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Preface to the Second Edition

Since the first edition of this book a decade ago, several new experimental and
theoretical results have been obtained. While updating the new edition, we stick to
our attempt to extract the essential physical content of phenomena and to illustrate
them by simple on the back of an envelope calculations.

In particular, the Section on the Higgs boson has been put in new context and we
have revised the Section on neutrino oscillations. In the Chapter on nuclear forces
we have emphasized the role of pions in the nucleus. Two new Sections have been
added: a Section on new allotropes of carbon such as graphene and a Section on
coherent photon gas in laser.

We would like to thank Patrick Frof3 for his help in formatting the updates and
reading the manuscript.

Heidelberg, Germany Bogdan Povh
Mitja Rosina



Preface to the First Edition

The initial aim of the book “Scattering and Structures”, was to provide a revision
course for German students preparing for their oral diploma and Ph.D. examina-
tions where the student is supposed to demonstrate her or his understanding of
quantum phenomena by explaining the essential physics without the ballast of the
tedious details. The German edition has also been successfully used in students’
seminars and in parallel with standard textbooks.

The attempt to reduce the description and explanation of complicated phe-
nomena to the underlying ideas and formulae has motivated us to extend the
framework of the book to many phenomena that seemed suited to such simplifi-
cation. We hope that the book in its present format can be of interest to students and
lecturers as well as to research physicists.

We have much appreciated the discussions with Bernhard Schwingenheuer
(Heidelberg) on the new paragraphs of the present edition and Marcus Schwoerer
(Bayreuth) for his critique of our original text on the magnetic properties of atoms
and on the dispersion in crystals.

We would like to thank Martin Lavelle (Plymouth) for his excellent translation
of the book and Jiirgen Sawinski (Heidelberg) for his professional work in for-
matting it.

Heidelberg Bogdan Povh
2005 Mitja Rosina
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Preface to the German Edition

La simplicité affectée est une imposture delicate.

La Rochefoucauld

The goal of this book may best be characterised in the words of Ernest Rutherford:
“if you can’t explain a result in simple, nontechnical terms, then you don'’t really
understand it”’. In this book “simple, nontechnical terms” means language that
every physicist can use.

Physics may appear complicated when details cause one to lose sight of the
overarching connections. Physics becomes simple when, by the application of a few
basic concepts, it is possible to clarify a principle and estimate orders of magnitude.
In the following, we will reveal the properties of quantum systems (elementary
particles, nucleons, atoms, molecules, quantum gases, quantum liquids and stars)
with the help of elementary concepts and analogies between these systems. The
choice of topics corresponds to the list of themes that one of the authors (B.P.) used
in Heidelberg for the oral physics diploma examination. The book is intended for
preparation for the oral diploma examination and for the contemporary Ph.D.
defence. Some of the chapters (e.g., 12 und 7) are, though, taken far beyond these
examination levels, to make the book of interest to a wider circle of physicists. In a
few cases, when we thought that current textbooks do not clearly present the latest
developments in physics (e.g., Chap. 3), we have extended the size of the chapter
beyond the limit that we have otherwise set ourselves.

In contrast to standard textbooks, no precise derivations are presented. Rather,
we have attempted to illuminate physical connections via elementary principles (the
uncertainty relation, the Pauli principle), fundamental constants (particle masses,
coupling constants) and simple on the back of an envelope estimates. One of our
models for writing the book in this style was Victor Weisskopf’s lectures for
summer students at CERN and his short essays “Search for Simplicity” published in
the American Journal of Physics in 1985. The individual chapters are constructed as
independent units. When we refer to other chapters, this is only to underline the
analogies between different physical systems.

ix



X Preface to the German Edition

For each chapter, we list textbooks where the general concepts that we use and
the simple formulae, which we have not derived, are to be found. All other nec-
essary references are denoted in the text by the authors’ names and are also listed at
the end of each chapter.

In Chaps. 1-3 and 9, we present scattering as a method for the analysis of
quantum systems. In Chaps. 4-6, we consider the construction of the simplest
composites of the electromagnetic and strong interactions: atoms and hadrons. The
interatomic forces that lead to the construction of molecules are treated in Chaps.
7 and 8, while the analogous force in the strong interaction, the nuclear force, is
briefly discussed in Chap. 10. Degenerate systems of fermions and bosons, from
quantum gases through to neutron stars, are the main theme of Chaps. 11-15. In
Chap. 16, we mention some of the open questions of contemporary elementary
particle physics.

It is obvious that errors can creep into any attempt to represent complex phe-
nomena elegantly with the help of “physical intuition”. We ask critical readers to
point out any such slips to us. We would be happy to receive ideas for how further
examples of quantum phenomena can be grasped and made plausible on the back of
an envelope. Suggestions for how overly lengthy discussions could be shortened
without any loss of clarity are also very welcome.

Special thanks for proposals improving the content, style and language of the
whole book are due to Christoph Scholz (Reilingen) and Michael Treichel
(Munich). The current title of the book was also suggested to us by Michael
Treichel.

We received valuable criticism on the first two chapters from Paul Kienle
(Munich) and on the nuclear physics chapters from Peter Brix (Heidelberg). We
have discussed the treatment of chiral symmetry breaking at length with Jorg
Hiifner (Heidelberg) and Thomas Walcher (Mainz). We received private tuition in
phase transitions and solid state physics from Franz Wegner (Heidelberg) and
Reimer Kiihn (Heidelberg). Samo FiSinger (Heidelberg) helped us to formulate the
section on proteins. The chapters on quantum gases and quantum liquids were
produced with the help of Allard Mosk (Utrecht) and Mattias Weidemiiller
(Heidelberg). Claus Rolfs (Bochum) thoroughly corrected the chapter on stars. We
discussed in detail the newest results from neutrino research with Stephan Schonert
(Heidelberg). Ingmar K&ser and Claudia Ries have taken great pains to translate the
manuscript of the book into good German. Jiirgen Sawinski was responsible for the
layout and producing the figures.

Working with Wolf Beiglbock and Gertrud Dimler of Springer was, as ever, a
pleasure.

Heidelberg Bogdan Povh
July 2002 Mitja Rosina



Prelude

The most powerful emperor of the 13th dynasty had led the Middle Kingdom to
new glory. A new picture, that of a dragon, the symbol of the power of the empire,
was planned to decorate his palace. He commissioned the best artist of the empire
with the task of producing the picture.

After 2 years, the artist eventually appeared with his picture before the emperor.
As he unrolled the canvas, the emperor glimpsed a green background with a yellow,
slightly snaking line on it.

“You needed 2 years for this?” demanded the emperor in a rage. Convinced that
the artist was mocking him, he let him be taken away and condemned him to death.
A wise advisor of the emperor said, however: “let us, oh great emperor, personally
see what the artist has done for the last 2 years.” When the emperor and his advisor
entered the studio of the artist, they saw over 700 pictures lined up according to the
order of their production. The artist had painted a new picture each day. The first
pictures showed the dragon in all possible detail. The later ones lacked more and
more of the insignificant details, but the essence of the dragon was ever clearer. The
last pictures were already very similar to that which the artist had brought to him.
“Now I see”, said the emperor, “the essence of the dragon has been perfectly
represented by the artist.”

The emperor pardoned the artist.

Chinese fairy tale

xi
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Chapter 1
Photon Scattering — Form Factors

Und so lasset auch die Farben
Mich nach meiner Art verkiinden,
Ohne Wunden, ohne Narben,
Mit der ldsslichsten der Siinden.
Goethe

Scattering experiments are the paradigm of quantum mechanical measurements.
A beam of atoms, ions, electrons or photons — to mention but a few possibilities —
is generally created in an accelerator. A detector is used to find the energy of the
scattered particle (or the absolute value of the momentum) and the scattering angle.
From this, one calculates the momentum and energy transfer to the scattering centre
and thus obtains the properties of the system under investigation.

The scattering of elementary particles (photons, leptons and quarks) off each other
is distinguished by these particles not displaying any excited states, and their inter-
action can be described via a fundamental coupling to exchange bosons. Scattering
elementary particles off composite systems, such as atoms, nuclei or nucleons, offers
the ideal method to explore their structure.

Photons are, of course, scattered off all charged particles. Since the scattering
cross-section is proportional to the square of the acceleration, i.e., inversely propor-
tional to the square of the mass of the particle, electromagnetic effects may most
easily be seen in photon-electron scattering.

1.1 Compton Effect

The calculation of photon scattering off a free electron, Compton scattering, is a
standard exercise in relativistic quantum mechanics that everyone must once endure.
Here we will only treat the Klein—Nishina formula and discuss the properties of the

© Springer-Verlag GmbH Germany 2017 1
B. Povh and M. Rosina, Scattering and Structures,
Graduate Texts in Physics, DOI 10.1007/978-3-662-54515-7_1



2 1 Photon Scattering — Form Factors

Fig. 1.1 Schematic (a)
representation of both the

amplitudes (a) and (b) that (b)
contribute to Compton

scattering at lowest order.

The electrons move in the

positive time direction, the

positrons are represented by

the negative energy electrons

which move backwards in

time

scattering in two interesting kinematic regimes. The two amplitudes that contribute
to the scattering are symbolically represented in Fig. 1.1. The famous Klein—Nishina
formula for unpolarised radiation is

do L, (W (W w .,
=2 (Z) (£ + 2 —sin?0) | 1.1
dae, 2 (w) (w * oo (1.

where hw and hiw’ are, respectively, the energies of the incoming and outgoing pho-
tons and € is the scattering angle. The following relation links # and the energies:

mec>  mec?

f=1-
COS T o

(1.2)

Here, 7. is the so-called classical electron radius, the picturesque interpretation of
which we will discuss later:

&2 ahce

= . (1.3)

}"e = =
4regmec?  mec?

The values of the Compton wavelength and the classical radius of the electron are
Ae = h/(mec) = 386fm and r. = 2.82 fm. For Compton scattering with highly ener-
getic photons (E. >> m.c?) off electrons bound in atoms, it is a good approximation
to consider the electrons as free. In storage ring experiments, one can, however,
observe scattering off electrons that really are free, and we will briefly treat this in
Sect. 1.5.

Coherent scattering of low-energy photons off all the electrons in an atom is of
particular interest. If the atoms are bound in a crystal, the coherence of the scattering
can be extended to the entirety of the crystal.

Atlow energies, £, < mec?, the recoil may be neglected and one can set w = w'.
In this approximation, the Klein—Nishina formula gives exactly the same result as
the classically calculated cross-section for Thomson scattering,



1.1 Compton Effect 3

do _ pltcos’d (1.4)
dQ ¢ 2
In the following, we will ask ourselves the following: where in the amplitudes
(Fig. 1.1) is the classical picture of an oscillating electron in the field of the incoming
radiation, hidden? This is, anyway, the underlying picture in the derivation of the
Thomson formula (1.4).

1.2 Thomson Scattering

1.2.1 Classical Derivation

Let us first consider the scattering of linearly polarised light off an electron in an
atom (Fig. 1.2). Neglecting the recoil, the electron moves in the electric field Ege'’
of the incoming light wave, and its acceleration is

a=FE,—e“' . (1.5)

The accelerated charge radiates. For those waves that spread out perpendicularly to
the induced dipole, the electric field strength in the radiation zone is proportional to
the product of the acceleration and the charge,

Fig. 1.2 Coherent photon (a)
scattering off an atom. The
polarisation vector is (a) in

the plane (¥ = 7/2 — 0), (b)
orthogonal to the plane

W =7/2) E,




4 1 Photon Scattering — Form Factors

62 ei(wtfkr)

1
E(t.r, 0 =m/2) = — — K,
47eq mc? r

, (1.6)
where the factor 1 /(4me() ensures the correct units and the 1 /r-dependence preserves
energy conservation because | Ezrde must be independent of r.

The amplitude of the electric field strength of the radiation in any direction where
¥ # m/2 is reduced. The reduction factor is sin ¢}, where ¥ is measured from the
polarisation direction of the incoming wave. This factor yields the projection of the
polarisation vector of the incoming radiation with respect to the polarisation direction
of the radiation field (Fig. 1.2).

The energy density,

1 2 2 2
E(EOES + poBy) = oKy, (1.7

multiplied by c yields the energy flux. The energy flux scattered into the solid angle
d€2 is thus found to be

E2 2\2
ceoB2r2d = — 20 (£ ) gin?gde
(4meg)? \mc?
= ceoEr2 sin® 9dQ.

(1.8)

The so-called classical electron radius is a measure of the acceleration of an
electron in an electric field. It has nothing to do with the geometrical extension
of the electron.

Its historical denotation as a radius came from the relation

2
e
mc2

= . 1.9
dregre (1.9)

The electrostatic energy of a sphere with radius 7, and charge e is in the classical pic-
ture related to the electron mass. The appearance of the radius . in electrodynamics
has a plausible explanation. If two electrons come together up to a separation r., then
the potential energy is so great that an e*e™ pair is created; the concept of a single
electron thus loses its meaning. For nonpolarised light, one measures the angle 6
from the beam direction (Fig. 1.2). The total intensity of the scattered light is found
from incoherently averaging the contributions (1.8) of the two orthogonal polarisa-
tion states. In atoms with Z electrons and for wavelengths large in comparison with
the atomic radius, the electrons oscillate with the same phase and the contributions
to the scattering off the individual electrons are added coherently,

1 20
1+eos0iq.

ceoB2dQ = ceoBj Z°r? 2

(1.10)



1.2 Thomson Scattering 5

The photon flux, i.e., the number of photons that hit the target per unit area per
second, is &y = csOE% /(Aw). The number of photons scattered into the solid angle

dQ is found from

1 20
+ cos 49

O dQ = o Z7r? , (1.11)

from which the differential cross-section

do _ oo+ cos® 6

1o =2 (1.12)

may be deduced.

1.2.2 Quantum Mechanical Derivation

The same result as above can be very simply derived quantum mechanically at low
energies. Because we may calculate nonrelativistically, the interaction between pho-
tons and electrons is given by the following Hamiltonian:

(p—eA)> p° eA-p N e?A?

2me 2me me 2me

. (1.13)

The first term corresponds to the kinetic energy of the electron and the rest to the
perturbation. In Fig. 1.3 the amplitudes that are proportional to « are represented
diagrammatically. Amplitudes (a) and (b) have the form

Ap) 1 eA-
p~dAp 1 oeAp (1.14)
Mme AE Me

When one explicitly writes out both amplitudes, one can easily convince oneself that
they have opposite signs and cancel each other as w’ — w. It is easy to see that both
amplitudes have opposite signs because the amplitudes have (a) AE = +hw and (b)
AE = —hw. Furthermore, for energies fiw < mec?, the amplitudes (a) and (b) are
anyway small compared with the amplitude (c). The first two contain two separate

Fig. 1.3 The amplitudes that (a) (b) (c)
contribute to Compton )
scattering in the

nonrelativistic limit HJJJJJ Jff j_/‘rﬂ
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vertices and so have a factor of mg in the denominator, while in amplitude (c), there
is only one power of the electron mass.

Considered superficially, one might think that the amplitude (c) is a limiting case
of (a) and (b); this is, however, not the case, as we will see in the following: If we
want to calculate the amplitude (c), we have to quantise the electromagnetic field, A.
When a photon with polarisation ¢ is created or annihilated, the expectation value
of A is given by (h/+/2ephw)e. To make this “photon normalisation” plausible,
we consider an electromagnetic eigenmode (with periodic boundary conditions) in a
normalisation volume: E/V = gE?/2+B? /29 = o|dA/dt|?/24+|V x A|* /20 =
eol(wA)? + ?(kA)?]/2 = gow?A? = hw/2. We have expressed the electric and
magnetic fields in terms of A; both fields give the same contribution. The amplitude
(c) is then given as w’ — w by

_5 e’ g h er h . 27re(hic)?
2me\/5\/2hw Jeov2hw hw

Ei*&f, (115)

where ¢; and ¢ are, respectively, the polarisation vectors of the incoming and out-
going photons. Their scalar product is either 1 (Fig. 1.2b) or cos  (Fig. 1.2a). The
cross-section obtained in this way for unpolarised radiation off Z electrons is then

d_a - 2_7TZZ|M|2
dQ h

(hw/c)* 5 ;14cos*f
W—Z reT, (116)

which is identical to the classically derived equation (1.12).

1.2.3 Quantum Mechanical Interpretation of r

Superficially considered, it sounds surprising that the Dirac equation yields the same
result (1.12) in the nonrelativistic limit, despite the corresponding amplitude depicted
in Fig. 1.3c not explicitly appearing. The explanation is as follows: in the relativistic
case, the propagator in the amplitudes (a) and (b) of Fig. 1.1 also contains positrons. In
Fig. 1.4, the positrons are explicitly shown in the two diagrams labeled by (c). While
the amplitudes (a) and (b) vanish for small velocities due to the current coupling
J/ap/mec, the photon coupling to the electron—positron pair is 4/c. In the case of
pair creation, the intermediate state involves two additional electron masses and the
propagator is proportional to 1/2m.. It follows from this that the amplitudes labeled
(c) in Fig. 1.4 are proportional to (¢>?A%/2m.).
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(a) F’JIHJ (b) (c)
A

Fig. 1.4 The contribution of electron—positron pairs (¢) to Compton scattering

It is well worth stressing that the classical oscillations of an electron in an
electromagnetic field in the relativistic case correspond to the coupling of the
photon to electron—positron pair fluctuations in the vacuum. This means that
Thomson scattering in the relativistic calculation results from a sum of the
contributions of the small components of the Dirac wave function.

The classical electron radius also acquires a new interpretation: Thomson
scattering is proportional to

rl=a-a-A2, (1.17)

i.e., proportional to the probability that one finds an electron—positron pair
inside its range (o< /\g) and proportional to the probability that this electron—
positron pair interacts with the incoming («) and the outgoing photon ().

1.3 Form Factor

The scattering of elementary particles off composite systems is the best method to
measure their extension.

1.3.1 Geometrical Interpretation of the Form Factor

When the wavelengths of X-rays are comparable with the extension of an atom, one
has to take into account the phases of the waves that are scattered off different regions
of the atom. In Fig. 1.5, the planes orthogonal to the momentum transfer vector q are
sketched. They are denoted by dashed lines and are orthogonal to the plane of the

page.
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T 51 - Isin(6/2)

/ P
2 [ ~~< S~
3 S L

|g|=2p-sin(6/2)

Fig. 1.5 Diffraction of X-rays off an atom

All beams that are scattered in the same plane (beams 1, 2) have the same phase and
their amplitudes add together completely. It is therefore sufficient to only consider
one beam in every additional plane and determine the phase differences relative to
the plane that passes through the middle of the sphere (beam 3). The path length
difference between beam 1 and beam 3 is A = 2r sin(f/2) and the phase is

2nAJX = 2prsin(0/2)/h = qr/h, (1.18)

where A\ = 27h/p. The amplitude of the radiation elastically scattered through the
angle 6 is then reduced by the factor

F(g*) = /p(r)ei"r/”d3r. (1.19)

We call this factor the form factor. It is the Fourier transform of the charge density
p(r) of the atom. The differential cross-section for the scattering of X-rays off atoms

is thus q 2
o 1+ cos
— =7 F () ——— . 1.20

If we write the expectation value of the square of the atomic radius as (r*) and expand
(1.19) in g2 around ¢* = 0, then we obtain
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Fig. 1.6 Electron density distribution in NaCl crystal. The numbers show the relative electron
density

\

9 ——

F(g?) =1 — =—=cos20 [r?p(r)dnridr + ...
%h% (1.21)
.
=1-—q°
onrd T

where the average over cos? 0, as is well known, is 1/3.

Atomic form factors have been found from X-ray diffraction off crystals. In
Fig. 1.6, the experimentally determined electron densities of Na™ and CI~ ions in
NaCl crystal are depicted. These densities roughly correspond to those of the noble
gases neon and argon. To extract the form factors, one has to divide the density distri-
butions by Z? for both the ions. Such normalised density distributions in noble gases
have almost identical extensions and are described to a very good approximation by
an exponential function (Fig. 5.3), the Fourier transform of which is

1

FgH~ ———
@)~ T qare

(1.22)

where a®> = (r?)/(12h?). The mean square radii of both ions are comparable:

Vv (r?) ~ 0.13nm.

In Fig. 1.6, the relative electron densities are shown and the C1~ ion seems larger
than the Na™ ion.


http://dx.doi.org/10.1007/978-3-662-54515-7_5
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1.3.2 Dynamical Interpretation of the Form Factor

Let us attempt to give a dynamical interpretation of the form factor. The extension
of the atom is linked to the binding energy of the electron in the Coulomb field by
the uncertainty relation. In place of the binding energy, we introduce the idea of the
typical excitation of the system, which we denote by D. In the case of the oscillator
potential, D is the separation of the excited states, while, for atoms, D is of the
order of magnitude of the binding energy. The expectation value of (r?) can then be
approximately replaced by D,

2 hZ _ h2
<r)_f(p_2)_f2meD'

(1.23)

The value of f depends on the specific potential but is of the order of magnitude of
1. The form factor (1.21) can then be expressed in terms of the typical excitation of
the system D (1.23),

fos

Fg>)=1-— 1.24
q7) 12mqu+ (1.24)

For increasing momentum transfer, the recoil energy will eventually suffice
to excite the electron into a higher energy state or into the continuum. The
probability that the system remains in the ground state after the scattering

decreases rapidly for
2
9 - p. (1.25)
2me

1.4 Recoilless Scattering Off Crystals

Because the Nobel prize has twice been awarded (von Laue 1920, Mossbauer 1957)
for the discovery of recoilless X-ray scattering off crystals and for gamma emission
in crystals, we want here to derive on the back of an envelope the probability that the
scattering takes place off the entire crystal.

Consider atoms bound in a crystal where the interatomic potential has the form
of a harmonic oscillator. The typical excitation is D = hw. Let us consider an atom
in the ground state for which the wavefunction is

Mo\ /
wo(r)z(ﬁ) e~ Mwr’/@h) (1.26)
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Immediately after the recoil, the wavefunction has not had time to change its spatial
form; however, the momentum received can be seen in the phase factor exp(igr/h),

Yo(r) — ¢'(r) = e Py (r). (1.27)

The probability that the atom remains in the ground state is the square of the overlap
between the new wave function, 1, and the ground-state wave function, ),

2
P(0,0) = |<¢0|eiqr/%0)yz = ' / Pt Mapoddr| = e=4/CMEe) (1.28)

Now we must define the typical excitation of the crystal D or fw. In the Debye
model of the crystal, D ~ %k@, where ® is the Debye temperature. When we
substitute this value for D into (1.28), we obtain

P(0, 0)py = e~ /4MkO) (1.29)

Equation (1.29) is the simplified form of the Debye—Waller factor for T = OK.
It gives the probability of coherent scattering off crystals and also for the recoilless
emission of gamma rays from crystalline sources (the Mossbauer effect). To underline
the complementarity of the dynamical and geometrical interpretations of the form
factor, let us again repeat that the Debye—Waller factor is the form factor of an atom
bound in a crystal.

1.5 Photon Scattering Off Free Electrons

Photon scattering (or Compton scattering) off free electrons may be easily performed
at electron storage rings and has many applications in accelerator physics. At DESY,
for example, a laser beam with hw = 2.415eV hits 27.570GeV electrons. The
backward scattered photons are in the energy spectrum of high energy gamma rays,
with an energy of 13.92GeV (Fig. 1.7).

The energy of the backward scattered photon can be easily estimated when one
equates the relativistically invariant quantity s, the square of the centre of mass
energy, before the scattering with its value after the scattering. Before the scattering,

Fig. 1.7 Scattering of laser Aw

light off a high energy Pe
electron
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s= (E. + Ew)z — (peC — E'y)z

= m2c* + 2E,(E. + pec) (1.30)
~ m§c4 +4EE.,

where we assumed E. & p.c, and after the scattering, we have

s'= (E_+ E)* — (plc + E)*
=m2c4+2E’, E —pec
¢ (Fe = pec) (1.31)

The final step in (1.31) is obtained when one multiplies s’ by (E. + p.c)/2E. and
then assumes E. ~ p.c.

Making use of conservation of energy, E, ~ E. — E,/y, comparison of the two
expressions for s yields

Ee - :/
E7 :4EA,EEW, (1.32)
which leads to the result
E 4E E
E = c =FE, - ——¢, (1.33)
7 14+ m2c*/(4EE.) s

For the energies mentioned above, mc*/4E,E, = 0.98 and E! ~ E, ~ E./2.

From this, it follows that the centre of mass energy, /s ~ ﬁmecz. This value
contains the rest energy m.c?, so the kinetic energy is only a fraction of the total
energy. Therefore, we may estimate the cross-section nonrelativistically, and we can
take the Thomson value

o= —mrk (1.34)

The exact calculation of the Klein—Nishina cross-section integrated over 47 yields,
for the example treated above, a result that is smaller by a factor of 0.81. For centre of
mass energies below twice the electron mass, pc < mec?, the Thomson cross-section
is a good estimate.

Compton scattering is generally taken to refer to quasi-elastic photon scattering off
an electron in an atom. For lower energy and angular resolution of the measurement,
it suffices to calculate the kinematics of the scattering off a static electron. The quality
of contemporary detectors is, though, sufficient to observe the influence of atomic,
molecular or solid state effects on the kinematics of the scattered particle.
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Chapter 2
Lepton Scattering — Nucleon Radius

J.J. Thomson got the Nobel prize for demonstrating that the
electron is a particle. George Thomson, his son, got the Nobel
prize for demonstrating that the electron is a wave. For me the
electron is simply a second quantized relativistic field operator.
Physics Colloquium, Heidelberg 2001 Cecilia Jarlskog

Electron scattering off protons yielded the first indications for the finite size of the
proton (Hofstadter 1957) and, later, the experimental evidence (Friedman, Kendall,
Taylor 1967) for the modern parton model of the nucleon.

In recent decades, neutrino experiments have become fashionable. One of the
goals of these experiments is to determine the masses of neutrinos by observing
oscillations between different families of neutrinos. Such oscillations have in fact
been observed, demonstrating that neutrinos are not massless. The neutrinos are
observed in detectors that can recognise elastic scattering off an electron through its
recoil or can identify elastic scattering with charge exchange off a quark. Another
goal is to study nucleon properties via weak interaction.

In this chapter, we will clarify the analogies between electron-quark, neutrino-
electron and neutrino-quark scattering.

2.1 Electron-Quark Scattering

The symbols for the quantities that describe this scattering process are defined in

Fig.2.1.
In scattering, the square of the four-momentum transfer is negative (g < 0), one
therefore rather uses the variable Q> = —g?. The virtual photon has an invariant

mass, M, = Q/c, and energy v. In the laboratory frame, the square of the photon

© Springer-Verlag GmbH Germany 2017 15
B. Povh and M. Rosina, Scattering and Structures,
Graduate Texts in Physics, DOI 10.1007/978-3-662-54515-7_2
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Fig. 2.1 Electron-quark

scattering: e, ¢/, g and ¢’ are

four-vectors, Q2 is the e’ q'
negative square of the

four-momentum transfer and 2

v is the energy transfer Q%v

mass (multiplied by ¢*) is (Qc)? = 4EE’sin*(0/2) and the energy of the photon is
v = E — E’'. Here, 0 is the scattering angle of the electron.

2.1.1 Mott Scattering

The scattering of an electron off a spin zero, charged particle is called Mott scattering.
The photon propagator is well known to be proportional to 1/ Q2. Various paths lead
to this result. Here we will offer an alternative derivation, which will make clear why
the photon propagator depends on the square of the momentum transfer and why the
range of a virtual particle decreases exponentially with respect to its mass.

Two amplitudes contribute to the scattering. The electron can emit a photon, as
can the quark. To determine the matrix elements, we have to find the virtuality of
both photons. For real photons, the relation iw = |q|c holds; therefore, the virtu-
ality of the one photon is AE; = hw — |q|c, while the virtuality of the other is
AE, = hw' — |q|c. The coupling constant at the vertices is, of course, the charge.
To avoid the unpleasant factor ¢y of the SI system, we write the photon-electron
coupling constant as e/,/eo = v/4mahc and the photon-quark coupling constant
as zge/ /o = zqgv/4mahc. As our normalisation of the photon wave function, we
choose fic//2]q]c.

To make this normalisation plausible, let us consider an electromagnetic eigen-
mode with the periodic boundary conditions in a normalisation volume: E/V =
eoE?/2 4+ B? /219 = hw/2. Because the electric and magnetic contributions are
equal, we may express the energy through the electric potential, ¢. The electric field
strength is proportional to the potential ¢, so egE? = g¢(k¢)? = hw/2. The inter-
action of the electron with the electric field is then H' = e¢ = (e/k)/hw/2¢ep =
(e/+/€0) (he)/~/2hw (see also (1.15)).


http://dx.doi.org/10.1007/978-3-662-54515-7_1
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Fig. 2.2 The two
contributions to the e' q
scattering amplitude

haw haw

The scattering amplitude is then (cf. Fig.2.2)

1 1
M = dmhe YOle ( + )zq vahe 2.1)
V2Iqle \hw —|qlc ' —|q|c v/2lqlc

The unit volume, which we employed for the normalisation, cancels out in the final
result and we have therefore not explicitly written it in (2.1).

For the energy transfer from the quark to the electron, we have w’ = —w. We
can thus, in the above expression, rename the integration variable w’. The scattering
amplitude can then be written as

47TZqOé(hC)3 471'2(,&(710)3
M= __ 2.2
(hw)? — (qc)? q*cr @2

where we recognise the well known form of the photon propagator. Because, in the
scattering, the four-momentum transfer is such that g> < 0, one uses the variable

0*=—¢>.

It is clear from the above discussion why it is the square of the virtuality of
the exchange particle that appears in the denominator of the propagator for the
photon and for all other boson propagators: the two amplitudes of the exchange
bosons (one from left to right and one from right to left) represent a symmetric
state. The sum of these amplitudes is inversely proportional to the square of
the momentum transfer.

If relativistic electrons are scattered in a Coulomb field, the helicity

_ 5P
Is| - Ipl

(2.3)

is conserved. Assume the electron has spin in the direction of the beam. For a scatter-
ing angle 6, helicity conservation leads to an additional factor cos(6/2) (Fig.2.3) in
the amplitude. It follows that the scattering vanishes at 180°, which is made plausible
in Fig.2.3.
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Fig. 2.3 Helicity is X,
conserved in the limit

v/c — 1. This is not

possible for scattering

through 180° off a spin zero

target due to conservation of

angular momentum

L=rxp

We can now write down the scattering formula for relativistic electrons off a spin
zero charged quark. The number of scatterings per unit time W (the Golden Rule) is
2, dn

M| —

co = —|

W 15" (2.4)

As with the matrix element, we have neglected the normalisation volume also here.
The Mott scattering formula for electrons off spinless quarks with charge z,e into a
solid angle d<2 and energy E’ is then explicitly

cos’ =6 (v — =— (2.5)

dEdQ Q4ch 2 2m

do(eq — eq) 4z§a2E/2(hc)2 0 ( QZ)

Because of the recoil, E # E’. The delta function, which comes into play because
of the phase space dn/dE, ensures the correct relation between Q%> and v = E — E’
for elastic scattering, as we wish to briefly explain.

The quark receives energy v and three momentum ¢ from the photon. The invariant
mass m of the quark after the scattering is

W +mc®)? = (qo)* = (mc*)?, (2.6)
which implies that
V2 4+ 2mc*v + (mc?)? — (qe)* = (mc?)?. (2.7)
Our definition of the four-momentum transfer implies

—(Q0)? = (qo)* = ¥ — (qo)? (2.8)
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and
0% =2mv. (2.9)

The usual expression for the Mott cross-section is found by integrating over E’ at
constant angle 6 (and equivalently at constant Q%/E’). The integral over the delta
function is performed using the fact that d(ax) = d(x)/a.

2
/5(E_E/_( Q )E)dE
2mE’
_ / S(E'— E/(1+ Q*/2mE"))

1 + Q2/2mE’
1 1 E'

dE’ (2.10)

14+ Q?2mE’ 14+ (E—E)JE' E’

In the last step, we have used (2.9) to express the result in terms of E’. The differential
cross-section for the Mott scattering in the usual form and with z, = 1 is then

d 402E2(he) E 6
omon _ 4" E7(he)" BT 0 2.11)
dQ Q4ct E 2

2.1.2 Inclusion of Quark Spin

Quarks, however, have spin s = 1/2 and charge zqe. Accordingly, they have a mag-
netic moment. In scattering of charged particles with magnetic moments, a spin flip
takes place. This contribution is proportional to the four-momentum transfer and
sin®(6/2)

do(eq — eq) 4Z31042E/2(hc)2 5( Q2)

dEAQ 0%t YT om

(2.12)

Using (2.11), we can write (2.12) in a more compact fashion for electron-quark

scattering,
do(eq — eq)  dowmon , 2 0
_ I 42rtan® s ), 2.13
S RS + 27 tan 5 (2.13)
where
Q2

T = W . (2.14)
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2.2 Electron-Nucleon Scattering

Because the charges in the nucleon are carried by quarks, it is justified to describe
elastic electron-nucleon scattering at energies below 200MeV (A = i/p ~ 1fm)
as coherent scattering off the quarks. To be able to apply the formula (2.13) to
electron-nucleon scattering, we must take account of the following: the nucleon
is a composite system with a finite extension and a magnetic moment that is not
that of a Dirac particle (g # 2). We describe the finite extension through a form
factor for both the electric charge distribution and another for the distribution of the
magnetisation. The anomalous magnetic moment is not only important in magnetic
scattering but also in electric scattering — through electric fields induced via the
anomalous magnetic moment. These corrections are usually parameterised through
the so-called Rosenbluth formula,

do _ doyor [ GE(Q) + 7G4 (%) 2 (02 tan b
— = 217G tan” — | . 2.15
a0 dsz[ 147 +2rGu(Q7) tan” 5 2.15)
Here, G]%:(Qz) and Gl%,I(Qz) are the electric and magnetic form factors, which
depend on Q2. They are so normalised that, as Q% — 0, they yield the total charge
and magnetic moment in nuclear magneton units. Thus, for the proton, GE(Q? =
0) = 1 and G},(Q? = 0) = 2.79, while for the neutron, GL(Q* = 0) = 0 and GY,
(0> =0)=—191.

In contrast to the notation F for the form factor of the Dirac particles, in the form
factors G the anomalous magnetic moment is included.

2.2.1 Nucleon Radius

The expectation value of the square of the charge radius is given by (1.21)

dG2
(r*) = —6h? (—E) , (2.16)
r dQZ 02=0

and the corresponding expression for the magnetic radius contains the derivative of
Gw with respect to Q2. The charge radius of the proton and the magnetisation radii
of the proton and the neutron are roughly the same size. The value of \/(r2) lies
between 0.81fm and 0.89 fm, depending on in which Q2 domain the derivative of
the form factor is calculated.


http://dx.doi.org/10.1007/978-3-662-54515-7_1
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2.2.2 Nucleon Form Factor

Both the radius and the proton form factor are experimentally known up to Q% ~
20GeV?2. For Q% > 0.2GeV?, the form factor can be described through a so-called
dipole fit,

2 -2 2
0 ] = 0 2.17)

2
Ge(Q) = [1 + 0.71(GeV/c)2 | 1 0.36(GeV/c)? T
Let us now try to relate the form factor (2.17) to a typical nucleon excitation (1.24).
The first excited state of the nucleon with negative parity lies ~0.6 GeV above the
ground state. We identify this energy with the typical nucleon excitation, D. We
replace the electron mass in equation (1.24) with the mass of the constituent quark,
mg = 0.35GeV. Thus the form factor to a first approximation is

0’ 0’

F(OH=1- =1-
(@9 2myD 0.42(GeV/c)? T

(2.18)

in good agreement with (2.17) — which is a further demonstration that the extension
of a quantum object and its excitations are closely related through the uncertainty
relation.

When one interprets the form factor (2.17) as the Fourier transform of the charge
distribution, then the latter has the form

p(r) = p(0)e 274, (2.19)

where af = 0.47 fm. Interestingly, the radial dependence of the charge distribution
in the proton displays the same exponential form as that of the hydrogen atom. Were
one able to treat the proton as a nonrelativistic system, then the static gluon field in
the proton would have a 1/r dependence and the Bohr radius a of the proton would
have the value q;, ~ 0.5 fm.

This is not a great surprise. The typical excitation energy in a hydrogen atom
is Dy ~ 10eV, and in a proton, it is D, ~ 0.6 GeV. Thus we expect

ag __ as/Dy

~ 1077 (2.20)
ap /Dy

We have here assumed that the ratio between the strong and the electromag-
netic coupling is o/ = 100. The surprise is, however, the charge distribution
of the proton that corresponds to the quarks in a simple Coulomb field. This
is not properly described in any model. A 1/r potential is plausible for small


http://dx.doi.org/10.1007/978-3-662-54515-7_1
http://dx.doi.org/10.1007/978-3-662-54515-7_1
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distances between the quarks; however, for the larger separations correspond-
ing to small Q?, one would expect the influence of confinement to make itself
visible. In practice, the charges inside the proton are carried by constituent
quarks and by mesons (quark antiquark pairs), which do not feel confinement,
and are responsible for the charge distribution on the periphery. A theoretical
description of the confinement phenomenon still does not exist.

2.3 Neutrino-Electron Scattering

Neutrino scattering off the electron is the weak interaction’s version of Rutherford or
Mott scattering: instead of photons, Z° bosons are exchanged (Fig. 2.4). The principal
difference from the electromagnetic case is due to the large mass of the Z° exchange
boson. This also does not couple to all lepton pairs with the same strength. We will
therefore use an effective weak coupling constant, &z = fay. The factor f is of
the order of magnitude 1 and we will discuss it in more detail in Chap. 16 about the
electro-weak interaction.
The formula analogous to (2.11) for ve — v/¢’ scattering is then

do(ve - v'e)) 4(ézhc)> E? E'
dQ T {(7w)? = [(qe)? + (mzc?)2? E

cos? g 2o, @220

where we denote by f2(6) the spin dependence of the angular distribution.

For lower energies (below about 10GeV), we can neglect iw and qc compared
to the mass Mzc? = 91 GeV. One recognises that, in contrast to Rutherford or Mott
scattering, the forward divergence 1/ sin*(/2) is not present.

Let us now make an on the back of an envelope estimation of the total neutrino-
electron cross-section. Let us go to the centre of mass frame (E., = E. ) and,
because the angular dependence in this frame is not great, we replace the solid angle
integral by 4x. The ratio of the weak and electromagnetic couplings is ay/a =~ 4,

Fig. 2.4 Neutrino scattering
off the electron without
charge exchange , .
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but for rough estimates, we employ aw ~ az ~ «. We so obtain for the integrated
cross-section .
4(ahe) EZ,

— (2.22)

o(ve = Ve') ~4r

If one substitutes E2 = (1/2)mec® Ey for neutrinos with Ej, = 10 MeV, one finds
around 3.5 x 10~'® fm?. An exact calculation yields another factor, 1/(96 sin* Oy -
cos? fw) = 0.30. One sees that our very simple calculation, in which we corrected
for the difference to the electromagnetic interaction only through the Z° mass, works
very well!

The experimental detection of neutrino-electron scattering at low energies E, ~
10 MeV is not easy. The cross-section, 3.5 x 107! fm?, is small! For comparison:
the cross-section for Thomson scattering off a hydrogen atom is ~ 772 ~ 3.3 fm?;
the typical hadronic cross-section corresponds to the hadronic size, ~ 1 fm?.

The strongest available neutrino source is the sun — nuclear reactors, on the
other hand, produce antineutrinos! The flux of solar neutrinos is, e.g., measured
in a Cherenkov detector filled with 32000 tonnes of water in Kamiokande (Japan).
Neutrinos with an energy of 5.5MeV deliver a sufficiently large recoil to electrons
that their Cherenkov light can be detected.

2.4 Neutrino-Quark Scattering

Of course, neutrinos also scatter off quarks by Z° exchange. Scattering without charge
exchange can only be measured by detecting the “jet” originating from the recoil
quark. It is experimentally easier to analyse elastic scattering with charge exchange,
which is transmitted by W* bosons. To describe neutrino scattering off quarks, we
can directly translate the graphs of Fig. 2.1 if we replace the electron e by a neutrino
butkeep e’. The two quarks, q and ¢, in the scattering v + q — £~ + q have different
flavours. In 1987, the famous supernova SN1987A was observed in the Large Mag-
ellanic cloud. In the Kamiokande detector, 11 antineutrinos were observed that had
been generated in this stellar explosion. Where did these antineutrinos come from?
Primarily, neutrinos are produced in the collapse of the iron core of the supernova,
namely through the reaction p + e~ — n + .

Through the collapse, though, the core is heated up and radiates thermal vv pairs
with energies of 3—5MeV. These thermal antineutrinos can be registered in a detector
via 7, +p— e* +n (Fig.2.5). Let us estimate the order of magnitude of the cross-
section for this reaction as liberally as with (2.22)

4(ahe)’E2,

~ —16 2
e ~ 3 x 1070 fm (2.23)

o(Uep — e n) ~ 4w

An exact calculation contributes a further factor, 1/(8 sin* Ow) ~ 2 to this result.
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Fig. 2.5 Antineutrino n
scattering off a proton with
charge transfer
[S——;
p

The cross-section for charge exchange is two orders of magnitude larger than
that for neutrino-electron scattering (2.22). The difference lies in E.,,, which is
significantly higher for scattering off a heavy nucleon.

2.4.1 Weak Potential

The scattering amplitude in the Born approximation can be viewed as the Fourier
transformation of the potential. On the other hand, we can extract the weak potential
from the scattering amplitude. The corresponding potential has the Yukawa form,

Vi = aw_hce(—mwc/h)" . (2.24)
r

At low energies, the scattering amplitude is the volume integral of the potential,

4y (Fic)?

e = 4v2Gr. (2.25)

/ Vi (rd’r =

The Fermi constant Gg = 90eV fm? can thus be viewed as the volume integral of
the weak potential. The factor 4+/2 arises from the historical normalisation of G.
Literature

LJ.R. Aitchinson, A.J.G. Hey, Gauge Theories in Particle Physics (Hilger, Bristol, 1989)
B. Povh et al., Particles and Nuclei (Springer, Berlin, 2004)



Chapter 3
Quasi-elastic Scattering — Virtual Photons
and Gluons

In jeden Quark begrdbt er seine Nase.

Mephistopheles in Goethe’s Faust

For electron energies £ > 15GeV and momentum transfers Q2 > 1GeV2, the
scattering takes place off the constituents of the nucleon. Historically,
these constituents were christened partons. The name parton includes all the nucleon
constituents observed in high-energy scattering: valence quarks, sea quarks and glu-
ons. The term valence quarks refers to the three quarks that contribute to the baryon
number and charge of the nucleon, while the sea quarks are produced in equilibrium
with the gluons through pair creation and annihilation. This separation is, though,
somewhat artificial. In lepton scattering, one only sees the quarks, which have both
an electric and a weak charge.

In a proton, the quarks are bound and move inside the limit set by confinement with
Fermi momenta corresponding to this limit. A large momentum transfer guarantees
that scattering takes place in such a short time that it is safe to neglect interactions
between the quarks during the collision. Thus, to a good approximation, we can
consider the scattering as being off a free, though not stationary, quark. Historically,
this quasi-elastic scattering regime was called deep inelastic scattering. We, however,
prefer to call such scattering quasi-elastic scattering.

The masses of the bare light quarks are of the order of magnitude of 10 MeV/c?.
Confined in a volume with diameter ~1 fm, the quarks with such small masses must
be understood as relativistic particles. Statistical descriptions are appropriate for
high-energy processes of relativistic many-body systems: in the case of the nucleon,
we will describe the partonic structure in terms of the momentum distribution of the
quarks and gluons (without referring to a wave function).

At large momentum transfer, we may apply the perturbative field theory of the
strong interaction (QCD). Quasi-elastic scattering needs to be formulated in a Lorentz
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invariant fashion. We also need, though, a clear interpretation of the formal theory.
This can be taken from the interpretation of QED provided by the Weizsidcker—
Williams method’s picture of virtual photons. We believe that a brief summary of
this method, which in the case of electrodynamics, is conceptually very simple, is
extremely useful for an understanding of the partonic description. Furthermore, one
can very nicely bring out the difference between QED and QCD by comparing the
photon field of an electric charge with the gluon field of a strong charge.

This chapter is a bit longer than the others of this book because, as far as we know,
a similar introduction to the strong interaction was not available in textbooks.

3.1 Virtual Weizsiacker—Williams Photons

Bremsstrahlung is usually understood as the radiation that accompanies the braking
of an electron in the Coulomb field of an atomic nucleus. But both bremsstrahlung
and other processes can also be considered in a frame of reference in which the
electron is at rest. This is called the virtual quantum method. We will see that this
alternative is very well suited to strongly interacting systems.

In the electron’s rest frame, the proton approaches the electron with a large energy,
E > Mc?. The Coulomb field of a moving charge +e (for a proton) with mass M and
energy E is Lorentz contracted, as is symbolically shown in Fig.3.1. The transverse
electric field is increased through Lorentz contraction by a factor v = E/Mc?. Ata
distance b transverse to the direction of motion, we have

ey

= — . 3.1
+ 47’1’60b2 ( )

Observers at a point P (Fig.3.1) see the charge pass them by as an electric and
magnetic pulse. Below, we will only consider the transverse component of the electric
pulse because it alone is important for our needs. The duration of the pulse is

b
At ~ — | (3.2)

v

Fig. 3.1 The spherically
symmetric Coulomb field of

a charge at rest is Lorentz b
contracted when it moves.

The transverse electric field
is amplified by a factor
v=E/Mc?
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Fig. 3.2 Simple estimation
of the pulse (rectangular ye
shape E| x At, thin line) EJ_ = —
and its realistic shape (thick 47t€0b2
line)

ct

Fig. 3.3 Distribution of the do(w, b) 4
energy flux against w; the do
thin line for a sharp cut-off
frequency and the thick line
for a more realistic behaviour \

where we may always assume that the speed of the charge is ¢ and, on transforming
into the laboratory frame, the time scale picks up a factor of « in the denominator.
The form of the electric pulse is shown in Fig.3.2.

We can straightforwardly estimate the dependence of the energy flux on the fre-
quency without exactly calculating the Fourier transform. The energy pulse is — as
with E; — of a very short duration, and its energy flux is

+00
® = cey / E%dr. (3.3)

[e¢]

The Fourier transform of a delta-like pulse (Ar — 0) is constant. For a finite
width, Az, the spectrum is cut off at a maximal frequency, wm.x = 1/At = yc¢/b
(see Fig.3.3).

To compare the virtual photon spectrum with the distribution of photons in the
electron (the em structure function), we have to quantise the energy flux and we
introduce the usual variable of QCD, Q o« h/b:

dd(w, b)

1 dwdb? x hwT (hw, 0*)d(fw)d Q2. (3.4)
w
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Fig. 3.4 The function A
I'(x, Q?) yields the number xT(x, Q%)
of bremsstrahlung photons in
an interval d(hw) at fixed Q?

0.001 0.01 0.1 1

In order to show the analogy with the parton picture (next Section) we use the
notation x = w/wmax Where x means here the fraction of the energy carried by the
electromagnetic field while in the parton picture (3.6) x means the fraction of the four-
momentum carried by quarks or gluons. We will directly compare the distribution of
the virtual photons xI" (x, Q?) (Fig. 3.4) with the gluon structure function x G (x, Q?).

The bremsstrahlung spectrum at fixed Q is obtained by multiplying the function
I"(x, Q%) by the Compton cross-section. Experimentally, the spectrum is determined
via the detection of a coincident bremsstrahlung photon and the recoil electron. From
Fig. 3.4, one sees that the form of the “structure function” of the virtual photons is
independent of Q2, i.e., xI'(x, Q% = const) = Const. The Const. increases with
02, and so does the number of photons.

Let us explicitly write out the cross-section for soft X-rays. In this case, we may
approximate the electron-photon cross-section by the Thomson formula (1.16)

do(w, 0)

— ere2
dwdQ

2
1 + cos H/dbzq)(w’b). 35)

2 dw

The bremsstrahlung spectrum is the integral over all possible values of b? (or all
momentum transfer Q?).

In the next section, we will see that (3.5) may be directly carried over to quasi-
elastic electron-quark scattering.

3.2 Virtual Bjorken—-Feynman Partons — Deep Inelastic
Scattering

Let us consider a proton in a rapidly moving system. We neglect transverse momenta,
as we previously did with the longitudinal field components in the electromagnetic
case. The total energy of the proton is carried by partons. Each parton bears a fraction
x of the total energy, total momentum and mass (see Table 3.1 and Fig.3.5).

Let us initially discuss the relation between quasi-elastic scattering off a nucleon
with the virtual photon picture. Gluons pose a particular difficulty because the static
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Table 3.1 Proton and parton kinematical quantities in a rapidly moving system: pj, denotes the
longitudinal momentum component and pt the transverse components

Proton Parton
Energy E xE
Momentum PL XpL
pr=0 pr=0
Mass M m= (szz—xzplz_)]/2 =xM

Fig. 3.5 Partons

Proton

Parton Q

gluon field cannot be represented analytically because of the size of the strong cou-
pling constant o, and/or confinement. We assume, though, that, in a rapidly moving
system, the gluon field may be viewed as virtual gluon quanta. A further complica-
tion is that gluons have neither an electric nor a weak charge. One cannot directly
observe them in lepton scattering. The partons with an electric and weak charge are
the quarks. Thus, we will first consider scattering off quarks.

3.2.1 Electron Scattering Off Quarks

The x variable can be expressed in terms of Lorentz invariant quantities. The condi-
tion for elastic scattering off partons with mass m = xM follows from (2.9),
Q2

= . 3.6
T oMy (3.6)

To get the prefactors right in the definition of the structure function, we have to
introduce the x variables in a somewhat more formal way.

The probability of finding a parton with fraction x of the total momentum of the
proton is given by the distribution g; (x). The index i denotes the flavour of the parton
and thus its charge. The charge of the quarks is expressed in units of the elementary
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charge, z;e. The cross-section for quasi-elastic scattering may then be described as
an incoherent sum of elastic scatterings off the quarks (2.12),

do(eq — eq)
dE'dQ2 nucleon

dOMott 2 Q2 2 0 Q2
— z <. 11 ) t - - — . .
= Q i Z;qi ()C) ( + 1-262 an 2 v 2 i (3 7)

Introducing a new variable £ = Q?/2M v and substituting it into the delta function
yields
2
5 (V _ Q_) —5 [K(X - 5)] =6k —9). (3.8)
2m by v

The only contribution to the cross-section comes from quarks which carry the fraction
x of the total momentum is 5
Q

x=f= e (3.9)

The final expression is then

(da(eq — eq))
dE’dSQ2 nucleon

_ dowe (X 2ixq™) | Zuzaix) L0
e v M 2

(3.10)

Itis usual to denote the incoherent sums over the contributions from the individual
quarks to the cross-section as structure functions. The structure function that deter-
mines the spin-flip part of the cross-section for quasi-elastic scattering is normalised
as

1 2
F = EZziq,-(xx (3.11)

and that which describes the Coulombic part is — just as for spinless quarks

Fy =" 7xg;(x). (3.12)

The reader should not confuse the traditional notation for structure functions F}
and F, with the form factors F which are written without an index (Chap. 2).

The interpretation of the structure functions is, as previously mentioned, especially
clear in a frame in which the proton is moving rapidly. In such a frame, the function
2F) gives the probability of finding a parton with fraction x of the total momentum
of the proton. The function F5 is the same probability multiplied by x. The analogy
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between (3.10) and (3.5) is evident. The electron-quark cross-section corresponds
to the photon-electron cross-section and the quark structure function to the photon
structure function.

It may seem surprising to introduce the strong interaction with the virtual pho-
tons method of Weizsdcker—Williams. The method was of interest in the time
when the photon-electron interaction was treated semiclassically and it was
suitable for quantising a classical system. Later, it was replaced by the devel-
opment of the field theory of QED. In QCD too, “proper” theorists calculate,
as far as they can, in a Lorentz invariant, field-theoretic formalisms. There are
two reasons why we have chosen the Weizsidcker—Williams method to study
the strong interaction. On the one hand, this method is very straightforward
because the gluons that are measured in experiments can be interpreted as
bremsstrahlung gluons. On the other hand, one of the most important theo-
retical methods that can be applied to the nonperturbative QCD domain, the
light-cone method, is not much more than a somewhat formalised Weizsécker—
Williams method.

3.2.2 Neutrino Scattering Off Quarks

Measurements of the structure functions in quasi-elastic neutrino scattering are inter-
esting because the cross-sections of neutrinos and antineutrinos off quarks and anti-
quarks differ. Experimentally, the reactions have been most thoroughly investigated
in reactions with muon neutrinos and antineutrinos,

U+ qass = B +qyeq (3.13)
and
Uyt quas = 1+ qaue. (3.14)

This is because pure, high-energy beams are only available for muon neutrinos. They
are produced in so-called tertiary beams after pion decays, 7* — v, +p* and 7™ —
U, + 1~ . At CERN, pions are produced from 400 GeV protons. Pions and kaons are
kept bunched for a distance of about 300 m and are braked on a graphite target. The
neutrinos from the decay are kinematically directed forward. The spectrum is wide-
band, with a maximum at 26 GeV and a higher-energy tail up to around 150 GeV.
The quasi-elastic scattering is identified by the measurement of the energy of the
produced particles in a calorimeter. From the muon’s kinematics and the energy of
the hadrons produced in the scattering, one can determine both the momentum and
energy transfer. Because of the conservation of fermion helicity at at high energies,
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Fig. 3.6 Scattering of (a)
neutrinos off quarks takes
place in the state S; = 0. The
angular distribution is
isotropic. Off antiquarks

(S; = —1), the angular <]
distribution is proportional to

cos® 0

\Y

(b)

there is a difference between the neutrino and antineutrino cross-sections off quarks.
We can estimate this difference assuming that quarks are massless. In the centre of
mass system, the neutrinos and quarks have a total spin component S, = 0. This is
because, due to the parity violation of the weak interaction, both the neutrino and
the quark have negative helicity.

Because, in neutrino scattering at these energies, only s-wave scattering takes
place, the final state must also have S, = 0. This is the case for the scattering of neutri-
nos off quarks and of antineutrinos off antiquarks for all scattering angles (Fig. 3.6a).
This is not the case for the scattering of neutrinos off antiquarks (Fig.3.6b). The
spin component before scattering is S, = —1 (for antineutrinos off quarks, it is
S. = +1). The scattering amplitude depends on the scattering angle 6 and is pro-
portional to cos f, so the cross-section is then proportional to cos? §. Because the
average value of (cos” #) = 1/3, one expects the ratio between both cross-sections
to be 3:1. This ratio depends especially on the kinematics but also on x (see (3.6)). An
exact calculation confirms that the ratio of the neutrino-quark and antineutrino-quark
cross-sections averaged over x is indeed roughly 3:1.

From a comparison of quasi-elastic scattering of neutrinos and antineutrinos, one
can determine the prevalence of quarks and antiquarks in the nucleon. In Fig. 3.7, the
distributions of valence and sea quarks for Q% ~ 5GeV?/c? and Q2 ~ 50GeV?/c?
are shown.

The area below the valence quark distribution measures the valence quarks
weighted by the square of their charges and their fraction x of the total momen-

tum,
i 1 2 2 2
/ Fz(x)dx%/ (2) +(2) +(l) g(o)dx = 1. (3.15)
o X 0 3 3 3

We have here assumed that the u and d quarks have the same distribution.
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Fig. 3.7 The structure function F>(x) for (leff) Q% ~ 5GeV?/c~2 and (right) Q% ~ 50GeV?/c~2.
The separation between valence quarks (dots) and sea quarks (dashes) was determined from neutrino
scattering

3.2.3 Gluon Bremsstrahlung

As mentioned above, one only sees in quasi-elastic lepton scattering those partons
that have either an electric or a weak charge. The presence of the gluons can only be
indirectly determined. The sum of the quark momenta in quasi-elastic scattering is
only about half the total momentum of the nucleon and the missing half is ascribed
to the gluons.

Bremsstrahlung gluons are always observed when a strong charge is accelerated.
They are manifested as hadronic jets. In ete™ annihilation into a quark antiquark
pair, for example, one observes two opposed hadronic jets, which correspond to
the hadronisation of the quarks. Sometimes a “bremsstrahlung gluon” makes itself
manifest in the process as an additional third jet (Fig.3.8).

Gluon bremsstrahlung has been most thoroughly investigated in quasi-elastic scat-
tering, as we would like to briefly describe. The value of Q2 also defines the spatial
resolution, Ar, with which one investigates the structure of the object.

he
A —. 3.16
r 0 ( )

The structure function evidently depends on 02, the resolution of the measurement,
as can be seen from Fig.3.7. This Q? dependence is brought out in Fig.3.9. For a
poor resolution, one measures the momenta of the partons inside the volume defined
by the resolution. The better the resolution, the more partons are measured. If one
knows the coupling constant, one can calculate the probabilities for the processes
that lead to the splitting of quarks and gluons. The “splitting function” probabilities
are graphically represented in Fig.3.10.
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Fig. 3.8 Typical two- and three-jet events measured at the JADE detector in the PETRA eTe™

storage ring

Fig. 3.9 The interaction of a
photon with a quark, which
radiates a gluon. For the
smaller Q2, the quark and N
gluon are not separated. For
the larger Q%, the resolution A
is increased and one N N
measures the momentum
fraction of the quark without

the gluon. The logarithmic
dependence of the resolution
follows from (3.17)

This system of coupled equations describes the Q> dependence of the structure
functions very well. In the measurement, one can only determine the structure func-
tions of the quarks. The gluons have neither an electric nor a weak charge. However,

from the Q% dependence of the quark structure functions, F»(x, Q?), the gluon struc-

ture, G (x, Q?), can be determined with the help of the equations in Fig.3.10. For
all Q? values, the sum of the quark and gluon momenta must be equal to the total

momentum of the nucleon. From this condition, the gluonic structure functions may

be determined.



3.2 Virtual Bjorken-Feynman Partons — Deep Inelastic Scattering 35

_d (@)
d(ln Q?) ( G (z, Q%) >
= as(Q?) ( Py Pyg ) < FQN(?/QQ) >

Toor

qu ng

ey [
N E

Fig.3.10 The function Pyq is the probability that the quark radiates a gluon when one improves the
resolution of the measurement by d(In 0?); Py the probability that a quark with x is pair produced;
Pgq the probability that a gluon with x is created in quark annihilation; Pgg the probability of gluon
fission

where

m?U 20

Fig. 3.11 The gluon 30
structure function for xG(x,Q?)
0% =5GeV?/c? and 25
0% =50GeV?/c%. The

greater the value of QZ, the 20 Q?=50 GeV?/c?

more soft gluons there are
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In Fig.3.11, the gluon structure functions are shown for Q% = 5GeV?/c* and
0%=50GeV?/c?.

These gluonic structure functions should be compared with the photonic
xT'(x, Q%) (cf. Fig.3.4). Both processes, the bremsstrahlung of photons and
of gluons, are subject to the same general laws. If gluons themselves did not
carry a strong charge, both bremsstrahlung spectra would appear identical.
The difference comes from the self-coupling of the gluons. Thus, High-energy
gluons split into more lower energy ones and the gluonic spectrum is shifted
to lower x. The better the resolution, the more the total momentum is carried
by soft gluons.
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3.3 Coupling Constants

Quantum chromodynamics (QCD) is the generally accepted theory of the strong
interaction. Quarks carry the strong charge, colour. The interaction between the
quarks is transmitted by gluons. Gluons themselves carry the strong charge and
couple to each other. The strength of the coupling of quarks to gluons and of gluons
to gluons is given by the “coupling constant” ay. Itis, however, strongly dependent on
0%. At 0% ~ 10*GeV?¢~2,ithasavalue of around 0.12, at 0% ~ 10? GeV>¢~2, about
0.16 and for Q% ~ 1 GeV?c~2, it is about 0.5. The Q2 dependence is logarithmic
and given by the following expression:

127w

2y _
s (Q7) = (33 — 2n¢) - In(Q%/A2)

(3.17)

Here, n¢ denotes the number of quark flavours involved. Because virtual quark-
antiquark pairs of heavy quarks have only a very short Lifetime, their separation
from a struck quark is so small that they can first be resolved for very large values
of Q. For Q? in the region of 1 GeV?¢~2, one expects ny ~ 3 and n; = 6 as
Q? — 0. The only free parameter in QCD, A, must be experimentally determined;
its value is around 250 GeV/c. For comparison: QED also has one free parameter,
the fine-structure constant «v, which is experimentally very easily extracted from the
Thomson cross-section.

The experimental verification of QCD cannot be as elegantly performed as is
possible in the case of QED. Also, the precision with which QED is tested will
never be achieved in QCD. The quarks and gluons are confined both before and after
scattering. One can only observe hadronised quarks and gluons after the interaction.
Because the hadrons are bunched (jets) in the direction of the scattered quarks and
gluons, one can well reconstruct the elementary process.

Let us try to make out the origin of the expression (3.17). The Q2 dependence of
the coupling constant is indeed not only a property of the strong interaction but rather
a general property of all interactions and a consequence of vacuum polarisation.

3.3.1 Electromagnetic Coupling Constant o

The attraction between positive and negative charges is not exactly given by the
Coulomb law. At short separations, r < A, the effective charge increases because
the charge polarises the virtual electron—positron pairs. This polarisation is parallel
to the electric field. The polarisation vector points in the direction r when the charge
is positive. This must be the case, as the virtual electron—positron pairs (Fig.3.12)
distribute themselves such that positive charge is forced out away from the centre.
We can roughly estimate the size of this correction. The value of the loop in
Fig.3.12 is well known to depend on log Q2. The integration is from 0 to 0o, and the
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X

Fig. 3.12 The lowest correction to the Coulomb law. The electron—positron pairs distribute them-
selves such that identical charges repel each other

e eo eo
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Fig. 3.13 Higher order corrections to the vacuum polarisation form a geometric series

Fig. 3.14 Graphical

e €,
depiction of the sum of the
loops that contribute to the 1
vacuum polarisation _ e
1 +

value of the integral diverges. We are, though, only interested in the Q2 dependence
of the coupling constant, when its value is already known from a measurement at a
momentum transfer ;2. Then the value of the loop is (Fig.3.12)

2
_ % In (%) . (3.18)

The final result for the coupling constant is found when we also include the higher
order corrections of Fig.3.13.

The sum of the corrections shown in Fig.3.13 is graphically represented in
Fig.3.14 and can be analytically written as the sum of the geometrical series of
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powers of (3.18),

a(p?)
1 — [a(p?)/37] In(Q?/pi?)

a(Q?) = (3.19)

This formula holds for Q, i >> mec, and the value of « is given at a suitable scale.
At separations r > A, the vacuum polarisation is negligible. Values for a have been
measured up to Q% ~ 10* GeVzcg 2, and they are in agreement with the expression
(3.19).

3.3.2 Strong Coupling Constant o

The vacuum polarisation for strongly interacting particles is treated in just the same
way as with the particles of the electromagnetic interaction. The only difference is that
not simply quark—antiquark pairs (Fig. 3.15) contribute to the polarisation, but it also
involves gluonic loops. The contribution to the polarisation from quark—antiquark
pairs screens the strong charge, just as electron—positron pairs do for electric charges
(Fig.3.15: g — qq). This contribution is weighted by the number of flavours, ng.
The self-coupling of the transverse gluons (Fig.3.15: g — grgr) yields the same
polarisation. However, one has shown from QCD that the dominant term (Fig.3.15:
g — gcgr), the self-coupling of gluons to transverse and Coulombic gluons, forces
the strong charge outward.

Analogously to the sum of the geometric series (Fig.3.13), the expression for
as(0?), compared to a reference value at 0= ,uz, is

Qg (MZ)

2y
@ = e D) 127133 — 20 (02 )

(3.20)

The equation (3.17) is obtained by substituting the commonly used scale Q2 into

(3.20)
—127

(33 — 2np)

anT C3T
 — 1 - - - + ...

Fig. 3.15 Contributions from gluonic loops to the vacuum polarisation: gluon g — qq, g — gT&T,
& — &cer

A% = i exp [ as(,ﬁ)] ) (3.21)
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3.3.3 Weak Coupling Constant ovw

The weak bosons, W0 (see Chap. 16), carry weak isospin, the effect of self-coupling
dominates the vacuum polarisation and the strength of oy decreases for larger Q2.
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Chapter 4
The Hydrogen Atom — The Playground
of Quantum Mechanics

Das Atom der modernen Physik kann allein durch eine partielle
Differentialgleichung in einem abstrakten vieldimensionalen
Raum dargestellt werden. Alle seine Eigenschaften sind
gefolgert; keine materiellen Eigenschaften konnen ihm in
direkter Weise zugeschrieben werden. Das heif3t jedes Bild des
Atoms, das unsere Einbildung zu erfinden vermag, ist aus
diesem Grunde mangelhaft. Ein Verstindnis der atomaren Welt
in jener urspriinglichen sinnlichen Weise ist unmoglich.
Heisenberg in 1945

The hydrogen atom is the simplest atomic system. It may be described as a one-body
system to a very good accuracy and can be solved analytically in this way. It is thus
suitable for testing quantum mechanics. Furthermore, precision tests on the hydrogen
atom still provide the most accurate tests of quantum electrodynamics (QED).

All the properties of the hydrogen atom are determined by the charge e of the
electron, its mass, m., and Planck’s constant, 4. We will use the dimensionless Fine-
structure constant o = e? /(4meohic) as the coupling constant of the electromagnetic
interaction.

4.1 Level Diagram

4.1.1 Semiclassical

The electron moves in the Coulomb field of the proton with an average potential
energy V = —ahc/r. Here, 7 is the radius of the classical orbit of the electron
around the proton (actually, 7 = (1/r)~").

© Springer-Verlag GmbH Germany 2017 41
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The average kinetic energy of the electron is K = p?/2m., and p is its average
momentum (more exactly, \/(p?)). The smearing of the position and momentum
in the ground state of the atom must obey the uncertainty relation. The uncertainty
relation is an inequality. If one uses it as an equality (Ar - Ap = kh), the factor k
in front of & depends on the potential. To get quantitative results for the case of the
Coulomb potential, one must require ¥ p = h. This is reminiscent of the de Broglie
rule, which states that the circumference of stable orbits must be an integer multiple
of the de Broglie wavelength, A = h/p.

A short clarification is in order: in the bound state, wavelength is not well defined,
but in a quantum state of size 7, without any nodes, 7 &~ A. To show this, one must
perform a Fourier analysis of the Schrodinger wave function. It emerges that, in
objects of size r, the main contributions come from waves with A = 7. As we will
see later in the case of the hydrogen atom, 7 is the radius at which the electron
density distribution multiplied by 72 has its maximum. We also call this radius the
most probable radius.

With the help of the uncertainty relation, the average kinetic energy may be
written as

K=—. 4.1)

The ground state radius, 7, is found from the condition that the total energy of the

system

he R
E=-2C4 4.2)

r 2m.i?
is minimal: dE/dr = 0. The radius at the minimum is called the Bohr radius, ao:

he Ae
ag = S =— (4.3)
amec o

Here, A, is the Compton wavelength of the electron. The binding energy of the
hydrogen atom, which is also called the Rydberg constant, Ry, is

aPmec? ahe

Ff=————=——=—1Ry=-13.6eV. 4.4
1 ) 2a0 y € 4.4)

In the ground state, with principal quantum number n = 1, the wave function has no
nodes and the de Broglie wavelength is A; ~ r. In the first excited state, n = 2, the
wave function has one node and the wavelength is A, = 7 /2. For the nth state, we
have A, = r/n. This yields the radii and the binding energies,

P, =n%ay; E,=—Ry/n’. (4.5)

In Fig. 4.1, the nodes of the wavefunctions are illustrated as standing waves and the
familiar picture of the hydrogen level diagram is sketched.
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Fig. 4.1 The hydrogen level A
diagram in semiclassical EleV]
approximation; the electron

continues to be interpreted as 0

a standing wave -0.84

-1.50

-3.37

-13.5H n=1

4.1.2 Dirac Level Diagram

An excellent understanding of the hydrogen atom is available with the help of the
solution of the Dirac equation. This indeed describes the hydrogen atom almost
perfectly because it takes the spin and relativistic dynamics of the electron into
account. The sole imperfections are to do with the proton’s spin, the finite size
of the proton and the effects of radiative corrections. We will discuss these below
as hyperfine structure and the Lamb shift. The level diagram of the hydrogen atom,
calculated from the Dirac equation, is sketched in Fig. 4.2. For comparison, the energy
levels found upon ignoring spin and relativity are given. The energy differences are
known as relativistic corrections and the spin-orbit interaction. The fine structure
splitting A Eg can be understood as a shift from the nonrelativistic energies; it is

(up to a?)
a? 1 3
AEsy=——|—757— )Ry (4.6)
n° \j+1/2 4n

It is interesting to note that the states calculated from the Dirac equation depend,
apart from the principal quantum number, solely on the total angular momentum,
j = £ + s. The orbital angular momentum is not a good quantum number.

In the following, we only want to show the plausibility of the orders of magnitude
of various shifts from the nonrelativistic energies. This is very educational. One
sees how elegantly the Dirac equation encompasses relativistic effects. On the other
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Fig. 4.2 The level diagram of the hydrogen atom, calculated from the Dirac equation. The energy
levels from nonrelativistic calculations are given for comparison

hand, the Dirac equation is only exactly soluble for hydrogen-like atoms and ions.
For atoms with more than one electron, there are no exact solutions.

For n = 1, one can estimate the relativistic corrections rather accurately in first-
order perturbation theory, and we will consider this in detail.

The correction to the kinetic energy is

4
p
A — 4.7
K= i 4.7
In the ground state, we have
2
Eo=X 1v, 4.8)
2m
and the correction to the kinetic energy may be written as
4
Ak =g
¢ (4.9)

_ 1 5 1 2 51

Substituting £y = —1Ry and taking into account that, in the ground state, (1/r) =
1/ag and (1/r?) = 2/a§, one finds

5
Ag = —ZazRy. (4.10)
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Ak is the contribution from the kinetic energy to the reduction of the ground state
energy.

4.1.3 Zitterbewegung

The electron cannot be localised with a greater accuracy than its Compton wavelength
Ae. The positrons, which accompany the electron in the solution of the Dirac equation,
annihilate the electron for a moment and create it elsewhere. This leads to a smearing
of the electron position, which is historically called “Zitterbewegung”.

The stochastic movement of the electron inside a region of size A, decreases the
Coulomb potential at the point r = 0. To estimate this correction, we expand the
potential in a Taylor series around r,

1
V(r+5r)=V(r)—i—VV(Sr—i-EZV,-VjVériérj+.... (4.11)

ij

Because of the vector nature of the smearing, the linear term vanishes on averaging,
(ér) = 0, while the quadratic term has the form

1 1
EZViVjVériérj — 6V2V(5r)2. (4.12)

ij

This term is only nonzero for r = 0 because the Laplace operator applied to the
Coulomb potential satisfies the Poisson equation, VZ(1/r) = —4md(r), where J(r)
is, of course, the Dirac delta function.

If we make the approximation ((§ r)?) = >\§, the correction to the Coulomb poten-

tial becomes |
Ap = gxgahc4w5(r). (4.13)

The energy shift is obtained when we calculate the expectation value of Ap. The
only contribution comes from r = 0. Therefore, we have to replace the J-function
in (4.13) by the electron probability density atr = 0,

1 2
WO = — = (4.14)

— =
4 a;

Our estimate only deviates by 30% from the following correct value, which is known
as the Darwin term:
Ap = o’Ry. (4.15)
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The energy shift in the ground state is then the sum of the two Contributions,

2
AEf = Ag + Ap = —%Ry — —1.8-107*eV. (4.16)

To obtain precise corrections to excited states, it is necessary to average over the
momentum distribution as our liberal estimates yield inexact results.

Consider now the level with n = 2. In the £ = 0 state, we have A = —0.562 -
10~*eV. For states with £ # 0, one must additionally take the spin-orbit coupling
into account. This is of a comparable size to the other relativistic corrections and is
also proportional to E, a?.

4.1.4 Spin-Orbit Splitting

From (4.6), one can see that states with the same j but different ¢ are degenerate.
This implies, for the level with n = 2, that the relativistic energy shift, Ax + Ap,
in the £ = O state is equal to the sum of both of these and the spin-orbit shift in the
€ =1,j=1/2) state.

The spin-orbit splitting in the £ = 1 state is

AE, = 2P [N g (4.17)
s=—({—=)-9). .
) m2c \r3

This is easily understood. The magnetic field produced by the proton in the rest frame
of the electron is from the Biot—Savart law,

e
R . 4.18
4regc?r3 Ty (4.18)

Upon transforming the field into the rotating frame of the atom, the field has to be
multiplied by a factor of 1/2 (the Thomas factor). Substituting the angular momentum
into (4.18), the field becomes

e
= — /. 4.19
8megmec?r? “.19)

The £ - s shift (4.17) is found by multiplying the magnetic field with the magnetic
moment of the electron, —(e/m)s. Because the radial wave function in the state with
n=2,¢=1is

Y@r) =

1 r r
—exp|l——), (4.20)
24 a3 9 o
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the expectation value of 1/r3 is found to be

1 1 /OO 2r\ r dr 1 @21)
— )= expl—— ) ——= —. .
BT 2a )y P\ w0 ) wa T 244

Thus, from

5= %[j(j+1)—£(£+1)—S(S+1)]h2

1
+§h2 for j =3/2

= (4.22)
—1h* for j =1/2
the spin-orbit splitting in the (n = 2, £ = 1) state is
1
AE(j =3/2) — AE(j =1/2) = 1 a’E, = 0.446 - 104 eV. (4.23)

In Fig. 4.2, the energy shifts are schematically represented for the statesn = 1,n = 2
and n = 3.

4.2 Lamb Shift

The Dirac equation perfectly describes fermions insofar as they are elementary par-
ticles: it takes properly into account the relativistic effects, the spin and the particle—
antiparticle symmetry. But the fine tuning of the energy levels in the atom requires, in
addition, considering the radiative corrections—the coupling of the electric charge to
the virtual photons and the virtual electron—positron pairs (Fig.4.3). Surely, also the
energy of the free electron undergoes a shift, in fact an infinite one, but is, together
with the rest of not known contributions to the electron mass, part of it. Experi-
mentally and theoretically best studied radiative corrections are those on the bound

Fig. 4.3 Electron emits and
reabsorbs a virtual photon
with a recoil in the
meantime. Its potential
energy is altered (/eft). The
proton charge is screened
because of the coupling of
the longitudinal photon to
the electron—positron pairs
(right)
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electron in the hydrogen atom (Lamb shift) and the magnetic moment of the electron,
i.e., the deviations of the magnetic moment from the Dirac value, y, = eh/2m,. We
discuss only the Lamb shift.

The Lamb shift in the states withn = 1, £ = 0 and n = 2, £ = 0 is theoretically,
it is believed, known to six figures. In practice, the most accurate data for the Lamb
shift are obtained from measurements of the difference of the 2s and 1s levels in the
hydrogen atom. We will roughly estimate this. The Lamb shift receives primarily
two radiative corrections. The first takes into account the fact that, by emission of a
virtual photon, the electron recoils and smears its position. The second contribution
accounts for the screening of the electric charge by the polarisation of the vacuum
(Fig.4.3).

Because the first mechanism delivers the major contribution (90%) to the Lamb
shift in the hydrogen atom, we will discuss it alone here. The finite extension of the
proton only generates about 1% of the Lamb shift in hydrogen.

4.2.1 Zero-Point Oscillation

There are many ways to treat the virtual photons, preferably by Feyman prescriptions.
But the smearing of the electron position is easier to visualise in the semiclassical
approach of the zero-point oscillation of the electromagnetic field. The recoil of the
electron due to the absorption and emission of the virtual photons is calculated by
taking into account the interaction of the electrons with these zero-point oscillations.

We consider the electromagnetic field to be an incoherent sum of plane waves in
abox of size L*. Each degree of freedom has a zero-point energy of %hw in the given
phase space, L34n(hw/c)*d(hw/c),

1 1
3 / dx(20E” + 1 ' B?) = L (20E?) + {11y ' B?))

o 4 (hw/c)rd(hw/c) Tw
- / 27h)3 2

(4.24)

The factor 2in front of the integral comes from the two polarisations of the photon.
Half of the last expression comes from the electric field, from which it follows that

2
5 w”hw

This integral is divergent. However, it suffices to estimate the Lamb shift if one
considers the frequency interval between hwmin ~ 2Ry and hwmay ~ mec?. We will
motivate this below.

The field E accelerates the electron and so smears its coordinates,

meor = eE. (4.26)
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Let us use this connection to estimate ((6r)?). The second time derivative introduces
a factor of (—1 /(,uz)2 into the integral over w (4.25),

2 W hwdw  2a(hic)? dw

o0y = | (—=£ — e

(on%) /( mwz) 2m2c3eg wm2ct w
N 2a(he)? . Wax

2.4 L
Tmzc Wmin

(4.27)

The coordinate of the electron fluctuates around dr, which changes both the kinetic
and the potential energy. The alteration of the kinetic energy is the same for both free
and bound particles and is included in the renormalisation of the mass. The change
in the potential energy is the contribution to the Lamb shift.

Now we have to estimate the relevant ultraviolet and infrared cut-offs for the
change in the potential energy.

For the upper bound, we choose the electron mass (Awmax ~ mec?) because a
resolution of the electron position better than the Compton wavelength (hc/m.c?) is
not possible. For the lower bound, we choose a typical atomic energy (hwmin =~ 2Ry)
because bound electrons are not smeared beyond the atomic radius. The ratio of the
energies at the upper and the lower cuts is then

2 1
= —. (4.28)

Wmax _~ MeC
Zmax o e
Wmin ~ Mec2a? a2

The fluctuation of the electron smears the Coulomb potential (see (4.11) and

(4.12)),
11

_ _ - 2 2
Av =53 V), (4.29)

‘We can apply the Poisson equation and calculate the corrected Coulomb potential,
V2V = —4rahe §(r), (4.30)

where 4 (r) is, again, the Dirac delta function. The smearing of the Coulomb potential
is then

2

3
(Av) = drakic 11, (0)((O1)?) = drakic (M) (602, (431)
T hen

At first order, this corresponds to the shift of the potential energy,

AE (Av) 4 mectad ! 1 8 Ry a31 1 4.32)
amb = N — n —_— = — n —_— . .
Lamb v 3r nd a? 3r nd a?

Our estimate agrees, e.g., for the state n = 2 to within 20%.
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4.3 Hyperfine Structure

Let us continue by considering the interaction between the magnetic moments of
the proton and the electron. The magnetic field of a magnetic dipole, e.g., that of a
proton, . is

o 3r(repy) — o, 20

B(r) =
® = IE 3

11,8 (1) (4.33)

The dipole—dipole interaction energy can be found by taking the scalar product
between the magnetic field of (4.33) and the magnetic dipole moment of the electron
and then integrating the electron distribution over all space. The contributions of the
first terms thus cancel. Only the contribution of the overlapping moments survives.
Only the contact potential, Vi, is of significance for the interaction of the magnetic
moments of the electron and the proton,

2
Vs (1) = —% My« e O(F). (4.34)

From this, the value of the hyperfine splitting is

20

AEg = 3

1y -+ e [V(0) . (4.35)
Only the electrons in the states with £ = 0 have a finite probability of being found
at the nucleus. We will only calculate the hyperfine splitting of the 1s state in the
hydrogen atom. The probability of finding the electron at the position of the proton is
from (4.14) [ (0)|> = 1 / 27ra3 . The total angular momentum of the atom is denoted
by F, and it is the sum of the electron angular momentum and the spin of the nucleus.

In the case of the hydrogen atom in the 1s state, we have F' = s. +s,,. Because, as is
well known,

1
1 +-1 forF =1

Sp 8 = SIF(F +1) = 25(s + D2 = g‘ (4.36)
—th for F =0

and p, = 2.973(e/my)sp plus p, = —(e/me)se, the hyperfine splitting has the value

2-.2.793 2(he)® 1
Ho ¢ (2 2 —— 4.37)
3 MpCmeC* mag

87 - 2.79302(he)® 1
— . —— (4.38)
MyC* - MeC Tag

=6-10"%eV. (4.39)

AEG(F =1) — AEG(F =0)
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Fig. 4.4 Complete level ol
diagram of the hydrogen
atom including the hyperfine
structure splitting
1366V n=1 F=1

N OF:O
34ueV 6ueV

Bohr Dirac Lamb HFS

This energy corresponds to the familiar 21-cm radiation, which is emitted from
interstellar hydrogen and is easily detected on the earth with antennae. The lifetime
of the hyperfine transition is many orders of magnitude too long (=107 years) to
be observed in the laboratory. It is different in the case of interstellar hydrogen: the
probability of atomic collisions is sufficiently small there to allow the electromagnetic
transition. In Fig. 4.4, the complete level diagram of the H atom, including hyperfine
structure splitting, is shown.

4.4 Hydrogen-Like Atoms

Negatively charged particles, =, 7—, K=, p, ¥~, E7, may be successfully placed
in the Coulomb field of atomic nuclei. Because the 1s radii behave as r o« 1/(mZ2),
a heavy particle will move inside the electron cloud and may very well be viewed as
a hydrogen-like atom, though not only with a proton but also with a heavy atomic
nucleus at its centre. Atoms with strongly interacting particles bound in the nuclear
Coulomb field are well suited for investigations of the particle-nucleus interaction
at very low energies. Because the mass of the muon is ~200 times larger than that
of the electron, muons moving inside an atom close to the nucleus are only weakly
screened by the electrons.

This is why muonic atoms are suited to measuring the electromagnetic properties
of nuclei, as we will now briefly discuss.

4.4.1 Muonic Atoms

The binding energies in muonic atoms can be calculated for most states by taking
the formulae for the hydrogen atom and replacing both the electron mass by that
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of the muon and the proton charge by that of the nucleus in question. A significant
deviation from the hydrogen formulae estimates is found for the £ = O states and,
in particular, for the 1s;/, ground state. We will demonstrate this for the example of
the muonic lead atom. To estimate the ground-state energy of the muonic lead atom,
we can take the electric charge in lead as being constant inside the nuclear radius,
R =7.11fm.

In a muonic atom with a point nucleus carrying the charge of lead (Z = 82), the
most probable radius of the muon in the 1s;/, state would be

o ao 4o
"~ Zmy/me 16960

~ 3.1fm, (4.40)

a,

and its binding energy would be

M
Ey=—-7 Ry ~ —18.92MeV. “4.41)

[

The experimental result for the binding energy of the 1s;,, state in muonic lead is
only E;s = —9.744 MeV.

A muon moving so close to the nucleus feels a strongly modified Coulomb poten-
tial because the lead nucleus has a radius of about 7.1 fm, which is comparable with
the extension of the muonic wave function. The effective Coulomb potential of a
lead nucleus is sketched in Fig.4.5. We have assumed that the nucleus is a homoge-
nous charged sphere of radius R. Inside the nucleus, the potential increases as 7>/ R*
and has the form of a harmonic oscillator, while outside the nucleus, a simple 1/r
dependence holds. At the edge of the nucleus R, both functions must have the same
value and the same derivative. This is achieved through the following ansatz:

V() |

Fig. 4.5 The effective Coulomb potential of a lead atom. At the edge of the nucleus, r = R,
the function r2/R3, which describes the potential inside the nucleus, is matched to the hyperbola.
The ground state (solid line) calculated from the oscillator potential lies only 1.5MeV above the
experimental result (dashed line)
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1 (3 172
AV A
V(r) = —Zahc 1 (4.42)

— r>R.
-

The 15/, muon moves primarily within the nucleus and we can try to calculate the

binding energy by assuming that the potential is that of a harmonic oscillator.

The Hamiltonian of the harmonic oscillator is

2 2.2

p mwr
H=— , 4.43
ot (4.43)
where, if we recall the form of the potential (4.42), we have
, Zahe (4.44)
w = —. .
mR3

The ground state of the three-dimensional harmonic oscillator is at (3/2)/w, so in
this approximation, the binding energy is

B — 3 Zahe n Zahe
T2 R TV mR3 445
3 Zohe Zahe (4.45)
—— 1— = —8.36 MeV.
2 R mR

This is not a bad estimate. The experimental value lies a little lower because the
muon is not always inside the nucleus.

Literature

R.P. Feynman, Quantum Electrodynamics (Benjamin, New York, 1962)

H. Haken, H.C. Wolf, The Physics of Atoms and Quanta (Springer, Berlin, 2000)

V.E. Weisskopf, Search for simplicity: quantum mechanics of atoms. Am. J. Phys. 53(3), 206-207
(1985)



Chapter 5
Many Electron Atoms — Shell Structure

Necessaria est methodus ad veritatem investigandam.
René Descartes

The most important properties of an atom are its radius and its typical excitation
energy. These characterise the atom both as a molecular building block and in con-
densed matter.

5.1 Binding Energies

Similarly to the case of the hydrogen atom, we will also calculate the binding energies
of complex atoms in a semiclassical approximation.

5.1.1 The Helium Atom

Consider two electrons in the ground state circling a helium nucleus. If we neglect
the mutual repulsion of the two electrons, the average potential energy is

- Z?ahe ahe
V=———r—=—-4— (5.1)
r r
and the average kinetic energy is
. (hc)?
K=2——. 5.2
2mc2i? (5-2)
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Hence, the total energy is

ahce (hic)?
E=—-4—+2—=—.
r + 2mc?r?

(5.3)
Similar to the case of the hydrogen atom, we can calculate the binding energy and
radius by minimising the energy,

e=¥p SRy: 7=~ (5.4)
= = — , y = — . .
) 1 y 4a0

The experimentally determined binding energy is, though, E = —5.8Ry. The
difference is clearly produced by electron—electron repulsion.

This can be well estimated by assuming that the average separation of the two
electrons is 7 = 7/0.6. This post hoc assumption is justified because it delivers
good results, but one can also obtain it through rather more drawn-out calculations.
For us, it is important, though, that we can represent the long-range correlations
between the electrons in complex atoms, which are generated by repulsion, by a
single parameter for the whole periodic system of elements! The repulsive potential
between the electrons is then

I h
o +O.6—a_c , (5.5)
r

Veff

and the complete expression for the total energy is

(he)?
=(—4+06)—+2—— 5.6
= (—4+ ) ‘4 Pt (5.6)
The minimum energy.
(3.4)?

agrees with measurements. The most probable radius r is 0.6 ay.

5.1.2 Correlations

The most probable electron—electron separation in the helium atom is reg = 7/0.6.
Does this number signify a strong or weak correlation between the two electrons? If
one works out the expectation value (1/r) with noncorrelated helium wave functions,
one obtains an effective electron—electron separation re = 7/0.625 (this is easy to
check!). This means that the repulsion of the two electrons hardly changes their
motion — a weak correlation.
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5.1.3 The Negative H™ Ion

The negative H™ ion differs from the helium atom only through its single rather than
double nuclear charge. It is therefore more weakly bound. The binding energy of the
second electron is harder to calculate than in helium because it is very weakly bound
and one needs to be subtle to see that it is bound at all. Precise calculations yield
E = —1.055Ry; because the energy of the neutral hydrogen atom is —1 Ry, there is
only a binding energy of —0.055Ry = —0.75eV for the second electron. This has
been experimentally verified.
Let us try an analogous ansatz to that used for helium (5.6),

ahe (hic)?
E = (- 2—}-06)——i—22 L

(5.8)
Minimising yields a much larger radius, r = (1/0.7) agp = 1.43 ap, than for helium
(0.6 ap) and the energy,

E =-2(0.7)>Ry = —0.98Ry > —1Ry, (5.9)

which is not enough for binding. One needs a tiny improvement — additional cor-
relations between the electrons and an admixture of a configuration where the sec-
ond electron is far away and polarises the remaining hydrogen atom (configuration
mixing).

The exact result can be obtained if one assumes ad hoc that the average separation
of the two electrons is 7 = 7//0.547 instead of 7 /0.6.

5.1.4 The 2s, 2p Shells

To estimate the binding energies and radii of atoms with 2 < Z < 10, we will
only consider the outermost electron shell. The nucleus and the inner shells can
be described via an effective charge, Z.;. The number of electrons in the outermost
shell is correspondingly Z.g. The principal quantum number of these electrons is
n = 2. The potential energy of the Z.i electrons in the Coulomb field of the Z.
charge is

V=-—7%—. (5.10)

To calculate the repulsion between the electrons, we need the number of electron
pairs and their repulsive energies. The average separation between the electrons will
again be taken to be 7. = 7/0.6. The number of pairs is

Zeff(Zeff - 1)

> , (5.11)
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and the potential energy in the shell is

(5.12)

Zet(Zeir — 1) ] ol
V= [_ngf 10,6 ZerZer — 1) )] ?

2

To calculate the kinetic energy, we must take into account that, forn > 1, quantisation
of angular momentum (semiclassical orbits), 7p = nh, implies

5 (hic)?

2me?i?

Eyin = Zegn (5.13)

As with the hydrogen atom, one looks for the minimum total energy. The binding
energy of a closed shell with Z. electrons and its radius are given by the following
expressions:

Zeit [Zett — 0.3(Zeg — DI R
- 2 y )

o " (5.14)

a .
Zest —0.3(Zegr — 1)

E =

Using these formulae, one finds pretty good estimates for the energies and average
radii — as can be seen from Table 5.1.

Table 5.1 The most probable radius, 7, and the binding energy of the electrons in the outermost
shells

Element | Z Zetf | n rlap] cale. | —E[Ry] rlap] exp. | —E[Ry]
calc. exp.
H 1 1 1 1.0 1.0 1.0 1.0
He 2 2 1 0.6 5.8 0.6 5.8
Li 3 1 2 4.0 0.25 2.8 0.4
Be 4 2 2 24 1.4 2.2 2.0
B 5 3 2 1.7 4.3 1.6 52
C 6 4 2 1.3 9.6 1.2 10.9
N 7 5 2 1.1 18.0 1.0 19.3
(0] 8 6 2 0.9 30.5 0.8 31.8
F 9 7 2 0.8 42.0 0.7 48.5
Ne 10 | 8 2 0.7 69.0 0.6 70.0
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5.2 Atomic Radii

The most probable radii are not easily related to measured quantities. The physically
most sensible radius definition is given by /(r2). To be able to quote this, we have
to know the electron density distribution.

5.2.1 Hydrogen and Helium

The radial wave function of the electron in the hydrogen atom’s ground state is, as
may be checked in any textbook,

2
R(r) = —— e~/ (5.15)
3

The Bohr radius, ay, gives the most probable distance of the electron from the nucleus,
as is easily checked if one calculates the maximum of the electron density,

4
r2R2(r) — r2_36—2r/‘10' (516)
a9

Furthermore, from (5.15), we can calculate the expectation value, (1/r). Indeed, we
find 7 = (1/r)~" = ay, which explains why our estimates with 7 worked so well.

In scattering experiments with X-rays, the charge distribution of the atom may be
measured and, from this, one can calculate the expectation value, (ré), which, for
hydrogen is

3
ay

4
() == / e /rtdr = 3ag . (5.17)
The so-defined radius of the hydrogen atom is (ré) ~ 0.1 nm, and it is a better
measure of the atom’s size than the Bohr radius. Because the wave function of the

helium atom is similar to that of hydrogen, we can estimate the size of the helium

atom, ,/ (rﬁe) ~ 0.06 nm. Thus, the helium atom has a smaller atomic radius than

hydrogen and indeed the smallest radius of all atoms.

It is not possible to calculate the radii of all noble gases from (5.14) without
knowing the physical charge distributions. The radii increase slightly with charge
number and are between 0.12 and 0.16 nm. We will now demonstrate, using the
Thomas—Fermi model, the fact that atomic radii depend very weakly on the electron
number.
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5.2.2 Thomas—Fermi Model

A heavy atom may, cum grano salis, be viewed as a degenerate fermionic system.
The electrons move inside a potential, U (r), which is produced by the nucleus and
the electrons. If the potential only slowly changes, this means that the de Broglie
wavelength of the electrons only depends weakly on the radius; so one can define, for
every r, aregion Ar > A in which one can treat the electrons in a Fermi gas model
(Fig.5.1). The number of electrons that fit into an interval Ar is twice the number of
available phase-space cells,

2 PF ) )
n= (27Th)3/0 4 pdp - 4mwr-Ar. (5.18)

From (5.18), we can easily work out the local electron density,

_ (pp)’
Anr’Ar  3mR3

p(r) = (5.19)
In this model, one assumes that the Fermi momentum, pg, corresponds to the largest
possible momentum of a bound electron. This is true if the electron has zero total
energy, i.e., the kinetic energy is equal to the potential,

i

— =eU(r). (5.20)
2me

We now must demand that our ansatz is self-consistent: the potential U (r) is deter-
mined from the charge density —ep(r) with the help of the Poisson equation,

V20 (r) = - —P0) (5.21)
€o
and the electron density is
[2meeU (r)]?/?
= 5.22
p(r) S (5.22)
Fig. 5.1 The electrons in Ar r
each shell of width Ar are 4

treated as an independent
degenerate Fermi gas
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To demonstrate the scaling properties, it is helpful to rewrite (5.22) with dimension-
less variables. The potential at the point r is determined from the effective charge
Zesi (r),

Ze
UGy = 2t (5.23)
dregr
Let us now introduce the variables
Zetr (1) 1 4r Z\3y
O(r) = d x= — = 5.24
") M =002 a 088534 (5-24)
so that one can write (5.21) and (5.22) in the form
d’®
7= @212 (5.25)

with the boundary condition ®(x — oo0) — 0. This is the standard form of the
Thomas—Fermi equation. It cannot be analytically solved, but it is numerically solved
in Slater’s book, and it is graphically represented in Fig.5.2. This simple function
reproduces a very good approximation the atomic densities, which are found from the
self-consistency method. Itis important that ® (x) is a universal function that holds for
all atoms (Z > 10) when one plots it as a function of x in units 0f0.8853a0/Zl/3. Just
as with @, the electron densities and m in units of 0.8853ay/Z 173 are the same for
all heavy atoms. From this, a simple scaling of the expectation values follows. For the
radius, it yields v/(r2) o« Z~!'/3. This viewpoint only holds, of course, if we consider
a radius averaged over a shell. The difference between the radius of a noble gas
atom and that of the succeeding alkali atom is namely larger than, e.g., the difference
between the neon and xenon atoms; see Table 5.1. It may seem surprising that 1/ (r2)
decreases with Z, but one can easily understand it upon realising that the interior

Fig. 5.2 Graphically 1.0F ;]
represented dependence of L o) X2
the solution @ (x) of the
Thomas—Fermi equation on
the parameter

x = (Z3r)/(0.8853 - ap).
Upper right the resulting
electron density as a function
of x
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Fig. 5.3 Comparison of the [
Thomas—Fermi model with > >

the Hartree calculation for r |¢(r)| KL
Z =80

Hartree

rla,

electrons as Z increases lie nearer to the nucleus while the distribution of the outer
electrons only slightly increases. It is therefore unsurprising that chemists, who are
primarily interested in the outer electrons, use their own definitions of atomic sizes.
In Fig.5.3, a comparison of the Thomas—Fermi model with the Hartree calculation
is shown. The Thomas—Fermi distribution for x > 0.5 or r > 0.4 - ay/Z'/? can be
approximated by an exponential function.

5.2.3 Alternative Definitions

In chemistry, one uses other definitions of atomic sizes that are relevant for chemical
binding.

1. The radius is defined so that the probability of finding the electron outside this
radius is 50%. This definition reproduces well the separations of the atoms in
covalent bonds.

2. The radius is so chosen that, at this separation from the nucleus, Pauli repulsion
does not let another atom approach more closely. This definition is used for the
separations of atoms in ionic bonds.

The different definitions lead to systematically varying values but reproduce well the
general dependence of atomic sizes on Z.
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5.3 Atoms with Magnetic Moment

In the hydrogen atom, states with the same principal quantum number, n, but different
angular momenta, ¢, are degenerate. They all have the same kinetic and potential
energy. This means that they all have the same (1/r) and thus the (r) values are very
similar. This does not mean that they all extend equally. It should not be forgotten
that, for example, the 3s state has two, the 3p state has one and the 3d state no radial
nodes. Thus, the only 3d maximum is hidden in the external maxima of the 3s and
3p states (Fig.5.4). This effect is still stronger for heavier atoms. As a first example,
consider atoms with incomplete d subshells; typical examples are iron, cobalt and
nickel. In these elements, the electrons in the inner maxima of the s and p states feel
the almost completely unscreened Coulomb potential of the nucleus, while the only
maximum of the 3d state lies in the middle of the electron shells and so experiences
a strongly screened potential. Thus, the 3d state has a higher energy than the 3s and
3p states and may be better compared with the 4s and 4p states. The periodic table
of the elements makes this clear, as the electrons occupy the levels in the following
order: 1s; 2s, 2p; 3s, 3p; 4s, (3d, 4p); ... .

The s and p electrons in an atom with an incompletely occupied outermost shell are
“chemically very active”. Thus, the states of neighbouring atoms combine in covalent
or ionic bonds in such a way that the external shells are effectively filled up. It follows
from this that the s and p electrons in most stable molecules are pairwise coupled
with opposite angular momenta. Thus, the sum of their magnetic momenta is equal
to zero and the substance is diamagnetic and only has an induced magnetisation.

It is very different for an incomplete d subshell. Spins and orbital moments of the
electrons can orient themselves in a parallel fashion, and their magnetic moments
add up. Therefore substances of such atoms are paramagnetic. Other systems of such
atoms (crystals) can even be ferromagnetic.

For paramagnetism, it is crucial that the d states, which have a higher energy than
the corresponding s and p states and are later occupied, lie, geometrically speaking,
deeper inside the atom than the s and p states and are thus protected from chemical
influences. Thus, they can afford to remain unpaired. Even when several electrons are
in the d subshell, it is energetically preferred for the electrons to line up in parallel.

Fig. 5.4 Electron densities ~
in the n = 3 shell with an 0.10— /
incomplete 3d subshell ar®y® [ /
- 3d / 3p \ 3s
0.05 B \
. B / \
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P N
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L1 N TN T T N O T T T O e S
0 5 10 15 20

rla,



64 5 Many Electron Atoms — Shell Structure

For a symmetric spin function, the spatial wave function is antisymmetric and thus
the Coulomb repulsion is minimised. This is not a magnetic but rather an electrostatic
effect.

Similar consideration also holds for those rare earth atoms with unpaired electrons
in the f subshell. These lie above the energies of the corresponding electrons in
the d subshell and are geometrically still more screened by the outermost s, p and
d electrons. Therefore, the rare earths (e.g., samarium, europium) with partially
occupied f subshells are even better (if more expensive) ferromagnets than iron.

5.4 Ferromagnetism and Antiferromagnetism

Ferromagnetism is the example par excellence of a phase transition and is often used
as a model in other areas of physics. Therefore, we will briefly sketch this transition.
The phenomenon of ferromagnetism is a consequence of the lattice structure. The
s and p electrons, in the case of iron, and the s, p and d electrons, for the rare earths,
are involved in the binding of the crystal lattice, the d or f electrons are screened and
barely overlap with neighbouring atoms; however, this is enough for the total wave
function of the d or f electrons to have to be antisymmetric. For ferromagnetism, it
is energetically preferred that the angular momenta of the d electrons are parallel
to each other and thus the spatial wave function is antisymmetric. This lessens the
Coulombic repulsion energy: an antisymmetric wave function has a node where two
electrons overlap and so the Coulomb energy is minimised.

For antiferromagnetic substances, the situation is reversed. An antisymmetric spin
wave function and a symmetric spatial wave function increase the Coulomb attraction
between neighbouring ions, and it is larger than the repulsion of the electrons.

Let us estimate the binding energy of the d electrons, which is responsible for the
phase transition between paramagnetic and ferromagnetic states. The Curie point of
iron lies at 7¢c &~ 1000 K, which corresponds to a binding energy of around 0.1eV.
Magnetisation is the best indicator of the orientation of the magnetic moments of the
electrons, and in the paramagnetic state, it is well described by the Curie law,

C
=—. 5.26
Xp =7 (5.26)
Here, xp is the paramagnetic susceptibility and C a material-dependent constant.
The magnetisation, oM, is the consequence of an external magnetic field, B,, and
of the electrostatic interaction of the electrons in the lattice, which may be formally
parameterised as an effective field, B. = AM,

:UfOM = XP(Ba + B.) = XP(Ba + )\M) . (527)

Here, ) is a phenomenological constant.
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The ansatz (5.27) is typical for the formulation of a phase transition in which
the critical temperature of the phase transition is determined by the interaction
between the constituents of the system. We will use similar ansatz in other
cases. The ansatz (5.27) contains a positive feedback for the magnetisation.
The quantity that measures the degree of order in the phase transition, here the
magnetisation, is called the order parameter.

Taking the terms involving the magnetisation to the left-hand side and using the
Curie law (5.26), one finds

C
M= —B8B,, T Tc . 5.28
o T Tc > Tc (5.28)

The pole at the temperature Tc = C /g signals the phase transition. Naturally, the
magnetisation cannot increase beyond the saturation value. Near and below T¢, one
must apply the improved Curie law, which takes saturation nontrivially into account.
Then (5.27) is no longer linear and, at T > T, is already fulfilled nontrivially for
B, =0.
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Chapter 6
Covalent and Ionic Binding — Electron
Sharing

Durch das Einfache geht der Eingang zur Wahrheit.
Lichtenberg

The binding energies in atoms were determined through the condition that the total
energy of an isolated atom, the sum of the potential and kinetic energies of the elec-
trons, has a minimum. In interactions with other atoms, they form complex structures
such as molecules, glasses or crystals. Charge polarisation of the external electrons
causes the total energy of the molecules to be lower than the sum of the energies of the
isolated atoms. In this chapter, we only consider the chemical binding that leads to a
compact molecular or crystalline structure. This can be approximately formed from
two simple idealisations of bonds: covalent and ionic bonds. The metallic bond is a
delocalised covalent bond. We treat this in Chap. 11 as an example of a degenerate
fermionic system.

6.1 The Covalent Bond

The ideal example of a purely covalent bond is the hydrogen molecule. This example
is very attractive because one can almost sketch it on the back of an envelope. In our
qualitative considerations, we use molecular orbitals to show that the covalent bond
is a purely electrostatic affair and not an exchange phenomenon, as the alternative
viewpoint with atomic orbitals suggests.The term orbital is often used in atomic
physics and chemistry to mean a single-particle wave function

Intextbooks, atomic orbitals are usually used as a basis. The two separate hydrogen
atoms are brought toward each other and, as the electrons of the two atoms begin to
overlap, the composite wave function is formed. To describe the symmetric spatial
wave function, one uses exchange coordinates, which have no physical significance.
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The electrons are only exchanged in the sense that, in the molecular quantum state,
it is no longer possible to assign the electrons to individual protons.

In our derivation, we begin with a helium atom, the nucleus of which splits into
two deuterons, and imagine what would happen to the electron cloud. We, though,
do not use deuteronic but proton masses because the covalent bonds in both 'H, and
’H, are very similar.

6.1.1 The Hydrogen Molecule — A Case of Broken Symmetry

Both electrons in the ground state of the molecule are coupled with total spin
S = 0, their spatial wave function is symmetric and predominantly corresponds
to a molecular orbital with orbital angular momentum L = 0. Here, we will show
that, in the case of the hydrogen molecule, the molecular orbitals quickly produce
the correct result. The primary attraction is caused by a helium atom-like charge
distribution of the electrons around the two hydrogen nuclei.

Let the separation between the two protons be d and the separation of the electron
from the molecular centre of mass be r (Fig.6.1). For d/2 < r, the total energy of
the electrons is equal to that in helium. For d/2 >> r, one has to take into account
that the electrons mostly each only see one proton and the total energy is that of two
separated hydrogen atoms. We will simulate the connection between the two regions
via the following ansatz for the total energy of the hydrogen molecule:

p=2l 2 1 (1o )]

2m r

+0.620< (1 - e*zfz/dz) 4 ohe.
r d

6.1)

The last term accounts for the contribution to the total energy from the mutual proton
repulsion, the first three terms correspond to the electron contributions. Forr > d /2,
this contribution to (6.1) is equal to that in helium (see (5.6)), while for r <« d/2, it
is equal to that in two separated hydrogen atoms.

Fig. 6.1 The separation
between the two protons is d,

the separation of the electron r

from the molecule’s centre of

mass is r; the contour of the

hydrogen molecule at a >
radius r & 2aq has the value — Z-axis

0.001 electrons/ aS
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We will see that the electrons are mostly distributed around 7 > d/2 and we may —
as in the case of the helium atom — take p = h. If we re-express 7 and d in terms of
the Bohr radius and let £ = 7 /ay and ) = d/2ay, the equation becomes

E= Ié — % [1 +0.7 (1 - e*fz/z"z)] + %] Ry, (6.2)

where Ry is the Rydberg constant (4.4).

Figure 6.2 displays the total energy, i.e., the sum of the electron attraction, E’,
and mutual proton repulsion. The minimum lies at d &~ agp, and the most probable
electron radius in the molecule is 7 = 0.9ay. The resulting binding energy is Eping =
E + 2Ry = —0.47 Ry. These values should be compared with the experimental
values d = 1.43ay and Eying = —0.34 Ry.

This result shows that the assumption 7 > d/2 is justified and that the electron
distribution is similar to the helium atom. It should be stressed again that, for the
distribution of the electrons, the effective radius, v/ (r2), is relevant and is around 1.7
times larger than the most probable radius.

The question remains, though, how good the assumption of a spherically sym-
metric charge distribution is. The two charge centres destroy spherical symmetry.
This can be best tested by considering the rotational states of the molecules. We
should note that the two proton spins can be parallel (orthohydrogen) or antiparal-
lel (parahydrogen). Since the two-proton wavefunction must be antisymmetric, the
orthohydrogen can have only odd two-proton orbital angular momenta and parahy-
drogen can have only even ones.

The magnetic moments of the rotational states are formed from the magnetic
moments of the rotating protons and — with opposite signs — of the electrons. In the
first excited state (J = 2) of the hydrogen molecule the electron spins as well as the

Fig. 6.2 The energy of the
two hydrogen atoms as a
function of the separation d
between the nuclei. E’
signifies the binding energy
of the electrons to the two
hydrogen atoms as a function
of the separation d. For

d = 0, we obtain the binding
energy of the helium atom,
—5.8 Ry, while as d — oo,
we find the binding energy of
the two hydrogen atoms,

—2 Ry. The total energy E is
found by adding the mutual
repulsion of the two nuclei
to £
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Fig. 6.3 Results of an exact 6.0 1 1 1
calculation of the electron
distribution in the hydrogen
molecule. The contours
correspond to electron
densities (from outside to

inside) of 0.0010, 0.0025, /
0.0050, 0.01, 0.025, 0.05, yiag o B
0.10 and 0.25 electrons/ag

T T T

z/ao 6.0

proton spins are antiparallel and their spin magnetic moments do not contribute; only
orbital currents contribute to the magnetic moment. The measured magnetic moment
in this state is pp, = (0.88291 £ 0.0007)un. Here, pn is the nuclear magneton.
Two protons that rotate around their centre of mass with angular momentum, 7,
generate a magnetic moment of the size of the nuclear magneton. The 12% smaller
result indicates a contribution, if a small one, from the electrons to the magnetic
moment. Electrons with § = 0 and L = 0 do not contribute to the rotation. The
contribution comes from electrons with L = 2. This means that, as well as the
spherically symmetric electron distribution, there is also a quadrupole one. From
the experimental values of the magnetic moment, the quadrupole moment (Q =
(3z% — r?) = 0.59a3) and the mean square radius of the electrons in the hydrogen
molecule ((r?) = 2.59a§), it follows that the probability of finding the electron in
the L = 2 state is roughly 20%.

In Fig.6.3, the electron densities in the hydrogen molecule are sketched. The
chemical bond is an electrostatic effect: the electrons taking part in the bond feel
twice the charge of an individual atom. This attraction is greater than the repulsion
of the two protons.

6.1.2 An Analogy

Let us draw the potential in the hydrogen molecule in space (see Fig.6.4). Because
of the fact that spherical symmetry is broken, there are two new excitation modes:
rotation around symmetry axis, through an angle ¢, and radial oscillations orthogonal
to the eaves of the potential. The potentials in the analogous cases of chiral symmetry
(Fig. 12.9) and the Higgs field (Fig. 16.10) indeed show a similarity to the hydrogen
molecule potential. One would not, though, tend to call this a Mexican hat potential,
but rather as a witch’s hat potential. The rotation and vibration in the cases of chiral
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Fig. 6.4 The dependence of the hydrogen molecule potential on the interatomic separation d.
The range of the nuclear force is greatly exaggerated. The separation d at which the Coulombic
repulsion is compensated by the nuclear force is exaggerated. The angle ¢ signifies the rotation
angle. Vibrational states correspond to movement of the atoms in the radial direction

symmetry and the Higgs field correspond to quantised waves — mesons and Higgs
bosons, respectively — because those cases involve infinitely many coupled degrees
of freedom.

6.1.3 Covalent Bond in the (2s, 2p) Shells

Our treatment of H; can be extended to other symmetric diatomic molecules, Li;, Ny,
O,, .... The quadrupole part of the electron cloud is greater in heavy molecules than
in light ones because the separations between the atoms are greater due to repulsion
effects.

The covalent bond in carbon, which generates the immense variety of organic
molecules, is especially interesting. It is impressive that, in the cases of C-H, C-C,
C=0, the bond energies of each of these covalent bonds only vary by maximally 10%;
they are around 4.5eV. The same value, up to 10%, holds for the H-H bonds in the
hydrogen molecule and O—H in water molecules. Clearly, the molecular orbitals in
all these cases can be well described in terms of atomic wave functions. This is done
by using a superposition of 2s and 2p states (so-called hybridisation). Hybridisation
yields the characteristic angles between the bonds.

6.1.4 Carbon - The Magic Atom

Carbon plays a fundamental role for the life on the Earth. With its valence bond it can

form a tremendous variety of organic compounds and different crystal structures.
Carbon has 2 electrons in the 1s shell and 4 electrons in the 2s2p shell. Since the 2s

and 2p subshells are almost degenerate the so called hybride orbitals (superpositions
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of 2s and 2p orbitals) are easily formed and they offer four strong covalent bonds.

Since one 2s and three 2p orbitals participate the hybrid configuration is denoted as

sp3.

In organic compounds a chain or ring of carbon atoms is formed, with extra
bonds connected to different atoms (H, CI, N....).

In diamond, a cubic lattice is formed with the four bonds connected to four
neighbouring carbon atoms, at an angle of 109.5° (Fig. 12.13). Because of the strong
covalent bonds diamond is known to be the hardest crystal. The excitation energy
of electrons in next shells is about 6 eV, therefore diamond is transparent for optical
frequencies. Also, there are practically no electrons in the higher shells, therefore
diamond is an electric insulator and poor thermal conductor. It should be noted that
silicon and germanium have also four valence bonds, they have a similar crystal
structure as diamond, but are good semiconductors (the gap between the valence and
higher shell is only 1.1eV for Si and 0.67 for Ge).

In a way, it is surprising that carbon can form also a two-dimensional lattice
called graphene (Fig.6.5a). Only three electrons participate in the covalent bond

Fig. 6.5 Graphene,
Graphite, Fullerene

(c) Fullerene
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(the sp? hybrid configuration with bonds at 120°). However, the fourth electron
is not localized and forms a bond similar to metal bond with neighbouring atoms.
Therefore graphene is a good electric conductor. Due to strong covalent bond it is the
strongest material we know, 300 times stronger than steel. As a monoatomic sheet,
it has promising applications as support in microscopy, lubricant, protective layer
and many more. Its structure is sometimes compared to aromatic organic compounds
with the fourth bond acting as a delocalized double bond — an infinite extension of
benzene, naphthalene, anthracene...

The most stable form of carbon, the graphite can be visualized as a stack of
graphene layers loosely bound by the Van der Waals force (Fig.6.5b). The sum of
the three covalent bonds, the “metalic”” bond and the Van der Waals binding energy
suffices to make the enthalpy of graphite at room temperature and pressure 0.031eV
below diamond. However, at higher pressures (densities) diamond is more economi-
cal than graphite. Diamond naturally forms at pressures 4.5—-6 GPa and temperatures
900-1300°C. Due to free electrons, graphite is a good electric conductor. Due to the
weak Van der Waals force, the layers are far apart and easy to remove; graphite is
brittle, a good lubricant, it leaves black marks - it name derives from the Greek word
graphein - to write.

Interesting two-dimensional structures are also nanotubes - piece of graphene
wrapped into a cylinder - and fullerenes - pieces of graphene wrapped into a sphere
(Fig. 6.5¢). They both find applications in electronics, pharmacy, lubricants and pro-
tectives; new proposals are rapidly developing. While graphene and nanotubes consist
of hexagons, the fullerene must have 12 pentagons (in addition to hexagones) due
to the Euler’s theorem n(vertices)+n(faces)—n(edges)=2, for simple topology. In
fact, for buckminster fullerene Cgy (named after the dome of the architect Buckinster
Fuller) 60+4-(124-20)—90=2. There are also larger fullerene structures. Nanotubes
and fullerenes appear spontaneously in soot in small quantities and were only dis-
covered in last decades. Nowadays they can be produced copiously in laboratory
with appropriate treatment of “soot”.

6.1.5 Energy Source Oxygen

The oxygen double bond (O=0) is a covalent bond. The bond energy is, though,
only as large as a single bond energy for light atoms in the (2s, 2p) shells and in the
hydrogen molecule.

The oxygen atom has an almost full shell, but only two electrons that participate
in bonds. The rest repel atoms due to the Pauli principle. This leads to a greater
interatomic separation, so that the common orbitals have a smaller overlap. The
bonding energy in the oxygen molecule is reduced by a factor of two compared with
the above-mentioned compounds.

The O, molecule, with its double bond, thus has only around 2.3 eV per bond. This
is why, when one burns carbon, hydrogen, or other compounds together with oxygen,
one gains around 2.2 eV per bond. This is why oxygen is so chemically active and
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mostly found in chemical compounds. Atmospheric oxygen is continually resupplied
as a by-product of photosynthesis.

One speaks of fossil fuel energy sources and means coal, gas and oil. The energy
is, though, stored in atmospheric oxygen! Let us consider the burning of methane
with oxygen:

CH4 + 20, — CO;, + 2H,0. (6.3)

The number of covalent bonds remains constant in the reaction, as the four weak
oxygen bonds are replaced by four stronger ones. Photosynthesis, which separates
oxygen from carbon, has stored the energy in the weak bond in oxygen.

6.2 Ionic Bonds

Typical examples of such bonds are LiF, NaCl, Csl, .... Comparison with experiments
(electric dipole moments of molecules) shows that the electrons of the alkali atoms
are up to 90% transferred to the halogen atom. Both ions thus have a noble gas-like
closed shell. We will now assume that the electron is completely transferred. The
two ions attract each other until a further overlap of the electron clouds is stopped
by the Pauli principle. For a NaCl molecule, this takes place at a separation around
d = 0.24nm. (In acrystal (see Fig. 1.6), the separation is a little larger, d = 0.28 nm.)
The binding energy of the molecule relative to free ions is then

h 2R
E— Eions == _E = — Y = —5.6eV. (64)
d d/aq

More important than this number is the bond energy compared with neutral atoms.
To take an electron from an alkali atom and give it to a halogen atom requires 1.5¢eV.
This implies a bond energy in NaCl of

E — Eyoms = —4.1eV. (6.5)

Tonic molecules are mostly found built into crystals. The ionic charge is not
screened and the long-range Coulomb force must be taken into account. In a crystal,
the binding energy per atom is reduced to around 78% of its former value, i.e., not
only the attraction by immediate neighbours, which have the opposing charge, but
also interactions with more distant atoms, both of the same and the opposite charge,
are significant.
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Chapter 7
Intermolecular Forces — Building Complex
Structures

Pluritas non est ponenda sine necessitate.
William of Occam (Ockham)

7.1 Van der Waals Interaction

Neutral atoms and molecules may be pictured as rapidly oscillating dipoles with
frequencies of the order of hwy ~ «hic/2ay and dipole moment sizes j = eqy.
A classical spherically symmetric charge distribution does not produce a dipole
moment, but in quantum mechanics, the uncertainty in the electrons’ coordinates
(see (4.2)) produces one.

Temporal correlations in the dipole moments generate van der Waals forces
between atoms and molecules. These forces only play a dominant role when other
varieties of chemical bonds are not present. This is true between noble gas atoms,
between molecules in organic compounds and, e.g., also holds for the bonding
between the crystal layers in graphite, which are themselves constructed through
covalent bonds. The following brief treatment of the van der Waals force uses the
hydrogen atom to compare its scale to known atomic constants. The covalent bond in
hydrogen is certainly stronger than the contribution of the van der Waals interaction.
The order of magnitude that we obtain from this hypothetical case is a very good
estimate of the van der Waals force between hydrogen molecules.

We treat the van der Waals force in some detail as, at present, experiments to do
with the Casimir effect are fashionable. This tests the effect of vacuum fluctuations
at macroscopic scales.
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Fig. 7.1 Atom in front of an
ideal conducting wall and its
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7.1.1 Van der Waals Interaction Between an Atom
and a Conducting Wall

An atom next to an ideal conducting wall generates a mirror charge (Fig.7.1), which
oscillates exactly in time with the atom. This quasi-static approximation only holds
for separations ay < d < ag/c. The upper limit is because, for large separations,
the atom and its image get out of phase and one must take retardation effects into
account. In the quasi-static approximation, the potential energy of the oscillating
dipole a in front of our ideal conducting wall is
ap

2d)*

Vow(R) ~ —ahc (7.1)

7.1.2 Van der Waals Interaction Between Two Atoms

The oscillating dipoles of two atoms are not correlated right from the start. The
correlations are produced by communication between the atoms through so-called
two-photon exchange. The van der Waals interaction may be estimated as follows:
the binding energy of one dipole in the field of the other is proportional to V, w
(see (7.1)). The excitation energies of the atoms in the presence of a dipole moment
have a typical value of AE ~ 1 Ry. At large enough separations R the second-order
perturbation formula is valid and the van der Waals (atom—atom) interaction is

a2\ 1 a’
Vaa(R) ~ — (ath—g) —— ~ —ahc-2. (7.2)
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For separations R > a/a, the time R /c taken by a signal between the atoms is larger
than the typical oscillation time, 7/Ry = ap/(cc). One must take retardation into
account and, as one would expect, the interaction falls off faster than 1/ RC. To esti-
mate the van der Waals interaction for separations R > ay/«, a different viewpoint
separation R is helpful. This so-called Casimir effect has become especially inter-
esting due to new measurements of the forces between neutral conducting surfaces,
and we will also briefly consider this phenomenon.

7.1.3 Van der Waals Interaction and the Casimir Effect

To take retardation into account, let us consider the dipole oscillations to be a con-
sequence of the zero-point oscillations of the electromagnetic field. The fluctuating
electric fields (see Sect.4.2.1) induce dipole moments in neutral systems, which
contribute to the van der Waals interaction.

Let us consider two neutral, but polarisable, objects 1 and 2 separated by a distance
R. The fluctuating electric field, £(r, t), of the zero-point energy polarises both
objects and gives them electric dipole moments

py = o1 E(ry, 1)

7.3
By = 0 E(r2, 1), (7.3)

where «; and a, are the polarisabilities of the two objects and ¢ is the dielectric
constant. In the following derivation, we will ignore the angular dependence. The
energy of dipole 1 in the radiation field of dipole 2, £, is

W= —,U,lgz(l"],l). (7.4)

The radiation field of a Hertzian dipole of size u, oscillating with frequency w is

well known to be
1 w?

2= 47“:0/1/2% ’

(7.5)

The contribution to the binding energy of the zero-point oscillations with frequency
w follows from (7.4) and (7.5)

2

=5 (7.6)

W = _ialazgw(l‘l, HEL(r, 1)
47

Here, the electric fields £, (r », t) are the Fourier components of £ 5.
The total binding energy is found by integrating (7.6) over the phase space of the
oscillations of the electromagnetic field,
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w? L34rwidw

2R (2mc)3 7.7)

W = _&/a]azgw(rl,l)gw(rbl‘)
4

Here L is the size of the normalisation box and cancels in the final result. The upper
integration limit is w &~ ¢/R. This is because, for frequencies w > ¢/R, the product
E,(y, 1)E,(ra, t), viewed as a function of w, oscillates very rapidly and does not
contribute significantly to the integral. For frequencies w < ¢/ R, the product may
be taken to be constant, and thus, the average energy of the vacuum fluctuations is

L320€,(r1, )E, (2, 1) ~ L*c0E* ~ hw . (7.8)

This implies the following contribution of the zero-point fluctuations to the van der
Waals interaction
c/R

Mj
W= — / alazﬁdw. (7.9)
0

Here, we have dropped the prefactors because our approximations in the integration
were so rough that it would not be appropriate to give the impression that the upper
bound was more than an order-of-magnitude estimate. Here, we denote the van der
Waals interaction by W (instead of V, as in (7.2)) because we are here employing a
different point of view (the energy of the electromagnetic field).

The polarisability of the hydrogen atom is ay ~ aj. Other atoms also have
polarisabilities on this scale; so the contribution of zero-point fluctuations to the
interaction between two atoms is

Waa ~ —hc=2 . (7.10)

This approximation was derived under the assumption that the atoms undergo forced
vibrations in the field of the zero-point oscillation and thus only holds for R > ay/«.
At smaller separations, the contributing frequencies w ~ ¢/R are larger than typical
atomic frequencies, Ry/h &~ ac/ay, so the atoms cannot follow the forced vibration.
Thus, at a separation R & ag/«, the mechanism that generates synchronous dipole
oscillations and, hence, the van der Waals interaction, changes. For R < ay/«a, the
zero-point oscillations of the atoms can mutually synchronise each other, while, for
R > ag/a, the synchronisation takes effect through the common external influence
of the zero-point oscillations of the radiation field.

7.1.4 Wall-Wall Interaction

As we saw in Sect.4.2 about the Lamb shift (see (4.24)) ur, the energy density of
the zero-point fluctuations of the electromagnetic field in a sufficiently large volume
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L? may be calculated to be

Wmax

) hw dnw?dw hw;ax 7.11)
up, = — = . .
L 2 (2me) 8wl

If we place a plate capacitor with perfectly conducting walls into this sufficiently large
volume, the so-called Casimir force acts on the walls. Let S be the size of the areas
of the plate capacitor and d be the separation of the plates. Only those fluctuations
with nodes at the walls are possible in the capacitor. The lowest frequency of the
fluctuations corresponds to the wavelength A = 2d which implies w = 7c/d. The
energy density uk in the capacitor is the difference between the energy density uy,
in the volume L? and the sum of the fluctuations that are excluded by the boundary
conditions.

Wmax

/ 4rw?dw hw? w2 hc
ug ~ =

= R . 7.12
(2mc)3 8m2c3 8d4 (7.12)
wc/d

This calculation, with a sharp cut off at wy,,, iS not exact; one ought to calculate
the discrete sum of the zero-point fluctuations in the surviving oscillatory modes.
Because the calculation is somewhat tedious, we here state its result: the 8 in the
denominator of the last term of (7.12) must be replaced by 720. The difference
between the energy densities outside and inside the capacitor is thus obviously

w2he

—_——. 7.13
720d* (7.13)

Au = ug —up, =
From the difference of the two energy densities, we can calculate the pressure on the
plates:
1 d(AuSd) n2he
S dd 240d*°

Pcasimir = — (7.14)

The Casimir force has indeed been experimentally confirmed in various capac-
itor geometries and at separations on the scale of wm. It is thus believed that the
existence of zero-point fluctuations has been demonstrated for macroscopic scales.
An extrapolation of the Casimir effect to astronomical dimensions leads, though, to
absurd results: to energy densities that are orders of magnitude larger than the energy
densities found in modern experiments.

Let us now show that the formula for the Casimir force (7.14) also follows from the
expression (7.10) for the retarded van der Waals force. The walls are now made from
dielectric atoms with polarisability ay = ag. For this estimate, we only consider
the atoms in two blocks with area S = d” and depth d/2 (Fig.7.2). We neglect
contributions to the force from atoms outside these regions. The number of atoms in
each cubeis N = %(d /2ay)3, and one so obtains, from (7.10),
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Fig. 7.2 Wall-wall /
interaction as the sum of the /
retarded atom—atom
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Here, we have assumed R =~ d. The agreement is not so bad for our rough
approximation.

7.2 Hydrogen Bridge Bond

A special bond between molecules is produced when two molecules share a hydrogen
nucleus between them. Without its electron, a hydrogen atom is a “naked” proton, a
tiny object five orders of magnitude smaller than an atom. This gives the hydrogen
atom a special status in chemistry and makes possible a special sort of bond, the
hydrogen bridge bond. This situation occurs when the energy of a proton between two
atoms has two minima. In this case, the wave function of the proton is a superposition
of the wave functions centred around each of the minima. The best known example is
the bond between water molecules, which is responsible for the exotic behaviour of
water. The spatial construction of biologically active molecules is also made possible
by the hydrogen bridge bond.

7.2.1 Water

Water has three noteworthy properties that are crucial for life and for the environment.
Liquid water (<10°C) is heavier than ice, has an exceptionally large specific heat
and is — because of its large dipole moment — an excellent solvent.
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Fig. 7.3 The electron

distribution in a water O
molecule. The contours

correspond to relative

electron densities of 0.10,

0.17 and 0.30

7.2.2 Water Molecule

All of the above quantities follow from the structure of the water molecule. The two
covalent bonds, H-O-H, are at an angle of 104.5°. It is energetically favoured for
the molecular orbitals to overlap strongly with the atomic orbitals of the valence
electrons. Two orthogonal 2p orbitals are maximally correlated at an angle of 90°. A
superposition of 2s-2p may be at any angle between 90° and 120°, and an admixture
of 25 is energetically less favoured. Hybrid orbitals at an angle of 104.5° (Fig.7.3)
optimise the Coulombic attraction of the electrons to the protons and the Coulombic
repulsion between the two protons. The electron distribution has its charge centre
nearer to the oxygen than to the two protons (Fig. 7.3). The consequence is a sizeable
electric dipole moment (u. = 0.068 e ay).

7.2.3 Model of the Hydrogen Bridge Bond

Let us consider a proton in a covalent bond with oxygen. When a second oxygen atom
approaches the proton, the proton sees a potential with two minima (Fig.7.4) and
tunnels through the potential barrier from one minimum to the other. This produces
an energy shift, which we will now roughly estimate.

The proton is bound to the oxygen atom by a harmonic oscillator potential (Fig. 7.4
left). A typical vibrational energy of the proton in an isolated water molecule is
AE.i, ~ 0.3eV. The vibrational ground state has then an energy of ~0.15eV. When,
though, the proton feels the attraction of two oxygen atoms, then the potential that
the proton moves in is broader than the individual potentials (Fig.7.4 right). The
vibrational energy of the proton in the new ground state is smaller by roughly a
factor of two. This implies the correct order of magnitude of the hydrogen bridge
bond which corresponds to the difference in the energies of the two ground states,
ie., ~0.1eV.
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0---H 0----H----0

Fig. 7.4 The potential and the vibrational states of a proton bound to oxygen (leff). A proton
between two oxygen atoms sees a broader potential (right); the vibrational ground state of the
composite system is energetically a bit lower than in the left potential

(b)

Fig. 7.5 The structure of ice crystal. The circles are oxygen atoms, the long connecting lines,
measured in pm = 10~2m, correspond to hydrogen bridge bonds. The hydrogen atoms oscillate or
tunnel between two oxygen atoms. The crystal is shown in two projections to bring out the empty
intermediate spaces

7.2.4 Ice

The hydrogen bridge bond leads to a wide variety of crystal structures in ice. Ice in
the region of 0°C has a very loose structure (Fig.7.5) because, in this state, each
oxygen atom has only four hydrogen bridge bonds to its neighbours. This is why
there are empty spaces in the rings that form a hexagonal lattice. This explains why
ice is lighter than water.

7.2.5 Specific Heat

Inmelting, although the crystal falls apart, clusters of water molecules remain because
of the hydrogen bridge bonds. In liquid water, an oxygen atom can be, for a time,
bound to up to five neighbours. From melting until evaporation, the clusters become



7.2 Hydrogen Bridge Bond 85

ever smaller and fewer. The main part of the specific heats is needed to break up the
hydrogen bridge bonds. The specific heat per water molecule is 9kg, while the typical
value for liquids and solids is 3kg. The latent heat of fusion, heating to boiling point
and the latent heat of evaporation together amount to 54.5 kJ/mol = 0.6 eV/molecule.
This number equals, on average, two bonds per oxygen atom (0.3eV/bond) — in
surprisingly good agreement with our rough estimate.

7.3 Hydrogen Bridge Bond in Biology

The important biological processes in the cell are controlled by DNA molecules and
proteins. Here, various specific interactions between the various molecules take place.
The properties of these are not just fixed by the chemical structure of the molecules
but primarily by a well defined three-dimensional structure. The large variety of
molecular architectures are first and foremost made possible through hydrogen bridge
bonds.

The structure of the proteins may be divided according to their complexity into
four principal categories: primary, secondary and tertiary structures as well as higher
levels.

7.3.1 Primary Structures

Amino acids are attached to each other by peptide bonds and so form a polypeptide
chain. The peptide bond is a covalent C—N bond (Fig.7.6).

The polypeptide chain may be rotated around the covalent bond axis between the
nitrogen and carbon atoms — defined by the angle ® — and between two carbon atoms
(Co—C’) — defined by the angle W (Fig.7.6). The sequence of the amino acids is also
called the primary structure.

7.3.2 Secondary Structure

The secondary structures are at a higher organisational level. Their elements are
spatially ordered structures of the main chain, which only accept well-defined values
of the angles ® and W. One distinguishes between different secondary structure
elements. In proteins, the « helix is the most common, but the 3-pleated sheet is also
often encountered.
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Fig. 7.6 Schematic
representation of the degrees
of freedom in a polypeptide
chain. The labeling of the
carbon atoms as C’ and C,,
corresponds to their place in
the chain

Fig. 7.7 The hydrogen
bridge bond connects an
amino acid to its fourth
nearest neighbour. This is
responsible for the geometry
of the a-helix. The dark
spheres are carbon atoms,
the pale spheres nitrogen
atoms and the small spheres
with springs on them are
hydrogen atoms in a
hydrogen bridge bond
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7.3.3 « Helix

The production of a-helical structures may be understood as a phase transition
between an unfolded random coil state and the helical state. It is here assumed
that a core of four neighbouring amino acids first cooperatively enters the helix
state through creation of hydrogen bridge bonds, and then, through further hydrogen
bridge bonds, completes the full helix (Fig.7.7).

7.3.4 [3-Pleated Sheet

This structure is also primarily stabilised by the hydrogen bridge bond. The primary
difference from the « helix is that, in the 3-pleated sheet, the interactions are between
amino acids, which are far apart along the polymer chain (Fig.7.8).
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\ / \ /
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/ \ / \
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(b) C \ / \ /
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Fig.7.8 The neighbouring amino acids in the three-dimensional structure of the 3-pleated sheet are
widely separated along the polypeptide chain. (a) A segment of the polypeptide chain, (b) several
neighbouring segments, (c) the corresponding chemical formula
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Fig. 7.9 Sketch of the
three-dimensional structure
of an enzyme
(triphosphatisomerase,
higher level) that is
symmetrically constructed
from four tertiary structures

7.3.5 [Tertiary Structure and Higher Levels

The tertiary structures of proteins are three-dimensional structures that are built up
from secondary-structure elements. These protein blocks are usually responsible for
a specific biological function.

Globular proteins are constructed from several tertiary structures and can perform
various biological functions. Figure 7.9 shows the three-dimensional structure of an
enzyme. One can clearly see how this protein is made from four identical molecules
of the tertiary structure.

If Occam’s statement holds anywhere, then surely for the multiplicity of biological
structures.

In summary, we can say that amino acids are the building blocks of proteins,
which are bound by covalent bonds into polypeptide chains. Hydrogen bridge
bonds produce the links between the structures in the chain and thus enables
the huge variety of specific three-dimensional structures in the proteins. This
bond is particularly suited to it, as its relative weakness enables these structures
to be rapidly built up and rearranged.
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Chapter 8
Cold Neutron — Spectroscopy of the Solid
State

Die Wahrheit ist konkret.
Bertolt Brecht

Cold neutron scattering is the method par excellence for the investigation of
condensed matter excitations in both the solid and the liquid phases. The neutrons
primarily interact with atomic nuclei, and thus, the form of the excitation mecha-
nism is well defined. Measurements of the energies of the incoming and scattered
neutrons together with the scattering angle fully determine the kinematics of the
inelastic scattering. The momentum, q, transferred to the system is given by

and the energy transfer is

pZ p/2

1T oM, 2M, "

(8.2)

Here, we have assumed that the system under investigation is at a sufficiently low
temperature and that the neutrons cannot pick up any energy from the system. The
dependence of the excitation energy, hw,, on the momentum transfer, g, is called the
dispersion relation.

High flux reactors with a deuterium cooled core are the most used source of
neutrons. Because the neutrons are not quite cooled to the temperature of the fluid
deuterium, their spectrum corresponds to a Maxwell-like distribution, with an energy
peak corresponding to roughly 40K. In precision experiments, one measures the
beam energy and the energy of the scattered neutrons with the help of Bragg scattering
off the crystal. In Fig.8.1, we sketch the dispersion curves for an ideal, isotropic
crystal, for glass, for a Fermi liquid (liquid *He) and for a superfluid Bose liquid
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(superfluid “He). In each of these cases, the dispersion curves at small ¢ correspond
to phonon excitations. For large phonon wavelengths, the dispersion relation is well
described by

hwy = vg, (8.3)

where v is the phonon speed. At short wavelengths, comparable with the interatomic
separation a, additional excitation modes appear. The phonon picture of the excitation
only makes sense as long as the phonon wavelength satisfies A > 2a. Because these
separations are comparable in both the liquid and solid states, it is useful to give
the momentum in units corresponding to a phonon, with A = 2a. This unit is well
defined for crystals and is given by [hm/a]; for liquids, we assume a = /M arom/p-
The momentum dependence of the energy of long wavelength phonons is given by
(8.3). If we quote the phonon energy in units of [vAm/a], then we largely cancel the
dependence on the material’s properties in the comparison of the acoustic phonon
branch. The unit chosen in this fashion lies between 1.5meV for liquid helium and
10meV for metals. Both the similarities and the differences between the dispersion
curves in Fig. 8.1 are immediately visible.

In this chapter, we will only treat the scattering of cold neutrons off crystals and
glasses; we will discuss the scattering off quantum liquids in Chap. 10.

(a) (c)
1 1
~ hwq E_:
[vnh : [Vﬂ:h] Eé
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Fig. 8.1 Four typical dispersion curves for (a) a crystal, (b) a glass, (¢) a Fermi liquid (normal
liquid 3He) and (d) a superfluid Bose liquid (superfluid “4He). In all four cases, the unit is that of a
momentum corresponding to the wavelength A = 2a, where a is the average interatomic separation.
The energy scale is given in units [vAm/a]
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8.1 Dispersion Relations for Crystals

The most researched and best understood dispersion relations are those of crystals,
although we cannot present a general derivation of them here. There is only space on
the back of an envelope for the simplest possible case of a cubic crystal composed
of identical atoms with a single, regular separation a.

It should be noted that the momentum, q, is completely transferred to the crystal.
The internal excitation of the lattice — phonons — are relative movements of the atoms
and carry no momentum. Nonetheless, one can assign them a pseudo-momentum,
which is conserved modulo 277/a for each component of the pseudo-momentum,
¢P*"*, in a cubic lattice. The phonon wavelength is bounded by the lattice constant a,
so the pseudo-momentum, ¢P*"%_ and the transferred momentum, g, are related by

seudo 2 h
preud =qi _nii- (8.4)

! a

Because the internal excitations of the crystal are always described by the dispersion
relation for gP**"% < 7/i/a, we will simply denote the pseudo-momentum by q.
The dispersion relation depends on the phonon propagation direction. In a cubic
crystal, one can reduce the complicated problem of finding a general solution of
the equation of motion of phonons to a one-dimensional problem by solely consid-
ering propagation in the [100], [110] and [111] directions. In all three cases, the
crystal planes move as a whole, albeit with different spring constants and a different
separation a between the planes. The equation of motion can be written as follows:

d?ug
M= =2 Gylus; —us). (8.5)
J

Here, G; is the spring constant between plane s and plane j, where the index j
labels the planes and runs from —oo to 4+-00. The displacement u; can be in the prop-
agation direction — longitudinal polarisation — or in the two orthogonal directions —
transverse polarisation. For the propagation direction [100], Gy; is the same for all
three polarisations. The dispersion relations for the longitudinal and both transverse
polarisations are identical.

Consider the propagation of longitudinally polarised phonons in the [100] direc-
tion and simultaneously assume that the interactions are nonzero only between neigh-
bouring planes. We are looking for a solution to (8.5) of the form

us (1) = U e Tt rigas/hy, (8.6)

Substituting into (8.5) leads to a relation between w, and ¢,

w2 = %(1 —cosqa/h). (8.7)
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Fig. 8.2 Dispersion curves for a sodium crystal at 90K in the [100], [110] and [111] directions.
Here, LA denotes the longitudinal and TA the transversal phonon polarisations. The energy is in
meV and the momentum transfer is in units of [fr/a]

As previously mentioned, the dispersion relation in the [100] direction is the same
for longitudinally and transversely polarised phonons. For other directions, this is not
the case. We will now illustrate the dispersion curves obtained by means of neutron
scattering through the example of a monoatomic sodium crystal.

8.1.1 Sodium Crystal

The crystal structure of sodium at room temperature is cubic body centred and so
the results of the previous section may be applied. Figure 8.2 displays the dispersion
curves for the selected propagation directions [100], [110] and [111].

The dispersion curves depend on the propagation directions and the phonon
polarisation. Clearly, the spring constants generally differ for the different
directions and phonon polarisations. Furthermore, the separations between the
planes depend on the propagation direction. If, however, we represent the dis-
persion curves in units of [a7r /a] for the momentum and [v/A7 /a] for the energy,
then there is no longer any significant dependence on the propagation direction.
Our sketch (Fig. 8.1a) shows the universal dispersion curve for crystals.

8.1.2 Potassium Bromide Crystal

In crystals with various sorts of atoms, e.g., in alkali halides, there are, in addition to
the acoustical phonon branches just described, also optical branches, which corre-
spond to the excitation modes in which neighbouring atoms move with the opposite
phase. These excitations also possess the wavelengths between A = oo and A = 2a,
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Fig. 8.3 Dispersion curves T
for a potassium bromide
crystal in the [111] direction.
LO and TO denote the

longitudinal and 1 "y

ongitudinal and transversa

polarisations, respectively, of [meV] \TO
the optical branch, while LA 2+ =
and TA signify their acoustic LA

branch counterparts. The

energy scale is in meV and
the momentum transfer is in TA
units of [Am/a]
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corresponding to ¢ = 0 and g = hm/a, respectively (Fig. 8.3). These optical excita-
tions exist in all crystals with more than one atom in the primitive unit cell. They
may be compared with the giant dipole resonance in nuclei (cf. Sect. 14.3)!

8.2 Localised Vibrational Mode

Consider an isolated crystal defect with an atom that is either lighter or heavier than
all the other atoms but has exactly the same spring constant. In analogy to (8.5), the
equation of motion is then

(M + 5M3;, 0) Z Gyj(ugyj —us) . (8.8)

For simplicity, we will here too describe the system as a one-dimensional chain.
The generalisation to three dimensions is obvious: the displacements, u, and pseudo-
momenta, ¢, become vectors and the equations are otherwise unaltered.

We again expand the displacements, i, in unperturbed eigenmodes — phonon
fields Uy,

ug(t) = ) UyeTrtiae, (8.9)
q
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and find the secular equation

M+ 6M/N SM/N SM/N - U,
| OM/N  M+E6M/N  6M/N - Uz
w SM/N SM/N M+6M/N --- || Us
(8.10)
wa U]
Mw% Uz

Mw% U3

The nondiagonal matrix elements, M /N come from the Fourier transformation of
the localised mass terms, d M ;.
To solve (8.10), we express each coefficient as a sum over all the other coefficients:

M
UMW —w?) = _Tuﬂ Z U,, (8.11)
p

where >’ U, is a constant. We sum both sides over all N coefficients, taking into
account that 3 U, = >_ , U,, and dividing by this sum obtain the relation

2
| _0M/N Z w (8.12)

M wz—wg'

The solutions of this equation may best be graphically represented (Fig.8.4). The
right-hand side of (8.12) has poles at the points w = w,. The solutions w; are found

(a) \ (b) /
MAD l AL

o\l j2) |3 o, 0 @, o] e e

|| 0| 04 @, o, ]|, || o]0,

Fig. 8.4 Graphical representation of the solution of the secular equation (8.10): (a) for a solute
atom with a smaller mass (M < 0), the collective state is promoted from the acoustic phonon
branch to higher energies; (b) for a solute atom with a larger mass (§M > 0), the collective state
appears at the lower edge of the acoustic branch and does not correspond to a localised excitation
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where the right-hand side is unity. The new eigenfrequencies are marked on the
abscissa. The (N — 1) eigenvalues are trapped between the unperturbed frequencies,
wy. The outlier, denoted by wc, is the collective state. By collective, we mean that it
is a superposition of many unperturbed phonon states.

To describe the collective state, we employ the same formalism as for the pion
(Chap. 6) and the giant resonances (Chap. 14) to bring out the analogies. In this
chapter, frequencies rather than energies occur, but £ = fw holds. The frequencies
appear quadratically in the secular equation because the equation of motion in this
chapter is a differential equation, which is second order in time; in Chaps. 6 and 14,
on the other hand, the Schrodinger equation is used, which is first order in time, and
the energies appear linearly.

For a smaller mass of the solute atom ()M < 0), the collective state lies above the
acoustic phonon band and therefore cannot behave as a propagating wave (we will
not prove this theorem here). This state corresponds to a localised, standing wave
(Fig.8.5).

For a heavier solute atom (§M > 0), the collective state lies at the lower edge of
the acoustic phonon band and is not localised!

The secular equation (8.10) was derived for a monoatomic crystal with an acoustic
phonon band. Di- and polyatomic crystals have an additional optical phonon band.
A secular equation can also be obtained for this case. For a heavy solute atom, the
collective state is lowered, as in the case of the pion (Chap. 12). The localised mode
is then found below the optical band and can also appear inside the acoustic band —
as a resonance embedded in the phonon continuum (Fig. 8.6).

The eigenfrequency of a localised or resonant impurity mode may be directly
observed through optical absorption in the infrared regime.

Fig. 8.5 Localised mode of IS
a light solute atom above the S— —2 S S—
phonon band Seee oo
wmax
Fig. 8.6 Resonant mode of a @max

heavy solute atom that passes
from the optical phonon
branch into the phonon band
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There is nothing exotic about these localised excitation modes in crystals; not just
solute atoms and dislocations but also interfaces in crystals can produce localised
excitations.

8.3 Dispersion Relations for Amorphous Substances

We will only qualitatively discuss the dispersion relations of amorphous substances.
Because there are still no generally accepted standard dispersion curves for amor-
phous substances in the literature, we will restrict ourselves to the sketch in Fig. 8.1b,
which we will now briefly discuss. For long-wavelength phonons, the disorder at the
interatomic scale is not noticeable and one might expect that, at small momentum
transfer, the dispersion curve would resemble that of crystals. This is, however, not
the case. At small energy transfers, not just phonons but additional excitations are
significant. An atom at a lattice site of the crystal is in a harmonic oscillator potential.
In an amorphous substance, on the other hand, the potential around the atom is irreg-
ular. Generally, the potential has two or more minima. The atoms tunnel from one
minimum to the other. This mechanism produces low-energy excitations that coexist
with the long-wave phonons. For slightly higher excitations, hw &~ 1 — 2meV, when
the atom is in a wide potential (Fig. 8.7), the excitations accumulate. This accumula-
tion of excitations in the energy range of 1-2meV can be very clearly seen in inelastic
neutron scattering. The peak visible in the measured spectrum is called the bosonic
peak. In Fig. 8.1b, we recognise the bosonic peak in the dispersion curve in a narrow
energy range with a wide momentum transfer.

At still higher excitations, we can view the disorder at the interatomic scale as
localised imperfections, and the smearing of the dispersion curves is due to localised
vibrational modes.

The dispersion curves for amorphous substances do not display such simple and
attractive properties as those of crystals. Therefore, one cannot learn much from them
and it is not surprising that they are not presented.

V(x)
—_—

Fig. 8.7 Interatomic harmonic oscillator potential in a crystal (left) and in an amorphic substance
(right). Due to the disorder in amorphic media, an atom is not well localised — it can tunnel between
the potential minima
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8.4 Specific Heat

8.4.1 Crystalline Substances

Specific heat is defined by

oU(T)
Cy = , 8.13
(%), (5.13)
where U (T) is the internal energy, i.e., the total energy of the phonons of the solid
body at temperature 7. Denoting the phonon state density by D(w) and recalling that
phonons obey Bose—Einstein statistics, the expression for the internal energy is

“p dw
U(T) = /(; th(oJ)m . (814)

We want to calculate the phonon state density and the cut-off parameter wp in the
Debye approximation. We use a linear relation, iw = vg, where v is the speed
of sound, in the dispersion relation. Strictly speaking, this relation only holds for
large wavelengths. Let us first calculate the state density for the individual phonon
branches,

Vang?dg V w?

Dw)dw = 4 _ ¥ @ 4,
o =57 e

(8.15)

Different phonon branches, the longitudinal and the two transverse ones, have dif-
ferent speeds of sound. A simple way to take these speeds of sound for the different
phonon branches into account in (8.15) is to introduce an averaged Debye speed, vp,

31 2
242 (8.16)

w v v

The cut-off frequency — the Debye frequency — wp, depends on the spring con-
stants, the masses of the atoms and the lattice constants and consequently varies from
crystal to crystal. Furthermore, wp also depends on the polarisation of the phonon.
In the Debye approximation, all of this dependence is replaced by a single cut-off
parameter. In this approximation, the internal energy is then

wp hw3
U(T) X /0 mdw . (817)

We choose the normalisation such that,as T — oo, the specific heat takes on the value
Cy = 3R. Instead of wp, we introduce the Debye temperature, ®, via the relation
hwp = kg® and use the notation x = hw/(kgT) and xp = hwp/(kgT) = ®/T.The
specific heat, from (8.13), in the Debye approximation is then
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Fig. 8.8 Molar specific heat T i j j '
of a series of substances 3|
(Pb, FeS», KCl, Fe, Na,
CaF,, Zn, NaCl, Ag, Tl,
KBr, Ca, Cu, C, Al, Cd) as a
function of the reduced 2+
temperature 7/©. All the
experimental data lie on a
universal curve between the
displayed bounds

|0

T/0

T\ [  x%e

The normalisation follows from the integration at 7 — oo, where we have x — 0,
and one may expand the exponential function through the integration range,

T\’ [ xie* T\’ [*™ x4
(—) / ——dx & (—) / ——dx
O 0o (er—1)? ® o (I+x—-1)7?
T\ [* 1
== / x2dx = -,
C 0 3
which is the explicit form of the Debye formula.

Figure 8.8 displays the excellent agreement of the Debye formula with experi-
mental measurements.

(8.19)

8.4.2 Amorphous Substances

At high temperatures, the specific heats of amorphous substances — just as with
crystals — are described by the Dulong—Petit law because, of course, in both cases,
all vibrational degrees of freedom are excited. The deviation from crystals is espe-
cially noticeable at low temperatures. The phonon concept works well for amorphous
substances too — so long as their wavelengths are much longer than the average sep-
aration of the atoms. However, it is just at low temperatures where the behaviour of
the specific heats of amorphous substances deviates from the Debye theory. Experi-
mentally, the specific heats at low temperatures are larger than in crystals. Obviously,
in amorphous substances, there are additional excitation modes, two of which we
have already mentioned: tunnelling modes and bosonic peak modes.
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Chapter 9
Quantum Gases — Quantum Degeneration

Wissenschaft, die nicht vermittelt wird, ist tot.
Ranga Yogeshwar

The models of quantum gases were already developed in the 1920s: the Fermi gas
model for degenerate Fermi systems and the model of Bose condensates for degen-
erate bosonic systems. Both models may also be reasonably well applied to the
description of quantum liquids.

Because of the successful production of quantum gases in a metastable state
at temperatures far below the wK regime, it is possible to directly investigate their
properties. These experiments have become very fashionable in recent years because,
using quantum gases, quantum mechanical effects can be observed in macroscopic
systems.

Production of Cold Gases

A Bose-Einstein condensate is usually produced in several steps. The first step is the
cooling and subsequent capture of the atoms with laser light at very low densities.
Laser cooling fails, though, at densities where the average separation corresponds
to an optical wavelength; light is then no longer absorbed and re-emitted by indi-
vidual atoms but rather by atomic clusters. One can reach greater densities if one
stores the atoms in a magnetic trap. In the final phase of cooling, one lets the more
energetic atoms evaporate out of the trap. The remaining lower energetic atoms redis-
tribute their energy through collisions and thus lower their temperature. The phase
of the condensate can be nicely experimentally demonstrated by a time-of-flight
measurement. The magnetic trap is switched off and the atoms may fly freely for a
few milliseconds. Subsequently, one illuminates the atoms with laser light and pho-
tographs the shadow of the atomic cloud. From various flight times, one obtains the
velocity distribution of the gas. The velocity distribution indeed corresponds to the
Bose-Einstein expression.
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Fig. 9.1 Symbolic A
representation of the E
occupation of the states of a —
Fermi and a Bose gas at R —
T =0K ———
——
—_— -0-0-0-0-0-
fermions bosons

The evaporation cooling method does not work for fermions. One can only store
atoms with the same magnetic quantum number in a magnetic trap. The Pauli
principle forbids identical fermions simultaneously occupying the same point of
phase space and the probability of a collision becomes ever smaller as the tempera-
ture decreases. This is why cooling via collisions does not work for a pure Fermi gas
in the same way as for gases made of bosons. Such cooling does work, though, if one
simultaneously cools two fermionic gases. This was demonstrated for the first time
in 1999 by B. DeMarco and D. Jin. In their experiment, atoms with “°K nuclei were
used. The *°K nucleus with J™ = 4~ and an unpaired s >-electron couple in the
atomic ground state to a total angular momentum, F™ = 9/27. (The F = 9/2 state
lies below the F = 7/2 state because “°K has a negative magnetic moment.) The
trap is filled with two Fermi gases, one with atoms in the mg = —9/2 hyperfine state
and the other in mg = —7/2. The Pauli principle does not limit different hyperfine
states and they can collide like bosons. The two gases cool each other down. In the
experiment we are describing, the Fermi gas mixture was cooled to below the Fermi
temperature (7 &~ Tr/2 ~ 300nK) and the degeneracy was observed. In Fig. 9.1, the
occupation of the states for ideal Fermi and Bose gases is symbolically represented.

The average separations between atoms or molecules in a gas must be small
enough, compared with their sizes, and the densities must be sufficiently low that
only two particle collisions are possible. Under these conditions, one can produce
metastable Fermi gas systems in the laboratory. If the temperature and density of the
gas fulfill the requirements for degeneracy, the low-energy states are occupied. The
experimental detection of a Fermi gas is significantly harder than for a bosonic gas
because it does not have a phase transition and the change is continuous.

9.1 Fermi Gas

In what follows, we want to determine the condition for the occurrence of Fermi
degeneracy. A rough estimate may be obtained by setting the de Broglie wavelength
equal to the average separation of the atoms, Ay ~ d. In thermal systems, one defines
a thermal de Broglie wavelength, Ay = 27h/p, corresponding to the momentum,

p =my/(vV2) = 27mmkT.
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Because of the Pauli principle, the fermions do not overlap in space. In a single
magnetic substate of a fermionic gas, we expect the transition to a degenerate state
to occur when
(2wh)?

VaNN=N—"TTFT_.
r QrmkT)3/?

9.1)

The relation between the transition temperature and the particle density may be

rewritten as
272 (N\??
kT ~ — . 9.2)
m \%4

9.1.1 Fermi Energy, Fermi Momentum, Fermi Temperature

The scale used in a degenerate fermion system is the Fermi energy, EF, or the related
Fermi momentum, pg, or the Fermi temperature, Tg.

In a Fermi gas at T = 0, all the states below the Fermi energy, Er = plz: /(2m),
are occupied. In a volume V, the number of fermions below the Fermi momentum,
pr, for nonrelativistic particles is then

ik pf:V
R— )
3 (2rwh)3

(9.3)

where  is the number of magnetic substates available in the Fermi gas. This implies

N\ /3
pr = (6771 (—) 9.4)
wrV
and
1 N 2/3
Ep = kTr = — (67°1)*3 (-) ) 9.5)
2m rV

As one can easily show by integrating over all the Fermi states below EF, the average
kinetic energy is

3
(E) = SEr. (9.6)

9.1.2 Transition to a Degenerate Fermi Gas

The transition from a normal to a degenerate gas takes place when the atoms start
to overlap. This is the case when the de Broglie wavelength roughly corresponds to



104 9 Quantum Gases — Quantum Degeneration

the average separation between the atoms. A somewhat more precise estimation now
follows.
Defining the average separation d by

N 1
(2)= b o

we obtain, for particles with spin s = 1/2 and x = 2, the following relation between
the average kinetic energy and the average separation in the degenerate state:

(B) = Sty 9.8)
s 2md? '
This implies that d = 1.49, where A is the de Broglie wavelength, which corre-
sponds to the average kinetic energy of the particles.
As previously mentioned, the transition to a degenerate Fermi gas does not take
place via a sharp phase transition because its speed depends on the cooling method.
However, the degeneracy of a Fermi gas has been experimentally demonstrated.

9.2 Bosonic Gas

The degeneracy of a bosonic gas occurs — as with a Fermi gas — when the de Broglie
wavelength is comparable with the average separation of the atoms, d ~ Ar. In
contrast with a Fermi gas, for a bosonic gas, there is a phase transition between the
normal gas phase and the condensate. This transition is theoretically particularly easy
to describe and may be used as a model for complicated cases in solid state physics
and also for phase transitions, such as chiral symmetry breaking or the Higgs model.
We will therefore briefly describe this transition, though only for an ideal gas in a
large volume. Experiments are carried out in traps, where the atoms are held together
by a confinement potential. The description is a bit different, but the physics remains
the same.

9.2.1 Bose-Einstein Condensation

The occupation of the states in an ideal bosonic gas is given by the distribution

function .

€T eEm/GTy ©-9)

Here, ¢ denotes the energy of the state and y is the so-called chemical potential. The
latter takes the energy of the system into account, which depends on the temperature
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and the particle number, and is defined by

dE
u=(—) . (9.10)
dN V,S=const

The distribution function must be positive, N. > 0, and thus iz < &¢. For an ideal gas,
the energy of the ground state, £g = 0, and consequently ¢ < 0. The total number
of bosons in the gas is

N =Ny —i—/f(s)Ngds. (9.11)
0

Ny is the number of particles in the ground state with energy 9 = 0, and f(¢)
is the available phase space. The spatial extent in the experiment is given by the
confinement potential. Here we want, though, to give the phase space just for a free
gas,

47 p*dpV
f®%=%%§r 9.12)
Because dp/de = m/p, we have
1 (2m\*"?
ﬂ@=@¥<§) Ve, (9.13)

For the case of a confining potential, the expression for the phase space is essen-
tially only altered in the exponent of the energy dependence. Let us now consider
the phase transition from a normal gas to a condensate. The phase transition takes
place when, each time a particle is added, it enters the ground state. Then the energy
of the system in the case of an ideal gas (¢9 = 0) is not altered! The temperature
at which p = 0 is the critical temperature, 7. In Fig.9.2, the dependence of the
chemical potential on the temperature is sketched. For temperatures 7" < T, many

Fig. 9.2 ‘The depeqdence of TC d /;”T
the chemical potential, i, on 4

the temperature. The

temperature enters both the

ordinate, p/kT, and the

abscissa, d /A1 T. The -14
average separation of the
particles is d, the thermal
Compton wavelength is A\
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particles are accepted into the ground state and the number of particles that are not
in the ground state can be easily calculated as

de
N — Nolu=o = f(@m
0

9.14)

1 v 2mkT \*? OO\/JTd)c
T (2n)? h2 ex —1°

The value of the integral is 2.612. The critical temperature is determined from the
limit Ny — 0, and thus depends on the density, T, o< (N/V)?/3. The probability of
finding a particle in the ground state is roughly sketched in Fig.9.3 and is given by

No T\*?
~ =1 (T) . 9.15)
C

Equation (9.15) is only correct for a free gas. Experiments are, however, carried
outinatrap. In a confinement potential, the alteration to (9.15) is only in the exponent,

ie., \
N, T
(=) . (9.16)
N T,

The phase transition between a normal gas and the condensate can be very easily
demonstrated mathematically. In more complicated physical systems, in which the
phase transition cannot be so directly demonstrated, the mathematical treatment still
follows the same pattern. In Fig. 9.4, the occupation of the levels of a bosonic gas
in three temperature domains is sketched. Below T, the ground state is occupied by
many atoms. The occupation number of the atoms in the ground state serves as an
order parameter of the condensed phase.

Fig. 9.3 The temperature N,
dependence of the 0
probability of finding a N
boson in the ground state

T,
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Fig. 9.4 An illustration of the occupation of the energy levels of an ideal bosonic gas at 7 = 0,
0<T <T,and T > T¢. Itis symbolically indicated that the average separation, /, of the atoms is
much larger than the range of the interatomic potential

A gas of noninteracting bosons enters a Bose—Einstein condensate at a
finite temperature! This is because arbitrarily many bosons may occupy the
ground state. This statement is, though, not true for systems in fewer than
three dimensions. Three-dimensional phase space (9.12) is needed for bosonic
gases to have a phase transition at finite temperature.

Bosonic systems differ from our paradigm example, the ferromagnets. Without
positive feedback, the phase transition from a paramagnetic to a ferromagnetic state
would first take place in the limit 7 — O.

9.3 Coherent Photon Gas — Laser

Besides its great success as a research and technological tool, laser light offers also
many conceptual insights.

Here we concentrate on the aspect of coherence with the consequence of a very
sharp spectral line and very sharp solid angle of propagation. Although all photons
are in the same quantum state, this is not the case of Bose-Einstein condensation
— the density of photons is not that high — but it is rather the case of coherent
phases of photons. We describe the many-photon wave function in Fock space, as a
superposition of zero-photon, one-photon....many-photon states

@ = (1+c1e¥1 ¢! + e ¢* + 369> +---) . (9.17)

Any device capable of measuring the field, including its phase, must be capable
of altering the number of quanta by an indeterminate amount (see Peierls 1979). This
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fact is theoretically implemented in the form of electromagnetic operators Eand B
which either create or annihilate a photon. For example

o]

E=(@f|®)=> (cjcjﬂe—i(@.wl—’v.ft/j +1(01€19) + cf;+1cjei<v91+1—w;),/j + 1<¢>\é\0)) )
0
9.18)

There exists an uncertainty relation for the number of photons n and the phase
o of the system: An x Ap ~ % analogous to the uncertainty relation between the
angular momentum and orientation angle (This simple relation is of course valid
only for small ¢ since ¢ is determined only modulo 27.)

The uncertainty is smallest for a coherent state of photons in which all phase
differences are the same, ¢; = j .. For monochromatic photons with a frequency
w this gives a sinusoidal oscillation of the electric (and magnetic) field, similar as in
a classical description:

E =& cos(p —wt). (9.19)

Laser can be described in three steps:

1. Powering a laser with optical pumping. A typical scheme is as follows. An
atomic, molecular or solid state three-level system is chosen such that an inverse
population of the middle level with respect to the ground level can be reached. Energy
is pumped into the system by lifting electrons from the ground level to the upper level
by means of absorption of light with appropriate frequency (E; — E )/ h. Electrons de-
excite rapidly by spontaneous photon emission to the middle, metastable level which
reaches a high population. Then the middle level is de-excited by stimulated emission
to the ground level feeding the laser device with photons of energy E, — E|. Because
of the inverse population there is more stimulated emission than absorption back
from the ground to the middle level. Due to the stimulated emission, all successive
photons contribute to the radiation field in phase (Fig. 9.5). The use of helium to pump
electrons into a metastable state of neon in the helium-neon laser is an example of
such a mechanism.

Fig. 9.5 The three-level Energy

scheme of the optical A e 7
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Fig. 9.6 Coherent photon
gas in the cavity with two
mirrors

=

decoupled
laser radiation

Active laser medium

Mirror partially transmissive
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2. The use of a resonator selects a chosen frequency and direction of light. Only
photons corresponding to the chosen frequency reach a high population and stimulate
further emission from the optically pumped material which is usually contained in the
resonator itself. (Sometimes two or more frequencies appear.) The resonator consists
essentially of a cavity with two mirrors. (Fig.9.6).

Comparing light emission with sound emission, laser resembles a clarinet. A clar-
inet also requires energy input, through the mouthpiece and the reed. The feedback
of the resonator — the tube — stimulates the vibration of the reed at the frequency of
the resonator. There is a difference, however, the clarinet contains only a quarter or
few wavelength of sound while the laser resonator contains very many wavelength of
light. Therefore the wind instruments in general do not have such a sharp frequency
and direction.

3. For application, the EM resonator must be coupled to the user, for example by
taking a semitransparent mirror.
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Chapter 10
Quantum Liquids — Superfluidity

TavTa pel
Heraclites

The systems, which may be well described as Fermi liquids, are liquid *He, electrons
in metals, nuclei, white dwarfs, neutron stars and, perhaps, quark stars, too. As an
example of a bosonic liquid, we will, of course, consider “He. Systems of fermions
coupled to boson quantum numbers — Cooper pairs — are also of interest. These
are produced, for example, by atom pairing in liquid *He at low temperatures, by
electron pairing in metals and by nucleon pairing in nuclei. In this chapter, we will
only consider the classic examples of quantum liquids, *He and “He. The rest will
be discussed in later chapters.

10.1 Normal Liquid 3He

The difference between a Fermi gas and a Fermi liquid is demonstrated in a simplified
form in Fig. 10.1.

For an ideal Fermi gas — noninteracting atoms — at temperature 7 = 0K, all states
below the Fermi energy are occupied and the states above it are empty (Fig. 10.1a). At
finite temperatures, 7 > 0, the Fermi surface is smeared and the smearing measures
the actual temperature of the system (Fig. 10.1b). If we also describe Fermi liquids
by energy states, then even at 7 = 0, because of interatomic forces, there is no sharp
cut-off (Fig. 10.1c). At finite temperatures, the Fermi surface is still more smeared
(Fig. 10.1d), due to the appearance of thermal excitations.

The phase transition from gas to liquid is pressure dependent and, under stan-
dard experimental conditions, takes place around 7 = 3.19 K. The critical point is
at Ty = 3.32K and py = 1.16 bar. One might expect the properties of liquid *He, as
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Fig. 10.1 Occupation of the states of a degenerate Fermi gas at (a) 7 =0, (b) 7 > 0 and of a
liquid at (¢) T = 0, (d) T > 0. In both cases, the distributions refer to the states of an ideal gas
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Fig. 10.2 The scattering of cold neutrons off liquid *He at temperature 7 = 120mK and satu-
rated vapour pressure shows two dispersion curves. The lower dispersion curve corresponds to a
particle-hole excitation of *He atoms at the surface of the Fermi sea. The second, which corre-
sponds to phonon-roton excitations, is similar to the dispersion curve in superfluid *He (Fig. 10.5).
In contrast with *He, the phonon-roton excitation is strongly damped since it decays into particle-
hole excitations. Therefore, we have shaded in this excitation (following Scherm et al.)

a degenerate Fermi system, to be particularly clearly seen in cold neutron scattering.
Unfortunately, the cross-section for neutron capture by *He is so large that only semi-
quantitative measurements have been made. The dispersion curve, the dependence
of the excitation energy on the momentum transfer in liquid He, Fig. 10.2, distinctly
shows two branches. The first corresponds to single-particle excitations, which are
better called particle-hole excitations. The relation between the energy loss, Ein, to
3He and momentum transfer, p, for this branch is Ey, = p2 /2M*, where M* is the
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effective mass of the *He atom. This branch exactly corresponds to neutron scattering
off 3He at the Fermi surface and it is, apart from M*, identical to the scattering off
a Fermi gas at the same temperature. The second branch is an artefact of the liquid
state and is analogous to the phonon-roton branch in liquid “He. We will discuss this
in the next section.

10.2 Superfluid “He

Atlow temperatures, bosons condense into the lowest or, at least, a very few low-lying
states of the system. A condensate is formed when the de Broglie wavelength is larger
than the average separation between them (see Chap. 9). Under these conditions, the
condensate — even when it has a macroscopic Extension — may be described by a
single wave function. This implies that liquids, in particular, will be the first to form
condensates when they are cooled. In Fig. 10.3, the dependence of the formation of
the condensate on the average separation between the bosons is shown.

For liquid “He, with an average interatomic separation ~0.1nm, a condensate
forms at a temperature 7 = 2.17K, just below the liquefaction temperature. Even at
temperature 7 = 0, abosonic quantum liquid will not be in a pure bosonic condensate
state. Due to the interactions between the atoms, there are, as well as the condensate,
also single-particle excitations. In the case of 4He at, for example, T ~ 2K, only
around 10% of the atoms are in the collective ground state and in collective excitation
states. Figure 10.4 schematically shows the occupation of the levels in superfluid
heliumITatT=0K,0K< T < T, and of liquid helium at temperature 7" > 7). This
should be compared with Fig. 9.4 to clarify the differences between the condensates
of bosonic gases and bosonic liquids.

The dispersion curve for superfluid “He obtained using cold neutrons is partic-
ularly marked (Fig. 10.5) and worth a closer look. A pure phonon excitation would
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Fig. 10.4 Sketch of the level occupation in superfluid helium II below 7 and in normal liquid
helium above T). The fact that the average separation, /, is comparable with the helium diameter is
also symbolically shown
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correspond to a monotonically increasing energy-momentum dependence, Ep, =
vpn p. This dependence is shown in Fig.10.5 as a dashed line. The gradient of the
line at p = 0 implies a phonon velocity of v, ~ 238 m/s.

The deviation from the phonon excitation is attributed to roton excitations. Rotons
correspond to quantised vortices in helium, whose formal description is not easy.
Therefore, we present here an analogy for rotons that was invented by Feynman.

A passenger wants to get out of a tightly packed street car —a good approximation
for the closely packed helium atoms. There are two options to reach the door: either
she uses a great deal of force to lift herself up and then reach the door over the
heads of her fellow passengers. In a quantum system, this would correspond to an
excitation to a higher lying state, which later decays. Alternatively — in a much more
economical method — she may ask each of the passengers between her and the door
to swap places with her one after another and so slowly reach the door. This second
possibility illustrates the idea of quantised vortices.

Rotons cannot be excited below the energy Agr. The tangent to the roton curve in
Fig. 10.5, Er = vrp, defines the rotons’ propagation velocity, vg &~ 58 m/s.
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Fig. 10.6 A sphere with
mass M moves with velocity
v and emits a phonon in
direction ® with energy hw
and momentum p. For

M — oo, the critical speed
is ve &~ vR = 58 m/s

7000000

How can superfluidity arise in helium if phonons can pick up energy at arbitrarily
small momenta? To explain this, it suffices to show that the viscosity, measured using
a sphere at small speeds, is equal to zero.

Consider a sphere of mass M, moving in helium (7 = 0) with speed v. Through
dissipation, the sphere produces an excitation with energy ¢ and momentum p,
Fig. 10.6.

Energy conservation implies that

—Mv? = le’2+s (10.1)
- 2 9 .

where v’ is the speed after the production of the excitation. Momentum conservation
additionally requires
Mv—p=MV. (10.2)

It is easy to see that the phonon excitation first occurs when the sphere moves with
aspeed v > vpp. Squaring (10.2) implies

1M2 + L 1M’2 (10.3)
— VS —V- B — = — v .
2 Prom? =2

or, more briefly,

L
=vV-p——p. 10.4
€ P— P (10.4)
The minimal value for the size of the velocity v, at which dissipation can take place
is when the momentum of the excitation and the velocity of the sphere are parallel.
If we consider a massive sphere, p?>/2M — 0, then the condition for the velocity
below which dissipation is not possible is

(10.5)

Ve = —.
4
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In this approximation, dissipation via a phonon excitation first becomes pos-
sible when the speed of the sphere is larger than the phonon speed. Because,
in superfluid helium, there are no single-particle excitations with v = 0, the
lowest speed at which dissipation occurs is the propagation speed of the rotons.
Experimentally, it is found that, below the speed v. &~ 30 m/s, the viscosity is
equal to zero. This speed is slightly smaller than the rotons’ speed, vg.

10.3 Superfluid Helium Droplets

In Géttingen, Toennies and collaborators have developed a method with which well
defined droplets of liquid helium can be produced. Helium gas cooled to 30K is
adiabatically expanded through a jet of 5 um diameter into a vacuum. Thus, a well
defined beam of droplets is produced and the size of the droplets is determined by
a time-of-flight method. From the many applications of such drop beams, we will
select one: how many “He atoms must there be in a drop to develop superfluidity?

An elegant method to demonstrate superfluidity is to study the rotational spectra
of molecules inside the helium. When the droplets become superfluid, the molecules
rotate freely, as in a vacuum, and the rotational lines are narrow. The rotational spectra
of the molecules in droplets with less than 35 atoms do not show narrow lines. For
larger droplets, the lines become stepwise clearer and, in droplets with 60 atoms, they
are clearly there. The rotation spectra measured in molecules in droplets of liquid
3He do not display narrow lines. At temperatures around 1K, *He is a normal Fermi
liquid.

10.4 Superfluid He

When there is an attraction between fermions, at sufficiently low temperatures, bound
or quasi-bound states with bosonic properties arise. We will loosely refer to such
states as Cooper pairs. In practice, one observes various superfluid phases of He
at temperatures 7 < 2.8 mK. The spin—spin interaction between the *He nuclei is
responsible for the formation of Cooper pairs. This interaction is attractive when
both magnetic moments are parallel, i.e., when the total spin is S = 1. Because
the total wave function must be antisymmetric, both atoms are in a relative L = 1
state. This implies that the wave function of the Cooper pairs, and hence the order
parameter, has a tensor character. This interaction is, though, very weak.

2(he)? |1
Vi = M Voo (10.6)
4(Mpc?)? \r3
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If we substitute the values g = —1.9 (the magnetic moment of *He is y = gpun and
un = 3 - 1078 eV/Teslais the nuclear magneton) and of (1/73), using the average sep-
aration between the helium atoms, ~0.2nm, into (10.6), we obtain Vi, ~ 10~ eV.
This is four orders of magnitude smaller than the temperature of the phase transition,
T =~ 2.8mK. At this temperature, the spin—spin interaction is negligible compared
with thermal fluctuations. Superfluid *He is a collective state, in which the magnetic
moments of the Cooper pairs are organised in the total volume. In the superfluid
state, the Cooper pairs are in the ground state. The binding energy of the total sam-
ple is the product of the number of Cooper pairs in the ground state, Ncp, and the
binding energy of an individual pair, Vi (cf. 10.6). The total energy of the sample is
larger than that of the thermal fluctuations. The magnetic field produced through the
oriented *He nuclei in the superfluid state is around 3 mT. If we take into account that
un/ s =~ 172000, then we see that the degree of orientation of the nuclear magnetic
moments in superfluid *He is readily comparable with the degree of orientation of
the electrons in ferromagnet material.
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Chapter 11
Metals — Quasi-free Electrons

Tous les genre sont bon, lors le genre ennuyeux.
Voltaire

Metals are built out of atoms that possess one, two or three weakly bound electrons. In
the condensed state, these electrons are delocalised and move as nearly-free particles
among the atoms. The interior electrons and the nucleus together form firmly bound
positive ions, which are ordered in a crystal lattice. The motion of the external
electrons in a periodic potential can be described by a modulated plane wave; in ideal
crystals, electrons do not scatter. Scattering only takes place off crystalline defects
and thermal oscillations. Hence, the electrons in metals may, to a good approximation,
be described as a Fermi gas in a potential well.

We want to consider three aspects of metals that can be explained through the
Fermi gas model: the binding of the atoms in the crystal, electrical conductivity and
thermal conductivity.

11.1 Metallic Bond

11.1.1 Metallic Hydrogen

We first want to demonstrate the nature of the metallic bond via the example of
metallic hydrogen. Hydrogen exists in the metallic state only at very high pressure,
e.g., inside the planet Jupiter. In the laboratory, up to now it has only been possible,
at a pressure of more than 140 GPa, to take a drop of liquid hydrogen into the liquid
metal state for about 0.1 ms. This was demonstrated by a drastic increase in the
electrical conductivity. Metallic hydrogen in solid form, on the other hand, has not
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Fig. 11.1 The cellsin a
cubic lattice are replaced by ° ° °
spheres with radius r
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yet been created in the laboratory. It is suspected that pressures of around 500 GPa
will be needed for this.

We now want to sketch on the back of an envelope the metallic bond in hydrogen
under normal conditions.

Letus consider a closely packed cubic lattice of protons with a uniform distribution
of delocalised electrons. The crystal cell d* may be well replaced by a sphere of radius
rs, such that the density, N/V = d=3 = (47r3/3)~!, stays the same (cf. Fig. 11.1).
The energy of the electrons in metallic hydrogen may be found using variational
methods and then compared with the energy in an isolated atom.

The average kinetic energy of the electron in a Fermi gas is from (9.8)

2

h
K=221—— 11.1
2mr?’ ( )

where we have replaced the average atomic separation, d, by rs.
The electrostatic energy of the proton at the centre of this sphere with constant
charge density p = —3e/(4nr?) is

ahc 3 ) 3 ahe
V= ———47rrdr:—§ . (11.2)

Neighbouring spheres do not contribute to this because they are neutral and spher-
ically symmetric. Minimisation of the total energy, E = K + V, using (11.1) and
(11.2) leads to

rs = 1.47 ap, E = —1.02Ry. (11.3)

A more exact calculation (using modulated plane waves) yields E = —1.05Ry.
This energy should suffice to keep hydrogen atoms together through a metallic bond
(Fig. 11.2) because the binding energy of an electron in a free hydrogen atom is just
Ey = —1Ry. Nonetheless, hydrogen atoms at normal pressures do not form metals
because it is energetically preferable to form hydrogen molecules. The electron’s
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Fig. 11.2 The charge
distribution in a free
hydrogen atom and in a
hypothetical hydrogen metal
at atmospheric pressure

binding energy in a hydrogen molecule is, namely, —1.17 Ry per atom. This is why
solid hydrogen at normal pressures is a crystal of molecules that are held together
by the van der Waals force.

If one compares the charge distribution in our hypothetical hydrogen metal at
standard pressures (Fig. 11.2) to that in the hydrogen molecule (Fig.6.3), one sees
that the electron density between the protons in molecules is significantly higher than
in the metal.

At high pressures, the situation is different. When the separations between the
hydrogen molecules become comparable with those inside the molecules, the elec-
trons are no longer bound to particular electrons. Therefore, the metallic bond is
stronger than the molecular one.

It is very different in metals for which the covalent bond between two atoms
in a molecule is not as effective as in hydrogen or the majority of nonmetals. The
condition for a metallic bond at normal pressure is thus that the binding energy of the
delocalised electron gas is greater than the binding energy for individual molecules
and not just for individual atoms.

11.1.2 Normal Metals

Our above estimate may be easily extended to the familiar metals. Consider, for
example, sodium, which possesses a single conducting electron per atom. The main
difference, compared with hydrogen, is the presence of the inner electron shells,
which, because of the Pauli principle, keep the conducting electron away from the
positive ion and act as a repulsive pseudo-potential. On the other hand, the potential
inside the ion is larger than e?/(4meor) and is only reduced by screening outside
the ionic radius to ¢?/(4meor). Both effects together may be simulated by a pseudo-
potential, which is constant out to the ionic radius, r;, and thereafter decreases as
—e?/(4megr) (Fig. 11.3). It is a good idea to fix the radius, ry, so that the ionisa-
tion energy of the 3s electron in a free Na atom corresponds to its experimental
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Fig. 11.3 The pseudo-potential in sodium. The dashed line is the continuation of the Coulomb
potential, V = —e?/(4megr). Inside ry = 3.26ay, the actual potential is stronger because the inner
shells are not completely screened; the Pauli principle, though, has a repulsive action and the two
effects together are simulated by a constant pseudo-potential

value. For this, one finds, with numerical calculation, E3; = —0.378 Ry by choosing
r = 3.26 ap.
Following our approach to hydrogen, one obtains
3 2 1 2.2 52
E=-—2>_° __eh 21 (11.4)
24meors 2 4meer] 2mr?
The minimum energy is found at
rs =4.08ayp, E = —0.446Ry. (11.5)

The energy gainis thus calculatedtobe AE = E— Eyon = —0.068 Ry = —0.93 eV.
This coarse estimate is surprisingly close to the experimental values, ry = 4.00ag
and AE = —1.11eV.

Fig. 11.4 The electron p
density, p,, in a Na atom and

pm in metallic Na. In metals,

the electron density is shifted 4¢ P
from the regions r < r’ and

r > r, into the region 3
r<r<rg
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The essence of the metallic bond is the same as with the covalent bond. The
periphery of the electron wave function at r > rs (Fig.11.4) is attributed to the
neighbouring atoms’ cells. Because the electron distribution is thus brought a bit
closer to the positive nucleus, the gain in the potential energy is larger than the loss
from a generally smaller increase in kinetic energy (Fig. 11.4).

11.2 Electrical Conductivity

Electrical conductivity in metals may be well described under the assumption that the
outermost electrons (the Fermi gas of electrons) move evenly under the influence of
an electric field with a drift velocity vp. In an electric field, electrons are accelerated,
dv/dt = (e/m)E. This acceleration is, though, only effective during the period
between two electron—electron or electron—phonon collisions. The drift velocity of
the electrons is thus

vp = (e/m)ET. (11.6)

The electrons are in a degenerate state, thus only those in the neighbourhood of the
Fermi surface are scattered. These electrons move with the Fermi velocity, vg. If we
denote the mean free path by /, the average time between two collisions is 7 = I /v.
This implies the current density

j =envp = (ne*r/m)E =c E (11.7)

and electrical conductivity B
ne’tr  ne’l

o= - (11.8)
m MUg

where n is the number of conducting electrons per unit volume. In sodium and copper,
one electron per atom participates in metallic bonding and electrical conductivity.
For copper, from the measured conductivity, one can estimate 7 ~ 7 - 107 145 and
I ~ 30nm. The mean free path, [, in copper is around 100 times larger than the
separation between atoms.

11.3 Cooper Pairs

At low temperatures, many metals are superconducting and the electrical resistance
vanishes. The mechanism of superconductivity is qualitatively well understood.
Electrons at the Fermi surface, which at normal temperatures contribute to resis-
tance through their scattering off crystal defects and thermal oscillations, bind at low
temperatures in Cooper pairs. These behave like bosons and enter a Bose condensate
with an energy gap.
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The superconducting current is understood as a collective motion of Cooper pairs,
which, because of the energy gap, are prevented from scattering. Here we want to
concern ourselves with the question of how an effective, attractive potential is created
in metals to bind the electrons in Cooper pairs.

The properties of the crystal lattice are highly dependent on the ratio of the electron
mass, m, and the ion mass, M. For metals (M ~ 50u), we have M/m =~ 10°
and so «/M/m =~ 300. Because ions and electrons in such a crystal with lattice
separation d are exposed to a similar force, F ~ ahic/d?, their frequencies are
inversely proportional to the square roots of their masses,

wp m

— x| —. (11.9)

We M
For the ionic frequency, we have taken the Debye frequency of the crystal, wp; the
electron frequency corresponds to the binding energy of the valence electron in the
atom, hw. = E. ~ ahc/d. The speed of sound and electron speed are related by the

same ratio,
Uph m
phonon
Uphonon'\’des Ve ~ dwe, — A\ 37 (11.10)
Ve M

The electron speed (10°m/s) is indeed 300 times larger than the speed of sound in
metal (3000 m/s).
When an electron flies past an ion, it transfers to it (see Fig. 11.5) momentum,

p=Fr~ ——~ —, (11.11)

where 7 = d /v, is the time that the electron spends in the vicinity of the ion. The
ion then carries out a single oscillation with amplitude

E E
g= P o Eelve B jm . m, (11.12)
Mwp v Mm w, I’l’ll)e2 M M

before then again returning to its original state with a relaxation time wgl. At tem-
perature T ~ 0K, the electrons cannot excite the lattice atoms because inelastic
scattering can only take place off thermal fluctuations. Inside the relaxation time, the

< [
« >
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Fig. 11.5 The cylinder behind an electron in which the crystal lattice is distorted and the ions are
pulled along in the direction of the axis




11.3 Cooper Pairs 125

V(r)

s

~N ~
~ -~
~ -

~ — — =

Fig.11.6 The perturbation of a crystal in a cylinder creates an attractive potential for other electrons
(dashed curve)

electron proceeds through a distance I ~ v.(1/wp) ~ /M/m d. Thus, the perturba-
tion of the crystal lattice is contained inside a cylinder with diameter d and length [
(Fig. 11.6). If the ions have approached the axis by J, an attractive potential is created
for further electrons. To exploit such a potential, the second electron must fly straight
through the cylinder. The cylinder is not fixed in space because we are dealing with
an s wave state. To obtain the zero angular momentum of the Cooper pair, its wave
function must be a superposition of cylinder states in all directions.

Any net angular momentum, £/, would keep the electrons R ~ £h/p ~ £d apart
and so outside our cylinder of width d. Thus, Cooper pairs have zero spin and angular
momentum. (Because an s wave is symmetric, the Pauli principle demands that the
spin wave function is antisymmetric.)

The change in the potential due to the polarisation of the lattice is proportional
to d/d, so that the attractive potential for the electrons in a relative s state takes the
following form:

5
vinl d d (11.13)
0 forr > 1,

where [ ~ /M/md =~ 300d. This is a relatively strong potential. It is not deep
but has a large extension, so that one could expect that the binding energy roughly
corresponds to the potential’s depth, E./300 & 3 - 103 eV. One can easily convince
oneself of this from the solution of the Schrodinger equation for the potential (11.13).
Because this binding energy corresponds to a temperature of circa 30K, one might
expect many superconductors at reasonably high temperatures. In reality, the binding
energy of Cooper pairs is always around 10~*eV. Where then is the error in our
reasoning?

Cooper pairs are formed from electrons just above the Fermi surface. The states
below it are occupied and can thus not contribute anything to the wave function
of Cooper pairs, which would correspond to a highly excited state in the potential
(11.13). To illustrate the binding in Cooper pairs, let us compare the wave function
of two free electrons (Fig. 11.7) with that of two electrons bound in a Cooper pair
(Fig. 11.8). The wavelength of the electrons at the Fermi surface is much smaller
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Fig. 11.7 The wave function ry
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Fig. 11.8 The wave function ry
of a Cooper pair. The
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than the extension of Cooper pairs. Despite the weakness of the bond, it is enough
at low temperatures (kT < Epinding) to form a Bose condensate of Cooper pairs, so
many metals do become superconducting.

11.4 Diamagnetism in Superconductors

In high-temperature superconductors, it is very easy to demonstrate diamagnetism in
superconductors (the Meissner effect). A ceramic ring, with superconducting proper-
ties at the temperature of liquid nitrogen, is put into a container full of liquid nitrogen.
If one now puts the container into a magnetic field, the ring rises up and hovers.

Searching for analogies, we here use that between the diamagnetism of a noble gas
atom, such as neon, and the behaviour of a superconductor in a magnetic field — the
Meissner effect. A neon atom has total angular momentum J = 0; all the electrons
are coupled in pairs to angular momentum zero. If the neon atom enters a magnetic
field, then, from Lenz’s rule, a magnetic moment opposed to the applied field is
induced. How, though, can a system with J = 0 have a magnetic moment? This is
explained as follows: as the magnetic field is switched on, an electric field is induced.
The electrons coupled in pairs move in opposed directions. One is accelerated by
the field and the other is braked. Thus, an electric current is produced and the entire
electron shell rotates around the axis of the applied magnetic field.

We will look at the superconductor for a one-dimensional geometry. In Fig. 11.9,
the surface of the superconductor is in the yz plane, while the homogenous mag-
netic field outside the superconductor points in the z direction. Let us ask how the
magnetic field and current behave inside the superconductor in the x direction. In a
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Fig. 11.9 The surface of the superconductor is in the yz plane, the homogenous magnetic field
outside the superconductor points in the z direction; it falls off inside with a range A

magnetic field B = V x A, the kinetic energy is (p — eA)?/2m and the velocity is
then not p/2m but

v= l(p—eA). (11.14)
m

The current density j generated by our electron ensemble is thus
e
j= i = — i — eA). 11.15
j=e Zv ~ Zikp eA) (11.15)

Because > p; = 0, the proportionality of the current density and the vector potential

follows: 5
1
iy .
m A o

j=— (11.16)

In (11.16), n is the number of electrons per unit volume and X = /m/ne? g is the
penetration depth of the magnetic field into the superconductor, as can be seen from
the equation

1
VXV xA=pmj=-5A. (11.17)

or, in our one-dimensional geometry,

d?A, 1
T = (11.18)

The solution is an exponential decay, A, (x) = A,(0) exp(—x/A).



128 11 Metals — Quasi-free Electrons

11.5 Macroscopic Quantum Interference

Superconductivity is a macroscopic quantum phenomenon, which even permits
macroscopic quantum interference. An especially interesting and significant appli-
cation is the quantum interference magnetometer SQUID (superconducting quantum
interference device).

In 1962, B.D. Josephson predicted that a tunnelling current could flow through
a nonsuperconducting layer between two superconductors even when there is no
electrical potential (the Josephson effect). For his work, he received the Nobel Prize
unusually quickly. The tunnelling current depends on the critical current, /., which
the Josephson bridge can carry and the phase difference, ¢ = ¢; — ¢,, between the
two superconductors is

I = 1. sin. (11.19)

The index i = 1, 2 refers to the two superconductors. The phases, (;, of the wave
function of the Cooper pairs, 1;, have thus an important physical meaning, which
we want to look at more carefully. In a magnetic field, the momentum of a Cooper
pair (with charge 2e and effective mass m™) is

p = m*v + 2eA. (11.20)

One may write the wave function of the Cooper pair as ¥ (r) = exp(if(r)) and
express its momentum through the gradient of the phase, p = (10| —iAV|¢)) = AVE.
The current density is thus

j=2env = enh/m*) (V0 — (2e/h)A). (11.21)

Here, n is the Cooper pair density. The current is then proportional to the gradient
of the total phase, §' = 6 — [(2¢/h)Ads. The phase gradient is thus a measurable
physical quantity.

To derive equation (11.19), we follow an argument due to Feynman. The time
development of the wave functions is essentially given by the Schrodinger equation
of the two-state system, where both superconductors differ by a potential difference
(2e)V and are coupled by a tunnel integral, K,

0
lh% = —eVi + K
iﬁ% = +4eVih, + K)y. (11.22)

ot
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Expressing the wave functions by ¢; = /n; exp(ip;). we get

0 2K

% = +7«/n1n2 sincp (1123)
ony 2K :

al‘ = A ninp s @

Jp  2eV

o h

The current [ is proportional to On;/0t and the proportionality coefficient
(2K /R)/nin, in (11.23) corresponds to the critical current, /. in (11.19). With-
out the voltage V the phase ¢ is constant and thus the current is also constant. In a
potential V' # 0, the phase grows proportionally to the time, ¢ = (2¢/h)V't, and
one obtains an alternating current with frequency w = 2eV.

If one splits the current into two branches (each with its own Josephson bridge) and
then brings them back together, the two currents sum up and interfere (Fig. 11.10a).
For zero magnetic field, both are practically in the same phase and add constructively.
In a magnetic field, each conductor acquires an additional phase (2¢/h) [ Ads, and

P2
screen
©B
I L ,
double slit
¢
|=|1+|2
(a) superconductor (b) vacuum

Fig. 11.10 (a) Principle of the SQUID magnetometer: the current is shared between two Josephson
bridges and both contributions interfere. (b) Shift of the interference maxima in the Bohm—Aharonov
effect; dashed lines without a magnetic field, solid line with a magnetic field
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interference may be constructive or destructive. The vector potential A is not gauge
invariant but one only needs the phase difference between the two branches, which
is indeed gauge invariant. The integral over the loop yields

= [ Z22as =L o —on— 11.24
n & h h o, (11:24)

2eA 2eB 2e O
o=
Here, ® is the magnetic flux in the loop and ® = 27h/2e = 2.07 - 10715 Vs is the
magnetic flux quantum. One easily sees that the maximal current is produced when
an integer multiple of the magnetic flux quantum is in the loop and the minimal one
when a half-integer one is in it.

One can thus measure the magnetic field (or flux) by slowly increasing the field
and counting the maxima and minima of the current: ® = n®,. Rather than the
current, one measures in modern SQUID magnetometers the potential between both
sides, which is produced keeping the current constant. The voltage arises when the
current is hypercritical. The voltage is larger in the case of destructive than in the
case of constructive interference; therefore, it changes between maxima and minima
when the magnetic field is increased. We will not go into technical details here.

Such measurements are reminiscent of interferometric measurements of the width
of a hair between two nonparallel glass plates; there, too, one only needs to count
the interference lines.

The phenomenon in a SQUID is very analogous to the Bohm—Aharonov effect,
where the electrons pass through two slits and interfere on a screen. If one puts a mag-
netic field between the two beams, then the interference lines are shifted (Fig. 11.10b)
due to the additional phase difference, p = ¢ (eA/h)ds = [(eB/h)dS = (e/h) ®.

11.6 Thermal Conductivity

Thermal conductivity means energy transport and is produced in a gas by the move-
ment of molecules or atoms, in nonmetals by phonons and in metals by electrons
(and only to a very tiny extent by phonons). All these energy carriers are viewed,
to a first approximation, as free particles. The interaction between these particles
— and in the case of solids their interaction with crystal defects — are taken into
account through their mean free paths, /. It is illuminating to compare the thermal
conductivity of gases, nonmetals and metals so as to understand the reason for the
large differences in their thermal conductivities. The thermal conductivity of gases
is so understood. Let the particle density in the gas be n and the average speed v.
Then, through a surface S from the left-hand (colder) side (see Fig. 11.11),nvcosf S
molecules per second pass from a distance [ into the warmer region. Each of these
molecules carries energy ¢, (T — (dT /dx) [). The same particle flux passes through
S from the right (warmer) side. The warmer particles carry, though, a larger energy,
¢y (T + (dT/dx) 1) per molecule. With cos @ = 1/4, the net heat flux is
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>

Fig. 11.11 Energy transported through a surface S by molecules, phonons or electrons

nvc,lS—, (11.25)
X

A=—nvc,l, (11.26)

may be calculated. The precise numerical factor depends on the approximation used
and the particular gas.

The same estimation scheme may be applied to phonon gases and electron gases.
A comparison of the relevant factors is given in Table 11.1.

Due to the low density of air, its thermal conductivity is around 100 times smaller
than that of nonmetals (Table 11.1). The high speed of electrons at the Fermi surface
is again responsible for the roughly 100 times larger thermal conductivity of metals
compared with nonmetals. The small ¢, value in copper refers, of course, only to the
electrons.

Because the electrical and thermal conductivity in metals are caused by the elec-
trons, it is sensible to consider them together. To this purpose, we require the explicit

Table 11.1 Typical values of the factors in the calculation of the thermal conductivity for diverse
materials in normal conditions. For phonons, only the product nc, is meaningful

Medium Carrier I nm v m/s n kmol/m® | ¢, A W/mK
Air Molecules | 65 500 0.045 25R 0.03
Nonmetal | Phonons 1 3000 45 X 3 R) 3
Copper Electrons 30 10° 45 0.03 R 300
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expression for the specific heat of a degenerate electron gas,
1
c = 57r2k§ T/er, (11.27)

which we will not derive here. From

5
e~ Smi’/2, (11.28)
we find
| mksT (11.29)
cy N —, .
2 mv2

which fixes the Wiedemann—Franz ratio between the thermal and electrical conduc-
tivities,.

NT  Invldn?k3 /(mv?) 3 2 kg
Lyp = MT o 2MVIST Ky /(mvT) 37 B (11.30)
o nel/(mv) 10 e
An exact calculation gives almost the same result,
2 k2
Lw_r= ?— =2.45-10"WQ/K?, (11.31)
e

which agrees well with the measured values. For copper, for example, this ratio at
273Kis L =2.23- 107 WQ/K>.
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Chapter 12
Hadrons — Atoms of Strong Interaction

Getretner Quark wird breit, nicht stark.
Goethe

Hadrons are basic systems of the strong interaction, which may be pictured as the
atoms of the strong interaction. Our principal interest concerns the structure of the
nucleons, the building blocks of nuclei. The spectroscopic properties of the nucleons
are interpreted as due to their being constructed from constituent quarks.

We will try to show a plausible relation between a constituent quark and the bare
quark of quasi-elastic (deep-inelastic) scattering using the simplest possible model
of chiral symmetry breaking (the Nambu—Jona-Lasinio model). We will dedicate
more room than usual to this because it contains the basic properties of spontaneous
symmetry breaking in particle physics, e.g. in the Higgs model.

12.1 Quarkonia

The effective forces between nonrelativistic constituent quarks can be extracted from
the spectroscopy of quarkonia. Although for a given potential, the Schrodinger equa-
tion uniquely predicts the energy spectrum, the solution of the inverse problem
is ambiguous. One finds, however, simple effective potentials that reproduce most
energy levels rather well. In Fig. 12.1, we compare the excitations of positronium and
charmonium. This is areasonable comparison to make because both systems are made
from a particle and its antiparticle, and both systems can, to a good approximation,
be described nonrelativistically. Electrons are light, but the binding in positronium
is weak, so their relative velocities are small. The heavy quarks have a sufficiently
large mass such that they move slowly, despite the strong interaction. Because the
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Fig. 12.1 Charmonium and positronium states

interaction between quarks is transmitted by gluon exchange, which, like photons,
are massless vector bosons, we expect that the potential between quarks — at least in
the domain where one gluon exchange dominates — to behave as 1/r.

The first thing we see is that the higher excited states of quarkonia do not lie
closer together, as one would have expected for a pure Coulombic potential. We
conclude that any description of quarkonia requires, as well as the “strong Coulombic
potential”, an additional confinement potential (see Sect. 3.3).

The second thing that can be seen, although we do not show it explicitly, is that the
excitation energies in charmonium and bottomium are almost identical. The potential
between the quark and antiquark is thus such that the excitation energies depend little
or hardly at all on the quark mass. The mass of the quark is only visible in quarkonia
in spin—spin splitting

Both of these properties may be well described through a combination of the
strong Coulombic potential and the linear confinement potential,

E P dashe 4w (12.1)
= - = r . .
2mq/2) 3 r 0

In (12.1), we have employed the reduced quark mass, m4/2. The constant U, takes
care of the zero point of the potential. The constituent masses are not uniquely
determined and their choice affects the constant Uj.

Using the linear potential alone, one can analytically solve the eigenenergies
and eigenfunctions (Airy functions); however, for the combined potentials, this can
only be done numerically. We want to show that one can graphically — on the back
of an envelope — obtain the experimental results through an interpolation of the
Coulomb and oscillator potentials (V = kr?/2). We have chosen the oscillator
potential because its levels are equidistant and we will not need to do much work.
The dimensionless energy scale unit we use is the difference between the 2S and 1S
states and the zero point is chosen to be the ground state energy (1S5). The results of the
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Fig. 12.2 The excited states E.E 5 ‘
of charmonium and Tn o | o exact
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graphical solution are given in Fig. 12.2. The circles labeled “exact” are the results of
the Schrodinger equation for the Coulomb, linear and quadratic potentials. One sees
that the energy levels of the linear potential fit very well to the linear interpolation
lines between the Coulomb and oscillator potentials. The levels of charmonium and
bottomium lie nicely between the Coulomb and linear potential, which is compatible
with a potential cocktail, as in (12.1).

One gets a good fit to the charmonium and bottomium spectra using the parameters
me=1.37GeV ¢;%, my=4.97GeV c;24.79, a;=0.38, k=0.860 GeV fm~".

The strong coupling constant iy = 0.38 is clearly too big. From QCD, according
to Eideman et al., at most a value of 0.2 could be expected in this energy region.
This means that the fitted coupling constant, oy, represents an effective quark—quark
interaction, which contains not just single gluon exchange but also other gluon field
corrections. The fitted string constant k = 0.860 GeV fm~! is, on the other hand,
too small, compared with the value (1.0 — 1.2) GeV/fm, which one expects from
lattice QCD or various phenomenological considerations. Both constants should be
understood as effective values.

12.2 Hadrons from Light Quarks

The spectroscopic properties of baryons and mesons are very well described by a
model that assumes that the u and d quarks have a mass of about 0.3 GeV ¢, 2, while
for the s quarks, the value is around 0.5 GeV ¢ 2,

12.2.1 Nonrelativistic Quark Model

The masses of the light mesons are simply formed from the sum of the quark masses
and spin—spin splitting,
quzm,-—i—m]-—i—AMU, (12.2)
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where

_ 8rah’

AM,
9cmim;

[P0 - o7) . (12.3)

A good agreement with the measured meson masses is obtained using m,q ~
310MeV/c? and mg ~ 483 MeV/c?.
For the baryon masses, a similar relation holds,

Mg = mi+AM,, (12.4)

1

where the spin splitting depends on the relative orientation of the three quarks,

4o’
AM, = s 0 o; ;). 12.5
§9cmimj|w( )WHoi o)) (12.5)

The effective quark masses are found by fitting the calculated energy differences
within a doublet with various spins to the measured baryon states. The best agreement
is found with the quark masses nm, 4 ~ 363MeV/c? and m; ~ 538 MeV/c?. These
masses are slightly different from those obtained from mesons. This is not surprising
because the quarks in mesons and baryons inhabit different environments. In a meson,
the quark couples to an antiquark, in a baryon to two quarks, which are coupled to
the corresponding anticolour. The essential difference in the effective interaction is
a factor of 2 (4/9 for barons, see (12.5), compared with 8/9 for mesons, see (12.3)),
which is a consequence of the colour couplings. All other differences are taken into
account through the different quark masses.

To keep dynamics out of the model, we have assumed that the potential and
kinetic energies perfectly cancel each other. This is possible in a system in which the
interaction between quarks may be described as the sum of a Coulomb and a linear
potential. While for a Coulomb potential, (E,o) = —2(Exis); in a linear potential,
(Epot) = 2(Ekin). If the localisation probability of the quarks in both potentials are
roughly the same, (E,o) ~ —(Eyn), the energy terms in the mass formula cancel
each other. In fact, the localisation probability is larger for the linear potential and
the negative constant Uy in the potential (12.1) also helps produce the cancellation.
The hadronic masses are, to a good approximation, reproduced by the sum of the
quark masses and the spin—spin interactions — (12.2) and (12.4).

The constituent quark masses are certainly more than a simple numerical flourish
of the model. One can convince oneself of this by comparing the predictions of
the model for the baryon magnetic moments with the experimental results. The
agreement is very good, if one assumes that the constituent quarks have the magnetic

moments of a Dirac particle,

zqeh
g = — . (12.6)
q 2mq
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Table 12.1 Measured and calculated baryon magnetic moments in units of the magnetic moment
of the nucleon, . The experimentally determined magnetic moments of p, n and A° are used
to calculate the magnetic moments of the remaining baryons. The £° hyperon is very short lived
(7.4 - 10720 5) and decays through the electromagnetic interaction via £ — A% + ~. For this
particle, instead of the expectation value of j, the transition matrix element (A%|z|2°) is quoted

Baryon n/pN (Experiment) Quark Model W/ UN
p +2.792847386 £ 0.63-10~7 | (4, — pa)/3 -

n —1.91304275 £ 0.45-107° | (4pg — ) /3 -

A —0.613 £ 0.004 s -

T+ +2.458 4 0.010 (4 — g)/3 +2.67
»0 Qg + 24t — 15)/3 +0.79
20 5 A0 —1.61 £ 40.08 (tta — ) /N3 —1.63
- —1.160 =+ 0.025 (4tg — 115)/3 —1.09
g0 —1.250 +0.014 (4its — 1)/3 —1.43
E- —0.6507 + 0.0025 (4 — pa)/3 —0.49
Q- —2.02 4 0.05 31 —1.84

The comparison between the experimental values and the predictions of the model
is pretty good (see Table 12.1). The nonrelativistic quark model also correctly repro-
duces the order of magnitude of the excitations. The first excited state, with £ = 1,
lies at ~0.6 Ge V.

12.3 Chiral Symmetry Breaking

In quasi-elastic scattering — known as deep-inelastic scattering in high-energy jargon
— quark masses are estimated to be mq < 10MeV, which seems to contradict the
nonrelativistic quark model with its much larger quark masses. A direct comparison
is, however, inadmissible. In quasi-elastic scattering, we assume that we see the
elementary, bare quarks. In low-energy experiments with poor resolutions, however,
we see quarks surrounded by a cloud of gluons and quark-antiquark pairs. Our
intuitive picture is as follows: in the case of a very weak interaction, the Dirac sea
around the particle is undisturbed and its mass unchanged. If the strength of the
interaction exceeds a critical value, the Dirac sea is very greatly disturbed and the
particle dresses itself with many particle—antiparticle pairs. We call such a dressed
particle, a quasi-particle and, in the strong interaction case, a constituent quark.
One tries to describe the relation between elementary and constituent quarks
through a model of spontaneous chiral symmetry breaking. This symmetry break-
ing also represents, in today’s cosmological scenarios, a link in the chain of phase
transitions during the cooling of the universe. There is neither a discussion of this
theme at an elementary level nor is it a topic in text books. We will therefore dedicate
sufficient space to this theme, which appears to us to be conceptually very important,
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and will try to represent this somewhat complex phenomenon as simply as possible.
A detailed treatment can be found in the review article by Klevansky.

If we were to bring the nucleons to a sufficiently high temperature and pressure, the
constituent quarks would dissolve into their components — bare quarks. This reminds
us of a phase transition. Phase transitions always involve spontaneous symmetry
breaking during the transition to lower temperatures. In the quark case, it is the
so-called chiral symmetry that is broken.

It is unfortunate that the procedure described above, which is so physically trans-
parent, must be linked to an abstract symmetry to formulate it. The expression chi-
rality or handedness is most familiar from optics. It is used to denote the properties
of molecules that rotate the polarisation of light either to the left or to the right. In
particle physics, chirality denotes a symmetry of the Dirac equation, which we wish
to briefly explain. The reader can, though, without a great loss in understanding,
jump directly from here to the constituent quarks (Sect. 12.3.1).

First, we want to explain the difference between chirality and helicity. Helicity is
described by the operator 4 = o - p/| p|, while chirality is described by the ~5 (Dirac
matrix) operator. Because, in relativistic quantum mechanics, fermions are described
by four-component Dirac spinors, we need both quantum numbers to characterise
the internal degrees of freedom.

Chirality is very clear for massless fermions, where it, as well as helicity, is a
good quantum number. The Hamiltonian operator for a free fermion,

H =Yy pc=sh|plc, (12.7)

commutes with both the chirality operator, s, and the helicity operator, 4.

Because the electromagnetic as well as the weak and the strong interactions com-
mute with s, chirality is conserved in all processes. At high energies, for example,
where the masses may be neglected, in 3 decay, a left-handed fermion and a right-
handed antifermion, (ei{ + v, or e, + UR), appear. The sum of the two chiralities
before and after the decay is equal to zero.

If, though, a fermion has a finite mass, the mass operator Womc2 does not commute
with 75, and so chirality is no longer a good quantum number. One says that the mass
breaks chiral symmetry. This property of chirality is used as a criterion to decide
whether one is dealing with a massless or massive particle.

The wave functions of massless fermions provide, however, a basis for describing
massive particles: one can decompose the wave function of a massive particle into
two components, the right-handed and left-handed components, which correspond
to right-rotating and left-rotating massless fermions. The right-rotating fermions and
antifermions are right handed with probability (1 + v/c)/2 and left handed with
probability (1 — v/c)/2 and vice versa for the left-rotating types.

Below, we want to show what happens with massless quarks whose coupling to
virtual quark—antiquark pairs (the physical vacuum) preserves chirality but breaks
the chiral symmetry of the vacuum as the coupling constant increases.
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Fig. 12.3 Multigluon
exchange replaced by a
contact interaction

— X

12.3.1 Constituent Quark

We want to simulate the phase transition, in which the massless quarks acquire a mass
through spontaneous symmetry breaking, in a schematic model. The Nambu—Jona-
Lasinio Model (NJL model) is suited to this, as it contains the essential low-energy
property of QCD, chiral symmetry.

In this model the gluons are replaced by a contact interaction (Fig. 12.3), of which
approximation is sufficiently good for low-energy hadronic physics. Here gluons
never appear explicitly. In our simplified version of the NJL model, which we have
pared down so that it can fit on the back of an envelope, we consider the strong
interaction with just one quark flavour. We will merely qualitatively consider an
extension of the model to the usual two quark flavours, up (u) und down (d).

The Hamiltonian in the simplified NJL model is given by

H = [ &r (=ihcy - Vi + moc* ) 125)

=G [&Er W) + @ise)*] .
The first line is the Hamiltonian for a free quark. The field operator, v/, contains
colour (N, = 3), spin (Ny = 2) and also the four Dirac components. The second
line simulates the chirality-preserving QCD interaction. The expression (tivst)?
extends the contact interaction (¢1))? to form a chiral scalar.

The problem lies in finding the Hartree solution for a quark coupled to the vacuum
fluctuations. The most general solution that we can expect is a plane wave that
obeys E = /p?c? + M?c*. The solution is found through the following trick: the
effective quark propagator can be represented as a geometric series of graphs, as is
symbolically shown in Fig. 12.4.

The trick needed for the solution lies in expanding the dressed propagator in a
series of bare propagators, where we, though, use the dressed propagators in the
loops. We seek a self-consistent solution of the equation

pl=pl_4, (12.9)
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! P

1—o 1_AP

Fig. 12.4 Constituent quark propagator in Hartree—Fock approximation. The solid lines represent
the dressed propagators and the dashes the bare propagators. The bare propagator is P, the dressed
one P, and A is the loop integral

which is symbolically represented in Fig. 12.4. If we take for the bare propagator

P = (y"puc+id)~! (12.10)
and
P = (y'p.c—M*+id)™! (12.11)
for the dressed one, we obtain
M =A. (12.12)

In this derivation, we have neglected the bare mass of the quarks, mg. The value of
the loop A in Fig. 12.4 is the quark’s self-energy! To emphasise that the bare quark
has picked up a mass, we denote, in connection with chiral symmetry breaking, the
constituent mass by mq = M. The self-energy is given by summing over the internal
degrees of freedom in the loop and integrating over the momentum p,

1
Y puc — Mc2+i6 "

A= ZG/TrP = 2G/trctrDiraC (12.13)
P P

Here, 2G is the value of the vertex in the Hamiltonian operator (12.8).

The evaluation of this expression is somewhat technical and represents a typical
exercise for those that busy themselves with Feynman rules. The advantage of the
Feynman rules is that one can picture the physical process and qualitatively under-
stand the final result (12.17) even when one does not engage with the technical
details. Through rationalising the fraction, the v matrices enter the numerator and
the denominator develops terms quadratic in the momentum, p,,.

Y puc + Mc?
prpuct — (Mc»)? +i6

A= 2G/ tretrpirac (12.14)
p

We use the traces trpir ¥ = 0 and trpic 1 = 4. The sum over the internal degrees of
freedom (Tr = trctrpir,) in the loop yields a constant factor, (Ncg = Ne X Ny = 6),
and we only need to explicitly perform the integral over the four-momentum cd*p.

The integral over pg can be elegantly performed using Cauchy’s theorem. One
integrates, for example, over a contour that includes the lower pole in the complex
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plane (pg = v/ p? + M?c? — id) and takes the residue

/+oo —dp() ZIVCS[WC2
oo 2mi (po — /P> + M2c% + i) (po + /pz + M2c2 —i5) 12.15)
2NcsMc? ‘

N

We are left with the three-momentum integration, which can be performed analyti-
cally; however, we will instead give a simple and instructive estimate. Because we
want to describe low-energy hadronic excitations, we may stop the integration at a
cut-off A ~ 1GeV,

Adrpid M
A=2GNCS/ e < (12.16)

Mc
~2GN ——.
0 (27Th)3 /p2 + M?2c? /]32 + M?2c2

Here, N’ = N¢ fOA 4mp*dp/(2nh)3 = Ngs A3 /6m2R3 is the density of the momen-
tum states multiplied by N and p is a suitable average value, around two thirds of
the cut off, A.

The equation for the constituent mass (the “gap equation’) thus has the form

M=A/c* =2GN’ (12.17)

M
P+ M2

This always has a solution, M = 0. If, though, 2GN’)?> > p?/c?, then there exists
a further solution,

(Mc*)?* = 2GN)? — (pe)?, (12.18)

and indeed, this second solution with a finite mass minimises the energy of the
system. One here sees clearly the phase transition as a function of the size of the
coupling, G. Below a critical value of G, one only has the trivial solution M = 0,
but above itis M > 0 (Fig. 12.5).

Let us recall here (5.27), which describes the phase transition to ferromag-
netism, and compare it with (12.17) for the chiral phase transition. In both equa-
tions, the order parameters “M” (magnetisation or constituent mass, respec-
tively) are associated with positive feedback.

The nonrelativistic quark model describes the ground state and Low-energy exci-
tations of hadrons rather well. The masses of the Baryons, Mg ~ 3mg, and of the
mesons, Mqg ~ 2myq, are reproduced well by (12.4) and (12.2). The exception is
the mass of the pion. This is a factor of five smaller than the mass of two quarks. In
the constituent quark model, the strong spin—spin interaction is made responsible for
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Fig. 12.5 The dependence
of the constituent mass on
the strength of the coupling.
The cross corresponds to the
realistic values
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this mass decrease. This is indeed qualitatively correct. However, a nonrelativistic
calculation of such a large mass defect is nonsensical. We want to show in the frame-
work of the NJL model that the small mass of the pion is a result of chiral symmetry
breaking.

12.3.2 The Pion

We can estimate the pion mass in our simplified model just as we did for the con-
stituent quark mass. The pion has J™ = 0~ and couples to quark—antiquark pairs
via a pseudoscalar interaction. In Fig. 12.6, we compare the pion propagator with its
expansion in quark—antiquark fluctuations. The left-hand side of Fig. 12.6 describes
resonant quark—quark scattering in terms of the pion,

(iv59rqq) (GrqqiYs)
3 Ez‘”_ m2ch4 , (12.19)

(qq = ™ = qq) = —i(hc)

while the right-hand side represents the microscopic description of the pion. The
pseudoscalar part of the contact interaction has the value

;>7T<;: >< +>O<+>oo<4r ...:%:%

Fig.12.6 The left side of the equation describes resonant quark—quark scattering via pion exchange,
while the right has the corresponding microscopic picture of the scattering using quark—antiquark
pairs coupled with the quantum numbers of the pion. The dots (solid circles) correspond to the
vertex 2G, while the empty circles signify the factor V2G s because this vertex is associated to
two neighbouring loops in the geometric series
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C= X =—i - is(=2G)irs. (12.20)

Equating the left- and right-hand sides of Fig. 12.6 yields the pion mass and the
effective coupling constant, grqq.

he)? = .
) o w2 = 1-8

(12.21)

One can read off the pion mass from the position of the pole (B(E — m,) = 1),
and the numerator yields the coupling constant. The derivation of B is analogous
to that of the integral A. To understand the result, one just needs to realise that
the loop B contains two dressed quark propagators, where there was just one in
A. The derivation is simple in the case where £ = 0 and if one works in the rest
frame of the pion (p, = 0). Then, for the second quark propagator, p = —p/' and
one has, in the denominator, (v p,c — Mc* + 10)ys(—y*puc — Mc* + i0)ys =
(Y p,c — Mc* +16)%. After rationalizing the denominator, taking the trace over the
~ matrices and discarding the vanishing quadratic pole, it is found that the integrals
A and B (for E = 0) only differ by a factor of Mc?,

B(E? = 0) = 2Gi / ¢p . ! A
= = 1 r ==
Qm)*hc  prp,— M *c?+id  Mc?

=1, (1222

which, up to the factor Mc?, agrees perfectly with the expression in (12.16).
For perfect chiral symmetry (quark mass my = 0), one indeed finds the pole
[1 — B(E* = 0)]"! = 0o at zero energy, which corresponds to a massless pion.

12.3.3 Generalisation to my > 0 and Two Quark Flavours

The up and down quarks have, though, a small mass, around 2% of the constituent
mass, and so chiral symmetry is slightly broken from the start. Therefore, also the
constituent masses of the up and down quarks are slightly different. This difference
is, though, tiny — it is comparable with that of the bare quarks.

In chiral symmetry breaking, one has to take two effects into account: explicit
symmetry breaking due to the mass term m( 7# 0 in the Hamiltonian (12.8) and
spontaneous symmetry breaking due to the particular interaction. The latter gives a
much larger contribution (A) to the constituent mass (Mc? = moc? + A) than the
explicit term (moc?).

Explicit chiral symmetry breaking is much more important for the determination
of the pion mass than it is for the quark masses. If there were only spontaneous
symmetry breaking, the pion would be an exact Goldstone boson and its mass would
vanish. Due to explicit chiral symmetry breaking from the finite mass of the bare
quarks (mg # 0), the pion mass, while small, is nonzero.
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Because pions are built from quarks with two flavours, we have not one but an
isospin triplet of pions.

12.3.4 The Pion as a Collective State

One can develop adeeper insight into the special character of the pion and thus into the
mechanism that produces Goldstone bosons, if one views it as a collective vibrational
state of particle-hole states (quark antiquark pairs). The model we describe here is
very similar to the model of giant resonances in nuclear physics (Chap. 14) and to the
model of localised vibrational modes in crystals (Chap. 8). While in the shell model
of nuclear physics one excites a nucleon from a filled to the valence shell, one can,
in hadronic physics, promote a quark from the Dirac sea to the Fermi sea (Fig. 12.7).
It should be noted that our particles are constituent quarks and the antiparticles are
holes in the Dirac sea of constituent quarks. The collective state is then formed from
a superposition of many particle-hole (quark antiquark) configurations, ¢;,

5
D) =D cilg) . (12.23)
i=1

The index i = (p, c, f, s) here denotes the momentum, colour, flavour and spin
components of the quarks as well as the opposite values for the antiquarks, so that
the pion is coupled to zero momentum, colour and spin. The number of configurations
is N = N'V, where N’ is, as in (12.16) and (12.18), the number of quantum states
per unit volume and the normalisation volume ) ensures the correct dimensions.

Fig. 12.7 Quark excitation , €p
from the Dirac sea into the
Fermi sea
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From this ansatz, we can solve the Schrodinger equation H|®) = E|®). The
coefficients ¢; fulfill the secular equation,

E1 - 26 —2(; —26 s C1 C1
-2G E,—-2G -2G - 2 &)

26 26 Es-2G--- | |a|TE || (12.24)

The diagonal elements contain the unperturbed energy of the quark—antiquark
pair, E; = 2\/(Mc?)? 4 (p;c)?, and the interaction in all diagonal and off-diagonal
elements is, from (12.20), equal to -2G = -2G /V, where the normalisation volume
again ensures the correct dimensionality.

To emphasise the analogies between different areas of physics, we will apply
the same schematic formalism to the description of the collective states not only in
this chapter but also in Chap.9 (localised vibrational modes) and Chap. 14 (giant
resonances in nuclei). To solve the secular Equations, we express the coefficients c;
in the diagonal elements as a sum of all the other coefficients,

-2G
=5 g ch, (12.25)

where > ; ¢j is a constant. Summing both sides over all N quark-antiquark states
and taking >, ¢; = >, ¢; into account, the solution of the secular equation yields
the relation

N

-2G
IZZE—E,»’ (12.26)

i=1

It is best to represent the solution of this equation graphically (Fig. 12.8). The right-
hand side of (12.26) has poles at the E = E; values. The solutions E| are found where
the right-hand side is equal to unity. These are marked on the abscissa. The (N — 1)
eigenvalues are trapped between the unperturbed energies, E;. The outlier, marked
as E, is the collective state (pionic ground state). For an attractive interaction, the
collective state lies below quark—antiquark states.

To obtain a quantitative estimate of the energy shift, we assume that all states are
degenerate, i.e., the energies E; are the same for all i and use an average momentum
p. Then, from (12.18), we obtain

E; = 2J/(Mc®)? + (pc)? = 4G N/, (12.27)

and the energy of the collective state is

E.,=4GN — N -2G =4GN' — N'-2G =2GN'. (12.28)
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Fig. 12.8 Graphical
depiction of the solution of
the secular equation for the
pion. The E; values are
unperturbed energies, the E;
values are the diagonalised
energies and E is the energy
of the collective state (pionic
ground state, E = mqc?) E E. E. E'1

E,| Es|l E»| E;

The masses of normal quarkonia lie around or above double the constituent quark
mass, M. The pion is an exception. Due to collective effects, its mass drops, in our
approximation from4G N’ to 2G N’, so that the pion mass would be around 300 MeV.

This drop is not yet enough. One has to take correlations of the quarks in the ground
state (vacuum) into account. Then the Fermi sea is partly populated by quarks and
one can “de-excite” a quark from the Fermi into the Dirac sea. In the expansion of
the collective state, the number of configurations is doubled since as well as ¢; also
the corresponding de-excitations ¢; occur.

N
D) =D cildn) + Eildi) - (12.29)

i=1

In the so-called random phase approximation one indeed finds a secular equation
that is twice as large as (12.24) and the pion rest energy drops to zero,

E.,=4GN —2N -2G =4GN' — 2N’ -2G = 0. (12.30)

(We skip certain technical details.) We have thus tried to indicate the equivalence of
these two views of the pion — as a collective state and as a Goldstone boson.

For perfect chiral symmetry — in agreement with Goldstone’s theorem — the
continuous global symmetry is spontaneously broken and there exists a soft mode
with eigenfrequency zero. If, though, the bare mass my # 0, then chiral sym-
metry is explicitly broken and the pion acquires a finite, though small, rest mass
(E; = myc* = 140MeV).

One can envisage the pion as a classical oscillation in a potential that describes
the vacuum solution of the NJL model as a function of the order parameter, M el®
(Fig. 12.9). Here M is the constituent quark mass and ¢ an arbitrary phase. The pion
(the soft mode, hw — 0) corresponds to the oscillation along the bottom, i.e., along
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U(M.9)

<Ml

¢
Fig. 12.9 The representation of the pion and the o meson as natural oscillations in a potential with
spontaneously broken chiral symmetry. This is known as a “Mexican hat” potential. The pion (the

soft mode, hw — 0) corresponds to the oscillation along the phase angle ¢ and the o meson to the
oscillation in the steep direction orthogonal to the ditch (fw ~ 2Mc?)

the phase angle, ¢, and the o-meson corresponds to oscillations in the steep direction
orthogonal to the bottom (fw A 2Mc?).

The question remains why only the pion is a Goldstone boson (and to a certain
extent, for three light quarks, the kaon too). Because of chiral symmetry, the Hamil-
tonian in the NJL model contains two terms. The first is responsible for the constituent
quark mass and does not generate a collective state. It represents the interaction
between quark-antiquark pairs with quantum numbers 0. Such a state with zero
energy does not represent a new independent state and is identical to the vacuum.
The second term represents the interaction of quark—antiquark pairs with quantum
numbers 07, and this generates the collective state: the pion.
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Chapter 13
The Nuclear Force — Pion Sharing

So far as the laws of mathematics refer to reality, they are not
certain. And so far as they are certain, they do not refer to reality.
Einstein

Continuing our attempt to bring out the principal contents of physics via analogies,
it is natural in the case of the nuclear force to use the analogy with the interatomic
force. Indeed, the nucleon—nucleon potential closely resembles that between two
atoms — if we decrease the length scale by around five orders of magnitude (from
0.1nm — 1fm). When viewed in this way, the nuclear force is, though, weak, at
least when it is compared with the most important chemical bond, the covalent bond.
After all, while the chemical bond at low temperatures produces a solid state, nuclei
remain liquid even at a temperature 7 = 0K.

The nucleon—nucleon interaction is best investigated by scattering. This interac-
tion can be directly used to describe light nuclei where many body effects do not yet
dominate. This means that we can view the deuteron, tritium and the helium isotopes
as the molecules of the strong interaction.

In contrast with this, we are better off viewing nuclei with more than 16 nucleons
as droplets of a degenerate Fermi liquid. The interactions between nucleons in heavy
nuclei are primarily described by a common nuclear potential with a residual inter-
action, which is only qualitatively similar to the more fundamental nucleon—nucleon
interaction.

The nucleon—nucleon interaction has been investigated in detail with the help of
scattering at energies below the pion threshold. In this energy domain, in which only
elastic scattering is possible, the interaction may be well described by a local poten-
tial. The form of the potential is strongly dependent on the spin, isospin and orbital
angular momentum. In Fig. 13.1, we show (dashed lines) how large the repulsive and
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Fig. 13.1 The
nucleon—nucleon potential.
Depending on the spin,
isospin and orbital angular .
momentum, the potential can \
be repulsive or attractive.
The bounds on the strength N
of the potential are given as
dashed lines. The solid line [N
shows a potential that is
averaged over spin, isospin
and angular momentum
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attractive potentials can be in different relative nucleon—nucleon states. The solid line
shows an averaged potential. Common to all the potentials is a repulsive interaction
at separations shorter than r ~ 0.5fm.

13.1 Repulsion at Short Distances

As with atoms, short-distance nucleon repulsion is a consequence of the Pauli prin-
ciple. In the lowest state with £ = 0 one can, in principle, squeeze in 12 light quarks
(three colours, two flavours and two spins); however, an antisymmetric wave func-
tion for six quarks is orthogonal to the wave function for two overlapping nucleons.
At short distances between nucleons, some of the quarks are excited into higher
states and some of their spins are flipped. In both cases, energy is needed. A coarse
estimate yields that either exciting two quarks from the s to the p state or flipping
the quarks’ spins (2N — 2A, i.e., the simultaneous excitation of two nucleons into
a two A excited states) each cost around 600 MeV. Both effects thus contribute to
short-distance repulsion. Overall, the compromise between all effects (minimisation
of the total repulsive energy) is around 300 MeV.

13.2 Attraction

In 1935 Yukawa formulated the theory of the interaction between the nucleons in
analogy to the electromagnetic interaction. Because of the short range of the nuclear
interaction the massless photon of the electromagnetic interaction was replaced by
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an about 200 MeV massive pion. To explain the strength of the nuclear force the
coupling constants of the pion and heavier exchange mesons to the nucleon are three
orders of magnitude higher than the coupling constant of the photon to the electron.
In the textbooks of the nuclear physics the nuclear interaction is illustrated using
the classical field equation for mesons. This is analogous to the Poisson equation in
electrostatics, however, with an additional term that takes into account the mass of
the exchange particle (13.1).

V20 — (moc/h)*® = —gp(r) = —g[8(r) + 8(r — R)]. (13.1)

The solution of (13.1) is (with the range b = h/(m,c) = 1.4fm)

/b lr—RI/b
P=—g——g——. 13.2
g471r g47{|r—R| ( )
The potential energy is calculated as in electrostatics,
1
Voot = E/gp(r)c1>(r)d3r =Vi+V,+ V(R). (13.3)

Here, V| and V; are the R independent contributions — the self-energies of the first
and second nucleon — and V (R) is the famous Yukawa potential,

—R/b

V(R) = —g*S
AT 8

(13.4)

The simple form of this potential is only correct for scalar mesons such as, e.g.,
the o meson. The dominant contribution to attraction is indeed due to o meson
exchange because this is independent of spin and isospin. For pions (pseudo-scalar
charged mesons), the form of the potential is more complicated; it is spin and isospin
dependent. All of these properties have been thoroughly confirmed experimentally.

13.3 Information from Light and Heavier Nuclei

We will treat the nuclear interaction as analogous to the inter-atomic interaction.
The strong interaction is the interaction between the quarks and gluons. The nuclear
interaction is analogous rather to the interaction between the atoms than to the ele-
mentary interaction between the electrons. The two interactions, the nuclear and the
one between the atoms, display similar features, repulsion at small distances when
they strongly overlap as the consequence of the Pauli principle and attraction when
their surfaces touch. Consequently the potentials between nucleons and between
atoms have similar form, strong repulsion by overlapping of the two and a short
range attraction. In the deep inelastic scattering of electrons on protons it was found



152 13 The Nuclear Force — Pion Sharing

that not only quarks but also pions are the constituents of the proton. The proton is
25% of time a nucleon plus a pion and about the same fraction of time a proton plus
a scalar boson. In the spirit of the Nambu—Jona-Lasino model of the chiral symmetry
breaking we identify the pion with the Goldstone pion and the scalar boson with
the o boson. The o boson has a large overlap with the resonance in the two pion
scattering state.

It is remarkable that for nuclei above oxygen the volume and the total binding
energy are proportional to the number of nucleons (the mass number A).This shows
that the nuclear force is rather weak and that it acts only between nearest neighbours.
This is related to the fact that the distance between neighbours is about 2 fm while
the potential minimum is at about 1 fm. The binding energies above A = 16 have
approximately the same value about 8 MeV (Fig. 13.2). In this region, the two pions
coupled to the zero spin dominate the coupling. Analogous to the sharing of electrons
between the atoms the pions spread in the nucleus.

The contribution of sharing one pseudo-scalar pion is more complicated. The
pion of the donor nucleon as well as of the acceptor nucleon has the orbital angular
momentum /[ = 1. The resulting effective force between the nucleons depends on
their spins and isospins and is the source of the tensor force. In the heavy nuclei the
contribution of one pion to the binding is believed to average out. In light nuclei,
however, it may be the dominant binding force. This is demonstrated in several odd—
odd nuclei, deuteron, °Li and "*N. Deuteron is a bound proton and neutron, °Li is a
“He core plus a bound proton and neutron, and '*N is a '®O core with a proton and
neutron holes. All these three nuclei have a J* = 17 ground state and a J© = 0° first
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Fig. 13.2 Binding energy per nucleon
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exited state at about 2MeV excitation. The responsibility of the tensor force for the
this binding was experimentally demonstrated by observed quadrupole moment of
the deuteron in the ground state. We do not have any “back of an envelope” way to
short cut the calculations of the properties of the light nuclei and we switch to the
nuclei above oxygen in Chap. 14.

A new picture of the nucleus emerges. The nucleus is a collection of the three
quark clusters in a pion sea. Pion sharing has some features of the covalent and some
of the metallic bond. When nucleons are close pions share molecular-like orbitals.
Otherwise, pions are delocalised and free to move.

Quark model calculations suggest also a small additional contribution due to a
nuclear covalent bond when two nucleons touch and their quarks share molecular-
like orbitals. There is an even smaller contribution due to the colour Van der Waals
interaction.
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Chapter 14
Nuclei — Droplets of a Fermi Liquid

Nullum est iam dictum, quod non sit dictum prius.
Terence

It is justified to call nuclei droplets of a Fermi liquid. The nuclear force is weak;
in the case of deuteron, it produces a barely bound state. In nuclei, the nucleons
move almost independently of each other. In the ground State, the nucleus is, in a
thermodynamic sense, at temperature 7 = Odim K. As previously mentioned for
liquid *He, at low temperatures, a Fermi liquid may be approximated by a Fermi gas.
This is also true for nuclei, where the momentum distribution only differs from gases
by a smeared Fermi surface. Already in the 1930s, Fermi described the nucleus as a
quantum gas using the then usual semiclassical approximation. This approximation
is sufficient to understand many of the global properties of nuclei. To study the
individual properties, one must, however, take into account that the nucleons move
in a more-or-less spherically symmetric potential. The form of the potential may
well be theoretically derived from the mean field or Hartree—-Fock model. The result
shows that the depth of the potential is proportional to the nuclear density. For heavy
nuclei, the potential has the form of a potential well with smoothed off edges; this is
called the Woods—Saxon potential:

— V()
V= (14.1)
Here, Vj is the depth of potential at the centre and R is the nuclear radius. Individual
properties of nuclei, such as the binding energies and excited states, depend on the
nature of the potential (shell model). The Fermi gas approximation is good because
the mean free path is large compared with the internucleon separation.
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Mean field naively means the following: the nucleon scatters off one nucleon
at a time; however, there is no phase shift! In the region of the scattering
centre, the wave function is modified and assumes the form of a bound state.
At large separations, though, scattering has no effect on the wave function, and
the nucleon behaves like a free particle. In other words, the mechanism for the
long mean free path is the Pauli principle, which, in a filled Fermi sea, prevents
the nucleon from choosing any other final state than its initial one.

14.1 Global Properties — The Fermi-Gas Model

The mean field potential that every nucleon is exposed to is produced by the super-
position of the potentials of all the other nucleons and has the form of (14.1). In the
nuclear volume, V, there are two gases, of neutrons and of protons. Because each
orbital state can be occupied by two fermions of the same sort, N neutrons and Z
protons can be contained in a nucleus, where

4m(pp)’V 4m(pp)*V
=2-———— and Z=2 - ————. 14.2
3@rhy 32rh)y (142)
Setting the nuclear volume to
4 4
V= §R3 - ?WRSA (14.3)

and using the value of Ry = 1.21 dim f'm found from electron scattering, one obtains
the following Fermi momentum for a nucleus with N = Z = A/2 and the same
radius for the proton and neutron potential wells:

ho(9r\'?
pr=ph=pi=— (=) ~250Mev/c. (14.4)
Ro \'8

This is not very surprising because each nucleon has the volume of a sphere with
radius Ry available to it, and one can thus expect that Ry - pr = h so Ry = Ay.
This expectation agrees well with (14.4). This is, furthermore, a confirmation that
the coarse estimate of the average separation between the constituents is comparable
with that of the de Broglie wavelength; this is the case for all degenerate systems.
The energy of the highest occupied state, the Fermi energy, Ef, is

2
Ep = 2”—;4 ~ 33 MeV, (14.5)
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where M is the nucleon mass. The typical binding energy per nucleon is —8 MeV. The
Coulomb repulsion and the surface energy diminish the binding energy by 8 MeV per
nucleon. This means that the pure nuclear binding is B = —16MeV per nucleon.
The resulting potential depth is thus —Vy, = B’ — Er ~ —50MeV.

14.2 Individual Properties — Shell Model

In the previous section, we considered a potential well with many nucleons and
took the nucleus to be an almost macroscopic droplet of nuclear matter. In such a
model, the nuclear interaction can be used to approximately calculate the density of
nuclear matter and the binding energy per nucleon, as well as the surface, Coulomb
and pairing energies, but not to extract individual properties. We will again take a
Fermi gas (a model of independent particles) as our approximation, but now in a
spherically symmetric potential well (Fig. 14.1). Due to this spherical symmetry, the
angular momenta, rather than the linear momenta, of the one-particle states are good
quantum numbers, and one calculates — as in the atomic shell model — with spherical
waves rather than plane waves. Because of the degeneracy of such states, the single
particle states are grouped into shells. The nuclear potential is not like a Coulomb
potential but more closely resembles a potential well, or, for light nuclei, a harmonic
oscillator and so the magic numbers of the closed shells are not the same as in the
noble gases. Experimentally, one finds especially strongly bound nuclei with large
excitation energies and high separation energies for the proton or neutron numbers:
2, 8, 20, 28, 50, 82 and 126. The first three correspond to the harmonic oscillator
(2,8, 20,40, 70, 112). The rest indicate a very strong (£ - s) coupling. This is why the
levels 7,2, go/2, hi1/2, 113/2 join the lower energy shells and thus the magic numbers
are increased by 2 - (2j + 1) — compared with the oscillator potential.
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Fig. 14.1 Sketch of the shape of the potential and proton and neutron states in the Fermi gas model
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In a complete mean field calculation, there is a spin-orbit potential, as well as
the central potential. In the shell model one thus uses the following effective
nuclear potential.

(€-s)
h

V(r) = Vcenu'(r) + Vls(r) . (146)

The individual properties can be particularly well seen in nuclei where one nucleon
number is magic and the other differs from a magic number by one (Fig. 14.2). Many
properties, e.g., certain excitation energies, magnetic moments and matrix elements
for electromagnetic and weak transitions, mostly depend only on the valence nucleon
or hole.
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Fig. 14.2 The single-particle states of the shell model are easily recognisable in the excitation
spectrum of lead isotopes. The lead isotope égng 126 With 82 protons and 126 neutrons has closed
neutron and proton shells. The neutron hole in §27Pb]25 corresponds to the levels of the last closed
shell: 3py 2, 2f5,2, 3p3/2, 1i13/2, 2f72, 1hg 2. The neutron in ?2)9 Pbj27 occupies one of the levels of
the 2gg/2, 1i112, 1j15/2, 3ds)2, 4s1/2, 2€7/2, 3d3/2 valence shells. The levels for which spin is not
given correspond to more complicated configurations. The levels next to each other are not drawn
to scale. The energies are given in keV
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In heavy nuclei, also the holes in the low-lying shells can be described in terms of
single-particle properties; but the energy of such a state is very broad due to its short
lifetime. To investigate low-lying states, it is convenient to use a hyperon A as a probe
because it is not subject to the Pauli principle with respect to nucleons and thus it
descends alone in a cascade from the uppermost to the lowest level. Such experiments
have been performed for light hypernuclei (nuclei with a hyperon), while for heavy
nuclei, A has only been measured in higher states.

14.3 Collective Excitations

14.3.1 Vibrational States

The most characteristic collective vibrational excitations are the giant dipole reso-
nance and surface oscillations. These excitations may be particularly clearly demon-
strated in measurements of electromagnetic transition probabilities. This can only be
explained by assuming that several nucleons coherently contribute to the electromag-
netic transition. Both types of vibrational excitation are quite natural in a classical
liquid droplet. A giant dipole resonance corresponds to opposing vibrations of the
protons and neutrons and can be viewed as analogous to the plasmon excitation of
an ionised plasma or the phonon excitation of the photon branch in a crystal with
ionic bonding (see Chap.8). The surface of any water droplet can be brought into
oscillation. However, nuclei are quantum systems and the nature of the collective
excitations is determined by the level structure of the degenerate Fermi liquid. In
the following, we would like to show that the properties of the collective vibrational
states can be explained from the shell structure of the single particle excitations close
to the Fermi energy.

14.3.2 Model

In Fig. 14.3, the excitations with J™ = 1~ and J™ = 27 in a spherically symmetric
nucleus with a J™ = 0" ground state are sketched. All these states are obtained by
lifting a nucleon out of the ground state. In the shell model, the lower J™ = 27 states
are generated by a recoupling of the angular momenta, such that all the nucleons
stay in the same lowest shell. The J™ = 1~ states correspond to an excitation of
the nucleons into the next shell with opposite parity. The internucleon interaction,
which is not contained in the shell model potential, mixes states with the same
angular momentum. For example, for the J™ = 17 states of the giant resonance,
the so-called particle-hole excitations, in which a nucleon is found in an excited
shell and a nucleon is missing in the core of the nucleus, can mix. This change in
the nucleonic configuration can be simulated by means of an effective particle—hole
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Fig. 14.3 Level splitting in

degenerate 1~ and 27 states E
after a perturbation, V;;, has

been switched on. For the 1~ /

states, we have assumed a
repulsive perturbation, while

for the 2 states, we have
taken it to be attractive

Vi

interaction. This is such a strong interaction that one can view the states inside a shell
as degenerate. A mixing of two degenerate states by a further interaction leads to a
symmetric splitting of both states. For N degenerate states, though, only one state is
split from the rest when the matrix elements of the interaction have the same phase.
This state — the collective state — displays a coherent superposition of the N states.
Let us denote the Hamiltonian operator for a nucleon in the nuclear potential by H
and the particle-hole interaction by V. The unperturbed particle-hole states |/;) are
the solutions of H,

Holvi) = Eil|vi) . (14.7)

The solution | W) of the Schrodinger equation for the total Hamiltonian is found from
the relation
H|\V) = (Hy+ V)|V) = E|WV). (14.8)

The wave function, |¥), projected onto the space spanned by the states |1);) may be
written as

N
W) =>"cilvn) . (14.9)
i=1

The coefficients, c;, satisfy the secular equation

Ei+Vi Vi Vis - cl 1
Vor Ey+Vyp Voo - &) &)

V3 Vo Es+ V|| |=E || (14.10)

For simplicity, we assume that all the V;;’s are the same,

WilVIj) =Vi; =W. (14.11)
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The solution of the secular equation yields, for the coefficients,

v
G=——c. (14.12)

where > i€ is a constant. Summing both sides over all N particle-hole states and
taking into account that >, ¢; = > j ¢j» leads to the requirement

Vo
IZZE—Ei’ (14.13)

i=l
on the solution of the secular equation. The solutions of this equation are best
expressed graphically (Fig. 14.4).

The right-hand side of (14.13) has poles at the points E = E;. The solutions, E,
are found where the right-hand side is equal to one. The new energies are marked on
the abscissa. The (n — 1) eigenvalues are trapped between the unperturbed energies,
E;. The outlier, denoted by E¢, is the collective state. For a repulsive interaction
(Vo > 0), the collective state lies above the particle-hole states, while for an attractive
interaction (Vy < 0), it is below them (Fig. 14.4). For the giant resonances, we have
again employed the same formalism as used in Chap. 6 (for the pion) and Chap. 9 (for
the localised oscillatory mode) so as to demonstrate the similarity of the mechanisms
that generate collective states. To get a quantitative estimate of the energy shift, we
assume that E; = E for all i. Then (14.13) may be written as

1= ;‘—Ec . (14.14)
(a) (b)
MATL I~ — janan
E\| &) |E; E, E, Ey||E| (£
E\| 6| B| E, Ey| E| E| E

Fig. 14.4 Graphical representation of the solution of the secular equation: (a) for a repulsive
potential (Vo > 0), (b) for an attractive one (Vy < 0). E; are nonperturbed energies, £ ,’ the new
ones, Ec is the energy of the collective state


http://dx.doi.org/10.1007/978-3-662-54515-7_6
http://dx.doi.org/10.1007/978-3-662-54515-7_9

162 14 Nuclei — Droplets of a Fermi Liquid
which implies for a repulsive interaction,
Ec=Ey+ N -V, (14.15)
or in the case of an attractive interaction,
Ec=Ey—N-|Vyl. (14.16)

The expansion coefficients of the collective state

© _ ©)
¢! Ec - Zc (14.17)

all have the same sign and are almost independent of i, so long as the energy of the
collective state Ec lies far from E;. In this approximation, the collective state can be

written as
W) = f2|w, : (14.18)

In Fig. 14.5, the most important collective excitations are sketched. It still needs to
be shown that the collective state indeed differs from the other states through its
large transition probability into the ground state. The matrix element for a multipole
excitation of the collective state is

= [dx ( © (4 |+c©<¢z|+...)(9|0>

= Zcr(zC)An ~ ﬁ ZAn,

(14.19)

Fig. 14.5 Collective
excitations in the framework
of the shell model. The
collective states in which
protons and neutrons
oscillate in phase (Al =0) = “S0s—a—=2%
correspond to oscillations in
the shape. They are shifted to E. —-

s, 28 Al =1
wrsszsss 17 Al=A1
sy 2Y Al=0

lower energies. The F 3 Al=0
collective states in which

they oscillate out of phase ot Al =0
(AI = 1) are shifted to o+

higher energies. E1, E2 and
E3 denote the electric dipole,
quadrupole and octupole
excitations
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where O is the transition operator. The integrals

A, :/dsx(z/),,l(’)|0) (14.20)

represent the amplitudes for a particle-hole excitation. For constructive interference,
not only the matrix elements of the interaction, which determine the coefficients c,(,C) s
but also the excitation amplitudes, A,, have to be coherent, i.e., have the same phases.
It is no coincidence that there are such collective excitations in nuclei; it is rather a
consequence of the fact that the transition and energy operators may be expanded
as multipoles in the same manner. This implies that the transition operator will be
coherent when the energy operator is coherent.

14.3.3 Deformation and Rotational States

In contrast with atoms, which are spherically symmetric, the majority of nuclei are
deformed and can take on either a prolate (cigar shaped) or oblate (pancake shaped)
form. Electrons in an atom repel each other and thus distribute themselves uni-
formly in the valence shell. Nuclei are, though, only spherically symmetric in the
neighbourhood of closed shells. Single particle states in the valence shell are, to a
first approximation, degenerate and the valence nucleons can distribute themselves
nonuniformly. The attraction gathers nucleons either around the pole (prolate ellip-
soid) or around the equator (oblate ellipsoid). The typical ratio of the axes of the
ellipsoid in the ground state of heavy nuclei can be up to 1.3:1 and, in highly excited
rotational states, even 2:1. The deformation can be statically observed by measuring
the quadrupole moment. The deformation is especially spectacular in the rotational
dynamics of nuclei (Fig. 14.6).

The levels follow the typical excitation pattern of a rotator:
E; = h2J(J +1)/(2T), where T is the moment of inertia of the nucleus. Nuclei do
not rotate as rigid rotators; the moment of inertia is around one third of that of a rigid
rotator. This is a clear indication that nuclei are made out of a Fermi liquid.

14.3.4 Deformation Versus Cooper Pairs

Consider two nucleons in the same orbitals outside a closed shell. The binding energy
is maximised when their angular momenta are coupled to J™ = 0. For such a
coupling, the probability is maximal for the nucleons to be close to each other,
and thus the stronger attraction at small separations is optimised. The nucleus stays
spherically symmetric. We call such coupled two-nucleon states Cooper pairs, in
analogy to superconductivity. The wave function that describes these Cooper pairs



164 14 Nuclei — Droplets of a Fermi Liquid

prolate
superdeformed 30
i

a» s—t—
56+ )
54+ —

- | - 25
50+ .

prolate oblate 48

- t 46* —

Jds a6t > g —3— - 20
44* — f 40+ —
4ot —— R E— 40* —

v —_v 38* — —_
40 36 —F— s
38* e 34+ - 15 S

— 32+ — —
36+ { x
YT _-T 30* —— ]
v —— g L T T
" 34~ A 4 H‘]E 26% —
%2 33* * y A ; 1* 24: Z
30" 3 T 7T - 10
28+ 29+ Y { "/ /
b g S — g
o4+ — SL_ ——
20+ 3 -
+ — - ——
%8+ A ?51;——= 152D
16+ 18+ 66 Y86
1g+__ — 15~ -5
__\‘__ v —
et
10+ 10* ;) —T——
8 8* v - _
6+ / c—
. _
N 3
o* L0

Fig. 14.6 Energy levels in the 2Dy nucleus (from Shapey—Schafer). While the low-energy states
display somewhat unusual vibrational bands, for high excitations, rotational bands are formed,
which imply that the nucleus is highly deformed

is a superposition over all pairs of magnetic quantum numbers (m, m;), such that
no = —mj.

For several nucleons, there is a competition between pairing and deformation. For
Cooper pairs, the magnetic quantum numbers of single-particle states are uniformly
occupied, while, in the deformed wave function, only the highest (or only the lowest)
|m|-values occur. In a state with several Cooper pairs, the nucleons are only pairwise
correlated and the binding energy per pair is roughly constant. In a deformed state,
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Fig. 14.7 The nuclear
energy as a function of E
deformation for (a) closed
shells, (b) a few valence
nucleons, and (¢) many
valence nucleons. The
deformation, § = AR/R, is
defined as the ratio between
the difference of the larger
and smaller semiaxes of the
ellipsoid AR and the radius
of a sphere with the same
volume as the ellipsoid

however, all the valence nucleons are correlated with each other. For a small number
of nucleons, pairing dominates, while, for a larger number, deformation prevails: this
is because the pairing energy grows linearly with the number of valence nucleons,
but the increase in the deformation energy is quadratic.

The transition from a nucleus with closed shells to a strongly deformed nucleus
is shown in Fig. 14.7. The energy as a function of the deformation has, for a nucleus
with closed shells, a very steep minimum, and the frequency (energy) of quadrupole
oscillations is very high. In nuclei with nearly closed shells (few valence nucleons),
pairing and deformation are equally strong, which implies an almost perfect balance.
Thus, the frequency of the quadrupole oscillation is very small and the energy of
the first 2 state is only 0.5 MeV; the vibrational spectrum is clearly visible. For a
larger number of valence nucleons, deformation dominates, the round shape becomes
unstable and the symmetry is spontaneously broken. Although the interaction has a
spherical symmetry the lowest energy state is not spherically symmetric.
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Chapter 15
Stars, Planets, and Asteroids

Verdoppelt sich der Sterne Schein,
Das All wird ewig finster sein.
Goethe

Nuclear reactions play an important role in the life of stars. For the major part of their
lives, stars may be viewed as fusion reactors: nuclear reactions supply the energy
needed to keep the temperature of the star constant, while gravitation ensures that the
plasma is confined. The final stages of stars are understood in terms of degenerate
fermion systems.

Gravitation is the dominant force in systems of astronomical dimensions. Our
experience, primarily based on the mechanics of the solar system and the motion of
terrestrial satellites, has taught us that the nature of gravitational systems is ruled by
the virial theorem. This also holds for the largest stars, our sun and other stars in
the main sequence, white dwarfs, neutron stars, the planets and asteroids. We wish
to show that the properties of these objects may be qualitatively understood from
atomic constants and the virial theorem.

15.1 The Sun and Sun-Like Stars

The stars of the main sequence are produced by the contraction of interstellar gas and
dust. This material is almost totally composed of primordial hydrogen and helium,
which were produced in the big bang, plus around 2% of heavier elements. The
contraction heats up the centre of the star. When the temperature and pressure are large
enough to make the fusion of nuclei possible, the star enters thermal equilibrium. The
star then ceases its contraction and the energy that is radiated away is compensated by
energy production at the centre of the star. The energy produced in nuclear reactions
is primarily transported to the surface by radiation. This does not significantly mix
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the stellar material. During the star’s lifetime, its chemical composition is naturally
changed in the regions where nuclear reactions take place, thus, most of all, in the
centre of the star.

15.1.1 Equation of State

The pressure, p, at aradius r in a star may be calculated assuming hydrostatic thermal
equilibrium, i.e., that the gravitational force, F,, produced by gravitational pressure
at a radius r (Fig. 15.1)

GM,d GM,
dF, = — 2= = 2P gadr (15.1)
I I

must be balanced by the force dF,, = —dpdA, produced by thermal pressure. In
(15.1), G 1is the gravitational constant, p the density at position » and M, is the mass
that is contained inside a sphere of radius r,

M,:/ Ampridr . (15.2)
0

Equilibrium implies dF; + dF), = 0, which leads to the following equation of state
for the condition of hydrostatic equilibrium:

dp GM,p
— = . 15.3
dr r2 ( )

This equation, significantly refined by taking the chemical composition of the star
and other details into account, has been studied for all possible scenarios. To find
a qualitative understanding of stellar behaviour, we will take the density, p, to be
constant. Then we may replace the differential quantities, dr and dp, by the integrated

Fig. 15.1 A realistic equation of state must take into account that the gravitational force and the
force of thermal pressure at radius r have to be in equilibrium
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variables: the stellar radius R and the confining pressure P. In this way, (15.3) reduces
© P GMM 15.4

R RV’ (154
This simplification is thoroughly acceptable for cold objects. The density of white
dwarfs and neutron stars does not depend much on the radius. Hot stars, though,
have a massive core, where the majority of the total mass is concentrated, and we
cannot simply insert the stellar radius into (15.4). Instead, we rather use the average
separation, d, between the plasma’s constituents. This scale sets the thermodynamic
properties of a star. In Fig. 15.1, we sketch the transition from a realistic ansatz (15.3)
of the equation of state (Fig. 15.1a) to a simplified stellar model (15.4), with constant
density (Fig. 15.1b).

15.1.2 Virial Theorem

Consider a star with mass M, radius R and constant density p = M/ V. The star’s
potential energy is then

3GM?

e (15.5)

Epot = -

The total energy of the star is given by the sum of the kinetic (here, we prefer to
call it thermal) energy and the potential energy,

E = Eterm + Epot . (156)

For the nonrelativistic case, the following relation holds:

1
E= 5 pot = —FEtherm - (15.7)

This is the well-known form of the virial theorem for a 1/r-potential. The star exists
stably at the minimum of the total energy.

15.1.3 Size and Temperature

In the following estimate, we consider a star built solely from hydrogen. Instead of
G, we use —in analogy to the fine structure constant, o — the dimensionless coupling
constant, ag,
Gm?
ag = —L2 ~ 10738, (15.8)
he
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Here, mj, is the proton mass. It is also useful to express the stellar mass in terms of
the number of nucleons, N. We write M = N (m,, +m.) ~ Nm,,. The potential energy
is then

3 aghcN?

Epu = —
pOI 5 R

(15.9)

Let us consider stars in which radiation pressure is small compared with non-
relativistic particle pressure. This holds for the sun, somewhat more massive stars
and, especially, for objects smaller than the sun. In such objects, the gravitational
pressure is balanced by the pressure due to the thermal motion of the N protons and
N electrons.

15.1.4 Proton Energy

The average kinetic energy of a protons or an electron is (3/2)kT. The total kinetic
energy of the star is thus

snir = —Lp 13 aghdV? (15.10)
2™ 25 R ‘
If we now replace the radius by the average separation between the protons, d, i.e.,
R3 &~ Nd?, then the relation between the temperature, the average separation, d, and
the number of particles in the star, N, is

3 agheN?*3
3kT:ET. (15.11)

If we denote the number of nucleons in the sun, 1037, by Nj, then, by a whim of
nature, ag = N, 231 1n astronomy, it is common to normalise masses via the solar
mass and write the relation between the average particle separation, the mass and

radius as "
1 N I
= — () ¢ (15.12)
10 \ Ny d

15.1.5 Electron Energy

As stars contract, the average separation between the electrons keeps shrinking and
when d becomes comparable with the electron de Broglie wavelength, the degeneracy
pressure of the electrons becomes more important. The average kinetic energy of an
electron in a degenerate electron gas can be estimated to be 42 /2m.d>. A more exact
calculation based on (9.8) yields an additional factor, % (97/4)%/3 ~ 2.2. (Note that


http://dx.doi.org/10.1007/978-3-662-54515-7_9

15.1 The Sun and Sun-Like Stars 171

Fig. 15.2 Dependence of
stellar temperature on the
average separation, d,
between the protons

KT

Q
n
no
Q

min

min d

the definition of d used in this chapter differs slightly from (9.8).) This yields our
simplified condition for a star to be in hydrostatic equilibrium,

Sirpan M _3 (N 7 he (15.13)
2 T 2med? 10 \ N d’ ’

Atlarge separations, d, the second term becomes insignificant and the electron energy
may be treated classically. The electron energy, as the consequence of the equiparti-
tion theorem, is equal to the proton energy and also contributes %kT. The dependence
of the temperature on d is sketched in Fig. 15.2.

15.1.6 White Dwarfs

Consider a star, which, at the end of its lifetime, is a white dwarf with a solar mass.
We will neglect the fact that, in the last stage of its life as a “small” red giant, it loses
some mass. From (15.13), the star’s contraction is stopped by electron pressure at
dmin =~ 3.5. This implies that the radius of the white dwarf is 10* km. The maximal
temperature is reached at d = 2dy;y; it is

1 N 2/3
KT~ —(—) mc?~TkeV~k- -10°K. (15.14)
70 \ Ny

This is a pretty good estimate of the temperature of the core of a red giant! At this
temperature, the energy of the star is won by burning helium. Anyway, hydrogen
burning takes place already at kT ~ 1keV. (In the centre of the sun, kT = 1.3keV.)
The life of a star can be described as follows (Fig. 15.2): the star contracts until it
reaches the temperature k7" & 1keV. It keeps this temperature until the hydrogen
in the star’s core is used up. The star’s core then contracts until it reaches the tem-
perature kT, ~ 10keV, while the stellar mantle expands and the surface cools to
a temperature around 3000K, so that the star appears red. After the helium in the
core has been used up, essentially it is fused into carbon and oxygen, the mass of


http://dx.doi.org/10.1007/978-3-662-54515-7_9

172 15 Stars, Planets, and Asteroids

the star is too small to let further contraction generate a high enough temperature to
ignite further nuclear reactions. The stellar core then cools to a white dwarf and the
gravitational pressure is compensated by the Pauli pressure due to the electrons.

15.1.7 Brown Dwarfs

According to (15.14), stellar objects with only a few hundredths of the solar mass
only reach kTy,.x < lkeV. This temperature is too low to win further energy from
nuclear reactions. The life of such stellar objects is very simple. They contract and the
particles’ kinetic energy increases. However, this increase of kinetic energy is only
half as large as the decrease in potential energy. The difference is radiated off. Due
to their low surface temperatures, such dwarfs only shine very feebly, most brightly
at the time when they are around their maximal temperature. The colour of “brown”
dwarfs is actually reddish, but the name “red dwarf™ is reserved for normal stars with
masses between 0.1 and 1 Mg solar masses.

15.2 Energy Production in the Sun

The temperatures, which we have calculated, yield the maxima of the Maxwell
distributions. Due to the repulsion of charged nuclei, only those in the high energy
tail of the distribution (Fig.15.3) fuse together. The cross-section in the case of
Coulomb repulsion is proportional to the probability that the reaction participants
enter the interaction range, the so-called Gamow factor, exp(—b/E'/?), and to the

reaction rate

Fig. 15.3 Sketch of the product of the Maxwell distribution exp(—E/kT) and the Gamow factor
exp(—b/E'/?) as required to calculate the rate of fusion reactions. The product of these curves is
proportional to the fusion probability (dashed curves). Fusion essentially takes place in a rather
narrow energy interval around Eq of width AEy. The integral over this curve is proportional to the
total reaction rate



15.2 Energy Production in the Sun 173

strength of the interaction between the nuclei. Here, the factor b = maZ,Zy~/2mc?,
where m is the reduced mass and Z; and Z, are the charges of the fusing nuclei.
Fusion can take place via the strong interaction through particle emission, via the
electromagnetic through gamma emission or via the weak force through electron
neutrino emission.

The Gamow factor is one of the nicest examples of tunnelling in quantum mechan-
ics. It is known from basic quantum mechanics that the probability of tunnelling
effects decreases as e "2¢, where, for a rectangular barrier of height V;, and length
L, the exponent is 2G = 2/2m(Vy — E) L/h. The exponents in the Gamow fac-
tor can be understood such that the Coulomb potential has an effective height
V — E = (7/2)*E and an effective range L = aZ,Z,hc/E. (This is the length of the
barrier up to the turning point radius, L, where V — E vanishes, aZ,Z,fic/L = E).

The reaction rates of fusion reactions per unit volume, W, via the strong interaction
are given by the following relation:

W =ny-n-{ov), (15.15)

where n; and n, are the number densities of the nuclei taking part in the fusion
and < ov > is the averaged product of the fusion cross-section (Fig. 15.3) and the
relative velocity of the fusion partners.

We are, though, especially interested in two reactions that do not follow this
pattern. The lifetime of the sun, which is around 10'° years, is determined by the
weak process p+p — d+e' +v,. Primordially, only hydrogen and helium (and tiny
amounts of some light elements) were available. The time scale of the construction
of the heavy elements is determined by 3av — '?C process in red giants.

15.2.1 Proton—Proton Cycle

According to the solar model, nuclear fusion takes place in a core of 70% of the solar
mass and with radius R & Ry /3. The temperature at the centre of the sun reaches
kT =~ 1.3keV and falls off sharply with the distance from the centre. To estimate
the reaction rate using the average values of the temperature and density, it is better
only to consider the most central core of the sun, with R ~ R /10. A tenth of the
total solar mass is inside this volume, and the production rate can be calculated at
an average energy of kT =~ 1.0keV. This core is responsible for half the total energy
production. The luminosity of the sun is L = 4-10?® W. When the sun was young, its
composition of elements was that of the modern solar surface (71% hydrogen, 27%
helium and 2% heavier elements). The mass of the sun, as we previously mentioned,
is My = 10°7 nucleon masses, the radius is Ry ~ 7 - 108 m. This implies that the
number of protons in the central core of the sun is Ny = 0.7 - 10°® and the density
is ng = 0.5 - 103 protons/m?.

About 98% of the burning is through the proton—proton cycle, the main branch
of which is
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p+p—d+et 4+, +0.42MeV 7(p) =10"a
p+d— *He +~ + 5.49 MeV 7(d) =165
*He + *He — p+ p + o + 12.86 MeV 7(He) = 10°a

e" +e — 2y +1.02MeV.

Allin all, during the net reaction, 4p — a+2e™ +2v,, anenergy of E,, = 26.72MeV
is released. The first step is the slowest; it proceeds via the weak interaction. It
determines the lifetime of the sun. We will only qualitatively discuss the lifetime of
deuterons, which is determined by the electromagnetic interaction and the lifetime
of *He, which decays through the nuclear interactions.

The proton lifetime can be extracted from the luminosity and proton number in

the centre of the sun,

L (Epp/4)
= =Ny 15.16
3 H o) ( )

This yields the proton lifetime in the sun, 7(p) &~ 10'° years. The solar lifetime is of
the same order of magnitude.

The peculiarity of the proton—proton cycle is best represented graphically. In
Fig. 15.4, we sketch the most important data for pp-fusion. 3-decay from *H takes
place from the scattering state. Due to the long tail of the deuterium wave function,
the overlap with the scattering state primarily takes place outside the range of the
strong interaction below the Coulomb barrier. To calculate the reaction rate, we
would have had to work out the decay probabilities for the individual energies and
then integrate over them. This cannot be done analytically. To estimate it on the back
of an envelope, we will work from the start with averaged quantities.

Let us try to estimate the proton lifetime, 7(p), with the help of the above-listed
parameters of the sun. Let us first calculate the fraction of the protons that participate
in fusion reactions in the proton—proton cycle at temperature 7. The reaction rate
depends on the product of the Maxwell distribution, o exp(—E /kT'), with the Gamow
factor. The product is maximal at

d
d—E(E/kT + man/2mc? JE) = 1/kT — ga\/chz 32 =0, (15.17)
where we have set Z;, = Z, = 1 for protons. This implies at, kT = 1.0 keV,

Ey 7w [2mc?
— = —
- 2N R

~S5. (15.18)

At this energy, the product of the Maxwell factor and the Gamow factor is
exp(—5 —10) =3.1-107".

For the effective energy interval, AEj, we take the distance from the maximum
to the point where the reaction rate falls to a 1/e value (the exponent is increased
by 1),
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Fig. 15.4 Shown V(r)
schematically are a few of

the ingredients that
determine the rate of the
pp-cycle. (a) The nuclear 0 _

potential for the deuteron
and the pp system. The p+n === p+p
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function of the deuteron in
the ground state. (¢) The
scattering wave function of
the two protons. (d) The
overlap of the two
determines the transition
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One finds AEy/Ey = 0.52.
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The fraction of the protons that, at a temperature kT = lkeV, penetrate the
Coulomb barrier and, for a short time, A¢ form an unstable 2He nucleus is

B = (AEy/kT) exp(—Eo/kT — may/2mc?JEy) = 8.0 - 1077, (15.20)

If we choose the deuteron radius to be Ry & 4 fm, then the probability of a two-proton
cluster inside such a separation is

wpp = BydnRy /3 =1.1-10""7. (15.21)

For the process pp — d via the weak interaction H3, we may apply perturbation
theory (the golden rule),

2T
ov = €|M|2P(Eo)a M = (d|Hg|pp), (15.22)

where v is the projectile speed and p(E) is the final-state density. The asymptotic
proton density is normalised to 1 (¢, (r — 00) — 1). To avoid having to evaluate the
nuclear matrix element, M, we can estimate it from a similar process. The beta decay,
18Ne — 8F, with the 0H(7 = 1) — 11(T = 0) transition and 715 = 7(**Ne —
8F) = 2.45 (i.e., with half life 1.7) is appropriate for this purpose.

1 2
—— ~IMisPp(Ers), Mg = ("Ne|Hj|"F). (15.23)
1

In both cases, p — n, and we view the other nucleons as spectators. The wave
functions inside the nuclear volume,

Yo ("8F) ~ 1, ("®Ne) & ¢, (d) ~ (4mRq/3)""/2, (15.24)

are of the same order of magnitude as are the state densities, p(Ep) ~ p(Ejg). Only
the wave function of the incoming proton is different: it corresponds to an unbound
state and is diminished by the Gamow factor,

Up(pp) A~ e~C = eme/Dv/2me /B (15.25)

The ratio between the matrix elements is thus

M2 e—2G

el — 15.26
M}, (4mRq/3)7! ( )

which gives us an estimate for the cross-section,

e 2647R3/3
o~ TR (15.27)
T('8Ne — 13F)
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The proton lifetime, 7(p), is inversely proportional to the reaction rate with all
effective protons in its vicinity, Negg = ng(AEy/kT) exp(—Ey/kT), and one obtains
(with the help of the relations (15.20) and (15.21))

Ly Whp 1 1
- = [V = = .
rp " 7(8Ne — BF)  22-107s  72-10°a

(15.28)

The reaction rate is thus the product of the probability of two-proton clusters and
the beta decay rate during the contact. The proton lifetime, 7(p) = 7 - 10° years,
is in very good agreement with the proton lifetime in the sun, 7(p) ~ 10'° years,
calculated from the luminosity.

We wish to note that, in estimating the probability of the two-proton clusters, a
quantum mechanical derivation was needed. Classically, next to no protons could
cross the Coulomb barrier. Quantum mechanically, the protons can do it through
tunnelling; the tails of the wave function at r ~ 0 are rather small but they are
sufficient. Because there are no resonances in the pp-system (nonresonant process),
the protons in the nuclear potential cannot pass backward and forward several times,
but rather they recoil immediately and only a very small fraction experience the beta
decay. In the next section, (3a —12.C); on the other hand, we will encounter a
resonant process, for which classical statistical mechanics is applicable.

The lifetime of deuterium is much shorter. The probability that deuterium and a
proton enter the interaction range is, apart from the small difference in the masses
of the partners, identical to the proton—proton case. The electromagnetic transitions
are, though, orders of magnitude faster. In our case, this is a magnetic dipole tran-
sition. The transition probability is, if we take 7(d) into account, ~10s~!, which
corresponds to a gamma width of ~1eV. These numbers may be compared with
~1/2s and 107'%eV for the beta decay. The third reaction proceeds via the strong
interaction. All those nuclei penetrating the Coulomb barrier interact. The lifetime
is determined just by the Gamow factor and the He density.

15.2.2 3 = 12C-Process

When, after ~10'0 years, the solar hydrogen has been so much used up that the
thermal pressure cannot compensate the gravitational pressure, the core will collapse
and heat up to around 2 - 10® K, which corresponds to k7' ~ 17 keV. The solar mantle
will greatly expand so that, despite the higher energy production, the sun will appear
red (red giant). The first reaction, which at that stage is responsible for the new
equilibrium, is 3ac — '>C. Because there are no stable nuclei withA = 50orA = 8
and because there is no other way to generate carbon and heavier elements, it is worth
studying this reaction in more detail.

It is a peculiarity of the synthesis of carbon that it takes place sequentially via two
resonances (Fig. 15.5).
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Fig. 15.5 Energy levels of the systems: 3c, a+8Be and '2C. Just above the ground states of the
3a system and of the a+8Be system. There is a 0 state in the '>C nucleus that can be created
through resonant fusion of *He nuclei. This excited state decays with a probability of 0.04% into
the '2C ground state

a+a<®Be, ®Be+a<«w!’Ct, PC*>2C+24. (15.29)

The ®Be ground state has a lifetime of 0.97-107'® s and decays into two a’s, releasing
91.9keV. To calculate the concentration of *Be in “He plasma, we write the equations
for chemical equilibrium. The chemical potentials are the same before and after the
reaction,

pa + pa = pg + AEs, (15.30)

2k \? 2\
kT Inny + kT Inny
m4kT m4kT

A
=kT1 AEg.
s (mng) + 8

or explicitly,

(15.31)

Here, n4 and ng are the *“He and ®Be densities, and AEg = 91.9keV is released in
the decay. In the second step, we follow a similar procedure,

s + g = MTZ + AETZ, (15.32)
where the asterisk signifies the excited carbon state and AEY, = 288keV corresponds

to the 7.654 MeV excited state. The second equilibrium condition written out fully
is then
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2rh2\? 272\
kTl kT'1
s (mng) + fhia (l’)ukT)

- 2\ 3/2
= kT Innj, (—) + AEY,.
mi,kT

(15.33)

One may take the helium density at the centre of a red giant to be p = 10°kgm >
(ny = 1.5-10%m™3). We have assumed the average temperature 7 = 108K (kT =
8.62keV). From this, one finds ng/ns = 6.6 - 10~ and ni,/ng =3.7- 10~%. This is
very small, but it suffices!

The carbon production rate is then

dnpp/dt = n’, T, . (15.34)

From the experimental value of the gamma width of the 7.654 MeV state, Iy, =
3.58meV (5.6 - 10'?s™1), one obtains

dnyp/dr nj 1
me/dl_ Mg _ppiqo et L (15.35)
e 15100

This period of around a million years is a very good estimate for the duration of
the helium-burning phase of a sun-like star.

Without these two resonances, carbon synthesis would be orders of magni-
tude slower. As with the proton—proton cycle, we would have had to estimate
the collision time. However, the time for the partners being near each other
is much larger in a resonant system. Otherwise, the universe would just be
built out of hydrogen, helium, cosmic background radiation and, perhaps, dark
matter and dark energy. Some philosophers ascribe to Nature an active role in
the choice of the physical constants, choosing them in such a way that human
existence is possible (the anthropic principle). This has to include the slow
burning of hydrogen in the sun and also the rapid construction of the heavy
elements that are necessary for life.

It is interesting to note that the excited J™ = 07 state in carbon at around 7 MeV
was in fact predicted by Fred Hoyle (1953) on the grounds that, otherwise, the
synthesis of the heavy elements would not be possible.

15.3 Stars More Massive than the Sun

Stars with 10 or more solar masses live quickly and intensively. Hydrogen is
burnt to form «’s through the carbon-nitrogen-oxygen (CNO) cycle, which is
much quicker than the proton—proton cycle. The slowest step in the CNO cycle
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is "N 4+ p — 0 + v, which is an electromagnetic transition. In later phases of
their lives, these stars continue having higher temperatures than the sun. These tem-
peratures are so high that not just carbon but also heavier elements up to iron are
produced by fusion. Neutrons, essentially generated in («, n) reactions, produce the
elements up to lead. When the stellar core is mostly made of iron, only endothermic
nuclear reactions are possible and the star can no longer resist gravitational pressure.
It implodes and then explodes.

15.3.1 Neutron Stars

If the mass left after the explosion — mostly made of iron — corresponds to a scale
of 1.5 solar masses, then its electron Pauli pressure cannot resist the gravitational
pressure and a neutron star is formed. Due to the high electron density in the imploded
iron core, inverse beta decay

Fe + 26e~ — 55n + (pe”) + 25v, (15.36)

starts up and converts almost all the protons into neutrons. Around 2% of the protons
and electrons live on in dynamic equilibrium with the degenerate neutrons. The Pauli
pressure in neutron stars is due to the degeneracy of the neutron states. The average
separation of the neutrons is A,, which is a factor of 1,000 smaller than the electron
separation in white dwarfs. The radii of neutron stars are of the order of 10km, again
a factor of 1,000 smaller than white dwarfs.

15.3.2 Black Holes

At still greater residual masses — when the Pauli pressure of the degenerate neutrons
has to yield to the gravitational pressure — the star collapses still further and forms a
black hole. The gravitational energy of the black hole at its surface is so large that
not even photons can escape from it.

The potential energy of a photon at the surface of a star would be

GM hw
Epot = - R C_2 s (15.37)
so that its kinetic energy at infinity is
GM hw
Ekin = hw/ = hw— — (1538)

R 2
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The radius of a black hole is found via iw’ = 0, R < GM /cz. General relativity
theory yields a value of the critical radius greater by a factor of 2. The term 2GM /c?
is called the Schwarzschild radius.

15.3.3 Element Abundance

The isotope abundance in terrestrial, lunar and meteoritic samples is, with a few
exceptions, universal and agrees with the nuclide abundance in cosmic rays that
originate from outside the solar system (Fig. 15.6). Our current understanding is that
the synthesis of the deuterium and helium available today took place in the early
stage of the universe, when it was just a few minutes old.

The elements from carbon to uranium are produced in the final stages of heavy
stars. In the red giant stage, the elements carbon and oxygen are produced, while in
later stages, the elements up to iron are made. Successive neutron captures produce
neutron-rich isotopes. If the isotopes are 3 unstable, they decay into a stable isobar.
In this way, ever heavier elements are produced along a stability valley. In this slow
process (s-process), the nuclei up to lead are generated. Nuclei above lead are «
unstable and decay into « particles and lead. The rapid process (r-process) probably

takes place during supernova explosions. In this stage, neutron fluxes of 103> m=2s~!
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are achieved and the successive absorbtion of many neutrons is much quicker than the
(3 and o decay processes. In this fashion, elements heavier than lead are produced. The
upper limit on the production of the transuranic elements is provided by spontaneous
fission.

15.4 Planets and Asteroids

We now wish to estimate how large the masses of the largest planets are and how
to draw the line between planets and asteroids. Planets and asteroids are names for
objects where the average separation between protons is larger than the Bohr radius
(this implies that they are made of normal solid state),

h
d=a)=——. (15.39)
amec
From (15.13), we can obtain the mass of the largest planet,
N 10a\*? .
— < — ~4.1072, (15.40)
Ny 3

which is a few thousandths of the solar mass. This is of the same order as the mass
of Jupiter.

We set the lower limit of the mass of a planet by considering an object the radius
of which is much larger than the height of its mountains. We will see that the maximal
height of mountains is determined by the mass of the planet or asteroid.

The upper bound on a mountain is reached when the weight of the mountain
liquefies the material of the base. Liquid signifies here that the stone becomes an
amorphous substance with a very high viscosity, such as the aggregate state of the
Earth’s mantle, on which the Earth’s crust swims.

In Fig. 15.7, the most important quantities are shown. The stability limit is given
when decreasing the height of the mountain by A/ leads to a decrease in the potential
energy equal to the melting energy,

Fig. 15.7 The weight of a *
mountain of height & ==
liquefies the stoneand | Lo ____] | Ah
squeezes it to the sides ?
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Mg - Ah = Ejq - nAhX . (15.41)
Let us denote the number of molecules per unit volume by 7, the melting energy per
molecule by Ej;q, their mass number by A and the surface of the base of the mountain
by X, and g is the gravitational field strength (free-fall acceleration) on the Earth. If
we substitute the mass of the mountain by

M = nAmyhX (15.42)

into (15.41), the stability condition becomes

gnAmphX < EyqnX, (15.43)
where
Eiiq
h < ——. (15.44)
Ampg

Letus estimate Ejjq and express its size through atomic quantities: the typical
binding energies for silicates, which make up the major part of the Earth’s crust
and the Earth’s mantle, is a few eV, or, using Rydberg’s constant, ~0.2 dim Ry.
The melting energy of water is ~1/8 of the binding energy. So 10% of the
binding energy is a reasonable approximation for Ejq. Thus, the condition
(15.44) expressed in “fundamental” scales is

p< Q02Ry. (15.45)

Ampg
For our Earth, this estimate yields # < 30km. Due to erosion, the height of
Mount Everest (2 &~ 10km) is less relevant than the thickness of the Earth’s
crust, which swims on the Earth’s mantle. The reason that the mantle is liquid,
or, better said, a viscous liquid, is the same as that used above to estimate
the maximal mountain height. The thickness of the Earth’s crust is 12—62 km,
which is in extremely good agreement with our estimate of 30 km.

We expect that the radius of a planet must be much larger than the height of its
mountains: sy, /R < 0.1 is probably a good choice for the following estimate. The
ratio hpy.x /R for the Earth is 0.5 - 1072, if we replace the thickness of the Earth’s
crust (30km) as a measure of the height. The average densities of planets only vary
by a factor of 2-3, so we may take g = GM/R* o R as the acceleration due to
gravity at the planetary surface. From (15.45), the ratio
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hmax 1
2 ¢’ = (15.46)

follows.

Pluto as well as the moon fulfill this criterion for being a planet. The largest
asteroid, Ceres, has a radius of 500 km, /,.x /R ~ 1, and its form is far from being a
sphere.
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Chapter 16
Elementary Particles — Fundamental
Interactions

Science is always wrong:
it never solves a problem
without creating ten more.

George Bernard Shaw

The great success of physics, giving us the illusion that we are indeed able to
discover the secrets of nature, is probably based on our ability to explain the properties
of complex systems in terms of the interactions between a few basic building blocks.
This reductionist path has led us to our contemporary understanding of elementary
particles and their interactions, which is described in an elegant way in terms of the
standard model of elementary particles.

The more that the standard model describes the totality of particle phenomena,
the more pressingly new questions pose themselves. Unless we can answer them, we
will not believe that we really understand particle physics. At present the mechanism
responsible for the generation of the masses of elementary particles has been exper-
imentally confirmed. This is an important result demonstrating that the underlying
theory of the standard model is renormalisable. It does not tell anything where the
masses of the particle came from. How right George Bernard Shaw was with his
ironic remark about science.

16.1 Families of Particles

The coupling of W bosons through the weak interaction to both leptons and quarks
leads to us organising elementary particles into families. The decays of free W bosons
have been investigated in detail in pp and in e*e™ colliders.
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16.1.1 W= Boson Decays

The electron—positron collider, LEP, at CERN was operated for several years at a
centre of mass energy of ~180GeV. In 2000, the energy was even increased to
~200GeV. These conditions made it possible to create large numbers of pairs of
W bosons, the mass of which is My = (80.22 & 0.26) GeV/c2.

Let us first consider the decays of weak bosons into lepton pairs,

W™ —e Ve, W v, 70, (16.1)

and W into positively charged leptons and their neutrinos. The decays of W* display
an important characteristic of the weak interaction: they arrange the leptons into
three families, each consisting of a charged lepton and the corresponding neutrino
(eve), (uv,), (Tv;). As far as we can tell from experiments, w* always decay into
lepton pairs of the same family (Fig. 16.1). For leptons, it is usual to sort the neutrinos
into families according to their flavours, as we have done here, in contradistinction
to sorting them according to their mass eigenstates (Sect. 16.1.4).

On the contrary, we arrange quarks according to their mass eigenstates. Therefore,
as well as the dominant decay into quarks of the same family, there are also decays
into quark—antiquark pairs, in which the pairs are from neighbouring or even remote
families. These decays are suppressed compared with the dominant one (Fig. 16.2).

N. Cabibbo noticed in 1963 that hadronic weak decay amplitudes are unitarily
related. If one takes into account that, in the majority of experiments, the decay of

Fig. 16.1 Decays of a

€ v, W . T V.
W~ boson into lepton pairs \/ \/ \/

W~ W~ W~

Fig. 16.2 Decays of a W™~

d u s u b u
boson into quark pairs. The
decays are into quark pairs
from the same (left),
neighbouring (middle) and

remote (right) families

W~ W~ w-
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leptons into their own neutrino partner of the same flavour is observed, then it is
convenient to express this unitary relation as

M — v,) :Mm—p): M(A —p)=1:cosfc :sinbc. (16.2)

Glashow, Iliopoulos and Maiani later postulated the, then unknown, charmed quark as
a partner of the strange quark, to complete unitarity in two-quark families. Kobayashi
and Maskawa postulated a third family of particles and increased the unitarity matrix
to a3 x 3 matrix. They did this to incorporate the, then already known, CP violation
into the mixing matrix.

The unitary transformation in terms of the so-called Cabibbo—Kobayashi—
Maskawa or CKM matrix relates the quark eigenstates of the mass operator (d,
s, b) to a new set of quark states (d’, s’, b’), the eigenstates of the weak interaction.
“Mass operator” is just a fancy phrase for the mass term in the Dirac equation,

2 .
-1 A AN (p—in)
d’ d
|~ Y 1— %2 AN2 o (16.3)
b’ b
AN (1 —p—in) —AN? 1

In the unitary matrix (16.3), A = sin ¢ ~ 0.2, which corresponds to the follow-
ing relation: 1 — \?/2 ~ cos fc ~ 0.98. The parameter A is a real number, ~0.8.

The phase (p — in) takes the small CP violation in K°-K' and B’-B’ systems into
account, as we will see below. We have chosen this approximation for the matrix
(16.3) in terms of the parameter A in order to bring out just how weak the mixing of
hadrons (eigenstates of the mass operator versus eigenstates of the weak interaction)
is! By convention, the d, b and s quarks are viewed as a superposition of d’, s’ and
b’. It could be done in the same way with the u, ¢ and t quarks.

The CKM matrix may be interpreted as follows: W bosons, strictly speaking,
only couple to the weak charges. However, the quark eigenstates of the mass
operator are not eigenstates of the weak interaction! These are the (u, d’),
(c, 8') and (t, b’) pairs. Clearly, one cannot simultaneously diagonalise the
quarks of the weak interaction and of the mass operator.

Quark decays are summarised in Fig. 16.3.
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Fig. 16.3 Quark transitions mediated by charged currents (virtual W= bosons): (left) transitions
between weak interaction eigenstates; (right) between physical quarks. Only the t quark has a mass
big enough for it to emit a real W boson. The wide arrows denote faster transitions (inside families)
while the thin ones indicate the less probable transitions between families

16.1.2 Parity Violation and Weak Isospin

Parity violation has been investigated in detail in nuclear § decay and in pion and
muon decays. One can summarise that W bosons only couple to left-handed fermions
and to right-handed antifermions. For the weak interaction, right-handed fermions
and left-handed antifermions do not exist.

Each family of left-handed quarks as well as leptons forms a doublet of fermions,
which can transform into each other through emission or absorption of W bosons.
The electric charge of the fermions in a doublet differs by just one unit, e. If one only
considers the weak interaction — i.e., ignores the sizeable mass differences between
the fermions in a family — it is natural to view the two fermions in a doublet as two
projections (75 = +1/2) of a particle with weak isospin, 7' = 1/2. For right-handed
antifermions, the sign of 75 and the charge are both reversed (Table 16.1).

Right-handed fermions and left-handed antifermions on the other hand do not cou-
ple to W bosons and are therefore described as singlets (7 = T3 = 0).
Left-handed leptons and the Cabibbo rotated left-handed quarks in each family thus
form two doublets. If the introduction of weak isospin should have any physical
meaning, then — as in the case of normal spin — W+ are two projections of the weak
isospin triplet. There has to be a third state, with 7 = 1, 75 = 0, which should couple
with the same strength, g, as W= to the fermion doublet. We denote this state by WO,
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Table 16.1 Electro-weak interaction multiplets. The quarks d’, s’ and b’ are generated from the
mass eigenstates by a generalised Cabibbo rotation (CKM matrix). Doublets of weak isospin 7" are
placed in brackets. The electric charge ze of the two states in a doublet always differ by a unit. The
sign of the third component 73 is defined so that the difference z — 73 inside a doublet is constant

Fermion multiplets T T3 z
e . vy +1/2 0
Leptons (e ("), (7). 1/2 7152 -1
[S:3 UR TR 0 0 -1
t +1/2 +2/3
Quarks (@)e ($)L (o)r 172 —152 —1?3
uR CR R 0 0 +2/3
dr SR br 0 0 -1/3

16.1.3 KO—KO, BO—EO Oscillations and CP Violation

K and K~ mesons are produced via strong interactions. They both decay, through
weak interactions, into two or three pions. The weak interaction couples the two
mesons through the exchange of virtual pions:

K® «— Hgg] <—>K0

The probability amplitude oscillates between K° and K.

We now want to study the time dependence in the oscillation-free basis, i.e.,
we have to find the eigenstates of the weak interaction. The particles and antipar-
ticles have the same masses; however, the coupling between K° and KO from the
weak interaction, H' = (K°|A'|K") = (K |H'|K° ) breaks this mass degeneracy.
The eigenstates that diagonalise H' are then

L
V2
L
V2

and the corresponding energies are Ex 4+ H’. The weak interaction violates parity;
indeed, it does it maximally. It also violates charge conjugation, C, which transforms
particles into their antiparticles. K{ has positive CP symmetry and decays into two
pions, while K‘z) , with negative CP symmetry, decays into three pions. The two-pion
decay mode is much quicker (7 &~ 10~ s) than the three-pion decay (7 ~ 107 s), so
they can both be told apart experimentally via their different decay times.

=0

K% = —(K% +K))

K9) = —(K°) — [K")). (16.4)
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There are numerous, well known examples of oscillations in two-state systems.
The reason why we are considering K — K’ and B® — B here is that CP symmetry
violation is only observed, albeit weakly, in these two systems. Cosmologists need
a CP symmetry-violating interaction to explain the particle—antiparticle asymmetry
in the universe.

The longer lived state, which can be very well measured, is, though, not a pure
K9 state. As well as three-pion decays, two-pion decays are also seen. Experiments
detect kaons with an unsharp CP quantum number! These states may be written as a
superposition of K¢ and K9,

1
IKs) = ﬁ(”{(‘)) + €|K9)
1
Kp) = ﬁu@ + €lKY)) . (16.5)

This description (16.5) is only correct if the product of CPT (charge conjugation,
parity and time reversal) is conserved. This is experimentally confirmed. The mixing
parameter € is a complex number, where Re € = (1.67 4 0.08) - 1073,

This phenomenological description of CP violation in neutral kaon systems in
terms of the parameter e leaves the question of the origin of this symmetry violation
completely open.

Inside the standard model, there is only one source of CP violation: the complex
phase of the CKM matrix. Because the mixing of the eigenstates of the weak interac-
tion and of mass operator is described, for the antiquarks, by the complex conjugated
matrix Vi, the weak interaction amplitudes for antiquarks are complex conjugate
to those of the quarks.

If only one amplitude A contributes to the weak decay of a hadron, 7 — f, then the
observed rate for its antiparticle must be identical because |A|> = |A*|?. If, though,
several amplitudes with different phases contribute,' then the particle and antiparticle
rates differ due to interference terms, and phase differences can be measured.

At the end of the 1980s, the ARGUS and CLEO experiments observed strong
mixing in neutral B mesons, too. In comparison with the neutral K mesons, the
branching rates to the same final states are small. The mixing takes place via so-called
box diagrams. The rate is proportional to the square of the mass of the top quark and
is thus rather large. For CP eigenstates, fcp, which are common final states of BY and
EO; interference between the amplitudes B? - fepand B — EO — fcp should also
show a CP asymmetry between particles and antiparticles. The great advantage of
this measurement is that this asymmetry offers a way to directly measure the phase
differences of the CKM matrix elements.

For this reason, in the 1990s, several so-called B factories were built. Over 30
years after the discovery of CP violation, in 2000, the BaBar and Belle experiments
succeeded in seeing the asymmetry in the decay B — J /¢ Ks. Since then, both exper-

I'The amplitudes must additionally differ by further phases, e.g., because of the strong interaction.
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iments have, with ever greater statistics, explored a variety of final states. For the
first time, the origin of the symmetry violation can be studied in this way. At present,
all measurements agree, within errors, with the predictions of the standard model.

16.1.4 Neutrino Oscillations

The three neutrinos, v., v, V7, have been experimentally detected in inverse reac-
tions. It has also been demonstrated that they come in various flavours. All three
neutrinos couple to W bosons with the universal coupling constant gw. These results
and the assumption that neutrinos are massless led people to conclude that v, v, v;
are not just eigenstates of the weak interaction but also eigenstates of the mass oper-
ator. For massless neutrinos, of course, any mixture of neutrinos is also an eigenstate
of the mass operator. As we shall see later, this assumption has been overthrown.

The above-mentioned experiments were, though, carried out in the immediate
vicinity of the neutrino creation location in either accelerators or nuclear reactors.
Measurements of solar neutrinos through inverse beta decay on *’Cl and 7'Ga give
a different result. On Earth, only a third to half of the flux of solar v, predicted
by a solar models is observed. The correctness of predictions of the solar models
was confirmed by measuring the neutrino flux via Z°-exchange interactions, which
couple to all three neutrino flavours.

The Sudbury Neutrino Observatory (Canada) detects solar neutrinos in a Cerenkov
detector 2,000 m below the surface of the earth, which is filled with 1,000 tonnes of
heavy water (D,0). In this detector, the following reactions can be measured:

Ve+d—>p+p+e”
Veur+d—>p+n—+ure,

Veyurt€ —> € + Veyr.

The first reaction only measures v, because the energy of the neutrino is too small
to produce p or 7. The second reaction is flavour independent and measures the
total neutrino flux. A total flux three times the size of the v, flux is indeed observed.
Scattering of electrons actually has a larger cross-section for v, (Z and W exchange)
than for v, and v, (Z exchange alone), but it does offer an additional test.

Solar neutrino oscillations imply that quantum coherence can be observed at the
sun—Earth separation scale. Two properties of neutrinos follow from this: neutrino
masses are nonzero and v,, v,, V; are not eigenstates of the mass operator. We
denote the eigenstates of the mass operator by vy, v», v3. In analogy with quarks, we
may also write the neutrino eigenstates of the weak interaction as a superposition
of the neutrinos of the mass operator. For neutrinos, the matrix that is analogous to
the CKM matrix should probably be called the Pontecorvo—-Maki—Nakagawa—Sakata
matrix. B. Pontecorvo was the first to consider the possibility of neutrino—antineutrino
oscillations. The others investigated flavour mixing of neutrinos.
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The unitary transformation of the Pontecorvo—Maki—Nakagawa—Sakata or PMNS
matrix relates the neutrinos of the weak interaction, v,, v, V-, to a new set of
neutrinos, the eigenstates of the mass operator, vy, 15, V3.

The individual elements of the PMNS matrix are measured in different experi-
ments. We will only consider two of them: oscillations in reactor antineutrinos (7,)
in the KamLAND experiment and oscillations of v/, in measurements of atmospheric
neutrinos. In both cases, it suffices to consider the mixing of just two neutrino flavours.

Let us take the example of oscillation behaviour of reactor antineutrinos. Because
the antineutrino energies lie far below the production threshold of muon and tau
leptons, we can solely detect .. This implies that we must measure the probability
that antineutrinos after a displacement L are in their original flavour. The time-
dependent wave function of the antineutrinos is

e (1)) = Uere B0 D)) + Ugpe ™57 75). (16.6)

Because the antineutrinos are relativistic, their energies can be approximated by

Ey, = \/p*c® + mic* =~ pe(1 + mic*/2p*c?). The probability that they still have
their original flavour after a time ¢ is

Py (1) = [(7e()[7:(0))]?

1 ( 2_ 2) 4
= |Ual* + [Usal* + 2|Uat P U cos (3 #5221 )

(16.7)

The oscillation length, L, is the length at which the phase becomes 27. Letting
2

Am3, = m5 —m?} and t = Ly, /c, one thus has
hpc? N hcEy

Lzﬂ- =4r ~ am .
Am%lc4 Am%lc4

(16.8)

In Kamioka, in Japan, reactor antineutrinos and their energies are measured in a
detector of 1,000 tonnes of liquid scintillator through the reaction

v+p—et4+n n+p—->D+vy+22MeV. (16.9)

The average separation of the detector and the reactors is L ~ 180 km, and the
detector is sensitive to antineutrinos with energies > 1.8 MeV, while the antineu-
trinos’ energy spectrum has its peak at around 4 MeV. Under these conditions, as
can be easily checked from (16.8), an entire oscillation length could be probed
and the following oscillation parameters measured (as yet with large uncertainties):
Am3, ~ (9.0meV/c?)? and Ue; ~ 0.84 plus Uy ~ 0.54.
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The v, oscillations have been observed in a broad band of energies around 1 GeV.
The rate at which atmospheric v,’s are detected in detectors on earth, depends
strongly on whether the neutrinos first pass through the atmosphere alone or through
the entire earth. These observations are made at the Super-Kamiokande detector
(Japan): a Cerenkov detector filled with 32,000 tonnes of water, which is 1,000 m
below the surface of the earth.

Atmospheric neutrinos and antineutrinos are produced in the following decays:

>t +u,

,u’Jr - Du +e+ +Vea

and through the corresponding antiparticle decays. Initially, when the neutrinos only
have to traverse the atmosphere, the ratio of muonic and electron (anti)neutrinos
is [n(v,) +n@)]/[(Ve) + n(@e)] = 2. In contrast, the flux of v, + 7, that pass
through the Earth is lower by a factor of two, although the Earth is so transparent to
neutrinos that the neutrino flux should not be noticeably lessened by weak-interaction
reactions. On the other hand, the flux of atmospheric v, ’s is not altered for energies
of the order of GeV at the scale of the Earth’s diameter.

The analysis yields Am3, ~ (46 meV /c*)?, with a hint that the observed v, oscil-
lation takes place between v, and 1.

In Fig. 16.4, we sketch the mass spectra of neutrinos. Because we know neither
the absolute masses of the neutrinos nor the sign of Am3,, we cannot pin down the
mass scales or indeed a unique ordering of the states. From the values of Am3, and
Am3, we conclude for normal ordering, that if the mass m; is very small then m, > 9
meV/c? and m3 > 55 meV/c?. The experimentally determined PMNS matrix can be
neatly written as

. ve . Vl.l . vT

yl . |

Amf,l
31 I I

2 2

bl D |
Amgl
1 e 3
normal inverted

Fig. 16.4 Because the sign of Am3; is unknown, the opposite order of the neutrino masses (right)
cannot be excluded. The bounds on the mass of the heaviest neutrino are probably 0.05 < m,, <
1eV/c?. The shaded areas indicate the content of flavour eigenstate in the mass eigenstates
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Fig. 16.5 Charged current transitions between leptons, mediated by virtual W* bosons: (leff)
transitions between weak interaction eigenstates; (right) between mass operator eigenstates. The
arrows in the right-hand part of the figure indicate the mixing of the mass eigenstates
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The values we quote in (16.10) lie within the experimental errors. The matrix (16.10)
demonstrates very clearly that the mixing between neutrinos — in contrast with
hadrons — is very strong. The exception is Us3 = € & 0.15. Since it is nonzero, other

matrix elements are slightly smaller to satisfy unitarity.
The observed lepton decays are summarised in Fig. 16.5.

16.2 Weak Quark Decays

Weak decays take place through virtual W boson exchange. A quark changes its
flavour, i.e., its charge and perhaps its family, by emitting a virtual W boson. What
happens to this depends on the phase space available to the many-particle final
states. The lifetime of the quark definitely depends on the mass difference of the
quarks participating in the interaction and the environment that they are in before
and after the decay. This explains the wide spread of lifetimes in weak decays, which
is particularly impressive in the case of nuclear § decays. The only weak decay of
which the lifetime is not dominated by the many-particle phase space, and may thus
be calculated on the back of an envelope, is that of the top quark. Due to its large mass
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(mc® = (173 £ 1) GeV) the decay into a b-quark, accompanied by the emission of
areal Wt (t — b + W), is possible. This channel in fact accounts for almost 100%
of the total transition probability of the decay.

16.2.1 Top Quark Decay

The top quark lifetime can, as usual, be estimated using Fermi’s second golden rule,

27 5 47rpt2)dpbnS

r==" .
M (2rh)3dE,

W (16.11)

Here, ny is a spin factor that takes the three polarisation projections of the W bosons
into account; Ey = E, + Ew is the total energy of the decay. In the top system,
Pv = pw, and for the decay energy, one can write dEy = (vy + vw)dpy. In (16.11),
we replace the differential dEy/dpy, = vy, 4+ vw and obtain the expression for the
transition probability with the final form of the phase space,

27
="M
h' |

2 2
= fl/\/tl

47Tp%l’ls

Qmh)3 (v, + vw)
™ b 4@\%”3 (16.12)

(27h)3pyc*(Ey + Ew)/EvEw

In our simplified electro-weak unification (aw ~ «), we can approximate the matrix
element by M? = dna(hic)? /(2Ew). The sum Ey, 4+ Ew = myc? is the top mass and

Ey, = pye, ,

r~2a2%5,. (16.13)
mg

The estimates p;, ~ %(mtc)2 and ng ~ 3 yield

I~ amc?. (16.14)

The elementary electro-weak decay width corresponds to a vertex in a Feynman
graph and typically its value is 1/137 of the mass of the decaying particle.

An exact calculation using Glashow, Weinberg and Salam’s electro-weak theory
yields almost exactly the same result. Instead of «, one has to use the weak coupling,
ftﬁaw = 41‘10‘/ sin? By = 1.081c, where fio = % is the matrix element for the t— b
transition. The spin factor is a little larger than 3, ny = % + % + %(mt /mw)? = 3.34;
due to the averaging over sin®(#/2), both the transverse components only contribute
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a factor of one half, while the longitudinal component dominates. The phase-space
factor ispﬁ/(mtc)2 =[1- (mw/mt)z]2 = 0.155 instead of 1/6. The weak and strong
radiative corrections introduce a factor of 1.02. These factors lead to

[ = 1.14amc? = 1.45GeV, (16.15)

which favourably compares to the experimental value 1.41 GeV. This decay width
corresponds to a lifetime 7 = i/ T" = 0.5 - 10~24s, which may seem rather short,
but compared with the time scale for the top quark, i/(mc?), it is very long,
T = 137h/ (mc?).

16.3 79 and the Photon

The Z° boson is not the W boson, which we predicted from our considerations of
weak isospin. The mass of the 7" boson is (91.188 + 0.007) GeV/c2, which is almost
11 GeV/c? larger than the masses of the W bosons. Because we still understand little
about the masses of the particles, this difference in the masses is not a strong argument
against our claim. But the decay of the Z° boson unambiguously shows that it does
not only couple weakly to fermions (Fig. 16.6).

Analysis of experimental data from LEP and SLAC (see the Particle Data Group)
yields the following branching ratios:

70 — et 4e” 3.363 £+ 0.008%
pt+p 3.366 £ 0.013%
R 3.370 £0.015% (16.16)
Veu,r + Veur 2000 £0.16 %
hadrons 6991 +£0.15 %.

Z° Z° Z°

Fig. 16.6 Decay of the Z° boson into fermion pairs. Fermions and antifermions always have the
same flavour
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It is clear that Z° decay distinguishes between charged leptons and neutrinos as
well as between quarks with different charges. If all fermion pairs coupled in the same
way to Z°, then one would expect 1/21 for each lepton pair and 15/21 for hadrons
(due to the three colour charges and five active quark flavours). We are already
accustomed to this: the mass generating interaction casts the elegant symmetries
of the weak interactions into disarray. The original gauge bosons of the weak and
electromagnetic interactions are the three W bosons of the weak isospin SU(2)
symmetry and the original photon B of U(1) symmetry.

The perfect SU(2)xU(1) symmetry is broken by the mass generating inter-
action, which causes states to mix in a fashion similar to CKM mixing. The
experimental photon and Z° are related to the original photon B and W° via a
unitary transformation.

The unitary transformation between the initial photon B and W,

cos Oy |B) + sin Oy [W?)
— sin Ow|B) + cos Ow|W?),

)
1Z%)

is expressed via the so-called Weinberg angle, Oy .

This mixing also causes a mixing of the weak decay amplitude (the third compo-
nent, 73, of weak isospin) with the electromagnetic amplitude (the electric charge z),
so that the partial decay widths are proportional to (T3 — z sin® fw)?. Right-handed
fermions do not have a weak coupling, 75 = 0. Left-handed negative leptons and
quarks have weak isospin, 73 = —1/2, while neutrinos and positive quarks have
T3 = +1/2. Adding up the left-handed and right-handed contributions and approx-
imating sin? fw ~ 1 /4, we have

1 >
I' o« (—z sin’ Ow)* + (E + |z sin® ow) ~ 2 (2-20 +77), (16.17)
and, for Z° decay, we have the approximate ratios
L _ _ - 10 13
I'e"e ):I'(Weve):T'(uu): I'(dd) &~ 1:2:{ 3 x 5 13 x 5 ) (16.18)

and similar for the second and third families. The factor of 3 is a result of the three
quark colours (see Chap. 3). The ratios for the more exact value sin? Ay = 0.2312
arel : 1.99 : 3.42 : 4.41. Experimentally, they are 1 : 1.98 : 3.00 : 4.93, where
we have taken the average of the three families (for uu and cc pairs; we actually take
only two families because the tt pair is too heavy to be produced). The agreement
for leptons is excellent, while the 10% level disagreements for quarks indicates the
effects of other physical influences and phenomena. The final state does not, due to
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confinement, consist of free quarks because they hadronise and the available phase-
space influences the decay probabilities.

16.4 Higgs Ex Machina

The idea of the Higgs field was introduced in order to rescue the Standard Model. In
the Standard Model infinite integrals appear and a regularization and renormalisation
is needed. It has been proven that for the renormalisability the Lagrangian has to be
gauge invariant which, at the face value, requires massless fermions and massless
gauge bosons. An explicit bilinear mass term in the Lagrangian would spoil gauge
invariance. The problem can be solved if instead of the mass term one introduces a
coupling of the gauge bosons and fermions to the scalar field — Higgs field, whose
one component has non-zero vacuum expectation value.
In the following three figures we sketch the Higgs mechanism. In Fig. 16.7 the
massless gauge boson of the electroweak interaction Wy, W,, W3 and B are shown.
In order to couple correctly the Higgs field to fermions and weak bosons it must
consist of two SU(2) doublets which are then rearranged according to Fig. 16.8.
The two charged components of the Higgs field get absorbed in the longitudinal
components of W; and W, bosons as indicated in Fig. 16.9. The neutral component
H° mixes the W; and B fields and it contributes to the longitudinal component of Z°
bosons and it leads to the massless photon. The fourth component acts as a mass term.
Its fluctuation around the vacuum value represents an observable particle. Luckily,
the Higgs boson has been experimentally confirmed, at a mass of 125 GeV/c?.
According to George Bernard Shaw, our solution of one problem has created 10
new ones (although we are very happy about it). We here only mention three, which,
though, are no simpler than the problem we have solved:

(i) Which mechanism is responsible for the actual values of the masses of the
elementary particles? The Higgs mechanism by itself does not answer this question.
The particle masses are taken out from the experiments and are in the standard model
just free parameters. For their origin even a theoretical concept is still lacking.

Fig. 16.7 The massless
gauge bosons of the
electroweak interaction W 1 Wz W 3 n

Fig. 16.8 The four states of

the Higgs boson. The first
three give mass to the weak H IH IH*
bosons and leave the photon

massless. The fourth state is
an observable particle
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(i1) What produces the conflict between the mass operator and the weak interaction
so that the mass eigenstates, d, s, b, are not the same as the weak doublet partners,
d’, s/, b’? We do not know, but we also do not know any symmetry that could stop
it. In nature, everything is allowed — we think — that is not explicitly prohibited by a
conservation law.

(iii)) How heavy are neutrinos? In the simplified standard model, one assumes
that neutrinos are massless. There is, though, experimental evidence of a CKM-
style mixing for solar and atmospheric neutrinos indicating small but finite neutrino
masses of the order of a few meV.. The question is what mechanism is capable to
produce such small masses.

In a naive electro-weak theory with full U(1) x SU(2) symmetry, the electron and
neutrino would have the same mass and electric charge. Similarly, the partners of the
SU(2) doublets (u, v,), (1, v7), (d,u), (s,c)and (b,t) would have degenerate masses.
Because we believe that the world is described by renormalisable field theories, the
weak bosons would have to be massless too. This is where the deus ex machina — the
Higgs field — emerges to give the particles the correct effective masses. This takes
place through a phase transition embodied by a spontaneous symmetry breaking.

Let us start to sketch the phase transition scenario. The Higgs field must have
weak isospin to couple to the weak bosons. This means that it must comprise SU(2)
doublets. There must furthermore be at least two doublets because three components
of the Higgs field must be converted into longitudinal components of the W* and
70 bosons; this is because massless weak bosons only have two (transverse) degrees
of freedom. When they pick up a mass, though, they require an extra longitudinal
degree of freedom. The Higgs field produces then the masses, the longitudinal spin
components and additionally — as we will later see — the mixing between the original
photon B and the W°. The fourth component of the Higgs field is left over as a
physical particle.

The simplest model of a phase transition may be constructed by giving the order
parameter, here the Higgs field, a nonzero vacuum expectation value. This may be
achieved via a Higgs field potential V (®) of the form shown in Fig. 16.10, in which
the field @ can take on an arbitrary value inside the ring-like minimum. This is called
spontaneous symmetry breaking because the vacuum is no longer symmetric under
SUQ2).
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Such a pattern of phase transition was already applied in Chap.6 to describe
spontaneous breaking of chiral symmetry. There, too, the curve of energy against the
order parameter (the constituent mass M) resembles a Mexican hat with a degenerate
ground state (vacuum) at a nonzero value of M. In Chaps.5 and 6, though, we
described the phase transitions as a consequence of a feedback of the order parameter;
see (5.27) and (12.17). Both descriptions are equivalent because the back-coupling
equation is a variational equation for the energy surface with the form of a Mexican
hat.

It is usual to describe the two Higgs doublets as a complex field, ®, such that the
upper complex components correspond to a positive and a negative particle while
the lower complex components represent two neutral particles. Because the vacuum
is neutral, only the lower (neutral) components of the Higgs doublet can have a
nonzero vacuum expectation value, which we denote by v. The phase of the Higgs
field can always be defined such that v is real. We expand the Higgs field, ®, around
its vacuum expectation value, ®. The individual components of the four real fields
correspond to fluctuations around the vacuum value.

_ 1 (0 _ X1 +ixz
by = 7 (v) b = ﬁ((v+X3)+iX4) . (16.19)

The components Yy, are transformed into longitudinal components of the weak
bosons W+; x4 becomes the longitudinal component of the neutral weak boson, X3
corresponds to a physical particle. Why x3? This is because x3 accompanies v and
describes fluctuations of the Higgs field in the steep direction of the Mexican hat
(Fig. 16.10).

Fig. 16.10 At low temperatures (“low-energy” phenomena below the TeV threshold), the poten-
tial’s minimum is at a nonzero value of the Higgs field, which leads to spontaneous breaking of
SU(2)xU(1) symmetry. At high temperatures (kKT > 2v) and densities on the other hand, the poten-
tial looks very different: it has a minimum for ®yjges = 0, and the symmetry is restored. The
co-ordinates ¢ and ¢, are the real parts of the upper and lower components of the Higgs field &
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Minimal coupling of the Higgs field to B and W bosons has the form

Ty LN 1 (0 '

EHiggs = [(IQEW/ + 19 EB‘) E (v)}
i —TW +'/lB —1 0 16.20
X 192 p T 1g Pl ﬁ v . (16.20)

The (2 x 2) Pauli matrix, 7, is the weak charge and the factor % in the coupling to

the original photon field B is the U(1) hypercharge of the Higgs field. The coupling
constants g and ¢’ are related to o and ay in such a way that cw = g?/4, tan Oy =
g'/g and o = auy sin? Ay hold.

Here, we have only written the vacuum term of the Higgs field because it is
this alone that produces the quadratic terms in the W, B and x fields, which are
important for mass creation. The complete Higgs field also contributes to cubic and
quartic terms, which are responsible for various processes such as Higgs production
and decay. Between the most important decays of the Higgs boson are decays into
pairs of Z°Z° or W*W~, which involve the full coupling g. Such decays may be
straightforwardly detected through the decay products of the weak bosons — two
pairs of jets or leptons. It is a lucky situation that lepton pairs (especially muon pairs)
are easily identified. Since the Higgs mass is less than twice the mass of the weak
bosons, at least one of the weak bosons must be virtual. Anyway, we are used to
virtual weak bosons in beta decay.

The quadratic terms of the weak fields look like mass terms and can be interpreted
as such. The bosons pick up a mass because they stick to the Higgs field. Through
diagonalisation, one can get rid of the mixed —Zgg/Wo“Bu /4 terms,

1 2v2 _gg/UZ W()
- WO/z’ B* ( g ’2 5 5 ) ( u)
2 ) —g9'v", g¢*v B,

1 (92 +g/2)v2 0 ZO
—_ (701 An ’ Iz
— 2 (Z , A ) ( 0. o)\ 4" )

and so obtain seen.

2 4 2 .4 mct
Liiggs = 25— WHW + L2V 4 ——a'A, (16.21)

where mwc? = gv/2,mzc* = \/g> + g% v/2 = mwc?/ cos Oy and m, = 0. We have
denoted the photon field by A. This diagonalisation corresponds to Weinberg mixing
(16.17). From g = (e/+/eohc)/ sin By = 0.6, one can calculate the vacuum expecta-
tion value v = 2mwc?/g = 246 GeV, although it has no measurable physical mean-
ing.
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Fermions also couple to the Higgs field and so pick up a mass. To investigate this,
it suffices to use the simplest form of the coupling, the so-called Yukawa coupling
(contact coupling),

Lliggs = =24 %(U + X3) Va0
== mac® (14 2) Y1, . (16.22)

We have interpreted g,v/+/2 = mqc? as fermion masses. The price of such mass
generation is the coupling of fermions to the Higgs field x3. The other components
X1.2.4 are not described here because they may be better rewritten as coupling to
the equivalent longitudinal components of the weak bosons and kept together in
the Lagrange density with the transverse components in the quark-W or quark-Z
coupling.

It is noteworthy that the coupling g, /+/2 = mac?/v = g(mq/my) is proportional
to the fermion mass, m,,. Therefore the dominant decay of the Higgs particle is into
heavy quark—antiquark pairs, actually into bb. The tt pair is too heavy and appears
only in some less probable virtual processes leading between others to a noticeable
~7y decay.

The Higgs model has, despite its elegance, an imperfection: each individual
fermion requires a priori an arbitrary coupling constant g,,. This is (up to the factor
V2 ¢?/v) equal to the mass generated by the Higgs mechanism. Where the mass of
the particles comes from belongs to the Physics beyond the standard model.

It should be stressed that the Higgs mechanism is not the whole story. It provides
only the bare mass which in most cases is not very far from the dressed mass (the
constituent mass). The difference is, however, dramatic for u and d quarks which
have a bare mass of only 3—7 MeV/c?. (provided by the coupling to the Higgs boson)
and a dressed (constituent) mass of about 330 MeV/c?. The dressing is provided by
the strong interaction — the gluon condensate. Pictorially, our human body weighs
predominantly because of our gluon content.

16.5 Proton Decay

Unification has so far proved to be an important principle in physics. Newton indeed
introduced his gravitational theory through the hypothesis that the same laws hold
on the eartseenh and in the heavens. Maxwell showed that the electric and magnetic
interactions can be explained using a single coupling constant. Nowadays, people
are trying to apply this pattern of unification to the electromagnetic, weak and strong
interactions in the framework of a grand unified theory.

Initially, it may seem rather unlikely that all three interactions can be described
in terms of a common coupling constant, after all at currently attainable accelerator
energies they are very different: o« = 1/137, aw = 1/32, as & 1/5 —1/9.
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A hint that unification may, however, be possible is given by the running of the
coupling constants ((3.19) and (3.20)). The the bare mass. electromagnetic coupling
constant at higher resolutions (with increasing Q?) is seen to get stronger: the vacuum
polarisation screens charges but at smaller separations more of the charge is seen.
For the weak and strong interactions this is reversed: weak bosons carry weak isospin
and gluons colour, self-coupling effects outweigh those of the vacuum polarisation
and both interactions become weaker at larger Q%. Because this extrapolation is
carried out above the weak energy scale (100GeV) the original photon decouples
from W, and the coupling constant of the original photon must be used instead of
the electromagnetic one: ag = (5/3)g"? /47 = (5/3)a/ cos? fy. The factor 5/3 is
due to the uniform normalisation of all three constants. At around 10'® GeV, all three
coupling constants join at a value around 1/45, Fig. 16.11.

This extrapolation is, of course, only meaningful when there is no new physics
between the weak scale, 100 GeV, and the unification scale of 10!° GeV.

The underlying idea of grand unified theory is that there is a phase transition at this
energy scale to a larger symmetry and that transitions from quarks into leptons are
possible. The exchange bosons associated with these transitions are called X bosons.
Their masses are roughly the unification scale.

An experimental test of the unification hypothesis is provided by proton decay.
An on the back of an envelope estimate of the proton lifetime may be carried out if
we assume that the X bosons have a mass mx = 10'°> GeV/c?. The simplest thing is
to compare with a weak decay, which has the same phase space as is expected for
proton decay

Let us compare a decay channel of the proton (p — 7° 4 e*) with that of a weak
decay of the D meson (DT — KO + 7") (Fig.16.12). Let us further assume that
the other decay channels all have roughly the same phase space. In a grand unified
theory, all the coupling constants are the same, the only dramatic differences are in
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the propagators. The matrix elements are proportional to the inverse square of the
boson mass:

1
MD* - K'nt) o —, (16.23)
My

M(p — 7T06+) X —5,
myx

which implies the lifetimes ratio

0a+ 4
T(P_’—”_f)’) ~ (ﬂ) ~ 1052 . (16.24)
7(Dt - K 7t) mw

The DT lifetime is 10~ !2s, from which we can read off our estimate of the proton
lifetime
Toroton ~ 10°% x 107125 & 10*%s ~ 10*years . (16.25)

Up to now, experiments have not yielded firm evidence for proton decay and this
has given us a lower bound on the proton lifetime, Tproton > 1032 years. Perhaps the
unification scale lies at a higher energy than the extrapolation of Fig. 16.11 suggests
or the present GUT model is not what nature has realised.
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Chapter 17
Cosmology — The Early Universe

Evolutionary theory of gravitation: In the beginning the world
was symmetric; stones were flying in all directions; only those
falling down remained.

anonymous

Cosmologists are seldom right but never in doubt.
L.D. Landau

The examples of symmetry breaking discussed in Chap. 16 may be elegantly incor-
porated into the standard big bang model (Fig. 17.1). In this model, the universe is,
for the first few fractions of a second (time is a parameter of the model!), a gen-
uine, if exotic, quantum system where all interactions are unified. During the first
stage of the cooling of the universe, gravity separates out from the other interactions.
Subsequently, the electro-weak interaction separates from the strong interaction;
simultaneously, the leptons separate from the quarks. This takes place at a tempera-
ture around 10" GeV. Some of the bosonic states (y, W0, gluons) remain massless,
while others acquire a large mass, likely at the same scale. Up to this stage, fermions
can freely transform into one another, afterward, the large masses of the exchange
bosons prevent this and the decay of the proton into a positron and 7 takes at least
10°? years.

Atatemperature of around 300-100 GeV, a further symmetry breaking takes place
in which the electromagnetic interaction separates from the weak one. The weak
bosons acquire a mass, which corresponds to the symmetry breaking energy, and the
fermions obtain additional properties. The particles inside doublets (e, v.), (u, d),
etc. thereafter differ in charge, mass, flavour and family.

Somewhere in between, there is probably a further symmetry breaking, which
marks the difference between left- and right-handed fermions and establishes a pre-
ferred weak coupling to left-handed fermions.
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Fig. 17.1 During the first cooling phase gravity separates out from the other interactions. Subse-
quently, the electro-weak interaction separates from the strong interaction and the electromagnetic
interaction separates from the weak one

At a temperature around 200 MeV, chirality is broken and confinement starts up;
protons and neutrons are then built out of quarks.

We see that the history of the universe after the big bang is characterised by a suc-
cession of symmetry breakings from larger to smaller energies. Finally, breaking of
translational invariance in the universe happened and matter became inhomogeneous
and the process of its clumping together in galaxies started.

The final significant symmetry breaking of which we are aware, or — as is normally
said of this sort of thing — self-organisation in the universe, is the appearance of life
and humanity on earth.

In the following, we want to mention a few of the hints from cosmology that point
to the need to extend the standard model of elementary particles. These clues can,
though, only come from astronomical observations and their interpretation.

17.1 The Three Pillars of the Big Bang Model

17.1.1 The Expanding Universe

Already in 1929, Hubble had observed that distant galaxies are moving away from us
at speeds that are proportional to their distance, d, v = H - d. The Hubble parameter,



17.1 The Three Pillars of the Big Bang Model 209

H, today (fo) has a value H(fy) = 72 £ 3kms ' Mpc™' ~ (14 - 10°yrs)~!. The
Hubble parameter, H, is time dependent. It is therefore sensible to use the following
vector relation between position and velocity vectors with respect to an arbitrary
origin:

v(t) = H@)x(1). (17.1)

Because, in astronomy, distances rather than times are measured, it is useful to take the
time dependence of the co-ordinates into account via a scalar factor with dimension
of length, which calibrates the measured distance as a function of the cosmic time
scale. We thus define a scalar parameter R(¢) via

x(1) = R(1)xo, (17.2)

with R(fy) = Ry, so that x(fy) = RyX¢ is the contemporary co-ordinate of the
observer. Thus, we can put the Hubble law ansatz (17.1) into scalar form,

V(1) = X(t) = R(t)xo = H(t)R()Xo. (17.3)
The Hubble parameter is thus the rate of change of the scalar parameter

H(t) = RO

(17.4)

A positive value of H corresponds to an expanding universe.
The Hubble parameter has dimension of inverse time, H ~ 2.3 - 1073 s~!, and
the Hubble time #4 can thus be defined as

~ 14 - 10° yrs. (17.5)

"= Hw
The Hubble time yields the correct order of magnitude of the age of the universe.

The time dependence of the scaling parameter R can be obtained by a simula-
tion of the expanding universe based on the so-called Friedmann model. Friedmann
was the first to appreciate, in 1922, that Einstein’s equations possess cosmological
solutions that only contain matter. In 1927, Lemaitre found the solutions to the Fried-
mann equation and showed that they led to a linear distance-redshift relation. The
Friedmann equation is

. 871G
RP—2"p

3 R? = —kc?. (17.6)

The left-hand side of (17.6) can be interpreted in the Newtonian frame as energy
conservation: (Rr)2—GM /(Rr) = constant. General relativity says that the constant
is the sum of all energies: the energy density, p, receives contributions from matter,
radiation and the vacuum. The parameter k determines the curvature of space. All
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astronomical observations up to now are consistent with a flat universe, k = 0, and
in the following, we will only consider this case.

The parameter k does not just define the geometry of the universe but, via (17.6), it
also determines the value of the average density of the universe, the so-called critical
density, p.. From (17.6), the value of the critical density is deduced to be

2

_ 3 (Ry _3 H?(1) (17.7)
=826 \R) T 8zc" " '

Its numerical value expressed in terms of proton masses per cubic meter is p, ~
5.6 my/m°.

One distinguishes between two periods in the history of the universe. The first
is a radiation-dominated era, while the second is a matter-dominated era. In our
present matter-dominated universe, the energy density is inversely proportional to
the volume of the universe, p ~ 1/ R3. In the earlier radiation-dominated universe,
the wavelength of the radiation scaled with R, so that taking the volume of the
universe into account, p ~ 1/R*. Equation (17.6) may be solved by substituting these
two possibilities for p into it. The scaling parameter, R(¢), in the matter-dominated
universe is proportional to #3/2, while, for the radiation-dominated one, it scales as
t'/2. The Hubble parameter, H = R /R, is then 2/3t for the matter-dominated and
1/2¢ for the radiation-dominated universe. The main results of the Friedmann model
are summarised in the following:

Radiation dominated Matter dominated
32Gpo\
R=Rg- ( 3p0) A1 R=Ry-(61Gpy)'/” - 1?7
R 1 R 2
H = - = — H = — = —
R 2t R 3t
T ot~ '/? T o123
3 5 1 )
= .t = — -t 17.8
P =356 P = nG (17.8)

Because of the singularity at # = 0, R has to be normalised at #,. H and p follow
from Friedman equations and the temperature T follows from thermodynamics.

Observations of the expanding universe alone do not provide compelling evidence
for the big bang model. It is possible, though, to look further back into history and
see that the universe looked very different and less differentiated.

The further galaxies are away from us, the more quickly they are receding from
us and light from them is shifted further into the red. All distances in the universe
scale with the scaling factor R(¢), and this also applies to the wavelength of light.
This leads to the relation between the frequency of emitted and observed light
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Wemit R (tops)
= =14z, (17.9)
Wobs R (temit)

where z is the Doppler shift. Modern observations of the furthest seen galaxies stretch
to z & 6 when the universe was 5 billion years younger than today. After this, the
next well-defined observation is at z ~ 1000, which is at a time when radiation had
decoupled from matter.

17.1.2 Cosmic Microwave Background Radiation

The cosmic microwave background (CMB) radiation is turning out to be an extremely
rich source of information about our universe at the time of the decoupling of electro-
magnetic radiation from matter. This relic from the early universe gives an important
calibration point of the cosmic time scale. It is used to support our present belief that
the universe is flat, i.e., k in (17.6) is 0 and thus has the critical average density. It
offers evidence for how the first structures in the universe formed.

After the “first three minutes” (see next subsection), the universe was composed
of a plasma of fully ionised hydrogen and helium and about 10'° times as many
photons. The main mechanism for energy transport in this period was Compton
scattering. The photon mean free path was small at the cosmic scale and the universe
was opaque.

One would expect that the decoupling of radiation from matter started when the
temperature became too low to keep the thermal equilibrium via the reaction

p+te<H+y. (17.10)
It is instructive, if not fully physically justified, to use the equilibrium formulae

to carry out an on the back of an envelope calculation. As in the case of 3« fusion
(15.31), (15.33), we need the chemical potentials before and after the reaction to be

equal:
2 i2 \ 2 w2\
len"—P( z ) +kT1nE( T )
2 \mpykT 2 \mckT

(17.11)
ny [ 2w h? 32
=kTIln — -0,
4 mHkT
or equivalently,
. ) hz 3/2 _
In 22" (—” m“) _—< (17.12)
nu \mpmekT kT

Here, Q = 13.6eV is the liberated ionisation energy and % or % are spin factors. It

is more common to write (17.12) its exponential form (SAHA equation)
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kT 3/2
Tolte _ (Mo e O/ (17.13)
ny 2nh2mD

For our estimate, we assumed that the cross-over took place at n, ~ ny. The proton
density, n,,, can be obtained by extrapolating its present density, 1, (f9) = 0.15 m™,
to the temperature Ty.., when the recombination of hydrogen began:

~ Tec :
np ~ np(t()) m . (1714)

The decoupling temperature, T = Ty, is obtained by inserting (17.14) into (17.13),
with the solution kTgee = 0.32eV (Tyee ~ 3700K).

However, the recombination of hydrogen actually started later, at somewhat lower
temperatures than k7 = 0.32eV. The reason is as follows. Hydrogen can be ionised
by multiple absorption of low-energy photons from the 2.5 or 2 P exited states. Later
recombination by a cascade passing through the 2 P state can produce a photon of
the correct energy (Lyman « line), which can itself excite another atom into the
same excited state, which in turn can be ionised by abundant low-energy photons. As
photons from the 2P — 1S transition are confined in the universe, recombination
is not possible via a direct cascade through the 2P level. The only leakage of the
Lyman-« photons passes through the two-photon decay of the 2§ state. The lifetime
of this state is ~0.1 s; therefore, hydrogen recombination is a nonequilibrium process.
The rate of loss of free electrons in the plasma, n,, is given by

dn, A
e _ “R(n,)—2
dt Azy + Ay(T)

(17.15)

where R is the recombination coefficient, A, is the two-photon decay rate and
Ay (T) is the stimulated upwards transition rate from the 2§ state. The time and
the temperature of the decoupling are determined by the 25 — 1§ leakage given
by (17.15) more correctly than by equilibrium thermodynamics. Even though the
analysis can be simplified by assuming that the hydrogen atom has just two levels
(1S and 2S5), other parameters strongly depend on the temperature and densities and
it is better to use the results of computer simulations than to try to put it on the back
of an envelope.

The resulting temperature is, however, not much lower than the one calculated
above. The transition from an opaque to a transparent universe took place at T ~
3,000K and zg4ec & 1,300. Although at zg4e, the mean free path of photons increased
dramatically, photons still interacted with free electrons via Thomson scattering to
a significant extent. Therefore, the photon background that we observe comes from
the so-called last scattering surface, where the redshift was less than z &~ 1,000. At
present, the decoupled radiation is a perfect black body spectrum, with temperature
2. 7K.

Let us estimate the time when the decoupling took place. Using the time and the
temperature for the matter-dominated period from (17.8) (T o t~%/), we obtain
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) 32
foee ~ 14107 yrs - (m) ~ 400,000 yrs . (17.16)

17.1.3 Primordial Abundance of the Elements

The composition of the universe, limiting ourselves to normal matter (from hydrogen
to uranium), is as follows: 75% hydrogen, 24% helium and only 1% heavier elements.
Carbon and heavier elements are formed in stars. According to the big bang model,
helium was formed in the last phase of the early universe. The current mass ratio
of 1:3 for helium to hydrogen has been barely altered from its primordial value by
synthesis in stars.

When the universe was at a temperature kT' > (m, — m, — me)c?) = Amc? and
at a high density, there was a thermal equilibrium between protons and neutrons due
to reactions proceeding via the weak interaction,

pte<n+v (17.17)
p+v<ntet. (17.18)

This means that the reaction rates of these reactions were sufficiently rapid to maintain
the balance despite cooling. When the temperature reached kT < Amc?, the balance
tilted in favour of protons

I — efAmcz/kT i (17.19)
p

where the n’s denote the number densities of neutrons and protons. The survival of
some neutrons is due to the neutron freeze out, already at a temperature 7 ~ 1.2 MeV.
Due to the very weak interaction of low-energy neutrinos, the reaction rates of (17.18)
is slower than the cooling of the universe. We will not try to estimate this temperature
here. At this time, the neutron fraction of the total baryon number (17.19) was
~34%. Further neutron decays were significantly slower due to the neutron lifetime
of t = 14.8 min.
The synthesis of deuterium and beyond to “He is, though, first possible at kTp ~
0.066 MeV. The reaction
p+n—>D+y (17.20)

has a Q value of 2.23 MeV.

Let us estimate the temperature at which deuterons become stable against gamma
disintegration. Again, as in the case of 3« fusion (Chap. 15) and hydrogen recombi-
nation (Sect. 17.1.2), we equate the chemical potentials before and after the reaction.
We can use the formulae of the previous Sect. 17.1.2 just by replacing n,, n., ng by
np, Ny, np, the hydrogen spin factor 4 by the deuteron spin factor 3, and the deuteron
binding by the hydrogen binding.
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4 KT\
L L (17.21)
np 3 \ 27 h2mp

We have again assumed that the cross-over took place at n, ~ np. The proton density,
n,, can be obtained by extrapolating its present density, n,(f9) = 0.15 m™, to the
temperature 7 when fusion to form deuterium began,

o\’
np ~ np(to) m . (1722)

As a trick, we have made reference to the cosmic background radiation, which has
an accurate temperature 2.73 K at the well-defined present time, #,. Fortunately, the
cubic dependence of density on temperature is valid both in the matter- and radiation-
dominated eras.

The result is kTp = 0.066 MeV (Tp ~ 10338 K).

When did deuterium fusion start? At the moment of radiation Decoupling, the
universe was 400,000 years old and its temperature was 3,000 K. The temperature
in a radiation-dominated system is inversely proportional to the square root of time;
therefore, at the temperature of 7.7 - 108 K, which corresponds to kTp = 66keV, the
time fp was

Taee | 3000 )?
D = faeo (TL) ~ 400,000 (W) yrs = 175 ~3min.  (17.23)
X .

These are the famous “first three minutes”, the end of the early universe and the
beginning of primordial element synthesis. During the synthesis period, neutrons
were decaying, so only 12% of the total number of baryons survived as neutrons
inside helium. It is fortunate for nature that the lifetime of the neutron (14 min) is
sufficiently longer than the time before the synthesis of deuteron (3 min); otherwise,
they would all have decayed and the universe would consist only of protons and
electrons.

17.2 Some Problems with the Big Bang Model

For cosmologists: Nobody likes models that start with a singularity. The expansion of
the universe is experimentally well established. But its mechanism is not understood.
Even worse, the big bang model needs, at the very beginning, a fast expanding period,
the so-called inflationary stage, in order to explain why we only have a very limited
horizon of the early universe. What was the mechanism of this expansion? It is rather
well established that the universe is flat and that its energy density is at the critical
value. However, 70% of this energy is a mysterious dark energy and 27% of it a
mysterious dark matter.
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For particle physicists: How did the fermion—antifermion asymmetry in the universe
arise? What is the nature of dark matter? Can gravitation be unified with the other
interactions?

17.2.1 Particle-Antiparticle Asymmetry

The contemporary abundance of the elements of normal matter relies on three coin-
cidences: the forging of the heavy elements out of helium inside stars, the production
of helium in the early universe, and the fermion—antifermion asymmetry, which made
the existence of normal matter possible in the first place.

Let us consider the universe shortly after gravitation has decoupled from the other
interactions. Radiation dominates this universe, where the particles and antiparticles
could annihilate and be produced again through pair creation. As long as the tem-
perature of the universe was sufficiently high, there was an equilibrium between
radiation and particle—antiparticle pairs. When, though, due to the cooling of the
universe, the radiation ceased to have enough energy to create particles and antipar-
ticles, the fermions available annihilated each other. Because pair creation yielded
equal numbers of fermions and antifermions, one would expect that fermionic matter
would fully annihilate itself during this cooling down phase. If that had been the case,
the universe would now solely consist of background radiation and, perhaps, dark
matter and dark energy.

How the matter we observe survived this great annihilation is unclear. The fraction
of fermions that survive can be estimated rather well. All cosmological models agree
that the number of photons in the universe has not changed significantly during the
cooling. After the annihilation, there was only radiation and the surviving electrons
and nucleons (protons and those neutrons bound inside 4He), which radiation could
scatter off. This did not significantly alter the number of photons. About 400,000
years after the big bang, the energy of the radiation was so low that it could not
prevent the recombination of protons and *He nuclei with electrons to form neutral
atoms. The universe became transparent and radiation separated from matter. This is
the origin of the observed cosmic background radiation. The ratio of the numbers of
photons and nucleons is around ten billion to one! This implies that the probability
of a fermion surviving the annihilation phase was 1017,

Three conditions have to be fulfilled to explain the fermion—antifermion asym-
metry inside a big bang model: thermal nonequilibrium, CP violation and baryon
number violation. Thermal nonequilibrium is easy to imagine in the big bang model.
In this phase, the cooling of the universe has to be quicker than the reaction rate,
which maintains equilibrium. The CP violation and baryon-number violation, which
are responsible for the asymmetry at T &~ 10" GeV, must still be detectable today.
The tiny CP violation seen in K® and B systems is, when extrapolated to higher
energies, insufficient to produce this asymmetry. The proton also seems to be more
stable than grand unified theory would lead us to expect.



216 17 Cosmology — The Early Universe

There is a possibility, however, that the baryon—antibaryon asymmetry is the
consequence of the lepton—antilepton asymmetry produced during the time of the
GUT. The difference, B — L (Baryon—Lepton number), is, in most theoretical models,
conserved. For the charged leptons, this is obviously necessary if one starts out with
charge conservation and an electrically neutral universe. Furthermore, the charged
and neutral leptons are related within the same weak doublets.

The lepton sector is experimentally less thoroughly searched for the lepton number
and CP violation than the baryon sector. Therefore, it cannot be excluded that the
solution of the fermion—antifermion asymmetry is to be found in the lepton sector.

17.2.2 Dark Matter

Already in the 1930s, Fritz Zwicky recognised that the relative movements of the
galaxies could only be explained if the galaxies and their surroundings contained
about five times as much matter as was observed through telescopes. The lensing
effects of gravitation on photons are even more spectacular. Tiny shifts in the position
of stars, observed when light passes through the gravitational field of the sun during
a total solar eclipse, served to confirm general relativity theory. Today, it is possible
to observe much larger lensing effects due to the gravitational field of large clusters
of galaxies. In these cases, too, the effects observed can only be explained when the
galaxy clusters are ascribed around five times as much mass as their visible mass.
The name “dark matter” has been given to this material because it neither absorbs
nor emits light. It also cannot interact via the strong interaction; otherwise, it would
be noticed by a high collision rate with the ordinary matter.

There are various speculations about the nature of dark matter. The most attractive
seem to be the idea that it is made of heavy, weakly interacting particles that are
relics of the big bang. If that really is the case, then such particles could be easily
incorporated into the scenarios of symmetry breaking. Heavy weakly interacting
particles would be bound by gravity to galaxies, but because they, unlike normal
matter, would not clump together, their extension would be much greater than that
of normal matter. The search for such particles is a challenge for experimentalists.
Because these particles would only weakly interact, the detector would have to be as
large as is required to detect neutrinos. The energy of the particles would be small and
their speeds comparable with those of other objects in the Milky Way. The detectable
recoil of normal atoms due to a weak interaction collision would produce a few
pairs of ions. To distinguish such recoil signals from signals of ionising particles,
one would need to simultaneously detect phonons, and so detectors will have to
work at temperatures of liquid helium. The first detectors that partially fulfill these
requirements are already in action in underground laboratories in Gran Sasso (Italy),
Frejus (France) and Soudan (USA).
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17.2.3 Physics at the Planck Scale

The big bang model treats the universe as a gas of which the constituents are currently
galaxies; though, the further back in time one goes, the smaller the constituents were.
The dynamics of the expanding universe is described by general relativity theory. It
is clear that the model’s classical physics is insufficient as R — 0. Difficulties will
appear, at the latest, when the thermal energy of particles is large enough for the
de Broglie wavelength to be smaller than the Schwarzschild radius. Quantum black
holes clearly cause difficulties with our usual concept of a background space—time.
If we equate the de Broglie wavelength, 2w /i/mc, and the Schwarzschild radius
2Gm/c? (Sect. 15.3.2), we obtain the characteristic mass of quantum gravitation, the
Planck mass and its accompanying length and time scales,

[h
mp = Ec ~ 1019mp ~ 10" GeV/c? (17.24)
h
lh= ——~10"m (17.25)
mpcC
p = le ~ 10785, (17.26)
C

Here, we have used the value G = 10™*hc/ms for the gravitational constant (see
(15.8)).

An additional motivation for introducing the Planck scale follows the striving
to unify all interactions. The fact that there is still no experimental support for the
grand unified theory, should not stop us from speculating about a further possible
unification of the other interactions with gravitation. The Planck scale, at which this
ultimate unification could take place, can be defined in terms of the mass at which
the gravitational coupling constant also reaches a value comparable with the other
coupling constants, i.e.,

Gm%:  G(Ep/c?)?
wg = 9 _ GEe/C) (17.27)
he hic

This definition of the Planck scale is an alternative to the above considerations of
the de Broglie wavelength and yields the same result.
The Planck time marks the beginning of the classical phase of the big bang.

Gravitation is the dominant interaction in the universe. It is reasonable to ask
whether it has left any traces from the period when it was unified with the other
interactions. The existence of the three particle families could be such a trace.
The three families have identical properties as far as the strong, electromag-
netic and weak interactions are concerned. They differ in their masses — only
gravitation distinguishes between the different families!
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Coherent state, 107
Cold neutrons, 89
Collective excitation, 113, 159, 162
Collective ground state, 113
Collective state, 95, 117, 145, 147, 160, 161
Colour, 36
Compton scattering, 11, 12
Compton wavelength, 45
Condensate, 104, 106, 113
Conductivity
electrical, 119, 123
thermal, 119, 130, 131
Confinement, 25, 36
Confinement potential, 134
in a trap, 104, 106
Constituent mass, 140, 141
Constituent quark, 22, 133, 137, 139
masses, 136, 140
Cooper pairs, 111, 116, 117, 123, 125, 163
Correlations, 56
Cosmic microwave background radiation,
211
Coulomb potential, 42
effective, 52
strong, 134
Coupling
electromagnetic, 21
strong, 21
weak, 207
Coupling constant, 36
electromagnetic, 16, 36, 41, 201, 203
gravitational, 169, 217
running, 203
strong, 36, 38, 135, 203
weak, 22, 24, 39, 195, 201, 203
Covalent bond, 123
CP violation, 189
Critical density
of the universe, 210
Critical temperature, 106
Cross-section
electron-quark, 31
photon-electron, 31
Crystal, 89
defect, 93
Crystal lattice, 119
Csl, 74
Cubic crystal, 91
Curie law, 64, 65
Curie point, 64
Current density, 123
Cut-off, 141

Index

D
Dark energy, 214
Dark matter, 214, 216
Darwin term, 45
de Broglie rule, 42
de Broglie wavelength, 42, 102-104, 113,
156
thermal, 102
Debye
approximation, 97
formula, 98
frequency, 97, 124
model, 11
speed, 97
temperature, 11, 97
Debye—Waller factor, 11
Decoupling
of gravitation, 215
of radiation, 212
Deep inelastic scattering, see Quasi-elastic
scattering
Deformation, 163
energy, 165
Degeneracy pressure, 170
Degenerate fermion systems, 167
Deuteron, 149
Diamagnetism, 63
Diamond, 72
Dipole-dipole interaction energy, 50
Dipole moment, 79
electric, 77, 82, 83
Dipole oscillations, 79
Dirac sea, 137, 144
Dispersion curve, 96
of glass, 89
of Bose liquids, 90
of crystals, 89
of Fermi liquids, 89
of liquid *He, 112
of superfluid “He, 113
Dispersion relation
of amorphous substances, 96
of crystals, 91
DNA, 85
Doublet of weak isospin, 199
Drift velocity, 123

E
ETe -annihilation, 33
Earth
crust, 182, 183
mantle, 182, 183
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Elastic scattering, see Scattering
Electron distribution, 123

in the hydrogen molecule, 69, 83

Electron gas, 131
Electron-nucleon scattering, 20
Electron—positron collider, 186
Electron—positron pairs, 6, 7, 36
Electron radius

classical, 2, 4,7
Electron scattering

off nuclei, 156

off the nucleon, 20
Electron speed, 124
Electrons in metals, 111
Ellipsoid

oblate/lens shaped, 163

prolate/cigar shaped, 163
Energy gap, 123

Energy production in the sun, 167, 172

Enzyme, 88
Equation of state
stellar, 168
Equilibrium
hydrostatic, 168, 171
thermal, 167
Evaporation cooling, 102
Expanding universe, 208

F
Family, 185, 186, 197
Fermi
energy, 103, 156
gas, 102, 103, 119, 123
gas model, 101
liquid, 89, 111, 155, 159, 163
momentum, 103, 156
sea, 144
surface, 111, 123, 155
temperature, 102, 103
velocity, 123
Fermi constant, 24
Fermion, mass, 202
Ferromagnetism, 63, 64
Final stages of stars, 167
Fine structure constant, 41
Finite extension of the proton, 48
Flat universe, 210
Flavour, 38
Form factor, 7, 20
dipole fit, 21
dynamical interpretation, 10
geometrical interpretation, 7

of crystals, 9

of the atom, 8

of the proton, 21
Four-momentum transfer, 17, 18
Freeze out

of neutrons, 213
Friedmann model, 209, 210
Fullerene, 73
Fusion, 167

G

Gamow factor, 172

Gap equation, 141

Giant resonance, 144, 159
Glashow, Iliopoulos, Maiani, 187
Glass, 89

Gluon bremsstrahlung, 33
Gluon field, 29

Gluon structure function, 34, 35
Gluons, 25, 29, 31, 33, 36, 38
Goldstone boson, 146, 147, 152
Goldstone theorem, 146

Grand unified theory, 202, 203, 217

Graphene, 72
Graphite, 73
Gravitation, 167, 207, 217

Gravitational constant, 168, 169, 217
Gravitational pressure, 170, 172, 180

H
Hartree—Fock, 155
Helicity, 17, 31, 138
Helium

3He, liquid, 111

“He, 111

atom, 55, 59

nuclei, 149
Helium burning, 171
Higgs boson

decay, 201, 202

production, 201
Higgs field, 198, 199, 201, 202
Higgs mechanism, 202
Higgs model, 104, 202
Hubble parameter, 208
Hubble time, 209
Hybride orbitals, 71
Hydrogen, 59

metallic, 119
Hydrogen atom

Binding energy, 42
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radius, 42 Laser cooling, 101

Hydrogen bridge bond, 82, 84, 85, 87 Last scattering surface, 212
in biology, 85 Leptons, 185

Hydrogen burning, 171 LiF, 74

Hydrogen molecule, 67, 68, 121 Localised vibrational mode, 96
charge distribution, 69 resonance, 95

electronic attraction, 69
hydrogen, 69

orthohydrogen, 69 M

protonic repulsion, 69 Magic numbers, 157

total energy, 69 Magnetic moment, 50, 69, 136
Hydrogen-like atom, 51 anomalous, 20
Hyper-fine splitting, 50 Magnetisation, 20
Hyper-fine structure, 43, 50 Mass formula, 136
Hypernuclei, 159 Mass generation, 185, 202
Hyperon, 159 Mass terms, 201

Masses of the elementary particles, 198
Mean field, 155, 156, 158

I Melting energy, 182
Ice, 82, 84 Mesons, 135
Inelastic scattering of cold neutrons, 89 Metallic bond, 121
Interaction Metallic hydrogen, 119
electromagnetic, 207 Moment of inertia, 163
gravitational, 207, 217 Momentum distribution, 25
mass generating, 197 Moon, 184
strong, 133 Mossbauer effect, 11
Van der Waals, 77 Mott
weak, 22, 185, 188 cross-section, 19
Interstellar hydrogen, 51 scattering, 16, 18, 19, 22
ITonic bonds, 74 Muon, 52, 53
Iron, 63 Muonic atoms, 51
Isospin
weak, 199
N
NaCl, 9, 74
J Nambu—Jona-Lasinio model, 139
Jets, 33, 36 Nanotubes, 73
Neon, 9
Neutrino, 31, 199
‘Ié atmospheric neutrinos, 192
K, 102 experiments, 15
KO-KO Oscillations, 189 mass, 199
Kamiokande detector, 23 neutrino masses, 193
Klein—Nishina cross-section, 2, 12 oscillations, 191

reactor antineutrinos, 192
scattering, 22, 32

L Neutron source, 89
Lamb shift, 43, 48 Neutron stars, 111, 167, 169, 180
Laser, 107 Neutrons, cold, 89

coherent state, 107 Nickel, 63

optical pumping, 108 Noble gases, 9

resonator, 109 Nonrelativistic quark model, 135

stimulated emission, 108 Normal metals, 121
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Nuclear

matter, 157

potential, effective, 158

radius, 52, 155

reactions, 167, 180

volume, 156
Nuclear force, 149, 155

attraction, 150

repulsion, 150
Nucleon

constituents, 25
Nucleon—nucleon interaction, 149
Nucleon—nucleon potential, 149
Nucleon radius, see Radius
Nucleus, 111

0
On the back of an envelope, 10, 22, 67, 91,
120, 134, 139, 174, 194, 203, 211,
212
Optical absorption, 95
Orbital angular momentum, 43
Order parameter, 65, 106, 199
Oxygen, 73
as an energy source, 73
double bond, 73
Oxygen atom, 83

P
Pairing energy, 165
Paramagnetism, 63
Parity violation, 188
Particle—antiparticle asymmetry, 215
Particle families, 217
Particle-hole
excitation, 112, 159, 163
interaction, 160
states, 160
Particle-nucleus interaction, 51
Particle pressure, 170
Parton model, 15
Partons, 25, 28-30, 33
Pauli pressure, 172, 180
Pauli principle, 103, 121, 125, 150
Phase transition, 64, 65, 87, 104, 106, 111,
138, 139, 141, 199, 203
Phonon, 91, 115
longitudinal polarised, 91
transversal polarised, 91
Phonon excitation, 113-116
Phonon gas, 131
Phonon-roton branch, 113
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Photon

coherent state, 107

stimulated emission, 108
Photon propagator, 17
Photon scattering, 1

off a free electron, 1

off free electrons, 11
Photon spectrum, 27
Physics beyond the Standard Model, 202
Pion, 142, 151, 152

collective state, 144

mass, 143

propagator, 142
Planck scale, 217
Planets, 167, 182, 183

Jupiter, 182

Pluto, 184
Polarisation

of the vacuum, 48
Polypeptide chain, 85
Pontecorvo-Maki-Nakagawa—Sakata

matrix, 192

Positronium, 133
Potential well, 155
Primordial abundance of the elements, 213
Principal quantum number, 42, 43
Production of cold gases, 101
Propagator, 139
Proteins, 85
Proton

decay, 203

form factor, 21

lifetime, 203
Pseudo-momentum, 91
Pseudo-potential, 121

Q
QCD, 25, 26, 36
QED, 26, 36
Quadrupole moment, 163
Quantum liquid, 113
Quark—antiquark pairs, 38, 186
Quark model, nonrelativistic, 135
Quark—quark interaction, 135
Quark spin, 19
Quark stars, 111
Quarkonia, 133, 134
Quarks, 29, 31, 36, 185
Quasi-elastic scattering, 25, 28
lepton, 33
neutrino, 31
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R
Radiation pressure, 170
Radiative corrections, 48
Radius
of the atom, 8, 59, 61, 62
of the helium atom, 56
of the hydrogen atom, 42, 59
of the hydrogen molecule, 69
of the nucleon, 20
of the nucleus, 52, 155
Random phase approximation, 146
Red dwarf, 172
Red giant, 171
Relativistic corrections, 44, 46
Relativistic dynamics, 43
Relaxation time, 124
Retardation, 79
Rosenbluth formula, 20
Rotational states, 69, 163
Rotons, 114, 116
Rutherford scattering, 22
Rydberg constant, 42

S
SAHA equation, 211
Scaling, 61
Scattering
Bragg, 89
cold neutrons, 89, 112
Compton, 1, 11, 12
electron-nucleon, 20
Mott, 16, 19, 22
neutrino, 22, 31, 32
nucleon—nucleon, 149
quasi-elastic, 25, 28, 33
Rutherford, 22
Thomson, 3, 7
Schwarzschild radius, 181
Sea quarks, 25
Secular equation, 94, 145
Self-consistence, 61
Self-coupling, 38, 39
Self-energy, 140
Shell model, 155, 157
Shells
2s,2p, 57
d subshell, 63
o meson, 147, 151, 152
Single particle excitation, 112, 113, 116, 158
Single particle properties, 159
Singlet, 188
Sodium, 92

Index

Sodium crystal, 92
Soft mode, 146
Solar neutrinos, 23
Specific heat, 82, 84, 97
Speed of sound, 124
Spin flip, 19
Spin-spin
interaction, 116
splitting, 134, 135
Spin-orbit
coupling, 46
potential, 158
splitting, 46
Splitting function, 33
Spring constant, 91
Standard model, 185, 199
Strong charge, 36, 38
Structure function, 27-31
Coulombic part, 30
gluon, 28, 34, 35
spin-flip part, 30
SU(2)x U(1) symmetry, 197
Subshell
d, 63
Sun, 167
electron energy, 170
proton energy, 170
Superconductivity, 123
Superconductors, 125
Superfluidity, 115
Supernova
collapse, 23
SN1987A, 23
Surface oscillations, 159
Symmetry
chiral, 138, 139, 147
Symmetry breaking, 138, 207, 208
chiral, 140, 142
spontaneous, 139, 199

T
Thermal conductivity, 130, 131
Thomas factor, 46
Thomas—Fermi equation, 61
Thomas—Fermi model, 60, 62
Thomson

cross-section, 12

formula, 28

scattering, 2, 3, 7
Time-of-flight measurement, 101
Top quark, 195

decay width, 196
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Total angular momentum, 43 Weak decays, 194
Tritium, 149 Weak isospin, 188
Weak isospin doublet, 188
Weak potential, 24

U Weinberg angle, 197

Uncertainty relation, 42 Weinberg mixing, 201

Unification, 202, 217 Weizsicker—Williams method, 26, 31
Unification scale, 203, 204 White dwarfs, 111, 167, 169, 171, 180

Wiedemann-Franz ratio, 132

Woods—Saxon potential, 155
\%

Vacuum fluctuations, 80

Vacuum polarisation, 36, 38, 39 X

Valence nucleon., 158, !65 X-rays, 8, 28, 59

Valence quark distribution, 32 recoilless scattering, 10
Valence quarks, 25 ?
Van der Waals interaction, 77, 78, 80, 121

Velocity distribution, 101

Vibrational states, 144, 159 Y _
Virial theorem, 167, 169 Yukawa coupling, 202
Virtual photons, 28, 31 Yukawa form, .24
Virtual quanta, 26 Yukawa potential, 151
Virtuality, 16, 17

Viscosity, 116

Z
79 boson, 196
W Zero-point
W boson, 185-187, 196 energy, 48
Water, 82 fluctuations, 81
Water molecule, 83 oscillations, 48, 79, 80

Weak charge, 187 Zitterbewegung, 45
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