.5134 0.3679 0.2636 0.1889 0.1353

   v      �      250e      �     t/3 250.0 179.1 128.4 91.97 65.90 47.22 33.83

 The natural decay curve of v      �      250e      �     t/3  is shown in  Figure 2.5   . 

  Application: The decay of voltage, v volts, across a capacitor at 
time t seconds is given by v   �   250e     �     t/3. Draw a graph showing 
the natural decay curve over the first 6 seconds. Determine (a) the 
voltage after 3.4    s, and (b) the time when the voltage is 150 volts       

log y = 2.3026 log y

log e = x

e 10

e
x

                 

 From the graph, 

  (a)   when time t      �      3.4     s,  voltage v      �      80 volts   

  (b)   when voltage v      �      150 volts,  time t      �      1.5 seconds       

  2.8     Napierian logarithms           
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  Application:  Solve e 3x       �      8       

 Taking Napierian logarithms of both sides, gives  

  

ln e

 correct to 

3x �

�

� �

ln

. . ln

ln

8

3 8

1
3

8

ie x

from which x 0.6931, 44 decimal places
          

  Application: The work done in an isothermal expansion of a gas 
from pressure p 1  to p 2  is given by: 

w w
p
p

1

2

� 0 ln
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

     
If the initial pressure p 1       �      7.0    kPa, calculate the final pressure p 2  
if w      �      3w0        

 If w      �      3w 0  then 3 0 0
1w � w

p
p2

ln
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

    

 i.e. 3 � ln
p
p

1

2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

    

 and e3 1

2 2

7000
� �

p
p p     

 from which,   
  

,final pressure p
e

e2 3
37000

7000� � �� 348.5 Pa
    

  Laws of growth and decay 

The laws of exponential growth and decay are of the form y      �      Ae      �     kx  
and y      �      A(1      �      e      �     kx), where A and k are constants. When plotted, 
the form of each of these equations is as shown in Figure 2.6   . The 
laws occur frequently in engineering and science and examples of 
quantities related by a natural law include 
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 (i)   Linear expansion  l      �      l 0  e α   θ   

 (ii)   Change in electrical resistance with 
  temperature  Rθ       �      R 0  e αθ   

 (iii)   Tension in belts T1       �      T 0  e μ   θ   

 (iv)   Newton’s law of cooling θ       �       θ  0  e      �     kt   

 (v)   Biological growth y      �      y 0  e kt   

 (vi)   Discharge of a capacitor q      �      Q e      �     t/CR   

 (vii)   Atmospheric pressure p      �      p 0  e      �     h/c   

 (viii)   Radioactive decay N    �      N 0  e      �      λ t   

 (ix)   Decay of current in an inductive circuit i    �      I e      �     Rt/L   

 (x)   Growth of current in a capacitive circuit i      �      I(1      �      e      �     t/CR )          

0

y � Ae�kx

y � A(1 � e�kx)

0

y
A

y
A

x x

 Figure 2.6   

  Application: In an experiment involving Newton’s law of 
cooling, the temperature  θ(°C) is given by θ       �       θ  0 e      �     kt. Find the 
value of constant k when θ  0     �      56.6°C, θ       �      16.5°C and t      �    83.0 
seconds       

 Transposing  θ       �       θ  0  e      �     kt  gives 
θ
θ0

� �e kt     from which,

θ
θ
0 1

� �
�e

e
kt

kt
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 Taking Napierian logarithms of both sides gives: ln
θ
θ
0 � kt

    

  

fromwhich
t

, ln
.

ln
.
. .

( .k � � �
1 1

83 0
56 6
16 5

1
83 0

1 230θ
θ

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ 226486 ..)

� 1.485 10 2� �

          

  Application: The current i amperes flowing in a capacitor at time 
t seconds is given by i      �      8.0(1    �      e      �     t/CR), where the circuit resist-
ance R is 25     k Ω and capacitance C is 16 μF. Determine (a) the cur-
rent i after 0.5 seconds and (b) the time, to the nearest ms, for 
the current to reach 6.0 A       

   

(a) Current i e ) et/CR� � � �

�

� � � ��8 0 1 8 01 0 5 16 10 25 106 3. ( . [ ]. /( )( )

88 0 1

8 0 1 0 2865047 8 0 0 7134952

1 25. ( )

. ( . ..) . ( . ..)

.�

� � �

�

�e

5.71 ampeeres          

  (b)   Transposing i      �      8.0(1    �      e      �     t/CR ) gives: 
i

e t/CR

80
1� � �

    

 from which,  e
i it/CR� � � �

�
1

8 0
8 0

8 0.
.

.      

 Taking the reciprocal of both sides gives:  e
i

t/CR �
�

8 0
8 0

.
.      

 Taking Napierian logarithms of both sides gives:  

         

t
CR i

�
�

ln
.

.
8 0

8 0

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

          

 Hence   t CR
i

�
�

ln
.

.
8 0

8 0

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

    

  
� � �

�
�( )( ) ln

.
. .

16 10 25 10
8 0

8 0 6 0
6 3

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟
  
 when i      �      6.0 

 amperes, 
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 i.e. t � �

�

�

0 40 0 4 4 0

0 4 1 3862943

0 55

. . .

. ( . ..)

.

ln
8.0
2.0

 ln 
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

445 s

� 555 ms, to the nearest millisecond.     
 A graph of current against time is shown in  Figure 2.7   .   

sinh x
e e

2
cosech x

1
sinh x

2
e e

cosh x
e e

2
sech x

x x

x x

x x

�
�

� �
�

�
�

�

�

�

�� �
�

� �
�

�
�

�

�

�

1
cosh x

2
e e

tanh x
sinh x
cosh x

e e
e e

coth x
1

t

x x

x x

x x aanh x
e e
e e

x x

x x
�

�

�

�

�      

cosh x 1
x
2!

x
4!

+ ..
2 4

� � � (which is valid for all values of x)
     

sinh x x
x
3!

x
5!

..
3 5

� � � � (which is valid for all values of x)
           

  2.9     Hyperbolic functions           

8

6

5.71

0.555

4

2

0 0.5 1.0 1.5

i � 8.0 (1 � e�t /CR)

t(s)

i(A)

 Figure 2.7         
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  Graphs of hyperbolic functions 

A graph of y       �       sinh x is shown in Figure 2.8   . Since the graph is 
symmetrical about the origin, sinh x is an odd function . 

0 1 2 3�3 �2 �1
�2

2

4

6

8

10

�4

�6

�8

�10

x

y � sinh x

y

 Figure 2.8   

10

8

6

4

2

0 1 2 3 x

y

y � cosh x

�1�2�3

 Figure 2.9   

A graph of y       �       cosh x is shown in Figure 2.9   . Since the graph is 
symmetrical about the y-axis, cosh x is an even function. The shape 
of y      �      cosh x is that of a heavy rope or chain hanging freely under 
gravity and is called a catenary. Examples include transmission
lines, a telegraph wire or a fisherman’s line, and are used in the 
design of roofs and arches. Graphs of y      �      tanh x, y    �      coth x, 
y      �      cosech x and y      �      sech x are shown in        Figures 2.10 and 2.11     .  
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  Hyperbolic identities         

   Trigonometric identity  Corresponding hyperbolic 
identity

    cos x sin x2 2 1� �    ch x sh x2 2 1� �     

    1
2 2� �tan x sec x    1 2 2� �th x sech x     

    cot x cosec x2 21� �    coth x cosech x2 21� �     

0 1 2 3 x�1�2�3

0 1 2 3 x

y

y
�1�2�3

�3

2

3

y � tanh x

y � coth x

y � coth x

1

1

�1

�1

�2

(a) (b)

 Figure 2.10   

0 1 2 3 x

y

�1�3

�3

�2

�1

1

2

3

y � cosech x

y � cosech x

(a) (b)

0 1 2 3 x

y

�1�2�3

1
y � sech x

�2

 Figure 2.11   
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   Compound angle formulae 

    

sin(A B)

sin A cos B cos A sin B


 �


    

sh(A B)

sh A ch B ch A sh B







�

    

    

cos(A B)

cos A cos B sin A sin B


 �

�    

ch(A B)

ch A ch B sh A sh B


 �


     

    
tan(A B)

tan A tan B
tan A tan B


 �



�1    
tan(A B)

th A th B
th A th B


 �




1     

   Double angles   

    sin x  sin x cos x2 2�    sh x  sh x ch x2 2�     

    cos x cos x sin x2 2 2� �    ch x ch x sh x2 2 2� �     

    � �2 12 cos x    � �2 12 ch x     

� �1 2 2 sin x � �1 2 2sh x

    
tan x

 tan x
tan x

2
2

1 2
�

�    
th x

th x
th x

2
2

1 2
�

�     

Equations of the form a ch x       �       b sh x       �       c, where a, b and c are 
constants may be solved either by: 
  (a)   plotting graphs of y      �      a ch x      �      b sh x and y      �      c and noting 

the points of intersection, or more accurately,  
  (b)   by adopting the following procedure: 

  1.   Change sh x to 
e ex x� �

2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟    and ch x to  

e ex x� �

2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
     

  2.   Rearrange the equation into the form pe x       �      qe      �     x       �      r      �      0, 
where p, q and r are constants.  

  3.   Multiply each term by e x, which produces an equation of 
the form p(e x ) 2       �      re x       �      q    �      0 (since (e      �     x )(e x )      �      e 0       �      1)  

  Solving equations involving hyperbolic functions         
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 Following the above procedure: 

  1.  
    
sh x

e ex x
�

�
�

�

2
3

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

     
  2.   e x       �      e      �     x       �      6, i.e. e x       �      e      �     x       �      6    �      0  

  3.   (e x ) 2       �      (e      �     x )(e x )      �      6e x       �      0, i.e. (e x ) 2       �      6e x       �      1    �      0  

  4. 
   
ex �

� � 
 � � �
�



�


( ) [( ) ( )( )]
( )

.6 6 4 1 1
2 1

6 40
2

6 6 3246
2

2

    
 Hence, e x       �      6.1623 or  � 0.1623     

  5.   x   �   ln 6.1623 or x   �   ln(�0.1623) which has no solution since it is not 
possible in real terms to find the logarithm of a negative number. 

 Hence x      �      ln 6.1623      �       1.818 , correct to 4 significant figures.             

  4.   Solve the quadratic equation p(e x ) 2       �      re x       �      q    �      0 for e x by 
factorising or by using the quadratic formula.  

  5.   Given e x       �      a constant (obtained by solving the equa-
tion in 4), take Napierian logarithms of both sides to give 
x      �      ln(constant)                   

  Application: Solve the equation sh x      �      3, correct to 4 significant 
figures       

  Application: A chain hangs in the form given by y ch
x

� 40
40    

.

Determine, correct to 4 significant figures, (a) the value of y when 

x is 25 and (b) the value of x when y      �      54.30       

  (a)   y ch
x

� 40
40    

 and when x      �      25, 

  

y � � �
�

�

�

40
25
40

40 40
2

20 1 86

0 625 0 625
ch ch 0.625

e e. .

( .

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

882 0 5353� �. ) 48.07         
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  (b)   When y ch
x

� �54 30 54 30 40
40

. , .
   
, from which 

ch
x

40
�

   

54 30
40

1 3575
.

.�
    

 Following the above procedure: 

  1. 
   

e ex/ x/40 40

2
1 3575

�
�

�

.
     

  2.   e x/40       �      e      �     x/40       �      2.715 i.e. e x/40       �      e      �     x/40       �      2.715    �      0  

  3.   (e x/40 ) 2       �      1    �      2.715 e x/40       �      0 i.e. (e x/40 ) 2       �      2.715 e x/40       �      1    �      0  

  4.    ex/40
22 715 2 715 4 1 1

2 1

2 715 3 3712
2

2

�
� � 
 � �

�



�

( . ) [( . ) ( )( )]
( )

. ( . ) .7715 1 8361
2


 .

    
 Hence e x/40       �      2.2756 or 0.43945     

  5.  
    

x
ln 2.2756

40
�

   
 or 

x
ln

40
0 43945� ( . )

    

 Hence, 
x

40
0 8222� .

  
  or  

x
40

0 8222� � .
     

 Hence, x      �      40(0.8222) or x      �      40( � 0.8222)  

 i.e.  x       �       �  32.89 , correct to 4 significant figures.         

  2.10     Partial fractions         

Provided that the numerator f(x) is of less degree than the rel-
evant denominator, the following identities are typical examples 
of the form of partial fraction used: 

Linear factors

f(x)
(x a)(x b)(x c)

A
(x a)

B
(x b)

C
(x c)� � �

��
�

�
�

�
�      
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The denominator factorises as (x � 1)(x      �      3) and the numerator is 
of less degree than the denominator. 

 Thus  11 3
2 32

�

� �

x
x x

    may be resolved into partial fractions. 

 Let 
11 3

2 3
11 3

1 3 1 32

�

� �
�

�

� � �
�

�

x
x x

x
x x

A
x

B
x( )( ) ( ) ( )

�
   
 where A and 

B are constants to be determined, 

i.e.
11 3

1 3
3 1
1 3

�

� �

� � �

� �

x
x x

A x B x
x x

by algebraic additi
( )( )

( ) ( )
( )( )

� oon
    

Since the denominators are the same on each side of the identity 
then the numerators are equal to each other. 

 Thus,                    11 3 3 1� � � � �x A(x ) B(x )     
To determine constants A and B, values of x are chosen to make the 
term in A or B equal to zero. 

 When x      �      1, then 11      �      3(1)    �      A(1      �      3)      �      B(0) 

 i.e.                                     8 4� A     
 i.e.                                     A 2�     

 When x  �       �      3, then 11      �      3( � 3)      �      A(0)    �      B( � 3    �      1) 

i.e. 20 4� � B     

 i.e.                                            B 5� �     

Repeated linear factors

f(x)
(x a)

A
(x a)

B
(x a)

C
(x a)3 2 3� �

�
�

�
�

≡
     

Quadratic factors

f(x)
(ax bx c)(x d)

Ax B
(ax bx c)

C
(x d)2 2� � �

�

� �
�

�
≡

                 

  Application:  Resolve  
11 3

2 32

�

� �

x
x x

    into partial fractions       
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Thus 

(x ) (x
11 3x

x 2x 3
2

(x 1)
5

(x 3)2

�

� � �
�

�
�

�
�

�

�
�

2
1

5
3)     

  
Check:

) )
( ) ( )

( )( )(x (x
x x

x x
x

x x
2

1
5

3
2 3 5 1

1 3
11 3

2 32�
�

�
�

� � �

� �
�

�

� �

⎡

⎣⎣
⎢
⎢

⎤

⎦
⎥
⎥

          

  Application:  Express x x x
x x

3 2� � �

� �

2 4 4
22

   
 in partial fractions       

The numerator is of higher degree than the denominator. Thus divid-
ing out gives: 

)
x

x x x x
x x x

x x
x x

x

�

� � � � �

� �

� � �

� � �

�

3

2 2 4 4
2

3 2 4
3 3 6

10

2 3 2

3 2

2

2

x

     

  

Thus      
x x x

x x
x

x
x x

x
x

(x x

3 2

2 2

2 4 4
2

3
10

2

3
10

2

� � �

� �
� �

�

� �

� �
�

�

�

�
)( �� 1)     

  
Let

x
(x x

A
(x

B
x

A(x B x
(x x

�

� � �
�

�
�

� � �

� �

10
2 1 2 1

1 2
2 1)( ) ) ( )
) ( )

)( )
�

    

 Equating the numerators gives: x      �      10      �      A(x    �      1)      �      B(x      �      2) 

 Let x      �       �     2, then � � �12 3A     
 i.e.                                        A 4�     

 Let x      �      1, then                   � �9 3B     

 i.e.                                        B 3� �     

  
Hence   

x
x x x x

�

� �
�

�
�

�

10
2 1

4
2

3
1( )( ) ( ) ( )     
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Thus

x 2x 4x 4
x x 2

x 3
4

(x 2)
3

(x 1)

3 2

2

� � �

� �
� � �

�
�

�           

  Application: Express 
5 2 19

3 1

2

2

x x
(x (x

� �

� �) )    
 as the sum of three partial 

fractions   
   

The denominator is a combination of a linear factor and a repeated 
linear factor. 

 Let

5 2 19
3 1 3 1 1

1 3

2

2 2

2

x x
x x

A
(x

B
(x

C
(x

A(x B(x

� �

� �
�

�
�

�
�

�

�
� � �

( )( ) ) ) )

) )(xx C(x
(x (x

by algebraic
� � �

� �

1 3
3 1 2

) )
) ) addition     

 Equating the numerators gives: 

5 2 19 1 3 1 32 2x x A(x (x x C(x� � � � � � � �� ) )( ) )B (1)    

   Let x   �     �     3, then 5( �3)2     �   2(�3)   �   19   �   A(�4)2     �   B(0)(�4)   �   C(0)  

 i.e. 32 16� A     

i.e. A 2�     

 Let x      �      1, then   5(1) 2       �      2(1)    �      19      �      A(0) 2       �      B(4)(0)    �      C(4) 

i.e. � �16 4C     

 i.e. C 4� �     

Without expanding the RHS of equation (1) it can be seen that 
equating the coefficients of x 2  gives: 

 5    �      A    �      B, and since A      �      2,  B      �      3  

  
Hence

5x 2x 19
(x 3)(x 1)

2
(x 2)

3
(x 1)

4
(x 1)

2

2 2

� �

� � �
�

�
�

�
≡
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  Application:  Resolve 3 6 4 2
3

2 3

2 2

� � �

�

x x x
x (x )

   into partial fractions       

Terms such as x 2 may be treated as (x      �      0) 2, i.e. they are repeated 
linear factors. 

 (x 2       �      3) is a quadratic factor which does not factorise without con-
taining surds and imaginary terms. 

  

Let 
x x x
x x

A
x

B
x

Cx D
x

Ax x B x

3 6 4 2
3 3

3 3

2 3

2 2 2 2

2 2

� � �

�
� � �

�

�

�
� � �

( ) ( )

( ) ( )) ( )
( )

� �

�

Cx D x
x x

2

2 2 3     

 Equating the numerators gives: 

3 6 4 2 3 3

3 3

2 3 2 2 2

3 2 3

� � � � � � � � �

� � � � � �

x x Ax(x B(x (Cx D)x

Ax Ax Bx B Cx

x ) )

DDx2
     

 Let x      �      0, then 3 3� B     
 i.e. B 1�     
 Equating the coefficients of x 3  terms gives:  � � �2 A C (1)      
 Equating the coefficients of x 2  terms gives:         4 � �B D     
 Since B      �      1,  D       �       3  

 Equating the coefficients of x terms gives: 6 3� A     
i.e.     A 2�     
 From equation (1), since A      �      2,  C      �       �     4  

  

Hence 
x x

x
x

3 6x 4x 2x
x (x 3)

2
x

1
x

3 4x
x

2 3

2 2

2 2

� � �

�

� �
�

�

� � �
� �

�

�

2 1 4 3
32 2

33             



            3    Some Number Topics   

  3.1     Arithmetic progressions         

  If a      �      first term, d      �      common difference and n      �      number 
of terms, then the arithmetic progression is:  

a, a d, a 2d, ....� �      
  The n’th term is:  

a (n 1)d� �      
  The sum of n terms,  

S
n
2

[2a (n 1)d]n � � �
                 

  Application: Find the sum of the first 7 terms of the series 1, 4, 
7, 10, 13, . . .       

 The sum of the first 7 terms is given by 

                   
S [ ( ) ( ) ] since a  and d7

7
2

2 1 7 13 1 3� � � � �
     

� � � �
7
2

2 18
7
2

20[ ] [ ] 70
           

  Application: Determine (a) the ninth, and (b) the sixteenth term 
of the series 2, 7, 12, 17, . . .       

2, 7, 12, 17, ..... is an arithmetic progression with a common differ-
ence, d, of 5 
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  (a)   The n’th term of an AP is given by a      �      (n      �      1)d 
 Since the first term a       �       2, d       �       5 and n       �       9  
 then the 9th term is:  2      �      (9      �      1)5       �       2    �      (8)(5)       �       2      �      40       �      42      

  (b)   The 16th term is:   2    �      (16      �      1)5       �       2    �      (15)(5)       �       2    �      75       �      77           

  Application: Find the sum of the first 12 terms of the series 5, 9, 
13, 17, .....       

 5, 9, 13, 17, ..... is an AP where a       �       5 and d       �       4 

  
The sum of n terms of an AP, S

n
[ a (n )d]n � � �

2
2 1

    

  

Hence the sum of the first 12 terms, S [ ( ) ( ) ]12
12
2

2 5 12 1 4� � �

�� � �

�

610 44 6 54[ ] ( )

324      

  3.2     Geometric progressions         

  If a      �      first term, r      �      common ratio and n      �      number of 
terms, then the geometric progression is:  

a, ar, ar , ar , ....2 3
     

  The n’th term is:   arn 1�
     

  The sum of n terms,  

S
a(1 r )
(1 r)

 which is valid when r 1n

n
�

�

�
<

     
  or  

S
a(r 1)
(r 1)

 which is valid when r 1n

n
�

�

�
>

     

  If � 1    <      r <  1,     S
a

(1 r)∞ �
�
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 The sum of the first 8 terms is given by

S
( )
( )

since a and r8

812 1
2 1

1 2�
�

�
� �

    

i.e. S8 �
�

�
1256 1

1
( )

255
          

  Application: Find the sum of the first 8 terms of the GP 1, 2, 4, 
8, 16, ....       

  Application: Determine the tenth term of the series 3, 6, 12, 
24, ....       

3, 6, 12, 24, .... is a geometric progression with a common ratio r of 2. 

 The n’th term of a GP is ar n     �     1 , where a is the first term. 

 Hence the 10th term is: (3)(2) 10     �     1        �       (3)(2) 9        �       3(512)       �      1536        

The net gain forms a series: £400   �   £400   �   0.9   �   £400   �   0.92     �   .....,

 which is a GP with a       �       400 and r       �       0.9 

 The sum to infinity,

S
a

r� �
�

�
�

� �
( ) ( )1

400
1 0 9.

£4000 total future profits
          

  Application: A hire tool firm finds that their net return from hir-
ing tools is decreasing by 10% per annum. Their net gain on a 
certain tool this year is £400. Find the possible total of all future 
profits from this tool (assuming the tool lasts for ever)       

  Application: A drilling machine is to have 6 speeds ranging 
from 50 rev/min to 750 rev/min. Determine their values, each cor-
rect to the nearest whole number, if the speeds form a geometric 
progression       



Some Number Topics   49

 Let the GP of n terms be given by a, ar, ar 2 , .... ar n     �     1  

 The first term a       �       50 rev/min 

 The 6th term is given by ar 6     �     1 , which is 750 rev/min, 

i.e.                                       ar 5        �       750 

  
from which r

a
5 750 750

50
15� � �

    

  Thus the common ratio, r � �15 1 71885 .     

 The first term is a       �       50 rev/min 

 the second term is ar       �       (50)(1.7188)       �       85.94, 

 the third term is ar 2        �       (50)(1.7188) 2        �       147.71, 

 the fourth term is ar 3        �       (50)(1.7188) 3        �       253.89, 

 the fifth term is ar 4        �       (50)(1.7188) 4        �       436.39, 

 the sixth term is ar 5        �       (50)(1.7188) 5        �       750.06 

Hence, correct to the nearest whole number, the 6 speeds of the 
drilling machine are: 

  50, 86, 148, 254, 436 and 750 rev/min   

  3.3     The binomial series           

(a x) a na  x
n(n 1)

2!
a  x

n(n 1)(n 2)
3!

a  x ...

n n n 1 n 2 2

n 3 3

� � � �
�

�
� �

�

� �

� ... xn�
     

(1 x) 1 nx
n(n 1)

2!
x

n(n 1)(n 2)
3!

x .......n 2 3� � � �
�

�
� �

�

                              which is valid for 1 x 1� < <      

  The r’th term of the expansion (a      �      x) n  is:  

n(n 1)(n 2) .... to (r 1) terms
(r 1)!

 a xn (r 1) r 1� � �

�
� � �
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 From above, when a       �       2 and n       �       7: 

( x) 2 7(2) x
( )( )
( )( )

( )
( )( )( )
( )( )( )

( )2
7 6
2 1

2
7 6 5
3 2 1

27 7 6 5 2 4� � � � �x xx

( )( )( )( )
( )( )( )( )

( ) x
( )( )( )( )( )
( )( )

3

3 47 6 5 4
4 3 2 1

2
7 6 5 4 3
5 4

  � �
(( )( )( )

( ) x

( )( )( )( )( )( )
( )( )( )( )( )( )

( )x

3 2 1
2

7 6 5 4 3 2
6 5 4 3 2 1

2

2 5

 � 66 77 6 5 4 3 2 1
7 6 5 4 3 2 1

�
( )( )( )( )( )( )( )
( )( )( )( )( )( )( )

x
     

 i.e.

(2   �   x)7     �   128   �   448x   �   672x2     �   560x3     �   280x4     �   84x5     �   14x6     �   x7        

  Application: Using the binomial series, determine the expansion 
of (2      �      x) 7        

  Application: Determine the fifth term (3      �      x) 7 without fully 
expanding       

 The r’th term of the expansion (a      �      x)n  is given by: 

n(n )(n )... to (r ) terms
(r )!

a xn (r ) r� � �

�
� � �1 2 1

1
1 1

     

 Substituting n      �      7, a      �      3 and r      �      1    �      5    �      1    �      4 gives:

( )( )( )( )
( )( )( )( )

( ) x
7 6 5 4
4 3 2 1

3 7 4 4�

    

 i.e. the fifth term of (3      �      x)7       �      35(3) 3  x 4       �       945x4        

  Application: Expand 1
1 2 3( x)�

    in ascending powers of x as far 

as the term in x 3 , using the binomial series       
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Using the binomial expansion of (1      �      x) n, where n      �       �     3 and x is 
replaced by 2x gives: 

1
1 2

1 2

1 3 2
3 4
2

2
3 4 5

3

3
3

2

( x)
( x)

( )( x)
( )( )

!
( x)

( )( )( )
�

� �

� � � �
� �

�
� � �

�

!!
( x) ..2 3 �

� 1 6x 24x 80x2 3� � � �      

  
The expansion is valid provided  x2 1	

       

i.e. orx
1
2

1
2

x
1
2

< < <�

     Application: Using the binomial theorem, expand 4 � x    in 
ascending powers of x to four terms       

4 4 1
4

4 1
4

2 1
4

� � � � � � �x
x x x⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟⎟

1 2/

     

 Using the expansion of (1      �      x) n , 

2 1
4

2 1
1
2 4

1 2

1 2

�

� � �
�

x

x ( / )(

/⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

11 2
2 4

1 2 1 2 3 2
3 4

2 3
/ )

!
x ( / )( / )( / )

!
x⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟�

� �
� ..

⎡⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟� � � � �

�

2 1
8 128 1024

2 3x x x ..

2
x
4

x
64

x2 3
� � �

5512
.....�  

     

  
This is valid when 

x
, i.e. or

4
1	 x 4 4 x 4< < <�
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( x) ( x)

x
( x) ( )

1 3 1

1
2

1 3 1 1
2

3

3

1
3

1
2

� �

�

� � � �
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟x

x
⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥

�

� � �

3

1
1
3

3 1
1
2

≈ ( x) (x) ⎥⎥
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥1 3

2
� �( )

x

when expanded by the binomial theorem 
as far as the x term only,

( x)
x

� � �1 1
2

1
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ��

� � �

3
2

1
2

3
2

x

x
x x

when powers of x hig

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟� hher 

than unity are negleccted

� (1 2x)�      

  Application: Simplify 
( x) ( x)

x

1 3 1

1
2

3

3

� �

�
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

   

 given that powers of x 

above the first may be neglected       

          Application: The second moment of area of a rectangle through 

its centroid is given by bl3

12
   . Determine the approximate change 

in the second moment of area if b is increased by 3.5% and l is 
reduced by 2.5%       

New values of b and l are (1      �      0.035)b and (1      �      0.025)l 
respectively. 

New second moment of area [(1 )b][(1 0.025) ]

b

3� � �

�

1
12

0 035 1

3

.

l
112

1 0 035 1 0 025 3( )( )� �. .
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≈

≈

b
( )( ) 

neglecting powers of small terms

l3

12
1 0 035 1 0 075� �. .

bb
( )

neglecting products of small terms

b

l3

12
1 0 035 0 075� �. .

≈
ll l3 3

12
1 0 040 0 96

12
96

( ) or ( )
b

i.e. % of the original seco

� . .

nnd moment of area

  Hence the second moment of area is reduced by approxi-
mately 4%        

  Application: The resonant frequency of a vibrating shaft is given 

by: f
k
I

�
1

2π    
, where k is the stiffness and I is the inertia of the 

shaft. Using the binomial theorem, determine the approximate 
percentage error in determining the frequency using the meas-
ured values of k and I, when the measured value of k is 4% too 
large and the measured value of I is 2% too small       

Let f, k and I be the true values of frequency, stiffness and inertia 
respectively. Since the measured value of stiffness, k 1, is 4% too 

large, then k k ( )k1
104
100

1 0 04� � � .
    

The measured value of inertia, I 1, is 2% too small, hence 

I I ( )I1 � � �
98

100
1 0 02.

   

 The measured value of frequency, 

  

f
k
I

k  I

[( )k]  [( )I]

/ /

/

1
1

1
1
1 2

1
1 2

1 2 1

1
2

1
2

1
2

1 0 04 1 0 02

�
�

�
�

�
�

� �

�

�. . //2
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�
�

� �

�
�

�

� �

�

1
2

1 0 04 1 0 02

1
2

1

1 2 1 2 1 2

1 2 1 2

( )  k  ( )  I

 k  I  (

/ / 1/2 /

/ /

. .

00 04 1 0 02

1 0 04 1 0 02

1 2 1 2

1
1 2 1 2

. .

. .

)  ( )

i.e. f f ( )  ( )

f

/ /

/ /

�

� � �

�

�

� [[ ( / )(0.04)][( ( / )( )]

f ( )( )

1 1 2 1 1 2 0 02

1 0 02 1 0 01

� � � �

� �

.

. .�    

 Neglecting the products of small terms, 

f ( ) f f1 1 0 02 0 01 1 03� �� �. . .      
Thus the percentage error in f based on the measured values of k 
and I is approximately  3% too large.   

  3.4     Maclaurin’s theorem           

f(x) f( ) xf (0)
x
2!

f (0)
x
3!

f (0) . . .
2 3

� � � � 	 � 
 �0
                 

  Application: Determine the first four terms of the power series 
for cos x       

The values of f(0), f �(0), f �(0), ... in the Maclaurin’s series are obtained 
as follows: 

f(x) x f( )

f (x) x f ( )

f (x) x f (

� � �

� � � � � � �

� � � �

cos cos

sin sin

cos

0 0 1

0 0 0

00 0 1

0 0 0

0 0

)

f (x) x f ( )

f (x) cos x f ( )iv iv

� � � �

� � � � �

� � �

cos

sin sin

cos 11

0 0 0

0 0 1

f (x) x f ( )

f (x) cos x f ( )

v v

vi vi

� � � � �

� � � � � �

sin sin

cos    
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 Substituting these values into the Maclaurin’s series gives: 

f(x) cos x x( )
x
!

( )
x
!

( )

x
!

( )
x
!

( )
x
!

(

� � � � � �

� � � �

1 0
2

1
3

0

4
1

5
0

6
1

2 3

4 5 6
)) ..�

     

  
i.e.           cos x 1

x
2!

x
4!

x
6!

...
2 4 6

� � � � �
          

  Application:  Determine the power series for cos 2 θ        

Replacing x with 2 θ in the series obtained in the previous example 
gives:

cos 
( )

!
( )

!
( )

!
...2 1

2
2

2
4

2
6

1
4
2

16
24

64
720

2 4 6

2 4 6

θ
θ θ θ

θ θ θ

� � �

� � � �

+ +

�� ...
     

  
i.e.           cos 2 1 2

2
3

4
45

..2 4 6θ θ θ θ� � � � �
          

  Application: Expand ln (1   �      x) to five terms       

f(x) ln( x) f( ) ln( )

f (x)
x

f ( )

f (x)

� � � � �

� �
�

� �
�

�

� �
�

1 0 1 0 0
1

1
0

1
1 0

1

1
( )

(( x)
f ( )

( )

f (x)
( x)

f ( )
( )

f (iv

1
0

1
1 0

1

2
1

0
2

1 0
2

2 2

3 3

�
� �

�

�
� �

�� �
�

�� �
�

�

xx)
( x)

f ( )
( )

f (x)
( x)

f ( )
( )

iv

v

�
�

�
�

�

�
� �

�
�

�
�

6
1

0
6

1 0
6

24
1

0
24

1 0

4 4

5 5
v �� 24
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 Substituting these values into the Maclaurin’s series gives: 

f(x) ln( x) x( )
x
!

( )
x
!

)
x

!
( )

x
!

( )� � � � � � � � � �1 0 1
2

1
3

2
4

6
5

24
2 3 4 5

(
     

  
i.e.         ln(1 x) x

x
2

x
3

x
4

x
5

...
2 3 4 5

� � � � � � �
          

  Application: Find the expansion of (2   �   x)4 using Maclaurin’s series       

f(x) ( x) f( )

f (x) ( x) f ( ) ( ) 32

f (x) (

� � � �

� � � � � �

� �

2 0 2 16

4 2 0 4 2

12 2

4 4

3 3

�� � � �

�� � � �� � �

�

x) f ( ) ( )

f (x) ( x) f ( ) ( )

f (x)iv

2 2

1

0 12 2 48

24 2 0 24 2 48

244 0 24f ( )iv �      

 Substituting in Maclaurin’s series gives: 

(2 x)4� � � � � � � � �

� �

f( ) xf ( )
x
!

f ( )
x
!

f ( )
x

!
f ( )

(x)(

iv0 0
2

0
3

0
4

0

16 3

2 3 4

22
2

48
3

48
4

24
2 3 4

)
x
!

( )
x
!

( )
x

!
( )� � �

� � � � �16 32x 24x 8x x2 3 4      

  Numerical integration using Maclaurin’s series         

  Application: Evaluate 2
0 1

0 4
e dsin

.

.
θ θ∫    

, correct to 3 significant figures       

 A power series for esin θ is firstly obtained using Maclaurin’s series. 

f( ) e  f( ) e e

f ( ) e f ( ) e (

θ

θ θ

θ

θ

� � � �

� � � � �

sin sin

sin sincos cos

0 1

0 0

0 0

0 11 10) e  �
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f ( ) (cos )(  e ) (e )( ) by the product ru� � � �θ θ θ θθ θcos sinsin sin lle,

e ( ) f ( ) e ( )

f ( ) (e )[

� � � � � �

� �

sin

sin

cos sin cos sinθ

θ

θ θ

θ

2 0 20 0 0 1

((  ( ) ] ( )(  e )

e [

2 2cos sin cos cos sin cos

cos

sin

sin

θ θ θ θ θ θ

θ

θ

θ

� � � �

� �22 1 2sin cos sinθ θ θ� � � ]     

  f ( ) e [( )]� � � � � �0 0 0 1 1 0 00 cos      
 Hence from the Maclaurin’s series: 

e f( )  f ( )
!

f ( )
!

( )sin ...θ θ
θ θ

θ
θ

� � � � � � � � � � � �0 0
2

0
3

0 1
2

0
2 3 2

f
     

  

Thus    e d

(

2 2 1
2

2 2

0 1

0 4 2

0 1

0 4
sin

.

.

.

.
θ θ θ

θ
θ∫ ∫

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟� � �

� �

d

θθ θ θ θ
θ θ

� � � �2
0 1

0 4 2 3

0 1

0 4

2
2
2 3

)d
.

.

.

.

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

    

� � �

� � �

0 8 0 4
0 4

3

0 2 0 1
0 1

3

2
3

2
3

. .
.

. .
.

( )
( )

( )
( )

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

� �

�

0 98133 0 21033. .

0.771, correct to 3 significant figurres        

  3.5     Limiting values          

  L’Hopital’s rule states:  

lim it
f(x)
g(x)

lim it
f (x)
g (x)x a x aδ → δ →

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪
⎩

�
�

�⎪⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪
 provided g (a) 0� �

                

    
Application:  Determine lim it

x x
x xxδ →1

2

2

3 4
7 6

� �

� �

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎭⎪⎪          
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The first step is to substitute x      �      1 into both numerator and denom-

inator. In this case we obtain 
0
0

.
    

It is only when we obtain such a result that we then use L’Hopital’s rule. 

 Hence applying L’Hopital’s rule, 

lim it
x x
x x

lim it
x
xx xδ δ→ →1

2

2
1

3 4
7 6

2 3
2 7

� �

� �
�

�

�

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

 i.e. both numerator and 
denominator have been

 differentiated      

   
�

�
�

5
5

�1
           

    
Application:  Determine lim

sin cos
θ

θ θ θ
θ→0 3

�⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪           

lim lim
( )( )

θ θ

θ θ θ
θ

θ θ θ
→ →0 3 0

sin cos sin cos�
�

� � �cos⎧
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  3.6     Solving equations by iterative methods         

  Three iterative methods are  

   (i)    the bisection method   
   (ii)    an algebraic method and   
  (iii)    by using the Newton-Raphson formula.           
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  (i)    The bisection method     

In the method of bisection the mid-point of the interval, i.e. 

x
x x

3
1 2

2
�

�

   
, is taken, and from the sign of f(x 3) it can be deduced 

whether a root lies in the half interval to the left or right of x 3 . 
Whichever half interval is indicated, its mid-point is then taken and 
the procedure repeated. The method often requires many iterations 
and is therefore slow, but never fails to eventually produce the root. 
The procedure stops when two successive values of x are equal, to 
the required degree of accuracy.       

  Application: Using the bisection method, determine the positive 
root of the equation x      �      3    �      e x , correct to 3 decimal places       

 Let f(x)      �      x      �      3    �      e x  then, using functional notation: 

f(0) 2

f(1) 1.2817..

f(2) 2.3890..

� � � �

� � � �

� � � �

0 3

1 3

2 3

0

1

2

e

e

e

�

�

�      

0

4

3

2

1

f (x)

x�1�2 1 2

f (x) � ex

f (x) � x � 3

 Figure 3.1   

Since f(1) is positive and f(2) is negative, a root lies between x      �      1 
and x      �      2. A sketch of f(x)      �      x    �      3    �      e x, i.e. x      �      3    �      ex is shown in 
 Figure 3.1   . 

 Bisecting the interval between x      �      1 and x      �      2 gives 
1 2

2
�

   
 i.e. 1.5 
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 Hence  f(1.5)       �      1.5      �      3    �      e 1.5       �       �      0.01831..  

Since f(1.5) is positive and f(2) is negative, a root lies between 

x      �      1.5 and x      �      2. Bisecting this interval gives 1 5 2
2

. �

  
  i.e. 1.75 

 Hence  f(1.75)       �      1.75    �      3    �      e 1.75       �       �      1.00460..  

Since f(1.75) is negative and f(1.5) is positive, a root lies between 
x      �      1.75 and x      �      1.5 

 Bisecting this interval gives 
1 75 1 5

2
. .�

   i.e. 1.625 

 Hence  f(1.625)       �      1.625    �      3    �      e 1.625       �            �     0.45341..  

Since f(1.625) is negative and f(1.5) is positive, a root lies between 
x      �      1.625 and x      �      1.5 

 Bisecting this interval gives 
1 625 1 5

2
. .�

    i.e. 1.5625 

 Hence  f(1.5625)       �      1.5625    �      3    �      e 1.5625       �            �     0.20823..  

Since f(1.5625) is negative and f(1.5) is positive, a root lies between 
x      �      1.5625 and x      �      1.5. 

The iterations are continued and the results are presented in the 
table shown. 

The last two values of x3     in the table are 1.504882813 and 
1.505388282, i.e. both are equal to 1.505, correct to 3 decimal 
places. The process therefore stops. 

  Hence the root of x      �      3    �      e x is x      �      1.505, correct to 3 decimal 
places.

   x 1 x2  
  
x

x x
3

1 2

2
�

�

    
 f(x 3 ) 

    0   � 2 

    1   � 1.2817.. 

    2   � 2.3890.. 

   1 2 1.5   � 0.0183.. 
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   1.5 2 1.75   � 1.0046.. 

   1.5 1.75 1.625   � 0.4534.. 

   1.5 1.625 1.5625   � 0.2082.. 

   1.5 1.5625 1.53125   � 0.0927.. 

   1.5 1.53125 1.515625   � 0.0366.. 

   1.5 1.515625 1.5078125   � 0.0090.. 

   1.5 1.5078125 1.50390625   � 0.0046.. 

   1.50390625 1.5078125 1.505859375   � 0.0021.. 

   1.50390625 1.505859375   1.504882813    � 0.0012.. 

   1.504882813 1.505859375   1.505388282   

  (ii)    An algebraic method of successive 
approximations           

  Procedure: 

     First approximation   

  (a)   Using a graphical or functional notation method, determine an 
approximate value of the root required, say x 1      

  Second approximation   

  (b)   Let the true value of the root be (x 1       �       δ  1 )  
  (c)   Determine x 2 the approximate value of (x 1       �       δ  1) by determining

the value of f(x 1       �       δ  1 )      �      0, but neglecting terms containing 
products of  δ  1      

  Third approximation   

  (d)   Let the true value of the root be (x 2       �       δ  2 )  
  (e)   Determine x 3, the approximate value of (x 2       �       δ  2) by d etermining

the value of f(x 2       �       δ  2 )      �      0, but neglecting terms containing 
products of  δ  2   

  (f)   The fourth and higher approximations are obtained in a similar 
way.    
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The functional notation method is used to find the value of the first 
approximation. 

 f(x)      �      3x 3       �      10x 2       �      4x      �      7 

 f(0)    �      3(0) 3       �      10(0) 2       �      4(0)    �      7    �      7 

 f(1)    �      3(1) 3       �      10(1) 2       �      4(1)    �      7    �      4 

 f(2)    �      3(2) 3       �      10(2) 2       �      4(2)    �      7    �       �     1 

 Following the above procedure: 

  First approximation  

  (a)   Let the first approximation be such that it divides the interval 1 to 
2 in the ratio of 4 to � 1, i.e. let x 1  be 1.8     

  Second approximation  

  (b)   Let the true value of the root, x 2  , be (x 1       �       δ  1 )  

  (c)   Let f(x 1       �       δ  1 )      �      0, then since x 1       �      1.8, 
3(1.8    �       δ  1 ) 3       �      10(1.8    �       δ  1 ) 2       �      4(1.8    �       δ  1 )      �      7    �      0 

Neglecting terms containing products of  δ  1 and using the bino-
mial series gives:  

3[1.83     �   3(1.8)2  δ  1]   �   10[1.82     �   (2)(1.8)δ  1]   �   4(1.8   �     δ  1)   �   7 � 0 

3(5.832   �   9.720 δ  1)   �   32.4   �   36 δ  1     �   7.2   �   4 δ  1     �   7 � 0 

17.496   �   29.16 δ  1     �   32.4 – 36 δ  1     �   7.2   �   4 δ  1     �   7 � 0          

Using the techniques given in paragraphs (b) to (f), it is possi-
ble to continue getting values nearer and nearer to the required 
root. The procedure is repeated until the value of the required 
root does not change on two consecutive approximations, when 
expressed to the required degree of accuracy.              

  Application: Determine the value of the smallest positive root of 
the equation 3x 3       �      10x 2       �      4x      �      7    �      0, correct to 3 significant 
figures, using an algebraic method of successive approximations       
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δ1
17 496 32 4 7 2 7

29 16 36 4
0 704
2 84

� � �
� � � �

� �
� �

. . .
.

.
.

0.2479
     

 Thus, x 2   �  1.8    �      0.2479    �      1.5521  

  Third approximation  

  (d)   Let the true value of the root, x 3 , be (x 2       �       δ  2 )  

  (e)   Let f(x 2       �       δ  2 )      �      0, then since x 2       �      1.5521, 

 3(1.5521    �       δ  2 ) 3       �      10(1.5521    �       δ  2 ) 2       �      4(1.5521    �       δ  2 )      �      7    �      0  

 Neglecting terms containing products of  δ  2  gives:  

 11.217    �      21.681  δ  2       �      24.090    �      31.042  δ  2       �      6.2084  
�      4  δ  2       �      7  �  0       

δ2
11 217 24 090 6 2084 7

21 681 31 042 4
0 3354
5 361

0� � �
� � � �

� �

�

�

. . .
. .

.
.

.006256
     

  Thus x 3   �  1.5521      �      0.06256  �  1.6147    

  (f)   Values of x 4  and x 5  are found in a similar way. 

 f(x 3       �       δ  3 )      �      3(1.6147    �       δ  3 ) 3       �      10(1.6147    �       δ  3 ) 2       
�      4(1.6147      �       δ  3 )      �      7    �      0  

giving δ  3   � 0.003175 and x 4   � 1.618, i.e. 1.62 correct to 3 sig-
nificant figures  

 f(x 4       �       δ  4 )      �      3(1.618    �       δ  4 ) 3       �      10(1.618    �       δ  4 ) 2       
�      4(1.618    �       δ  4 )      �      7    �      0  

giving δ  4   � 0.0000417, and x 5   � 1.62, correct to 3 significant figures. 

Since x 4 and x 5 are the same when expressed to the required 
degree of accuracy, then the required root is  1.62, correct to 3 
significant figures.       

  (iii)    The Newton-Raphson method           

  If r 1 is the approximate value of a real root of the  equation
f(x)    �      0, then a closer approximation to the root, r 2, is 
given by:  

r r
f(r )
f (r )2 1

1

1
� �

�                  
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The functional notational method is used to determine the approxi-
mate value of the root. 

f(x) (x ) e
x

f( ) ( ) e

f( )

x� � � � �

� � � � � �

�

4 5
3

9

0 0 4 5 0 9 59

1 5

3 1 92

3 0

. cos

cos

33 1 92

3 84

3 5

5
1
3

9 114

2 5
2
3

9 164

3 7

� � �

� � � �

� �

e

f( ) 6 e

f( ) e

3

.

.

.

cos

cos

�

�

776

3 7 68

5 1 9 19

4 8 5
4
3

9 1660

� �

� � � � �

cos

cos.

�

�f( ) e
     

 From these results, let a first approximation to the root be r 1       �      3 

 Newton’s method states that a better approximation to the root, 

r r
f(r )
f (r )

f(r ) f( ) e 1 9

f (x) (

2 1
1

1

1
3 5 763 7 5 19 35

3

� �
�

� � � � � �

� �

. cos .

xx ) e
x

f (r ) f ( ) ( ) e

x� � �

� � � � � �

4 1 92
5
3 3

3 3 7 1 92
5
3

2 1 92

1
2 5 76

. sin

. si

.

. nn .1 463 7� �
     

 Thus, r 3 0.042 3.042 3.042 3
19 35
463 7

� �
�

� � � �
.

.   
 , 

correct to 3 significant figures. 

 Similarly,

r 3.042
f( )
f ( )

( )
( )3

3 042
3 042

3 042
1 146
513 1

3 042 0� �
�

� �
�

�
� �

.
.

.
.

.
. .00022

    
       �      3.0398    �      3.04, correct to 3 significant figures. 

  Application:  Using Newton’s method, find the positive root of

(x ) e 5
xx� � � �4
3

93 1 92. cos ,
   
 correct to 3 significant figures       
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Since r 2 and r 3 are the same when expressed to the required degree 
of accuracy, then the required root is  3.04, correct to 3 significant 
figures.   

  3.7     Computer numbering systems 

  Conversion of binary to decimal         

  Application: Change the binary number 1101.1 to its equivalent 
decimal form       

   

1101 1 1 2 1 2 0 2 2 1 2

8 4 0 1
1
2

13 5

3 2 1 0 1.

.

� � � � � � � � � �

� � � � �

�1

, that is 
     

i.e. 1101.12       �      13.5 10, the suffixes 2 and 10 denoting binary and 
decimal systems of numbers respectively.       

  Application:  Convert 101.0101 2  to a decimal number       

101 0101 1 2 0 2 1 2 0 2

1 2 0 2 1 2

4 0 1

2
2 1 0 1

2 3 4

. � � � � � � � �

   � � � � � �

� � � �

�

� � �

00 0 25 0 0 0625� � � �. . 5.312510   

  Conversion of decimal to binary 

An integer decimal number can be converted to a corresponding 
binary number by repeatedly dividing by 2 and noting the remainder 
at each stage, as shown below.       

  Application:  Change 39 10  into binary       
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2 39 Remainder

2 19 1

2 9 1

2 4 1

2 2 0

2 1 0

0 1

(most significant bit) → 1    0    0    1    1    1 ← (least significant bit)     

The result is obtained by writing the top digit of the remainder as 
the least significant bit, (a bit is a binary dig it and the least signifi-
cant bit is the one on the right). The bottom bit of the remainder is 
the most significant bit, i.e. the bit on the left. 

  Thus, 39 10       �      100111 2        

  Application:  Change 0.625 in decimal into binary form       

The fractional part of a denary number can be converted to a binary 
number by repeatedly multiplying by 2, as shown below for the frac-
tion 0.625 

  

0.625 � 2 � 1. 250

0.250 � 2 � 0. 500

0.500 � 2 � 1. 000

(most significant bit) .  1    0    1  (least significant bit)    

For fractions, the most significant bit of the result is the top bit 
obtained from the integer part of multiplication by 2. The least sig-
nificant bit of the result is the bottom bit obtained from the integer 
part of multiplication by 2. 

  Thus 0.625 10       �      0.101 2   
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  Conversion of decimal to binary via octal 

For denary integers containing several digits, repeatedly dividing by 2 
can be a lengthy process. In this case, it is usually easier to convert a 
denary number to a binary number via the octal system of numbers. 
This system has a radix of 8, using the digits 0, 1, 2, 3, 4, 5, 6 and 7.       

  Application: Find the decimal number equivalent to the octal 
number 4317 8        

 4317 8       �      4    �      8 3       �      3    �      8 2       �      1    �      8 1       �      7    �      8 0  

       �      4    �      512      �      3    �      64      �      1    �      8    �      7    �      1    �      2255 10  

 Thus,  43178       �      2255 10        

  Application: Convert 493 10  into octal       

An integer decimal number can be converted to a corresponding 
octal number by repeatedly dividing by 8 and noting the remainder 
at each stage. 

  

8       493 Remainder

8 61 5

8 7 5

 0 7

7 5 5    

 Thus,  49310       �       7558        

  Application: Convert 0.4375 10  into octal       

The fractional part of a denary number can be converted to an octal 
number by repeatedly multiplying by 8, as shown below. 

  

0.4375 � 8 � 3.5

0.5 �  8 � 4.0

.3 4     
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For fractions, the most significant bit is the top integer obtained by 
multiplication of the denary fraction by 8, thus 

  0.437510       �      0.34 8   

  Conversion of octal to binary and decimal 

The natural binary code for digits 0 to 7 is shown in  Table 3.1   , and 
an octal number can be converted to a binary number by writing 
down the three bits corresponding to the octal digit.       

 Table 3.1          

   Octal digit  Natural binary 
number

   0 000
   1 001
   2 010
   3 011
   4 100
   5 101
   6 110
   7 111

  Application:  Change 437 8  into binary       

 From  Table 3.1 ,  4378       �      100 011 111 2        

  Application:  Change 26.35 8  into binary       

 From  Table 3.1 , 26.35 8       �      010 110.011 101 2  

 The  ‘ 0 ’  on the extreme left does not signify anything, thus 

  26.358       �      10 110.011 101 2        

  Application: Convert 11 110 011.100 01 2 to a decimal number 
via octal       
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 Grouping the binary number in three’s from the binary point gives: 

 011 110 011.100 010 2  

Using  Table 3.1  to convert this binary number to an octal number 
gives:

 363.42 8  and 

 363.42 8       �    3    �      8 2       �      6    �      8 1       �      3    �      8 0       �      4    �      8      �     1       �      2    �      8      �     2  

       �      192      �      48      �      3  �  0.5      �      0.03125    �       243.5312510  

 Hence,  11 110 011.100 01 2       �      363.42 8       �      243.53125  10   

  Hexadecimal numbers         

A hexadecimal numbering system has a radix of 16 and uses 
the following 16 distinct digits: 

 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F 

  ‘ A’ corresponds to 10 in the denary system, B to 11, C to 12, and 
so on. 

  Table 3.2    compares decimal, binary, octal and hexadecimal numbers. 

 Table 3.2          

Decimal Binary Octal Hexadecimal

0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 10 8
9 1001 11 9
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  Conversion from hexadecimal to decimal         

 For example, 2310       �      10111 2       �      27 8       �      17 16         

Table 3.2     Continued  

Decimal Binary Octal Hexadecimal

10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10
17 10001 21 11
18 10010 22 12
19 10011 23 13
20 10100 24 14
21 10101 25 15
22 10110 26 16
23 10111 27 17
24 11000 30 18
25 11001 31 19
26 11010 32 1A
27 11011 33 1B
28 11100 34 1C
29 11101 35 1D
30 11110 36 1E
31 11111 37 1F
32 100000 40 20

  Application:  Change 1A 16  into decimal form       

 1A 16       �      1    �      16 1       �    A      �      16 0       �      1    �      16 1       �      10      �      1    �      16      �      10      �      26 

 i.e.   1A16        �       2610        
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  2E16     �   2   �   161     �   E   �   160     �   2   �   161     �   14   �   160     �   32   �   14   �     4610        

  Application:  Change 2E 16  into decimal form       

  Application:  Change 1BF 16  into decimal form       

  1BF16       �      1    �      16 2       �      B    �      16 1       �      F    �      16 0  

      �      1    �      16 2       �      11    �      16 1       �      15      �      16 0  

    �      256      �      176      �      15      �       44710        

  Application:  Convert 1A4E 16  into a decimal number 

 1A4E 16       �      1      �      16 3       �      A    �      16 2       �      4    �      16 1       �      E    �      16 0  

       �      1    �      16 3       �      10      �      16 2       �      4    �      16 1       �      14      �      16 0  

       �      1    �      4096    �      10      �      256      �      4    �      16      �      14      �      1 

       �      4096    �      2560    �      64      �      14      �      6734 

 Thus,  1A4E16       �      6734 10         

  Conversion from decimal to hexadecimal 

This is achieved by repeatedly dividing by 16 and noting the remain-
der at each stage, as shown below.       

  Application:  Change 26 10  into hexadecimal       

  

16  26  Remainder

16   1 10  ≡  A16

0       1  ≡  116

most significant bit →   1  A   ← least significant bit    

 Hence, 2610       �      1A 16        
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16  447 Remainder

16   27  15  ≡  F16

16 1 11  ≡  B16

0   1  ≡  116

1 B F    

 Thus,  44710       �      1BF 16   

  Conversion from binary to hexadecimal 

The binary bits are arranged in groups of four, starting from right to 
left, and a hexadecimal symbol is assigned to each group.       

  Application: Convert the binary number 1110011110101001 
into hexadecimal       

The binary number 1110011110101001 is initially grouped in fours as:

1110 0111 1010 1001

and a hexadecimal symbol assigned to each group as:

E       7        A       9 

 from  Table 3.2  

 Hence,  11100111101010012       �      E7A9 16   

  Conversion from hexadecimal to binary         

  Application:  Convert 6CF3 16  into binary form       

 6CF3 16       �      0110 1100 1111 0011  from  Table 3.2  

i.e. 6CF316       �      110110011110011 2       

  Application:  Change 447 10  into hexadecimal       



                                             4    Areas and Volumes   

  4.1     Areas of plane figures         

A polygon is a closed plane figure bounded by straight lines. A 
polygon, which has:     

   (i)   3 sides is called a  triangle   
  (ii)   4 sides is called a  quadrilateral   

b

a

h

b

h

b

h

b
Area � �ab

Perimeter ≈ � (a � b)
a

l

b

(i) Rectangle Area � I � b (ii) Parallelogram Area � b � h

(iii) Area ( )1
2Trapezium � �a hb

(iv)

Area 1
2

Triangle

� � �b h

(v) Ellipse

 Figure 4.1                   
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  (iii)   5 sides is called a  pentagon   
  (iv)   6 sides is called a  hexagon   
    (v)   7 sides is called a  heptagon   
  (vi)   8 sides is called an  octagon                 

  (a)   The girder may be divided into three separate rectangles as shown. 
 Area of rectangle A      �      50      �      5    �      250     mm 2   
 Area of rectangle B      �      (75      �      8 � 5)      �      6    �      62      �      6    �      372     mm 2   
 Area of rectangle C      �      70      �      8    �      560     mm 2   
Total area of girder   �   250   �   372   �   560   �     1182       mm2 or 11.82       cm2      

  (b)   Area of path      �      area of large rectangle � area of small rectangle 
        �      (25      �      20)      �      (21      �      16)      �      500      �      336  

    �       164       m2              

  Application: Find (a) the cross-sectional area of the girder shown 
in  Figure 4.2(a)   , and (b) the area of the path shown in  Figure 4.2(b)        

2 m

25 m

20
 m

(b)

50 mm

5 mm

A

B

C

8 mm

6 mm

75
 m

m

70 mm

(a)

 Figure 4.2         

  Application: Figure 4.3    shows the gable end of a building. 
Determine the area of brickwork in the gable end       

5 m 5 m

6 m

B
C

A

D

8 m  Figure 4.3         
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 The shape is that of a rectangle and a triangle. 

 Area of rectangle      �      6    �      8    �      48     m 2  

  
Area of triangle base height� � �

1
2     

 CD      �      4     m, AD      �      5     m, hence AC      �      3     m (since it is a 3, 4, 5 triangle) 

  
Hence, area of triangle ABD 8 3 12m2� � � �

1
2     

 Total area of brickwork      �      48      �      12      �       60     m 2        

12
 c

m

5 cm

 Figure 4.4         

  Application: Calculate the area of a regular octagon, if each side 
is 5    cm and the width across the flats is 12    cm      

An octagon is an 8-sided polygon. If radii are drawn from the centre 
of the polygon to the vertices then 8 equal triangles are produced 
(see  Figure 4.4   ). 

Area of one triangle base height

5 cm

Area of 

� � �

� � � �

1
2

1
2

12
2

15 2

ooctagon 8 15� � � 120 cm2
           

A hexagon is a 6-sided polygon that may be divided into 6 equal tri-
angles as shown in Figure 4.5   . The angle subtended at the centre of 
each triangle is 360°/6      �      60°. 

The other two angles in the triangle add up to 120° and are equal 
to each other. 

Hence each of the triangles is equilateral with each angle 60° and 
each side 8     cm. 

  
Area of one triangle base height 8 h� � � � � �

1
2

1
2     

 h is calculated using Pythagoras ’  theorem: 

8 42 2 2� �h      

  Application: Determine the area of a regular hexagon which 
has sides 8     cm long       
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  from which, h cm� � �8 4 6 9282 2 .     

  
Hence area of one triangle 8 cm� � � �

1
2

6 928 27 71 2. .
    

 Area of hexagon      �      6    �      27.71    �       166.3     cm 2  

  Areas of similar shapes         

4 cm

8 cm

8 cm

h

60°

 Figure 4.5         

  The areas of similar shapes are proportional to the squares 
of corresponding linear dimensions.  

For example,  Figure 4.6    shows two squares, one of which has 
sides three times as long as the other. 

  Area of  Figure 4.6(a)       �      (x)(x)    �      x 2   

  Area of  Figure 4.6(b)       �      (3x)(3x)    �      9x2     

Hence  Figure 4.6(b)  has an area (3) 2, i.e. 9 times the area of 
 Figure 4.6(a) .             

 Figure 4.6       

(a)
x

x

3x

(b)
3x

  Application: A rectangular garage is shown on a building plan 
having dimensions 10    mm by 20    mm. If the plan is drawn to a scale 
of 1 to 250, determine the true area of the garage in square metres       
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 Area of garage on the plan      �      10     mm    �      20     mm    �      200     mm 2  

Since the areas of similar shapes are proportional to the squares of 
corresponding dimensions then 

    

true area of garage

1

� � � �

�
�

�

200 250 12 5 10

12 5 10
10

2 6 2

6

6
2

( ) .

.

mm

m 22.5 m2

      

  4.2     Circles         

  Area      �       π r 2                Circumference      �      2 π r  

  Radian measure:             2 π  radians    �      360°  

Area of a sector
360

( r )

2
( r )

1
2

r

ar

2

2 2

�
�

� �

θ
π

θ
π

π θ (  in radians)θ

cc length, s
360

(2 r)

r

�
�

�

θ
π

θ (  in radians)θ                  

r

r

s

�

 Figure 4.7 

  Application: Find the areas of the circles having (a) a radius of 
5     cm, (b) a diameter of 15     mm, (c) a circumference of 70     mm       

  
Area of a circle r  or 

d
� π

π2
2

4     
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  (a)   Area    �       π r 2       �       π  (5) 2       �      25 π       �       78.54     cm 2   

  (b)  
    
Area

d ( )
� � � �

π π π2 2

4
15
4

225
4

176.7 mm2

     

  (c)                Circumference, c 2 r, hence r
c

mm� � � �π
π π π2

70
2

35

       

  

Area of circle r� � �

�

π π
π π

2
2 235 35⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

389.9 mm 3.899 cm2 or 22
          

  Application: A hollow shaft has an outside diameter of 5.45     cm 
and an inside diameter of 2.25    cm. Calculate the cross-sectional 
area of the shaft           

The cross-sectional area of the shaft is shown by the shaded part in 
 Figure 4.8    (often called an  annulus ). 

2.25 cm
 d = 5.45 cm

d =

 Figure 4.8   

 Area of shaded part      �      area of large circle � area of small circle 

� � � �

� � �

π π π

π

D d
(D d )

( )

2 2
2 2

2 2

4 4 4

4
5 45 2 25. . 19.35 cm2

           

  Application:  Convert (a) 125° (b) 69°47 �  to radians       

  (a)   Since 180°      �       π  rad then 1°      �       π /180     rad, therefore    

125 125
180

°
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟� �

π
rads 2.182 radians
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  (b)  
    
69 47°

°
°� � �69

47
60

69 783.
       

69 783 69 783
180

. .°
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟� �

π
1.218 radians

           

  Application: Convert (a) 0.749 radians, (b) 3 π/4 radians, to 
degrees and minutes       

  (a)   Since  π rad   �      180° then 1     rad      �      180 ° / π , therefore    

0 749 0 749
180

42 915. . .�
�

� �
π

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

     
 0.915°    �      (0.915    �      60) �       �      55 � , correct to the nearest minute, 

  hence  0.749 radians 42 55� � �      

  (b) 

         

Since  1 rad  

then  rad

�
�

�

180

3
4

3
4

180

π

π π
π

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟⎟
�

� � �
3
4

180( ) 135�

             

  Application: Find the length of arc of a circle of radius 5.5     cm 
when the angle subtended at the centre is 1.20 radians       

 Length of arc, s      �      r θ , where  θ  is in radians, hence 

 s      �      (5.5)(1.20)    �       6.60       cm        

  Application:  Determine the diameter and circumference of a cir-
cle if an arc of length 4.75    cm subtends an angle of 0.91 radians       

  
Since s r then r

s
cm� � � �θ

θ
4 75
0 91

5 22
.
.

.
    

 Diameter    �      2    �      radius    �      2    �      5.22    �       10.44     cm  

 Circumference, c      �       π d    �       π (10.44)    �       32.80     cm        

  Application: Determine the angle, in degrees and minutes, sub-
tended at the centre of a circle of diameter 42    mm by an arc of 
length 36     mm and the area of the minor sector formed       
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 Since length of arc, s      �      r θ  then  θ       �      s/r 

  
Radius, r

diameter
21mm� � �

2
42
2     

  
hence

s
r

radians� � � �
36
21

1 7143.
    

 1.7143 rad      �      1.7143    �      (180/ π )°      �      98.22°    �       98 ° 13 �   

    �      angle subtended at centre of circle 

    
Area of sector � � �

1
2

1
2

21 1 71432 2r ( ) ( )θ . 378 mm2

          

  Application: A football stadium floodlight can spread its illumi-
nation over an angle of 45° to a distance of 55    m. Determine the 
maximum area that is floodlit       

    

Floodlit area � � � �area of sector r
1
2

( )
1
2

55 45
180

2 2θ
π⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟⎟

� 1188 m2

          

  Application: An automatic garden spray produces a spray to a 
distance of 1.8    m and revolves through an angle  α which may be 
varied. If the desired spray catchment area is to be 2.5     m 2, deter-
mine the required angle  α , correct to the nearest degree       

  
Area of sector r , hence ( )� �

1
2

2 5
1
2

1 82 2θ α. .
    

  
from which, radiansα �

�
�

2 5 2
1 8

1 5432
2

.
.

.
    

1 5432 1 5432
180

88 42. . .rad � �
�

� �
π

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

   

   Hence  angle α       �      88° , correct to the nearest degree.         

  Application: The angle of a tapered groove is checked using 
a 20    mm diameter roller as shown in  Figure 4.9   . If the roller lies 
2.12    mm below the top of the groove, determine the value of 
angle θ        
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 In  Figure 4.10   , triangle ABC is right-angled at C 

 Length BC      �      10     mm (i.e. the radius of the circle), 

 and AB      �      30     �      10      �      2.12    �      17.88     mm from  Figure 4.10 . 

2.12 mm

10mm

�
2

30 mm

A

B

C

 Figure 4.10   

2.12 mm

20 mm
30 mm

�

 Figure 4.9   

  

Hence,

and andsin
.

sin
.

θ θ
2

10
17 88 2

10
17 88

341� � ��
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ° anglle 68θ °�

    

  The equation of a circle         

The equation of a circle, centre at the 
origin, radius r, is given by:  

x y r2 2 2� �      

The equation of a circle, centre (a, b), 
radius r, is given by: 

(x a) (y b) r2 2 2� � � �    

  Figure 4.11    shows a circle
(x      �      2) 2       �      (y      �      3) 2       �      4             

4

5

2

0 2 4

b � 3

a � 2

r � 2

y

x

 Figure 4.11   
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 x 2       �      y 2       �      8x      �      2y      �      8    �      0 may be rearranged as: 

(x      �      4) 2       �      (y      �      1) 2       �      9    �      0 

i.e. (x      �      4) 2       �      (y      �      1) 2       �      3 2  

which represents a circle,  centre ( �4, 1) and radius 3 as shown in 
 Figure 4.12   .   

  Application: Determine the radius and the co-ordinates of the cen-
tre of the circle given by the equation x 2     �   y2     �   8x   �   2y   �   8   �    0       

  4.3     Volumes and surface areas of regular solids         

b

lh

h

r

(i) Rectangular prism (or cubold)

Volume � l � b � h
Surface area � 2(bh � hl � lb)

(ii) Cylinder

Volume � πr2h
Surface area � 2πrh � 2πr2

(ii) Pyramid

If area of base � A and
perpendicular height � h then:

Volume A h1
3� � �

Total surface area � sum of areas of triangles
             forming sides � area of base

h

 

�8 �6 �4 �2 0

2

4

b � 1

a � �4

r �
 3

y

x

 Figure 4.12   
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 Volume of rectangular prism      �      l    �      b  �  h 

  (a)    Volume of tank       �      2    �      0.75    �      0.5      �       0.75     m 3   

  (b)   1   m3     �   106     cm3, hence 0.75    m3     �   0.75   �   106     cm3     �     750000   cm3   

  (c)  

    

1litre 1000 cm , hence 750000 cm litres3 3� �

�

750000
1000

750 litres              

l h

r r

(iv) Cone

Volume r h
Curved surface area rl

Total surface area rl

1
3

2� π
π
π

�

� �� πr2

(v) Sphere

Volume r

Surface area 4 r

4
3

2

2

� π

π�

  Application: A water tank is the shape of a rectangular prism 
having length 2    m, breadth 75    cm and height 50    cm. Determine 
the capacity of the tank in (a) m 3  (b) cm 3  (c) litres           

  Application: Find the volume and total surface area of a  cylinder
of length 15     cm and diameter 8     cm       

 Volume of cylinder      �       π r 2 h 

 Since diameter      �      8     cm, then radius r      �      4     cm. 

 Hence,  volume       �       π       �      4 2       �      15      �       754       cm3  

  Total surface area       �      2 π rh      �      2 π r 2  (i.e. including the two ends) 

     �   (2   �     π     �   4 �  15)   �   (2   �     π     �   42)   �     477.5       cm2        

 Figure 4.13           
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Volume of pyramid � �

�

1
3
1
3

(area of base) perpendicular height

(( )5 5 12� � � 100 cm3

    
The total surface area consists of a square base and 4 equal triangles. 

  

Area of triangle ADE base perpendicular height

AC

� � �

� � �

1
2
1
2

5
    

The length AC may be calculated using Pythagoras ’ theorem on tri-
angle ABC, where 

  

AB 12 cm, BC cm,

and AC AB BC cm

� � � �

� � � � �

1
2

5 2 5

12 2 5 12 262 2 2 2

.

. .     

  
Hence area of triangle ADE cm� � � �

1
2

5 12 26 30 65 2. .
    

  Total surface area of pyramid      �       (5      �      5)      �      4(30.65)    �       147.6     cm 2        

  Application: Determine the volume and the total surface area 
of the square pyramid shown in  Figure 4.14    if its perpendicular 
height is 12     cm       

5 cm

A

B C E

D

5 cm

 Figure 4.14   

  Application: Determine the volume and total surface area of a 
cone of radius 5     cm and perpendicular height 12     cm       
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 The cone is shown in  Figure 4.15.    

    
Volume of cone � � � � � �

1
3

1
3

5 122 2π πr h 314.2 cm3

    
 Total surface area    �      curved surface area    �      area of base      �       π rl      �       π r 2  

From  Figure 4.15 , slant height l may be calculated using Pythagoras ’  
theorem: 1 12 5 132 2� � � cm     
 Hence,  total surface area       �      ( π       �      5  �  13)    �      ( π       �      5 2 )      �       282.7     cm 2        

r � 5 cm

lh �
12 cm

 Figure 4.15   

  Application: A wooden  section is shown in  Figure 4.16   . Find 
(a) its volume (in m 3 ), and (b) its total surface area       

3 m
12 cm

r

r � 8 mm

 Figure 4.16   

The section of wood is a prism whose end comprises a rectangle and 
a semicircle. 

 Since the radius of the semicircle is 8     cm, the diameter is 16     cm. 

 Hence the rectangle has dimensions 12     cm by 16     cm. 

  
Area of end ( 16 cm� � � �12

1
2

8 292 52 2) .π
    

  Volume of wooden section       �      area of end      �      perpendicular height 

� � �

� �

292 5 300 87750

87750
10

3

3

6

. cm

m
0.08775 m3
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   The total surface area comprises the two ends (each of area 292.5    cm2), 
three rectangles and a curved surface (which is half a cylinder), hence   

total surface area ( ) ( ) ( )

(

� � � � � �

  � � �

2 292 5 2 12 300 16 300
1
2

2 8

.

π 3300

7200 4800 2400

)

585
or

� � � � �

� 20125 cm 2.0125 m2 2            

  

Radius of cylindrical head cm cm

and height of cylindr

� �
1
2

0 5.

iical head mm2 0 2� . cm     
Hence, volume of cylindrical head   �     πr2h   �     π (0.5) 2(0.2)   �   0.1571   cm3  

  
Volume of cylindrical shaft r h ( )� � �π π2

2
0 2
2

1 5 0
.

. .
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ 00471 3cm

    
 Total volume of 1 rivet      �      0.1571    �      0.0471    �      0.2042     cm 3  
  Volume of metal in 2000 such rivets   �   2000   �   0.2042   �     408.4       cm3        

  Application: A boiler consists of a cylindrical section of length 
8    m and diameter 6    m, on one end of which is surmounted a 
hemispherical section of diameter 6    m, and on the other end a 
conical section of height 4    m and base diameter 6    m. Calculate 
the volume of the boiler and the total surface area       

 The boiler is shown in  Figure 4.17   . 

  
Volume of hemisphere, P r m� � � � �

2
3

2
3

3 183 3 3π π π
    

 Volume of cylinder, Q      �       π r 2 h    �       π       �      3 2       �      8    �      72 π      m 3  

  
Volume of cone, R r h m� � � � � �

1
3

1
3

3 4 122 2 3π π π
    

  Total volume of boiler      �       18 π       �      72 π       �      12 π       �      102 π       �       320.4       m3  

  Application: A rivet consists of a cylindrical head, of diameter 
1    cm and depth 2    mm, and a shaft of diameter 2    mm and length 
1.5     cm. Determine the volume of metal in 2000 such rivets       
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Surface area of hemisphere, P ( r ) m� � � � �

1
2

4 2 3 182 2 2π π π
    

Curved surface area of cylinder, Q   �   2πrh   �   2   �     π     �   3 � 8   �   48π     m2  

The slant height of the cone, l, is obtained by Pythagoras ’ theorem 
on triangle ABC, i.e. l ( )� � �4 3 52 2     

 Curved surface area of cone, R      �       π rl      �       π       �      3  �  5    �      15 π      m 2  

  Total surface area of boiler     �   18π     �   48π     �   15π     �   81π     �     254.5       m2  

  Volumes of similar shapes         

4 m

3 m

P

Q

I

C

R

BA

8 m

6 m

 Figure 4.17   

  The volumes of similar bodies are 
proportional to the cubes of corre-
sponding linear dimensions . 

For example, Figure 4.18    shows two 
cubes, one of which has sides three times 
as long as those of the other. 

  Volume of  Figure 4.18(a)       �      (x)(x)(x)    �      x 3   

  Volume of  Figure 4.18(b)     �   (3x)(3x)(3x)   
                                         �   27x3     

Hence Figure 4.18(b)  has a volume (3) 3 , 
i.e. 27 times the volume of Figure 4.18(a) .             

(a)

x

x
x

 Figure 4.18     

3x

3x

3x

(b)
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Volume of model
Volume of car

�
1

50

3⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

   
 since the volume of similar bodies are 

proportional to the cube of corresponding dimensions. 

 Mass      �      density    �      volume, and since both car and model are made 
of the same material then: 

  

Mass of model
Mass of car

�
1

50

3⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

    

  

Hence,  of carmass of model � �

�

( )mass
1

50
1000
50

3

3

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

00.008 kg 8 gor       

  4.4      Volumes and surface areas of frusta of 
pyramids and cones         

  Application: A car has a mass of 1000    kg. A model of the car is 
made to a scale of 1 to 50. Determine the mass of the model if 
the car and its model are made of the same material       

 For the  frustum of a cone  shown in  Figure 4.19   : 

Volume
1
3

h(R Rr r )

Curved surface area l(R r)

Total surf

2 2� � �

� �

π

π

aace area l(R r) r R2 2� � � �π π π                  

r

hI

R

 Figure 4.19   

  Application:  

  (a)   Determine the volume of a frustum of a cone if the diameter 
of the ends are 6.0    cm and 4.0    cm and its perpendicular height 
is 3.6     cm.  

  (b)   Find the total surface area of the frustum of the cone          
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 (a)  Method 1  

A section through the vertex of a complete cone is shown in 
 Figure 4.20   . 

4.0 cm

2.0 cm

3.0 cm

6.0 cm

3.6 cm

R
Q

CB

D
E

P

A

1.0 cm

 Figure 4.20   

  
Using similar triangles 

AP
DP

DR
BR

�
    

  
Hence 

AP
from which AP

( )( )
cm

2 0
3 6
1 0

2 0 3 6
1 0

7 2
.

.

.
,

. .
.

.� � �
    

 The height of the large cone      �      3.6      �      7.2      �      10.8     cm 

   

Volume of frustum of cone �
  �

volume of large cone
volume off small cone cut off

( ) ( ) ( ) ( )� �

�

1
3

3 0 10 8
1
3

2 0 7 2

101 7

2 2π π. . . .

. 99 30 16� �. 71.6 cm3
     

  Method 2  

   

From above, volume of the frustum of a cone h(R Rr r )� � �
1
3

2 2π ,,

where R cm, r cm and h cm� � �3 0 2 0 3 6. . .     
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Hence, ( )[( ) ( )( ) ( )volume of frustum � � �
1
3

3 6 3 0 3 0 2 0 2 02 2π . . . . . ]]

( )( )� �
1
3

3 6 19 0π . . 71.6 cm3

      

 (b)  Method 1  

 Curved surface area of frustum      �      curved surface area of large cone 
�  curved surface area of small 

cone cut off 

 From  Figure 4.20 , using Pythagoras ’  theorem: 

 AB 2       �      AQ 2       �      BQ 2 , from which, AB [ ] cm� � �10 8 3 0 11 212 2. . .     

and AD 2     �   AP2     �   DP2, from which,  AD [ 2.0 ] cm2� � �7 2 7 472. .     

 Curved surface area of large cone      �       π rl      �       π  (BQ)(AB)   
   �       π  (3.0)(11.21)    �      105.65     cm 2  

 and curved surface area of small cone      �       π  (DP)(AD)   
   �       π  (2.0)(7.47)    �      46.94     cm 2  

Hence, curved surface area of frustum   �   105.65   �   46.94   �   58.71   cm2  

  Total surface area of frustum       �      curved surface area  
  �      area of two circular ends 

       �      58.71    �       π (2.0) 2       �       π (3.0) 2  
       �   58.71   �   12.57   �   28.27   
�     99.6       cm2  

  Method 2  

 Total surface area of frustum      �       π l(R      �      r)      �       π r 2       �       π R 2 , 

where l   �   BD   �   11.21   �   7.47   �   3.74   cm, R   �   3.0   cm and r   �   2.0   cm. 

 Hence,  total surface area of frustum
       �       π (3.74)(3.0    �      2.0)      �       π (2.0) 2       �       π (3.0) 2       �       99.6       cm2        

  Application: A lampshade is in the shape of a frustum of a 
cone. The vertical height of the shade is 25.0    cm and the diame-
ters of the ends are 20.0    cm and 10.0    cm, respectively. Determine 
the area of the material needed to form the lampshade, correct 
to 3 significant figures       
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r �  5.0 cm

R � 10.0 cm

h
�

 2
5.

0 
cm

5.0 cm

I

 Figure 4.21           

  
Volume of cylindrical protion r h (� �π π2

2
25 0

2
12 0

.
.

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ )) m� 5890 3

    

  
Volume of frustum of cone h(R Rr r )� � �

1
3

2 2π
    

where h      �      30.0    �      12.0    �      18.0    m, R      �      25.0/2    �      12.5    m and r      �   
12.0/2    �      6.0    m.

  Application: A cooling tower is in the 
form of a cylinder surmounted by a frus-
tum of a cone as shown in Figure 4.22   . 
Determine the volume of air space in the 
tower if 40% of the space is used for 
pipes and other structures       

12.0 m

25.0 m

12
.0

 m 30
.0

 m

 Figure 4.22           

 The curved surface area of a frustum of a cone      �       π l(R      �      r) 

Since the diameters of the ends of the frustum are 20.0    cm and 
10.0    cm, then from  Figure 4.21   , r      �      5.0    cm, R      �      10.0    cm and 
l [ ] cm� � �25 0 5 0 25 502 2. . .    , from Pythagoras ’  theorem. 

Hence curved surface area   �     π(25.50)(10.0   �   5.0)   �   1201.7   cm2 , 
i.e. the area of material needed to form the lampshade is 
1200       cm2 , correct to 3 significant figures.       
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Hence volume of frustum of cone

( ) [( ) ( )(� �
1
3

18 0 12 5 12 52π . . . 66 0 6 0

5038

2. .) ( ) ]

m3

�

�     
 Total volume of cooling tower      �      5890    �      5038    �      10928     m 3  

 If 40% of space is occupied then 
volume of air space       �      0.6      �      10928    �       6557       m3   

  4.5     The frustum and zone of a sphere         

 With reference to the  zone of a 
sphere  shown in  Figure 4.23   : 

  Surface area of a zone of a 
sphere      �      2 π rh  

    

Volume of frustum of sphere
h

6
(h 3r 3r )2

1
2

2
2� � �

π

                

r2

r1

R

QP

Sh

r

 Figure 4.23           

Application:

  (a)   Determine the volume of a frustum of a sphere of diameter 
49.74    cm if the diameter of the ends of the frustum are 24.0     cm 
and 40.0     cm, and the height of the frustum is 7.00     cm.  

  (b)   Determine the curved surface area of the frustum          

  (a) 
   
Volume of frustum of a sphere

h
(h r r )� � �

π
6

3 32
1
2

2
2

    
 where h      �      7.00     cm, r 1       �      24.0/2    �      12.0     cm and 
      r 2       �      40.0/2    �      20.0     cm.  

  Hence, 

volume of frustum

6161

� � �

�

π( )
[( ) ( ) ( ) ]

7 00
6

7 00 3 12 0 3 20 02 2 2.
. . .

ccm3
        

  (b)   The curved surface area of the frustum      �      surface area of zone      �    
  2 πrh (from above), where  r    �      radius of sphere      �      49.74/2    �     
24.87     cm and h      �      7.00     cm.  
 Hence,  surface area of zone       �      2 π (24.87)(7.00)    �       1094       cm2              
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  (a)  
      
Volume of sphere 904.8 cm3, V r� � �

4
3

4
3

12 0
2

3
3

π π
.⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

    

    
Surface area of sphere 452.4 cm2� � �4 4

12 0
2

2
2

π πr
.⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

        

  (b)  

    

Curved surface area of frustum surface area of sphere� �

�

1
4
1
44

452 4 113 1 2� �. . cm
    

  
From above, 113.1 rh h� �2 2

12 0
2

π π
.⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

     

  
Hence, , h

( )
thickness of frustum 3.0 cm� �

113 1
2 6 0

.

.π         

  (c)  
    
Volume of frustum, V

h
(h 3r r )� � �

π
6

32
1
2

2
2

    
where h      �      3.0    cm, r 2       �      6.0    cm and r OQ OP ,1

2 2� �    from 
Figure 4.24, 

  i.e. r cm1
2 26 0 3 0 5 196� � �. . .      

  Application: A frustum of a sphere, of diameter 12.0    cm, is 
formed by two parallel planes, one through the diameter and the 
other distance h from the diameter. The curved surface area of 
the frustum is required to be  1

4
    of the total surface area of the 

sphere. Determine (a) the volume and surface area of the sphere, 
(b) the thickness h of the frustum, (c) the volume of the frustum, 
and (d) the volume of the frustum expressed as a percentage of 
the sphere       

0
r2 � 6 cm

r1

r � 6 cm
h

Q

R

P

 Figure 4.24           
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  Application: A spherical storage tank is filled with liquid to a 
depth of 20    cm. Determine the number of litres of liquid in the 
container (1 litre      �      1000     cm 3), if the internal diameter of the 
 vessel is 30     cm           

5 cm

15 cm
15 cm

15 cm

 Figure 4.25           

The liquid is represented by the shaded area in the section shown in 
 Figure 4.25   . 

  Hence,  

volume of frustum � � �

�

π

π

( )
[( ) ( ) ( ) ]

[

3 0
6

3 0 3 5 196 3 6 0

2
9 0

2 2 2.
. . .

. �� � �81 108 0. ] 311.0 cm3

            

   (d) 
   

Volume of frustum
Volume of sphere

%� � �
311 0
904 8

100
.
.

34.37%
             

The volume of liquid comprises a hemisphere and a frustum of thick-
ness 5     cm. 

  
Hence volume of liquid r

h
[h r r ]� � � �

2
3 6

3 33 2
1
2

2
2π

π

    

  where r 30/2 15 cm and r cm2 � � � � �1
2 215 5 14 14.     

  

Volume of liquid ( )
( )

[ ( ) ( ) ]� � � �

� �

2
3

15
5

6
5 3 14 14 3 15

7069

3 2 2 2π
π

.

33403 10470 3� cm     
 Since 1 litre      �      1000     cm 3 ,

the number of litres of liquid 10.47 litres� �
10470
1000      
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  4.6      Areas and volumes of irregular 
figures and solids 

  Areas of irregular figures         

  Trapezoidal rule 

 To determine the areas PQRS in  Figure 4.26   : 

(i)   Divide base PS into any number of equal intervals, each of 
width d (the greater the number of intervals, the greater the 
accuracy)  

   (ii)   Accurately measure ordinates y 1 , y 2 , y 3 , etc.  

  (iii)  
    
Area PQRS d

y y
y y y y y=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 7
2 3 4 5 62

�
� � � � �

       
 In general, the trapezoidal rule states: 

Area (width of interval)

1
2

(first last ordinate) sum 

of rem

�
� �

aaining ordinates

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥       

  Mid-ordinate rule 

 To determine the area ABCD of  Figure 4.27   : 

y1 y2 y3 y4 y5 y6 y7

d d d d d d
S

RQ

P
 Figure 4.26           

d d d d d d
D

CB

A

y1 y2 y3 y4 y5 y6

 Figure 4.27           
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   (i)   Divide base AD into any number of equal intervals, each of 
width d (the greater the number of intervals, the greater the 
accuracy)  

   (ii)   Erect ordinates in the middle of each interval (shown by bro-
ken lines in  Figure 4.27 )  

  (iii)   Accurately measure ordinates y 1 , y 2 , y 3 , etc.  
  (iv)   Area ABCD      �      d(y 1       �      y 2       �      y 3       �      y 4       �      y 5       �      y 6 )    

 In general, the mid-ordinate rule states: 

Area (width of interval)(sum of mid-ordinates)�       

  Simpson’s rule 

 To determine the area PQRS of  Figure 4.26 : 

   (i)   Divide base PS into an even number of intervals, each of width 
d (the greater the number of intervals, the greater the accuracy) 

   (ii)   Accurately measure ordinates y 1 , y 2 , y 3 , etc.  

  (iii) 
   
Area PQRS

d
[(y y ) (y y y ) (y y )]� � � � � � �

3
4 21 7 2 4 6 3 5

       
 In general, Simpson’s rule states: 

Area
1
3

width of
interval

first last
ordinate

�

�

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟�

�

4
sum of even
ordinates

2
sum of remaining
oddd ordinates

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥                   

  Application: A car starts from rest and its speed is measured 
every second for 6 s:

   Time t(s)  0 1 2 3  4  5 6

   Speed v (m/s)  0 2.5 5.5 8.75  12.5  17.5 24.0

Determine the distance travelled in 6 seconds (i.e. the area under 
the v/t graph), by (a) the trapezoidal rule, (b) the mid-ordinate 
rule, and (c) Simpson’s rule       
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 A graph of speed/time is shown in  Figure 4.28   . 

30

25

Graph of speed/time

20

15

S
pe

ed
 (

m
/s

)

10

5

0 1 2 3 4 5 6
Time (seconds)

4.
0

7.
0

15
.0

5.
5

8.
75

10
.7

5
12

.5

17
.5

20
.2

5
24

.0

2.
5

1.
25

 Figure 4.28           

  (a)    Trapezoidal rule     

The time base is divided into 6 strips each of width 1    s, and the length 
of the ordinates measured. 

 Thus 

area �
�

� � � � �

�

( )1
0 24 0

2
2 5 5 5 8 75 12 5 17 5

.
. . . . .

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

558.75 m      

  (b)    Mid-ordinate rule     

The time base is divided into 6 strips each of width 1 second. Mid-
ordinates are erected as shown in  Figure 4.28  by the broken lines. 

 The length of each mid-ordinate is measured. Thus 

area 58.25 m� � � � � � �( )[ ]1 1 25 4 0 7 0 10 75 15 0 20 25. . . . . .      

  (c)    Simpson’s rule     

The time base is divided into 6 strips each of width 1    s, and the 
length of the ordinates measured. 

 Thus,

area

58.33 m

� � � � � � �

�

1
3

1 0 24 0 4 2 5 8 75 17 5 2 5 5 12 5( )[( ) ( ) ( )]. . . . . .
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 From above, 

Area ( )[( ) ( ) ( )]

( )[ ]

� � � � � � �

� � �

1
3

3 0 0 4 2 2 4 5 2 4 2 3 3 4 2

1 0 36 4 15

. . . . .

. �� 51.4 m2
      

  Volumes of irregular solids using Simpson’s rule         

  Application: A river is 15    m wide. Soundings of the depth are 
made at equal intervals of 3    m across the river and are as shown 
below.

   Depth (m)  0 2.2 3.3 4.5 4.2 2.4 0

Calculate the cross-sectional area of the flow of water at this 
point using Simpson’s rule       

If the cross-sectional areas A 1, A 2, A 3, … of an irregular solid 
bounded by two parallel planes are known at equal intervals of 
width d (as shown in  Figure 4.29   ), then by Simpson’s rule:  

Volume, V
d
3

[(A A ) 4(A A A ) 2(A A )]1 7 2 4 6 3 5� � � � � � �
                 

A6 A7

d d d d d d

A5A4A3A2A1

 Figure 4.29           

  Application: A tree trunk is 12    m in length and has a varying 
cross-section. The cross-sectional areas at intervals of 2    m meas-
ured from one end are: 

0 52 0 55 0 59 0 63 0 72 0 84 0 97 2. , . , . , . , . , . , . m      
 Estimate the volume of the tree trunk       
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A sketch of the tree trunk is similar to that shown in  Figure 4.29 
above, where d      �      2    m, A 1       �      0.52     m 2, A 2       �      0.55     m 2, and so on. 
Using Simpson’s rule for volumes gives: 

Volume [( ) ( )

( )]

� � � � �

  � �

�

2
3

0 52 0 97 4 0 55 0 63 0 84

2 0 59 0 72
2
3

. . . . .

. .

[[ ]1 49 8 08 2 62. . .� � � 8.13 m3
           

  Application: The areas of seven horizontal cross-sections of a 
water reservoir at intervals of 10    m are: 210, 250, 320, 350, 290, 
230, 170     m 2  .  Calculate the capacity of the reservoir in litres       

 Using Simpson’s rule for volumes gives: 

  

Volume [( ) ( ) ( )]

[

� � � � � � �

� �

10
3

210 170 4 250 350 230 2 320 290

10
3

380 33220 1220� �] 16400 m3

    

 16400     m 3       �      16400    �      10 6 cm 3  

  

Since 1 litre cm , capacity of reservoir3� �
�

1000
16400 10

1000

6
llitres

�

�

16400000

1.64 10 litres7�      

  Prismoidal rule for finding volumes         

 With reference to  Figure 4.30   , 

Volume, V
x
6

[A 4A A ]1 2 3� � �
                 

2

A1 A2 A3

2
x x

x

 Figure 4.30           
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The container is shown in  Figure 4.31   . At the mid-point, i.e. at a 
distance of 12    cm from one end, the radius r 2 is (9      �      15)/2    �      12     cm, 
since the sloping sides change uniformly. 

15 cm

24 cm

9 cm

A1

A2
r2

A3

12 cm

 Figure 4.31           

  Application: A container is in the shape of a frustum of a 
cone. Its diameter at the bottom is 18    cm and at the top 30     cm. 
Determine the capacity of the container, correct to the nearest 
litre, by the prismoidal rule, if the depth is 24     cm.       

  
Volume of container by the prismoidal rule

x
[A A A ]� � �

6
41 2 3

   from above,   where

         Application: The roof of a building is in the form of a frustum 
of a pyramid with a square base of side 5.0    m. The flat top is a 
square of side 1.0    m and all the sloping sides are pitched at the 
same angle. The vertical height of the flat top above the level of 
the eaves is 4.0    m. Calculate, using the prismoidal rule, the vol-
ume enclosed by the roof       

  x  cm, A ( ) cm , A ( ) cm and A ( ) cm� � � �24 15 12 91
2 2

2
2 2

3
2 2π π π     

 Hence, 

   

volume of container � � �

� �

24
6

15 4 12 9

706 86 180

2 2 2[ ( ) ( ) ( ) ]

4[

π π π

. 99 56 254 47

11080
11080
1000

3

. .�

� �

�

]

cm litres

11 litres, correct too the nearest litre    
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 Let area of top of frustum be A 1       �      (1.0) 2       �      1.0     m 2  

 Let area of bottom of frustum be A 3       �      (5.0) 2       �      25.0     m 2  

Let area of section through the middle of the frustum parallel to A 1  
and A 3 be A 2. The length of the side of the square forming A 2 is the 
average of the sides forming A 1  and A 3 , i.e. (1.0      �      5.0)/2    �      3.0    m.

 Hence A 2       �      (3.0) 2       �      9.0     m 2 . 

  

Using the prismoidal rule, 

volume of frustum
x

[A A A ]� � �
6

41 2 3

�� � �
4 0
6

1 0 4 9 0 25 0
.

. . .[ ( ) ]
   

  Hence,                   volume enclosed by roof      �      41.3     m 3      

  4.7     The mean or average value of a waveform         

The mean or average value, y, of 
the waveform shown in Figure 
4.32    is given by: 

y �
area under curve
length of base, b    

   If the mid-ordinate rule is used to 
find the area under the curve, then:   

y
sum of mid-ordinates

number of mid-ordinates
�

y
� 1 �� � � � � �y y y y y y

for Figure 2 3 4 5 6 7

7
4 32.

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟
   

y

d d d d d d d
b

y1 y2 y3 y4 y5 y6 y7

 Figure 4.32           

 Figure 4.33               

(a)

0

Vm

V

t

(b)

0 t

Vm

V

0 t

Vm

V

(c)
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  (a)   Area under triangular waveform (a) for a half cycle is given by: 

  

Area (base)(perpendicular height) ( )( )� � �

� �

�

�

1
2

1
2

2 10 20

20 10

3

3 Vs      

  

Average value of waveform
area under curve
length of base

�

�
200 10

2 10

3

3

�

�
�

�

�

Vs
s

10 V
        

   For a  sine wave , the mean or average value:   

  1.   over one complete cycle is zero (see  Figure 4.33(a)   ),  

  2.   over half a cycle is 0.637    �      maximum value, or 2/π       �   
maximum value ,  

  3.   of a full-wave rectified waveform (see  Figure 4.33(b) ) is 
0.637    �      maximum value   

  4.   of a half-wave rectified waveform (see  Fig. 4.33(c) ) is    

  0.318    �      maximum value or 1/ π       �      maximum value              

  Application: Determine the average values over half a cycle of 
the periodic waveforms shown in  Figure 4.34   :       

(a)

(c)

(b)

20

0 21 3 4

V
ol

ta
ge

 (
V

)

�20

t (ms)

3
2

C
ur

re
nt

 (
A

)

1

0 21 3 4 5 6
�1
�2
�3

t (s)

V
ol

ta
ge

 (
V

)

10

�10

0 42 6 8 t (ms)

 Figure 4.34           
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  (b)   Area under waveform (b) for a half cycle   �   (1   �   1)   �   (3   �   2)   �   7 As 

  

Average value of waveform
area under curve
length of base

� �
7 AAs

s3

� 2.33 A         

  (c)   A half cycle of the voltage waveform (c) is completed in 4     ms. 

  
Area under curve {( ) }( ) Vs� � � �� �1

2
3 110 10 10 103 3

     

  

Average value of waveform
area under curve
length of base

�

�
100 10

4 10

3

3

�

�
�

�

�

Vs
s

2.5 V
                

  Application: The power used in a manufacturing process dur-
ing a 6 hour period is recorded at intervals of 1 hour as shown 
below.

   Time (h)  0 1 2 3 4 5 6

   Power (kW)  0 14 29 51 45 23 0

Determine (a) the area under the curve and (b) the average value 
of the power by plotting a graph of power against time and by 
using the mid-ordinate rule       

 The graph of power/time is shown in  Figure 4.35   . 

50

40

30

P
ow

er
 (

kW
)

20

10

0 21 3

Time (hours)

Graph of power/time

4 5 6

7.0 21.5 37.049.542.0 10.0

 Figure 4.35           
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  (a)   The width of each interval is
12 0

6
2 0

.
.� cm.    Using Simpson’s rule,    

area ( )[( ) ( ) ( )]

[

� � � � � � �

� �

1
3

2 0 3 6 1 6 4 4 0 2 9 1 7 2 3 5 2 2

2
3

5 2 3

. . . . . . . .

. 44 4 11 4. .� �] 34 cm2

     

  (b)  
    
Mean height of ordinates

area of diagram
length of base

� �
34
122

2 83� . cm
    

 Since 1     cm represents 100     kPa, the mean pressure in the cylinder       
                           �      2.83     cm      �      100     kPa/cm    �       283       kPa            

  (a)   The time base is divided into 6 equal intervals, each of width 
1 hour. 

Mid-ordinates are erected (shown by broken lines in  Figure 4.35 )
and measured. The values are shown in  Figure 4.35 .       

Area under curve (width of interval)(sum of mid-ordinates)�

�� � � � � �

�

( )[ ]

(i.e. a measure 

1 7 0 21 5 42 0 49 5 37 0 10 0. . . . . .

167 kWh oof electrical energy)     

  (b)  

    

Average value of waveform
area under curve
length of base

� �
1667

6
kWh
h

� 27.83 kW        

Alternatively, average value
sum of mid-ordinates

number of
�

 mid-ordinates

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

           

  Application: An indicator  diagram
for a steam engine is shown in 
Figure 4.36   . The base line has been 
divided into 6 equally spaced inter-
vals and the lengths of the 7 ordi-
nates measured with the results 
shown in centimetres. 

Determine (a) the area of the indicator diagram using Simpson’s 
rule, and (b) the mean pressure in the cylinder given that 1     cm 
represents 100     kPa       

3.6 3.5 2.9

12.0 cm

2.2 1.7 1.64.0

 Figure 4.36           



                                                              5    Geometry and 
Trigonometry   

  5.1     Types and properties of angles           

   1.   Any angle between 0° and 90° is called an  acute angle .  
2.   An angle equal to 90° is called a  right angle .  

   3.   Any angle between 90° and 180° is called an  obtuse angle .  
4.   Any angle greater than 180° and less than 360° is called a 

reflex angle.   
   5.   An angle of 180° lies on a straight line.  
   6.   If two angles add up to 90° they are called  complementary

angles .  
   7.   If two angles add up to 180° they are called  supplementary

angles.   
   8.    Parallel lines are straight lines that are in the same plane and 

never meet. (Such lines are denoted by arrows, as in  Figure 5.1   ). 
   9.   A straight line that crosses two parallel lines is called a  trans-

versal  (see MN in  Figure. 5.1 ).  
  10.   With reference to  Figure 5.1 : 

   (i)   a    �      c, b      �      d, e      �   g and f      �      h. Such pairs of angles are 
called vertically opposite angles .  

  (ii)   a    �      e, b      �      f, c      �      g and d      �      h. Such pairs of angles are 
called corresponding angles.   

  (iii)   c    �      e and b      �      h. Such pairs of angles are called  alternate 
angles .  

  (iv)   b    �      e    �      180° and c      �      h    �      180°. Such pairs of angles are 
called interior angles.               

P

R

Q

S
h e

g

M

N

f

d a
c b

 Figure 5.1           
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  5.2     Properties of triangles           

   1.   The sum of the three angles of a triangle is equal to 180°.  

   2.   An acute-angled triangle is one in which all the angles are 
acute, i.e. all the angles less than 90°.  

   3.   A right-angled triangle  is one that contains a right angle.  

4.   An obtuse-angled triangle is one that contains an obtuse 
angle, i.e. one angle which lies between 90° and 180°.  

   5.   An equilateral triangle is one in which all the sides and all 
the angles are equal (i.e. each 60°).  

   6.   An isosceles triangle is one in which two angles and two 
sides are equal.  

   7.   A scalene triangle is one with unequal angles and therefore 
unequal sides.  

   8.   With reference to  Figure 5.2   : 
 (i)   Angles A, B and C are called  interior angles of the 

t riangle.  
   (ii)   Angle θ is called an exterior angle of the triangle and is 

equal to the sum of the two opposite interior angles, i.e. 
θ       �      A    �      C  

  (iii)   a    �      b � c is called the  perimeter  of the triangle.     

A

CB
θ

bc

a

 Figure 5.2           
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A side view is shown in Figure 5.4    where AF is the minimum length 
of ladder. Since BD and CF are parallel,  � ADB      �       �DFE (correspond-
ing angles between parallel lines). Hence triangles BAD and EDF are 
similar since their angles are the same.
AB    �      AC      �      BC     �      AC � DE      �      5.5      �      3    �      2.5     m 

  
By proportion:      

AB
DE

BD
EF

i.e.
EF

� �
2 5
3

2.

    

9.    Congruent triangles  – two triangles are congruent if: 
   (i)   the three sides of one are equal to the three sides of the 

other,  
   (ii)   they have two sides of the one equal to two sides of 

the other, and if the angles included by these sides are 
equal,  

  (iii)   two angles of the one are equal to two angles of the 
other and any side of the first is equal to the correspond-
ing side of the other, or  

  (iv)   their hypotenuses are equal and if one other side of one 
is equal to the corresponding side of the other.     

  10.    Similar triangles     
With reference to  Figure 5.3   , triangles ABC and PQR are similar 
and the corresponding sides are in proportion to each other,

ie. .               
p
a

q
b

r
c

� �
                

A

B Ca

c
r

pQ R

P

q

65° 65° 58°58°

57°

57°
b

 Figure 5.3           

  Application: A rectangular shed 2    m wide and 3    m high stands 
against a perpendicular building of height 5.5    m. A ladder is used 
to gain access to the roof of the building. Determine the minimum 
distance between the bottom of the ladder and the shed       
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Hence EF      �      2 
3

2 5.

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟         �       2.4     m    �      minimum distance from bottom 

of ladder to the shed   

  5.3     Introduction to trigonometry         

A

B

C

D

EF

2 m

3 m
Shed

5.5m

 Figure 5.4           

 The  theorem of Pythagoras  states: 

  ‘In any right-angled triangle, the square 
on the hypotenuse is equal to the sum 
of the squares on the other two sides ’     

Hence b a c2 2 2� �                  

A

c

a

b

B C

 Figure 5.5           

  Application: Two aircraft leave an airfield at the same time. One 
travels due north at an average speed of 300    km/h and the other 
due west at an average speed of 220    km/h. Calculate their dis-
tance apart after 4 hours       

After 4 hours, the first aircraft has travelled 4      �      300      �      1200     km, 
due north, and the second aircraft has travelled 4      �      220      �      880     km 
due west, as shown in  Figure 5.6   . 
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  Distance apart after 4 hours      �      BC 

From Pythagoras ’  theorem:

BC2       �      1200 2       �      880 2  
      �      1440000    �      774400 and BC      �       2214400     

  Hence distance apart after 4 hours       �       1488       km   

  5.4     Trigonometric ratios of acute angles         

N

S

W E
B

C A

1200 km

880 km  Figure 5.6           

 With reference to the right-angled triangle shown in  Figure 5.7   : 

  1.  
    
sine 

opposite side
hypotenuse

i.e.θ � sin 
b
c

θ �
     

  
2.  

    
cosine 

adjacent side
hypotenuse

i.e.θ � cos 
a
c

θ �
     

  
3.  

    
tangent 

opposite side
adjacent side

i.e.θ � tan 
b
a

θ �
     

  
4.

   
secant 

hypotenuse
adjacent side

i.e.θ � sec 
c
a

θ �
     

  
5.

  
cosecant 

hypotenuse
opposite side

i.e.θ � cosec 
c
b

θ �
     

θ

c

a

b

 Figure 5.7           
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  5.5     Evaluating trigonometric ratios         

   
6.

   
cotangent i.e. θ �

adjacent side
opposite side

cot 
a
b

θ �
   

 From above,     

   

7.

   

sin
cos

tan
θ
θ

θ� � �

b
c
a
c

b
a

i.e. tan θ
θ
θ

�
sin
cos

     

  8.

   

cos
sin

θ
θ

θ� � �

a
c
b
c

a
b

cot i.e. cot 
cos
sin

θ
θ
θ

�

     

   
9.

   
sec θ

θ
�

1
cos      

  10.  
    
cosec θ

θ
�

1
sin

( )Note ’s’ and ’c’ go together
     

  
11.  

    
cot θ

θ
�

1
tan        

Secants, cosecants and cotangents are called the  reciprocal 
ratios.         

The easiest method of evaluating trigonometric functions of any 
angle is by using a calculator.  

The following values, correct to 4 decimal places, may be checked: 

  sine 18°        �      0.3090 cosine 56°   �      0.5592 
tangent 29°      �      0.5543  

  sine 172°      �      0.1392 cosine 115°   �       �     0.4226 
tangent  78°    �       �     0.0349  

  sine 241.63°      �       �     0.8799 cosine 331.78°   �      0.8811 
tangent 296.42°      �       �     2.0127    
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  (a)   sec      �     1  2.3164   �      cos      �     1

  

1
2 3164.

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟
     
  �      cos      �     1  0.4317.. 

�       64.42°  or  64°25 ’   or  1.124 rad   

  (b)   cosec      �     1  1.1784   �      sin      �     1

  

1
1 1784.

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

     
    �      sin      �     1  0.8486.. 

�       58.06°  or  58°4 ’   or  1.013 rad   

  (c)   cot      �     1  2.1273   �      tan      �     1

  

1
2 1273.

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

        �      tan      �     1  0.4700..  

�       25.18°  or  25°11 ’   or  0.439 rad      

Most calculators contain only sine, cosine and tangent functions. 
Thus to evaluate secants, cosecants and cotangents, reciprocals 
need to be used. 

The following values, correct to 4 decimal places, may be checked: 

  

secant 32
32

1.1792

� �
�

�

1
cos

   

secant 215.12
215.12

1.2226

� �
�

� �

1
cos

    

  

cosecant 75
1
75

� �
�

�

sin

.1 0353      

cosecant 321.62

1.6106

� �
�

� �

1
321 62sin .

    

  

cotangent 41
1

1

1.1504

� �
�

�

tan 4

     

cotangent 263.59
1

0.1123

� �
�

�

tan .263 59

                

  Application:  Determine the acute angles: 

  (a)   sec      �     1  2.3164           (b) cosec      �     1  1.1784          (c) cot     �     1  2.1273          
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  5.6      Fractional and surd forms of 
trigonometric ratios         

In Figure 5.8   , ABC is an equilateral triangle of side 2 units. AD 
bisects angle A and bisects the side BC. Using Pythagoras ’ theo-
rem on triangle ABD gives: 

            AD � � �2 1 32 2
    

 Hence,

sin 30°      �    
   

BD
AB

�
1
2   

 , cos 30°      �  
     

AD
AB

�
3

2     

and tan 30°      �       
BD
AD

�
1

3     

sin 60°      �    
   

AD
AB

�
3

2   
 , cos 60°      �    

   

BD
AB

�
1
2     

and tan 60°      �       
AD
BD

� 3
    

In Figure 5.9   , PQR is an isosceles triangle with 
PQ    �      QR      �      1 unit. By 

 Pythagoras ’  theorem, PR      �       1 1 22 2� �     

 Hence, sin 45°      �     
  

1

2
  , cos 45°      �     

  

1

2
    and 

tan 45°      �      1 

A quantity that is not exactly expressible as a rational number is 
called a surd. For example, 2    and 3    are called surds because 
they cannot be expressed as a fraction and the decimal part may 
be continued indefinitely. 

From above, sin 30°      �      cos 60°, sin 45°      �      cos 45° and sin 60°      �
    cos 30°. 

 In general,  sin θ       �       cos(90°      �       θ )  and  cos θ       �       sin(90°      �       θ )         

A

2

B 1 D 1 C

2
3

30°30°

60° 60°

 Figure 5.8           

45°

45°

2

P

l

lQ R

 Figure 5.9           
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  5.7     Solution of right-angled triangles         

To  ‘solve a right-angled triangle ’ means ‘to find the unknown 
sides and angles ’. This is achieved by using (i) the theorem of 
Pythagoras, and/or (ii) trigonometric ratios.             

  Application: Find the lengths of PQ and PR in triangle PQR 
shown in  Figure 5.10          

P

Q R
38°

7.5 cm

 Figure 5.10           

        
tan

.
,38

7 5
� � �

PQ
QR

PQ

   
 hence PQ    �      7.5 tan 38°      

�      7.5(0.7813)    �       5.860     cm  

      
cos

.
,38

7 5
� � �

QR
PR PR

   hence PR      �     
  

7 5
38

7 5
0 7880

.
cos

.
.°

�
    
     �       9.518     cm  

[Check: Using Pythagoras ’ theorem (7.5) 2       �      (5.860) 2       �      90.59    �
    (9.518) 2 ] 

  Angles of elevation and depression         

If, in  Figure 5.11   , BC represents horizontal ground and AB a verti-
cal flagpole, then the angle of elevation of the top of the flag-
pole, A, from the point C is the angle that the imaginary straight 
line AC must be raised (or elevated) from the horizontal CB, i.e. 
angle θ . 
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  Figure 5.13    shows the pylon AB and the angle of elevation of A 
from point C is 23°. 

    
Now tan 23

AB
BC

AB
� � �

80     

If, in  Figure 5.12   , PQ represents a vertical cliff and R a ship at sea, 
then the angle of depression of the ship from point P is the 
angle through which the imaginary straight line PR must be low-
ered (or depressed) from the horizontal to the ship, i.e. angle  φ . 

 (Note,  � PRQ is also  φ  – alternate angles between parallel lines.)             

P

Q R

φ

 Figure 5.12           

C B
80 m

23°

A

 Figure 5.13           

C B

A

θ
 Figure 5.11           

  Application: An electricity pylon stands on horizontal ground. 
At a point 80    m from the base of the pylon, the angle of eleva-
tion of the top of the pylon is 23°. Calculate the height of the 
pylon to the nearest metre.       

 Hence, height of pylon, AB      �      80 tan 23°      �      80(0.4245)    �      33.96     m 

       �      34     m to the nearest metre       
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  (a)    Figure 5.14    shows the cliff AB, the initial position of the ship at C 
and the final position at D. 
Since the angle of depression is initially 30 o then � ACB      �      30 o  
(alternate angles between parallel lines).  

A

B C x D

75 m

30°

20°

30°

20°
 Figure 5.14           

  Application: The angle of depression of a ship viewed at a par-
ticular instant from the top of a 75    m vertical cliff is 30 o. The ship 
is sailing away from the cliff at constant speed and 1 minute later 
its angle of depression from the top of the cliff is 20 o. Find (a) the 
initial distance of the ship from the base of the cliff, and (b) the 
speed of the ship in km/h and in knots       

      
tan 30

75
� � �

AB
BC BC

   hence the initial position of the ship 

from the base of cliff,   

  
BC �

�
� �

75
30

75
0 5774tan .

129.9 m
        

  (b)   In triangle ABD,       
        
tan

.
20

75 75
129 9

� � �
�

�
�

AB
BD BC CD x     

Hence 129.9      �      x    �     
  

75
20

75
0 3640tan .°

�
    
     �      206.0     m  

 from which x      �      206.0 � 129.9      �      76.1     m  

 Thus the ship sails 76.1     m in 1 minute, i.e. 60    s,

           
   

hence, 
distance

time
m/sspeed of ship � �

�
� �

�

76 1
60

76 1 60 60
60 1

.

.
0000

km/h

� 4.57 km/h      
 From chapter 1, page 2, 1     km/h    �      0.54 knots  

 Hence,  speed of ship       �      4.57    �      0.54    �       2.47 knots          
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  5.8     Cartesian and polar co-ordinates         

  Application:  Express in polar co-ordinates the position ( � 4, 3)       

 Changing from Cartesian 
into polar co-ordinates 

 In  Figure 5.15   ,      r x y2 2� �     

 and            θ � �tan
y
x

1

    

The angle θ, which may be expressed 
in degrees or radians, must  always  
be measured from the positive 
x-axis, i.e. measured from the line 
OQ in  Figure. 5.15 .             

O Q

P

r

y

y

x
x

θ

 Figure 5.15           

O

P

r

y

x
4

3

θα

 Figure 5.16           

A diagram representing the point using the Cartesian co-ordinates 
(�4, 3) is shown in  Figure 5.16   . 

 From Pythagoras ’  theorem, r      �       4 3 52 2� �     

 By trigonometric ratios,  
  
α � �tan 1 3

4
       �      36.87° or 0.644 rad 

Hence θ     �   180°   �   36.87°   �   143.13°  or θ     �     π  � 0.644   �   2.498 rad 

  Hence the position of point P in polar co-ordinate form is 
(5, 143.13°) or (5, 2.498 rad)        

  Application: Express ( � 5,  � 12) in polar co-ordinates       
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 A sketch showing the position ( � 5,  � 12) is shown in  Figure 5.17   . 

5

12

y

P

xO

r

α

θ

 Figure 5.17           

 r      �       5 12 132 2� �    and α       �      tan      �     1  
12
5

       �      67.38° or 1.176 rad 

Hence θ     �   180°   �   67.38°   �   247.38°  or θ     �     π     �   1.176   �   4.318 rad 

  Thus (�5, �12) in Cartesian co-ordinates corresponds to 
(13, 247.38°) or (13, 4.318 rad) in polar co-ordinates.        

  Changing from polar into Cartesian co-ordinates  

 From  Figure 5.18   , 

  x       �       r cos θ and y       �       r sin θ              

O Q

P

r

y

y

x
x

θ

 Figure 5.18           

  Application:  Change (4, 32°) into Cartesian co-ordinates       

 A sketch showing the position (4, 32°) is shown in  Figure 5.19   . 

Now x      �    r cos  θ       �      4 cos 32°      �      3.392 

and   y      �    r sin  θ       �      4 sin 32°      �      2.120 
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 A sketch showing the position (6, 137°) is shown in  Figure 5.20   . 

  Application:  Express (6, 137°) in Cartesian co-ordinates       

O

r � 4

y

y

x
x

θ � 32°

 Figure 5.19           

  Hence, (4, 32°) in polar co-ordinates corresponds to 
(3.392, 2.120) in Cartesian co-ordinates.        

θ � 137°

y

O

r � 6

A x

B

 Figure 5.20           

x      �      r cos  θ       �      6 cos 137°  �       �     4.388 

 which corresponds to length OA in  Figure 5.20 . 

y      �      r sin  θ       �      6 sin 137°      �      4.092 

 which corresponds to length AB in  Figure 5.20 . 

  Thus, (6, 137°) in polar co-ordinates corresponds to 
(� 4.388, 4.092) in Cartesian co-ordinates.   
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  5.9      Sine and cosine rules and areas of 
any triangle         

  Sine rule  

With reference to triangle ABC of  Figure. 5.21   , 
the sine rule  states:

   

a
sin A

b
sin B

c
sin C

� �

    

 The rule may be used only when: 

   (i)   1 side and any 2 angles are initially given, or  

  (ii)   2 sides and an angle (not the included angle) are initially given.    

  Cosine rule  

With reference to triangle ABC of  Figure 5.21 , the cosine rule  
states:

  a2       �      b 2       �      c 2 � 2bc cos A   

 or   b2       �      a 2       �      c 2  � 2ac cos B   

 or    c2       �      a 2       �      b 2 � 2ab cos C     

 The rule may be used only when: 

   (i)   2 sides and the included angle are initially given, or  

   (ii)   3 sides are initially given.    

  Area of any triangle  

The area of any triangle such as ABC of  Figure. 5.21  is given by: 

   (i) 
    

1
2

base perpendicular height� � , or
     

   
(ii)  

    

1
2

ab sin C
1
2

ac sin B
1
2

bc sin Aor or , or
     

  
(iii)  

    
[s(s a)(s b)(s c)]� � � where s

a b c
�

� �

2                    

A

B Ca

c b

 Figure 5.21           
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 A section of the roof is shown in  Figure 5.22   . 

 Angle at ridge, B      �      180°    �      33°      �      40°      �      107° 

 From the sine rule:   
8 0
107 33
.

sinsin
a

 �
�

�     

 from which,  a      �    
   

8 0 33
107

. sin
sin

°
°

       �      4.556     m 

 Also from the sine rule:   
8 0
107 40
.

sin sin°
c

°
�

    

 from which,  c      �    
   

8 0 40
107

. sin
sin

�

�    
      �      5.377     m 

  Hence the roof slopes are 4.56    m and 5.38    m, correct to the 
nearest centimetre.        

  Application: A room 8.0    m wide has a 
span roof that slopes at 33 o on one side 
and 40 o on the other. Find the lengths 
of the roof slopes, correct to the nearest 
 centimetre       

A

B

C33° 40°
8.0 m

 Figure 5.22           

  Application: Two voltage phasors are shown in  Figure 5.23    where 
V1     �   40   V and V 2     �   100   V. Determine the value of their resultant 
(i.e. length OA) and the angle the resultant makes with V 1        

A

C B

V2 � 100 V

V1 � 40 V

45°

 Figure 5.23           
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 Angle OBA      �      180°    �      45°      �      135° 

Applying the cosine rule: OA 2       �      V 1  2       �      V2
2      �      2V 1 V 2  cos OBA 

       �      40 2       �      100 2       �       { 2(40)(100) cos 135° }  

       �      1600    �      10000    �       {      �     5657 }  

       �      1600    �      10000    �      5657    �      17257 

 The resultant  OA    �       17257         �      131.4     V 

 Applying the sine rule: 
131 4

135
100.

sin sin° AOB
�

    

 from which,                  sin AOB      �    
   

100 135
131 4
sin

.
°

       �      0.5381 

Hence, angle AOB      �      sin      �     1 0.5381    �      32.55° (or 147.45°, which is 
impossible in this case). 

 Hence,  the resultant voltage is 131.4 volts at 32.55° to V 1        

  Application: In  Figure 5.24   , PR represents the inclined jib of a 
crane and is 10.0    m long. PQ is 4.0    m long. Determine the inclina-
tion of the jib to the vertical and the length of tie QR       

R

Q

10.0 m4.0 m
120°

P  Figure 5.24           

 Applying the sine rule: 
PR PO

Rsin sin120�
�

    

 from which, sin R      �    
   

PQ
PR

sin ( . ) sin
.

120 4 0 120
10 0

�
�

�
       �      0.3464 

Hence � R      �      sin      �     1 0.3464    �      20.27° (or 159.73°, which is impossible 
in this case). 
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  ∠ P       �      180° � 120° � 20.27°    �       39.73°, which is the inclination 
of the jib to the vertical.  

 Applying the sine rule: 
10 0

120 39 73
.

sin sin .°
QR

°
�

    

 from which,    length of tie, QR       �    
   

10 0 39 73
120

. sin .
sin

°
°

       �       7.38     m        

  Application: A crank m echanism of a petrol engine is shown 
in Figure 5.25   . Arm OA is 10.0    cm long and rotates clockwise 
about O. The connecting rod AB 
is 30.0    cm long and end B is con-
strained to move horizontally. 
Determine the angle between the 
connecting rod AB and the hori-
zontal, and the length of OB for 
the position shown in  Figure 5.25        

B

A

O

10.0 cm
50°

30.0 cm

 Figure 5.25           

 Applying the sine rule:  
AB AO

sin sin50�
�

B     

 from which,  sin B      �     
  

AO
AB
sin . sin

.
50 10 0 50

30 0
�

�
�

        

�      0.2553 

Hence B      �      sin      �     1 0.2553   �      14.79° (or 165.21°, which is impossible 
in this case). 

  Hence, the connecting rod AB makes an angle of 14.79° with 
the horizontal .

 Angle OAB      �      180°    �      50°    �      14.79°    �      115.21° 

 Applying the sine rule:   
30 0

50 115 21
.

sin sin .°
OB

°
�

    

 from which, OB � 
  

30 0 115 21
50

. sin .
sin

°
°

        �       35.43     cm        

  Application: Determine in  Figure 5.25    how far B moves when 
angle AOB changes from 50 o  to 120 o        
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  Figure 5.26  shows the initial and final positions of the crank 
mechanism.

50°
OB′

A′

B

A

10.0 cm

30.0 cm
120°

 Figure 5.26           

 In triangle OA’B ’ , applying the sine rule:  

30 0
120

10 0.
sin

.
sin° A B O

�
� �      

 from which, sin A’B’O      �     
  

10 0 120
30 0

0 2887
. sin

.
.

°
�

    

Hence A’B’O   �   sin     �     1 0.2887   �   16.78° (or 163.22° which is i mpossible 
in this case). 

 Angle OA’B ’       �      180°    �      120°    �      16.78°    �      43.22° 

 Applying the sine rule: 
30 0

120 43 22
.

sin sin .°
OB

°
�

�

    

 from which,                           OB ’     �       
30 0 43 22

120
. sin .
sin

°
°   

       �      23.72     cm 

Since OB      �      35.43    cm, from the previous example, and OB ’       �    
  23.72     cm then   BB ’      �      35.43 � 23.72      �      11.71     cm. 

  Hence, B moves 11.71    cm when angle AOB changes from 50° 
to 120°        

  Application: The area of a field is in the form of a quadrilateral 
ABCD as shown in  Figure 5.27   . Determine its area       

B

C

D

A

56°

62.3 m

39.8 m

21.4 m

42.5 m

114°

 Figure 5.27           
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A diagonal drawn from B to D divides the quadrilateral into two 
triangles.

 Area of quadrilateral ABCD  

�      area of triangle ABD      �      area of triangle BCD 

      �     
  

1
2

   (39.8)(21.4) sin 114°      �    
   

1
2

   (42.5)(62.3) sin 56° 

      �      389.04    �      1097.5    �       1487     m 2   

  5.10     Graphs of trigonometric functions 

Graphs of y      �      sin A, y      �      cos A and y      �      tan A are shown in 
 Figure 5.28   .  

1.0

�1.0

�4

�0.5

�1.0

�2

0.5

0.5
0 30 60 90 120 150 180 210 240 270 300 330 360

30 60 90 120 150 180 210 240 300 330 360

30 60 90 120
150

180 210 240 270 300
330

360

(a)

1.0

0.5

0

(b)

(c)

4

2

0 A°

A°

A°

y � tan A

y � cos A

y � sin A

270

y

y

y

 Figure 5.28           
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The angles whose sine is �0.4638 occurs in the third and fourth 
quadrants since sine is negative in these quadrants – see Figure 5.30   . 

  Figure 5.29    summarises the trigonometric ratios for angles of 
any magnitude; the letters underlined spell the word CAST when 
starting in the fourth quadrant and moving in an anticlockwise 
direction.             

  5.11     Angles of any magnitude         

90°

180°

270°

360°

0°

Sine All positive

Tangent Cosine

 Figure 5.29           

  Application: Determine all the angles between 0° and 360° 
whose sine is �0.4638       

1.0

�1.0

�0.4638
0 90° 270°

332.37°207.63°

y � sinx

180° 360°

y

x

 Figure 5.30           

From  Figure 5.31   , θ       �      sin      �     1 0.4638    �      27.63°. Measured from 0°, 
the two angles between 0° and 360° whose sine is �0.4638 are 
180°    �      27.63°, i.e.  207.63°  and 360° � 27.63°, i.e. 332.37°  

 (Note that a calculator only gives one answer, i.e. �27.632588°)        
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A tangent is positive in the first and third quadrants – see  Figure 5.32   .

 From  Figure 5.33   ,  θ       �      tan      �     1 1.7629   �      60.44° 

90°

180°

270°

360°
0°

θθ

A

C

S

T

 Figure 5.31           
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270°

360°

90°

0°

S
θ

θ
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CT
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1.7629

60.44 240.44
0 360°270°180°90°

y � tan x

y

x

 Figure 5.32           

  Application: Determine all the angles between 0° and 360° 
whose tangent is 1.7629       

Measured from 0°, the two angles between 0° and 360° whose tan-
gent is 1.7629 are  60.44°  and 180°      �      60.44°, i.e.  240.44°         

  Application: Solve the equation cos      �     1 ( � 0.2348)    �       α for angles 
of α  between 0° and 360°       
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Cosine is positive in the first and fourth quadrants and thus negative 
in the second and third quadrants – from  Figure 5.29  or from  Figure 
5.28 (b). 

 In  Figure 5.34   , angle  θ       �      cos      �     1 (0.2348)    �      76.42° 

S

180°

90°

270°

0°
360°

θ

θ

T

A

C

 Figure 5.34           

Measured from 0°, the two angles whose cosine is �0.2348
are  α       �      180° � 76.42° i.e.  103.58° and α       �      180°    �      76.42° i.e. 
256.42°   

  5.12     Sine and cosine waveforms         

 Graphs of y      �      sin A and y      �      sin 2      A are shown in  Figure 5.35.    

1.0

�1.0

0 A°

y � sin 2A
y � sinA

90° 180° 270° 360°

y

 Figure 5.35           
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 A graph of y      �      sin
1
2

  A is shown in  Figure 5.36   . 

 Graphs of y      �      cos A and y      �      cos 2A are shown in  Figure 5.37   . 

 A graph of y      �      cos 
1
2

   A is shown in  Figure 5.38   . 

1.0

�1.0

0

� sin 1
2

y � sin A

270°90° A°360°180°

y
y A

 Figure 5.36           

1.0

�1.0

0

y � cos A y � cos 2A

360°180° A°90° 270°

y

 Figure 5.37           

1.0

�1.0

0

� cos 1
2

y � cos A

360° A°90° 180° 270°

y

Ay

 Figure 5.38           
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  Period  

If y      �      sin pA or y      �      cos pA (where p is a constant) then the 
period of the waveform is 360 o/p (or 2 π/p rad). Hence if y      �    
  sin 3  A then the period is 360/3, i.e. 120 o, and if y      �      cos 4    A then 
the period is 360/4, i.e. 90 o . 

  Amplitude is the name given to the maximum or peak value of a 
sine wave. If y      �      4 sin A the maximum value, and thus amplitude, 
is 4. Similarly, if y      �      5 cos 2A, the amplitude is 5 and the period is 
360o /2, i.e. 180 o . 

  Lagging and leading angles  

The graph y      �      sin(A    �      60°) lags y      �      sin A by 60° as shown in 
 Figure 5.39.    

The graph of y      �      cos(A    �      45°) leads y      �      cos A by 45° as shown 
in  Figure 5.40.                

1.0

60°

�1.0

0

y � sin A
y � sin(A�60°)

270°90°

60°

A°180° 360°

y

 Figure 5.39           

�1.0

45°

45°

0

y � cos A
y � cos(A�45°)

360°180° A°90° 270°

y

 Figure 5.40           
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 Amplitude    �      3 and period      �      360/2    �      180° 

 A sketch of y      �      3 sin 2A is shown in  Figure 5.41   .       

y � 4 cos 3x

0

�4

4

180° 360° x90° 270°

y

 Figure 5.42           

3

�3

0

y � 3 sin 2A

A°360°270°180°90°

y

 Figure 5.41           

  Application: Sketch y      �      3 sin 2     A from A      �      0 to A      �      360°       

 Amplitude    �      4 and period      �      360°/3    �      120° 

 A sketch of y      �      4 cos 3x is shown in  Figure 5.42   .       

  Application: Sketch y      �      4 cos 3x from x      �      0° to x      �      360°       

  Application: Sketch y   �   5 sin(A   �   30°) from A   �   0o to A   �   360°       

 Amplitude    �      5 and period      �      360°/1    �      360° 

 5 sin(A    �      30°) leads 5 sin A by 30° (i.e. starts 30° earlier) 

 A sketch of y      �      5 sin (A      �      30°) is shown in  Figure 5.43   .       
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 Amplitude    �      7 and period      �      2 π /2      �       π  radians 

In general, y     �     sin(pt � α) lags y     �     sin pt by  α/p, hence 
7 sin(2A � π/3) lags 7 sin 2    A by ( π/3)/2, i.e. π/6   rad or 30 o . 

 A sketch of y      �      7 sin(2     A � π /3) is shown in  Figure 5.44   . 

5

�5

0

y � 5 sinA

y � 5 sin(A�30°)

270°90°

30°

30°

A°180° 360°

y

 Figure 5.43           

  Application: Sketch y   �   7 sin(2A � π/3) in the range 0 � A � 360°       

0

7

�7

y � 7sin 2A
y

y � 7sin(2A�π /3)

360°270°180°90° A°

π /6

3π/2 2πππ/2

π/6

 Figure 5.44           

  Sinusoidal form A sin( ω t  �   α )        

 Given a general sinusoidal function  y       �       A sin( ω t � α ) , then 

 (i)   A    �      amplitude  

   (ii)    ω       �      angular velocity      �      2 π f rad/s  

  (iii)    
ω
π2     

     �      frequency, f hertz  
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 i      �      30 sin (100 π t      �      0.27)A, hence  amplitude       �       30 A  

 Angular velocity  ω       �      100 π , hence 

  Frequency, f       �       
ω
π

π
π2

100
2

�        �       50     Hz  

  Periodic time, T       �       
1 1

50f
�        �       0.02s or 20     ms  

  Phase angle ,  α       �      0.27 rad      �       0 27
180

. �
π

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟
�

       

�      15.47° leading i      �      30 sin(100πt)       

  (iv)    
1
f     

     �      periodic time T seconds  

 (v)    α       �      angle of lead or lag (compared with y      �      A sin ωt), in 
 radians.                

  Application: An alternating current is given by i      �      30 sin(100 π t      
�      0.27) amperes. Find the amplitude, frequency, periodic time 
and phase angle (in degrees and minutes)       

  Application: An oscillating mechanism has a maximum displace-
ment of 2.5    m and a frequency of 60    Hz. At time t      �      0 the dis-
placement is 90    cm. Express the displacement in the general form 
A sin( ω t  
   α )       

 Amplitude    �      maximum displacement      �      2.5     m 

 Angular velocity,  ω       �      2 π f      �      2 π (60)    �      120 π  rad/s 

 Hence, displacement      �      2.5 sin(120 π t      �       α ) m 

 When t      �      0, displacement      �      90     cm      �      0.90     m 

 Hence 0.90      �      2.5 sin (0      �       α)  i.e.  sin  α       �       
0 90
2 5
.
.

       �      0.36 

 Hence  α       �      sin      �     1 0.36      �      21.10°    �      0.368 rad 

 Thus,  displacement       �       2.5 sin(120 π t       �       0.368)     m        
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  (a)   Amplitude      �      340     V    

 Angular velocity,  ω       �      50 π       �      2 π f 

Frequency, f      �       
ω
π

π
π2

50
2

�        �      25 Hz

 Periodic time, T      �       
1 1

25f
�        �      0.04 s or 40     ms

 Phase angle      �      0.541 rad      �       0 541
180

. �
�

π

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟      

    �       31�  lagging  v      �      340 sin(50 π t) 

  (b)    When t   �   0, v     �   340 sin(0 � 0.541)   �   340 sin( �31°)   
�     �     175.1    V  

  (c)    When t      �      10     ms  then v      �      340 sin(50 π       �      10      �      10      �     3       �      0.541)    

        �      340 sin(1.0298)      �      340 sin 59° 

                   �       291.4 volts  

  (d)   When v      �      200 volts then 200      �      340 sin(50 π t � 0.541)    

  
200
340

       �      sin(50 π t � 0.541) 

 Hence (50 π t      �      0.541)    �      sin      �     1  
200
340

       �      36.03° or 0.6288 rad 

 50 π t      �      0.6288    �      0.541    �      1.1698 

 Hence when v      �      200    V,  time, t       �       
1 1698

50
.

π
       �      7.447     ms

  Application: The instantaneous value of voltage in an a.c. circuit 
at any time t seconds is given by v      �      340 sin(50 π t � 0.541) volts. 
Determine

  (a)   the amplitude, frequency, periodic time and phase angle (in 
degrees),  

  (b)   the value of the voltage when t      �      0,  
  (c)   the value of the voltage when t      �      10     ms,  
  (d)   the time when the voltage first reaches 200     V, and  
  (e)   the time when the voltage is a maximum          
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  (e)   When the voltage is a maximum, v      �      340     V    
Hence  340      �      340 sin (50 π t � 0.541) 

 1      �      sin (50 π t � 0.541) 
 50 π t � 0.541      �      sin      �     1 1    �      90° or 1.5708 rad 

 50 π t      �      1.5708    �      0.541    �      2.1118 

 Hence, time, t      �       
2 1118

50
.

π
       �       13.44     ms  

 A sketch of v      �      340 sin(50 π t � 0.541) volts is shown in  Figure 5.45   .  

  5.13     Trigonometric identities and equations           

tan
sin
cos

cot
cos
sin

sec
cos

cosec
sin

cot
tan

θ
θ
θ

θ
θ

θ
θ

θ
θ

θ

� � �

� �

1

1 1

�

θθ      
  cos2  θ       �      sin 2  θ       �      1 1      �      tan 2  θ       �      sec 2  θ cot 2  θ       �      1    �      cosec 2  θ  

  Equations of the type a sin 2  A       �       b sin A       �       c       �       0  

  (i)    When a       �       0 , b sin A      �        c    �      0, hence    

 sin A      �       �      
c
b

    and A      �      sin     �     1  �
c
b

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟     

There are two values of A between 0° and 360° that satisfy 

such an equation, provided �1      �       
c
b

    �  1 

Voltage v

340
291.4

200

0

�175.1

�340

7.447 13.44

10 30 t(ms)

v � 340 sin(50πt�0.541)

v � 340 sin 50πt

20 40

 Figure 5.45           
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5 sin  θ       �      3    �      0, from which sin  θ       �       �     3/5  �       �     0.6000 

Hence, θ       �      sin      �     1 ( �0.6000). Sine is negative in the third and fourth 
quadrants (see Figure 5.46   ). The acute angle sin      �     1 (0.6000)    �      36.87° 
(shown as α  in  Figure 5.46 (b)). 

Hence θ       �      180°    �      36.87° i.e. 216.87° or θ       �      360° – 36.87° 
i.e. 323.13°        

   (ii)    When b       �       0 , a sin 2 A    �      c    �      0, hence    

 sin 2 A      �       �      
c
a

   , sin A      �       �
c
a

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟     and  A       �       sin     �       1  �

c
a

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟     

If either a or c is a negative number, then the value within 
the square root sign is positive. Since when a square root is 
taken there is a positive and negative answer there are four 
values of A between 0° and 360° which satisfy such an equa-
tion, provided �1 �   

c
a
       �      1 

  (iii)    When a, b and c are all non-zero:    
a sin 2 A      �      b sin A      �      c    �      0 is a quadratic equation in which 
the unknown is sin A. The solution of a quadratic equation 
is obtained either by factorising (if possible) or by using the 
quadratic formula: 

sin A
b b 4ac

2a

2
�

� � �( )

     

  (iv)   Often the trigonometric identities cos 2 A      �      sin 2 A      �      1, 
1      �      tan 2 A   �      sec 2 A and cot 2 A      �      1    �      cosec 2 A need to be 
used to reduce equations to one of the above forms.                

  Application: Solve the trigonometric equation  5 sin  θ       �      3    �      0 
for values of θ  from 0° to 360°       

  Application: Solve 4 sec t      �      5 for values of t between 0° 
and 360°       
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 4 sec t      �      5, from which sec t      �       
5
4

       �      1.2500 and t      �      sec      �     1  1.2500 

 Secant    �       
1

cosine     is positive in the first and fourth quadrants (see 

 Figure 5.47   ). 

The acute angle, sec      �     11.2500   �     cos cos� ��1 11
1 2500

0 8
.

.
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟        �   

36.87°. 

 Hence,  t       �       36.87°  or 360° – 36.87°      �       323.13°        

1.0

�1.0

�0.6

0 90° 270°

333.13°216.87°

y � sin θ

360°180°

(a)

y

x

 Figure 5.46           
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CT
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360°
180° 0°

α α

90°

AS

T C

180°
0°

360°

270°

36.87°
36.87°

 Figure 5.47           

  Application: Solve 2      �      4 cos 2 A    �      0 for values of A in the range 
0°    	      A  	  360°       

 2    �      4 cos 2 A    �      0, from which cos 2 A    �       
2
4

       �      0.5000 

 Hence cos A      �       0 5000.        �       
 0.7071 and A      �      cos      �     1 ( 
 0.7071) 
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Cosine is positive in quadrants one and four and negative in quad-
rants two and three. Thus in this case there are four solutions, one 
in each quadrant (see  Figure 5.48   ). 

1.0
0.7071

�0.7071
�1.0

0 45° 315° 360°
225°135°

y � cos A

180°

90°

S A

T C

270°

(b)(a)

360°
180° 0°45°45°

45° 45°A°

y

 Figure 5.48           

 The acute angle cos      �     1 0.7071    �      45° 

Hence, A       �       45°, 135°, 225° or 315°         

  Application: Solve  
1
2

   cot 2  y    �      1.3 for 0°      	      y  	  360°       

  
1
2

   cot 2 y      �      1.3, from which, cot 2 y    �      2(1.3)    �      2.6 

Hence cot y      �       2 6.        �       
1.6125, and y      �      cot      �     1 ( 
 1.6125). 
There are four solutions, one in each quadrant. The acute angle 

cot     �     1 1.6125    �       tan�1 1
1 6125.

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟        �      31.81° 

Hence, y       �       31.81°, 148.19°, 211.81° or 328.19°        

  Application: Solve the equation 8 sin 2  θ       �      2 sin  θ  � 1      �      0, for all 
values of θ  between 0° and 360°       

Factorising 8 sin 2  θ     �   2 sin  θ     �   1   �   0 gives (4 sin  θ     �   1)(2 sin  θ     �   1)   �    0 

 Hence 4 sin  θ       �      1    �      0, from which, sin  θ       �       
1
4

       �      0.2500 

or  2 sin  θ       �      1    �      0, from which, sin  θ       �       �      
1
2

       �       �     0.5000 

(Instead of factorising, the quadratic formula can, of course, be used). 



138 Engineering Mathematics Pocket Book

  θ       �      sin      �     1 0.250    �      14.48° or 165.52°, since sine is positive in the first 
and second quadrants, or 

  θ       �      sin      �     1 ( � 0.5000)    �      210° or 330°, since sine is negative in the 
third and fourth quadrants. 

 Hence,  θ       �       14.48°, 165.52°, 210° or 330°        

  Application: Solve 5 cos 2 t      �      3 sin t      �      3    �      0 for values of t from 
0° to 360°       

 Since cos 2 t      �      sin 2 t      �      1, then cos 2 t    �      1 � sin 2 t 

 Substituting for cos 2 t in 5 cos 2 t      �      3 sin t � 3      �      0 gives 

 5(1      �      sin 2 t)      �      3 sin t      �      3    �      0  

   5    �      5 sin 2 t      �      3 sin t      �      3    �      0  

              �     5 sin 2 t      �      3 sin t      �      2    �      0  

              �     5 sin 2 t      �      3 sin t      �      2    �      0    

 Factorising gives (5 sin t      �      2)(sin t      �      1)      �      0 

Hence, 5 sin      t �      2    �      0, from which, sin t      �       �      
2
5

       �       �     0.4000 or 

sin t      �      1    �      0, from which, sin t      �      1. 

 t      �      sin      �     1 ( � 0.4000)    �      203.58° or 336.42°, since sine is negative in 
the third and fourth quadrants, or   t      �      sin      �     1 1    �      90° 

 Hence,  t       �       90°, 203.58° or 336.42°  as shown in  Figure 5.49   .       

1.0

�1.0

�0.4
0 90° 270°

336.42°203.58°

y � sin t

t°360°

y

 Figure 5.49           

  Application: Solve 18 sec 2 A � 3 tan A      �      21 for values of A 
between 0° and 360°       
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 1    �      tan 2 A      �      sec 2 A. Substituting for sec 2 A in
18 sec 2 A � 3 tan A      �      21 gives 

 18(1    �      tan 2A)     �      3 tan A      �      21 

i.e.  18      �      18 tan 2 A    �      3 tan A      �      21      �      0 

18 tan 2 A    �      3 tan A      �      3    �      0 

 Factorising gives: (6 tan A � 3)(3 tan A      �      1)      �      0 

 Hence, 6 tan A � 3      �      0, from which, tan A      �       
3
6

       �      0.5000 

 or 3 tan A      �      1    �      0, from which, tan A      �       �      
1
3

       �       �     0.3333 

Thus, A      �      tan      �     1 (0.5000)    �      26.57° or 206.57°, since tangent is 
positive in the first and third quadrants, or A      �      tan      �     1 ( � 0.3333)    �   
  161.57° or 341.57°, since tangent is negative in the second and 
fourth quadrants. Hence, A       �       26.57°, 161.57°, 206.57° or 341.57°   

  5.14      The relationship between trigonometric 
and hyperbolic functions           

cos
1
2

(e e )

sin
1
2j

(e e )

j j

j j

θ

θ

θ θ

θ θ

� �

� �

�

�

   
cos j cosh

sin j j sinh

cosh j cos

sinh j j sin

tan j

θ θ

θ θ

θ θ

θ θ

θ

�

�

�

�

�

(1)

(2)

jj tanh

tanh j j tan

θ

θ θ�                    

  Application:  Verify that cos 2 j θ       �      sin 2 j θ       �      1       
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From equation (3), cos j θ       �      cosh  θ, and from equation (4), sin j θ       �
     j sinh  θ  

Thus, cos 2 j θ       �      sin 2  j θ       �      cosh 2  θ       �      j 2 sinh 2  θ, and since j 2       �       �     1 (from 
chapter 8), 

 cos 2 j θ       �      sin 2 j θ       �      cosh 2  θ       �      sinh 2  θ  

 But, cosh 2  θ  � sinh 2  θ       �      1, from page 38, 

hence cos2 j θ       �      sin 2 j θ       �      1        

  Application: Determine the corresponding hyperbolic identity 
by writing jA for θ  in cot 2  θ       �      1    �      cosec 2  θ        

 Substituting jA for  θ  gives: 

 cot 2 jA      �      1    �      cosec 2jA,  i.e. cos
sin sin

2

2 2

jA
jA jA

� �1
1     

 But from equation (3), cos jA      �      cosh A 

 and from equation (4), sin jA      �      j sinh A 

 Hence  
cosh

sinh

2

2 2

A
j A        �      1    �       

1
2 2j Asinh     

 and since j 2       �       �     1, � � � �
cosh
sinh sinh

2

2 2
1

1A
AA

    

 Multiplying throughout by  � 1, gives: 

cosh
sinh sinh

2

2 2
1

1A
A A

� � i.e. coth A 1 cosech A2 2� �

           

  Application: Develop the hyperbolic identity corresponding to 
sin 3 θ       �      3 sin  θ  � 4 sin 3   θ  by writing jA for  θ        

 Substituting jA for  θ  gives: sin 3jA      �      3 sin jA      �      4 sin 3 jA 

 and since from equation (4), sin jA      �      j sinh A, 

 j sinh 3A  � 3j sinh A      �      4j 3 sinh 3 A 

 Dividing throughout by j gives: 

 sinh 3A      �      3 sinh A      �      j 24 sinh 3 A 

 But j 2       �       �     1,   hence    sinh 3A       �       3 sinh A       �       4 sinh 3 A   
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  5.15     Compound angles         

  Compound angle addition and subtraction formulae  

   sin (A      �      B)      �      sin A cos B      �      cos A sin B   

   sin (A � B)      �      sin A cos B � cos A sin B   

   cos (A      �      B)      �      cos A cos B � sin A sin B   

   cos (A � B)      �      cos A cos B      �      sin A sin B   

   tan (A       �     B)       �       
tan A tan B

1 tan A tan B
�

�
     

   tan (A      �    B)       �       
tan A tan B

1 tan A tan B
�

�        

  If R sin( ω t       �       α )       �       a sin  ω t       �       b cos  ω  then:  

   a      �      R cos  α , b      �      R sin  α , R    �        a b2 2�      and α       �      tan      �     1  b/a                 

  Application: Solve the equation 4 sin(x      �      20°)      �   5 cos x for val-
ues of x between 0° and 90°       

4 sin(x   �      20 ° )      �      4[sin x cos 20 °     �      cos x sin 20°], 
from the formula for sin (A � B) 

       �      4[sin x (0.9397) � cos x (0.3420)] 

       �      3.7588 sin x      �      1.3680 cos x 

Since  4 sin(x � 20°)      �      5 cos x 

then  3.7588 sin x      �      1.3680 cos x      �      5 cos x 

 Rearranging gives:  3.7588 sin x      �      5 cos x      �      1.3680 cos x     
�      6.3680 cos x 

and     
sin
cos

.

.
x
x

�  
6 3680
3 7588

       �      1.6942 

i.e.    tan x      �      1.6942, and x      �      tan      �     1 1.6942    �       59.45°  

 [Check: LHS      �      4 sin(59.45°   �      20°)      �      4 sin 39.45°      �      2.54 

 RHS    �      5 cos x      �      5 cos 59.45°      �      2.54]       
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 Let        3 sin  ω t      �      4 cos  ω t    �      R sin( ω t      �       α ) 

 then     3 sin  ω t      �      4 cos  ω t      �      R[sin  ω t cos  α       �      cos  ω t sin  α ] 

      �      (R cos  α ) sin  ω t      �      (R sin  α ) cos  ω t 

 Equating coefficients of sin  ω t gives: 

3      �      R cos  α , from which, cos  α       �       
3
R

    

 Equating coefficients of cos  ω t gives:

4      �      R sin  α , from which, sin  α       �       
4
R

    

There is only one quadrant where both sin  α and cos α are positive, 
and this is the first, as shown in Figure 5.50   . From  Figure 5.50 , by 
Pythagoras ’  theorem: 

R � � �3 4 52 2
     

R 4

3

α

 Figure 5.50           

  Application: Find an expression for 3 sin  ω t      �      4 cos  ωt in the 
form R sin( ω t      �       α) and sketch graphs of 3 sin  ωt, 4 cos  ωt and 
R sin ( ω t      �       α ) on the same axes       

 From trigonometric ratios:  α       �      tan      �     1  
4
3

       �      53.13° or 0.927 radians 

  Hence 3 sin  ω t       �       4 cos  ω t       �       5 sin ( ω t       �       0.927)  

A sketch of 3 sin  ωt, 4 cos  ωt and 5 sin( ω t      �      0.927) is shown in 
Figure 5.51   .       

  Application: Express 4.6  sin  ω t      �      7.3 cos  ωt in the form 
R sin( ω t      �       α )       
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 Let       4.6 sin  ω t      �      7.3 cos  ω t      �      R sin( ω t      �       α ) 

 then    4.6 sin  ω t    �      7.3 cos  ω t      �      R [sin  ω t cos  α       �      cos  ω t sin  α ] 

       �      (R cos  α ) sin  ω t      �      (R sin  α ) cos  ω t 

 Equating coefficients of sin  ω t gives:

4.6    �      R cos  α , from which, cos  α       �       
4 6.
R

    

 Equating coefficients of cos  ω t gives:

�7.3    �      R sin  α , from which sin  α       �       
�7 3.

R
    

There is only one quadrant where cosine is positive  and sine is 
negative, i.e. the fourth quadrant, as shown in Figure 5.52   . By 
Pythagoras ’  theorem: 

R ( )� � � �4 6 7 3 8 6282 2. . .
     

4.6

R

α

�7.3

 Figure 5.52           

5

4
3

2
1

0
�1

�2
0.927 rad

0.927 rad
y � 4 cos ωt

y � 3 sin ωt

y � 5 sin (ωt � 0.927)

ωt (rad)3π/2 2ππ

�3

�4

�5

π/2

y

 Figure 5.51           
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By trigonometric ratios: 

α       �      tan      �     1  
�7 3
4 6

.
.

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟        �       �     57.78° or  � 1.008 radians 

  Hence, 4.6 sin  ω t � 7.3 cos  ω t       �       8.628 sin( ω t    �      1.008)        

  Application: Express  �2.7 sin  ω t      �      4.1 cos  ωt in the form 
R sin( ω t      �       α )       

 Let           �2.7 sin  ω t      �      4.1 cos  ω t      �      R sin( ω t      �       α ) 

       �      R { sin  ω t cos  α       �      cos  ω t sin  α ] 

       �      (R cos  α) sin ω t    �      (R sin  α) cos ω t 

 Equating coefficients gives:

� 2.7      �      R cos  α , from which, cos  α       �       
�2 7.

R
    

 and        � 4.1      �      R sin  α , from which, sin  α       �      
�4 1.

R     
There is only one quadrant in which both cosine  and sine are negative, 
i.e. the third quadrant, as shown in  Figure 5.53   . From  Figure 5.53 ,

R ( ) ( )2 2� � � � �2 7 4 1 4 909. . .
     

180°
360°

90°

�2.7

�4.1 R

270°

α

θ
0°

 Figure 5.53           
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 and               θ        �      tan      �     1  
4 1
2 7

.
.

       �      56.63° 

 Hence    α       �      180°      �      56.63°    �      236.63°     or     4.130 radians 

  Thus,    �     2.7 sin  ω t      �      4.1 cos  ω t       �       4.909 sin( ω t       �       4.130)  

 An angle of 236.63° is the same as  � 123.37° or      �     2.153 radians 

 Hence,    �     2.7 sin  ω t      �      4.1 cos  ωt may also be expressed as 
4.909 sin( ω t       �       2.153) , which is preferred since it is the  principal
value  (i.e. �π        �     α        �       π ). 

  Double angles           

   sin 2A      �    2 sin A cos A   

   cos 2A      �      cos 2 A � sin 2 A    �      1 � 2 sin 2 A      �      2 cos 2 A � 1   

   tan 2A      �        
2 tan A

1 tan A2�
                   

  Application: I 3 sin 3 θ is the third harmonic of a waveform. 
Express the third harmonic in terms of the first harmonic sin  θ , 
when I 3       �      1       

 When    I 3       �      1, I 3 sin 3 θ       �      sin 3 θ       �      sin(2 θ       �       θ ) 

       �      sin 2 θ  cos  θ       �      cos 2 θ  sin  θ , 
from the sin(A      �      B) formula 

   �  (2 sin  θ  cos  θ ) cos  θ       �      (1      �      2 sin 2  θ ) sin  θ ,
from the double angle expansions 

       �      2 sin  θ  cos 2  θ       �      sin  θ       �      2 sin 3  θ  

       �      2 sin  θ (1      �      sin 2  θ )      �      sin  θ       �      2 sin 3  θ ,
 (since cos2  θ       �      1    �      sin 2  θ ) 

       �      2 sin  θ       �      2 sin 3  θ       �      sin  θ       �      2 sin 3  θ  

 i.e.               sin 3 θ       �       3 sin θ       �       4 sin 3  θ   
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  Changing products of sines and cosines into 
sums or differences           

sin A cos B
1
2

[sin (A B) sin (A B)]� � � � (3)      

cos A sin B
1
2

[sin (A B) sin (A B)]� � � � (4)      

cos A cos B
1
2

[cos (A B) cos (A B)]� � � � (5)      

sin A sin B
1
2

[cos (A B) cos (A B)]� � � � � (6)                  

  Application: Express sin 4x cos 3x as a sum or difference of 
sines and cosines       

 From equation (3), sin 4x cos 3x      �       
1
2

   [sin(4x    �      3x)      �      sin(4x    �      3x)] 

       �       
1
2

    (sin 7x      �      sin x)        

  Application: Express 2 cos 5 θ sin 2 θ as a sum or difference of 
sines or cosines       

 From equation (4),

2 cos 5 θ  sin 2 θ       �      2  
1
2

5 2 5 2[sin( ) sin( )]θ θ θ θ� � �
⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

    

        �      sin 7 θ       �      sin 3 θ        

  Application: In an alternating current circuit, voltage v      �      5 sin  ω t 
and current i      �      10 sin( ω t      �       π/6). Find an expression for the 
instantaneous power p at time t given that p      �      vi, expressing the 
answer as a sum or difference of sines and cosines       
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 p    �      vi      �      (5 sin  ωt)[10 sin ( ω t      �       π /6)]      �      50 sin  ω t sin( ω t      �       π /6) 

 From equation (6), 

50 sin  ω t sin( ω t      �       π /6)      �      (50)  � � �

� �

1
2

6
6

{cos( )
cos[ ( )]}

ω ω π
ω ω π
t t

t t
/

/−     

       �       �     25 {cos( ) cos }2 6 6ω π πt � �/ /     

  i.e. instantaneous power, p       �       25[cos π /6 � cos(2 ω t �  π /6)]   

  Changing sums or differences of sines and 
cosines into products           

sin X sin Y 2 sin
X Y

2
cos 

X Y
2

� �
� �⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ (7)      

sin X sin Y 2 cos
X Y

2
sin 

X Y
2

� �
� �⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ (8)      

cos X cos Y 2 cos
X Y

2
cos 

X Y
2

� �
� �⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ (9)      

cos X cos Y 2 sin
X Y

2
sin 

X Y
2

� � �
� �⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ (10)                  

  Application:  Express sin 5 θ       �      sin 3 θ  as a product       

 From equation (7),

sin 5 θ       �      sin 3 θ       �      2 sin 
5 3

2
5 3

2
θ θ θ θ� �⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟cos        �       2 sin 4 θ  cos  θ        
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 From equation (9),

sin 7x      �      sin x      �      2 cos 
7

2
7

2
x x

sin
x x� �⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟        �       2 cos 4x sin 3x        

  Application:  Express cos 2t � cos 5t as a product       

 From equation (10),

cos 2t      �      cos 5t      �       �     2 sin 
2 5

2
2 5

2
t t

sin
t t� �⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟     

       �       �     2 sin  
7
2

3
2

t tsin �
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟        �       2 sin   

7
2

    t sin   
3
2

    t  

since sin t sin
3
2

� � �
3
2

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥t         

  Application:  Express sin 7x � sin x as a product       



                                                    6     Graphs   

  6.1     The straight line graph         

 The equation of a straight line graph is:       y      �      mx     �      c
where m is the gradient and c the y-axis intercept. 

 With reference to  Figure 6.1   , gradient m
y y
x x

2 1

2 1

�
�

�                 

0

(x1, y1)

(x2, y2)

y1

y2

y

x

(x2 � x1)

x1 x2

(y2 � y1)

 Figure 6.1           

  Application: Determine the gradient of the straight-line graph 
passing through the co-ordinates ( � 2, 5) and (3, 4)       

A straight line graph passing through co-ordinates (x 1, y 1) and 
(x2 , y 2 ) has a gradient given by: 

  
m

y y
x x

�
�

�
2 1

2 1    
      (see  Figure 6.1 ) 

A straight line passes through ( �2, 5) and (3, 4), from which, 
x1       �       �     2, y 1       �      5, x 2       �      3 and y 2       �      4, hence 

 gradient,  m
y y
x x ( )

�
�

�
�

�

� �
�2 1

2 1

4 5
3 2

�
1
5           

  Application: The temperature in degrees Celsius and the cor-
responding values in degrees Fahrenheit are shown in the table 
below.



150 Engineering Mathematics Pocket Book
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 Figure 6.2           

Axes with suitable scales are shown in  Figure 6.2   . The co-o rdinates 
(10, 50), (20, 68), (40, 104), and so on are plotted as shown. When 
the co-ordinates are joined, a straight line is produced. Since a 
straight line results there is a linear relationship between degrees 
Celsius and degrees Fahrenheit. 

   °C 10 20 40 60 80 100
   °F 50 68 104 140 176 212

Plot a graph of degrees Celsius (horizontally) against degrees 
Fahrenheit (vertically). From the graph find (a) the temperature 
in degrees Fahrenheit at 55°C, (b) the temperature in degrees 
Celsius at 167°F, (c) the Fahrenheit temperature at 0°C, and (d) 
the Celsius temperature at 230°F       

  (a)   To find the Fahrenheit temperature at 55°C, a vertical line AB 
is constructed from the horizontal axis to meet the straight line 
at B. The point where the horizontal line BD meets the vertical axis 
indicates the equivalent Fahrenheit temperature.  Hence 55°C is 
equivalent to 131°F. This process of finding an equivalent value 
in between the given information in the above table is called 
interpolation .  

  (b)   To find the Celsius temperature at 167°F, a horizontal line EF is 
constructed as shown in Figure 6.2 . The point where the vertical 
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line FG cuts the horizontal axis indicates the equivalent Celsius 
temperature.  Hence 167°F is equivalent to 75°C.   

  (c)   If the graph is assumed to be linear even outside of the given 
data, then the graph may be extended at both ends (shown by 
broken lines in  Figure 6.2 ). From  Figure 6.2 , it is seen that  0°C
corresponds to 32°F.   

  (d)    230°F is seen to correspond to 110°C.     

The process of finding equivalent values outside of the given range 
is called extrapolation .       

  Application: Experimental tests to determine the breaking stress 
σ of rolled copper at various temperatures t gave the following 
results.

   Stress  σ  N/cm 2 8.46 8.04 7.78 7.37 7.08 6.63
   Temperature t°C  70 200 280 410 500 640

Show that the values obey the law σ � at   �      b, where a and b are 
constants and determine approximate values for a and b. Use the 
law to determine the stress at 250°C and the temperature when 
the stress is 7.54 N/cm 2        

The co-ordinates (70, 8.46), (200, 8.04), and so on, are plotted as 
shown in  Figure 6.3   . Since the graph is a straight line then the values 
obey the law σ       �      at      �      b, and the gradient of the straight line, is: 

a
AB
BC

� �
�

�
�

�
�

8 36 6 76
100 600

1 60
500

. . .
�0.0032

     

 Vertical axis intercept,  b      �      8.68  

 Hence the law of the graph is:  σ        �       �     0.0032t    �      8.68  

 When the temperature is 250°C, stress  σ  is given by 

  σ        �       �     0.0032(250)    �      8.68    �       7.88 N/cm 2  

 Rearranging  σ        �       �     0.0032t    �      8.68 gives:

0.0032t    �      8.68  �   σ, i.e. t �
�8 68

0 0032
.
.

σ
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 Hence, when the stress,  σ       �      7.54 N/cm 2 ,

temperature t �
�

�
8 68 7 54

0 0032
. .

.
356.3 C�

     

  6.2     Determination of law         

Some examples of the reduction of equations to linear form 
include:

  1.   y    �      ax 2       �      b compares with Y      �      mX     �      c, where m   �      a, c      �      b 
and X      �      x 2 .    
Hence y is plotted vertically against x 2 horizontally to produce 
a straight line graph of gradient  ‘ a ’  and y-axis intercept  ‘ b ’  

  2.  
    
y

a
x

b� �
       

y is plotted vertically against 
1
x

    horizontally to produce a 

straight line graph of gradient  ‘ a ’  and y-axis intercept  ‘ b ’  

8.68

8.50

8.36

8.00

S
tr

es
s

σ 
N

/c
m

2

7.50

7.00

6.76

6.50

0 100 200 300 400
Temperature t °C

500 600 700

A

B C

 Figure 6.3           
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 Comparing L
a
d

b� �
   
 i.e. L a

d
b� �

1⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟    with Y � mX � c shows 

that L is to be plotted vertically against 
1
d

    horizontally. Another table 

of values is drawn up as shown below.

  3.   y    �      ax 2       �      bx    

 Dividing both sides by x gives  
y
x

ax b� �
    

Comparing with Y      �      mX � c shows that 
y
x

    is plotted verti-

cally against x horizontally to produce a straight line graph of 

gradient  ‘ a ’  and  
y
x    

 axis intercept  ‘ b ’ . 

  Determination of law involving logarithms  

  4.   If  y �  ax n  then lg y  �  lg(ax n )  �  lg a  �  lg x n  
i.e. lg y �  n lg x  �  lg a   

  5.   If  y �  ab x       then lg y  �  lg(ab x )  �  lg a  �  lg b x  �  lg a  � x  lg b 
i.e.   lg y       �     (lg b)x      �      lg a   

  6.   If  y �  ae bx       then ln y � ln(ae bx )  �  ln a  �  ln(e bx )  �  ln a  �  bx
i.e. ln y �  bx  �  ln a                 

  Application: Values of load L newtons and distance d metres 
obtained experimentally are shown in the following table.

   Load, L (N)  32.3 29.6 27.0 23.2 18.3 12.8 10.0 6.4

   distance, d (m)  0.75 0.37 0.24 0.17 0.12 0.09 0.08 0.07

Verify that the load and distance are related by a law of the form 

L
a
d

b� �
   
 and determine approximate values of a and b. Hence 

calculate the load when the distance is 0.20    m and the distance 
when the load is 20     N       
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   L 32.3 29.6 27.0 23.2 18.3 12.8 10.0 6.4

   d 0.75 0.37 0.24 0.17 0.12 0.09 0.08 0.07

    

1
d     

1.33 2.70 4.17 5.88 8.33 11.11 12.50 14.29

A graph of L against 
1
d

    is shown in Figure 6.4   . A straight line can be 

drawn through the points, which verifies that load and distance are 

related by a law of the form L
a
d

b� �
    

30
31

35

25

20
L

A

B C

15

5

0 2 4 6 8 10 12 14

10
11

1
d

 Figure 6.4           

 Gradient of straight line, a 2� �
�

�
�

�
�

AB
BC

31 11
2 12

20
10

�

    
 L-axis intercept,  b �  35  

 Hence, the law of the graph is: L
2
d

35� � �
    

 When the distance d is 0.20     m, load L �
�

� �
2

0 20
35

.
25.0 N

    

 Rearranging L
2
d

35� � �
  
 gives 

2
d

� �35 L     and  d �
�

2
35 L     
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 Hence, when the load L is 20     N,

distance d �
�

� �
2

35 20
2

15
0.13 m

          

  Application: The current flowing in, and the power dissipated 
by a resistor are measured experimentally for various values and 
the results are as shown below.

   Current, I amperes  2.2 3.6 4.1 5.6 6.8

   Power, P watts  116 311 403 753 1110

 Show that the law relating current and power is of the form 
P �  RI n , where R and n are constants, and determine the law       

 Taking logarithms to a base of 10 of both sides of P  � RI n  gives: 

 lg P  �  lg(RI n )  �  lg R  �  lg I n  �  lg R  �  n lg I by the laws of logarithms 

i.e.  lg P  �  n lg I  �  lg R, which is of the form Y  �  mX  �  c,

showing that lg P is to be plotted vertically against lg I horizontally. 

 A table of values for lg I and lg P is drawn up as shown below.

   I 2.2 3.6 4.1 5.6 6.8

   lg I  0.342 0.556 0.613 0.748 0.833

   P 116 311 403 753 1110

   lg P  2.064 2.493 2.605 2.877 3.045

A graph of lg P against lg I is shown in Figure 6.5    and since a 
straight line results the law P  �  RI n  is verified. 

 Gradient of straight line, n
AB
BC

� �
�

�
� �

2 98 2 18
0 80 0 40

0 80
0 40

. .

. .
.
.

2
    

It is not possible to determine the vertical axis intercept on sight since 
the horizontal axis scale does not start at zero. Selecting any point 
from the graph, say point D, where lg I      �      0.70 and lg P      �      2.78, and 
substituting values into 

 lg P  �  n lg I  �  lg R 

gives:        2.78  �  (2)(0.70)  �  lg R 
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 from which   lg R  �  2.78    �      1.40    �      1.38 

Hence       R  �  antilog 1.38 ( � 10 1.38 )  �   24.0  

  Hence the law of the graph is: P �  24.0 I 2        

3.0
2.98

2.78

2.5

lg
P

2.18

2.0

0.30 0.40 0.50 0.60

lg I

C B

A

D

0.800.70 0.90

 Figure 6.5           

  Application: The current i mA flowing in a capacitor which is 
being discharged varies with time t ms as shown below.

   i mA  203 61.14 22.49 6.13 2.49 0.615

   t ms  100 160 210 275 320 390

Show that these results are related by a law of the form I  � Ie t/T , 
where I and T are constants. Determine the approximate values 
of I and T.       

 Taking Napierian logarithms of both sides of i      �      Ie t/T  gives 

 ln i  �  ln(Ie t/T )  �  ln I  �  ln e t/T  

 i.e.                 ln i ln
t
T

(since ln e x)x� � �I
    

 or                  ln lni I� �
1
T

t
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

   

which compares with y      �      mx � c, showing that ln i is plotted verti-
cally against t horizontally. Another table of values is drawn up as 
shown below.
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   t 100 160 210 275 320 390

   i 203 61.14 22.49 6.13 2.49 0.615

   ln i  5.31 4.11 3.11 1.81 0.91   � 0.49 

A graph of ln i against t is shown in Figure 6.6    and since a straight 
line results the law i  �  Ie t/T  is verified. 

5.0 A

B C

D (200, 3.31)

4.0

3.31

ln
 i

3.0

2.0

1.30
1.0

0

−1.0

100 200 300 400 t (ms)

 Figure 6.6           

 Gradient of straight line,  

1 5 30 1 30
100 300

4 0
200

0 02
T

AB
BC

� �
�

�
�

�
� �

. . .
.

    

Hence,    T 50�
�

�
1

0 02.
�

    
Selecting any point on the graph, say point D, where t  �  200 and 
ln i �  3.31, 

and substituting into   ln i
T

t ln I� �
1⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

    

gives: 3 31
50

200. ln� � �
1

( ) I
    

from which,     ln I      �      3.31    �      4.0      �      7.31 
and I  � antilog 7.31 ( � e 7.31 )      �      1495 or 1500 correct to 3 signifi-
cant figures 
  Hence the law of the graph is i �  1500e      �     t/50   



158 Engineering Mathematics Pocket Book

  6.3     Logarithmic scales         

  Application: Experimental values of two related quantities x and 
y are shown below:

   x 0.41 0.63 0.92 1.36  2.17   3.95 

   y 0.45 1.21 2.89 7.10 20.79 82.46

The law relating x and y is believed to be y      �      ax b, where a and b 
are constants. 

Verify that this law is true and determine the approximate values 
of a and b       

If y � ax b then lg y � b lg x � lg a, from page 153, which is of the 
form Y � mX � c, showing that to produce a straight line graph lg 
y is plotted vertically against lg x horizontally. x and y may be plotted 
directly on to log-log graph paper as shown in  Figure 6.7   . The values 
of y range from 0.45 to 82.46 and 3 cycles are needed (i.e. 0.1 to 1, 
1 to 10 and 10 to 100). The values of x range from 0.41 to 3.95 and 
2 cycles are needed (i.e. 0.1 to 1 and 1 to 10). Hence  ‘log 3 cycle �  
2 cycle ’ is used as shown in  Figure 6.7  where the axes are marked 
and the points plotted. Since the points lie on a straight line the law 
y �  ax b  is verified. 

  To evaluate constants a and b:  

  Method 1. Any two points on the straight line, say points A and C, 
are selected, and AB and BC are measured (say in centimetres). 
Then, gradient, 

b 2.3� � �
AB
BC

units
units

11 5
5
.

     

 Since lg y  �  b lg x  �  lg a, when x  �  1, lg x  �  0 and lg y  �  lg a. 

 The straight line crosses the ordinate x  �  1.0 at y  �  3.5. 

 Hence, lg a  �  lg 3.5, i.e.  a       �       3.5  

  Method 2. Any two points on the straight line, say points A and C, 
are selected. A has co-ordinates (2, 17.25) and C has co-ordinates 
(0.5, 0.7). 
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Since y ax then a( )b b� �17 25 2. (1)    

   and                          0 7 0 5. .� a( )b (2)    

   i.e. two simultaneous equations are produced and may be solved for 
a and b.   

 Dividing equation (1) by equation (2) to eliminate a gives: 

17 25
0 7

2
0 5

2
0 5

.

.
( )

( . ) .
� �

b

b

b⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

   

   i.e.                           24.643      �      (4) b    

 Taking logarithms of both sides gives lg 24.643  �  b lg 4,

i.e. b
lg

lg
� �

24 643
4

2 3
.

.    ,  correct to 2 significant figures. 

100

10

1.0

y

x
0.1 1.0 10

A

BC

y   axb

 Figure 6.7           
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 Substituting b  �  2.3 in equation (1) gives: 17.25  �  a(2) 2.3 , i.e.

   
a � � �

17 25
2

17 25
4 925

3 5
2 3

.
( )

.
.

.
.

    correct to 2 significant figures. 

  Hence the law of the graph is: y �  3.5x 2.3        

  Application: The pressure p and volume v of a gas are believed 
to be related by a law of the form p  � cv n, where c and n are 
constants. Experimental values of p and corresponding values of 
v obtained in a laboratory are:

   p (Pascals)  2.28      �      105 8.04      �      10 5 2.03      �      10 6 5.05      �      10 6 1.82      �      10 7  

   v (m 3 )  3.2      �      10     �     2 1.3      �      10      �     2 6.7      �      10      �     3 3.5      �      10      �     3 1.4      �      10      �     3  

Verify that the law is true and determine approximate values of 
c and n       

Since p  �  cv n, then lg p  �  n lg v  � lg c, which is of the form 
Y �  mX  � c, showing that to produce a straight line graph, lg p is 
plotted vertically against lg v horizontally. The co-ordinates are plotted 
on ‘log 3 cycle � 2 cycle ’ graph paper as shown in  Figure 6.8   . With 
the data expressed in standard form, the axes are marked in stand-
ard form also. Since a straight line results the law p  �  cv n  is verified. 

The straight line has a negative gradient and the value of the 
g radient is given 

by:
AB
BC

units
units

. Hence n� � �
14
10

1 4. �1.4
    

Selecting any point on the straight line, say point C, having 
co-ordinates (2.63   �      10      �     2, 3      �      10 5), and substituting these values 
in p �  cv n  gives: 3      �      10 5       �      c(2.63    �      10      �     2 )      �     1.4  

 Hence,

c �
�

�
�

�

�
�

�
�

� � �

3 10
2 63 10

3 10
0 0263

3 10
1 63 10

5

2 1 4

5

1 4

5

2

( . ) ( . )

.

. .

18400, correct to 3 significant figures.
    

  Hence the law of the graph is: p �  1840v      �     1.4  or  pv1.4       �       1840        
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Since  v  � Ve t/T  then ln lnv V� �
1
T

t
   
,

which is of the form Y      �      mX  �  c 

1�10�21�10�3
1�105

1�106

1�107

1�108

1�10�1

Volume, v m3

P
re

ss
ur

e,
 p

 P
as

ca
ls

A

CB

p � cvn

 Figure 6.8           

  Application: The voltage, v volts, across an inductor is believed 
to be related to time, t ms, by the law v      �      Ve t/T, where V and T 
are constants. Experimental results obtained are:

   v volts  883 347 90 55.5 18.6  5.2 

   t ms  10.4 21.6 37.8 43.6 56.7 72.0

Show that the law relating voltage and time is as stated and 
determine the approximate values of V and T. Find also the value 
of voltage after 25 ms and the time when the voltage is 30.0     V       
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Using ‘log 3 cycle � linear ’ graph paper, the points are plotted as 
shown in  Figure 6.9   . Since the points are joined by a straight line the 
law v � Ve t/T  is verified. 

1000

100

V
ol

ta
ge

, v
 v

ol
ts

10

1
0 10 20 30 40 50

Time, t ms
60 70 80 90

(36.5, 100)

CB

A

v�VeT
t

 Figure 6.9           

 Gradient of straight line,  
1 100 10

36 5 64 2
2 3026

27 7T
AB
BC

ln ln
� �

�

�
�

�. .
.

.     

Hence T 12.0�
�

�
27 7

2 3026
.

.
�   , correct to 3 significant figures. 

Since the straight line does not cross the vertical axis at t  � 0 in Figure 
6.9, the value of V is determined by selecting any point, say A, having 
co-ordinates (36.5, 100) and substituting these values into v  � Ve t/T . 

Thus   100  � Ve 36.5/     �     12.0  

i.e.
     
V

e /
� �

�

100
36 5 12 0. .

2090 volts
   
, correct to 3 significant figures. 
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  Hence the law of the graph is: v  �  2090e      �     t/12.0  

  When time t �  25     ms, voltage v   �  2090e      �     25/12.0       �       260     V  

  When the voltage is 30.0 volts , 30.0    �      2090e      �     t/12.0  

hence e and et/ t/� � � �12 0 12 030 0
2090

2090
30 0

69 67. ..
.

.
    

 Taking Napierian logarithms gives: 
t

ln
12 0

69 67 4 2438
.

. .� �
   

from which,  time ,  t  �  (12.0)(4.2438)  �   50.9     ms   

  6.4      Graphical solution of simultaneous 
equations        

  Linear simultaneous equations in two unknowns may be solved 
graphically by: 

  1.   plotting the two straight lines on the same axes, and  

  2.   noting their point of intersection.    

The co-ordinates of the point of intersection give the required 
solution.             

  Application:  Solve graphically the simultaneous equations: 

2 4
5

x y
x y

� �
� �            

 Rearranging each equation into y      �      mx     �      c form gives: 

y x� �2 4 (1)      

    y x� � � 5 (2)      

Only three co-ordinates need be calculated for each graph since 
both are straight lines. 

x 0 1 2 x

y x y x

0 1 2

2 4 4 2 0 5 5 4 3= � � � � � �      
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Each of the graphs is plotted as shown in Figure 6.10   . The point 
of intersection is at (3, 2) and since this is the only point which lies 
simultaneously on both lines then x       �       3, y       �       2 is the solution of the 
simultaneous equations.  

�4 �3 �2 �1 10
�1

1

3

2

4

5

�2

�3

�4

2 3 4

y � 2x �4

y � �x �5

y

x

 Figure 6.10           

  6.5     Quadratic graphs           

  (i)   y      �      ax2     

Graphs of y      �      x 2, y      �      3x2 and y x�
1
2

2    are shown in 
Figure 6.11.  

 . 

 All have minimum values at the origin (0, 0). 

Graphs of y �       �     x 2, y �       �     3x 2 and y x� �
1
2

2     are shown in 
 Figure 6.12   . 

 All have maximum values at the origin (0, 0). 

2

1

0�1 1

2

1

0�1 1

2

1

0�1 1

(a) (b) (c)

y � x2 y � 3x2 1
2

y � x2
y

x x x

y y

 Figure 6.11           
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 When y      �      ax2 ,

        (a)   curves are symmetrical about the y-axis,  
  (b)   the magnitude of ‘ a ’  affects the gradient of the curve, 

and  
  (c)   the sign of ‘ a ’  determines whether it has a maximum or 

minimum value     

  (ii)    y       �       ax2       �      c     
Graphs of y      �      x 2       �      3, y      �      x 2       �      2, y  �       �     x 2       �      2 and 
y �       �     2x2       �      1 are shown in  Figure 6.13   . 

 When y      �      ax2       �      c: 

         (a)   curves are symmetrical about the y-axis,  
  (b)   the magnitude of ‘ a ’  affects the gradient of the curve, 

and  
  (c)   the constant  ‘ c ’  is the y-axis intercept     
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�1

�1 1

�1 1

1

1
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(b)

0

�2

2
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(d)
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x

x
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(b) (c)(a) (b) (c)(a)

0

�1
�1 1

�2

0

�1
�1 1

�2
y � �x 2

y � �3x 2
1
2

y �� x 2

0

�1
�1 1

y

xx x

yy

�2

 Figure 6.12           
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  Graphical solutions of quadratic equations         

  (iii)    y      �      ax 2       �      bx      �      c     

Whenever ‘ b ’  has a value other than zero the curve is dis-
placed to the right or left of the y-axis. When b/a is positive, 
the curve is displaced b/2a to the left of the y-axis, as shown 
in Figure 6.14(a). When b/a is negative the curve is displaced 
b/2a to the right of the y-axis, as shown in  Figure 6.14(b)   .       

�5 �4 �3 �2
�2

0 1 2 3 4

2

4

6

�1 �10 1x x

y

y � x2 � 6x � 11

y � x2 � 5x � 4

2

4

6

8

12

(a) (b)

y

 Figure 6.14           

  Quadratic equations of the form ax 2       �      bx      �      c    �      0 may be 
solved graphically by: 

   (i)   plotting the graph y      �      ax 2       �      bx      �      c, and  
  (ii)   noting the points of intersection on the x-axis (i.e. where 

y      �      0).    

The number of solutions, or roots of a quadratic equation, 
depends on how many times the curve cuts the x-axis and there 
can be no real roots (as in  Figure 6.14(a) ) or one root (as in 
       Figures 6.11 and 6.12 ) or two roots (as in  Figure 6.14(b) ).             

  Application: Solve the quadratic equation 4x 2     �   4x   �   15   �    0 
graphically given that the solutions lie in the range x   �     �     3 to x   �    2       

Let y      �      4x 2       �      4x      �      15. A table of values is drawn up as shown 
below.

   x   �3 �2 � 1 0 1 2

   y      �      4x 2       �      4x      �    15  9   �7 �15 �15 � 7  9 
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A graph of y      �      4x 2       �      4x � 15 is shown in  Figure 6.15   . The only 
points where y      �      4x 2       �      4x � 15 and y      �      0, are the points marked A 
and B. This occurs at x      �       �     2.5 and x      �      1.5 and these are the solu-
tions of the quadratic equation 4x 2       �      4x      �      15      �      0. (By substituting 
x �       �     2.5 and x      �      1.5 into the original equation the solutions may 
be checked). The curve has a turning point at ( �0.5, �16) and the 
nature of the point is a  minimum . 

12

8

4

�3 �2

�2.5

�1 1 20
−0.5

�4

�8

�12

�16

1.5

y � 4x2 � 4x � 15

BA
x

y

 Figure 6.15           

An alternative graphical method of solving 4x 2       �      4x � 15      �      0 is to 
rearrange the equation as 4x 2       �       �     4x     �      15 and then plot two sepa-
rate graphs – in this case y      �      4x 2 and y      �       �     4x     �      15. Their points 
of intersection give the roots of equation 4x 2       �       �     4x     �      15, i.e. 
4x2       �      4x      �      15      �      0. This is shown in Figure 6.16   , where the roots 
are x      �       �     2.5 and x      �      1.5 as before.       

30

25

20

15

10

5

0�3 �2 �1 1 2

1.5

3
�2.5

y � �4x � 15

y � 4x2

x

y

 Figure 6.16           
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 A graph of y      �      2x 2  is shown in  Figure 6.17   . 
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 Figure 6.17           

  Application: Plot a graph of y      �      2x 2 and hence solve the 
equations

(a) x and (b) x x2 8 0 2 3 02 2� � � � �            

  (a)   Rearranging 2x 2       �      8    �      0 gives 2x 2       �      8 and the solution of this 
equation is obtained from the points of intersection of y      �      2x 2  
and y      �      8, i.e. at co-ordinates ( �2, 8) and (2, 8), shown as A and 
B, respectively, in  Figure 6.17 .    

 Hence the solutions of 2x 2  � 8      �      0 are  x      �       �     2 and x      �       �     2  

  (b)   Rearranging 2x 2  � x � 3      �      0 gives 2x 2       �      x    �      3 and the solution 
of this equation is obtained from the points of intersection of 
y      �      2x 2 and y      �      x    �      3, i.e. at C and D in  Figure 6.17 . Hence the 
solutions of 2x 2       �      x  �  3      �      0 are  x      �       �     1 and x      �      1.5           

  Application: Plot the graph of y      �       �     2x 2       �      3x      �      6 for values of 
x from x      �       �     2 to x      �      4 and to use the graph to find the roots of 
the following equations 

( ) ( )

( ) ( )

a x x b x x

c x x d x x

� � � � � � � �

� � � � � � � �

2 3 6 0 2 3 2 0

2 3 9 0 2 5 0

2 2

2 2
           

 A table of values is drawn up as shown below.

   x   �2 � 1 0 1 2 3 4

   y      �       �   2x 2       �      3x      �      6 � 8 1 6 7 4   �3 � 14 
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 A graph of �2x2       �      3x      �      6 is shown in  Figure 6.18   . 
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  (a)   The parabola y      �       �     2x2       �      3x      �      6 and the straight line y      �      0 
intersect at A and B, where  x      �       �     1.13 and x      �      2.63 and these 
are the roots of the equation  � 2x 2       �      3x      �      6    �      0  

  (b)   Comparing         y x x� � � �2 3 62 (1)    

   with   0 2 3 22� � � �x x (2)    

   shows that if 4 is added to both sides of equation (2), the 
right-hand side of both equations will be the same. Hence 
4      �       �     2x2       �      3x      �      6. The solution of this equation is found from 
the points of intersection of the line y      �      4 and the parabola 
y      �       �     2x2       �      3x      �      6, i.e. points C and D in  Figure 6.18 .   

 Hence the roots of      �     2x2       �      3x      �      2    �      0 are  x      �       �     0.5 and x      �      2  

  (c)       �     2x2       �      3x      �      9    �      0 may be rearranged as �2x2       �      3x      �      6    �       �     3,
and the solution of this equation is obtained from the 
points of intersection of the line y      �       �     3 and the parabola 
y      �       �     2x2       �      3x      �      6, i.e. at points E and F in  Figure 6.18 . Hence 
the roots of �2x2       �      3x      �      9    �      0 are  x      �       �     1.5 and x      �      3   
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  (d)   Comparing      y x x� � � �2 3 62 (3)    

   with   0 2 52� � � �x x (4)    

   shows that if 2x   �   1 is added to both sides of equation (4) the right-
hand side of both equations will be the same. Hence equation (4) may 
be written as 2x   �   1   �     �     2x2     �   3x   �   6. The solution of this equation 
is found from the points of intersection of the line y   �   2x   �   1 and 
the parabola y   �     �     2x2     �   3x   �   6, i.e. points G and H in Figure 6.18 .
Hence the roots of  �2x2     �   x � 5   �   0 are  x �     �      1.35 and x   �   1.85      

  6.6     Graphical solution of cubic equations         

A cubic equation of the form ax 3       �      bx 2       �      cx      �      d    �      0 may be 
solved graphically by: 

   (i)   plotting the graph y      �      ax3       �      bx 2       �      cx     �      d,     
and    (ii)   noting the points of intersection on the x-axis (i.e. 

where y      �      0).    

The number of solutions, or roots of a cubic equation depends 
on how many times the curve cuts the x-axis and there can be 
one, two or three possible roots, as shown in  Figure 6.19   .             

  Application: Solve graphically the cubic equation 4x 3       �      8x 2       �    
  15x      �      9    �      0 given that the roots lie between x  �       �     2 and x      �   3.
Find also the co-ordinates of the turning points on the curve.       

(a) (b) (c)

y y y

xxx

 Figure 6.19           

Let y      �      4x 3       �      8x 2       �      15x      �      9. A table of values is drawn up as 
shown below.

   x   �2 � 1 0 1 2 3

   y   � 25 12 9   �10 � 21  0 
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 A graph of y      �      4x 3       �      8x 2       �      15x      �      9 is shown in  Figure 6.20   . 

  Application: Plot the polar graph of r      �      5 sin  θ between θ       �      0° 
and θ       �      360° using increments of 30°       

 A table of values at 30 o  intervals is produced as shown below.

    θ  0 30° 60° 90° 120° 150° 180°

   r      �      5 sin  θ  0 2.50 4.33 5.00 4.33 2.50 0

    θ  210° 240° 270° 300° 330° 360°

   r      �      5 sin  θ    �2.50 �4.33 �5.00 �4.33 � 2.50  0 

�2 �1 �0.6 1 2 30

16
14.2

12

8

4

�4

�8

�12

�16

�20
�21
�24

y � 4x3 � 8x2 � 15x � 9

y

x
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The graph crosses the x-axis (where y      �      0) at x      �       �     1.5, x      �      0.5 
and x      �      3 and these are the solutions to the cubic equation 
4x3       �      8x 2       �      15x      �      9    �      0. 

The turning points occur at  (�0.6, 14.2), which is a maximum, and 
(2,    �     21) , which is a  minimum .  

  6.7     Polar curves         
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 The graph is plotted as shown in  Figure 6.21   . 
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Initially the zero line 0    A is constructed and then the broken lines in 
Figure 6.21  at 30° intervals are produced. The maximum value of r 
is 5.00 hence 0    A is scaled and circles drawn as shown with the larg-
est at a radius of 5 units. The polar co-ordinates (0, 0°), (2.50, 30°), 
(4.33, 60°), (5.00, 90°) …. are plotted and shown as points 0, B, C, 
D, … in  Figure 6.21 . When polar co-ordinate (0, 180°) is plotted and 
the points joined with a smooth curve a complete circle is seen to 
have been produced. When plotting the next point, ( �2.50, 210°), 
since r is negative it is plotted in the opposite direction to 210°, i.e. 
2.50 units long on the 30° axis. Hence the point ( �2.50, 210°) is 
equivalent to the point (2.50, 30°). Similarly, ( �4.33, 240°) is the 
same point as (4.33, 60°). 

When all the co-ordinates are plotted the graph r      �      5 sin  θ appears as 
a single circle; it is, in fact, two circles, one on top of the other. 

 In general, a polar curve  r    �      a sin θ  is as shown in  Figure 6.22   . 

In a similar manner to that explained above, it may be shown that 
the polar curve r       �       a cos θ  is as sketched in  Figure 6.23   .       
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 A table of values is produced as shown below.

    
θ 0

  

π
6    

π
3    

π
2    

2
3
π

   

5
6
π

    

  π  

  

7
6
π

   

4
3
π

   

3
2
π

      

5
3
π

      

11
6
π

    

2π  

   r      �      4 sin 2  θ  0 1 3 4 3 1 0 1 3 4 3 1 0

The zero line 0    A is firstly constructed and then the broken lines at 

intervals of
π
6    

 rad (or 30°) are produced. The maximum value of r is 

4 hence 0    A is scaled and circles produced as shown with the largest 
at a radius of 4 units. 

The polar co-ordinates (0, 0), (1, 
π
6    ), (3,

π
3   ), … (0, π) are plotted and 

shown as points 0, B, C, D, E, F, 0, respectively. Then (1,  
7
6
π

   ), (3, 
4
3
π

   
), …

(0, 0) are plotted as shown by points G, H, I, J, K, 0 respectively. Thus 
two distinct loops are produced as shown in  Figure 6.24   . 

  Application: Plot the polar graph of r      �      4 sin 2  θ between θ       �      0 
and θ       �      2 π  radians using intervals of  π

6
          

a

aO

r � a sin θ

 Figure 6.22           

aO

r � a cos θ

 Figure 6.23           
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 In general, a polar curve r      �      a sin 2  θ  is as shown in  Figure 6.25   . 

aa

r � a cos2�

 Figure 6.26           

a

a

a
r � a sin2�

 Figure 6.25           
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 Figure 6.24           

In a similar manner it may be shown that the polar curve r      �      a cos 2  θ  
is as sketched in  Figure 6.26   .       

  Application: Plot the polar graph of r      �      3 sin 2 θ between θ       �      0° 
and θ       �      360°, using 15° intervals       
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 As in previous applications a table of values may be produced. 

The polar graph r      �      3 sin 2 θ is plotted as shown in Figure 6.27    and 
is seen to contain four similar shaped loops displaced at 90 o from 
each other. 

0

120°
105° 75°

45°

15°

A

150°

180°

210°

240°
270° 285°255°

225°

195°

165°

135°

300°

330°

360°

345°

315°

0°

30°

60°

90°

1 2 3

 Figure 6.27           

 In general, a polar curve r      �      a sin 2 θ  is as shown in  Figure 6.28   . 

45°

a

a
a

a a

180°

225°

135°

315°

r � a sin 2�

 Figure 6.28           

In a similar manner it may be shown that polar curves of r      �      a cos 2 θ , 
r      �      a sin 3 θ  and r      �      a cos 3 θ  are as sketched in  Figure 6.29   .       
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A table of values may be produced and the polar graph of r      �      2 θ is 
shown in  Figure 6.30    and is seen to be an ever-increasing spiral.       

2π

11π
6

0

5π
3

3π
2

4π
3

7π
6

5π
6

2π
3

π
2

r � 2�

π
3

π
6

π
15129630

 Figure 6.30           
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a
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a

a

180°

150°
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240°

270°

(a) (b)

(c)

270°

r � a cos 2�

r � a sin 3�

r � a cos 3�

 Figure 6.29           

  Application: Sketch the polar curve r      �      2 θ between θ       �      0 and 

θ
π

�
5
2    

 rad at intervals of π
6           

  Application: Plot the polar curve r      �      5(1      �      cos  θ) from  θ       �      0° 
to θ       �      360°, using 30° intervals       
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In general, a polar curve r      �      a(1      �      cos  θ) is as shown in  Figure 6.32    
and the shape is called a cardioid . 

a

a

a

O 2a

r � a (1 � cos �)

 Figure 6.32           

A table of values may be produced and the polar curve 
r      �      5(1      �      cos  θ ) is shown in  Figure 6.31   . 

120°

150°

180°

210°

240°

270°

300°

330°

360°
0°

30°

r � 5 (1 � cos �)

60°

90°

0 2 4 6 8 10

 Figure 6.31           

In a similar manner it may be shown that the polar curve r   �   a   �   b cos  θ  
varies in shape according to the relative values of a and b. When a      �      b 
the polar curve shown in  Figure 6.32  results. 

When a      	      b the general shape shown in Figure 6.33(a)    results and 
when a      
      b the general shape shown in  Figure 6.33(b)  results.  
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  6.8     The ellipse and hyperbola 

  Ellipse 

The equation of an ellipse is
x
a

y
b

2

2

2

2
1� �     and the general shape is 

as shown in  Figure 6.34   . 

b
A

C

D

B

a

y

xO

1� �
a2
x2

b2
y2

 Figure 6.34           

a

a

a

O (a � b)

r � a � b cos �
where a 	 b

a

a

O(a � b) (a � b)

(a)

(b)

r � a � b cos �
where a 
 b

 Figure 6.33           

 The length AB is called the  major axis  and CD the  minor axis . 

In the above equation, ‘ a ’  is the semi-major axis and ‘ b ’  is the semi-
minor axis. 

(Note that if b      �      a, the equation becomes
x
a

y
a

2

2

2

2
1� �    , i.e. 

x2       �      y 2       �      a 2 , which is a circle of radius a.)  
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  Hyperbola 

The equation of a hyperbola is
x
a

y
b

2

2

2

2
1� �     and the general shape 

is shown in  Figure 6.35   . The curve is seen to be symmetrical about 

both the x- and y-axes. The distance AB in  Figure 6.35  is given by 2a. 

BA
O x

y

1� �
a2
x2

b2
y2

 Figure 6.35           

  Rectangular hyperbola 

The equation of a rectangular hyperbola is xy      �      c or y
c
x

�     and the 
general shape is shown in  Figure 6.36   .   

1�1

�1

1

2

3

�2

�3

�2�3 0 2 3 x

y

y � x
c

 Figure 6.36           
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  6.9     Graphical functions 

  Periodic functions 

A function f(x) is said to be periodic if f(x      �      T)      �      f(x) for all values 
of x, where T is some positive number. T is the interval between two 
successive repetitions and is called the  period of the function f(x). 
For example, y      �      sin x is periodic in x with period 2 π since sin x      �   
sin(x    �      2 π )      �      sin(x    �      4 π), and so on. Similarly, y      �      cos x is a periodic 
function with period 2 π since cos x      �      cos (x      �      2 π )      �      cos (x      �      4 π ), 
and so on. In general, if y      �      sin  ωt or y      �      cos  ωt then the period 
of the waveform is 2 π / ω. The function shown in  Figure 6.37    is also 
periodic of period 2 π  and is defined by: 

f(x)
, when x

when x
�

� � � �

� �

1 0

1 0

π

π,

⎧
⎨
⎪⎪

⎩⎪⎪       

0

1

�1

�2π �π π 2π

f(x)

x

 Figure 6.37           

  Continuous and discontinuous functions 

If a graph of a function has no sudden jumps or breaks it is called a 
continuous function, examples being the graphs of sine and cosine 
functions. However, other graphs make finite jumps at a point or 
points in the interval. The square wave shown in  Figure 6.37  has 
finite discontinuities as x      �       π, 2 π, 3 π, and so on, and is therefore 
a discontinuous function. y      �      tan x is another example of a discon-
tinuous function.  

  Even and odd functions 

A function y      �      f(x) is said to be even if f( � x)      �      f(x) for all values 
of x. Graphs of even functions are always  symmetrical about the 
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y-axis (i.e. is a mirror image). Two examples of even functions are 
y      �      x 2  and y      �      cos x as shown in  Figure 6.38   . 

�3 �2 �1 10 2 3

2

4

6

8

(a)

0 π�π

(b)

y � cos x

y � x2

y

y

�π/2 π/2

x

x

 Figure 6.38           

A function y      �      f(x) is said to be odd if f( � x)    �  �f(x) for all values 
of x. Graphs of odd functions are always  symmetrical about the 
origin. Two examples of odd functions are y      �      x 3 and y      �      sin x as 
shown in  Figure 6.39   .  

�3 0 3

27

y

 �27

(a)

�3π/2 3π/2 2π�π/2 π/2 π�π 0

1

�1

(b)

y � x3

y � sin xy

x

x

 Figure 6.39           
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  Inverse functions         

Given a function y      �      f(x), its inverse may be obtained by inter-
changing the roles of x and y and then transposing for y. The 
inverse function is denoted by y      �      f      �     1 (x).             

  Application:  Find the inverse of y      �      2x      �      1       

      (i)   Transposing for x, i.e.  x �
�

� �
y y1

2 2
1
2

        

and    (ii)   interchanging x and y, gives the inverse as  y
x

� �
2

1
2

       

 Thus if f(x)      �      2x      �    1, then  f� � �1(x)
x
2

1
2

    

A graph of f(x)   �   2x   �   1 and its inverse f (x)
x
2

1
2

1� � �     is shown in 

Figure 6.40    and f      �     1(x) is seen to be a reflection of f(x) in the line y   �   x.       

1

0

2

�1 1 2 3 4 x

y

�1

4

y �

y � x
y � 2x � 1

�2
x

2
1

 Figure 6.40           

       (i)   Transposing for x, i.e.  x y� 
         
and    (ii)   interchanging x and y, gives the inverse  y x� 
        

Hence the inverse has two values for every value of x. Thus f(x)      �      x 2  
does not have a single inverse. In such a case the domain of the 
original function may be restricted to y      �      x 2 for x      
      0. Thus the 
inverse is then f (x) x1� � �     

  Application:  Find the inverse of y      �      x 2        
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A graph of f(x)      �      x 2 and its inverse f (x) x1� �     for x      
      0 is shown 
in  Figure 6.41    and, again, f      �     1(x) is seen to be a reflection of f(x) in 
the line y      �      x.  

  Inverse trigonometric functions 

If y      �      sin x, then x is the angle whose sine is y. Inverse trigono-
metric functions are denoted either by prefixing the function with 
 ‘ arc ’  or more commonly      �     1. Hence, transposing y      �      sin x for x gives 
x      �      sin      �     1 y. Interchanging x and y gives the inverse y      �      sin      �     1  x. 
Similarly, y      �      cos      �     1  x, y      �      tan      �     1  x, y      �      sec      �     1  x, y      �      cosec      �     1  x and 
y      �      cot      �     1 x are all inverse trigonometric functions. The angle is 
always expressed in radians. 
Inverse trigonometric functions are periodic so it is necessary to 
specify the smallest or principal value of the angle. For sin      �     1  x, 
tan     �     1  x, cosec      �     1 x and cot      �     1 x, the principal value is in the range 

� 	 	
π π
2 2

y    . For cos      �     1 x and sec      �     1 x the principal value is in the 

range 0      	      y 	  π . 

Graphs of the six inverse trigonometric functions are shown in Figure 
11.6, page 282.       

10

2

4

2 3 x

y

y � x2

y � x

y �  x

 Figure 6.41           

  Application:  Determine the principal values of  

(a) arcsin (b) arctan( (c) arccos (d) arcc0 5 1
3

2
. )� �

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

oosec( )2
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 Using a calculator, 

  (a)   arcsin 0.5  �  sin      �     1  0.5    �      30°      �       
π
6

     rad  or  0.5236 rad   

  (b)   arctan ( � 1)  �  tan      �     1 ( � 1)      �       �     45°      �       �
π
4

     rad  or  �  0.7854 rad   

  (c)   arccos �
3

2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

    � cos      �     1 �
3

2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

       �   150°   �     5
6
π    rad or 2.6180 rad   

  (d)   arccosec 2( )     � arcsin 
1

2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟     � sin      �     1  

1

2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟        �      45° �  

π
4

   rad or 

0.7854 rad      

  Asymptotes         

If a table of values for the function y
x
x

�
�

�

2
1

    is drawn up for 

various values of x and then y plotted against x, the graph would 

be as shown in  Figure 6.42   . The straight lines AB, i.e. x      �       � 1, 

and CD, i.e. y      �      1, are known as  asymptotes.  

4321�1
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�2�3�4 0

1
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C D

B

A

y �
x � 2
x � 1

y �
x � 2
x � 1

 Figure 6.42           
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 Rearranging  y
x
x

�
�

�

2
1

    gives: 

                                      y(x      �      1)      �      x    �      2

i.e.               yx y x� � � �2 0 (1)    

   and  x(y    �      1)      �      y      �      2    �      0   

 The coefficient of the highest power of x (in this case x 1 ) is (y      �      1). 

 Equating to zero gives: y      �      1    �      0

from which,  y      �      1, which is an asymptote of y
x
x

�
�

�

2
1

    as shown 
in  Figure 6.42 . 

An asymptote to a curve is defined as a straight line to which 
the curve approaches as the distance from the origin increases. 
Alternatively, an asymptote can be considered as a tangent to the 
curve at infinity. 

  Asymptotes parallel to the x- and y-axes  

 For a curve y      �      f(x): 

   (i)   the asymptotes parallel to the x-axis are found by equating the 
coefficient of the highest power of x to zero  

   (ii)   the asymptotes parallel to the y-axis are found by equating the 
coefficient of the highest power of y to zero    

  Other asymptotes  

To determine asymptotes other than those parallel to x- and 
y-axes a simple procedure is: 

   (i)   substitute y      �      mx     �      c in the given equation  

   (ii)   simplify the expression  

  (iii)   equate the coefficients of the two highest powers of x to zero 
and determine the values of m and c. y      �      mx     �      c gives the 
asymptote.                

  Application: Show that asymptotes occur at y      �      1 and x      �       �     1 

for the curve y
x
x

�
�

�

2
1
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 Returning to equation (1): yx    �      y    �      x  �  2    �      0

from which,                       y(x    �      1)      �      x  �  2    �      0 

 The coefficient of the highest power of y (in this case y 1 ) is (x      �      1). 

 Equating to zero gives: x      �      1    �      0

from which,  x �       �     1, which is another asymptote of y
x
x

�
�

�

2
1

    as 
shown in  Figure 6.42 .       

  Application: Determine the asymptotes parallel to the x- and 
y-axes for the function x 2 y 2       �      9(x 2       �      y 2 )       

 Asymptotes parallel to the x-axis: 
 Rearranging x 2 y 2       �      9(x 2       �      y 2 ) gives x 2 y 2       �      9x2       �      9y 2       �      0 
 Hence x 2 (y 2       �      9)      �      9y 2       �      0 
 Equating the coefficient of the highest power of x to zero gives: 
 y 2       �      9    �      0 from which, y 2       �      9 and y       �       �  3  
 Asymptotes parallel to the y-axis: 
Since x 2 y 2       �      9x 2       �      9y 2       �      0 then y 2 (x 2       �      9)      �      9y 2       �      0 
 Equating the coefficient of the highest power of y to zero gives: 
 x 2       �      9    �      0 from which, x 2       �      9 and  x      �       � 3  
  Hence, asymptotes occur at y      �       � 3 and x      �       � 3        

  Application:  Determine the asymptotes for the function: 

 y(x      �      1)      �      (x      �      3)(x      �      2)       

   (i)   Substituting y      �      mx     �      c into y(x      �      1)      �      (x      �      3)(x    �      2) 
 gives                          (mx      �      c)(x    �      1)      �      (x      �      3)(x      �      2)     

   (ii)   Simplifying gives      mx 2  �  mx    �      cx     �      c    �      x 2       �      x � 6 
 and  (m    �      1)x 2  �  (m    �      c  �  1)x    �      c  �  6    �      0     

  (iii)   Equating the coefficient of the highest power of x to zero 
 gives         m      �      1    �      0 from which,  m    �      1   
 Equating the coefficient of the next highest power of x to zero  
 gives             m      �      c  �  1    �      0  
 and since m      �      1, 1      �      c  �  1    �      0 from which,  c �       �      2   
Hence  y      �      mx     �      c    �      1x     �      2  
i.e. y      �      x    �      2 is an asymptote        
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 To determine any asymptotes parallel to the x-axis: 

Rearranging y(x      �      1)      �      (x      �      3)(x    �      2)
gives       yx      �      y    �      x 2  �  x    �      6 

The coefficient of the highest power of x (i.e. x 2) is 1. Equating this 
to zero gives 1      �      0, which is not an equation of a line. Hence there 
is no asymptote parallel to the x-axis 

 To determine any asymptotes parallel to the y-axis: 

Since y(x      �      1)      �      (x      �      3)(x    �      2) the coefficient of the highest power 
of y is x      �      1. Equating this to zero gives x      �      1    �      0, from which, 
x      �       �     1. Hence,  x      �            �      1 is an asymptote . 

 When  x      �      0,  y(1)   �      ( �3)(2), i.e. y �       �     6  

 When  y      �      0 ,      0      �      (x      �      3)(x    �      2), i.e. x      �      3   and   x �       �     2  

A sketch of the function y(x      �      1)      �      (x      �      3)(x      �      2) is shown in 
 Figure 6.43   .        
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y �
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                          7     Vectors   

  7.1     Scalars and vectors         

Some physical quantities are entirely defined by a numerical value 
and are called  scalar quantities or scalars. Examples of sca-
lars include time, mass, temperature, energy and volume. Other 
physical quantities are defined by both a numerical value  and  
a direction in space and these are called  vector quantities or 
vectors. Examples of vectors include force, velocity, moment and 
 displacement. 

 Various ways of showing vector quantities include: 

  1.    bold print.   
  2.   two capital letters with an arrow above them to denote the 

sense of direction, e.g.  AB
� ��

   , where A is the starting point and B 
the end point of the vector,  

  3.   a line over the top of letters, e.g.  AB    or  a      
  4.   letters with an arrow above, e.g.  a

→
   ,  A

→
     

  5.   underlined letters, e.g.  a   
  6.   xi      �      jy, where i and j are axes at right-

angles to each other; for example, 
3i      �      4j means 3 units in the i direc-
tion and 4 units in the j direction, as 
shown in  Figure 7.1     

  7.   a column matrix a
b

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟    ; for example, 

the vector OA of Figure 7.1 could be 

represented by  
3
4

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟        

 Thus, in  Figure 7.1 ,  OA � � � �OA OA i j
� ���

3 4
3
4

�
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟           

A(3, 4)

i

j
4

3

2

1

1 2 3O

 Figure 7.1           

The one adopted in this text is to denote vector quantities in bold
print .  
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  7.2     Vector addition         

The resultant of adding two vectors together, say  V1 at an 
angle θ  1 and V2 at angle ( �  θ  2), as shown in  Figure 7.2(a)   , can 
be obtained by drawing oa to represent  V1 and then drawing ar  
to represent  V2. The resultant of  V1       �       V2 is given by or. This is 
shown in Figure 7.2(b) , the vector equation being oa       �       ar    �      or . 
This is called the  ‘ nose-to-tail ’  method  of vector addition. 

Alternatively, by drawing lines parallel to  V1 and V2 from the 
noses of V2 and V1, respectively, and letting the point of inter-
section of these parallel lines be R, gives OR as the magnitude 
and direction of the resultant of adding  V1 and V2, as shown in 
Figure 7.2(c) . This is called the  ‘ parallelogram ’  method of vec-
tor addition.             

 Figure 7.2           

θ1

θ2

(a)

V2

V1

(b)

a

rO

(c)

θ1

θ2V2

V1

O R

  Application: A force of 4    N is inclined at an angle of 45 ° to a 
second force of 7    N, both forces acting at a point. Find the mag-
nitude of the resultant of these two forces and the direction of 
the resultant with respect to the 7    N force by both the  ‘ triangle ’  
and the  ‘ parallelogram ’  methods       

The forces are shown in  Figure 7.3(a)   . Although the 7    N force is 
shown as a horizontal line, it could have been drawn in any direction. 

Using the  ‘ nose-to-tail ’  method, a line 7 units long is drawn hori-
zontally to give vector oa in  Figure 7.3(b) . To the nose of this vec-
tor ar is drawn 4 units long at an angle of 45 ° to oa. The resultant 
of vector addition is or and by measurement is  10.2 units long 
and at an angle of 16 ° to the 7    N force. Figure 7.3(c)  uses the 
 ‘  parallelogram ’  method in which lines are drawn parallel to the 
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7    N and 4    N forces from the noses of the 4    N and 7    N forces, respec-
tively. These intersect at R. Vector  OR give the magnitude and direc-
tion of the resultant of vector addition and, as obtained by the 
 ‘ nose-to-tail ’  method, is 10.2 units long at an angle of 16 ° to the 
7     N force .       

20 4 6 8 10

10°
b

r

a

O
82°

20°

12

Scale in m/s

 Figure 7.5           

 Figure 7.3           

(a)

0 2 4 6

4 N

O
45�

7 N
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(b)

4 N
r

45�

7 N a
O

(c)

4 N
45�

7 N

R

O

  Application: Use a graphical method to determine the magni-
tude and direction of the resultant of the three velocities shown 
in  Figure 7.4          

10°
20°

7 m/s

15 m/s

10 m/s

v2

v1

v3  Figure 7.4           

It is easier to use the ‘ nose-to-tail ’  method when more than two vec-
tors are being added. The order in which the vectors are added is 
immaterial. In this case the order taken is v 1, then v 2, then v 3 but just 
the same result would have been obtained if the order had been, 
say, v 1 , v 3  and finally v 2 . 

 v 1 is drawn 10 units long at an angle of 20 ° to the horizontal, shown 
by oa in Figure 7.5   . v 2 is added to v 1 by drawing a line 15 units 
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long vertically upwards from a, shown as  ab. Finally, v 3 is added to 
v1       �      v 2 by drawing a line 7 units long at an angle at 190 ° from b, 
shown as br. The resultant of vector addition is  or and by measure-
ment is 17.5 units long at an angle of 82 °  to the horizontal. 

 Thus,  v1       �     v2       �       v3       �      17.5     m/s at 82 °  to the horizontal.   

  7.3     Resolution of vectors         

  Application: Calculate the resultant of the two forces shown in 
 Figure 7.3(a)        

Horizontal component of force, 
H   �   7 cos 0 °    �   4 cos 45 °    �   7   �   2.828   �       9.828     N  

 Vertical component of force, 
V      �      7 sin 0 °       �      4 sin 45 °       �      0    �      2.828    �       2.828     N  

 The magnitude of the resultant of vector addition 

� � � � � �H V2 2 2 29 828 2 828 104 59. . . 10.23 N      

  

The direction of the resultant of vector addition tan� �1 V
H

⎛
⎝⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟�

�

�tan 1 2 828
9 828

.

.

16.05�     
  Thus, the resultant of the two forces is a single vector of 
10.23     N at 16.05 �  to the 7    N vector        

  Application: Calculate the resultant velocity of the three veloci-
ties shown in  Figure 7.4        

A vector can be resolved into horizontal component and vertical 
components. For the vector shown as F in  Figure 7.6   , the hori-
zontal component is F cos  θ  and the vertical component is F sin  θ .             

F sin θ

F cos θ

F

θ
 Figure 7.6           
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 Horizontal component of the velocity, 
 H      �      10 cos 20º      �      15 cos 90º      �      7 cos 190º 

       �      9.397    �      0  �  ( � 6.894)    �       2.503       m/s  

 Vertical component of the velocity,
V      �      10 sin 20º      �      15 sin 90º      �      7 sin 190º 

      �      3.420    �      15      �      ( � 1.216)    �       17.205       m/s  

 Magnitude of the resultant of vector addition 

� � � � � �H V2 2 2 22 503 17 205 302 28. . . 17.39 m/s      

 Direction of the resultant of vector addition

� � �� � �tan tan tan1 1 117 205
2 503

6 873
V
H

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

.
.

. 88 81 72� . °
    

  Thus, the resultant of the three velocities is a single vector of 
17.39     m/s at 81.72 °  to the horizontal.   

  7.4     Vector subtraction         

In  Figure 7.7   , a force vector  F is 
represented by  oa. The vector 
(� oa) can be obtained by draw-
ing a vector from o in the oppo-
site sense to oa but having the 
same magnitude, shown as ob  
in  Figure 7.7 , i.e.  ob    �      ( �oa)  

For two vectors acting at a point, as shown in Figure 7.8(a)   , the 
resultant of vector addition is  os    �      oa      �      ob.  Figure 7.8(b)  shows 
vectors ob       �       (� oa), that is, ob    �      oa and the vector equation is 
ob    �      oa      �      od. Comparing od in Figure 7.8(b)  with the broken 
line ab in Figure 7.8(a)  shows that the second diagonal of the 
 ‘ parallelogram ’  method of vector addition gives the magnitude 
and direction of vector subtraction of  oa  from  ob.              

�F O

a

b

F

 Figure 7.7           

(b)
a�a o

bd

(a)
a

sb

o

 Figure 7.8           
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(i)   The scale vector diagram is shown in  Figure 7.9   . By measurement,    

a a 3.7 m/s at 1261 2
2� � �      

         and                   a a 2.1m/s at 01 2
2� � �         

Scale in m/s2

2.6 m/s2

1.5 m/s2

126°

0 1 2 3

a1 � a2

a1 � a2

a2

�a2

a1

145°

 Figure 7.9           

  Application: Accelerations of a 1       �      1.5     m/s 2 at 90 ° and a 2       �   
2.6     m/s 2 at 145 ° act at a point. Find a1       �      a 2 and a1       �      a 2 by 
(i) drawing a scale vector diagram and (ii) by calculation       

   (ii)   Resolving horizontally and vertically gives: 

  Horizontal component of  a1       �       a2 ,

H       �      1.5 cos 90 °     �      2.6 cos 145 °     �       �     2.13  

 Vertical component of  a1       �       a2 , 

V       �      1.5 sin 90 °       �      2.6 sin 145 °     �      2.99  

  Magnitude of  a a 3.67 m/s1 2
2� � � � �( . ) .2 13 2 992 2      

  Direction of  a a1 2� �
�

�tan 1 2 99
2 13
.
.

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟    and must lie in the second 

quadrant since H is negative and V is positive.  

   tan ,�

�
� � �1 2 99

2 13
54 53

.
.

.
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟     and for this to be in the second 

quadrant, the true angle is 180 ° displaced, i.e. 180 °       �      54.53 °  or 

125.47 ° . Thus a1       �       a2       �       3.67     m/s 2  at 125.47 �   
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  Horizontal component of  a1       �       a2 , that is,  a1       �       (� a 2 )   
      �      1.5 cos 90 °     �      2.6 cos(145 °       �      180 ° )      
                                              �      2.6 cos( � 35 ° )      �      2.13  

  Vertical component of  a1       �       a2 , that is,

a1       �       (� a 2 )       �      1.5 sin 90 °     �      2.6 sin( � 35 ° )      �      0  

  Magnitude of  a a1 2� � � �2 13 0 2 132 2 2. . m/s      

  Direction of  a a1 2� � ��tan 1 0
2 13

0
.

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ �      

  Thus,  a1       �      a 2       �      2.13     m/s 2  at 0 °               

15

22

40

190°

290°

140°

�V

�V

�H �H

 Figure 7.10           

  Application: Calculate the resultant of  v1       �      v 2       �      v 3 when 
v1       �      22 units at 140 °, v2       �      40 units at 190 ° and v3       �      15 units 
at 290 °        

 The vectors are shown in  Figure 7.10   . 

 The horizontal component of

v1       �      v 2       �       v3       �      (22 cos 140 ° )    �      (40 cos 190 ° )    �      (15 cos 290 ° ) 
     �      ( � 16.85)    �      ( � 39.39)    �      (5.13)    �       27.67 units  

 The vertical component of

v1  � v 2       �       v3       �      (22 sin 140 ° )    �      (40 sin 190 ° )    �      (15 sin 290 ° ) 
       �      (14.14)    �      ( � 6.95)    �      ( � 14.10)    �       6.99 units  

 The magnitude of the resultant, R, is given by:

| | . . .R � � �27 67 6 99 28 542 2 units     
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 The direction of the resultant,  R , is given by :

  
arg R � ��tan 1 6 99

27 67
14 18

.
.

.
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ °

    

 Thus,  v1       �     v2       �       v3       �       28.54 units at 14.18 °    

  7.5     Relative velocity         

For relative velocity problems, some fixed datum point needs to 
be selected. This is often a fixed point on the earth’s surface. In 
any vector equation, only the start and finish points affect the 
resultant vector of a system. Two different systems are shown in 
Figure 7.11   , but in each of the systems, the resultant vector is  ad.  

 The vector equation of the system shown in  Figure 7.11(a)  is:

ad    �      ab       �       bd

  and that for the system shown in  Figure 7.11(b)  is: 

ad    �      ab       �       bc       �       cd  

Thus in vector equations of this form, only the first and last let-
ters, a and d, respectively, fix the magnitude and direction of the 
resultant vector.             

b

(a)

a d

 Figure 7.11           

b

(b)

a d

c

  Application: Two cars, P and Q, are travelling towards the junc-
tion of two roads which are at right angles to one another. Car P 
has a velocity of 45    km/h due east and car Q a velocity of 55     km/h 
due south. Calculate (i) the velocity of car P relative to car Q, and 
(ii) the velocity of car Q relative to car P       

  (i)   The directions of the cars are shown in  Figure 7.12(a)   , called a 
space diagram. The velocity diagram is shown in Figure 7.12(b) ,
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in which pe is taken as the velocity of car P relative to point e on 
the earth’s surface. The velocity of P relative to Q is vector  pq and 
the vector equation is pq    �      pe       �       eq. Hence the vector directions 
are as shown,  eq  being in the opposite direction to  qe . 

 Figure 7.12           

P Q

N

S

45 km/h

E

55 km/h

(a)

W q

e
p

(b)

q

e
p

(c)

 From the geometry of the vector triangle,       

| | .

.

pq

pq

� � �

� ��

45 55 71 06

55
45

50 71

2 2

1

km/h

and arg tan
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ��

     

         i.e. the velocity of car P relative to car Q is 71.06    km/h at 
50.71 °       

  (ii)   The velocity of car Q relative to car P is given by the vector equa-
tion qp    �      qe       �       ep and the vector diagram is as shown in Figure 
7.12(c), having ep opposite in direction to  pe. From the geometry 
of this vector triangle:    

| | .

.

qp

qp

� � �

� � ��

45 55 71 06

55
45

50 71

2 2

1

m/s

and arg tan
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

     

         but must lie in the third quadrant, i.e. the required angle is 
180 °     �      50.71 °     �      230.71 °   

   Thus the velocity of car Q relative to car P is 71.06    m/s at 
230.71 °          
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  7.6     Combination of two periodic functions         

In many engineering situations waveforms have to be combined. 
There are a number of methods of determining the resultant 
waveform. These include by: 

  1.   drawing the waveforms and adding graphically  
  2.   drawing the phasors and measuring the resultant  
  3.   using the cosine and sine rules  
  4.   using horizontal and vertical components  
  5.   using complex numbers                

  Application: Sketch graphs of y 1       �      4 sin  ωt and y 2       �    
  3 sin( ω t      �       π/3) on the same axes, over one cycle. Adding ordi-
nates at intervals, obtain a sinusoidal expression for the resultant 
waveform y R       �      y 1       �      y 2        

6
y

6.1

4

2

0 90°
π /2 3π /2

25°

25°

yR � y1 � y2

y2�3 sin(ω t � π /3)

y1 � 4 sin ω t

ω t

–2

–4

–6

2ππ
180° 270° 360°

 Figure 7.13           

y1     �   4  sin  ωt and y 2     �   3  sin( ωt   �     π/3) are shown plotted in  Figure 7.13   . 

Ordinates are added at 15 ° intervals and the resultant is shown by 
the broken line. The amplitude of the resultant is 6.1 and it  lags y 1  
by 25 °  or 0.436     rad. 

Hence the sinusoidal expression for the resultant waveform is: 
yR       �      6.1 sin( ω t      �      0.436)        

  Application: Determine 4 sin  ω t      �      3 sin( ω t      �       π/3) by drawing 
phasors       
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The resultant of two periodic functions may be found from their rela-
tive positions when the time is zero. 4 sin  ωt and 3 sin( ω t      �       π/3) may 
each be represented as phasors as shown in  Figure 7.14   , y 1 being 4 
units long and drawn horizontally and y 2 being 3 units long, lagging 
y1 by π/3 radians or 60 o. To determine the resultant of y 1       �      y 2, y 1 is 
drawn horizontally as shown in  Figure 7.15    and y 2 is joined to the 
end of y 1 at 60 o to the horizontal. The resultant is given by y R. This 
is the same as the diagonal of a parallelogram that is shown com-
pleted in  Figure 7.16   . 

 The resultant is measured as 6.1 and angle  φ  as 25 o  or 0.436      rad. 

 Hence,  4 sin  ω t       �     3 sin( ω t      �       π /3)      �      6.1 sin( ω t    �      0.436)        

y1 � 4

y2 � 3

60° or π /3 rads

 Figure 7.14           

y1 � 4

yR

y
2  �

 3

0
� 60°

 Figure 7.15           

y1 � 4

yR

�

y2 � 3

 Figure 7.16           

  Application: Determine 4 sin  ωt   �   3 sin( ωt   �     π/3) using the cosine 
and sine rules       

 From the phasor diagram of  Figure 7.15 , and using the cosine rule: 

 y R  2       �      4 2       �      3 2       �      2(4)(3) cos120º      �      37 and  yR � �37 6.083     

 Using the sine rule gives:

3 6 083
120sin
.

sinφ
�

°
   from which,  sin

sin
.

.φ � �
3 120

6 083
0 4271044

°
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and φ
π

� � � � ��sin . .1 0 4271044 25 28
180

25.28 0.441rad�
    

 Hence, by cosine and sine rules,
yR       �      y 1       �      y 2       �      6.083 sin ( ω t      �      0.441)        

  Application: Determine 4 sin  ω t      �      3 sin( ω t      �       π/3) using horizon-
tal and vertical components       

 From the phasors shown in  Figure 7.14 : 

 Total horizontal component      �      4 cos 0 °       �      3 cos 300 °       �      5.5 

 Total vertical component      �      4 sin 0 °     �      3 sin 300 °     �       �     2.598 

 By Pythagoras, the resultant,  iR � � �[ . . ]5 5 2 5982 2 6.083     

Phase angle, φ � ��tan
.
.

1 2 598
5 5

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ 25.28 0.441rad� or     ( φ being in 

the 4th quadrant) 

 Hence, by using horizontal and vertical components,

yR       �      y 1       �      y 2       �      6.083 sin( ω t      �      0.441)        

  Application: Determine 4 sin  ω t    �      3 sin( ω t      �       π/3) using complex 
numbers       

From the phasors shown in  Figure 7.14 , the resultant may be 
expressed in polar form (see page 209) 

 as: yR � � � � �4 0 3 60∠ ∠     

i.e. y j jR � � � �( ) ( . . )4 0 1 5 2 598     

� � �( j ) or5 5 2 598. . 6.083 25.28 A 6.083 0.441rad A∠ ∠� � �      

 Hence, by using complex numbers, the resultant is:

yR       �      y 1       �      y 2       �      6.083 sin ( ω t      �      0.441)   
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  7.7     The scalar product of two vectors         

 If  a      �       a 1  i       �      a 2  j       �      a 3  k and b      �       b 1  i       �      b 2  j       �      b 3  k  

  scalar or dot product:   a b• � � �a b a b a b1 1 2 2 3 3 (1)      

| | ( ) | | ( )a a a a b b b b� � � � � �1
2

2
2

3
2

1
2

2
2

3
2and (2)      

cos
| || | )

θ � �
� �

� � � �

a b a b a b a b

(a a a ) (b b b

•
a b

1 1 2 2 3 3

1
2

2
2

3
2

1
2

2
2

3
2

(3)                  

  Application: Find vector  a joining points P and Q where point P 
has co-ordinates (4, �1, 3) and point Q has co-ordinates (2, 5, 0) 
and find | |a    , the magnitude or norm of  a        

 Let O be the origin, i.e. its co-ordinates are (0, 0, 0) 

The position vector of P and Q are given by  OP    �       4 i      �      j       �      3 k and 
OQ    �       2 i       �      5 j  
 By the addition law of vectors  OP       �       PQ    �      OQ  
Hence a       �       PQ       �       OQ       �       OP  
i.e.      a       �       PQ       �      (2 i       �      5 j )      �      (4 i       �       j       �      3 k ) 

       �           �     2i     �      6j      �      3k  

 From equation (2), the  magnitude  or  norm  of  a , 

| | ( ) [( ) ( ) ]a 7� � � � � � � � � �a b c2 2 2 2 2 22 6 3 49
           

  Application: Determine: (i)  p  •  q (ii)  p       �       q (iii)  | |p q�     and 
(iv) | | | |p q�     if  p      �       2 i       �       j      �      k  and  q      �      i    �       3 j       �      2 k        

  (i)   From equation (1), if  p   �   a1  i     �   a2  j     �   a3  k and q   �   b1  i     �   b2  j     �   b3  k  
then        p  •  q      �       a 1 b 1       �      a 2 b 2       �      a 3 b 3   
When       p      �       2 i       �       j      �      k , a 1       �      2, a 2       �      1 and a 3       �       �     1  
 and when   q      �      i    �       3 j       �      2 k , b 1       �      1, b 2       �            �      3 and b 3       �      2  
Hence p  •  q      �       (2)(1)    �      (1)(      �      3)      �      (      �      1)(2)  
i.e.      p  •  q      �       �     3      

   (ii)    p       �       q      �       (2 i       �       j      �      k )      �      ( i      �       3 j       �      2 k )      �       3i    �      2j       �       k   
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  (iii)    | | | |p q� � � �3 2i j k     
 From equation (2), | |p q 14� � � � � �[ ( ) )3 2 12 2 2

        

  (iv)   From equation (2), | | | |p � � � � � � � �2 2 1 1 62 2 2i j k [ ( ) ]
    

  Similarly,  | | | | ( )q � � � � � � � �i j k3 2 3 2 142 2 2[1 ]
     

  Hence | | | |p q� � � �6 14 6.191,    correct to 3 decimal 
places             

  Application: Determine the angle between vectors  oa and ob  
when oa    �      i       �      2 j      �       3 k  and  ob      �       2 i      �      j       �      4 k        

 From equation (3),  cos
) )

θ �
� �

� � � �

a a b a b

(a a a (b b b
1 1 2 2 3 3

1
2

2
2

3
2

1
2

2
2

3
2

b
    

 Since  oa    �    i       �      2 j      �       3 k , a 1       �      1, a 2       �      2 and a 3       �            �      3 

 Since  ob    �       2 i      �      j       �      4 k , b 1       �      2, b 2       �            �      1 and b 3       �      4 

Thus, cos θ �
� � � � � � �

� � � � � �

�
�

( ) ( ) ( )

( ( ) ) ( ( ) )

1 2 2 1 3 4

1 2 3 2 1 4
12

14 21

2 2 2 2 2 2

�� �0 6999.
    

 i.e.                      θ       �      cos      �     1   θ       �      134.4º or 225.6º 

By sketching the position of the two vectors, it will be seen that 
225.6o  is not an acceptable answer. 

 Thus, the angle between the vectors  oa  and  ob ,  θ       �      134.4  °        

  Application: A constant force of  F      �       10 i       �      2 j      �      k Newton’s 
displaces an object from  A    �      i       �       j       �       k to B      �       2 i      �      j       �      3 k (in 
metres). Find the work done in Newton metres       

The work done is the product of the applied force and the distance 
moved in the direction of the force, 

i.e. work done      �      F   •   d  

From the sketch shown in  Figure 7.17   , AB    �      AO       �       OB    �      OB      �      OA  
 that is  AB    �       (2 i      �      j       �      3 k )      �      ( i       �       j       �       k )      �       i      �       2 j       �      2 k  
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B (2, �1, 3)

A (1, 1, 1)

O (0, 0, 0)  Figure 7.17           

 The work done is  F   •   d , that is  F   •   AB  in this case 

 i.e.  work done      �       (10 i       �      2 j      �      k )   •   ( i      �       2 j       �      2 k ) 

 From equation (1),    a  •  b      �       a 1 b 1       �      a 2 b 2       �      a 3 b 3  

 Hence,   work done      �       (10      �      1)      �      (2      �      ( � 2))      �      (( � 1)      �      2)      �       4 Nm  

  Direction cosines         

 Let  or    �       x i       �      y j       �      z k  and from equation (2),  

or � � �x y z2 2 2
    

If or makes angles of α, β and γ with the co-ordinate axes i, j and 
k respectively, then: 

cos cos

cos

α β

γ

�
� �

�
� �

�
� �

x

x y z

y

x y z

and
y

x y z

2 2 2 2 2 2

2 2 2

,

     
The values of cos α, cos β and cos γ are called the  direction 
cosines  of  or              

  Application:  Find the direction cosines of 3 i       �      2 j       �       k        

x y z2 2 2 2 2 23 2 1 14� � � � � �      

 The direction cosines are: cos 0.802α �
� �

�
x

x y z2 2 2

3

14
�
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cos 0.535β �
� �

�
y

x y z2 2 2

2

14
�

     

and                          cos 0.267γ �
� �

�
y

x y z2 2 2

1

14
�

       

  7.8     Vector products         

Let a      �       a 1  i       �      a 2  j       �      a 3  k and b      �       b 1  i       �      b 2  j       �      b 3  k  

 Vector or cross product:   a b

i j k

a a a

b b b
1 2 3

1 2 3

� � (4)      

| |a b [(a a)(b b) (a b) ]2� � �• • • (5)                  

  Application: Find (i)  a       �       b and (ii) | |a b�     for the vectors 
a      �      i       �      4 j      �       2 k  and  b      �       2 i      �      j       �      3 k        

   (i)   From equation (4),    

a b i j k

i j k

� �

i j k

1 4 2

2 1 3

4 2

1 3

1 2

2 3

1 4

2 1

12 2 3 4 1

�

�

�
�

�

�

�

� � � � � � �

� +

( ) ( ) ( 88)

� 10i 7j 9k� �      

  (ii)   From equation (5)  | |a b [(a a)(b b) (a b) ]2� � �• • •     

  Now  a   • a       �      (1)(1)    �      (4)(4)    �      ( � 2)( � 2)      �      21  

           b   • b       �      (2)(2)    �      (�1)(�1)    �      (  3)(  3)    �      14  

 and    a  •  b       �      (1)(2)    �      (4)( � 1)      �      ( � 2)(3)    �       �     8  

 Thus,  | |a b 15.17� � � � � �( )21 14 64 230                 

  Application: Find (a) ( p      �       2 q )      �       r      (b)  p       �      (2 r       �      3 q )
if p      �       4 i       �       j      �       2 k ,  q      �       3 i      �       2 j       �       k  and  r      �      i    �       2 k        
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  (a)   ( p      �       2 q )      �       r      �       [4 i       �       j      �       2 k      �       2(3 i      �       2 j       �       k )]      �      ( i      �       2 k )    

� � � � � �

� � �

�

�
�

�
�

( ( )

i j k

from equation (4)

2 5 4 2

2 5 4

1 0 2

5 4

0 2

i j k) i k

i jj k

i j

� �

�
�

�

� � � � � � �

2 4

1 2

2 5

1 0

10 0 4 4 0 5( ) ( ) (k )      

   i.e.  ( p      �       2 q )      �       r      �       �     10i      �      8j      �      5k      

  (b)   (2 r       �      3 q )       �       (2 i      �       4 k )      �      (9 i      �       6 j       �      3 k )    

� �

�

� � � � � � �

�

i j k

( ) ( ) ( )2 0 4

9 6 3

0 24 6 36 12 0i j k

24i 42j 12k� � �      

        Hence,  p       �      (2 r       �      3 q )      �      (4 i       �       j      �       2 k )      �      ( � 24 i      �       42 j      �       12 k )       

� �

� � �

� � � � � � � � �

�

i j k

( ) ( ) ( )

4 1 2

24 42 12

12 84 48 48 168 24i j k

96i 96j� � � 1144k 48(2i 2j 3k)or � � �            

  Application: Find the moment and the magnitude of the 
moment of a force of ( i       �      2 j      �       3 k) Newton’s about point B hav-
ing co-ordinates (0, 1, 1), when the force acts on a line through 
A whose co-ordinates are (1, 3, 4)       

The moment M about point B of a force vector  F that has a position 
vector of r  from A is given by: 

M r F� �      

  r  is the vector from B to A, i.e.  r      �      BA  
 But  BA    �      BO       �       OA    �      OA     �      OB
i.e. r      �       ( i       �      3 j       �      4 k )      �      ( j       �       k )      �       i       �      2 j       �      3 k  
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  Moment ,  M      �      r       �       F      �       ( i       �      2 j       �      3 k )      �      ( i       �      2 j      �       3 k ) 

�

�

� � � � � � � � �

i j k

) ( ) )1 2 3

1 2 3

6 6 3 3 2 2i j k 12i 6jNm( ( � �

     

 The magnitude of  M ,  | | | |M � �r F [(r r)(F F) (r F) ]2� �• • •     

  r  •  r      �       (1)(1)    �      (2)(2)    �      (3)(3)       �      14
  F  •  F      �       (1)(1)    �      (2)(2)    �      ( � 3)( � 3)       �    14 
  r  •  F      �       (1)(1)    �      (2)(2)    �      (3)( � 3)       �             �     4 

 i.e.  magnitude ,  | |M � � � � �

�

[ ( ) ] Nm14 14 4 1802

13.42 Nm           

  Application: The axis of a circular cylinder coincides with the z-axis 
and it rotates with an angular velocity of (2 i      �       5 j       �      7 k )     rad/s. 
Determine the tangential velocity at a point P on the cylinder, 
whose co-ordinates are ( j       �      3 k) metres, and the magnitude of 
the tangential velocity       

The velocity v of point P on a body rotating with angular velocity  ω  
about a fixed axis is given by: 

  v      �       ω       �       r  where r is the point on vector P. 

 Thus,  velocity, v      �       (2 i       �      5 j       �      7 k )      �      ( j       �      3 k ) 

� � � � � � � � �

�

i j k

( ) ( ) ( )2 5 7

0 1 3

15 7 6 0 2 0i j k

22i 6j 2k) m/s(� � �      

 The magnitude of  v ,  | |v � [( )(r r) (r ) ]2ω ω ω• • •�     

  ω   •   ω       �      (2)(2)    �      ( � 5)( � 5)      �      (7)(7)       �       78 
  r  •  r       �      (0)(0)    �      (1)(1)    �      (3)(3)       �       10 

  ω   •  r       �      (2)(0)    �      ( � 5)(1)    �      (7)(3)       �       16 

 Hence, magnitude,  | | ( )v � � � �

�

78 10 16 5242 m/s

22.89 m/s         



               8     Complex Numbers   

  8.1     General formulae         

 z      �      a    �      jb      �      r(cos  θ       �      j sin  θ )      �      r �  θ       �      r e jθ  where j 2       �       �     1 

 Modulus,  r | z | a b� � �( )2 2     Argument,  θ � � �arg z tan
b
a

1     

 Addition: (a      �      jb)    �      (c      �      jd)      �      (a      �      c)      �      j(b      �      d) 

 Subtraction: (a      �      jb)      �      (c      �      jd)      �      (a      �      c)      �      j(b      �      d) 

 Complex equations: If (m      �      jn)      �      (p      �      jq) then m      �      p and n      �      q 

 Multiplication: z 1 z 2       �      r 1 r 2  � ( θ  1       �       θ  2 ) 

 Division:  
z
z

r
r

( )
2 2

1 1
1 2� �∠ θ θ

    
 De Moivre’s theorem: [r �  θ ] n       �      rn  � n θ       �      rn (cos n θ       �      j sin n θ )        

  8.2     Cartesian form         

 ( � 1    �      j2) and (3 – j4) are examples of  Cartesian (or rectangular ) 
complex numbers. They are each of the form a      �      jb, ‘ a ’  being 
termed the real part  and jb the  imaginary part .             

  Application:  Solve the quadratic equation 2x 2       �      3x      �      5    �      0       

 Using the quadratic formula, 

x
[( ) ( )( )]

( )

( ) j

�
� 
 �

�
� 
 �

�
� 
 �

�
� 


3 3 4 2 5
2 2

3 31

4

3 1 31

4
3 31

4

2

    

Hence, x
3
4

j
31
4

� � �     or       �     0.750  �  j1.392, correct to 3 decimal 
places.       
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(2   �   j3)   �   (3   �   j4)   �   (�5   �   j)   �   2   �   j3   �   3   �   j4   �   5   �    j    
�   (2   �   3 �  5)   �   j(3   �   4 �  1)   �     10     �     j2        

  Application: Determine (2      �      j3)      �      (3      �      j4)      �      ( � 5    �      j)       

  Application: Determine (3      �      j2)(4    �      j5)       

 (3      �      j2)(4    �      j5)      �      12      �      j15      �      j8      �      j 2 10 
       �      (12      �       � 10)      �      j(� 15      �      8) where  j 2       �       �     1 
       �       22       �       j7        

  Application:  Solve the complex equation: 

(1    �      j2)( � 2    �      j3)      �      a    �      jb       

 (1      �      j2)( � 2    �      j3)      �      a    �      jb 
i.e. � 2    �      j3      �      j4      �      j 2  6      �      a    �      jb 
Hence,        4      �      j7     �      a    �      jb 

 Equating real and imaginary terms gives:  a       �       4  and  b      �       �     7        

 Since (x      �      j2y)    �      (y      �      j3x)    �      2    �      j3 

 then (x      �      y)     �      j( � 2y      �      3x)      �      2    �      j3 

Equating real and imaginary parts gives: x y� � 2 (1)      

and x y� � �3 2 3 (2)      

Multiplying equation ( ) by  gives: x y1 2 2 2 4� � (3)      

 Adding equations (2) and (3) gives:               � x    �      7 i.e. x      �       � 7  

 From equation (1),  y       �       9 , which may be checked in equation (2).       

  Application:  Solve the equation (x      �      j2y)    �      (y      �      j3x)      �      2    �      j3      

  Application: Determine (3      �      j4)(3    �      j4)       

 (3      �      j4)(3    �      j4)      �      9    �      j12      �      j12      �      j 2 16      �      9    �      16      �       25  

 [(3      �      j4) is called the complex conjugate of (3      �      j4); whenever a 
complex number is multiplied by its conjugate, a real number results. 
In general, (a      �      jb)(a    �      jb) may be evaluated  ‘ on sight ’  as a 2       �      b 2 ]       
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2 5
3 4

2 5
3 4

3 4
3 4

6 8 15 20
3 4

14 23
2

2

2 2

�

�
�

�

�
�

�

�
�

� � �

�

�
� �

j
j

j
j

( j )
( j )

j j j

j
55

�
�

� � �
14

25
j

23
25

0.56 j0.92or
   

  Application: Determine  2 5
3 4

�

�

j
j

          

          Application: If Z 1       �      1    �      j3 and Z 2       �       � 2    �      j5 determine  
Z Z

Z Z
1 2

1 2�
    in (a      �      jb) form       

Z Z
Z Z

1 2

1 2�
�

� � �

� � � �
�

� � � �

� � �

(1 j3)( 2 j5)
(1 j3) ( 2 j5)

j j j
j

2 5 6 15
1 3 2

2

jj

j j
j

j
j

j
j

j
j

5

2 5 6 15
1 2

13 11
1 2

13 11
1 2

1 2
1 2

1

�
� � � �

� �
�

�

� �

�
�

� �
�

� �

� �

�
� 33 26 11 22

1 2

9 37
5

2

2 2

� � �

�

�
�

�

j j j

j

or
9
5

j
37
5

1.8 j7.4� �

           

  Application: Show the following complex numbers on an 
Argand diagram (3      �      j2), ( � 2    �      j4), ( � 3    �      j5) and (1      �      j3)       

In Figure 8.1   , the point A represents the complex number (3      �      j2) 
and is obtained by plotting the co-ordinates (3, j2) as in graphical 
work. The Argand points B, C and D represent the complex numbers 
(� 2    �      j4), ( � 3    �      j5) and (1      �      j3) respectively.  
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  8.3     Polar form         

�3 �2 �1 0 1 2 3 Real axis

�j2

�j3

�j4

Imaginary
axis

j4

j3

j2

j

�j

�j5

A

B

C

D

 Figure 8.1           

A number written in the form Z      �      r �  θ is known as the polar
form  of a complex number.             

  Application: Express  (a) 3   �   j4 and (b) �3   �   j4 in polar form       

  (a)   3    �      j4 is shown in  Figure 8.2    and lies in the first quadrant. 

 Modulus,  r � � �3 4 52 2   

and   argument  θ � ��tan .1 4
3

53 13°      

Hence,     3      �      j4      �      5 ∠ 53.13°        

  (b)    �     3    �      j4 is shown in  Figure 8.2  and lies in the second quadrant. 

 Modulus, r      �      5 and angle  α       �      53.13°, from part (a).  

 Argument    �      180 o       �      53.13°    �      126.87° (i.e. the argument must 
be measured from the positive real axis)  

 Hence  �  3      �      j4      �      5 ∠ 126.87°        
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Similarly it may be shown that (� 3    �      j4)       �       5∠ 233.13° or
5∠      �     126.87°, (by convention the principal value is normally 
used, i.e. the numerically least value, such that �  π       	       θ       	       π), and 
(3      �      j4)       �       5∠      �      53.13°       

Real axis

7
145°

α

x

jy

 Figure 8.3           

1 2�1�2 3�3 Real axis

Imaginary
axis

θ
αα

α

(�3 � j4)

(�3 � j4)

(3 � j4)

(3 � j4)

j4

�4

�j3

�j2

�j

j3

j2

j

 Figure 8.2           

  Application: Change 7 �      �     145° into a      �      jb form:       

 7 �      �     145° is shown in  Figure 8.3    and lies in the third quadrant. 

  Application: Determine 3 � 16°      �      5 �      �     44°      �      2 �80° in polar 
form       

 3 � 16°      �      5 �  �     44°      �      2 � 80°      �      (3      �      5  �  2)  � [16°      �      ( � 44°)      �      80]°    
�       30  ∠  52°       

  Application: Determine  16 75
2 15

∠
∠

°
°

    in polar form       

  7∠      �     145°    �      7 cos( � 145 ° )    �      j7 sin( � 145 ° )    �       �      5.734    �      j4.015        
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16 75
2 15

16
2

75 15
∠
∠

∠
°

°
° °� � �( ) 8 60∠ °

           

  Application: Evaluate, in polar form, 2∠30°   �    5∠     �     45°    �   4∠120°       

 2 � 30°         �      2(cos 30°      �      j sin 30°)      �      2 cos 30°      �      j2 sin 30°      
   �      1.732    �      j1.000 

 5 �       �      45°      �      5(cos(      �      45°)    �      j sin(      �      45°))    �      5 cos(      �      45°)      �      j5 sin(      �      45°)     
�      3.536       �       j3.536 

 4 � 120°     �      4(cos 120°      �      j sin 120°)      �      4 cos 120°      �      j4 sin 120°      
  �            �      2.000    �      j3.464 

 Hence, 2 � 30°      �      5 �      �     45°      �      4 � 120°   
   �      (1.732    �      j1.000)    �      (3.536    �      j3.536)    �      ( � 2.000    �      j3.464) 
       �      7.268    �      j6.000, which lies in the fourth quadrant 

       �       7 268 6 0002 2. .�     � tan      �     1   
�6 000
7 268

.
.

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟     

        �      9.425 ∠      �     39.54°   

  8.4     Applications of complex numbers         

There are several applications of complex numbers in science and 
engineering, in particular in electrical alternating current theory 
and in mechanical vector analysis.             

  Application: Determine the value of current I and its phase rela-
tive to the 240    V supply for the parallel circuit shown in  Figure 8.4          

 

240 V, 50 Hz

R1 � 4 Ω

R2 � 10 Ω

R3 � 12 Ω XC � 5 Ω

XL � 3 Ω

l

 Figure 8.4           
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Current,  I
V
Z

�    . Impedance Z for the three-branch parallel circuit is 
given by: 

1 1 1 1

4 3 10 12 5

1 2 3

1 2 3

Z Z Z Z
,

where Z j , Z  and Z j

� � �

� � � � �Ω Ω Ω      

 Admittance, Y
Z j j

j
j

j

j

1
1

2 2

1 1
4 3

1
4 3

4 3
4 3

4 3
4 3

0 160 0 120

� �
�

�
�

�
�

�
�

�

�

� �. . siemens     

 Admittance, Y
Z2

2

1 1
10

0 10� � � . siemens
    

 Admittance, Y
Z j j

j
j

j
3

3
2 2

1 1
12 5

1
12 5

12 5
12 5

12 5
12 5

� �
�

�
�

�
�

�
�

�

�     
       �      0.0710    �      j0.0296 siemens 

 Total admittance,

Y      �      Y 1       �      Y 2       �      Y 3  

       �      (0.160    �      j0.120)    �      (0.10)    �      (0.0710    �      j0.0296) 

       �      0.331    �      j0.0904    �      0.343 �      �     15.28° siemens 

 Current,  I
V
Z

�        �      VY      �      (240 � 0°)(0.343 �      �     15.28°)    

�       82.32∠    �      15.28°A        

  Application: Determine the magnitude and direction of the 
resultant of the three coplanar forces shown in  Figure 8.5          

45°

120°

210°

10 N8 N

15 N  Figure 8.5           
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 Force A, f A     �      10 � 45° N, force B, f B       �      8 � 120° N and force C, 
fC       �      15 � 210° N 

 The resultant force      
�      f A       �      f B       �      f C  
      �      10� 45°      �      8 � 120°    �      15 � 210° 
      �      10(cos 45 o       �      j sin 45 o )      �      8(cos 120 o       �      j sin 120 o )      

�      15(cos 210 o       �      j sin 210 o ) 
      �      (7.071    �      j7.071)    �      ( � 4.00    �      j6.928)    �      ( � 12.99    �      j7.50) 
      �       �     9.919    �      j6.499 

 Magnitude of resultant force � � � �( )9 919 6 4992 2. . 11.86 N
    

 Direction of resultant force �
�

��tan 1 6 499
9 919
.
.

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ 146.77°

    
      (since    �     9.919    �      j6.499 lies in the second quadrant). 

  8.5     De Moivre’s theorem         

  De Moivre’s theorem states:     [r∠  θ ]  n        �      r  n  ∠ n θ  

The theorem is used to determine powers and roots of complex 
numbers.

In general , when finding the n th root of a complex number, 
there are n solutions. For example, there are three solutions to a 
cube root, five solutions to a fifth root, and so on. In the solutions 
to the roots of a complex number, the modulus, r, is always the 
same, but the arguments, θ, are different. Arguments are symmet-
rically spaced on an Argand diagram and are  360� n     apart, where 
n is the number of the roots required. Thus if one of the solutions 
to the cube root of a complex number is, say, 5 �20°, the other 
two roots are symmetrically spaced  360 3�    , i.e. 120° from this 
root, and the three roots are 5 �20°, 5 �140° and 5 �260°.            

  Application: Determine [3 � 20°]       4

 [3 � 20°]4      �      3 4� (4  �  20°)    �       81∠ 80° by de Moivre’s theorem. 
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  Application: Determine (�2      �      j3)6 in polar form 

 ( � 2    �      j3)      �       ( ) tan� �
�

�2 3
3
2

2 2 1∠
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
      

     �     13    �123.69° since   �     2   �   j3 lies in the second quadrant 

 ( � 2    �      j3) 6       �      [ 13     � 123.69°] 6

       �      ( 13    ) 6� (6      �      123.69°) by De Moivre’s theorem 

       �      2197 � 742.14° 

       �      2197 � 382.14°
 (since 742.14 ° � 742.14°    �      360°    �      382.14°) 

     �     2197∠22.14°
 (since 382.14° � 382.14°   �   360°   �   22.14°)      

  Application: Determine the two square roots of the complex 
number (5      �      j12) in polar and Cartesian forms       

 (5      �      j12)    �       5 12
12
5

13 67 382 2 1� � ��∠ ∠tan
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ .    

When determining square roots two solutions result. To obtain 
the second solution one way is to express 13 �67.38° also as 
13� (67.38°    �      360°), i.e. 13 �427.38°. When the angle is divided by 
2 an angle less than 360° is obtained. 

 Hence 5 12 13 67 38 13 427 382 2� � ∠ ∠. .°  and °     

       �      [13 � 67.38°] 1 2/     and  [13 � 427.38°] 1 2/     

       �       13
1
2

67 38 13
1
2

427 381 2 1 2/ /and ∠ ∠� � � �. .
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟   

       �       13     � 33.69° and  13     � 213.69°    

 �      3.61 � 33.69° and 3.61 � 213.69° 

  Thus, in polar form, the two roots are 3.61 ∠ 33.69° and
3.61∠      �     146.31°

  13    � 33.69°       �       13     (cos 33.69°      �      j sin 33.69° )      �      3.0      �      j2.0 

  13    �213.69°   �     13     (cos 213.69°   �   j sin 213.69°)  �     �     3.0   �   j2.0 

  Thus, in Cartesian form, the two roots are  � (3.0    �      j2.0)  
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Imaginary axis

3.61

3.61

�3

�j2

j2

33.69°213.69°

3 Real axis

 Figure 8.6           

From the Argand diagram shown in  Figure 8.6    the two roots are 
seen to be 180° apart, which is always true when finding square 
roots of complex numbers.       

 ( � 14      �      j3)      �       205     � 167.905° 

 ( � 14      �      j3) �     2/5       �       205
2
5

167 905
2 5�

� � �
/

∠
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥.        

�      0.3449 �      �     67.16° 

 There are five roots to this complex number, (x      �     2/5       �       
1
2 5x /

         �       
1

25 x
   ) 

The roots are symmetrically displaced from one another  
360

5
°

   , 
i.e. 72° apart around an Argand diagram. 

Thus, the required roots are 0.3449 ∠      �     67.16°, 0.3449 ∠ 4.84°, 
0.3449∠ 76.84°, 0.3449∠  148.84° and 0.3449∠  220.84°   

  8.6     Exponential form         

  Application:  Express the roots of ( � 14      �      j3)      �     2/5  in polar form       

 There are therefore three ways of expressing a complex number: 

  1.   z    �      (a    �      jb), called  Cartesian  or  rectangular form ,  
  2.   z    �      r(cos  θ       �      j sin  θ ) or r �  θ , called  polar form , and  
  3.   z    �      r e jθ  called  exponential form .    

The exponential form is obtained from the polar form. For 
example, 4 �30° becomes 4e jπ /6 in exponential form. (Note that 
in r e jθ ,  θ  must be in radians).             
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 (3      �      j4)      �       5∠  �      53.13 °      �       5∠  �      0.927  in polar form 
       �       5e  �     j0.927  in exponential form       

  Application: Express (3      �      j4) in polar and exponential forms       

  Application: Express 7.2e j1.5  in rectangular form       

 7.2e j1.5       �      7.2 � 1.5     rad ( � 7.2 � 85.944°) in polar form 
       �      7.2 cos 1.5   �      j7.2 sin 1.5 
       �       (0.509       �       j7.182)  in rectangular form       

  Application: If z      �      2e 1     �     j π /3  express z in Cartesian form       

 z      �      2e 1�     j π /3       �      (2e 1 )(e jπ /3 ) by the laws of indices 

      �      (2e 1 ) �  
π
3

    (or 2e � 60°) in polar form 

      �   2e cos sin
π π
3 3

� j
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟        �     (2.718     �     j4.708) in Cartesian

 form       

  Application: If z      �      4e j1.3  find ln z in polar form       

 If z      �      4e j1.3  then ln z      �      ln(4e j1.3 ) 

       �       ln 4      �      j1.3  (or  1.386    �      j1.300 ) in Cartesian
form (by the laws of logarithms) 

       �       1.90∠ 43.17° or 1.90∠ 0.753  in polar form.       

  Application: Determine ln(3      �      j4)       

 ln(3       �       j4)      �      ln [5 � 0.927]    �      ln[5e j0.927 ]      �      ln 5       �       ln(e j0.927 ) 

       �      ln 5      �      j0.927    �      1.609    �      j0.927 

       �       1.857∠ 29.95° or 1.857 ∠ 0.523      



     9     Matrices and Determinants   

  9.1      Addition, subtraction and multiplication 
of matrices         

 If  A
a b

c d
and B

e f

f h
� �

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟     

 then A B
a e b f

c g d h
� �

� �

� �

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

   and A B
a e b f

c g d h
� �

� �

� �

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
    

 and  A B
ae bg af bh

ce dg cf dh
� �

� �

� �

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
                

  Application: Determine  
2 1

7 4

3 0

7 4

�

�
�

�

�

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

          

2 1

7 4

3 0

7 4

2 3 1 0

7 7 4 4

�

�
�

�

�
�

� � �

� �

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

+
+ +
( )

( )

⎛⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

�
� �1 1

0 0
           

  Application: Determine  
2 1

7 4

3 0

7 4

�

�
�

�

�

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

          

2 1

7 4

3 0

7 4

2 3 1 0

7 7 4 4

�

�
�

�

�
�

� � � �

� � � �

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

( )

( )

⎛⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

�
5 1

14 8

�

�
           

  Application:  

If A and B determine A B�
�

�
�

�

�
�

3 0

7 4

2 1

7 4
2 3

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
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2 2
3 0

7 4
3

2 1

7 4

6 0

14 8
A 3B� �

�

�
�

�

�
�

�

�

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜

�
�

�

�
� � � �

� � � �

6 3

21 12

6 6 0 3

14 21 8 12

( )

( )⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

�
�

�

12 3

35 20
                 

  Application: If  A �
�

2 3

1 4

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟     and B �

�

�

5 7

3 4

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟     determine A   �    B       

A B� �
� � � � � � � �

� � �� � � � �� �

[ ] [ ]

[ ] [ ]

2 5 3 3 2 7 3 4

1 5 4 3 1 7 4 4

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

��
�

�

19 26

7 9

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
           

  Application: Determine 

3 4 0

2 6 3

7 4 1

2

5

1

� �

�

�

�

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟
          

3 4 0

2 6 3

7 4 1

2

5

1

� �

�

�

�

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

×
− × −

−
�

� � � � �

� � � � �

� � � � � �

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) (

3 2 4 5 0 1

2 2 6 5 3 1

7 2 4 5 1 11)

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟
�

26

29

7�
      

  9.2      The determinant and inverse of a 
2 by 2 matrix         

 If  A
a b

c d
then�

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

    

 the determinant of A,
a b

c d
       
�       a      �      d    �      b    �      c  

 and the  inverse of A , A
ad bc

d b

c a
1� �

�

�

�

1
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3 4

1 6
3 6 4 1 18 4

−
� � � � � � � � �( ) ( ) ( ) 22

           

  Application : Find the determinant of  
3 4

1 6

�⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

          

  Application: Find the inverse of  
3 4

1 6

�⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
          

 Inverse of matrix  
3 4

1 6
1

18 4

6 4

1 3

�
�

� � �
�

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
1

22

6 4

1 3�
⎟⎟⎟⎟⎟
          

  Application: If  A determine A A�
�

� �
3 4

1 6
1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

          

 From above: A A 1� �
�

�
�

�
�

�
3 4

1 6
1

22

6 4

1 3

1
22

3 4

1 6

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

�
�

6 4

1 3     

�
� �

� �

� �

1
22

18 4 12 12

6 6 4 18

1
22

22 0

0 22

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1 0

0 11

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

     

  
1 0

0 1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟     is called the unit matrix; such a matrix has all leading diago-

nal elements equal to 1 and all other elements equal to 0  
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  9.3 The determinant of a 3 by 3 matrix         

   (i)   The minor of an element of a 3 by 3 matrix is the value of 
the 2 by 2 determinant obtained by covering up the row and 
column containing that element.    

Thus for the matrix

1 2 3

4 5 6

7 8 9

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟
    the minor of element 4 is 

obtained by covering up the row (4 5 6) and the column  

1

4

7

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟
   , 

leaving the 2 by 2 determinant
2 3

8 9     i.e. the minor of 

 element 4 is (2      �      9)      �      (3      �      8)      �       � 6 

   (ii)   The sign of a minor depends on its position within the matrix, 

the sign pattern being  
� � �

� � �

� � �

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

       

Thus the signed-minor of element 4 in the matrix

1 2 3

4 5 6

7 8 9

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟
    

is �
2 3

8 9
       �       �     ( � 6)      �      6 

The signed-minor of an element is called the cofactor of the 
element.

  (iii)    The value of a 3 by 3 determinant is the sum of the prod-
ucts of the elements and their cofactors of any row or 
any column of the corresponding 3 by 3 matrix.     

There are thus six different ways of evaluating a 3  � 3 
d eterminant – and all should give the same value. 

 Using the first row: 

a b c

a b c

a b c

a
b c

b c
b

a c

a c
c

a b

a b

1 1 1

2 2 2

3 3 3

1
2 2

3 3
1

2 2

3 3
1

2 2

3 3
� � �
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  (a)   Using the first row: 

1 4 3

5 2 6

1 4 2

1
2 6

4 2
4

5 6

1 2
3

5 2

1 4

�

�

� �

�
�

�
�

�
� �

�

� �
( )

       
� � � � � � �

� � � �

( ) ( ) ( )4 24 4 10 6 3 20 2

28 16 66 �22      
  (b)   Using the second column:

1 4 3

5 2 6

1 4 2

4
5 6

1 2
2

1 3

1 2
4

1 3

5 6

�

�

� �

� �
�

�
�

�

�
� �

�

�
( )

       
� � � � � � � �

� � � �

4 10 6 2 2 3 4 6 15

16 2 36

( ) ( ) ( )

�22       

  9.4     The inverse of a 3 by 3 matrix         

  Application: Evaluate  
1 4 3

5 2 6

1 4 2

�

�

� �

    using (a) the first row, and 

(b) the second column       

 If    A

a b c

a b c

a b c

�

1 1 1

2 2 2

3 3 3

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟
    then the  inverse of matrix A , 

A
adj A

A
1� �

| |
where adj A is the adjoint

     
 The  adjoint  of a matrix A is obtained by: 

 (i)   forming a matrix B of the cofactors of A, and  
  (ii)    transposing matrix B to give B T, where B T is the matrix 

obtained by writing the rows of B as the columns of B T. Then 
adj A      �      B T                 
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  Inverse
int

determinant
�

adjo     

  

The matrix of cofactors is

�

� �

� �

17 9 15

23 13 21

18 10 16

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟
    

 The transpose of the matrix of cofactors

(i.e. the adjoint) is 

�

� �

� �

17 23 18

9 13 10

15 21 16

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
    

  

The determinant of 

1 5 2

3 1 4

3 6 7

�

�

� �

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟
       

�      1(7 � 24)      �      5( � 21      �      12)      �      2(18    �      3) using the first row 

                      �       �     17     �      45      �      30      �       �     2 

  

Hence the inverse of 

1 5 2

3 1 4

3 6 7

1

�

�

� �

�

�

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

77 23 18

9 13 10

15 21 16

2

� �

� �

�

�

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

8.5 11.5 9

4.

� �

� 55 6.5 5

7.5 10.5 8�

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟
     

  Application:  Find the inverse of  

1 5 2

3 1 4

3 6 7

�

�

� �

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟
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  9.5      Solution of simultaneous equations 
by matrices 

  Two unknowns         

The procedure for solving linear simultaneous equations in  two
unknowns using matrices  is: 

 (i)   write the equations in the form    

                a 1 x    �      b 1 y      �      c 1  
                a 2 x    �      b 2 y      �      c 2  

   (ii)   write the matrix equation corresponding to these equations,    

 i.e.    
        

a b

a b

x

y

c

c
1 1

2 2

1

2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

� �

    

  (iii)   determine the inverse matrix of  
a b

a b
1

2

1

2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟        

i.e.
1

a b b a

b b

a a
2

1 2 1 2

1

2 1�

�

�

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

    

  (iv)   multiply each side of (ii) by the inverse matrix, and  

   (v)   solve for x and y by equating corresponding elements                

  Applications:  Use matrices to solve the simultaneous equations: 

3x y 7 0� � �5 (1)      

4x 3y 9 0� � �1 (2)            

   (i)   Writing the equations in the a 1 x    �      b 1 y      �      c form gives:    

3x y 7

4x 3y 9

� �

� �

5

1      

  (ii)   The matrix equation is 
3 5

4 3

7

19�
� �

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

x

y
     



224 Engineering Mathematics Pocket Book

  (iii)   The inverse of matrix 
3 5

4 3�

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

   is: 

1
3 3 5 4

3 5

4 3

3
29

5
29

4
29

3
29

� � � �

� �

�
�

�( )

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
     

 (iv)   Multiplying each side of (ii) by (iii) and remembering that 
A      �      A     �     1      �      I, the unit matrix, gives:    

1 0

0 1

3
29

5
29

4
29

3
29

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

x

y
�

�

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

�
7

19

     

 Thus           
x

y

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

�

�
21
29

95
29

28
29

57
29

  i.e.
x

y

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

�
�

4

1

     
   (v)   By comparing corresponding elements:  x      �      4 and y      �       �     1,  

which can be checked in the original equations.     

  Three unknowns 

The procedure for solving linear simultaneous equations in  three 
unknowns using matrices  is:       

   (i)   write the equations in the form    

a x b y c z d
a x b y c z d
a x b y c z d

1 1 1 1

2 2 2 2

3 3 3 3

� � �

� � �

� � �      
  (ii)   write the matrix equation corresponding to these equations, 

i.e.    
a b c

a b c

a b c

x

y

z

1 1 1

2 2 2

3 3 3

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟� ⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟
�

d

d

d

1

2

3      
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 (i)   Writing the equations in the a 1 x    �      b 1 y    �      c 1 z    �      d 1  form gives:    

x y z

x y z

x y z

� � �

� � �

� � �

4

2 3 4 33

3 2 2 2      

   (ii)   The matrix equation is: 
1 1 1

2 3 4

3 2 2

�

� �

�

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

x

y

z

��

4

33

2

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟
     

  (iii)   The inverse matrix of A �

1 1 1

2 3 4

3 2 2

−
− −

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟
    is given by  A� �1 adj A

A| |        

The adjoint of A is the transpose of the matrix of the cofactors of 

the elements. The matrix of cofactors is 
14 16 5

0 5 5

7 2 5

�

� �

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟
    and the

transpose of this matrix gives: adj A � � �

�

14 0 7

16 5 2

5 5 5

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟
    

  (iii)   determine the inverse matrix of 

a b c

a b c

a b c

1 1 1

2 2 2

3 3 3

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟
       

   (iv)   multiply each side of (ii) by the inverse matrix, and  

   (v)   solve for x, y and z by equating the corresponding elements                

  Application:  Use matrices to solve the simultaneous equations: 

x y z 0� � � �4 (1)      

2 3 4 33 0x y z� � � � (2)      

3 2 2 0x y z 2� � � � (3)            
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The determinant of A, i.e. the sum of the products of elements and 
their cofactors, using a first row expansion is 

1
3 4

2 2
1

2 4

3 2
1

2 3

3 2
1 14 1 16 1 5

35

�

� �
�

�
�

�

�
� � � � � � �

�

( ) ( ) ( )

     

 Hence the inverse of A, A� � � �

�

1 1
35

14 0 7

16 5 2

5 5 5

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟
    

  (iv)   Multiplying each side of (ii) by (iii), and remembering that 
A � A      �     1       �      I, the unit matrix, gives:    

1 0 0

0 1 0

0 0 1

1
3

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟
� �

x

y

z
55

14 0 7

16 5 2

5 5 5

4

33

2

� �

�

�

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
     

x

y

z

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟
−�

� � � � �

� � �
1

35

14 4 0 33 7 2

16 4 5

( ) ( ) ( )

( ) ( 333 2 2

5 4 5 33 5 2

1
35

70

) ( )

( ) ( ) ( )

� � �

� � � � � �

� �

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟
1105

175

2

3

5

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟
� �

     

  (v)   By comparing corresponding elements,  x      �   2, y  � �3, z      �    5 , 
which can be checked in the original equations.      

  9.6      Solution of simultaneous equations by 
determinants

  Two unknowns         

When solving linear simultaneous equations in two unknowns 
using determinants:  

  (i)   write the equations in the form    

a x b y c

a x b y c

1 1 1

2 2 2

0

0

� � �

� � �      
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 Following the above procedure: 

   (i) 
   
3x 4y 12 0

7x 5y 6.5 0

� � �

� � �      

  (ii) 

  

x y
� �

�

�
�

�

�

�
�4 12

5 6 5

3 12

7 6 5

1
3 4

7 5. .
       

i.e.
x y

( )( . ) ( )( ) ( )( . ) ( )( )

( )( ) ( )( )

� � � �
�

�

� � �

�
� �

4 6 5 12 5 3 6 5 12 7
1

3 5 4 7     

 i.e. 
x y

26 60 19 5 84
1

15 28�
�

�

� �
�

�.     

i.e.
x y

86 64 5
1

43
�

�
�

.     

  (ii)   the solution is given by:  
x

D
y

D
1
Dx y

�
�

�        

where  D
b c

b cx
1 1

2 2
�     i.e. the determinant of the coefficients 

left when the x-column is covered up, 

  D
a c

a cy
1 1

2 2
�     i.e. the determinant of the coefficients left 

when the y-column is covered up, 

and D
a b

a b
�

1 1

2 2
    i.e. the determinant of the coefficients left 

when the constants-column is covered up             

  Application: Solve the following simultaneous equations using 
determinants:

3 4 12

7 5 6 5

x y

x y .

� �

� �            
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Since then

x
86

1
43

86
43

� � �x 2
        

  
and since then

�
� � � �

y
64 5

1
43.

y 1.5
64.5
43

�
     

  Three unknowns         

When solving simultaneous equations in three unknowns using 
determinants : 
   (i)   write the equations in the form    

a x b y c z d
a x b y c z d
a x b y c z d

1 1 1 1

2 2 2 2

3 3 3 3

0
0
0

� � � �

� � � �

� � � �      

  (ii)   the solution is given by:  
x

D
y

D
z

D
1

Dx y z

�
�

� �
�

       

where  D

b c d

b c d

b c d
x

1 1 1

2 2 2

3 3 3

�     i.e. the determinant of the coeffi-

cients obtained by covering up the             x-column 

  D

a c d

a c d

a c d
y

1 1 1

2 2 2

3 3 3

�     i.e. the determinant of the coefficients 

obtained by covering up the                         y-column 

  D

a b d

a b d

a b d
z

1 1 1

2 2 2

3 3 3

�     i.e. the determinant of the coefficients 

obtained by covering up the       z-column 

and D

a b c

a b c

a b c

1 1

2 2 2

3 3 3

�

1

    i.e. the determinant of the coefficients 

obtained by covering up the   constants-column             
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 Following the above procedure: 

  (i) 

   

2 3 4 26 0

5 3 87 0

7 2 6 12 0

1 2 3

1 2 3

1 2 3

I I I

I I I

I I I

� � � �

� � � �

� � � � �      

  (ii)   The solution is given by:  
I

D
I

D
I
D DI I

1 2 3

1 2 3

1
�

�
� �

�

I

   , where    

DI

( ) ( ) ( )

1

3 4 26

5 3 87

2 6 12

3
3 87

6 12
4

5 87

2 12
26

5 3

2 6

�

� �

� �

�

�
�

�
� �

�

�
� �

� �

�� � � � � � �3 486 4 114 26 24( ) ( ) ( ) �1290      

DI

( )( ) ( )( ) ( )(

2

2 4 26

1 3 87

7 6 12

2 36 522 4 12 609 26 6 21

�

� �

�

� �

� � � � � � � � � ))

� � � � �972 2388 390 1806      

DI

( )( ) ( )( ) ( )( )

3

2 3 26

1 5 87

7 2 12

2 60 174 3 12 609 26 2 35

�

�

�

� �

� � � � � � � �

� �� � � �228 1791 858 �1161      

  Application: A d.c. circuit comprises three closed loops. 
Applying Kirchhoff’s laws to the closed loops gives the following 
equations for current flow in milliamperes:  

2I I I

I I I  

I I I

1 2 3

1 2 3

1 2 3

3 4 26

5 3 87

7 2 6 12

� � �

� � � �

� � � �      
 Use determinants to solve for I 1 , I 2  and I 3        



230 Engineering Mathematics Pocket Book

  

and D

( )( ) ( )( ) ( )( )

�

�

� �

�

� � � � � � � �

� � � �

2 3 4

1 5 3

7 2 6

2 30 6 3 6 21 4 2 35

48 45 1132 � 129     

  
Thus

I I I1 2 3

1290 1806 1161
1

129�
�

�
�

�
�

�

    

  

giving:  andI 10 mA, I 14 mA

I

1 2

3

� � � �

� �

�
�

�
�

1290
129

1806
129

1161
129

99 mA
      

  9.7      Solution of simultaneous equations using 
Cramer’s rule         

  Cramer’s rule  states that if a x a y a z b

a x a y a z b  

a x a y a z b  

11 12 13 1

21 22 23 2

31 32 33 3

� � �

� � �

� � �     

  
then  and  x

D
D

, y
D

D
z

D
D

x y z� � �
         

  

where D

a a a

a a a

a a a

11 12

21 22 23

31 32 33

�

13

    

  D

b a a

b a a

b a a
x

12 13

2 22 23

3 32 33

�

1

    i.e. the x-column has been replaced by 
the R.H.S. b column 

  D

a b a

a b a

a b a
y

11 1 13

21 2 23

31 3 33

�     i.e. the y-column has been replaced by 
the R.H.S. b column 
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 Following the above method: 

D

35

� �

� �

� � � � � � � � � �

� � � �

1 1 1

2 3 4

3 2 2

16 8 4 12 1 4 9

14 16 5

( ) 1( ) ( )

     

D

70

x ( ) ( ) ( )� �

� �

� � � � � � � � � �

� � � �

4 1 1

33 3 4

2 2 2

4 6 8 1 66 8 1 66 6

56 74 60      

D

105

y ( ) ( ) ( )�

�

� � � � � � � �

� � � � �

1 4 1

2 33 4

3 2 2

1 66 8 4 4 12 1 4 99

74 64 95 �      

D

175

z ( ) ( ) ( 4 )� �

�

� � � � � � � � � �

� � � �

1 1 4

2 3 33

3 2 2

1 6 66 1 4 99 4 9

60 95 20      

  
Hence, , andx 2 y 3� � � � �

�
�

D
D

D

D
x y70

35
105
35

�
   

z 5� � �
D
D

z 175
35      

  D

a a b

a a b

a a b
z

11 12 1

21 22 2

31 32 3

�    i.e. the z-column has been replaced by
the R.H.S. b column             

  Application: Solve the following simultaneous equations using 
Cramer’s rule 

x y z
2x y z
3x 2y 2z  

� � �

� � �

� � �

4
3 4 33

2            
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  9.8      Solution of simultaneous equations using 
Gaussian elimination         

 If a x a y a z b11 12 13 1� � � (1)      

a x a y a z b21 22 23 2� � � (2)      

a x a y a z b31 32 33 3� � � (3)      

the three-step  procedure to solve simultaneous equations in 
three unknowns using the  Gaussian elimination method  is: 

  (i)   Equation (2)  � �
a
a

21

11

   equation (1) to form equation (2 � )    

 and equation (3)  � �
a
a

31

11
    equation (1) to form equation (3 � ) 

  (ii)   Equation (3 � )  �
�

�
�

a of
a of22

32 3
2

( )
( )

    equation (2 � ) to form 
 equation (3�  � )  

  (iii)   Determine z from equation (3 �  �), then y from equation (2 �) and 
finally, x from equation (1)                

  Application: A d.c. circuit comprises three closed loops. Applying 
Kirchhoff’s laws to the closed loops gives the following equations 
for current flow in milliamperes:  

2I I I1 2 33 4 26� � � (1)      

                                  I I I1 2 35 3 87� � � � (2)      
� � � �7 2 6 121 2 3I I I (3)      

 Use the Gaussian elimination method to solve for I 1 , I 2  and I 3        

 Following the above procedure: 

  (i)                                    2I 3I 4I1 � � �2 3 26 (1)      

Equation ( ) equation ( ) gives:

0 . I I

2
1
2

1

6 5 1002 3

� �

� � � � (2�)      
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Equation ( ) equation ( ) gives:

0 .

3
7

2
1

12 5 8 1032 3

�
�

�

� � �I I (3� )      

   (ii)                                           2I I I1 2 33 4 26� � � (1)      

                                   0 .� � � �6 5 1002 3I I (2� )      

Equation (3 ) equation ( ) gives:

0 0 9.923I

� ��
�

�

� � � �

12 5
6 5

2

893

.
.

..308 (3�  � )      

  (iii)   From equation (3 �  � ), I 9 mA3 �
�

�
�

89 308
9 923

.
.

,
       

 from equation (2 � ),    �      6.5I 2       �      9  �       �     100, 

from which,  I 14 mA2 �
� �

�
�

100 9
6 5.     

  

 and from equation (1), 2I 1       �      3(14)    �      4(9)    �      26, 

from which,  I 10 mA1 �
� �

� �
26 42 36

2
20
2         



                                  10   Boolean Algebra and 
Logic Circuits   

  10.1     Boolean algebra and switching circuits         

   Function Boolean
expression 

 Equivalent 
electrical
circuit 

 Truth Table 

   2-input 
or-
function

 A      �      B
(i.e. A, or B, 
or both A 
and B) 

  
0
1

0
1B

A

1

A B

2 3
Output
(lamp)

Z � A � B

0 0 0

0 1 1

1 0 1

1 1 1

Input
(switches)

   2-input 
and-
function

A . B
(i.e. both 
A and B) 

0 0
11 BA

A B

Output
(lamp)

Z � A � B

0 0 0

0 1 0

1 0 0

1 1 1

Input
(switches)

   Not-
function

  A       
A

0 1

1 0

Input Output
Z � A

   3-input 
or-
function

 A      �      B � C 

OutputInput

A

B

C

Input
A   B   C

00 0 0

00 1 1

10 0 1

10 1 1

01 0 1

01 1 1

11 0 1

11 1 1

Output
Z � A � B � C
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   3-input 
and-
function

A . B . C OutputInput
A B C

Input
A   B   C

00 0 0

00 1 0

10 0 0

10 1 0

01 0 0

01 1 0

11 0 0

11 1 1

Output
Z � A � B � C

    To achieve a given output, it is often necessary to use combi-
nations of switches connected both in series and in parallel. If the 
output from a switching circuit is given by the Boolean expres-
sion: Z    �      A . B      �       A . B   , the truth table is as shown in Figure 
10.5(a)   . In this table, columns 1 and 2 give all the possible combi-
nations of A and B. Column 3 corresponds to A . B and column 4 
to A . B    i.e. a 1 output is obtained when A      �      0 and when B      �      0. 
Column 5 is the or-function applied to columns 3 and 4 giving 
an output of Z      �      A . B      �       A . B    . The corresponding switching cir-
cuit is shown in  Figure 10.5(b)  in which A and B are connected 
in series to give A . B,  A    and B     are connected in series to give 
A . B   , and A . B and  A . B     are connected in parallel to give A . B      �       
A . B    . The circuit symbols used are such that A means the switch 
is on when A is 1, A     means the switch is on when A is 0, 
and so on.             

0 0

0 1

1 0

1 2
A B

1 1

0 1

0 0

0 0

3 4
A�B A�B

1 0

1

5

0

0

1

(a) Truth table for Z � A�B � A�B

Z � A�B � A�B

BA

BA

Input Output Z

(b) Switching circuit for Z � A�B � A�B

 Figure 10.5 
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The switches between 1 and 2 in Figure 10.6  are in series and have 
a Boolean expression of B . A. The parallel circuit 1 to 2 and 3 to 4 
have a Boolean expression of (B . A      �       B   ). The parallel circuit can be 
treated as a single switching unit, giving the equivalent of switches 
5 to 6, 6 to 7 and 7 to 8 in series. Thus the output is given by: 
Z      �        A     . (B . A      �        B    ) .   B     

The truth table is as shown in  Table 10.6   . Columns 1 and 2 give all 
the possible combinations of switches A and B. Column 3 is the and -
function applied to columns 1 and 2, giving B . A. Column 4 is  B   , i.e. 
the opposite to column 2. Column 5 is the or-function applied to 
columns 3 and 4. Column 6 is    A   , i.e. the opposite to column 1. The 
output is column 7 and is obtained by applying the and-function to 
columns 4, 5 and 6.       

  Application: Derive the Boolean expression and construct a 
truth table for the switching circuit shown in  Figure 10.6   .       

AB

B

A B

4

7 8

Output

5

Input

2

3

6

1

 Figure 10.6           

 Table 10.6        

1

0
0
1
1

1
0
1
0

1
0
1
1

1
1
0
0

1
0
0
0

0
1
0
1

0
0
0
1

A B B � A

2 3 4 5 6 7

B AB � A � B Z � A � (B � A � B)� B

  Application: Derive the Boolean expression and construct a 
truth table for the switching circuit shown in  Figure 10.7   .       

A
B

C

B

OutputInput

7

3

6

21

4

5

89

 Figure 10.7     
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The parallel circuit 1 to 2 and 3 to 4 gives (A      �       B   ) and this is equiva-
lent to a single switching unit between 7 and 2. The parallel circuit 
5 to 6 and 7 to 2 gives C      �      (A      �       B    ) and this is equivalent to a single 
switching unit between 8 and 2. The series circuit 9 to 8 and 8 to 
2 gives the output 

Z B . [C (A B)]� � �    

   The truth table is shown in  Table 10.7   . Columns 1, 2 and 3 give all 
the possible combinations of A, B and C. Column 4 is B    and is the 
opposite to column 2. Column 5 is the or-function applied to col-
umns 1 and 4, giving (A      �       B   ). Column 6 is the or-function applied 
to columns 3 and 5 giving:   C    �      (A      �       B   ). The output is given in col-
umn 7 and is obtained by applying the and-function to columns 
2 and 6, giving: Z      �     B . [C      �      (A      �        B    )]        

 Table 10.7        

    

1

0
0
0
0

1
1
0
0

1
1
0
0

1
1
0
1

0
0
0
1

0
0
1
1

0
1
0
1

1
1
1
1

1
1
0
0

1
1
1
1

1
1
1
1

0
0
1
1

0
0
1
1

0
1
0
1

A B C

2 43 5 6 7

B A � B Z � B � [C � (A � B)]C �(A � B)

    

  Application: Construct a switching circuit to meet the require-
ments of the Boolean expression: 

Z A . C A .B A .B . C� � �            

The three terms joined by  or-functions, ( �), indicate three parallel 
branches, having: 

  branch 1  A  and   C    in series  
      branch 2  A     and  B in series  
  and  branch 3  A     and  B  and   C    in series    

 Hence the required switching circuit is as shown in  Figure 10.8   . 
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 The corresponding truth table is shown in  Table 10.8   . 
  Column 4 is C    , i.e. the opposite to column 3 . Column 5 is A .  C    , 
obtained by applying the and-function to columns 1 and 4 .  Column 
6 is A    , the opposite to column 1 . Column 7 is A .B   , obtained by 
applying the and-function to columns 2 and 6.    Column 8 is A .B .C   , 
obtained by applying the and-function to columns 4 and 7 .  Column 
9 is the output, obtained by applying the or-function to columns 5, 
7 and 8    .

A

A

A C

B

B

C

OutputInput

 Figure 10.8           

  10.2     Simplifying Boolean expressions         

A Boolean expression may be used to describe a complex switch-
ing circuit or logic system. If the Boolean expression can be sim-
plified, then the number of switches or logic elements can be 
reduced resulting in a saving in cost. Three principal ways of sim-
plifying Boolean expressions are: 

  (a)   by using the laws and rules of Boolean algebra (see
 section 10.3),  

 Table 10.8         

    

1

0
0
0
0

1
0
1
0

0
0
0
0

0
0
1
0

0
0
1
1

0
0
1
1

0
1
0
1

1
1
1
1

1
0
1
0

1
0
1
0

0
0
0
0

1
0
1
0

0
0
1
1

0
1
0
1

A B C

2 43 5 8 9

C

1
1
1
1
0
0
0
0

6

AA � C

0
0
1
1
0
0
0
0

7

A � B Z � A � C � A � B
� A � B � C

A � B � C
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  10.3     Laws and rules of Boolean algebra 

A summary of the principal laws and rules of Boolean algebra are 
given in  Table 10.9   .       

  Application:  Simplify the Boolean expression:  P.Q P.Q P.Q� �           

 Table 10.9         

    

Ref. Name

Commutative laws1
2
3
4
5
6

A � B � B � A
A � B � B � A
(A � B ) � C � A � (B � C)
(A � B) � C � A � (B � C)
A � (B � C) � A � B � A � C
A � (B � C) � (A � B ) � (A � C)

7
8
9

10
11
12
13
14
15
16
17

Associative laws

Distributive laws

Sum rules

Product rules

Absorption rules

Rule or law

A � 0 � A
A � 1 � 1
A � A � A
A � A � 1
A � 0 � 0
A � 1 � A
A � A � A
A � A � 0
A � A � B � A
A � (A � B) � A
A � A � B � A � B

    

    With reference to  Table 10.9 :  Reference 

    

P.Q P.Q P.Q P.(Q Q) P.Q

P. P.Q

� � � � �

� �

�

1

P P.Q�     

 5

10

12

  Application: Simplify (P      �       P   .Q) . (Q  �  Q   . P)       

  (b)   by applying  de Morgan’s laws  (see section 10.4), and  

  (c)   by using  Karnaugh maps  (see section 10.5).           
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    With reference to  Table 10.9 :  Reference 

F.G.H F.G.H F.G.H F.G.(H H) F.G.H

F.G.1 F.G.H

F.G F.G.H

� � � � �

� �

� �

� G.((F F.H)�

 5

10

12

 5 

    With reference to  Table 10.9 :  Reference 

(P P.Q).(Q Q.P) P.(Q Q.P) P.Q.(Q Q.P)

P.Q P.Q.P P.Q.Q P.Q.

� � � � � �

� � � � QQ.P

P.Q P.Q P.Q P.Q.Q.P

P.Q P.Q P.Q 0

P.Q P.Q P.Q

P.(Q Q)

� � � �

� � � �

� � �

� � ��

� �

�

P.Q

P.1 P.Q

P P.Q�

 5

 5 

13

14

 7

 5

10

12

  Application: Simplify F . G .  H       �      F . G . H      �       F    . G . H       

  Application: Simplify A. C       �       A   .(B      �      C)      �      A . B . (C      �       B   )       

    With reference to  Table 10.9 :  Reference 

A.C A.(B C) A.B.(C B)

A.C A.B A.C A.B.C A.B.B

A.C A.B A.C

� � � �

� � � � �

� � � � AA.B.C A.0

A.C A.B A.C A.B.C

A.(C B.C) A.B A.C

A.(C B) A.B

�

� � � �

� � � �

� � � ��

� � � �

� � � �

� � �

�

A.C

A.C A.B A.B A.C

A.C B.(A A) A.C

A.C B.1 A.C

A.C B A.� � CC

5

14

11

 5

17

 5

 5

10

12
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  10.4     De Morgan’s laws         

  De Morgan’s laws  state that:  

A B . and A .B� � � �A B A B                 

  Application: Simplify the Boolean expression  A .B A B� �     by 
using de Morgan’s laws and the rules of Boolean algebra       

 Applying de Morgan’s law to the first term gives: 

A .B A B A B since A A� � � � �    
   Applying de Morgan’s law to the second term gives:   

A B A . B A . B� � �    

   Thus,                  A .B A B (A B) A . B� � � � �       

 Removing the bracket and reordering gives: A      �      A. B         �       B    

 But, by rule 15,  Table 10.9 , A      �      A . B      �      A. It follows that:

A      �      A . B        �      A 

 Thus:               A .B A B A B� � � �           

  Application: Simplify the Boolean expression ( )A.B C .(A B.C)� �     
by using de Morgan’s laws and the rules of Boolean algebra       

 Applying de Morgan’s laws to the first term gives: 

( )A . B C A . B .C (A B) .C (A B) .C A .C B.C� � � � � � � �      
 Applying de Morgan’s law to the second term gives: 

( ) ( )A B .C A B C A (B C)� � � � � � �    

   Thus         ( )A . B C  (A B .C) (A .C B.C) . (A B C)

A . A .C A . B .C A .C.C

A .B .C

� � � � � �

� � �

� � BB. B .C B .C.C�
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 But from  Table 10.9 ,  A . A A�      and   C.C B . B� � 0    

 Hence the Boolean expression becomes  

A C A B C A C A C B

A C A C A C

. . . .B . . ( B)

.  ( B) . ( ) .

� � � � �

� � � �

1

1 1     

 Thus:              ( B ) ( C) A CA . C . A B . .� � �      

  10.5     Karnaugh maps         

  Summary of procedure when simplifying a 
Boolean expression using a Karnaugh map  

  1.   Draw a four, eight or sixteen-cell matrix, depending on whether 
there are two, three or four variables.  

  2.   Mark in the Boolean expression by putting l’s in the appropriate 
cells.  

  3.   Form couples of 8, 4 or 2 cells having common edges, forming 
the largest groups of cells possible. (Note that a cell containing 
a 1 may be used more than once when forming a couple.  Also 
note that each cell containing a 1 must be used at least once)     

  4.   The Boolean expression for a couple is given by the variables 
which are common to all cells in the couple.    

  (i)    Two-variable Karnaugh maps     
A truth table for a two-variable expression is shown in  Table 
10.10(a)   , the ‘ 1 ’  in the third row output showing that Z      �   
A.B   . Each of the four possible Boolean expressions associated 
with a two-variable function can be depicted as shown in 
Table 10.10(b)  in which one cell is allocated to each row of the 
truth table. A matrix similar to that shown in  Table 10.10(b) 
can be used to depict Z      �      A. B   , by putting a 1 in the cell cor-
responding to  A .B    and 0’s in the remaining cells. This method 
of depicting a Boolean expression is called a two- variable
Karnaugh map , and is shown in  Table 10.10(c) . 

To simplify a two-variable Boolean expression, the Boolean 
expression is depicted on a Karnaugh map, as outlined above. 
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Any cells on the map having either a common vertical side or 
a common horizontal side are grouped together to form a 
c ouple. (This is a coupling together of cells, not just combining 
two together). The simplified Boolean expression for a couple 
is given by those variables common to all cells in the couple. 

  (ii)    Three-variable Karnaugh maps     
A truth table for a three-variable expression is shown in 
Table 10.11(a)   , the 1’s in the output column showing that: 
Z      �       A .B .C A .B .C A .B .C� �    . Each of the eight possible 
Boolean expressions associated with a three-variable function 
can be depicted as shown in  Table 10.11(b)  in which one cell 
is allocated to each row of the truth table. A matrix similar 
to that shown in  Table 10.11(b)  can be used to depict: Z      �     
A .B .C A .B .C A .B .C� �    , by putting 1’s in the cells corre-
sponding to the Boolean terms on the right of the Boolean 
equation and 0’s in the remaining cells. This method of 
depicting a three-variable Boolean expression is called a 
three-variable Karnaugh map, and is shown in  Table 10.11(c) . 

To simplify a three-variable Boolean expression, the Boolean 
expression is depicted on a Karnaugh map as outlined above. 
Any cells on the map having common edges either vertically 
or horizontally are grouped together to form couples of four 
cells or two cells. During coupling the horizontal lines at the 
top and bottom of the cells are taken as a common edge, 
as are the vertical lines on the left and right of the cells. The 
simplified Boolean expression for a couple is given by those 
variables common to all cells in the couple. 

 Table 10.10        

    

Inputs

A B

0 0 0

Boolean
expression

Output
Z

A � B

(a)

A � B
0 1 0 A � B
1 0 1

A � B1 1 0

     

A
B

0(B)

0
(A)

(b)

1
(A)

1(B)

A � B

A � B

A � B

A � B

(c)

A
B

0

0 1

0 1

0 01
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  (iii)   Four-variable Karnaugh maps     
A truth table for a four-variable expression is shown in  Table 
10.12(a)   , the 1’s in the output column showing that: 

     Z � � � �A .B .C.D A .B .C.D A .B .C.D A .B .C.D     
Each of the sixteen possible Boolean expressions associated 
with a four-variable function can be depicted as shown in 
Table 10.12(b) , in which one cell is allocated to each row 
of the truth table. A matrix similar to that shown in Table 
10.12(b)  can be used to depict: 

        Z A .B .C.D A .B .C.D A .B .C.D A .B .C.D� � � �    
   by putting 1’s in the cells corresponding to the Boolean terms 
on the right of the Boolean equation and 0’s in the remain-
ing cells. This method of depicting a four-variable expres-
sion is called a four-variable Karnaugh map, and is shown in 
 Table 10.12(c) .   

 Table 10.11        

Inputs

0

Boolean
expression

Output
Z

A � B � C

A � B � C
A � B � C
A � B � C

(a)

1
0

A

0

0
0
0

B

0

0
1
1

C

0

1
0
1 1

0 A � B � C

A � B � C
A � B � C
A � B � C

0
1

1

1
1
1

0

0
1
1

0

1
0
1 0

A � B
C

0(C)

00
(A � B)

(b)

1(C)

A � B � C

A � B � C

01
(A � B)

A � B � C

A � B � C

11
(A � B)

A � B � C

A � B � C

10
(A � B)

A � B � C

A � B � C

(c)

A � B

C

0

00

0

1

01

0

1

11

1

0

10

0

01
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To simplify a four-variable Boolean expression, the Boolean 
expression is depicted on a Karnaugh map as outlined above. 
Any cells on the map having common edges either vertically or 
horizontally are grouped together to form couples of eight cells, 
four cells or two cells. During coupling, the horizontal lines at the 
top and bottom of the cells may be considered to be common 
edges, as are the vertical lines on the left and the right of the 
cells. The simplified Boolean expression for a couple is given by 
those variables common to all cells in the couple.             

 Table 10.12        

    

Inputs

0

Boolean
expression

Output
Z

A � B � C � D

A � B � C � D
A � B � C � D
A � B � C � D
A � B � C � D

A � B � C � D
A � B � C � D
A � B � C � D

(a)

0
1

B

0

0
0
0

C

0

0
1
1

D

0

1
0
1 0

0

0
1

1

1
1
1

0

0
1
1

A

0

0
0
0
0

0
0
0

0

1
0
1 0

0 A � B � C � D

A � B � C � D
A � B � C � D
A � B � C � D
A � B � C � D

A � B � C � D
A � B � C � D
A � B � C � D

0
1

0

0
0
0

0

0
1
1

0

1
0
1 0

0

0
1

1

1
1
1

0

0
1
1

1

1
1
1
1

1
1
1

0

1
0
1 0

    

A � B 00
(A � B)

00
(C � D)

10
(C � D)

01
(C � D)

11
(C � D)

(b)

A � B � C � D

A � B � C � D

A � B � C � D

A � B � C � D

A � B � C � D

A � B � C � D

A � B � C � D

A � B � C � D

A � B � C � D

A � B � C � D

A � B � C � D

A � B � C � D

A � B � C � D

A � B � C � D

A � B � C � D

A � B � C � D

01
(A � B)

11
(A � B)

10
(A � B)C � D

(c)

A � B

0.0

0.0

0

0

0.1

0

0

1.1

0

0

1.0

0

00.1

0 0 0 01.1

1 1 1 11.0

C � D
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 Using the above procedure: 

  1.   The two-variable matrix is drawn and is shown in  Table 10.13   .  

  2.   The term P .Q    is marked with a 1 in the top left-hand cell, cor-
responding to P      �      0 and Q      �      0; P .Q    is marked with a 1 in the 
bottom left-hand cell corresponding to P      �      0 and Q      �      1.  

  3.   The two cells containing 1’s have a common horizontal edge and 
thus a vertical couple, shown by the broken line, can be formed.  

  4.   The variable common to both cells in the couple is P      �      0, i.e. 
P    thus    

P . Q P . Q P� �            

 Table 10.13        

0 1

0

1

0

0

1

1

P
Q

  Application: Simplify the expression:  P .Q P .Q�     using Karnaugh 
map techniques       

 Using the above procedure: 

  1.   A three-variable matrix is drawn and is shown in  Table 10.14   .  

  2.   The 1’s on the matrix correspond to the expression given, i.e. for 
X   .Y. Z    , X      �      0, Y      �      1 and Z      �      0 and hence corresponds to the cell 
in the top row and second column, and so on.  

  Application: Simplify  X . Y . Z X . Y . Z X . Y . Z X . Y . Z� � �     using 
Karnaugh map techniques       

 Table 10.14        

0.0 0.1

0

1

1

0

1.1

1

0

1.0

0

1

0

1

X.Y
Z
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  3.   Two couples can be formed, shown by the broken lines. The couple 
in the bottom row may be formed since the vertical lines on the left 
and right of the cells are taken as a common edge.  

  4.   The variables common to the couple in the top row are Y      �      1 and 
Z      �      0, that is, Y . Z     and the variables common to the couple in the 
bottom row are Y      �      0, Z      �      1, that is,  Y . Z.    Hence:    

X Z X Y Z Y Z Y. Y . . . Z X . Y . X . . Z Y . . Z� � � � �            

  Application: Simplify  ( ) ( )P Q .R P .Q R� � �     using a Karnaugh 
map technique       

The term ( . )P R� Q     corresponds to the cells marked 1 on the matrix 

in  Table 10.15(a)   , hence ( )P Q .R�     corresponds to the cells marked 

2. Similarly,  (P .Q R)�     corresponds to the cells marked 3 in  Table 

10.15(a), hence ( )P .Q R�     corresponds to the cells marked 4. The 

expression  ( ) ( )P Q .R P .Q R� � �     corresponds to cells marked with 

either a 2 or with a 4 and is shown in  Table 10.15(b)  by X’s. These 

cells may be coupled as shown by the broken lines. The variables 

common to the group of four cells is P      �      0, i.e. P    , and those com-

mon to the group of two cells are Q      �      0, R      �      1, i.e.  Q . R    

Thus: ( ) ( )P Q . R P . Q R P Q . R� � � � �           

 Table 10.15        

0.0

(a)

0.1

0

1

1.1 1.0

3
2
4
1

3
2
4
2

3
1
3
1

3
1
4
1

P.Q
R 0.0

(b)

0.1

0 X X

X X X1

1.1 1.0
P.Q

R

  Application: Simplify the expression: A . B .  C.D        �      A . B . C . D      �
      A    . B . C . D   �   A . B . C.D       �     A   . B . C .D    using Karnaugh map techniques       
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Using the procedure, a four-variable matrix is drawn and is shown in 
Table 10.16   . The 1’s marked on the matrix correspond to the expres-
sion given. Two couples can be formed and are shown by the broken 
lines. The four-cell couple has B      �      1, C      �      1, i.e. B . C as the common 
variables to all four cells and the two-cell couple has A . B .   D    as the 
common variables to both cells. Hence, the expression simplifies to: 
B . C       �       A . B .   D    i.e. B . (C       �       A .   D    )   

 Table 10.16        

0.0 0.1

0.0

0.1

1.1 1 1

1

1 11.0

1.1 1.0
A.B

C.D

  10.6     Logic circuits and gates         

In practice, logic gates are used to perform the  and, or and 
not-functions introduced earlier. Logic gates can be made from 
switches, magnetic devices or fluidic devices, but most logic gates 
in use are electronic devices. Various logic gates are available. For 
example, the Boolean expression (A . B . C) can be produced using 
a three-input,  and-gate and (C   �   D) by using a two-input or-gate. 
The principal gates in common use are shown in the table below. 

  Combinational logic networks 

In most logic circuits, more than one gate is needed to give the 
required output. Except for the  invert-gate, logic gates gener-
ally have two, three or four inputs and are confined to one func-
tion only. Thus, for example, a two-input,  or-gate or a four-input 
and -gate can be used when designing a logic circuit.               



   Gate 

type

 Traditional 

symbol

 IEC Symbol  Boolean 

expression 

 Truth Table 

   and-

gate

A
B Z
C

A
B Z

&

C

 Z      �      A . B . C INPUTS
B

OUTPUT
Z � A � B � CA C

00 0

00 1

10 0

10 1

01 0

01 1

11 0

11 1

0

0

0

0

0

0

0

1

   or-

gate

A
B Z
C

A
B Z

�1

C

 Z      �      A      �      B � C INPUTS
B

OUTPUT
Z � A � B � CA C

00 0

00 1

10 0

10 1

01 0

01 1

11 0

11 1

0

1

1

1

1

1

1

1

   not-

gate

or

invert-

gate

A Z A Z
�1  Z      �       A    INPUTS OUTPUT

Z � AA

0

1

1

0

   nand-

gate

A
B Z
C

A
B Z

&

C
 Z      �       A .B . C    

INPUTS
B

OUTPUT
Z � A � B � CA � B � CA C

00 0

00 1

10 0

10 1

01 0

01 1

11 0

11

0

0

0

0

0

0

0

11

1

1

1

1

1

1

1

0

   nor-

gate

A
B Z
C

A
B Z

�1

C
Z     �       A B C� �     

INPUTS
B

OUTPUT
Z�A�B�CA�B�CA C

00 0

00 1

10 0

10 1

01 0

01 1

11 0

11

0

1

1

1

1

1

1

11

1

0

0

0

0

0

0

0
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   Gate 

type

 Traditional 

symbol

 IEC Symbol  Boolean 

expression 

 Truth Table 

   xor-
gate

�1  Z      �       A B⊕     Inputs

0

Output

Z �A XOR B

1
1

A

0

0
1
1

B

0

1
0
1 0

   xnor-
gate

�1
 Z      �       A B⊕     Inputs

1

Output

Z �A XNOR B

0
0

A

0

0
1
1

B

0

1
0
1 1

With reference to  Figure 10.23    an invert-gate, shown as (1), gives B   .
The and-gate, shown as (2), has inputs of A and B   , giving A .  B   . The 
or- gate, shown as (3), has inputs of A .  B    and C, giving: 

Z A .B C� �          

        Application: Devise a logic system to meet the requirements of: 
Z      �      A .B       �      C       

  Application: Devise a logic system to meet the requirements of 

(P Q) . (R S)� �           

1

A

B

C
(1) (3)

(2)

&
B

A�B

Z � A�B � C

 Figure 10.23          

The logic system is shown in Figure 10.24   . The given expression 
shows that two invert-functions are needed to give  Q    and R    and 
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these are shown as gates (1) and (2). Two  or-gates, shown as (3) 
and (4), give (P      �       Q   ) and ( R       �      S) respectively. Finally, an  and -gate, 
shown as (5), gives the required output,  Z      �      (P      �        Q    ) . (  R          �      S)        

&

P

Q

R

S

(1)

(2)

(3)

(5)

1

(4)

1

Q

R

P�Q

R�S

Z � (P�Q)�(R�S)

 Figure 10.24           

  Application: Devise a logic circuit to meet the requirements of 
the output given in  Table 10.24   , using as few gates as possible       

 Table 10.24         

Inputs

0

Output
Z

0
0

A

0

0
0
0

B

0

0
1
1

C

0

1
0
1 0

0

1
1

1

1
1
1

0

0
1
1

0

1
0
1 1

The ‘ 1 ’  outputs in rows 6, 7 and 8 of  Table 10.24  show that the 
Boolean expression is:   Z A .B .C A .B .C A .B .C� � �    

   The logic circuit for this expression can be built using three, 3-input 
and-gates and one, 3-input or-gate, together with two invert -
gates. However, the number of gates required can be reduced by 
using the techniques introduced earlier, resulting in the cost of the 
circuit being reduced. Any of the techniques can be used, and in this 
case, the rules of Boolean algebra (see  Table 10.9 ) are used.   
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Z A .B .C A .B .C A .B .C A . [B .C B .C B.C]

A . [B .C B(C C)] A . [B .C

� � � � � �

� � � � �BB]

A . [B B .C]� � � A [B C]. �    

   The logic circuit to give this simplified expression is shown in 
Figure 10.25   .         

&A

B

C

1
Z � A � (B � C)

B � C  Figure 10.25           

  Application:  Simplify the expression: 

Z P .Q .R .S P .Q .R .S P .Q .R .S P .Q .R .S P .Q .R .S� � � � �      

 and devise a logic circuit to give this output       

The given expression is simplified using the Karnaugh map tech-
niques introduced earlier. Two couples are formed as shown in  Figure 
10.26(a)    and the simplified expression becomes: 

Z Q .R .S P .R i.e.� � Z . (P Q . S)� �R    

   The logic circuit to produce this expression is shown in  Figure 
10.26(b) .    

(a)

R�S

P�Q

0�0

0�0 0�1 1�1 1�0

11

11

1

0�1

1�1

1�0

 Figure 10.26             

P

Q

R

S

P

Q

Q S
R

S

1

(b)

&

&

�

Q S�P �
Z � R � (P � Q�S)
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  10.7     Universal logic gates         

 Figure 10.27                 

&
A

(a)

Z � A &&A
B
C

(b)

Z � A�B�C

A�B�C A�B�C

A

B

C

&A

& &B

&C

(c)

Z � A�B�C

A�B�C

(d)

A

B

C

&A

& & &B

&C

Z � A�B�C

A�B�C A�B�C

The function of any of the five logic gates in common use can 
be obtained by using either nand-gates or nor-gates and when 
used in this manner, the gate selected is called a  universal gate .             

  Application: Show how  invert, and, or and nor-functions can 
be produced using nand-gates only       

A single input to a nand-gate gives the invert-function, as shown 

in Figure 10.27(a)   . When two nand-gates are connected, as shown 

in  Figure 10.27(b) , the output from the first gate is  A .B .C    and this 

is inverted by the second gate, giving Z      �       A .B .C       �      A . B . C i.e. the 

and-function is produced. When  A   , B    and C    are the inputs to a 

nand -gate, the output is  A .B .C    
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By de Morgan’s law,  A .B .C A B C A B C� � � � � �    , i.e. a nand -
gate is used to produce the  or-function. The logic circuit is shown in 
Figure 10.27(c) . If the output from the logic circuit in  Figure 10.27(c) 
is inverted by adding an additional nand-gate, the output becomes 
the invert of an or-function, i.e. the nor-function, as shown in Figure 
10.27(d) .       

  Application: Show how  invert, or, and and nand -functions 
can be produced by using  nor -gates only       

A single input to a nor-gate gives the invert-function, as shown in 

Figure 10.28(a)   . When two nor-gates are connected, as shown in 

Figure 10.28(b) , the output from the first gate is  A B C� �     and this 

is inverted by the second gate, giving Z      �       A B C� �        �      A    �      B �C,

i.e. the or-function is produced. Inputs of  A   , B    and C    to a nor -gate 

give an output of A B C� �     

 Figure 10.28     

1A

(a)

Z � A 11A
B
C

(b)

Z � A�B�C

1A

1 1B

1C

(c)

Z � A�B�C

(d)

1A

1 1 1B

1C

Z � A�B�C
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By de Morgan’s law,  A B C A .B .C A .B .C� � � �    , i.e. the nor -
gate can be used to produce the  and-function. The logic circuit 
is shown in  Figure 10.28(c) . When the output of the logic circuit, 
shown in Figure 10.28(c) , is inverted by adding an additional nor -
gate, the output then becomes the invert of an or-function, i.e. the 
nor -function as shown in  Figure 10.28(d) .       

(2)

(1)

A &

(3)
C

&

&
&B

D

C

A�B,i.e.

A�B�C�D,i.e.
Z�(A�B�C�D)

(A�B)
A�B,i.e.

(A�B)

 Figure 10.29           

  Application: Design a logic circuit, using  nand-gates having not 
more than three inputs, to meet the requirements of the Boolean 
expression: Z      �       A B C D� � �           

When designing logic circuits, it is often easier to start at the output 

of the circuit. The given expression shows there are four variables 

joined by or-functions. From the principles introduced above, if a 

four-input  nand-gate is used to give the expression given, the inputs 

are  A, B, C    and D    that is A, B, C    and D. However, the problem states 

that three-inputs are not to be exceeded so two of the variables are 

joined, i.e. the inputs to the three-input  nand-gate, shown as gate 

(1) in Figure 10.29   , is A . B,  C    and D. From above, the  and -function 

is generated by using two nand-gates connected in series, as shown 

by gates (2) and (3) in Figure 10.29 . The logic circuit required to pro-

duce the given expression is as shown in  Figure 10.29 .       

  Application: Using  nor-gates only, design a logic circuit to meet 
the requirements of the expression:  Z D(A B C)� � �           
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It is usual in logic circuit design to start the design at the output. 

From earlier, the  and-function between D    and the terms in the 

bracket can be produced by using inputs of  D    and A B C� �     to a 

nor-gate, i.e. by de Morgan’s law, inputs of D and A .  B    . C. Inputs 

of A    . B and  C    to a nor-gate give an output of A B C� �    , which by 

de Morgan’s law is A. B   .C. The logic circuit to produce the required 

expression is as shown in  Figure 10.30   .       

1

&

C

1
A

B 1

D
C

A
A�B�C, i.e.
A�B�C

D�A�B�C, i.e.

D�A�B�C, i.e.

Z � D�(A�B�C)

 Figure 10.30           

  Application: An alarm indicator in a grinding mill complex 
should be activated if (a) the power supply to all mills is off and 
(b) the hopper feeding the mills is less than 10% full, and (c) if 
less than two of the three grinding mills are in action. Devise a 
logic system to meet these requirements       

Let variable A represent the power supply on to all the mills, then  A    

represents the power supply off. Let B represent the hopper feeding 

the mills being more than 10% full, then  B    represents the hopper 

being less than 10% full. Let C, D and E represent the three mills 

respectively being in action, then  C, D    and E    represent the three 

mills respectively not being in action. The required expression to acti-

vate the alarm is: Z      �       A .B . C D E( )� �     .

There are three variables joined by  and-functions in the output, indi-

cating that a three-input  and-gate is required, having inputs of  A, B     

and ( )C D E� �    . The term ( )C E� �D     is produced by a three-input 
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nand-gate. When variables C, D and E are the inputs to a  nand -

gate, the output is C . D . E, which, by De Morgan’s law is  ( )C D E� �    . 

Hence the required logic circuit is as shown in  Figure 10.31   .      

C

&

�1

�1

&

E

D

B

A

Z � A�B�(C�D�E)

i.e. (C � D � E)
C � D � E

A

B

 Figure 10.31           



                      11      Differential Calculus and 
its Applications   

  11.1     Common standard derivatives         

  y x x
x x

� � � � �5 4
1

2
1

34
2

    is rewritten as:  

y x� � � � �� �5 4
1
2

34 2 1
2x x x

    

 Thus  
dy
dx

( )(4)x ( )( )x ( )x ( ) x� � � � � �� � � � �5 4 1
1
2

2 1
1
2

4 1 1 1 2 1
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

11
2 1 0� �     

� � � �� �20 4
1
2

3 3 3
2x x x

   
 i.e.    dy

dx
20x 4

x 2 x
3

3
� � � �

1 1
3

          

   y or f(x) 

  

dy
dx   

  or f � (x) 

   ax n anxn     �     1  

   sin ax a cos ax 

   cos ax   �a sin ax 

   tan ax a sec 2  ax 

   sec ax  a sec ax tan ax 

   cosec ax   � a cosec ax cot ax 

   cot ax   �a cosec 2  ax 

   e ax aeax  

   ln ax 
  

1
x     

  Application: Differentiate  y x x
x x

� � � � �5 4
1

2
1

34
2

    with 
respect to x       
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 When y      �      3 sin 4x      �      2 cos 3x 

then
dy
dx

       �      (3)(4 cos 4x)      �      (2)( �3 sin 3x)      �       12 cos 4x   �      6 sin 3x        

  Application:  Find the differential coefficient of 
y      �      3 sin 4x   �  2 cos 3x       

  Application:  Determine the derivative of  f( )
e

θ θ
θ

� �
2

6 2
3

ln           

               
f( )

e
2 eθ θ θ

θ
θ� � � ��2

6 2 6 2
3

3ln ln
     

 Hence,   f ( ) ( )( )e e� � � � � � � �� �θ
θ θ

θ θ2 3 6
1

6
63 3

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

�
�

6 6
e3θ θ      

  11.2     Products and quotients         

 When y      �      uv, and u and v are both functions of x, then: 

dy
dx

u
dv
dx

v
du
dx

� �
     

 When  y
u
v

�    , and u and v are both functions of x then: 

dy
dx

v
du
dx

u
dv
dx

v2
�

�

                 

  Application:  Find the differential coefficient of y      �    3x 2  sin 2x       

 3x 2  sin 2x is a product of two terms 3x 2  and sin 2x 

 Let u      �      3x 2  and v      �      sin 2x 

 Using the product rule:            
dy
dx

u
dv
dx

v
du
dx

� �

↓ ↓ ↓ ↓

    

 gives:                                
dy
dx

( x )( x) ( x)( )� �3 2 2 2 62 cos sin x     
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i.e. dy
dx

x x� �6 6 22 cos sin2x x     

             � 6x x 2x sin 2x( cos )�            

  Application:  Find the differential coefficient of  y
x

x
�

4 5
5 4

sin
          

  

4 5
5 4

sin x
x   

  is a quotient. Let u      �      4 sin 5x and v      �      5x 4  

dy
dx

v
du
dx

u
dv
dx

v
x x x x

x
�

�
�

�

�

2

4 3

4 2

5 20 5 4 5 20
5

100

( )( cos ) ( sin )( )
( )

xx x x x
x

x x x x
x

4 3

8

3

8

5 80 5
25

20 5 5 4 5
25

cos sin

[ cos sin ]

�

�
�

     

 i.e.                   
dy
dx

4
5x

(5x cos 5x 4 sin 5x)
5

� �
          

  Application:  Determine the differential coefficient of y      �      tan ax       

 y      �      tan ax �  
sin
cos

ax
ax

   . Differentiation of tan ax is thus treated as a 

quotient with   u    �      sin ax and v      �      cos ax 

dy
dx

v
du
dx

u
dv
dx

v
ax a ax ax a ax

ax
�

�
�

� �
2

(cos )( cos ) (sin )( sin )
(cos )22

2 2

2

2 2

2

2

�
�

�
�

�

a ax a ax
ax

a ax ax
ax

a
ax

cos sin
(cos )

(cos sin )
cos

cos
siince cos sin2 2 1ax ax� �

      Hence, dy
dx

       �       a sec 2  ax  since sec 2  ax    �       1
2cos ax      
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  11.3     Function of a function         

 It is often easier to make a substitution before differentiating. 

 If y is a function of x then:  
dy
dx

dy
du

du
dx

� �
    

This is known as the  ‘ function of a function ’ rule (or sometimes 
the chain rule ).             

  Application: Differentiate y      �      (3x    �      1) 9        

 If y      �      (3x      �      1) 9  then, by making the substitution u      �      (3x      �      1), 
      y    �      u 9 , which is of the  ‘ standard ’  form. 

Hence,
dy
du

       �      9u 8 and
du
dx

        �      3 

Then
dy
dx

du
dx

� � � �
dy
du

( u )( ) u9 3 278 8

    

 Rewriting u as (3x � 1) gives:  
dy
dx      

    �      27(3x    �      1) 8        

  Application:  Determine the differential coefficient of 

y �  3 4 12x x� �           

 y      �       3 4 12x x� �        �      (3x 2       �      4x      �      1) 1/2  

Let u      �      3x2       �      4x      �      1 then y      �      u 1/2  

 Hence 
du
dx

       �      6x      �      4 and
dy
du

       �     
  

1
2

   u      �     1/2       �     
  

1

2 u     

 Using the function of a function rule,

dy
dx

dy
du

du
dx u

( x )
x

u
� � � � �

�1

2
6 4

3 2⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

    

i.e.     
dy
dx

3x 2

3x 4x2
�

�

� �( 1)     
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  11.4     Successive differentiation         

When a function y   �   f(x) is differentiated with respect to x the 

differential coefficient is written as  
dy
dx

    or f �(x). If the expression is 

differentiated again, the second differential coefficient is obtained 

and is written as
d y
dx

2

2
    or f �(x). By successive differentiation further 

higher derivatives such as
d y
dx

3

3
    and

d y
dx

4

4
    may be obtained. 

Thus, if y      �      3x 4 ,  
dy
dx

       �      12x 3 ,  
d y
dx

2

2
       �      36x 2 ,  

d y
dx

3

3        �      72x, 

d y
dx

4

4        �      72 and
d y
dx

5

5        �      0             

  Application: If f(x)      �      2x 5       �      4x 3       �      3x     �      5 determine f � (x)       

 If f(x)      �      2x 5       �      4x 3       �      3x      �      5 

then    f � (x)      �      10x 4       �      12x 2       �      3 

and f	 (x)      �       40x 3       �      24x      �       4x(10x2       �      6)        

  Application: Evaluate  d y
d

2

2θ
    when  θ       �      0 given y      �      4 sec 2 θ        

 Since y      �      4 sec 2 θ , then  
dy
dθ

       �      (4)(2)sec 2 θ  tan 2 θ  

       �      8 sec 2 θ  tan 2 θ  (i.e. a product) 

  d y
d

2

2θ
       �      (8 sec 2 θ)(2 sec 2 2 θ )      �      (tan 2 θ )[(8)(2)sec 2 θ  tan 2 θ ] 

       �      16 sec 3 2 θ       �      16 sec 2 θ  tan 2 2 θ  

 When  θ       �      0,
d y2

2dθ
       �      16 sec 3 0    �      16 sec 0 tan 2 0 

       �      16(1)    �      16(1)(0)    �       16    
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  11.5     Differentiation of hyperbolic functions         

   y or f(x) 
  

dy
dx

    or f� (x)

   sinh ax  a cosh ax 

   cosh ax  a sinh ax 

   tanh ax  a sech 2 ax 

   sech ax   � a sech ax tanh ax 

   cosech ax   � a cosech ax coth ax 

   coth ax   �a cosech 2 ax 

  Application:  Differentiate the following with respect to x: 

(a) y      �      4 sh 2x      �      
3
7

   ch 3x     (b) y      �      5 th  
x
2

       �      2 coth 4x       

  (a) 
   

dy
dx

         �      4(2 cosh 2x)      �    
  

3
7    

 (3 sinh 3x)      �       8 cosh 2x   �     
  

9
7

    sinh 3x   

  (b)    dy
dx    

      �      5
1
2 2

2sec h
x⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟
     
    �      2( �4 cosech 2 4x)      

�     
  

5
2

sec h
x
2

8 ech 4x2 2� cos
             

  Application: Differentiate the following with respect to the 
 variable: 

(a) y      �      4 sin 3t ch 4t   (b) y      �      ln(sh 3 θ )      �      4 ch 2 3 θ        

  (a)      y      �      4 sin 3t ch 4t (i.e. a product)    

dy
dx

t sh t ch t t

t sh t ch t

� �

� �

( sin )( ) ( )( )( cos )

sin c

4 3 4 4 4 4 3 3

16 3 4 12 4 oos 3t

� 4(4 sin 3t sh 4t 3cos 3t ch 4t)�      
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  (b)       y      �      ln(sh 3 θ )      �      4 ch 2 3 θ  (i.e. a function of a function)    

dy
d sh

( ) ( )( ch )( sh )
θ θ

θ θ θ

θ

� �

� �

1
3

3 3 4 2 3 3 3

3 3 2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

ch

coth 44 3 3ch θ θsh � 3( 3 8 ch 3 sh 3coth )θ θ θ�       

  11.6     Rates of change using differentiation         

If a quantity y depends on and varies with a quantity x then the 

rate of change of y with respect to x is  
dy
dx

   . Thus, for example, 

the rate of change of pressure p with height h is  dp
dh

   . 

A rate of change with respect to time is usually just called  ‘ the 

rate of change ’, the ‘with respect to time ’ being assumed. Thus, 

for example, a rate of change of current, i, is  di
dt

    and a rate of 

change of temperature,  θ , is  
d
dt

θ
   , and so on.             

  Application: Newtons law of cooling is given by  θ       �       θ  0 e      �     kt , 
where the excess of temperature at zero time is  θ  0°C and at time 
t seconds is θ°C. Determine the rate of change of temperature 
after 40     s, given that  θ  0       �      16°C and k      �       �     0.03       

 The rate of change of temperature is  d
dt

θ     

 Since  θ       �       θ  0 e      �     kt then d
dt

θ        �      ( θ  0 )( � k)e      �     kt       �       �     k θ  0 e      �     kt  

 When  θ  0       �      16, k      �       �     0.03 and t      �      40

then
d
dt

θ
       �       � ( � 0.03)(16)e      �     ( � 0.03)(40)  

  �      0.48 e 1.2    �        1.594°C/s        

  Application: The luminous intensity I candelas of a lamp at vary-
ing voltage V is given by: I      �      4    �      10      �     4 V 2. Determine the voltage 
at which the light is increasing at a rate of 0.6 candelas per volt       
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 The rate of change of light with respect to voltage is given by  dI
dV

    

 Since I      �      4      �      10      �     4 V 2 ,  dI
dV

       �      (4      �      10�4)(2) V      �      8    �      10      �     4  V 

 When the light is increasing at 0.6 candelas per volt then

    �      0.6      �      8    �      10      �     4  V, from which, 

voltage V �
�

� � �
�

�0 6
8 10

0 075 10
4

4.
. 750 volts

      

  11.7     Velocity and acceleration         

 If a body moves a distance x metres in a time t seconds then: 

 (i)    distance, x      �      f(t)   

   (ii)    velocity, v      �      f �(t) or dx
dt

   , which is the gradient of the 
distance/time graph   

  (iii)    acceleration, a      �        dv
dt

        �      f 	(x) or d x
dt

2

2
   , which is the gradi-

ent of the velocity/time graph.                

  Application: The distance x metres travelled by a vehicle in time t 

seconds after the brakes are applied is given by x   �   20t   �     5
3

   t2 . 

Determine (a) the speed of the vehicle (in km/h) at the instant the 

brakes are applied, and (b) the distance the car travels before it 

stops      

  (a)   Distance, x   �   20t   �     
5
3

2t .     Hence velocity, v   �     
dx
dt

       �   20   �      
10
3

t        

 At the instant the brakes are applied, time      �      0 

 Hence  velocity, v      �       20     m/s      �   
   

20 60 60
1000

� �

  
  km/h    �       72       km/h  

(Note: changing from m/s to km/h merely involves multiplying 
by 3.6.) 
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  (b)   When the car finally stops, the velocity is zero,    

 i.e. v      �      20      �       
10
3

t        �      0, from which, 20      �       
10
3

t,    giving t      �      6     s. 

 Hence the distance travelled before the car stops is given by: 

x t t ( ) ( )� � � � � � �20
5
3

20 6
5
3

6 120 602 2 60 m
           

  Application: The angular displacement  θ radians of a flywheel 
varies with time t seconds and follows the equation θ     �   9t2     �   2t3 . 
Determine (a) the angular velocity and acceleration of the fly-
wheel when time, t   �   1   s, and (b) the time when the angular 
acceleration is zero.       

  (a)   Angular displacement  θ       �      9t 2       �      2t 3  rad    

 Angular velocity,  ω       �      
d
dt

θ
        �      18t      �      6t 2  rad/s 

 When time t      �      1     s,  ω       �      18(1)    �      6(1) 2       �       12 rad/s  

 Angular acceleration,  α       �      
d
dt

2

2

θ
        �      18      �      12t rad/s 

 When time t      �      1     s,  α       �      18      �      12(1)    �       6 rad/s 2  

  (b)   When the angular acceleration is zero, 18      �      12t      �      0, 
from which, 18      �      12t, giving time,  t      �      1.5 s           

  Application: The displacement x cm of the slide valve of an 
engine is given by: x      �      2.2 cos 5 π t      �      3.6 sin 5 πt. Evaluate the 
velocity (in m/s) when time t      �      30     ms.       

 Displacement x      �      2.2 cos 5 π t      �      3.6 sin 5 π t 

 Velocity v      �      
dx
dt

       �    (2.2)( � 5 π ) sin 5 π t      �      (3.6)(5 π ) cos 5 π t 
       �      �11π sin 5 π t      �      18 π  cos 5 π t cm/s 

 When time t      �      30     ms, 
velocity    �       �     11 π  sin (5 π       �      30      �      10      �     3 )      �      18 π  cos (5 π       �      30      �      10      �     3 ) 

       �           �     11 π sin 0.4712      �      18 π cos 0.4712 
       �       �     11 π sin 27�      �      18 π cos 27 �  
       �       �     15.69      �      50.39 
       �      34.7     cm/s      �       0.347       m/s   
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  11.8     Turning points         

  Procedure for finding and distinguishing between station-
ary points  

 (i)   Given y      �      f(x), determine  
dy
dx

   (i.e. f � (x))    

   (ii)   Let  
dy
dx

       �      0 and solve for the values of x    

  (iii)   Substitute the values of x into the original equation, y      �      f(x), 
to find the corresponding y-ordinate values. This establishes 
the co-ordinates of the stationary points.    

 To determine the nature of the stationary points: 
 Either 

  (iv)   Find  
d y
dx

2

2     and substitute into it the values of x found in (ii).    

 If the result is:  (a) positive – the point is a minimum one, 
 (b) negative – the point is a maximum one, 
  (c) zero – the point is a point of inflexion 

or

 (v)   Determine the sign of the gradient of the curve just before 
and just after the stationary points. If the sign change for the 
gradient of the curve is:    

  (a)   positive to negative – the point is a maximum one  
  (b)   negative to positive – the point is a minimum one  
  (c)    positive to positive or negative to negative – the 

point is a point of inflexion                

  Application: Find the maximum and minimum values of the 
curve y      �      x 3       �      3x      �      5       

 Since y      �      x 3       �      3x      �      5 then  
dy
dx

       �      3x 2       �      3 

 For a maximum or minimum value  dy
dx

       �      0 

Hence, 3x 2       �      3    �      0, from which, 3x 2       �      3 and x      �       
 1 

 When x      �      1, y      �      (1) 3  � 3(1)      �      5    �      3 

 When x      �       �     1, y      �      ( � 1) 3       �      3( � 1)      �      5    �      7 
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Hence, (1, 3) and ( �1, 7) are the co-ordinates of the turning 
points . 
 Considering the point (1, 3): 

If x is slightly less than 1, say 0.9, then
dy
dx

       �      3(0.9) 2       �      3, which is 
negative.

If x is slightly more than 1, say 1.1, then  
dy
dx

       �      3(1.1) 2       �      3, which is 
positive.

Since the gradient changes from negative to positive,  the point 
(1, 3) is a minimum point . 

 Considering the point ( � 1, 7): 

If x is slightly less than �1, say �1.1, then
dy
dx

       �      3( � 1.1) 2       �      3, 
which is positive. 

If x is slightly more than  �1, say �0.9, then
dy
dx

       �      3( � 0.9) 2       �      3, 
which is negative. 

Since the gradient changes from positive to negative,  the point 
(� 1, 7) is a maximum point . 

 Since  
dy
dx

       �      3x 2       �      3, then  
d y
dx

2

2
       �      6x 

 When x      �      1,  d y
dx

2

2
    is positive, hence (1, 3) is a  minimum value.  

When x   �     �     1,
d y
dx

2

2     is negative, hence ( �1, 7) is a maximum value.  

  Thus the maximum value is 7 and the minimum value is 3.  

It can be seen that the second differential method of determining 
the nature of the turning points is, in this case, quicker than investi-
gating the gradient.       

  Application: Determine the area of the largest piece of rectan-
gular ground that can be enclosed by 100    m of fencing, if part of 
an existing straight wall is used as one side       

Let the dimensions of the rectangle be x and y as shown in  Figure 
11.1   , where PQ represents the straight wall. 

 From  Figure 11.1 , x y� �2 100 (1)      
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 Area of rectangle, A xy� (2)      

Since the maximum area is required, a formula for area A is needed 
in terms of one variable only. From equation (1), x      �      100      �      2y 

  Hence, area, A       �       xy       �       (100    �      2y)y       �       100y    �      2y 2  

  
dA
dy

       �      100    �      4y      �      0, for a turning point, from which, y      �      25     m. 

  
d A
dy

2

2
       �       �     4, which is negative, giving a maximum value. 

 When y      �      25    m, x      �      50     m from equation (1). 

 Hence, the  maximum possible area       �      xy      �      (50)(25)    �       1250       m2        

P Q

yy

x  Figure 11.1           

yx

x

 Figure 11.2           

  Application: An open rectangular box with square ends is fitted 
with an overlapping lid which covers the top and the front face. 
Determine the maximum volume of the box if 6     m 2 of metal are 
used in its construction       

A rectangular box having square ends of side x and length y is 
shown in  Figure 11.2   . 

Surface area of box, A, consists of two ends and five faces (since the 
lid also covers the front face). 

Hence, A x xy� � �2 5 62 (1)      

Since it is the maximum volume required, a formula for the volume 
in terms of one variable only is needed. Volume of box, V      �      x 2 y 
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 From equation (1),     y
x

x
x

�
�

� �
6 2

5
6
5

2
5

2

x
(2)      

 Hence, volume V      �      x 2 y    �      x 2  
6
5

2
5

6
5

2
5

3

x
x x x

� � �
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟     

  

dV
dx          

�  
     

6
5

6
5

0
2

� �
x     for a maximum or minimum value. 

Hence, 6      �      6x 2, giving x      �      1    m (x   �       �     1 is not possible, and is thus 
neglected).

  
d V
dx

x
.

2

2

12
5

�
�

    When x      �      1,
d V
dx

2

2     is negative, giving a maximum 

value.

 From equation (2),  when x      �      1, y      �       
6
5

2
5

4
5

� �     

 Hence,  the maximum volume of the box,

V      �       x 2 y    �      (1) 2

  

4
5

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ �

4
5

m3

     

  11.9     Tangents and normals         

The equation of the tangent to a curve y      �      f(x) at the point 
(x1 , y 1 ) is given by: 

y y m(x x )1 1� � �    

   where  m
dy
dx

� �     gradient of the curve at (x 1 , y 1 ).   

The equation of the normal to a curve at the point (x 1, y 1) is 
given by: 

y y
1
m

(x x )1 1� � � �
                 

  Application: Find the equation of the tangent to the curve 
y      �      x 2       �      x � 2 at the point (1,  � 2)       
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 Gradient,  m
dy
dx

x� � �2 1    

 At the point (1,      �     2), x      �      1 and m      �      2(1)    �      1    �      1 

 Hence the equation of the tangent is: y      �      y 1       �      m(x      �      x 1 ) 

 i.e.                                                    y      �       � 2    �      1(x      �      1) 

 i.e.                                                       y      �      2    �      x    �      1 

 or                                                                y      �      x    �      3  

The graph of y      �      x 2       �      x �2 is shown in  Figure 11.3   . The line AB is 
the tangent to the curve at the point C, i.e. (1,      �     2), and the equa-
tion of this line is y      �      x    �      3.      

1

y

B

D

C

A

x

1

2

2 30�1

�1

�2

�3

�2

y � x2�x�2

 Figure 11.3           

  Application: Find the equation of the normal to the curve 
y      �      x 2       �      x  �  2 at the point (1,      � 2)       

 m    �      1 from above, hence the equation of the normal is: 

y � � � � �2
1
1

1(x )
     

i.e.  y      �      2    �       �     x      �      1 or y      �       �     x � 1  

 Thus the line CD in  Figure 11.3  has the equation y      �       �     x � 1  
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  11.10     Small changes using differentiation         

If y is a function of x, i.e. y      �      f(x), and the approximate change in 
y corresponding to a small change  δ x in x is required, then: 

δ
δ

≈
y
x

dy
dx      

 and             δ ≈ δ δ ≈ δy
dy
dx

x y f (x) x
 � 
or
                

  Application: The time of swing T of a pendulum is given by 
T      �       k �    , where  � is a constant. Determine the percentage change 
in the time of swing if the length of the pendulum � changes 
from 32.1     cm to 32.0 cm       

 If T      �       k k� ��
1
2    , then  

dT
d

k
k

�
�

�
� ��1

2 2

1
2

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

    

 Approximate change in T,  δ t  � 
  

dT
d

k
�

δ δ�
�

��
2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

    

� k
( ) (negative 

2
0 1

�

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ � .

   since  decreases)�      

 Percentage error  �
approximate change in T

original value of T

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
100%%

    

�

�

� �
�

�
�

k
( )

k
% %

(

2
0 1

100
0 1
2

100

0 1
2

�

� �

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ ⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

.
.

.
332 1

100
. )

%
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ � �0.156%

     

  Hence, the change in the time of swing is a decrease of 
0.156%   
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  11.11     Parametric equations         

The following are some of the more  common parametric equa-
tions, and  Figure 11.4    shows typical shapes of these curves. 

  (a)   Ellipse        x    �      a cos  θ , y      �      b sin  θ   

  (b)   Parabola       x    �      at 2 , y      �      2at  

  (c)   Hyperbola    x    �      a sec  θ , y      �      b tan  θ   

  (d)   Rectangular hyperbola      x    �      ct, y      �       
c
t

     

  (e)   Cardioid       x    �      a(2 cos  θ       �      cos 2 θ ), 
    y      �      a(2 sin  θ       �      sin 2 θ )  

  (f)   Astroid       x    �      a cos 3  θ , y      �      a sin 3  θ   

  (g)   Cycloid       x    �      a( θ       �      sin  θ ), y      �      a(1      �      cos  θ )    

(a) Ellipse (c) Hyperbola

(e) Cardioid (f) Astroid

(g) Cycloid

(d) Rectangular
     hyperbola

(b) Parabola

 Figure 11.4           
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 x      �      5 θ       �      1, hence   dx
dθ

� 5     

 y      �      2 θ ( θ       �      1)      �      2 θ  2       �      2 θ , hence  dy
dθ

       �      4 θ       �      2    �      2(2 θ       �      1) 

 From equation (1),  dy
dx

� �
�

dy
d
dx
d

( )θ

θ

θ2 2 1
5

  

 or
2
5

(2 1)θ �
          

  Differentiation in parameters 

 When x and y are both functions of  θ , then:

                                      dy
dx

dy
d
dx
d

� θ

θ

(1)    

   and    

                                    d y
dx

d
d

dy
dx

dx
d

2

2
�

θ

θ

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

   (2)                   

  Application: Given x      �      5 θ       �      1 and y      �      2 θ ( θ       �      1), determine 
dy
dx

    in terms of  θ .       

  Application: The parametric equations of a cycloid are 
x      �      4( θ       �      sin  θ ), y      �      4(1      �      cos  θ ). Determine 

(a)
dy
dx

(b)
d y
dx

2

2            

  (a)   x    �      4( θ       �      sin  θ ), hence  dx
dθ

       �      4    �      4 cos  θ       �      4(1      �      cos  θ ) 

  y      �      4(1      �      cos  θ ), hence  
dy
dθ

       �      4 sin  θ   

  From equation (1),  dy
dx

sin
(1 cos )

� �
�

�

dy
d
dx
d

( )
θ

θ

θ
θ

4
4 1

sin
cos

θ
θ�
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  (b)   From equation (2), 

d y
dx

2

2
�

�

�
�

� �d
dθ

θ
θ

θ

θ θsin
cos

( cos )

( cos )(cos ) (si
1

4 1

1⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

nn )(sin )
( cos )
( cos )

cos cos sin
( cos )

co

θ θ
θ

θ

θ θ θ
θ

1
4 1

4 1

2

2 2

3

�

�

�
� �

�
�

ss (cos sin )
( cos )

cos
( cos )

( cos )
(

θ θ θ
θ

θ
θ

θ

� �

�
�

�
�

� �

2 2

3

3

4 1

1
4 1

1
4 1

−

− ccos )θ 3
�

�

�

1
4(1 cos )2θ                    

  Application: When determining the surface tension of a liquid, 
the radius of curvature  ρ , of part of 

 the surface is given by:   ρ �

�1
2 3

2

2

dy
dx

d y
dx

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

    

Find the radius of curvature of the part of the surface having the 
parametric equations 

 x    �      3t 2 , y      �      6t at the point t      �      2       

 x      �      3t 2 , hence  
dx
dt

        �      6t and y      �      6t, hence  
dy
dt

       �      6 

 From equation (1),

dy
dx

dy
dt
dx
dt

t t
� � �

6
6

1

    
 From equation (2),

d y
dt

d
dt

dy
dx

dx
dt

d
dt t

t

d
dt

t2

2

1
1

6 6
� � �

�
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ( )

tt
t
t t t

�
�

�
�

��2 2

36

1

6
1

6
t =
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 Hence radius of curvature,  ρ �

�

�

�1 1
1

2 3

2

2

2
dy
dx

d y
dx

t

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥

3

3

1
6
�

t

    

 When t      �      2,  

ρ �

�

�

�

�

� �

1
1
2

1
6 2

1 25
1

48

48 1 25

2 3

3

3
3

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

( )

.
.

( )
��67.08

     

  11.12     Differentiating implicit functions           

d
dx

[f(y)]
d

dy
[f(y)]

dy
dx

� � (3)      

Sometimes with equations involving, say, y and x, it is impossible 
to make y the subject of the formula. The equation is then called 
an implicit function and examples of such functions include 
y3       �      2x 2       �      y 2       �      x and sin y      �      x 2       �      2xy             

  Application: Differentiate u      �      sin 3t with respect to x       

du
dx

du
dt

dt
dx

d
dt

( t)
dt
dx

� � � � �sin 3 3cos 3t
dt
dx            

  Application: Differentiate u      �      4     ln 5y with respect to t       

du
dt

du
dy

dy
dt

d
dy

( ln y)
dy
dt

� � � � �4 5
4
y

dy
dt

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

           

  Application: Determine  d
dx

(x y)2           
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d
dx

(x y) (x )
d
dx

(y) (y)
d
dx

(x ), by the product rule2 2 2� �
     

  
� �(x )

dy
dx

y( x), by using equation (3)2 1 2
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

    

  
� x2 dy

dx
2xy�

   

         Application: Determine  d
dx

y
x

3
2

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

          

d
dx

y
x

( x)
d
dx

( y) ( y)
d
dx

( x)

( x)

( x)
dy
dx3

2

2 3 3 2

2

2 3

2

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛

�
�

�
⎝⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

�

�
�

�

( y)( )

x

x
dy
dx

y

x

3 2

4

6 6

4

2

2

3
2x

x
dy
dx

y
2

�

           

  Application: Given 3x 2       �      y 2       �      5x      �      y    �      2 determine  dy
dx

          

 Differentiating term by term with respect to x gives: 

d
dx

( x )
d
dx

(y )
d
dx

( x)
d
dx

(y)
d
dx

( )3 5 22 2� � � �
     

i.e.   6x      �      2y
dy
dx

       �      5    �      1 
dy
dx

       �      0 using equation (3) and
 standard derivatives.

 Rearranging gives:       (2y      �      1) dy
dx

       �      5    �      6x 

 from which,                              dy
dx

5 6x
2y 1

�
�

�
          

  Application: Determine the values of  
dy
dx

    when x      �      4 given 
that x 2       �      y 2       �      25       
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 Differentiating each term in turn with respect to x gives: 

d
dx

d
dx

(y )
d
dx

( ) i.e. x y
dy
dx

( )x2 2 25 2 2 0� � � �
     

 Hence        
dy
dx

x
y

x
y

� � � �
2
2     

Since x 2       �      y 2       �      25, when x      �      4, y      �       ( )25 42�        �       
 3 

Thus, when x      �      4 and y      �       
 3,  
dy
dx

4
3

� �



�
4
3

�     

 x 2       �      y 2       �      25 is the equation of a circle, centre at the origin and 
radius 5, as shown in  Figure 11.5   . At x      �      4, the two gradients are 
shown.

Gradient
� � 4

3

Gradient
� 4

3

y

5

3

0 4 5 x

�3

�5

�5

x2 � y2 � 25

 Figure 11.5           

Above, x 2       �      y 2       �      25 was differentiated implicitly; actually, the equa-
tion could be transposed to y      �       ( x )25 2�     and differentiated using 
the function of a function rule. This gives 

dy
dx

( x ) ( x)
x

( x )
� � � � �

�

�1
2

25 2
25

2
2

1
2

   

   and when x      �      4,  
dy
dx ( )

� �
�

� 

4

25 4

4
32

            as obtained above.    
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  11.13     Differentiation of logarithmic functions         

  Logarithmic differentiation is achieved with knowledge of (i) 
the laws of logarithms, (ii) the differential coefficients of logarith-
mic functions, and (iii) the differentiation of implicit functions. 

(i)    The laws of logarithms are: 1.   log(A   �   B)   �   log A   �   log B 

  2.   log  A
B

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

       �      log A      �      log B  

  3.   log A n       �      n log A     

   (ii)   The differential coefficient of the logarithmic function ln x is 
given by:    

d
dx

(ln x)
1
x

�
   

   More generally, it may be shown that:   

d
dx

[ln f(x)]
f (x)
f(x)

�
�

(4)      

  (iii)   Differentiation of implicit functions is obtained using:    

d
dx

[f(y)]
d

dy
[f(y)]

dy
dx

� � (5)                  

  Application: If y      �      ln(3x 2       �      2x      �      1) determine  
dy
dx

          

 If y      �      ln(3x 2       �      2x      �      1) then  
dy
dx

6x 2
3x 2x 12

�
�

� �
          

  Application: If y      �      ln(sin 3x) determine  
dy
dx

          

 If y      �      ln(sin 3x) then  
dy
dx

3 cos 3x
sin 3x

3 cot 3x� �           
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 (i)   Taking Napierian logarithms of both sides of the equation gives: 

 ln y      �      ln 
( x) (x )

x (x )
ln

( x) (x )
x(x )

/

/

1 1

2

1 1
2

2 2 1 2

1 2

� �

�
�

� �

�

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪

⎧
⎨⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪         

   (ii)   Applying the laws of logarithms gives: 

  ln y      �      ln(1    �      x) 2       �      ln(x    �      1) 1/2       �      ln x      �      ln(x    �      2) 1/2  
by laws 1 and 2  

i.e. ln y      �      2 ln(1    �      x)      �     
  

1
2

   ln(x    �      1)      �      ln x      �     
  

1
2

   ln(x    �      2) 
by law 3     

  (iii)   Differentiating each term in turn with respect to x using equa-
tions (4) and (5) gives:    

1 2
1

1
2

1
1

1
2

2y
dy
dx ( x) (x ) x (x )

�
�

�
�

� �
�      

  (iv)   Rearranging the equation to make dy
dx

   the subject gives:    

dy
dx

�
�

�
�

� �
�

y
( x) (x ) x (x )

2
1

1
2 1

1 1
2 2

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪    

 (v)   Substituting for y in terms of x gives:    

dy
dx

(1 x) (x 1)
x (x 2)

2
(1 x)

1
2(x 1)

1
x

1
2(x 2)

2
�

� �

� �
�

�
� �

�

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎭⎪⎪          

  Application: Differentiate y   �     
( x) (x )

x (x )

1 1

2

2� �

�
    with respect to x       

  Application: Determine  
dy
dx

    given y      �      x x        

 Taking Napierian logarithms of both sides of y      �      x x  gives: 

 ln y      �      ln x x       �      x ln x    by law 3 
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 Differentiating both sides with respect to x gives: 

1 1
1

y
dy
dx

(x)
x

(ln x)( ), using the product rule� �
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

     

i.e.     
1
y

dy
dx

       �      1    �      ln x from which,  
dy
dx

       �      y(1      �      ln x) 

 i.e.        
dy
dx

          �      x x (1      �      ln x)        

  Application:  Determine the differential coefficient of 

y      �       (x )x � 1     and evaluate  dy
dx

    when x      �      2.       

 y      �       (x )x � 1        �      (x      �      1) 1/x   since by the laws of indices:  a amn m
n�     

 Taking Napierian logarithms of both sides gives: 

 ln y      �      ln(x    �      1) 1/x       �       
1
x

   ln(x    �      1)    by law 3 

 Differentiating each side with respect to  x  gives: 

1 1 1
1

1
1
2y

dy
dx x x

[ln(x )]
x

�
�

� �
�⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟⎟ by the product rule

     

 Hence          
dy
dx

y
x(x )

ln(x )
x

�
�

�
�1

1
1

2

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪     

 i.e.            
dy
dx

(x 1)
x(x 1)

ln(x 1)
x

x� �
�

�
�1
2

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪     

 When x      �      2,
dy
dx

� � � 
 � �( )
( )

ln( )
1

1
2 1

1
4

1
1
2

02
⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

�
11
2      

  11.14      Differentiation of inverse trigonometric 
functions        

If y      �      3x      �      2, then by transposition, x      �       
y � 2

3
   . The function 

x      �       y � 2
3

    is called the  inverse function  of y      �      3x      �      2. 
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  Inverse trigonometric functions are denoted by prefix-
ing the function with      �     1 or ‘ arc ’ . For example, if y      �      sin x, then 
x      �      sin      �     1y or x      �      arc sin y. Similarly, if y      �      cos x, then y      �      cos      �     1 y 
or x      �      arc cos y, and so on. A sketch of each of the inverse trigo-
nometric functions is shown in  Figure 11.6   .             

 Table 11.1      Differential coefficients of inverse trigonometric 
functions  

y

y

y y

y � sin�1x

y � sec�1x
y � cosec�1x

y � cot�1x

y � cos�1x

y � tan�1x

�1x�1

�1

A

3π/2 3π/2

0

�1 x0

(a) (b) (c)

(d) (e) (f)

�π/2

�3π/2
�π

�π

�1x x�1 0 0

x0

�π/2

π/2

�π/2

�3π/2

�π

�π

π
π/2

y y

�1 x

π

π
π/2

π/2
B

C

D

�π/2

3π/2
π

π/2

�π/2

�3π/2

3π/2
π

π/2

�1 0
�π/2

�3π/2
�π

 Figure 11.6           

   y or f(x) 
  

dy
dx

or f (x)�

(i) sin�1 x
a

1
2 2a x�

sin ( )�1 f x f x

f x

�

�

( )

1 2[ ( )]
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 From  Table 11.1   (i), if y      �      sin      �     1 f(x) then  
dy
dx f x

�
�

�

f x( )

[ ( )]1 2
    

 Hence, if y      �      sin      �     1 5x 2  then f(x)      �      5x 2  and f � (x)      �      10x 

Thus, dy
dx

x

x
�

�
�

10

1 5 2 2( )

10x

1 25x4�
          

(ii) cos�1 x
a

�

�

1
2 2a x

cos ( )�1 f x � �

�

f x

f x

( )

1 2[ ( )]

(iii) tan�1 x
a

a
a x2 2�

tan ( )�1 f x f x
f x

�

�

( )
[ ( )]1 2

(iv) sec�1 x
a

a

x x a2 2�

sec�1 f x( ) f x

f x f x

�

�

( )

( ) [ ( )]2 1

(v) cosec�1 x
a

�

�

a

x x a2 2

cosec�1 f x( ) � �

�

f x

f x f x

( )

( ) [ ( )]2 1

(vi) cot�1 x
a

�

�

a
a x2 2

cot ( )�1 f x � �

�

f x
f x
( )

[ ( )]1 2

  Application: Find  dy
dx

    given y      �      sin      �     1 5x 2        
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 Let u      �      cos      �     1 3x then y      �      ln u 

 By the function of a function rule,  

dy
dx

dy
du

du
dx u

d
dx

(cos 3x)� � � � �1 1

    

�
�

��

1
3

3

1 31 2cos x x( )

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪      

i.e.
d

dx
[ln(cos 3x ]

3

1 9x cos 3x
1

2 1
�

�
�

�

�
)

          

  Application:  Find the differential coefficient of y      �      ln(cos      �     1 3x)       

  Application: Find  
dy
dt

    given y      �      tan      �     1  3
2t

          

 Using the general form from  Table 11.1 (iii),  

f(t)
t

t from which, f (t)
t

� � � �
��3

3
6

2
2

3
     

Hence,
d
dt

tan
f (t)

f(t)
t

t

� �
�

�
�

�

�

1
2 2

3

2

2

3
1

6

1
3t

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ ⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

[ ] ⎧⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

�
�

�

6

9
3

4

4

t
t

t
    

� �
�

�
6

93

4

4t
t

t

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ �

�

6
t 94

t

      

  11.15      Differentiation of inverse hyperbolic 
functions        

  Inverse hyperbolic functions are denoted by prefixing the func-
tion with      �     1 or ‘ ar ’ . For example, if y      �      sinh x, then x      �      sinh      �     1 y 
or x      �      ar sinh y. Similarly, if y      �      sech x, then x      �      sech      �     1y or 
x      �      ar sech y, and so on. A sketch of each of the inverse hyper-
bolic functions is shown in  Figure 11.7   .             
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 Table 11.2      Differential coefficients of inverse trigonometric 
functions  

   y or f(x) 
  

dy
dx

or f (x)�

(i) sinh�1 x
a

1
2 2x a�

sinh�1 f x( ) f x

f x

�

�

( )

[ ( )]2 1

(ii) cosh�1 x
a

1
2 1x a�

cosh ( )�1 f x f x

f x

�

�

( )

[ ( )]2 1

(iii) tanh�1 x
a

a
a x2 2�

tanh ( )�1 f x f x
f x

�

�

( )
[ ( )]1 2

y � sinh�1x

y � sech�1x

x

x x

x
x

y y y

y � cosech�1x y � coth�1x

y � cosh�1x y � tanh�1x

(a) (b)

(d) (e) (f)

(c)

�2
�3

�1 �1
�2
�3

1
2
3

�1 0

0 0 0

0
0

1 2 31

1

2 3�2 �2�1 �1

�1

�1

x�1

�3

1
2
3

y y y

�2
�3

�1

1
2
3

 Figure 11.7           
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 From  Table 11.2   (i), 
d
dx

  [sinh      �     1 f(x)]    �       
f (x)

f(x)

�

�[ ]2 1     

Hence d
dx

   (sinh      �     1 2x)      �       
2

2 12[( x) ]�
�

2

4x 12[ ]�           

  Application:  Find the differential coefficient of y      �      sinh      �     1 2x       

  Application: Determine 
d
dx

   [cosh      �     1  ( )x2 1+   ]       

 If y      �      cosh      �     1 f(x),  dy
dx

f (x)

f(x)
�

�

�[ ]2 1{ }
    

 If y      �      cosh      �     1  ( )x2 1�    , then f(x)      �        ( )x2 1�     and 

f� (x)      �       
1
2

    (x      �      1)      �     1/2  (2x)    �       
x

x )( 2 1�
    

(iv) sech�1 x
a

�

�

a

x a x2 2

sech�1 f x( ) � �

�

f x

f x f x

( )

( ) [ ( )]1 2

(v) cosech  
x
a

�1 �

�

a

x x a2 2

cosech  f(x)�1 � �

�

f x

f x f x

( )

( ) [ ( )]2 1

(vi) coth�1 x
a

a
a x2 2�

coth ( )�1 f x f x
f x

�

�

( )
[ ( )]1 2
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Hence
d
dx

cosh (x )

x

x

(x )]

x

(x )

(x )
2� � �

�

� �

�
�

� �

1
2

2 2

2

2
1

1

1 1

1

1 1
⎡
⎣⎢

⎤
⎦⎥ { }

( )

[

��
�

�

x

x
x

( )2 1 1

(x 1)2 �           

  Application: Find the differential coefficient of y   �   sech     �     1(2x   �   1)       

 From  Table 11.2 (iv),
d
dx

[sech f(x)]
x

f(x) f(x)

� �
� �

�

1
2

1

f ( )

[ ]
    

 Hence

d
dx

[sech ( )]
( ) [ ( ) ]

( x ) [ ( x

� � �
�

� � �

�
�

� � � �

1
2

2

2 1
2

2 1 1 2 1

2

2 1 1 4 4 1

x
x x

x ))]
    

�
�

� �
�

�

� �

2

2 1 4 4

2

2 1 4 12( x ) ( x x ( x ) [ x( x)])    

�
�

� �
�

2

2 1 2 1( ) [ ( )]x x x

�

� �

1
(2x 1) [x(1 x)]      

  Logarithmic forms of the inverse hyperbolic 
functions        

Inverse hyperbolic functions may be evaluated most conveniently 
when expressed in a  logarithmic     form.  

sinh
x
a

In
x a x

a
1

2 2
� �

� �⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

(6)      

cosh
x
a

In
x x a

a
1

2 2
� �

� �⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

(7)      
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 To evaluate  sinh�1 3
4

    let x      �      3 and a      �      4 in equation (6). 

 Then,  sinh In In In� �
� �

�
�

�1
2 23

4
3 4 3

4
3 5

4

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ 22 � 0.6931           

 and                      tanh
x
a

1
2

ln
a x
a x

1� �
�

�

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ (8)      

A calculator with inverse hyperbolic functions may also be used 
to evaluate such functions.             

 Application: Evaluate  sinh�1 3
4

          

 From equation (6), with x      �      2 and a      �      1,  

sinh In In In� �
� �

� � �1
2 2

2
2 1 2

1
2 5 4 2361

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

( ) .

    
� 1.4436, correct to 4 decimal places            

  Application:  Evaluate, correct to 4 decimal places, sinh      �     1 2       

  Application: Evaluate cosh      �     1 1.4, correct to 3 decimal places       

 From equation (7),   cosh In� �

 �1

2 2x
a

x x a
a

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

    

and cosh      �     1 1.4      �      cosh      �     1  
14
10

       �      cosh      �     1  
7
5

    hence,  x      �      7 and a      �      5 

Then, cosh In In 2.3798

 corr

� � �

�

1
2 27

5
7 7 5

5
+ −⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

0 867. , eect to 3 decimal places          

  Application: Evaluate  tanh�1 3
5

   , correct to 4 decimal places       
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 From equation (8),

tanh
x
a

In
a x
a x

� �
�

�
1 1

2

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟    ; substituting x      �      3 and a      �      5 gives: 

  

tanh In

 correct to 4 

� �
�

�
�

�

1 3
5

1
2

5 3
5 3

1
2

4ln

.

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

0 6931, ddecimal places     

  11.16     Partial differentiation         

When differentiating a function having two variables, one variable 
is kept constant and the differential coefficient of the other vari-
able is found with respect to that variable. The differential coeffi-
cient obtained is called a partial derivative of the function. 

  First order partial derivatives  

If V      �       π r 2h then
∂
∂
V
r

    means ‘the partial derivative of V with 

respect to r, with h remaining constant ’  

 Thus 
∂
∂

π π π
V
r

( h)
d
dr

(r ) ( h)( r) rh� � �2 2 2
    

Similarly,  
∂
∂
V
h

    means ‘the partial derivative of V with respect to h, 

with r remaining constant ’  

 Thus 
∂
∂

π π π
V

( r )
d

dh
(h) ( r )( ) r

h
� � �2 2 21

    

  Second order partial derivatives  

  (i)   Differentiating  ∂
∂
V
r

    with respect to r, keeping h constant, gives    

  

∂
∂r

V
r

,
∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

   
 which is written as 

∂
∂

2

2

V
r     

Thus if V      �       π r2h     then 
∂

∂
π

2

2
2

V
r r

( rh)
∂

∂
� � 2 hπ
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    (ii)   Differentiating  
∂
∂
V
h

    with respect to h, keeping r constant, 
gives    

  

∂
∂h

V
h

,
∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟     which is written as 

∂2

2

V
h∂     

Thus
∂
∂

∂
∂

π
2

2
2V

h h
( r )� � 0

    

  (iii)   Differentiating  
∂
∂
V
h

    with respect to r, keeping h constant, 
gives    

  

∂
∂

∂
∂r
V
h

,
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟    which is written as 

∂
∂ ∂

2V
r h     

 Thus 
∂
∂ ∂

∂
∂

∂
∂

∂
∂

π
2

2V
r h r

V
h r

( r )� � �
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ 2 rπ

    

  (iv)   Differentiating  
∂
∂
V
r

    with respect to h, keeping r constant, 
gives    

  

∂
∂

∂
∂h
V
r

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ,

  
  which is written as  

∂
∂ ∂

2V
h r     

Thus
∂
∂ ∂

∂
∂

∂
∂

∂
∂

π
2

2
V

h r h
V
r h

( rh)� � �
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ 2 rπ     

  
∂
∂

∂
∂

∂
∂ ∂

2

2

2

2

2V
r

,
V

h
,

V
r h

    and
∂
∂ ∂

2V
h r

    are examples of  second

order partial derivatives. It is seen from (iii) and (iv) that 

∂
∂ ∂

∂
∂ ∂

2 2V
r h

V
h r

�     and such a result is always true for continuous 

functions.             

  Application: If Z      �      5x4       �      2x 3 y 2  � 3y determine
∂
∂

Z
x

    and  
∂
∂

Z
y

          

 If Z      �      5x 4       �      2x 3 y 2 � 3y 

 then 
∂
∂

Z
x

d
dx

d
dx

d
dx

� � �( x ) ( y ) (x ) ( y) ( )5 2 3 14 2 3

    
� � � �20 2 3 3 03 2x ( y )( x ) ( y)( )2 20x 6x y3 2 2�      
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and
∂
∂

Z
y

d
dy

d
dy

d
dy

� � �( x ) ( ) ( x ) (y ) (y)5 1 2 34 3 2

    
� � � �0 2 2 33( x )( y) 4x y 33 �            

  Application: The time of oscillation, t, of a pendulum is given 

by: t
g

� 2π
l

    where l is the length of the pendulum and g the 

free fall acceleration due to gravity. Find   ∂
∂
t
l
    and  

∂
∂

t
g

          

 To find  
∂
∂

t
1

   , g is kept constant. 

t 1/2� � �2
2 2

π
l
g g

l
g

l
π π⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
     

Hence,
∂
∂
t
l g

d
dl

l
g

l� � �2 2 1
2

1 2 1 2π π⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛
⎝

( )/ /⎜⎜⎜⎜
⎞
⎠
⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟� �

2 1

2

π
g l

π
lg

    

 To find  
∂
∂

t
g

,    l is kept constant. 

t g /� � � �2 2 2 1 2π π π
l
g

l
l
g

l( )
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

( )
     

 Hence

∂
∂

π π
πt

g
l

l
g l

l
� � �

�
�

��2
2

2
2

3 2
3

( )⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

( )
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
/

g

ll

g3
� �π

l
g3

          

  Application: Given Z      �      4x 2 y 3  � 2x 3       �      7y 2  find

(a)
∂
∂

2

2

Z
x

    (b) 
∂
∂

2

2

Z
y

   (c) 
∂2Z
x y∂ ∂

  (d)
∂

∂ ∂

2Z
y x           

  (a) 
   

∂
∂

Z
x

� �8 63xy x2

       
∂
∂

∂
∂

∂
∂

∂
∂

2

2
3 28 6

Z
x x

Z
x x

x� � � �
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ( xy ) 8y 12x3 �
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  (b)  
   

∂
∂

Z
y

� �12 142 2x y y
       

∂
∂

∂
∂

∂
∂

∂
∂

2

2
2 2 14

Z
y y

Z
y y

� � � �
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

(12x y y) 24x 142y �

     

  (c) 
   

∂
∂ ∂

∂
∂

∂
∂

∂
∂

2
2 212 14

Z
x y x

Z
y x

� � � �
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

( x y y) 24xy2

     

  (d)  
    

∂
∂ ∂

∂
∂

∂
∂

∂
∂

2
3 28 6

Z
y x y

Z
x y

� � � �
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ( xy x ) 24xy2

        

  11.17     Total differential         

 If Z      �      f(u, v, w,  … ), then the  total differential, dZ , is given by: 

dZ � � � �
∂
∂

∂
∂

∂
∂

Z
u

du
Z
v

dv
Z
w

dw ..... (9)                  

  Application: If Z      �      f(u, v, w) and Z      �      3u 2   �  2v    �      4w 3 v 2 deter-
mine the total differential dZ       

 Total differential,  dZ
Z
u

du dv� � �
∂
∂

∂
∂

∂
∂

Z
v

Z
w

dw
    

  

∂
∂

Z
u      

    �      6u (i.e. v and w are kept constant) 

  

∂
∂

Z
v      

    �      �2      �      8w 3 v (i.e. u and w are kept constant) 

  

∂
∂

Z
w

    �  12w 2 v 2  (i.e. u and v are kept constant) 

Hence, dZ    �      6u du      �      (8vw 3       �      2)dv    �      (12v 2 w 2)dw   
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  11.18      Rates of change using partial 
differentiation         

If Z      �      f(u, v, w, ...) and 
du
dt

,
    

dv
dt

,
    

dw
dt

.....,
  
 denote the rate of 

change of u, v, w,  ….respectively, then the rate of change of Z, 
dZ
dt

,     is given by: 

dZ
dt

Z
u

du
dt

Z
v

dv
dt

Z
w

dw
dt

� � � �
∂
∂

∂
∂

∂
∂

.. (9)                  

  Application: If the height of a right circular cone is increasing 
at 3 mm/s and its radius is decreasing at 2 mm/s, find the rate 
at which the volume is changing (in cm 3/s) when the height is 
3.2     cm and the radius is 1.5     cm.       

 Volume of a right circular cone, V r h�
1
3

2π
    

 Using equation (9), the rate of change of volume,  

dV
dt

V
r

dr
dt

V
h

dh
dt

� �
∂
∂

∂
∂     

  

∂
∂

π
V
r

rh�
2
3

   and 
∂
∂

π
V
h

r�
1
3

2

    

Since the height is increasing at 3    mm/s, i.e. 0.3 cm/s, then
dh
dt

         �       

�0.3 and since the radius is decreasing at 2    mm/s, i.e. 0.2    cm/s, then 
dr
dt

       �      �0.2

 Hence, 
dV
dt

rh r� � � � �
�2

3
0 2

1
3

0 3
0 4
3

2π π
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟( . ) ( . )

.
πrhh r� 0 1 2. π

    
 However, h      �      3.2     cm and r      �      1.5     cm. 

 Hence 
dV
dt

( )( ) ( ) ( )�
�

�
0 4
3

1 5 3 2 0 1 1 5 2.
. . . .π π

    
                        �      �2.011    �      0.707  �  �1.304 cm 3 /s 

  Thus, the rate of change of volume is 1.30 cm 3 /s decreasing   
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  11.19     Small changes using partial differentiation         

If Z      �      f(u, v, w, …) and δu, δv,  δw, … denote small changes in u, 
v, w, … respectively, then the corresponding approximate change 
δ Z in Z is given by: 

δ ≈
∂
∂

δ
∂
∂

δ
∂
∂

δZ
Z
u

u
Z
v

v
Z
w

w� � � ..... (10)                  

  Application: If the modulus of rigidity G  �  (R 4  θ)/L, where R is the 
radius, θ the angle of twist and L the length, find the approximate 
percentage error in G when R is increased by 2%,  θ is reduced by 
5% and L is increased by 4%       

 From equation (10), δ
∂
∂

δ
∂
∂θ

δθ
∂
∂

δG
G
R

R
G G

L
L� � �

    

Since G
R
L

,
G
R

R
L

,
G R

L
� � �

4 3 44θ ∂
∂

θ ∂
∂θ   

 and 
∂
∂

θG
L

R
L

�
� 4

2
    

 Since R is increased by 2%,  δ R    �    
   

2
100

R
   
      �      0.02 R 

 Similarly,     δ  θ        �      �0.05 θ and δ L    �      0.04 L 

 Hence         δ θG ( R) ( )�
4

0 02 0 05
3 4 4

2

R
L

R
L

R
L

θ θ⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟. .� � � �

⎛⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ ( L)0 04.

    

� �

�

R
L

[ ]
R
L

i.e. G G

4 4
0 08 0 05 0 04 0 01

1
100

θ θ

δ

. . . .� � �

�
     

  Hence the approximate percentage error in G is a 1% decrease.        

  Application: If the second moment of area I of a rectangle is given 

by I      �       
bl3

3
,    find the approximate error in the calculated value of l, 

if b and l are measured as 40    mm and 90    mm respectively and the 
measurement errors are –5     mm in b and      �     8     mm in l.       
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 Using equation (10), the approximate error in I,  δ I  �   
∂
∂

I
b

    δ b      �       
∂
∂

I
I

    δ l 

∂
∂

∂
∂

I l
l

l
l

b
and

I b
b� � �

3 2
2

3
3

3      
  δ b    �       �     5     mm and  δ l    �       �     8     mm 

 Hence  δ I  �   
l3

3

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟    ( � 5)      �      (bl 2 )( � 8) 

 Since b      �      40    mm and l      �      90    mm then 

δ I  �   
90
3

3⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟    ( � 5)      �      40(90) 2 (8) 

  �       �     1,215,000    �      2,592,000 

  �  1,377,000     mm 4   �  137.7     cm 4  

  Hence, the approximate error in the calculated value of I is a 
137.7     cm 4  increase.   

  11.20      Maxima, minima and saddle points of 
functions of two variables         

  Procedure to determine maxima, minima and 
saddle points for functions of two variables  

 Given z      �      f(x, y): 

    (i)   determine  
∂
∂

z
x    and  

∂
∂

z
y

     

   (ii)   for stationary points,  
∂
∂

z
x

       �      0 and  
∂
∂

z
y

       �      0,  

  (iii)   solve the simultaneous equations
∂
∂

z
x

       �      0 and
∂
∂

z
y

         �      0 for x 

and y, which gives the co-ordinates of the stationary points,  

  (iv)   determine  
∂
∂

∂
∂

∂
∂ ∂

2

2

2

2

2z
x

,
z

y
and

z
x y
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 Following the above procedure: 

    (i)    
∂
∂

z
x

         �      2(x      �      1) and  
∂
∂

z
y

       �      2(y      �      2)  

   (ii)       2 1 0(x )� � (1)      

2 2 0(y )� � (2)      

  (iii)   From equations (1) and (2), x      �      1 and y      �      2, thus the only 
s tationary point exists at (1, 2)  

  (iv)   Since  
∂
∂

z
x

       �      2(x      �      1)      �      2x      �      2,  
∂
∂

2

2

z
x

       �      2 

 and since  
∂
∂

z
y

         �      2(y      �      2)      �      2y      �      4,  
∂
∂

2

2

z
y

       �      2  

        (v)   for each of the co-ordinates of the stationary points, 

substitute values of x and y into
∂
∂

∂
∂

∂
∂ ∂

2

2

2

2

2z
x

,
z

y
and

z
x y

    and 

evaluate each,  

      (vi)   evaluate  
∂

∂ ∂

2 2
z

x y

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

   for each stationary point,  

   (vii)   substitute the values of
∂
∂

∂
∂

∂
∂ ∂

2

2

2

2

2z
x

,
z

y
and

z
x y

   into the 
equation    

Δ
∂

∂ ∂
∂
∂

∂
∂

� �
2 2 2

2

2

2

z
x y

z
x

z
y

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

and evaluate,
     

  (viii)      (a)   if  Δ       >      0  then the stationary point is a  saddle point   

 (b)    if Δ       <      0 and
∂
∂

<
2

2

z
x

0,     then the stationary point is a 

maximum point , and  

 (c)    if Δ       <    0 and
∂
∂

<
2

2

z
x

0,     then the stationary point is a 

minimum point                    

  Application: Determine the co-ordinates of the stationary point 
and its nature for the function z      �      (x      �      1) 2       �      (y      �      2) 2        
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 and  ∂
∂ ∂

∂
∂

∂
∂

∂
∂

2z
x y x

z
y x

� �
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

   (2y      �      4)      �      0     

     (v)    
∂
∂

∂
∂

2

2

2

2

z
x

z
y

�        �      2 and  
∂

∂ ∂

2z
x y

       �      0  

    (vi)    
∂

∂ ∂

2 2
z

x y

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟        �      0  

   (vii)    Δ       �      (0) 2       �    (2)(2)    �       �     4  

  (viii)   Since Δ       	      0 and
∂
∂

2

2

z
x

       
      0, the stationary point (1, 2) is a 
minimum.     

The surface z      �      (x      �      1) 2       �      (y     �      2) 2 is shown in three dimensions in 
Figure 11.8   . Looking down towards the x–y plane from above, it is 
possible to produce a  contour map. A contour is a line on a map 
that gives places having the same vertical height above a datum line 
(usually the mean sea-level on a geographical map). A contour map 
for z      �      (x      �      1) 2       �      (y      �      2) 2 is shown in Figure 11.9   . The values of z 
are shown on the map and these give an indication of the rise and 
fall to a stationary point.       

1 2

1O

Z

x

y

 Figure 11.8           

y

x21

1

2
z � 1

z � 4

z � 9

z � 16

 Figure 11.9           
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 Following the procedure: 

  (i)    
∂
∂

z
x

         �      2(x 2       �      y 2 )2x    �      16x and  
∂
∂

z
y

       �      2(x 2       �      y 2 )2y      �     1 6y  

  (ii)   for stationary points,    

  i.e.               

2 2 16

4 4 16

2 2

3 2

(x y ) x x 0

x xy x 0

� � �

� � � (1)    

   and             2(x 2       �      y 2 )2y      �      16y      �      0   

 i.e.                 4y(x y ) 0 2 2� � �4 (2)      

  (iii)   From equation (1),      y 2       �       16 4
4

3x x
x

�        �      4    �      x 2  

 Substituting y 2       �      4    �      x 2  in equation (2) gives  

 4y(x 2       �      4    �      x 2       �      4)      �      0  

i.e.                 32y      �      0 and y      �      0  

 When y      �      0 in equation (1), 4x 3       �      16x      �      0  

i.e.                    4x(x2       �      4)      �      0  

from which,            x      �      0 or x      �       
 2  

  The co-ordinates of the stationary points are (0, 0), (2, 0) 
and ( � 2, 0)      

  (iv)    
∂
∂

2

2

z
x

         �      12x 2       �      4y 2       �      16,
∂
∂

2

2

z
y

       �      4x 2       �      12y 2       �      16

and
∂

∂ ∂

2

x y
z

       �      8xy  

  (v)   For the point (0, 0),  ∂
∂

2

2

z
x

       �       �      16,  ∂
∂

2

2

z
y

       �      16 and  ∂
∂ ∂

2z
x y

         �      0 

 For the point (2, 0),  
∂
∂

2

2

z
x

       �      32,  
∂
∂

2

2

z
y

       �      32 and  ∂
∂ ∂

2z
x y

         �      0  

 For the point ( � 2, 0),  
∂
∂

2z
x2

       �      32,  
∂
∂

2

2

z
y

       �      32 and  
∂

∂ ∂

2z
x y

         �      0     

  Application: Find the co-ordinates of the stationary points on the 
surface z   �   (x2     �   y2)2     �   8(x2     �   y2), and distinguish between them       
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  (vi)    
∂

∂ ∂

2 2
z

x y

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟        �      0 for each stationary point  

  (vii)    Δ  (0,0)       �      (0) 2       �      ( � 16)(16)    �      256 
  Δ  (2,0)       �      (0) 2       �      (32)(32)    �       �     1024  
  Δ  (� 2,0)       �      (0) 2       �      (32)(32)    �       �     1024     

  (viii)   Since  Δ  (0,0)       
      0,  the point (0, 0) is a saddle point  

  Since Δ  (2,0)       	      0 and
∂
∂

2

2
2 0

z
x ( , )

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

       
      0, the point (2, 0) is a mini-
mum point   

  Since Δ  (� 2,0)       	      0 and ∂
∂

2

2
2 0

z
x ( , )

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

�

       
      0, the point ( �2, 0) is a 
minimum point        

Looking down towards the x–y plane from above, an approximate 
contour map can be constructed to represent the value of z. Such a 
map is shown in  Figure 11.10   . To produce a contour map requires a 

y

g

b a
d

c

e
z � 0

z � 9

z � 128

xf

h

j

�2

�2

�4

s

i

4

2

2

 Figure 11.10           
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large number of x–y co-ordinates to be chosen and the values of z at 
each co-ordinate calculated. Here are a few examples of points used 
to construct the contour map. 

  When z       �       0 , 0      �      (x 2       �      y 2 ) 2       �      8(x 2       �      y 2 ) 

 In addition, when, say, y      �      0 (i.e. on the x-axis) 

                     0    �      x 4       �      8x 2 i.e. x 2 (x 2       �      8)      �      0 

 from which, x      �      0 or x      �       
  8     

Hence the contour z      �      0 crosses the x-axis at 0 and  
  8    , i.e. at 
co-ordinates (0, 0), (2.83, 0) and ( �2.83, 0) shown as points S, a 
and b respectively. 

  When z       �       0 and x       �       2  then 0      �      (4      �      y 2 ) 2       �      8(4      �      y 2 ) 

i.e.  0      �      16      �      8y 2       �      y 4       �      32      �      8y 2  

i.e.  0      �      y 4       �      16y 2       �      16 

 Let y 2       �      p, then p 2       �      16p      �      16      �      0 

and           p
( )( )

�
� 
 �

�
� 
16 16 4 1 16

2
16 17 89

2

2 − .     

       �      0.945 or  � 16.945 

Hence y      �       p        �     ( )0 945.     or ( )�16 945.        �       
0.97 or complex 
roots 

Hence the z      �      0 contour passes through the co-ordinates (2, 0.97) 
and (2, � 0.97) shown as c and d in  Figure 11.10 . 

 Similarly, for the  z      �      9  contour, when y      �      0, 

 9      �      (x 2       �      0 2 ) 2       �      8(x 2       �      0 2 ) 

 i.e.             9      �      x 4       �      8x 2  

 i.e.             x 4       �      8x 2       �      9    �      0 

 Hence     (x 2       �      9)(x 2       �      1)      �      0 from which, x      �       
 3 or complex roots 

Thus the z      �      9 contour passes through (3, 0) and ( �3, 0), shown as 
e and f in Figure 11.10. 

 If z      �      9 and x      �      0, 9      �      y 4       �      8y 2  

 i.e.                 y 4       �      8y 2       �      9    �      0 

 i.e.             (y 2       �      9)(y 2       �      1)      �      0 
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 from which, y      �       
 1 or complex roots 

Thus the z      �      9 contour also passes through (0, 1) and (0,  � 1), 
shown as g and h in  Figure 11.10 . 

 When, say, x      �      4 and y      �      0, z      �      (4 2 ) 2       �      8(4 2 )      �      128 

 When z      �      128 and x      �      0, 128      �      y 4       �      8y 2  

 i.e.               y 4       �      8y 2       �      128      �      0 

 i.e.             (y 2       �      16)(y 2       �      8)      �      0 

 from which, y      �       
  8     or complex roots 

Thus the z      �      128 contour passes through (0, 2.83) and (0,  � 2.83), 
shown as i and j in  Figure 11.10 . 

In a similar manner many other points may be calculated with the 
resulting approximate contour map shown in  Figure 11.10 . It is seen 
that two ‘ hollows ’  occur at the minimum points, and a ‘ cross-over ’  
occurs at the saddle point S, which is typical of such contour maps.       

y

x

z

 Figure 11.11           

  Application: An open rectangular container is to have a volume 
of 62.5     m 3 . Find the least surface area of material required       

Let the dimensions of the container be x, y and z as shown in 
 Figure 11.11   . 

Volume V xyz 62.5� � (1)      

Surface area, S xy 2yz 2xz� � � (2)      

 From equation (1), z    �
      

62 5.
xy     
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 Substituting in equation (2) gives: 

 S      �      xy      �      2y 
62 5.
xy

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

       �      2x 
62 5.
xy

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

    

i.e. S      �      xy      �       
125

x
       �       

125
y

    which is a function of two variables 

∂
∂

S
x

y
x

 for a stationary point, hence x y� � � �
125

0 125
2

2 (3)      

∂
∂

S
y

x
y

 for a stationary point, hence xy� � � �
125

0 125
2

2 (4)      

 Dividing equation (3) by (4) gives:  
x y
xy

2

2
       �      1 i.e.  

x
y

       �      1 i.e. x      �      y 

Substituting y      �      x in equation (3) gives x 3       �      125, from which, 
x      �      5     m. 

 Hence y      �      5     m also. 

 From equation (1), (5)(5)(z)      �      62.5 from which, z      �       
62 5
25

.
       �      2.5     m 

∂
∂

∂
∂

∂
∂ ∂

2

2 3

2

2 3

2250 250
1

S
x x

,
S

y y
and

S
x y

� � �
     

 When x      �      y �5,
∂
∂

∂
∂

∂
∂ ∂

2

2

2

2

2
2 2 1

S
x

,
S

y
and

S
x y

� � �     

  Δ       �      (1) 2       �      (2)(2)    �       �     3 

 Since  Δ       	      0 and  
∂
∂

2

2

S
x

       
      0, then the surface area S is a  minimum  

Hence the minimum dimensions of the container to have a volume 
of 62.5     m 3  are  5       m by 5       m by 2.5       m  

 From equation (2),  minimum surface area, 
 S       �      (5)(5)    �      2(5)(2.5)    �      2(5)(2.5)    �       75     m 2             



                                           12     Integral Calculus and its 
Applications   

  12.1     Standard integrals         

  Application: Find  3 4x dx∫           

 Table 12.1     

ax  dx
ax
n

c (except when n )

cos ax dx
a

sin ax c

s

n
n

∫

∫

�
�

� � �

� �

�1

1
1

1

iin ax dx
a

 cos ax c

sec  ax dx
a

tan ax c

cosec  ax dx

2

2

∫

∫

 � � �

� �

1

1

∫∫

∫

� � �

� � �

1

1

a
cot ax c

cosec ax cot ax dx
a

cosec ax c 

sec ax tan ax dx sec ax c 

e  dx
a

e c 

1
x

dx ln x c

ax ax

∫

∫

∫

� �

� �

� �

1

1

a

3
3
4 1

4
4 1

x dx
x

c∫ �
�

� �
� 3

5
x c5 �
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2
2

2
2 1

2
12

2
2 1 1

x
dx x dx

x
c

x
c� �

� �
� �

�
� ��

� � �

∫∫
�

�
2

x
c

           

  Application: Find  
2
2x

dx∫           

  Application: Find  x dx∫           

x dx x dx
x

c
x

c∫ ∫� �

�

� � � �
�

1
2

1
2

3
21

1
2

1
3
2

2
3

x c3 �

           

�
�

�
� �

� �

� �

�

� �

5

9

5

9

5
9

5
9 3

4
1

34

1

3
4

3
4

3
4

t
 dt

t
 dt t dt

t

∫ ∫ ∫
⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

� � � �

� �

c
t

c
5
9 1

4

5
9

1
4

⎞⎞
⎠
⎟⎟⎟⎟
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

4
1

1
4t c� � � �

20
9

t c4

           

  Application: Find  
�5

9 34 t
dt∫           

  Application: Find  ( )
d

1 2� θ
θ

θ∫           

( )
d d

d

1 1 2

1 2

2 2

2

1
2

1
2

1
2

1

�
�

� �

� � � � �

θ
θ

θ
θ θ
θ

θ

θ

θ

θ

θ

θ
θ θ

∫ ∫

∫
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

22
1
2

1
2

1
2

1
2

3
2

2

2

1 2� �

� � �

� �

�

θ θ θ

θ θ θ θ

( )

( )

∫

∫

d

d
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�

� �

�

�

�

�

� � � � �

�

� � � �θ θ θ θ θ θ
1
2

1
2

3
2

1
2

3
2

5
21 1 1

1
2

1

2
1
2

1
3
2

1
1
2

2
3
2

5
2

2

c c

θθ θ θ
1
2

3
2

5
2

4
3

2
5

� � � �c 2
4
3

2
5

c3 5θ θ θ� � �

  Application: Find  ( x x)dx4 3 5 2cos sin�∫           

( cos sin sin4 3 5 2 4
1
3

3 5
1
2

x x) dx ( ) x ( )� � � �∫
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ccos 2x

�
4
3

sin 3x
5
2

cos 2x c� �
           

  Application: Find  ( sec7 4 3 22 2t cosec t)dt�∫           

( t cosec t)dt ( ) t ( )7 4 3 2 7
1
4

4 3
1
2

2 2sec tan� � � �∫
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟⎟ cot t c2 �

�
7
4

tan 4t
3
2

cot 2t c� �
           

  Application: Find  
2

3 4e
dt

t∫           

2
3

2
3

2
3

1
4

1
6

4
4 4

e
dt e dt e c

e

t
t t� � � �

� �

� �

�

∫∫
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

44t c� � � �
1

6e
c

4t            

  Application: Find  
3
5x

dx∫           

3
5

3
5

1
x

dx
x

dx∫ ∫� �
3
5

ln x c�
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  Definite Integrals         

  Application: Evaluate  ( x )dx4 2
2

3
�

�∫           

( x ) dx x
x

( ) ( )4 4
3

4 3
3
3

4 22
2

3 3

2

3 3
� � � � � � � �

�
�

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

(( )

( ) ( )

�

� � � � �
�

� � �

2
3

12 9 8
8

3
3 5

1
3

3⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞⎞
⎠
⎟⎟⎟⎟ � 8

1
3        

  Application: Evaluate  3 2
0

2
sin x dx

π/

∫           

3 2 3
1
2

2
3
2

2
2

0

2

sin ( ) cos cosx dx x x
0

/
/

π
π

∫
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
� � � �⎢⎢

⎢
⎤

⎦
⎥
⎥

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨

0

2

3
2

2
2

3
2

2 0

π

π

/

� � � �cos cos ( )
⎪⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

� � � � � �
3
2

1
3
2

1
3

( ) ( )
22

3
2

� � 3
           

  Application: Evaluate  4 3
1

2
cos t dt∫           

4 3 4
1
3

3
4
3

3
1

2

1

2
cos sin sint dt ( )� �

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥∫ t t
⎥⎥

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪1

2
4
3

6
4
3

3� �sin sin
     

(Note that limits of trigonometric functions are always expressed 
in radians, thus, for example, sin 6 means the sine of 6 radians �       
�     0.279415..) 

 Hence,       4 3
4
3

0 279415
4
3

0 141120
1

2
cos . ..) . ..)t dt ( (∫

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨� � �
⎪⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

� � � �( ) ( )0 37255 0 18816. . �0.5607           
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4
4
2

2 2

2 54 5982 7 38

2
1

2
2

1

2
2

1
2 4 2e dx e e e ex x x� � � �

� �

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

[ ] [ ]

[ . . 991] � 94.42            

  Application: Evaluate  4 2
1

2
e dxx∫           

  Application: Evaluate  
3
41

4

u
du∫           

3
4

3
4

3
4

4 1
3
4

1 3863 0
1

4

1

4

u
du ln u ln ln∫

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

� � � � � �[ ] [ . ] 1.040
       

  12.2     Non-standard integrals         

Functions that require integrating are not always in the  ‘ stand-
ard form ’ shown above. However, it is often possible to change a 
function into a form that can be integrated by using either: 

  1.   an algebraic substitution,  

  2.   trigonometric and hyperbolic substitutions,  
  3.   partial fractions,  

  4.    t tan�
θ
2

    substitution,  

  5.   integration by parts, or  

  6.   reduction formulae.           

  12.3     Integration using algebraic substitutions         

  Application: Determine  cos ( x ) dx3 7�∫           

  cos ( x ) dx3 7�∫     is not a standard integral of the form shown in 

 Table 12.1   , page 303, thus an algebraic substitution is made. 
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 Let u      �      3x      �      7 then  
du
dx

� 3     and rearranging gives:  dx
du

�
3

    

  

Hence cos( x )dx ( u)
du

u du, which is a standar

3 7
3

1
3

� �

�

∫ ∫

∫

cos

cos dd integral    

                                      
� �

1
3

sin u c
     

Rewriting u as (3x      �      7) gives: cos( x )dx ,3 7� �
1
3

sin(3x 7) c� �∫     
which may be checked by differentiating it.       

  Application: Find  ( x ) dx2 5 7�∫           

 Let u      �      (2x      �      5) then  
du
dx

� 2     and  dx
du

�
2

    

 Hence,  

( x ) dx u
du

u du
u

c u c2 5
2

1
2

1
2 8

1
16

7 7 7
8

8� � � � � � �∫ ∫∫
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

    

 Rewriting u as (2x      �      5) gives:  (2x 5) dx
1

16
(2x 5) c7 8� � � �∫           

  Application: Evaluate  24 5
0

6
sin cos

π/
θ θ θ∫ d           

 Let u      �      sin  θ  then  
du
dθ

θ� cos     and  d
du

cos
θ �

θ
    

  

Hence, d u
du

u du, by cancelli

24 24

24

5 5

5

sin cos cos
cos

θ θ θ θ
θ∫ ∫

∫

�

� nng
     

                                            

� � � � � �

� �

24
6

4 4

4

6
6 6

6

u
c u c ( c

c

sin

sin

θ)

θ      



Integral Calculus and its Applications   309

  

Thus, d

sin

/ /
24 4

4
6

5
0

6
6

0

6
sin cos sin

π π
θ θ θ θ

π

∫ ⎡
⎣⎢

⎤
⎦⎥

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

�

�
66

60� ( )sin
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
    

� � �4
1
2

0
6⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1
16

0.0625or

         

  Application: Determine  
2

4 12

x

( x )
dx

�
∫           

 Let u      �      4x 2       �      1 then  du
dx

x� 8     and  dx
du

x
�

8
    

 Hence  
2

4 1

2
8

1
4

1
2

x

( x )
 dx

x

u

du
x u

du
�

� �∫ ∫ ∫ ,     by cancelling 

� �

� �

� ��
� �1

4
1
4 1

2
1

1
4 1

2

1
2

1
2

1
21

u
u

c
u

∫
⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥
⎥

� c

     

� � �
1
2

u c
1
2

4x 1 c2 � �
     

  Change of limits 

When evaluating definite integrals involving substitutions it is some-
times more convenient to  change the limits  of the integral.       

  Application: Evaluate  5 2 72
1

3
x x ,� dx∫     taking positive values 

of square roots only:       

 Let u      �      2x 2       �      7, then  
du
dx

x� 4     and  dx
du
4x

�     

When x   �   3, u   �   2(3)2     �   7   �   25 and when x   �   1, u   �   2(1)2     �   7   �    9 
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Hence, x x x u
du
4x

u du u

x

x

u

u
5 2 7 5

5
4

5
4

2
1

3

9

25

9

25

9

25 1
2

� �

� �

�

�

�

�

∫ ∫

∫ ∫ ddu
    

Thus the limits have been changed, and it is unnecessary to change 
the integral back in terms of x. 

  

Thus, x x
u

/
u

x

x /
5 2 7

5
4 3 2

5
6

5

2
1

3 3 2

9

25
3

9

25
� � �

�

�

�
dx∫

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡
⎣⎢

⎤
⎦⎥

66
25 9

5
6

125 273 3� � � �⎡
⎣⎢

⎤
⎦⎥ ( ) 81

2
3       

  12.4      Integration using trigonometric and 
hyperbolic substitutions         

 Table 12.2      Integrals using trigonometric substitutions  

   f(x) 
  

f(x) dx∫     
 Method 

   1. cos 2 x 
  

1
2

2
2

x
sin x

c� �
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

    
 Use cos 2x      �      2 cos 2 x      �      1 

   2. sin 2 x 
  

1
2

2
2

x
sin x

c−
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ �

    
 Use cos 2x      �      1      �      2 sin 2 x 

   3. tan 2 x  tan x      �      x      �      c Use 1      �      tan 2 x      �      sec 2 x 

   4. cot 2 x   � cot x      �      x      �      c Use cot 2 x      �      1      �      cosec 2 x 

   5. cos m x sin n x         (a)    If either m or n is odd (but not both), use 
cos2 x      �      sin 2 x      �      1  

  (b)    If both m and n are even, use either    
       cos 2x      �      2 cos 2 x      �      1 or cos 2x      �      1      �      2 sin 2 x 

   6. sin A cos B  Use

1
2     

[sin(A      �      B)      �      sin(A      �      B)] 
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 Table 12.2      Continued  

   f(x) 
  

f(x) dx∫     
 Method 

  7. cos A sin B  Use

1
2

    [sin(A      �      B)      �      sin(A      �      B)] 

  8. cos A cos B  Use

1
2    

 [cos(A      �      B)      �      cos(A      �      B)] 

    9. sin A sin B  Use

     �
     

1
2   

  [cos(A      �      B)      �      cos(A    �      B)] 

   10.
1

2 2( )a � x       
sin

x
a

c1� �                            Use x      �      a sin  θ  substitution 

   11. a2 2� x     
    

a x
a

a
2

2 2

2 2
sin

x
x c1� � � �

      
                             Use x      �      a sin  θ  substitution 

   12.
1

2 2a x�    

1 1

a
tan� �

x
a

c
    
                    Use x �  a tan  θ  substitution 

   13.
1

2 2( )x a�
      

sinh
( )

� �
� �

�1
2 2x

a
c or ln

x x a

a
c

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪       

   Use x      �      a sinh  θ  substitution 

   14. ( )x a2 2�
    

  

a x
a

x
x a c

2
1 2 2

2 2
sinh ( )− +� �

      

   15. 
1

2 2( )x a�       

cosh
( )

� �
� �

�1
2 2x

a
c or ln

x x a

a
c

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪       

   Use x      �      a cosh  θ  substitution 

   16. ( )x a2 2�
      

x
x a c

2 2
2 2

2
1( )� � ��a

cosh
x
a       
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 Since cos 2t      �      2 cos 2  t      �      1 (from Chapter 5), 

 then  cos cos2 1
2

1 2t ( t)� �     and  cos cos24
1
2

1 8t ( t)� �     

  
Hence t dt ( cos t) dt t

t/ /
2 4 2

1
2

1 8
8

8
2

0

4

0

4

0

cos
sinπ π π

∫ ∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

� � � �
// 4

    

� � � �

�

π
π

4

8
4

8
0

0
8

sin
sin

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

π
4

orr 0.7854
           

  Application: Evaluate  2 42
0

4
cos t dt

/π

∫           

  Application: Find  3 42tan∫ x dx           

Since       1      �      tan 2 x    �      sec 2 x, then tan 2 x    �      sec 2 x    �      1 and 
               tan 2 4x      �      sec 24x     �      1 

  
Hence, tan x dx sec x  dx3 4 3 4 12 2� � �( )∫∫

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟3

tan 4x
4

x c� �
          

  Application: Determine  sin d5∫ θ θ           

 Since cos 2  θ       �      sin 2  θ       �      1 then sin 2  θ       �      (1      �      cos 2  θ ) 

 Hence, sin d sin sin d cos d5 2 2 2 21θ θ θ( θ) θ θ θ θ� � �∫∫ ∫ sin ( )
    

� � �

� � �

�

sin cos cos

(sin sin cos sin cos )

θ( θ θ) θ

θ θ θ θ θ θ

1 2

2

2 4

2 4

∫

∫

d

d

�  cos
2 cos

3
cos

5
c

3 5
θ

θ θ
� � �

     
[Whenever a power of a cosine is multiplied by a sine of power 1, or 
vice-versa, the integral may be determined by inspection as follows. 
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 In general, cos d
cos
(n 1)

cn
n

∫ θ θ θ
θ

sin �
�

�
�

�1

   

and sin cosn∫ θ θ θ
θ

d
sin
(n )

c
n

�
�

�
�1

1     

 Alternatively, an algebraic substitution may be used.]       

  Application: Evaluate  sin x cos x dx
/

2 3
0

2π

∫           

sin x cos x dx sin x cos x cos x dx

sin x sin

2 3
0

2
2

0

2
2

2 21

π/ π/

∫ ∫�

� �( xx cos x dx

sin x cos x sin cos x dx

sin x sin

)

( )

0

2

2 4
0

2

3

3

π/

π/

∫

∫� �

� �
55

0

2

3 5

5

2
3

2
5

x

sin sin

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢

π/

π π

� �⎢⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

� �

� � �

[ ]

 or 

0 0

1
3

1
5

2
15

0.1333
           

  Application: Find  sin t cos t dt2 4∫           

sin cos sin (cos )
cos cos2 4 2 2 2 1 2
2

1 2
2

t t dt t t dt
t t

∫ ∫ ∫
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟� �

� �⎛⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

∫

2

21
8

1 2 1 2 2 2

dt

t t dt� � � �( )( cos cos )cos t
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� � � � � �

� � �

1
8

1 2 2 2 2 2 2 2

1
8

1 2

2 2 3( cos cos cos cos cos )

( cos co

t t t t t dt

t

∫

ss cos )

cos
cos

cos sin

2 32 2

1
8

1 2
1 4

2
2 1

t t dt�

� � �
�

� �

∫
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟t

t
t( 22

2

2

1
8

1
2

4
2

2

t)

t
2t t  dt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

∫

∫

dt

� � �

�

cos
cos sin

1
8

tt
2

sin 4t
8

sin 2t
6

c
3

� � �
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

  Application: Determine  sin cos3 2t t dt∫           

  
sin t cos t dt [sin( t t) sin( t t)] dt,3 2

1
2

3 2 3 2� � � �∫∫
    

from 6 of  Table 12.2   , 

� � �
1
2

5( t t)dtsin sin
1
2

cos 5t
5

cos t c
�

� �
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟∫

           

  Application: Evaluate  2 6
0

1
cos cosθ θ θ,∫ d     correct to 4 decimal 

places       

  
2 2

1
2

6 6
0

1

0

1
cos cos cos6  d [cos( ) ( dθ θ θ θ θ θ θ)] θ,∫ ∫� � � �

   
from 8 of  Table 12.2  

� �

� �

� �

(cos cos )

sin sin

sin sin

7 5

7
7

5
5

7
7

5
5

0

1

0

1

θ θ θ

θ θ

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛
⎝
⎜

d

⎜⎜⎜
⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟� �

sin sin0
7

0
5    

  ‘ sin 7 ’  means  ‘ the sine of 7 radians ’  (  �401.07 ° ) and sin 5 �   286.48 °  
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 Hence,   2 6 0 09386 0 19178 0
0

1
cos cos ( . . ) ( )θ θ θd � �� �∫

    
       �       �      0.0979, correct to 4 decimal places       

  Application: Evaluate  16 2
0

4
� x dx∫           

 From 11 of  Table 12.2 ,  

16
16
2 4 2

162
0

4
1 2

0

4

� � � ��x dx sin
x x

( x )∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

    

� � � �

� � �

� �

�

8 1 2 0 8 0 0

8 1 8
2

1 1

1

sin sin

sin

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

[ ]

or
π

4 1π 22.57
         

  Application: Evaluate  
1

4 20

2

( x )
dx

�∫           

 From 12 of  Table 12.2 ,  
1

4
1
2 220

2
1

0

2

( x )
dx tan

x
�

� �∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

    since a      �      2 

� �

� �

�

� �1
2

1 0

1
2 4

0

1 1( )

or

tan tan

π⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

π
8

0.3927
         

  Application: Evaluate  
1

420

2

(x )
dx,

�
∫     correct to 4 decimal 

places       

  

1

42
1

0

2

0

2

(x )
dx sinh

x
2�

� �
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫

  

 or ln
x (x )� �2

0

2
4

2

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

   
from 13 of  Table 12.2 , where a      �      2 
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 Using the logarithmic form, 

  

1

4

2 8
2

0 4
220

2

(x )
dx ln ln

�
�

�
�

�
∫

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦⎦

⎥
⎥
⎥

� �

�

ln ln

, correct to 4 decimal places

2 4142 1.

0.8814      

       Application: Determine  
2 3

92

x

(x )
dx

�

�
∫           

2 3

9

2

9

3

92 2 2

x

(x )
dx

x

(x )
dx

(x )
dx

�

�
�

�
�

�
∫ ∫∫

   

The first integral is determined using the algebraic substitution 

u      �      (x 2       �      9), and the second integral is of the form 
1

2 2(x a )
dx

�
∫

    (see 15 of  Table 12.2 )

 Hence, 

2

9

3

92 2

x

(x )
dx

(x )
dx

�
�

�
�∫ ∫ 2 (x 9) 3 cosh

x
3

c2 1� � ��

           

  Application: Evaluate  (x ) dx2
2

3
4�∫           

  
(x ) dx

x
2

(x ) cosh
x
2

2
2

3
2 1

2

3

4 4
4
2

� � � � �∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   
from 16 of  Table 12.2 , when a      �   2,

  

� � � �

�

� �3
2

5 2
3
2

0 2 11 1cosh  cosh

, by calcul

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ( )

1.429    aator     

  or since    cosh
x
a

ln
x (x a )

a
� �

� �1
2 2⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪     

then cosh ln
( )� �

� �1
2 23

2
3 3 2

2

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪     

       �      ln 2.6180      �      0.9624 
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 Similarly, cosh      �     1 1    �      0 

Hence, (x ) dx ( ) [0]2
2

3
4

3
2

5 2 0 9624� � � �∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.
    

        �      1.429 , correct to 4 significant figures  

  12.5     Integration using partial fractions 

  1. Linear factors         

  Application: Determine  
11 3

2 32

�

� �

x
x x

dx∫           

 As shown on page 42:   11 3
2 3

2
1

5
32

�

� � �
�

�

x
x x (x ) (x )

�
    

 Hence 
11 3

2 3
2

1
5

32

�

� �
�

�
�

�

�

x
x x

dx
(x ) (x )

dx∫ ∫
⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

2 ln(x 1) 5� � lln(x 3) c� �    
(by algebraic substitutions (see section 12.3)) 

 or ln
(x 1)
(x 3)

c
2

5

�

�
�

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪     

by the laws of logarithms       

  Application: Evaluate  
x x x

x x
dx,

3 2

22

3 2 4 4
2

� � �

� �∫     correct to 4 
significant figures       

By dividing out and resolving into partial fractions, it was shown on 
page 43: 

x x x
x x

x
(x ) (x )

3 2

2

2 4 4
2

3
4

2
3

1
� � �

� �
� �

�
�

�
�

     
 Hence,  

x x x
x x

 dx x
(x ) (x )

dx
3 2

2 2

3

2

2 4 4
2

3
4

2
3

1
� � �

� �
� �

�
�

�
�

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

∫
33

∫
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� � � � � �

� � � �

x
x  ln(x )  ln(x )

2

2

3

2
3 4 2 3 1

9
2

9 4 5 3 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛
⎝
⎜⎜⎜

⎞
ln ln

⎠⎠
⎟⎟⎟⎟ � � � �( )2 6 4 4 3 1ln ln

   

                    �       �     1.687 , correct to 4 significant figures  

  2. Repeated linear factors         

  Application: Find  5 2 19
3 1

2

2

x x
(x )(x )

dx
� �

� �∫           

 It was shown on page 44:   

5 2 19
3 1

2
3

2
1

4
1

2

2 2

x x
(x )(x ) (x ) (x ) (x )

� �

� � �
�

�
�

�
�

    

 Hence, 
5 2 19

3 1
2

3
3

1
4

1

2

2 2

x x
(x )(x )

 dx
(x ) (x ) (x )

� �

� � �
�

�
�

�∫
⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭

�
⎪⎪⎪

∫  dx
    

� 2 ln(x 3) 3 ln(x 1)
4

(x 1)
c� � � �

�
�

     

 or ln{(x 3) (x 1) }
4

(x 1)
c2 3� � �

�
�

     

  3. Quadratic factors         

  Application: Find  
3 6 4 2

3

2 3

2

� � �

�

x x x
x (x )

dx
2∫           

It was shown on page 45: 3 6 4 2
3

2 1 3 4
3

2 2

2 2 2 2

� � �

�
� �

�

�

x x x
x (x ) x x

x
(x )

�
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 Thus, 

3 6 4 2
3

2 1 3 4
3

2 3

2 2 2 2

� � �

�
� �

�

�

x x x
x (x )

 dx
x x

x
(x )

 dx∫ ∫
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟�

�� � �
�

�
�

2 1 3
3

4
32 2 2x x (x )

x
(x )

dx
⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

∫
    

  

3
3

3
1

3

3

3 32
2

2
1

(x )
dx

x
dx tan

x
,

�
�

�
� �

( )∫∫
   

from 12,  Table 12.2 , page 311. 

  

4
32

x
x

dx
�∫     is determined using the algebraic substitution 

u      �      (x 2       �      3) 

  

Hence,    
x x (x )

x
(x )

dx
2 1 3

3
4

32 2 2
� �

�
�

�

�

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

∫

2 ln x
1
x

� �� � � ��3
3

tan
x
3

2 ln(x 3) c1 2

    

 or  ln
x

x 3
1
x

3 tan
x
3

c
2

2
1

�
� � ��

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

      

  12.6     The  t tan
2

�
θ

    substitution         

To determine  
1

a b c
d

cos sinθ θ
θ,

� �∫     where a, b and c are 

constants, if t tan�
θ
2

   then: 

sin
2t

(1 t )2
θ �

�
(1)      

cos
1 t
1 t

2

2
θ �

�

�
(2)      

d
2dt

1 t2
θ �

�
(3)                  
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If t tan�
θ
2

    then sin θ �
�

2
1 2

t
t

    and d
dt

t
θ �

�

2
1 2

    from equations 

(1) and (3). 

Thus,
d

t
t

dt
t t

dt ln t c
θ
θsin

�

�
�

� � �
1
2

1

2
1

1

2

2

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ∫∫∫

    

 Hence, 
d

sin
ln tan

2
c

θ
θ

θ
� �

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟∫

          

  Application: Determine  
dθ

θsin∫           

  Application: Determine  
dx

xcos∫           

If tan
x
2

    then cos x
t
t

�
�

�

1
1

2

2     and dx
dt

t
�

�

2
1 2     from equations (2) 

and (3). 

Thus
dx

x t
t

dt
t t

dt
cos∫ ∫ ∫

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟�

�

�

�
�

�

1
1
1

2
1

2
12

2

2 2

    

  

2
1 2� t    

 may be resolved into partial fractions (see section 2.10) 

 Let 2
1

2
1 1 1 1

1 1
1 12�

�
� �

�
�

�
�

�
� � �

� �t ( t)( t)
A

( t)
B

( t)
A( t) B( t)

( t)( t)     

 Hence 2      �      A(1      �      t)      �      B(1      �      t) 

 When t      �      1, 2      �      2A, from which, A      �      1 

 When t      �       �     1, 2      �      2B, from which, B      �      1 

  

Hence, 
t t t

 dt ln( t) ln( t) c
2

1
1

1
1

1
1 1

2�
�

�
�

�
� � � � � �

�

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟∫∫

lln
( t)
( t)

c
1
1

�

�
�

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪     
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Thus,
dx

cos x
ln

1 tan
x
2

1 tan
x
2

c∫
⎧

⎨

⎪⎪⎪⎪⎪

⎩
⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪

⎭
⎪⎪⎪⎪⎪

�
�

�
�

    

 Note that since tan  
π
4

1� ,     the above result may be written as: 

  

dx
x

ln
tan tan

x

tan tan
xcos

�
�

�

π

π
4 2

4 2

⎧

⎨

⎪⎪⎪⎪⎪

⎩
⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪

⎭
⎪⎪⎪⎪⎪

∫ �� �c ln tan
4

x
2

c
π

� �
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

    from compound angles, chapter 5.       

  Application: Determine  
dθ

θ5 4� cos∫           

 If  t tan�
θ
2

    then  cos θ �
�

�

1
1

2

2

t
t

    and  d
dt
t

θ �
�

2
1 2

   

from equations (2) and (3). 

  

Thus,
cos

d

t
t

dt
t

θ
θ5 4

1

5 4
1
1

2
12

2

2�
�

�
�

�

�∫ ⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟∫∫

∫
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟�

� � �

�

�

1
5 1 4 1

1

2
12 2

2

2( t ) ( t
t

dt
( t) )

    

�
�

�
�

� ��2
9

2
3

2
1
3 32 2 2

1dt
t

dt
t

tan
t

c
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟∫∫

     

 Hence,     
d
4

θ
θ

θ
5 cos

2
3

tan
1
3

tan
2

c1

�
� ��

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟∫

          

  Application: Determine  dx
x xsin cos�∫           

If t tan
x

�
2

    then sin x
t
t

cos x
t
t

�
�

�
�

�

2
1

1
12

2

2
,     and dx

dt
t

�
�

2
1 2

    

from equations (1), (2) and (3). 
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Thus,
dx

x x

dt
t

t
t

t
t

sin cos�
� �

�
�

�

�

∫ ⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2
1

2
1

1
1

2

2

2

2

∫∫ ∫

∫ ∫

� �
� �

�

�
� �

�
�

� �

2
1

2 1
1

2
1 2

2
2 1

2

2

2

2 2

dt
t

t t
t

dt
t t

 dt
t t     

        

�
�

� �
�

� �

�
� �

� �

2
1 2

2

2 1

2
1

2 2

2 1

2 1

2 2
2

 dt
(t )

 dt

(t )

ln
(t )

(t

∫ ∫
( )

⎧
⎨
⎪⎪

⎩ )⎪⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
� c

     

by using partial fractions 
1 1

22 2a x
dx

a
ln

a x
a x�

�
�

�

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟∫

    

 i.e.       
dx

x xsin cos�
�

1
2

ln
2 1 tan

x
2

2 1 tan
x
2

� �

� �

⎧

⎨

⎪⎪⎪⎪⎪

⎩
⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪

⎭
⎪⎪⎪⎪⎪⎪

∫ � c

          

  Application: Determine  
dx
x x7 3 6� �sin cos∫           

 From equations (1) to (3), 

dx
x x

dt
t

t
t

t
t

7 3 6

2
1

7 3
2

1
6

1
1

2

2

2

2

� �
� �

�
�

�
�

�

sin cos∫ ⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞⎞
⎠
⎟⎟⎟⎟

∫

∫� �
� � � �

�

�
� � � �

2
1

7 1 3 2 6 1
1

2
7 7 6 6 6

2

2 2

2

2

dt
t

t t t
t

dt
t t

( ) ( ) ( )

tt
dt

t t
dt

t

2

2 2 2

2
6 13

2
3 2

∫

∫ ∫�
� �

�
� �( )      
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�

�
��2

1
2

3
2

1tan
t

c
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   
 from 12 of  Table 12.2 , page 311. 

Hence,
dx
x x7 3 6� �

�
sin cos

tan
tan

x
2

3

2
c1�

�
�

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
∫

     

  12.7     Integration by parts         

 If u and v are both functions of x, then: 

u
dv
dx

dx uv v
du
dx

dx� � ∫∫∫
     

 or                      u dv uv v du� � ∫∫     

 This is known as the  integration by parts formula .             

  Application: Determine  x x dxcos∫           

 From the integration by parts formula, udv uv vdu� � ∫∫     
 Let u      �      x, from which  

du
dx

� 1,     i.e. du      �      dx 

 and let dv      �      cos x dx, from which  v x dx x� �cos sin∫     

Expressions for u, du, v and dv are now substituted into the  ‘ by 
parts ’  formula as shown below.

  

∫ u dv �   u  v � ∫ v du

∫ x cos x dx     �   (x) (sin x)  � ∫ (sin x) (dx)
       

i.e. x x dx x x ( x) ccos sin cos� � � � � x sin x cos x c� �∫     
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[This result may be checked by differentiating the right-hand side, i.e. 

d
dx

(x x x c) [(x)( x) (sin x)( )] sin xsin cos cos� � � � � �1 0    

using the product rule 
    �      x cos x,
 which is the function being integrated]       

  Application: Find  3 2t e dtt∫           

 Let u      �      3t, from which,  
du
dt

� 3,     i.e. du      �      3dt 

 and let dv      �      e 2t  dt, from which,  v e dt et t� �2 21
2∫     

 Substituting into  udv uv vdu� � ∫∫     gives: 

3 3
1
2

1
2

3
3
2

2 2 2 2t e dt e e t et t t� � �( ) ( )t dt
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟∫∫ tt t

t
t

e dt

t e
e

c

�

� � �

3
2

3
2

3
2 2

2

2
2

∫

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

     

Hence, 3t e dt
3
2

e t
1
2

c2t 2t� � �
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟∫ ,    which may be checked by 

differentiating       

  Application: Evaluate  2
0

2
θ θ θ

π
sin d

/

∫           

 Let u      �      2 θ , from which,  
du
dθ

� 2,     i.e. du      �      2d θ  

 and let dv      �      sin  θ  d θ , from which,  v d� � �sin cosθ θ θ∫     

 Substituting into  u dv uv v du� � ∫∫     gives: 

2 2 2

2 2 2

θ θ θ θ θ θ θ

θ θ θ θ θ

sin ( )( cos ) ( cos )( )

cos cos co

d d

d

� � � �

� � � � �

∫∫
∫ ss sinθ θ� �2 c
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 Hence,  2 2 2
0

2

0

2θ θ θ θ θ θ
π π

sin cos sind
/ /

∫ [ ]� � �     

� � � � �2
2 2

2
2

0 2
π π π⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥cos sin sin[ 0]

     
       �      ( � 0    �      2)      �      (0      �      0)      �       2  

 since cos
π
2

0�     and  sin
π
2

1�           

  Application: Determine  x x dx2 sin∫           

 Let u      �      x 2 , from which,  
du
dx

x,� 2     i.e. du      �      2x dx, 

 and let dv      �      sin x dx, from which,  v x dx x� � �sin cos∫     

 Substituting into      u dv uv v du� � ∫∫     gives: 

x x dx x

x x x x dx

2 2

2

2

2

sin ( )( cos ) ( cos )( )

cos cos

∫ ∫

∫⎡⎣⎢
⎤

� � � �

� � �

x x x dx

⎦⎦⎥    

The integral, x x dx,cos∫     is not a ‘standard integral ’ and it can only 

be determined by using the integration by parts formula again. 

From the first application, page 323,  x x dx x x x xcos sin cos� �∫     

 Hence,   x x dx x x {x x x} c2 2 2sin cos sin cos� � � � �∫     

� � � � �

�

x2 2 2cos sin cosx x x x c

(2 x ) cos x 2x sin x c2� � �      
In general, if the algebraic term of a product is of power n, then the 
integration by parts formula is applied n times.       

  Application: Find  x x dxln∫           

 The logarithmic function is chosen as the  ‘ u part ’  

 Thus, when u      �      ln x, then  du
dx

�
1
x

,     i.e.  du
dx
x

�     
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 Letting dv      �      x dx gives  v x dx
x

� �
2

2∫     

 Substituting into  u dv uv v du� � ∫∫     gives: 

x x dx
x x dx

x

x
x

ln (ln )

ln

∫ ∫
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟� �

� �

x
2 2

2

2 2

2
1
2

xx dx
x

x
x

c� � �
2 2

2
1
2 2

ln
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟∫

     

 Hence,  x x dxln �
x
2

ln x
1
2

c
2

� �
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟∫     or  

x
4

(2 ln x 1) c
2

� �      

  12.8     Reduction formulae           

x e dx I x e n In x
n

n x
n� � � �1∫ (4)      

x x dx I x x nx x n n In
n

n n
ncos sin cos ( )� � � � ��
�

1
21∫ (5)      

x x dx I n n(n )In
n

n
n

0
1

21
π

π∫ cos � � � � ��
� (6)      

x x dx I x x nx x n(n )In
n

n n
nsin cos sin� � � � � ��
�

1
21∫ (7)      

sin sin cosn
n

n
ndx I

n
x x

n
n

Ix � � � �
��

�

1 11
2∫ (8)      

cos x dx I
n

cos sin x
n

n
In

n
n

n� � �
��

�

1 11
2∫ (9)      

sin x dx cos x dx I
n

n
In

/
n

n n
0

2

0

2

2
1π π/

∫ ∫� � �
�

� (10)      

tan x dx I
tan
n

In
n

n

n� �
�

�
�

�

1

21
x

∫ (11)      

(ln x) dx I x(ln x) n In
n

n
n� � � �1∫ (12)      
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  Integrals of the form  x e dxn x∫             

When using integration by parts, an integral such as x e dxx2∫     

requires integration by parts twice. Similarly,  x e dxx3∫     

requires integration by parts three times. Thus, integrals such 

as x e dx, x cos x dxx5 6∫∫     and x sin x dx8 2∫     for example, 

would take a long time to determine using integration by parts. 

Reduction formulae provide a quicker method for determining 

such integrals.       

  Application: Determine  x e dx3 x∫     using a reduction formula       

 From equation (4), I n       �      x n e x       �      nI n     �     1  

Hence   x e dx I x ex x3
3

3
23∫ � � � I     

I

I
2

2
1

1
1

0

2

1

� �

� �

x e I

x e I

x

x
     

and   I x e dx e dx e0
x x� � �0 x∫ ∫     

 Thus   x e dx x e  [ x e I ]x x x3 3 2
13 2∫ � � �     

� � � �

� � � �

� � �

x e x e (xe I )]

x e [x e (xe e )]

x e x e

x x x

x x x x

x x

3 2
0

3 2

3 2

3 2

3 2

3

[

66

3 6 63 2

(xe e )

x e x e xe e

x x

x x x x

�

� � � �      

i.e. x e dx e ( x 3x 6x 6) c3 x x 3 2∫ � � � � �      

  Integrals of the form  x cos x dxn∫             

  Application: Determine  x x dx2cos∫     using a reduction  formula      
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 Using the reduction formula of equation (5): 

  x x dx2 cos∫        �      I 2       �      x 2 sin x      �      2x 1 cos x      �      2(1)I0     

and I0 0� � �x x dx cos x dx xcos sin∫ ∫     

 Hence  x cos x dx sin x 2xcos x 2sin x c2∫ � x2 � � �           

  Application: Evaluate  4 3
1

2
t t dtcos∫    , correct to 4 significant 

figures       

 From equation (5), 

  t t dt3cos∫        �      I 3       �      t 3 sin t      �      3t 2 cos t      �      3(2)I 1  

 and                         I 1       �      t 1 sin t      �      1 t 0 cos t      �      1(0)I n     �     2  

                                         �      t  sin t      �      cos t 

 Hence     t t dt3cos∫        �      t3  sin t      �      3t2 cos t      �      3(2) [t  sin t      �      cos t] 

          �      t 3 sin t      �      3t 2 cos t      �      6t  sin t      �      6 cos t 

 Thus,    4 4 3 6 63
1

2
3 2

1

2
t dt t t t t t t tcos ( sin cos sin cos )t∫ ⎡

⎣⎢
⎤
⎦⎥� � � �     

   

� � � �

          � � �

[ ( sin cos sin cos )]

[ (sin cos s

4 8 2 12 2 12 2 6 2

4 1 3 1 6 iin cos )]

. . )

1 6 1

24 53628 23 31305

�

� � � �

�

( ) (

�1.223       

  Integrals of the form  x sin x dxn∫             

  Application: Determine  x x dx3 sin∫     using a reduction formula       

 Using equation (7), 

                 x x dx3 sin∫        �      I 3       �       �     x 3 cos x      �      3x 2 sin x      �      3(2)I 1  

 and                             I 1       �       �     x 1 cos x      �      1x 0 sin x      �       �     x cos x      �      sin x 
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 Hence,

    x x dx3 sin∫        �       � x 3 cos x      �      3x 2 sin x      �      6[ �x cos x      �      sin x] 

      �       �  x3 cos x       �       3x2 sin x       �       6x cos x       �       6 sin x       �       c   

  Integrals of the form  sin x dxn∫             

  Application: Determine  sin dx4x∫     using a reduction formula       

 Using equation (8),  sin x dx I sin x x I4 3� � � �4 2
1
4

3
4∫ cos     

 I 2       �       �      
1
2

   sin 1 x cos x      �       
1
2

   I 0   and  I 0       �       sin x dx dx x0∫ ∫� �1     

 Hence  

sin x dx I sin x x (x)4 3∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

� � � � � �4
1
4

3
4

1
2

1
2

cos sin cosx x
    

� � � � �
1
4

sin x cos x
3
8

sin x cos x
3
8

x c3

      

  Integrals of the form  cos x dxn∫             

  Application: Determine  cos4x dx∫     using a reduction formula       

 Using equation (9), cos x dx I cos x4 3� � �4 2
1
4

3
4

sin x I∫
    

 and  I x x2 0
1
2

1
2

� �cos sin I
   
 and I cos dx x0

0 1� � �x dx ∫∫     

 Hence, cos x dx cos x4 3� � �
1
4

3
4

1
2

1
2

x x x xsin cos sin
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟∫

    

�
1
4

cos x sin x
3
8

cos x sin x
3
8

x c3 � � �
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From equation (10),  cos dx I
n

n
In

n

/

nx � �
�

�
0

2

2
1π

∫     (This is usually 

known as Wallis’s formula ) 

 Thus,  cos x dx I5
/

0

2

3
4
5

π

∫ �
    

  
I3 1

2
3

� I    and I x dx x ( )
/ /

1
1

0

2

0
2 1 0 1� � � � �cos sin

π π
∫ [ ]

    

 Hence cos5
0

2

3 1
4
5

4
5

2
3

4
5

2
3

1
π/

x dx I ( )∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

� � � �I
8

15      

  Further reduction formulae         

  Application: Evaluate  cos5
0

2
x dx

/π

∫           

  Application: Determine  tan x dx7∫           

 From equation (11),        In
n

n
tan x

n
I�

�
�

�

�

1

21     

 When n      �      7,  I tan x dx
tan x

I7
6

7 56
� � �∫     

  
I

tan x
I

4

5 34
� �     and  I

tan x
I

2

3 12
� �

    

  
I dx ln( x)1 � �tan secx∫    

 using tan
sin
cos

x
x
x

�     and letting u   �   cos x 

 Thus      tan x dx
tan tan x tan x

(ln(sec x))7
6 4 2

� � � �
x

6 4 2

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥⎥∫     

 Hence,

tan x dx
1
6

tan x
1
4

tan x
1
2

tan x ln(sec x) c7 6 4 2� � � � �∫
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sin cos cos cos

cos cos

2 6
0

2
2 6

0

2

6 8
0

1t t dt

t

π π

π

/ /
( t) t dt

dt t dt

∫ ∫� �

� �
/// 2

0

2

∫∫
π

     

 If  I t dtn

/
� cosn

0

2π

∫     then  sin cos2 6
6 8

0

2
t t dt I I

/
� �

π

∫
    

 and from equation (10), I I I I6 4 2 0
5
6

5
6

3
4

5
6

3
4

1
2

� � �
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
    

 and                      I t dt dt x
/ / /

0
0

0

2

0

2

0
21

2
� � � �cos

π π π π
∫ ∫ [ ]

    

 Hence                  I . . .6
5
6

3
4

1
2 2

15
96

� �
π π

   or 
5
32
π

    

 Similarly,              I I .8 6
7
8

7
8

5
32

� �
π

    

 Thus 
sin cos2 6

6
0

2

8
5
32

7
8

5
32

1
8

5
32

t t dt I I . .
/

� � � � � �
π π π π

∫
5
256

π

      

  12.9     Numerical integration         

  Application: Evaluate  sin cos2 6
/

t t dt
0

2π

∫     using a reduction 
formula       

  The trapezoidal rule states:  

y dx
width of
interval

1
2

first last
ordinatea

b

∫
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜≈ �
⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪

�
sum of remaining
ordinates ⎪⎪

(13)      

  The mid-ordinate rule states:  

y dx
a

b
≈∫ (width of interval)(sum of mid-ordinates) (14)      
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With 8 intervals, the width of each is 
3 1

8
�

   
 i.e. 0.25 giving ordi-

nates at 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75 and 3.00. 

Corresponding values of 
2

x
    are shown in the table below.

x 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

    

2

x     
2.0000 1.7889 1.6330 1.5119 1.4142 1.3333 1.2649 1.2060 1.1547

 From equation (13): 

2
0 25

1
2

1 1547 1 7889

1 6330 1 5119 1 4142
1

3

x
dx

(2.000

∫ ≈ ( . )

. ) .

. . .

� �

� � �

�� � �

�

1 3333 1 2649 1 2060. . .

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪

2.. ,932 correct to 3 decimal places      

The greater the number of intervals chosen (i.e. the smaller the 
interval width) the more accurate will be the value of the definite 

  Simpson’s rule states:  

y dx
1
3

width of
interval

first last
ordinate

a

b
≈∫

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜

�
⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟�

�

4
sum of even
ordinates

2
sum of remainingg
odd ordinates

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪

 (15)                  

  Application: Using the trapezoidal rule with 8 intervals, evaluate 
2

1

3

x
dx∫

  
 , correct to 3 decimal places       
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integral. The exact value is found when the number of intervals is 
infinite, which is, of course, what the process of integration is based 
upon. Using integration: 

2
2

2
1
2

1
4

1

3

1

3
1
2

1 2 1

1

3

1 2

x
dx dx

x
x

/
/

∫ ∫
⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡
⎣

�

�

� �

�

�

� �

x

( )

⎢⎢ ⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦

1

3

1

3
4 4 3 1� � �

�

x

correct to 3 decimal pla2 928. , cces            

  Application: Using the trapezoidal rule, evaluate  
1

10

2

� sin x
dx

/π

∫     
using 6 intervals       

With 6 intervals, each will have a width of 

π
2

0

6

�
  , i.e.

π
12

    rad 

(or 15°) and the ordinates occur at 0, 
π π π π π π

12 6 4 3 12 2
, , , ,

5
 and 

    

 Corresponding values of  1
1� sin x

    are shown in the table below.

   x 0
  

π
12

(or 15 )�
   

π
6

(or 30 )�
   

π
4

(or 45 )�
    

    

1
1� sin x     

1.0000 0.79440 0.66667 0.58579

   x 
  

π
3

(or 60 )�
   

5
12

π
(or 75 )�

   

π
2

(or 90 )�
    

    

1
1� sin x     

0.53590 0.50867 0.50000
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 From equation (13): 

1
1 12

1
2

1 00000 0 50000 0 79440

0

2

�

� �

�
sin

( . . ) .

x
dx

/π
≈  

π
∫

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ 00 66667 0 58579

0 53590 0 50867

. .

. .

�

� �

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪⎪
� 1.006  , correct to 4 significant figures          

  Application: Using the mid-ordinate rule with 8 intervals, evaluate 
2

1

3

x
dx∫

   
, correct to 3 decimal places       

With 8 intervals, each will have a width of 0.25 and the ordinates 
will occur at 1.00, 1.25, 1.50, 1.75, ….. and thus mid-ordinates at 
1.125, 1.375, 1.625,1.875 …  …  

 Corresponding values of 2

x
    are shown in the following table.

   x 1.125  1.375  1.625 1.875 2.125  2.375  2.625 2.875

    

2

x     
1.8856  1.7056  1.5689  1.4606 1.3720  1.2978  1.2344 1.1795

 From equation (14): 

2
0 25 1 7056 1 5689 1 4606 1 3720

1

3

x
dx 1.8856∫ ≈ ( . )[ . . . .� � � �

                                           �  � �

�

1 2978 1 2344 1 1795. . . ]

22.926, correct to 3 decimal places      

As previously, the greater the number of intervals the nearer the 
result is to the true value (of 2.928, correct to 3 decimal places).       

  Application: Using Simpson’s rule with 8 intervals, evaluate 
2

1

3

x
dx∫

   
, correct to 3 decimal places:       
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With 8 intervals, each will have a width of  
3 1

8
�

   , i.e. 0.25 and the 

ordinates occur at 1.00, 1.25, 1.50, 1.75,  …  … , 3.0. The values of 

the ordinates are as shown in the table above 

 Thus, from equation (15): 

2 1
3

1 1547 4 1 7889 1 5119

1 33

1

3

x
dx (0.25)[(2.0000∫ ≈ � � �

     �

. ) ( . .

. 333 1 2060 2 1 6330 1 4142 1 2649

1
3

23 36

� � � �

� �

. ) ( . . . )

.

]

(0.25)[3.1547 004 8 6242�

�

. ]

2.928,  correct to 3 decimal places      

It is noted that the latter answer is exactly the same as that obtained 
by integration. In general, Simpson’s rule is regarded as the most 
accurate of the three approximate methods used in numerical 
integration.       

  Application: An alternating current i has the following values at 
equal intervals of 2.0 milliseconds.

   Time (ms)  0 2.0 4.0 6.0 8.0 10.0 12.0

   Current i (A)  0 3.5 8.2 10.0 7.3 2.0 0

Charge, q, in millicoulombs, is given by q i dt�
0

12 0.

∫    . Use 

Simpson’s rule to determine the approximate charge in the 12 

millisecond period       

 From equation (15): 

   

Charge, q i dt� � � � �

         
0

12 0 1
3

2 0 0 0 4 3 5 10 0 2 0
.

( . )[( ) ( . . . )∫ ≈

      � �
�

2 8 2 7 3( . . )]
62 mC      
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  12.10     Area under and between curves         

 The area shown shaded in  Figure 12.1    is given by: 

total shaded area f(x) dx f(x) dx f(x) dx
c

d

b

c

a

b
� � � ∫∫∫

     

 The area shown shaded in  Figure 12.2   , is given by: 

shaded area [f (x) f (x)]dx2 1
a

b
� �∫

                 

E

0 F

G

y

a b c d

y � f (x)

x

 Figure 12.1         

y

x0 x � a

y � f2(x)

y � f1(x)

x � b
 Figure 12.2           

  Application: The velocity v of a body t seconds after a certain 
instant is (2t 2       �   5)m/s. Find by integration how far it moves in 
the interval from t      �      0 to t      �      4     s       

Since 2t 2       �      5 is a quadratic expression, the curve v      �      2t 2       �      5 is a 
parabola cutting the v-axis at v      �      5, as shown in  Figure 12.3   . 

The distance travelled is given by the area under the v/t curve, shown 
shaded in  Figure 12.3 . 
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 By integration,  

shaded area v dt t dt
t

t� � � � �( )2 5
2
3

52
0

4

0

4 3

0

4

∫∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

    
 i.e.                                        distance travelled      �      62.67       m        

40

30

20

10

5

1 2 3 40

v (m/s)

v � 2t 2 � 5

t (s)
 Figure 12.3           

  Application: Determine the area enclosed by the curve y      �      x 3       �    
  2x 2       �      5x      �      6 and the x-axis between x      �       �     3 and x      �      2       

A table of values is produced and the graph sketched as shown in 
Figure 12.4    where the area enclosed by the curve and the x-axis is 
shown shaded.

   x   �3 �2 � 1 0 1 2

   x 3    �27 �8 � 1 0 1 8

   2x 2 18  8  2  0  2 8

    � 5x 15 10  5  0   �5 � 10 

    �6 �6 �6 �6 �6 �6 � 6 

   y 0  4  0   �6 � 8  0 
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Shaded area  �  y dx y dx
3

1

1

2

�

�

�
�∫ ∫    , the minus sign before the second 

integral being necessary since the enclosed area is below the x-axis. 

Hence, shaded area  

� � � � � � � �
�

�

�
(x x ) dx (x x x ) dx3 2

3

1
3 2

1

2
2 5 6 2 5 6x∫ ∫

    

� � � � � � � �

�

�

�

�

x x x
x

x x x
x

4 3 2

3

1 4 3 2

1

2

4
2
3

5
2

6
4

2
3

5
2

6
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

11
4

2
3

5
2

6
81
4

18
45
2

18� � � � � � �
⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎡

⎣
⎢
⎢

⎤

⎦⎦
⎥
⎥

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎡

⎣
⎢� � � � � � � �4

16
3

10 12
1
4

2
3

5
2

6⎢⎢
⎤

⎦
⎥
⎥

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥� � � � �3

1
12

2
1
4

12
2
3

⎧⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

� � � �3
1

12
5

1
3

15
33
4

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

� 21
1

12
21.083 square unitsor  

           

y � x 3 � 2x 2 � 5x � 6

y

x�2 �1

6

20 1�3

 Figure 12.4         
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 A sketch of y      �      sin 2x is shown in  Figure 12.5   . 

 (Note that y      �      sin 2x has a period of  
2
2
π

   , i.e.  π  radians) 

  Application: Find the area enclosed by the curve y      �      sin 2x, the 

x-axis and the ordinates x      �      0 and x �
π
3           

1

0 π/2 ππ/3

y � sin 2x

x

y

 Figure 12.5           

  

Shaded area ydx x dx

x

/ /

/

� �

� � � �

0

3

0

3

0

3

2

1
2

2
1
2

π

∫ ∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

sin

cos

π

π

ccos
2
3

1
2

0
π⎧

⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

� � cos
    

� � � � � � �
1
2

1
2

1
2

1
1
4

1⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

( )
22

�
3
4

square units
         

  Application:  Determine the area between the curve 
y      �      x 3       �      2x 2       �      8x and the x-axis       

 y      �      x 3       �      2x 2       �      8x      �      x(x 2       �      2x      �      8)      �      x(x      �      2)(x    �      4) 

When y   �   0, x   �   0 or (x   �   2)   �   0 or (x   �   4)   �   0, i.e. when y   �   0,
x   �   0 or �2 or 4, which means that the curve crosses the x-axis at 
0, �2, and 4. Since the curve is a continuous function, only one 
other co-ordinate value needs to be calculated before a sketch of 
the curve can be produced. When x   �   1, y   �     �9, showing that the 
part of the curve between x   �   0 and x   �   4 is negative. A sketch 
of y   �   x3     �   2x2     �   8x is shown in  Figure 12.6   . (Another method of 
sketching  Figure 12.6  would have been to draw up a table of values.) 
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Shaded area x x x dx x x x dx� � � � � �

�
( ) ( )3 2

2

0
3 2

0

4
2 8 2 8∫ ∫

    

� � � � � �

�

�

x x x x x x4 3 2

2

0 4 3 2

0

4

4
2
3

8
2 4
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3

8
2

6
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3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛
⎝
⎜⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟� �

�

42
2
3

49
1
3

square units
           

�1

�10

10

�20

0�2

y � x 3 � 2x 2 � 8x

x

y

1 2 3 4

 Figure 12.6           

  Application: Determine the area enclosed between the curves 
y      �      x 2       �      1 and y      �      7    �      x       

At the points of intersection the curves are equal. Thus, equating the 
y values of each curve gives:

x2 1 7� � � x      

 from which,               x 2       �      x      �      6    �      0 

 Factorising gives:   (x      �      2)(x    �      3)      �      0 

 from which               x      �      2 and x      �       � 3 

By firstly determining the points of intersection the range of x-values 
has been found. Tables of values are produced as shown below.

   x   �3 �2 � 1 0 1 2    x   � 3 0 2

   y      �      x 2       �      1 10 5 2 1 2 5    y      �      7      �      x 10 7 5

 A sketch of the two curves is shown in  Figure 12.7   . 
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 Shaded area
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⎞
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⎛
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⎠
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6

sq. unnits
         

�3 �2 �1

10

1 20

y � x2 � 1

y � 7 � x

x

y

5

 Figure 12.7         

  Application: Calculate the area enclosed by the curves y      �      x 2  
and y 2       �      8x       

At the points of intersection the co-ordinates of the curves are equal. 

 When y      �      x 2  then y 2       �      x 4  

Hence, at the points of intersection x 4       �      8x, by equating the y 2  
values.

Thus x 4       �      8x      �      0, from which x(x 3       �      8)      �      0, i.e. x      �      0 or 
(x3       �      8)      �      0 

 Hence at the points of intersection x      �      0 or x      �      2. 

 When x      �      0, y      �      0 and when x      �      2, y      �      2 2       �      4 

  Hence the points of intersection of the curves y      �      x 2 and 
y2       �      8x are (0, 0) and (2, 4).  

 A sketch of y      �      x 2  and y 2       �      8x is shown in  Figure 12.8   . 
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  Shaded area  
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3y � x (or y � x
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 Figure 12.9         

2

0 1 2 x

4

y � x 2

y2 � 8x
(or y �  8x)

 Figure 12.8           

  Application: Determine by integration the area bounded by the 
three straight lines y      �      4    �      x, y      �      3x and 3y      �      x       

 Each of the straight lines are shown sketched in  Figure 12.9   . 

Shaded area x dx ( x)
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  12.11     Mean or average values         

The mean or average value of the curve shown in  Figure 12.10   , 
between x      �      a and x      �      b, is given by: 

mean or average value, y
1

b a
f(x)dx

a

b
�

� ∫
                 

y y � f (x)

x � a x � b x0

y

 Figure 12.10 

  Application: Determine the mean value of y      �      5x 2 between 
x      �      1 and x      �      4       

  

Mean value, y y dx x dx

x
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� �
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4 1
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 Half a cycle means the limits are 0 to  π  radians. 

  
Mean value, v

1
v d( t) t d( t)�

�
�

π
ω

π
ω

π π

0
1

100
0 0∫ ∫ sin ω

    

                             

� � � � � �

� � � �

100 100
0

100
1 1

0π
ω

π
π

π

π[ cos t]  [( cos ) ( cos )]

 [( ) ( )] �� �
200

π
63.66 volts

     

 [Note that for a sine wave,  mean value �  
2
π

    �  maximum value  

 In this case, mean value  �  
2
π

       �      100      �      63.66     V]       

  Application: A sinusoidal voltage is given by v   �   100 sin  ωt volts. 
Determine the mean value of the voltage over half a cycle using 
integration      

  Application: The number of atoms, N, remaining in a mass of 

material during radioactive decay after time t seconds is given by 

N    �      N 0 e      �      λ t, where N 0 and λ are constants. Determine the mean 

number of atoms in the mass of material for the time period 

t      �      0 and  t �
1
λ

          

 Mean number of atoms  

�

�

� �� �1
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1
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0
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0
0

1
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λ
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λ
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λ
λ

N dt N e dt N e dtt t
/ / /

∫ ∫ ∫
    

�
�
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�
� �λ

λ
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λ λN

e
e e N e e

N e

t

0
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1

0
1 0

0
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0
0

⎡

⎣
⎢
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⎤

⎦
⎥
⎥
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/

/[ ] [ ]N

�� � � �� �e N e  1
0

11⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ 0.632 N0     
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With reference to  Figure 12.10 , the r.m.s. value of y      �      f(x) over 
the range x      �      a to x      �      b is given by: 

r.m.s. value
1

b a
y dx2

a

b
�

� ∫
⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪      

The r.m.s. value of an alternating current is defined as  ‘that cur-
rent which will give the same heating effect as the equivalent 
direct current ’ .             

  12.12     Root mean square values         

  Application: Determine the r.m.s. value of y      �      2x 2 between 
x      �      1 and x      �    4       

  Application: A sinusoidal voltage has a maximum value of 
100     V. Calculate its r.m.s. value       

A sinusoidal voltage v having a maximum value of 10    V may be writ-
ten as v      �      10 sin  θ . Over the range  θ       �      0 to  θ       �       π , 

r.m.s. value v d ( ) d�
�

�
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0
1

1002
0

2
0π

θ
π

θ θ
π π

∫ ∫
⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
sin⎨⎨

⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪
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10000 2

0π
θ

π
sin θ d  which is not  a ’standard’

                       integral      

 It is shown in chapter 5 that cos 2     A    �      1    �      2 sin 2 A 
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 Rearranging cos 2     A    �      1    �      2 sin 2 A gives sin 2 A    �        
1
2

    (1    �      cos 2A) 

 Hence, 
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[Note that for a sine wave, r.m.s. value  �  
1
2

    � maximum value.  

 In this case, r.m.s. value � � �
1

2
100 70 71. V]

        

  Application: In a frequency distribution the average distance 
from the mean, y, is related to the variable, x, by the equation 
y      �      2x 2       �      1. Determine, correct to 3 significant figures, the r.m.s. 
deviation from the mean for values of x from  � 1 to  � 4       

 R.m.s. deviation
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� �
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� � � �
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� � �147 67 12 152. . 12.2, correct to 3 significant figures.         

  12.13     Volumes of solids of revolution         

With reference to  Figure 12.11   , the volume of solid of revolution 
V obtained by rotating the shaded area through one revolution is 
given by: 

V y dx about the x-axis

V x dy about the y-axis

2
a

b

2
c

d

�

�

π

π

∫

∫                  

y

0

(a) (b)

0x � a

y � f (x)

x � f (y)

y � d

y

y � c

x � b x x

A

A

 Figure 12.11           

  Application: The curve y      �      x 2       �      4 is rotated one revolution 
about (a) the x-axis, and (b) the y-axis, between the limits x      �      1 
and x      �      4. Determine the volume of the solid of revolution pro-
duced in each case       

  (a)   Revolving the shaded area shown in  Figure 12.12    about the x-axis 
360° produces a solid of revolution given by:    

  
Volume y dx (x ) dx� � �π π2

1

4
2 2

1

4
4∫ ∫
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� � � � � �π π(x x ) dx
x x

x4 2
1

4 5 3

1

4

8 16
5

8
3

16∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

           �       π [(204.8    �      170.67    �      64)      �      (0.2    �      2.67    �      16)] 

           �       420.6π  cubic units  

  Application: The area enclosed by the curve  y e� 3 3
x
   , the x-axis 

and ordinates x   �     �     1 and x   �   3 is rotated 360 o about the x-axis. 
Determine the volume generated.       

30

20

10

5
4

0 1 2 3 4 5

y � x2 � 4

y

x

A B

CD

 Figure 12.12 

  (b)   The volume produced when the curve y      �      x 2       �      4 is rotated about 
the y-axis between y      �      5 (when x      �      1) and y      �      20 (when x      �      4), 
i.e. rotating area ABCD of  Figure 12.12  about the y-axis is given 

by: volume x dy� π 2
5

20

∫
       

 Since y      �      x 2       �    4, then x 2       �      y    �      4 

 Hence, 

     
volume (y ) dy

y
y� � � � � � �π π π4

2
4 120 7 5
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20 2

5

20

∫
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⎣
⎢
⎢
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⎦
⎥
⎥ [( ) ( . )]

    

       �       127.5π cubic units        

 A sketch of  y e� 3 3
x

    is shown in  Figure 12.13   . 
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 When the shaded area is rotated 360 °  about the x-axis then: 

volume generated y dx e dx e dx

e
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� � �
π π π
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3 2
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e e
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�2 0 2

x2 � y2 � 42

x

y

�4 1 43

 Figure 12.14         

8

4

0�1 21 3

y � 3e3
x

y

x
 Figure 12.13 

  Application: Calculate the volume of a frustum of a sphere of 
radius 4    cm that lies between two parallel planes at 1    cm and 
3     cm from the centre and on the same side of it       

The volume of a frustum of a sphere may be determined by integra-
tion by rotating the curve x 2       �      y 2       �      4 2 (i.e. a circle, centre 0, radius 
4) one revolution about the x-axis, between the limits x      �      1 and 
x      �      3 (i.e. rotating the shaded area of  Figure 12.14   ). 
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Volume of frustum y dx ( x ) dx

x
x

� � �

� �

π π

π

2
1

3
2 2

1

3

3

1

4

16
3

∫ ∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

33

39 15
2
3

� �π ( )
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
    

  
� 23

1
3

cubic unitsπ
     

  12.14     Centroids         

  Centroid of area between a curve and the x-axis  

If x    and y    denote the co-ordinates of the centroid C of area A in 
 Figure 12.15    then: 

x
xy dx

y dx
y

1
2

y dx

y dx

a

b

a

b

2
a

b

a

b� �
∫
∫

∫

∫
and

     

  Centroid of area between a curve and the y-axis  

If x    and y    denote the co-ordinates of the centroid C of area A in 
 Figure 12.16    then: 

x

1
2

x dy

x dy
y

xy dy

x dy

2
c

d

c

d
c

d

c

d� �
∫

∫
∫
∫

and

               

y

0 x � a

x

x � b x

y � f (x)

C

Area A

y

 Figure 12.15           
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If ( x    , y    ) are the co-ordinates of the centroid of the given area then: 

x � � �
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xy dx

y dx

x( x ) dx

3x dx

x dx

3x dx

x

0

2
2

0

2
2

0

2
0

2
2

0

2
3

0

2

4

3 3

3
4

∫
∫

∫
∫

∫
∫

⎡

⎣⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡
⎣⎢

⎤
⎦⎥

∫

∫

0

2

2
0

2

0

2

2 2
0

2

12
8

1
2

1
2

3

x

y
y dx

y dx

( x ) dx

3
0

2 � �

� �

1.5

∫∫ ∫

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

8

1
2

9

9
2 5

8

9
2

32
5

8
18
5

4
0

2

5

0

2

�

� � � �

x dx

8

x

3.6
     

  Hence the centroid lies at (1.5, 3.6)        

y

0

y � c

y � d

x

y � f (y)
C

Area A

x

y

 Figure 12.16 

  Application: Find the position of the centroid of the area 
bounded by the curve y      �      3x 2, the x-axis and the ordinates x      �      0 
and x      �      2       

  Application: Locate the position of the centroid enclosed by the 
curves y      �      x 2  and y 2       �      8x      
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  Figure 12.17    shows the two curves intersecting at (0, 0) and (2, 4). 

These are the same curves as used in the application on page 341, 

where the shaded area was calculated as  22
3     square units. Let the 

co-ordinates of centroid C be  x     and  y     

By integration,    x �
xy dx

y dx

0

2

0

2

∫
∫

    
The value of y is given by the height of the typical strip shown in 
 Figure 12.17 , i.e.  y x x� �8 2     

2
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0 1 2 x
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 Figure 12.17 

Hence,
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   Care needs to be taken when finding  y     in such examples as this. 
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 From  Figure 12.17 , y x x  and 
y

x x� � � �8
2

1
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The perpendicular distance from centroid C of the strip to OX is 
1
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8 2 2x x� �( ) x
    

 Taking moments about 0x gives: 
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  Thus the position of the centroid of the enclosed area in Figure 
12.17 is at (0.9, 1.8)        

  Application: Locate the centroid of the area enclosed by the 
curve y      �      2x 2, the y-axis and ordinates y      �      1 and y      �      4, correct 
to 3 decimal places       
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  Hence the position of the centroid is at (0.568, 2.657)   

  12.15     Theorem of Pappus         

  A theorem of Pappus  states: 

  ‘ If a plane area is rotated about an axis in its own plane but not 
intersecting it, the volume of the solid formed is given by the 
product of the area and the distance moved by the centroid of 
the area ’ . 

With reference to  Figure 12.18   , when the curve y      �      f(x) is rotated 
one revolution about the x-axis between the limits x      �      a and 
x      �      b, the volume V generated is given by: 

 volume V      �      (A)(2 π  y   ), from which,  y
V

2 A
�
π

                

Area A

y � f (x)

y

x

y

C

x � bx � a  Figure 12.18 

  Application: Determine the position of the centroid of a semi-
circle of radius r by using the theorem of Pappus       
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A semicircle is shown in  Figure 12.19    with its diameter lying on the 
x-axis and its centre at the origin. 

Area of semicircle  �
πr2

2
   . When the area is rotated about the x-axis 

one revolution a sphere is generated of volume  
4
3
π r3     

Let centroid C be at a distance  y     from the origin as shown in  Figure 
12.19 . 
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y

 Figure 12.19         

From the theorem of Pappus, volume generated      �      area    �      distance 
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  Hence the centroid of a semicircle lies on the axis of symme-

try, distance   4r
3π

     (or 0.424 r) from its diameter.        
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  (a)   The required area is shown shaded in  Figure 12.20   .    
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  Application: (a) Calculate the area bounded by the curve 
y   �   2x2, the x-axis and ordinates x   �   0 and x   �   3 (b) If the area in 
part (a) is revolved (i) about the x-axis and (ii) about the y-axis, find 
the volumes of the solids produced, and (c) locate the position of 
the centroid using (i) integration, and (ii) the theorem of Pappus       
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x

x
 Figure 12.20 

  (b)      (i)   When the shaded area of  Figure 12.20  is revolved 360° 
about the x-axis, the volume generated

� � �

� �

π π π

π π

y dx ( x dx x dx

x

2
0

3
2 2

0

3
4

0

3

5

0

3

2 4

4
5

4
243
5

∫ ∫ ∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛
⎝
⎜

)

⎜⎜⎜
⎞
⎠
⎟⎟⎟⎟

    
                                                      �       194.4π  cubic units      

       (ii)   When the shaded area of  Figure 12.20  is revolved 360 ° about 
the y-axis, the volume generated      �      (volume generated by 
x      �      3) � (volume generated by y      �      2x 2 )       

� � � �

�

π π π

π

( )3
2

9
2

9

2
0

18

0

18

0

18
dy

y
dy

y
dy

y

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟∫∫ ∫

��
y2

0

18

4

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 81 cubic unitsπ      
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  (c)   If the co-ordinates of the centroid of the shaded area in  Figure 
12.20  are ( x    , y    ) then: 

    (i)   by integration,       

x
xy dx

y dx

x x dx x dx
x

� � � �

�

0

3

0

3

2
0

3
3

0

3 4

0

3

2

18

2

18

2
4
18

∫
∫

∫ ∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥( )

881
36

1
2

1
2

2

18

1
2

4

18

1

2
0

3

0

3

2 2
0

3
4

0

3

�

� � �

�

2.25

y
y dx

y dx

x dx x dx∫

∫

∫ ∫( )

22
4
5

18

5

0

3
x⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

� 5.4
     

  (ii)   using the theorem of Pappus:    
Volume generated when shaded area is revolved about 
0y    �      (area)(2 π  x    ) 

 i.e.     81 π       �      (18)(2 π  x    ), from which,  x � �
81
36

π
π

2.25     

Volume generated when shaded area is revolved about 
0x    �      (area)(2 π  y   ) 

 i.e.   194.4 π       �      (18)(2 π  y   ), from which,  y � �
194 4

36
. π
π

5.4     

  Hence, the centroid of the shaded area in Figure 12.20 
 is at (2.25, 5.4)        

  Application: A metal disc has a radius of 5.0    cm and is of thick-
ness 2.0    cm. A semicircular groove of diameter 2.0    cm is machined 
centrally around the rim to form a pulley. Using Pappus ’ theorem, 
determine the volume and mass of metal removed and the volume 
and mass of the pulley if the density of the metal is 8000    kg/m3       

 A side view of the rim of the disc is shown in  Figure 12.21   . 

When area PQRS is rotated about axis XX the volume generated is 
that of the pulley. 
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The centroid of the semicircular area removed is at a distance of 
4
3

r
π

    from its diameter (see earlier example), i.e. 
4 1 0

3
( . )
π

   , i.e. 0.424     cm 

from PQ. Thus the distance of the centroid from XX is (5.0 – 0.424), 

i.e. 4.576     cm. 

The distance moved through in one revolution by the centroid is 
2π (4.576) cm. 

 Area of semicircle  � � �
π πr

cm
2 2

2

2
1 0
2 2

( . ) π
   . 

 By the theorem of Pappus, 

 volume generated      �      area    �      distance moved by centroid 

�
π

π
2

2 4 576
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ ( )( ).

    
 i.e.      volume of metal removed       �       45.16       cm3  

  Mass of metal removed       �      density    �      volume 

       �      8000     kg/m 3       �       45 16
106

.     m 3       

�       0.361     kg  or  361       g  

  Volume of pulley       �      volume of cylindrical disc � volume of metal 
 removed 

       �       π (5.0) 2 (2.0)    �      45.16    �       111.9       cm3  

  Mass of pulley       �    density      �      volume 

       �      8000     kg/m 3       �       
111 9
106

.
   m 3       �       0.895     kg or 895       g   

5.0 cm

2.0 cm

P Q

RS

X X

 Figure 12.21         
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  12.16     Second moments of area         

 Table 12.3      Summary of standard results of the second 
moments of areas of regular sections  

   Shape Position of axis  Second 
moment
of area, I 

 Radius of 
gyration,
k

    Rectangle  (1) Coinciding with b 
  

bl3

3       

l

3     

   length1 (2) Coinciding with l 
  

lb3

3       

b

3     

   breadth b 
(3) Through centroid, 

parallel to b   

bl3

12       

l

12     
    (4) Through centroid, 

parallel to l   

lb3

12       

b

12     

    Triangle  (1) Coinciding with b 
  

bh3

12       

h

6     

   Perpendicular 
height h 

(2) Through centroid, 
parallel to base   

bh3

36       

h

18     

   base b 
(3) Through vertex, 

parallel to base   

bh3

4       

h

2     

    Circle  
   radius r 

(1) Through centre,  
 perpendicular to 
plane (i.e. polar axis) 

  

πr4

2     
  

  

r

2     
  

    (2) Coinciding with 
diameter   

πr4

4       

r
2     

    (3) About a tangent 
  

5
4

4πr

      

5
2

r
    

    Semicircle   Coinciding with 
  

πr4

8       

r
2     

   radius r  diameter 
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  Parallel axis theorem  

 If C is the centroid of area A in  Figure 12.22   , then: 

I I AdDD GG
2� �    

  Perpendicular axis theorem  

 If OX and OY lie in the plane of area A in  Figure 12.23   , then: 

I I IOZ OX OY� �              

G

G

C

Area A

d D

D  Figure 12.22 

O

Area A

Z

Y

X  Figure 12.23         

  Application: Determine the second moment of area and the 
radius of gyration about axes AA, BB and CC for the rectangle 
shown in  Figure 12.24          

A

C

B

C
b � 4.0 cm

B
A

l � 12.0 cm

 Figure 12.24 
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  I
b

GG �
l 3

12
    where l      �      40.0     mm and b      �      15.0     mm 

 Hence  I mmGG � �
( . )( . )40 0 15 0

12
11250

3
4     

From the parallel axis theorem, I PP       �      I GG       �      Ad 2, where A      �      40.0      �   
15.0    �      600     mm 2 and d      �      25.0    �      7.5      �      32.5    mm, the perpendicular 
distance between GG and PP. 

 From  Table 12.3   , the second moment of area about axis AA, 

I 2304 cmAA
4� � �

bl3 3

3
4 0 12 0

3
( . )( . )

     

 Radius of gyration,    k 6.93 cmAA � � �
l

3

12 0

3

.
    

 Similarly,                      I 256 cmBB
4� � �

lb3 3

3
12 0 4 0

3
( . )( . )

    

 and                            k 2.31cmBB � � �
b

3

4 0

3

.
    

The second moment of area about the centroid of a rectangle is  
bl3

12
    

when the axis through the centroid is parallel with the breadth b. In 

this case, the axis CC is parallel with the length l 

 Hence     I 64 cmCC
4� � �

lb3 3

12
12 0 4 0

12
( . )( . )

    

 and                  kCC 1.15 cm� � �
b

12

4 0

12

.

          

  Application: Find the second moment of area and the radius of 
gyration about axis PP for the rectangle shown in  Figure 12.25          

40.0 mm

15.0 mm

25.0 mm

G G

P P  Figure 12.25         



362 Engineering Mathematics Pocket Book

 Hence,  IPP       �      11250    �      (600)(32.5) 2       �       645000       mm4  

  I AkPP PP� 2 ,     from which,  k 32.79 mmPP � � �
I

area
PP 645000

600

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟           

  Application: Determine the second moment of area and radius of 
gyration about axis QQ of the triangle BCD shown in  Figure 12.26          

12.0 cm

8.0 cm 6.0 cm

B

G

DC

Q Q

G

 Figure 12.26         

Using the parallel axis theorem: I QQ       �      I GG       �      Ad2, where I GG is the 
second moment of area about the centroid of the triangle, i.e. 
bh

cm
3 3

4

36
8 0 12 0

36
384� �

( . )( . )
   ,

A is the area of the triangle  � � �
1
2

1
2

8 0 12 0 48 2bh ( )( ) cm. .     and d 

is the distance between axes GG and QQ ( ) cm� � �6 0
1
3

12 0 10. .     

 Hence the second moment of area about axis QQ, 
IQQ       �      384      �      (48)(10) 2       �       5184       cm4  

 Radius of gyration,  K 10.4 cmQQ � � �
I

area
QQ 5184

48

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟           

  Application: Determine the second moment of area and radius 
of gyration of the circle shown in  Figure 12.27    about axis YY       

3.0 cm

G G

r � 2.0 cm

Y Y  Figure 12.27         
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 In  Figure 12.27 ,  IGG � � �
π πr

( ) cm
4

4 4

4 4
2 0 4. π     

Using the parallel axis theorem, I YY       �      I GG       �      Ad2, where d      �      3.0      �   
  2.0      �      5.0     cm. 

 Hence  IYY       �      4 π       �      [ π (2.0) 2 ](5.0) 2       �      4 π       �      100 π       �      104 π       �       327       cm4  

 Radius of gyration,  k 5.10 cmYY � � � �
I

area
YY 104

2 0
26

2

π
π( . )

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

          

  Application: Determine the second moment of area and radius 
of gyration for the semicircle shown in  Figure 12.28    about axis XX       

15.0 mm

10.0 mmG

B

G

B

XX  Figure 12.28         

 The centroid of a semicircle lies at  
4
3

r
π

    from its diameter 

 Using the parallel axis theorem: I BB       �      I GG       �      Ad2 , 

 where  IBB �
πr4

8
    (from  Table 12.3 )  � �

π( . )10 0
8

3927
4

4mm       ,

A � � �

� � �

π

π π

r
mm

and d
r

mm

2 2
2

2
10 0

2
157 1

4
3

4 10 0
3

4 244

π( . )
.

( . )
.

    
 Hence, 3927      �      I GG       �      (157.1)(4.244) 2  

i.e. 3927   �   IGG     �   2830, from which, I GG     �   3927   �   2830   �   1097   mm4  

 Using the parallel axis theorem again: I XX       �      I GG       �      A(15.0    �      4.244) 2  

i.e. IXX       �      1097    �      (157.1)(19.244) 2       �      1097    �      58179    �      59276     mm 4  
or 59280       mm4,  correct to 4 significant figures. 

 Radius of gyration,  k 19.42 mmXX � � �
I

area
XX 59276

157 1.

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟           
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Y

Y Z

Xb � 15 mm
I � 40 mm

Z

X

 Figure 12.30         

  Application: Determine the polar second moment of area of the 
propeller shaft cross-section shown in  Figure 12.29          

7.
0 

cm

6.
0 

cm

 Figure 12.29         

 The polar second moment of area of a circle  �
πr4

2
    

The polar second moment of area of the shaded area is given by the 
polar second moment of area of the 7.0    cm diameter circle minus 
the polar second moment of area of the 6.0     cm diameter circle. 

 Hence the polar second moment of area of the cross-section shown 

� � � � �
π
2

7 0
2 2

6 0
2

235 7 127 2
4 4

. .
. .

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

π
108.5 cm44

           

  Application: Determine the second moment of area and radius 
of gyration of a rectangular lamina of length 40    mm and width 
15    mm about an axis through one corner, perpendicular to the 
plane of the lamina       

 The lamina is shown in  Figure 12.30   . 

 From the perpendicular axis theorem: I ZZ       �      I XX       �      I YY    

I
l

l

XX � � �

� � �

b
mm

and I
b

mYY

3 3
4

3 3
3

40 15
3

45000

3
15 40

3
320000

( )( )

( )( )
mm4
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 Hence  IZZ       �      45000    �      320000    �       365000     mm 4  or  36.5    cm4  

  

Radius of gyration, 
I

area
ZZkZZ � �

365000
40 15( )( )

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

�� 24.7 mm 2.47 cmor           

 For the semicircle,  IXX � � �
πr

cm
4 4

4

8
4 0
8

100 5
π( . )

.     

 For the rectangle  I
l

XX � � �
b

cm
3 3

4

3
6 0 8 0

3
1024

( . )( . )
    

  

For the triangle, about axis TT through centroid ,CT

                                                            �ITT
bbh

cm
3 3

4

36
10 6 0

36
60� �

( )( . )

    
By the parallel axis theorem, the second moment of area of the tri-
angle about axis XX 

� � � �60
1
2

10 6 0 8 0
1
3

6 0 3060
2

4( )( . ) . ( . )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

cm
     

  Total second moment of area about XX       �      100.5    �      1024    �      3060 

      �      4184.5    �       4180     cm 4 , correct to 3 significant figures                

  Application: Determine correct to 3 significant figures, the sec-
ond moment of area about axis XX for the composite area shown 
in  Figure 12.31   .       

1.0 cm
8.0 cm

6.0 cm

2.0 cm

4.0
 cm

1.0 cm

2.0 cm

CT

TT

XX

 Figure 12.31         



            13.1     The solution of equations of the form  

dy
dx

f(x)�
            

  13    Differential Equations 

 Since  5 2 3
dy
dx

x� �     then  dy
dx

x x
�

�
� �

3 2
5

3
5

2
5

    

 Hence,  y
x

dx� �
3
5

2
5

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟∫     

 i.e.  y
x x

c,� � �
3
5 5

2
    which is the general solution. 

Substituting the boundary conditions y � 12
5     and x      �      2 to evaluate 

c gives: 

  1
2
5

6
5

4
5

� � � c,     from which, c      �      1. 

  Hence the particular solution is  y
3x
5

x
5

1
2

� � �      

A differential equation of the form  
dy
dx

f(x)�     is solved by direct 
integration, i.e. 

y f(x)dx� ∫                  

  Application: Find the particular solution of the differential 

equation 5 2 3
dy
dx

x� � ,    given the boundary conditions y 1
2
5

�     

when x      �      2       
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  13.2      The solution of equations of the form  
dy
dx

f(y)�
            

A differential equation of the form  
dy
dx

f(y)�     is initially rearranged

to give dx
dy
f(y)

�     and then the solution is obtained by direct 

integration, i.e. 

dx
dy
f(y)∫ ∫�

                 

  (a)    dR
d

R
θ

α�    is of the form  dy
dx

f(y)�     

 Rearranging gives:  d
dR

R
θ

α
�      

 Integrating both sides gives:  d
dR

R
θ

α∫ ∫�      

 i.e.  θ
α

� �
1

ln R c,     which is the general solution  

 Substituting the boundary conditions R      �      R 0  when  θ       �      0 gives:       

0
1 1

0 0� � � �
α α

ln R c from which c  ln R
     

  Application:  

  (a)   The variation of resistance, R ohms, of an aluminium conductor

 with temperature  θ°C is given by dR
d

R,
θ

α�     where  α is the 

 temperature coefficient of resistance of aluminium. If R      �      R 0  
when θ       �      0°C, solve the equation for R.  

  (b)   If α       �      38      �      10      �     4/°C, determine the resistance of an alumin-
ium conductor at 50°C, correct to 3 significant figures, when 
its resistance at 0°C is 24.0      Ω           
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  Hence the particular solution is  

θ
α α α

� � � �
1 1 1

0 0ln R ln R (ln R ln R )
    

i.e. θ
α

αθ� �
1

0 0

ln
R
R

or ln
R
R

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
    

Hence e
R
R

αθ �
0

   from which,  R      �      R 0  e α  θ  

  (b)   Substituting α     �   38   �   10     � 4, R 0     �   24.0 and θ     �   50 into R   �   R0 e α  θ  
gives the resistance at 50°C, i.e.    

R50      �      24.0  e( )38 10 504� ��
� 29.0 ohms     

  13.3      The solution of equations of the form
dy
dx

f(x) . f(y)�
            

A differential equation of the form  
dy
dx

f(x).f(y),�     where f(x) is 

a function of x only and f(y) is a function of y only, may be 

rearranged as  
dy
f(y)

f(x)dx,�     and then the solution is obtained 

by direct integration, i.e. 

dy
f(y)

f(x)dx∫ ∫�

                 

  Application:  Solve the equation  4xy
dy
dx

y 12� �           

 Separating the variables gives:  
4

1
1

2

y
y

dy
x

dx
�

�
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
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 Integrating both sides gives:  
4

1
1

2

y
y

 dy
x

 dx
�

�
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟∫ ∫     

 Using the substitution u      �      y 2       �      1, the general solution is: 

2 ln (y 1) ln x c2 � � � (1)      

 or         ln (y 2       �      1) 2       �      ln x      �      c 

 from which,  ln
(y )

x
c

2 21�
�

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

    

 and                  
(y 1)

x
e

2 2
c�

�
(2)      

 If in equation (1), c      �      ln A, where A is a different constant, 

then ln (y2       �      1) 2       �      ln x      �      ln A 

i.e. ln (y2       �      1) 2       �      ln Ax 

 i.e. (y 1) Ax2 2� � (3)      

Equations (1) to (3) are thus three valid solutions of the differential

equations 4 12xy
dy
dx

y� �           

  Application: The current i in an electric circuit containing 
resistance R and inductance L in series with a constant voltage 

source E is given by the differential equation  E L
di
dt

Ri.� �
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟     

Solve the equation to find i in terms of time t, given that when 
t      �      0, i      �      0       

In the R–L series circuit shown in  Figure 13.1   , the supply p.d., E, is 
given by 

E V VR L� �      
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 V R       �      iR and  V L
di
dtL �     

 Hence  E iR L
di
dt

� �     from which  E L
di
dt

Ri� �     

 Most electrical circuits can be reduced to a differential equation. 

 Rearranging  E L
di
dt

Ri� �     gives:             di
dt

E Ri
L

�
�     

 and separating the variables gives:      di
E Ri

dt
L�

�     

 Integrating both sides gives:            di
E Ri

dt
L�

�∫ ∫     

 Hence the general solution is:  � � � �
1
R

ln(E Ri)
t
L

c     

                (by making a substitution u      �      E � Ri, see chapter 12) 

 When t      �      0, i      �      0, thus  � �
1
R

ln E c     

 Thus the particular solution is:  � � � �
1 1
R

ln(E Ri)
t
L R

 ln E     

 Transposing gives:  � � � �
1 1
R

 ln(E Ri)
R

 ln E
t
L

    

1
R

[ln E ln(E Ri)]
t
L

� � �
     

ln
E

E Ri
Rt
L

 from which 
E

E Ri
e

Rt
L

�
�

�
�

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

   

VR VL

R L

E

i

 Figure 13.1           
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 Hence  
E Ri

E
e

Rt
L

�
�

�
 

    and  E Ri E e
Rt
L� �

�
    and  Ri E E e

Rt
L� �

�
    

Hence current,  i
E
R

1 e
Rt
L� �

�⎛

⎝
⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
    which represents the law of growth

of current in an inductive circuit as shown in  Figure 13.2   .  

i

i � (1 � e�Rt/L)

Time t0

E
R

E
R

 Figure 13.2           

  13.4      Homogeneous first order differential 
equations        

  Procedure to solve differential equations of the 

form   P
dy
dx

Q�     

  1.   Rearrange  P
dy
dx

Q�    into the form  
dy
dx

P
Q

�      .

  2.   Make the substitution y   �   vx (where v is a function of x), from

 which,  dy
dx

v( ) x
dv
dx

� �1     by the product rule.  

  3.   Substitute for both y and  
dy
dx

    in the equation  
dy
dx

P
Q

.�

    Simplify, by cancelling, and an equation results in which the 
variables are separable.  
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 Using the above procedure: 

  1.   Rearranging x
dy
dx

x y
y

�
�2 2

    gives dy
dx

x y
xy

�
�2 2

    which is

 homogeneous in x and y since each of the three terms on the

 right hand side are of the same degree (i.e. degree 2).  

  2.   Let y      �      vx then  dy
dx

v( ) x
dv
dx

� �1      

  3.   Substituting for y and  dy
dx

    in the equation  dy
dx

x y
xy

�
�2 2

    gives:    

v x
dv
dx

x (vx)
x(vx)

x v x
vx

v
v

� � �
�

�
�2 2 2 2 2

2

21+

     

  4.   Separating the variables give:

x
dv
dx

v
v

v
v v

v v
�

�
� �

� �
�

1 1 12 2 2

    

 Hence,  vdv
x

dx�
1      

 Integrating both sides gives:

vdv
x

dx�
1

∫∫     i.e.  v ln x c
2

2
� �         

  4.   Separate the variables and solve.  

  5.   Substitute  v
y
x

�     to solve in terms of the original variables.                

  Application: Determine the particular solution of the equation

x
dy
dx

x y
y

,
2 2

�
�    given the boundary conditions that x      �      1 when

y      �      4       
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  5.   Replacing v by
y
x

    gives:
y
x

ln x c,
2

22
� �     which is the general

 solution. 

 When x      �      1, y      �      4, thus:  
16
2

1� �ln c,    from which, c      �      8  

 Hence,  the particular solution is:   y
2x

ln x 8
2

2
� �    or 

y2       �      2x 2  (ln x      �      8)         

  13.5     Linear first order differential equations         

  Procedure to solve differential equations of the 

form
dy
dx

Py Q� �     

  1.   Rearrange the differential equation into the form

dy
dx

Py Q,� �     where P and Q are functions of x  

  2.   Determine  P dx∫      

  3.   Determine the integrating factor  e P dx∫      

  4.   Substitute  e P dx∫     into the equation:    

   
y e e  Q dxP dx P dx∫ ∫∫� (1)

      

  5.   Integrate the right hand side of equation (1) to give the gen-
eral solution of the differential equation. Given boundary con-
ditions, the particular solution may be determined.                
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 Using the above procedure: 

  1.   Rearranging gives  dy
dx

xy x,+ 4 2�     which is of the form

dy
dx

 Py Q� �     where P      �      4x and Q      �      2x  

  2.    P dx x dx x∫ ∫� �4 2 2      

  3.   Integrating factor,  e P dx∫ � e x2 2      

  4.   Substituting into equation (1) gives: 

y e e ( x) dxx x2 22 2 2� ∫      

  5.   Hence the general solution is:       y e e c,x x2 22 21
2

� �     by using the

 substitution u      �      2x 2  

 When x      �      0, y      �      4, thus  4
1
2

0 0e e c,� �     from which,  c �
7
2

     

 Hence the particular solution is:

y e ex x2 22 21
2

7
2

� �      

 i.e.       y
1
2

7
2

e 2x2
� � �     or  y

1
2

(1 7e )2x2
� � �            

  Application: Solve the differential equation  
1
x

dy
dx

4y 2� � ,    

given the boundary conditions x      �      0 when y      �      4       
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  13.6      Second order differential equations of the

form a d y
dx

b dy
dx

cy 0
2

2 � � �             

  Procedure to solve differential equations of the form

a
d y
dx

b
dy
dx

cy 0
2

2
� � �

    

  1.   Rewrite the differential equation  a
d y
dx

b
dy
dx

cy 0
2

2
� � �     as 

(aD2       �      bD     �      c)y      �      0  

  2.   Substitute m for D and solve the auxiliary equation 
am2       �      bm      �      c    �      0 for m  

  3.   If the roots of the auxiliary equation are: 
 (a)     real and different, say m      �       α and m      �       β, then the gen-

eral solution is: y      �      Aeαx       �      Be βx   
 (b)     real and equal, say  m      �       α twice, then the general solu-

tion is: y      �      (Ax      �      B)e αx   
 (c)     complex, say m      �       α   
  j β, then the general solution is: 

y      �      e αx   { A cos  β x    �      B sin  β x }      
  4.   Given boundary conditions, constants A and B may be deter-

mined and the particular solution of the differential equation 
obtained. The particular solution obtained with differential 
equations may be verified by substituting expressions for y,

dy
dx

    and  
d y
dx

2

2
    into the original equation.                

  Application: The oscillations of a heavily damped pendulum 

satisfy the differential equation  
d x
dt

6
dx
dt

8x 0
2

2
� � � ,     where x

cm is the displacement of the bob at time t seconds. 

The initial displacement is equal to      �      4    cm and the initial velocity

i.e.
dx
dt

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟     is 8     cm/s. Solve the equation for x.       
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 Using the above procedure: 

  1.    
d x
dt

dx
dt

x
2

2
6 8 0� � �     in D-operator form is (D 2     �   6D   �   8)x   �   0,

 where  D
d
dt

≡      

  2.   The auxiliary equation is m 2       �      6     m    �      8    �      0 
Factorising gives: (m      �      2)(m    �      4)      �      0, from which, m      �       �     2 or 
m      �       �     4     

  3.   Since the roots are real and different,  the general solution is:     

x Ae Be2t 4t� �� �
     

  4.   Initial displacement means that time t      �      0. At this instant, x      �      4    

 Thus                                          4 � �A B (1)      

 Velocity,  
dx
dt

Ae Bet t� � �� �2 42 4     

  
dx
dt

 cm/s� 8     when t      �      0, thus   8    �      �2A �  4B  (2)      

 From equations (1) and (2), A      �      12 and B      �       �     8 

 Hence the particular solution is: x      �      12e      � 2t       �      8e      � 4t  

 i.e.      displacement, x      �      4(3e �    2t       �      2e �    4t ) cm        

  Application: The equation  d i
dt

R
L

di
dt

1
LC

i 0
2

2
� � �     represents 

a current i flowing in an electrical circuit containing resistance R, 
inductance L and capacitance C connected in series. If R      �      200 
ohms, L      �      0.20 henry and C      �      20      �      10      �     6 farads, solve the 
equation for i given the boundary conditions that when t      �   0,

i      �      0 and  
di
dt

100�         
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 Using the procedure: 

  1.    d i
dt

R
L

di
dt LC

i
2

2

1
0� � �     in D-operator form is

D
R
L

D
LC

i2 1
0� � �

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟     where  D

d
dt

≡      

  2.   The auxiliary equation is  m
R
L

m
LC

2 1
0� � �     

 Hence,      m

( )
LC

�

� �
R
L

R
L

±
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2

4 1
1

2
     

 When R      �      200, L      �      0.20 and C      �      20      �      10      �     6 ,  

 then       m
( )( )

�

� �
� �

200
0 20

200
0 20

4
0 20 20 10

2

2

6. . .
±

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

��
�

� �
1000 0

2
500

±

        

  3.   Since the two roots are real and equal (i.e.  �500 twice, since for 
a second order differential equation there must be two solutions), 
the general solution is: i      �      (At      �      B)e      �     500    t   

  4.   When t      �      0, i      �      0, hence B      �      0 

  
di
dt

(At B)( e ) (e )(A)� � � �� �500 500 500t t     by the product rule  

 When  t , 
di
dt

,� �0 100     thus 100      �       �     500B    �      A  

 i.e.      A    �      100, since B      �      0  

  Hence the particular solution is: i      �      100     te �     500    t              
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An equation of the form d x
dt

m x
2

2
2 0� �     is a differential equation

representing simple harmonic motion (S.H.M.). Using the procedure: 

  1.    d x
dt

x
2

2
100 0� �     in D-operator form is (D 2       �      100)x    �      0  

  2.   The auxiliary equation is m 2       �      100      �      0, i.e. m 2       �       �     100 and

m � �100     
 i.e. m      �       
 j10     

  3.   Since the roots are complex, the general solution is: 
x      �      e 0 (A cos 10     t    �      B sin 10     t), 

 i.e.       x      �      (A cos 10     t    �      B sin 10     t) metres      

  4.   When t      �      0, x      �      2, thus 2      �      A 

  dx
dt

A� �10     sin 10t      �      10B cos 10t  

When t      �      0, dx
dt

� 0     thus 0      �       �     10A sin 0      �      10B cos 0 i.e. 
B      �      0  

  Hence the particular solution is: x      �      2 cos 10t metres           

  Application: The equation of motion of a body oscillating on 

the end of a spring is
d x
dt

100x 0,
2

2
� �     where x is the 

displacement in metres of the body from its equilibrium position 
after time t seconds. Determine x in terms of t given that at time

t      �      0, x      �      2     m and  dx
dt

0�           
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13.7 Second order differential equations of the

form a d y
dx

b dy
dx

cy f(x)
2

2 � � �

Procedure to solve differential equations of the 

form a
d y
dx

b
dy
dx

cy f(x)
2

2
� � �

1. Rewrite the given differential equation as 
(aD2 � bD � c)y � f(x)

2. Substitute m for D, and solve the auxiliary equation 
am2 � bm � c � 0 for m

3. Obtain the complementary function, u, which is achieved 
using the same procedure as on page 375

4. To determine the particular integral, v , firstly assume a par-
ticular integral which is suggested by f(x), but which contains 
undetermined coefficients. Table 13.1 gives some suggested 
substitutions for different functions f(x).

5. Substitute the suggested P.I. into the differential equation 
(aD2 � bD � c)v � f(x) and equate relevant coefficients to find 
the constants introduced.

6. The general solution is given by y � C.F. � P.I. i.e. y � u � v
7. Given boundary conditions, arbitrary constants in the C.F. may 

be determined and the particular solution of the differential 
equation obtained.

Table 13.1 Form of particular integral for different functions

Type Straightforward 
cases
Try as particular 
integral:

‘Snag’ cases 
Try as particular 
integral:

(a) f(x) � a constant v � k v � kx (used when 
C.F. contains a 
constant)
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Table 13.1 Continued

Type Straightforward 
cases
Try as particular 
integral:

‘Snag’ cases 
Try as particular 
integral:

(b)  f(x) � polynomial 
(i.e. f(x) � L �
             Mx � Nx2 � .. 
where any of the 
coefficients may 
be zero)

v � a � bx 
� cx2 � ..

(c)  f(x) � an exponential 
function
(i.e. f(x) � Aeax)

v � keax (i)  v � kxeax (used
when eax appears 
in the C.F.)

(ii)  v � kx2eax

(used when eax

and xeax both 
appear in the 
C.F.)

(d)  f(x) � a sine or 
cosine function 
(i.e. f(x) � a sin px 
� b cos px where a 
or b may be zero)

v � A sin px 
� B cos px

v � x(A sin px 
� B cos px) 

(used when sin px 
and/or cos px 
appears in the C.F.)

(e) f(x) � a sum e.g.
 (i) f(x)  �  4x2

�  3 sin 2x
 (ii) f(x)  �  2 �  x �  e3x

(i)  v � ax2 � bx 
           � c�d sin 2x 
          � e cos 2x
(ii) v � ax � b�ce3x

 (f)  f(x) � a product
e.g. f(x) � 2excos 2x

v � ex(A sin 2x 
� B cos 2x)

Application: In a galvanometer the deflection θ satisfies the 

differential equation d
4 4

2θ θ
θ

dt
d
dt

.
2

8� � �  Solve the equation

for θ given that when t � 0, θ
θ

� �
d
dt

2
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1.
d
dt

4
d
dt

2

2
4 8

θ θ
θ� � �  in D-operator form is: (D2 � 4D � 4)θ � 8

2. Auxiliary equation is:    m2 � 4m � 4 � 0
 i.e. (m � 2)(m � 2) � 0
 from which, m � �2 twice

3. Hence, C.F., u � (At � B)e�2t

4. Let the particular integral, P.I.,  v � k

5. Substituting v � k gives: (D2 � 4D � 4)k � 8

 D(k) � 0 and D2(k) � D(0) � 0

 Hence,   4k � 8 from which, k � 2

 Hence, P.I., v � 2

6. The general solution, θ � u � v � (At � B)e�2t � 2

7. t � 0 and θ � 2, hence,      2 � B � 2 from which, B � 0

d
dt

(At B)( e ) (e )(A)t tθ
� � � �� �2 2 2

 x � 0 and 
d
dt

,
θ

� 2  hence,   2 � �2B � A from which, A � 2

 Hence, θ � 2te�2t � 2

 i.e.        θ � 2(te�2t � 1)

Application: Solve 2 11 12 3 2
2

2

d y
dx

dy
dx

y x� � � �

1. 2 11 12 3 2
2

2

d y
dx

dy
dx

y x� � � �  in D-operator form is 

 (2D2 � 11D � 12)y � 3x � 2

2. Substituting m for D gives the auxiliary equation 
2m2 � 11m � 12 � 0

 Factorising gives: (2m � 3)(m � 4) � 0, from which, m �
3
2

or
m � 4

3. Since the roots are real and different, the C.F.,

u Ae Be
3
2

x 4x� �
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4. Since f(x) � 3x � 2 is a polynomial, let the P.I., v � ax � b (see 
Table 13.1(b))

5. Substituting v � ax � b into (2D2 � 11D � 12)v � 3x � 2 gives:

                                ( D D )(ax b) x 2,2 11 12 32 � � � �+

 i.e.    2D2(ax � b) � 11D(ax � b) � 12(ax � b) � 3x � 2

 i.e.                               0 � 11a � 12ax � 12b � 3x � 2

 Equating the coefficients of x gives: 12a � 3, from which, a �
1
4

Equating the constant terms gives: � 11a � 12b � �2

 i.e. � � � �11 b 2
1
4

12
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟  from which, 12 2

11
4

3
4

b � � � �

  i.e. b �
1

16

 Hence the P.I., v
1
4

x
1

16
� � �ax b �

6. The general solution is given by y � u � v

 i.e. y Ae Be
1
4

x
1

16

3
2

x 4x� � � �

Application: Solve 
d y
dx

dy
dx

y e x
2

2
42 3� � �  given that when 

x � 0, y � �
2
3

 and 
dy
dx

� 4
1
3

1.
d y
dx

dy
dx

y e x
2

2
42 3� � �  in D-operator form is

 (D2 � 2D � 1)y � 3e4x

2. Substituting m for D gives the auxiliary equation 
m2 � 2m � 1 � 0

 Factorising gives: (m � 1)(m � 1) � 0, from which, m � 1 twice

3. Since the roots are real and equal the C.F., u � (Ax � B)ex

4. Let the particular integral, v � ke4x (see Table 13.1(c))
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5. Substituting v � ke4x into (D2 � 2D � 1)v � 3e4x gives:

(D D )ke ex x2 4 42 1 3� � �

i.e. D (ke ) D(ke ) (ke ex x x x2 4 4 4 42 1 3� � �)

i.e.           16ke4x � 8ke4x � ke4x � 3e4x

Hence 9ke4x � 3e4x, from which, k �
1
3

Hence the P.I., v � ke4x �
1
3

e4x

6. The general solution is given by y � u � v, i.e.

y (Ax B)e
1
3

ex 4x� � �

7. When x � 0, y � �
2
3

 thus � � � �
2
3

0
1
3

0 0( B)e e ,  from 

 which, B � �1

dy
dx

(Ax B)e e (A) ex x x� � � �
4
3

4

When x � 0, dy
dx

,� 4
1
3

 thus 13
3

4
3

� � �B A  from 

which, A � 4, since B � �1

Hence the particular solution is: y (4x 1)e
1
3

ex 4x� � �

Application: L
d q
dt

R
dq
dt

1
C

q V sin wt
2

2 0� � �  represents the

variation of capacitor charge in an electric circuit. Determine 
an expression for q at time t seconds given that R � 40 Ω,
L � 0.02 H, C � 50 � 10 �6 F, V0 � 540.8 V and ω � 200 rad/s 
and given the boundary conditions that when t � 0, q � 0 and
dq
dt

4.8�
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L
d q
dt

R
dq
dt C

q V
2

2 0
1

� � � �sin t  in D-operator form is:

L D R D
C

q V t2
0

1
� � � �

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ sin

The auxiliary equation is: L m R m
C

2 1
0� � �

and

m
R R

L
C

L
�

� 
 �

�

� 
 �
�

�
� 


� �
�

2 2
6

4

2

40 40
4 0 02

50 10
2 0 02

40 0
0 04

100

( . )

( . ) .
00

Hence, C.F.,   u � (At � B)e�1000t

Let P.I., v � A sin ωt � B cos ωt

L D R D
C

[A B t] V t2
0

1
� � � � � � �

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ sin cos sint

D(v) � Aω cos ωt�Bω sin ωt and D2(v) � �Aω2 sin ωt � Bω2 cos ωt

Thus,

L D R D
C

2 1
� �

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟
v � 0.02(�Aω2 sin ωt � Bω2 cos ωt)

                                           � 40 (Aω cos ωt � Bω sin ωt) 

�
1

50 10 6� �
 (A sin ωt �B cos ωt) � V0 sin ωt

i.e. �800A sin 200t � 800B cos 200t � 8000A cos 200t 
 �8000B sin 200t � 20000A sin 200t �
 20000B cos 200t � 540.8 sin 200t

Hence,      �800A � 8000B � 20000A � 540.8

and              �800B � 8000A � 20000B � 0

i.e.                              19200 8000 540 8A B� � .  (1)

and                             8000 19200 0A B� �  (2)

8 � (1) gives:         153600 64000 4326 4A B� � .  (3)

19.2 � (2) gives:  153600 368640 0A B� �  (4)

(3)–(4) gives:                         �432640B � 4326.4
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from which, B � � �
4326 4
432640

0 01
.

.

Substituting in (1) gives: 19200A � 8000(�0.01) � 540.8

i.e.  19200A � 80 � 540.8

and A �
�

�
540 8 80

19200
460 8
19200

0 024
. .

.=

Hence, P.I., v � 0.024 sin 200t – 0.01 cos 200t

Thus, q � u � v � (At � B)e�1000t � 0.024 sin 200t � 0.01 cos  200t

When t � 0, q � 0, hence, 0 � B � 0.01 from which, B � 0.01

dq
dt

(At B) e Ae ( )( ) tt t� � � � �

    

� �1000 0 024 200 2001000 1000( ) . cos

                                                                                  � ( )( ) t0 01 200 200. sin

When t � 0, 
dq
dt

,� 4 8.  hence, 4.8 � �1000B � A � 4.8

i.e.  A � 1000B � 1000(0.01) � 10

Thus, q � (10t � 0.01)e�1000t � 0.024 sin 200t � 0.010 cos 200t

13.8 Numerical methods for first order 
differential equations

Euler’s method

y y h(y )1 0 0� � � (1)

Application: Obtain a numerical solution of the differential 

equation dy
dx

3(1 x) y� � �  given the initial conditions that 

x � 1 when y � 4, for the range x � 1.0 to x � 2.0 with intervals 
of 0.2.
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dy
dx

y ( x) y� � � � �3 1

With x0 � 1 and y0 � 4, (y�)0 � 3(1 � 1) � 4 � 2

By Euler’s method:  y1 � y0 � h(y�)0, from equation (1)

Hence                    y1 � 4 � (0.2)(2) � 4.4, since h � 0.2

At point Q in Figure 13.3, x1 � 1.2, y1 � 4.4

P

0

4

4.4
Q

y

y0

x0 � 1 x1 � 1.2

y1

x

h Figure 13.3

and  (y�)1 � 3(1 � x1) � y1

i.e. (y�)1 � 3(1 � 1.2) � 4.4 � 2.2

If the values of x, y and y� found for point Q are regarded as new 
starting values of x0, y0 and (y�)0, the above process can be repeated 
and values found for the point R shown in Figure 13.4.

P
Q

0 1.0

Ry

y0

x1 � 1.2 x1 � 1.4

y1

x

h Figure 13.4

Thus at point R,  y1 � y0 � h(y�)0 from equation (1)

� 4.4 � (0.2)(2.2) � 4.84



Differential Equations   387

When x1 � 1.4 and y1 � 4.84, (y�)1 � 3(1 � 1.4) � 4.84 � 2.36

This step by step Euler’s method can be continued and it is easiest to 
list the results in a table, as shown in Table 13.2. The results for lines 
1 to 3 have been produced above.

Table 13.2      

X0 y0 (y’)0

1. 1 4 2

2. 1.2 4.4 2.2

3. 1.4 4.84 2.36

4. 1.6 5.312 2.488

5. 1.8 5.8096 2.5904

6. 2.0 6.32768

For line 4, where x0 � 1.6:  y1 � y0 � h(y�)0

� 4.84 � (0.2)(2.36) � 5.312

and                         (y�)0 � 3(1 � 1.6) � 5.312 � 2.488

For line 5, where x0 � 1.8:  y1 � y0 � h(y�)0

� 5.312 � (0.2)(2.488) � 5.8096

and                     (y�)0 � 3(1 � 1.8) � 5.8096 � 2.5904

For line 6, where x0 � 2.0:  y1 � y0 � h (y�)0

� 5.8096 � (0.2)(2.5904) � 6.32768

(As the range is 1.0 to 2.0 there is no need to calculate (y�)0 in 
line 6)

The particular solution is given by the value of y against x.

A graph of the solution of 
dy
dx

( x) y� � �3 1  with initial conditions

x � 1 and y � 4 is shown in Figure 13.5.



388   Engineering Mathematics Pocket Book

In practice it is probably best to plot the graph as each calculation is 
made, which checks that there is a smooth progression and that no 
calculation errors have occurred.

y

x1.0
4.0

5.0

6.0

1.2 1.4 1.6 1.8 2.0 Figure 13.5

Euler-Cauchy method

y y h(y )P 0 01
� � � (2)

y y
1
2

h[ (y ) f(x , y ) ]c 0 0 1 P1 1
� � � � (3)

Application: Applying the Euler-Cauchy method, solve the 

differential equation dy
dx

y x� �  in the range 0(0.1)0.5, given

the initial conditions that at x � 0, y � 2

dy
dx

y y x� � � �

Since the initial conditions are x0 � 0 and y0 � 2 then 
(y�)0 � 2 � 0 � 2

Interval h � 0.1, hence x1 � x0 � h � 0 � 0.1 � 0.1

From equation (2), yP1
� y0 � h(y�)0 � 2 � (0.1)(2) � 2.2

From equation (3), y y h[(y ) f(x , y )]c P1 10 0 1
1
2

� � � �
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� � � � �

� � � �

y h[(y ) (y x )] in this case

( )[ ( )

P0 0 1
1
2

2
1
2

0 1 2 2 2 0 1

1

. . . ]] � 2.205

(y ) y xC� � � � � �1 11
2 205 0 1 2 105. . .

If a table of values is produced, as in Euler’s method, lines 1 and 2 
has so far been determined for Table 13.3.

Table 13.3      

       X y y’

1.  0 2 2

2.  0.1 2.205 2.105

3.  0.2 2.421025 2.221025

4.  0.3 2.649232625 2.349232625

5.  0.4 2.89090205 2.49090205

6.  0.5 3.147446765

The results in line 2 are now taken as x0, y0 and (y�)0 for the next 
interval and the process is repeated.

For line 3, x1 � 0.2

y y h(y ) ( )( )

y y h[(y ) f(

P

C

1

1

0 0

0 0

2 205 0 1 2 105 2 4155

1
2

� � � � � �

� � � �

. . . .

xx , y )]

( ) [ ( )]

(y )

P1 1

2 205
1
2

0 1 2 105 2 4155 0 2� � � � �

�

. . . . . 2.421025

00 Cy x 2.221025� � � � �
1 1 2 421025 0 2. .

For line 4, x1 � 0.3

y y h(y ) ( )( )

y y h

P

C

1

1

0 0

0

2 421025 0 1 2 221025 2 6431275

1
2

� � � � � �

� �

. . . .

[[(y ) f(x , y )]

( ) [ (2

P� �

� � � �

0 1 1

2 421025
1
2

0 1 2 221025 6431275. . . . 00 3

2 649232625 0 30 11

.

. .

)]

(y ) y x 2.349232625C

�

� � � � � �

2.649232625
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For line 5, x1 � 0.4

y y h(y ) ( )( )

y

P

C

1 0 0 2 649232625 0 1 2 349232625

2 884155887

� � � � �

�

. . .

.

11 10 0 1
1
2

2 649232625
1
2

0 1 2 3492326

� � � �

� �

y h[(y ) f(x , y )]

( ) [

P

. . . 225

884155887 0 4

2 890902050 11

� � �

� � � � �

(2 )]

(y ) y xc

. .

.

2.89090205

00 4. � 2.49090205

For line 6, x1 � 0.5

y y h(y ) ( )( )

y

P

C

1

1

0 0 2 89090205 0 1 2 49090205

3 139992255

� � � � �

�

�

. . .

.

yy h[(y ) f(x , y )]

( ) [

(

P0 0 1
1
2

2 89090205
1
2

0 1 2 49090205

1
� � �

� �

�

. . .

33 )]. .139992255 0 5� � 3.147446765

Runge-Kutta method

To solve the differential equation 
dy
dx

f (x, y)�  given the initial 

condition y � y0 at x � x0 for a range of values of x � x0(h)xn:

1. Identify x0, y0 and h, and values of x1, x2, x3, …

2. Evaluate k1 � f(xn, yn) starting with n � 0

3. Evaluate k f x
h

, y
h

kn n2 12 2
� � �

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

4. Evaluate k f x
h

, y
h

kn n3 22 2
� � �

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟
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Using the above procedure:

1. x0 � 0, y0 � 2 and since h � 0.1, and the range is from x � 0 to

x � 0.5, then

 x1 � 0.1, x2 � 0.2, x3 � 0.3, x4 � 0.4, and x5 � 0.5

Let n � 0 to determine y1:

2. k1 � f(x0, y0) � f(0, 2); since dy
dx

y x,� �  f(0, 2) � 2 � 0 � 2

3. k2 � f x
h

, y
h

k f , ( ) (0 0 12 2
0

0 1
2

2
0 1
2

2� � � � � �
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

. .
f 00.05, )2 1.

                                              � 2.1 � 0.05 � 2.05

4. k3 � f x
h

, y
h

k f , ( )0 0 22 2
0

0 1
2

2
0 1
2

2 05� � � � �
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

. .
.

                                                 � f(0.05, 2.1025)

                                                 � 2.1025 � 0.05 � 2.0525

5. k4 � f(x0 � h, y0 � hk3) � f(0 � 0.1, 2 � 0.1(2.0525)) 

                                                  � f(0.1, 2.20525)

                                            � 2.20525 � 0.1 � 2.10525

5. Evaluate k f x h, y hkn n4 3� � �( )

6. Use the values determined from steps 2 to 5 to evaluate:

y y
h

{k k k k }n n� � � � � �1 1 2 3 46
2 2

7. Repeat steps 2 to 6 for n � 1, 2, 3, …

Application: Use the Runge-Kutta method to solve the 

differential equation: dy
dx

y x� �  in the range 0(0.1)0.5, given

the initial conditions that at x � 0, y � 2
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6. yn�1� � � � �y
h

{k k k k }n 6
2 21 2 3 4  and when n � 0:

y1 � � � � �

� � � � �

y
h

{k k k k }

 { ( ) ( )

0 1 2 3 46
2 2

2
0 1
6

2 2 2 05 2 2 0525 2 1052
.

. . . 55

2
0 1
6

12 31025

}

{ }� � �
.

. 2.205171

A table of values may be constructed as shown in Table 13.4. The 
working has been shown for the first two rows.

Table 13.4       

n xn k1 k2 k3 k4 yn

0 0 2

1 0.1 2.0 2.05 2.0525 2.10525 2.205171

2 0.2 2.105171 2.160430 2.163193 2.221490 2.421403

3 0.3 2.221403 2.282473 2.285527 2.349956 2.649859

4 0.4 2.349859 2.417339 2.420726 2.491932 2.891824

5 0.5 2.491824 2.566415 2.570145 2.648838 3.148720

Let n � 1 to determine y2:

2. k1 � f(x1, y1) � f (0.1, 2.205171); since 
dy
dx

y x,� �

f (0.1, 2.205171) � 2.205171 � 0.1 � 2.105171

3. k f2 1 1 12 2

0 1
0 1
2

2 205171
0 1
2

2 10

� � �

� � �

x
h

, y
h

k

f , (

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

.
.

.
.

. 55171

0 15 2 31042955

)

f( )

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

� . , .

� 2.31042955 � 0.15 � 2.160430
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4. k3 1 1 22 2

0 1
0 1
2

2 205171
0 1
2

2

� � �

� �   �

f x
h

, y
h

k

f , (

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

.
.

.
.

.1160430)
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

 � f(0.15, 2.3131925) � 2.3131925 � 0.15 � 2.163193

5. k4 � f(x1 � h, y1 � hk3) � f(0.1 � 0.1, 2.205171 � 0.1(2.163193))

� f(0.2, 2.421490) � 2.421490 � 0.2

                                  � 2.221490

6. y y
h

{k k k k }n 1 n� � � � � �
6

2 21 2 3 4  and when n � 1:

y2 � � � � �

� � �

y
h

{k k k k }

{ ( )

1 1 2 3 46
2 2

2 205171
0 1
6

2 105171 2 2 160430.
.

. .

                                       ( )� �2 2 163193 2 221. . 4490

2 205171
0 1
6

12 973907

}

{ }� � �.
.

. 2.421403

This completes the third row of Table 13.4. In a similar manner 
y3, y4 and y5 can be calculated and the results are as shown in 
Table 13.4.

This problem is the same as the application on page 388 which used 
the Euler-Cauchy method, and a comparison of results can be made.

The differential equation 
dy
dx

y x� �  may be solved analytically

using the integrating factor method shown on page 373, with the 
solution: y � x � 1 � ex

Substituting values of x of 0, 0.1, 0.2, …., 0.5 will give the exact val-
ues. A comparison of the results obtained by Euler’s method (which 
is left to the reader to produce), the Euler-Cauchy method and the 
Runga-Kutta method, together with the exact values is shown in 
Table 13.5.
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13.9 Power series methods of solving ordinary 
differential equations

Leibniz’s theorem

To find the n’th derivative of a product y � uv:

y (uv) u v nu v
n(n 1)

2!
u v

n(n 1)(n

(n) (n) (n) (n 1) (1) (n 2) (2)� � � �
�

�
�

� �

��
��2)

3!
u v(n 3) (3) ... (4)

Application: Find the 5’th derivative of y � x4 sin x

If y � x4 sin x, then using Leibniz’s equation with u � sin x and 
v � x4 gives:

Table 13.5      

Euler’s 
method

Euler-Cauchy 
method

Runge-
Kutta
method Exact value

x y Y y y � x � 1 � ex

0 2 2 2 2

0.1 2.2 2.205 2.205171 2.205170918

0.2 2.41 2.421025 2.421403 2.421402758

0.3 2.631 2.649232625 2.649859 2.649858808

0.4 2.8641 2.89090205 2.891824 2.891824698

0.5 3.11051 3.147446765 3.148720 3.148721271

It is seen from Table 13.5 that the Runge-Kutta method is exact, 
correct to 5 decimal places.
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y x
n

x n x
(n )(n) � � � �

�
sin sin

π π
2

1
2

4
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

4

1
2

2
2

12

3

2

x

n(n )
!

x
(n )

x�
�

�
�

�

sin
π

nn(n )(n )
!

x
(n )

x

n(n )(n

� �
�

�

�
� �

1 2
3

3
2

24

1

sin
π⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

22 3
4

4
2

)(n )
!

x
(n )

24
�

�
�

sin
π⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

and

y x x x (x )
( )( )

( x ) x( )5 4 3 25
2

20 2
5 4

2
12� � � � �sin sin sin

π
π

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ��

3
2
π⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

� � �
( )( )( )

( )( )
( x) (x )

( )( )( )( )
( )( )( )

( )
5 4 3

3 2
24

5 4 3 2
4 3 2

24sin sinπ xx �
π
2

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

Since sin sin cosx x x,�  �
5
2 2
π

≡ 
π

≡
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟  sin(x � 2π)� sin x, 

sin cosx x,� �
3
2
π

≡
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

and sin (x � π) � �sin x,

then y(5) � x4 cos x � 20x3 sin x � 120x2 (�cos x)

� 240x (�sin x) � 120 cos x
i.e. y(5) � (x4 � 120x2 � 120) cos x �(20x3 � 240x) sin x

Leibniz-Maclaurin method

  (i) Differentiate the given equation n times, using the Leibniz 
theorem of equation (4),

 (ii) rearrange the result to obtain the recurrence relation at x � 0,

(iii) determine the values of the derivatives at x � 0, i.e. find (y)0
and (y�)0,
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Following the above procedure:

 (i) The differential equation is rewritten as: y� � xy� � 2y � 0 and 
from the Leibniz theorem of equation (4), each term is differenti-
ated n times, which gives:

y y (x) n y ( ) y(n ) (n ) (n) (n)� �� � � � �2 1 1 0 2 0{ }
i.e.          y x y (n ) y(n ) (n ) (n)� �� � � �2 1 2 0  (5)

 (ii) At x � 0, equation (5) becomes:

y (n ) y(n ) (n)� � �2 2 0+

from which,          y (n ) y(n ) (n)� � � �2 2

This equation is called a recurrence relation or recurrence for-
mula, because each recurring term depends on a previous term.

(iii) Substituting n � 0, 1, 2, 3, … will produce a set of relationships 
between the various coefficients. For 

n � 0,      (y ) (y)� � �0 02

n � 1,   (y ) (y )� � � �0 03

n � 2, (y ) (y ) (y) (y)( )4
0 0 0 04 4 2 2 4� � � � � � � �{ }

n � 3, (y ) (y ) (y ) (y )( )5
0 0 0 05 5 3 3 5� � � � � � � � � �{ }

n � 4, (y ) (y ) (y) (y)( ) ( )6
0

4
0 0 06 6 2 4 2 4 6� � � � � � � � �{ }

n � 5, (y ) (y ) (y ) (y )( ) ( )7
0

5
0 0 07 7 3 5 3 5 7� � � � � � � � � � �{ }

Application: Determine the power series solution of the 

differential equation: d y
dx

x
dy
dx

y
2

2
2 0� � �  using Leibniz-

Maclaurin’s method, given the boundary conditions x � 0, y � 1

and dy
dx

� 2

(iv) substitute in the Maclaurin expansion for y � f(x) (see page 
54, equation (5)),

 (v) simplify the result where possible and apply boundary condi-
tion (if given).
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n � 6, (y ) (y )( ) ( )8
0

6
0 0

8 8 2 4 6� � � � � � �

                          

y( ){ }
                                     � � � �2 4 6 8 0(y)

(iv) Maclaurin’s theorem from page 54 may be written as:

y (y) x (y )
x
!

(y )
x
!

(y )
x

!
(y ) ....0

( )� � � � � � � � �0

2

0

3

0

4
4

02 3 4

Substituting the above values into Maclaurin’s theorem gives:

y (y) x (y )
x
!

(y)
x
!

(y )

x
!

(y)

� � � � � � � �

       � �

0 0

2

0

3

0

4

2
2

3
3

4
2 4

{ } { }

00

5

0

6

0

7

5
3 5

6
2 4 6

7
3 5 7

{ } { } { }� � � � � � �

       � � � � �

x
!

(y )
x
!

(y)

x
!

(y )00
8

08
2 4 6 8{ } { }� � � �

x
!

(y)

(v) Collecting similar terms together gives:

y (y)
x
!

x
!

x
!

x
!

...� � �
�

�
� �

�
� � �

�0

2 4 6 8
1

2
2

2 4
4

2 4 6
6

2 4 6 8
8

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎭⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

� � � �
�

�
� �

�(y ) x
x
!

x
!

x
!

...0

3 5 73
3

3 5
5

3 5 7
7

i.e. y (y)
x x x x

...

(y )
x

� � �
�

�
�

�
� �

�

� � �

0

2 4 6 8

0

1
1 1 3 3 5 3 5 7

1

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

xx x
4

x
...

3 5 7

1 2 2 2 4 6�
�

�
�

� �
�

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

The boundary conditions are that at x � 0, y � 1 and 
dy
dx

2� ,
i.e. (y)0 1�  and (y )� �0 2 .

Hence, the power series solution of the differential equation:
d y
dx

x
dy
dx

y
2

2
2 0� � �  is:

y 1
x
1

x
1 3

x
3 5

x
3 5 7

...

2
x
1

x
1 2

x

2 4 6 8

3 5

� � �
�

�
�

�
� �

�

� �
�

�

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

22 4
x

2 4 6
...

7

�
�

� �
�

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪
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The differential equation may be rewritten as: 3xy� � y� � y � 0

 (i) Let a trial solution be of the form

y x {a a x a x a x ... a x ...}c
r

r� � � � � � �0 1 2
2

3
3  (6)

where a0 � 0,

i.e. y a x a x a x a x ... a x ...c c c c
r

c r� � � � � � �� � � �
0 1

1
2

2
3

3  (7)

(ii) Differentiating equation (7) gives:

y a cx a (c )x a (c )x ....

a (c r)x ...
0

c c c

r
c r

� � � � � � �

� � �

� �

� �

1
1 2

1

1

1 2

and

y a c(c )x a c(c )x a (c )(c )x ....

a (c r )

c c c

r

� � � � � � � � �

� � �

� �
0

2
1

1
21 1 1 2

1 ((c r)x ...c r� �� �2

Frobenius method

A differential equation of the form y″ � Py� � Qy � 0, where 
P and Q are both functions of x, can be represented by a power 
series as follows:

 (i) Assume a trial solution of the form

y � xc{a0 � a1x � a2x2 � a3x3 � … � arxr � …}

 (ii) differentiate the trial series,

(iii) substitute the results in the given differential equation,

(iv) equate coefficients of corresponding powers of the variable 
on each side of the equation; this enables index c and coeffi-
cients a1, a2, a3, … from the trial solution, to be determined.

Application: Determine, using the Frobenius method, the 
general power series solution of the differential equation: 

3x
d y
dx

dy
dx

y 0
2

2
� � �
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(iii) Substituting y, y� and y� into each term of the given equation 
3xy� � y� � y � 0 gives:

3xy� � 3a0c(c – 1)xc�1 � 3a1c(c � 1)xc � 3a2(c � 1)(c � 2)xc�1

� … � � � � �� �3 1 1a (c r )(c r)x ...
r

c r  (a)

y a cx a (c )x a (c )x ....

a (c r)x

c c c

r
c r

� � � � � � �

        � �

� �

� �

0
1

1 2
11 2

11 � ... (b)

� � � � � � � � �� � �y a x a x a x a x ... a x ...c c c c
r

c r
0 1

1
2

2
3

3 + (c)

(iv) The sum of these three terms forms the left-hand side of the 
equation. Since the right-hand side is zero, the coefficients of 
each power of x can be equated to zero.

For example, the coefficient of xc�1 is equated to zero giving:

                             3a0c(c – 1) � a0c � 0

or a c [ c ]0 3 3 1� � � a c(3c 2) 00 � � (8)

The coefficient of xc is equated to zero giving:

                                      3a1c(c � 1) � a1(c � 1) � a0 � 0

i.e. a ( c c c ) a a ( c c ) a1
2

0 1
2

03 3 1 3 4 1 0� � � � � � � � �

or                                         a (3c 1)(c 1) a 01 0� � � �  (9)

In each of series (a), (b) and (c) an xc term is involved, after which, 
a general relationship can be obtained for xc�r, where r � 0.

In series (a) and (b), terms in xc�r�1 are present; replacing r by 
(r � 1) will give the corresponding terms in xc�r, which occurs in 
all three equations, i.e.

in series (a),    3ar�1(c � r)(c � r�1)xc�r

in series (b),    ar�1(c � r�1)xc�r

in series (c), �arxc�r

Equating the total coefficients of xc�r to zero gives:

3 1 01 1a (c r)(c r 1) a (c r ) ar r r� �� � � � � � � �

which simplifies to:
a {(c r 1)(3c 3r 1)} a 0r 1 r� � � � � � �  (10)
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Equation (8), which was formed from the coefficients of the 
lowest power of x, i.e. xc�1, is called the indicial equation,
from which the value of c is obtained. From equation (8), since 
a0 � 0, then

c � 0 or c
2
3

�

(a) When c � 0:

From equation (9), if c � 0, a1(1 � 1) � a0 � 0, i.e. a1 � a0

From equation (10), if c � 0, ar�1(r � 1)(3r � 1) � ar � 0, 

i.e. a
a

(r 1)(3r 1)r 1
r

� �
� �

r 0�

Thus,

when r � 1, a
a

( )
a

( )2
1 0

2 4 2 4
�

�
�

�
 since a1 � a0

when r � 2, a
a

( )
a

( )( )3
2 0

3 7 2 4 3 7
�

�
�

� �
 or 

a
( )( )

0

2 3 4 7� �

when r � 3, a
a

( )
a

( )( )4
3 0

4 10 2 3 4 4 7 10
�

�
�

� � � �
and so on.

From equation (6), the trial solution was:

y x {a a x a x a x ... a x ...}c
r� � � � � � �0 1 2

2
3

3 r

Substituting c � 0 and the above values of a1, a2, a3, … into the 
trial solution gives:

y x

a a x
a

( )
x

a
( )( )

x

�

� �
�

�
� �

0

0 0
0 2 0

2 4 2 3 4 7

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

33

0 4

2 3 4 4 7 10
 �

� � � �

a
( )( )

x ...
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ +

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪

i.e. y a

x
x

( )
x

( )( )

x
( )( )

...

�

� �
�

�
� �

�
� � � �

�

0

2 3

4

1
2 4 2 3 4 7

2 3 4 4 7 10

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩⎩

⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

 (11)
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(b) When c
2
3

� :

From equation (9), if c , a ( ) a� � �
2
3

3
5
3

01 0
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ , i.e. a

a
51
0�

From equation (10), 

 if c , a r ( r ) ar r� � � � � � ��

2
3

2
3

1 2 3 1 01
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ,

i.e. a r ( r ) a a ( r r ) a 0,r r r r� �� � � � � � � �1 1
25

3
3 3 3 8 5

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

i.e. a
a

(r 1)(3r 5)r 1
r

� �
� �

r 0�

Thus, when r � 1, a
a

( )
a

( )2
1 0

2 8 2 5 8
�

�
�

� �
 since a

a
1

0

5
�

         when r � 2, a
a

( )
a

( )( )3
2 0

3 11 2 3 5 8 11
�

�
�

� � �

          when r � 3, a
a

( )
a

( )( )4
3 0

4 14 2 3 4 5 8 11 14
�

�
�

� � � � �

and so on.
From equation (6), the trial solution was:

y x {a a x a x a x ... a x ...}r
r� � � � � � �c

0 1 2
2

3
3

Substituting c �
2
3

 and the above values of a1, a2, a3, … into 

the trial solution gives:

y x

a
a

x
a

x
a

( 3)(
�

� �
� �

�
� � �2

3

0
0 0 2 0

5 2 5 8 2 5 8 1

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ 11

2 3 4 5 8 11 14

3

0 4

)
x

a
( )( )

x ...

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎧

⎨

�
� � � � �

�

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

i.e.

y a x

x x
( )

x
( )( )

x
( )( )

�

� �
� �

�
� � �

�
� � � � �

0

2
3

2 3

4

1
5 2 5 8 2 3 5 8 11

2 3 4 5 8 11 14
��...

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

 (12)
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Since a0 is an arbitrary (non-zero) constant in each solution, its 
value could well be different.

Let a0 � A in equation (11), and a0 � B in equation (12). Also, 
if the first solution is denoted by u(x) and the second by v(x), 
then the general solution of the given differential equation is 
y � u(x) � v(x). Hence,

y A

1 x
x

(2 4)
x

(2 3)(4 7)

x
(2 3 4)(4 7 10)

2 3

4
�

� �
�

�
� �

�
� � � �

� ...

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

�

� �
� �

�
� � �

�
� � � � �

�

Bx

1
x
5

x
(2 5 8)

x
(2 3)(5 8 11)

x
(2 3 4)(5 8 11 14)

2
3

2 3

4
....

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

Bessel’s equation

The solution of x
d y
dx

x
dy
dx

(x v )y2
2

2
2 2 0� � � �

is: y Ax

x
(v )

x
!(v )(v )

x
!(v )(v )(v )

v�

�
�

�
� � �

�
� � � �

�

1
2 1 2 2 1 2

2 3 1 2 3

2

2

4

4

6

6
....

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

�

�
�

�
� � �

�
� � � �

�

�Bx

x
(v )

x
!(v )(v )

x
!(v )(v )(v )

v

1
2 1 2 2 1 2

2 3 1 2 3

2

2

4

4

6

6
....

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

or, in terms of Bessel functions and gamma functions:

y A J (x) BJ (x)v v� � �
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   �
�

�
�

�
�

�A
x

(v )
x

( !) (v
x

( !) (v )
.

v

2
1

1 2 1 2 2 2 4

2

2

4

4

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ Γ Γ Γ)

...

B
x

( v)
x

( !)

v

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟      �

�
�

�

2
1

1 2 1

2

2Γ Γ(( v)
x

( !) ( v)
...

2 2 2 3

4

4�
�

�
�

Γ

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

In general terms: J (x)
x ( ) x

(k!) (v k )v

v k k

k
k

�
�

� ��2
1

2 1

2

2
0

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ∑ Γ

�

and              J (x)
x ( ) x

(k!) (k v )v

v k k

k
k

�

�

�

�
�

� �2
1

2 1

2

2
0

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ∑ Γ

�

and in particular:

J (x)
x

n! (n )!
x

( !)(n )!
x

n

n

� �
�

�
�2

1 1
1 2

1
2 2

2⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ 22

4⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

� ...

J (x)
x
( !)

x
( )

x
( !)

...
0

2

2 2

4

4 2

6

6 2
1

2 1 2 2 2 3
� � �

!
− +

and J (x)
x x

( !)( !)
x

( !)( !)
x

( !)( !)
...

1

3

3

5

5

7

72 2 1 2 2 2 3 2 3 4
� � � � +

Legendre’s equation

The solution of ( x )
d y
dx

x
dy
dx

k(k )y1 2 1 02
2

2
� � � � �

is: y a
k(k )

!
x

k(k )(k )(k )
!

x ...� �
�

�
� � �

�0
2 41

1
2

1 2 3
4

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

�

�
� �

�
� � � �

�

a
x

(k )(k )
!

x

(k )(k )(k )(k )
!

x ...
1

3

5

1 2
3
1 3 2 4

5

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪

 (13)
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 Legendre’s polynomials         

Rodrigue’s formula

P (x)
1

2 n!
d (x 1)

dxn n

n 2 n

n
�

�

Application: Determine the Legendre polynomial P3(x) using 
Rodrigue’s formula

In Rodrigue’s formula, P (x)
n!

d (x )
n n

n n
�

�1
2

12

dxn  and when n � 3,

P (x)
!

d (x )
dx ( )

d (x )(x x )
dx

( )(

3 3

3 2 3

3 3

3 2 4 2

3

1
2 3

1 1
2 6

1 2 1

1
8 6

�
�

�
� � �

�
))

d (x x x )
dx

3 6 4 2

3

3 3 1� � �

d(x x x )
dx

x x x
6 4 2

5 33 3 1
6 12 6

� � �
� � �

  Application:  Determine the Legendre polynomial P 3 (x)       

Since in P3(x), n � k � 3, then from the second part of equation 
(13), i.e. the odd powers of x:

y a x
(k )(k )

!
x

(k )(k )(k )(k )
!

x ...� �
� �

�
� � � �

�1
3 51 2

3
1 3 2 4

5

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪⎪
⎭⎪⎪

i.e. y a x
( )( )

!
x

( )( )( )( )
!

x a x x� � � � � �1
3 5

1
32 5

3
2 0 5 7

5
5
3

0
⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

a1 is chosen to make y � 1 when x � 1.

i.e. 1 1
5
3

2
31 1� � � �a a

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟  from which, a1

3
2

� �

Hence, P (x) x x3
33

2
5
3

� � �
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟  or P (x)

1
2

(5x 3x)3
3� �
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d( x x x)
dx

x x
6 12 6

30 36 6
5 3

4 2� �
� � �

and
d( x x )

dx
x x

30 36 6
120 72

4 2
3� �

� �

Hence, P (x)
( )( )

d (x x x )
dx

( )( )
( x x) ( x

3

3 6 4 2

3

3

1
8 6

3 3 1

1
8 6

120 72
1
8

20

�
� � �

� � � 33 12� x)

i.e.         P (x)
1
2

(5x 3x)3
3� � the same as in the previous 

 application.

13.10 Solution of partial differential equations

By direct partial integration

Application: Solve the differential equation ∂
∂

2

2
26 2 1

u
x

x ( y )� �

given the boundary conditions that at x � 0, 
∂
∂

u
x

y� sin 2  and 
u � cos y

Since
∂
∂

2

2
26 1

u
x

x (2y )� �  then integrating partially with respect to x 

gives:

∂
∂

u
x

x ( y ) dx ( y ) x dx ( y )
x

f(y)

x ( y ) f

� � � � � � �

� � �

6 2 1 2 1 6 2 1
6
3

2 2 1

2 2
3

3

∫ ∫
((y)

where f(y) is an arbitrary function.

From the boundary conditions, when x � 0, ∂
∂

u
x

y� sin 2

Hence, sin 2 2 0 2 13y ( ) ( y ) f(y)� � �  from which, f(y) y� sin 2
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Now
∂
∂

u
x

x ( y ) y� � �2 2 1 23 sin

Integrating partially with respect to x gives:

u [ x ( y ) y] dx
x

( y ) x( y) F(y)� � � � � � �2 2 1 2
2
4

2 1 23
4

sin sin∫
From the boundary conditions, when x � 0, u � cos y, hence

cos siny � � � �
( )

( y ) ( ) y F(y)
0
2

2 1 0 2
4

from which, F(y) � cos y

Hence, the solution of ∂
∂

2

2
26 2 1

u
x

x ( y )� �  for the given boundary
conditions is:

u
x
2

(2y 1) x sin y cos y
4

� � � �

The wave equation

The wave equation is given by: 
∂
∂

∂
∂

2

2 2

2

2

u
x

1
c

u
t

�

where c
T2 �
�

, with T being the tension in a string and ρ being 

the mass /unit length of the string.

Summary of solution of the wave equation

1. Identify clearly the initial and boundary conditions.

2. Assume a solution of the form u � XT and express the equa-
tions in terms of X and T and their derivatives.

3. Separate the variables by transposing the equation and equate 
each side to a constant, say, μ; two separate equations are 
obtained, one in x and the other in t.

4. Let μ � �p2 to give an oscillatory solution.
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5. The two solutions are of the form: X � A cos px � B sin px
 and T � C cos cpt � D sin cpt
 Then u(x, t) � {A cos px � B sin px}{C cos cpt � D sin cpt}

6. Apply the boundary conditions to determine constants A and B.

7. Determine the general solution as an infinite sum.

8. Apply the remaining initial and boundary conditions and deter-
mine the coefficients An and Bn from equations (14) and (15) 
below:

A
2
L

f(x) sin
n x

L
dxn

0

L
�

π
∫ for n 1, 2, 3, ...� (14)

B
2

cn
g(x) sin

n x
L

dxn �
π

π
0

L

∫  (15)

Application: Figure 13.6 shows a stretched string of length 
50 cm which is set oscillating by displacing its mid-point a dis-
tance of 2 cm from its rest position and releasing it with zero 

velocity. Solve the wave equation: ∂
∂

∂
∂

2

2 2

2

2

1u
x c

u
t

�  where c2 � 1,

to determine the resulting motion u(x, t).

250

2

4

50 x (cm)

u � f (x)u 
(x

,0
)

Figure 13.6

Following the above procedure:

1. The boundary and initial conditions given are:

 u( , t)

u( , t)
i.e. fixed end points

0 0

50 0

�

�

⎫
⎬
⎪⎪

⎭⎪⎪
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u(x, ) x  0 0 25� � �f(x)
2

25
x�

� � � � � �
2

25
4 50x x

100 2x
25
�

25

(Note: y � mx � c is a straight line graph, so the gradient, m,
between 0 and 25 is 2/25 and the y-axis intercept is zero, thus

y f(x) x� � �
2

25
0; between 25 and 50, the gradient � �2/25

and the y-axis intercept is at 4, thus f(x) x� � �
2

25
4 ).

∂
∂
u
t

 i.e. zero initial velocity
t

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

�

�
0

0

2. Assuming a solution u � XT, where X is a function of x only, and 
T is a function of t only,

then ∂
∂

u
x

X T� �  and 
∂
∂

2

2

u
x

X T� �  and 
∂
∂

u
y

XT� �  and

∂
∂

2

2

u
y

XT� �

Substituting into the partial differential equation,

∂
∂

∂
∂

2

2 2

2

2

1u
x c

u
t

�

gives: X T
c

XT� ��
1
2  i.e. X �T � XT� since c2 � 1

3. Separating the variables gives: 
X
X

T
T

�
�

�

Let constant, � �
�

�
�X

X
T
T

 then � �
�X

X
 and � �

�T
T

from which, X� � μX � 0 and T� � μ T � 0
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4. Letting μ � �p2 to give an oscillatory solution gives

X� � p2X � 0 and T � � p2 T � 0

The auxiliary equation for each is: m2 � p2 � 0 from which,

m p jp� � � 
2

5. Solving each equation gives: X � A cos px � B sin px and 
T � C cos pt � D sin pt

Thus, u(x, t) � {A cos px � B sin px} {C cos pt � D sin pt}

6. Applying the boundary conditions to determine constants A and 
B gives:

  (i)  u(0, t) � 0, hence 0 � A{C cos pt � D sin pt} from which we 
conclude that A � 0

Therefore, u(x, t) B px {C pt D pt}� �sin cos sin  (a)

 (ii) u(50, t) � 0, hence 0 � B sin 50p{C cos pt � D sin pt}

B � 0 hence sin 50p � 0 from which, 50p � n�

 and p
n

�
�

50

7. Substituting in equation (a) gives:

u(x, t) B
n x

C
n t

D
n t

�
� �

�
�

sin cos sin
50 50 50

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

or, more generally,

u (x, t)
n x

A
n t

B
n t

n n n
n

�
� �

�
�

�

�

sin cos sin
50 50 501

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

∑  (b)

where An � BC and Bn � BD

8. From equation (14),

A
L

f(x)
n x

L
dxn

L
�

�2
0

sin∫

�
�

�
� �2

50
2

25 50
100 2

25 50
x

n x
dx

x n x
d

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟sin sin xx

25

50

0

25

∫∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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Each integral is determined using integration by parts (see 
chapter 12, page 323) with the result:

An �
�

�16
22 2n

n
sin

From equation (15), B
cn

g(x)
n x

L
dxn

L
�

�

�2
0

sin∫

∂
∂
u
t

g(x) thus, B
t

n
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

�

� � �
0

0 0

Substituting into equation (b) gives:

         
u (x,t)

n x
A

n t
B

n t
n n n

n

�
� �

�
�

�

�

sin cos sin
50 50 501

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

∑

                    
�

�

�

� �
�

�

�

sin sin cos sin
n x

n
n n t

( )
n t

n 50
16

2 50
0

502 2
1

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

��

∑

Hence,

        u(x, t)
16 1

n
sin

n x
50

sin
n
2

cos
n t
502 2

n 1

�
�

� � �

�

∞

∑

For stretched string problems as above, the main parts of the 
procedure are:

1. Determine An from equation (14).

Note that
2

0L
f(x)

n x
L

dx
L

sin
�

∫

is always equal to 8
22 2

d
n

n
�

�
sin  (see Figure 13.7)

y

y � f (x)
d

LL
2

0 Figure 13.7
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The heat conduction equation

2. Determine Bn from equation (15)

3. Substitute in equation (b) to determine u(x, t)

The heat conduction equation is of the form: ∂
∂

∂
∂

2

2 2

u
x

1
c

u
t

�

where c
h2 �

��
, with h being the thermal conductivity of the 

material, σ the specific heat of the material, and ρ the mass/unit 
length of material.

Application: A metal bar, insulated along its sides, is 1 m long. 
It is initially at room temperature of 15°C and at time t � 0, the 
ends are placed into ice at 0°C. Find an expression for the tem-
perature at a point P at a distance x m from one end at any time 
t seconds after t � 0

The temperature u along the length of bar is shown in Figure 13.8

0 1 x(m)

u
(x

, 0
)

15

0 1 x(m)

u
(x

, t
)

u (x, t )

x

P

Figure 13.8
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The heat conduction equation is 
∂
∂

∂
∂

2

2 2

1u
x c

u
t

�  and the given

boundary conditions are:

u(0, t) � 0, u(1, t) � 0 and u(x, 0) � 15

Assuming a solution of the form u � XT, then it may be shown that

              X � A cos px � B sin px

and T ke p c t� � 2 2

Thus, the general solution is given by:

u(x, t) � {P cos px � Q sin px} e p c t� 2 2

u(0, t) � 0 thus 0 � P e p c t� 2 2
 from which, P � 0 

and    u(x, t) � {Q sin px} e p c t� 2 2

Also, u(1, t) � 0 thus 0 � {Q sin p} e p c t� 2 2

Since Q � 0, sin p � 0 from which, p � nπ    where  n � 1, 2, 3, …

Hence, u(x, t) Q e n xn
p c t

n

� ��

�

�
2 2

1

sin{ }∑

The final initial condition given was that at t � 0, u � 15, 

i.e. u(x, 0) � f(x) � 15

Hence, 15
1

� �
�

�

Q n xn
n

sin{ }∑

where, from Fourier coefficients, Qn � 2 � mean value of 15 sin nπx
from x � 0 to x � 1,

i.e. Q n x dx
n x

n

n
n

n � � � �
�

�

� �
�

� �

2
1

15 30

30
0

0

1

0

1

sin
cos

cos cos

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

[ ] ��
�

� �
30

1
n

( n )cos

                � 0 (when n is even) and 
60
n�

 (when n is odd)



Differential Equations   413

Hence, the required solution is:

u(x, t) � ��

�

�

Q e n xn
p c t

n

2 2

1

sin{ }∑

                         
�

60 1
n

(sin n x)e
n(odd) 1

n c t2 2 2

�
�

�

�
� �∑

Laplace’s equation

Laplace’s equation, used extensively with electrostatic fields, is 
of the form:

∂
∂

∂
∂

∂
∂

2

2

2

2

2

2

u
x

u
y

u
z

0� � �

Application: A square plate is bounded by the lines 
x � 0, y � 0, x � 1 and y � 1. Apply the Laplace equation
∂
∂

∂
∂

2

2

2

2
0

u
x

u
y

� �  to determine the potential distribution u(x, y)

over the plate, subject to the following boundary conditions: 

u � 0    when x � 0  0 � y � 1,

u � 0    when x � 1  0 � y � 1,

u � 0    when y � 0  0 � x � 1,

u � 4    when y � 1  0 � x � 1

Initially a solution of the form u(x, y) � X(x)Y(y) is assumed, where 
X is a function of x only, and Y is a function of y only. Simplifying 
to u � XY, determining partial derivatives, and substituting into

∂
∂

∂
∂

2

2

2

2
0

u
x

u
y

� �  gives:               X�Y � XY� � 0

Separating the variables gives:              X
X

Y
Y

�
� �

�
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Letting each side equal a constant, �p2, gives the two equations:

X� � p2X � 0 and Y� � p2Y � 0

from which, X � A cos px � B sin px

and Y � Cepy � De � py or Y � C cosh py � D sinh py or 
 Y � E sinh p(y � φ)

Hence u(x, y) � XY � {A cos px � B sin px}  {E sinh p(y � φ)}

or        u(x, y) � {P cos px � Q sin px}  {sinh p(y � φ)}
 where P � AE and Q � BE

The first boundary condition is: u(0, y) � 0, 

hence 0 � P sinh p(y � φ)

from which, P � 0

Hence,  u(x, y) � Q sin px sinh p(y � φ)

The second boundary condition is: u(1, y) � 0, 

hence 0 � Q sin p(1) sinh p(y � φ)

from which, sin p � 0, 

hence, p � nπ   for n � 1, 2, 3, …

The third boundary condition is: u(x, 0) � 0,  

hence,  0 � Q sin px sinh p(φ)

from which, sinh p(φ) � 0 and φ � 0

Hence, u(x, y) � Q sin px sinh py

Since there are many solutions for integer values of n,

u(x, y) Q px py Q n x n yn
n

n
n

� � � �
�

�

�

�

sin sinh sin sinh
1 1

∑ ∑ (a)

The fourth boundary condition is: u(x, 1) � 4�f (x),  

hence, f (x) Q n x n ( )n
n

� � �
�

�

sin sinh 1
1

∑
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From Fourier series coefficients,

Q n the mean value of f(x) x from x  to xnsinh sin� � � � � �2 0 1n

i.e.            � � � �
�

�

� �
�

� � �
�

2
1

4 8

8
0

8

0

1

0

1

sin
cos

cos cos

n x dx
n x

n

n
( n )

n
(

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

11� �cos n )

          � 0 (for even values of n), �
�

16
n

 (for odd values of n)

Hence, Q
n ( n ) n

cosech nn � �
16 16

π π π
π

sinh

Hence, from equation (a), 

          u(x, y) �
�

Q sin n x sinh n yn
n 1

π π
∞

∑

�
16 1

n
(cosech n sin n x sinh n y)

n odd) 1�
� � �

�

�

( )
∑
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This data is represented as a pictogram as shown in  Figure 14.1    where 

each symbol represents two television sets repaired. Thus, in January, 

5
1
2

    symbols are used to represent the 11 sets repaired, in February, 

3 symbols are used to represent the 6 sets repaired, and so on.       

  Ungrouped data can be presented diagrammatically  by: 

  (a)    pictograms, in which pictorial symbols are used to represent 
quantities,  

  (b)    horizontal bar charts, having data represented by equally 
spaced horizontal rectangles,  

  (c)    vertical bar charts, in which data are represented by equally 
spaced vertical rectangles,  

  (d)    percentage component bar chart, where rectangles are 
subdivided into values corresponding to the percentage rela-
tive frequencies of the members, and  

  (e)    pie diagrams, where the area of a circle represents the whole, 
and the areas of the sectors of the circle are made proportional 
to the parts that make up the whole.                

  14.1     Presentation of ungrouped data         

  Application: The number of television sets repaired in a work-
shop by a technician in six, one-month periods is as shown 
below.

                    Month January February March   April May June  

  Number repaired 11 6 15 9 13 8       

 Present the data in a pictogram       
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To represent these data diagrammatically by a horizontal bar chart, 
equally spaced horizontal rectangles of any width, but whose length 
is proportional to the distance travelled, are used. Thus, the length of 
the rectangle for salesman P is proportional to 413 miles, and so on. 
The horizontal bar chart depicting these data is shown in  Figure 14.2   .       

Number of TV sets repairedMonth

January

February

March

April

May

June

2 sets

 Figure 14.1           
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400 500 600

S
al

es
m

en

S
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Q

P

 Figure 14.2           

  Application: The distance in miles travelled by four salesmen in 
a week are as shown below.

                Salesmen                              P         Q          R          S  

  Distance travelled (miles)     413 264 597 143       

 Represent the data by a horizontal bar chart       

  Application: The number of issues of tools or materials from a 
store in a factory is observed for seven, one-hour periods in a day, 
and the results of the survey are as follows:

                      Period                        1        2      3      4        5        6      7  

  Number of issues 34 17 9 5 27 13 6       

 Represent the data by a vertical bar chart       
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In a vertical bar chart, equally spaced vertical rectangles of any width, 
but whose height is proportional to the quantity being represented, 
are used. Thus the height of the rectangle for period 1 is propor-
tional to 34 units, and so on. The vertical bar chart depicting these 
data is shown in  Figure 14.3   .       

40
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 Figure 14.3           

To draw a percentage component bar chart to present these data, a 

table of percentage relative frequency values, correct to the nearest 

1%, is the first requirement. Since, percentage relative frequency  � 

frequency of member
total frequency

� 100
     then for 4-roomed bungalows in 

year 1: 

percentage relative frequency %�
�

� � � �
�

24 100
24 38 44 64 30

12
   

  Application: The numbers of various types of dwellings sold by a 
company annually over a three-year period are as shown below.

               Year 1 Year 2 Year 3   

   4-roomed bungalows 24 17   7 
  5-roomed bungalows 38 71 118  
  4-roomed houses 44 50  53 
  5-roomed houses 64 82 147  
  6-roomed houses 30 30  25       

Draw a percentage component bar chart to represent the above 
data       
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   The percentage relative frequencies of the other types of dwellings 
for each of the three years are similarly calculated and the results are 
as shown in the table below.

                 Year 1 Year 2 Year 3   

   4-roomed bungalows 12%  7%  2% 
  5-roomed bungalows 19% 28% 34%  
  4-roomed houses 22% 20% 15%  
  5-roomed houses 32% 33% 42%  
  6-roomed houses 15% 12%  7%       

The percentage component bar chart is produced by constructing 
three equally spaced rectangles of any width, corresponding to the 
three years. The heights of the rectangles correspond to 100% rela-
tive frequency, and are subdivided into the values in the table of per-
centages shown above. A key is used (different types of shading or 
different colour schemes) to indicate corresponding percentage val-
ues in the rows of the table of percentages. The percentage compo-
nent bar chart is shown in  Figure 14.4   .       
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 Figure 14.4           

  Application: The retail price of a product costing £2 is made up 
as follows: materials 10p, labour 20p, research and development 
40p, overheads 70p, profit 60      p.

 Present this data on a pie diagram       
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To present these data on a pie diagram, a circle of any radius is 
drawn, and the area of the circle represents the whole, which in this 
case is £2. The circle is subdivided into sectors so that the areas of 
the sectors are proportional to the parts, i.e. the parts that make up 
the total retail price. For the area of a sector to be proportional to a 
part, the angle at the centre of the circle must be proportional to that 
part. The whole, £2 or 200    p, corresponds to 360°. Therefore, 

10 360
10
200

18p corresponds to degrees, i.e. � �
     

20 360
20

200
p corresponds to degrees, i.e. 36� �

   

   and so on, giving the angles at the centre of the circle for the parts 
of the retail price as: 18°, 36°, 72°, 126° and 108°, respectively.   

 The pie diagram is shown in  Figure 14.5   .  

Research and
development

Overheads

Profit

Materials

Labour

36°72°
126°

108°
18°

lp    1.8°  Figure 14.5           

  14.2     Presentation of grouped data         

  Grouped data can be presented diagrammatically  by: 

  (a)   a histogram, in which the areas of vertical, adjacent rectan-
gles are made proportional to frequencies of the classes,  

  (b)   a frequency polygon, which is the graph produced by plot-
ting frequency against class mid-point values and joining the 
co-ordinates with straight lines,  
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  (a)   The range of the data is the member having the largest value 
minus the member having the smallest value. Inspection of the set 
of data shows that: range      �      9.1      �      7.1      �      2.0    

 The size of each class is given approximately by

range
number of classes

    

If about seven classes are required, the size of each class is 2.0/7, 
that is approximately 0.3, and thus the  class limits are selected 
as 7.1 to 7.3, 7.4 to 7.6, 7.7 to 7.9, and so on. 

The class mid-point for the 7.1 to 7.3 class is 7 35 7 05
2

. .�    , 

i.e. 7.2, for the 7.4 to 7.6 class is
7 65 7 35

2
. .�

    i.e. 7.5, and so on. 

To assist with accurately determining the number in each class, a 
tally diagram is produced as shown in  Table 14.1   . This is obtained 

  (c)   a cumulative frequency distribution, which is a table show-
ing the cumulative frequency for each value of upper class 
boundary, and  

  (d)   an ogive or a cumulative frequency distribution curve , 
which is a curve obtained by joining the co-ordinates of 
cumulative frequency (vertically) against upper class boundary 
( horizontally).                

  Application: The masses of 50 ingots, in kilograms, are meas-
ured correct to the nearest 0.1    kg and the results are as shown 
below.

                          8.0 8.6 8.2 7.5 8.0 9.1 8.5 7.6 8.2 7.8  

  8.3 7.1 8.1 8.3 8.7 7.8 8.7 8.5 8.4 8.5  

  7.7 8.4 7.9 8.8 7.2 8.1 7.8 8.2 7.7 7.5  

  8.1 7.4 8.8 8.0 8.4 8.5 8.1 7.3 9.0 8.6  

  7.4 8.2 8.4 7.7 8.3 8.2 7.9 8.5 7.9 8.0       

Produce for this data (a) a frequency distribution for 7 classes, 
(b) a frequency polygon, (c) a histogram, (d) a cumulative frequency 
distribution, and (e) an ogive.       
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by listing the classes in the left-hand column and then inspecting 
each of the 50 members of the set of data in turn and allocating 
it to the appropriate class by putting a  ‘ 1 ’  in the appropriate row. 
Each fifth ‘ 1 ’  allocated to a particular row is marked as an oblique 
line to help with final counting. 

A frequency distribution for the data is shown in  Table 14.2    
and lists classes and their corresponding frequencies. Class mid-
points are also shown in this table, since they are used when 
constructing the frequency polygon and histogram. 

 Table 14.2         

   Class Class mid-point  Frequency 

   7.1 to 7.3 7.2 3
   7.4 to 7.6 7.5 5
   7.7 to 7.9 7.8 9
   8.0 to 8.2 8.1 14
   8.3 to 8.5 8.4 11
   8.6 to 8.8 8.7 6
   8.9 to 9.1 9.0 2

  (b)   A frequency polygon is shown in Figure 14.6   , the co-ordinates 
corresponding to the class mid-point/frequency values, given in 
Table 14.2 . The co-ordinates are joined by straight lines and the 
polygon is ‘ anchored-down ’  at each end by joining to the next 
class mid-point value and zero frequency.  

  (c)   A histogram is shown in  Figure 14.7   , the width of a rectangle 
corresponding to (upper class boundary value – lower class bound-
ary value) and height corresponding to the class frequency. The 
easiest way to draw a histogram is to mark class mid-point values 
on the horizontal scale and to draw the rectangles s ymmetrically
about the appropriate class mid-point values and touching one 

 Table 14.1         

   Class Tally 

   7.1 to 7.3  111 
   7.4 to 7.6  1111 
   7.7 to 7.9 1111 1111 
   8.0 to 8.2 1111 1111 1111 
   8.3 to 8.5  1111 1111 1 
   8.6 to 8.8 1111 1 
   8.9 to 9.1  11 
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another. A histogram for the data given in  Table 14.2  is shown in 
 Figure 14.7 .  

  (d)   A cumulative frequency distribution is a table giving values 
of cumulative frequency for the values of upper class boundaries, 
and is shown in  Table 14.3   . Columns 1 and 2 show the classes and 

 Table 14.3         

   1 2 3 4
   Class Frequency  Upper class 

boundary
 Cumulative 
frequency 

 Less than 
   7.1–7.3 3 7.35 3
   7.4–7.6 5 7.65 8
   7.7–7.9 9 7.95 17
   8.0–8.2 14 8.25 31
   8.3–8.5 11 8.55 42
   8.6–8.8 6 8.85 48
   8.9–9.1 2 9.15 50
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  14.3     Measures of central tendency           

their frequencies. Column 3 lists the upper class boundary values 
for the classes given in column 1. Column 4 gives the cumulative
frequency values for all frequencies less than the upper class 
boundary values given in column 3. Thus, for example, for the 
7.7 to 7.9 class shown in row 3, the cumulative frequency value 
is the sum of all frequencies having values of less than 7.95, 
i.e. 3      �      5  �  9    �      17, and so on.  

  (e)   The ogive for the cumulative frequency distribution given in  Table 
14.3 is shown in Figure 14.8   .    The co-ordinates corresponding 
to each upper class boundary/cumulative frequency value are 
plotted and the co-ordinates are joined by straight lines (– not 
the best curve drawn through the co-ordinates as in experimental 
work). The ogive is ‘ anchored ’  at its start by adding the co-o rdinate 
(7.05, 0).  

  (a)    Discrete data   

       mean value ,  x
x

n
�

∑      

      the  median  is the middle term of a ranked set of data,  

      the mode is the most commonly occurring value in a set of 
data, and  

       standard deviation,   σ �
�( )x x

n

2∑⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪
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  Application:  Find the median of the set  { 7, 5, 74, 10 }        

The set: {7, 5, 74, 10 } is ranked as {5, 7, 10, 74 }, and since it con-
tains an even number of members (four in this case), the mean of 7 
and 10 is taken, giving a median value of 8.5        

  Application:  Find the median of the set  { 3, 81, 15, 7, 14 }        

The set: {3, 81, 15, 7, 14 } is ranked as {3, 7, 14, 15, 81 } and the 
median value is the value of the middle member, i.e.  14        

  Application: Find the modal value of the set  { 5, 6, 8, 2, 5, 4,
 6, 5, 3 }        

The set: {5, 6, 8, 2, 5, 4, 6, 5, 3 } has a modal value of 5, since the 
member having a value of 5 occurs three times.       

  Application: Find the mean, median and modal values for the 
set  { 2, 3, 7, 5, 5, 13, 1, 7, 4, 8, 3, 4, 3 }        

 For the set  { 2, 3, 7, 5, 5, 13, 1, 7, 4, 8, 3, 4, 3 }  

mean value

5

,

x
_

�
� � � � � � � � � � � �

� �
2 3 7 5 5 13 1 7 4 8 3 4 3

13
65
13    

   To obtain the median value the set is ranked, that is, placed in ascend-
ing order of magnitude, and since the set contains an odd number 
of members the value of the middle member is the median value. 
Ranking the set gives:  { 1, 2, 3, 3, 3, 4, 4, 5, 5, 7, 7, 8, 13 }    

The middle term is the seventh member, i.e. 4, thus the  median
value is 4 . 
The modal value is the value of the most commonly occurring 
member and is 3, which occurs three times, all other members only 
occurring once or twice.       

  Application: Determine the standard deviation from the mean 
of the set of numbers: 

 { 5, 6, 8, 4, 10, 3 } , correct to 4 significant figures       
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 The arithmetic mean,  x
x

n
� �

� � � � �
�

∑ 5 6 8 4 10 3
6

6     

 Standard deviation,     σ �
�(x x)

n

2∑⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

    

 The (x      �       x    ) 2  values are: (5      �      6) 2 , (6    �      6) 2 , (8    �      6) 2 , (4    �      6) 2 , 
(10    �      6) 2  and (3      �      6) 2  

 The sum of the (x      �      x    ) 2  values,

i.e. (x x)� 2∑        �      1    �      0  �  4    �      4  �  16      �      9    �      34 

 and  
(x x)�

� �
2 34

6
5 6∑

n
.
i

    since there are 6 members in the set. 

 Hence,  standard deviation ,   

σ �
�

�

�

(x x)

n

, correct to  sign

2

5 6

4

∑⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

.
i

2.380 iificant figures.             

  (b)     Grouped data     

mean value, x
(fx)

f
�

∑
∑      

standard deviation,
{f(x x) }

f

2

σ
−

�
∑

∑
⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪                  

  Application: Find (a) the mean value, and (b) the standard 
deviation for the following values of resistance, in ohms, of 48 
resistors:

            20.5–20.9     3, 21.0–21.4    10,  21.5–21.9     11,  

  22.0–22.4     13, 22.5–22.9        9, 23.0–23.4    2             
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  (a)   The class mid-point/frequency values are:    

20.7 3, 21.2 10, 21.7 11, 22.2 13, 22.7 9 and 23.2 2 

 For grouped data, the mean value is given by:  x
(f x)

f
�

∑
∑

    

where f is the class frequency and x is the class mid-point value. 
Hence

 mean value,  x

( ) ( ) ( )

( ) ( ) ( )
�

� � � � �

� � � � � �

3 20 7 10 21 2 11 21 7

13 22 2 9 22 7 2 23 2

. . .

. . .
448

1052 1
48

21 919� �
.

. ..

    

i.e. the mean value is 21.9 ohms, correct to 3 significant figures. 

  (b)   From part (a), mean value, x � 21 92.   , correct to 4 significant 
f igures.    

The ‘ x-values ’  are the class mid-point values, i.e. 20.7, 21.2, 
21.7,  … . 

Thus the (x      �       x    ) 2 values are (20.7 – 21.92) 2 , (21.2 – 21.92) 2 , 
(21.7 – 21.92) 2 ,  … ,

and the f(x      �       x    ) 2 values are 3(20.7 – 21.92) 2 , 10(21.2 – 21.92) 2 , 
11(21.7 – 21.92) 2 ,  … .

The �f(x x)� 2     values are 4.4652   �   5.1840   �   0.5324   �   
1.0192   �    5.4756    �      3.2768    �      19.9532 

{f(x x) }

f

�
� �

2 19 9532
48

0 41569∑
∑

.
.

   

   and  standard deviation,     

σ �
�

�

�

f(x x)

f

, correct to

2

0 41569
{ }⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

∑
∑

.

0.645  3 significant figures           
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  Application: The time taken in minutes to assemble a device is 
measured 50 times and the results are as shown below:

                14.5–15.5     5, 16.5–17.5 8, 18.5–19.5 16,  

  20.5–21.5     12, 22.5–23.5 6, 24.5–25.5  3       

Determine the mean, median and modal values of the d istribution
by depicting the data on a histogram       
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The histogram is shown in Figure 14.9   . The mean value lies at the 
centroid of the histogram. With reference to any arbitrary axis, say YY 
shown at a time of 14 minutes, the position of the horizontal value 
of the centroid can be obtained from the relationship AM   �   �(am), 
where A is the area of the histogram, M is the horizontal distance of 
the centroid from the axis YY, a is the area of a rectangle of the histo-
gram and m is the distance of the centroid of the rectangle from YY. 
The areas of the individual rectangles are shown circled on the histo-
gram giving a total area of 100 square units. The positions, m, of the 
centroids of the individual rectangles are 1, 3, 5,  …  units from YY. Thus 

100 10 1 16 3 32 5 24 7
12 9 6 11

M ( ) ( ) ( ) ( )
( ) ( )

� � � � � � � �
� � � �    

   i.e.      M  units from YY� �
560
100

5 6.
   

   Thus the position of the mean with reference to the time scale is 
14    �      5.6, i.e.  19.6 minutes .   
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The median is the value of time corresponding to a vertical line divid-
ing the total area of the histogram into two equal parts. The total 
area is 100 square units; hence the vertical line must be drawn to 
give 50 units of area on each side. To achieve this with reference 
to Figure 14.9 , rectangle ABFE must be split so that 50      �      (10      �      16) 
units of area lie on one side and 50      �      (24      �      12      �      6) units of area 
lie on the other. This shows that the area of ABFE is split so that 
24 units of area lie to the left of the line and 8 units of area lie to 
the right, i.e. the vertical line must pass through 19.5 minutes. Thus 
the median value  of the distribution is  19.5 minutes.  

The mode is obtained by dividing the line AB, which is the height of 
the highest rectangle, proportionally to the heights of the adjacent 
rectangles. With reference to Figure 14.9, this is done by joining AC 
and BD and drawing a vertical line through the point of intersection 
of these two lines. This gives the mode of the distribution and is 
19.3 minutes .  

The quartile values of a set of discrete data are obtained by 
selecting the values of members which divide the set into four 
equal parts. 

When a set contains a large number of members, the set can be 
split into ten parts, each containing an equal number of mem-
bers; these ten parts are then called  deciles . 

For sets containing a very large number of members, the set may 
be split into one hundred parts, each containing an equal number 
of members; one of these parts is called a percentile .             

  14.4     Quartiles, deciles and percentiles         

  Application: The frequency distribution given below refers to 
the overtime worked by a group of craftsmen during each of 48 
working weeks in a year.

                      25–29  5, 30–34 4, 35–39 7, 40–44 11,  
  45–49 12, 50–54 8, 55–59 1             

Draw an ogive for this data and hence determine the quartiles 
values       
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The cumulative frequency distribution (i.e. upper class boundary/
cumulative frequency values) is: 

 29.5     5,     34.5     9,     39.5     16,     44.5     27,    
  49.5     39,     54.5     47,     59.5     48 

The ogive is formed by plotting these values on a graph, as shown in 
 Figure 14.10   . 
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 Figure 14.10           

The total frequency is divided into four equal parts, each having 
a range of 48/4, i.e. 12. This gives cumulative frequency values of 
0 to 12 corresponding to the first quartile, 12 to 24 corresponding to 
the second quartile, 24 to 36 corresponding to the third quartile and 
36 to 48 corresponding to the fourth quartile of the distribution, i.e. 
the distribution is divided into four equal parts. The quartile values 
are those of the variable corresponding to cumulative frequency val-
ues of 12, 24 and 36, marked Q 1, Q 2 and Q 3 in Figure 14.10 . These 
values, correct to the nearest hour, are  37 hours, 43 hours and 
48 hours, respectively. The Q 2 value is also equal to the median 
value of the distribution. One measure of the dispersion of a dis-
tribution is called the semi-interquartile range and is given by 
(Q Q2 1 2� )/    , and is ( )48 37 2� /     in this case, i.e. 5 1

2    hours.        

  Application: Determine the numbers contained in the (a) 41st 
to 50th percentile group, and (b) 8th decile group of the set of 
numbers shown below:

   14 22 17 21 30 28 37  7  23 32
   24 17 20 22 27 19 26 21 15 29
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 The set is ranked, giving: 

 7     14     15     17     17     19     20     21     21     22
      22     23     24     26     27     28     29     30     32     37 

  (a)   There are 20 numbers in the set, hence the first 10% will be the two 
numbers 7 and 14, the second 10% will be 15 and 17, and so on    

Thus the 41st to 50th percentile group will be the numbers  21
and 22  

  (b)   The first decile group is obtained by splitting the ranked set into 
10 equal groups and selecting the first group, i.e. the numbers 7 
and 14. The second decile group are the numbers 15 and 17, and 
so on.    

 Thus the 8th decile group contains the numbers  27 and 28   

  14.5     Probability         

The probability of events  A or B or C or …. . N happening is 
given by 

p p pC NA Bp ....� � � �      

The probability of events  A and B and C and … N happening is 
given by 

p p p pC NA B
....� � � �                  

Since only one of the ten horses can win, the probability of selecting 

at random the winning horse is 
number of winners
number of horses   

 , i.e.  
1

10
    or  0.10        

  Application: Determine the probability of selecting at random 
the winning horse in a race in which 10 horses are running       

  Application: Determine the probability of selecting at random 
the winning horses in both the first and second races if there are 
10 horses in each race       
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  The probability of selecting the winning horse in the first race is  1
10

     

  The probability of selecting the winning horse in the second race

is 1
10

     

  The probability of selecting the winning horses in the first  and second 
race is given by the multiplication law of probability, i.e.    

probability 0.01� � �
1

10
1

10
1

100
or

           

  Application: The probability of a component failing in one year 
due to excessive temperature is  1

20    , due to excessive vibration is 
1

25    and due to excessive humidity is 1
50    . Determine the probabili-

ties that during a one year period a component: (a) fails due to 
excessive temperature and excessive vibration, (b) fails due to 
excessive vibration or excessive humidity, and (c) will not fail due 
to excessive temperature and excessive humidity       

  Let p A be the probability of failure due to excessive temperature, then    

p and p (where p  is the probability of not failiA A A� �
1

20
19
20

nng)
     

  Let p B  be the probability of failure due to excessive vibration, then    

p  and pB B� �
1

25
24
25    

   Let p C  be the probability of failure due to excessive humidity, then   

p  and pC C� �
1

50
49
50      

  (a)   The probability of a component failing due to excessive tempera-
ture  and  excessive vibration is given by:

p p  orA B� � � �
1

20
1

25
1

500
0.002
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  (b)   The probability of a component failing due to excessive vibration 
or  excessive humidity is:    

p p orB C� � � �
1

25
1

50
3

50
0.06

     
  (c)   The probability that a component will not fail due to excessive 

temperature  and  will not fail due to excess humidity is:    

p p orA C� � � �
19
20

49
50

931
1000

0.931
           

  Application: A batch of 40 components contains 5 which are 
defective. If a component is drawn at random from the batch and 
tested and then a second component is drawn at random, cal-
culate the probability of having one defective component, both 
with and without replacement.       

The probability of having one defective component can be achieved 
in two ways. If p is the probability of drawing a defective compo-
nent and q is the probability of drawing a satisfactory component, 
then the probability of having one defective component is given by 
drawing a satisfactory component and then a defective component 
or by drawing a defective component and then a satisfactory one, 
i.e. by q      �      p    �      p    �      q 

  With replacement:  

p and q� � � �
5
40

1
8

35
40

7
8    

   Hence, probbility of having one defective component is:   

1
8

7
8

7
8

1
8

7
64

7
64

� � � � �, i.e. or 
7

32
0.2188

     

  Without replacement:  

 p 1       �       
1
8

    and q 1       �       
7
8

    on the first of the two draws. The batch number 

is now 39 for the second draw, thus, p 2       �       
5

39
    and q 2       �       

35
39

    

p q q p or 1 2 1 2
1
8

35
39

7
8

5
39

35 35
312

� � � � � � �
+ 70

312
0.2244
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  14.6     The binomial distribution         

If p is the probability that an event will happen and q is the prob-
ability that the event will not happen, then the probabilities that 
the event will happen 0, 1, 2, 3, …, n times in n trials are given by 
the successive terms of the expansion of (q      �      p) n, taken from left 
to right, i.e. 

q , nq p, 
n(n )

!
q p , 

n(n )(n )
!

q pn n n n� � �� � �1 2 2 3 31
2

1 2
3

, ...
     

  Industrial inspection  

The probabilities that 0, 1, 2, 3,  … , n components are defec-
tive in a sample of n components, drawn at random from a large 
batch of components, are given by the successive terms of the 
expansion of (q      �      p) n , taken from left to right.             

  Application: A dice is rolled 9 times. Find the probabilities of 
having a 4 upwards (a) 3 times and (b) less than 4 times       

Let p be the probability of having a 4 upwards. Then p      �      1/6, since 
dice have six sides. 

Let q be the probability of not having a 4 upwards. Then q   �   5/6. The 
probabilities of having a 4 upwards 0, 1, 2.. n times are given by the 
successive terms of the expansion of (q   �   p)n, taken from left to right. 

 From the binomial expansion: 

(q    �      q) 9       �      q 9       �      9q 8 p    �      36q 7 p 2       �      84q 6 p 3       �      .. 

 The probability of having a 4 upwards no times is 
                                    q 9       �      (5/6) 9       �       0.1938  

The probability of having a 4 upwards once is 9q 8 p    �      9(5/6) 8 (1/6) 
                                               �       0.3489  

 The probability of having a 4 upwards twice is 
                         36q 7 p 2       �      36(5/6) 7 (1/6) 2       �       0.2791  

  (a)   The probability of having a 4 upwards 3 times is 
                      84q 6 p 3       �      84(5/6) 6  (1/6) 3     �       0.1302   
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  (b)   The probability of having a 4 upwards less than 4 times is the sum 
of the probabilities of having a 4 upwards 0,1, 2, and 3 times, i.e.    

0 1938 0 3489 0 2791 0 1302. . . .� � � � 0.9520            

  Application: A package contains 50 similar components and 
inspection shows that four have been damaged during transit. If 
six components are drawn at random from the contents of the 
package, determine the probabilities that in this sample (a) one 
and (b) less than three are damaged       

The probability of a component being damaged, p, is 4 in 50, i.e. 
0.08 per unit. Thus, the probability of a component not being dam-
aged, q, is 1      �      0.08, i.e. 0.92 

The probability of there being 0, 1, 2, …, 6 damaged components is 
given by the successive terms of (q      �      p) 6 , taken from left to right. 

(q p) q q p q p q p ...� � � � � �  6 6 5 4 2 3 36 15 20      

  (a)   The probability of one damaged component is 
 6q 5 p    �      6    �      0.92 5       �      0.08    �       0.3164   

  (b)   The probability of less than three damaged components is 
given by the sum of the probabilities of 0, 1 and 2 damaged com-
ponents, i.e.    

q q p q p6 5 4 2 6 5

4 2

6 15 0 92 6 0 92 0 08

15 0 92 0 08

0 6064 0

� � � � � �

� � �

� �

. . .

. .

. .33164 0 0688� �. 0.9916       

  14.7     The Poisson distribution         

If λ is the expectation of the occurrence of an event then the 
probability of 0, 1, 2, 3,  … . occurrences is given by: 

e , e , 
e

!
,

e
!

,� �
� �

λ λ
λ λ

λ λ λ2 3

2 3
...
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The sample number, n, is large, the probability of a defective gear-
wheel, p, is small and the product np is 80      �      0.03, i.e. 2.4, which 
is less than 5. Hence a Poisson approximation to a binomial distri-
bution may be used. The expectation of a defective gearwheel, 
λ       �      np      �      2.4 

The probabilities of 0, 1, 2, … defective gearwheels are given by 

the successive terms of the expression  e
! !

�� � � �1
2 3

2 3
+

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟λ

λ λ
...     

taken from left to right, i.e. by e      �      λ  , λ e      �      λ , λ λ2

2
e
!

 ..
�

,
    

 The probability of no defective gearwheels is e      �λ              �      e      �     2.4       �       0.0907  

 The probability of 1 defective gearwheel is  λ e      �λ             �      2.4e      �     2.4

                                               �       0.2177  

  (a)   the probability of 2 defective gearwheels is λ λ2 2 2 4

2
2 4

2 1
e
!

e� �

�
�

�

. .

0.2613

     

  (b)   The probability of having more than 2 defective gearwheels is 
1 – (the sum of the probabilities of having 0, 1, and 2 defective 
gearwheels), i.e.    

1 0 0907 0 2177 0 2613� � �( ), that is, . . . 0.4303            

  Application: If 3% of the gearwheels produced by a company 
are defective, determine the probabilities that in a sample of 80 
gearwheels (a) two and (b) more than two will be defective       

  Application: A production department has 35 similar milling 
machines. The number of breakdowns on each machine averages 
0.06 per week. Determine the probabilities of having (a) one, and 
(b) less than three machines breaking down in any week       

Since the average occurrence of a breakdown is known but the 
number of times when a machine did not break down is unknown, 
a Poisson distribution must be used. 
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The expectation of a breakdown for 35 machines is 35      �      0.06,
i.e. 2.1 breakdowns per week. The probabilities of a breakdown 
occurring 0, 1, 2,  …  times are given by the successive terms of the 

expression      e 1
! !

�� � � � �λ
λ λ2 3

2 3
... ,

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

    taken from left to right. 

 Hence the probability of no breakdowns e      �      λ       �      e      �     2.1       �       0.1225  

  (a)   The probability of 1 breakdown is  λ e      �      λ       �      2.1e      �     2.1       �       0.2572   

  (b)   The probability of 2 breakdowns is 
λ λ2 2 2 1

2
2 1

2 1
e
!

e� �

�
�

�
. .

0.2700
       

The probability of less than 3 breakdowns per week is the sum 
of the probabilities of 0, 1 and 2 breakdowns per week, 

i.e. 0.1225      �      0.2572    �      0.2700    �       0.6497   

  14.8     The normal distribution         

A table of partial areas under the standardised normal curve is 
shown in  Table 14.4   .             

  Application: The mean height of 500 people is 170    cm and the 
standard deviation is 9     cm. Assuming the heights are normally 
distributed, determine (a) the number of people likely to have 
heights between 150    cm and 195    cm, (b) the number of people 
likely to have heights of less than 165    cm, and (c) the number of 
people likely to have heights of more than 194    cm      

  (a)   The mean value, x
_

   , is 170    cm and corresponds to a normal stand-

ard variate value, z, of zero on the standardised normal curve. 

A height of 150    cm has a z-value given by z
x x

�
�

σ
    standard 

deviations, i.e.
150 170

9
�

    or  � 2.22 standard deviations.    

Using a table of partial areas beneath the standardised normal 
curve (see  Table 14.4 ), a z-value of  �2.22 corresponds to an area 
of 0.4868 between the mean value and the ordinate z      �       �     2.22. 
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 Table 14.4      Partial areas under the standardised normal curve

0 z
  

    
z

x x
�

�

σ     
0 1 2 3 4 5 6 7 8 9

   0.0 0.0000 0.0040 0.0080 0.0120 0.0159 0.0199 0.0239 0.0279 0.0319 0.0359
   0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0678 0.0714 0.0753
   0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
   0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1388 0.1406 0.1443 0.1480 0.1517
   0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879
   0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2086 0.2123 0.2157 0.2190 0.2224
   0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549
   0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2760 0.2794 0.2823 0.2852
   0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133
   0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389
   1.0 0.3413 0.3438 0.3451 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621
   1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
   1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
   1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
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   1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
   1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4430 0.4441
   1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
   1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
   1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
   1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4762 0.4767
   2.0 0.4772 0.4778 0.4783 0.4785 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817
   2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
   2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890
   2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916
   ̀2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936
   2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952
   2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
   2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
   2.8 0.4974 0.4975 0.4076 0.4977 0.4977 0.4978 0.4979 0.4980 0.4980 0.4981
   2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986
   3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990
   3.1 0.4990 0.4991 0.4991 0.4991 0.4992 0.4992 0.4992 0.4992 0.4993 0.4993
   3.2 0.4993 0.4993 0.4994 0.4994 0.4994 0.4994 0.4994 0.4995 0.4995 0.4995
   3.3 0.4995 0.4995 0.4995 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996 0.4997
   3.4 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4998
   3.5 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998
   3.6 0.4998 0.4998 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
   3.7 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
   3.8 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
   3.9 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
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The negative z-value shows that it lies to the left of the z      �      0 
ordinate. 

This area is shown shaded in  Figure 14.11(a)   . Similarly, 195     cm 
has a z-value of 195 170

9
�     that is 2.78 standard deviations. From 

Table 14.4 , this value of z corresponds to an area of 0.4973, the 
positive value of z showing that it lies to the right of the z      �      0 
ordinate. This area is shown shaded in  Figure 14.11(b) . The 
total area shaded in  Figures 14.11(a) and (b)  is shown in  Figure 
14.11(c) and is 0.4868      �      0.4973, i.e. 0.9841 of the total area 
beneath the curve. 

However, the area is directly proportional to probability. Thus, the 
probability that a person will have a height of between 150 and 
195    cm is 0.9841. For a group of 500 people, 500      �      0.9841, i.e. 
492 people are likely to have heights in this range . 

 Figure 14.11               

0 z-value�2.22

(a)
z-value0 2.78

(b)

z-value0 2.78�2.22

(c)

  (b)   A height of 165    cm corresponds to  165 170
9
−    , i.e. �0.56 standard 

deviations.    

The area between z      �      0 and z �       �     0.56 (from  Table 14.4 ) is 
0.2123, shown shaded in  Figure 14.12(a)   . The total area under 
the standardised normal curve is unity and since the curve is 
symmetrical, it follows that the total area to the left of the z      �      0 
ordinate is 0.5000. Thus the area to the left of the z      �       �     0.56 
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ordinate ( ‘ left ’  means ‘less than ’, ‘ right ’  means ‘more than ’) is 
0.5000   �   0.2123, i.e. 0.2877 of the total area, which is shown 
shaded in  Figure 14.12(b) . The area is directly proportional to prob-
ability and since the total area beneath the standardised normal 
curve is unity, the probability of a person’s height being less than 
165    cm is 0.2877. For a group of 500 people, 500      �      0.2877, i.e. 
144 people are likely to have heights of less than 165     cm.      

  (c)   194    cm corresponds to a z-value of  
194 170

9
�

    that is, 2.67 

standard deviations. From  Table 14.4 , the area between z      �      0, 
z      �      2.67 and the standardised normal curve is 0.4962, shown 
shaded in  Figure 14.13(a)   . Since the standardised normal curve 
is symmetrical, the total area to the right of the z      �      0 ordinate 
is 0.5000, hence the shaded area shown in  Figure 14.13(b)  is 
0.5000    �      0.4962, i.e. 0.0038. This area represents the  probability 
of a person having a height of more than 194    cm, and for 500 
people, the number of people likely to have a height of more than 
194     cm is 0.0038      �      500, i.e.  2 people.     

0�0.56 z-value

(a)

 Figure 14.12             

0�0.56

(b)

z-value

0 z-value2.67

(a)

 Figure 14.13              

z-value0 2.67

(b)
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  Testing for a normal distribution         

  Application: Use normal probability paper to determine whether 
the data given below, which refers to the masses of 50 copper 
ingots, is approximately normally distributed. If the data is nor-
mally distributed, determine the mean and standard deviation of 
the data from the graph drawn. 

 Class mid-point
   value (kg)  29.5 30.5 31.5 32.5 33.5 34.5 35.5 36.5 37.5 38.5

   Frequency  2 4 6 8 9 8 6 4 2 1

To test the normality of a distribution, the upper class boundary/
percentage cumulative frequency values are plotted on normal prob-
ability paper. The upper class boundary values are: 30, 31, 32, …, 38, 
39. The corresponding cumulative frequency values (for  ‘less than ’ the 
upper class boundary values) are: 2, (4   �   2)   �   6, (6   �   4�2)   �   12, 20, 
29, 37, 43, 47, 49 and 50. The corresponding percentage cumulative 

frequency values are  
2

50
       �   100   �   4,

6
50

       �   100   �   12, 24, 40, 58, 

74, 86, 94, 98 and 100% 

The co-ordinates of upper class boundary/percentage cumulative 
frequency values are plotted as shown in  Figure 14.14 . When plot-
ting these values, it will always be found that the co-ordinate for 
the 100% cumulative frequency value cannot be plotted, since the 
maximum value on the probability scale is 99.99.  Since the points 
plotted in Figure 14.14    lie very nearly in a straight line, the 
data is approximately normally distributed.  

The mean value and standard deviation can be determined from 
Figure 14.14 . Since a normal curve is symmetrical, the mean value 
is the value of the variable corresponding to a 50% cumulative 
frequency value, shown as point P on the graph. This shows that 
the mean value is 33.6     kg. The standard deviation is determined 
using the 84% and 16% cumulative frequency values, shown as 
Q and R in Figure 14.14 . The variable values for Q and R are 35.7 
and 31.4 respectively; thus two standard deviations correspond to 
35.7    �      31.4, i.e. 4.3, showing that the standard deviation of the 
distribution is approximately  4 3

2
.     i.e.  2.15 standard deviations.    
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  14.9     Linear correlation         

  The product-moment formula for determining the linear 
correlation coefficient, coefficient of correlation,   

r
xy

x y2 2
�

∑
∑ ∑( )( ){ }

    

 where x      �      (X      �       X   ) and y      �      (Y � Y   )             
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Let X be the variable force values and Y be the dependent variable 
extension values, respectively. Using a tabular method to determine 
the quantities of this formula gives:

   X Y  x      �    
  (X      �       X   ) 

 y      �   
  (Y     �       Y   ) 

xy x2 y2  

   10 0.22   �30 � 0.699 20.97 900 0.489

   20 0.40   �20 � 0.519 10.38 400 0.269

   30 0.61   �10 � 0.309  3.09  100 0.095

   40 0.85      0   � 0.069 0   0  0.005

   50 1.20    10   0.281   2.81 100 0.079

   60 1.45    20    0.531 10.62 400 0.282

   70 1.70    30    0.781 23.43 900 0.610

    

� X

X

�

�

�

280

280
7

40    

� Y

Y

�

�

�

6 43

6 43
7

0 919

.

.

.     

  

� xy �

71 30.    

� x2

2800

�

   

� y2

1 829

�

.     

  Application: In an experiment to determine the relationship 
between force on a wire and the resulting extension, the follow-
ing data is obtained:

   Force (N)  10 20 30 40 50 60 70

   Extension (mm)  0.22 0.40 0.61 0.85 1.20 1.45 1.70

 Determine the linear coefficient of correlation for this data       

 Thus,  coefficient of correlation, 

r       �  

     

xy

x y [ ]
∑

∑ ∑( )( ){ }2 2

71 3

2800 1 829
�

�
�

.

.
0.996

    

This shows that a very good direct correlation exists between the 
values of force and extension.  
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  14.10     Linear regression         

  The least-squares regression lines  

If the equation of the least-squares regression line is of the form: 
Y      �      a 0       �      a 1 X the values of regression coefficient a 0 and a 1 are 
obtained from the equations: 

Y a N a X∑ ∑� �0 1 (1)      

(XY) a X a X∑ ∑ ∑� �0 1
2 (2)    

   If the equation of the regression line is of the form:  X      �      b 0     �      b 1 Y  
the values of regression coefficient b 0 and b 1 are obtained from 
the equations:   

X b N b Y� �0 1∑∑ (3)      

(XY) b Y b Y∑ ∑ ∑� �0 1
2 (4)                  

  Application: The experimental values relating centripetal force 
and radius, for a mass travelling at constant velocity in a circle, 
are as shown:

   Force (N)   5  10 15 20 25 30 35 40

   Radius (cm)  55 30 16 12 11  9   7   5 

Determine the equations of (a) the regression line of force on 
radius and (b) the regression line of radius on force. Hence, calcu-
late the force at a radius of 40    cm and the radius corresponding 
to a force of 32     N       

  (a)   Let the radius be the independent variable X, and the force be the 
dependent variable Y.    

The equation of the regression line of force on radius is of the 
form Y      �      a 0       �      a 1 X 
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Using a tabular approach to determine the values of the summa-
tions gives:

   Radius, X  Force, Y  X 2 XY Y2  

   55   5 3025 275    25
   30 10   900 300   100
   16 15   256 240   225
   12 20   144 240   400
   11 25   121 275   625
  9 30    81 270   900
  7 35    49 245 1225
  5 40    25 200 1600

    � X � 145    � Y � 180     

  

� X2

4601
�

      

� XY �
2045       

� Y2

5100
�

    

Thus, from equations (1) and (2), 180      �      8a 0       �      145a 1 and 
2045    �      145a 0       �      4601a 1  

Solving these simultaneous equations gives a 0       �      33.7 and 
a1       �       �     0.617, correct to 3 significant figures. Thus the equation 
of the regression line of force on radius is: 

Y 33.7 0.617 X� �    
   Thus the force, Y, at a radius of 40     cm, is: 
Y      �      33.7      �      0.617(40)    �      9.02   

i.e. the force at a radius of 40     cm is 9.02     N  

  (b)   The equation of the regression line of radius on force is of the 
form X      �      b 0       �    b 1 Y    

 From equations (3) and (4), 145      �      8b 0       �      180b 1  and 
2045    �      180b 0       �      5100b 1  

Solving these simultaneous equations gives b 0       �      44.2 and 
b1       �       �     1.16, correct to 3 significant figures. Thus the equation 
of the regression line of radius on force is: 

X 44.2 1.16Y� �    
   Thus, the radius, X, when the force is 32    N is: 
X      �      44.2      �      1.16(32)    �      7.08,   

 i.e.  the radius when the force is 32     N is 7.08     cm   



Statistics and Probability   447

  14.11     Sampling and estimation theories         

  Theorem 1  

If all possible samples of size N are drawn from a finite population, 
Np, without replacement, and the standard deviation of the mean 
values of the sampling distribution of means is determined, then: 

standard error of the means, 
N

N N

N 1x
p

p

σ
σ

�
�

�

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
(5)    

   where  σx     is the standard deviation of the sampling distribution of 
means and σ  is the standard deviation of the population   

 For an infinite population and/or for sampling with replacement: 

σ
σ

x �
N

(6)      

  Theorem 2  

If all possible samples of size N are drawn from a population of 
size N p and the mean value of the sampling distribution of means 
μx    is determined then 

μ μx � (7)      

 where  μ  is the mean value of the population             

  Application: The heights of 3000 people are normally distributed 
with a mean of 175    cm and a standard deviation of 8    cm. If random 
samples are taken of 40 people, predict the standard deviation and 
the mean of the sampling distribution of means if sampling is done 
(a) with replacement, and (b) without replacement       

 For the population: number of members, N p       �      3000; 

standard deviation, cm; mean, cmσ μ� �8 175    
   For the samples: number in each sample, N      �      40   

  (a)   When sampling is done with replacement, the total number 
of possible samples (two or more can be the same) is infinite. 
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Hence, from equation (6) the  standard error of the mean (i.e. the 
standard deviation of the sampling distribution of means)     

σx 1.265 cm� � �
σ
N

8

40    

   From equation (7), the mean of the sampling distribution   

μx 175 cm� �μ      
  (b)   When sampling is done without replacement, the total number 

of possible samples is finite and hence equation (5) applies. Thus 
the standard error of the means,     

σx �
�

�
�

�

�

�

σ
N

N N

N

(

p

p 1
8

40

3000 40
3000 1

1

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

.. .265 0 9935)( ) � 1.257 cm

   Provided the sample size is large, the mean of the sampling dis-
tribution of means is the same for both finite and infinite popu-
lations. Hence, from equation (3),  μx 175 cm�       

  The estimation of population parameters based on a large 
sample size        

   Table 14.5      Confidence levels

   Confidence level, %  99 98 96 95 90 80 50

   Confidence coefficient, z C 2.58 2.33 2.05 1.96 1.645 1.28 0.6745

  Application: Determine the confidence coefficient correspond-
ing to a confidence level of 98.5%       

98.5% is equivalent to a per unit value of 0.9850. This indicates that 
the area under the standardised normal curve between –z C and   �     zC , 
i.e. corresponding to 2z C, is 0.9850 of the total area. Hence the 
area between the mean value and z C is 0 9850 2. /     i.e. 0.4925 of 
the total area. The z-value corresponding to a partial area of 0.4925 



Statistics and Probability   449

is 2.43 standard deviations from  Table 14.4 . Thus,  the confidence 
coefficient corresponding to a confidence limit of 98.5% is 2.43  

  Estimating the mean of a population when the standard 
deviation of the population is known        

  The confidence limits of the mean of a population are : 

x
z

N

N N

N 1
C p

p

�
�

�

σ ⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
(8)      

  for a finite population of size N p  

 The  confidence limits for the mean of the population are : 

x
z

N
C�

σ
(9)      

  for an infinite population.              

  Application: It is found that the standard deviation of the diam-
eters of rivets produces by a certain machine over a long period 
of time is 0.018    cm. The diameters of a random sample of 100 
rivets produced by this machine in a day have a mean value of 
0.476    cm. If the machine produces 2500 rivets a day, determine 
(a) the 90% confidence limits, and (b) the 97% confidence limits 
for an estimate of the mean diameter of all the rivets produced 
by the machine in a day       

 For the population:           standard deviation,  σ       �      0.018     cm 

                     number in the population, N p       �      2500 

 For the sample:                     number in the sample, N      �      100 

                     mean,  x cm� 0 476.     

There is a finite population and the standard deviation of the popu-
lation is known, hence expression (8) is used. 
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  (a)   For a 90% confidence level, the value of z C  ,  the confidence 
coefficient, is 1.645 from  Table 14.5 . Hence, the estimate of the 
confidence limits of the population mean, μ , is:    

0 476
1 645 0 018

100

2500 100
2500 1

.
. .



�

�

( )( )⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟⎟

   

   i.e.   0 476 0 00296 0 9800 0 476 0 0029. . . . .
 � 
( )( ) cm      
 Thus,  the 90% confidence limits are 0.473     cm and 0.479     cm  

This indicates that if the mean diameter of a sample of 100 rivets is 
0.476   cm, then it is predicted that the mean diameter of all the riv-
ets will be between 0.473    cm and 0.479    cm and this prediction is 
made with confidence that it will be correct nine times out of ten. 

  (b)   For a 97% confidence level, the value of z C has to be determined 
from a table of partial areas under the standardised normal curve 
given in  Table 14.4 , as it is not one of the values given in  Table 
14.5. The total area between ordinates drawn at �zC and   �   zC has 
to be 0.9700. Because the standardised normal curve is symmetri-
cal, the area between z C     �   0 and z C is 0 9700 2. /    , i.e. 0.4850. From 
Table 14.4  an area of 0.4850 corresponds to a z C value of 2.17.    

Hence, the estimated value of the confidence limits of the popu-
lation mean is between 

x
z

N

N N

N
C p

p



�

�
� 


σ
1

0 476
2 17 0 018

100

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞
.

( . )( . )

⎠⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

2500 100
2500 1

0 476 0 0039 0 9800

0 4

�

�

� 


�

. . .

.

( )( )

776 0 0038
 .      

 Thus,  the 97% confidence limits are 0.472     cm and 0.480     cm  

It can be seen that the higher value of confidence level required 
in part (b) results in a larger confidence interval. 

  Estimating the mean and standard deviation of a population 
from sample data        

The confidence limits of the mean value of the population, μ , 
are given by: 

μ σx C xz�     (10)
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 For the sampling distribution: the mean,            μ x � 16 50.    , 

the standard error of the means,              σx � 1 4.     

The estimated mean of the population is based on sampling distribu-
tion data only and so expression (10) is used. 

 For an 90% confidence level, z C       �      1.645 (from  Table 14.5 ), 

 thus           μ σx C xz  ( )( )
 � 
 � 
16 50 1 645 1 4 16 50 2 30. . . . .     minutes. 

Thus, the 90% confidence level of the mean time to failure is 
from 14.20 minutes to 18.80 minutes.  

  Estimating the mean of a population based on a small 
sample size        

   If s is the standard deviation of a sample, then the confidence 
limits of the standard deviation of the population are given by:   

s zC s� σ (11)                  

  Application: Several samples of 50 fuses selected at random 
from a large batch are tested when operating at a 10% overload 
current and the mean time of the sampling distribution before 
the fuses failed is 16.50 minutes. The standard error of the means 
is 1.4 minutes. Determine the estimated mean time to failure of 
the batch of fuses for a confidence level of 90%       

 Table 14.6      Percentile values (t p ) for Student’s t distribution 
with ν  degrees of freedom (shaded area      �       p )  

tp

    ν   t 0.995 t0.99 t0.975 t0.95 t0.90 t0.80 t0.75 t0.70 t0.60 t0.55  

   1 63.66 31.82 12.71 6.31 3.08 1.376 1.000 0.727 0.325 0.158
   2 9.92 6.96 4.30 2.92 1.89 1.061 0.816 0.617 0.289 0.142
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 Table 14.6      Continued  

    ν   t 0.995 t0.99 t0.975 t0.95 t0.90 t0.80 t0.75 t0.70 t0.60 t0.55  

    3  5.84 4.54 3.18 2.35 1.64 0.978 0.765 0.584 0.277 0.137
    4  4.60 3.75 2.78 2.13 1.53 0.941 0.741 0.569 0.271 0.134
    5  4.03 3.36 2.57 2.02 1.48 0.920 0.727 0.559 0.267 0.132
    6  3.71 3.14 2.45 1.94 1.44 0.906 0.718 0.553 0.265 0.131
    7  3.50 3.00 2.36 1.90 1.42 0.896 0.711 0.549 0.263 0.130
    8  3.36 2.90 2.31 1.86 1.40 0.889 0.706 0.546 0.262 0.130
    9  3.25 2.82 2.26 1.83 1.38 0.883 0.703 0.543 0.261 0.129
   10 3.17 2.76 2.23 1.81 1.37 0.879 0.700 0.542 0.260 0.129
   11 3.11 2.72 2.20 1.80 1.36 0.876 0.697 0.540 0.260 0.129
   12 3.06 2.68 2.18 1.78 1.36 0.873 0.695 0.539 0.259 0.128
   13 3.01 2.65 2.16 1.77 1.35 0.870 0.694 0.538 0.259 0.128
   14 2.98 2.62 2.14 1.76 1.34 0.868 0.692 0.537 0.258 0.128
   15 2.95 2.60 2.13 1.75 1.34 0.866 0.691 0.536 0.258 0.128
   16 2.92 2.58 2.12 1.75 1.34 0.865 0.690 0.535 0.258 0.128
   17 2.90 2.57 2.11 1.74 1.33 0.863 0.689 0.534 0.257 0.128
   18 2.88 2.55 2.10 1.73 1.33 0.862 0.688 0.534 0.257 0.127
   19 2.86 2.54 2.09 1.73 1.33 0.861 0.688 0.533 0.257 0.127
   20 2.84 2.53 2.09 1.72 1.32 0.860 0.687 0.533 0.257 0.127
   21 2.83 2.52 2.08 1.72 1.32 0.859 0.686 0.532 0.257 0.127
   22 2.82 2.51 2.07 1.72 1.32 0.858 0.686 0.532 0.256 0.127
   23 2.81 2.50 2.07 1.71 1.32 0.858 0.685 0.532 0.256 0.127
   24 2.80 2.49 2.06 1.71 1.32 0.857 0.685 0.531 0.256 0.127
   25 2.79 2.48 2.06 1.71 1.32 0.856 0.684 0.531 0.256 0.127
   26 2.78 2.48 2.06 1.71 1.32 0.856 0.684 0.531 0.256 0.127
   27 2.77 2.47 2.05 1.70 1.31 0.855 0.684 0.531 0.256 0.127
  28 2.76 2.47 2.05 1.70 1.31 0.855 0.683 0.530 0.256 0.127
   29 2.76 2.46 2.04 1.70 1.31 0.854 0.683 0.530 0.256 0.127
   30 2.75 2.46 2.04 1.70 1.31 0.854 0.683 0.530 0.256 0.127
   40 2.70 2.42 2.02 1.68 1.30 0.851 0.681 0.529 0.255 0.126
   60 2.66 2.39 2.00 1.67 1.30 0.848 0.679 0.527 0.254 0.126
   120 2.62 2.36 1.98 1.66 1.29 0.845 0.677 0.526 0.254 0.126
    �  2.58 2.33 1.96 1.645 1.28 0.842 0.674 0.524 0.253 0.126

The confidence limits of the mean value of a population based on 
a small sample drawn at random from the population are given by 

x
t s

(N 1)
C�
�

(12)                  
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For the sample: the sample size, N      �      12; mean, x cm;� 1 850.     
standard deviation, s      �      0.16    mm � 0.016     cm 

Since the sample number is less than 30, the small sample estimate 
as given in expression (12) must be used. The number of degrees of 
freedom, i.e. sample size minus the number of estimations of popu-
lation parameters to be made, is 12      �      1, i.e. 11 

  (a)   The percentile value corresponding to a confidence coefficient 
value of t 0.90 and a degree of freedom value of  ν       �      11 can be 
found by using  Table 14.6 , and is 1.36, i.e. t C       �      1.36. The esti-
mated value of the mean of the population is given by:    

x
t

(N )

( )( )

cm

C

�

� 


� 


s

1
1 850

1 36 0 016

11

1 850 0 0066

.
. .

. .      

 Thus,  the 90% confidence limits are 1.843     cm and 1.857     cm  

This indicates that the actual diameter is likely to lie between 
1.843    cm and 1.857    cm and that this prediction stands a 90% 
chance of being correct. 

  (b)   The percentile value corresponding to t 0.70 and to ν       �      11 is 
obtained from  Table 14.6 , and is 0.540, i.e. t C       �      0.540.    

 The estimated value of the 70% confidence limits is given by: 

x
t  s

(N )

( )( )

cm

C

�

� 


� 


1
1 850

0 540 0 016

11

1 850 0 0026

.
. .

. .      

Thus, the 70% confidence limits are 1.847    cm and 1.853     cm,  
i.e. the actual diameter of the bar is between 1.847    cm and 
1.853     cm and this result has a 70% probability of being correct.  

  Application: A sample of 12 measurements of the diameter of a 
bar are made and the mean of the sample is 1.850    cm.The stand-
ard deviation of the samples is 0.16    mm.Determine (a) the 90% 
confidence limits and (b) the 70% confidence limits for an esti-
mate of the actual diameter of the bar       
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 Table 14.7      Chi-square distribution  

    
χp

2

    

   Percentile values  ( )2χ ρ     for the Chi-square distribution with  ν  degrees of freedom 

    ν  χ0.995
2 χ0.99

2 χ0.975
2 χ0.95

2 χ0.90
2 χ0.75

2 χ0.50
2 χ0.25

2 χ0.10
2 χ0.05

2 χ0.025
2 χ0.001

2 χ0.005
2

    1  7.88 6.63 5.02 3.84 2.71 1.32 0.455 0.102 0.0158 0.0039 0.0010 0.0002 0.0000
    2  10.6 9.21 7.38 5.99 4.61 2.77 1.39 0.575 0.211 0.103 0.0506 0.0201 0.0100
    3  12.8 11.3 9.35 7.81 6.25 4.11 2.37 1.21 0.584 0.352 0.216 0.115 0.072
    4  14.9 13.3 11.1 9.49 7.78 5.39 3.36 1.92 1.06 0.711 0.484 0.297 0.207
    5  16.7 15.1 12.8 11.1 9.24 6.63 4.35 2.67 1.61 1.15 0.831 0.554 0.412
    6  18.5 16.8 14.4 12.6 10.6 7.84 5.35 3.45 2.20 1.64 1.24 0.872 0.676
    7  20.3 18.5 16.0 14.1 12.0 9.04 6.35 4.25 2.83 2.17 1.69 1.24 0.989
    8  22.0 20.1 17.5 15.5 13.4 10.2 7.34 5.07 3.49 2.73 2.18 1.65 1.34
    9  23.6 21.7 19.0 16.9 14.7 11.4 8.34 5.90 4.17 3.33 2.70 2.09 1.73
   10 25.2 23.2 20.5 18.3 16.0 12.5 9.34 6.74 4.87 3.94 3.25 2.56 2.16
   11 26.8 24.7 21.9 19.7 17.3 13.7 10.3 7.58 5.58 4.57 3.82 3.05 2.60
   12 28.3 26.2 23.3 21.0 18.5 14.8 11.3 8.44 6.30 5.23 4.40 3.57 3.07
   13 29.8 27.7 24.7 22.4 19.8 16.0 12.3 9.30 7.04 5.89 5.01 4.11 3.57

  14.12     Chi-square values         
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   14 31.3 29.1 26.1 23.7 21.1 17.1 13.3 10.2 7.79 6.57 5.63 4.66 4.07
   15 32.8 30.6 27.5 25.0 22.3 18.2 14.3 11.0 8.55 7.26 6.26 5.23 4.60
   16 34.3 32.0 28.8 26.3 23.5 19.4 15.3 11.9 9.31 7.96 6.91 5.81 5.14
   17 35.7 33.4 30.2 27.6 24.8 20.5 16.3 12.8 10.1 8.67 7.56 6.41 5.70
   18 37.2 34.8 31.5 28.9 26.0 21.6 17.3 13.7 10.9 9.39 8.23 7.01 6.26
   19 38.6 36.2 32.9 30.1 27.2 22.7 18.3 14.6 11.7 10.1 8.91 7.63 6.84
   20 40.0 37.6 34.4 31.4 28.4 23.8 19.3 15.5 12.4 10.9 9.59 8.26 7.43
   21 41.4 38.9 35.5 32.7 29.6 24.9 20.3 16.3 13.2 11.6 10.3 8.90 8.03
   22 42.8 40.3 36.8 33.9 30.8 26.0 21.3 17.2 14.0 12.3 11.0 9.54 8.64
   23 44.2 41.6 38.1 35.2 32.0 27.1 22.3 18.1 14.8 13.1 11.7 10.2 9.26
   24 45.6 43.0 39.4 36.4 33.2 28.2 23.3 19.0 15.7 13.8 12.4 10.9 9.89
   25 46.9 44.3 40.6 37.7 34.4 29.3 24.3 19.9 16.5 14.6 13.1 11.5 10.5
   26 48.3 45.9 41.9 38.9 35.6 30.4 25.3 20.8 17.3 15.4 13.8 12.2 11.2
   27 49.6 47.0 43.2 40.1 36.7 31.5 26.3 21.7 18.1 16.2 14.6 12.9 11.8
   28 51.0 48.3 44.5 41.3 37.9 32.6 27.3 22.7 18.9 16.9 15.3 13.6 12.5
   29 52.3 49.6 45.7 42.6 39.1 33.7 28.3 23.6 19.8 17.7 16.0 14.3 13.1
   30 53.7 50.9 47.7 43.8 40.3 34.8 29.3 24.5 20.6 18.5 16.8 15.0 13.8
   40 66.8 63.7 59.3 55.8 51.8 45.6 39.3 33.7 29.1 26.5 24.4 22.2 20.7
   50 79.5 76.2 71.4 67.5 63.2 56.3 49.3 42.9 37.7 34.8 32.4 29.7 28.0

   60 92.0 88.4 83.3 79.1 74.4 67.0 59.3 52.3 46.5 43.2 40.5 37.5 35.5
   70 104.2 100.4 95.0 90.5 85.5 77.6 69.3 61.7 55.3 51.7 48.8 45.4 43.3
   80 116.3 112.3 106.6 101.9 96.6 88.1 79.3 71.1 64.3 60.4 57.2 53.5 51.2
   90 128.3 124.1 118.1 113.1 107.6 98.6 89.3 80.6 73.3 69.1 65.6 61.8 59.2
   100 140.2 135.8 129.6 124.3 118.5 109.1 99.3 90.1 82.4 77.9 74.2 70.1 67.3



456 Engineering Mathematics Pocket Book

  To determine the expected frequencies  

Using the usual binomial distribution symbols, let p be the probability 
of a male birth and q      �      1    �      p be the probability of a female birth. 
The probabilities of having 5 boys, 4 boys,.., 0 boys are given by the 
successive terms of the expansion of (q      �      p) n. Since there are 5 chil-
dren in each family, n      �      5, and (q      �      p) 5       �      q 5       �      5q 4 p      �      10q 3 p 2       �    
  10q 2 p 3       �      5qp 4       �      p 5  

When q      �      p �0.5, the probabilities of 5 boys, 4 boys, …, 0 boys are 
0.03125, 0.15625, 0.3125, 0.3125, 0.15625 and 0.03125 

For 200 families, the expected frequencies, rounded off to the near-
est whole number are: 6, 31, 63, 63, 31 and 6 respectively. 

  To determine the  χ  2 -value  

 Using a tabular approach, the  χ  2 -value is calculated using

χ
ο2

2
�

�( )e
e

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

∑
   

   Number 
of boys(B)  
   and 
girls(G)

 Observed  
 frequency,
o

 Expected  
 frequency,
e

   o      �      e    (o      �      e) 2  

    
(o e)

e

2�

    

   5B, 0G  11 6 5 25 4.167
   4B, 1G  35 31 4 16 0.516
   3B, 2G  69 63 6 36 0.571

  Application: As a result of a survey carried out of 200 families, 
each with five children, the distribution shown below was pro-
duced. Test the null hypothesis that the observed frequencies are 
consistent with male and female births being equally probable, 
assuming a binomial distribution, a level of significance of 0.05 
and a  ‘ too good to be true ’  fit at a confidence level of 95%

   Number of boys (B) 

   and girls (G)  5B,OG 4B,1G 3B,2G 2B,3G 1B,4G, 0B,5G

   Number of families  11 35 69 55 25 5
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   2B, 3G  55 63   � 8 64 1.016
   1B, 4G  25 31   � 6 36 1.161
   0B, 5G 5 6   � 1 1  0.167  

          
χ

ο2
2

�
�( )e
e

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

∑
     
�     7.598

   

  To test the significance of the  χ  2 -value  

The number of degrees of freedom is given by  ν     �   N   �   1 where N 
is the number of rows in the table above, thus  ν     �   6   �   1   �   5. For a 
level of significance of 0.05, the confidence level is 95%, i.e. 0.95 per 
unit. From  Table 14.7   , for the χ0 95

2
. ,    ν     �   5 value, the percentile value 

χp
2     is 11.1. Since the calculated value of χ  2 is less than χp

2    the null 
hypothesis that the observed frequencies are consistent with 
male and female births being equally probable is accepted . 

For a confidence level of 95%, the χ0 05
2

. ,      ν     �   5 value from  Table 14.7 
is 1.15 and because the calculated value of χ  2 (i.e. 7.598) is greater 
than this value, the fit is not so good as to be unbelievable.   

  14.13     The sign test         

 Table 14.8      Critical values for the sign test  

      α  1       �      5% 2 %1
2

 1% 1
2 %

   n   α  2       �      10% 5% 2% 1%

  1 — — — —
  2 — — — —
  3 — — — —
  4 — — — —
  5 0 — — —
  6 0 0 — —
  7 0 0 0 —
  8 1 0 0 0
  9 1 1 0 0

   10 1 1 0 0
   11 2 1 1 0
   12 2 2 1 1
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 Table 14.8      Continued  

      α  1       �      5% 2 %1
2

 1% 1
2 %

    n   α  2       �      10% 5% 2% 1%

   12 2 2 1 1
   13 3 2 1 1
   14 3 2 2 1
   15 3 3 2 2
   16 4 3 2 2
   17 4 4 3 2
   18 5 4 3 3
   19 5 4 4 3
   20 5 5 4 3
   21 6 5 4 4
   22 6 5 5 4
   23 7 6 5 4
   24 7 6 5 5
   25 7 7 6 5
26 8 7 6 6
27 8 7 7 6
28 9 8 7 6
29 9 8 7 7
30 10 9 8 7
31 10 9 8 7
32 10 9 8 8
33 11 10 9 8
34 11 10 9 9
35 12 11 10 9
36 12 11 10 9
37 13 12 10 10
38 13 12 11 10
39 13 12 11 11
40 14 13 12 11
41 14 13 12 11
42 15 14 13 12
43 15 14 13 12
44 16 15 13 13
45 16 15 14 13
46 16 15 14 13
47 17 16 15 14
48 17 16 15 14
49 18 17 15 15
50 18 17 16 15
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  Procedure for sign test  

  1.   State for the data the null and alternative hypotheses, H 0  
and H 1   

  2.   Know whether the stated significance level, α , is for a one-
tailed or a two-tailed test. Let, for example, H 0: x      �       φ, then if 
H1: x �  φ then a two-tailed test is suggested because x could be 
less than or more than  φ (thus use α  2 in  Table 14.8   ), but if say 
H1: x      	       φ or H 1: x      
       φ then a one-tailed test is suggested (thus 
use α  1  in  Table 14.8 )  

  3.   Assign plus or minus signs to each piece of data – compared 
with φ or assign plus and minus signs to the difference for 
paired observations  

  4.   Sum either the number of plus signs or the number of minus 
signs. For the two-tailed test, whichever is the smallest is taken; 
for a one-tailed test, the one which would be expected to have 
the smaller value when H 1is true is used. The sum decided upon 
is denoted by S  

  5.   Use  Table 14.8  for given values of n, and  α  1 or α  2 to read the 
critical region of S. For example, if, say, n      �      16 and α  1       �      5%, 
then from  Table 14.8 , S      �      4. Thus if S in part (iv) is greater than 
4 we accept the null hypothesis H 0 and if S is less than or equal 
to 4 we accept the alternative hypothesis H 1                 

  Application: A manager of a manufacturer is concerned about 
suspected slow progress in dealing with orders. He wants at least 
half of the orders received to be processed within a working day 
(i.e. 7 hours). A little later he decides to time 17 orders selected 
at random, to check if his request had been met. 

The times spent by the 17 orders being processed were as follows: 

4
3
4

9
3
4

15
1
2

11 8
1
4

6
1
2

9 8
3
4

10
3
4

3
1
2

8
1
2

9
1
2

15
1
4

13 8 7

h h h h h h h h

h h h h

h

h h
33
4

6
3
4

h h
     

Use the sign test at a significance level of 5% to check if the 
managers request for quicker processing is being met       
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 Using the above procedure: 

  1.   The hypotheses are  H0 : t      �      7       h  and  H1 : t      >      7       h , where t is time.  

  2.   Since H 1  is t      
      7     h, a one-tail test is assumed, i.e.  α  1       �      5%  

  3.   In the sign test each value of data is assigned a      �      or      �      sign. For 
the above data let us assign a      �      for times greater than 7 hours 
and a – for less than 7 hours. This gives the following pattern:    

� � � � � � � � �
� � � � � � � �      

  4.   The test statistic, S, in this case is the number of minus signs ( �if
H0 were true there would be an equal number of      �      and      �      signs). 
Table 14.8  gives critical values for the sign test and is given in terms 
of small values; hence in this case S is the number of      �      signs, 
i.e. S      �      4   

  5.   From  Table 14.8 , with a sample size n      �      17, for a significance level 
of α  1       �      5%, S      ≤      4     .  Since S      �      4 in our data, the result  is signifi-
cant at α  1       �      5%, i.e. the alternative hypothesis is accepted – 
it appears that the managers request for quicker processing 
of orders is not being met.   

  14.14     Wilcoxon signed-rank test         

 Table 14.9      Critical values for the Wilcoxon signed-rank test  

      α  1       �      5% 2 %1
2

 1% 1
2 %

   n   α  2       �      10% 5% 2% 1%

   1 — — — —
   2 — — — —
   3 — — — —
   4 — — — —
   5 0 — — —

   6 2 0 — —
   7 3 2 0 —
   8 5 3 1 0
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 Table 14.9      Continued  

      α  1       �      5% 2 %1
2

 1% 1
2 %

    n   α  2       �      10% 5% 2% 1%

  9 8 5 3 1
   10 10 8 5 3

   11 13 10 7 5
   12 17 13 9 7
   13 21 17 12 9
   14 25 21 15 12
   15 30 25 19 15

   16 35 29 23 19
   17 41 34 27 23
   18 47 40 32 27
   19 53 46 37 32
   20 60 52 43 37

   21 67 58 49 42
   22 75 65 55 48
   23 83 73 62 54
   24 91 81 69 61
   25 100 89 76 68

26 110 98 84 75
27 119 107 92 83
28 130 116 101 91
29 140 126 110 100
30 151 137 120 109

31 163 147 130 118
32 175 159 140 128
33 187 170 151 138
34 200 182 162 148
35 213 195 173 159

36 227 208 185 171
37 241 221 198 182
38 256 235 211 194
39 271 249 224 207
40 286 264 238 220

41 302 279 252 233
42 319 294 266 247
43 336 310 281 261
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 Table 14.9      Continued  

      α  1       �      5% 2 %1
2

 1% 1
2 %

    n   α  2       �      10% 5% 2% 1%

44 353 327 296 276
45 371 343 312 291

46 389 361 328 307
47 407 378 345 322
48 426 396 362 339
49 446 415 379 355
50 466 434 397 373

  Procedure for the Wilcoxon signed-rank test  

  1.   State for the data the null and alternative hypotheses, H 0  
and H 1   

  2.   Know whether the stated significance level, α , is for a one-
tailed or a two-tailed test (see 2. in the procedure for the sign 
test on page 459)  

  3.   Find the difference of each piece of data compared with the 
null hypothesis or assign plus and minus signs to the differ-
ence for paired observations  

  4.   Rank the differences, ignoring whether they are positive or 
negative  

  5.   The Wilcoxon signed-rank statistic T is calculated as the sum 
of the ranks of either the positive differences or the negative 
differences – whichever is the smaller for a two-tailed test, 
and the one which would be expected to have the smaller 
value when H 1  is true for a one-tailed test  

  6.   Use  Table 14.9    for given values of n, and α  1 or α  2 to read the 
critical region of T. For example, if, say, n      �      16 and α  1       �      5%, 
then from  Table 14.9 , t      �      35. Thus if T in part 5 is greater 
than 35 we accept the null hypothesis H 0 and if T is less than 
or equal to 35 we accept the alternative hypothesis H 1                 

  Application: The following data represents the number of hours 
that a portable car vacuum cleaner operates before recharging is 
required. 
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 Using the above procedure: 

  1.    H0 : t      �      1.7     h  and  H1 : t  �  1.7     h   

  2.   Significance level,  α  2       �      5% (since this is a two-tailed test)  

  3.   Taking the difference between each operating time and 1.7     h 
gives:

        � 0.3    h           �     0.6     h            � 0.9    h           �     0.3    h           �     0.1    h           �     0.2    h       
  �     0.2    h           �     0.3    h           �     0.4    h           �     0.6     h          �     0.1     h      

  4.   These differences may now be ranked from 1 to 11 (ignoring 
whether they are positive or negative).    

Some of the differences are equal to each other. For example, 
there are two 0.1’s (ignoring signs) that would occupy positions 
1 and 2 when ordered. We average these as far as rankings are 
concerned i.e. each is assigned a ranking of  1 2

2
�     i.e. 1.5. Similarly 

the two 0.2 values in positions 3 and 4 when ordered are each 
assigned rankings of 3 4

2
�     i.e. 3.5, and the three 0.3 values in 

positions 5, 6, and 7 are each assigned a ranking of  5 6 7
3

� �     i.e. 6, 
and so on. The rankings are therefore:

   Rank 1.5 1.5 3.5 3.5 6 6

   Difference   �0.1 �0.1 �0.2 �0.2 �0.3 � 0.3 

   Rank 6 8 9.5 9.5 11

   Difference   �0.3 �0.4 �0.6 �0.6 � 0.9 

  5.   There are 4 positive terms and 7 negative terms. Taking the smaller 
number, the four positive terms have rankings of 1.5, 3.5, 8 
and 9.5.    
Summing the positive ranks gives: T     �   1.5   �   3.5   �   8�9.5   �     22.5  

  6.   From  Table 14.9 , when n      �      11 and  α  2       �      5%,  T      ≤      10     

Operating time (h) 1.4 2.3 0.8 1.4 1.8 1.5 1.9 1.4 2.1 1.1 1.6 

Use the Wilcoxon signed-rank test to test the hypothesis, at a 5% 
level of significance, that this particular vacuum cleaner operates, 
on average, 1.7 hours before needing a recharge       
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Since T   �   22.5 falls in the acceptance region (i.e. in this case is 
greater than 10),  the null hypothesis is accepted, i.e. the aver-
age operating time is not significantly different from 1.7     h  

[Note that if, say, a piece of the given data was 1.7    h, such that 
the difference was zero, that data is ignored and n would be 10 
instead of 11 in this case.]  

  14.15     The Mann-Whitney test         

 Table 14.10      Critical values for the Mann-Whitney test  

  α  1       �      5% 2 %1
2

 1% 1
2 %

   n 1 n2    α  2       �      10% 5% 2% 1%

   2 2 — — — —
   2 3 — — — —
   2 4 — — — —
   2 5 0 — — —
   2 6 0 — — —
   2 7 0 — — —
   2 8 1 0 — —
   2 9 1 0 — —
   2 10 1 0 — —
   2 11 1 0 — —
   2 12 2 1 — —
   2 13 2 1 0 —
   2 14 3 1 0 —
   2 15 3 1 0 —
   2 16 3 1 0 —
   2 17 3 2 0 —
   2 18 4 2 0 —
   2 19 4 2 1 0
   2 20 4 2 1 0

   3 3 0 — — —
   3 4 0 — — —
   3 5 1 0 — —
   3 6 2 1 — —
   3 7 2 1 0 —
   3 8 3 2 0 —
   3 9 4 2 1 0
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 Table 14.10      Continued  

  α  1       �      5% 2 %1
2

 1% 1
2 %

   n 1 n2    α  2       �      10% 5% 2% 1%

   3 10 4 3 1 0
   3 11 5 3 1 0
   3 12 5 4 2 1
   3 13 6 4 2 1
   3 14 7 5 2 1
   3 15 7 5 3 2
   3 16 8 6 3 2
   3 17 9 6 4 2
   3 18 9 7 4 2
   3 19 10 7 4 3
   3 20 11 8 5 3

   4 4 1 0 — —
   4 5 2 1 0 —
   4 6 3 2 1 0
   4 7 4 3 1 0
   4 8 5 4 2 1
   4 9 6 4 3 1
   4 10 7 5 3 2
   4 11 8 6 4 2
   4 12 9 7 5 3
   4 13 10 8 5 3
   4 14 11 9 6 4
   4 15 12 10 7 5
   4 16 14 11 7 5
4 17 15 11 8 6
4 18 16 12 9 6
4 19 17 13 9 7
4 20 18 14 10 8

5 5 4 2 1 0
5 6 5 3 2 1
5 7 6 5 3 1
5 8 8 6 4 2
5 9 9 7 5 3
5 10 11 8 6 4
5 11 12 9 7 5
5 12 13 11 8 6
5 13 15 12 9 7
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 Table 14.10      Continued  

  α  1       �      5% 2 %1
2

 1% 1
2 %

   n 1 n2    α  2       �      10% 5% 2% 1%

5 14 16 13 10 7
5 15 18 14 11 8
5 16 19 15 12 9
5 17 20 17 13 10
5 18 22 18 14 11
5 19 23 19 15 12
5 20 25 20 16 13

6 6 7 5 3 2
6 7 8 6 4 3
6 8 10 8 6 4
6 9 12 10 7 5
6 10 14 11 8 6
6 11 16 13 9 7
6 12 17 14 11 9
6 13 19 16 12 10
6 14 21 17 13 11
6 15 23 19 15 12
6 16 25 21 16 13
6 17 26 22 18 15
6 18 28 24 19 16
6 19 30 25 20 17
6 20 32 27 22 18

7 7 11 8 6 4
7 8 13 10 7 6
7 9 15 12 9 7
7 10 17 14 11 9
7 11 19 16 12 10
7 12 21 18 14 12
7 13 24 20 16 13
7 14 26 22 17 15
7 15 28 24 19 16
7 16 30 26 21 18
7 17 33 28 23 19
7 18 35 30 24 21
7 19 37 32 26 22
7 20 39 34 28 24
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 Table 14.10      Continued  

  α  1       �      5% 2 %1
2

 1% 1
2 %

   n 1 n2    α  2       �      10% 5% 2% 1%

8 8 15 13 9 7
8 9 18 15 11 9
8 10 20 17 13 11
   8 11 23 19 15 13
   8 12 26 22 17 15
   8 13 28 24 20 17
   8 14 31 26 22 18
   8 15 33 29 24 20
   8 16 36 31 26 22
   8 17 39 34 28 24
   8 18 41 36 30 26
   8 19 44 38 32 28
   8 20 47 41 34 30

   9 9 21 17 14 11
   9 10 24 20 16 13
   9 11 27 23 18 16
   9 12 30 26 21 18
   9 13 33 28 23 20
   9 14 36 31 26 22
   9 15 39 34 28 24
   9 16 42 37 31 27
   9 17 45 39 33 29
   9 18 48 42 36 31
   9 19 51 45 38 33
   9 20 54 48 40 36

   10 10 27 23 19 16
   10 11 31 26 22 18
   10 12 34 29 24 21
   10 13 37 33 27 24
   10 14 41 36 30 26
   10 15 44 39 33 29
   10 16 48 42 36 31
   10 17 51 45 38 34
   10 18 55 48 41 37
   10 19 58 52 44 39
   10 20 62 55 47 42
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 Table 14.10      Continued  

  α  1       �      5% 2 %1
2

 1% 1
2 %

   n 1 n2    α  2       �      10% 5% 2% 1%

   11 11 34 30 25 21
   11 12 38 33 28 24
   11 13 42 37 31 27
   11 14 46 40 34 30
   11 15 50 44 37 33
   11 16 54 47 41 36
   11 17 57 51 44 39
   11 18 61 55 47 42
   11 19 65 58 50 45
   11 20 69 62 53 48
   12 12 42 37 31 27
   12 13 47 41 35 31
12 14 51 45 38 34
12 15 55 49 42 37
12 16 60 53 46 41
12 17 64 57 49 44
12 18 68 61 53 47
12 19 72 65 56 51
12 20 77 69 60 54

13 13 51 45 39 34
13 14 56 50 43 38
13 15 61 54 47 42
13 16 65 59 51 45
13 17 70 63 55 49
13 18 75 67 59 53
13 19 80 72 63 57
13 20 84 76 67 60

14 14 61 55 47 42
14 15 66 59 51 46
14 16 71 64 56 50
14 17 77 69 60 54
14 18 82 74 65 58
14 19 87 78 69 63
14 20 92 83 73 67

15 15 72 64 56 51
15 16 77 70 61 55



Statistics and Probability   469

 Table 14.10      Continued  

  α  1       �      5% 2 %1
2

 1% 1
2 %

   n 1 n2    α  2       �      10% 5% 2% 1%

15 17 83 75 66 60
15 18 88 80 70 64
15 19 94 85 75 69
15 20 100 90 80 73

16 16 83 75 66 60
16 17 89 81 71 65
16 18 95 86 76 70
16 19 101 92 82 74
16 20 107 98 87 79

17 17 96 87 77 70
17 18 102 92 82 75
17 19 109 99 88 81
17 20 115 105 93 86

18 18 109 99 88 81
18 19 116 106 94 87
18 20 123 112 100 92

19 19 123 112 101 93
19 20 130 119 107 99

20 20 138 127 114 105

  Procedure for the Mann-Whitney test  

  1.   State for the data the null and alternative hypotheses, H 0  
and H 1   

  2.   Know whether the stated significance level, α, is for a one-
tailed or a two-tailed test (see 2. in the procedure for the sign 
test on page 459)  

  3.   Arrange all the data in ascending order whilst retaining their 
separate identities  

  4.   If the data is now a mixture of, say, A’s and B’s, write under 
each letter A the number of B’s that precede it in the sequence 
(or vice-versa)  
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  5.   Add together the numbers obtained from 4 and denote total 
by U. 
U is defined as whichever type of count would be expected to 
be smallest when H 1  is true     

  6.   Use  Table 14.10    for given values of n 1 and n 2 , and α  1 or α  2  
to read the critical region of U. For example, if, say, n 1       �      10 
and n 2       �      16 and α  2       �      5%, then from Table 14.10, U      �      42. 
If U in part 5 is greater than 42 we accept the null hypothesis 
H0, and if U is equal or less than 42, we accept the alternative 
hypothesis H 1                 

  Application: 10 British cars and 8 non-British cars are compared 
for faults during their first 10000 miles of use. The percentage of 
cars of each type developing faults were as follows:

   Non-British cars,  P 5 8 14 10 15 7 12 4

   British cars,  Q 18 9 25 6 21 20 28 11 16 34

Use the Mann-Whitney test, at a level of significance of 1%, to 
test whether non-British cars have better average reliability than 
British models       

 Using the above procedure: 

  1.   The hypotheses are: 
 H 0 :  Equal proportions of British and non-British cars have break-

downs  
 H 1 : A higher proportion of British cars have breakdowns     

  2.   Level of significance  α  1       �      1%  

  3.   Let the sizes of the samples be n P and n Q, where n P       �      8 and 
nQ       �      10    
The Mann-Whitney test compares every item in sample P in turn 
with every item in sample Q, a record being kept of the number 
of times, say, that the item from P is greater than Q, or vice-versa. 
In this case there are n P   nQ    , i.e. (8)(10)      �      80 comparisons to be 
made. All the data is arranged into ascending order whilst retain-
ing their separate identities – an easy way is to arrange a linear 
scale as shown in  Figure 14.15   . 
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 From  Figure 14.15 , a list of P’s and Q’s can be ranked giving: 

P P Q P P Q P Q P P P Q Q Q Q Q Q Q      

  4.   Write under each letter P the number of Q’s that precede it in the 
sequence, giving:    

P P Q P P Q P Q P P P Q Q Q Q Q Q Q

0     1            0 1 2 3 3 3      
  5.   Add together these 8 numbers, denoting the sum by U, i.e.    

U 13� � � � � � � � �0 0 1 1 2 3 3 3      

  6.   The critical regions are of the form U      �      critical region    
From  Table 14.10 , for a sample size 8 and 10 at significance level 
α  1       �      1% the critical regions is  U    ≤      13  
The value of U in our case, from 5, is 13 which is significant at 
1% significance level. 

The Mann-Whitney test has therefore confirmed that  there is evi-
dence that the non-British cars have better reliability than 
the British cars in the first 10,000 miles, i.e. the alternative 
hypothesis applies.                               

Sample P

Sample Q

4 5
9 11 16 18 2021 25 28 346

0 10 20 30

7 8 10 12 14 15

 Figure 14.15           



          15    Laplace Transforms   

  15.1     Standard Laplace transforms         

 Table 15.1         

  

   Time function   f(t) 

 Laplace transform 

� { f(t) }     �       e f(t) dtst

0

�
∞

∫     

1.   δ  (unit impulse)  1 

 2. 1 (unit step function) 
  

1
s     

  
3. k (step function)

  

k
s     

4. eat  (exponential function) 
  

1
s a�     

  
5. unit step delayed by T 

  

e
s

sT�

    

6. sin ω t (sine wave) 
  

ω
ωs2 2�     

7. cos ω t (cosine wave) 
  

s
s2 2� ω   

  
8. t (unit ramp function) 

  

1
2s   

  
9. t2  

  

2
3

!
s   
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 Table 15.1         

 Time function   f(t) 

 Laplace transform 

� { f(t) }       �      e f(t) dtst

0

�
∞

∫
10. t   n  (n      �      positive integer) 

  

n!
sn�1

  

 11.  cosh  ω t 
  

s
s2 2� ω   

 12.  sinh  ω t 
  

ω
ωs2 2�   

13. eat  t n  
  

n
s a n

!
( )� �1

  

 14.  e      �     at  sin  ω t (damped sine wave) 
  

ω
ω( )s � �a 2 2

  
 15.  e      �   at  cos  ω t (damped cosine wave) 

  

s �

� �

a
s a( )2 2ω   

 16.  e      � at  sinh  ω t 
  

ω
ω( )s a� �2 2

  

 17.  e      �     at  cosh  ω t 
  

s a
s a

�

� �( )2 2ω   

Common notations used for the Laplace 
transform

There are various commonly used notations for the Laplace trans-
form of f(t) and these include: 

  (i)    �  { f(t) }  or L { f(t) }   

  (ii)    � (f) or Lf  

  (iii)    f    (s) or f(s)    

 Also, the letter p is sometimes used instead of s as the parameter.   

                Application: Determine  � 1 2
1
3

4� �t t
⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪
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� � � �{ t t } { } {t} {t }

s s s

1 2
1
3

1 2
1
3

1
2

1 1
3

4

4 4

2 4

� � � � �

� � �
�

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

!
11

2

2 8 10 15 1

1 2 1
3

4 3

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟  from ,  and  of Table 

s s

.

. .
� � �

22 1
5

.
s

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ �

1
s

2
s

8
s2 5

� �

     

  Application: Determine  �  { 5e 2t       �      3e �     t   }   

� � �{ e e } (e ) {e }

s s

t t 2t t5 3 5 3

5
1

2
3

1
1

2 � � �

�
�

�
� �

� −

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠⎠
⎟⎟⎟⎟  from  of Table 

s s
(s ) (s 2)

(s )(s

4 15 1

5
2

3
1

5 1 3
2

.

�
�

�
�

�
� � �

� ��
�

1)
2s 11

s s 22

�

� �     

          Application:  Determine  �  { 6 sin 3t      �      4 cos 5t }        

� � �{  sin t  cos t} {sin t} {cos t}

s

6 3 4 5 6 3 4 5

6
3

32 2

� � �

�
�

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟�

�
4

5
6 7

2 2

s
s

from  and  of 

Table 15 1.

�
18

s 9
4s

s 252 2�
�

�

             Application:  Determine  �  { 2 cosh 2 θ       �      sinh 3 θ  }        

� � �{2 cosh sinh } {cosh } {sinh }

s

2 3 2 2 3

2
22 2

θ � � �

�
�

θ θ θ

s

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟�

�

3
3

11 12
2 2s

from  and  

of Table 15 1.

�
2s

s 4
3

s 92 2�
�

�
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� �{sin  t} cos  since cos 2t  sin t2 21
2

1 2 1 2� � � �( t
⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

 and 

sin t ( cos t)

{ } {cos t}

s

2 1
2

1 2

1
2

1
1
2

2

1
2

1

� �

� �

�

� �

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟�

�

�
� �

1
2 2

2 7 15 1

4

2 2

2

s
s

 from  and  of Table 

s s

.

( ) 22

2 22 4
4

2 4s s s s( ) ( )�
�

�
�

2
s(s 4)2 �

             Application:  Determine  �  { sin 2  t }        

             Application:  Determine  �  { 2t 4 e 3t  }        

� �{ t e } {t e }
!

(s
 from  of Tabt t2 2 2

4
3

134 3 4 3
4 1

� �
� �)

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ lle 

s

15 1

2 4 3 2
3 5

.

( )( )( )
( )

�
�

�
48

(s 3)5�            

  Application: Determine  �  { 4e 3t cos 5t }        

� �{ e cos t} {e cos t}

s
(s )

 from

t t4 5 4 5

4
3

3 5

3 3

2 2

�

�
�

� �

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟   of Table 

(s
s s

15 15 1

4 3
6 9 252

.

)
�

�

� �
�

+
4(s 3)

s 6s 342

�

� �            

  Application:  Determine  �  { 5e       �     3t  sinh 2t }        

� �{ e sinh t} {e sinh t}

(s
fr

t t5 2 5 2

5
2
3 2

3 3

2 2

� ��

�
� � �)

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ oom  of Table 

(s ) s s

16 15 1

10
3 2

10
6 9 42 2 2

.

�
� �

�
� � �

�
10

s 6s 52 � �            
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The Laplace transform of a step function of 10 volts, shown in Figure 
15.1(a)   , is given by: 

�{ } from  of Table 10 3 15 1�
10
s

.
     

The Laplace transform of a step function of 10 volts which is delayed 
by t      �      5     s is given by: 

10 10 5
5e

s
e

s
from  of T

sT s� �

� �
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

10
s

e 5s� aable 15 1.
     

 The function is shown sketched in  Figure 15.1(b) .       

  Application: Determine the Laplace transform of a step function 
of 10 volts which is delayed by t      �      5     s, and sketch the function      

V

10

(a)

t0

(b)

V

10

t0 5

 Figure 15.1 

The Laplace transform of a ramp function which starts at zero 
and increases at 4 V/s, shown in  Figure 15.2(a)   , is given by: 

4�{t} �
4
s2

             from 8 of  Table 15.1  

The Laplace transform of a ramp function which is delayed by 1     s 
and increases at 4 V/s is given by: 

4
s

e
2

s
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

� from  of Table 5 15 1.
     

 A sketch of the ramp function is shown in  Figure 15.2(b) .       

  Application: Determine the Laplace transform of a ramp func-
tion which is delayed by 1    s and increases at 4 V/s. Sketch the 
function.       



Laplace Transforms   477

V

4

(a)

t0 1

V

4

(b)

t0 1 2

 Figure 15.2 

The Laplace transform of an impulse voltage of 8    V which starts at 
time t      �      0, shown in  Figure 15.3(a)   , is given by: 

8 1 15 1�{ } from  of Table δ � 8 .      

The Laplace transform of an impulse voltage of 8 volts which is 
delayed by 2     s is given by: 

8 e 2s� from  of Table 5 15 1.      

 A sketch of the delayed impulse function is shown in  Figure 15.3(b) . 

  Application: Determine the Laplace transform of an impulse 
voltage of 8 volts which is delayed by 2     s. Sketch the function       

      Figure 15.3  

V

8

(a)

t0

(b)

V

8

t0 2

  15.2     Initial and final value theorems         

  The initial value theorem  

lim it [f(t)] lim it [s {f(t)}]
t 0 s→ →∞

� �
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  The final value theorem  

limit [f(t)] limit [s {f(t)}]
t s 0→∞ →

� �
     

The initial and final value theorems are used in pulse circuit appli-
cations where the response of the circuit for small periods of time, 
or the behaviour immediately after the switch is closed, are of 
interest. The final value theorem is particularly useful in investigat-
ing the stability of systems (such as in automatic aircraft-landing 
systems) and is concerned with the steady state response for large 
values of time t, i.e. after all transient effects have died away.             

  Application:  Verify the initial value theorem when f(t)      �      3e 4t        

 If f(t)      �      3e 4t  then  �{ e }
s

t3
3

4
4 �

�
    from 4 of  Table 15.1  

 By the initial value theorem,  limit [ e ] limit s
st

t

s→ →∞0

43
3

4
�

�

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥     

i.e.      3
3

4
0e �

�
∞

∞

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟     

i.e.     3      �      3 , which illustrates the theorem.       

  Application: Verify the initial value theorem for the voltage 
function (5      �      2 cos 3t) volts:       

 Let f(t)      �      5    �      2 cos 3t 

  � �{f(t)} {  cos t}
s

s
s

� � � �
�

5 2 3
5 2

92
    from 3 and 7 of  Table 15.1 

 By the initial value theorem,  limit [f(t)] limit [s {f(t)}]
t s→ →∞0

� �     

i.e.     limit [  cos t] limit
s sst

s
s

→
+

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0 2

5 2 3
5 2

9
� �

�→∞
�� �

�
limit

s
ss→∞

5
2

9

2

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥     

 i.e.      5 2 1 5
2

9
5 2

2

2
� � �

�
� �( )

∞
∞
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  Application:  Verify the final value theorem when f(t)      �      3e      �     4t        

limit [ e ] limit s
s

t

t s→∞ →

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥3

3
4

4

0

� �
�      

i.e.                          
3 0

3
0 4

e ( )�� �
�

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

    

 i.e.      0      �      0,  which illustrates the theorem.       

 i.e.           7      �      7 , which verifies the theorem in this case. 

 The initial value of the voltage is thus  7     V        

  Application: Verify the final value theorem for the function 
(2    �      3e �     2t sin 4t) cm, which represents the displacement of a 
particle       

 Let f(t)      �      2    �      3e      � 2t  sin 4t 

� �{f(t)} {2 e  sin t}
s (s

2
s

1

� � � �
� � �

� �

�3 4
2

3
4
2 4

2
2 2

t

)

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

22
(s

from  and  of Table 
� �2 16

3 14 15 1
2)

.
     

 By the final value theorem,  limit [f(t)] limit [s {f(t)}]
t s→∞ →

�
0

�     

i.e.
      
limit [ e sin t] limit s

s (s )t

t

→∞
2 3 4

2 12
2 16

2

0 2
� � �

� �
�

s→

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥     

       
� �

� �
limit

s
(s )s→0 2

2
12
2 16

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

    

 i.e.                             2    �      0    �      2    �      0 

i.e.               2      �      2 , which verifies the theorem in this case. 

  The final value of the displacement is thus 2     cm.    
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� �

�

� �

�

�
�

�

�
�

1
2

1
2 2

1
2 2

1
9

1
3

1
3

3
3

s s

s

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

�
1
3

sin 3t from  of Table 6 15 1.

If the Laplace transform of a function f(t) is F(s), i.e. �   { f(t) }     �      F(s), 
then f(t) is called the inverse Laplace transform of F(s) and is 
written as 

f(t) {F(s)}1� ��      

  Table 15.1  is used to determine inverse Laplace transforms             .

  Application: Determine  ��

�
1

2

1
9s

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

          

             Application: Determine  ��

�
1 5

3 1s

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

          

� �� �

�
�

�

1 15
3 1

5

3
1
3

s s

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪ ⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪

⎭

⎪⎪⎪
�

�

�5
3

1
1
3

1�

s ⎪⎪⎪

�
5
3

e
1
3

t
from  of Table 4 15 1.

           

  Application:  Determine  ��1
4

3
s

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

          

� �� �
�

� �1
4

1
3 1

3 3
3

3
1

s !
!

s
from 

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

1
2

t3 00 15 1 of Table .
           

  15.3     Inverse Laplace transforms         
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  Application: Determine  ��

�
1

2

7
4

s
s

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

          

� �� �

�
�

�
�1

2
1

2 2

7
4 2

s
s

7
s

s
f

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

7 cos 2t rrom  of Table 7 15 1.
           

  Application: Determine  ��

�
1

2

3
7s

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

          

� �

�

� �

�

�
�

�

�

1
2

1
2 2

1
2

3
7

1

7

3

7

7

s
3

s

s

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪( )

��

�

( )

.

7

12 15 1

2

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪

3
7

sinh 7t from  of Table 
           

  Application: Determine  ��

�
1

5

2
3( )s

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

          

� �� �
��

�
�

�

1
5

1
4 1

2
3

2
4

4
3( ) ( )s !
!

s

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

1
122

e t3t 4 from 13 of Table 15.1
           

  Application:  Determine  ��

� �
1

2

3
4 13s s

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

          

� �� �

� �
�

� �

�

1
2

1
2 2

3
4 13

3
2 3s s s

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪( )

e2t ssin 3t from  of Table 14 15 1.            
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� �� ��

� �
�

�

� �
1

2
1

2 2

4 3
4 5

4 3
2 3

s
s s

s
s

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪( ) ⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨

�
� �

� �

�
�

� �

�

�

�

�

1
2 2

1
2 2

4 2 5
2 3

4 2
2 3

( )
( )

( )

s
s

s
(s )

⎪⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

�
� �

� �

�

�

�

�

1
2 2

2 1

5
2 3

4 3

( )s

e  cosh tt

55
3

3

2 32 2

( )

( )s � �

⎧

⎨

⎪⎪⎪⎪⎪

⎩
⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪

⎭
⎪⎪⎪⎪⎪

                   from  of Table 17 15 1.

� 4e  cosh 3t
5
3

e2t � 22t sinh 3t

                                    from  of T16 aable 15 1.      

  Inverse Laplace transforms using partial 
fractions        

  Application:  Determine  �� �

� �
1

2

4 5
2

s
s s

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

          

 Let

4 5
2

4 5
2 1 2 1

1 2
22

s
s s

s
(s )(s )

A
(s )

B
(s )

A(s ) B(s )
(s )

�

� �

�

� � �
�

�

� � �

�
≡ ≡ ≡

((s )�1     

 Hence,        4s      �      5  �  A(s      �      1)      �      B(s      �      2) 

 When s      �      2,        3      �      3A, from which, A      �      1 

 When s      �       �     1,   � 9    �       �     3B, from which, B      �      3 

 Hence

� � �� � ��

� � �
�

�
�1

2
1 14 5

2
1

2
3

1
s

s s s s

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

≡
11

2
3

1
1

s s�
�

�
�

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

�
    

       � e 3e2t t� �     
from 4 of  Table 15.1        

  Application:  Determine  �� �

� �
1

2

4 3
4 5

s
s s

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪
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  Application:  Determine  �� � �

� �
1

2

2

5 8 1
3 1

s s
s )(s )(

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

          

 Let

5 8 1
3 1 3 1

1 32

2 2

2s s
(s )(s )

A
s

Bs C
(s )

A(s ) (Bs C)(s )
(s

� �

� � �
�

�

�

� � � �

�
≡ ≡

33 12)(s )�     
 Hence,              5s 2       �      8s      �      1  �  A(s 2       �      1)      �      (Bs      �      C)(s      �      3) 
 When s      �       �     3,                 20      �      10A, from which, A      �      2 
 Equating s 2  terms gives:      5    �      A    �      B, from which, B      �      3, since A      �      2 
Equating s terms gives:     8   �   3B   �   C, from which, C   �     �1, since B   �    3 

 Hence

� �� �� �

� � �
�

�

�
1

2

2
1

2

5 8 1
3 1

2
3

3 1
1

s s
(s )(s ) s

s
s

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪
⎩

≡
⎪⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

    

≡ � � �� � �

�
�

�
�

�
1 1

2
1

2

2
3

3
1

1
1s

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪s

s s
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

� 2e 3cos t sin t3t� � �

                         froom ,  and  of Table 4 7 6 15 1.       

  15.4      Solving differential equations using 
Laplace transforms         

  The Laplace transforms of derivatives  

  First derivatives:        �   { f � (t) }     �      s  �   { f(t) } �  f(0)  

 or   � �
dy
dx

s {y} y(0)
⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

� � (1)    

   where y(0) is the value of y at x      �      0   

  Second derivative:       �   { f 	 (t) }     �      s 2  �   { f(t) } �  sf(0)  �  f � (0)  

 or                    �  �
d y
dx

s {y} s y(0) y (0)
2

2
2

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

� � � � (2)    

   where y �  ( 0) is the value of  
dy
dx

    at x      �      0   



484   Engineering Mathematics Pocket Book

 Using the above procedure: 

  1.    2 5 3 0
2

2
� � � �

d y
dx

dy
dx

{y} { }
⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

� � �        

 2[s 2  �  { y }     �      sy(0)  �  y � (0)]      �      5[s �  { y }     �      y(0)]    �      3 �  { y }     �      0,
from equations (1) and (2) 

  2.   y(0)    �      4 and y � (0)      �      9    

Thus     2[s 2  �  { y }     �      4s      �      9]      �      5[s �  { y}     �      4]      �      3 �  { y }     �      0 

i.e.    2s 2  �  { y }     �    8s      �      18      �      5s �  { y}     �      20      �      3 �  { y }     �      0 

  3.   Rearranging gives: (2s 2       �      5s      �      3) �  { y }     �      8s      �      38    

 i.e.       �{y}
s

s s
�

�

� �

8 38
2 5 32     

  Higher derivatives:  

   �  { f n (t) }     �      s n  �   { f(t) } �  s n     �     1f (0) – s n     �     2 f � (0)  …  � f n     �     1  (0)  

 or       �
d y
dx

n

n

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

          �      s n  �  { y }   �  s n     �     1 y(0)  �  s n     �     2 y � (0)  …  � y n     �     1 (0)  

  Procedure to solve differential equations by 
using Laplace transforms  

  1.   Take the Laplace transform of both sides of the differential 
equation by applying the formulae for the Laplace transforms 
of derivatives (i.e. equations (1) and (2)) and, where necessary, 
using a list of standard Laplace transforms, as in  Tables 15.1   

  2.   Put in the given initial conditions, i.e. y(0) and y � (0)  

  3.   Rearrange the equation to make � { y }  the s ubject.  

  4.   Determine y by using, where necessary, partial fractions, and 
taking the inverse of each term.                

  Application: Solve the differential equation  2 5 3 0
2

2

d y
dx

dy
dx

y� � � ,  

given that when x   �   0, y   �   4 and dy
dx

� 9           
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  4.    y
s

s s
�

�

� �
�� 1

2

8 38
2 5 3

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

       

  

Let
8 38

2 5 3
8 38

2 1 3

2 1 3
3 2 1

2

s
s s

s
s )(s )

A
s

B
s

A(s ) B( s

�

� � � �

�
�

�

� � �

≡

≡ ≡

+
(

))
( s )(s )2 1 3� �     

Hence,     8s      �      38      �      A(s      �      3)      �      B(2s    �      1) 

 When s      �      0.5,         42      �      3.5A, from which, A      �      12 

 When s  ��3,         14  �       �   7B, from which, B  �       �     2 

Hence,      y
s

s s s s
�

�

� �
�

�
�

�
� �� �1

2
18 38

2 5 3
12

2 1
2

3

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎭⎪⎪

    

                    

�

�

�
�

� �� �1 112

2
1
2

2
3s s⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪

⎧
⎨
⎪⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

     

 Hence,     y 6e 2e
1
2

x 3x� � −          from 4 of  Table 15.1        

  Application: Solve  
d y
dx

dy
dx

2

2
3 9� �    , given that when x      �      0, 

y      �      0 and  dy
dx

� 0           

  1.    � � �
d y
dx

dy
dx

{ }
2

2
3 9

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

� �        

 Hence, [s 2  �  { y }     �      sy(0)  �  y � (0)]      �      3[s �  { y}     �      y(0)]    �       
9
s

    

  2.   y(0)    �      0 and y � (0)      �      0    

 Hence, s 2  �  { y }     �      3s�   { y}     �       
9
s

    

  3.   Rearranging gives: (s 2  �  3s) �  { y }     �       
9
s

       

 i.e.       �{y}
s(s s) s (s )

�
�

�
�

9
3

9
32 2
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  4.    y
s (s )

�
�

�� 1
2

9
3

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

       

 Let  
9

3 3
3 3

32 2

2

2s (s )
A
s

B
s

C
s

A(s)(s ) B(s ) Cs
s (s )�

� �
�

� � � �

�
≡ ≡     

 Hence,      9  �  A(s)(s    �      3)      �      B(s      �      3)      �      Cs2  

 When   s      �      0, 9      �       �     3B, from which, B  �       � 3 

 When   s      �      3, 9      �      9C, from which, C      �      1 

Equating s 2 terms gives: 0      �      A    �      C, from which, A  �       �     1,
since C      �      1 

 Hence,  � �� �

�
� � � �

�
1

2
1

2

9
3

1 3 1
3s (s s s s)

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

    

                                         �       �      1 � 3x      �      e 3x    
 from 2, 8 and 4 of  Table 15.1 

i.e.                       y      �      e 3x       �      3x      �      1        

  Application: Solve  
d y
dx

dy
dx

y e x
2

2
27 10 20� � � �    , given that 

when x      �      0, y      �      0 and  
dy
dx

� �
1
3

          

  1.    � � � �
d y
dx

7
dy
dx

{y} {e x
2

2
210 20

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

� � � � }}        

 Hence, [s 2  �  { y }     �      sy(0)  �  y � (0)]      �      7[s �  { y }     �      y(0)]    �      10 �  { y }       

�
       

1
2

20
s s�

�
    

  2.   y(0)    �      0 and y � (0)  �  �
1
3

       

 Hence, s 2  �  { y }     �      0  �  �
1
3

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟        �      7s �  { y}     �      0  �  10�   { y}    

   �     
  

s (s )
s(s )

s
s(s )

� �

�
�

�

�

20 2
2

21 40
2     

  3.   (s 2  �  7s      �      10) �  { y }     

�       
21 40

2
1
3

3 21 40 2
3 2

65 120
3 2

2s
s(s )

( s ) s(s )
s(s )

s s
s(s )

�

�
� �

� � �

�
�

� � �

�        
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Hence, �{y}
s s

s(s )(s s )
s s

s(s )(s )
�

� � �

� � �
�

� � �

� �

2

2

265 120
3 2 7 10

1
3

65 120
2 2 ((s )� 5

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥    

�
� � �

� �

1
3

65 120
5 2

2

2

s s
s(s )(s )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
    

  4.    y
s s

s(s )(s )
�

� � �

� �
�1

3
65 120
5 2

1
2

2
�

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

      

 Let  
� � �

� �
�

�
�

�
�

�

s s
s(s )(s )

A
s

B
s

C
s

D
(s )

2

2 2

65 120
5 2 5 2 2

≡     

≡
A(s )(s ) B(s)(s ) C(s)(s )(s ) D(s)(s )

s(s )(s
� � � � � � � � �

� �

5 2 2 5 2 5
5

2 2

22 2)   

 Hence,    �      s 2       �      65s  �  120  �  A(s    �      5)(s      �      2) 2       �      B(s)(s    �      2) 2  �  
 C(s)(s   �      5)(s    �      2)      �      D(s)(s    �      5) 

 When s      �      0,             �     120  �       � 20A, from which, A      �      6 

 When s      �      5,       180      �      45B, from which, B      �      4 

 When s      �      2,               6  �       �     6D, from which, D  �       �     1 

 Equating s 3  terms gives: 0      �      A    �      B  �  C, from which, C  �       � 10 

 Hence,

1
3

65 120
5 2

1
3

6 4
5

101
2

2
1� �� �� � �

� �
� �

�
�

s s
s(s )(s ) s s

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪ ss (s )�

�
�2
1
2 2

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪    

      �
1
3

   [6      �      4e 5x  �  10e 2x  �  xe 2x ] 

 Thus,       y 2
4
3

e
10
3

e
x
3

e5x 2x 2x� � � �      

  15.5      Solving simultaneous differential 
equations using Laplace transforms         

  Procedure to solve simultaneous differential 
equations using Laplace transforms  

  1.   Take the Laplace transform of both sides of each simultaneous 
equation by applying the formulae for the Laplace transforms 
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of derivatives (i.e. equations (1) and (2), page 483) and using a 
list of standard Laplace transforms, as in  Table 15.1   

  2.   Put in the initial conditions, i.e. x(0), y(0), x � (0), y�(0)  

  3.   Solve the simultaneous equations for �  { y }  and �  { x }  by the 
normal algebraic method.  

  4.   Determine y and x by using, where necessary, partial fractions, 
and taking the inverse of each term.                

  Application: Solve the following pair of simultaneous differen-
tial equations 

dy
dt

x

dx
dt

y et

� �

� � �

1

4 0
     

 given that at t      �    0, x      �      0 and y      �      0       

 Using the above procedure: 

  1.      � � �
dy
dt

{x} {1}
⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

� � (3)      

� � � �
dx
dt

{y} {e } { }t
⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

� � �4 0  (4)      

 Equation (3) becomes: 

[s {y} y( )] {x}
s

� �� � �0
1  (3 � )    

             from equation (1), page 483 and  Table 15.1    

 Equation (4) becomes: 

[s {x} x( )] {y} 
s

� �� � � �
�

0
4

1
(4� )      

  2.   x(0)    �      0 and y(0)      �      0 hence    

 Equation (3 � ) becomes: 

s {y} {x}
s

� �� �
1

 (3 � )      
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 and equation (4 � ) becomes:   s �  { x }     �       �  { y }        �       �
�

4
1s

   

or                                        � � � �
�

� �{y} s {x}
s

4
1

(4� )      

  3.   1 �  equation (3 � ) and s  �  equation (4�    ) gives:    

                                              
s {y} {x}

s
� �� �

1
 (5)      

                                        
� � � �

�
s {y} s {x} 

s
s

� �2 4
1

 (6)      

 Adding equations (5) and (6) gives: 

(s ) {x}
s

s
s

(s ) s( s)
s(s )

s s
s(s )

2 � � �
�

�
� �

�
�

� � �

�
1

1 4
1

1 4
1

4 1
1

2
�

   

   from which,       �{x}
s s

s(s )(s )
�

� � �

� �

4 1
1 1

2

2       

 Using partial fractions 

� � �

� �
�

�
�

�

�

�
� � �

4 1
1 1 1

1 1

2

2 2

2

s s
s(s )(s )

A
s

B
(s )

Cs D
(s 1)

A(s )(s ) B s (

≡

ss ) (Cs D) s (s )
s(s )(s )

2

2

1 1
1 1

� � �

� �

+

     
Hence,     
       �     4s2 � s   �   1   �   A(s   �   1)(s2   � 1)   �   Bs(s2 � 1)   �   (Cs   �   D)s(s      �      1)

 When s      �      0,             �     1 �       �A  hence,  A      �      1  

 When s      �      1,   �      4    �      2B      hence,  B      �       � 2  

 Equating s 3  coefficients: 

0 1 2� � � � � �A B C hence,  (since A  and B )C 1�      

 Equating s 2  coefficients: 

� � � � � � �4 1 1A D C hence  (since A  and C )D 2� �      

Thus,      �{x}
s s

s(s s (s
s

(s
�

� � �

� �
� �

�
�

�

�

4 1
1 1

1 2
1

2
1

2

2 2)( ) ) )s
    



490   Engineering Mathematics Pocket Book

  4. 

   

Hence,    x
s (s

s
(s

s (s

� �
�

�
�

�

� �

�

�

�

�

1
2

1

1 2
1

2
1

1 2

) )

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

��
�

�
�

�1 1
2

12 2)
s

(s ) (s )

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪        

 i.e.  x      �      1    �      2e t       �      cos t      �      2 sin t  from  Table 15.1 , page 472 

 The second equation given originally is  
dx
dt

y et� � �4 0     

from which,  y
dx
dt

e
d
dt

t� � �4    (1   �   2et     �   cos t   �   2 sin t)   �   4et  

� � � � �2 2 4e sin t cos t et t
     

i.e.                               y      �      2e t  �  sin t  �2 cos t  

 [Alternatively, to determine y, return to equations (3 �  � ) and (4��)]       

  Application: Solve the following pair of simultaneous differen-
tial equations 

d x
dt

x y

d y
dt

y x

2

2

2

2

� �

� � �
     

 given that at t      �    0, x      �      2, y  ��1,
dx
dt

� 0     and  
dy
dt

� 0           

  1.         [s {x} s x( ) x ( )] {x} {y}2 0 0� � �� � � �′ (7)      

[s {y} s y( ) y ( )] {y} {x}2 0 0� � �� � � � �′ (8)      

  2.   x(0)    �      2, y(0)  �       �     1, x � (0)      �      0 and y � (0)      �      0     

hence    s {x} 2s {x} {y}2� � �� � � (7� )      

s {y} s {y} {x}2� � �� � � � (8� )      
  3.   Rearranging gives:    

(s ) {x} {y} s2 1 2� � �� � (9)      

� �{x} (s ) {y} s� � � �2 1 (10)      
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 Equation (9)  �  (s 2  �  1) and equation (10)  �  1 gives: 

(s )(s ) {x} (s ) {y} (s ) s2 2 2 21 1 1 12� � � � � �� � (11)      

� �{x} (s ) {y} s� � � �2 1 (12)      

 Adding equations (11) and (12) gives: 

[(s )(s ) ] {x} (s ) s s2 2 21 1 1 12� � � � � ��      

 i.e.         s 4  �  { x}     �      2s 3  �  s      �      s(2s 2  �  1) 

 from which,       �{x}
s ( s )

s
s
s

s
s s s s

�
�

�
�

� � � �
2 1 2 1 2 1 2 12

4

2

3

2

3 3 3     

  4.   Hence       x
s s

� ��� 1
3

2 1⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

       

i.e.          x 2
1
2

t2� �     

 Returning to equations (9) and (10) to determine y: 

 1  �  equation (9) and (s 2   �  1)  �  equation (10) gives: 

(s ) {x} {y} s2 1 2� � �� � (13)      
(s ) {x} (s )(s ) {y} s(s )2 2 2 21 1 1 1� � � � � � �� � (14)      

 Equation (13) � equation (14) gives: 

[ (s )(s )] {y} s s(s )� � � � � � �1 1 1 2 12 2 2�      

 i.e.                              � s 4  �  { y }     �      s 3  �  s 

and                      �{ y}
s s

s s s
�

�

�
� � �

3

4 3

1 1
    

from which,                     y
s s

� � ��� 1
3

1 1⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

    

 i.e.                                y 1
1
2

t2� � �                 



  16    Fourier Series 

                                           16.1      Fourier series for periodic functions of 
period 2 π  

         The basis of a Fourier series is that all functions of practical 
significance which are defined in the interval  �  π       �      x  �  π can 
be expressed in terms of a convergent trigonometric series of 
the form: 

 f(x)      �      a 0       �      a 1 cos x      �      a 2  cos 2x      �      a 3 cos 3x      �       … .      �      b 1 sin x      
�      b 2 sin 2x      �      b 3 sin 3x      �      ..

when a 0 , a 1 , a 2 ,  …  b 1 , b 2 ,  …  are real constants, i.e.

f(x) a0� � �
�

(a cos nx b sin nx)n n
n 1

∞

∑  (1)
    

   where for the range  �  π  to  π :

a
1

2
f(x)dx0 �

�π π

π

∫    

  
a

1
f(x)cosnx dxn �

�π
 )( , , ,n � 1 2 3 …∫ π

π

   

   and        b
1

f(x)sin nx dxn �
�π π

π
  ( )n � 1 2 3, , ,…∫     

  Fourier series provides a method of analysing periodic func-
tions into their constituent components. Alternating currents and 
voltages, displacement, velocity and acceleration of slider-crank 
mechanisms and acoustic waves are typical practical examples 
in engineering and science where periodic functions are involved 
and often requiring analysis. 

For an exact representation of a complex wave, an infinite number 
of terms are, in general, required. In many practical cases, how-
ever, it is sufficient to take the first few terms only. 
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      The square wave function defined is shown in  Figure 16.1   . Since f(x) 
is given by two different expressions in the two halves of the range 
the integration is performed in two parts, one from  �  π to 0 and the 
other from 0 to  π .     

           Application: Obtain a Fourier series for the periodic function f(x) 
defined as:

  
f x

k

k x
( )

, when x

, when 
�

� �

�

π

π

〈 〈

〈 〈

⎧
⎨
⎪⎪

⎩⎪⎪

0

0
   

   (The function is periodic outside of this range with period 2 π )  

 Figure 16.1   

0

k

�k

�π π 2π

f (x)

x

 From above: a f x k k dx

kx k

0

0

0

1
2

1
2

1
2

� � � �

� � �

� �

�

π π

π

π

π π

π

π

( )

[ ] [

dx dx
0∫ ∫∫

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

xx]0

0

π{ }

�     
 [a 0 is in fact the mean value of the waveform over a complete 
period of 2 π and this could have been deduced on sight from 
 Figure 16.1 ]

  

a f x nx k kn � � � �
� �

1 1 0

π π 0

π

π
( ) cos cos cos dx nx dx nx dx

π

π

∫ ∫∫
⎧
⎨
⎪⎪
⎩⎪⎪

⎫⎫
⎬
⎪⎪
⎭⎪⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
�

�
�

�

1

0π π

0 π
k

n
k

n
sin sinnx nx

⎬⎬
⎪⎪⎪

⎭
⎪⎪⎪

� 0    
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   Hence a 1, a 2, a 3, … are all zero (since sin 0   �   sin(�nπ)   �   sin n π     �   0),
and therefore no cosine terms will appear in the Fourier series.

  

b f x k kn � � � �
� �

1 1 0

π ππ

π

0

π

π
( ) sin sin sinnx dx nx dx nx dx∫ ∫∫

⎧
⎨
⎪⎪
⎩⎪⎪

⎫⎫
⎬
⎪⎪
⎭⎪⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
� �

�

�

1
0

0π π

π
k

n
k

n
cos cosnx nx

⎬⎬
⎪⎪⎪

⎭
⎪⎪⎪      

 When n is odd:

b
k

n n nn � � � � � � �
π

1 1 1⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ �� � �

1 2 2
n

k
n n

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪π ⎪⎪

�
4 k
nπ

    

 Hence,  b1
k

�
4
π

   ,  b3
4
3

�
k
π

   ,  b5
4
5

�
k
π

   , and so on 

 When n is even:  b
k

n n n nn � � � � � �
π

1 1 1 1⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪⎪
� 0     

Hence, from equation (1), the Fourier series for the function shown 
in  Figure 16.1  is given by:

  
f x a a nx b bn n

n
n

n

( ) ( cos sin ) ( sin )� � � � � �
� �

�

0
1 1

0 0nx nx
�

∑ ∑
   

   i.e. f x x x
k

x( ) sin sin sin ..� � � �
4 4

3
3

4
5

5
k k

π π π
    

i.e.     f(x)
4k

sin x
1
3

sin 3x
1
5

sin 5x ...� � � �
π

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟     

 If k      �       π  in the above Fourier series then:

f x x x( ) sin sin sin� � �4
1
3

3
1
5

5+ …⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟x
    

 4 sin x is termed the first partial sum of the Fourier series of f(x), 

  4
4
3

3sin sinx x�
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟     is termed the second partial sum of the Fourier

series, and 
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  4
4
3

3
4
5

5sin sin sinx x x� �
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟     is termed the third partial sum, and 

so on. 

 Let P 1       �      4 sin x,  P x x2 4
4
3

3� �sin sin
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟     and

P x x x3 4
4
3

3
4
5

5� � �sin sin sin .
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

  
Graphs of P 1, P 2 and P 3, obtained by drawing up tables of values, 
and adding waveforms, are shown in  Figures 16.2(a) to (c)    and they 
show that the series is convergent, i.e. continually approximating 
towards a definite limit as more and more partial sums are taken, 
and in the limit will have the sum f(x)      �       π . 

4
�

��

��

��/2 �/2

P1

f(x)
f (x)

x�0

�4

(a)

�

��

��

��/2 �/2

P2

f(x)f (x)

x�0

P1

(b)

4/3 sin 3x

π

�π

�π

π/2

�π/2

P3

f (x)f (x)

xπ0

P2

(c)

4/5 sin 5x

 Figure 16.2   

       Even with just three partial sums, the waveform is starting to 
approach the  rectangular wave the Fourier series is representing. 
Thus, a rectangular wave is comprised of a fundamental and an infi-
nite number of odd harmonics.  
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  16.2      Fourier series for a non-periodic function 
over range 2 π  

         If a function f(x) is not periodic then it cannot be expanded in a 
Fourier series for all  values of x. 

However, it is possible to determine a Fourier series to represent 
the function over any range of width 2 π . 

For determining a Fourier series of a non-periodic function over a 
range 2 π, exactly the same formulae for the Fourier coefficients 
are used as in equation (1), page 492.             

  Application: Determine the Fourier series to represent the func-
tion f(x)      �      2x in the range  �  π  to  �  π        

The function f(x)      �      2x is not periodic. The function is shown in the 
range �  π to π in  Figure 16.3    and is then constructed outside of that 
range so that it is periodic of period 2 π (see broken lines) with the 
resulting saw-tooth waveform.     

���2�

�2�

2�

2�

3��

f (x) f (x) � 2x

x0

 Figure 16.3 

 For a Fourier series:  f x a a bn n
n

( ) ( cos sin )� � �
�

0
1

nx nx
∞

∑    

a f x dx x x

a f xn

0
21

2
1

2
2

1
2

0

1

� � � �

�

� ��π π π

π

π

π

π

π

π

π
( )

( ) cos

 dx∫∫ ⎡
⎣⎢

⎤
⎦⎥

nnx dx nx dx

nx nx
dx b

�

� �

�� �

�

1

2

π
2

π

π

π

π

π

π

∫ ∫

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

x

x
n n

cos

sin sin
yy parts (see Chapter 12)
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� � � �

�

�

2 2
0

0

2 2π π
π

π
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n
nx

n
n

n
sin cos cosnx⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

��
�

�

� �
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( ) sin sin

n
n

b f x xn

π

π π

2
0

1 1
2

⎛
⎝
⎜⎜⎜

⎞
⎠
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⎤

⎦
⎥
⎥
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�
�

�
�

π

π

π

π

π

π

π

∫∫

∫
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 x cox
n
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x nx nx

n

�
�

�

�
�

�

�

2

2

2

2

π

π
π π π

π
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cos sin

cos sin

n n

n n
n

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛
⎝
⎜⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥�

� � �
�

�

�
�

( ) cos ( ) sin ( )π π π

π
π

n
n

n
n2

2 ccos cos( )
cos

cos cos

n
n

n
n n

n

n

π π π
π

π π

�
�

�
�

� �

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

4

since n ( )

      When n is odd, b
nn �
4

   . Thus b 1     �   4, b3
4
3

�    , b5
4
5

�    , and so on. 

When n is even, b
nn � �
4    . Thus b2

4
2

� �    , b4
4
4

� �    , b6
4
6

� �  ,

  and so on. 

 Thus , f x x x x x x( ) sin sin sin sin� � � � �2 4
4
2

2
4
3

3
4
4

4

� � �
4
5

5
4
6

6sin sin ..x x
    

i.e. 2x 4(sin x
1
2

sin 2x
1
3

sin 3x
1
4

sin 4x� � � �

� � �
1
5

sin 5x
1
6

sin 6x ...)
    

 for values of f(x) between  �  π  and  π .  
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  16.3     Even and odd functions 

         A function y      �      f(x) is said to be even if f( � x)      �      f(x) for all values 
of x. Graphs of even functions are always  symmetrical about 
the y-axis (i.e. a mirror image). Two examples of even functions 
are y      �      x 2  and y      �      cos x as shown in Figure 6.38, page 181. 

A function y      �      f(x) is said to be odd if f( � x)      �       �     f(x) for all values 
of x. Graphs of odd functions are always  symmetrical about the 
origin. Two examples of odd functions are y      �      x 3 and y      �      sin x 
as shown in Figure 6.39, page 181. 

Many functions are neither even nor odd, two such examples 
being y      �      ln x and y      �      e x . 

  Fourier cosine series 

The Fourier series of an even periodic function f(x) having period 
2π contains cosine terms only (i.e. contains no sine terms) and 
may contain a constant term. 

Hence    f(x) a a cos nx0 n
n 1

� �
�

�

∑ (2)    

  

where     a
1

f(x) dx0
0

�
1

2π π

π
f x dx( ) �

�∫ ∫π

π
    (due to symmetry) 

and a
2

f(x) cos nx dxn � �
�

1
π

f x( ) cos nx dx
π

π

∫ ∫π

π

0
     

  Fourier sine series 

The Fourier series of an odd periodic function f(x) having period 
2π contains sine terms only (i.e. contains no constant term and 
no cosine terms). 

Hence f(x) b sin nxn
n 1

�
�

�

∑ (3)    

   where    b
2

f(x) sin nx dxn
0

� �
�

1
π π

π
f x( ) sin nx dx∫ ∫π

π
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 Hence from equation (2), the Fourier series is given by:

f x a an
n

( ) cos� �
�

�

0
1

nx∑     (i.e. the series contains no sine terms).

  

a f x dx

x

0
0

2

2

0

1 1
2 2

1
2

� � � �

�

π π

π

0

π π

π

π

π

( )∫ ∫ ∫
⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

[ ]

dx dx
/

/

//
/

2
2

2

1
2

0

� �

� � � � �

�

x[ ]{ }
[ ]⎡

⎣⎢
⎤
⎦⎥

π
π

π
π π π)( ) ( ) (

   

             Application: Determine the Fourier series for the periodic func-
tion defined by: 

f x( )

,

,

,

�

� � �

�

�

2
2

2
2 2

2
2

 when x

when x

when x

π
π

π π

π
π

〈 〈

〈 〈

〈 〈

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪

 and has a period of 2π

   

0�π/2 π/2�3π/2

�2

2

3π/2 2π�π π

f (x)

x

 Figure 16.4   

         The square wave shown in  Figure 16.4    is an even function since it 
is symmetrical about the f(x) axis.     
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a f x nx nxn � � � �
2 2

2 2
20π π π

ππ/2
( ) cos cos cosdx dx nx dx

/∫∫
⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎭⎪⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫

∫0

π

π

π

π

π
� �

�4

0

2

2

sin sinnx nx
n

/

/n
⎬⎬
⎪⎪⎪

⎭
⎪⎪⎪

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎧
⎨
⎪⎪
⎩⎪⎪

� �
4 2

0
π

π/sin( )n
n

  
/

/

� �
�

�

0
2

4 2 2

sin( )

sin( )

π

π
π

n
n

n
n

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟
⎫
⎬
⎪⎪
⎭⎪⎪

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟�

8
π

π
2n

n
sin

   

   When n is even, a n       �      0 

 When n is odd,  a
nn �

8
π

    for n      �      1, 5, 9, …  

and            an �
�8
πn

    for n      �      3, 7, 11, …  

 Hence,  a a a1 3 5
8 8

3
8

5
� �

�
�

π π π
, , ,     and so on 

 Hence the Fourier series for the waveform of  Figure 16.4  is given by:

  
f(x)

8
cos x

1
3

cos 3x
1
5

cos 5x
1
7

cos 7x ...� � � � �
π

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟
   

          Application: Obtain the Fourier series for the square wave 
shown in  Figure 16.5   .  

0

2

�2

�π π 2π 3π

f (x)

x

 Figure 16.5 
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      The square wave is an  odd function since it is symmetrical about 
the origin. 

 Hence, from equation (3), the Fourier series is given by:

f x bn
n

( ) sin�
�

nx
1

�

∑
    

 The function is defined by:  f x
x

x
( )

,

,
�

� �2 0

2 0

when

when

π

π

〈 〈

〈 〈

⎧
⎨
⎪⎪

⎩⎪⎪
   

  

b f x
nn � � �

�

�
�

2 2
2

4

4

0 0π π π

π

π

0

π
( ) sin sin

cos

c

nx dx nx dx
nx

∫ ∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

π

oos
( cos )

n
n n n

n
π

π
π

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥� � � �

1 4
1

   

   When n is even, b n       �      0. When n is odd,  b
n nn � � � �

4
1 1

8
π π

[ ( )]     

 Hence,  b b b1 3 5
8 8

3
8

5
� � �

π π π
, , ,     and so on 

 Hence the Fourier series is:

  
f(x)

8
sin x

1
3

sin 3x
1
5

sin 5x
1
7

sin 7x ...� � � � �
π

( )
   

     16.4     Half range Fourier series 

       When a function is defined over the range say 0 to π instead of 
from 0 to 2 π it may be expanded in a series of sine terms only or 
of cosine terms only. The series produced is called a  half-range
Fourier series . 

 When a  half range cosine series  is required then:

f(x) a a cos nx0 n
n 1

� �
�

�

∑  (4)
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   where a
1

f(x) dx0
0

�
π

π

∫     and a
2

f(x) cos nx dxn
0

�
π

π

∫     

If a half-range cosine series is required for the function f(x)      �      x 
in the range 0 to π then an even periodic function is required. In 
Figure 16.6   , f(x)   �      x is shown plotted from x      �      0 to x      �       π. Since 
an even function is symmetrical about the f(x) axis the line AB 
is constructed as shown. If the triangular waveform produced is 
assumed to be periodic of period 2 π outside of this range then 
the waveform is as shown in Figure 16.6.     

When a half-range sine series is required then the Fourier 
coefficient b n  is calculated as earlier, i.e.

f(x) b sin nxn
n 1

�
�

�

∑ (5)
    

   where                    b
2

f(x)sin nx dxn
0

�
π

π

∫     

If a half-range sine series is required for the function f(x)      �      x 
in the range 0 to π then an odd periodic function is required. In 
Figure 16.7   , f(x)   �      x is shown plotted from x      �      0 to x      �       π. Since 

�2π 2π0

A

B

�π π

π

f (x)
f (x) � x

x
 Figure 16.6   

2π 3π0
C

D

�π�2π π

π

�π

f (x)
f (x) � x

x

 Figure 16.7   
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      The function is shown in  Figure 16.6.  

When f x x a f x dx x
x

( ) ( )� � � � �, dx0
0 0

2

0

1 1 1
2 2π π π

ππ π
π

∫ ∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥    

                      

a f x nx x

x
n n

n � �

� �

2 2

2
2

π π

π

0

π

0

π
( ) cos cos

sin cos

dx nx dx

nx nx

∫ ∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥⎥

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠

0

2 2

2
0

0

π

π
π π π

 by parts

� � � �
sin cos cosn

n
n

n n
⎟⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟�

�
� � � �

2
0

0 2
1

2 2 2

cos cos
(cos )

n
n n n

n
π

π
π

   
   When n is even, a n       �      0 

When n is odd, a
n nn � � � �

�2
1 1

4
2 2π π

( )     

Hence, a1
4

�
�

π
   ,  a3 2

4
3

�
�

π
   ,  a5 2

4
5

�
�

π
   , and so on

 Hence, the half-range Fourier cosine series is given by:

  
f(x) x

2
4

cos x
1
3

cos 3x
1

5
cos 5x ...

2 2
� � � � � �

π
π

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟
   

an odd function is symmetrical about the origin the line CD is 
constructed as shown. If the sawtooth waveform produced is 
assumed to be periodic of period 2 π outside of this range, then 
the waveform is as shown in  Figure 16.7              

     Application: Determine the half-range Fourier cosine series to 
represent the function f(x)      �      x in the range 0      �      x  �  π   

        Application: Determine the half-range Fourier sine series to 
represent the function f(x)      �      x in the range 0      �      x �  π   

      The function is shown in  Figure 16.7 . 
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 When f(x) � x,

b f x nx dx xn � �
2 2

0 0π π

π π
( ) sin sin∫ ∫ nx dx    

                

�
�

�

�
�

�

2

2

2
0

2

π

π
π π π

π
x

n n

n
n

n
n

cos sin

cos sin

nx nx
by parts

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛
⎝
⎜⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥� � � �( ) cos0 0

2
n

nπ
   

   When n is odd, b
nn �
2

   . Hence, b1
2
1

�    , b3
2
3

�    , b5
2
5

�     and so on. 

When n is even, b
nn � �
2

   . Hence b2
2
2

� �    , b4
2
4

� �    , b6
2
6

� �

   and so on 

 Hence the half-range Fourier sine series is given by:

  

f(x) x

2 sin x
1
2

sin 2x
1
3

sin 3x
1
4

sin 4x
1
5

sin 5x ...

�

� � � � � �
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟⎟

   

     16.5      Expansion of a periodic function of 
period L 

       If f(x) is a function of period L, then its Fourier series is given by:

  f(x) a a cos
2 nx

L
b sin

nx
L0 n n� � �

π 2π⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥⎥∑

n 1�

�

(6)    

   where, in the range  �
L
2

    to  �
L
2

   :

  
a

1
L

f(x)dx, a
2
L

f(x)cos
2 nx

L
dx0 n

L/2

L/2

L/2

L/2
� �

��

π⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟∫∫
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   and b
2
L

f(x)sin
2 nx

L
dxn

L/2

L/2
�

�

π⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟∫      

(The limits of integration may be replaced by any interval of 
length L, such as from 0 to L)           

  Application: The voltage from a square wave generator is of the 
form:

  
v t

t

t
( )

,

,
�

�0 4 0

10 0 4

〈 〈

〈 〈

⎧
⎨
⎪⎪

⎩⎪⎪
and has a period of 8 ms.

   

   Find the Fourier series for this periodic function  

0

10

�4 4 8 12 t (ms)

Period L � 8 ms

�8

f(x)

 Figure 16.8   

      The square wave is shown in  Figure 16.8   . From above, the Fourier 
series is of the form:

  

v t a a
nt

L
b

nt
Ln n( ) cos sin� � �0
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⎜⎜⎜
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⎜⎜⎜
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⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥⎥

⎧

∑

∫ ∫ ∫ ∫

n

L

L
a

L
v t v t

�

� � �
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⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟
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L

v t
L

v t
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π
π

n
n[cos cos ]

   

   When n is even, b n       �      0 

 When n is odd,  b1
10

1 1
20

� � � �
−
π

( )
π

   ,

b b3 5
10

3
1 1

20
3

20
5

�
�

� � � �
π π π

( ) , ,     and so on 

 Thus the Fourier series for the function v(t) is given by:
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     Application: Obtain the Fourier series for the function defined by:

  

f x
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�
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   The function is periodic outside of this range of period 4  
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      The function f(x) is shown in Figure 16.9    where period, L      �      4. Since 
the function is symmetrical about the f(x) axis it is an even function 
and the Fourier series contains no sine terms (i.e. b n       �      0) 

 Thus, from equation (6),  f x a a
Ln

n

( ) cos� �
�

�

0
1

2πnx⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟∑    

  

a
L

f x f x

dx

L

L

0
2

2

2

2

2

1

1

1

1 1
4

1
4

0 5

� �

� �

� �

�

�

�

( ) ( )dx dx

dx

/

/

∫ ∫

∫ ∫
⎧
⎨
⎪⎪
⎩⎪⎪

��

� � � � � ��

0

1
4

5
1
4

5 5
10
4

5
2

1

2

1
1

dx∫
⎫
⎬
⎪⎪
⎭⎪⎪

[ ] [( ) ( )]x
   

   

a
L

f x
L

f x

n
L

L
�

�

2 2

2
4 4

2

2
( ) cos

( ) cos

π

2π

nx
 dx

nx

/

/ ⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
⎛

⎝
⎜⎜

∫

⎜⎜
⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

∫�

� �

2

1
2

0
2

5
2

2

π π

dx

nx
dx

nx
cos cos ddx

nx
dx

��

�

�

�

1

1

2

1

2

5
2

∫∫ ∫
⎧
⎨
⎪⎪
⎩⎪⎪

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎫
⎬
⎪⎪
⎭⎪⎪

0
π

π

1

2
cos

sin
nnx
2

2

5
2 2

1

1

π π
π π

n n
n n

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜

�

� �
�

sin sin
⎞⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   

0�2 �1 21 3 4 5 x

L � 4

�5 �4 �3

f(x)

5

 Figure 16.9   
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   When n is even, a n       �      0 

When n is odd, a1
5

1 1
10

� � � �
π π

( )    , a3
5
3

1 1
10

� � � �
�

π 3π
( )    ,   

a5
5

5
1 1

10
5

� � � �
π π

( ) ,     and so on 

 Hence the Fourier series for the function f(x) is given by:
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     16.6      Half-range Fourier series for functions 
defined over range L 

       A half-range cosine series in the range 0 to L can be 
expanded as:

f(x) a a cos
n x

L0 n
n 1

� �
�

� π⎛
⎝
⎜⎜⎜

⎞
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   where
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⎞
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   A half-range sine series in the range 0 to L can be expanded as:
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   where                   
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      A half-range Fourier cosine series indicates an even function. Thus 
the graph of f(x)      �      x in the range 0 to 2 is shown in Figure 16.10    
and is extended outside of this range so as to be symmetrical about 
the f(x) axis as shown by the broken lines.   

              Application: Determine the half-range Fourier cosine series for 
the function f(x)      �      x in the range 0      �      x  �  2  

0�2 2

2

4 6 x�4
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 Figure 16.10   

For a half-range cosine series: f x a a
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   When n is even, a n       �      0, a1 2

8
�

�

π
   , a3 2 2

8
3

�
�

π
   , a5 2 2

8
5

�
�

π
   , and 

so on. 

Hence the half-range Fourier cosine series for f(x) in the range 0 to 2 
is given by:
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        Application: Determine the half-range Fourier sine series for the 
function f(x)      �      x in the range 0      �      x  �  2  

      A half-range Fourier sine series indicates an odd function. Thus the 
graph of f(x)      �      x in the range 0 to 2 is shown in Figure 16.11    and 
is extended outside of this range so as to be symmetrical about the 
origin, as shown by the broken lines.      
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 Figure 16.11   

 For a half-range sine series:  f x b
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and so on 

Thus the half-range Fourier sine series in the range 0 to 2 is given by:
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     16.7      The complex or exponential form of a 
Fourier series 

       The form used for the Fourier series considered previously con-
sisted of cosine and sine terms. However, there is another form 
that is commonly used – one that directly gives the amplitude 
terms in the frequency spectrum and relates to phasor notation. 
This form involves the use of complex numbers (see Chapter 8). It 
is called the exponential  or  complex form  of a Fourier series.

  e j e jj jθ θθ θ θ θ� � � ��cos sin cos sinand    

   
e ej jθ θ θ� �� 2 cos from which, cos

e e
2

j j
θ

θ θ
�

� �

(9)
    

   
e e jj jθ θ θ� �� 2 sin from which,  sin

e e
2j

j j
θ

θ θ
�

� �

(10)    

   The  complex  or  exponential form  of the Fourier series.

f(x) c en
n

j
2 nx
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∑
π

 (11)
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This is the same Application Problem as on page 506 and we can 
use this to demonstrate that the two forms of Fourier series are 
equivalent.

The function f(x) was shown in  Figure 16.9 , where the period, 
L      �      4. 

 From equation (11), the complex Fourier series is given by:

f x c en
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( ) �
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 where c n  is given by:  c
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2 ( )
πnx
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 With reference to Figure 16.9, when L      �      4,

   where    

  

c
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   Care needs to be taken when determining c 0. If n appears in the 
denominator of an expression the expansion can be invalid when 
n      �      0. In such circumstances it is usually simpler to evaluate c 0 by 
using the relationship:

c a
1
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2

L
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�
∫ (13)    

              Application: Determine the complex Fourier series for the func-
tion defined by:
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   The function is periodic outside this range of period 4.       
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   Hence, from equation (11),  the complex form of the Fourier series  
is given by:
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   Let us show how this result is equivalent to the result involving sine 
and cosine terms determined on page 508. 

 From equation (13),
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   By similar substitution,  c
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Similarly,     c
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   Hence, the extended complex form of the Fourier series shown in 
equation (14) becomes:
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which is the same as obtained on page 508. 
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 Hence,  
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  Symmetry relationships 

       If even or odd symmetry is noted in a function, then time can be 
saved in determining coefficients. 

The Fourier coefficients present in the complex Fourier series form 
are affected by symmetry. 

 For  even symmetry :
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   For example, in the Application Problem on page 512, the func-
tion f(x) is even, since the waveform is symmetrical about the f(x) 
axis. Thus equation (15) could have been used, giving:
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   which is the same answer as on page 513; however, a knowledge 
of even functions has produced the coefficient more quickly. 
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The square wave shown in Figure 16.12 is an  odd function since it 
is symmetrical about the origin. 

 The period of the waveform, L      �      2 π . 

 Thus, using equation (16):  c j
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   i.e.                                 c j
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   From equation (11), the complex Fourier series is given by:
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   This is the same as that obtained on page 501, i.e.
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           Application: Obtain the Fourier series, in complex form, for the 
square wave shown in  Figure 16.12              

 Figure 16.12   
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   which is demonstrated below. 

 From equation (17),  c j
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  16.8     A numerical method of harmonic analysis 

       Many practical waveforms can be represented by simple math-
ematical expressions, and, by using Fourier series, the magnitude 
of their harmonic components determined, as above. For wave-
forms not in this category, analysis may be achieved by numerical 
methods.

  Harmonic analysis is the process of resolving a periodic, non-
sinusoidal quantity into a series of sinusoidal components of 
ascending order of frequency. 

The trapezoidal rule can be used to evaluate the Fourier coef-
ficients, which are given by:
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      The values of the ordinates y 1, y 2, y 3, …. are 62, 35,  �38, � 64, 
�63, �52, �28, 24, 80, 96, 90 and 70, the 12 equal intervals each 
being of width 30°. (If a larger number of intervals are used, results 
having a greater accuracy are achieved). 

The voltage may be analysed into its first three constituent compo-
nents as follows: 

 The data is tabulated in the proforma shown in  Table 16.1   . 

From equation (19),  a yk
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              Application: A graph of voltage V against angle θ is shown in 
 Figure 16.13   . Determine a Fourier series to represent the graph.  
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 Figure 16.13   



 Table 16.1            

   Ordinates θ V cos θ V cos  θ sin θ V sin  θ cos 2 θ V cos 2 θ   sin 2 θ V sin 2 θ cos 3 θ V cos 3 θ sin 3 θ V sin 3 θ  

  Y 1 30 62   0.866 53.69   0.5 31   0.5 31   0.866 53.69   0 0   1 62 

  Y 2 60 35   0.5 17.5   0.866 30.31   �0.5 �17.5  0.866 30.31   �1 �35  0 0 

    Y 3 90 �38  0 0  1 �38 �1 38  0 0   0 0   �1 38 

    Y 4 120 �64 �0.5 32   0.866 �55.42 �0.5 32  �0.866 55.42   1 �64  0 0 

    Y 5 150 �63 �0.866 54.56   0.5 �31.5  0.5 �31.5 �0.866 54.56  0 0  1 �63

    Y 6 180 �52 �1 52  0 0  1 �52 0 0   �1 52  0 0 

    Y 7 210 �28 �0.866 24.25  �0.5  14   0.5 �14  0.866 �24.25  0 0   �1 28 

    Y 8 240 24   �0.5 �12 �0.866 �20.78 �0.5 �12  0.866 20.78   1 24   0 0 

  Y 9 270 80   0 0   �1 �80 �1 �80  0 0   0 0   1 80 

  Y 10 300 96   0.5 48   �0.866 �83.14 �0.5 �48 �0.866 �83.14 �1 �96  0 0 

    Y 11 330 90   0.866 77.94   �0.5 �45  0.5 45   �0.866 �77.94  0 0   �1 �90

    y 12 360 70   1 70   0 0   1 70   0 0   1 70   0 0 
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   Substituting these values into the Fourier series:

  
f x a a nx bn n

n

( ) ( cos sin )� � �
�

0
1

nx
�

∑
   

   gives:  v      �      17.67    �      69.66 cos  θ       �       6.50 cos 2 θ       �      8.17 cos 3 θ       �       … 

  � � � �46.42 sin 4.91sin 2 9.17 sin 3θ θ θ ...  (22)    

   Note that in equation (22), ( �46.42 sin  θ     �   69.66 cos  θ) comprises the 
fundamental, (4.91 sin 2 θ     �   6.50 cos 2 θ) comprises the s econd har-
monic and (9.17 sin 3 θ     �   8.17 cos 3 θ) comprises the third harmonic. 

 It is shown in Chapter 5 that: a sin  ω t      �      b cos  ω t      �      R sin( ω t      �       α ) 

 where a      �      R cos  α , b      �      R sin  α ,  R a b� �2 2     and  α       �      tan � 1  b
a

    

 For the fundamental,  R � � � �( . ) ( . ) .46 42 69 66 83 712 2     

 If a      �      R cos  α , then  cos
.

.
α � �

a
R

−46 42
83 71

    which is negative, 

 and if b      �      R sin  α , then  sin
.
.

� � �
b
R

69 66
83 71

    which is positive. 

The only quadrant where cos  α is negative and sin α is positive is the 
second quadrant. 

 Hence,  � � �
�

� �� �tan tan
.
.

.1 1 69 66
46 42

123 68
b
a

    or 2.l6 rad 

 Thus, ( �46.42 sin  θ       �      69.66 cos  θ )      �      83.71 sin( θ       �      2.16) 

 By a similar method it may be shown that the second harmonic 

(4.91 sin 2 θ     �   6.50 cos 2 θ)   �   8.15  sin(2 θ     �   0.92) and the third 
harmonic 

(9.17 sin 3 θ     �      8.17 cos 3 θ )      �      12.28 sin(3 θ       �      0.73) 

 Hence equation (22) may be re-written as:

  

v 17.67 83.71sin 2.16 8.15 sin(2 0.92)� � � � �

                 

( )θ θ

                                                  � 12.28 siin(3 0.73) voltsθ �    
   which is the form normally used with complex waveforms.  
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  16.9     Complex waveform considerations 

      It is sometimes possible to predict the harmonic content of a 
waveform on inspection of particular waveform characteristics.

   1.   If a periodic waveform is such that the area above the horizon-
tal axis is equal to the area below then the mean value is zero. 
Hence a 0       �      0 (see  Figure 16.14(a)   ).  

  2.   An even function is symmetrical about the vertical axis and 
contains no sine terms  (see  Figure 16.14(b) ).  

  3.   An odd function is symmetrical about the origin and contains 
no cosine terms  (see  Figure 16.14(c) ).  

  4.   f(x)      �      f(x      �       π) represents a waveform which repeats after half 
a cycle and only even harmonics are present (see  Figure 
16.14(d) ).  

  5.   f(x)      �       �     f(x      �       π) represents a waveform for which the positive 
and negative cycles are identical in shape and  only odd har-
monics  are present (see  Figure 16.14(e) ).    
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 Figure 16.14   
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      With reference to  Figure 16.15 , the following characteristics are 
noted:

    (i)   The mean value is zero since the area above the  θ axis is equal 
to the area below it. Thus the constant term, or d.c. component, 
a0       �      0  

   (ii)   Since the waveform is symmetrical about the origin the function i 
is odd, which means that there are no cosine terms present in the 
Fourier series.  

  (iii)   The waveform is of the form f( θ )      �       � f( θ       �       π) which means that 
only odd harmonics are present.    

Investigating waveform characteristics has thus saved unnecessary 
calculations and in this case the Fourier series has only odd sine 
terms present, i.e.

  i b b b� � � �1 3 53 5sin sin sin ..θ θ θ    
   A proforma, similar to  Table 16.1 , but without the  ‘cosine terms ’ col-
umns and without the ‘even sine terms ’ columns is shown in Table 
16.2    up to, and including, the fifth harmonic, from which the Fourier 
coefficients b 1, b 3 and b 5 can be determined. Twelve co-ordinates 
are chosen and labelled y 1 , y 2 , y 3 , .. y 12  as shown in  Figure 16.15 . 

  Application: An alternating current i amperes is shown in  Figure 
16.15   . Analyse the waveform into its constituent harmonics as 
far as and including the fifth harmonic, taking 30° intervals.      
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 Figure 16.15   
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 Table 16.2           

   Ordinate θ i sin θ i sin  θ   sin 3 θ i sin 3 θ   sin 5 θ i sin 5 θ  

   Y 1  30 2   0.5 1   1 2   0.5 1 

     Y 2  60 7   0.866 6.06   0  0   �0.866 �6.06

     Y 3   90 10   1 10   �1 �10 1 10 

     Y 4   120 7   0.866 6.06   0 0   �0.866 �6.06

     Y 5  150 2   0.5 1   1 2   0.5 1 

   Y 6  180 0   0 0   0 0   0 0 

   Y 7  210 �2 �0.5 1  �1 2  �0.5 1 

     Y 8  240 �7 �0.866 6.06  0 0  0.866 �6.06

  Y  9  270 �10 �1 10   1 �10 �1 10 

   Y 10  300 �7 �0.866 6.06  0 0  0.866 �6.06

   Y 11  330 �2 �0.5 1  �1 2  �0.5 1 

   Y 12  360 0   0 0   0 0   0 0 

    

  
yk k

k

sin θ
=

∑
1

12

  
�  48.24 

  
yk k

k

sin 3
1

12

θ
=

∑
  

�  �12

  
yk k

k

sin 5
1

12

θ
=

∑
  

�  �0.24

 From equation (21),  b
p

i nn k k
k

p

�
�

2

1

sin θ∑     where p      �      12 

 Hence,  b1
2

12
48 24 8 04� ( . ) .�    ,  b3

2
12

12 2 00� ( ) .� � �     and

b5
2

12
0 24 0 04� ( . ) .� � �

    
 Thus the Fourier series for current i is given by:

  i 8.04 sin 2.00 sin 3 0.04 sin 5� � �θ θ θ                              
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 Acceleration  ,   265   
 Acute angle  ,  105   
 Adjoint of matrix  ,   221   
 Algebraic method of successive 

approximations  ,   61  
 substitution, integration  ,   307    

 Alternate angles  ,   105   
 Amplitude  ,   129   
 And-function  ,   234   
 And-gate  ,   249   
 Angles of any magnitude  ,   125  

 elevation and depression  ,   113    
 Angle types  ,  105   
 Angstrom  ,   1   
 Angular measure  ,   2  

 velocity  ,   131    
 Applications of complex numbers  , 

  211   
 Arc length of circle  ,   77  ,   79   
 Area, circle  ,   77  

 imperial  ,   1   
 metric  ,   1   
 of any triangle  ,   119   
 sector of circle  ,   77  ,   80    

 Areas of irregular fi gures  ,   96  
 plane fi gures  ,  73   
 similar shapes  ,   76    

 Areas under and between curves  , 
  336   

 Argument  ,  209   
 Arithmetic progressions  ,   36   
 Astroid  ,   273   
 Astronomical constants  ,   7   
 Asymptotes  ,   184   
 Average value of a waveform  ,   343   

 Bessel function  ,   402   
 Bessel’s equation  ,  402   
 Binary to decimal conversion  ,   65  

 hexadecimal conversion  ,   72    
 Binomial distribution  ,   434  

 series  ,   49    
 Bisection method  ,   59   
 Boolean algebra  ,   254  

 de Morgan’s laws  ,   241   
 Karnaugh maps  ,   242   
 laws and rules  ,   238    

 Cardioid  ,   177  ,   273   
Cartesian and polar co-ordinates , 116 

 form of complex number  ,   206    
 Catenary  ,   37   
 Centroids  ,   350   
 Chain rule  ,   261   
 Change of limits, integration  ,   309   
 Changing products of sines 

and cosines into sums or 
differences  ,   146  

 sums or differences of sines and 
cosines into products  ,   147    

 Chi-square distribution  ,  454   
 Circle, arc length  ,   77  

 area of  ,   77   
 equation of  ,   81   
 sector of  ,   77    

 Circumference  ,   77   
 Coeffi cient of correlation  ,  443   
 Cofactor  ,   220   
 Combinational logic networks  ,   248   
 Combination of two periodic 

functions  ,  197   
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 Complementary angles  ,   105  
 function  ,   379    

 Complex conjugate  ,   207  
 applications of  ,   211   
 equations  ,   206  ,   207   
 numbers  ,   206    

 Complex or exponential form of a 
Fourier series  ,   511   

 Complex waveform considerations  , 
  522   

 Compound angle formulae  ,   39  ,   141   
 Compound angles  ,   141   
 Computer numbering systems  ,   65   
 Cone  ,   83  ,   85   
 Confi dence levels  ,   448   
 Congruent triangles  ,   107   
 Constants, astronomical  ,   7  

 mathematical  ,   7   
 physical  ,   6    

 Continued fractions  ,   24   
 Continuous function  ,   180   
 Contour map  ,   297   
 Convergents  ,   24   
 Conversions  ,   1   
 Correlation, linear  ,   443   
 Corresponding angles  ,   105   
 Cosine rule  ,   119  

 waveform  ,   124  ,   128    
 Cramer’s rule  ,   230   
 Cubic equations  ,   170   
 Cuboid  ,   82   
 Cumulative frequency distribution  , 

  421  ,   423  
 curve  ,   421    

 Cylinder  ,   82  ,   83   
 Cycloid  ,   273   

 Decile  ,   429   
 Decimal to binary conversion  ,   65  

 hexadecimal conversion  ,   71   
 via octal  ,   67    

 Defi nite integrals  ,   306   
 De Moivres theorem  ,   213   
 De Morgan’s laws  ,   241   

 Depression, angle of  ,   114   
 Derived units  ,   4   
 Determinants, 2 by  ,   2  ,   218  

 3 by  ,   3  ,   220   
 solution of simultaneous 

equations  ,  226    
 Determination of law  ,   152  

 involving logarithms  ,   153    
 Differential calculus  ,   258  

 function of a function  ,   261   
 products and quotients  ,   259    

 Differential equations  ,   366  

  a
d y
dx

b
dy
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f x� ( )     ,   366   
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f y� ( )     ,   367   
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f x f y� ( ). ( )     ,   368   

  
dy
dx

Py Q� �      ,   373   

 numerical methods  ,   385   

  P
dy
dx

Q�      ,   371   

 using Laplace transforms  ,   483    
 Differentiation  ,   258  

 of hyperbolic functions  ,   263   
 implicit functions  ,   276   
 inverse hyperbolic functions  , 

  284   
 inverse trigonometric functions  , 

  281  ,   282   
 logarithmic functions  ,   279   
 in parameters  ,   274   
 partial  ,   189   
 successive  ,  262    

 Direction cosines  ,   202   
 Discontinuous function  ,   180   
 Dividend  ,  20   
 Divisor  ,   20   
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 Dot product  ,  200   
 Double angles  ,   39  ,   145   

 Elevation, angle of  ,   113   
 Ellipse  ,   73  ,   178  ,   273   
 Equation of a circle  ,   81   
 Equilateral triangle  ,   106   
 Euler’s method  ,   385   
 Euler-Cauchy method  ,   388   
 Evaluating trigonometric ratios  ,   110   
 Even function  ,   37  ,   180  ,   498   
 Exponential form of complex 

numbers  ,  215  
 Fourier series  ,   511   
 functions  ,   31    

 Extrapolation  ,   151   

 Factor theorem  ,   21   
 Final value theorem  ,   478   
 Finite discontinuities  ,   180   
 Fourier cosine series  ,   498   
 Fourier series for non-periodic 

function over period  ,   2 π   ,   496   
 Fourier series for periodic function 

over period  ,   2 π   ,   492   
 Fourier series for periodic function 

over period L  ,   504   
 Fourier sine series  ,   498   
 Fractional form of trigonometric 

ratios  ,  112   
 Frequency  ,   131  

 distribution  ,   422   
 polygon  ,   420  ,   422    

 Frobenius method  ,   398   
 Frustum of cone  ,   88  

 sphere  ,   92    
 Function of a function  ,   261   

 Gamma functions  ,   402   
 Gaussian elimination  ,   232   
 Geometric progressions  ,   47   
 Gradient of graph  ,   149   
 Graphical functions  ,   180   
 Graphs, cubic equations  ,   170  

 exponential functions  ,   31   
 hyperbolic functions  ,   37   
 logarithmic functions  ,   30   
 quadratic  ,  164  ,   166   
 simultaneous equations  ,   163   
 straight line  ,   149   
 trigonometric functions  ,   124    

 Greek alphabet  ,   2   
 Grouped data  ,   420  ,   426   

 Half range Fourier series  ,   501  ,   508   
 Harmonic analysis  ,   518   
 Heat conduction equation  ,   411   
 Hectare  ,   1   
 Heptagon  ,  74   
 Hexadecimal number  ,   69  

 to binary conversion  ,   72   
 decimal conversion  ,   70    

 Hexagon  ,  74  ,   75   
 Histogram  ,  420  ,   422  ,   428   
 Homogeneous fi rst order differential 

equations  ,  371   
 Horizontal bar charts  ,   416  ,   417   
 Hyperbola  ,  179  ,   273  

 rectangular  ,   179  ,   273    
 Hyperbolic functions  ,   36  

 differentiation of  ,   263   
 identities  ,  38   
 solving equations  ,   39    

 Imaginary part of complex number  , 
  206   

 Implicit functions  ,   276   
 Infl exion, point of  ,   267   
 Initial value theorem  ,   477   
 Integral calculus  ,   303   
 Integrals, algebraic substitutions  , 

  307  
 defi nite  ,   306   
 by partial fractions  ,   317   
 by trigonometric and hyperbolic 

substitutions  ,   310   
 standard  ,   303    

 Integration by parts  ,   323  
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 reduction formulae  ,   326   

 tan 
θ
2

     substitution  ,  319    

 Interior angles  ,   105   
 Interpolation  ,   150   
 Inverse functions  ,   182  ,  281  

 3 by  ,   3  ,   221   
 Laplace transforms  ,  480   
 of matrix, 2 by  ,   2  ,   218   
 using partial fractions  ,   482    

 Inverse hyperbolic functions  ,   284  
 differentiation of  ,   285    

 Inverse trigonometric functions  , 
  183  

 differentiation of  ,   281    
 Invert-gate  ,   249   
 Isosceles triangle  ,   106   
 Iterative methods  ,   58  

 Karnaugh maps  ,   242   
 Knot  ,   2   

 Lagging angle  ,   129   
 Laplace’s equation  ,   413   
 Laplace transforms  ,   472  

 inverse  ,   480    
 Laws of growth and decay  ,   33  

 logarithms  ,   28  ,   279    
 Laws and rules of Boolean algebra  , 

  239   
 Leading angle  ,   129   
 Least-squares regression line  ,   445   
 Legendre’s equation  ,   403   
 Legendre’s polynomials  ,   404   
 Leibniz-Maclaurin method  ,   395   
 Leibniz’s theorem  ,   394   
 Length, imperial  ,   1  

 metric  ,   1    
 L’Hopital’s rule  ,   57   
 Limiting values  ,   57   
 Linear correlation  ,   443  

 fi rst order differential equations  , 
  373   

 regression  ,   445    
 Litre  ,   1   

 Logarithmic scales  ,   158  
 differentiation  ,   279   
 forms of inverse hyperbolic 

functions  ,  287   
 functions  ,  279    

 Logarithms  ,  28  ,   153   
 Logic circuits  ,   248  

 gates  ,   248    

 Maclaurin’s theorem  ,   54   
 Mann-Whitney test  ,   464   
 Mass  ,   2   
 Mathematical constants  ,   5  ,  6  ,   7  

 symbols  ,  7    
 Matrices  ,   217  

 solution of simultaneous 
equations  ,  223    

 Maximum values  ,   102  ,   267  ,   295   
 Mean or average values, by 

integration  ,  343   
 Mean value, of a waveform  ,   101  

 statistics  ,  424  ,   426    
 Measures of central tendency  ,   424   
 Median  ,   424   
 Micron  ,   1   
 Mid-ordinate rule  ,   95  

 numerical integration  ,   331    
 Minimum value  ,   267  ,   295   
 Minor of matrix  ,   220   
 Mode  ,   424   
 Modulus  ,   209   

 Nand-gate  ,  248  ,   253   
 Napierian logarithms  ,   32   
 Newton-Raphson method  ,   63   
 Nor-gate  ,   248  ,   253   
 Normal distribution  ,   437   
 Normals  ,   270   
 Nose-to-tail method  ,   189   
 Not-function  ,  234   
 Not-gate  ,  249   
 Numerical integration  ,   331  

 mid-ordinate rule  ,   331   
 Simpson’s rule  ,   332   



Index   529

 trapezoidal rule  ,   331   
 using Maclaurin’s series  ,   56    

 Numerical methods for fi rst order 
differential equations  ,   385   

 Numerical method of harmonic 
analysis  ,  518   

 Obtuse angle  ,   105   
 Octagon  ,   74  ,  75   
 Octal  ,   68   
 Octal to binary and decimal  ,   68   
 Odd function  ,   37  ,   181  ,   498   
 Ogive  ,   421  ,   424   
 Or-function  ,   234   
 Or-gate  ,   248   

 Pappus’s theorem  ,   354   
 Parabola  ,   273   
 Parametric equations  ,   273   
 Parallel axis theorem  ,   360  

 lines  ,   105    
 Parallelogram  ,   73  

 method for vector addition  ,   189    
 Partial differential equations  ,   405  

 differentiation  ,   289   
 fractions  ,   41  ,   317  ,   482    

 Particular integral  ,   379  
 solution of differential equation  , 

  375    
 Pentagon  ,   74   
 Percentage component bar chart  , 

  416  ,   418   
 Percentile  ,   429   
 Period  ,   129  ,  180   
 Periodic functions  ,   180   
 Perpendicular axis theorem  ,   360   
 Pictograms  ,   416   
 Pie diagram  ,  416  ,   420   
 Point of infl exion  ,   267   
 Poisson distribution  ,   435   
 Polar co-ordinates  ,   115  

 curves  ,   171   
 form  ,   209    

 Polygons  ,   73  

 Polynomial division  ,   20   
 Power series for e x   ,   31  

 methods of solving differential 
equations  ,  394    

 Prefi xes  ,   5   
 Prismoidal rule  ,   99   
 Probability  ,   431   
 Product-moment formula  ,   443   
 Products and quotients  ,   259   
 Pyramid  ,   82  ,   84   
 Pythagoras’s theorem  ,   108   

 Quadratic equations  ,   25  ,   166  
 graphs  ,   164    

 Quadrilateral  ,   73   
 Quartiles  ,  429   
 Quotients  ,  24   

 Radian measure  ,   77  ,   78   
 Rates of change using 

differentiation  ,   264  
 partial differentiation  ,   293    

 Real part of complex number  ,   206   
 Reciprocal ratios  ,   110   
 Rectangle  ,  73   
 Rectangular form of complex 

numbers  ,  206  
 hyperbola  ,  179  ,   273   
 prism  ,   82  ,   83    

 Recurrence relation  ,   396   
 Reduction formulae  ,   326   
 Refl ex angle  ,   105   
 Regression, linear  ,   445   
 Relationship between trigonometric 

and hyperbolic functions  , 
  139   

 Relative velocity  ,   195   
 Remainder theorem  ,   23   
 Resolution of vectors  ,   191   
 Right angle  ,   105   
 Right-angled triangle solution  ,   113   
 Rodrigue’s formula  ,   404   
 Root mean square values  ,   345   
 Runge-Kutta method  ,   390   
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 Saddle points  ,   296   
 Sampling and estimation theories  , 

  447   
 Scalar product of two vectors  ,   200  

 quantities  ,   188    
 Scalene triangle  ,   106   
 Second moments of area  ,   359   
 Sector of circle  ,   77   
 Semi-interquartile range  ,   430   
 Sign test  ,   457   
 Similar triangles  ,   107   
 Simpson’s rule  ,   96  ,   98  

 numerical integration  ,   332    
 Simultaneous differential equations 

by Laplace transforms  ,   487   
 Simultaneous equations, by Cramer’s 

rule  ,   230  
 determinants  ,   226   
 Gaussian elimination  ,   232   
 graphical solution  ,   163   
 matrices  ,   223    

 Sine rule  ,   119  
 waveform  ,   102  ,   124  ,   127    

 Sinusoidal form A sin ( ωt 
   φ )  ,   131   
 SI units  ,   3   
 Small changes using differentiation  , 

  272  
 partial differentiation  ,   294    

 Solution of right-angled triangles  , 
  113   

 Solving equations by algebraic 
method  ,  61  

 bisection method  ,   59   
 containing hyperbolic functions  , 

  39   
 iterative methods  ,   58  
 Newton-Raphson method  ,   63   
 quadratics  ,   25    

 Speed  ,   2   
 Sphere  ,   83   
 Standard derivatives  ,   258  

 deviation  ,   424  ,   426   
 error of the means  ,   447   
 integrals  ,   303   
 Laplace transforms  ,  472    

 Stationary points  ,   267   
 Straight line graphs  ,   149   
 Student’s t distribution  ,   451   
 Successive differentiation  ,   262   
 Supplementary angles  ,   105   
Surd form ,  112   
 Symbols, acoustics  ,   14  

 atomic and nuclear physics  ,   17   
 electricity and magnetism  ,   13   
 light related electromagnetic 

radiations  ,  14   
 mathematical  ,  7   
 mechanics  ,  11   
 molecular physics  ,   16   
 nuclear reactions and ionising 

radiations  ,  19   
 periodic and related phenomena  , 

  11   
 physical chemistry  ,   15   
 quantities  ,  10   
 space and time  ,   10   
 thermodynamics  ,  12    

 Tally diagram  ,   421   
 Tangents  ,  270   
 Tangent waveform  ,   124   

Tan  
θ
2

    substitution  ,   319   

 Theorem of Pappus  ,   354  
 Pythagoras  ,  108    

 Total differential  ,   292   
 Transpose of matrix  ,   221   
 Transversal  ,  105   
 Trapezium  ,  73   
 Trapezoidal rule  ,   95  ,   518  

 numerical integration  ,   331    
 Triangle  ,  73   
 Triangles, properties of  ,   106   
Trigonometric and hyperbolic 

substitutions, integration , 310  
 Trigonometric ratios  ,   109  

 equations  ,  134   
 evaluating  ,  110   
 fractional and surd form of  ,   112   
 identities  ,  38  ,   134    
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 Truth tables  ,  234   
 Turning points  ,   267   

 Ungrouped data  ,   416   
 Unit matrix  ,   219   
 Universal logic gate  ,   253   

 Vector addition  ,   189  
 products  ,   203   
 subtraction  ,   192    

 Vectors  ,   188   
 Velocity and acceleration, using 

integration  ,   265  ,      
 Vertical bar chart  ,   416  ,   418   
 Vertically opposite angles  ,   105   

 Volume  ,   1   
 Volumes and surface areas of frusta 

of pyramids and cones  ,   88  
 irregular solids  ,   98   
 using Simpson’s rule  ,   96    

 Volumes of similar shapes  ,   87  
 solids of revolution  ,   347    

 Wave equation  ,   406   
 Wilcoxon signed-rank test  ,   460   

 Xor-gate  ,   250   
 Xnor-gate  ,   250   

 Zone of a sphere  ,   92         
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