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Preface

The  paraboloidal  (often  called  parabolic)  reflector  is  one  of  the  most  versatile  and
widely  used  antenna  types  for  the  transmission  and  reception  of  electro-magnetic
waves  in  the  microwave  and  millimeter  wavelength  domain  of  the  electro-magnetic
spectrum.  The development  of  large  and  highly  accurate  reflectors  has  mainly  been
carried out at radio astronomy observatories.  The emergence of satellite communica-
tion and deep-space  research with satellites  necessitated the use of such large reflec-
tors  as  ground  stations  for  the  communication  with  the  satellites  and  space-probes.
Over  the  years  radio  astronomers  have  developed  the  techniques  of  calibration  of
large  antennas  with  radio  astronomical  methods.  These  are  often  the  only  way  to
characterise  the  antenna,  because  the  farfield  distance  precludes  an  earth-bound  test
transmitter and the antennas are too big for nearfield scanning test ranges.

The  general  theory  of  the  reflector  antenna  has  been  presented  quite  completely  in
the  classic  book  by  Silver  (1949)  in  the  MIT  Radiation  Laboratory  Series.  Modern
approaches  of  computer-aided  analysis  and  design  were  discussed  by  Rusch  and
Potter  (1970).  With  the  current  methods  of  analysis,  like  the  geometrical  theory  of
diffraction  and  fast  algorithms  of  surface  current  integration,  the  analysis  of  the
detailed behaviour of the radiation characteristics  can be realised. Nevertheless  these
methods  are  laborious  and  often  not  suitable  for  the  accurate  prediction  of  the
detailed  antenna  behaviour  under  non-ideal  conditions,  as  mechanical  distortions
under gravity, temperature gradients and wind forces. Here a combination of approxi-
mate  theoretical  analysis  and  measurement  of  antenna  parameters  is  often  the  best
approach to characterise the antenna. 

The  techniques  developed  by  radio  astronomers  for  the  characterisation  of  large
reflector antennas has not been described comprehensively in the open literature. An
early  effort  in  this  area  is  "Radioastronomical  Methods  of  Antenna  Measurements"
by  Kuz'min  and  Salomonovich  (1966).  Since  then  these  methods  have  been  further
developed  and  a  considerable  body  of  experience  is  now  available,  which  however
has only been sparsely published in readily accessible form. It is the purpose of this
book  to  fill  part  of  this  gap.  The  book  is  neither  a  replacement  for  antenna  theory
texts  like  Silver  or  Rusch and  Potter,  nor  a substitute  for  books  on radio  astronomy
techniques  like  Kraus  (1966),  Rohlfs  and  Wilson  (1996)  or  Thompson,  Moran  and
Swenson  (2001).  It  is  less  general  than  the  book  "Radiotelescopes"  by  Christiansen
and  Högbom  (1969).  Structural  and  mechanical  aspects  of  large  reflector  antennas
have been presented in Mar and Leibovich (1969) and by Levy (1996).

Here  we  are  mainly  concerned  with  electromagnetic  aspects  and  concentrate  on  a
discussion of the paraboloidal reflector antenna in a practical approach. The theory is
developed  with  this  in  mind  and  considerable  attention  is  given  to  the  treatment  of



non-ideal  situations  and  the  calibration  of  antenna  parameters.  While  the  parabolic
reflector  is the  most  used  antenna,  much  of the  discussion  applies  mutatis  mutandis
to spherical and elliptical reflectors, as well as to so-called "shaped" systems.

The  general  subject  of  "Instrumentation  and  Techniques  for  Radio  Astronomy"  is
well  illustrated  by  the  articles  in  the  selected  reprints  volume  of  this  title,  collected
and commented by Goldsmith (1988). Because of its usefulness, we shall indicate the
presence  of  particular  references  in  this  volume  next  to  their  original  source  in  our
chapter  reference  lists  as  [Gold,  pp].  We  omit  a  treatment  of  polarisation.  While
control  of  cross-polarisation  is  certainly  of  importance  in  communication  systems
and in  a limited,  but  important  part  of radio  astronomy observations,  its  full  discus-
sion is beyond the aims set for this text. A complete treatment of polarisation can be
found  in a  book  by  Tinbergen  (1996).  Basic  and  practical  aspects  of  polarisation  in
radio  interferometry  are  described  by  Morris  et  al.(1964)  and  Weiler  (1973).  An
original matrix treatment of radio interferometric polarimetry is presented in a series
of three papers by Hamaker, Bregman and Sault (1996).

All calculations and results in the form of tables and figures have been made with the
aid of the software package Mathematica from Wolfram Research (Wolfram, 1999).
The  Mathematica  instructions  and  expressions  can  be  used  directly  by  the  reader
with  access  to  Mathematica  for  the  implementation  of  his  own  input  data.  In  order
not  to  break  the  flow  of  the  text,  the  routines  are  assembled  at  the  end  of  each
chapter.  In the text they are identified in blue print as  Actually, the entire
book  has  been  written  as  a  Mathematica  Notebook  using  the  excellent  editorial
capabilities  of  the  program.  It  is  hoped  that  the  availability  of  the  Mathematica
routines  will  contribute  to the  usefulness  of  the  book  in  daily  use.  The routines  are
being made  available  for  download on  the Springer  Website. The reference lists are
not  exhaustive.  We  provide  references  of  a  historical  nature,  original  work  used  in
the text and selected references for further study of details.

We  aim  to  address  the  needs  of  observational  radio  astronomers  and  microwave
communication  engineers.  The book  should be of use to all  who are involved in the
design, operation and calibration of large antennas, like ground station managers and
engineers, practicing radio astronomers and graduate students in radio astronomy and
communication technology.
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B     brightness (W m-2 Hz-1 ) b     beamwidth coefficient
C     atmospheric structure function constant c     speed of light, correlation length 
D     directivity, structure function d     diameter of antenna
E     electric field e     Cassegrain eccentricity
F     aperture field distribution f     amplitude pattern, focal length
G     gain g     antenna power pattern
H     magnetic field h     Planck's constant
I      intensity i      imaginary unit
J      jansky ( 10-26  W m-2 Hz-1) j      current density
K     beam smearing correction factor k     Boltzmann's constant, wave number
L     atmospheric pathlength l      atmospheric scale length

m    Cassegrain magnification
N     atmospheric refractivity n     refractive index
P     power p     number beamwidths off-axis
R     distance to field point r      distance
        Rf     farfield distance
        Rr     Rayleigh distance
S     flux density (unit is jansky)
T     temperature t     time
        TA      antenna temperature
        TB      brightness temperature
U     Lommel function u,v,w direction cosines 

x,y,z cartesian coordinates

a     absorption coefficient b      phase error
g     help variable (Ch.4)             d      small deviation, feed offset
e     surface error, permittivity
h     efficiency q      polar angle of field point
        hA     aperture efficiency
        hB     beam efficiency m     permeability
l     wavelength n      frequency
r     distance to aperture point s     random phase error
t      illumination taper
f     azimuthal angle of field point y     polar angle to aperture
c     azimuthal angle in aperture w     circular frequency

G     help variable (Ch.4) D     deviation, path error
Q     angle L     lambda function
S     sum X    = 4 f êd (Ch.4)
F     reflector opening angle Y     subreflector opening angle
W     solid angle

BDF beam deviation factor HPBW   half-power beamwidth



1. Introduction and historical development

‡ 1.1. Some history of the parabolic reflector antenna

In highschool I was taught that the great Greek scientist Archimedes (287 - 212 BC)
was  instrumental  in  the  defence  of  his  city  Syracuse  on  Sicily  against  the  Roman
fleet  and  army  of  Marcellus  during  the  Punian  War.  Among  the  defensive  devices,
developed  by  him,  he used  parabolic  mirrors  to concentrate  the  reflected  light  from

not true, it is fair to say that Archimedes could have done it. He had after all studied the
geometrical figures of conic sections and knew about the focussing characteristics of
such  curves.  As  such,  it  would  have  been  one  of  the  earliest  examples  of  applied
physics based on pure mathematical  knowledge. Note that for his goal to be success-
ful,  he needed  to construct  what  is now called  an offset  reflector,  a typical  example
being  the  ubiquitous  TV-satellite  dish.  From  the  definition  of  the  parabola  it  is
immediately clear that a bundle of parallel light rays impinging onto a reflector in the
form  of  a  paraboloid  of  revolution  along  its  symmetry  axis  will  be  concentrated
towards  the  focal  point  of  the  paraboloid.  This  simple  characteristic  has  made  the
parabolic  reflector  the  most  widely used  device for  astronomical  telescopes,  both in
the  optical  and  radio  regime,  and  more  recently  for  transmitting  and  receiving
antennas  in  microwave  communication  technology,  including  satellite  communica-
tion,  as  well  as  the  concentration  of  solar  radiation  as  commercial  energy  source  in
solar power stations. 

  In this book we want to explore the characteristics of the paraboloidal reflector, and
other  types  related  to  it,  with  special  emphasis  on  its  use  as  a  radio  telescope  or
communication  antenna.  The  geometry  and  electromagnetic  theory  are  treated  first,
followed by detailed  discussions of the application  and calibration  of large antennas
for  radio  astronomy.  The  approach  of  the  treatment  is  practical.  Many  formulae,
curves and tables will be derived with application  in mind, rather  than aiming at the
highest level of mathematical rigor. The vehicle chosen for the calculations and most
of  the  figures  is  the  software  package  Mathematica.  The  reader  may  copy  the
formulae into his own copy of Mathematica and vary the parameters according to his
own requirements. 

  The theory of electromagnetic (EM) waves was developed by James Clerk Maxwell
(1865).  He  showed  that  light  can  be  described  by  this  theory  and  predicted  the
existence  of  EM-waves  of  other  wavelengths.  The  experimental  demonstration  of
EM-waves with wavelengths of what we now call radio waves was achieved in 1888
by Heinrich  Hertz  (1888).  In  his  experimental  setup he used cylindrical  paraboloids

the Sun to set the Roman ships afire. The frontispiece picture on page vi of this book
represents this feat. Although this story is now considered by historians to be very likely



of  2  m  length,  aperture  width  1.2  m,  depth  0.7  m  to  concentrate  the  waves  with  a
wavelength of about 66 cm onto the wire-antenna along the focal line of the reflector.
He concluded that "radio waves" ("Strahlen elektrischer Kraft")  are identical to light
rays  with large  wavelength.  His experiments  formed the beginning  of  the enormous
development  of  radio  in  the  twentieth  century.  It  also  caused  several  people  to
consider  the  possibility  that  radio  waves  may  be  emitted  by  the  Sun.  In  the  period
1897-1900  Sir  Oliver  Lodge described  his  plans  for  detecting  radio  waves  from the
Sun  before  the  Royal  Academy  and  in  his  book  "Signaling  across  Space  without
Wires",  3rd Edition (1900). Other  proposals and experiments  came from Thomas A.
Edison in the USA as well as from France and Germany. They were all unsuccessful.

Fig.  1.1.  Reber's  10  m  antenna,  reconstructed  at  the  National  Radio  Astronomy  Observatory,
Green  Bank,  WV,  USA.  The  original  dish  did  not  have  the  azimuth  movement;  it  was  a  transit
instrument.  (NRAO/AUI/NSF)

  In  1932  Karl  Guthe  Jansky  (1933)  discovered  radio  radiation  from  space,  while
studying  the  interference  from thunder  storms on  short-wave  communication  with  a
directional wire antenna at a wavelength of about 20 m. His proposal to build a large
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parabolic reflector to systematically study the "cosmic radio waves" was not success-
ful,  but  Grote  Reber,  a  radio  engineer,  became  intrigued  by  the  prospect  of  radio
astronomy  and  in  1937  designed  and  built  a  10  m diameter  paraboloid  in  his  back-
yard  (Fig.1.1).  This  formed  the  beginning  of  radio  astronomy  and  Reber  (1940)
published  the  first  map  of  radio  radiation  from  our  Galaxy  in  the  Astrophysical
Journal, as well as the Proceedings of the IRE (Institute of Radio Engineers, now the
IEEE).

  The development of military radar, both in Germany and the allied countries during
the second world war resulted in the construction of radar antennas, many in the form
of paraboloidal reflectors. The German "Würzburg Riese" (giant of Würzburg) was a
7.5  m diameter  reflector  with  a  mesh surface.  It  was adapted  after  WW2 by  Dutch,
British,  French  and  Scandinavian  radio  astronomers  as  their  first  radio  telescopes.
Most  notably,  the  detection  of  the  spectral  line  of  neutral  hydrogen  at  21 cm wave-
length in Holland was made with a Würzburg antenna (Fig.1.2),  as was the observa-
tion of the first complete hydrogen line survey of the Galaxy by van de Hulst, Muller
and Oort (1954). In an odd turn of history, the antenna has been returned to Germany
for exhibition at the Deutsches Museum in Munich.

Fig.1.2.  A  7.5  m  diameter  "Würzburg"  antenna,  mounted  equatorially  (foreground)  at  the  Dwingeloo
Radio  Observatory,  Netherlands.  The 25 m telescope  is in the background,  Both antennas  were  used
as an interferometer  in an experiment  described  in Ch.6.2.  (Henk Snijder, ASTRON)

  In  the  nineteen-fifties  larger  paraboloidal  radio  telescopes  appeared  on  the  scene;
the 50-ft  NRL dish  on the  Potomac River  in 1951  had a  high surface  accuracy  of 1
mm  rms  and  enabled  observations  at  wavelengths  as  short  as  3  cm  (Hagen,  1954).
The Dutch 25-m telescope in Dwingeloo, completed in 1956 (Fig.1.2), was for some
time the largest fully steerable radio telescope in the world until  it was overtaken by
the gigantic 76-m diameter telescope in Jodrell  Bank, UK in 1957 (Fig.1.3)  (Lovell,
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1957). The design and construction of these ever larger instruments has mainly been
performed  at  radio  observatories  in  collaboration  with  structural  and  mechanical
engineers from industry.

Fig.1.3.  The 76 m diameter  Lovell  radio telescope  at Jodrell  Bank Observatory,  England.  The antenna
has undergone  two  major  upgrades,  including  a new,  more  accurate  surface  with  a larger  focal  ratio.
The central  post to support  the feed has been maintained.  (I. Morison,Jodrell  Bank Observatory)

  The  era  of  space  communication  became  a  reality  soon  after  the  launching  of
Sputnik in 1957. To use satellites for this purpose it was necessary to build powerful
ground  stations  for  both  the  uplink  and  downlink  connections.  Thus  parallel  to  the
large  increase  in  radio  telescopes  between  1960  and  1980,  the  number  of  25-35  m
diameter  satellite  ground  stations  is  even  larger.  The  tracking  stations  for  the  deep-
space efforts of the NASA and ESA (Fig.1.4) are equipped with antennas as large as
70 m and are now made suitable for operation in the 30 GHz band (Imbriale,  2003).
Some  of  these  have  also  been  used   for  radio  astronomy,  notably  as  stations  in  the
global and geodetic VLBI (very long baseline interferometry) systems. 

  The signals  received from cosmic objects are extremely weak and generally  broad-
band.  Thus  the  larger  the  reflector  surface  area,  the  better  the  astronomical  result.
Moreover, observations normally need to be done over widely separated frequencies.
Considering  the  very  poor  angular  resolution  of  radio  telescopes  (typically  many
arcminutes in the early days of its development compared to about 1 arcsecond in the
optical  domain),  it  was  also  obvious  that  there  emerged  a  push  towards  higher
frequencies  with  a  concomitant  higher  angular  resolution.  However,  working  at
higher  frequencies  requires  a  reflector  surface  of  higher  accuracy  of  shape  in  order
not to scatter the reflected radiation away from the focal region.

1. Introduction and historical development4



Fig.1.4.  Example  of  a  modern  deep-space  ground  station.  This  35  m diameter  ESA  antenna  is
located  in  Western  Australia  and  was  designed  and  built  by  Vertex  Antennentechnik  of
Germany.  (ESA/ESOC)

  The  development  of  radio  telescopes  thus  resulted  in  larger  and  simultaneously
more  accurate  reflectors  and  highly  stable  and  accurate  mounting  structures  and
pointing  control  systems.  The  first  telescope  of  this  genre  was  the  140-ft  (43  m)
diameter  radio  telescope  of  the  National  Radio  Astronomy  Observatory  in  Green
Bank, West Virginia. It was conceived in the late fifties with a goal of reaching 2 cm
as a shortest wavelength. In those days there were relatively few radio astronomers in
the USA and, in particular, those with an engineering background were rare. Conser-
vatism led to the decision to build the telescope with an equatorial mounting, because
there was doubt about analog coordinate converters and the capabilities of computers
to  do  the  necessary  computations  of  coordinate  transformation.  The  result  was  a
protracted  design and  construction process which  ended in 1965 with the dedication
of what became one of the most productive radio telescopes ever built (Fig.1.5). The
interesting story of the "140-ft" has been told, albeit with errors, by Malphrus (1996).
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Fig.1.5.  The  NRAO  !40-ft  telescope.  The  polar  axis  runs  on  hydrostatic  bearings.  The  reflector
structure  and  panels  are  made  from  aluminium.  The  original  prime  focus  geometry  was  converted
to  Cassegrain  and  the  receiver  box  in  the  secondary  focus  protrudes  from  the  vertex  of  the  main
reflector.  (NRAO/AUI/NSF)

  In 1972 the 100-m Effelsberg radio telescope of the Max-Planck-Institut für Radioas-
tronomie came into operation (Hachenberg et al., 1973). This telescope (described in
Ch.7),  and the slightly  larger  Green Bank Telescope (Fig.1.6)  of the National  Radio
Astronomy  Observatory  (put  into  use  in  2001,  see  Jewell  and  Prestage,  2004  and
Lockman, 1998) reach a shortest wavelength of 3 mm with acceptable performance. 

  Special millimeter and submillimeter telescopes have been built since the seventies.
For these to be effective observing tools, it is necessary to locate them on a high and
dry  site,  so  as  to  minimise  the  absorption  of  the  short  wavelength  radiation  by  the
troposphere.  A highly successful  millimeter  telescope is  the 30-m antenna of IRAM
in  southern  Spain  (see  Ch.7),  which  operates  to  a  shortest  wavelength  of  0.8  mm
(Baars  et  al.,  1987).  Special  submillimeter  telescopes  of  10  -  15  m  diameter  reach
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surface  accuracies  of  12  -  25  mm and can  operate  to  frequencies  as  high  as  1  THz.
We discuss the Heinrich Hertz Telescope in Chapter 7 and show here pictures of the
James  Clerk  Maxwell  Telescope  (JCMT)  (Fig.1.7)  and  the  Caltech  Submillimeter
Observatory  (CSO)  (Fig.1.8),  both  sited  at  4000  m  altitude  on  Hawaii.  Both  are
placed in a protective dome, which opens fully for the 10 m diameter CSO, while the
15  m  diameter  JCMT  normally  operates  behind  a  goretex  screen,  which  transmits
most of the submillimeter  wavelength radiation but provides protection against wind
and fast temperature variations. 

Fig.1.6.  The  Green  Bank  Telescope  (GBT)  of  NRAO.  This  "clear  aperture"  antenna  is  an  off-set
piece  of  a  paraboloid  of  100  m  diameter  and  provides  a  very  clean  beam  with  low  far-sidelobes.
Like  the  Effelsberg  antenna  it  uses  a  Gregorian  focus  arrangement  with  elliptical  secondary
reflector.  Prime focus operation  is used for long wavelengths.  (NRAO/AUI/NSF)

  The 12 m diameter antennas of the ALMA Project, described in Chapter 7, however
will operate exposed to the harsh environment at 5000 altitude in the Atacama Desert
of  Northern  Chile.  The  Max-Planck-Institut  für  Radioastronomie  of  Germany  has
adapted  one of the  ALMA prototype  antennas  for  single dish  work and  located it  at
the ALMA site. This antenna is called ALMA Pathfinder Experiment (APEX) and is
shown in Fig.1.9. It has a surface accuracy of 17 mm and a pointing stability of better
than 1 arcsecond (Güsten et al., 2006).

  For the characterisation and calibration of these large reflector antennas, techniques
have  been developed  by  radio-astronomers,  which  use the  existence  of a  number  of
strong  cosmic  radio  sources.  These  methods  have  been  adopted  by  operators  of
satellite ground stations.  The sheer size of  these antennas,  counted in  wavelengths  of
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Fig.1.7.  The 15 m diameter  JCMT on Hawaii.  The protective  goretex  screen has been rolled up,
exposing the reflector.  (Robin Phillips,  courtesy  JCMT, Mauna Kea Observatory,  Hawaii)

Fig.1.8.  The  10  m  diameter  CSO  submillimeter  wavelength  antenna  on  Hawaii.  (Submillimeter
Observatory,  California  Institute  of Technology)
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Fig.1.9.  The  12  m  diameter  APEX  antenna  on  the  ALMA  site  in  Chile,  derived  from  one  of  the
ALMA  prototype  designs.  To  accommodate  large  multi-feed  receivers,  the  antenna  uses  a
Nasmyth  focus  with  two  large  equipment  rooms  at  either  side  of  the  elevation  bearings.  (ESO  /
Max-Planck-Institut  für Radioastronomie)

the received radiation, makes it impossible to measure the far-field characteristics on
a terrestrial measurement range. The techniques of antenna measurement with the aid
of cosmic sources have not been comprehensively  described in the open literature. It
is  the  aim  of  this  book  to  fill  this  gap.  We  limit  ourselves  to  the  case  of  a  single
antenna.  Problems  associated  with  the  operation  and  calibration  of  interferometric
arrays  are  not  treated  here.  For  this  we  refer  the  reader  to  the  excellent  book  by
Thompson, Moran and Swenson (2001). 

  In  the  last  chapter  we  describe  original  design  features  of  a  number  of  important
radio telescopes to illustrate the state of the art.

‡ 1.2. Measuring antenna parameters with cosmic radio sources

The  measurement  of  the  far-field  characteristics  of  large  antennas,  of  a  size  larger
than a thousand  wavelengths,  say, is difficult  for  the simple reason that the required
distance  to  the  test  transmitter  becomes  prohibitively  large.  For  accurate  measure-
ments one wants to avoid corrections for the finite distance to the test source, which
consequently  has  to  be  at  a  distance larger  than  the far-field  distance , defined  as
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Rf = 2 d2 ê l, (1.1)

where d is the diameter of the antenna aperture and l the wavelength. For an antenna
with a diameter of 12 m, operating at a wavelength of 3 mm, we find Rf = 96 km!

  Because the historical development of large reflector antennas has been led by radio
astronomers, it is not surprising that radio astronomers have turned to extraterrestrial
radio sources as test  transmitters  for  the characterisation of their  radio telescopes.  A
cosmic  source  exhibits  a number  of clear  advantages.  It  is  definitely  in the  far-field
and it has a fixed celestial position, which means that it describes  a well determined
diurnal  path  on  the  sky  as  seen  from  the  telescope.  This  enables  immediately  the
measurement  of  any  antenna  parameter  as  function  of  the  elevation  angle.  The
obvious  application  here  is  the  determination  of  the  pointing  model  of  the  antenna,
for  which  a  set  of  radio  sources  with  known  positions  and  distributed  over  the
celestial sphere is required. If we want to use these sources for the characterisation of
the antenna beam parameters, knowledge of the absolute intensity of the source at the
measurement  frequency  is  necessary.  Here we meet  our  first  significant  obstacle:  to
determine  the  absolute  flux  density  of  the  source,  we  need  to  measure  it  with  an
antenna  of  known  gain.  However,  absolute  calibration  of  the gain can  only be done
for  small  antennas  (the  far-field  restriction)  or  by  calculation  on  simple  geometries,
like horns and dipoles. Thus, a signal to noise ratio sufficient for accurate results can
only  be  achieved  with  very  strong  radio  sources.  As  an  example,  we  consider  the
"Little Big Horn" in Green Bank (Findlay et al.,  1965). The LBH has an aperture of
about 5x4 m2 and operates at a frequency of 1400 MHz, where the calculated gain is
34.27  dB,  equivalent  to  an  effective  absorption  area  of  9.76  m2  (Fig.1.10).The  flux
density of Cassiopeia A, the strongest cm-wavelength source in the sky (ignoring the
Sun because of its large angular size of 0.5 degree), is about 2400 Jy (Jansky, 1 Jy =
10-26 W  m-2 Hz-1),  providing  an  antenna  temperature  at  the  output  of  the  LBH  of
approximately  8.5  K. For a  signal-to-noise  ratio,  SNR >  100 we need to restrict  the
receiver noise to < 0.1 K, which leads to a required receiver noise temperature (using
5 MHz bandwidth and 10 sec integration time) of 600 K. These were indeed typical
values  at  the  time  of  the  LBH  measurements.  Note  that  the  LBH  was  by  far  the
biggest horn ever used for this type of work. 

  There  was  however no  other  way to  reliably establish  antenna parameters  of large
telescopes  and  in  the  years  1955-1975  a  number  of  workers  built  absolutely  cali-
brated  small  antennas  and  established  the  absolute  spectra  of  the  strongest  radio
sources over a good part of the electromagnetic spectrum, roughly from 100 MHz to
15  GHz.  An   analysis  of  these  observations  was  carried  out  by  Baars,  Mezger  and
Wendker  (1965).  A  more  definitive  summary  appeared  in  1977  (Baars,  Genzel,
Pauliny-Toth and Witzel, 1977), in which a set of secondary standards, consisting of
weaker but point-like sources was established which became the de facto flux density
scale  for  cm-wavelength  radio  astronomy.  The  very  strong  sources  (Cas  A,  Cyg  A
and Tau A) all have an angular extent which is significant with respect to the beam-
width  of  the  larger  short  wavelength  telescopes,  which  causes  the  need  for  correc-
tions  to  the  measurements.  Because  of  their  point-like  size,  the  secondary  point
sources  on  the  other  hand  can  also  be  used  as  flux  calibrators  for  interferometric
arrays.
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Fig.1.10.  The  25  m  long  "Little  Big  Horn"  at  NRAO,  Green  Bank,  used  for  absolute  flux  density
measurements  of  Cas  A  at  1400  MHz  over  many  years.  The  rotation  of  the  earth  carried  the  source
through the beam once a day. (NRAO/AUI/NSF)

  The strongest sources mentioned above are all non-thermal  radiators  and their flux
density becomes small at high frequencies in the millimeter wavelength range. Also,
with an angular size of several arcminutes,  they become significantly larger than the
average  beamwidth  of  the  newer,  large  mm-telescopes,  which  typically  have  a
beamwidth of less than one arcminute. Fortunately,  there is a small group of objects
which  are  well  suited  for  calibration  purposes  at  the  high  frequencies,  namely  the
planets  and  some  asteroids  (and  to  a  lesser  degree  the  Moon).  There  are  however
significant  complications  in the use of the planets. While distant enough to obey the
far-field  criterion,  they  nevertheless  change  significantly  in  distance  to  the  Earth,
which  causes  a  variable  angular  diameter  and  flux  density.  Fortunately  their  orbits
are  well  known  and  ephemerides  readily  available  to  overcome  this  handicap.
Considerable  effort  has  been  devoted  over  the  last  30  years  to  establish  absolute
brightness  temperatures  of the planets  (Ulich et  al,  1980).  With care, the mm-wave-
length  brightness  temperature  of  most  of  the  planets  can  now  be  predicted  with  an
absolute error of 5 to 10 percent over the entire mm- and submm- wavelength region.
This is less accurate than the strong sources in the cm-range and improvements in the
accuracy would be necessary to achieve, for instance, the calibration goal for ALMA
of five percent in flux density. 

  A considerable part of this book is concerned with the methods for antenna character-
isation  with  the  aid  of  cosmic  sources.  In  addition  to  the  determination  of  the  gain,
we  shall  want  to  measure  the  beam  shape  and  near  sidelobe  level.  In  general,  the
interaction  between  the  beam with  its  angular  structure  and  the  radio  source,  which
normally  will  have  a finite  angular  extent  and perhaps  an irregular  brightness  struc-
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ture  needs  to  concern  us  in  order  to  extract  quantities  intrinsic  to  the  source  under
study. We shall see how observations of sources of varying angular size can provide
valuable  information  about  the  characteristics  of  the  antenna  beam.  Also,  measure-
ments of the gain over a range of frequencies can deliver an estimate of the accuracy
of the shape of the reflector. Thus, while it is essential to know the parameters of the
antenna  to  properly  analyse  the  astronomical  observations,  it  is  the  observation  of
some of these sources which provides us with knowledge of the beam parameters.

  In  Chapter  2  we  present  the  geometry  of  the  paraboloidal  reflector  antenna.  Both
the  general  geometrical  relations  and  the  geometry  of  aberrations  (out  of  focus
situations)  will  be treated.  In  Chapter  3  the basic theory of the paraboloidal  antenna
is  summarised.  The  differences  between  Fraunhofer  and  Fresnel  diffraction  are
described.  We  then turn  to more  practical  applications  of  antenna theory in  Chapter
4,  where  the  major  formulae  for  the  characterisation  of  large  reflector  antennas  are
derived.  This  chapter  contains  a  wealth  of information  in the  form of  graphs,  tables
and formulae, directly usable for the analysis of antenna measurements. In Chapter 5
we discuss  the interaction  between  the  antenna and  the  source.  Here we present  the
methods  and  formulae  for  the  measurement  of  antenna  parameters  with  the  aid  of
cosmic  radio  sources.  Data  on  radio  sources  suitable  for  antenna  measurements  are
summarised. In the sixth chapter we deal with some special aspects. For instance the
holographic  method  of  antenna  surface  measurements  is  treated  there  in  quite  a
detail.  Also  attention  is given  to  the influence  of  the  earth's  atmosphere  and  special
methods  of  observation  are  described,  among  those  the  suppression  of  atmospheric
influences  and  methods  of calibration.  In  the final chapter  we present  short  descrip-
tions  of  the  design  and  performance  features  of  a  number  of  important  radio  tele-
scopes,  highlighting  their  characteristics  as  measured  with  the  methods  described
here.
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2. Geometry of reflector antennas

In this chapter we deal with a description of the geometry of a paraboloid of revolu-
tion.  We  shall  collect  the  geometrical  relationships,  which  we  need  for  the descrip-
tion  of  the  electromagnetic  radiation  characteristics  of  the  paraboloidal  reflector
antenna.  Because  many  radio  telescopes  and  communication  antennas  actually
employ  the  Cassegrain  or  Gregorian  layout,  we  include  the  formulas  for  those
systems  too.  These  are  dual  reflector  systems,  where  a  relatively  small  secondary
reflector,  placed  near  the  focus  of  the  primary  paraboloid  concentrates  the  received
radiation  in  a  secondary  focus,  located  near  or  behind  the  vertex  of  the  primary
reflector.  The  Cassegrain  employs  a  hyperboloidal  secondary,  while  the  Gregorian
system  uses  an  elliptical  secondary  reflector.  One  of  the  foci  of  these  dual-focus
conic  sections  coincides  with  the  focus  of  the  paraboloid,  while  the  other  provides
the  secondary  focus  at  a  convenient  location.  The  great  advantage  from  an  opera-
tional  viewpoint  is  the  possibility  to  locate  bulky  receiving  equipment  behind  the
primary  reflector.  As  we  shall  see  later,  there  are  also  significant  electro-magnetic
advantages of the dual-reflector varieties.

  In  the  second  half  of  this  chapter  we  discuss  the  aspects  of  imperfections  in  the
geometry of the reflector  system.  In particular,  the cases of "defocus" are described,
where  the  detector  element  is  displaced  from the  true  focal  point.  This  leads  to  the
so-called  aberrations  in  the  optical  system.  We  treat  those  by  calculating  the  path-
length differences over the reflector. These are then introduced as phase errors in the
electromagnetic analysis of the antenna in a later chapter.

‡ 2.1. Geometrical relations of the dual reflector system

The  geometrical  definition  of  a  parabola  is  illustrated  in  Fig.  2.1,  where  we  limit
ourselves  to  the  two-dimensional  case.  Consider  a  coordinate  system  (x,  z)  and
choose a point F on the z axis, at a distance f from the origin. Draw a line perpendicu-
lar to the x-axis through F and choose a point Q at coordinate (x, z). The definition of
the parabola is the locus of points P, where the sum of the distance from point P to F
and the distance from P to Q, with PQ parallel  to the z-axis, is constant.  Now assign
Q to F. Then P moves to the origin O and we have "QP" +"PF" = "FO" + "OF" = 2 f.
For arbitrary value x of Q on the line through F we have 

PQ = f - zP  and FP2 = FQ2 + PQ2 = xP
2 + Hf - zP L2 ,

where zp  is the z-coordinate of P.



Fig. 2.1. The geometry  of a parabola  (left) and hyperbola  (right).

The definition of the parabola now results in the following equation

FP + PQ = "##############################xp
2 + H f - zp L2 + f - zp = 2 f ,

from  which  it  is  easy  to  derive  the  defining  equation  for  the  parabola  in  cartesian
coordinates as

x2 = 4 f z .

The definition in spherical coordinates (r, y) is even simpler:

FP + PQ = r + r cos y = 2 f, 

from which follows

r = 2 f ê H1 + cos yL.
  From  the  geometrical  definition  it  is  easy  to  see  the  physical  significance  of  the
parabola. Let a bundle of light rays travel parallel to the z-axis. Upon reflection at the
parabola, each ray will arrive at point F along equal path length and the intensities of
the rays will be added there. The point F is the focus of the parabolic mirror. In terms
of wave fronts we can say that a plane wave, traveling along the z- axis is transferred
upon  reflection  at  the  parabola  into  a  spherical  wave  converging  towards  the  focal
point F and adding the field contributions in phase. Conversely, a source of spherical
waves  in F will  cause  a  plane wave traveling  along the  z-axis after  reflection  at  the
parabola. 

  In  the  Cassegrain  antenna  a  hyperbolic  secondary  reflector  is  used  to  transfer  the
spherical  wave  front  traveling  from  the  parabola  into  another  spherical  wave  front
towards  a  secondary  focus.  The  definition  of  a  hyperbola  is  the  locus  of  points,
where the difference between the distances to two fixed points is constant. From the
geometry of Figure 2.1 we have PF' - PF = constant.  If we put P on the z-axis,  it is
immediately clear that the constant = 2 a.  In  the general  case  of  arbitrary  P we have
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"#########################Hz + cL2 + x2 -
"#########################Hz - cL2 + x2 = 2 a ,

from which we can derive the defining formula for the hyperbola

z2

ÅÅÅÅÅÅÅa2 -
x2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅc2 -a2 = 1.

  It  is  easy  to  see  that  the  pathlength  of  the  rays  to  the  secondary  focus  Fs  in  the
Cassegrain  system  is  constant.  In  the  parabola  the  path  from  the  plane  through  the
focal  point  via  the  reflector  to  the  focus  is  2  f.  It  is  intercepted  by the  hyperbola  at
point P and then directed towards Fs . This subtracts PFp  from the path and adds PFs ;
but  PFs  -  PFp  =  2  a.  Thus  the  path  to  Fs  is  constant,  which  defines  the  secondary
focus.  

  An  occasionally  applied  variation  of  the  dual-reflector  system  is  the  Gregorian
antenna, in which the secondary reflector is a part of an ellipse. An ellipse is defined
as the locus of points,  where the sum of the distance to two fixed points is constant.
The reader can verify that the defining formula for the elliptical reflector in cartesian
coordinates is

z2

ÅÅÅÅÅÅÅa2 + x2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅc2 -a2 = 1 .

Fig.  2.2. Geometry  of the Cassegrain  reflector  antenna

  We  turn  now to  the  discussion  of  the  three  dimensional  paraboloid  of  revolution.
The  geometry  is  illustrated  in  Fig.  2.2.  The  finite  paraboloid  of  revolution  with
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surface S, diameter dP  and aperture area A has its focal point Fp  at the origin of the
cartesian coordinate system and its axis along the z-axis.  We denote the focal length
by f .  A point Q on the surface  of the paraboloid  (source point)  is determined by its
spherical coordinates (r, y, c). Later we shall also need a point of observation ("field
point") P, which we denote by spherical coordinates (R, q, f). The relations between
the unit  vectors  in these spherical  coordinates  and the right-handed cartesian  system
(x, y, z), centred at Fp  can be written as

8 iHR, q, fL < = A 8 iHx, y, zL <             (2.1)

and 8 iHr, y, cL < = B 8 iHx, y, zL <,             (2.2)

where the matrix A reads

A =
i
k
jjjjjjj

sin q cos f

cos q cos f

-sin f

   

sin q sin f

cos q sin f

cos f

cos q

-sin q

0

y
{
zzzzzzz             (2.3)

  The  matrix  B  has  the  same form  with  q  and  f  replaced  by  y  and  c,  respectively.
Conversely,  the unit vectors  in the system (x, y, z) are obtained by multiplication of
the spherical unit vectors by the transposed matrix Ã or B

è
. In the notation of Mathe-

matica these relations are written as follows:

A = 88Sin@qD Cos@fD, Sin@qD Sin@fD, Cos@qD<,8Cos@qD Cos@fD, Cos@qD Sin@fD, -Sin@qD<,8-Sin@fD, Cos@fD, 0<<;
i = 8x, y, z<;
A.i
Transpose@AD êê MatrixForm

8z Cos@qD + x Cos@fD Sin@qD + y Sin@qD Sin@fD,
x Cos@qD Cos@fD - z Sin@qD + y Cos@qD Sin@fD,
y Cos@fD - x Sin@fD<

i

k

jjjjjjj
Cos@fD Sin@qD Cos@qD Cos@fD -Sin@fD
Sin@qD Sin@fD Cos@qD Sin@fD Cos@fD
Cos@qD -Sin@qD 0

y

{

zzzzzzz

The results (output) are the product  of Eq. (2.1) and the transposed matrix of matrix
A, respectively.

  The equation of the paraboloid is
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a) in spherical coordinates r = 2 f ê H1 + cos yL = f sec2 Hy ê2L             (2.4)

b) in cartesian coordinates r2 = x2 + y2 = 4 f H f + zL             (2.5)

c) in parabolic coordinates r = 1ÅÅÅÅ2 Hu2 + v2 L ,             (2.6)

where the paraboloidal coordinates (u, v, c) are connected to the cartesian ones by 

x = u v cos c, y = u v sin c, z = 1ÅÅÅÅ2 Hu2 - v2 L,
and c is the azimuthal angle about the z-axis.

In this coordinate system the paraboloid's surface is described by u = constant (or v =
constant).  At  the  vertex  V we  have v  =  0,  hence z = 1ÅÅÅÅ2 u2 = f  and  thus  u =

è!!!!!!!
2 f .

Also dr = v d v for u = constant. The infinitesimal surface element is

  dS =
è!!!!!!!!!!!!!!!!!

u2 + v2 u v d v d c = 2
è!!!!!!!

f r d r d c = 2 cosH yÅÅÅÅÅ2 L r d r d c,         (2.7)

where we have used Eq. (2.4). On eliminating r we obtain for the surface element

d S = 2 f 2 sinHyê2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅcos4 Hyê2L d y d c                        (2.8)

              

and the surface  of the paraboloid  with aperture half-angle  Y0  follows as the integral
of Eq. (2.8)

S =
8 pÅÅÅÅÅÅÅÅ3 f 2 A sec3 I Y0ÅÅÅÅÅÅÅÅÅ2 M - 1E =

8 pÅÅÅÅÅÅÅÅ3 f 2 A91 + I dPÅÅÅÅÅÅÅÅÅ4 f M2= 3ÅÅÅÅ2
- 1E.           (2.9)

Here we have used the alternative expression

tanHy ê 2L = r ê 2 f ,   Hr2 = x2 + y2 L,             (2.10a)

which is easy to derive from Eq. (2.4), considering  that sin y = r /  r. From this also
follows  
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tan I Y0ÅÅÅÅÅÅÅ2 M =
dPÅÅÅÅÅÅÅÅ4 f .              (2.10b)

The  angle  Y0 is  called  the  "aperture  (half-)angle"  of  the  paraboloid,  i.e.  the  angle
between  the  axis  and  the  "edge-ray"  from  FP .  The  "depth"  D  of  the  paraboloid  is
given by

D = dP
2

ÅÅÅÅÅÅÅÅÅÅÅ
16 f = f I dPÅÅÅÅÅÅÅÅÅ

4 f M2 = f Itan Y0ÅÅÅÅÅÅÅÅÅ2 M2 .                      (2.11)

  The following relations also hold

sin y =
rê fÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

1 + Hrê2 f L2 ,            (2.12)

and

cos y =
Hrê2 f L2 -1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHrê2 f L2 +1

.            (2.13)

  The formulas for the secondary reflectors in spherical coordinates are

hyperboloid (Cassegrain)     rs = Hc2 - a2 L ê Ha + c cos yL                          (2.14)

ellipsoid (Gregorian)         rs = Hc2 - a2 L ê Hc - a cos yL            (2.15)

where c and a are the usual parameters describing the conic sections (see above).

  The Cassegrain  system is characterised  by the magnification  factor m,  connected
to the eccentricity e = c êa  of the hyperboloidal secondary by the relations

m = He + 1L ê He - 1L             (2.16a)

or, equivalently,        

e = Hm + 1L ê Hm - 1L            (2.16b)

The "equivalent paraboloid" of the Cassegrain antenna is given by

tan
fÅÅÅÅÅ2 =

rÅÅÅÅÅÅÅÅÅÅÅÅÅ2 m f
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from which follows

tan
F0ÅÅÅÅÅÅÅÅ2 =

dpÅÅÅÅÅÅÅÅÅÅÅÅÅ4 m f  ,                         (2.17)

where  F0  is  the  opening  half-angle  of  the  secondary  reflector  seen  from the  Casse-
grain focus. Hence we have

m = tan I Y0ÅÅÅÅÅÅÅÅÅ2 M ë tan I F0ÅÅÅÅÅÅÅÅÅ2 M            (2.18)

Further

c = dsÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4
Hcot Y0 + cot F0 L,                      (2.19)

where  c  is  the  "focal  length"  and  ds  the  diameter  of  the  hyperboloid.  The  distance
between  primary  and  secondary  focus  of  the  Cassegrain  system  is  fc = 2 c  and  the
distance  from  primary  focus  to  secondary  vertex  is  l = c - a  (see  Fig.  2.1).  The
following relations hold

fc = 2 c            (2.20a)

l ª c - a = c He - 1L ê e                        (2.20b)

a = c ê e = c Hm - 1L ê Hm + 1L                        (2.20c)

In  the  special  case  where  the  secondary  focus  coincides  with  the  vertex  of  the
primary reflector (i.e. fc = f ), we have the situation that Eq. (2.17) can be written as
tan HF0 ê2L = ds ê4 f , leading to the simple expression m = dp ê ds .

            Table 2.1. Geometry of the ALMA antenna
                                             

Parameter Symbol Magnitude
Prime reflector diam. dp 12 m

Primary focal length fp 4.8 m

Primary focal ratio fp ê dp 0.4

Second reflector diam ds 0.75 m
Cassegrain focal ratio fs 8.0

Cass magnificaion m 20
Distance between foci fc 6.177 m
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  Throughout this text, we shall illustrate the discussion with numerical examples. As
the  basic  antenna  for  these  we  take  the  element  antenna  of  the  Atacama  Large
Millimeter  Array  (ALMA).  The  basic  geometrical  parameters  of  this  Cassegrain
antenna are assembled in Table 2.1. 

‡ 2.2. Geometry of aberrations

For an optimal performance of the antenna, it is important that the system is properly
focussed.  For  a  prime  focus  reflector  this  means  localizing  the  phase  center  of  the
feed in the focus of the primary paraboloid.  In a Cassegrain system, the most impor-
tant  criterion  is  the  coincidence  of  one  of  the  foci  of  the  hyperboloidal  secondary
reflector  with  the  primary  focus  of  the  paraboloid.  The  location  of  the  feed  in  the
secondary  focus  is  far  less  critical,  as  we  shall  show  below.  In  this  section  we
develop the geometrical formulae, which describe an axial or lateral defocus, that is a
deviation  of  the  feed  or  secondary  reflector  from  the  focal  point  along  the  axis  of
symmetry or perpendicularly to it. Later we shall use these to calculate the effects of
defocus on the beam characteristics and the pointing of the antenna. 

  The  general  case  of  an  arbitrary  shift  of  the  feed from the true  focal  position  (the
defocus d) can be separated in two components: a shift along the reflector axis (axial
defocus) da  and one perpendicular to the axis (lateral defocus) dl . We call y the angle
between the reflector axis and a ray from the focus to a point at the surface at radius
r.  We  now want  to  calculate  the  path-length  difference  between  such  a  ray  and  the
central,  on  axis,  ray  for  both  lateral  and  axial  defocus.  We can  then incorporate  the
resulting phase error function in the basic radiation integral to calculate the radiation
pattern and beam parameters of the defocused system. It is obvious that axial defocus-
ing will cause a pathlength error which is independent of the azimuthal coordinate c
of the reflector aperture,  while the pathlength due to lateral defocus in the azimuthal
plane c = c0  will be proportional  to cos Hc - c0 L.  In most of what follows we shall
assume that the defocus  is small  with respect to the focal  length of the reflector,  i.e.
d ê f << 1, so that normally we can neglect terms of order Hd ê f L2  and higher. 

2.2.1. Lateral defocus

We  treat  first  the  case  of  a  lateral  defocus  of  the  feed,  or  the  secondary  reflector,
from the focal point. The situation is illustrated in Fig. 2.3; the defocus is denoted d,
omitting the subscript  for lateral.  Remember that the pathlength error will be depen-
dent on the azimuthal aperture coordinate c and we assume that the feed is moved in
the  plane  where  c0 = 0.  We  shall  derive  below  the  full  pathlength  error,  but  later
concentrate  our  calculations  of  the  beam  characteristics  in  the  plane  of  defocus,
where  the  effects  are  of  course  most  pronounced.  Applying  the  cosine  rule  to  the
triangle PFF', where P is a point on the reflector surface at radius r and the angle PFF'
= p/2 - y, we have

r '2 = r2 + d2 - 2 d r sin y cos c,
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Fig.  2.3. The geometry  of the lateral defocus in the plane of feed translation.  

and  using  the  series  development  for  the  square  root   
è!!!!!!!!!!!!!!H1 + xL = 1 + xÅÅÅÅ2 - x2

ÅÅÅÅÅÅÅ8 +....,
we obtain

r ' = r J1 -
dÅÅÅÅÅr sin y cos c +

d2

ÅÅÅÅÅÅÅÅÅÅ2 r2 -
d2

ÅÅÅÅÅÅÅÅÅÅ2 r2 sin2  y cos2  cN ,

where  we  ignore  terms  of  order  higher  than  Hd ê rL2 .  Thus  the  pathlength  difference
Dl  is

Dl = r ' - r = - d sin y cos c + d2
ÅÅÅÅÅÅÅÅÅ2 r - d2

ÅÅÅÅÅÅÅÅÅ2 r sin2  y cos2 c .             (2.21)

  Using several of the formulae for the description of the parabola in Section 2.1, we
can eliminate both r and y from Eq. (2.21) to obtain the pathlength error DL  over the
aperture as function of r, resulting from a lateral defocus d in the plane c=0,

       Dl = - dÅÅÅÅÅf r cos c + dÅÅÅÅÅÅÅÅÅÅÅÅÅ4 f 3 r3 cos c - d2
ÅÅÅÅÅÅÅÅÅÅÅÅÅ8 f 3 r2 - d2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 f 3 r2 cos2  c + d2

ÅÅÅÅÅÅÅÅÅÅ2 f .    (2.22)

The terms  in this  equation  represent  some of  the  well  known aberrations  in  optical
instrument  theory  (see  e.g.  Born  &  Wolf,  1980).  The  first  term  is  the  distortion,
which radio engineers call beam tilt or squint. It causes a shift of the beam maximum
to an off-axis angle without disturbing the beam shape. The second term is the coma
effect,  also  linear  in  d  but  proportional  to  r3 .  It  causes  a  beam shift  in  the  opposite
direction by a smaller  amount than the first  term and moreover introduces  an asym-
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metric  beam distortion  with a  strong sidelobe on  one side,  the coma lobe.  The third
term is the  field curvature, quadratic  in r and  independent  of c. It  is reminiscent  of
an  axial  defocus,  but  the  term's  influence  is  not  identical  to  that,  because  it  is  of
second  order  in  d  and  inversely  proportional  to  f 3  instead  of  f 2 (see  below).  The
fourth  term  is  called  astigmatism,  characterised  by  features  in  the  beam  which  are
four-fold  over  the  aperture.  Astigmatism  is  sometimes  an  important  aberration  and
we  shall  give  it  some  attention  later.  Finally,  the  last  term  is  independent  of  the
integration  variable  and  can  be  dropped.  For  a  full  description  of  these  aberrations,
together with pictorial  illustrations,  we refer to the standard work by Born and Wolf
(1980, Ch. 5 and 9).

  It is useful to return shortly to the field curvature term. It essentially reflects the fact
that  the  surface  in  the  focal  region  on  which  the  image  is  most  sharp  (to  borrow  a
term from optics) is not flat but curved. This surface is known as the Petzval surface,
who derived the radius of this surface (see Born & Wolf, 1980, Ch. 5.5.3).  Thus the
optimum location  of  a  laterally  displaced  feed will  involve  a  correction  to the  axial
position.  Ruze  (1965)  gives  the  following  corrective  formula  for  the  axial  feed
displacement  da  needed  to  place  a  laterally  displaced  feed  (by  dl )  on  the  Petzval
surface:

da = dl
2 ê 2 f .

Thus the optimum locus of an off-axis feed lies on a paraboloid with a "focal length"
half of that  of the main reflector  and  the off-axis feed must  be moved slightly  away
from the paraboloid's vertex.

  Returning to the discussion of pathlength error, we note that the pathlength error of
the  central  ray  is   r ' - r = d2 ê Hr ' + rL º d2 ê 2 r ,  which  is  equal  to  the  second
term in Eq.  (2.21).  Thus the phase  error  over the aperture,  being proportional  to the
difference  of  the  pathlength  r'(r)  and  r'(0),  is  normally  approximated  by  the  first
term of Eq. (2.21) only. From the geometry relations we obtain

sin y =
rÅÅÅÅÅ
r

=
rÅÅÅÅÅÅÅÅ

2 f H1 - cos yL =
rÅÅÅÅÅf J 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

1+tan2 Hyê2L N =
rÅÅÅÅÅf J 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

1+Hrê2 f L2 N .

As  we  assume  that  Hd ê f L  << 1,  the  terms  in  d2  and  higher  can  safely  be  neglected
and we are left with a practical formula for the pathlength error due to lateral defocus
of the form

Dl = d
rÅÅÅÅf I 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

1+Hrê2 f L2 M cos c             (2.23)

  This  function  is  illustrated  in  Fig.  2.4 for  the  geometry  of  the  earlier
example (Table 2.1). We see that the error steadily increases from the center to reach
a value almost as much as the lateral defocus at the edge of the reflector. It is easy to
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see  that  for  a  deep reflector  with  f ê d = 0.25, where  the focus  lies  in the  aperture
plane, the pathlength difference towards the edge is just equal to the defocus. 
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Fig. 2.4. Pathlength  error  in mm for 1 mm lateral  defocus  as function  of  aperture  radius  in m for
a reflector  with a focal ratio of 0.4.

  To check the accuracy  of the approximations  in the  above analysis,  we can obtain
exact expressions  for r' and r by applying Pythagoras'  Law to the pertinent triangles
in  Fig.  2.3  and  calculating  the  difference  in  Mathematica,  as  shown  in  Fig.  2.5

 The difference is very small; for a defocus of 3 mm the error in Eq. (2.23)
is less than 1 mm!
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Fig.  2.5.  Difference  in the  pathlength  error  between  an exact  calculation  and  the  approximation
of  Eq. (2.23).  For a defocus of 3 mm, the difference is less than one micrometer.
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2.2.2. Axial defocus

We turn now to a discussion of axial defocus  in a prime focus situation,  depicted in
Fig. 2.6. The defocus is denoted by d (omitting the subscript for axial), assumed to be
small  with  respect  to  the  focal  length,  and  we  calculate  the  path-length  difference
from  the  defocused  feed  to  the  aperture  plane  between  the  on  axis  ray  and  the  ray
leaving the feed at an angle y  with respect to the paraboloid's  axis. Clearly the path
length  change  of  the  central  ray  in  the  defocused  case  is  d.  Using  the  geometrical
relations  for  the  parabola  of  Section  2.1,  the  path-length  from F to V and  thence  to
the aperture plane at a radius r is found to be

rc = f + zHrL = f + r2
ÅÅÅÅÅÅÅÅÅÅ4 f = f I1 + tan2 I y

ÅÅÅÅÅÅ2 MM.
From F to a point P on the reflector we have the relation

r = 2 fÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1+cos yL = f I 1+cos yÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1+cos y
+ 1-cos yÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1+cos y

M = f I1 + tan2I yÅÅÅÅÅ2 MM,             (2.24)

which  is  identical  to  the  value  for  the  central  ray,  as  the  geometry  of  the  parabola
requires.  Depending  on  the  simplifications  and  approximations  we  allow  in  the
derivation,  we  find  slightly  different  representations  for  the  path  difference.  We
compare these now.

Fig. 2.6. Illustration  of the geometry  of the axial  defocus
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i).  Assuming that  cos  y  changes  insignificantly  with the focus  shift,  we find for  the
defocused ray  r ' º 2 H f + dL ê H1 + cos yL, leading to a path difference of

r ' - r º 2 d ê H1 + cos yL.
Note  that  upon  reflection  both  rays  travel  to  the  aperture  of  the  antenna  essentially
parallel  and  we  ignore  the  small  length  difference  over  that  path.  The  phase  error
over  the  aperture  is proportional  to  the  difference  in the pathlength  change  between
any  ray  to  a  radius  r  and  the  central  ray.  Using  several  of  the  earlier  geometric
formulations  for  the  paraboloid,  we  find  for  the  pathlength  difference  Da  over  the
aperture, caused by an axial defocus d

Da HrL = d J 2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1+cos y
- 1N = d

1 - cos yÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1 + cos y
= d tan2 H yÅÅÅÅÅ2 L = d I rÅÅÅÅÅÅÅÅÅÅ2 f M2              (2.25)  

We see that, subject to the assumption that cos y changes insignificantly between the
focused  and  defocused  situation,  the phase  error  due to axial  defocusing  is a simple
quadratic function in the radial aperture coordinate r. The maximum error at the edge
of the aperture with diameter d is thus 

Da = d I dÅÅÅÅÅÅÅÅ4 f M2 = d tan2 I y0ÅÅÅÅÅÅÅ2 M             (2.26)  

ii).   As  an  alternative,  better  approximation  we  can  apply  the  cosine-rule  to  the
triangle FPF'. We have

r '2 = r2 + d2 - 2 r d cosHp - yL = r2 + d2 + 2 r d cos y,

from which we obtain the path length change of the ray to P

r ' - r =
2 r d cos y + d2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r' + r

º d cos y +
d2

ÅÅÅÅÅÅÅÅ2 r º d cos y            (2.27)

and hence the path error over the aperture is given by

 Da HrL = d H cos y - 1L = -d
2 tan2 yÅÅÅÅÅ2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1+tan2 yÅÅÅÅÅ2

= - 2 d
I rÅÅÅÅÅÅÅÅ2 f M2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

1 + I rÅÅÅÅÅÅÅÅ2 f M2 .          (2.28)
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This  result  is  obtained  by  ignoring  the  term  in  d2 ,  assuming  r'+r  =  2  r  and  using
Eq. (2.10a).

iii)  If  we  apply  Pythagoras'  law  to  the  triangles  from  F  and  F'  to  P,  we  obtain  the
following result 

Da HrL = $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%9r2 + I f - r2
ÅÅÅÅÅÅÅÅÅ4 f + dM2= - 9 f + r2

ÅÅÅÅÅÅÅÅÅ4 f + d=.            (2.29)

Expansion of Eq. (2.29), calling the last term in curly brackets a, leads to:

Da HrL = $%%%%%%%%%%%%%%%%%%%%a2 -
d r2
ÅÅÅÅÅÅÅÅÅf - a º a J1 -

d r2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 f a2 N - a =

- d r2

ÅÅÅÅÅÅÅÅÅÅÅÅ2 f a = - d r2

ÅÅÅÅÅÅÅÅÅ2 f
1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

f +
r2

ÅÅÅÅÅÅÅÅ4 f +d
º -2 d

I rÅÅÅÅÅÅÅÅÅ2 f M2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1+I rÅÅÅÅÅÅÅÅÅÅ2 f M2 .

In the last approximation we have retained the first two terms in the series expansion
of the square root term and ignored the d in the numerator of the second but last term.
The result thus obtained is identical to Eq. (2.28).

  The behaviour  of  Eqs.  (2.25),  (2.28)  and (2.29)  is illustrated in Fig.  2.7  
where  we  show  the  pathlength  difference  as  function  of  aperture  radius  for  an
antenna with focal ratio 0.4 and a defocus of 1 mm. 

  The  approximation  of  Eq.  (2.28)  is  essentially  indistinguishable  from  the  exact
result of Eq. (2.29) and hence is to be preferred over the approximation of Eq. (2.25).
The  difference  between  these  solutions  reaches  only  1  mm  for  a  defocus  of  4  mm.
Thus for all purposes Eq. (2.28) represents the path error adequately. If we adjust the
maximum  phase  error  at  the  aperture  edge  in  Eq.  (2.25)  from  tan2 H y0ÅÅÅÅÅÅÅ2 L  to
(1 - cos y0 ),  as  given  in  Eq.  (2.28),  and  just  maintain  the  single  quadratic  depen-
dence on r of Eq. (2.25), we find that this curve is reasonably close to the exact one
and will often be acceptable for practical values of d.

  The discussion  has  dealt  with the movement  of the feed near  the primary focus of
the paraboloidal reflector. It is valid without any change for axial defocus of the feed
in  the  secondary  focus  of  a  Cassegrain  reflector  configuration.  We  only  have  to
consider the equivalent primary-fed paraboloid with a focal length of m times that of
the real primary, where m is the magnification factor of the Cassegrain system, given
by the expressions of Eq. (2.16) or (2.18). Also, it should be mentioned that an axial
shift  of  the secondary  reflector  ds  from the  primary focus  causes a  phase  error  over
the primary reflector as with a primary feed plus a small phase error over the second-
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ary  from  its  displacement  with  respect  to  the  feed.  We  will  discuss  these  aspects
further in Section 4.3.3.
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Fig.  2.7.  Top:  pathlength  difference  in  mm  from  Eq.  (2.29)-red,  Eq.  (2.28)-blue  and  Eq.
(2.25)-magenta,  as function  of aperture  radius  for an axial  defocus  of  1 mm. The green  curve is
Eq.  (2.25)  but adjusted  to the  correct  maximum  path  error  at  the aperture  edge  (see text).  Note
that  the  dashed  blue  curve  effectively  suppresses  the  exact  red  curve,  showing  their  near
identity.  This  is  shown  in  the  bottom  plot  of  the  difference  between  the  red and  blue  curve  with
the vertical scale in micrometers.

  This  concludes  the  description  of  the  geometry  of  the  paraboloidal  reflector
antenna.  In  the  following  chapters  we  shall  treat  the  electromagnetic  characteristics
of such antennas. This will include the calculation of the influence of defocus on the
radiation  pattern,  for  which  the  equations  derived  here  will  be  needed.  As we  shall
see,  any  defocus  quickly  deteriorates  the  beam  pattern  and  being  able  to  determine
the correct focus is of great practical importance.
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‡ 2.3. The Mathematica Routines

This section contains  the Mathematica routines used in the text of this chapter. They
have been numbered  in the text and are identified by the same number in the
first line of the expression.

dp = 12.0; f = 4.8; m = 20.; ds = 0.75;
Y0 = 2 ArcTan@dp ê H4 fLD H180 ê pL
F0 = 2 ArcTan@dp ê H4 m fLD H180 ê pL
e = Hm + 1L êHm - 1L
m = He + 1L êHe - 1L
fc = Hds ê 2L HCot@Y0 p ê 180D + Cot@F0 p ê 180DL
l = fc He - 1L ê 2 e

f = 4.8; c = 0; d = 0.001;
dl = Hd r ê fL ê H1 + Hr ê H2 fLL^2L;
Plot@1000 dl, 8r, 0, 6<, PlotRange Ø 80, 1<,
Frame Ø True, GridLines Ø Automatic,
FrameLabel Ø 8 "Radius HmL", "Pathlength HmmL"<D

f = 4.8; d = 0.003;
rd = Sqrt@Hr - dL^2 + Hf - r^2 ê H4 fLL^2D; HdefocusL;
ro = Sqrt@r^2 + Hf - r^2 ê H4 fLL^2D; Hin focusL;
dl = Hd r ê fL ê H1 + Hr ê H2 fLL^2L; HEq .2 .23L;
Plot@810^6 Hdl - Hro - rdLL<,8r, 0, 6<, PlotRange Ø 80, 1<,
Frame Ø True, GridLines Ø Automatic,
FrameLabel Ø 8 "Radius HmL", "Pathlength HmmL"<D
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Mat .2 .1 - ALMA antenna geometry;

Mat .2 .2 - lateral defocus pathlength error;

Mat .2 .3 - Exact vs approx path error;



f = 4.8; d = .001;

dl = -1000
i
k
jjjjjSqrtAr2 +

i
kjjjjf -

r2
ÅÅÅÅÅÅÅÅ
4 f

+ d
y
{zzzz
2E -

i
kjjjjf +

r2
ÅÅÅÅÅÅÅÅ
4 f

+ d
y
{zzzz
y
{
zzzzz;

dm = 1000 d 2 J r
ÅÅÅÅÅÅÅÅ
2 f

N2 ì ikjjj1 + J r
ÅÅÅÅÅÅÅÅ
2 f

N2y{zzz;
db = 1422 d

r2
ÅÅÅÅÅÅÅÅÅÅÅ
4 f2

;

db1 = 1000 d
r2

ÅÅÅÅÅÅÅÅÅÅÅ
4 f2

;

Plot@8 dl, db, dm, db1<, 8r, 0, 6<,
Frame -> True, GridLines -> Automatic,
PlotStyle -> 88RGBColor@1, 0, 0D<, 8RGBColor@0, 1, 0D<,8Dashing@80.05, 0.05<D, RGBColor@0, 0, 1D<,8RGBColor@1, 0, 1D<<, FrameLabel ->8"aperture radius HmL", "pathlength diff. HmmL"<D

Plot@1000 8 dm - dl<, 8r, 0, 6<, Frame -> True,
GridLines -> Automatic, FrameLabel ->8"aperture radius HmL", "pathlength diff. HmmL"<D
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3. Electromagnetic  theory of the reflector antenna

In this chapter we develop the general theory of the reflector antenna with a primary
source  of  radiation  (the  "feed")  in  the  focal  point.  We  will  not  attempt  to  present  a
full  rigorous  theory  of  the  radiation  characteristics  over  the  entire  space  around  the
antenna.  Rather  our  primary  interest  is  to  find  a  representation  of  the  radiation
pattern in a limited solid angle around the boresight axis with a sufficient accuracy to
reliably  derive  the  important  antenna  parameters,  as  gain,  sidelobe  level,  beam
efficiency, etc. We include the influence of the finite distance of the field-point from
the antenna. Thus we describe the radiation function both in the Fraunhofer (farfield)
region at infinite distance,  as well as in the Fresnel  region, where the distance to the
field point is finite.

  We depart from Maxwell's  equations  and  derive  the wave equation which  governs
the fields radiated from a distribution of electric currents and charges in a volume of
space bounded  by a  closed surface.  We  apply this  to the  case  of a reflector  antenna
fed by a plane wave source in the focal point. The field from the feed induces surface
currents  on  the  reflector  surface,  which  in  turn  are  the  sources  of  electro-magnetic
radiation. The field strength in a point P of space, outside the antenna, is found from
an integration  of the  currents  on the illuminated  reflector  surface.  Some approxima-
tions  are introduced in this  procedure.  These lead to a representation  of the radiated
field as an integration of the field projected from the surface onto the aperture plane
of the reflector; the so-called Kirchhoff-Helmholtz aperture integration. This approxi-
mation  is  sufficiently  accurate  for  most  applications  in  the  area  of  large  antennas,
reckoned  in  terms  of  the  wavelength  used.  The  aperture  integration  is  applied  to  a
circular  aperture  and  we  obtain  the  radiation  characteristics  for  field  points  both  in
the Fraunhofer  and  Fresnel  regions of the  antenna.  The detailed discussion  of these,
including  the  effects  of  aberrations  is  reserved  for  the  following  chapter.  We  con-
clude this chapter with a short discussion of the interesting fact that the aperture field
and the farfield are related by a Fourier Transformation. From a reciprocity relation it
can also be derived that the spatial  field distribution in the focal plane is identical to
the field distribution in the farfield.

‡ 3.1. Basic theory - Maxwell's equations

The  description  of  any  electromagnetic  phenomenon  must  of  course  start  with
obeying  the  electromagnetic  field  equations  of  Maxwell.  For  a  homogeneous,
isotropic and linear medium, outside of the sources, these take the form



“ H - e
EÅÅÅÅÅÅÅt = j, “ ÿ E = r ê e             (3.1)

“ E + m 
HÅÅÅÅÅÅÅÅt = 0, “ ÿ H = 0

Here  H  and  E  denote  the  magnetic  and  electric  field  strength,  respectively,  j  is  the
electric current density, r the electric charge density, while e and m are the permittiv-
ity  and  permeability  of  the  medium.  Upon  introduction  of  the  vector  potential  A,
defined  by  H =

1ÅÅÅÅÅ
m

“ A,  one  can  easily  show  that  A  can  be  made  subject  to  the

following wave equation

D A -
1ÅÅÅÅÅÅc2

2 AÅÅÅÅÅÅÅÅÅÅÅt2 = - m j.             (3.2)

As usual, we assume harmonic time dependence of the fields, written as exp(-i w  t),
which reduces the time dependent members of Eq. (3.1) to 

“ H  + i w e E  = j    and        “ ¥ E  - i w m H  = 0.             (3.3)

Introducing the wave number k with k2 = w2 e m, the wave equation now becomes 

D A + k2 A = - mj .             (3.4)

A solution of Eq. (3.4) is

A =
m

ÅÅÅÅÅÅÅÅ
4 p ŸV

j Y „ V ,               (3.5)

where Y = exp Hi k rL ê r is the so-called Green function and the integration is carried
out  over the  volume containing  all  current  sources.   Let  us  now  divide  space  into a
volume V1 , containing all sources and enclosed by a surface S, and an open, source-
free  volume in  which  the point  of observation  P, in which  the  field has  to be deter-
mined,  is  located.  It  can  be  shown (e.g.  Sommerfeld  1964,  §  46)  that  the  field  in  P
can  be  found  from  an  integration  of  the  source-field  values  E0  and  H0  over  the
volume V1 .

The magnetic field H in point P follows from the definition of A and Eq. (3.5) 
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H =
1ÅÅÅÅÅÅÅÅ4 p

“ Ÿ
V1

j Y „ V ,             (3.6)

where  the nabla  operator  applies  to  the coordinates  of P.  Substitution  of  the current
density  by  an expression  derived from Eq.  (3.3)  with source  field  quantities  E0  and
H0 , and carrying out the vector operations on these fields, yields the following form
for the magnetic field in point P (Schouten and de Hoop, 1952):

H =
1ÅÅÅÅÅÅÅÅ4 p

“ Ÿ
V1

@“0 HY H0 LD „ V +
1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 p i w m

“ “ Ÿ
V1

@“0 HY E0 LD „ V .

            (3.7)        

The  symbol  “0  operates  on  points  within  the  source  region  V1 .  By  application  of
Gauss' theorem we can transform the expression to surface integrals:

H =
-1ÅÅÅÅÅÅÅÅ4 p “ Ÿ

S
@ n HY HS LD „ S -

1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 p i w m “ “ Ÿ
S
@n HY ES LD „ S,

where n is the unit normal to S pointing towards open space. Our point P will always
be  outside  S  and  hence  we  can  move  the  nabla  operators  under  the  integral  sign.
Because “ operates on the coordinates of P only, we can write 

“ @Y Hn HS LD = -Hn HS L “ Y     and

“ “ @Y Hn ES LD = @Hn ES L ÿ “D “ Y + k2 Hn ES L Y,

where we use Eq. (3.4) and the relation, valid for any vector a,

“ “ a = “ H“ ÿ aL - Da .

We  assume  that  the  medium  outside  S  is  a  vacuum,  where  k = w
è!!!!!!!!!!!

m0  e0 = 2 p êl.
Thus we obtain

HP =
1ÅÅÅÅÅÅÅÅ4 p Ÿ

S
9Hn HS L “ Y + i w e0 Hn ES L Y -

1ÅÅÅÅÅÅÅÅÅÅÅÅÅi w m0
@Hn ES L ÿ “D “Y=   „ S .

            (3.8)
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This  result  indicates  that  the  field  at  any  point  P  outside  the  region  with  sources
bounded  by  the  surface  S  can  be  found  from a  knowledge  of  the  electric  and  mag-
netic fieldstrength over the surface S. Thus Eq. (3.8) can be considered as a represen-
tation of the electromagnetic "Huygens'  Principle" (e.g.  Baker and Copson, 1939).  It
can be shown (Fradin,  1961)  that  Eq.  (3.8)  yields  correct  results  if  the  source fields
vanish over  part  of S and  the integration  is  performed over an open surface  such as
the  aperture  of  a  reflector  antenna.  Also,  by  a  laborious  derivation  (see  e.g.  Fradin,
1961, p.66ff), the following equivalent expression to Eq. (3.8) can be found

HP
1ÅÅÅÅÅÅÅÅ4 p Ÿ

S
JHS

YÅÅÅÅÅÅÅn - Y 
HSÅÅÅÅÅÅÅÅÅÅn N „ S +

1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 p i w m Ÿ
L

“Y ES ÿ „ l -

1ÅÅÅÅÅÅÅÅ4 p Ÿ
L

Y @HS „ lD ,

           (3.9) 

where  the  path  of  the  line  integrals  is  the  closed  edge  of  the  open  surface  S.  For  a
closed surface  S the line integrals vanish and the relation reduces to the well-known
Kirchhoff - Helmholtz equation. We shall return to this equation below. First we turn
to a calculation of the current density on the surface of the reflector resulting from a
primary source.

‡ 3.2. The primary source and surface current density

Several choices are possible  for the primary source. We shall limit ourselves here to
the  most  widely  used  feed  for  a  reflector  antenna,  viz  a  pyramidal  or  conical
waveguide horn. We approximate the field in the horn aperture by a plane wave with
H-polarisation  along  the  y-axis,  say.  Starting  with  Eq.  (3.8)  we  can  calculate  the
magnetic  field  strength  near  the  surface  of  the  reflector  by  integrating  the  field
distribution  of the feed over its  aperture area.  In all practical  cases the reflector  will
be in the farfield region of the feed which allows for some simplification of Eq. (3.8).
Without  writing  down  the  entire  analysis  we  present  here  the  result.  The  field  in  a
point Q near the reflector surface due to a primary feed in the origin which transmits
a plane wave of strength HS  can be written as

HQ Hr, y, cL =
-iÅÅÅÅÅÅÅÅ2 l

expHi k rLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r

FHy, cL H1 + cos yL Hiy cos c + ic sin cL.    (3.10)

See  Fig.  3.1  below  for  the  meaning  of  the  geometry.  We  call  the  function  FHy, cL
the "feed pattern" or "illumination function" and it is given by 

FHy, cL = ŸSf
HS Hx, yL exp 8-i k sin y Hx cos c + y sin cL< „ x „ y,                  (3.11)
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where the integration extends over the aperture of the feed in the x,y-plane. The field
HQ  is  transversely  polarised  (independent  of  r).  Our  next  step  is  to  calculate  the
current  density  on  the  surface  of  the  reflector  as  a  result  of  this  incoming  field.  In
general  the  current  in  a  point  on  the  reflector  will  be  influenced  not  only  by  the
incoming field at that point but also by interaction with the currents in other parts of
the surface. When the reflector is "locally plane", i.e. the radius of curvature is much
larger  than  the  wavelength,  the  situation  can  be  simplified  significantly.  For  a
perfectly  conducting  reflector  surface  the  boundary  conditions  prescribe  the  surface
current as

j = n H,

where  H  is  the  total  magnetic  field  at  the  surface  and  n  is  the  local  unit  normal
pointing  away  from  the  reflector.  Because  we  also  have  H = Hi + Hr  and
n Hi = n Hr ,  where  the  subscripts  indicate  incoming  and  reflected  field,
respectively, we arrive at

j = 2 Hn Hi L.            (3.12)

By  substitution  of  Eq.  (3.10)  into  Eq.  (3.12)  we  obtain  the  full  expression  for  the
surface current. With the aid of the relations of Eqs. (2.2, 2.3 and 2.13) we can derive
the following expression:

jQ = -2 HQ 9 iy cos y
ÅÅÅÅÅ2 + iz sin y

ÅÅÅÅÅ2 sin c =,                        (3.13)

where the magnitude of the magnetic field HQ  follows from Eq. (3.10) as

HQ = -
iÅÅÅÅÅÅÅÅ2 l

expHi k rLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r

FHy, cL H1 + cos yL  .                     (3.14)

‡ 3.3. Surface current integration

Now that we have an expression for the current density at the illuminated side of the
reflector  surface,  we  can  proceed  with  the  calculation  of  the  scattered  field  by  the
reflector.  The  current  on  the  shadow  side  of  the  reflector  is  assumed  to  vanish  and
the  assumed  infinite  conductivity  of  the  reflector  assures  the  existence  of  surface
currents  only.  Departing  from Eq.  (3.6)  and  using  Eq.  (3.3)  we see  that  the  volume
integral can be transformed into a surface integral to yield

EP HR, q, fL = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 p w e  “ A “ ŸS
jQ

expHi k rLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅr „ SE,             (3.15)
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where the field point P has  coordinates (R, q, f) (see Fig.  3.1) and the integration is
performed  over the  illuminated  side  of  the reflector  only.  The  nabla operator  works
on the field point P. Substitution of Eqs. (3.13-14) leads to

EP =
-1ÅÅÅÅÅÅÅÅÅÅ8 p2

"#####mÅÅÅÅ
e ŸS

“ “ 9 exp i kHr+rLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅr r
Iiy cos y

ÅÅÅÅÅ2 + iz sin y
ÅÅÅÅÅ2 sincM=

F Hy, cL H1 + cosyL „ S. H 3.16L
  We shall not write down the tedious, but straightforward,  procedure of the repeated
rotation  operation  on  the  expression  in  curly  brackets.  The  general  expression  in
curvilinear coordinates can be found in Stratton (1941, p.50). After transformation of
the unit vectors iy  and iz  into the spherical coordinate system (R, q, f) by application
of Eqs. (2.1 and 2.3) we obtain

EP =
-1ÅÅÅÅÅÅÅÅÅÅ8 p2

"#####mÅÅÅÅeŸS
FHy, cL H1 + cos yL exp i kHr+rLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅr r

Acos y
ÅÅÅÅÅ2 9-2 iR sin q sin f J i kÅÅÅÅÅÅr - 1ÅÅÅÅÅÅÅÅr2 N +

iq cos q sin f Jk2 +
i kÅÅÅÅÅÅr - 1ÅÅÅÅÅÅÅÅr2 N + if cos f Jk2 +

i kÅÅÅÅÅÅr - 1ÅÅÅÅÅÅÅÅr2 N= +

sin y
ÅÅÅÅÅ2 sin c 9-2 iR cos q J i kÅÅÅÅÅÅr - 1ÅÅÅÅÅÅÅÅr2 N - iq sin q Jk2 +

i kÅÅÅÅÅÅr - 1ÅÅÅÅÅÅÅÅr2 N=E
dS . H 3.17L

Fig.3.1. Geometry  and definition of coordinate  systems for the paraboloidal  reflector.

The  first  term  in  square  brackets  results  from  the  y-component  (transverse  compo-
nent)  of  the  surface  current  density  on the  reflector,  while  the  second  component  is
due to the "longitudinal"  z-component of the current. This equation can be consider-
ably simplified  in essentially all  practical cases,  where we have  r >> l and reflector
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diameter  d  >>  l.  In  that  case  we  can  ignore  the  terms  I i kÅÅÅÅÅÅÅr - 1ÅÅÅÅÅÅ
r2 M  compared  to  k2

and, with k = 2 p ê l, Eq. (3.17) reduces to

EP = -1ÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 l2

"#######m
ÅÅÅÅÅe Ÿ

S
FHy, cL H1 + cos yL

exp i kHr+rLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅr r
Acos yÅÅÅÅÅ2 Hiq cos q sin f + if cos fL - iq sin yÅÅÅÅÅ2 sin q sin cE „ S.

            (3.18)

  As in Eq.  (3.17), the first  term in square brackets  is produced by the y-component
of the surface current, the second by the z-component. The field due to the y-compo-
nent is independent  of the azimuthal surface coordinate c. For a point on the axis of
the  paraboloid  (q  =  0),  the  z-component  vanishes  and  the  field  has  the  polarisation
vector  iy .  This  can  be  seen  using  Eqs.  (2.1  and  2.3).  The  field  does  not  have  a
component  in  the  r-direction;  hence  it  is  transverse.  For  the  integration  over  the
surface  we  need  to  select  two  of  the  three  coordinates  (r, y, c)  and  eliminate  the
third  from  Eq.  (3.18).  Normally  it  is  most  convenient  to  integrate  over  the  full  2p
azimuthal  angle c and the polar angle y  over the range determined by the geometry
of the reflector. Thus we eliminate r from Eq. (3.18). From the discussion in Chapter
2 and referring to Fig. 3.1, we can derive

cos y ' = ir .iR = cos y sin q cos Hc - fL + sin y cos q

and applying the cosine rule to the triangle OQP in Fig.3.1 we find

r2 = R2 + r2 - 2 r R cos y '
= R2 + r2 - 2 r R 8cos y sin q cos Hc - fL + sin y cos q<             (3.19)

In  all  practical  circumstances  we  will  have  R >> r.  Thus  for  the  amplitude  term of
Eq. (3.18) we can derive from Eq. (3.19)

1ÅÅÅÅr =
1ÅÅÅÅÅR 91 +

r
ÅÅÅÅÅR cos y ' -

r2

ÅÅÅÅÅÅÅÅÅÅÅ2 R2 + ...= º 1ÅÅÅÅÅR ,

and from the paraboloid geometry (Eq. (2.4)) we have 

1ÅÅÅÅÅr =
1+cos yÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 f .

  In  the exponential term of Eq. (3.18), the phase term, we apply Newton's iteration
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formula  for  the  square  root of  a  number  to Eq.  (3.19).  If  x2 = N and we choose  an
estimate  xi  for  è!!!

N ,  then  xi+1 = 1ÅÅÅÅÅ2 Ixi +
NÅÅÅÅÅÅxi

M  is  correct  to  twice  the  number  of

significant figures compared to xi . If we choose r1 = R as a first estimate, we find as
the next better approximation

r º R - r cos y ' +
r2

ÅÅÅÅÅÅÅÅ2 R .                         (3.20)

This form, up to the second order in r, is used in the description of the Fresnel field
of  the  antenna.  We  shall  deal  with  this  in  more  detail  later.  In  the  usual  farfield
region, the quadratic term can be ignored.

  At this point we introduce a new variable (see Fig.3.1 and Eq. (2.10))

a =
4 fÅÅÅÅÅÅÅd tan

yÅÅÅÅÅ2 = 2 bÅÅÅÅÅÅÅÅd    (0 b a b 1),

which  is  the  normalised  radius  of  the  projection  of  point  Q  on  the  surface  onto  the
aperture plane. With this variable we obtain for the surface element in Eq. (3.18)

dS =
d2ÅÅÅÅÅ4 sec

yÅÅÅÅÅ2 a da dc.             (3.21)

  For the phase term we obtain from the above approximations

r + r = R + r H1 - cos y 'L = R + 2 f
1-cos y'ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1+cos y

= R + 2 f 9cos2 qÅÅÅÅ2 - sin q cos Hc–fL tan y
ÅÅÅÅÅÅ2 + sin2 qÅÅÅÅÅ2 tan2 y

ÅÅÅÅÅÅ2 = .

With  the  elimination  of  the  variable  y  by  introducing  variable  a  this  expression
becomes

r + r = R - d aÅÅÅÅÅÅÅÅÅÅÅ2 sin q cosHc - fL + 2 f cos2 qÅÅÅÅÅ2 + 1ÅÅÅÅÅÅÅÅÅ2 f I d aÅÅÅÅÅÅÅÅÅÅÅ2 M2 sin2 qÅÅÅÅÅ2 .             (3.22)

Introducing these approximations in Eq. (3.18) we obtain the following integral
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EP =
-1ÅÅÅÅÅÅÅÅÅÅ4 l2

d2
ÅÅÅÅÅÅÅf

"#######m
ÅÅÅÅÅe

expHi k RLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅRŸ
0

1Ÿ
0

2 p

FHa, cL expAi k 9- d aÅÅÅÅÅÅÅÅ2 sin q cosHc - fL +
Hd aL2ÅÅÅÅÅÅÅÅÅÅÅÅÅ8 f sin2 qÅÅÅÅ2 =E

Acos y
ÅÅÅÅÅ2 Hiq cos q sin f + if cos fL - iq sin y

ÅÅÅÅÅ2 sin q sin cE a „ a „ c , H3.23L

      

where  the  illumination  function  is  written  as  F Ha, cL = F Hy, cL cos3 yÅÅÅ2 .  This
results  from the elimination  of the terms  in y  from the variables  r  and dS.  Also  we
have  ignored  the  phase  term  2 f cos2 qÅÅÅÅÅ2 ,  which  is  independent  of  the  integration
variables and normally small compared to R.

‡ 3.4. Aperture integration, Kirchhoff-Helmholtz diffraction

We now simplify the situation further as follows. Suppose we have a reflector which
concentrates  the  reflected  rays  from  the  primary  source  in  a  half  space,  as  for
instance is the case with a paraboloid of revolution in the geometrical optics approxi-
mation. The closed surface on which the currents must be known can now be chosen
as an infinite plane, close to the illuminated side of the reflector, and a hemispherical
cap of infinite radius enclosing the reflector with all its surface currents. The point of
observation lies outside  this region. On the infinite plane we describe a closed finite
curve  which  circumscribes  the  set  of  "reflected  rays",  i.e.  we  assume  geometric
optics reflection of the primary field at the reflector.  This reflected field is projected
upon the infinite plane and the area within the closed curve circumscribing the rays is
called  the  aperture  of  the  reflector,  defined  as  the  area  within  the  projection  of  the
shadow line on the reflector along the reflected rays onto the infinite plane. The field
outside  the   aperture  on  the  plane  is  taken  to  be  zero  and  the  contribution  of  the
infinite  cap  vanishes  by  virtue  of  the  radiation  condition.  Thus  the  integral  over  a
closed surface reduces to that over a finite plane area. This is known as the aperture
field  integration  method.   As  a  last  approximation  we  assume  that  the  aperture  is
large  in  terms  of  the  wavelength  and  that  our  interest  in  the  diffraction  pattern  is
restricted to a relatively small angular region around the maximum. From Eq. (3.13)
with  Eq.  (3.14)  we  recall  that  the  surface  current  has  no  component  in  the  x-direc-
tion.  If  we  project  the  surface  current  distribution  onto  a  plane perpendicular  to the
z-axis  (the  "aperture  plane",  just  defined),  the  contribution  from  the  z-component
vanishes  and  we  have  a  linearly  polarised  field.  We  can  deduce  (Silver,  1949,  p.
418-19) that the projected electric field in the aperture EA  is related to the current by

EA = - 0.5
"#####mÅÅÅÅÅ

e
sec J yÅÅÅÅÅ2 N jQ HyL.

  Applying  Eq.  (3.13)  to  this  relation  and  inserting  also  Eq.  (3.14)  we  find  for  the
aperture field
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EA =
"#####mÅÅÅÅÅ

e
HQ iy =

-iÅÅÅÅÅÅÅÅ2 l
"#####mÅÅÅÅÅ

e
exp i k rÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r
FHy, cL H1 + cos yL iy          (3.24)

Thus  we see  that  the  aperture  field  distribution  is analogous  to the angular  distribu-
tion  of  the  source  ("feed")  pattern  as  denoted  in Eq.  (3.14).  Because  of  the  parabo-
loid's geometry, the term expHi k rL ê r  does not influence the phase function over the
aperture compared to the feed pattern. The amplitude distribution over the aperture is
however  somewhat  weaker  toward  the  edge  compared  to  the  feed  pattern,  because
the spherical wave from the feed travels a longer path to the reflector edge than to its
center.  This  effect  is  known  as  the  "free-space  taper"  of  the  illumination  function.
We shall return to this in more detail in the next chapter. 

  We continue now with the detailed treatment of the aperture integration method. Let
us  choose  as  the  aperture  plane  the  (x,  y)-plane  through  the  focal  point  O  (Fig.  3.1
and  3.2).  The  aperture  A  is  thus  the  projection  of  the  reflector  rim  onto  this  plane.
The electric field in this plane is given by Eq.  (3.24). We now have y =0 and hence
cos y ' = sin q cos Hc - fL.  Also  the  distance  from the  field  point  P to  a  point  in  the
aperture follows from Eq. (3.20) as

r = R - b sin q cosHf - cL + b2
ÅÅÅÅÅÅÅÅÅ2 R ,            (3.25)

where b is the radial coordinate in the aperture, thus b = d a / 2.

 Fig. 3.2. Geometry  of the aperture  integration  method;  P is the field point.

3. Electromagnetic theory of the reflector antenna40



We recall that the method assumes that the aperture and the distance to the field point
are both large with respect to the wavelength and that the calculation is restricted to
relatively small angles q about the beam axis. In practice reliable results are obtained
up  to  angles  incorporating  several  sidelobes.  For  sufficiently  large  values  of  the
distance  R  the  second  term  in  the  exponent  can  be  ignored.  In  that  case  we  are
dealing with Fraunhofer diffraction  and we refer to the resulting field as the farfield
pattern  of  the  antenna.  In  cases  where  this  term  cannot  be  neglected,  we  are  in  the
region of  Fresnel  diffraction  and  the point  P is  said  to be  in the  nearfield  region of
the antenna. In the following sections we examine these two cases in more detail. We
maintain the second order term here and arrive at the simplified form of Eq. (3.23) 

EP =
d2
ÅÅÅÅÅÅÅ4

exp Hi k RLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅR Hiq cos q sin f + if cos fLŸ0

1 Ÿ0

2 p
FHa, cL expAi k 9- d aÅÅÅÅÅÅÅÅÅÅÅ2 sin q cosHc - fL +

Hd aL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ8 R =E a d a d c.        (3.26)

Here the z-component  has vanished and we have neglected the small term of sin2 qÅÅÅÅÅ2
in the curly brackets of Eq. (3.23). As a last step we notice that for small values of q,
i.e.  close  to the z-axis  (the beam axis),  the vector  expression  in front  of the integral
sign  approaches  the  unit  vector  iy ,  equal  to  the  polarisation  of  the  aperture  field.
Thus we have reduced the treatment to the so-called scalar aperture integration  and
the radiation integral is written 

EP Hq, fL =
d2
ÅÅÅÅÅÅ4

exp Hi k RLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅRŸ0

1 Ÿ0

2 p
FHa, cL expAi k 9-

d aÅÅÅÅÅÅÅÅ2 sin q cosHc - fL +
Hd aL2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ8 R =E a d a d c .

           (3..27)

‡ 3.5. The farfield approximation (Fraunhofer region)

In  this  and  the  following  section  we  shall  examine  the  behaviour  of  the  radiation
integral  of  Eq. (3.27)  in more detail.  In the farfield  situation,  the field  point P is so
far  away  (in  principle  at  infinity)  that  the  vectors  R1 and  r1 are  essentially  parallel.
For the distance r we can limit ourselves to the linear part of Eq. (3.25)

r = R - b sin q cos Hf - cL ,            (3.28)

where b = d a / 2 is the radial coordinate and c the angular coordinate in the aperture
plane. The radiation integral Eq. (3.27)  is simplified to
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EP Hq, fL =

d2
ÅÅÅÅÅÅ4

exp Hi k RL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅR Ÿ0

1 Ÿ0

2 p
FHa, cL expA- i k

d aÅÅÅÅÅÅÅÅ2 sin q cosHc - fLE a d a d c.

                                    (3.29)

  We  write  the  illumination  function  as  F Ha, cL = A Ha, cL exp@F Ha, cLD,  where
A(a,  c)  is  the  amplitude  function  and  F(a,  c)  the  phase  function.  Normally,  the
illumination function will be rotationally symmetric and in a perfect reflector geome-
try  the  phase  function  will  be a  constant.  In  that  case  the  integration  over  c  can  be
performed  to  yield  the  Bessel  function  of  the  first  kind  and  order  zero  (see,  e.g.
Jahnke - Emde, 1945, p. 149). Thus the following expression is obtained: 

f Hq, fL = p d2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 Ÿ0

1
AHaL J0 I k dÅÅÅÅÅÅÅÅÅÅÅÅÅ2 a sin qM a „ a .                (3.30)

  Here  we  have dropped  the  term in  R,  which  is  irrelevant  for  the  radiation  pattern
function,  which  we  write  as  f Hq, fL  for  field-pattern.  We  also  introduce  the  new
variable u = k dÅÅÅÅÅÅÅÅÅÅ2 sin q for the beam angle.  For a uniform illumination HAHaL = 1L, Eq.
(3.30) can readily be integrated to yield

f Hq, fL =
p d2
ÅÅÅÅÅÅÅÅÅÅ4 2

J1 HuLÅÅÅÅÅÅÅÅÅÅÅÅu = A L1 HuL.             (3.31)

where   J1  is  the  Bessel  function  of  the  first  kind  and  order  one,  and  L1  is  the  so-
called Lambda function of first order (see Jahnke-Emde,  1945, p. 180). The Lambda
function is defined as 

Ln HuL = n !
Jn HuLÅÅÅÅÅÅÅÅÅÅÅÅÅHuê2Ln ,

with Jn HuL  the Bessel  function of the first  kind and order  n. A  represents  the area of

the  aperture.  Because  we  are  mainly  interested  in  the  functional  form  of  f HqL ,  we

omit the constant A from now on. For the assumed uniform illumination function the

radiation function is circularly symmetric in the variable f.

  For illumination  functions  of the  form A HaL = H1 - a2 Lp , p = 0, 1, 2, ...  the result-
ing farfield function can be written in terms of Lambda functions as

f HuL =
Lp+1 HuLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅp+1 .             (3.32)

An often  used  illumination function,  which  represents  a typical  feed pattern  well,  is
the "quadratic on a pedestal"-function A HaL = 1 - H1 - tL a2 , where 0 t  1.
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Fig.  3.3.  The  upper  figure  shows  the  one  dimensional  pattern  for  the  uniform  (red)  and  fully
tapered  (blue)  illumination  function.  The  lower  figure  is  a  three  dimensional  rendering  of  the
uniformly  illuminated  case. It is the lambda function as given in Eq. (3.31).  

The  quantity  t  determines  the  level  of  illumination  at  the  edge  of  the  aperture  (the
pedestal, also called the "taper"). We shall treat this in more detail in Chapter 4.

  We  now  illustrate  these  results  with  some  plots  obtained  with  Mathematica.  First
we  show  the  calculation  for  uniform  (t  =  1)  and  quadratic  (t  =  0)  illumination  by
integrating  Eq.  (3.30).  The  routine  outputs  the  resulting  functional  form,
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where the appearance of the Lambda functions is obvious. The plots of Fig.3.3 show
that  the  uniform  illumination  (red)  leads  to  a  narrower  beam with  higher  sidelobes
than the quadratic illumination (blue). Clearly by choosing the height of the pedestal,
we  can  influence  the  shape  of  the  radiation  beam.  This  will  be  discussed  in  more
detail  in  the  next  chapter.  Figure  3.3  shows  amplitude  patterns  with  negative  side-
lobes.  The square  of the  functions  produces  the usual  power pattern,  also known as
the  Airy  pattern,  consisting  of  a  bright  central  core  (the  main  beam  or  Airy  disk)
surrounded by dark and bright  rings; these are the so-called sidelobes  of the diffrac-
tion  pattern  (Fig.3.4),  The  normalised  power  pattern  of  the  uniformly
illuminated aperture, also called the gain function, thus has the form

gHuL ª f 2 HuL = 9 2 J1 IuL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅu =2

            (3.33)
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Fig.  3.4.  Contour  plot  of  the  radiation  beam  of  a  uniformly  illuminated  aperture  in  the  Fraunhofer
region,  also  known  as  the  Airy  disc.  The  little  spikes  are  due  to the  mathematical  interpolations  in
the rendering  of the plot. Two sidelobe rings are  visible.

and is illustrated in the form of a contour plot in Fig. 3.4. The location of the minima
(nulls) in the pattern is given by the roots of J1 HuL = 0 and that of the maxima by 

d @J1 HuLêuDÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅd u = -
J2 HuLÅÅÅÅÅÅÅÅÅÅÅ

u
= 0,

i.e. by the roots of J2 HuL = 0 (see e.g. Jahnke-Emde, p. 145, 1945). It is of interest for
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the later  discussion of the concept  beam efficiency  to calculate  the integrated  energy
over the pattern as function of the angular coordinate. Denoting PHu0 L the fraction of
the total power contained within the radius u0 , we have

PHu0 L = Ÿ
0

u0 Ÿ
0

2 p
gHuL u „ u „ f Ÿ0

u0 J1
2 HuLÅÅÅÅÅÅÅÅÅÅÅÅÅÅu „ u.                         (3.34)

Using  some  of  the  recurrence  relations  for  Bessel  functions  (see  e.g.  Jahnke-Emde,
p.145) we obtain

J1
2 HuLÅÅÅÅÅÅÅÅÅÅÅÅÅÅu = J0 HuL . J1 HuL - J1 HuL. d J1 HuLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅd u

= -J0 HuL d J0 HuLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅd u - J1 HuL d J1 HuLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅd u =
-1ÅÅÅÅÅÅÅÅ2

dÅÅÅÅÅÅÅÅd u 8J0
2 HuL + J1

2 HuL<
which, considering that J0 H0L = 1 and J1 H0L = 0, leads to

PHu0 L = 1 - J0
2 Hu0 L - J1

2 Hu0 L.                                     (3.35)

      Table 3.1. Parameters of the uniformly illuminated aperture
       

angular
coord.

Intensity Int.HdBL Integrated energy

------ ------ ---- ----------

0 1.0 0 0.0
3.832 0.0 - 0.84
5.136 0.0175 -17.6 -

7.016 0.0 - 0.91
8.417 0.0042 -23.8 -

10.174 0.0 - 0.94

  This  expression  was  first  derived  by  Rayleigh  (1881)  and  is  shown  in  Fig.  3.5
 One clearly sees the plateaux at the positions of the dark rings of the Airy

pattern.  If  u0  coincides  with  a null  of the pattern  we have J1 Hu0 L = 0 and the  power
outside  that  radius  simply  is  equal  to  J0

2 Hu0 L.  The  main  beam,  up  to  the  first  null,
contains  84  percent  of  the  total  radiated  energy.  Numerical  data  are  assembled  in
Table 3.1.
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Fig.  3.5.  The  integrated  power  in  the  diffraction  pattern  as  function  of  the  angular  coordinate.
The  plateaux  near  the  minima  in  the  pattern  at  u=  3.8  and  7.0  are  clearly  visible.  The  main
beam contains   84 percent of the power.

‡ 3.6. The nearfield approximation (Fresnel region)

In the nearfield region, which corresponds to the Fresnel region in optical diffraction
(see e.g. Born and Wolf, 1980) we need to evaluate Eq. (3.25) without simplification.
The radiation integral is thus given by Eq. (3.27), which we rewrite here without the
irrelevant  terms  in  front  of  the  integral  sign.  As  before,  we  consider  a  circular
aperture.

f Hq, fL =Ÿ
0

1Ÿ
0

2 p

FHa, cL expAi k 9- d aÅÅÅÅÅÅÅÅÅÅ2 sin q cosHc - fL +
Hd aL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ8 R =E a „ a „ c. (3.36)

For  a  rotationally  symmetric  aperture  distribution  AHaL  with  a  constant  phase  term,
the integration over c results in

f HqL = 2 p Ÿ
0

1

AHaL J0 Ik d aÅÅÅÅÅÅÅÅÅÅ2 sin qM expJi k Hd a L2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ8 R N a „ a.            (3.37)

  These integrals have been studied by Lommel (1884, 86) in his treatment of Fresnel
diffraction at a circular aperture  and the solution can be written in terms of Lommel
functions  of  two  variables  (for  details  cf.,  Baars  (1970)  and  Born  & Wolf,  Ch.  8.8
(1980)).  Although  Lommel's  treatment  is  in  itself  interesting  and  moreover  feasible
in  practice  because  of  extensive  tabulations  of  his  functions  (e.g.  Dekanosidze,
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Fig.3.6.  The  red  and  blue  curves  are  the  sine  and  cosine-component,  respectively,  while  the
green  curve  is  the  "power  pattern"  (multiplied  by  a  factor  4  for  purpose  of  illustration).  The
distance  from  the  aperture  is  300  m.  A  3-D  picture  of  the  power  pattern  is  show  in  the  lower
part, where the "shoulder"  near u = 3 is clearly visible.
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1960), we prefer here to use Mathematica for the evaluation of Eq. (3.37), [Mat.3.4].
In the integration we must separate the exponential in its cosine and sine parts. Thus
we obtain: 
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fc HqL = Ÿ
0

1

J0 Hu aL cosAk Hd a L2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ8 R E a „ a ,

and

fs HqL = Ÿ
0

1

J0 Hu aL sinAk Hd a L2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ8 R E a „ a  .

In Figures 3.6 and 3.7 we show illustrations of the nearfield by numerically integrat-
ing  Eq.  (3.37).  As  before,  we  choose  a  normalised  aperture  radius,  introduce  the
variable u = k dÅÅÅÅÅÅ2 sin q  and ignore the factor 2 p. We choose here a wavelength of 
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Fig.3.7.  A nearfield  calculation  as in Fig.3.6  for a distance  to the aperture  of 200 m. The on-axis
value is now suppressed  by more  than a factor  2 with respect  to the maximum.  The contour  plot
nicely indicates  the bright ring near u = 3 - 4.
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3 mm and evaluate the field function at a distance of R = 300 m and 200 m from the
aperture, respectively.  A value of u=30 corresponds  with an angle of about 1 degree
off boresight. The power pattern is the sum of the squares of the functions fc and fs .
In  the  following  calculation  of  figure  (3.7)  all  parameters  are  the  same  but  for  the
distance  which has  been reduced to 200 m  We now notice that the
intensity  on  the  axis  is  much  lower  than  at  angle  u  =  4,  indicating  that  the  phase
structure in the nearfield can lead to destructive interference on-axis.

beam  axis.  We  find  that  it  oscillates  strongly  with  minimum  values  of  zero.  The
Bessel  function  in  Eq.  (3.37)  drops  from  the  integration,  because  for  q=0  we  have
J0 H0L = 1. For uniform illumination the effect is most strongly visible and Eq. (3.37)
simplifies to:

f H0, RL = Ÿ
0

1

expIi k a2
ÅÅÅÅÅÅÅÅÅ2 R M a „ a.

After  separating  the  integral  into  its  cosine  and  sine  parts,  each  can  be  easily  inte-
grated. The power function, being the sum of the squares of the cosine and sine parts,
has the form (ignoring irrelevant constants)

g H0, RL = 1 - cos J kÅÅÅÅÅÅÅÅ
2 R

N,                         (3.38)

which is illustrated in Fig.3.8, . For a non-uniform aperture function the 
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Fig.3.8.  The  power  density  on  the  beam  axis  as  function  of  the  distance  from  the aperture.  At
short  distances  the  fast  variation  in  phase  causes  a  quickly  oscillating  function,  which
monotonically  decreases  only beyond the "Rayleigh  distance"  from the aperture.
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  It is interesting to look at the behaviour of the Fresnel region field level along the

[adjust Mat.3.4]

[Mat.3.5]



destructive interference  from the different  parts  of the aperture will  not be complete
and the axial power density will not oscillate to zero. To improve the visibility of the
plot we have multiplied the axial value by R-2 . The peak axial power decreases with
the distance squared, which is to be expected. 

  In the Fresnel region, the power is radiated more or less in a cylinder of a diameter
about  equal  to  that  of  the  reflector.  At  the  distance  d2 ê2 l,  called  the  Rayleigh
distance, the beam starts to expand into the farfield diffraction beam with an opening
angle  equal  to  the  farfield  beam width.  We  will  return  to  this  in more  detail  during
the description of the dual-beam observing technique in Chapter 6.

‡ 3.7 The Fourier Transformation relationship

Consider again Fig.3.2 with attention to the cartesian coordinates (x, y, z) of the field
point P.  We introduce  the direction  cosines  of  the field point  P (u,  v = sin q cos  f,
sin  q  sin  f);  see  Ch.  2,  Eqs.  2.1  and  2.3.  Using  these  it  is  easy  to  show  that  the
radiation integral of Eq. (3.29), written in cartesian coordinates, can be expressed as

fP Hu, vL =
e ikR
ÅÅÅÅÅÅÅÅÅÅ

R Ÿ Ÿ FHx, hL exp 8i k Hx u + h vL< „ x „ h .            (3.39)

We  see  that  there  exist  a  Fourier  Transformation  relationship  between  the  field
strength in point P, f Hu, vL, and the field function in the aperture FHx, hL.
  Ignoring the term in front of the integral sign, the inverse Fourier transformation
can now be written as

FHx, hL = Ÿ Ÿ f Hu, vL exp 8-i k Hu x + v hL< „ u „ v ,            (3.40)

where  the  integration  of  the  complex  field  f Hu, vL  in  principle  has  to  be  performed
over  a  closed  surface,  surrounding  the  aperture.  Thus  a  knowledge  of  the  entire
complex farfield pattern, both in amplitude and in phase,  provides a description of
the  complex  field  distribution  FHx, hL  over  the  aperture  of  the  antenna,  also  in
amplitude and phase. 

  In his  standard book on antenna theory,  Silver (1949) devotes an extensive discus-
sion to this relationship (Ch. 6.3), and concludes that any practical application of this
relationship  is  limited  by  the  fact  that  the  farfield  pattern  is  only  measurable  in
power.  Thus  the  phase  function  of  f Hu, vLwill  be  arbitrary  and  hence  the  aperture
distribution  cannot  be  uniquely  determined.  It  was Jennison  (1966)  who  mentioned,
in  the  appendix  of  his  pocket  book  "Radio  Astronomy",  the  same  relation  and  its
possible  practical  usefulness,  pointing  out  that  the  amplitude  and  phase  can  both be
measured with an interferometer. When Silver wrote his text in the mid forties, radio
interferometry  had  not  yet  been  developed.  We  will  return  to  this  important  result
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when  we  discuss  the  holographic  measurement  technique  for  determining  the
geometrical shape of a reflector in Chapter 6.

Fig.3.9.  Three  dimensional  representation  of  the  Fourier  transformation  of  a  rectangular,
tapered aperture distribution.

  The circular symmetric case of the circular aperture distribution discussed above is
a special  case  of Fourier  transformation.  Such transformations  are known as Hankel
Transformation.  Because of the azimuthal  symmetry it reduces to a one-dimensional
transformation.  This can be demonstrated easily  by rewriting  the transform equation
in polar coordinates. In the aperture plane we introduce r2 = x2 + y2 , in the transform
plane (antenna  beam) w2 = u2 + v2 .  With x + i y = r expHi qL  and u + i v = w expHi fL
Eq. (3.39) can be transformed into

f HwL = ei k R
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅR Ÿ

0

¶
FHrL AŸ

0

2 p

exp 8i k w r cosHq - fL< „ qE r „ r =

ei k R
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅR 2 p Ÿ

0

¶
FHrL J0 H2 p w rL r „ r . H3.41L

This  relation  is  identical  to  Eq.  (3.30)  and  represents  the  radiation  function  of  a
circular aperture with amplitude distribution FHrL and uniform phase distribution. The
result of this Hankel Transformation is the well known Lambda function L1 HwL.
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  As an  example  we present  below  the  Fourier  Transformation  of  a  square  aperture
with  tapered  amplitude  and  constant  phase  distribution  (Fig.3.9);  the  Mathematica
expression is given in [Mat.3.6].
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‡ 3.8. Relation between farfield and focal region field

Finally  we  want  to  mention  the  relationship  between  the  farfield  radiation  function
and  the  field  distribution  in the  focal  plane  of  the reflector.  The farfield  pattern  has
been  obtained  from  "transmitting"  a  spherical  wave  from  the  focal  point,  letting  it
being  "diffracted"  by  the  parabolic  reflector  to  form  the  outgoing  wave  function,
which exhibits a spherical wave front with a Lambda-function amplitude distribution.
We can now turn the situation around and consider a set of waves of uniform ampli-
tude and constant  phase to fall upon the reflector  from a range of angular directions
with  respect  to  the  axis..  The  induced  surface  currents  will  radiate  "Huygens  wave-
lets"  towards the focal  point, where  they will  be vectorially  added to form the focal
plane field distribution. Based on the general principle of reciprocity (see for instance
Silver,  1949  or  de  Hoop  and  de  Jong,  1974)  the  functional  form  of  the  focal  plane
distribution will be the same as that of the farfield pattern function. Thus we will find
a central  bright  spot  in the  focal  plane  surrounded by  rings of  decreasing  amplitude
separated  by nulls.  The intensity  distribution  will  be given  by the  Lambda function.
The  term  "Airy  disc"  originates  from  this  fact,  as  it  is  seen  in  the  focal  plane  of  a
telescope  observing  a  bright  star.  We  will  not  discuss  focal  fields  in  detail.  It  will
however be clear  that  this approach  is of great  value in the design  of feed horns for
reflector  antennas. More on this subject can be found in the IEEE reprint collection,
edited by Love (1976).

  In the following chapters we shall use these results when we discuss the practicali-
ties of determining the characteristics of large reflector antennas like radio telescopes
and satellite communication ground stations.

‡ 3.9. The Mathematica Routines

Out[7]=
4 t u BesselJ@1, uD - 8 H-1 + tL BesselJ@2, uD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1 + tL u2
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Mat .3 .1 - "Lambda function" beam;
ff = Integrate@H2 ê H1 + tLLH2 r H1 - H1 - tL r^2LL BesselJ@0, u rD, 8r, 0, 1<D
Plot@Evaluate@Table@ff, 8t, 0, 1<D,8u, -20, 20<, PlotRange Ø All,

Frame Ø True, GridLines -> Automatic,
FrameLabel Ø 8"angular coordinate u",
"farfield amplitude"<, PlotStyle Ø88RGBColor@0, 0, 1D<, 8RGBColor@1, 0, 0D<<DD

<< Graphics`SurfaceOfRevolution`
SurfaceOfRevolution@2 BesselJ@1, uD ê u,8u, -10, 10<, BoxRatios -> 81, 1, 1<D
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Mat .3 .2 - Contour plot of Lambda func;
u = Hx^2 + y^2L^0.5;
j1 = H2 BesselJ@1, uD ê uL^2;
ContourPlot@Evaluate@j1, 8x, -10, 10<,8y, -10, 10<, ContourLines Ø FalseDD
Mat .3 .3 - Integrated beam power;
Plot@1 - BesselJ@0, uD^2 - BesselJ@1, uD^2,8u, 0, 12<, PlotRange Ø 80, 1<, Frame Ø True,
GridLines Ø Automatic , FrameLabel Ø8"angular coordinate u", "integrated power"<D
Mat .3 .4 - Fresnel region patterns;
l = 0.003; k = 2 p ê l; R = 300;

fc = NIntegrateA
r BesselJ@0, u rD CosA k r^2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 R

E, 8r, 0, 1<E;
fs = NIntegrateA r BesselJ@0, u rD SinA k r^2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 R

E,
8r, 0, 1<E;

fn = 8fc, fs, 4 Hfc^2 + fs^2L<;
Plot@Evaluate@fn, 8u, 0, 30<, PlotRange -> All,

Frame Ø True, GridLines Ø Automatic, FrameLabel Ø8"angular coordinate", "nearfield level"<,
PlotStyle -> 88RGBColor@0, 0, 1D<,8RGBColor@1, 0, 0D<, 8RGBColor@0, 1, 0D<<DD

SurfaceOfRevolution@12 Hfc^2 + fs^2L,8u, 0, 12<, BoxRatios Ø 81, 1, 1<D
ContourPlot@Evaluate@Hfc^2 + fs^2L, 8x, -10, 10<,8y, -10, 10<, ContourLines Ø FalseDD
Mat .3 .5 - Fresnel region axial power;
l = 2; k = 2 p ê l;
Plot@ 1 - Cos@k ê H2 RLD, 8R, .01, 1<, Frame -> True,
GridLines -> Automatic, PlotRange Ø All,
FrameLabel -> 8"Distance R", "Axial Level"<D



Out[45]=

"#####2ÅÅÅ
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Mat .3 .6 - Fourier - transform exam.;
x =.; u =.;
FourierTransform@HSign@1 - xD + Sign@1 + xDL H1 - .25 x^2L, x, uD
SurfaceOfRevolution@%, 8 u, -10, 10<,
BoxRatios Ø 81, 1, 1<D



4. Antenna characteristics in practical applications

‡ 4.1. Introduction

After the development of the basic equations, we now turn to application of these to
practical  situations  in antenna theory,  like calculations  of efficiency, beamwidth and
sidelobe  level  as  well  as  the  influence  of  defocus  and  other  errors  on  the  antenna's
characteristics.  We shall  develop formalisms and  present  results which  are of use in
the daily work of the antenna engineer and the radio astronomer. 

  We first introduce as basic quantity the aperture efficiency, defined as

hA = A ê Ag ,             (4.1)

where A is the maximum absorption area and Ag  the geometrical area of the antenna
aperture. It indicates  the efficiency with which the radiation from a point source, for
instance  the  transmitter  on  a  communication  satellite,  is  collected.  The  aperture
efficiency is a parameter defining the sensitivity of the antenna. It is determined by a
number  of  phenomena  and  hence  it  can  be  seen  as  the  product  of  a  number  of
separate  "efficiency components".  Following,  for  instance,  Kraus  (1966,  Ch. 6.25b),
we can write the aperture efficiency as the product of a number of individual compo-
nents:

hA = hi hs hr hp he h f hb ,              (4.2)

where hi   = illumination efficiency of the aperture by the feed function (“taper”)

            hs  = spillover efficiency of the feed (and subreflector, if present)

hr  = radiation efficiency of the reflector surface (ohmic loss)

hp  = polarisation efficiency of the feed-reflector combination

he  = surface error efficiency (“Ruze loss”), also called scattering efficiency

h f = focus error efficiency (both lateral and axial defocus)

hb  = blocking efficiency due to quadripod, subreflector, other obstruction.



It  is  important  to  note  here  that  by  this  definition  all  components  of  the  final
aperture  efficiency  are  related  to  the  geometrical  area  of  the  reflector  aperture.  In
other  words,  each  of  them reduces  the  aperture  area  by  an  amount  proportional  to
the individual efficiency magnitude.

  Before we deal with these in a quantitative way, we give a short description of each
of these components.

- illumination  (taper): the  most  important  component  of  the  aperture  efficiency  is
another  basic  quantity,  the  illumination  efficiency,  which  is  determined  by  the
radiation  pattern  of  the  feed.  It  describes  the  degree  to  which  the  outer  areas  of the
aperture are less effectively exploited as a result  of the “weaker” illumination of that
area.  This  so-called  illumination  taper  is  chosen  to  reduce  the  nearby sidelobes  and
the spillover,  as we have already seen in Chapter 3. Thus there is a relation between
the illumination and spillover efficiency. The detailed choice of the taper depends on
the required sidelobe level, the ratio of receiver temperature to the expected spillover
contribution  (which  will  be  different  for  Cassegrain  and  prime  focus  systems)  and
the acceptable beam broadening and loss of sensitivity.  Often a maximization of the
ratio  aperture  area  (proportional  to  the  gain  G)  to  system  temperature  (the  G ê Ts -
ratio  in  communication  engineering)  is  the  goal,  where  Ts  is  the  overall  system
temperature, which contains a spillover contribution. 

- spillover:  this  is the  percentage of  power,  emitted  by the  feed,  which  "spills  over"
the  edge  of  the  reflector  and  hence  is  not  used  to  form  the  diffraction  beam.  The
spillover  efficiency  is  defined  as  the  percentage  of  feed-radiated  power  which  falls
within the boundary of the reflector. The spillover is directly related to the edge taper
of  the  illumination  function.  The  received  spillover  power  is  dependent  on  whether
the  “spilled”  radiation  comes  mainly  from  the  warm  ground  (prime  focus)  or  cool
sky (Cassegrain).  It  is  also dependent  on the elevation  angle.  It  can be an important
factor in low-noise systems.

- ohmic  loss:  with  a  metallic  reflector  this  factor  is  close  to  one,  but  at  very  high
frequencies  (submm  wavelengths)  and/or  with  a  paint  layer  on  the  reflector,  the
losses may become significant (several percent).

-polarisation:  the  loss  due  to  cross-polarisation  is  mainly  dependent  on  the  feed
design,  although  some  of  it  can  be  caused  by  the  curved  reflectors.  It  is  often  the
least  known  factor,  because  it  is  not  easy  to  calculate  and  difficult  to  measure
accurately. We shall not be concerned with it further.

- surface  errors:  the  small  scale,  randomly  distributed  deviations  of  the  reflector
from  the  prescribed  (paraboloidal)  shape  cause  randomly  distributed  phase  errors
over the aperture.  Their effect has been analyzed by Ruze (1952,  1966) and resulted
in the well known “Ruze formula” for the efficiency loss due to these errors. Strictly
speaking, the Ruze analysis is valid only in case the correlation length of the surface
errors  is  much  larger  than  the  wavelength  and  much  smaller  than  the  reflector
diameter.  In  practice,  however,  this  requirement  appears  to  be  rather  flexible.  We
shall treat this important aspect in detail later in this chapter.

- focus:  axial  or  lateral  displacements  of  the  feed  from the  focus  cause  large  scale,
systematic  phase  errors  over  the  aperture,  which  normally  are  amenable  to  calcula-
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tion.  One  tries  to  minimize  these  errors  by  (regular)  determination  of  the  optimum
focus from test observations. A full discussion of aberrations caused by defocus will
be presented below.

- blocking:  the  central  subreflector  and  its  support  structure  cause  a partial  shadow-
ing  of  the  aperture,  which  leads  to  a  loss  of  efficiency.  The  blocking  area  consists
normally  of  two  parts:  the  “plane  wave  blocking”,  equal  to  the  projection  of  the
structure  onto  the  aperture  plane,  and  the  “spherical  wave  blocking”,  which  is  the
shadow  cast  by  the  spherical  waves  traveling  from  the  outer  region  of  the  reflector
(outside the support  penetration point) to the focus. Only if the support is attached at
the  rim  of  the  main  reflector  will  the  spherical  blocking  component  vanish.  This
parameter will also treated in detail in this chapter.

  Summarising,  the  aperture  efficiency  is  first  of  all  determined  by  the  illumination
efficiency.  The  other  errors  which  are  distributed  over  the  aperture  will  have  a
reduced influence on the aperture efficiency to the extent that they are diminished by
the  smaller  illumination  intensity  in  the  outer  aperture  area.  Their  influence  on  the
overall  efficiency  is  “weighted”  by  the  illumination  function  at  the  location  where
their effect occurs. For a realistic evaluation of the overall aperture efficiency such a
weighting  is  permissible.  For  instance,  it  is  well  known  that  the  influence  of  the
generally  larger  structural  deformations  towards  the  edge  of  the  reflector  is  dimin-
ished by the smaller illumination level and hence gives a reduced contribution to the
gain loss.  Similarly, we can weigh the blocking areas with the illumination function,
which  will  yield  a  smaller  effective  blocking  area.  It  should  be  noted  that,  after
having  applied  the  weighting,  where  applicable,  and  having  computed  the  effective
loss in aperture, in order to correctly introduce this in the efficiency formula,  it must
be  treated  as  a  loss  of  area  compared  to  the  geometrical  aperture  area  of  the  real
reflector.

  An  important  section  of  this  chapter  contains  the  effects  of  a  displacement  of  the
feed  from the  correct  focal  point,  which  we  call  defocus.  We  shall  see  that  already
small values of defocus  have a significant influence on antenna parameters like gain
and  sidelobe  level.  Curves  and  formulae  for  these  are  presented.  We  also  treat  the
influence  of  the  blocking  of  the  aperture  by  the  secondary  reflector,  the  central
receiver  box  and  their  support  legs.  The  last  is  often  in  the  form  of  a  symmetrical
quadripod. Finally we discuss the important case of random error in the profile of the
reflector, originally treated by Ruze (1952), in some detail. The chapter is concluded
with a short discussion of large scale aberrations, like astigmatism.

‡ 4.2. Illumination efficiency, beam width, sidelobe level

4.2.1. Illumination efficiency ("taper")

  The illumination function of the aperture  FHr, jL  is equivalent,  but not identical,  to
the  radiation  pattern  of  the  feed  in  the  focal  point.  This  function  determines  the
illumination efficiency of the antenna, which is the ratio of the gain of the antenna to
that  of  a  uniformly  illuminated  aperture.  The  illumination  function  is  normally
characterized  by the  "edge taper",  i.e. the level of  the illumination at the edge  of  the
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reflector  compared  to  that  in  the  center.  However,  different  functional  forms  of  the
illumination  function  with  the  same edge  level  can  result  in different  values  for  the
illumination efficiency. The edge taper is normally expressed in decibel with respect
to the central illumination level; thus with t the relative field strength at the aperture
edge, the taper T (in dB) is T = 20 logHtL dB, (0 < t <1).

  The level of the feed function at the opening angle of the reflector is further reduced
by the "free-space taper", determined by the path length difference between the edge
and central rays. The free-space  taper T (in dB) is dependent  on the focal  ratio f êd
and is given by the expression ( and shown in Fig. 4.1): 

Tf = 20 logJIsec Y0ÅÅÅÅÅÅÅÅ2 M2N ª 20 log
ijjj1 + J dÅÅÅÅÅÅÅÅ4 f N2 yzzz.              (4.3)

Fig. 4.1. The free-space  taper in dB as function of the focal ratio of the reflector.

  It is worthwhile noting that in the calculation of the free-space taper with Eq. (4.3)
the  focal  ratio  is  that  of  the  primary  focus  situation.  Thus  for  a  Cassegrain  system
with  magnification  m  (see  Ch.  2)  the  value  of  f  in  the  above  equation  will  be  m
times the focal  length  of the primary  mirror.  With typical  values of m t  10, we see
that normally the free-space taper for a Cassegrain is negligible.

  The illumination efficiency hi   is defined (Silver, 1949) by the following equation:

hi =
9Ÿ FHr,jL „A =2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅŸ F2 Hr,jL „A
,              (4.4)

where  the  integration  is  extended  over  the aperture.  We  consider  circularly  symme-
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tric  amplitude  illumination functions  with constant  phase  front.  Thus  the integration
over  j  is  trivial  and  the  integration  over  r  can  be  carried  out  in  closed  form  for
suitably  chosen  functions  F(r).  Here  follow  the  results  for  two  widely  applied
illumination  functions,  each  with  a  freely  chosen  value  of  the  level  at  the  aperture
edge, the edge taper Te  in dB. Note that this value includes the free-space taper.

i) the gaussian distribution with an edge taper Te  (in dB), is expressed by 

FHrL = exp 8-a r2 < ,                       (4.5)
     

where r is the normalised aperture radius and a = HTe ê 20L ln 10. For Te = -12 dB, we
have  a = 1.3816.

Substituting Eq. (4.5) into Eq. (4.4) and performing the integration yields

hi = 2 H1-e-a L2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
a H1-e-2 a L ,            (4.6)

which for the selected taper of -12dB delivers an illumination efficiency  hi = 0.866.

ii)  the  quadratic  on  a  pedestal  distribution,  with  an  edge  level  t  and  normalised  to
one in the aperture center, is given by

FHrL = t + H1 - tL 81 - r2 < ª 1 - H1 - tL r2 .           (4.7)

After substitution into Eq. (4.4) and carrying out the integration, we obtain

          hi =
81-H1-tLê2<2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
t+H1-tL2 ê3 =

3 H1+tL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 H1+t+t2 L ,           (4.8)

where   logHtL = Te ê 20,  again  Te  expressed  in  dB.  This  last  relation  is
shown in Fig.  4.2.  For Te = -12 dB we find hi = 0.893.  This is  near  the value for
the gaussian distribution, indicating that the illumination functions are rather similar,
as  illustrated  Fig.  4.3 .  The  quadratic  function  lies  somewhat  above  the
gaussian   one  and  it  results  in  a  slightly  higher  illumination  efficiency.  The  calcu-
lated spillover  efficiencies are 0.95 and 0.75 for the quadratic  and gaussian distribu-
tion, respectively.  This strengthens the argument in favour of the quadratic function.
In Fig. 4.4 we show the two functions of Eqs. (4.6) and (4.8) as function of the taper
Te in dB, indicating the higher efficiency of the quadratic distribution . The
quadratic distribution, going to zero at the reflector edge (t = 0), reduces the illumina-
tion  efficiency  to  0.75  times  the  maximum  value  for  uniform  illumination.  For  a 
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Fig. 4.2. The edge taper in dB against  the value of t.

Fig.  4.3  The  illumination  function  for  the  gaussian  (red)  and  quadratic  (blue)  distribution  and  an
edge taper of -12 dB. The quadratic  illumination  is somewhat  more effective.

gaussian  illumination  with  an  edge  value  of  about  2%,  i.e.  a  4,  the  illumination
efficiency decreases  to about 0.5.  Obviously,  to maximize the efficiency  for a given
edge  taper,  the  quadratic  distribution  is  preferable.  Indeed,  optimized  feed  horns
exhibit  a  pattern,  which  is  approaching  the  quadratic  function,  rather  than  the  often
assumed gaussian shape. For the commonly applied taper values between -10 and -20
dB, the difference is however limited to 10-15 percent.

  Finally,  note  that  these  illumination  functions  implicitly  contain  the  free-space
taper.  For  instance,  if  the  desired  aperture  edge  taper  is  -15  dB  and  the  reflector
geometry  introduces  3  dB  of  free-space  taper,  the  feed  must  be  designed  to  have  a
-12 dB amplitude  decrease  at  the opening  angle of  the  reflector.  In  the next  section
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we  discuss  the  influence  of  the  illumination  function  on  important  antenna parame-
ters as beamwidth and sidelobe level.

Fig.  4.4.  The  illumination  efficiency  as  function  of  the  edge  taper  (in  dB)  for  the  gaussian  (red)
and  quadratic  (blue)  distribution.The  quadratic  illumination  is  more  effective,  especially  at  high
taper values.

4.2.2. Beamwidth, sidelobe level and taper

In Chapter 3.5 we derived the normalised radiation function as (Eq. (3.29)

f Hq, fL =
d2
ÅÅÅÅÅÅÅ4 Ÿ0

1 Ÿ0

2 p
FHr, cL e i FHr, cL expA-i k d rÅÅÅÅÅÅÅÅÅÅ2 sin q cos Hc - fLE d r d c ,

where  FHr, cL  and  FHr, cL  are  the  amplitude  and  phase  terms  of  the  illumination
function,  respectively.  When we assume a constant  phase  function over the aperture
and  introduce  a  rotationally  symmetric  amplitude  illumination  function  (as  e.g.  Eq.
(4.7)), the integration over c can readily be performed and we obtain the rotationally
symmetric radiation integral as

f HuL = p d2
ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 Ÿ0

1
FHrL J0 Hu rL r d r,             (4.9)

where  J0 Hu rLis  the  Bessel  function  of  the  first  kind  and  order  zero  and  the  angular
coordinate  u = Hp d êlL sin q, d  being  the  diameter  of  the  aperture.   After  introduc-
tion  of  the  tapered  aperture  function  according  to  Eq.  (4,7),  the  integration  over  r
yields (see Ch. 3.5)
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f HuL = 9 t
J1 HuLÅÅÅÅÅÅÅÅÅÅÅÅu + 2 H1 - tL J2 HuLÅÅÅÅÅÅÅÅÅÅÅÅu2 = .            (4.10)

which can also be written in the form of Lambda functions as

f HuL = 9 t
ÄÄÄÄÄ
2

L1 HuL +
1-t
ÄÄÄÄÄÄÄÄÄÄÄ

4
L2 HuL=,           (4.11)

where the Lambda function is defined as Ln HuL = n !
Jn HuLÅÅÅÅÅÅÅÅÅÅÅÅÅHuê2Ln , with Jn HuL  the Bessel

function of the first kind and order n.  The Lambda functions are tabulated in Jahnke-
Emde's  "Tables  of  Functions",  p.180ff,  1945.  Thus,  for  uniform  illumination  (t=1)
we  obtain  the  Lambda  function  of  order  one,  while  for  full  quadratic  illumination
(t=0)  the  pattern  is  given  by  the  Lambda  function  of  order  two.  It  is  convenient  to
introduce  a  normalisation  factor  for  the  calculated  radiation  patterns  as  function  of
the taper parameter t. This way, the computed pattern maximum will be one for any
value  of  t.  Now,  for  u = 0 the  two Lambda  functions  have  the  value one.  Thus  the
normalisation factor n of Eq. (4.11) will obey the following expression:

nH tÅÅÅÅÅ2 + 1-tÅÅÅÅÅÅÅÅÅÅÅ4 L = 1 and hence n =
4ÅÅÅÅÅÅÅÅÅÅ1+t .

The "power pattern" (also called gain function) gHuL   of the antenna is the square
of the function f HuL. Written  in Bessel  functions,  the normalised power  pattern thus
becomes

gHuL = 9 4ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1+ t J t
J1 HuLÅÅÅÅÅÅÅÅÅÅÅÅu + 2 H1 - tL J2 HuLÅÅÅÅÅÅÅÅÅÅÅÅu2 N=2

.          (4.12)

  The  Bessel  functions  are  directly  available  in  Mathematica.  The  following  figure
(4.5)  illustrates  the  function  gHuL,  expressed  in  logarithmic  (dB)  scale,  for  values
t  = (0, step 0.2, 1)  The narrowest  curve pertains to the uniform illumina-
tion,  the broadest  to the quadratic  illumination  with edge level zero.  This is qualita-
tively obvious,  because the weaker illumination towards the aperture edge is equiva-
lent  to  making  the  aperture  smaller  and  hence  the  beam  broader.  From Fig.  4.5  we
also  see  that  the  sidelobe  level  is  smaller  for  the  tapered  aperture  distribution.  One
can  envisage this  by  considering  that  the  superposition  of  the  secondary  "Huygens"
wavelets  is  less  effective  because  of  the  differing  amplitudes,  resulting  in  a  smaller
summation value.

  The  Mathematica  routine  also  provides  a  table  of  the  u-coordinates,  where  the
functions are at the half-power level (- 3 dB), again in the order uniform illumination
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to fully tapered:

88u Ø 1.61634<, 8u Ø 1.64895<, 8u Ø 1.69239<,
8u Ø 1.75311<, 8u Ø 1.84397<, 8u Ø 1.99442<<

Fig.  4.5.  Power  pattern  (in  dB)  of  a  circular  aperture  with  quadratic  illumination  function  and  edge
taper values of {1, step -0.2, 0}, from red, green, blue, yellow, magenta  to cyan.

  We can use these results to construct a curve of the half power beam width (HPBW)
as function of the illumination taper t.  The half-power levels are found at the u-val-
ues listed above. We have 

uA = Hp d ê lL sin qA º Hp d ê lL qA ,

and

qA º
uA lÅÅÅÅÅÅÅÅÅ
p d

.

For the full HPBW we write QA  = b (l / d) and hence find for the factor  b = 2 uA ê p.
Over the range 0.1 < t < 1 the factor b can be approximated very well by the expres-
sion (  see also Fig. 4.6):

b = 1.269 - 0.566 t + 0.534 t2 - 0.208 t3 .             (4.13)

  In the pattern calculations of Fig. 4.5 we have also computed the position
and  level  of  the  first  sidelobe  as  function  of  the  illumination  taper.  Thus  the  first
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sidelobe  level  for  uniform illumination  is at   -17.57  dB, decreasing  to -24.64 dB for
the full quadratic function.

Fig. 4.6. The factor b in the HPBW formula as function of the taper t.

We  see  a  significant  decrease  in  the  level  of  the  first  sidelobe  if  the  illumination
becomes more tapered, which corresponds to a smaller value of t. Next to the desire
to  minimise  spillover  radiation  along  the  edge  of  the  reflector,  the  lower  sidelobe
level is an important factor in choosing a tapered illumination. Fig. 4.7 illustrates the 

Fig.  4.7.  The  level  of  the  first  sidelobe  in  dB  as  function  of  the  taper.  The  red  line  is  the  
   approximation  of Eq. (4.14a),  black is Eq. (4.14b).  

sidelobe level in dB as function of the taper parameter t  To an accuracy of
a  few  tenths  of  a  decibel  the  relation  can  be  approximated  by  the  simple  formula

4. Antenna characteristics in practical applications64

0 0.2 0.4 0.6 0.8 1
taper

1.05

1.1

1.15

1.2

1.25

1.3

r
o

t
c

a
f

b

0 0.2 0.4 0.6 0.8 1
taper

-24

-23

-22

-21

-20

-19

-18

-17

e
b
o

l
e

d
i

s
H
B

d
L

[Mat.4.7].



SHdBL = -24.6 + 7.37 t .                      (4.14a)

The calculated points are closely fit by the relation

S HdBL = -24.682 + 5.712 t + 7.52 t2 - 6.156 t3  .           (4.14b)

Fig.  4.8.  The  relation  between  illumination  taper  and  level  of  first  sidelobe.  The  short  lines  at  
  the curve designation  indicate the axes pertaining  to the curve.

  Some of the relations derived above are collected in a set of graphs in Fig 4.8. From
these one can read the relations between the edge taper,  expressed either in dB or in
pedestal height value p, and the level of the first sidelobe in amplitude or dB level.
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  In Eq. (4.8) the illumination efficiency was given as function of the taper parameter
t. One could use this expression to derive a "tapered aperture diameter" deff , defined
as  the  diameter  of  a  uniformly  illuminated  reflector  with  the  same effective  area  as
the real reflector  with tapered illumination (Mangum and Cheng, 1998). Thus deff  is
proportional  to  the  square  root  of  hi ,  as  given  in  Eq.  (4.8).  Using  the  effective
diameter one could compute the expected change in HPBW from the simple relation
that  the  HPBW  is  inversely  proportional  to  the  diameter  of  the  reflector.  The  result
gives  values  which  are  smaller  than  the  HPBW,  determined  directly  from the  com-
puted  radiation  pattern.  The  concept  of  effective  diameter  seems  to  have  only  a
limited usefulness in the analysis of the antenna behaviour. 

It is moreover not allowed to use the “tapered reflector radius” in the calculation of
the  components  of  the  aperture  efficiency.  Based  on  the  definition  of  aperture
efficiency,  its  efficiency  components  must  all  be  referenced  to  the  full  geometrical
aperture area in order to arrive at the correct value of the overall aperture efficiency.
Introducing  a  “tapered  value”  for  some  of  those  efficiency  components  is  not
allowed,  because  the  illumination  efficiency  already  has  accounted  for  it.  It  is  also
worth remarking that in all  our analyses we use the aperture plane as reference area,
not the physical area of the curved reflector. (See also Chapter 5).

  In the following sections we turn our  attention to the influence of imperfections  in
the  antenna  on  the  radiation  characteristics.  The  most  important  of  these  are  a
position  of  the  feed  displaced  from  the  true  focus  and  deviations  of  the  reflector
surface  from  the  prescribed  form.  These  are  aspects  of  great  practical  value  in  the
operation of the antenna or radio telescope.

‡ 4.3. Axial defocus

In Chapter  2  we described  the geometrical  relations of the paraboloid  and presented
the formulae for the path length differences caused by defocusing. Their influence on
the  characteristics  of  the  radiation  pattern  will  now  be  discussed.  In  general  terms
this is called the theory of aberrations. We will not give an exhaustive treatment (for
this see e.g. Born  and Wolf, 1980),  but  will derive  the changes in beam parameters,
like  gain,  beamwidth,  sidelobe  level,  etc.  First  we treat  the effects  of axial  defocus;
that  is  the  situation  where  the  feed  (or  the  subreflector  in  a  Cassegrain  system)  is
displaced along the paraboloid's axis from the true focal point.

  From Ch. 2.2.2 we take Eq. (2.25) as a sufficiently accurate and convenient expres-
sion for  the path length error due to axial defocus  with the adjustment for  the maxi-
mum phase  error  as discussed  there. The maximum phase  error  at the aperture  edge
is thereby proportional to H1 - cos y0 L. We shall demonstrate below that this approxi-
mation is fully warranted. This leads to the phase term over the aperture

DFHrL = 2 p dÅÅÅÅÅÅÅÅÅÅÅÅÅl H1 - cos y0 L r2 ª b r2 .                      (4.15)

where  y0  is  the  opening  half-angle  of  the  paraboloid,  dependent  on  the  focal  ratio
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through  Eq.  (2.10)  and  b  replaces  the  term  in  front  of  r2 .  It  is  obvious  that  axial
defocus causes a phase error independent  of the azimuthal aperture coordinate.  Thus
the  integration  over  this  coordinate  can  be  performed,  as  done  in  Ch.  3.5.  We  now
insert this phase function into the radiation integral of Eq. (4.9),  assuming an ampli-
tude illumination function FHrL with rotational symmetry, to obtain

f HuL = Ÿ0

1
FHrL J0 Hu rL exp@- i DFHrLD r „ r,                      (4.16)   

where J0 Hu rL is the Bessel function  of the first  kind and order  zero, u = Hk d ê 2L sin q
with  q  the  angular  polar  coordinate  of  the  beam.  For  the  illumination  function  we
select  the  usual  quadratic  on  a  pedestal  form  FHrL = 1 - H1 - tL r2  with  pedestal
(taper) value t.

  With Eq. (4.15) and assuming uniform illumination Eq. (4.16) can be written as

f Hu, bL = Ÿ0

1
J0 Hu rL exp@- i b r2D r „ r = exp@-i bD Ÿ0

1
J0 Hu rL exp@i b H1 - r2 LD r dr.

Separating the integral in its real and imaginary parts we obtain

U1 Hu, bL = b Ÿ0

1
J0 Hu rL cos@bH1 - r2 LD r „ r,

U2 Hu, bL = b Ÿ0

1
J0 Hu rL sin@bH1 - r2 LD r „ r,

and f Hu, bL exp@i bD = 1ÅÅÅÅÅb @U1 Hu, bL + U2 Hu, bLD.
The functions  U1  and  U2  are  Lommel  functions,  already mentioned  in Chapter  3.6,
which can be expanded into the following series

U1 Hu, bL =
2 b
ÅÅÅÅÅÅÅÅÅÅu J1 HuL - J 2 b

ÅÅÅÅÅÅÅÅÅÅu N3

J3 HuL + J 2 b
ÅÅÅÅÅÅÅÅÅÅu N5 J5 HuL - ...

U2 Hu, bL = J 2 b
ÅÅÅÅÅÅÅÅÅÅu N2

J2 HuL - J 2 b
ÅÅÅÅÅÅÅÅÅÅu N4

J4 HuL + ...

and the power pattern of the antenna can now be written as

   GHu, bL = 1ÅÅÅÅÅÅÅÅÅ
b2 8 U1

2 Hu, bL + U2
2 Hu, bL <

= 4 I J1 HuL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅu M2 - 16 b2 J 2 J1 HuL J3 HuL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅu4 -
J2

2 HuL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅu4 N + ... H4.17L
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The  first  term  is  the  beam  function  for  the  in-focus  situation  (b  =  0)  and  uniform
illumination, as given in Eq. (4.10) .

  Inspecting  the  radiation  integral  for  the  axially  defocused  paraboloid  we  notice  a
strong  similarity  with  the  integral  of  the  focused  antenna  in  the  Fresnel  region,  as
discussed in Section 3.6. Obviously Eq. (3.37) is very similar to Eq. (4.16) as shown
next, with some trivial change in notation,

    f HuL = Ÿ0

1
FHrL J0 Hu rL expIi k r2

ÅÅÅÅÅÅÅÅÅ2 R M r „ r ,       from Eq. (3. 37)

and

f HuL = Ÿ0

1
FHrL J0 Hu rL exp@-i DFHrLD r „ r,     from Eq. (4.16).

The integrals are identical if DFHrL = - k r2 ê2 R , or k dH1 - cos y0 L r2 = -k r2 ê 2 R.

  To a first approximation  H1 - cos y0 L = 2 H1 ê2 f L2  (see Eq. (2.13) and we obtain

d = - f 2 êR .          (4.18)

Thus,  to  a  first  approximation,  we  can  mimic  the  farfield  radiation  pattern  at  a
distance  R  from  the  aperture  by  shifting  the  feed  outwards  along  the  axis  by  an
amount  d  given  by  Eq.  (4.18).  This  fact  is  used  in  the  measurement  of  antenna
radiation patterns on  pattern ranges of a limited,  finite  length. It  is routinely  used to
offset nearfield effects in the holographic measurement of reflector surfaces with the
aid  of  a  transmitter  at  finite  distance,  We  shall  discuss  this  more  completely  in  the
treatment of the holography method in Chapter 6.

4.3.1. Gain function with axial defocus

For the calculation of the gain decrease due to the defocus, we need only to calculate
the on-axis values of f HuL, i.e. for u = 0, where J0 H0L = 1 . The integral simplifies to
the integral over the illumination amplitude function FHrL times the complex exponen-
tial phase term of Eq. (4.16), which we separate in sine and cosine terms. We obtain,
maintaining the normalisation term introduced earlier and writing z = r2 ,

fc H0, bL =
2ÅÅÅÅÅÅÅÅÅÅÅ1+ t Ÿ0

1 H1 - H1 - tL zL cosHb zL „ z        (4.19a)

fs H0, bL =
2ÅÅÅÅÅÅÅÅÅÅÅ1+ t Ÿ0

1 H1 - H1 - tL zL sinHb zL „ z        (4.19b)

and the on axis gain function with defocus becomes
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gH0, bL = fc
2 + fs

2 .                      (4.20)

Instead of using the representation in a series of Bessel functions as sketched above,
we  evaluate  this  directly  with  the  aid  of  Mathematica  The  resulting  gain
function with axial defocusing for arbitrary taper t is obtained as

g(0, b) = 4ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
b4 H1+tL2 H2 + b2 - 4 t + H2 + b2 L t2

- 2 H1 + t H-2 + b2 + tLLCos HbL - 2 b H-1 + tL2 Sin HbLL ,

     (4.21)

where  b  is  the  maximum  phase  error  at  the  aperture  edge,  as  given  above  in  Eq.
(4.15). For the case of uniform illumination (t = 1) the function reduces to

gH0, bL = 2 H1 - cos bL ê b2 = 9 sinHbê2L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHbê2L =2 º 1 - b2 ê12,          (4.22)

For the fully tapered illumination (t=0) we obtain the result

gH0, bL = 4 H2 + b2 - 2 cos b - 2 b sin bL ê b4

= 9 sinHbê2L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅbê2 =4

+ 4ÅÅÅÅÅÅÅÅÅ
b2 9 sin b

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅb - 1=2

º 1 - b2 ê18

         (4.23)

The simple quadratic approximations are reasonably good for values of b < 1.

If  we take  the gain function,  based on the Lommel functions  above (Eq. (4.17)) and
let u->0, the beam maximum, we obtain

gHb, 0L = 1 - 16 b2 limu>0 J 2 J1 HuL J3 HuL -J2
2 HuLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅu4 + ..N = 1 -

b2

ÅÅÅÅÅÅÅÅÅ12 .

This  is  identical  with  the  result  found  above  (Eq.  (4.22)).  In  his  paper  on  antenna
tolerances Bracewell (1961) obtains the same result along an heuristic argument.

  In  the discussion  of the  geometry  of aberrations  in  Chapter  2  we concluded  that a
better approximation for the path length changes due to axial defocus is given by Eq.
(2.28), while a fully correct function is presented in Eq. (2.29). The differences in the
gain  loss  for  these  three  approximations  are  shown  in  Fig.  4.9,  There  is
barely  a  difference  between  the  curves  for  the  exact  phase  function  calculation  (red

4.3. Axial defocus 69

 [Mat.4.8].

[Mat.4.9].



curve),  the  good  approximation  of  Eq.  (2.28)  (green)  and  the  further  approximation
of Eq. (4.22) (blue). 

Fig.  4.9.  Gain  loss  due  to  axial  defocus  of  the  feed  from  the  primary  focus  for  3  mm  wavelength  and
uniform  illumination.  The  dashed  red  curve  uses  the  exact  phase  error  of  Eq.  (2.29),  the  green  curve  is
for  Eq.  (2.28),  essentially  coinciding  with  the  red,  and  the  blue  curve  Eq.  (4.22),  barely  separated  from
the  other  two.  The  cyan  line  is  the  quadratic  approximation  of  Eq.  (4.22)  to  the  blue  function,  adequate
for b < 1.5.

  We return now to Eq. (4.21) which is the expression for the gain loss as function of
axial defocus (b) for arbitrary taper value t  The function is plotted in Fig.
4.10,  both on linear and logarithmic scale.  It  is clear that the gain loss is less with a
highly  tapered  distribution  and  is  also  lacking  the  sharp  minimum.  This  can  be
explained  by  the  lesser  destructive  interference  between  the  differently  weighted
phase errors of the inner and outer sections of the aperture. 

  The results indicate that it is important  to maintain a proper axial focus. A defocus
of  the primary focus feed, or the subreflector  in a Cassegrain system, of only half a
wavelength causes  already a gain loss of 30 percent.  As we shall  see later,  the focal
length for optimum gain is often dependent  on the elevation angle of the antenna.  A

focus to maximum gain dependent on the elevation angle. This feature is available in
all modern antennas and radio telescopes.

4.3.2. Beamwidth and sidelobe variation with axial defocus

It  is  of  interest  to  also  investigate  the  change  in  beamwidth  and  sidelobe  level  with
defocus.  We  expect  to  see  a  widening  of  the  beam  and  an  increase  in  the  sidelobe
level. For this we must integrate the full equation (4.16):

f HuL = Ÿ0

1
FHrL J0 Hu rL exp@- i DFHrLD r „ r.
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Fig. 4.10.  Gain loss due to axial  defocus  for tapered  aperture  illuminations  with t = (0, step 0.25,  1), top
to  bottom.  The  abscissa  shows  the  maximum  phase  error  b,  which  can  be  changed  to  a  defocus
through Eq. (4.15).

  In  the  following  calculation  we  present  a  series  of  beam  patterns  for  increasing
values  of  the  axial  defocus  in  steps  of  1  mm  for  a  wavelength  of  3  mm  and  the
geometry  of  the  ALMA  antenna  In  this  calculation  we  have  used  the
simple quadratic  function in r  for the  phase error  over the aperture  (Eq. (4.15)).  We
take the uniform illumination first, shown in Fig. 4.11.

  The more practical case for an illumination function with  -12 dB taper (t = 0.25) is
shown in the following figure (Fig. 4.12)  Again we see that the influence
of the defocus is "smoothed" in the  case of tapered illumination. It is obvious that the
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Fig.  4.11.  A  set  of  beam  patterns  for  different  values  of  axial  defocus  and  a  uniform  illumination
function.The  defocus  is  in  steps  of  1  mm  from  0  to  5  (red,  green  to  cyan)  and  the  wavelength  is  3
mm.The upper curve (red) applies to the focused case.

sidelobe  structure  is  quickly  destroyed;  already with  a  defocus  of  2  mm (two-thirds
of  the  wavelength)  the  sidelobe  has  "smeared"  to  a  broad shoulder.  We  could  have
used  the  Lommel  function  representation,  and  its  series  development  in  Bessel
functions  to  obtain  this  result.  However,  the  direct  integration  can  be  performed
without approximations  within Mathematica and gives  a quicker and more trustwor-
thy result.  

Fig.  4.12.  A  set  of  beam  patterns  for  different  values  of  axial  defocus  and  a  quadratic  illumination
function  with  edge  taper  of-12  dB.The  defocus  is  in steps  of 1 mm from 0 to 5 and  the wavelength  is  3
mm.The upper curve (red) applies to the focused case.
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  An analytical  calculation  of  the change  in beamwidth  is tedious,  if  at  all  possible.
Numerical  computations  indicate that the beamwidth  increases  slightly with defocus
and is strongly  dependent  on the illumination  taper.  The relative increase  is roughly
proportional  to  b2  and  our  calculations  for  a  realistic  -12dB  illumination  taper
indicate the following relation (derived from Fig. 4.12):

qA ê qA0 = 1 + 0.01 b2 ,           (4.24)

The beam broadening is too small to be used as a reliable indicator of a possible axial
defocus.  As we  saw above,  both the decrease  in  gain and the  level  of the  first  side-
lobe present more sensitive criteria. We shall discuss the methods of determining the
best focal position in Chapter 5.

4.3.3. Depth of focus in prime focus and Cassegrain configuration

So far  we  have  dealt  with  the  movement  of  the  feed  near  the  primary  focus  of  the
paraboloidal  reflector.  The discussion  is  valid  without  any  change  for  axial  defocus
of  the  feed  in the  secondary  focus  of  a  Cassegrain  reflector  configuration.  We  only
have  to  consider  the  equivalent  primary-fed  paraboloid  with  a  focal  length  of  m
times that of the real primary, where m is the magnification factor of the Cassegrain
system, given by the expression (Eq. (2.18))

m = tanI Y0ÅÅÅÅÅÅÅÅ2 M ë tanI F0ÅÅÅÅÅÅÅÅ2 M,
where  F0  is  the  opening  half-angle  of  the  secondary  reflector  from  the  Cassegrain
(secondary)  focus  and  Y0 is  the  opening  half-angle  of  the  primary,  as  used  before.
Now,  if  we  would  use  the  approximation  of  Eq.  (2.25)  for  the  phase  error  due  to
defocus,  it  is  immediately  clear  that  an axial  defocus  in  the secondary  focus  can be
m2  times  as large  as  in the  primary  focus to  cause  the same phase  error,  and hence
gain loss. As we have seen, a more correct approximation is given by Eq. (2.28) and
from  this  we  find  that  for  an  equal  phase  error  over  the  aperture  the  ratio  of  the
defocus in secondary ds to primary dp focus is given by

dsÅÅÅÅÅÅ
dp

=
2 I dÅÅÅÅÅÅÅÅ4 f M2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

1 + I dÅÅÅÅÅÅÅÅ4 f M2 ì 2 m-2 I dÅÅÅÅÅÅÅÅ4 f M2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1+ m-2 I dÅÅÅÅÅÅÅÅ4 f M2 = m2

1 +
1ÅÅÅÅÅÅÅÅm2 I dÅÅÅÅÅÅÅÅ4 f M2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

1 + I dÅÅÅÅÅÅÅÅ4 f M2 .            (4.25)

Normally m t 10 and for a typical value of f ê d = 0.4, the quotient in Eq. (4.25) has
a value of about 0.7. The "depth of focus" factor of a Cassegrain system with respect
to  the  primary  is  given  by  the  above  formula.  In  Mathematica  it  takes  the  form
(numerical values valid for the ALMA antenna):
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m = 20; F = f ê d; F = 0.4;

dep_foc = m2 H1 + m-2 H4 FL-2L ê H1 + H4 FL-2L
Out[105]= 287.921

Thus an axial focus error in the Cassegrain focus is about 300 times less severe than
in the primary focus of the reflector. 

  In the Cassegrain configuration an axial shift of the secondary reflector ds  from the
primary focus causes a phase error over the primary reflector as with a primary feed
shift  plus a  small  phase error  over the  secondary  from its  displacement  with respect
to the feed. Thus the phase error is given by

 DF = 2 pÅÅÅÅÅÅÅÅÅ
l

ds H1 - cos f + 1 - cos yL º 2 pÅÅÅÅÅÅÅÅÅ
l

ds H1 - cos yL,            (4.26)

the  final  approximation  being  allowed,  because  in  almost  all  cases  the  subtended
angle of the subreflector  is a few degrees and cos f 1. In other words, the treatment
above  for  the  primary  feed  can  be  used  without  significant  loss  of  accuracy  for  the
axial shift of the secondary reflector.

‡ 4.4. Lateral defocus - Coma, Beam-Deviation-Factor

4.4.1. Off-axis beam function - Coma

We  now  turn  to  a  discussion  of  the  effects  of  a  lateral  defocus  of  the  feed,  or  the
secondary  reflector,  from  the  focal  point.  The  geometry  has  been  presented  in  Ch.
2.2.1. Note that in this case, contrary to axial defocus, the phase error will be depen-
dent on the azimuthal aperture coordinate c which complicates the analysis. We shall
begin with the full phase error, but then limit our calculations to the beam characteris-
tics  in the plane of defocus,  where  the effects are of course most  pronounced.  From
the  discussion  in  Ch.  2.2.1  we  repeat  here  the  formula  for  the  phase  error  over  the
aperture, under the assumption that Hd ê f L << 1 (Eq. (2.23),

DFHr, cL = 2 pÅÅÅÅÅÅÅÅÅl d rÅÅÅÅÅÅf

i
k
jjjjjjjjjjjj 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

1 +
ikjjjj rÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 f
y{zzzz
2

y
{
zzzzzzzzzz cos c.            (4.27)

We  must  now introduce  this  phase  error  in  the  radiation  integral  of  the  antenna,  as
given by Eq. (3.29), 
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f Hq, fL = Ÿ0

1Ÿ0

2 p
FHr, cL expA-i 9k d rÅÅÅÅÅÅÅÅÅÅ2 sin q cosHf - cL + DFHr, cL=E r „ r „ c.

           (4.28)       

  We assume that the defocus does not have an effect on the amplitude distribution of
the  aperture  field;  only  the  phase  function  will  be  modified.  This  assumption  is
justified because we consider only small values of the defocus. By tilting the off-axis
feed  so  as  to direct  the maximum of  its  radiation  function towards  the center  of the
aperture,  we  assure  a  symmetrical  amplitude  distribution  as  well  as  possible.  The
aperture integration integral of Eq. (4.28) has been normalised to a radius of one. To
adjust  the phase  error  to  a unit  aperture  radius,  we must  multiply  the  r-terms in Eq.
(4.27)  by  d ê 2.  Writing  X = 4 f êd,  the  radiation  integral  now  becomes  (ignoring
constants before the integral sign)

f Hq, fL = ·
0

1·
0

2 p
FHrL expA-i k dÅÅÅÅÅÅ2 r 9 sin q cosHc - fL - dÅÅÅÅÅf

1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1+J r

ÅÅÅÅÅÅÅÅÅ
X

N2 cos c=E r „ r „ c.

           (4.29)

  The integration over c can be performed readily,  provided we can obtain one term
in c. This can be achieved by the following substitution (Baars, 1970). We introduce
the variable

K = dÅÅÅÅÅf

i
k
jjjjjj 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

1+I rÅÅÅÅÅÅÅ
X
M2
y
{
zzzzzz

and the term in curly brackets of Eq. (4.29) can now be written as

sin q cosHc - fL - K cos c = Hsin q cos f - KL cos c + sin q sin f sin c =
G cos g cos c + G sin g sin c = G cosHg - cL ,

where we have introduced the new variables G and g , which have the form

G2 = Hsin q cos f - KL2 + Hsin q sin fL2 = sin2 q - 2 K sin q cos f + K2           (4.30a)

and

tan g =
sin q sin fÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅsin q cos f -K .                       (4.30b)

With these substitutions the integral of Eq. (4.29) becomes
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f Hq, fL = Ÿ0

1Ÿ0

2 p
FHrL expA-i k dÅÅÅÅÅ2 r GHq, r, fL cosHg - cL E r „ r „ c,           (4.31)

in which the integration over c can now be performed to yield

f Hq, fL = 2 p Ÿ0

1
FHrL J0 Ak dÅÅÅÅÅÅ2 r GHr, q, fL E r „ r.                        (4.32)

  This  radiation  pattern  will  not  be  rotationally  symmetric  in f  because  G  is  depen-
dent on f. For the geometry, refer to Fig. 3.1 and recall that q is the polar angle of the
radiation pattern, while f is the azimuthal angle of the pattern. In the most interesting
plane,  the one in which  the feed has been displaced (often called the plane of scan),
we take f = 0 and hence G = sin q - K. The K-term causes a beam shift in the plane
of feed movement and  the coma lobe due to the higher  order term in r.  If the effec-
tive  focal  length  is  large,  as  in  a  Cassegrain  configuration  where  typically  the
magnification is of order 10, the quadratic r-term in K can be neglected and the beam
squint  is  simply  -d ê f .  For  a  prime  focus  reflector  the  full  equation  for  K  must  be
preserved in the integral. With X = 4 f êd, as introduced above, and using, as before,
u = k dÅÅÅÅÅÅÅÅ2 sin q  the  integral  in  the  plane  of  the  defocus  (f  =  0)  takes  the  final  form
(ignoring irrelevant constants)

f HuL = 2 ·
0

1
FHrL J0B r

i
k
jjjjjjjju -

2 k dÅÅÅÅÅÅÅÅÅÅ
X

1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1+H rÅÅÅÅÅX L2

y
{
zzzzzzF r „ r.                     (4.33)

  This  formula  can  be  written  as  a Mathematica  expression  for  the  computation  of
off-axis  radiation  patterns  An  example  for  the  ALMA  antenna  follows.
Note  that  the  units  for  d, d  and l  must  be  the  same.  The  feed  is  displaced  by  one-
third  of  a  wavelength  with  each  step.  From  Fig.  4.13  we  see  that  the  gain  loss  is
small,  less  than 0.5  dB,  but  the  sidelobe  towards  the  reflector  axis  (the  Coma-lobe)
increases strongly  to -13 dB for a lateral defocus  of only one wavelength.  However,
the  sidelobes  on  the  other  side  of  the  beam  become  very  weak.  This  is  a  good
criterion to determine the correct lateral focus in practice.

  We  illustrate  the  general  appearance  of  these  off-axis  beams  with  a  few  more
figures, all derived with the aid of Mathematica  On the right side of Fig.
4.14 a contour plot  of the beam with the feed laterally displaced  by one wavelength
is  shown.  The  "waning  moon"-like  coma  lobe  is  clearly  visible  to  the  left  of  the
bright central main beam. A 3-dimensional plot is shown in the left part of the figure.
Similar  calculations  are  presented  next  for  the  case  of  -12  dB  illumination  taper  (a
widely used value in practice)  The plot of Fig. 4.15 show the results. The
gain loss is somewhat less and the coma lobe is not as strong. This is again a result of 
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the decrease  in constructive  or  destructive  interference  of  the reflected,  "secondary"
wavefronts  caused  by  the  difference  in  amplitude  of  these  waves  depending  on  the
location of their origin on the reflector. 

Fig. 4.13.  Radiation  patterns  with uniform  illumination  and for lateral  feed displacement  of up to one
wavelength  in  three  equal  steps.  Note  the  strong  sidelobe  on  one  side  -the  Coma  lobe.  The  gain
loss is relatively  small.

Fig. 4.14.  A 3-dimensional  and  a contour  plot  of the  antenna  beam  with the feed  displaced  laterally  by one
wavelength.  Note  the  coma  lobe  in  the  form  of  the  "waning  moon"  crescent  on  the  left  of  the  main  beam.
The brightness  of the main beam has been truncated  to make the coma lobe more visible.
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Fig.  4.15.  Radiation  patterns  for  the  same  lateral  feed  displacement,  but  in the case  of an illumination
function with -12 dB taper.

4.4.2. Gain and sidelobe level for off-axis beam

From  these  calculations  we can  construct  tables  or  graphs  of  the  off-axis  behaviour
of the antenna. Important quantities  are the gain loss and the coma lobe level. These
cannot be computed in a straightforward,  analytical way. However, the Mathematica
expressions  FindRoot  and  FindMaximum  offer  an  easy  way to  find  the  numerical
values.  Fig..4.16 depicts these quantities,  as deduced from the calculations,  for three
illumination  functions:  uniform,  -12 dB taper,  quadratic  taper (zero at  edge) and  for
the ALMA antenna geometry with f ê d = 0.4. The curves are polynomial fits to the
computed points (black) at p = 0 to 5.The results of the fits are given in Table 4.1.

  Note that the parameter p is reckoned in half-power beam widths (HPBW) off-axis.
The  physical  shift  of  the  feed  (or  subreflector)  needed  for  such  a  beam  shift  is
dependent on the illumination taper and the primary f ê d  -ratio. We can write for the
feed displacement dl  per HPBW beam shift

dl ê HPBW = bÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅBDF
f

ÅÅÅÅÅÅd l,           (4.34)

where  BDF  is  the  beam  deviation  factor,  to  be  discussed  in  the  next  section.  The
general  expression  for  the  HPBW is QA = b Hl êdL (in  radian),  where  b  depends  on
the illumination function.  For a "quadratic  on a pedestal"  illumination function with
taper t (Eq. 4.7), a useful approximation for b as function of t is given in Eq. (4.13).
In case of the ALMA antenna we have, for a -12 dB tapered illumination (t = 0.25),
BDF = 0.82, b = 1.165 and we find for the lateral feed shift per HPBW beam shift

dl ê HPBW = Hp = 1L = 0.57 l .
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Fig.  4.16. Gain loss and Coma-lobe  level as function of lateral  defocus for  uniform (red), -12 
dB (blue) and full (green) illumination  taper

Table 4.1. Gain loss and Coma lobe with lateral defocus

Illumination Gain loss function Coma lobe level (dB)
----------------------------------------------------------------------------------------------
Uniform 1 - 0.0070 p - 0.0102 p2         -17.6 + 3.2 p - 0.50 p2 + 0.03 p3

Taper -12 dB 1 - 0.0073 p - 0.0091 p2         -23.0 + 5.3 p - 0.95 p2 + 0.07 p3

Quadratic 1 - 0.0045 p - 0.0072 p2         -24.6 + 5.3 p - 0.93 p2 + 0.07 p3
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  The calculations presented here are all for a prime focus geometry and a movement
of  the  feed  from  the  focal  point.  The  results  are  valid  to  good  accuracy  for  the
displacement  of  the  secondary  reflector  from  the  focus.  As  remarked  before,  the
situation in the secondary focus is far less critical because of the large magnification
factor m of the Cassegrain system.  A lateral feed shift is m times less critical,  while
the  axial  "depth  of  focus"  is  approximately  0.5  m2 less  critical  than  in  the  primary
focus,  as  illustrated  earlier.  Also,  a  rotation  of  the  secondary  causes  a  beam  shift
which is about m times smaller than the actual secondary rotation (see Ch. 5.5.1).

4.4.3. Beam Deviation Factor (BDF)

We turn now to an important quantity,  related to lateral defocus;  the beam deviation
factor.  As  we  have  seen,  a  lateral  movement  of  the  feed  or  subreflector  from  the
focal point causes a shift of the beam away from the axis; i.e.  the antenna exhibits a
pointing error.  The beam deviation factor (BDF) is defined as the ratio of the point-
ing shift  to the amount  of defocus  (in  angular measure).  It  is a number smaller  than
one  and  it  is  caused  by  the  curved  shape  of  the  reflector.  Qualitatively  it  is  easy  to
see that the BDF will be smaller for a "deeper" reflector, i.e. one with a smaller f êd
-ratio.  The BDF is also dependent  on the illumination function.  The functional  form
of  the  BDF  has  been  given  by  Ruze  (1965).  Following  Ruze,  we  find  the  angular
position  of  the  peak  of  the  beam  where  the  squared  phase  error,  weighted  by  the
illumination function, is minimum. This condition can be written as (see Eq. (4.29)

ÅÅÅÅÅÅÅÅu Ÿ
0

1

FHrL 8k r Hsin q - KL<2 r „ r = 0,

and  carrying  out  the  differentiation,  we  find  the  beam  angle  of  maximum  intensity
ub ,  which  we  can  compare  to  the  feed squint  angle  uf = d ê f .  Using  X = 4 f ê d,  as
before, the resulting expression is

BDF =
ubÅÅÅÅÅÅÅuf

= ·
0

1 FHrL r3
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1+H rÅÅÅÅÅX N2  „ r ì Ÿ

0

1

FHrL r3  „ r.           (4.35a)

  The  Mathematica  expressions  perform the  integrations  and  produce
the  plots  of  Figure  4.17a  for  the  BDF  as  function  of  the  reflector  focal  ratio  for  a
number  of  illumination  functions  and  Fig.  4.17b  for  BDF  as  function  of  taper  for
several  focal  ratios.  The 3-D  plot  of  is not  shown here.  The formula  for
the BDF, resulting from the integration of Eq. (4.35a) can be written as

BDF = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1+2 t 848 f2 @1 - 32 f2 H-1 + tL + t +

32 f2 H-1 + 16 f2 H-1 + tLL H-Log Hf2 L + Log H 1ÅÅÅÅÅÅÅ16 + f2 LLD< . H4.35 bL
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Here f is the focal ratio (f= f êd), t  is the taper parameter (Eq.  (4.7)) and the natural
logarithm should be taken. 

  As the curves indicate, the BDF can change by close to 10 percent depending on the
illumination  taper  for  "standard"  focal  ratios  between  0.3  and  0.5.  For  multi-feed
systems,  it  is  important  to  establish  the  taper  accurately  in  order  to  calculate  the
angular distance between the beams.

Fig.  4.17b.  The  beam  deviation  factor  (BDF)  as  function  of  taper  for  f/D=0.35-red,  0.4-green,
0.45-blue,  0.5-magenta.
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Fig.  4.17a.  The  BDF  for  fully  tapered  (red)  and  uniform  (green)  illumination  as  function  of  the
focal ratio of the reflector.  The middle curve (blue) is for a value of t = 0.25 (-12 dB) taper.
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‡ 4.5. Aperture blocking

In the common cylindrically symmetric layout of the Cassegrain antenna, the second-
ary reflector  and its  support  structure (usually a four legged structure,  called quadri-
pod)  cast  a  shadow  of  the  incoming  wavefront  onto  the  aperture.  This  is  normally
called  aperture  blocking  or  blockage.  In  this  section  we  present  the  formulae  for
the calculation  of the blocked  area and  the resulting loss in aperture  efficiency.  Fig.
4.18 depicts the geometry and defines several variables. We assume a diameter of the
central  hole  in  the  primary  reflector  not  larger  than  the  diameter  of  the  secondary.
This is generally the case.

Fig. 4.18. Geometry  of aperture blocking  by feed struts and central  obscuration.
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  The shadow on the main reflector, or the aperture, comprises three parts:

      1. the central (circular) shadow of the subreflector,

     2. "plane wave" shadow of the obstructed area of the infalling wavefront. It is the
projection of the quadripod onto the aperture of the main reflector.

    3.  "spherical  wave"  shadow,  which  is  caused  by  the  obstruction  of  the  reflected
(spherical)  waves  from  the  outside  section  of  the  reflector  on  their  way  to  the  pri-
mary focus. This is the projection of the quadripod onto the aperture as seen from the
focus of the primary reflector. It takes the form of approximately a trapezoid growing
in width from the point where the legs cross the primary reflector towards the edge of
the  aperture.  Inspection  of  Fig.  4.18  shows  that  the  spherical  shadow  can  easily  be
the major component of the aperture blocking. To minimize the spherical component,
the legs should be directed as far to the outside of the aperture as possible. Often this
is  a  compromise  between  structural  and  electro-magnetic  considerations.  Also,  the
spherical  blocking  will  be  smaller  if  the  quadripod  passes  farther  from  the  edge  of
the subreflector.  This is the reason  for the use of a curved quadripod as for  instance
in the ALMA antenna, designed by Vertex. 

  In the following sections we shall define  the variables  and set up the equations for
the blocking components.  We follow to a large extent the treatment of E. Maanders,
as  presented  in  his  doctoral  thesis  (Maanders,  1975).  The  paper  by  Ruze  (1968)
provides a general introduction to the subject.

4.5.1. The variables and equations

We commence with the definition of the variables - see Fig. 4.18.

Rp  - radius of primary          D - diameter of primary reflector

Rs   - radius of subreflector d  - diameter of subreflector

f     - focal length of main reflector f * = f êD - focal ratio of primary                   

Wl      - width of leg  n - number of legs

Ab      - total blocked area; Abs - spherical wave component

Abp    - plane wave component, Abc - central component of blocked areas

Y0   = 2 arctan HD ê4 f L    - opening half angle of primary

y1   = 2 arctan(Rq ê2 f )    - opening angle to leg penetration point 

Rq     - radius at point of penetration of quadripod through main reflector

a      - angle of leg with respect to main reflector axis

Here  follow  the equations  for  the  different  blocking components,  assuming  uniform
illumination:

1. Central obstruction due to subreflector 
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Abc = p Rs
2            (4.36a)

2. Plane wave shadow area 

Abp = n Wl HRq - Rs L            (4.36b)

3.  Calculating  the  spherical  wave  shadow  area  is  somewhat  more  involved.  With
reference  to  Fig.  4.18,  consider  a  ray  from  the  focus  (A)  under  an  angle  y  with
respect to the axis, which is blocked at the point C by the leg. The ray would hit the
reflector  surface  at  point  D  at  radius  r.  The  width  of  the  shadow  at  this  radius  is
called y (see lower part of Fig. 4.18). Now it is easy to show that

y
ÅÅÅÅÅÅÅÅÅÅÅÅÅWL ê2 = rÅÅÅÅx = rÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅAC sin f

.

We apply the sine-rule to the triangle ABC to obtain
ABÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅsinHy-aL = ACÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅsinHpê2+aL = ACÅÅÅÅÅÅÅÅÅÅÅÅÅcos a .

Thus we get

y = WFÅÅÅÅÅÅÅÅÅ2 r
sinHy-aLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅAB cos a sin y

= WL rÅÅÅÅÅÅÅÅÅÅÅÅ2 AB H1 - tan a cot yL .

Using  some  trigonometric  relations  and  the  fact  that  tan yÅÅÅÅÅ2 = rÅÅÅÅÅÅÅÅ2 f  (Eq.  2.10a),  we
obtain

y =
WFÅÅÅÅÅÅÅÅÅÅÅÅ2 AB 9r - f tan a + r2

ÅÅÅÅÅÅÅÅÅ4 f tan a=.
The  length  of  AB  is  found  as  follows.  Using  the  relation  tan y1 = Rq êAG   (Fig.
4.18) we find 

tan a =
Rq -AB
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅAG =

Rq -AB
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅRq

tan y1 ,

from which follows

AB = Rq @1 - tanHaL ê tanHy1 LD.
  To  obtain  the  spherical  blocking  we  must  now  integrate  y  with  respect  to  r  from
Rq to  Rp  with  due  regard  for  the  aperture  illumination  function.  For  a  uniform
illumination the spherical blocking term is

Abs = n Ÿ
Rq

Rp

2 y „ r

with the result: 

Abs = n WlÅÅÅÅÅÅÅÅÅÅÅAB B Rp
2 -Rq

2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 - HRp - RqL f tanHaL + tanHaLÅÅÅÅÅÅÅÅÅÅÅÅÅÅ12 f HRp
3 - Rq

3 LF.     (4.36c)
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  A  somewhat  simpler  approach  approximates  the  curved  shadow  boundary  with
straight  lines  and  results  in  the  following  alternative  formula  for  the  spherical
blocking,, leading to only very small changes (~1%) in the numerical outcome of the
spherical blocking term. 

Abs HaltL =
nÅÅÅÅ2 Wl HRp - Rq L A1 +

RpÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅsin Y0
í J sin aÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅsinHY0 -aL J Rq

2

ÅÅÅÅÅÅÅÅÅÅ4 f +
RqÅÅÅÅÅÅÅÅÅÅÅÅÅtan a

- f NNF  .  

                                        (4.36d)

These  formulae  are  derived  from  the  geometry  only  and  hence  are  valid  for  a  uni-
form illumination of the aperture. 

  For  a  tapered  illumination  function  we  assume  the  usual  quadratic  on  a  pedestal
illumination function of Eq. (4.7) with pedestal height t.

1a.  The  influence  on  the  small,  central  obscuration  by  the  subreflector  can  be
ignored. 

For the plane wave and spherical wave components we obtain the following correc-
tion terms to be subtracted  from Eqs. (4.36b) and (4.36c) or (4.36d) above, respec-
tively:

2a. Correction to the plane wave blocking part

Abp HtL = n Wl H1-tLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
3 Rp

2 HRq
3 - Rs

3 L.            (4.36e)

3a. Correction to the spherical wave blocking component

Abs HtL =
n Wl H1-tLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
AB*Rp

2 A Rp
4 -Rq

4

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 - f tanHaL Rp
3 -Rq

3

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ3 +
tanHaLÅÅÅÅÅÅÅÅÅÅÅÅÅÅ20 f HRp

5 - Rq
5LF .

         (4.36f)        

Note  that  the  effect  of  the  blocking  is  expressed  as  a  shadow,  projected  onto  the
aperture of the reflector. Hence, the blocking percentage is obtained by dividing this
number by the area of the aperture Ar , not the physical area of the curved reflector.

  The  Mathematica  expressions for  the  computation  of  the  blocking,
together with the necessary input parameters, are given in Section 4.7. The numerical
values  there  are  taken  from  one  of  the  ALMA  prototype  antennas.  As  with  all
routines, the reader might replace the parameters by those of his own antenna. 
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4.5.2. Gain loss and sidelobe level increase due to blockage 

The loss of gain caused by the blocking,  which we call here the blocking efficiency
hb , is given by the following expression:

hb = H1 - Ab êAr L2 º 1 - 2 HAb ê Ar L,           (4.37)

the  approximation  being  accurate  to  1  percent  or  better  if  Ab êAr Ä 0.1,  which  will
normally  be the  case.  The "double"  effect  of the  blocking  can be  understood  physi-
cally by considering that the blocking causes: 

  a)  a decrease in the reflector area exposed to the incoming wavefront, and

  b)  a reduction of the incoming energy available for reflection to the focus. 

Fig.  4.19.  Power  patterns  of  a uniformly  illuminated  full  area  (red),  central  obscuration  of  20%  width
(blue) and an outer annulus of 5 percent  width (green),  the last scaled up by a factor of 25. 

  A  further  result  of  the  blocking  is  an  increase  of  the  sidelobe  level  due  to  the
discontinuous  aperture  distribution  and  the  scattering  of  the  incoming  wavefront  by
the blocking structures. A central obscuration with a diameter of 10% of the aperture
diameter increases  the first  sidelobe by about 1 dB. This can be illustrated nicely by
the  realisation  that  the  radiation  function  is  now  that  of  an  annular  aperture.  In  the
following  example  (Fig.  4.19)  we  compare  the  fields  of  a  uniformly
illuminated full aperture, one with a central obscuration of 20 percent of the diameter
and an extreme case  with a non-obscured  annulus of only the outer 5  percent  of the
radius.  We  use  in  the  first  case  Eq.  (3.30)  with  AHaL = 1  and  in  the  other  the  same
expression,  but  with the  lower  integration  value equal  to 0.2  and  0.95,  respectively.
Clearly  the  half-power  width  decreases  with  increasing  obscuration  and  the  (first)
sidelobe increases.  The pattern of the very narrow annulus has very strong sidelobes
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with a much lower central peak amplitude (the plot in the figure has been multiplied
by  a  factor  25  with  respect  to  the  others).  When  the  width  of  the  annulus  tends  to
zero, we obtain the Bessel function of order zero (see e.g. Born and Wolf, Ch. 8.6.2).

  A particularly interesting effect is the scattering of the obliquely infalling wavefront
on  the  quadripod.  The  mathematical  treatment  is  rather  involved  and  has  been
presented  by  Rusch  et  al.(1982).  It  causes  a  scattering  cone  with a  top  angle  deter-
mined by the angle a, i.e. typically some 40 degrees from boresight. The intensity of
the "cone" is dependent on the width of the quadripod and is strongest if the width is
of  the  order  of  the  wavelength.  Near  the  beam  axis  one  sees  an  increased  sidelobe
level  along  the  projection  of  the  quadripod.  An  experimental  example  of  these
features is presented in Chapter 6.2.

‡ 4.6. Reflector shape deviations - "surface tolerance theory"

4.6.1. Random surface deviation

Every  antenna  will  suffer  from  fabrication  errors  and  from  deformations  caused  by
gravity,  wind  and  thermal  effects.  Often  these  will  result  in  more  or  less  randomly
distributed  deviations  of  the  reflector  surface  from the  theoretical  shape.  The  influ-
ence  of  such  random  errors  has  been  treated  by  Ruze  (1952,  1966)  and  often  these
errors  are  called  "Ruze  error".  It  should  be  understood  that  the  analysis  of  Ruze  is
strictly  valid  only  for  errors  which  are  small  with  respect  to  the  wavelength,  are
randomly distributed over the reflector with mean-square  value < e2 > and exhibit a
"correlation  length"  c  which  is  much  smaller  than  the  reflector  diameter  and  much
larger than the wavelength. In practice,  it has been determined that these restrictions
need  not  be  satisfied  rigorously  in  order  to  give  satisfactory  results.  The  physical
effect  of the random deviations  is to remove power from the main beam and distrib-
ute this  in a  wide "scatter  pattern"  or "error  beam" with  a half  power  width  propor-
tional  to  the  wavelength  divided  by  the  correlation  length.  Thus  the  total  antenna
beam  can  be written  as  the  sum of the  diffraction  pattern  and  the  error  beam in the
following form:

gHqL = gD HqL + gE Hq, eL            (4.38)

  We denote s the root-mean-square phase fluctuation over the aperture, expressed by

s =
4 pÅÅÅÅÅÅÅÅ
l

è!!!!!!!!!!!!!!!!
< e >2 4 p eÅÅÅÅÅÅÅÅÅÅÅ

l
.            (4.39)

For  s  =  1  we  have  e  =  l/12.5,  which  is  a  practical  shortest  wavelength  for  useful
antenna operation, as we shall see below. 

The error pattern  can be written in closed form (due to Scheffler,  1962),  rather  than
the infinite series of Ruze's original treatment, as
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gE HqL =
1ÅÅÅÅÅÅÅÅÅhA0

H cÅÅÅÅÅd L2 8exp s2 - 1< expA-I p c qÅÅÅÅÅÅÅÅÅÅÅ2 l M2 E,          s2 <= 1 ,          (4.40a)

gE HqL =
1ÅÅÅÅÅÅÅÅÅ

hA0
H cÅÅÅÅÅd L2 8exp s2 - 1< 1ÅÅÅÅÅÅÅÅ

s2 expA-I p c qÅÅÅÅÅÅÅÅÅÅÅÅÅ2 l s M2 E,    s2 > 1.          (4.40b)

Here  hA0  is  the  aperture  efficiency  of  the  perfect  reflector  (or  lØ¶),  q  the  angular
coordinate  of  the  rotationally  symmetric  error  pattern,  and  c  and  d  the  correlation
length and reflector diameter, respectively, with c<<d.

  If we integrate  Eq. (4.38) over all space (4 p steradians) we obtain the antenna solid
angle as (see Ch. 5)

WA = W0 + W0 8exp s2 - 1< = W0 exp s2 ,           (4.41)

where  W0  is  the  antenna  solid  angle  of  the  perfect  reflector.  This  increase  of  the
antenna  solid  angle  means  an  inversely  proportional  decrease  in  the  aperture  effi-
ciency. The latter is proportional to the peak level of Eq. (4.38). From this expression
and Eq. (4.40a) we obtain for the aperture efficiency hA

hA = hA0 expH-s2 L HgD H0L + gE H0L L.
Thus  we  find  for  the  relative  aperture  efficiency  caused  by  the  random  errors  (see
Ruze (1966) and Baars (1973)),

he =
hAÅÅÅÅÅÅÅÅÅ

hA0
= expH-s2 L +

1ÅÅÅÅÅÅÅÅÅ
hA0

H cÅÅÅÅÅd L2 81 - expH-s2 L<,           (4.42)

  The actual surface deviations  en  are mostly calculated or measured normally to the
reflector  surface.  However,  the  phase  error  is  proportional  to the  pathlength  change
and  hence  e  is  the  component  of  this  deviation  en  parallel  to  the  antenna  axis  (Fig.
4.20). The relationship between the two quantities is dependent on the focal ratio and
is given by

e = en cos I y
ÅÅÅÅÅÅ2 M ª

enÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"######################
1+Hrê2 f L2 .           (4.43)

Thus  the  errors  towards  the  edge  of  the  reflector  have  a  smaller  influence  on  the
overall  rms error.  In practice, in order to calculate the  expected gain loss caused  by 
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Fig. 4.20.  Illustration  of the relation  between  normal  surface  error  en  and the axial  component  e.
The induced  phase error is proportional  to the latter.

the  random  surface  deviations,  one  can  also  weigh  the  measured  errors  by  the
illumination  function  over  the  aperture,  again  diminishing  the  effect  of  the  outside
regions of the reflector (see e.g. Greve and Hooghoudt, 1981).

  The  first  term in  Eq.  (4.42)  is  the  usual  form of  the  "Ruze"  loss  caused  by  small
random surface  errors.  The  second  term is  the  maximum  level  of  the  "error  beam",
which is both dependent on the correlation length and the phase error. Normally, the
second  term  is  negligible  for  the  resulting  loss  in  antenna  efficiency,  but  for  rela-
tively  large  phase  errors  and  large  correlation  length  it  can  be  significant.  In  any
case,  it  is  of  considerable  significance  for  the  observation  of  extended  sources,
because the error beam will be "filled" by the extended structure and lead to overesti-
mation of the source's intensity.  The peak level of the error beam with respect to the
peak of the main beam is

gE H0LÅÅÅÅÅÅÅÅÅÅÅÅÅgD H0L = 1ÅÅÅÅÅÅÅÅÅ
hA0

H cÅÅÅÅd L2 8expHs2 L - 1< ,           (4.44)

while the half power width of the gaussian shaped error pattern is given by

qE = 2
è!!!!!!!!

ln 2 J 2 lÅÅÅÅÅÅÅÅp c N = 1.06 lÅÅÅÅÅc .           (4.45)

The ratio of the power scattered into the error beam to that in the main beam can be
found  from  these  equations.  The  beam  solid  angle  of  a  gaussian  pattern  profile  is
given by the simple relation (see Ch. 5.3.2)

Wb = 1.133 QA
2 , where QA  is the half power beam width.
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Approximating the main beam by a gaussian too, we obtain for the ratio of the power
in  error  to  main  beam,  using  Eqs.  (4.44),  (4.45)  and  QA = b l ê d  with  b  =  1.2  (a
typical value for practical tapers, see Fig. 4.6),

PEÅÅÅÅÅÅÅÅÅÅPM
=

gE H0L WEÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅgD H0L WM
º 1.1 8 expHs2 L - 1< .           (4.46)

  Note  that  this  quantity  is  not  dependent  on  the  correlation  length;  it  is  solely
determined  by  the  rms  surface  error.  From  Eqs.  (4.44)  and  (4.45)  it  is  clear  that  a
smaller correlation length will lead to a wider error pattern with a smaller peak level.
For  the observation  of relatively  small,  be it extended, sources this will  normally be
preferable.  However,  even  the  very  low  error  beam  level,  extending  over  a  large
solid  angle  can  hamper  observations  of  widely  distributed  radiation,  as  for  instance
the Galactic neutral hydrogen (Hartmann et al., 1996).

4.6.2. Numerical results with Mathematica

We begin with Eq. (4.40a) for the gain loss due to random errors, plotting the relative
aperture  efficiency,  also  called  the  surface  error  efficiency  he ,  as  function  of  wave-
length for several error values (Fig. 4.21)  We use d/c = 10 Hc* = 0.1L  for
this example; further we assume that hA0 = 0.72.This value is determined in the first
place  by  the  illumination  efficiency  (see  Sec.  4.2),  aperture  blocking  (see  Sec.  4.5)
and spillover  (next Chapter).  Values  between 0.70 and  0.75 are obtained  in practice
for  standard  Cassegrain  systems.  In  so-called  shaped  dual-reflector  systems  higher
values can be achieved.

Fig.  4.21.  Surface  error  efficiency  he as function  of  wavelength  (l  in mm)  for four  values  of the  rms
error  e=  20,  30,  40  and  50  mm  from  top  to  bottom  graph.  Here  d/c=10;  larger  values  of  this  ratio
make essentially  no difference.
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  The  following  plot  (Fig.  4.22)  [Mat.4.24]  shows  the  same  relation,  but  now  as
function  of the rms error  with the wavelength as parameter.  For simplicity,  we have
dropped  the  insignificant  second  term  in  Eq.  (4.40)  from  the  computation.  Clearly
these curves can be used for  other wavelength ranges as long as the ratio of error  to
wavelength  is kept constant.  Thus in Fig.  4.22,  if  we use wavelength in cm in stead
of mm, the error  scale must  be multiplied by a factor  10. A convenient  single curve
of the  surface  error  efficiency  as  function  of the  ratio  d  =  e/l  is  shown in Fig.  4.23
[Mat.4.25].
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Fig.  4.22.  Surface  error  efficiency  he as  function  of  the  rms  error  e  (in  mm)  for  5  values  of  the
wavelength,  l= 0.4, 0.8, 1.2,  1.6 and 2.0 mm from bottom to top.
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Fig. 4.23. Surface  efficiency  he  as function of the ratio rms error to wavelength.
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  Now follows a set of curves, representing Eq. (4.44) [Mat.4.26],  of the level of the
error  pattern  fE H0L with respect  to that  of the  (weakened)  main  beam fD H0L  as  func-
tion of e/l and for a number of values of the ratio c* = c êd. From Fig. 4.24 one sees
that  for  an  rms error  of  less  than  l/20 and  a  correlation  length  smaller  than  d/6  the
error  pattern  level  stays  below  approximately  -20  dB,  i.e.  comparable  with  the
normal  sidelobe  level  of  the  main  diffraction  pattern.  In  conclusion,  the  relation  of
Eq.  (4.46)  [Mat.4.27],  showing  the  ratio  of  the  power  in  the  error  pattern  to that  in
the main  beam is depicted  in Fig.  4.25.  When  the rms  surface  error  approaches  one
twentieth of a wavelength, about thirty percent of the received power is distributed to
the error pattern.   
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Fig.  4.24.   The level  of  the  error  beam  (in  dB)  with  respect  to the  main  beam  as function  of the
ratio rms error  to wavelength  (e/l);  parameter  is the ratio c/d = 0.05 to 0.25 in steps  of 0.05 from
bottom.
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Fig.  4.25.  The ratio  of  the  power  in the error  pattern  to that  in the main  beam  as function  of the
surface error in units of the wavelength.



4.6.3.  Large scale deformations - Astigmatism

The  random  errors,  discussed  in  the  foregoing  section,  represent  mainly  fabrication
errors  in  the  panels,  constituting  the  reflector,  and  the  errors  in  setting  these  panels
onto the support  structure with respect to the required surface contour. In addition to
these  errors  with  relatively  small  scale  length,  the  reflector  can  exhibit  large  scale
errors  of a  more  systematic  nature  caused by,  for  instance,  the varying  gravitational
forces  on  the  structure  as  function  of  the  elevation  angle  or  by  the  asymmetric
heating  from  solar  radiation.  An  often  observed  deformation  due  to  gravity  is  a
so-called astigmatism, which is characterised by the "upper" and "lower" quadrant of
the reflector having a focal length different from the "left" and "right" quadrants.

  With changing elevation  angle the amount of astigmatism is likely to vary because
of  the  different  orientation  of  the  structural  members  of  the  antenna with  respect  to
the gravity vector. As mentioned earlier (Eq. 2.22), astigmatism is characterised by a
path length variation over the aperture of the form

Da = -
d2

ÅÅÅÅÅÅÅÅÅÅÅ
2 f 3 r2 cos2 c = -

d2
ÅÅÅÅÅÅÅÅÅÅÅ
4 f 3 r2 Hcos 2 c + 1L ,                         (4.47)

where  c  is  the  azimuthal  aperture  coordinate.  This  additional  phase  term  must  be
introduced in the radiation integral of Eq. (3.29). Assuming uniform illumination for
simplicity, the radiation function now becomes

f Hq, fL = ‡
0

1‡
0

2 p

expAi k 9-r sin q cosHf - cL - d2
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 f 3 r2 Hcos 2 c + 1L=E r „ r „ c.

                      
                  (4.48)

The  solution  of  this  integral  can  be  achieved  most  conveniently  with  the  aid  of
Zernike polynomials.  We shall not go through the entire development,  which can be
found in Born  and  Wolf (1980,  Ch. 9.4).  There  we find that  in the  case of  astigma-
tism, the radiation function takes the form

f Hq, fL =
2 J1 HuLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅu - Hi a022 L J2 cos 2 f

2 J3 HuLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅu N +

Hi a022 L2 1ÅÅÅÅÅÅÅÅ2 u 9 J1 HuLÅÅÅÅÅÅÅÅÅÅÅÅÅ3 -
J3 HuLÅÅÅÅÅÅÅÅÅÅÅÅ2 + J5 HuL Icos 4 f +

1ÅÅÅÅ6 M= + ....

          (4.49)

Here  a022  is  a  measure  for  the  amount  of  astigmatism,  related  to  the  Seidel  coeffi-
cients  of  aberration.  The  first  term  is  the  usual  Lambda  function  for  the  uniformly
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illuminated  aperture,  the  other  terms  describe  the  astigmatism.  A  result  of  the
aberration is that the radiation pattern is no longer circularly symmetric. In particular,
the focal point of the "left-right" quadrants will be positioned differently from that of
the  "upper-lower"  quadrants.  The  optimum  gain  is  at  a  point  between  these  two
partial  foci,  but  the  beam  is  distorted  in  that  is  exhibits  different  half-power  beam
widths in the two principal planes.

Fig.  4.26.  Beam  patterns  with  astigmatism  for  three  values  of  the  azimuthal  angle  f.  For  f=p/4,  green
curve,  the astigmatism  is essentially  zero.  The other  curves  show significant  sidelobe  increase  and some
beam broadening.  The latter is visible  in the lower plot, exploded  near the half-power  point. 
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  We illustrate  this  in Fig.  4.26 with  the Mathematica  expression  [Mat.4.29],  where
the  square  of  Eq.  (4.49)  is  shown,  i.e.  the  power  pattern  of  the  astigmatic  aperture
distribution. Clearly the sideobes are much stronger in the planes where the astigma-
tism  is  most  relevant  (red  and  blue  curves).  For  the  azimuthal  angel  f=p/4  the
astigmatism is minimal  and the beam is undistorted.  The beamwidth in the different
planes are slightly different, as shown in the lower part of the figure, where the level
near the half-power point is shown.
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  A  measurement  of  the  beam  width  at  a  number  of  azimuthal  angles  provides  the
information  needed  to  evaluate  the  amount  of  astigmatism.  A  particularly  powerful
method  is  to  use  a  feed  with  a  "fan"  beam,  which  illuminates  only  a  strip  of  the
reflector, and rotate the illumination pattern over the dish, while measuring the beam
width.  This  was  done  successfully  by  von  Hoerner  (1978)  on  the  NRAO  140-foot
telescope.  Without such a special  device, good results can be obtained by measuring
the  beam  width  in  two  orthogonal  planes  for  a  number  of  axially  defocused  feed
positions (Cogdell and Davis, 1973, Greve et al. 1994). 

Fig.  4.27.  Computed  increase  of  beam  width  in  the  orthogonal  azimuth  (red)  and  elevation  (blue)
planes  as  function  of  axial  defocus  for  a  reflector  with  significant  astigmatism.  The  minimum  beam
width occurs for different  defocus positions  in both planes (Emerson,  2006).

  In  a  study  of  astigmatism  Emerson  (2006)  found some  interesting  relations  which
we summarise here. Starting point is a model of a prime focus reflector with astigma-
tism as given in Eq. (4.49), to which the phase function of an axial defocus is added.

determined.  Fig.  4.27  shows  the  computed  beamwidth  in  the  two  orthogonal
(azimuth  and  elevation)  directions  as function  of  axial  defocus  for  a  certain  amount
of astigmatism.  As expected,  the minimum beam width  is found for different  values
of the focus offset. 

  Emerson then plotted the ratio of the beam widths in orthogonal  planes as function
of the  axial  defocus  and  found an approximate  linear relationship.  The slope  of this
line  results  effectively  from  a  double  differentiation,  which  will  minimise  the
influence  of  non-astigmatic  deformations.  The  beam  width  ratio  as  function  of  the
axial defocus was then recalculated for a range of astigmatism values and the slopes
of  the  resulting  curves  determined.  Emerson  then  found  that  the  slope  of  the  curve
representing the slopes of the beam width ratios is closely linearly proportional to the
amplitude of the astigmatism. 
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Beam  patterns  are  calculated  for  different  axial  defocus  values  and  the  beam width



  In a practical situation we measure the beam width ratio as function of axial defocus
and  determine  the  slope  of  the  curve.  We  can  now  compare  this  slope  with  the
calculated  "slope  versus astigmatism"  model  function  to find the  astigmatism of  the
reflector.  An  example  of  such  a  measurement  on  an  ALMA  prototype  antenna  is
shown in Fig. 4.28 (Emerson, 2006). The best fit to the measured points indicates an
astigmatism  of  approximately  16  mm.  This  is  a  simple,  yet  powerful  method  to
investigate astigmatism.
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Fig.  4.28.  Measured  ratio  of  the  beam  widths  in  orthogonal  planes  as  function  of  axial  defocus  for  a
reflector  with  astigmatism,  (Blue  squares)  The  best  fit  expected  function  (red)  indicates  an  astigmatism  of
16 mm.

  In  the  following  chapter  we  shall  apply  the  results  of  our  calculations  to practical
matters of determining the major parameters of an antenna from measurements using
the  radiation  of  cosmic  radio  sources.  There  particular  attention  will  be  paid  to  the
situation  where  the  test  source  has  a  finite  angular  size,  comparable  to  that  of  the
antenna.  Because  this  is  an often  occurring  situation  in astronomical  observations  it
is  of  special  importance  that  the  influence  of  the  finite  size  be  understood  and
corrected as well as possible.

‡ 4.7. The Mathematica Routines

Mat .4 .1 - free space taper vs fê d - ratio;

t = 20 Log@10, H1 + H1ê H4 frLL^2LD ;
Plot@t, 8fr, 0.25, 2<, Frame Ø True, GridLines Ø Automatic,

FrameLabel Ø 8"fêd", "free space taper HdBL"<D
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Mat .4 .2 - taper and decibel equivalent;

Plot@20 Log@10, tD, 8t, 0, 1<, GridLines -> Automatic,

Frame Ø True, PlotRange Ø 8-35, 0<,
FrameLabel Ø 8"edge taper", "taper in dB"<D

Mat .4 .3 - illumination functions;

ig = Exp@-1.3816 r2D;
ip = 1 - H1 - 0.251L r2;
Plot@8ig, ip<, 8r, 0, 1.2<,
Frame -> True, GridLines -> Automatic,

FrameLabel -> 8Radius, Illum. Function<,
PlotStyle -> 88RGBColor@1, 0, 0D<, 8RGBColor@0, 0, 1D<<D

Mat .4 .4 - illumination efficiency;

jg = H2 H1 - Exp@HT Log@10Dê 20LDL2L êHH-T Log@10Dê 20L H1 - Exp@HT Log@10Dê 10LDLL;
jp =

3 H1 + 10HTê20LL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 H1 + 10HTê20L + 10HTê10LL ;

Plot@8jg, jp<, 8T, 0, -30<,
Frame -> True, GridLines -> Automatic,

PlotStyle -> 88RGBColor@1, 0, 0D<, 8RGBColor@0, 0, 1D<<,
FrameLabel -> 8"Taper in dB", "Illum. Efficiency"<D

Mat .4 .5 - farfield pattern parameters;

t =.;

g =
ikjjj

4
ÅÅÅÅÅÅÅÅÅÅÅÅ
1 + t

H t BesselJ@1, uDê u + 2 H1 - tL BesselJ@2, uDê u2Ly{zzz
2

;

Table@FindRoot@g ã .5, 8u, 1.5<D, 8t, 1, 0, -.2<D
Table@FindMaximum@10 Log@10, gD, 8u, 5.19<D, 8t, 1, 0, -.2<D
Plot@Evaluate@Table@10 Log@10, gD, 8t, 1, 0, -.2<DD,8u, 0, 10<, Frame -> True, GridLines -> Automatic,

FrameLabel -> 8"u", "Gain HdBL"<, PlotRange Ø 8-30, 0<,
PlotStyle Ø 88RGBColor@1, 0, 0D<, 8RGBColor@0, 1, 0D<,8RGBColor@0, 0, 1D<, 8RGBColor@1, 1, 0D<,8RGBColor@1, 0, 1D<, 8RGBColor@0, 1, 1D<<D



Out[98]=
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
b4 H1 + tL2 H4 H2 + b2 - 4 t + H2 + b2L t2 -

2 H1 + t H-2 + b2 + tLL Cos@bD - 2 b H-1 + tL2 Sin@bDLL
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Mat .4 .6 - beamwidth factor;

da =81.61634, 1.64895, 1.69239, 1.75311, 1.84397, 1.99442<;
dat = H2ê pL da;
data = 881, dat@@1DD<, 8.8, dat@@2DD<, 8.6, dat@@3DD<,8.4, dat@@4DD<, 8.2, dat@@5DD<, 80, dat@@6DD<<;
fsl3 = Fit@data, 81, x, x^2, x^3<, xD
psl = ListPlot@data, PlotStyle Ø PointSize@0.015DD
pfsl = Plot@fsl3, 8x, 0, 1<, DisplayFunction Ø IdentityD
Show@8psl, pfsl<, PlotRange Ø 81, 1.3<, Frame Ø True,

GridLines Ø Automatic, FrameLabel Ø 8"taper", "factor b"<D
Out[82]= 1.26914 - 0.566036 x + 0.53346 x2 - 0.208066 x3

Mat .4 .7 - sidelobe level vs taper;

data = 880, -24.6392<, 8.2, -23.4225<, 8.4, -21.4776<,8.6, -19.8295<, 8.8, -18.555<, 81, -17.57<<;
fsl3 = Fit@data, 81, x, x^2, x^3<, xD
fsl1 = Fit@data, 81, x<, xD
psl = ListPlot@data, PlotStyle Ø PointSize@0.015DD
pfsl = Plot@8fsl1, fsl3<, 8x, 0, 1<,

PlotStyle Ø 88RGBColor@1, 0, 0D<, 8RGBColor@0, 0, 0D<<,
DisplayFunction Ø IdentityD

Show@8psl, pfsl<, PlotRange Ø 8-25, -17<,
Frame Ø True, GridLines Ø Automatic,

FrameLabel Ø 8"taper", "sidelobe HdBL"<D
Out[88]= -24.6819 + 5.71171 x + 7.51987 x2 - 6.15613 x3

Out[89]= -24.6011 + 7.37094 x

Mat .4 .8 - axial defocus gain function; t =.;

fc = Integrate@H2ê H1 + tLL H1 - H1 - tL zL Cos@b zD, 8z, 0, 1<D;
fs = Integrate@H2ê H1 + tLL H1 - H1 - tL zL Sin@b zD, 8z, 0, 1<D;
ga = fc2 + fs2 ;

TrigExpand@gaD;
gas = FullSimplify@%D
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Mat .4 .9 - axial defocus approximations;

d =.; f = 0.8; l = 0.003; k = 2 p ê l;

glc = NIntegrateA
2 CosAk i

k
jjjjjjSqrtAr2 +

i
kjjjjf -

r2
ÅÅÅÅÅÅÅÅ
4 f

+ d
y
{zzzz
2E -

i
kjjjjf +

r2
ÅÅÅÅÅÅÅÅ
4 f

+ d
y
{zzzz
y
{
zzzzzzE r,

8r, 0, 1<E;
gls = NIntegrateA

2 SinAk i
k
jjjjjj SqrtAr2 +

i
kjjjjf -

r2
ÅÅÅÅÅÅÅÅ
4 f

+ d
y
{zzzz
2E -

i
kjjjjf +

r2
ÅÅÅÅÅÅÅÅ
4 f

+ d
y
{zzzz
y
{
zzzzzzE r,

8r, 0, 1<E;
gbc = NIntegrateA2 CosAk d 2 J r

ÅÅÅÅÅÅÅÅ
2 f

N2 ì ikjjj1 + J r
ÅÅÅÅÅÅÅÅ
2 f

N2y{zzzE r,8r, 0, 1<E;
gbs = NIntegrateA2 SinAk d 2 J r

ÅÅÅÅÅÅÅÅ
2 f

N2 ì ikjjj1 + J r
ÅÅÅÅÅÅÅÅ
2 f

N2y{zzzE r,8r, 0, 1<E;
gl = Hglc^2 + gls^2L;
gb = Hgbc^2 + gbs^2L;
gs = HSin@1.7649 d ê lD ê H1.7649 d ê lLL^2;
gp = 1 - HHk d 0.5618L^2Lê 12;
Plot@8gp, gl, gb, gs<, 8d, 0, .015<,
PlotRange Ø 80, 1<, Frame -> True, GridLines -> Automatic,

FrameLabel -> 8"Axial defocus HmL", "Relative Gain"<,
PlotStyle Ø 88RGBColor@0, 1, 1D<, 8RGBColor@1, 0, 0D<,8Dashing@8.05, 0.05<D, RGBColor@0, 1, 0D<,8RGBColor@0, 0, 1D<<D
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Mat .4 .10 - axial defocus gain plots;

gax =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
b4 H1 + tL2 H4 H2 + b2 - 4 t + H2 + b2L t2 -

2 H1 + t H-2 + b2 + tLL Cos@bD - 2 b H-1 + tL2 Sin@bDLL;
Plot@Evaluate@Table@gax, 8t, 0, 1, .25<D, 8b, 0, 20<,

PlotRange Ø 80, 1<, GridLines Ø Automatic,

Frame Ø True, FrameLabel Ø 8"defocus-b", "gain"<,
PlotStyle Ø 88RGBColor@1, 0, 0D<,8RGBColor@0, 1, 0D<, 8RGBColor@0, 1, 1D<,8RGBColor@1, 0, 1D<, 8RGBColor@0, 0, 1D<<DD

Plot@Evaluate@Table@10 Log@10, gaxD, 8t, 0, 1, .25<D,8b, 0, 20<, PlotRange Ø 8-30, 0<, GridLines Ø Automatic,

Frame Ø True, FrameLabel Ø 8"defocus-b", "gain HdBL"<,
PlotStyle Ø 88RGBColor@1, 0, 0D<,8RGBColor@0, 1, 0D<, 8RGBColor@0, 1, 1D<,8RGBColor@1, 0, 1D<, 8RGBColor@0, 0, 1D<<DD

Mat .4 .11 - axial defocus beam patterns;

d =.; l = 0.003; k = 2 p ê l; fr = 1;

fac =

Integrate@ BesselJ@0, u rD Cos@0.5618 k d r2D r , 8r, 0, 1<D;
fas = Integrate@BesselJ@0, u rD Sin@0.5618 k d r2D r, 8r, 0, 1<D;
ga = 4 Hfac^2 + fas^2L;
Plot@Evaluate@Table@10 Log@10, gaD, 8d, 0, .005, .001<D,8u, 0, 10<, PlotRange -> 8-40, 0<,

Frame -> True, GridLines -> Automatic,

FrameLabel -> 8"angle u", "gain HdBL"<,
PlotStyle -> 88RGBColor@1, 0, 0D<, 8RGBColor@0, 1, 0D<,8RGBColor@0, 0, 1D<, 8RGBColor@1, 1, 0D<,8RGBColor@1, 0, 1D<, 8RGBColor@0, 1, 1D<<DD
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Mat .4 .12 - axial defocus beam patterns;

d =.; l = 0.003; k = 2 p ê l; fr = 1 - 0.75 r^2;

fac = Integrate@
1.6 fr BesselJ@0, u rD Cos@0.5618 k d r2D r , 8r, 0, 1<D;

fas = Integrate@1.6 fr BesselJ@0, u rD Sin@0.5618 k d r2D r,8r, 0, 1<D;
ga = 4 Hfac^2 + fas^2L;
Plot@Evaluate@Table@10 Log@10, gaD, 8d, 0, .005, .001<D,8u, 0, 10<, PlotRange -> 8-40, 0<,

Frame -> True, GridLines -> Automatic,

FrameLabel -> 8"angle u", "gain HdBL"<,
PlotStyle -> 88RGBColor@1, 0, 0D<, 8RGBColor@0, 1, 0D<,8RGBColor@0, 0, 1D<, 8RGBColor@1, 1, 0D<,8RGBColor@1, 0, 1D<, 8RGBColor@0, 1, 1D<<DD

Mat .4 .13 - lateral defocus beam patterns;

X = 1.6; d = 12; l = 0.003; k = 2 p ê l;

fl0 = NIntegrateA
2 r * BesselJA0, r
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8r, 0, 1<E;
fl2 = NIntegrateA2 r * BesselJA0, r
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8r, 0, 1<E;
fl3 = NIntegrateA2 r * BesselJA0, r
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X I1 + H rÅÅÅÅ

X
L2M

y
{
zzzzzzzE ,

8r, 0, 1<E;
fl = 8fl0^2, fl1^2, fl2^2, fl3^2<;
Plot@Evaluate@10 Log@10, flD, 8u, -10, 20<,

PlotRange -> 8-30, 0<, Frame -> True, GridLines -> Automatic,

PlotStyle -> 88RGBColor@1, 0, 0D<, 8RGBColor@0, 1, 0D<,8RGBColor@0, 0, 1D<, 8RGBColor@1, 0, 1D<<,
FrameLabel -> 8"angle u", "Gain HdBL"<DD
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Mat .4 .14 - off - axis beam plot;

l = 0.003; k = 2 p ê l; X = 1.6;

i1 = NIntegrateA
2 r * BesselJA0, i

k
jjjjjjjj
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rE , 8r, 0, 1<E;
ContourPlot@Evaluate@i1^2, 8x, -5, 15<, 8y, -10, 10<,

ContourLines -> False, DisplayFunction Ø IdentityDD
Plot3D@i12, 8x, -5, 20<, 8y, -10, 10<, BoxRatios Ø 81, 1, 1<,
PlotRange Ø All, DisplayFunction Ø IdentityD

Show@GraphicsArray@8%, %%<DD

Mat .4 .15 - lateral defocus beam patterns;

X = 1.6; d = 12; l = 0.003; k = 2 p ê l; fr = 2 r H1 - .75 r^2L;
fl0 = NIntegrateA
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y
{
zzzzzzzE ,

8r, 0, 1<E;
fl3 = NIntegrateAfr* BesselJA0, r

i
k
jjjjjjju -

2 k 0.003
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
X I1 + H rÅÅÅÅ

X
L2M

y
{
zzzzzzzE ,

8r, 0, 1<E;
FindMaximum@10 Log@10, 2.56 fl0^2D, 8u, -5<D
FindMaximum@2.56 fl0^2, 8u, 0<D
similar expressions for the other beams;

fl = 8fl0^2, fl1^2, fl2^2, fl3^2<;
Plot@Evaluate@10 Log@10, 2.56 flD, 8u, -10, 15<,

PlotRange -> 8-30, 0<, Frame -> True, GridLines -> Automatic,

PlotStyle -> 88RGBColor@1, 0, 0D<, 8RGBColor@0, 1, 0D<,8RGBColor@0, 0, 1D<, 8RGBColor@1, 0, 1D<<,
FrameLabel -> 8"angle u", "Gain HdBL"<DD
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Mat .4 .16 - Beam Deviation Factor;

PlotA
EvaluateATableAIntegrateA H1 - H1 - tL r2L r3

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + H rÅÅÅÅÅÅ

4 f
L2 , 8r, 0, 1<E ì

Integrate@H1 - H1 - tL r2L r3, 8r, 0, 1<D, 8t, 0, 1, .25<E,8f, 0.25, 1<, Frame Ø True, GridLines Ø Automatic,

FrameLabel Ø 8focal ratio, BeamDeviationFactor<,
PlotStyle Ø 88RGBColor@1, 0, 0D<,8RGBColor@0, 0, 1D<, 8RGBColor@1, 1, 1D<,8RGBColor@1, 1, 1D<, 8RGBColor@0, 1, 0D<<EE

Mat .4 .17 - BDF vs taper;

n1 = ·
0

1 H1 - H1 - 10-tê20L r2L r3
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

1 + H r
ÅÅÅÅÅÅ
4 f

L2
 „r;

d1 = ‡
0

1H1 - H1 - 10-tê20L r2L r3  „r;

BDF = n1ê d1;
Plot@Evaluate@Table@BDF, 8f, .35, .5, .05<D,8t, 0, 30<, Frame -> True, GridLines Ø Automatic,

FrameLabel Ø 8"taper HdBL", "BDF"<,
PlotStyle -> 88RGBColor@1, 0, 0D<, 8RGBColor@0, 1, 0D<,8RGBColor@0, 0, 1D<, 8RGBColor@1, 0, 1D<<DD

Mat .4 .18 - BDF vs f ê d and taper;
Plot3D@Evaluate@BDF, 8f, .25, 1<, 8t, 0, 30<,

ViewPoint Ø 8-2, -2, 0<, BoxRatios Ø 81, 1, .75<, AxesLabel Ø8"fêD-ratio", "TaperHdBL", "BDF"<, Mesh Ø TrueDD
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Mat .4 .19 - Blocking input parameters;

Rp = 6.0; Rs = 0.375; Rq = 4.11; F = 4.8;

Wl = 0.06; n = 4; a = 42.89 p ê 180;
Y0 = 2 ArcTan@Rpê H2 FLD
y = 2 ArcTan@Rqê H2 FLD
t = 0.75; Hthis gives 12 dB edge taperL;

Mat .4 .20 - blocking formulae;

Ar = p Rp2

As = p Rs2

Abpu = n Wl HRq - RsL
Abpt =

n Wl H1 - tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

3 Rp2
HRq3 - Rs3L

AB = Rq H1 - Tan@aDê Tan@yDL
Absu =

n Wl
ÅÅÅÅÅÅÅÅÅÅÅ
AB

i
kjjjj
Rp2 - Rq2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
- HRp - RqL F Tan@aD +

Tan@aD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
12 F

HRp3 - Rq3Ly{zzzz
Abst =

n Wl H1 - tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

AB Rp2

i
kjjjj
HRp4 - Rq4L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

4
- F Tan@aD HRp3 - Rq3L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
3

+
Tan@aD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
20 F

HRp5 - Rq5Ly{zzzz
Absa = Hn Wlê 2L HRp - RqLi

kjjjj1 +
Rp

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Sin@Y0D ì i

kjjjj
Sin@aD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Sin@Y0 - aD i

kjjjj
Rq2
ÅÅÅÅÅÅÅÅÅ
4 F

+
Rq

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Tan@aD - F

y
{zzzz
y
{zzzz
y
{zzzz

Mat .4 .21 - blocking final calculation;

Ab = As + Abpu + Absu

BlPer = 100 % ê Ar
Aba = As + Abpu + Absa

BlPer = 100 % ê Ar
Abt = Ab - Abpt - Abst

BlPert = 100 % ê Ar
Abta = Aba - Abpt - Abst

BlPerat = 100 % ê Ar
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Mat .4 .22 - Beam of annular apertures;

fu = 2 BesselJ@1, uDê u;
fb = Integrate@2 BesselJ@0, u rD r, 8r, 0.2, 1<D;
fl = Integrate@2 BesselJ@0, u rD r, 8r, 0.95, 1<D;
Plot@Evaluate@8fu^2, fb^2, 100 fl^2<D,8u, 0, 15<, PlotRange Ø All, Frame Ø True,

FrameLabel Ø 8"angle u", "Power HdBL"<,
PlotStyle -> 88RGBColor@1, 0, 0D<,8RGBColor@0, 0, 1D<, 8RGBColor@0, 1, 0D<<D

Mat .4 .23 - full "Ruze" formula;

l =.; c* = 0.1; hA0 = 0.72;

PlotAEvaluateA
TableAikjjjjjExpA-

ikjjj 4 p e
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
100 * l

y{zzz
2E +

1
ÅÅÅÅÅÅÅÅÅ
hA0

Hc*L2 i
kjjjjj1 - ExpA-

ikjjj 4 p e
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
100* l

y{zzz
2Ey{zzzzz

y
{zzzzz,8e, 2, 5, 1<EE, 8l, .3, 3<,

FrameLabel -> 8"l in mm", "surface eff."<,
Frame -> True, GridLines -> Automatic,

PlotStyle Ø 88RGBColor@1, 0, 0D<, 8RGBColor@0, 0, 1D<,8RGBColor@0, 1, 0D<, 8RGBColor@0, 1, 1D<<E

Mat .4 .24 - "Ruze" efficiency vs error;

PlotAEvaluateATableAExpA-
ikjjj
4 * p * e
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1000* l

y{zzz
2E, 8l, .4, 2, .4<EE,

8e, 0, 100<, FrameLabel -> 8"e in micron", "surface eff."<,
Frame -> True, GridLines -> Automatic,

PlotStyle Ø 88RGBColor@1, 0, 0D<,8RGBColor@0, 0, 1D<, 8RGBColor@0, 1, 0D<,8RGBColor@1, 1, 0D<, 8RGBColor@0, 1, 1D<<E

Mat .4 .25 - the "Ruze" surface error formula;

Plot@Exp@-H4 p dL^2D, 8d, 0, 0.1<, Frame Ø True,

GridLines Ø Automatic, FrameLabel Ø 8"eêl", "surface eff."<D
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Mat .4 .26 - error pattern level;

PlotAEvaluateATableA10 LogA10, 1.4* c* 2 * HExp@H4 p dL2D - 1LE,
8c*, 0.05, 0.25, 0.05<EE, 8d, .01, 0.1<,

Frame -> True, GridLines -> Automatic,

FrameLabel -> 8"eêl", "error pattern level"<,
PlotStyle -> 88RGBColor@1, 0, 0D<,8RGBColor@0, 0, 1D<, 8RGBColor@0, 1, 0D<,8RGBColor@1, 1, 0D<, 8RGBColor@0, 1, 1D<<E

Mat .4 .27 - relative power in error pattern;

Plot@1.1 HExp@H4 p dL2D - 1L, 8d, 0, .05<,
GridLines -> Automatic, Frame -> True,

FrameLabel -> 8"eêl", "Power ratio"<D

Mat .4 .28 - 3 D plots of efficiency and error pattern;

p1 =

Plot3DAEvaluateAExp@-H4 p dL2D + 1.4 Hc*L2 H1 - Exp@-H4 p dL2DL,8d, 0, .1<, 8c*, .025, .3<, ViewPoint Ø 82, -2, 0<,
BoxRatios Ø 81, 1, .75<, DisplayFunction Ø Identity,

AxesLabel Ø 8"eêl", "cêd", "h"<EE
p2 = Plot3DAEvaluateA10 LogA10, 1.4* c* 2 * HExp@H4 p d L2D - 1LE,8c*, 0.025, 0.3<, 8d, .01, 0.1<, ViewPoint Ø 8-2, -2, 1<,

BoxRatios Ø 81, 1, .8<, DisplayFunction Ø Identity,

AxesLabel Ø 8"cêd", "eêl", "f_E"<EE
Show@GraphicsArray@8p1, p2<DD
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5. Measurement of antenna parameters

‡ 5.1. Global antenna parameters 

In Chapter  3  we discussed the mathematical  description  of the radiation characteris-
tics  of  the  reflector  antenna,  and  we  treated  the  influence  of  aberrations  (defocus
situations) and other errors in Ch. 4. In radio astronomy the purpose of the telescope,
the reflector antenna in our discussion, is to collect radiation from the celestial source
as a  function of  position on  the sky, frequency,  polarisation  and sometimes  time. In
order  to  draw  conclusions  about  the  source  of  radiation,  we  need  to  establish  the
relationship  between  the  parameters  describing  the  physical  processes  in  the  source
and  those of  the receiving  antenna.  Thus  we must  develop  a  mathematical  formula-
tion for the interaction between the transmitting cosmic radio source (or satellite, etc)
and the  receiving radio  telescope,  the  reflector  antenna  discussed  sofar.  As we have
seen  earlier,  the  characteristics  of  the  latter  are  described  by  the  spatial  radiation
characteristic, which we have called the antenna pattern. By virtue of the reciprocity
theorem  the  pattern  of  a  transmitting  antenna  is  identical  to  that  of  a  receiving
antenna. (Silver,  Ch. 2.13, 1949).  We have already introduced terms like main beam
and sidelobes of the antenna pattern.

  We  shall  now  define  these  parameters  more  carefully  and  develop  a  number  of
relations  which  are  essential  for  the  description  of  the  interaction  between  antenna
and  source  under  study.  Note  that  in  all  of  the  following  discussion  we  are  dealing
with  the antenna power pattern,  because  this  is  the  quantity  used  in  practice.  The
power pattern is often called the antenna gain  function,  and we denote it by g(q, f),
where  q  and  f  are the  angular  pattern  coordinates  as  defined  in Chapter  3.  We also
normalise  the  pattern to  g(0,  0) =  1. The pattern  will  of course be dependent  on the
frequency.  If  not  explicitly  noted,  we  shall  assume  in  the  following  discussion  a
situation  of  monochromatic  radiation  at  frequency  n  or  radiation over  a small  band-
width  Dn << n.  Although  the  majority  of  cosmic  sources  radiates  over  a  wide,
continuous  bandwidth,  the  receiver  system  is  normally  only  sensitive  over  a  small
bandwidth compared to the center reception frequency.

  We commence with the definition  and mutual  relationships  of a number of impor-
tant antenna parameters.

  The directivity of the antenna D(q, f) is defined as the power received (or emitted)
per unit  solid angle in the  direction  (q, f) divided  by the  average power  over a unit
solid angle:



D Hq, fL =
4 p g Hq,fLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅŸ Ÿ4 p

g Hq,fL „W
.             (5.1)

Clearly, the maximum directivity will be in the direction of the main beam axis; this
is often called "the directivity" DM  of the antenna. The integral in the denominator is
called the effective antenna solid angle (or pattern solid angle), written as 

WA = Ÿ Ÿ
4 p

gHq, fL „ W .             (5.2)

Obviously we have DM = 4 p ê WA  .             (5.3)

  Another antenna parameter is also in use, called the gain G(q, f). It is defined as

GHq, fL = hR D Hq, fL,            (5.4)

where hR  is the radiation efficiency of the antenna, which represents the ohmic losses
in the antenna reflector and feed. Normally  hR  is very close to one and G and D are
essentially identical. The directivity is a parameter which emerges from the consider-
ation of the antenna as  a transmitter.  Alternatively,  one can characterise the antenna
from  reception  considerations  and  introduce  the  effective  absorption  area  A(q, f),
defined as the power available at the antenna terminals divided by the power crossing
a  unit  area  of  infalling  wave  front.  It  is,  like  the  directivity  and  the  beam pattern,  a
function  of  the  angle from the  beam axis.  Normally,  we  use  only  the  value  A(0, 0)
and call it the effective reflector area, denoted A. 

  Because of the reciprocity between transmitting and receiving parameters,  D and A
must be linearly related. We can show this by the following thermodynamic consider-
ation. Consider an antenna with a matched resistor  at temperature T connected  to its
terminals and place a power generator in series with the resistor, as illustrated in Fig.
5.1.  From  the  reciprocity  theorem  it  follows  that  there  will  be  power  transfer  from
any received wave to the resistor and from the power generator to the antenna, which
is  radiated.  Now  place  a  blackbody,  also  at  temperature  T,  in  space  subtending  a
solid angle W  at the antenna in a direction in which the gain is G. We can now write
for  the  power  radiated  by  the  antenna  towards  the  black  body  in  the  frequency
interval DÓ

Pt = k T Dn G W ê 4 p,            (5.5a)

where  k = 1.38 . 10-23 W K-1 Hz-1 is  Boltzmann's  constant.  It  should  be  borne  in
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mind that this power is radiated in the polarisation state of the antenna. On the other
hand, in the Rayleigh-Jeans part of the spectrum (hÓ << kT) the radiating blackbody
has a brightness B = 2 k T ê l2  and emits randomly polarised radiation.

Fig. 5.1. Illustrating  the reciprocity  between reception and transmission  of radiation  by the antenna

  The power received by the antenna in the solid angle W,  absorbed by the effective
area A and delivered to the matched load will be

Pr =
1ÅÅÅÅ2

2 k T DÓÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
l2 W A ,            (5.5b)

where  the  factor  one-half  reflects  the  fact  that  only  half  the  received  power  is
matched to the polarisation state accepted by the antenna.  Because all is at the same
temperature,  there  is  thermal  equilibrium  and  the  principle  of  detailed  balancing
requires that Pt = Pr . Thus we obtain

G = 4 p A ê l2 .            (5.6)

  It is interesting to note that we have not made any detailed specification of the type
of  antenna.  This  relation  applies  to  any  antenna  and  we  can  even  use  it  to  assign  a
value A to an antenna with known gain,  even if  the physical  capture  area is hard  to
discern, as e.g. in a dipole. 

From  the  definitions  above  we  can  write  the  following  useful  relations  between
different quantities

hRÅÅÅÅÅÅÅÅ
WA

=
hR DMÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 p

=
GÅÅÅÅÅÅÅÅ4 p

=
AÅÅÅÅÅÅ

l2 . (5.7)
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‡ 5.2. Response of an antenna to a source distributed in space

Consider  an  antenna  receiving  radiation  from  an  extended  source  at  large  distance
which  has  a  brightness  BHq , fL.  The  power  received  from  a  solid  angle  dW(q,f)  by
the aperture with absorption area AHq, fL over a unit bandwidth is

D p = BHq, fL AHq, fL dW (W Hz-1) .

Integrating over the entire sky we obtain

p = Ÿ
4 p

BHq, fL AHq, fL „ W.            (5.8)

The received power  p  can  be expressed as the temperature TA  of a matched resistor
at the antenna terminals ("radiation resistance") through the Nyquist (1928) formula

p = k TA   (W Hz-1 ),            (5.9)

where k = 1.38 . 10-23 W K-1 Hz-1 is Boltzmann's constant.

We  call  this  fictitious  temperature  the  antenna  temperature.  Note  that  the  antenna
temperature  is a  measure  of  the received  power  by the antenna and  is not related  to
the physical temperature of the antenna structure.

  In a similar fashion we can express the source brightness in terms of a temperature,
which we call  brightness temperature,  denoted by Tb . It  is defined as the equivalent
Rayleigh-Jeans blackbody temperature:

Tb = Hl2 ê 2 kL B  (K)                        (5.10)

The brightness  temperature is also a fictitious quantity  and will not be related to the
physical  temperature  of  the  source  apart  from  the  case  where  the  source  can  be
characterised as a blackbody in the Rayleigh-Jeans approximation (e.g. the planets at
radio  wavelengths).  Before  we  link  the  expressions  for  the  power  emitted  by  the
source  and  that  received  by  the  antenna,  we  must  remember  that  only  half  of  the
randomly  polarised  blackbody  radiation  will  be  received  by  the  linearly  (or  circu-
larly) polarised antenna. Combining Eqs. (5.8 - 5.10) we obtain
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TA = l-2 Ÿ4 p
Tb Hq, fL AHq, fL „ W.                        (5.11)

  An  interesting  result  can  be  obtained  by  the  following  argument,  which  is  essen-
tially  identical  to  that  made  above  in  Ch.  5.1.  Let  the  antenna,  terminated  by  a
matched resistor,  be surrounded completely by a surface at temperature T. In a state
of equilibrium the antenna temperature will be TA = T, while also Tb = T . Substitu-
tion in Eq. (5.11) leads to

Ÿ4 p
AHq, fL „ W = l2 ,            (5.12)

Thus  the  full  sphere  integral  of  the  reception  pattern  is  equal  to  the  wavelength
squared. We can write Eq. (5.12) also as

AH0, 0L = l2 ë Ÿ
4 p

gHq, fL „ W = l2 ê WA = l2 G ê 4 p,            (5.13)

where  we  have  made  use  of  Eqs.  (5.2  and  5.3).  It  is  easily  seen  that  Eq.  (5.13)  is
identical to Eq. (5.6). This is obvious, because we have used the same argument here
as in the discussion leading to Eq. (5.6). We can rewrite Eq. (5.11) as

TA = 1ÅÅÅÅÅÅÅÅÅÅ
WA

Ÿ
4 p

Tb (q, f) g(q, f)  „ W.            (5.14)

Thus  the  measured  antenna  temperature  is  the  integral  over  the brightness  tempera-
ture  distribution  over  the  celestial  sphere  weighted  by  the  antenna  pattern  and
normalised by the total antenna beam pattern solid angle.

  We now consider sources of a finite angular extent with solid angle Ws , a frequency
dependent  flux  density  Sn ,  expressed  in  jansky  (1  Jy  =  10-26 Wm-2 Hz-1 )  and  a
brightness temperature Tb  (in K) at wavelength l. The flux density is defined by the
following expression

SÓ = 2 kÅÅÅÅÅÅÅÅÅÅ
l2 ŸWs

Tb  „ W.            (5.15)

Scanning  the antenna  beam across  a source  with  a  brightness  distribution  Tb Hx ', y 'L,
the antenna temperature TAHx, yL is given by the antenna convolution integral
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TA Hx, yL = 1ÅÅÅÅÅÅÅÅÅÅÅÅ
WA

Ÿ Ÿ gHx - x ', y - y 'L Tb Hx ', y 'L „ x ' „ y ' .         (5.16) 

The measured distribution TA is the true distribution Tb "smeared" by the finite width
of  the  beam.  For  simple  functional  forms  of  Tb ,  for  instance  a  gaussian  or  disc
distribution,  the  antenna  pattern  gHx, yL  may  be  found  in  closed  form  from  Eq.
(5.16).  In the extreme case that the source size is much smaller than the beam width
(we  call  this  a  "point  source",  a  delta  function),  the  convolution  reduces  to  the
integral  over  the antenna  pattern,  which  is  reproduced  in the  shape  of  the measured
function  TA .  From  Eqs.  (5.6,  5.14  and  5.15)  we  can  easily  derive  the  following
expression for a point source

Sn A = 2 k TA .            (5.17)

  Thus  the observation  of  a point  source  with  known flux density  delivers  immedi-
ately  the  absorption  area  of  the  antenna.  Alternatively,  the  observation  of  a  point
source  with  an  antenna  of  known  absorption  area  yields  the  flux  density  of  the
source.  For  sources  of  finite  angular  extent  the  situation  is  less  simple,  because  the
source  "fills"  a  part  of  the  antenna  beam  and  the  recovery  of  the  true  brightness
distribution  of  the  source  from Eq.  (5.16)  is  more  complicated.  We   discuss  this  in
the next section.

‡ 5.3. Efficiencies and Corrections for finite source size

5.3.1. Aperture and Beam Efficiency

We now define  two quantities  which  describe the efficiency with which  the antenna
collects the  received radiation.  First, a basic quantity,  already introduced in Ch. 4.1,
is the aperture efficiency, defined as 

                                                                        

hA = A ê Ag ,           (5.18)

where A is the maximum absorption area and Ag  the geometrical area of the antenna
aperture.  It  indicates  the  efficiency  with  which  the  radiation  from a  point  source  is
collected.  It is directly related to the gain G, as introduced in Ch. 5.1, which is often
the  primary  antenna  parameter  used  by  communication  engineers.  The  aperture
efficiency  can  be  separated  into  a  number  of  different  components,  which  we  have
qualitatively described in Ch. 4.1. A knowledge of the aperture efficiency is required
at  all  wavelengths  used  to  obtain  quantitative  data  on  the  intensity  of  the  source
received.  Knowing hA  over a wide frequency range also enables us to draw interest-
ing conclusions about the antenna performance. We shall give examples later. Often,
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the  source  of  radiation  cannot  be  considered  point-like  and  a  different  approach  to
determining the antenna efficiency must be taken.

Fig.  5.2.  Sketch  in  polar  coordinates  of  the  antenna  beam  with  main  beam  and  sidelobes.  The
half-power  beam width (HPBW)  and beam width to first null  (BWFN) are indicated  as well  as the
general power level P(q).

  We can separate the antenna beam solid angle into two components (Fig. 5.2),  one
containing  the  complete  main  beam Wm  and  the  other  Wl  representing  all  side-  and
back-lobes:

WA = Wm + Wl = Ÿ Ÿmain beam
gHq, fL „ W + Ÿ Ÿsidelobes

gHq, fL „ W.      (5.19)

A  useful  quantity  for  the  measurement  of  extended  sources  is  the  "main  beam
efficiency" (often loosely called "beam efficiency"), defined as

hmB = Wm êWA ,           (5.20)

where Wm  is the main beam solid angle.  Thus the beam efficiency is the fraction of
all  power  received  which  enters  the  main  beam  (assuming  that  the  antenna  is  sur-
rounded by a source of uniform temperature).  Normally the main beam is defined to
extend to the first null in the radiation pattern.  Sometimes it is convenient to include
also  sidelobes  covering  the  source  under  study  into  the  "extended  main  beam  effi-
ciency", which we shall denote hB . We discuss examples later. Using the relations of
Eq. (5.7) and the above definitions of the aperture and beam efficiency we can derive
the following useful expression

hmB =
Wm Ag
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l2 hA .            (5.21)
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Thus,  if  we  determine  hA  from  a  measurement  of  a  point  source  with  known  flux
density  using  Eq.  (5.17)  and  we  determine  Wm  from  the  measured  beam  scan  over
that source, we find the main beam efficiency hmB . We shall see below that it is also
possible  to  measure  the  beam  efficiency  directly  using  a  source  of  known,  finite
angular extent.

5.3.2. Convolution of the beam with a source of finite size

We  continue  with  the  description  of  the  interaction  of  the  antenna  beam  with  a
radiating  source  of  finite  angular  extent.  It  will  be  clear  that  radio  sources  with  an
angular  size which  is not negligible  with respect  to the antenna HPBW, cause some
complication  in  the  analysis.  On  the  other  hand,  measurements  on  sources  with
different angular size can be helpful for the derivation of certain antenna parameters.
This  is  caused  by the  fact  that  the  sources  subtend different  portions  of  the antenna
pattern. 

  Assume  that  we  observe  a  source  with  the  usual  "on-off"  technique,  in  which  we
place the beam on the center of the source and measure its intensity with respect to a
measurement  on a  neighbouring  spot  of the  sky,  believed  to be  free of  sources.  We
thus measure the product (rather than the convolution mentioned in Eq. (5.16)) of the
antenna  pattern  and  the  source  brightness  distribution  within  the  solid  angle  of  the
source Ws .  For the  moment  we assume  that  Ws < Wm ,  the main  beam solid  angle.  In
analogy to Eq. (5.14) and using Eq. (5.7) we find the measured antenna temperature 

TA =
AÅÅÅÅÅÅ

l2 Tb Ÿ
source

y (q, f) g(q, f)  „ W,                                (5.22)

where we have introduced the normalised source brightness distribution y(q, f). The
source solid angle is the integral over the normalised source brightness distribution: 

Ws = Ÿsource
yHq, fL „ W.             (5.23)

  We now substitute Eq. (5.15) into Eq. (5.22) and obtain

TA =
S AÅÅÅÅÅÅÅÅ2 k

1ÅÅÅÅÅÅÅÅ
Ws

Ÿ
source

yHq, fL gHq, fL „ W =
S AÅÅÅÅÅÅÅÅÅ2 k

WSÅÅÅÅÅÅÅÅÅWs
.             (5.24)

where we have introduced the beam-weighted source solid angle

WS = Ÿ
source

gHq, fL . yHq, fL „ W .                         (5.25)
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The factor  K ª
WsÅÅÅÅÅÅÅÅ
WS

 corrects  the measured  antenna temperature for  the weighting of

the  source  brightness  distribution  by  the  antenna  beam.  Thus,  the  flux  density  of  a
source of finite extent and smaller than the antenna beam can now be written as

S =
2 kÅÅÅÅÅÅÅA K TA .           (5.26)

  Note that  this  expression  implicitly  contains  the most  basic  antenna characteristic,
the  aperture  efficiency  hA = A ê Ag  (Eq.  (5.18).  It  can  normally  be  accurately
determined from the observation of a point source with known flux density or a small
source,  like a planet,  where we can calculate K reliably. Thus, as long as the source
is  smaller  than  the  beam,  there  is  no  need  to  invoke  the  beam  efficiency,  which  is
more  difficult  to  establish,  because  the  entire  main  beam  must  be  measured.  With
contemporary,  large millimeter  wavelength  telescopes  with beamwidths  of the order
of  10  arcseconds,  this  is  often  not  the  case  and  the  aperture  efficiency  must  be
determined via the measurement of the beam efficiency.

  The  brightness  distribution  of  many  radio  sources  can  be  represented  by  either  a
gaussian  distribution  with  source  half-power  width  qs  or  a  disc  distribution  with
angular  diameter  qd .  Thus  it  is  convenient  to  describe  the  main  beam  also  by  a
gaussian  function.  Despite  the  fact  that  the  theoretical  antenna  pattern  of  a  tapered
circular  aperture  distribution  has  the  shape  of  Lambda-functions  (see  Ch.  3),  often
the main beam, down to a measurement level of about -20 dB, can be described quite
accurately  by  a  gaussian  function  (see  the  box in  Sec.5.7).  Assuming  for  simplicity
that  the  beam  is  circularly  symmetric,  the  normalised  beam  pattern  can  then  be
written in the usual form as

gHq, fL = exp A- q2
+ f2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2 E ,

where q and f indicate the angles in the two principal (electric and magnetic) planes
of the  beam. For convenience  we want  to express the  standard deviation  s in terms
of the full half-power beamwidth qA . Thus we have expA- H0.5 qA L2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 s2 E = 0.5 from which

we readily find 
è!!!!!!!!!!

2 s2 = qA ê 2
è!!!!!!!!

ln 2 = 0.6006 qA .  The Gaussian  expression  for  the
beam is now

gHq, fL = expA- 4 ln2 Hq2 +f2 LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
qA

2 E = expA- q2 + f2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH0.6006 qA L2 E ,            (5.27)

where  qA is  the  full  half-power  beamwidth  (HPBW).  Integrating  this  function  over
the  solid  angle  of  the  beam (formally  extending  the  integration  to  infinity)  delivers
the main beam solid angle for the gaussian approximation
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Wm = Ÿ
-¶

¶ Ÿ
-¶

¶

gHq, fL „ q „ f = I 1ÅÅÅÅ2
"##########pÅÅÅÅÅÅÅÅÅÅÅln 2

qA M2 = 1.133 qA
2 .            (5.28)

  A similar formula is valid for the symmetrical gaussian source distribution, 

Ws = 1.133 qs
2 ,

while the circularly symmetric disc distribution is represented by the trivial function

y(q) = 1  for  q < qd    and    y(q) = 0  for q > qd

with

Wd = p Hqd ê 2L2 = 0.7854 qd
2 .

  We  can  now  derive  the  factor  K ª
WsÅÅÅÅÅÅÅÅ
WS

 of  Eq.  (5.26)  for  the  gaussian  and  disc

source  distributions,  assuming  the  antenna  beam  to  have  a  gaussian  shape  as  well.
For a symmetrical gaussian source Eq. (5.25) becomes

WS =Ÿ
-¶

¶ Ÿ
-¶

¶

expA- 4 ln 2
q2 +f2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
qA

2 E ÿ expA-4 ln 2
q2 +f2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
qs

2 E „ q „ f =
pÅÅÅÅÅÅÅÅÅÅÅÅÅ4 ln 2

qs
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1+Hqs êqA L2 .

The equivalent relation for the circularly symmetric disc source is

WS = 2 p Ÿ
0

qd ê2
expA- 4 ln 2 q2

ÅÅÅÅÅÅÅÅÅ
qA

2 E q „ q =
pÅÅÅÅÅÅÅÅÅÅÅÅÅ4 ln 2 qA

2 91 - expA-ln 2 I qdÅÅÅÅÅÅÅ
qA

M2 E= .

With the relations for Ws  and Wd , given above, we obtain for the factor K:

K = 1 + x2,                     with x = qs ê qA , gaussian source           (5.29a)

K =
H xê1.2L2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

1- exp 8-Hxê1.2L2 < , with x = qd ê qA < 1, disc source.                    (5.29b)

  The observed scan profile of a gaussian beam scanning over a gaussian source can
be  computed  from  the  convolution  integral,  Eq.  (5.16).  We  recall  that  the  convolu-
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tion  of  two  functions  is  equal  to  the  product  of  their  Fourier  transforms  (e.g.
Bracewell,  1965).  Now,  the  Fourier  transform  of  a  gaussian  is  a  gaussian  and  the
product  of  two  gaussians  is  again  a  gaussian.  Thus  we  find  that  the  measured  half-
power width q0   is given by the expression

q0 =
"######################

qA
2 + qs

2 .            (5.30)

  For  the  disc  distribution  with  qd < qA  (or  x  <  1  in  Eq.  (5.29b))  the  result  of  the
convolution is nearly gaussian and the measured half-width of the scan is found to be

q0 = $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%qA
2 +

ln 2ÅÅÅÅÅÅÅÅÅ2 qd
2 .           (5.31)

Table 5.1. Correction factors for measurements with extended sources
                                      

- K K q0 ê qA q0 ê qA

x gaussian disc gaussian disc
-------- ------- ----- ----- ------

0.0 1.000 1.000 1.000 1.000
0.05 1.0025 1.0009 1.0025 1.0013

0.1 1.010 1.0035 1.005 1.0017

0.2 1.040 1.0140 1.020 1.0069
0.3 1.090 1.0316 1.044 1.0155

0.5 1.250 1.0893 1.118 1.0424

0.7 1.490 1.1798 1.221 1.0816

1.0 2.0 1.3871 1.414 1.1604

Table  5.1  contains  the  numerical  values  for  the  correction  factor  K  and  the  linear
beam  broadening  for  gaussian  and  disc  distributions.  The  Mathematica  routine

 produces Fig. 5.3. 

  For  larger  disc  sources  (x  >  1),  the  convolution  (Eq.  5.16)  does  not  produce  a
simple  formula  for  the  measured  half-power  width.  P.  Stumpff  (unpublished)  has
numerically  calculated this case and his  results are shown in Fig.  5.4 for values of 1
to  5  for  the  ratio  of  the  source  diameter  to  antenna  beamwidth.  Note  that  for  some
cases the measured scan width is slightly smaller than the true source width.
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Fig.  5.4.  Normalised  antenna  temperature  versus  normalised  scan  angle  of  an  antenna  beam  with  width
qA  over a disc source of radius R with ratio 2 R ê qA  as parameter.  (P. Stumpff,  unpublished)

  In the case  of a very large disc where qd ê qA >> 1 the problem can be reduced to
the one dimensional  convolution of a gaussian  with an essentially straight edge. The
gaussian  beam can  be separated  into the  product  of  two one-dimensional  gaussians,
while the brightness  of the source is approximated  by y(x, y) = H(x),  this being the
Heaviside step function in x at the edge of the source. The convolution integral (Eq.
(5.16)) is simplified to

5. Measurement of antenna parameters120

0 0.2 0.4 0.6 0.8 1
source sizeêbeam width

1

1.2

1.4

1.6

1.8

2

r
r

o
C

.
r

o
t

c
a

F

Fig.  5.3.  Correction  factors  for measurements  with  extended  sources.  Red  and  green  curves  give  the  ratio
of  the  true  versus  measured  antenna  temperature  for  gaussian  and  disc  source  distribution.  Blue  and
magenta  dashed curves  show ratio of measured  to true antenna  HPBW for gaussian  and disc, respectively.



TA HxL Tb Ÿ-¶

¶
gHy - y 'L „ y ' Ÿ-¶

¶
gHx - x 'L HHx 'L „ x '.            (5.32a)

The first integral reduces to a constant. Differentiating the equation leads to

dTAÅÅÅÅÅÅÅÅÅÅdx Tb C Ÿ-¶

¶
gHx - x 'L dÅÅÅÅÅÅÅdx HHx 'L „ x ' = C Tb gHxL,           (5.32b)

when  we  consider  that  the  derivative  of  the  Heaviside  function  is  the  Dirac  delta
function  dHx - x 'L  and  the  convolution  gHx 'L * dHx - x 'L = gHxL.  Thus  the  antenna
beam  shape  can  be recovered  quite reliably  (depending on  the  signal  to noise  ratio)
by numerical differentiation of the observed scan across the edge of the large source.

Fig.  5.5. Scan  of the  moon (diameter  30') with  a beamwidth  of 2' (top)  and  the graphically  differentiated
steep  edges  of  the  scan  (bottom).  These  give  a  reasonable  indication  of  the  beam  with  a  derived
beamwidth  of  2.1'.  Some  sidelobe  or error  pattern  features  are  visible  in the  derived  beam  shape.  Note
the  slight  asymmetry  in  the  Moon  scan  due  to  a  temperature  gradient  across  the  surface  (see  Moon
phase as indicated)  at the wavelength  of 2 cm.
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This  has  been  done  successfully  with  beam  widths  of  several  arcminutes  and  the
Moon  or  Sun  as  source  (angular  diameter  30  arcminutes).  An  example  is  shown  in
Fig. 5.5. 

  To illustrate this situation further, we write the integral of Eq. (5.32a) in Mathemat-
ica  where  we  first  assume  a  beam  of  gaussian  form  with  HPBW  q.  The
convolution  with  the  straight  edge  (step  function)  delivers  an  Erf-function  (see  e.g.
Abramowitz  and Stegun,  1964,  p.  295).  Differentiating  this result  recovers the input
gaussian (Fig. 5.6,  red lines). Next the convolution with the beam in the form of the
Lambda function is computed (Fig. 5.6, blue lines). Here we see the influence of the
sidelobes,  which  are  absent  in  the  gaussian  representation.  Again  the  input  Lambda
function  is  recovered  upon  differentiating  the  convolution  result.  Note  that  to
improve  the  visibility  we  plot  here  the  convolution  with  the  field  pattern  (not  the
usual power pattern), which shows negative sidelobes.

Fig.  5.6.  The  convolution  of  a  gaussian  (red)  and  a  Lambda-function  (blue)  with  a  straight  edge
(left) and the original  beams, obtained  from differentiating  the convolution  results (right).

In the  section  with Mathematica  routines  at  the end of  this  Chapter,  the reader  will
find  a  quantitative  comparison  of  the  gaussian  and  lambda  function  representation
of the antenna beam 

5.3.3. Beam efficiency and intensity calibration

We now return to the discussion of the beam efficiency. Recall the expression for the
main beam efficiency ( Eq. (5.21)): 

hmB =
Wm AgÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l2 hA .

If the beam shape is known, the beam solid angle Wm  can be computed and we obtain
a value for the beam efficiency hmB . Using the gaussian approximation of Eq. (5.28)
for  the  beam  solid  angle  and  remembering  that  qA = b Hl êdL  (see  Ch.  4.2.2,
Eq(4.13)), we obtain

hmB =
p d2
ÅÅÅÅÅÅÅÅÅÅÅ4

1.133ÅÅÅÅÅÅÅÅÅÅÅÅÅ
l2 H b lÅÅÅÅÅÅÅÅd L2 hA = 0.89 b2  hA .                  (5.33)
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For  a  typical  aperture  illumination  with  -12  dB  edge  taper,  we  have  b=1.16  and
hence hmB = 1.2 hA .

  The  measured  antenna  temperature  as  function  of  the  source  solid  angle  for  a
certain  antenna  beamwidth  is  qualitatively  illustrated  in  Fig.  5.7.  As  long  as
Ws  << Wm the  beam  pattern  is  essentially  unity  over  the  source  area  (assumed
uniformly  bright)  and  the  antenna  temperature  increases  linearly  with  increasing
source solid angle. At some point the weighting by the beam becomes significant and
the  antenna  temperature  increases  proportional  to  the  weighted  source  solid  angle
until it reaches TA = hmB Tb when WS = Wm . For, if we combine Eq. (5.26) and Eq.
(5.21) with WS = Wm , we obtain

S =
2 kÅÅÅÅÅÅÅÅ
l2

1ÅÅÅÅÅÅÅÅÅÅhmB
TA K Wm =

2 kÅÅÅÅÅÅÅÅ
l2

1ÅÅÅÅÅÅÅÅÅÅhmB
TA Ws =

2 kÅÅÅÅÅÅÅÅ
l2 Tb Ws  ==> TA = hmB TB .

  If  the  antenna  were  free  of  sidelobes,  a  further  increase  in  source  size  would  not
lead to an increase in TA . In reality the sidelobes will add signal until TA  reaches Tb

when the source completely surrounds the antenna. 

Fig.   5.7.  Illustrating  the  run  of  measured  antenna  temperature  TA as  function  of  the  source  solid  angle  Ws .
Note that hB  in this figure is denoted  hmB in the text.

  This suggest a way to treat the case where the source is significantly larger than the
mainbeam. In this case a number of sidelobes and the error pattern (see Ch. 4.6) will
receive  power  from the source  and  contribute  to the  measured  antenna  temperature.
Although the level of these beam features is low, the angular size is appreciable and
in  case  of  observations  of  giant  molecular  clouds  in  our  Galaxy  with  the  narrow
beam  of  a  large  millimeter  telescope  the  power  received  in  the  sidelobes  can  be
considerable.  For an  accurate  measurement,  both the  detailed  form of  the beam and
sidelobes  and  the  brightness  distribution  of  the  source  would  need  to  be  known.
Normally neither are. As a practical approach  we define an effective beam efficiency
hB  ( thus not restricted to the mainbeam) as 
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hBHQL = 1ÅÅÅÅÅÅÅÅÅÅÅ
WA

ŸQS
gHq, fL „ W,            (5.34)

in which the integration is extended over a solid angle QS , equal to that of the source.
For a known source size, Eq. (5.34) would be the best representation of the coupling
of the  extended  antenna  pattern  to the  source.  For  a uniformly  bright  source of  size
QS ,  the  measured  antenna  temperature  would  now  be  TA = hB TB  (Gordon  et  al,
1992).

  We  can  obtain  an  impression  of  the  effective  beam  efficiency  as  function  of  the
angle  q  by measuring sources of different  angular size,  as the planets (a few arcsec-
onds  to  one  arcminute)  and  the  Moon  (30  arcmin)  and  interpolate  in  between.  We
shall  illustrate  below  how  this  can  be  used  to  obtain  an  indication  of  the  sidelobe
level of the antenna. The interpolation from 1 to 30 arcminutes is of course prone to
error,  but  it  might  still  be better  than trying to make a  full  theoretical  calculation of
the  effective  beam  efficiency.  For  very  large  objects,  beyond  30'  size,  we  might
include the "forward beam efficiency" (over 2p steradian) in the interpolation. This is
sometimes  determined  from  the  measurement  of  the  atmospheric  emission  over  the
full 90˚ elevation range - the so-called "sky-dip"  (Kutner and Ulich, 1981). Its value
will be very close to one.

  At millimeter wavelengths, especially in the observation of large molecular clouds,
procedures have been proposed by Kutner and Ulich (1981), which describe observa-
tions  in terms  of the  parameter TR

* ,  the  observed  antenna temperature  corrected for
all telescope-dependent  parameters except the "coupling" of the antenna to the source
brightness  distribution.  Under  the  assumption  of  a  uniformly  bright  source,  we find
that  the  effective  beam  efficiency,  defined  above  is  related  to  these  "coupling"  Hhc L
and  "extended  source"  Hhs L  efficiencies  of  Kutner  and  Ulich  by  the  relation
hB = hc hs .  Unfortunately,  hc  generally  cannot  be  measured  and  can  be  calculated
only  under  simplifying  assumptions.  It  appears  preferable  to  use the  hB ,  introduced
above in these cases.  If a reasonable  estimate  of hB HQL for a source of solid angle Q
is available, one could correct the measured antenna temperature at each point of the
map  into  a  "main  beam"  value  by  multiplying  by  hmB êhB .  The  intensities  of  the
resulting  map  would  then  appear  as  to  have  been  observed  with  a  "clean"  beam of
efficiency hmB .

  A useful  summary  of beam efficiency  measurements,  along  with practical  data  on
planetary  brightness  temperatures  and  applied  to  the  Caltech  Submillimeter  Tele-
scope, is presented by Mangum (1993).

‡ 5.4. Sidelobe level and error pattern

5.4.1. Diffraction beam sidelobes

The  availability  of  sources  over  a  range  of  angular  size,  from  real  "point-like"  to
significantly larger than the antenna beamwidth, can be used to obtain an estimate of
the  sidelobe  level  near  the  main  beam  without  the  need  to  measure  these  individu-
ally, which would require  a very high signal  to noise  ratio.  By  the  same token,  it  is 
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possible to estimate the level of the "error pattern"  in the case of significant random
errors in the reflector surface profile.

  The radiation pattern of a perfect  reflector consists  of a central lobe surrounded by
ring shaped sidelobes  of decreasing  amplitude (the Airy pattern,  see  Ch. 3). Assum-
ing  circular  symmetry,  we  represent  the  pattern,  as  function  of  the  radial  angular
coordinate q, by

gHqL = gm HqL + ⁄i gli HqL .

  From the  representation  of the  beam in terms of the Lambda function  (see Ch. 3),
we can derive the following reasonably good approximation for the half-power width
qli  and  the  radius  of  maximum  intensity  ri  of  the  ith  sidelobe  as  qli = qA ê 2  and
ri = qA H 1ÅÅÅÅ2 + iL. Using again the gaussian approximation  for the main beam, we can
now write for the pattern solid angle up to and including i sidelobes

W = Wm + ⁄i Wli =

1.133 qA
2 + ⁄i p qA

2 H 1ÅÅÅÅ2 + iL gli HmaxL = Wm 81 + pÅÅÅÅÅÅÅÅÅÅÅÅÅ1.133 H 3ÅÅÅÅ2 g1 + 5ÅÅÅÅ2 g2 + ..L<
  We  now  apply  the  concept  of  effective  beam  efficiency hB , as  introduced  in  Eq.
(5.34).  Thus  by  measuring hB  on  an extended  source  and  hmB on  a  point  source,  we
obtain  an estimate  of  the  average  level  of  those sidelobes  covering the  source  from
the relation

hBÅÅÅÅÅÅÅÅÅÅ
hmB

= 1 + 2.77 H 3ÅÅÅÅ2 g1 + 5ÅÅÅÅ2 g2 + ..L.           (5.35)

  We can also use the curve of Fig.  3.5, based  on the Bessel  function representation
of  the  radiation  pattern.  From  that  curve  and  the  numbers  in  Table  3.1  we  derive
values  for  the ratio  hB ê hmB  which  are  very  close  to those found  above.  Remember
that we assume a uniform brightness distribution over the source of a known size. If
we take  as  an example  a  30  m diameter  telescope  operating  at  1.2  mm wavelength,
we  have a  HPBW  = 10  arcseconds.  With  planets  in  size  between  a  few  arcseconds
(Uranus,  Neptune)  and  1  arcminute  (Jupiter,  Venus)  this  method  can  be  used  to
estimate the average near-in sidelobe level. 

5.4.2. Error pattern due to random surface errors 

In  the  case,  where  the  sidelobe  level  is  dominated  by  the  scattering  from  random
errors in the  reflector  profile (the so-called  "Ruze-error"),  we can use the concept  of 
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"effective"  beam  efficiency  to  estimate  the  size  and  level  of  the  error  pattern.  We
have  already  treated  the  theory  of  these  errors  and  the  resulting  radiation  pattern
characteristics in Chapter 4.6. There we described the beam pattern as the sum of the
diffraction pattern gD  of the perfect reflector and the error pattern gE , caused by the
scattered radiation from the random errors. The errors cause an rms phase fluctuation
over the aperture of 

s = 4 p e / l,

where  the  surface  error  e  can  be  weighted  by  the  aperture  illumination  function,  if
desired.  Also,  we repeat that  e  is the deviation  parallel  to the reflector  axis, i.e.  half
the total pathlength error. It is related by Eq. (4.43) to the error normal to the reflec-
tor  surface,  which  is  the  quantity  usually  measured  or  calculated  from  structural
analysis.

  We  repeat  Eq.  (4.42)  for  the  relative  change  in  aperture  efficiency  caused  by  the
random errors,

hAÅÅÅÅÅÅÅÅÅhA0
= expH- s2 L + 1ÅÅÅÅÅÅÅÅÅÅÅhA0

I cÅÅÅÅÅÅd M2 81 - expH-s2 L<.           (5.36)

Normally the second term has a negligible contribution to the aperture efficiency and
can be dropped for this purpose, leading to the widely known "Ruze" formula for the
loss  of  gain  due  to  random  surface  errors.  If  we  measure  hA  at  a  number  of  suffi-
ciently separated wavelengths, we can make a good estimate  of both hA0 and e. This
is  illustrated  in  Fig.  5.8,  which  shows  the  logarithm  of  the  measured  aperture  effi-
ciency as function of the reciprocal square of the wavelength  The slope of
the fitting line gives the rms surface error  from < slope >= H4 p eL2  and  the  intercept 
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Fig. 5.8.  Measured  aperture  efficiency  at 6 wavelengths.  Plotted  is the  logarithm  of the  efficiency
against the reciprocal  square of the wavelength.  The slope gives the rms error as 92 mm.
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for  l->¶  delivers  hA0 .  These  are  measurements  made  early  in  the  operation  of  the
IRAM  30-m  millimeter  telescope.  The  derived  surface  error  is  92  mm,  which  is  in
reasonable agreement  with a holographic surface measurement  of 85 mm. Since then
the  surface  has  been  significantly  improved.  The  value  hA0 = 0.6  agrees  with  the
calculated value from the illumination function.

  Also,  a change in measured hA  as function of elevation  angle can be used to com-
pute the relative change in e and give an impression of the gravitational deformations
of the reflector  surface,  which can be compared with structural  finite element analy-
sis.  An  example  is  shown  in  Fig.  5.9,  based  on  efficiency  measurements  with  the
IRAM  30-m  mm-telescope  at  1.2  mm  wavelength,  shown  as  the  solid  line.  The
dashed line is the predicted change in efficiency from the finite element analysis. On
the  right  hand  axis  is  a  scale  with  the  inferred  increase  in  the  reflector  rms  surface
deviation.  At  80˚  elevation  angle  the  predicted  deformation  is  40±10 mm,  while  the
measurement  indicates  52±5 mm. It  should  be noted  that it  is  essential  to accurately
correct  for  the  considerable  atmospheric  attenuation  at  these  sort  wavelengths  as
function  of  elevation,  not  a  simple  task  because  of  the  variable  nature  of  the
troposphere.

Fig.  5.9.  Calculated  (dashed)  and  measured  (full)  change  in aperture  efficiency,  and  hence  increase
in  reflector  rms  surface  deviation  (right  hand  scale)  as  function  of  elevation  angle.  In  view  of  the
uncertainties,  the results are consistent.

  If  a measurement  has  sufficient  signal  to noise  ratio  to determine the error  pattern
reliably, we can derive the correlation length c from the ratio of the peaks of the error
pattern and the diffraction pattern (see Eq. (4.44)

g
E
H0L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅg
D
H0L = 1ÅÅÅÅÅÅÅÅÅÅÅÅhA0

H cÅÅÅÅd L2 8expH s2 L - 1<,           (5.37)

while the gaussian shaped error pattern has a half-power width

5.4. Sidelobe level and error pattern 127



qE = 2
è!!!!!!!!

ln 2 H 2 lÅÅÅÅÅÅÅÅ
p c L = 1.06 lÅÅÅÅÅc .           (5.38)

The HPBW of a tapered aperture distribution with about -12 dB edge illumination is
qA > 1.12 l êd (see Ch. 4.2.2) and hence

qE ê qA > 0.94 d ê c .           (5.39)

  Although the error pattern is weak with respect to the main beam in most cases, its
large width causes it to contain a significant part of the received power. In particular
in  observing  extended  objects,  this  can  lead  to  erroneous  conclusions  as  to  the
brightness temperature of the source.

  We  have  already  illustrated  above  the  importance  of  a  knowledge  of  the  antenna
sidelobe  structure  for  the correct  interpretation  of certain  astronomical  observations.
On  the  other  hand,  often  new  observational  results  may  be  expected  by  using  the
telescope  at  the  limits  of  its  capability.  An  experimental  determination  of  the  error
pattern will help in deciding the usefulness of the antenna for the observational goal.
We illustrate this with an example of  a  measurement  of  the beam  pattern,  including 

Fig. 5.10.  Beam patterns  of the IRAM  30-m telescope  derived  from differentiated  Moon  scans at 3.4, 2.0
and 1.3  mm wavelength.  The  lower  section  shows  the  central  part  at  a larger  angular  scale.  Next  to the
diffraction  (main)  beam  two  errors  patterns  can  be  seen,  which  have  a  width  of  17  and  90  times  the
diffraction  beamwidth,  respectively.
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the  error  beam,  at  several  wavelengths  with  the  IRAM  30-m  diameter  millimeter
telescope  (Greve  et  al.,  1998).  The  results  are  shown  in  Fig.  5.10.  To  obtain  suffi-
cient signal to noise ratio these data were obtained by differentiation of scans across
the edge of the Moon, as discussed above. One can discern a main beam (the diffrac-
tion beam) and  two error beams,  which  increase  in central intensity  with decreasing
wavelength.  In  the  upper  part  of  the  figure  the  very  wide  error  beam is  obvious.  In
the lower  section of the figure only the central  part of the composite beam is shown
and  a  second,  narrower  error  beam  can  be  seen,  upon  which  the  diffraction  beam
with its sidelobes  is superposed.  From the analysis of these measurements,  using the
formulae presented above, one can deduce a first,  narrower error beam with a width
of 17 times the diffraction beam width, leading to a correlation length of 1.5 - 2.0 m.
This can be identified with the surface panel frames with a typical length of 2 m and
width of 1 - 1.5 m. These frames are supported on the backup structure on four points
at  their  corners.  The  second,  broader  error  beam  has  a  width  of  about  90  times  the
diffraction beam, which gives  a correlation length of 0.3 - 0.5 m. This is representa-
tive  for  small  deformations  within  the  panels,  which  are  supported  at  about  this
interval on the panel  frames.  Such accurate measurements  are not only useful for an
understanding  of the  behaviour  of  the  antenna;  they are  also essential  in  the correc-
tion of  observations of sources of large angular extent.               

  Finally we illustrate how an observation of both a small and an extended source can
be used to estimate  the correlation length of the surface errors without making a full
scan of the antenna pattern to very low power  levels, as done in the example above.
This  assumes that  the error  pattern level  is  stronger  than the  intrinsic  sidelobe  level
of  the  perfect  antenna,  i.e.  at  about  -20  dB  or  stronger.  Again  we  use  the  effective
beam efficiency hB , for a source width qs  (with qA < qs < qE ) written as

hB =
1ÅÅÅÅÅÅÅÅW0

expH-s2 L ŸWs
HgD + gE L „ W ,

where  W0 is  the  antenna  solid  angle  of  the  perfect  antenna.  The  integral  over  the
diffraction  beam  gD  delivers  hmB  when  measured  on  a  small  source,  where  the
contribution  of  the error  beam is negligible.  Integrating  the error  beam gE ,  as  given
in Eq. (4.40a), over the source solid angle, we derive

hB - hmB = 81 - expH-s2 L< 91 - Aexp - I p c qsÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 l

M2E= .
Writing hB0  for the beam efficiency of the perfect reflector, which we find from hA0
with Eq. (5.21), we obtain hB0 - hmB = 1 - expH-s2 L and combining this with the
preceding expression finally yields

hB - hmBÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
hB0 - hmB

= 1 - exp 9- I p c qsÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 l M2=,           (5.40)
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from which it is easy to solve for the correlation length c

c =
4 lÅÅÅÅÅÅÅÅÅ
p qs

9 -lnI hB - hmBÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅhB0 - hmB
M=0.5

.           (5.41)

  As we saw in the earlier example, the correlation length is often determined by the
size  of  the  individual  panels,  constituting  the  reflector.  Thus  values  of  d/c  will
typically lie between 6 and 20, depending on the number of panel rings. An example
of the use of Eq. (5.41) is shown in Table 5.2.

 Table 5.2. Measured parameter of a 25 m radio telescope

           

l HcmL hA hmB hB

---- ----- ---- ----

49.2 0.59 0.79 -

21.2 0.54 0.73 -

6.0 0.48 0.70 -

2.9 0.38 0.53 0.70

  These  are  measurements  of  a  25  m Westerbork  SRT antenna  (Baars  et  al.,  1973).
Extrapolating the measured values to l->¶ we find hA0 = 0.60 and hB0 = 0.80. With
the measured effective beam efficiency on the Moon of 0.70 at 2.9 cm and its angular
size qs = 30' we find from Eq. (5.41) that c = 4 m, which is in good agreement with
the average size of the surface panels. Also from these data we derive with Eq. (5.36)
(see also Fig. 5.8) the rms surface error of e = 1.5 mm, which compares well with the
directly measured value of 1.4 mm. 

‡ 5.5. Pointing and focus corrections and optimisation

For an optimal performance of the reflector antenna, it is important that the system is
properly focussed.  For a prime focus reflector this means localizing the phase center
of the feed in the focus of the primary  paraboloid.  In a Cassegrain system, the most
important criterion is the coincidence of one of the foci of the hyperboloidal  second-
ary reflector with the primary focus of the paraboloid. The location of the feed in the
secondary  focus is far  less critical,  as we have seen in Chapter  4. In this  section we
discuss the influence of a defocus, either axial or lateral, on the pointing characteris-
tics. In addition we describe the method to establish the overall pointing model of the
antenna.
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5.5.1. Pointing aspects of defocus

The formulae for the change in pointing direction,  as function of the lateral shift and
rotation  of  the  feed,  main  reflector  and  secondary,  are  presented  in  Table  5.3,  Eq.
(5.42).  The  geometry  is  illustrated  in  Fig.   5.11.  Translation  is  reckoned  positive  in
the positive y-direction and rotation is positive when right-handed with respect to the
z-axis.  Using  the symbols  Kp  and  Ks  for  the  Beam Deviation  Factor  in the primary
and secondary focus, respectively, we obtain the components of Table 5.3. 

Fig.  5.11.  Geometry  of  the  different  bulk  displacements  and  rotations  of  the  reflectors  of  a
Cassegrain  antenna system.

  The  two  expressions  for  the  rotation  of  the  secondary  apply  to  rotation  about  the
vertex or the focus of the subreflector,  respectively.  As shown in Ch. 2, the quantity
2 c = fc  is  the  distance  between  the  primary  and  secondary  focus  of  the  Cassegrain
system.  These  formulae  are  particularly  important  in  the  calculation  of  the  pointing
shift  as  function  of  the  elevation  angle.  The  components  of  translation  and  rotation
are  predicted  from  the  Finite  Element  Analysis  (FEA)  of  the  structure.  In  an  opti-
mized design, the terms will cancel each other partially,  leading to a relatively small
pointing change with elevation.

5.5.2. General pointing model of the antenna

The basic  method to point  a telescope  or antenna at  a target of known position  is to
use  the  axis-encoder  position  read-outs  as  return  signal  to  the  servo  control  system
until the differences between commanded and encoder position of both axes are zero.
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Table 5.3. The components of pointing error due to deformation of the antenna 

defocus component symbol pointing error equation
------------- ---- ------------- -----

translation primary dp HyL -Kp
dp HyLÅÅÅÅÅÅÅÅÅÅÅÅf H5.42 aL

rotation primary a H1 + Kp L a H5.42 bL
translation secondary ds HyL IKp -

KsÅÅÅÅÅÅÅM M ds HyLÅÅÅÅÅÅÅÅÅÅÅÅf H5.42 cL
rotation secondary HvertexL g -J Kp + KsÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅM + 1 N 2 cÅÅÅÅÅÅÅÅf  g H5.42 dL
rotation secondary HfocusL g - KsÅÅÅÅÅÅÅM

2 cÅÅÅÅÅÅÅÅf  g H5.42 eL
translation feed in sec.focus d f HyL KsÅÅÅÅÅÅÅM

d f HyLÅÅÅÅÅÅÅÅÅÅÅÅf H5.42 fL
  In practice there will be a residual  pointing error, i.e. a difference between the true
viewing direction and that indicated by the encoders,  caused by imperfections  in the
geometry  and  the  finite  structural  stiffness  of  the  antenna.  These  imperfections  fall
under  the  categories  of  misalignment  of  the  axes,  gravitational  bending  of  the
structure  as  function  of  elevation  angle,  errors  in  the  zero  point  and  linearity  of  the
encoders  and  refraction  by  the  earth's  atmosphere.  It  will  be  necessary  to  apply
corrections  to  the  commanded  position  to  ensure  that  the  antenna  beam  is  directed
precisely in the desired direction.  These corrections can be established by measuring
the  apparent  position  of  a  large  number  of  sources  with  accurately  known  celestial
position  and  distributed  over  the entire  visible  sky.  From these  observations  we can
determine the numerical  values of the coefficients of the so-called pointing model of
the antenna. The pointing model is created in the context of a pointing theory, where
we  seek  to  establish  the  analytical  relationship  between  the  true  coordinates  of  the
source, the target, and the read-out of the telescope encoders using a set of physically
reasonable  relations  representing  the  known  or  expected  geometrical  and  structural
imperfections  of  the  antenna  system.  Once  we  have  set-up  these  relations,  the
coefficients  of  their  terms  can  be  found  from  the  set  of  pointing  observations  by  a
least squares treatment.  We call these parameters the pointing constants. They might
vary over time due to aging effects in the structure,  variable wind forces and diurnal
or  seasonal  temperature  variations.  Thus  for  reliable  antenna  pointing  it  will  be
necessary to regularly check the constants for their best value.

  In  the  following  discussion  we  follow  essentially  the  treatment  by  P.  Stumpff
(1972). We assume that the antenna has an altazimuth mounting, although this is not
necessary  for  the  theory  to  be  discussed.  It  is  most  convenient  to  transform  the
celestial  source  coordinate  right  ascension  (a)  through  the  known  local  time  tl  to
hour angle (h = a  - tl ) and thence hour angle and declination to apparent azimuth A
and elevation (e) angle,  whereby  the local  latitude (f)  must be known. Azimuth and
elevation are given by the following equations
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cos e cos A  = -sin f cos d cos h + cos f sin d

cos e sin A   = -cos d sin h           (5.43)

sin e         =  cos f cos d cos h + sin f sin d,

where azimuth A is reckoned from north through east (0˚ < A < 360˚) and elevation e
from horizon to zenith (0˚ < e < 90˚). For a source with precisely known position and
a  telescope  position  of  exactly  known  latitude  and  a  perfect  clock,  making  the
encoder  readings  equal  to  the  source  (A,  e)-values  would  put  the  antenna  beam
exactly  on  the  source,  provided  the  antenna  coordinate  system  (Ai , ei )  is  strictly
orthogonal  without  rotation  or  offset  errors  with  respect  to  the  astronomical  system
(A,  e).  It  is  the  deviation  between  the  instrumental  and  celestial  coordinate  system
which  necessitates  the  establishment  of  the  pointing  model  and  application  of
pointing errors  in actual practice.  Although latitude and clock errors can be incorpo-
rated in the least squares solution of the pointing constants, we shall here assume the
errors  in these  to be zero,  similarly to the  assumption of  perfect  source coordinates.
Normally, these errors will indeed be negligible compared to the pointing errors to be
established.

  We  are thus  forced to apply  pointing  corrections  DA and De to the  source  coordi-
nates  (A,  e)  to  make  the  beam  direction  coincide  with  the  source  for  the  indicated
encoder  positions  HAi , ei L.  The  first  order  pointing  theory  to  be  described  now
establishes  a  functional  relationship  between  the  observed  errors,  the  derived  point-
ing constants and the basic coordinates. We write the corrections as "indicated minus
commanded" values as follows:

DA = Ai - A for azimuth, and

De = ei - e   for elevation, respectively.            (5.44)

From the theory of the universal astronomical  instrument  (see e.g. K. Stumpff,  1955
or Smart, 1962) the following expressions, valid to first order, can be derived

DA = A0 + c1 sec ei - c2 tan ei - za sin HAi - Aa L tan e

De = e0 + b cos ei - r cot e i - za cos HAi - Aa L,           (5.45) 

where the constants have the following meaning

A0  and e0  = zero point offset of azimuth and elevation encoder, respectively

b = the gravitational bending constant of the elevation section of the antenna

c1 = collimation error of the beam (non-perpendicularity of elevation axis and 
beam)

c2 = collimation error of mount (non-perpendicularity of azimuth and elevation 
axes)

za = zenith distance (= 90˚ - elevation) of azimuth axis (azimuth axis tilt)
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Aa = azimuth of the azimuth axis

r = refraction constant.

Note  that Aaand  za can also be replaced  by the angles between the  azimuth axis and
the north-south and east-west planes.

  If  we  assume  the  errors  to  be  small  we  may  replace  the  "indicated"  coordinatesHAi , ei L  in  Eq.  (5.45)  by  the  "true"  source  coordinates  (A,  e).  In  order  to  point  the
antenna at the true position of the source, the indicated coordinates must be increased
by the values of Eq. (5.45). We now introduce the following set of 

"pointing constants"          (5.46)

P1 = - c1 collimation of beam

P2 = -A0 azimuth encoder offset

P3 = c2 collimation of mount

P4 = - za sin Aa           azimuth axis offset(E-W)          

P5 = za cos Aa azimuth axis offset (N-S)

P6 = -e0 elevation encoder offset

P7 = -b gravitational bending

P8 = r refraction

With these we can write the pointing corrections as

   cos e DA = P1 + P2 cos e + P3 sin e + P4 sin e cos A + P5 sin e sin A

          D e = P6 + P7 cos e - P4 sin A + P5 cos A + P8 cot e.          (5.47)

  Special  studies  have  been  made  of  the  atmospheric  refraction  and  as  a  result  this
term is well known (see Ch. 6.2.5). Therefore it normally is kept outside the pointing
model  calculation  and  applied  separately.  Thus  there  remain  7  parameters  to  be
determined  when an antenna needs to update  its pointing model.  As said before this
is  accomplished  by  measuring  the  differences  DA  and  De  for  a  large  number  of
sources,  distributed  over the entire  sky and solving  by least squares methods the set
of equations (5.47) for the seven constants.  These equations with their proper values
for  the  constants  are  then  incorporated  in  the  servo  control  software  to  apply  the
necessary  correction  to  the  demanded  celestial  position  to  force  the  beam  to  be
pointed to that position.

  The  approach  to  establishing  the  pointing  model,  as  illustrated  above,  is  now  an
inherent part of every antenna and telescope control system. Rigorously speaking it is
based on approximations which are valid for small errors and positions not too close
to the zenith. For the most accurate work with current radio and optical telescopes, a
refinement of the analysis might be required. 
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  These  are  provided  by  the  software  package  TPOINT,  written  by  Patrick  Wallace
(1997) and marketed by Tpoint Software. This package is in use at several observato-
ries,  among  them  ALMA  and  the  VLT  of  ESO.  TPOINT  is  compatible  with  the
somewhat  differently  structured  pointing  algorithms  described  in  Wallace  (2002).
These  are  implemented  as  the  proprietary  software  TCSpk,  also  available  from
Tpoint  Software,  which  can  be  used  to  build  antenna  control  systems  in  which  the
pointing analysis and control are closely linked. The ESA 35m deep space antenna in
Western  Australia  (Fig.  1.4)  uses  both  TPOINT  and  TCSpk,  as  do  a  number  of
optical/IR telescopes. 

  The  notations  used  by  Wallace  are  different  from  those  used  above.  For  ease  of
comparison  we  summarise  in  Table  5.4  the  two  correction  systems.  Note  that  we
have listed in the table the DA correction terms, while in Eq. (5.47) DA·cos e is used.
An example of the basic output of TPOINT is presented in Fig. 5.12. The distribution
of the pointing sources over the sky is indicated  in the lower  right. The final scatter
of the measurements  around the nominal  direction of the viewing  angle is shown in
the lower left. The upper two rows of scatter are the deviations of several parameters
with respect to azimuth and elevation  directions,  while the distribution of deviations
is shown in the middle lower  panel.  

Fig.  5.12.  Example  of  a  standard  output  of  the  TPOINT  program  to  evaluate  the  pointing
parameters  of an antenna;  see text above figure. (after Wallace,  1997)

  While  the 7-parameter  pointing  model  will  account  for  the majority  of  the correc-
tions,  it  is  possible  that  the residuals  after  the least-squares  fitting  procedure exhibit
characteristics  which  point  to  further  systematic  errors  in  the  telescope  system.
Examples of this are harmonic terms caused by encoder and bearing run-out, azimuth
bearing  level  variations  due  to  azimuthal  changes  in  the  pedestal  support  stiffness,
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etc.  These  can  be  fitted  to  the  appropriate  functions  and  additional  pointing  model
constants can be obtained and henceforth incorporated in the pointing system.

Table 5.4. Basic pointing model terms in the notation of Stumpff and Wallace

St    Wa           Corr. formula    Corr. formula        Cause
DAzim.                 DElev.

------------------------------------------------------------------------------------------------    
P2   IA                  - IA             -      Azim. encoder zero point
P6   IE                     -         + IE      Elev. encoder zero point
P7   HECE         -      HECE cos e     Gravitational bending
P1   CA            - CA sec e             -      Collimation beam - elev. axis
P3   NPAE      - NPAE tan e             -      Collimation azim. - elev. axis
P4   AW         -AW tan e cos A     +AW sin A      Az. axis (E/W) misalignment
P5   AN          -AN tan e sin A       -AN cos A      Az. axis (N/S) misalignment

  Some  workers  have  taken  the  entirely  empirical  approach  and  fitted  the  observa-
tions  with  multi-parameter  functions  without  regard  of  their  physical  reality.  While
this  may  yield  a  superior  fit,  it  would  appear  to  be  less  satisfactory,  because  no
insight is gained this way in the behaviour of the antenna over time. Using physically
realistic  terms  in  the  pointing  solution  enhances  the  possibility  to  understand  time
variable pointing  effects such  as caused by wind  and temperature  variations.  On the
basis of this understanding one can then plan to take corrective action.     

5.5.3. Measurement of the optimum focus

In   Chapter  4  we  have  discussed  the  influence  of  a  defocused  situation  on  the  gain
and  pointing  direction of  the  antenna.  We saw that  in particular  an axial  defocus  of
the  prime  focus  feed  or  the  Cassegrain  subreflector  leads  to  a  significant  loss  in
antenna gain. While the gain loss with a lateral defocus is less severe, in this case we
encounter the strong and asymmetric sidelobe - the coma lobe, along with a pointing
error.  Thus  for  an  optimum  operation  of  the  antenna  with  maximum  gain  and  low
sidelobes,  it  is  important  that  the  feed  or  Cassegrain  secondary  reflector  be  posi-
tioned in the true focal  point of the primary reflector.  We recall  that in a Cassegrain
antenna, because of the magnification effect, the feed position in the secondary focus
is  less  sensitive  (see  Ch.  4.3.3).  For  the  reasons  described  above  in  the  pointing
discussion,  it  will  be  necessary  to  regularly  check  for  the  optimum  focus  position,
both  in  the  axial  and  lateral  direction.  This  can  be  done  with  relative  ease  using  a
celestial  radio  source  of  angular  size  smaller  than  the  HPBW  of  the  antenna  at  the
frequency of operation. For the determination of the axial focus we exploit the rather
fast  variation  of  the  antenna  gain  with  axial  feed  position  as  discussed  in  Chapter
4.3.1.  We saw there  (Eqs.  (4.22-23) that  for relatively  small  defocus  the gain varies
as the square of the focal displacement. Our method then consists of a gain measure-
ment at minimally  three, preferably  five axial  positions of the feed,  spaced by about
0.2  wavelength.  This  will  lead  to  a  gain  loss  of  about  25  percent  at  the  extreme
points.  Fitting  the measured  points  with  a quadratic  curve and  finding its  maximum
will  deliver  the  position  of  the  true  focus  of  the  antenna.  An  example  of  such  a
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measurement  is presented  in Fig.  5.13.  In  this figure  the "focus  curve" is  shown for
three cases, which show the influence of the angular size of the source. As explained
in Ch 5.3.2 the gain decrease will be smaller in case the source covers a sizeable part
of  the  main  beam.  In  the  extreme  case  where  the  source  is  much  larger  than  the
beam,  as  in  the  example  of  the  Moon  in  the  figure,  the  gain  decrease  is  very  slow,
because the power, removed from the main beam and reappearing in the sidelobes is
still  received  in  this  case.  From the  measurements  it  appears  that  the  focus  position
found  with  an  very  large  source  is  slightly  different  from  that  when  using  a  point
source.  This  is  probably  a  result  of  a  somewhat  asymmetrical  sidelobe  structure  of
the  defocused  beam.  The  antenna  used  for  these  measurement  was  already  at  the
edge of its performance in terms of surface quality.

Fig.  5.13.  Measured  relative  antenna  gain  as  function  of  axial  defocus  in  units  of  wave
length.  Curve  (a)  was  obtained  on a  point  source,  (b)  on an  extended  source  of  size  twice  the
beamwidth  and (c) on the Moon, 15 times the beamwidth.

  Checking  the  lateral  focus  can  be  done  in  a  similar  way  by  moving  the  feed  in
lateral  direction.  This  must  be  done  in  two  orthogonal  planes  to  fully  derive  the
off-axis position. Because the gain loss is much smaller for a certain feed offset than
with axial defocus,  this measurement  is harder  to perform accurately.  Of course, the
weak dependence of the gain on defocus renders the focusing less critical. If a strong
source is used it is advantageous to adjust the feed to a position where the level of the
first  sidelobe is equal  in all  four  directions of defocus.  As we saw in Chapter  4,  the
fast  rise  of the coma lobe with lateral  defocus  gives  a good impression  of  the situa-
tion.

  We have  already discussed  above the  effects  of structural  deformation  as function
of elevation angle, which make a focus correction necessary. For a constant load, like
gravity,  this  will  be  a  constant  correction  over  time.  Most  antennas  exhibit  in addi-
tion  a  noticeable  change  in  focal  length  as  function  of  the  temperature  of  the  tele-
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scope structure. Hence a diurnal variation will be observed which must be corrected.
If  the  thermal  time  constant  of  the  structural  sections  is  not  too  small,  the  relation
between  focal  length  and  ambient  temperature  (or  the  temperature  of a  major  struc-
tural part) will be rather constant over time and a fixed correction curve for the focus
as  function  of  temperature  can  be  incorporated  in  the  control  algorithms.  As  an
example  of  such  corrections  the  focus  data  of  the  ALMA  prototype  antennas  (see
Mangum  et  al,  2006)  are  summarised  in  Fig.  5.14.  The  complete  set  of  focus  data
could be fitted very well by a combination of a Sin(elevation) function, related to the
gravitational bending of the structure, and a linear term with temperature change.

Fig.  5.14.  Axial  focus  curves  of  the  ALMA  prototype  antenna,  separated  in  a sine  term  as function
of  elevation  angle,  representing  gravitational  deformation  and  a  linear  term  with  ambient  tempera -
ture.  The  functional  relationships  are  printed  in  the  top  of  the  figure.  The  green  dots  are  the
residuals from the fit, about 0.4 mm peak to peak. (After Mangum et al., 2005).

‡ 5.6. Pointing and surface error calculation from Finite Element 
Analysis (FEA)

In  foregoing  sections  we  have  described  the  methods  and  formulas  to  establish  the
pointing  correction  and  rms  reflector  surface  error  from  measurements  on  radio
sources.  In  the  design  of  a  new  antenna  these  errors  under  operational  conditions
must  be  calculated  in  the  structural  analysis  (finite  element  analysis,  FEA)  and  the
predicted values must  remain within the specified bounds.  Sometimes  confusion has
arisen between the structural engineer and the user on the correct method of using the
FEA results  to  predict  the  operational  errors  with  which  the  user  will  be  faced.  We
shall now describe in general terms the method to arrive at useful operational parame-
ters from FEA calculations.
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  The  ideal  antenna  provides  an  infinitely  stiff,  perfectly  paraboloidal  reflector
attached  to  a  perfect  mount  of  infinite  stiffness  and  perpendicularly  aligned  axes.
This provides an accurately known collection area and pointing in the direction of the
antenna  encoder  read-out.  In  real  life,  no  structure  is  perfectly  dimensioned,  nor
infinitely  stiff  and  hence  there  will  be  mechanical  imperfections  in  fabrication  and
assembly, as well as structural deformations caused by gravity, temperature gradients
and wind forces. These result in a change of pointing direction and a deviation of the
reflector surface from the prescribed paraboloid.  It are these errors under operational
situations which are of main concern to the user and form the main specification.

  The errors are basically caused by the path length variations imposed on the incom-
ing  wave-front  on  its  way  to  the  focal  point  by  the  motions  of  the  points  on  the
reflector  (both  main  reflector  and  secondary).  An  appropriate  “summing”  of  the
wave-fronts  errors  for  all  points  of  the  surface  will  provide  the  geometry  of  the
reflector  (shape  and  axis  direction)  from  which  the  residual  surface  errors,  delay
errors and pointing errors can be derived. 

  It should be noted that a constant path length variation for all points in the incoming
wave-front  does not  lead to any  decrease in performance;  the antenna is still perfect
and  well-focused  as  far  as  the  waves  are  concerned.  In  effect,  the  wave-front  natu-
rally  “chooses”  the  most  effective  path  length  distribution  to  concentrate  the  maxi-
mum amount of energy in the “best-fit” focal point, which normally will be different
from the original focus position.

  Thus, generally we are allowed to consider the structural deviations of the reflector
with  respect  to  the  “best-fit  paraboloid”  in  the  error  analysis.  For  any  reasonable
structure the residual deformations will be small compared to the size of the deform-
ing  component.  This allows  us  to use the  wave-front  method,  where we  assume the
waves to undergo only path length changes on their original paths. This  approach is
well  suited  to  the  situation  with  large  structural  elements  and  small  deformations,
both in units of the wavelength.

  The best-fit paraboloid will be shifted in space, both in translation and rotation, with
respect  to  the  original  reflector  and  will  have  a  different  focal  length.  This  leads  to
the following error components:

1.   a pointing  error,  caused  by the  shift  of  the reflector  axis direction,  together  with
any  lateral  movements  and  rotation  of  the  subreflector  and  shift  of  the  receiver
position.

2.  a delay error from the axial movements of the reflector, subreflector  and receiver
and from the change in the focal length of the primary.

3.   a residual  surface error,  being the difference  between the  real surface  coordinate
and that of the best-fit paraboloid at the corresponding point.

  The  basic  specification  of  the  antenna  sets  maximum  values  to  these  errors.  To
exploit  the best-fit  procedure,  it will  be necessary  to move the subreflector  to a new
position which  minimises  the  residual  surface errors;  this  implies  a movement in all
three  coordinates,  two  for  pointing,  one  for  focus.  In  practice  this  is  achieved  by
moving  the  subreflector  to  a  position  where  its  imaginary  focus  coincides  with  the
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  With  regard  to  the  use  of  the  best-fit  paraboloid,  the  following  should  be  consid-
ered.  It  is  allowed  to  use  this  procedure  for  all  repeatable,  time  invariable  effects,
gravity  being  the  major  contributor.  For  time  variable  influences,  as  temperature
changes  and wind  forces,  each  condition  must  be considered separately  for  pointing
error and surface error. 

  Temperature varies relatively slowly in time and most of its effects on pointing and
surface error  will  be minimised  by the regular  pointing and focus “calibration".  The
residuals after this calibration should be used in the error tabulation.

  Any  error  caused  by  short  term  influences,  wind  in  particular,  will  not  be
“corrected” by calibration and must be accounted for fully in the error analysis. Thus
for  wind  deformation  the  best-fit  approach  cannot  be  used  for  the  residual  reflector
surface  error,  because  normally  we  cannot  measure  or  calibrate  the  new parameters
of  the  best-fit  reflector.  Only  a  fast  (time  constant  of  order  seconds),  closed  loop
measurement and adjustment of the reflector surface could achieve this. Such "active
surface"  solutions  are  now  being  tried,  but  have  not  reached  the  speed  needed  for
correction  of wind induced  deformations.  Thus the residual  surface  errors  should be
calculated without allowing for the possibility of fitting a paraboloid with a different
focal length from that of the primary reflector without wind loads.

  For pointing the situation is similar.  As mentioned above, the wave-front will  seek
the best-fit paraboloid and concentrate its energy to its focal point. The pointing error
in wind will now be the difference between the direction of this “moving” focus and
that which  we  used as  starting point.  The full  value of  this error  must  be taken into
the error tabulation.  

  We  can  now  summarise  the  situation  with  the  following  "recipe"  for  the  error
analysis based on the FEA results for all operational conditions.

1. The  FEM  delivers  the  three-dimensional  coordinates  of  the  reflector,  the
subreflector/quadripod and the receiver as function of the loading condition.

2. From this we compute the location and orientation in space of the best-fit parabo-
loid and of the subreflector. The paraboloid is characterised by 6 parameters: x,y,z-co-
ordinates of the reflector vertex, rotation about the x and y axis and focal length. The
subreflector  is normally assumed rigid  and is characterised  by the three translational
and two rotational coordinates.

3. These values form the input to the “pointing formulae” provided in Chapter 5.5. 

4. The reflector parameters also allow the computation of any delay change.

5. We also can calculate the value of the reflector surface deviation in each computed
node  as  the  difference  between  the  real  coordinates  and  those  of  the  corresponding
point on the best-fit paraboloid. From this vector we calculate the “axial” component
as explained in  Chapter  4.6.  The rms-value  of these is  the “surface error”.  Its  effect
on the aperture efficiency of the antenna has been discussed in Ch. 4.6 and Ch. 5.4.
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‡ 5.7. Antenna gain and radio source flux calibration

In the foregoing sections we have often referred to celestial radio sources to be used
as "test  transmitters"  for the measurement of the parameters of large reflector  anten-
nas. We shall now have a somewhat closer look at the requirements for such sources
to be useful as calibrator sources. We must thereby discern two situations:

i) measurement of absolute antenna parameters - gain, beamwidth, 
pointing direction

ii) measurement of relative characteristics - beam shape, sidelobe level, 
position dependent gain variation.

  In general we will be interested to determine the antenna parameters as function of
frequency and possibly also for varying pointing position. The major advantages and
disadvantages of cosmic radio sources for the calibration of antennas can be listed as
follows.

Advantages:

- always in the farfield, hence no distance dependent corrections

- diurnal path along the sky provides a range of pointing directions

- normally  of small angular size which minimises size corrections

- broadband "continuum" radiation, useful over large frequency range

- normally (but not always) not, i.e. randomly, polarised.

Disadvantages:

- too small an intensity to provide sufficient signal to noise ratio

- irregular or unknown brightness distribution, or too large angular size

- uncertainty in spectrum, i.e. intensity, as function of frequency

- inaccurate knowledge of absolute intensity and/or celestial position

- intensity variations over time (normally very slow, but real).

  It will be clear from this list that the use of cosmic sources for antenna calibration is
a  mixed  blessing.  It  is,  however,  often  the  only  way  to  obtain  information  on  the
antenna parameters,  in particular for antennas with large diameters. Thus, while their
use has been a natural approach by radio astronomers,  communication engineers and
ground  station  managers  have  adopted  radio  sources  as  test  transmitters  for  their
antennas as well.
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5.7.1. Determining the absolute gain of the antenna

Perhaps the most important  antenna parameter is its gain, or aperture efficiency, at a
particular frequency of operation. Only with a known antenna gain will it be possible
to  obtain  the  true  flux  density  or  brightness  of  the  astronomical  source  from  the
measured antenna temperature. 

  Satellite communication ground stations have strict gain specifications, which must
be  demonstrated  upon  delivery  to  satisfy  the  defined  minimum  signal  to  noise  ratio
required  for  a  successful  commercial  operation.  There  is  thus  a  need  for  a  celestial
source of small  angular size (a "point source")  with precisely known flux density of
sufficient  intensity,  preferably  over  a  broad  frequency  band  and  constant  in  time.
Because  of  the  importance  of  such  a  calibration  source,  we  summarise  here  the
efforts  which  have  been  extended  in  establishing  the  absolute  spectra  of  a  small
number of strong radio sources.

  Obviously,  a  measurement  of  the  absolute  flux  density  of  a  source  requires  an
antenna  with  an  accurately  known  gain.  In  addition,  the  receiver  system  must  be
capable of accurately determining the antenna temperature at its input terminals. This
is  normally  done  by  comparison  of  the  received  signal  with  the  power  from  a
matched load at certain, known physical temperature connected to the input terminals
of  the  receiver.  This  latter  activity  is  in  itself  far  from  a  routine  matter,  but  it  falls
outside the scope of this book. Good descriptions of the methods of receiver calibra-
tion can be found in Kraus (1966), Findlay (1966) and Ulich and Haas (1976).

  As  we  have  seen  earlier,  a  solely  theoretical  calculation  of  the  gain  of  a  reflector
antenna is very difficult and normally not achievable to better than ~10 percent. Thus
the use of reflectors to establish absolute flux density will be restricted to such with a
size, small enough to be calibrated on an earth-bound test range, the length of which
must satisfy the farfield condition Eq. (1.1).

  Because  of  its  simple  geometrical  configuration,  an  electro-magnetic  horn  is
however  amenable  to  an  accurate  theoretical  gain  calculation  (Schelkunoff,  1943).
Several  of  such  horns  have  been  constructed  with  the  aim  to  establish  the  absolute
flux density of the strongest celestial sources. We mentioned already in Chapter 1 the
"Little  Big  Horn",  which  had  a  physical  aperture  of  20  m2 ,  operating  at  1400  MHz
(Findlay et al.,  1965). This horn was constructed with the specific aim of making an
absolute  flux  density  measurement  of  the  strongest  radio  source  of  small  angular
size,  Cassiopeia  A  (Cas  A).  Other  groups  constructed  horns  for  this  purpose  and
made measurements at a number of frequencies between 2 and 16 GHz. Some details
on the  methods employed  are  described  by Findlay  (1966).  These experiments  have
shown  that  with  careful  fabrication  and  experiment  horn  measurements  can achieve
an accuracy of about 2 percent.

  At  frequencies  well  below 1  GHz  it  is  feasible  to  use  relative  small  dipole  arrays
over a ground-plane. The gain of such arrays can also be calculated theoretically with
1-2 percent accuracy. Several measurements of the strong sources Cas A, Cyg A and
Tau A have been made in this way with 2-3 percent accuracy (Parker, 1968; Wyllie,
1969).
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  An original way of calibrating relatively small parabolic reflectors has been devised
by  the  Troitskii  and  Tseitlin  (1962)  group  at  the  Scientific-Research  Radiophysical
Institute,  Gorki  (USSR).  It  is  known  as  the  "artificial  moon  method"  and  works  as
follows (for  a summary description  see  Findlay,  1966).  On  a hilltop at  about 500 m
from the antenna under test at an elevation angle of 20˚ a "black disc",  covered with
absorbing material, is placed in the beam of the antenna. Measurements were made at
wavelengths  between  1.5  and  10  cm  with  4  and  1.5  m  diameter  dishes.  Thus  the
black  disc,  or  artificial  moon,  is  in  the  farfield  of  the  antennas,  while  the  disc  has
diameters between 1 and 4.6 m, depending on the wavelength. The disc subtends an
angle  at  the  antenna of  about  one  third  of the  HPBW.  The mechanisms  are  built  in
such  a  way  that  the  disc  can  be  moved  in  and  out  of  the  beam without  altering  the
surroundings of the disc in any way. What is being measured at the antenna terminals
is the difference  in signal  from the disc and the  sky behind the disc. Because  of the
relatively  small  wavelength,  the  latter  is  small.  It  is  the  3  K  cosmic  background
radiation plus a small  Galactic  component (relatively  well known from sky surveys)
and  the  atmosphere  behind  the  disk.  The  disk  itself  is  near  300  K,  hence  a  small
uncertainly  in  the  weak background  will  not  cause  a  grave  error.  Applying  now the
formulas of Ch. 5.3.2, we find that the measured difference in antenna temperature is
given by

D T = hR HTdisc - Tsky L 1ÅÅÅÅÅÅÅÅÅÅWA
ŸWdisc

gHq, f L yHq, fL „ W = HTdisc - Tsky L AÅÅÅÅÅÅÅÅ
l2 WSdisc    

                       (5.48)

where all variables have their usual meaning and WSdisc  is the beam weighted source
solid angle of Eq. (5.25), calculated from the known antenna beamwidth and the disc
angular  extent  as  seen  from the  antenna.  Thus  from the  measured  antenna  tempera-
ture difference DT, the absorption area A of the antenna can be found. In the original
experiment,  the  accuracy  of  the  method  is  quoted  to  be  between  5  and  10  percent.
Improvements  have  been  made  over  the  years  and  the  method  is  now  said  to  be
accurate to 3-4 percent (Ivanov and Sharova, 2002).

5.7.2. Extraterrestrial sources as test transmitters

The methods  just  mentioned  have  been used  to establish  the  absolute  spectrum of  a
few strong radio sources, the strongest and best studied being Cassiopeia  A (Cas A).
Unfortunately  Cas  A  is  not  at  all  ideal  for  this  purpose.  Its  angular  size  of  about  4
arcminutes  requires  source  size  corrections  for  beamwidhts  of  the  same  order  of
magnitude, which are common now with large telescopes at short wavelengths. Also,
Cas A being a  recent supernova remnant,  exhibits  a secular  decrease in flux density
of about 1 percent per annum, which moreover is dependent on frequency. However,
because of the importance of the object, it has been extensively and carefully studied,
resulting  in  a  well-known  spectrum  between  20  MHz  and  30  GHz  and  an  accurate
functional  form  for  the  secular  decrease.  In  the  paper  by  Baars  et  al.  (1977)  its
spectrum,  along with those of Cyg A and Tau A, was established with a mean error
of 2  percent  between  300 MHz and  30  GHz from about  50 absolute  measurements.
This  spectrum  forms  the  basis  for  the  flux  density  scale  used  in  radio  astronomy.
These  strong  sources  have  also  been  used  extensively  for  the  gain  calibration  of
satellite communication  ground stations.  A so-called  G/T-determination (the ratio of
gain  to  system  temperature,  which  defines  the  performance  of  a  communication
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channel)  of ground stations is routinely done with a measurement on Cas A, making
use  of  the spectrum and  absolute  scale,  established  by the  radio astronomy  commu-
nity.

  We present  now the data on the spectrum of Cas  A. Later  in this section,  we shall
turn to the subject of source flux density calibration by introducing a set of secondary
standard  sources,  that  do  not  exhibit  the  disadvantages  listed  above  and  are  suffi-
ciently  strong  for  the  highly  sensitive  observing  systems,  including  interferometer
arrays. The spectrum of Cas A, as determined by Baars et al. (1977) can be written as

log S [Jy] = a + b log n [MHz] + c log2 n [MHz] , with

a = 5.625  ±0.021, b = -0.634 ± 0.015, c = -0.023 ±0.001  for 22 < Ó < 300 MHz,

a = 5.880  ±0.025, b = -0.792 ± 0.007, c = 0  for 300 MHz < n < 31 GHz at the epoch
1965.0. The secular decrease as function of frequency is given by

d(n) [% per year] = 0.97 (±0.04) - 0.30 (±0.03) log n [GHz].

Thus  for  epoch  2010,  the  "power-linear"  spectrum  for  the  frequency  range  0.3  -  31
GHz would be

log S [Jy] = 3.255 - 0.701 log n @MHzD

Fig. 5.15.  The flux density  of Cassiopeia  A as function  of frequency  for the years  1965,  step 15,
2010, top to bottom. The relative secular  decrease  is smaller  at higher frequencies.

From Fig. 5.15 we see that the flux density has become less than 200 Jy for
frequencies  above  30 GHz.  For  the calibration  of  millimeter  wave antennas  a stron-
ger  source  would  be  of  advantage.  Moreover,  the  angular  size  of  Cas  A of  about  4
arcminutes  results  in  considerable  and  uncertain  size  corrections  with  the  large
telescope  and  ground  stations  of  about  30  m  diameter,  which  have  a  HPBW   1.5
arcminute at 30 GHz. Because of the steep spectrum of Cas A, the situation becomes
even more critical at frequencies of 100 GHz and higher.
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  The  planets  offer  themselves  as  calibrators  for  the  millimeter  and  submillimeter
frequency  range.  They  radiate  essentially  as  black  bodies  in  this  frequency  range,
which means that their brightness  temperature is constant and hence the flux density
will  increase  proportional  to  the  square  of  the  frequency.  While  they  do  not  have  a
fixed  celestial  position  and  exhibit  a  varying  angular  size  because  of  their  orbits
around the Sun, their ephemerides are well known and available in tabular form. The
planetary  temperatures  have  been  the  subject  of  many  studies  and  they  often  show
interesting,  but  for  our  purpose  complicating,  deviations  from  pure  black-body
radiation.  An important  step was taken by Ulich et al.(1980), who made an accurate
determination of the brightness temperatures of Venus, Jupiter and Saturn at 3.5 mm
wavelength with an accuracy of about 3 percent. The result is shown in Table 5.5. At
shorter  wavelengths  these  planets  behave  essentially  as  black  bodies,  although  the
size  and  varying  inclination  of  the  rings  of  Saturn  can  pose  a  problem  for  narrow
beam  widths  of  less  than  a  minute  of  arc  (Mangum,  1993).  Mars  behaves  very
closely as a black body over the entire mm- and submm-wavelength  range. Accord-
ing to Ulich (1981) its brightness temperature varies proportional  to 

è!!!!!!!!!!!!
R0 êR , where

R  is  the  Martian  heliocentric  distance  and  R0  =  1.524  AU  (astronomical  unit),  the
mean heliocentric distance. Its brightness temperature at R0  is added to Table 5.5. 

  A  limited  amount  of  work  in  this  area  has  been  done  since  then,  particularly  at
BIMA (Welch et al, 1996), where some absolute planetary brightness temperatures at
11 and 3  mm wavelength  to an accuracy of 1-2 percent were established  (Gibson et
al., 2005; Gibson and Welch, pers. comm., Sep. 2005).  Extension of the flux density
scale  to  short  mm-wavelengths  is  in  need  of  improvement.  New  telescopes  for  this
frequency range, in particular ALMA, will certainly increase activity in this field.

Table 5.5. Brightness temperatures at 3.5 mm wavelength
================================
Object Brightness Error

Temperature (K) (1 s)
------------------------------------------------------       
Sun      7914 192
Venus        357.5   13.1
Jupiter        179.4     4.7
Saturn        153.4     4.8
Mars        206.8     5.8

  For the radio astronomer,  the knowledge of the absolute  gain of the antenna is not
of  prime  importance.  Rather  his  interest  is  in  knowing  the  absolute  intensity  of  the
observed  object  in  order  to  connect  his  observation  to  intrinsic  source  parameters.
This  can be achieved most  easily  by comparing  the received signal  with that from a
reference source with absolutely known flux density. It was for those reasons that the
strongest  sources  were  measured  with  absolutely  calibrated  antennas.  As  we  saw
already,  those  few  strong  sources  are  not  ideal  for  routine  comparison  work.  Thus
considerable  effort  has  been  devoted  to  establishing  a  set  of  secondary  standards
which  are  more  suited  for  daily  use  as  flux  density  calibrators.  The  spectra  (the
intensity as function of frequency) of these sources have been determined by careful
measurements  of the ratio of  their flux density  to that  of one of  the major  standards
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(Baars et al., 1977). The secondary standards have been chosen to be of intermediate
strength  in  order  to  avoid  problems  with  alinearity  in  the  receiver  system and  to be
distributed over the celestial sphere, so normally a standard will be available within a
reasonable  angular  distance  from  the  source  being  observed.  In  addition  one  has
given  preference  to  sources  of  very  small  angular  extent  (so-called  point  sources)
which avoids the need for size corrections to the measured flux density. This has the
additional  advantage that they can also be used for  the calibration  of interferometers
and  synthesis  telescopes,  which  can  have  an  angular  resolution  of  better  than  1
arcsecond.  Finally,  the  positions  of  these  sources  have  also  been  determined  very
accurately and hence they can be used as calibrators for antenna pointing and interfer-
ometer baseline calibration. Thompson et al. (2001) discuss this in detail.  

‡ 5.8. The Mathematica routines
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Mat .5 .1 - ext. source correction factors;

kd = Hxê 1.2L^2 êH1 - Exp@-Hxê 1.2L^2DL; kg = 1 + x^2;

qg = Sqrt@1 + x^2D; qd = Sqrt@1 + HLog@2Dê 2L x^2D;
Plot@Evaluate@8kg, kd, qg, qd<, 8x, 0, 1<,

PlotRange Ø All, GridLines Ø Automatic, Frame Ø True,

FrameLabel Ø 8"source sizeêbeam width", "Corr.Factor"<,
PlotStyle Ø 88RGBColor@1, 0, 0D<, 8RGBColor@0, 1, 0D<,8Dashing@8.05, .05<D, RGBColor@0, 0, 1D<,8Dashing@8.05, .05<D, RGBColor@1, 0, 1D<<DD

Mat .5 .2 -

convolution with straight edge of gauss and lambda beams;

q = 4; x =.; u =.;

con = Integrate@
Exp@-HHx - uL ê H.6006 qLL^2D UnitStep@uD, 8u, -50, 50<D;

cov = Integrate@ 2 BesselJ@1, Hx - uLDê Hx - uL UnitStep@uD,8u, -50, 50<D;
din = D@con, xD;
div = D@cov, xD;
cv =

Plot@8con, cov<, 8x, -10, 10<, DisplayFunction Ø Identity,

GridLines -> Automatic, Frame -> True,

PlotStyle Ø 88RGBColor@1, 0, 0D<, 8RGBColor@0, 0, 1D<<D
di = Plot@8din, div<, 8x, -10, 10<, PlotRange Ø All,

GridLines -> Automatic, Frame -> True,

PlotStyle Ø 88RGBColor@1, 0, 0D<, 8RGBColor@0, 0, 1D<<,
DisplayFunction Ø IdentityD

Show@GraphicsArray@8cv, di<DD



Comparison  of  gaussian  and  lambda  function  representation  of
the antenna beam .

provides  a  comparison  between  the gaussian  beam approximation  and  the
"Lambda-function"  result  of  the  integration  over  the  aperture  distribution  (see  Eq.
(4.12) with a realistic quadratic shape and taper of -12 dB at the edge (t = 0.25). The
half-power  width  of  the  two  functions  has  been  forced  to  be  equal  at  x  =  1,  which
causes  the factor  u = 1.82 x  in the  Bessel  function  representation.  The plots  in Fig.
5.16 with linear  and logarithmic  intensity  scale illustrate  the differences.  The beams
are  essentially  coincident  down  to  a  level  of  0.2  in  power  (-7  dB)  at  an  angular
coordinate  of  1.5  times  the  HPBW.  Beyond  that  point  the  gaussian  approximation
overestimates  the  beam  intensity,  but  by  then  the  beam  is  at  a  level  of  -20  dB.  A
numerical integration of the Lambda-function representation up to its first null at x =
2.52 yields a beam solid angle which is 2.8% smaller than the value of Eq. (5.28) for
the  gaussian  approximation.  Note  that  the  gaussian  representation  does  not  show
discrete sidelobes. This is obvious,  because the Fourier Transformation (see Ch. 3.7)
of a gaussian function is again a gaussian, which descends continuously.
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Fig.  5.16.  The  main  beam  with  normalised  half-power  width  for  a gaussian  (blue)  and  tapered  Lambda-func -
tion (red) approximation.The  beams are nearly  identical  down to a level of-7 dB.

Mat .5 .3 - Gaussian and Lambda beam;

t = 0.25; u = 1.82 x;

gl =
ikjjj 2

ÅÅÅÅÅÅÅÅÅÅÅÅ
1 + t

H2 t BesselJ@1, uDê u + 4 H1 - tL BesselJ@2, uDê u2Ly{zzz
2

;

gg = Exp@-Hx^2ê H0.6006 2L^2LD;
pi =

Plot@Evaluate@8gl, gg<, 8x, 0, 3<, DisplayFunction Ø Identity,

GridLines -> Automatic, Frame -> True,

FrameLabel -> 8"ang. coor.", "level HlinL"<,
PlotStyle -> 88RGBColor@1, 0, 0D<, 8RGBColor@0, 0, 1D<<DD

pl = Plot@Evaluate@10 Log@10, 8gl, gg<D, 8x, 0, 3<,
PlotRange -> 8-50, 0<, DisplayFunction Ø Identity,

GridLines -> Automatic, Frame -> True,

FrameLabel -> 8"ang. coor.", "level HdBL"<,
PlotStyle -> 88RGBColor@1, 0, 0D<, 8RGBColor@0, 0, 1D<<DD

Show@GraphicsArray@8pi, pl<DD

[Mat.5.3]

[Mat.5.3]
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Mat .5 .4 a - data preparation and fit;

datl = 83.5, 2.75, 2.1, 1.3, 1.13, .87<; di = 1 ê %^2;
datf = 8.53, .5, .45, .27, .21, .1<; dl = Log@%D;
dat = 88di@@1DD, dl@@1DD<, 8di@@2DD, dl@@2DD<,8di@@3DD, dl@@3DD<, 8di@@4DD, dl@@4DD<,8di@@5DD, dl@@5DD<, 8di@@6DD, dl@@6DD<<;
fd = Fit@dat, 81, x<, xD

Out[100]= -0.509658 - 1.35212 x

Mat .5 .4 b - plot of error calculation;
e = Sqrt@1.35212D ê H4 pL
hA0 = Exp@-.51D
lpd = ListPlot@dat, PlotStyle Ø PointSize@0.015DD
pfd = Plot@fd, 8x, 0, 1.5<D
Show@8pfd, lpd<, Frame Ø True,
GridLines Ø Automatic, FrameLabel Ø 8"1êl2", "Log hA"<D

Out[108]= 0.0925332

Out[109]= 0.600496

Mat .5 .6 - Radio spectrum of Cassiopeia A;

<< Graphics`

Sn in Jy; n in GHz;

n =.; t = AD - 1965; d = t H0.97 - 0.3 Log@10, nDLê 100;
Sn = H1 - dL* 10^HH5.88 - 0.792 Log@10, 1000 nDLL;
fl = Table@Sn, 8n, 1, 31, 10<, 8AD, 1965, 2010, 15<D
data = 881, fl@@1, 4DD<, 811, fl@@2, 4DD<, 821, fl@@3, 4DD<<;
Fit@Log@10, dataD, 81, x<, xD
LogLogPlot@Evaluate@Table@Sn, 8AD, 1965, 2010, 15<D,8n, .3, 30<, Frame Ø True, GridLines -> Automatic,

FrameLabel Ø 8"Frequency HGHzL", "Flux density HJyL"<,
PlotStyle Ø 88RGBColor@1, 0, 0D<, 8RGBColor@0, 1, 0D<,8RGBColor@0, 0, 1D<, 8RGBColor@1, 0, 1D<<DD



Out[3]= 8. - 0.57 x - 0.45 x2

Out[4]= 88.1805, 8x Ø -0.633333<<

-3 -2 -1 1 2 3
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8

This is a routine which simulates the data from a pointing measurement consisting of
a  five-point  raster  scan  through  the  source  with  data  taken  in  the  nominal  focus
position  and  1  and  2  units  shift  on  either  side,  respectively.  A  quadratic  function
forms a very good fit and the maximum is found at a position of -0.633.
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6. Miscellaneous subjects

‡ 6.1. Holographic measurement of reflector surface contour

6.1.1. Introduction

Large reflector antennas, as those used in radio astronomy and deep-space communi-
cation, generally are composed of a set of surface panels, supported on three or more
adjustable  points  by a support  structure,  called the  backup structure.  After  assembly
of  the  reflector  it  is  necessary  to  accurately  locate  the  panels  onto  the  prescribed
surface  in  order  to  obtain  the  maximum  antenna  gain.  The  fact  that  some  antennas
have  a  "shaped"  contour  is  irrelevant  for  the  purpose  of  our  discussion.  We  are
concerned  with  describing  a  method  which  allows  us  to  derive  the  position  of  the
individual  panels  in  space  and  compute  the  necessary  adjustments  of  their  support
points to obtain a continuous surface of a certain prescribed shape.

  In Chapter  4.6.1  we have discussed  the influence  of random errors  in the reflector
contour  on  the antenna gain.  We found  that an error  of l/40 is required  to limit  the
gain loss to 10 percent,  while for an error of l/16 the gain is decreased to about half
of  the  maximum  achievable.  Radio  telescopes  are  often  designed  to  meet  the  latter
surface  error  for  the  shortest  operational  wavelength.  For  submillimeter  telescopes,
operating at 350 mm wavelength, this means a reflector error of 20 - 25 mm. Achiev-
ing this is a great challenge both in the design and construction as well as the measure-
ment and setting of the panels.

  The  first  large  radio  telescopes  had  a  diameter  of  about  25  m  and  operated  at
wavelengths  longer  than  10  cm.  Thus  a  surface  precision  of  several  millimeters
provided excellent performance. A measurement accuracy of this order of magnitude
is  readily  achievable  with  a  classic  "theodolite  and  tape"  method.  Using  the  best
theodolites (e.g. the Wild T3), accuracies of the order of 100 mm have been achieved
on  reflectors  of  a  size up  to  30  m (Greve,  1986).  However,  the  development  of  the
technology  of  large  and  simultaneously  highly  accurate  antennas  has  been  a  very
active field over the last 30 years, whereby the application of the design principle of
homology (von Hoerner, 1967) has enabled the construction of, for instance, a 100 m
diameter radio telescope with a surface accuracy of 0.5 mm (Hachenberg et al., 1973;
Godwin et al., 1986), a 30 m millimeter telescope with 75 mm accuracy (Baars et al.,
1987,  1994)  and  10-12  m  diameter  submillimeter  telescopes  with  an  rms  surface
error  of  less  than  20  mm (e.g.  Woody  et  al.,  1998,  Baars  et  al.,  1999,  Smith  et  al.,
2001).  The setting of the reflector panels  at such accuracy has required the develop-
ment of measuring methods of hitherto unsurpassed accuracy. It should be noted that



these  measurements  need  to  be  done  "in  the  field",  which  in  the  case  of  millimeter
radio telescopes generally means the hostile environment of a high mountain site.

  A  number  of  special  measuring  methods  and  devices  have  been  developed  (for  a
review,  see  Baars,  1983).  The  most  versatile,  and  by  now  widely  used  method  is
normally called "radio holography". The method makes use of a well-known relation-
ship  in  antenna  theory:  the  farfield  radiation  pattern  of  a  reflector  antenna  is  the
Fourier  Transformation  of the field distribution  in the aperture  plane of the antenna.
We  have  met  this  relationship  already  in  Chapter  3.7.  Remember  that  this  relation-
ship  applies  to  the  amplitude/phase  distributions,  not  to  the  power  pattern.  Thus,  if
we  can  measure  the  radiation  pattern,  in  amplitude  and  phase,  over  a  sufficiently
large angular area, we can derive by Fourier Transformation the amplitude and phase
distribution in the antenna aperture  plane with a certain spatial  resolution.  The latter
is determined by the angular size of the measured radiation pattern. This method was
suggested,  but  not  worked  out  in  any  detail,  in  the  appendix  of  Jennison's  pocket
book  "Radio  Astronomy"  (1966).  The  paper  by  Bennett  et  al.  (1976)  presented  a
sufficiently  detailed analysis  to draw the attention of radio  astronomers.  Thus,  Scott
and  Ryle  (1977)  applied  it  to  the  new  Cambridge  5  km  interferometric  array  to
measure  the  shape  of four  of the eight antennas,  using a celestial  radio point  source
and the remaining four antennas to provide the reference signal for the measurement
of the amplitude and phase pattern.

  The use of a natural, celestial  signal source is very attractive for two reasons. First
the  source  is  definitely  in  the  farfield  of  the  antenna.  The  farfield  region  of  the
antenna is defined to start at 

Rf = 2 d2 ê l,            (6.1)

and  can easily  reach  values of  several  hundreds  of kilometers.  Thus  an earth-bound
transmitter  will  hardly  ever  be  in  the  farfield  for  these  applications.  Secondly,  the
celestial  radio  source  traces  a  daily path  across  the  sky, providing  a range  of eleva-
tion angles over which the data can be collected. This is of great interest for the study
of  elevation  dependent  deformations  of  the  antenna,  caused  by  gravity.  However,
often the intensity of the cosmic source is not sufficient to achieve the required signal
to noise ratio for  an accurate  measurement.  Only a few strong sources are available.
The situation is more favorable, if there are several large antennas, as in interferomet-
ric arrays, where the extra antennas can be used to provide a strong reference signal.

  For the IRAM 30 m millimeter telescope on Pico Veleta (Baars et al., 1987) it was
decided  to use a  holographic  system at  22 GHz,  using the very strong water  vapour
maser  source  in  the  Orion  Nebula,  which  flared  to  an  intensity  of  several  million
jansky  at  the  time  of  the  design  phase  of  the  telescope.  The  reference  signal  was
provided by a 1.5 m diameter reflector located in the back of the prime-focus cage of
the telescope.  A compact dual  receiver in the prime focus served both reference and
main  reflector.  Although  by  the  time  of  the  measurement  the  maser  source  had
weakened, it was still sufficiently strong to enable a measurement of the surface with
an accuracy  of  about  30  mm rms  and  a  setting  of  the  surface  to  better  than  100 mm
rms (Morris et al., 1988).
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  Artificial  satellites,  radiating a beacon  signal at  a fixed frequency can also be used
as  farfield  signal  source.  Extensive  use  has  been made  of  synchronous  communica-
tion satellites in the 11 GHz band (e.g. Godwin et al., 1986). These fixed transmitters
do  not  provide  the  range  of  elevation  angles  accessible  with  cosmic  sources.  Some
satellites,  notably the  LES (Lincoln Experimental  Satellite)  8  and 9, have  been used
for  radio  holography  of  millimeter  telescopes  (Baars  et  al.,  1999).  They  provided  a
signal  at the high frequency of 37 GHz and with their geo-synchronous  orbit moved
over some 60 degrees in elevation angle. Unfortunately, both satellites are no longer
available.  Radio  astronomers  would  be  greatly  helped  if  a  satellite  would  become
available  with a  reliable transmitter  of adequate  power  at  a high  frequency of about
40 GHz, or preferably near 95 GHz. To avoid interference of regular radio astronomi-
cal  observations  at  this  frequency,  the  transmitter  should  normally  be  switched  off
and only be available at internationally coordinated time intervals. 

  Lacking  a  sufficiently  strong  source  in  the  farfield,  we  have  to  take  recourse  to
using an earth-bound transmitter. In practice it will be located at a distance of several
hundreds  of meters  to  a few kilometers  and  be at  an elevation  angle of less  than 10
degrees.  Clearly,  these  are  in  the  nearfield  of  the  antenna,  requiring  significant
corrections to the received signals. A detailed treatment of this case is presented here.
Successful measurements  on short  ranges have been reported for the JCMT (Hills et
al.,  2002)  and  the  ASTE  antenna  of  NAOJ.  The  ALMA  (Mangum  et  al.  2006)
prototype  antennas  (12  m  diameter,  surface  accuracy  specification  20-25  mm)  have
been  measured  and  set  with  the  aid  of  a  transmitter  at  a  distance  of  only  315  m,
elevation  angle  9  degrees,  radiating  at  a  wavelength  near  3  mm.  We  illustrate  the
discussion below with examples from these measurements (Baars et al. 2006).

6.1.2. The mathematical basis of Radio Holography

The  basic  expression,  linking  the  radiation  function  f Hx, y, zL  at  a  point  P  in  space
with  the  field  distribution  FHx, hL  over  the  aperture  plane  of  the  antenna  has  been
derived in Chapter 3. There we also concluded that this relation is basically a Fourier
Transformation expression. Thus we can write the inverse Fourier Transformation as
follows (see also Ch. 3.7)

FHx, hL = Ÿ Ÿ f Hu, vL ei k r
ÅÅÅÅÅÅÅÅÅÅÅr exp 8-i k Hu x + v hL< „ u „ v,             (6.2)

where  (u,  v)  are  the  direction  cosines  towards  a  point  at  the  distance  r  from  the
aperture.  In  principle,  the  integration  has  to  be  performed  over  the  entire  sphere,
surrounding  the  aperture.  Thus  a  knowledge  of  the  complete  farfield  radiation
function, both in amplitude and phase will provide us with the complex field distribu-
tion (amplitude  and phase) over the aperture  of the antenna.  In most cases it will  be
impossible,  or in any case impractical, to measure  the farfield pattern over the entire
sphere. Fortunately, this is not necessary for the purpose of deriving the shape of the
reflector in sufficient detail. With Nyquist's sampling theorem in mind it can be seen
that a measurement  of the beam pattern over an angle n times the beamwidth  Hl êdL
will provide information of the aperture distribution on a spatial scale of d ên, where
d  is the aperture diameter.  The same scale will be achieved in our knowledge of the
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reflector panel position. Thus as long as we have several scale-lengths over the linear
extent  of the panel, its overall  position with respect to the prescribed contour can be
determined.  Of  course,  panel  deformations  on  a  smaller  scale  will  not  be  detected,
but these would not be amenable for adjustment with the typically 3-5 support points
per panel.  Most  antennas  have  between 5  and 15  rings of panels  and  a value of n  ~
100 will be fully adequate. 

  If the signal source is in the farfield, the practical realisation of the method is rather
straightforward,  because few corrections have to be applied. However,  the signal-to-
noise  ratio  (SNR)  may  be  insufficient  with  the  use  of  a  celestial  source.  We  can
derive  a  simple  expression  for  the  obtainable  measurement  accuracy  as  function  of
the  SNR in the  following  way (Scott  and  Ryle,  1977).  If  we  measure  the  pattern  in
n2points,  each measurement  over the angular range n l êd  represents an area 1 ê n2 of
the  aperture  area  and  delivers  a  signal  equal  to  1 ê n2  of  that  of  the  full  surface
pointed at the source. If this area element has a position error e, it produces a relative
component  to  the  signal  of  4  p e  /  l n2 .  We  combine  however  measurements  from
n2directions  to  determine  the  value  of  e  after  the  Fourier  Transformation.  For  a
certain  SNR with  the source  on-axis  and  equal  integration time  as each beam point,
we  obtain for the measurement error 

De = n l / 4 p SNR.             (6.3)

We will  discuss more practicalities  later  in this chapter.  First  we want  to look at the
special problems of holography with the transmitter in the nearfield of the antenna.

6.1.3. Details of the mathematics of nearfield holography

Because  we  want  to  derive  the  complex  aperture  distribution  from  the  measured
nearfield pattern, the inverse Fourier Transformation of Eq. (6.2) will be our point of
departure.  With  reference  to  Fig.  3.2  and  using  the  direction  cosines,  introduced  in
Ch.. 3.7, the expression for the distance r from a point in the aperture to the location
of the transmitter at point P becomes

r = 8HR u - xL2 + HR v - hL2 + R2 H1 - u2 - v2 L<0.5
,                        (6.4)

which we expand into the series

r º R - Hu x + vhL +
x2 +h2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 R - Hx2 +h2 L2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ8 R3 - Hu x+v hL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 R + Hx2 +h2 L Hu x+v hLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 R2

                       (6.5) 

R  is  the  distance  from the  antenna  aperture  center  to  the  holography  signal  source.
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Normally  for  the  Fresnel  region  analysis,  the  series  expansion  of  r  is  stopped  after
the quadratic  term, which  preserves the first  three terms in Eq.  (6.5). Here,  we shall
maintain  the  next  terms  as  well  in  order  to  make  an  estimate  of  the  error  in  the
approximation. Substitution of Eq. 6.5) into Eq. (6.2) yields

FHx, hL = e-i k R
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅR exp 8-i k dp Hx, hL< Ÿ f Hu, vL exp 8i k Hu x + vhL< e -i k e „ u „ v

                        (6.6)

The terms in Eq. (6.5), which are independent of the integration variables, have been
brought outside  the integral  under the variable dp . The other terms in higher powers
of  (u,  v)  are  collected  under  the  variable  e.  They  "modify"  the  Fourier  Transforma-
tion of Eq. (6.2). 

The first pathlength term

dp Hx, hL =
x2 +h2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 R - Hx2 +h2 L2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ8 R3             (6.7)

causes  a  rapidly  varying  phase  variation  over  the  aperture,  which  can  be  compen-
sated  to  a  large  degree  by  an  axial  displacement  of  the  feed  (see  also  Ch.  4.3,  Eq.
(4.18)). From Ch. 2.2.2, Eq. (2.2.29) we take the relation for the path length variation
due to a focus adjustment df away from the reflector

dc (x, h) = :x2 + h2 + J f -
x2 +h2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 f + dfN2>0.5

- 9 f +
x2 +h2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 f + df=.             (6.8)

  To illustrate  the behaviour of these terms as function of the radial aperture  coordi-
nate we show here a few figures, calculated with Mathematica  Let us first
look  at  the  two  pathlength  terms  dp  and  dc .  The  phase  errors  caused  by  these  are
shown in Fig. 6.1 for the practical case of the ALMA antenna measurement, where f
= 4.8 m, l = 3 mm, R = 315 m and the radial coordinate in the aperture runs from 0
to 6  m The  "cosine  component"  of  the  phase  function  of Eq.  (6.7)  is  shown in Fig.
6.1 in red, while the phase function of Eq. (6.8) for a choice of df = 96 mm is super-
posed  in  blue.  The  difference  between  both  terms  is  shown  in  the  lower  plot.  The
phase  error  increases  its  spatial  frequency  for  increasing  radial  aperture  coordinate.
The difference  plot  shows that  the residuals  are significant.  By varying  the value of
df in the computation,  one can obtain an impression of its influence on structure and
magnitude of the difference function. We want to minimise the sum of the two terms
(Eqs.(6.7), (6.8)) by choosing an appropriate value of df. Because of the (x, h)-depen-
dence (as shown above), there will be a residual pathlength error. Fig. 6.2 shows this
residual  pathlength error for  two choices of df [Mat.6.2].  For df = 96 mm we obtain
roughly  equal  positive  and  negative   errors.  If  df  =  80  mm  is  chosen,  the  error  is
minimised over the inner half radius, but increases to a larger value towards the edge
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of the aperture.  This remaining  pathlength error  is a correction to the aperture phase
distribution, obtained after the Fourier Transformation of the measured beam pattern.
It constitutes a simple algebraic correction to the derived aperture phase.

Fig. 6.1. Residual  aperture  phase for finite distance  and axial defocus  of 96 mm. Top:  Eq. (6.5),  red,
and Eq. (6.6),  blue. Lower curve shows the difference.

  The aperture plane must be defined at a convenient location, often halfway between
the vertex and the edge of the reflector,  where we choose the center of this aperture
plane  as  the  origin  of  the  coordinate  system.  In  most  antennas  there is  a  significant
distance between this plane and the axes of rotation for the movement of the reflector
(Fig. 6.3).  From this  figure we see  that there is a "parallax"  effect between the used
direction cosines (u, v) and those given by the antenna scanning coordinates  (u', v'),
given by the relations

u = u' (1 + DÅÅÅÅÅR ) , v = v' (1 + DÅÅÅÅÅR ) ,            (6.9)

where D is the distance between rotation axis and aperture plane.
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Fig.  6.2.  The  sum  of  the  terms  dp  and  dc  for  values  df  = 80  mm (red)  and  96  mm (blue).  The
aperture  phase distribution  must be corrected  according  to these residuals.

  When  we use the scanning  coordinates  (u',  v'),  read from the antenna encoders,  to
calculate  the position  of the points  in the aperture  plane (the values for (u,  v) in the
Fourier integral (Eq. (6.2)), we will overestimate the scale of the aperture map by the
factor  H1 + D êRL.  The  result  of  this  is  that  the  nearfield  correction  for  each  pixel  in
the map is not evaluated at the correct radius. This causes a pathlength error propor-
tional  to  the  derivative  of  the  nearfield  pathlength  correction  with  respect  to  the
radial  aperture coordinate.  This is illustrated in Fig. 6.4 for the case of the geometry
of the ALMA antenna, where D  3.1 m, i.e. about 1 percent of the distance R to the
transmitter.  The pathlength error is significant,  causing a surface error as function of
radius  as  shown in the  lower  part  of  the  figure;  its  rms  value is  18 mm in this  case,
significant with respect to the required setting accuracy of 10 mm. 

Fig. 6.3.  Illustration  of the geometry  of selected  aperture plane and antenna rotation axis.
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Fig.  6.4.  The  pathlength  error  and  resulting  surface  deviation  resulting  from  the  difference
between  the location  of  the antenna  aperture  plane  and  the rotation  axes.  The rms  value  of the
residual  surface  error is 18 mm in this example  (after Lucas).

  It  is  possible  that  during  the  measurement  the  receiver  feed  is  not  located  in  the
optimum  refocused  position.  With  the  aid  of  Fig.  6.5  it  can  be  seen  that  the  path-
length error caused by an axial defocus of dz follows from Eq. (6.8) as

dpz = dz :1 -
1-

x2 +h2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

4 f 2 + dfÅÅÅÅÅÅÅÅf
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

&''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''x2 +h2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

4 f2
+
i
kjjjjjj1-

x2 +h2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

4 f 2 + dfÅÅÅÅÅÅÅÅf
y
{zzzzzz
2
>,             (6.10)

while a transverse (lateral) offset by an amount dx will cause a pathlength variation of

dpx = dx
x
ÅÅÅÅÅÅf : 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

1+ dfÅÅÅÅÅÅÅÅf

- 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

&'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''x2 +h2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

f 2 +J1-
x2 +h2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

4 f 2 + dfÅÅÅÅÅÅÅÅf N2 >.       (6.11)

In the reduction process of the holography data, these terms are found by a fit of the
measured  beam  map.  The  final  map  of  surface  deviations  is  then  referred  to  a
position of the feed in the fitted "best-focus" location.
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Fig.  6.5.  The  geometry  of  axial  (upper  half)  and  lateral  (lower  half)  displacement  of  the  feed
from the focus of a parabola.

  Finally,  we  look  at  the  higher  order  terms  in  Eq.  (6.5)  containing  the  integration
variables (u,v). They represent a small pathlength error 

e =
Hx2 +h2 L Hu x+v hL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 R2 -
Hu x+v hL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 R ,            (6.12)

which adds a phase term to the integral of Eq. (6.6) of the following form

expH- i k eL º 1 - i k e =

1 - i k 9u xHx2 +h2 L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 R2 + v
hHx2 +h2 L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 R2 - u2 x2
ÅÅÅÅÅÅÅÅ2 R - v2 h2

ÅÅÅÅÅÅÅÅÅ2 R - u v
x hÅÅÅÅÅÅÅR =.

           (6.13)

Thus  this  correction  involves  the  calculation  of  five  additional  integrals.  Often  the
additional computational  load will not be necessary in view of the required measure-
ment accuracy. If the highest possible accuracy is needed, they should be included.

  As an example we take again the ALMA antenna situation mentioned above. When
all  the  integrals  of  Eq.  (6.13)  are  evaluated,  it  is  found  that  the  contribution  of  e
amounts  to 2  mm pathlength  over  most  of the  aperture,  reaching  a  value of 5  mm at
the edge. This is illustrated in Fig. 6.6. Thus, for a measurement, where the aim is to
achieve  a  measuring  accuracy  of  better  than  10  mm,  it  is  advisable  to  include  these
terms, if the distance R is relatively small.
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Fig. 6.6.   Illustration  of the  higher  order  (non-Fresnel,  Eq. (6.13))  phase error  over the aperture.
Over most of the aperture the error is about 2 mm; it raises to more than 5 mm towards the edge.

6.1.4. Aspects of the practical realisation - examples of results

The  actual  realisation  of  a  holographic  reflector  measurement  will  depend  strongly
on the local situation like the size and frequency range of the antenna, the topographi-
cal  situation  in  the  neighbourhood  of  the  antenna,  the  availability  of  a  reference
antenna  and  the  accuracy  requirement  of  the  measurement.  The  easiest  situation  is
given  by  the  presence  of  several  antennas  as  will  be  the  case  for  an  interferometric
array.  Using  some  of  the  strong  radio  point  sources  on  the  sky  it  will  normally  be
possible to obtain a map of the radiation pattern of one antenna by scanning its beam
across  the  celestial  source,  while  tracking  this  source  with one  or  more of  the other
interferometer  elements  to  provide  a  strong  reference  signal.  In  this  case  the  signal
source  is  definitely  in  the  farfield,  so  no  corrections  will  be  needed.  Moreover,  no
special  equipment  is  required  as  long  as  the  sensitivity  of  the  interferometer  is
sufficient for the chosen radio source. 

  Normally  however  we will  be  faced with just  one  antenna to be measured.  In that
case  we  must  provide  for  a  reference  signal  from  an  additional,  small  antenna.  In
most  cases  the  sensitivity  of  the  system will  not  be  sufficient  for  the  use of  cosmic
sources,  the  only  exception  being  the  availability  of  receiving  equipment  which  is
tuned to the strong spectral  lines of astronomical  maser sources of water-vapour  (22
GHz),  hydroxyl  (OH,  1667  MHZ)  or  SiO  (43  and  86  GHz).  Quite  a  number  of
antennas  have  been  measured  with  the  aid  of  beacon  signals  from  communication
satellites at frequencies near 12 GHz and 37 GHz. These synchronous satellites are in
the  farfield  of  the  antenna  and  their  signal  is  strong  and  monochromatic,  which
renders the electronics easier and the data analysis simple.

  Where  such  a  solution  is  not  feasible,  in particular  for  the measurement  of highly
accurate  antennas  for  millimeter  and  submillimeter  wavelengths  between  0.3  and  3
mm,  there  remains  only  the  use  of  an  earthbound  transmitter  at  high  frequency,
placed at a  finite distance  from the antenna under test.  This  transmitter  will be  well 
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Fig.  6.7.  The  hardware  configuration:  signal  feed  side  of  the  receiver  (top),  reference  feed  side
of the receiver  (middle)  and transmitter  on top of tower aiming  at the antenna  in foreground.  The
other antennas are part of the NRAO Very Large Array in New Mexico.
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within the Fresnel region of the aperture. Although it will be easy to obtain sufficient
signal  to noise ratio, the recorded data will have to be subjected to all the corrective
measures described earlier. 

  A  detailed  description  of  the  hardware  layout,  the  data  collection  and  the  data
analysis  of the holographic  measurement  of the ALMA prototype antennas has been
presented by Baars et al.  (2006).  We summarise  the major  aspects here and present
some results as an example of the method. 

  The  antenna  has  a  diameter  of  12  m  and  the  reflector  panels  must  be  set  to  an
accuracy of 10 mm rms so as to achieve an overall surface accuracy of better than 25
mm. A picture of the holography equipment is shown in Fig. 6.7. The signal source is
a  monochromatic  transmitter  at  a  frequency  of  78.9  GHz,  located  on  a  50  m  high
tower  at  a  distance  of  315  m  from  the   antenna.  This  is  at  only  0.4  percent  of  the
farfield distance (Eq. (6.1)). The receiver is a dual correlation receiver, located in the
apex  region  behind  the  primary  focus  of  the  reflector.  The  reference  signal  is
received  by  a  horn  -  lens  combination  pointing  along  the  boresight  towards  the
transmitter.  Amplitude  and  phase  maps  of  the  antenna  beam  are  obtained  by  raster
scanning.  After  Fourier  Transformation  a  map  of  the  aperture  amplitude  and  phase
distribution is obtained with a spatial resolution over the aperture of about 0.15 m.

  In the data analysis the two main operations are:

1. Calibrate  measured  map data  in amplitude  and phase, based on regular bore-sight
measurements assuming linear drift in amplitude and phase with time. Interpolate the
data to a regular grid in antenna based coordinates for easy Fourier transformation.

2.  Compute  the  aperture  map from the beam map by  Fourier  transformation.  Apply
the  geometrical  phase  correction  for  finite  distance  and  feed defocus,  as  well  as  for
the  measured  phase  diagram  of  the  feed.  From  the  aperture  phase  map,  derive  the
deviations from the best-fit reflector and the necessary adjustments at the positions of
the panel adjusters. 

3. Apply the corrections  to the adjusters  and repeat the procedure until   the required
surface  accuracy  is  achieved,  or  alternatively  until  the  inherent  measurement  accu-
racy has been reached and no further improvement in surface accuracy is obtained. 

  The  result  of  a  holographic  measurement  and  setting  of  the  ALMA  prototype
antenna  is  shown  in  Fig.  6.8.  It  shows  from  top  to  bottom  an  improving  surface
accuracy.  An  adjustment  of  the  panels  was  done  between  the  maps,  based  on  the
results  of the one above. The starting error was 53 mm, which could be improved  to
14 mm in two full and one partial surface adjustment.

  The internal accuracy is normally estimated from the difference between successive
measurements.  This  is  illustrated  in  Fig.  6.9.  The  rms  shape  error  of  the  difference
map is about 6 mm. There  appear to be some relatively large scale differences  in the
outer areas at the level of 15 - 20 mm. Note that the signal to noise ratio is lower near
the aperture  edge because  of the illumination  taper (about  -9  dB in this  case).  If we
weigh the data with the taper function, the resulting rms error is just over 4mm.

  The  holographic  method  is  now  being  used  routinely  in  the  setting  of  reflector
antennas, whereby an accuracy of about one in a million is being achieved.  

6.1. Holographic measurement of reflector surface contour 163



Fig.  6.8.   Surface  error  maps  and  error  distribution  of  an  ALMA  prototype  antenna.  Two  full  settings
were  applied  between  the  top  three  maps  and a partial  setting  before  the  last map.  It  appears  that  the
final  setting  was  not significant  in view of  the  measurement  accuracy.  The white  cross  and small  white
area represent  the quadripod  and a faulty panel.
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Fig.  6.9.  A surface  map  (left)  and  the  difference  between  this  map  and  the  one  made  immedi -
ately afterwards  (right).  Here  the  rms of  the surface  is  17 mm, while  the  difference  map  is about
6 mm. Weighted  for the aperture illumination  the difference is 4.2 mm. 

6.1.5. Alternative methods of reflector shape measurement

Phase retrieval holography

A special  version of the holographic  method, which  only measures  the amplitude of
the signal,  has been developed and successfully  used. Here one records two maps at
two  different  settings  of  the  feed  along  the  axis  and  iteratively  derives  the  phase
function over the aperture. Normally one chooses the position of the feed to be about
one wavelength at either side of the nominal focus. This way the signal strength will
be  comparable  in both maps.  In the manipulation  of the data one assumes  a starting
phase  distribution  over  the  aperture,  either  of  a  random nature  or  based  on  a priori
knowledge. Normally this would be a smooth function representing the phase pattern
of the feed, superposed with a random component. By changing the axial position of
the feed a known additional phase function is introduced (see Ch. 3). By an iterative
algorithm,  originally  devised  for  the  analysis  of  electron  microscopy  pictures  by
Misell (1973), the phase function is adjusted to provide a best fit  between the calcu-
lated and measured amplitude maps in the two focal positions. The method requires a
very  high  signal  to  noise  ratio,  but  has  the  advantage  of  not  needing  any  special
hardware.

  The required signal to noise ratio is the square of that needed for a direct measure-
ment  of  the  aperture  phase  function.  A  detailed  analysis  has  been  presented  by
Morris  (1987).  Morris  et  al.  (1988)  describe  a  test  of  phase  retrieval  holography  in
the  Fresnel  region  on  the  IRAM  millimeter  telescope.  The  results  compared  well
with the  surface  map  obtained  from the full-phase  holography.  Nicolic  et  al.  (2002)
present such measurements  of the JCMT submillimeter  telescope using astronomical
sources.  The  method  has  been  used  widely  with  satisfactory  results.  There  is  how-
ever some evidence that the full-phase system delivers data of superior quality.
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Shearing interferometer

An original  alternative method of surface shape measurement  has  been presented by
Serabyn  et  al.  (1991),  in  which  a  Twyman-Green  interferometer  is  used  (Born  and
Wolf, 1970, Ch. 7.5.5). A sketch of the method is shown in Fig. 6.10. The beam from
the reflector, after passing through the secondary focus, is led to a tertiary paraboloid
P1 ,  which  re-images  the  primary  reflector  onto  two  flat  mirrors  M1  and  M2  via  a
dielectric  beam splitter  BS.  The  reflected  beams are  recombined  and  brought  to  the
detector  in the  focal  plane via  the  off-axis  paraboloid  P2 .  Mirror  M2  can be rotated
about  two  axes  perpendicular  to  the  incoming  wavefront.  Because  the  primary
reflector  is  imaged  onto  M2 ,  a  rotation  of  M2  is  equivalent  with  a  change  in  the
pointing direction of  the primary reflector.  Thus, seen from the detector in the focal
point,  the  fixed  mirror  M1  directs  a  beam  towards  the  source,  while  the  moving
mirror  M2  scans  a  second  beam  to  off-axis  positions.  In  other  words,  the  image
mirrors  M1  and  M2  represent  the  two  elements  of  an  interferometer  as  used  in  the
holographic system described in Ch. 6.1.4. While in standard holography the antenna
beam  is  scanned  over  the  source  with  the  receiver  kept  on-axis,  here  the  antenna is
kept on axis and the focal plane field distribution is sampled off-axis by virtue of the
moving  mirror  M2 .  As  described  in Ch.  3.8,  the  farfield  beam pattern  and  the  focal
plane field distribution have the same form (both being the Fourier transformation of
the  aperture  field  distribution).  Thus  this   interferometer  measurements  will  deliver
the same result as the usual holography interferometry. Because the relative phases   

Fig.  6.10.  Layout  of  the  shearing  interferometer.  P1 and  P2  are  off-axis  paraboloids;  BS  the  beam
splitter  and M1  and M2  plane mirrors.  M2  can be rotated  about  two axes perpendicular  to the incoming
beam; the blue lines indicate an off-axis  beam from M2 .
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of  the  two  beams  are  present  in  the  interferogram  at  the  detector,  only  a  single
detector is needed and even a broadband device, like a bolometer, can be used. These
are  frequently  used  in  the  millimeter  wavelength  range,  where  the  planets  provide
suitably strong test sources. Because the primary reflector  is imaged onto mirror M2
and  the  wavefronts  from  a  point  on  the  primary  surface  are  sheared  laterally  by  a
rotation of M2 , the authors coined the name "shearing holography" for this measure-
ment  method.  A  full  description  of  the  method,  along  with  experimental  results,  is
presented by Serabyn et al. (1991). 

Optical methods: Photogrammetry and Laser Tracker

For completeness we mention shortly two recent developments of methods which do
not  use  radio  techniques,  but  work  with  visible  light.  Both  have  been  used  for  the
setting  of  accurate  reflectors  for  millimeter  wavelengths.  While  not  achieving  the
accuracy of radio  holography,  they have  some specific  advantages  which  deserve to
be mentioned here.

  In  photogrammetry  pictures  are  taken  of  the  reflector  surface,  which  has  been
outfitted with suitable targets, from a number of directions.  From the set of photos a
three-dimensional  representation  of  the  target  locations  is  formed  and  hence  the
reflector  shape  is  recovered.  The first  application  of  this  method to radio  telescopes
was  a  measurement  of  the  300-ft  and  85-ft  antennas  at  the  NRAO  in  Green  Bank,
WV,  in  1962  (Findlay,  1964).  The  camera  was  hovered  on  a  helicopter  over  the
antenna.  An accuracy of  about  one millimeter  was achieved,  i.e.  a relative  accuracy
worse than 1: 105 . The technique has since then been developed to a fully digital  

Fig.  6.11.  The  ALMA  prototype  antennas  are  covered  with  1080  photogrammetry  targets,
placed in 17 rings of 24 - 96 targets (white dots). 
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system and it has been used in the setting of one of the ALMA prototype antennas of
12  m  diameter.  The  camera  was  placed  on  a  man-lift  close  to  the  reflector.  This
enabled  the  measurement  of the  surface  in several  elevation  angle  positions.  This is
of  interest  to  study  gravitationally  induced  deformations  in  the  structure.  The  accu-
racy  reached  is  a  few  times  per  million  and  the  reflector  could  be  set  to  approxi-
mately  30  mm  rms  accuracy.  Figure  6.11  shows  a  picture  of  the  reflector  with  the
more than 1000 targets attached.

  The  original  method  to  measure  and  set  reflector  panels  was  the  geodetic
"theodolite  and  tape"  method.  The  use  and  limitations  of  this  techniques  have  been
described  by  Greve  (1986).  With  great  care  a  measurement  accuracy  of  somewhat
better  than  0.1  mm can  be obtained.  Improvements  to  the equipment  over the  years
have  led  to  the  current  use  of  laser-based  theodolites  where  angle  and  distance
measurement  have  been combined  into  one  instrument.  The so-called  "total  station"
laser  tracker  from  Leica  is  able  to  track  a  moving  corner-cube  mirror  target  on  its
path through space.  This instrument  has been used for the setting of another ALMA
prototype  antenna.  The  target  was  placed  at  the  position  of  the  panel  adjusters  and
readings  in  real-time  enabled  the  panel  to  be  adjusted,  after  which  the  target  was
moved to the next point. With this instrument it was possible to set the 12-m diame-
ter reflector to an accuracy of about 30 mm. 

  While  these  two  methods  lack  the  accuracy  needed  for  the  setting  of  the  most
accurate  submillimeter  telescopes,  where  an  accuracy  of  better  than  10  mm  is
required,  they  offer  an  attractive  alternative  for  the  measurement  and  setting  of
antennas of less demanding accuracy.

‡ 6.2. Far sidelobes, Gain calibration

6.2.1. Far sidelobes and stray radiation correction

In the first section of this chapter we have seen how the measurement of the antenna
pattern in amplitude  and phase  can be used to derive  the shape of the reflector.  The
method  of choice  to  obtain  the amplitude  function,  rather  than the power  pattern,  is
to  use  an  interferometer  consisting  of  the  antenna  under  test  and  a  second  antenna
which  provides  a  reference  signal  of  constant  amplitude  and  phase  by  keeping  it
directed at the signal source. It is obvious that this method can be used for the direct
determination  of  the  beam  pattern  over  an  arbitrary  beam  solid  area  provided  the
signal  to  noise  ratio  is  sufficient.  A  knowledge  of  as  large  a  portion  of  the  full
antenna  beam  is  desired  in  certain  circumstances  and  the  interferometric  method
often enables us to measure this with the aid of the strongest cosmic radio sources. 

  In radio astronomy a most serious source of possible error occurs in observations of
the atomic hydrogen  line at 21 cm wavelength,  because the hydrogen  in our  Galaxy
is seen in all  directions.  The bulk of the radiation is concentrated along the Galactic
equator  in  a  band  of  several  degrees  width.  However,  hydrogen  is  also  present  at
high  galactic  latitudes,  be  it  at  relatively  low  intensity.  Especially  the  so-called
high-velocity clouds (HVC) are objects of great astronomical interest. While observ-
ing these, the much stronger radiation from the galactic plane may enter through the
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far-out  sidelobes  of  the  antenna  pattern.  This  so-called  stray  radiation  can  cause  a
significant  distortion  of  the  HVC's  observed  line  profile  and  lead  to  erroneous
conclusions regarding the distribution and velocity of the hydrogen in the HVC. The
first  to  draw  attention  to  this  was  van  Woerden  (1962),  who  noticed  significant
differences  between  hydrogen  spectra  from  the  same  direction  but  observed  at
different  dates.  He correctly interpreted  this  as the  result  of  a variation  in the  radia-
tion  entering  through  the  far  sidelobes  caused  by  the  orientation  of  the  sidelobe
pattern  with  respect  to  the  brightest  regions  of  the  Galaxy  and  the  change  in  the
correction  for  the  velocity  of  the  earth  with  respect  to  the  source.  With  the  aim  of
correcting the hydrogen sky surveys undertaken with the Dwingeloo radio telescope,
a  measurement  of  the  full  pattern  of  the  antenna  at  21  cm  wavelength  was  under-
taken,  whereby  a level of -60 dB below the main beam needed to be reached (Hart-
suijker et al., 1972). In this case the interferometer was formed by the 25-m diameter
Dwingeloo telescope and a 7.5 m diameter reference antenna at 100 m distance (Fig.
1.2). Signal sources were the strong cosmic radio sources Cas A, Cyg A and Tau A. 

  The output of the interferometer is proportional  to the product of the voltages from
the  two  elements.  By  scanning  the  antenna  under  test  through  the  direction  to  the
source,  while  keeping the reference  antenna directed  at the source, the output  signal
varies  proportional  to the field strength pattern  of the test  antenna.  The usual power
pattern  is  the  square  of  this  and  thus  a  -60  dB  power  sidelobe  level  will  cause  an
output  voltage  of  one  thousandth  of  the  maximum.  The  sensitivity  of  the  system
allowed to reliably measure sidelobe levels of -55 to -60 dB with respect to the main
beam  maximum  and  the  entire  pattern  (within  the  restrictions  of  source  visibility)
was measured; a total  of 19000 points over 60 percent of the full sphere. The result-
ing  map  is  shown in Fig.  6.12.  Details  can be  found in  Hartsuijker  et  al.  (1972).  In
the forward part of the pattern we discern  three rings of enhanced radiation centered
at  q=30˚  and  f=  60,  180  and  300  degrees,  respectively,  with  a  radius  of  30˚  and  a
width of 3-6˚. The level in these rings is about 6 dB above the general sidelobe level
in the surrounding areas and about 4 percent of the incoming power is removed from
the main beam and scattered into these rings by the tripod supporting the prime focus
instrument  box.  This  behaviour  is  quantitatively  in  agreement  with  a  theoretical
analysis  by  Rusch  et  al.  (1982).  A  further  discussion  of  the  influence  of  the  feed
support  on the characteristics  of an antenna is presented by Kildal et al. (1988). The
rear  part  of the  pattern clearly  shows the  enhanced level  of  the spillover  ring which
lies just outside the geometrical shadow of the reflector rim as seen from the feed at q
= 125˚. Normally, the spillover ring is falling on the earth surrounding the antenna. It
causes an increase  in the system noise  temperature,  which  will  be somewhat  depen-
dent on the elevation angle of the antenna. 

  The scatter  rings from the feed support  legs contribute strongly to the "stray radia-
tion"  component  in  the  observations  of the  21-cm hydrogen  line.  Knowledge  of the
detailed  antenna  pattern  enables  one  to  correct  for  this  if  the  hydrogen  distribution
over  the  entire  sky is known.  Clearly,  for  this procedure  to work a  number of  itera-
tions  will  be  necessary,  depending  on  the  a priori  knowledge  of  the  sky  brightness
distribution.  This  could  be  obtained  by  observing  the  sky  with  a  "clean"  beam  as
provided by an unblocked aperture  like a horn antenna or offset reflector.  Hartmann
et al.  (1996)  have  carried through the correction  of  an all-sky hydrogen survey with
the Dwingeloo telescope by modeling the antenna pattern on the basis of the measure-
ments presented by Hartsuijker et al. (1972) and the low angular resolution hydrogen
line  survey  by  Stark  et  al.  (1992)  with  the  Bell  Laboratories  20-ft  horn-reflector  
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Fig. 6.12.  Polar  contour  plot of the 21 cm beam pattern  of the Dwingeloo  radio telescope.  Upper
part  is  forward  half-sphere.  Note  the  three  rings  of  enhanced  level,  caused  by  the  scattering
from  the  tripod  support  of  the  prime  focus  receiver.  The  strong,  dark  circle  in  the  lower  part  is
the spillover  ring, which lies just outside  the geometrical  edge of the reflector.
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antenna,  which  shows a  very  low and  featureless  sidelobe structure.  Their  model  of
the far sidelobe pattern of the telescope is shown in Fig. 6.13. (When these observa-
tions were made, the tripod of the telescope had been replaced by a quadripod.)

Fig.  6.13.  Polar  contour  plot  of  a  model  of  the  entire  beam  pattern,  derived  from  the  measure -
ments of Fig. 6.12,  adjusted  to a situation  with four  support  legs, whose shadow forms the white
cross  and  whose  scattering  cones  form  the  black  clover-leave.  The  dark  spillover  ring  is  also
visible.  The level  of the scatter-  and spillover-rings  is about  6 dB above the surrounding  general
sidelobe  level (after Hartmann).

6.2.2. Absolute gain calibration with an interferometer

We  have  earlier  discussed  the  need  for  absolutely  calibrated  antennas  in  order  to
establish  a  set  of  calibrator  sources  on  the  sky  which  will  then  be  used  to  obtain
calibrated observations  of other objects without the need for a telescope with known
gain. Radio astronomers have made good use of the small number of relatively large
horn  antennas  for  this  purpose,  but  often  the  signal  to  noise  ratio  is  insufficient  for
accurate  results.  A  powerful  method  is  to  observe  a  source  with  an  interferometer
consisting of a relatively small standard gain horn and a large reflector  antenna. The
gain  of  the  horn  can  be  accurately  calculated  (Schelkunoff,  1943).  The  easiest  and
most accurate way is offered by the existence of an interferometer array with two or
more  element  antennas.  The  horn  antenna  is  attached  to  the  side  of  one  of  the
antennas  and  the  receiver  is  switchable  between  the  horn  and  the  antenna  feed.
Observing a strong radio source we  then measure the  output of  the interferometer in
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two situations; one with the horn and the other with the antenna. The second antenna
delivers  a constant  and  strong  reference signal.  After  allowing for  any  difference  in
loss  between  the  horn  and  feed output  ports  (which  will  have  to be  measured  sepa-
rately) the ratio of the interferometer output signals is equal to the voltage ratio of the
horn and the antenna gains. The gain of the main antenna is then equal to the sum of
the  output  ratio,  expressed  in  dB,  and  the  known  gain  of  the  horn.  The  gain  of  the
horn  will  typically  be  some  40  dB  less  than  that  of  the  antenna.  While  in  a  total
power measurement the horn gain would be too low for an accurate measurement, in
the  interferometer  the  output  signal  will  be  one  percent  of  that  of  the  two  antenna
interferometer  and still amenable to accurate measurement.  With a realistic  accuracy
of one percent for the gain of the horn, the gain of the antenna can thus be measured
to 1-2 percent without the need to know the precise flux density of the source.

  This procedure can be repeated for the other interferometer element and in principle
be  extended  to  the  remaining  antennas  of  a  multi  element  array.  Alternatively,  the
measured  antenna  temperature  due  to  the source  can  be measured  accurately  with a
careful  thermal  calibration  method  of the receiver  system and  hence the  source flux
density  can  be  determined  from  the  known  gain  of  the  antenna.  This  absolutely
known flux density can now be used to determine the gain of other antennas without
the need for the horn comparison measurement.

  If only one antenna is available, the gain of which needs to be determined, one can
form  an  interferometer  between  it  and  the  standard  gain  horn  and  measure  the
correlated output.  The source is also observed with the antenna under  test alone.  As
before,  we  need  to  make  an  accurate  calibration  of  the  sensitivity  of  the  receiver
systems with the aid of matched loads at different and known temperature to express
the  output  voltage  in  equivalent  antenna  temperature  at  the  input  of  the  receiver.
Now we have the following relations:

total power measurement:  TA r S Ar ,

interferometer measurement TA i S HAr Ah L0.5 ,

where S is the (unknown) flux density of the source, Ar  and Ah  the absorption areas
of  the  reflector  (to  be  determined)  and  the  horn  (known),  respectively.  From  this
follows

Ar = 4 I TA rÅÅÅÅÅÅÅÅÅTA i
M2 Ah .            (6.14)

The proportionality  sign  hides  some terms  related to  the electronic  gains  of the  two
different systems, which can however be accurately determined in the laboratory.

  These methods have been applied by Welch and colleagues to calibrate the antennas
of  the  BIMA  array  (Welch  et  al.,  1996)  and  to  establish  some  absolute  planetary
brightness  temperatures  at  11  and  3  mm  wavelength  to  an  accuracy  of  1-2  percent
(Gibson et al.,  2005; Gibson and Welch, pers. com.,  Sep.  2005).  This is a great step
forward in the calibration quality in the millimeter wavelength domain. The goal of a
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five  percent  flux  calibration  for  the  ALMA  submillimeter  array  may  be  reached  by
applying these methods.

6.3.1. Chromatism - "baseline ripple"

As became clear  in  the discussion  of the  stray radiation,  it  is  possible  that  radiation
reaches  the  feed  through  more  than  one  path.  When  this  happens  the  pathlength
differences upon reaching the detector will cause interference,  the intensity of which
will be frequency dependent.  In spectral line observation,  where the total  bandwidth
is analysed into several hundreds of separate channels, this interference can lead to a
periodic ripple, normally called baseline ripple. Weinreb (1967) was the first to draw
attention to this fact. While baseline ripple can also be caused by mismatches within
the  receiver  electronics,  we  limit  ourselves  here  to  shortly  describe  the  causes  of
baseline ripple which are connected to the antenna and its feed. A thorough treatment
of this case has been presented by Morris (1978). Most important is the backscatter-
ing of  radiation  by the feed and its  surrounding  mounting plate.  Some of  this radia-
tion  is  reflected  again  by  the  reflector  and  via  the  feed  support  structure  to  re-enter
the feed,  where  it will  give rise  to the  interference mentioned  above.  The amplitude
of  the  ripple  is  proportional  to  the  wavelength.  Possible  paths  are  illustrated  in Fig.
6.14.  Most  serious  is  path  A,  the  specular  reflection  from  the  center  region  of  the
reflector.

Fig. 6.14 - Sketch  of three paths along which radiation  scattered  from the feed and its surroundings  can
be returned to the feed and cause interference  with the directly received  signal.  (After Morris,  1978)
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  Depending on their structural layout, the support legs can contribute significantly to
the ripple.  The "periodicity"  of the ripple  caused by path A will be c/2 f, where c is
the velocity  of  light  and f  the  focal  length  of  the antenna.  Thus this  will  be 10  - 30
MHz for typical antennas of 10 - 50 m diameter. In the case of a Cassegrain configura-
tion, we need to replace  f by m·f  with m the magnification  factor.  Thus with typical
values  of 10 < m < 20 the ripple will  be in the lower MHz range.  The ripple  due to
path A can be significantly suppressed by combining two observations taken with the
feed axially defocussed at plus and minus l/8 from the focal point. The l/2 total path
difference between the doubly reflected  rays will  effectively cancel the ripple effect.
This is illustrated in Fig. 6.15. The multi-path reflections via the support legs will not
be  completely  cancelled  this  way.  Methods  to  reduce  the  chromatism  are  described
by Padman and Hills (1991).

Fig.  6.15.  Spectrum  of  an  absorption  line  in  the  presence  of  baseline  ripple  (lower  frame).  In  the
middle  frame there  are two observations  whereby  the feed has been axially  defocused  by + and - l/8.
Adding  these  to  form  the  upper  trace  shows  that  the  ripple  with  300  km/s  "period"  has  been
suppressed.  The wide ripple in the top frame is due to another multipath  interference.  (Pillai, MPIfR)

  In  the  design  of  modern  radio  telescopes  the  avoidance  or  minimisation  of  these
multiple  reflections  has  been  included  in  the  design  effort.  As  Morris  showed,  the
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i)  path  A:  avoid  reflections  on  structures  near  the  feed  by  covering  these  with
absorbing  material.  Of  course  the  reflection  on  the  feed  itself  cannot  be  avoided.
Minimise  the  backscatter  from  the  central  region  of  the  reflector  to  the  feed  by  a
"splash  plate",  directing  the  radiation  outwards.  In  a  Cassegrain  system  this  can  be
achieved effectively  by shaping the  central  area  of the subreflector  into a cone.  The
size  and angle of the  cone are  chosen such that  the radiation is  directed to the main
reflector  just  outside  the  central  hole  which  provides  access  to  the secondary  focus,
where the feed is located. 

ii) paths B and C; here it is important to avoid specular reflection on the support legs
by  shaping  the  legs  with  a  sharply  pointed  wedge  towards  the  main  reflector.  This
will reflect the radiation away from the direction of the main reflector.

iii)  in  a  Cassegrain  system  there  will  be  some  edge  diffraction  on  the  subreflector.
This  diffracted  radiation  will  enter  the  feed  directly  and  for  a  perfectly  circular
secondary  reflector  the  feed  will  be  on  the  caustic  of  the  diffracted  rays.  Thus
relatively large interference effects with the reflected rays can be expected.  This can
be significantly reduced by making the subreflector slightly un-round and/or serrated.
The  un-roundness  need  only  be  of  the  order  of  a  wavelength;  thus  a  "rough"  edge
with serrations of a few millimeter would also be effective.

  All three precautions were taken in the design and construction of the 30-m millime-
ter  telescope  of  IRAM. This  telescope  exhibits  low  baseline  ripples  as  illustrated  in
Fig.  6.16.   A  small,  fast  residual  ripple  of  42  m equivalent  length  is  still  visible.  It
most  likely  originates  in the electronics,  but  could  be caused by  a reflection  path in
the telescope of 42 m length.

Fig. 6.16.  Example  of a spectral  line observation  with  the IRAM  30-m telescope.  This  is  a "raw"
spectrum,  showing  a very flat baseline  with a small  remaining  fast ripple,  caused  by a 42 m long
"double reflection"  path in the telescope structure.  (Mauersberger,  IRAM)
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6.3.2. Unblocked aperture - Offset antenna

We have illustrated above the importance of the far sidelobes for the correct interpre-
tation  of  observations  of  extended  radiation.  An example  is  the  measurement  of the
Cosmic  Microwave  Background  (CMB)  radiation,  where  the  stray  radiation  might
easily be as large as the true signal in the main beam. An antenna without features in
the  sidelobe  pattern  like  feed  support  scatter  rings  and  spillover  ring   would  be
welcome.  This can  be achieved to a  significant  degree by arranging  the  mirrors  and
feed  in  such  a  way that  the  main  reflector  aperture  is  not  blocked  by  any  structural
elements. These so-called offset antennas have received great attention in communica-
tion  technology,  both  for  satellite  on-board  antennas  and  the  ubiquitous  small
satellite dishes for direct TV reception. A trivial example of an unblocked aperture is

Fig. 6.17.  The Bell-Laboratories  7-m Offset-antenna  at Holmdel,  NJ, USA. Subreflector  is to the left;
The  person  is  entering  the  feed-  and  receiver-cabin  under  the  main  dish.  (Photo  by  the  author,
Courtesy AT&T)
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the horn antenna, which is well understood theoretically. Indeed the beam of such an
antenna  is  so  "clean"  that  Penzias  and  Wilson  (1965),  using  the  20-ft  folded  horn
antenna  at  the  Bell  Laboratories  could  confidently  determine  an  excess  of  3  K  in
antenna  temperature  when  looking  at  blank  sky.  For  this  discovery  of  the  Cosmic
Microwave Background radiation they were awarded the Nobel Price in 1978.

  The "open Cassegrain"  antenna  was described  originally  in a paper by Cook et  al.
(1965), also of the Bell Laboratories. This was followed by the actual construction of
an  offset  antenna  of  7  m  diameter  with  a  highly  accurate  surface  of  about  0.1  mm
rms error (Chu et al.,  1978). The antenna (Fig. 6.17) was used both for radio astron-
omy at 115 GHz and for propagation experiments with Comstar beacons at 19 and 29
GHz.  Extensive  measurements  of  the  beam  characteristics  were  made  which  con-
firmed the theoretical predictions.

  In  the  following  years  the  construction  of  clear  aperture  radio  telescopes  was
considered occasionally during design phases, but did not result in actual realisation.
Firstly,  the  unsymmetrical  structure  leads  to  the  need  for  additional  material  and
hence  cost  and,  secondly,  there  was  the  fear  that  such  structures  would  behave  less
homologously  and  would  not  achieve  the  required  performance  over  the  full  eleva-
tion range. The collapse of the 300-ft NRAO transit telescope in Green Bank in 1988
changed  the  situation  decisively.  When  NRAO  received  funds  to  replace  the  tele-
scope by a fully steerable antenna of some 100 m diameter, it was decided to build a
clear  aperture  telescope.  The  overriding  argument  was  based  on  astronomical 

Fig.  6.18.  Cross  section  through  the  Green  Bank  telescope  (GBT),  an  offset  antenna  of  100  m
diameter.  (NRAO/AUI)
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requirements,  as  illustrated  in  the  earlier  sections.  The  technical  challenges  were
formidable  and  indeed  the  design  and  construction  have  met  with  considerable
difficulties.  These  have  been  resolved  and  the  antenna  is  operational.  A photograph
has  been  shown  in  Fig.  1.7  and  Fig.  6.18  presents  a  sketch  of  the  cross  section
through the structure.

  The  electromagnetic  analysis  of  an  offset  antenna  is  far  from  trivial.  The  loss  of
symmetry  causes  several  complications  and  since  the  original  paper  by  Cook  the
subject has received much attention. While these studies fall outside the scope of this
book,  it  is  useful  to  mention  a  few  of  the  major  aspects  of  the  electromagnetic
behaviour of the offset antenna. The illumination function, emanating from a circular
horn  aperture  will  not  be  uniform  over  the  reflector  aperture.  For  this  reason  the
reflector is made slightly elliptical with the larger dimension in the plane of the feed
support  (see  Fig.  1.7).  Numerous  studies  of  the  beam  parameters,  polarisation
behaviour  and  noise  characteristics  have  appeared  and  form a  rather  complete  body
of data which can be used to evaluate the expected performance of the offset antenna.
For a review see Rudge and Adatia (1978).

  A major, and generally  decisive, argument in the choice of an offset antenna is the
absence of structured sidelobes, which is a direct result of the unobstructed aperture.
Thus,  the  antenna  will  have  no  blocking  and  hence  exhibit  a  somewhat  higher  gain
than a symmetrical antenna.  Typical blocking losses of a symmetrical system are 5 -
20  percent.  As  illustrated  above  in  Section  6.2.1,  the  very  low and  regular  sidelobe
structure  is  of  great  importance  for  the  suppression  of  wide-angle  interfering  radia-
tion. The offset antenna exhibits a larger instrumental polarisation due to the oblique
incidence  of  the  feed  radiation  pattern  onto  the  reflector.  Considerable  efforts  have
been devoted to special feed designs to minimise this effect. While this is outside the
scope  of our  discussion,  we  refer to  the collection  of papers on Reflector  Antennas,
edited by Love (1978), where these aspects are discussed.

‡ 6.4. Atmospheric fluctuations and dual-beam observing

6.4.1. Introduction

Depending  on  the  frequency  of  operation,  radio  astronomy  observations,  as  well  as
communication channels, suffer under the influence of the earth's atmosphere. While
short-wave radio in the frequency range from about 5 - 30 MHz employs the reflec-
tive characteristics of the ionosphere to realise trans-horizon communication, transmis-
sions in the GHz range are hampered by the absorption and scattering of the constitu-
ents  of  the  troposphere,  mainly  oxygen  and  water  vapour.  In  this  section  we  pay
some  attention  to  the  latter  and  we  describe  a  method  whereby  radio  astronomy
observations can be made less sensitive to the effects of the atmosphere.

  The  interaction  between  the  troposphere  and  an  electro-magnetic  wave  passing
through  it  is  two-fold:  refraction  and  scattering  on  the  one  hand  and  attenuation  on
the  other.  The  latter  is  connected  to  the  self-radiation  of  the  atmosphere  through
Kirchhoff's  law. The atmospheric  parameter describing the interaction is the  complex
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permittivity e, which can be written as e = e1 - i e2 . Here the real part e1  determines
the  refractive  index  n  of  the  medium,  while  the  imaginary  part  e2  is  related  to  the
absorption  a.  A  general  relation  between  the  refractive  and  absorptive  parts  of  the
permittivity  was  established  by  Kramers  (1927)  and  Kronig  (1928),  now  known  as
the Kramers - Kronig relations and written as

e1 HnL - e¶ =
2ÅÅÅÅ
p ·

0

¶ x e2 HxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x2 -n2 „ x ,                   (6.15)

e2 HnL =
-2 nÅÅÅÅÅÅÅÅÅÅ

p ‡
0

¶ e1 HxL-e¶ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x2 -n2 „ x .                        (6.16)

The integration  extends  over the  entire  frequency  domain;  e¶  is the  permittivity  for
the  frequency  tending  to  infinity.  A  proof  of  these  relations  can  be  found  in  e.g.
Landau-Lifshitz  (1960),  Vol.8,  §62.  We  see  that  we  could  calculate  the  refractive
index at one frequency, if we knew the absorption over the entire frequency domain,
and vice versa. The following relations also hold:

n =
è!!!!!

e1 and a = 2 p e2 êl,                                   (6.17)

where  we  assume  that  the  relative  permeability  mr = 1.Because  in  the  atmosphere
the refractive index n is only slightly larger than one, it is convenient to introduce the
refractivity N, defined as 

N = Hn - 1L 106 º 1ÅÅÅÅ2 He1 - 1L 106 .           (6.18)

  In the microwave and millimeter  wavelength  region the tropospheric refractivity  is
determined  mainly  by  oxygen  and  water  vapour.  These  molecules  exhibit  spectral
lines in this frequency region due to rotational  transitions.  We will not discuss these
further here apart from mentioning that oxygen has a broad absorption band between
50 and 60 GHz as well as a sharp line at 118 GHz. Water vapour lines occur near 22
GHz , 183 GHz and higher frequencies in the submillimeter region. The atmospheric
absorption  is  shown  in  Fig.  6.19  for  a  relative  water  vapour  density  of  1  percent.
There is also a non-resonant component to the absorption and the pressure broadened
spectral  lines  cause  significant  absorption  outside  the  transition  frequencies.  Nor-
mally one will avoid the resonant frequencies for observation or transmission.

  It  is of interest  to obtain  an expression  for the refractivity which shows the depen-
dence on the temperature, pressure and water vapour content of the atmosphere. Such
a semi-empirical expression has been found by Smith and Weintraub (1953):
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N =
77.6ÅÅÅÅÅÅÅÅÅÅÅT IP +

4810 eÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅT M,           (6.19)

where T is the absolute temperature (K), P the total atmospheric pressure (mBar) and
e  the  water  vapour  pressure  (mBar).  The  numerical  coefficients  are  derived  from
experimental  data.  These  are  not  dimensionless;  thus  the  formula  is  dimensionally
correct.

Fig.  6.19.  Attenuation  in  the  horizontal  surface  layer  of  the  troposphere  for  oxygen,  water  vapour
(assumed  relative  vapour  density  of  1%)  and  the  total  atmosphere.  Right  hand  scale  is  atmospheric
brightness  temperature  looking  straight  up for a standard  atmospheric  model.
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In the following sections we shall not present an exhaustive discussion of the propaga-
tion  in  the  troposphere,  but  limit  ourselves  to  some  of  the  main  results  in  view  of
application  to  observations  and  consequences  for  observing  strategies.  A  more
complete  treatment,  in  particular  in  relation  to  interferometric  observations,  can  be
found in the work by  Thompson,  Moran and Swenson  (2001),  where  many relevant
references are given.

6.4.2. Atmospheric emission and attenuation

As stated earlier,  the main absorptive constituents of the atmosphere  are oxygen and
water vapour, each of which have absorption bands in the millimeter and submillime-
ter  wavelength  region.  Considerable  effort  has  been  devoted  to  constructing  a
propagation  model  of  the  atmosphere  and  to  derive  the  resulting  absorption  as
function of frequency. Major contributions are due to Liebe (1989) and also Pardo et
al. (2001) for the submillimeter  wavelength region. While the oxygen contribution is
rather constant  and similar over the world, the contribution of water vapour is highly
dependent  on  the local  weather  situation.  Generally  the models  assume an exponen-
tial  decrease  of  the  oxygen  and  water  vapour  concentration  with  height.  The  scale
height is defined as the height where the concentration has decreased to a value 1/e =
0.37 of the surface value. For oxygen the scale height is typically 8 km, while that of
water  vapour  is  about  2  km. Thus  it  is  clear  that  a  significant  decrease  in  the influ-
ence  of  water  vapour  can  be  achieved  by  locating  the  telescope  on  a  high  and  dry
site. This has indeed been done with most dedicated millimeter telescopes.

  The zenith attenuation (often called opacity from the usage in optical astronomy) as
shown in Fig. 6.19 is connected to the atmospheric self-radiation through Kirchhoff's
Law. If we denote the zenith opacity by t0  we can write for the antenna temperature
at the antenna terminals

TA HAL = TAH0L e-t0 + Tatm H1 - e-t0 L,            (6.20)

where  TA H0L  is  the  antenna  temperature  at  the  top  of  the  atmosphere  and  Tatm  the
effective temperature of the atmosphere. The zenith opacity t0  will vary according to
the  changes  in  the  water  vapour  density  and  must  normally  be  measured  at  regular
intervals.  This  is  often  done  by  performing  a  "tipping  scan"  measurement,  whereby
the  opacity  is  determined  from  the  antenna  temperature  as  measured  over  a  large
zenith angle range (without background sources). The air mass matm (the total column
mass  of  the  atmosphere),  defined  to be  unity  towards  the  zenith,  increases  to  a  first
approximation  as  the  secans  of  the  zenith  angle,  whereby  the  atmosphere  is  consid-
ered as a set of plane parallel sheets. For large zenith angles a more accurate formula
might  be  needed,  whereby  the  curvature  of  the  atmospheric  layers  is  taken  into
account. Rohlfs and Wilson (1996) give a power series, valid to 4 air masses (zenith
angle of 75 degrees) with an error of less than 1 percent, of the form

matm HzL = -0.0045 + 1.00672 sec z - 0.002234 sec2 z - 0.0006247 sec3 z .     (6.21)
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Performing  a  tipping  scan,  we easily  see  from Eq.  (6.20) that  the measured  antenna
temperature as function of the zenith angle z will be

TA HzL = Tatm H1 - e-t0 sec z L.           (6.22)

Plotting  the  logarithm  of  the  measured  signal  against  sec  z  (the  air  mass  along  the
line of sight) delivers  the zenith opacity from the slope of the curve. Care  should be
taken  that  the  measurement  is  not  corrupted  by  varying  radiation  received  in  the
sidelobes of the antenna,  which will pick up significant  amounts of ground radiation
for  large  zenith  angles.  For  this  reason  the  scan  is  normally  stopped  at  about  70
degrees  zenith  angle.  The  opacity  can  also  be  found  from  the  change  in  measured
antenna  temperature  from  a  sufficiently  strong  radio  source  as  function  of  zenith
angle. In this case  we must however assume that the atmospheric opacity is constant
over  the long duration of the measurement,  because the zenith distance  varies by no
more  than  15  degrees  in  one  hour.  Therefore,  the  tipping  scan  has  been  adopted  at
many observatories as a routine method to quickly determine the atmospheric opacity.

6.4.3. Atmospheric refraction

Apart  from  the  attenuation  suffered  by  the  radiation  on  its  path  through  the  atmo-
sphere,  the  finite  refractivity  will  cause  the  rays  to  be  refracted  and  delayed  with
respect to transmission through a vacuum. In the discussion of pointing in Chapter 5
we  already  mentioned  the  influence  of  refraction  on  the  apparent  pointing  direction
towards  the source. The atmospheric  delay is normally not important  for  single dish
observations of cosmic radio sources. It does play a significant role in interferometry,
in  particular  Very  Long Baseline  Interferometry,  where  the element  antennas  are  so
far  apart  that  the  tropospheric  structure  is  completely  uncorrelated  between  the
antennas.  Delay is also of high importance  in timing applications as with the Global
Positioning System of satellites. Aspects of this have been treated by Herring (1992)
and Rüeger  (1996). A detailed treatment of this aspect falls outside the scope of this
book.

  We will  however  summarise  the important  aspects  of refraction,  as it  significantly
influences  the  pointing  of  the  antenna,  Refraction  is  defined  as  the  bending  of  an
electro-magnetic  wave on its path through a medium of variable index of refraction.
As shown in Eq. (6.19), the refractivity is dependent on the temperature and pressure
of the  atmospheric  constituents.  Thus  tropospheric  refractivity  will  be dependent  on
height,  decreasing  from its  surface  value  to essentially  zero at  the  edge of  the  earth
atmosphere.  Under  the  assumption  that  the atmosphere  can  be described  by a  set  of
plane parallel  layers of slowly decreasing refractivity,  an elementary analysis (as for
instance  nicely  presented  by  Smart  in his  Textbook  on  Spherical  Astronomy,  1962)
leads to the surprisingly simple relation for the angle of refraction

Dz = Hn0 - 1L tan z ,            (6.23)
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where the angle z is the zenith angle and n0  is the index of refraction  at the level of
measurement.  The apparent  zenith  distance of the source is Dz smaller  than the true
zenith  angle.  Clearly,  the  assumption  of  a  plane  parallel  atmospheric  structure  is
expected to be valid only for small zenith angles. If we describe the atmosphere by a
number  of  parallel  spherical  layers,  the  resulting  angle  of  refraction  contains  an
additional  term proportional  to tan3 z  with a coefficient  about three orders of magni-
tude  smaller  than n0 - 1.  Several  workers  have  made  accurate  measurements  of  the
refraction at radio wavelengths and have found that the simple formula of Eq. (6.23)
can be used  with sufficient  precision  up to zenith angles of 80 degrees.  It  should be
noted  that  such  measurements  are  not  trivial,  because  one  must  be  able  to  separate
any elevation dependent pointing error of the antenna from the refraction.

  Large millimeter  wavelength telescopes now operate  with beamwidths  of the order
of 10 arcseconds, while the refraction at 45° elevation is about 1 arcminute. It is thus
important  to  determine  the  instantaneous  surface  refractivity  with  good  accuracy  in
order  to apply  refraction  corrections  to  the   antenna  pointing  at  the  level  of  arcsec-
onds.  Fortunately  much  attention  has  been  given  recently  to  improving  the  original
Smith  and  Weintraub  formula  (Eq.  6.19),  in  particular  in  view  of  the  GPS  system.
With "best average" coefficients, as suggested by Rüeger (2002), the formula for the
surface refractivity can be written as

N = Hn0 - 1L 106 = 77.6890
pdÅÅÅÅÅÅÅT + 71.2952 eÅÅÅÅÅT + 375463 eÅÅÅÅÅÅÅÅ

T2 ,           (6.24)

where pd  is the partial pressure of the dry atmosphere, e the partial pressure of water
vapour,  both  in  hPa,  and  T  the  temperature  in  K.  With  typical  sea  level  values
pd = 1000, e = 10 and T = 288 we find Dz = 66 tan z arcseconds; on a  high and dry
mm-telescope  site  we  might  have  pd = 700,  e = 2  and  T = 270  and  hen-
ce Dz= 44 tan z .The  difference  illustrates  the  importance  of  applying  real-time
refraction corrections determined from local temperature and pressure measurements.

  In the following sections of this chapter we shall discuss the fluctuating component
of the atmospheric attenuation and self-radiation. Clearly, these relatively small-scale
fluctuations  in  the  atmospheric  constituents  will  also  influence  the  refraction  angle.
For  instance  a  doubling  of  the  water  vapour  from 2  to  4  hPa  in the  example  above
changes the refraction coefficient from 44 to 46 arcseconds. Very large variations of
refraction of the order of tens of arcseconds over time spans of up to one minute have
been  observed.  The  first  to  identify  these  was  Altenhoff  (Altenhoff  et  al.,  1987)
through  careful  analysis  of  pointing  measurements  with  stable  telescopes  and
beamwidths  of  less  than  one  arcminute.  These  large  fluctuations  have  received  the
unfortunate  name  of  anomalous  refraction  although  there  is  basically  nothing
anomalous about it. They are caused by large blobs of humid air passing through the
beam  of  the  antenna  at  relatively  small  distances  from the  aperture.  A  simple  argu-
ment  provides  an  order  of  magnitude  description  of  the  phenomenon.  Consider  a
wedge of humid air passing with the wind over the aperture in the Fresnel region of
the  antenna.  Assume  a  gradient  in  the  wet  part  of  the  refractivity  DNw = 5  over  an
assumed  thickness  of  the  wedge  of  100m  The  pathlength  variation  will  be
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D l = 100 D Nw 10-6 = 0.5 mm.  This  pathlength  difference  between  opposite  edges
of  the  antenna  of  width  D  will  cause  a  change  in  angle  of  arrival  of  D a = D l êD.
Over the width of an aperture of 30 m this amounts to an angle of about 3.5 arcsecs.

Fig. 6.20. Example  of "anomalous  refraction".  A series of consecutive  fast scans of a point source,  time 
stepping from front to rear. Position shifts  of 5-10 arcseconds  in a time lapse of less than 10 seconds are 
clearly visible.

This  is similar  to what  is  being observed.  An example of the phenomenon  is shown
in Fig. 6.20, taken from Altenhoff et al. (1987). Changes in "pointing" of the order of
20"  over  a  time  period  of  a  minute  are  apparent.  The effect  has  been  seen  with  the
newer  and  accurate  millimeter  telescopes  at  a  number  of  different  sites  and  appears
to be a general feature of a not fully stable atmosphere.

6.4.4. Signal fluctuations due to atmospheric turbulence

The  dynamic  behaviour  of  meteorological  processes  causes  fluctuations  in  the
atmospheric temperature,  pressure and water vapour content, both on a temporal and
spatial  scale.  They  are  caused  by  wind,  solar  radiation,  frontal  activity,  etc.  The
properties  of  these  fluctuations  are  described  by  the  statistical  theory  of  turbulence.
We are interested in the influence of the fluctuations on the propagating electro-mag-
netic wave. This has been treated in great detail by Tatarski in his monograph "Wave
propagation  in  a  turbulent  medium"  (1961).  We  summarise  here  some  of  the  major
results of this work which are of direct interest to the subject at hand.

  The central statistical quantities of any parameter of the fluctuating medium are the
mean  value  and  the  correlation  function.  The  latter  describes  to  what  extent  the
fluctuations  at  different  position  or  times  are  related.  A  stationary  random  process
has  a  constant  mean  value  and  its  correlation  function  depends  only  on  the  time
difference.  Obviously  the  atmosphere  is  not  strictly  stationary.  For  such  processes
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Kolmogorov  introduced  the  concept  of  stationary  first  increments,  where
f HtL = f Ht + tL - f HtL is stationary for some interval t. The correlation function of the
increments, called the structure function, is written as

Df HtL = 8 f Ht + tL - f HtL<2êêêêêêêêêêêêêêêêêêêêêêêê
.

It  characterises  the  intensity  of  fluctuations  of  f (t)  over  periods  smaller  than  or
comparable to t.

  Considering the three-dimensional  spatial turbulent structure of the atmosphere, we
can apply the concept  of structure  functions  over distances  where the turbulent field
can be considered locally  homogeneous  and isotropic.  We  obtain a similar  structure
function for the fluctuations between points a distance r apart:

Df HrL = 8 f Hr + r1 L - f Hr1 L<2êêêêêêêêêêêêêêêêêêêêêêêêêêê
.                   (6.25)

The turbulent flow is characterised  by the inner and outer scale of turbulence,  l0 and
L0 ,  respectively.  At  the  inner  scale  the  turbulent  energy  is  converted  to  heat;  in the
atmosphere l0 º 1 cm. The outer scale depends on the Reynolds number of the flow
and falls in the region of tens to hundreds of meters. 

  For a distance r between two points with l0 ` r ` L0   it has been shown by Kolmog-
orov  (1941)  that  the  structure  function  for  velocity  or  pressure  fluctuations  is  given
by (see also Tatarski, 1961, Ch. 2)

DHrL = a He rL2ê3 .            (6.26)

This is the so-called "two-thirds law", where e is the energy dissipation rate per unit
mass and time. The theory can be extended to the behaviour of the refractive index in
the  turbulent  atmosphere.  Without  going  into  the  details,  we  state  that  a  structure
function of the same form is found for the fluctuations in the refractive index.

Dn HrL = Cn
2 r2ê3 ,            (6.27)

where the structure constant for atmospheric refractivity is dependent on the gradient
of the refractivity and the outer scale of turbulence L0 . It is given by

Cn = a L0
2ê3 Dn,               (6.28)
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where a is a constant of order unity and Dn = DN.10-6  the refractive index fluctua-
tion.  Typical  values  for  DN  in  the  lower  atmosphere  are  2,  decreasing  to  0.1  -  0.3
N-units  at  2  -  3  km  altitude.  Due to  the  large  range  of  L0,  determined  by  the  local
topography  and  general  weather  pattern,  the  value  of  Cn  varies  appreciably.  It  has
been  derived  from  meteorological  measurements  and  radio  wave  propagation
experiments  and  the  range  found  is  10-8 < Cn < 4.10-7 m-1ê3 ,  thus  typically
Cn º 10-7 m-1ê3 .

  The  turbulent  structure  of  the  atmospheric  refractivity  causes  fluctuations  in  the
amplitude and the phase  of an electro-magnetic  wave traveling through the medium.
Also, the varying optical depth of the atmosphere, both temporally and spatially, will
cause a fluctuation in the self-radiation of the atmosphere, adding a noise component
to the measured antenna temperature. The details of the interaction have been treated
extensively in Tatarski's monograph (1961, Chs. 7 - 8) and will not be repeated here.
It  is  found  that  the  interaction  of  a  wave  of  wavelength  l  with  a  turbulent  path  of
length L is mainly determined by turbulent regions of a size 

è!!!!!!!
l L , under the assump-

tion  that  l0 `
è!!!!!!!

l L ` L0 ,  which  is  normally  the  case  in  the  troposphere  and  the
microwave  region.  The  turbulons  of  this  size  contribute  mostly  to  the  amplitude
fluctuations  and  the  correlation  distance  of  the  amplitude  fluctuations,  after  travers-
ing  the  turbulent  layer  is  of  the  order  

è!!!!!!!!
l L .  While  over  a  horizontal  path  we  can

assume  Cn  to  be  constant  on  average,  it  will  change  with  height  and  for  a  slanted
path to a satellite or radio source the effect of Cn  must be integrated along the path.

  Tatarski obtains the following expressions from his analysis:

i) the mean square logarithmic amplitude fluctuations c2
êêêê

:

c2
êêêê

= ln I A0 +DAÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅA0
M2 = 0.56 k7ê6 Ÿ

0

L

Cn
2 HhL h5ê6   „ h            (6.29)

ii)  the  correlation  coefficient  bA HrL  of  the  amplitude  fluctuations  in  two  points  a
distance r apart:

ba HrL = 1 - 2.37 J kÅÅÅÅÅL N5ê6 r5ê3 , Il0 ` r d
è!!!!!!!

l L M            (6.30)

iii) the structure function Ds HrL of phase fluctuations between two points a distance r
apart:

Ds HrL = 2.91 k2 r5ê3 Ÿ
0

L

Cn HhL2  „ h, Il0 `
è!!!!!!!

l L d rM.            (6.31)

Here A0  is the average amplitude, k= 2p/l the wavenumber, L the total  path through
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the  atmosphere.  For  a  slanted  path  with  a  zenith  angle  qz  the  pathlength  will  be
L = h sec qz , where h is the effective height of the turbulent atmosphere. The depen-
dence  of  Cn  on  the  height  in  the  troposphere  has  been  derived  by  Fried  and  Cloud
(1966) as

Cn HhL2 = 4.2 ÿ 10-14 h-1ê3 expHh êh0 L , h0 = 3200 m,               (6.32)

with h in meters and Cn
2  in m-2ê3 . The quantity h0  is called the scale height. 

  Using  these  expressions,  we  can  make  an  estimate  of  the  expected  phase  and
amplitude  fluctuations  at  the  terminals  of  our  antenna.  From  the  definition  of  the
structure  function  (Eq.  (6.25))  it  is  clear  that  the  relative  phase  fluctuation  DF
between two points a distance r apart is given by the square root of Ds HrL . Note that
the phase fluctuation increases with the 5/6th power of the "baseline" r, thus slightly
less than linearly, and inversely proportional  to the wavelength.  If we use Eq. (6.31)
with Eq. (6.32) for a wavelength l = 3 mm, a distance r = 100 m, we obtain DF = 0.6
radian   35  degrees  (Fig.  6.21) .  If  we  move  the  location  of  the  antenna
from sea level to 3000 m altitude, the fluctuations decrease by about a factor 2.

Fig. 6.21.  Phase  fluctuation  as function  of the altitude  between  two points  100-step  500-1600  m
apart, from bottom to top.

  For the subject of this chapter it is of more interest to look at the amplitude fluctua-
tions, because these are directly related to the fluctuations in the self-emission of the
atmosphere by virtue of Kirchhoff's law:

h = a B(Ó, T),                         (6.33)

where h and a are the coefficient of emission and absorption, respectively; B(Ó,T) is
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Planck's radiation law (or its Rayleigh-Jeans approximation,  where appropriate). The
antenna  measures  fluctuations  in power,  which  are  proportional  to the square  of the
amplitude  fluctuations.  Using  Eq.  (6.29)  with  Eq.  (6.32)  and  integrating  along  L  to
infinity,  we  obtain  for  the  mean  square  logarithmic  fluctuation  in  atmospheric
brightness temperature DTB :

ln 9I TB0 +DTBÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅTB0
M=2

êêêêêêêêêêêêêêêêêêêêêêêêê

= 4 c2
êêêê

= 1.5 . 10-8 k7ê6 .            (6.34)

  The atmospheric  average brightness  temperature must  be calculated  for  a standard
model  of  the  atmosphere.  Atmospheric  physicists  have  made  an  extensive  effort  to
establish  such  a  standard  model.  For  wavelengths  in  the  centimeter  and  millimeter
range the model of Liebe (1989) is widely accepted. Note that the brightness tempera-
ture, and hence the fluctuating component of atmospheric emission and absorption is
strongly determined by water vapour. This is the main reason why antennas for work
in the mm-wavelength region are located at high sites in dry areas of the world. Also,
it should be mentioned that the above discussion assumes a clear atmosphere without
influence  of clouds  and frontal  activity.  The turbulence  discussed  here  occurs in the
quiet  atmosphere  because  of  small  fluctuations  in  temperature,  pressure  and  humid-
ity. In Fig. 6.22 we show the relative power fluctuations as function of wavelength as
computed  from the above  equations  We see a  rather  strong  increase  with
decreasing  wavelength,  which  is  caused  mainly  by  the  increased  opacity  of  the
atmospheric water vapour.  It should be borne in mind that this curve is valid for the
frequency  regions  outside  the  pressure  broadened  absorption  lines  (see  Fig.  6.19),
where  the  above  approach  breaks  down.  It  is  also  clear  that  the  relative  fluctuation
level  decreases  slowly  with  increasing  altitude,  about  a  factor  two  for  5000  m.  We
should  however  remember  that  the  actual  atmospheric  brightness  temperature  also  

Fig.  6.22.  The  relative  power  fluctuation  due  to  atmospheric  turbulence  as  function  of  wave-
length.  The curves are for altitudes  of 0 (blue), 2000 (red) and 4000 m (green),  respectively.
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decreases  with  increasing  height.  With  the  assumed  scale  height  of  h0 = 3200 m  it
would  decrease  to  20  percent  at  5000  m  altitude  compared  to  the  sea  level  value.
Thus moving the antenna to 5000 m altitude would diminish the atmospheric fluctua-
tions by an order of magnitude at the short mm wavelengths.

  From Fig.  6.19 we can read the atmospheric  brightness  temperature as function  of
wavelength. Multiplying these with the relative power fluctuation of Fig. 6.22  yields
the expected fluctuation at  the antenna terminals  due  to the clear  atmosphere.  As an
example,  at 3 mm wavelength  the atmospheric  brightness temperature is about 50 K
for a relatively dry atmosphere at sea level. We expect a fluctuation level of about 1
percent, or 0.5 K equivalent antenna temperature. This is significant compared to the
receiver  noise  fluctuation,  which  for  a  receiver  noise  temperature  of  50  K,  a  band-
width of 100 MHz and integration time of 1 second would be 5 mK.

The  "information"  collected  by  a  radio  telescope  has  the  characteristic  of  noise,
which is normally not discernible from the inherent  thermal noise of the antenna-re-
ceiver  system.  The  signal  is  generally  broad-band,  continuous  radiation.  The  only
exception  is  the  presence  of  spectral  lines  of  cosmic  molecules  and  atoms,  which
appear  at  discrete  frequencies,  but  otherwise  are  noise-like  as  well.  The  signals  in
communication channels are modulated in a particular fashion and therefore easier to
separate  from  the  background  noise.  In  both  cases  the  signal-to-noise-ratio  (SNR)
must  be  sufficient  to  reliably  detect  the  information.  While  the  information  in  a
communication  channel  continuously  changes  with time,  the radio  astronomy signal
normally  does  not  vary  its  character  over  reasonable  time  spans.  Thus  the  radio
astronomer  can  increase  the  SNR of  his  observation  by  collecting  the  signal  over  a
long time.

  We  omit  a  detailed  treatment  of  the  operation  of  a  radiometer  here.  Excellent
descriptions  can  be  found  in,  for  instance,  Kraus  (1966)  and  Tiuri  (1964).  The
important radiometer equation, which determines the SNR can be written as follows

D Trms = m
TsysÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!

t B
,            (6.35)

where DTrms  is the rms noise fluctuation at the output terminals, expressed in Kelvin,
due  to a  system with total  noise  temperature  Tsys ,  operating  with bandwidth  B (Hz)
and  an  integration  time  t  (sec).  The  factor  m  is  of  order  one  and  accounts  for  the
detailed configuration of the receiver system and the observing mode used to collect
the signal. For a simple total power receiver m = 1. It is clear that collecting radiation
over  a  long  time  decreases  the  noise  fluctuation,  hence  increases  the  SNR,  propor-
tional to the square root of the total integration time. In this equation, the total system
noise temperature is the sum of the instrumental (receiver) noise temperature TR  and
the  antenna  temperature  TA  due  to  the  antenna  and  the  source  (see  Ch.  5.2).  If  we
integrate  until  D Trms  <<  TA ,  we  can  reliably  determine  TA .  This  assumes  that  the
receiver  system is absolutely stable,  i.e. that Tsys  and the gain of the electronics  Grec
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are constant over time. Gain stability in an electronic system with active components
is difficult  to achieve and moreover  gain fluctuations  cannot be countered by longer
integration.  Without  recourse  to special  methods,  the  achievable  SNR will  normally
be determined more by gain fluctuations than system noise. Fortunately gain fluctua-
tions tend to be slow with a frequency spectrum falling off as n-2  or steeper. 

  It  was  realised  by  Dicke  (1946)  that  gain  fluctuations  could  be  effectively  sup-
pressed  if  the  receiver  would  be  switched  between  the  antenna  terminals  and  a
constant  reference noise  source  at a frequency  well  above that  of the dominant  gain
fluctuations.  The  difference  signal  of  antenna  and  reference  would  thus  not  suffer
from  gain  fluctuations  and  the  necessary  SNR  could  be  achieved  by  a  sufficiently
long integration. The cost of this method is a loss in sensitivity of a factor two (m = 2
in  Eq.  6.35),  because  the  signal  from  the  sky  is  only  observed  half  of  the  time.  To
achieve the same SNR, the observation  will take four times as much time compared
to the total power system. Nevertheless,  the so-called Dicke-receiver  has found wide
application in radio astronomy.

  The  Dicke  scheme  works  best  if  the  reference  noise  temperature  is  equal  to  the
antenna temperature, in which case the gain fluctuations cancel perfectly. One way to
approach  this  situation  is  to  use  a  wide-beam  "sky  horn",  pointing  in  the  general
direction  of  the  antenna.  A  next  step  is  to  place  two  feeds  in the  focal  plane  of  the
antenna,  looking  with  similar  beams  at  adjacent  patches  of sky,  several  beamwidths
apart.  This is  a very effective  method to observe weak point-like  sources. When the
telescope  is scanned  across  the  direction of  the  source,  the  output  of  the radiometer
will  show  an  S-shaped  trace  of  double  amplitude  as  the  source  first  traverses  the
"signal" beam and then the "negative reference" beam. Actually, this layout was first
used in surveys for point sources (Conway et al, 1965, Davis M.M., 1967) to increase
the  reliability  of  detections.  These  observations  were  carried  out  at  relatively  long
cm-wavelengths, where the influence of the atmosphere is weak.

  It  occurred  to  Conway  (1963)  that  this  "dual-beam"  method  might  be  effective  in
the cancellation of the stronger  atmospheric  fluctuations  to be expected at short  cm-
and mm-wavelengths.  The argument  is that, while the two beams are well separated
in the farfield,  they will  partially  overlap in the nearfield region. At the short  wave-
lengths,  this  region will extend to well  above the  height of the tropospheric  fluctua-
tions  (see  Eq.  (6.1)  and  thus  the  beam overlap  will  be  considerable,  resulting  in  an
effective  cancellation  of  tropospheric  fluctuations.  The  author  (Baars,  1966,  1970)
made  a  detailed  study  of  the  beam  overlap  and  demonstrated  the  efficacy  of  the
method with observations at several wavelengths. Because this observing method has
become  an  essential  aspect  of  millimeter  wavelength  radio  astronomy,  we  will
summarise the main results now.

  Millimeter telescopes are generally of the Cassegrain type. The relatively small size
of the secondary reflector, typically between 0.5 and 1 m diameter, makes it possible
to attach these to a nutator mechanism, which enables the subreflector to be mechani-
cally  moved  between  different  positions.  This  effectively  switches  the  beam of  the
antenna between two neighbouring points on the sky, removing the need for a second
feed  to realise  the  reference  beam.  The nutating  subreflector  had  earlier  been intro-
duced on infrared telescopes for the same reason.
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by only one beam at a time. In an important paper Emerson et al (1979) have demon-
strated  that  a  dual-beam  mapping  of  an  extended  source,  which  is  essentially  a
differential map of the object, can be restored to deliver a reliable representation of 

Fig.  6.23.  Dual-beam  observation  of  an  extended  source  (upper  plot)  and  the  derived  map
obtained  with  the  EKH-algorithm  (lower  plot).  The  beam  separation  and  size  is  indicated  in  the
lower left hand corner of the lower plot. 
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  This method is not restricted to the observation of point sources, which will be seen



the brightness  distribution  of the  source.  This  "EKH-algorithm"  is  now widely used
in dual-beam observations of extended objects. We show here an example from their
paper  (Fig.  6.23);  the  mapping  of  a  supernova  remnant  3C10  of  9  arcminutes  size
with a dual-beam system of 5.5 arcminute beam separation. The upper plot shows the
difference  output,  where  the  left  and  right  output  overlap.  The  combined  result  is
shown in the lower plot. 

6.4.6. Beam overlap in the Fresnel region of the antenna 

The  necessary  mathematical  preparations  have  already  been made  in  Chapter  3  and
4,  where  we  calculated  the  antenna  beam  in  the  Fresnel  region  and  for  a  laterally
offset  feed.  We  need  to calculate  the  beam patterns  for  a  number  of distances  from
the aperture  and  from those compute  the  percentage of  beam overlap  as function  of
the distance. We shall not carry out these computations here in detail. As illustration
of  the  different  shapes  of  the  nearfield  patterns,  two  are  shown  in  Fig.  6.24  for
distances from the aperture  of 1/128 and  1/160 of the farfield distance,  respectively.
They involve inserting the nearfield term of Eq.  (3.37) into the radiation integral for
lateral defocus as given in Eq. (4.33). 

Fig.  6.24.  Nearfield  radiation  function  at  a distance  of  1/128  (blue)  and  1/160  (red)  times  the  farfield  distance.
Note the zero axial value of the red curve.

  By calculating the pattern for a series of distances from the aperture we can derive
the  shape  of  the  beam  as  function  of  this  distance  R.  We  find  that  close  to  the
aperture  the radiated  power flows  in a tube with a diameter  roughly equal  to that of
the  aperture.  At  a  certain  distance  the  beam  widens  to  the  angular  extent  of  the
farfield  beamwidth.  As soon  as  the  beam becomes  divergent,  the  diffraction  effects
which  cause  the  sidelobe  structure  of  the  farfield  pattern  become  visible.  For  a
uniformly  illuminated  aperture  the  divergence  sets  in  at  a  distance  of  Rr = d2 ê 2 l,
which is called the Rayleigh distance. Rayleigh (1891) noted the significance of this
distance in his study of pinhole photography. The Rayleigh distance  is one fourth of
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the farfield distance Rf , defined in Eq. (6.1). With a tapered aperture illumination the
transition  to  the  diffraction  beam  occurs  at  a  somewhat  smaller  distance.  Having
established the beam cross-section as function of distance for both slightly displaced
beams,  we  can  now  calculate  the  beam  overlap,  defined  as  the  ratio  of  the  power
flowing through the common area of both beams to the power flow through a single
beam. An example of such a calculation is shown in Fig. 6.25. After an initial linear
decrease  the  beam  overlap  becomes  weaker  with  increasing  distance.  For  a  12  m
diameter antenna operating  at 1 mm wavelength  the Rayleigh  distance  Rf = 72 km.
Considering that tropospheric fluctuations  occur mainly in the lower 3-4 km, we see
that  the  beam  overlap  in  that  region  is  about  90  percent  for  a  beam separation  of  2
HPBW and 75 percent for 4 HPBW separation. 

Fig. 6.25.  The normalised  beam overlap  as function  of the distance  from the aperture  in terms of the Rayleigh
distance  Rr  with  the offset  of  the second  beam  in  HPBW  as parameter.  The top  scale  indicates  real  distance
for a 43-m diameter  antenna  and wavelengths  of 1 and 2 cm.

  It is thus clear that we might expect a significant cancellation of those atmospheric
disturbances which are small in size compared to the beam and fluctuate slower than
the  beam-switching  cycle  time,  which  is  typically  5-10  Hz.  As  we  saw  above,  the
true  structure  of  the  atmospheric  fluctuations  is  described  by  an  ensemble  of  turbu-
lons  with  varying  scale  length  and  intensity,  distributed  over  the  line  of  sight.  The
achievable suppression of fluctuations  will depend on the scale length and the speed
with which the turbulons move through the beam. The method has proved its success
and observations at short centimeter and millimeter wavelengths invariably employ a
switched  dual-beam  method.  An  illustration  of  the  improvement  is  shown  in  Fig.
6.26,  taken  from  the  work  by  the  author  (Baars,  1966).  Finally,  it  should  be  men-
tioned  that  the  best  results  are  obtained  with  a  symmetric  switching  procedure.  In
that  case  the  sidelobe  structure  (coma-lobe)  of  the  two  beams  will  be  identical
leading  to  a  more  complete  cancellation  of  the  atmospheric  fluctuations.  Thus
placing  the  two  beams  symmetrically  off-axis  is  preferable  to  the  on-axis/off-axis
configuration.  
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Fig.  6.26.  Traces  of  30  minutes  duration  of  blank  sky  observed  in  single-  (SB)  and  dual-beam
(DB)  modes  at  three  different  wavelengths  and under  differing  weather  conditions.  The antenna
temperature  scale is indicated  on the left. Note the large improvement  in baseline  stability  of the
DB  scans.  Even  in  absolutely  clear  weather  at  6  cm  wavelength  an  improvement  is  clearly
present.

  We conclude here the discussion of the more practical aspects of the calibration and
use of large reflector  antennas for  radio astronomy and satellite  communication.  We
have  barely  touched  on  the  performance  of  existing  instruments.  In  the  following
chapter  we present  the  main features  of the  design  and performance  of a  number of
important  radio telescopes.  There we highlight original design aspects  and choice of
new composite materials.  These antennas reach a beamwidth of about 10 arcseconds
at  their  shortest  wavelength,  indicating  a  need  for  1  arcsecond  pointing  accuracy.
Thus  the  design  must  aim  at  achieving  this  along  with  producing  a  high  accuracy
reflector surface.
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Mat .6 .1 - near field path length error;

Clear@dfD; R = 315; f = 4.80; df = .096;

l = 0.003; k = 2 p êl;

dp = c^2ê H2 RL - c^4 ê H8 R^3L;
dc =

ikjjjc^2 +
ikjjjf -

c^2
ÅÅÅÅÅÅÅÅÅÅÅ
4 f

+ df
y{zzz^2y{zzz^0.5 -

ikjjjf +
c^2
ÅÅÅÅÅÅÅÅÅÅÅ
4 f

+ df
y{zzz;

php = Cos@k dpD; phc = Cos@k dcD;
Plot@8php, phc<, 8c, 0, 6<, PlotRange Ø All, Frame Ø True,

GridLines Ø Automatic, FrameLabel Ø 8"Radius in m", "Phase"<,
PlotStyle -> 88RGBColor@1, 0, 0D<, 8RGBColor@0, 0, 1D<<D

Plot@php - phc, 8c, 0, 6<, GridLines Ø Automatic,

FrameLabel Ø 8"Radius in m", "Phase-Diff"<, Frame Ø TrueD

Mat .6 .2 - path length and defocus;

Clear@dfD; R = 315; f = 4.80; l = 0.003; k = 2 p êl;

dp = c^2ê H2 RL - c^4 ê H8 R^3L;
dc =

ikjjjc^2 +
ikjjjf -

c^2
ÅÅÅÅÅÅÅÅÅÅÅ
4 f

+ df
y{zzz^2y{zzz^0.5 -

ikjjjf +
c^2
ÅÅÅÅÅÅÅÅÅÅÅ
4 f

+ df
y{zzz;

Plot@Evaluate@
Table@ 1000 Hdp + dcL, 8df, 0.080, 0.096, 0.016<D, 8c, 0, 6<,
PlotRange Ø All, Frame Ø True, GridLines Ø Automatic,

PlotStyle -> 88RGBColor@1, 0, 0D<, 8RGBColor@0, 0, 1D<<,
FrameLabel Ø 8"Radius in m", "Path-Diff.in mm"<DD

Mat .6 .4 - relative atmospheric amplitude fluctuation;

l =.; k = 2 p ê Hlê 1000L; h0 = 3200;

cc = 4.2 10^-14 h^H-1 ê 3L Exp@-h ê h0D;
am2 = 0.56 k^H7ê 6L Integrate@cc *h^H5ê6L , 8h, el, ¶<D;
dT = Exp@2 Sqrt@am2DD;
Plot@Evaluate@Table@dT - 1, 8el, 0, 4000, 2000<D,8l, 0.5, 10<, Frame Ø True, GridLines Ø Automatic,

FrameLabel Ø 8"Wavelength HmmL", "Rel. Power Fluc."<,
PlotStyle Ø 88RGBColor@0, 0, 1D<,8RGBColor@1, 0, 0D<, 8RGBColor@0, 1, 0D<<DD
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7. Design features of some radio telescopes

‡ 7.1. Introduction

The first  fully steerable  parabolic  reflectors  were second World War radar antennas,
developed both in Germany and the allied countries. The developments to ever larger
and  more  accurate  antennas  has  been  mainly  an  activity  by  radio  astronomers  and
mechanical  and  structural  engineers  working  with  them.  The  full  story  of  this
fascinating development has still to be written. In this chapter we shall not endeavour
to undertake such a task. 

  Rather we plan to present in a concise form the most interesting structural, mechani-
cal and electro-magnetic features of a number of important radio telescopes. The aim
is to augment the tools  presented in the main body of this book with information on
background and realisation of new ideas and technologies in this field. The choice of
examples has been guided by two arguments.  First, new ideas were introduced in the
technology  to  satisfy  the  scientific  requirements  for  the  instrument.  Second,  to
highlight  these  original  features  from  the  personal  viewpoint  of  the  author.  This  is
possible  because  the  author  has  been  privileged  to  be  intimately  involved  in  a
number  of  radio  telescope  projects,  each  of  which  pushed  the  state  of  the  art  in
design  or  performance.  It  should  be  emphasised  that  he  has  not  contributed  signifi-
cantly to the structural and mechanical designs of the selected telescopes. Rather, his
role  was more concerned  with assuring  technical  solutions in accord  with the scien-
tific  specifications,  managing  the  design  and  construction  projects  and  participating
in the  commissioning  of the  instruments.  Thus we aim in this  chapter  to  feature the
inventiveness  and  craftsmanship  of  the  engineers  and  technicians  in  industry,  who
turned the astronomer’s dream into reality under budgetary, logistical and environmen-
tal  limitations.  Often,  the  original  design  work  has  remained  unpublished,  were  it
only that new tasks prevented the industrial  engineer from properly documenting his
earlier achievement. Wherever such publications exist, we shall mention them below,
but often the only reference in the open literature is authored by the users of the new
instrument,  rather  than the designers.  The sections  below do not constitute  complete
descriptions  of  the  instruments.  Rather  they  highlight  features  of  the  designs  which
the  author  considers  original  and  contributing  to  the  overall  development  of  the
subject of large and accurate reflector antennas.

  It is hoped that these summaries may interest the reader who is using the remainder
of the book in his work and possibly give him ideas as to improve or change certain
features  of  his  own  current  or  future  antennas.  Where  appropriate,  we  shall  draw
attention  to  material  from  the  earlier  chapters,  as  it  has  been  used  in  the  design,
construction or commissioning of the radio telescopes to be described.



  To recapitulate,  the task of a radio telescope or communication  antenna is to point
in  a  desired  direction  with  sufficient  accuracy  and  collect  the  radiation  from  that
direction  as  efficiently  as  possible  while  being  insensitive  to  radiation  from  other
directions.  This  main  characteristic  must  be  preserved  if  the  antenna  direction  is
changed, either to follow the target along its path across the sky or to move from one
position to a different one, possibly a large angle away. We require the performance
of the antenna to be as little dependent on varying environmental parameters, such as
temperature and wind force, as possible. While it is impossible to economically build
"ideal"  instruments,  these  requirements  are  normally  considered  to  be  met  if  the
antenna  pointing  and  tracking  is  accurate  and  stable  to  better  than  one-tenth  of  the
half-power  beam width  (HPBW)  and  the  reflector  surface  remains  in the  prescribed
(normally  parabolic)  shape  to  better  than  one-sixteenth  of  the  shortest  operational
wavelength  under  all  operational  conditions.  These  basic  operational  specifications
are  by  no  means  trivial.  For  instance,  a  30-m  diameter  telescope  for  millimeter
wavelengths,  operating  up  to  250  GHz  (1.2  mm wavelength)  must  have  a  pointing
accuracy of 1 arcsecond and a surface rms error of 75 micrometers.  Such accuracies
are only achievable with special design methods and judicious choice of materials. 

  In our choice of telescopes to discuss we use the following guiding principles:

- scientific requirements forcing a shift in the state of the art of telescope design,

- originality of the design methods and material selection,

- success in achieving the scientific and technical goal.

  The telescopes to be described below include:

1. Westerbork Synthesis Radio Telescope (WSRT), Netherlands.

2. Max-Planck-Institut für Radioastronomie 100-m telescope at Effelsberg, Germany.

3. 30-m millimeter radio telescopes (MRT) of IRAM near Granada, Spain.

4. Heinrich Hertz Telescope (HHT) of the Arizona Radio Observatory, Tucson, USA.

5.  Large  Millimeter  Telescope  (LMT)  of  the  University  of  Massachusetts  and
INAOE, Tonantzintla, Mexico.

6. two ALMA prototype antennas, located at the VLA site in New Mexico, USA.

  In all  these  projects,  with the exception  of the Effelsberg telescope,  the author has
been  closely  involved.  Our  choice  leaves  several  important  radio  telescopes  outside
of  consideration.  In  particular,  mention  should  be  made  of  the  NRAO  140-ft  tele-
scope  (see  Ch.  1),  the  64-m  Parkes  telescope  (Bowen  and  Minnett,  1963)  and  the
highly successful  millimeter and submillimeter  antennas of IRAM’s Plateau de Bure
interferometer  (Guilloteau  et  al,  1992),  the  James  Clerk Maxwell  Telescope  and  the
Caltech Submillimeter  Observatory,  the latter designed and built  by Robert Leighton
(1978),  both  located  on  Hawaii  (pictures  in Ch.  1).  Also  the  Green  Bank Telescope
(GBT),  shown  in  Chapter  1,  will  not  be  discussed  here,  despite  its  many  new  fea-
tures. Some key data of the telescopes have been assembled in Table 7.1.
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Table 7.1. Data on radio telescopes discussed in this chapter

Telescope         Year   Alti(m)     Dia(m)         D/e    lmin HmmL    Weight(t)
---------------------------------------------------------------------------------------
WSRT   1970        20             25           1.7 E4      40               124
Effelsberg   1972      300           100   1.7 E5        3.5            3200
MRT               1985    2850             30   4.2 E5        0.85   400
HHT   1994    3200             10   8.2 E5        0.3     50
LMT   2007    4600             50   6.7 E5        0.85   700
ALMA(proto)    2004    2200             12   7.0 E5        0.35            108 / 80
GBT   2002      800           100           2.0 E5        3.0            7300

‡ 7.2. The homologous design method

Until  the  mid  nineteen-sixties  the  structural  design  of  antennas  was  based  on  the
principle of providing sufficient stiffness against gravity and wind forces to maintain
the  required  shape  of  the  reflector  in  all  attitudes  and  under  environmental  influ-
ences.  With  increasing  size  and  simultaneous  need  of  better  surface  accuracy  this
became  impractical  both  in economical  and  technical  terms.  Perhaps the  best  exam-
ple of the  futility  of  pushing brute-force  design methods  to the extreme is the effort
by the US Navy to build a steerable dish of 180 m diameter to eavesdrop on Russian
communications via reflections off the Moon. After years of planning and design the
project  was  stopped  without  realising  more  than  a  huge  concrete  foundation  ring.
Parallel to this activity, an astrophysicist at the NRAO in Green Bank, West Virginia,
by the name of Sebastian  von Hoerner was looking into the possibility of building a
200  m  diameter  reflector  for  lunar  occultation  observations  of  extragalactic  radio
sources.  Not  knowing  how  to  design  a  steel  structure  he  went  from  first  principles
and  developed  the  idea  of  homologous  deformations.  He  coined  this  name  for  a
design  method  in  which  a  telescope  structure  would  be  allowed  to  significantly
deform  under  the  elevation-angle  dependent  influence  of  gravity,  but  the  deforma-
tions  would  occur  in  such  a  way  that  the  resulting  reflector  surface  would  retain  a
parabolic  shape.  One could  in principle keep the surface  of a deforming structure  in
the  original  parabolic  shape  by  adjusting  the  position  of  the  surface  panels  by
motorised adjusters. This requires a large amount of adjusters and some way to know
the actual deformation of the surface, either by measurement or calculation. But with
a homologous  behaviour of the  reflector  only the focal  point  of the best-fit  reflector
surface will change in position with varying elevation angle of the antenna. Thus the
focal  length  and  direction  of  the  beam  axis  will  have  to  be  determined  and  the
receiver  position  (or  secondary  reflector  in  a  Cassegrain  system)  must  track  the
changes  in  the  focal  point.  This  is  much  simpler  than  adjusting  the  primary  surface
and,  moreover,  the  required  measurement  can  readily  be  performed  with  the  aid  of
strong  radio  sources  (see  Chapter  5).  Von  Hoerner  (1967a,  1967b)  developed  the
mathematical  basis  and  a  practical  iterative  method  for  the  design  of  homologous
structures.  Because  homology  is  used  in  just  about  every  new  antenna  design,  we
summarise its features here.
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In his studies von Hoerner first established a number of "natural limits" to the size of
a  reflector  with  a  certain  surface  quality.  First  there  is  the  stress  limit,  where  the
structure would collapse under its own weight. For a steel structure this is about 600
m.  A  more  important  limit  is  the  gravitational  deformation  as  function  of  elevation
angle. This deformation is proportional  to the length times the mass of the structural
member  divided  by  the  stiffness.  The  cross  section,  i.e.  the  mass  per  unit  length,
typically  is  proportional  to  the  length  and  hence  the  deformation  is  proportional  to
the square of the reflector diameter:

dg Hr êEL D2 ,             (7.1)

where r is the density and E the modulus of elasticity of the material. If we define the
shortest wavelength lg  to be equal to 16 times the rms reflector deformation (see Ch.
4.6),  and  put  in  the  numbers  for  the  material  constants,  this  delivers  the  following
relation

lg º 70 HD ê100L2 ,             (7.2)

where  lg  is  in  millimeters  and  D  in  meters.  Thus  in  a  classical  design,  based  on
stiffness,  we  cannot  expect  to  use  a  100  m  diameter  reflector  effectively  at  wave-
lengths below 7 cm. 

  A third natural  limit is posed by temperature differences through the structure. The
thermal  deformation  dt  is  proportional  to  the  length  of  the  structural  member,  its
coefficient  of  thermal  expansion  Ct  and  the  temperature  difference  DT with  respect
to its surroundings:

dt Ct D DT.             (7.3)

For the minimum wavelength lt  related to temperature differences we find for a steel
structure

lt º 6 DT HD ê100L            (7.4)

where lt  is in millimeters, D in meters and DT in Kelvin. For aluminium the value is
about twice as large. Following von Hoerner we can construct a plot with these limits
drawn in and augmented with the actual  data from existing antennas.  In Fig. 7.1 the
ordinate is the "accuracy",  defined as the quotient of the diameter  D and the surface
accuracy e,  the abscissa  is the diameter.  Gravitational  and  thermal limits  are shown,
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as well as lines of minimum wavelength. There are two groups of antennas: the older
ones, designed on the basis of stiffness, all lie under the limits, while the newer group
lies above one or both of the limits. Clearly, special tricks must have been used in the
design of these antennas  to reach their position  in the plot.  To pass the gravitational
limit a  homologous  design was applied.  Beating the thermal limit  required  tempera-
ture  control  and/or  use  of  special  low-expansion  materials,  like  carbon-fiber  rein-
forced  plastic  (CFRP).  Some  of  these  new  designs  will  be  described  later  in  this
chapter.

Fig.  7.1.  Natural  limits  in  an  accuracy  versus  diameter  plot.  The  positions  of   millimeter  wavelength
radio  telescopes  appear  at  the  top.  Older  telescopes  are  below  the  gravitation  limit  (red).  Most  of  the
antennas have been shown in Ch. 1 or are discussed  in this chapter.

  A homologous  structure  must  provide  an "equal  softness"  support  for the  reflector
surface.  The surface  is normally  composed  of a  set of  panels  and  hence the  support
points  of  the  panels  on  the  backup  structure  must  obey  the  equal  softness  require-
ment.  The  structural  design  consists  of  finding  a  structure  to  carry  the  loads  from
these points on the surface to the two "hard" points at the elevation bearings in such a
way that the surface remains parabolic over the entire range of elevation angles. Von
Hoerner  proved  the  existence  of  a  solution  and  the  challenge  for  the  structural
designer is to find a practical solution with due regard for the limitations imposed by
the  geometry  (for  instance,  no  two  members  can  cross),  the  availability  of  suitably
dimensioned structural  members  (pipes  come  in standard  cross-sections)  and weight
(which  means  cost).  As  we  shall  indicate  below,  different  approaches  can  lead  to
satisfactory  results.  But  homology  will  never  be  totally  perfect  and  it  is  useful  to
introduce  a  quantity  "deviation  from  homology"  H0 .  In  an  alt-azimuth  mounted
antenna  the gravitational  deformations  at  any  elevation  angle  are  described  fully  by
the  deformations  in  zenith  and  horizon  position.  Let  us  call  Hz  the  residual  rms
deviation  between  the  real  and  the  best-fit  paraboloid  in  zenith  position  and  Hh  the
similar  quantity  in  horizon  position.  We can  now define  the "homology  quality",  or
the deviation from homology, as
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H0 =
"#################################

0.5 HHz
2 + Hh

2 L .               (7.5)

  In general, we are interested to minimise the deviations from the best paraboloid in
the range of elevation angle where the antenna is predominantly  used. For a satellite
ground station this is the elevation angle of the satellite. A radio telescope will spend
most of the time in the intermediate range of elevation, where the celestial  sphere is
large  and  the  atmospheric  absorption  small.  Thus  there  is  an  incentive  to adjust  the
surface panels to a best paraboloid at an intermediate elevation angle f0 . In that case
the  deviation  from  homology,  that  is  the  gravitational  deformation,  as  function  of
elevation angle f can be written as (von Hoerner and Wong, 1975)

Hf =
"#######################################################################################

Hz
2 Hsin f - sin f0 L2 + Hh

2 Hcos f - cos f0 L2 .           (7.6)

The  parameters  Hz  and  Hh  can  be  derived  from  a  measurement  of  the  aperture
efficiency  as  function  of  the  elevation  angle.  Normally  they  are  also  obtained  from
the  structural  finite  element  analysis  and  the  comparison  with  the  measurement
provides a nice check on the reliability of the calculation. Clearly,  if the horizon and
zenith  deviations  are  equal,  and  the  whole  elevation  angle  range  is  considered,  the
best  "rigging  angle",  the  elevation  angle  where  the  panels  are  adjusted  to  the  best
fitting paraboloid, will be at 45 degrees elevation. The actual deviations in the 

Fig.  7.2.  Calculated  gravitational  and  wind  induced  deformation  of  the  IRAM  30-m  millimeter
telescope.  The  wind  maximum  is  offset  by  the  rigging  at  50˚  and  the  combined  error  remains
below 40 mm between elevation  15 and 75 degrees.
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extreme positions zenith or horizon will then be reduced by 25 percent and decrease
to  zero  at  the  rigging  angle.  For  different  zenith  and  horizon  deviations  a  slightly
different  rigging angle  will  be  found,  while  one  can also  optimise  the rigging  angle
for  a  limited  observation  range,  for  instance  between  20  and  80  degrees  elevation.
Under  all  circumstances  the  optimal  rigging  angle  lies  between  40  and  50  degrees
elevation (von Hoerner and Wong, 1975). 

  In the context of the optimum rigging angle it is interesting to consider the deforma-
tion  of  the  reflector  under  the  influence  of  wind.  It  is  found  that  the  forces  and
moments  exerted  by  the  wind  cause  the  largest  deformations  when  the  horizontal
wind  impinges  on  the  reflector  from  the  front  and  the  elevation  angle  is  approxi-
mately 50 degrees. Setting the surface to the best  possible shape near that angle will
"smooth"  the  wind  influence  on  the  overall  surface  error.  An  example  is  shown  in
Fig.  7.2  from  the  design  calculation  of  the  30-m  MRT  in  Spain.  The  calculated
deviation  of  homology  is  80  mm  at  0  and  60  mm  at  90  degrees  elevation  angle,
respectively.  Aiming  at  equal  surface  deformation  at  elevation  angles  of  20  and  80
degrees leads to a rigging angle of 50 degrees; the resulting gravitational deformation
is  the  curve  dipping  to  zero  at  50˚.  The  wind  deformation  increases  strongly  above
elevation  30˚  and  reaches  a  maximum  between  50  and  60  degrees.  Other  error
contributions,  as  temperature,  panel  fabrication  and  setting  are  shown  as  horizontal
dashed lines.The upper curve is the quadratic sum of all deformation components and
indicates the overall surface accuracy under 12 m/s frontal wind. 

‡ 7.3. The Westerbork Synthesis Radio Telescope (WSRT)

Around  1960  Dutch  and  Belgian astronomers  presented  a  proposal  for  a large  radio
telescope in the form of a cross: the Benelux Cross Antenna Project (Christiansen et
al.,  1963).  Development  of  the  “earth  rotation  synthesis”  concept  (Ryle,  1962)  and
limitations  in  funding,  along  with  the  withdrawal  of  Belgium,  led  the  Dutch  to
change  the  proposed  instrument  to  a  linear  super  synthesis  array  of  12  elements  of
25-m  diameter  antennas  (Hooghoudt,  1964).  Based  on  the  emphasis  in  Dutch  radio
astronomy,  established  by  the  work  with  the  Dwingeloo  telescope,  the  original
scientific  requirement  was  limited  in  scope  but  demanding  in  quality.  The  primary
goal was to map galaxies with an angular resolution of about 20 arcseconds with high
sensitivity,  excellent  fidelity  and  full  polarisation.  A  primary  observing  wavelength
of 21 cm was selected,  which  would also enable the observation  of the spectral  line
of  neutral  hydrogen  at  1420  MHz,  once  a  suitable  spectrometer  was  added  to  the
backend electronics. This led to an array of ten fixed and two moveable elements (on
a  300  m  long  rail  track)  and  a  baseline  length  of  1.6  km  (Fig.  7.3),  later  extended
with two more movable elements  to 3 km baseline. The quality of the imaging of an
interferometric array is critically dependent on the control of the phase of the interfero-
gram during the long integration time. Any differences in the geometry and differen-
tial  deformation  between  the  element  antennas  must  be  minimized  if  one  wants  to
avoid repeated baseline calibration, or loss of mapping fidelity. For the WSRT it was
required that all 12 antennas would be identical in their critical dimensions to 1 mm.
The  design  of  the  element  antennas  was  led  by  B.G.Hooghoudt,  who  had  already
been  heavily  involved  in  the  original  Dwingeloo  telescope  design.  He  also  acted  as
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manager  of  the  entire  mechanical,  electrical  and  geodetic  part  of  the  Project,  and
from 1966 onward the author was his assistant. 

Fig.  7.3.  The  westerly  5  elements  of  the  WSRT.  The  fixed  antennas  are  144  m  apart  for  a  total
baseline of 1.6 km. The assembly  hall is visible in the background.  (ASTRON)

  As  is  obvious  from  Fig.  7.4,  the  antennas  are  equatorially  mounted.  In  the  mid
nineteen  sixties  this  had  become  an  unusual  choice  for  structures  of  this  size,  but
strongly  suggested  by  the  nature  of  the  basic  telescope  operation.  The  standard
observation would consist of long, mostly 12 hour, source tracking during which the
orientation of the east-west baseline rotates with respect to the sky, thereby providing
the  north-south  component  in  the  synthesized  aperture  plane.  With  an  equatorially
mounted  antenna  this  means  a  single  motion  about  the  polar  axis  with  the  constant
speed  of  the  earth’s  rotation.  In  the  declination  coordinate  only  the  correct  value
needs to be set before the start of the observation.  A simpler positioning and control
system  is  hardly  conceivable.  And  this  was  precisely  what  the  original  design
entailed.  When  a  future commissioner  explained that  he would not  be able to deter-
mine pointing corrections or obtain beam maps with such a limited control system, a
scanning mode at relatively low speed was added to the control system of both axes.
This  example  illustrates  the  importance  of  close  cooperation  of  contractor  design
engineers,  project  management  and  future  users  in  the  design  process  of  a  new
telescope.

  The  choice  of  an  equatorial  mount  is  also  highly  beneficial  to  the  polarisation
capability  of  the  instrument.  Now  the  orientation  of  the  instrumental  polarisation
plane does not rotate with respect to the source during the long observation, avoiding
any  variation  of  instrumental  polarisation  in  the  observed  signal.  These  were  good
reasons  to  select  an  equatorial  mount  despite  the  fact  that  normally  they  tend  to  be
more  expensive  than  the  usual  azimuthal  mounting.  Considering  the  need  for  12
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identical  antennas,  the  designers  were  placed  for  some  challenging  requirements:
design and  built  a set  of 12,  highly identical  and  stable  equatorial  antennas  of  25 m
diameter, optimized for 20 cm wavelength, at the lowest possible price.

  From  Fig.  7.4  the  antennas  appear  as  very  simple  structures  and  indeed  they  are.
The  antenna  can  be  divided  into  a  small  number  of  major  parts,  shown  in  the
exploded  view  of  Fig.  7.5  (Baars  and  Hooghoudt,  1974).  These  are  the  sections
hoisted into place on the foundations along the baseline. The sections themselves are 

Fig.  7.4.  Element  antenna  of  the  WSRT  with  an  equatorial  mount,  a 25  m  diameter  wire-mesh
reflector  and  primary  focus  receiver  box.  After  setting  up  the  base  pentapod,  the  assembly
required only 4 lifting maneuvers  to complete  the antenna,   (Author's  photo)
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assembled  in  a  large,  temperature  controlled  hall  at  the  telescope  site,  whereby
extensive use is  made of  templates.  This  assures  identical  products  for  all  12 anten-
nas  and  eases  the  assembly  of  the  large  sections.  Basic  parts  of  the  sections  were
manufactured  in  the  shop to the  largest  size suitable  for  transportation.  For  instance
the large circular gear racks of the axis movements were transported by ship to about
10  km  from  the  telescope  site.  Overall,  the  design  aimed  at  easy  reproduction  with
high  accuracy  and  minimizing  on-site  activity.  The  polar  axis  house  was  welded  in

Fig. 7.5. The major  section  of the antenna  in an exploded  view. After  hoisting  the polar-axis  house onto
the  pentapod  (lower  right),  the  declination  cradle  was  attached  (upper  right),  followed  by  the  polar
counterweight  (lower  part  middle  right).  The  ring  girder  and  reflector  surface  were  assembled  in  a
template and, together  with the quadrupod  (middle right),  lifted in one piece onto the declination  cradle.
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constant  distance  and  orientation  between  the  polar  and  declination   axes;  an  accu-
racy of ±0.2 mm and ±3 arcseconds was achieved for these, respectively.  

  The  declination  cradle  provides  a  four-point  support  for  the  ring  girder,  which
carries  the  reflector  surface.  The  four-point  support  reduces  the  flexure  of  the
reflector  surface  by  about  an  order  of  magnitude  with  respect  to  the  traditional
two-point  support.  With  some  imagination  one  could  say  that  this  is  a  first  step
towards  a  homologous  design  of  "equal  softness"  support  for  the  reflector.  The
reflector  ring-girder  arrived  in four  sections  from the shop and was welded together
while placed on four pillars, representing the corners of the declination cradle, inside
the  template  for  the  reflector  assembly  (Fig.  7.6).  This  template  provides  support
points for the reflector  panels, which  were set to within 0.2 mm from the prescribed
parabolic form. While placed in the template the 98 panels, divided over three rings,
are  bolted  together  to form the  reflector  surface.  The  frames  of  the  panels  form the
radial  and  tangential  members  of  the  reflector.  The  inner  section  of  the  surface  is  a
shell-like  membrane  structure  supported  by  the  ring-girder  at  its  inner  radius  only.
The outer panel ring receives additional support at about 80 percent of the radius by a
hoop  cantilevered  from  the  ring  girder.  For  the  connection  of  the  reflector  to  the
ring-girder a novel solution was introduced.  At each connection point a pin from the
panel  is  protruding  into a  socket  on  the  ring-girder.  The socket  is  filled  with  epoxy
resin  to realise  a fixed  connection.  This  arrangement  allows  for  normal  manufactur-
ing  tolerances  of  the  steel  structures  and  the  use  of  epoxy  avoids  any  stress  to  be
exerted  on  the  reflector  surface  while  connecting  it  to  the  support  ring,  thereby
maintaining the intrinsic high accuracy of the template assembly. 

  The  reflector  surface  is  a  stainless  steel  mesh  of  8  mm  spacing,  0.8  mm  wire
thickness,  epoxy  bonded  to  the  panel  frames.  Despite  extreme  care  of  handling
during  manufacture,  these  bonds  delaminated  after  about  ten  years.  In  a  repair
program,  in  which  many  Dutch  radio  astronomers  participated,  the  mesh  surfaces
were then riveted to the frames in the field to maintain the correct shape. The epoxy
bonding  of  the  main  structural  parts  has  not  shown  any  sign  of  deterioration  after
more than  35 years.  A “pentapod”  of  five tubular  members  supports  the antenna  on
the three concrete foundation pads. Because of the relatively high latitude of the site
(50  degrees  north),  a  single  southern  support  beam could  be  placed  along  the  polar
axis without affecting the southern sky coverage. This provides for an optimum load
transfer  to  the  ground  and  also  gives  the  antenna  a sleek  look.  The  assembly  of the
antenna  in  the  field  required  only  four  hoisting  maneuvers  and  the  attachment  of  a
small  number  of  bolts.  The  antennas  were  erected  with  5  weeks  intervals  between
August 1967 and November 1968.

  The application  of templates  in fabrication and assembly,  along with the use of an
all-weather  assembly  hall,  were  essential  ingredients  in  achieving  a  highly  identical
product series. An extensive program of measurements accompanied the construction
of the antennas. All these aspects contributed to a radio telescope of superb sensitiv-
ity and stability. The reflectors exhibit an rms surface accuracy of 1.4 mm, providing
excellent  performance at 6 cm wavelength  (see Table 5.2).  As a result,  development
of 6 cm receivers was started even before the full array had been completed, increas-
ing  the  angular  resolution  by  more  than  a  factor  three.  The  high  uniformity  and
stability of the array provides a very high dynamic range, a necessity for the mapping
of extended objects with a large range in brightness.  After  a  few  years  of  successful 
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Fig.  7.6.  The  template  for  the  assembly  of  the  reflector  in  the  assembly  hall,  consisting  of  two
concentric  rings  of  support  beams  with  accurately  located  support  points  for  the  panels.  Before
the  reflector  was  assembled  the  ring  girder  was  placed  inside  the  template,  supported  on  4
pillars, mimicking  the 4 corners of the declination  cradle.
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operation,  the  array  could  be  extended  with  two  more  antennas,  placed  one  mile  to
the  east,  thereby  doubling  the  baseline  and  increasing  the  angular  resolution  by  a
factor  of  two.  Other  extensions  and  improvements  have  been  made  in  the  area  of
electronics and data reduction.

  After  more  than 35  years  in full  operation,  the WSRT remains  heavily  subscribed
and  continues  to  play  an  important  role  in  several  areas  of  radio  astronomical
research.  At  the  beginning  of  this  successful  life  stood  the  need  to  descope  signifi-
cantly from the original gigantic Benelux Cross Antenna Project to an instrument the
Dutch  could  afford  on  their  own.  Earth-rotation  synthesis  showed  the  way.  The
budget situation forced the choices and the choice was made to build a telescope with
excellent  performance at one wavelength  of 21 cm only. No concessions  were made
in  the  quality  of  the  most  expensive  part,  the  12  antennas,  but  economy  of  scale
played an important role in the design process. Making full use of the “mass-produc-
tion”  aspect,  introducing  novel  technologies  and  exercising  a  rigorous  quality
control,  the  engineers  delivered  a  telescope  within  budget  and  schedule  which
formed the basis for a highly flexible and productive telescope.  Currently the WSRT
operates at six frequency bands, with capabilities for spectroscopy and pulsar observa-
tions and it forms a sensitive station in the European VLBI network. 

  The choice of an equatorial  mount was already unusual in 1965 and has since then
been essentially discarded. In the author's opinion this may not necessarily always be
the best approach. In particular, it could be worthwhile to consider this choice for an
array  of  many  relatively  small  antennas  (10 –  20  m say),  which  will  operate  essen-
tially in aperture synthesis  mode with long tracking observations.  Thus it could be a
suitable  solution  for  the  elements  of  the  Karoo  Array  Telescope  (KAT)  in  South
Africa and the "many small antennas” version of the Square Kilometer Array (SKA).

‡ 7.4. The Effelsberg 100-m radio telescope 

Radio  astronomy  in  Germany  was  established  at  the  University  of  Bonn  with  the
construction  of  a  25-m  telescope  in  1957.  In  1962  Otto  Hachenberg  was  appointed
professor  of  radio  astronomy.  He  came  from  the  Heinrich-Hertz-Institute  in  Berlin,
where, together  with  industry,  he had built  a 32-m transit  instrument.  Lacking finite
element  analysis  and computing power,  they had studied experimentally  how space-
frame  structures  deform  under  gravity.  Here  an  indication  of  homologous  deforma-
tion  became  apparent  without  the  analytical  foundation,  provided  later  by  von
Hoerner. In Bonn, Hachenberg began to plan for a giant fully steerable telescope and
a proposal  for  financing  was  presented  to the  Volkswagen-Foundation  in  1964.  The
reaction was positive under the condition that the capability of an effective operation
of  the  instrument  could  be  demonstrated.  This  led  to the  establishment  of  the  Max-
Planck-Institute for Radio Astronomy in Bonn in 1965, of which Hachenberg became
the founding director. 

  Design studies for a 80-m diameter antenna were made by Krupp and MAN, where
the  ideas  of  homology,  as  experimentally  experienced  by  Hachenberg  and  theoreti-
cally worked out by von Hoerner, were applied. Eventually this led to a joint venture
of the  two companies  in 1965  with  the  task of  designing  and  building  a fully  steer-
able telescope of  100 m diameter  suitable for observation  at a smallest  wavelength of 
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2-3 cm. This requires a reflector  accuracy of ~1 mm and a pointing accuracy of <10
arcseconds,  both  a  significant  improvement  over  existing  large  telescopes,  all  of
which  were  much  smaller  than  100  m  (Hachenberg,  1968,  Geldmacher,  1970,
Altmann, 1972).

Fig.  7.7.  Exploded  view  of  the  three  main  sections  of  the  antenna.  The  upper  section  is  the  BUS,
supporting  the  panel  units  through  a  space  frame  structure.  The  middle  octahedron  supports  the  BUS
at  points  B  and  is  itself  supported  on the  alidade  at  points  A.  The  upper  half  of  the  octahedron  forms
the quadripod  support  of the subreflector.  (Drawing Krupp)
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degree  of  rotational  symmetry.  This  was  guided  not  only  by  the  idea  of  homology,
but also by the still limited computational power of contemporary computers. For the
structural analysis of the BUS only a pie-shaped section of one-twenty-fourth needed
to  be  considered.  The  engineers  achieved  the  desired  result  with  a  method  of  "trial
and success", combining their practical experience with the new ideas of homologous
structures.  The BUS is supported from the back by an umbrella-type cone of spokes
(Fig. 7.7). This structure (blue) is attached to the elevation structure (red) at only two
points B: the tip of the umbrella and the center of the spoke wheel in the lower plane
of the BUS proper. This two-point suspension provides a stiffness which is symmetri-
cal with respect to rotation. This in turn assures a homologous behaviour in which the

Fig.  7.8.  Cross-section  through  the  Effelsberg  100-m  telescope.  The  reflector  support  structure

The  octahedron  is  supported  at  two  elevation  bearings  by  the  alidade  (black),  which  runs  on a 64
m diameter  railtrack.  (Drawing Krupp)
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The reflector backup structure (BUS) was conceived as a spaceframe with a high

(blue)  is  highly  symmetrical  and  is  connected  to the  elevation  octahedron  (red)  at  two  points  only.



elastic  deformations  under  varying  elevation  angle will  result  in a surface  close to a
paraboloid. The elevation structure (red) is essentially an octahedron, as suggested by
von Hoerner (1967) in his classic paper. The quadripod support for the primary focus
cabin / subreflector  forms one half of the octahedron. The lower half is composed of
the  elevation  bull-gear  and  two  beams  to  the  elevation  bearings,  where  the  entire
structure  is  supported  at  points  A  by  the alidade  (black).  This  solution  assures   that
the quadripod does not have any influence on the reflector. Also there is no physical
connection  between  the  octahedron  near  the  elevation  bearings  and  the  BUS.  Con-
trary  to  most  earlier  designs  the  surface  is  not  subjected  to  the  "point"  loads  of  the
quadripod and the support at the elevation bearings. 

Fig.  7.9.  The  100-m  diameter  Effelsberg  telescope  of  the  MPIfR,  Bonn,  Germany.  The  "umbrella"
reflector  support  and  the  rear  half  of  the  octahedron  structure  are  well  visible.  The  cabins  at  the
elevation  bearings  are  50  m above  the  ground.  The  collar  around  the  edge  of  the  reflector  serves  to
reduce pick-up of ground radiation.  (N. Junkes, MPIfR)

7. Design features of some radio telescopes216



The  alidade  runs  on  a  railtrack  of  64  m  diameter  through  4  bogies  with  4  wheels
each.  The  elevation  drive  originally  contained  two  dual  anti-backlash  drives,  but
instabilities  in  the  system forced  the  removal  of  one  drive,  fortunately  without  ever
impeding  the  operation  of  the  telescope.  A  cross-section  through  the  telescope  is
shown in Fig 7.8, where the same colours have been used to show the major sections.

  The  optics  of  the  Effelsberg  telescope  is  somewhat  unusual.  First,  it  employs  a
Gregorian two-reflector system with an elliptical secondary mirror of 6.5 m diameter.
The primary focus is accessible through a hole in the secondary reflector to accommo-
date long wavelength (>20 cm) feeds. Second, the focal ratio of the primary reflector
is  0.3,  which  makes  the  dish  quite  deep.  To  minimise  spill-over  radiation  from  the
ground,  a  vertical  shroud  extends  from  the  perimeter  of  the  reflector.  This  was
especially useful, because the telescope is located in a narrow, deep valley (Fig. 7.9)
to shield it from radio interference.

  The  surface  of  the  reflector  over  the  inner  65  m  diameter  consisted  originally  of
aluminium sandwich panels with an rms accuracy of 0.25 mm. Similarly as with the
WSRT  the  epoxy  bonding  between  the  surface  plates  and  the  honeycomb  core
delaminated  after  about  ten  years  and  all  panels  were  replaced  by  aluminium plates
reinforced  with  backing  ribs  (cassette  panels).  This  type  was  used  ab  initio  for  the
area  between  65  and  80  m  diameter.  To  decrease  wind  loading,  the  outer  area  was
originally  composed  of  stainless  steel  wiremesh  with  6  mm  mesh  size.  With  the
replacement of the sandwich panels, the mesh was also replaced with cassette panels,
perforated with 7 mm diameter holes to decrease wind loading. Thus the telescope is
not effective beyond the inner 80 m for wavelengths smaller than about 2-3 cm.

  The  performance  of  the  instrument  is  quite  impressive.  After  setting  the  surface
with  the  new  panels  with  the  aid  of  satellite  holography  at  a  frequency  of  12  GHz,
the  rms  surface  error  is  0.45  mm at  the  setting  angle  of  32  degrees.  It  increases  to
only 0.7 mm at an elevation angle of 80 degrees. This increase in surface rms should
be compared with the actual deformation of the structure, which is 76 mm at the edge
of  the  dish.  The  pointing  accuracy  is  better  than  10  arcseconds  with  a  repeatability
over time scales of one hour of 2 arcseconds (Hachenberg et al., 1973). The telescope
is routinely used at 3.5 mm for VLBI observations. The only active control necessary
for achieving this performance is the adjustment of the subreflector (or primary focus
feed)  to  the  focus  of  the  best-fit  paraboloid.  During  the  commissioning  of  the  tele-
scope a perfect  match was found between the prediction  based on structural  calcula-
tion and the measured adjustment. This is a good demonstration of the high quality of
the  structural  design.  Over  the  range  of  elevation  angle  from  15  to  85  degrees  the
lateral shift in the focus position is about 120 mm, while the axial shift is 15 mm.

  Recently,  another  telescope  of  comparable  size  and  performance  has  come  into
operation; the Green Bank Telescope (GBT) of NRAO (see Ch. 1). Its offset reflector
is  slightly  larger  (110  x  100  m)  for  "political"  as  well  as  technical  reasons,  as
explained  in  Chapter  6.3.2.  The  large  surface  elements  of  the  GBT  are  adjustable
through motor-controlled  actuators,  which  enables  a constant  rms surface  error  over
the entire  elevation  range,  if  the  necessary  corrections  are known.  The  current  level
of finite element analysis makes this a viable option. This challenge to the Effelsberg
telescope is being met by the installation of an active subreflector  of 6.5 m diameter,
designed  and  built  by  MT-Aerospace.  It  consists  of  96  individually  adjustable,
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accurate  (10 mm rms)  aluminium facets  with an overall  surface error  of less than 80
mm.  Because  the  gravitational  and  slowly  varying  thermal  deformations  of  the
primary reflector  have a rather  large scale-length  and can be computed reliably with
a finite element analysis, the adjustment of the relatively small number of subreflec-
tor  facets  will  restore  the  full  accuracy  of  the  dual-reflector  Gregorian  system.
Undoubtedly,  the Effelsberg telescope is a splendid piece of engineering,  beautifully
executed and an impressive example of the power of homologous design.

‡ 7.5. The IRAM 30-m Millimeter Radio Telescope (MRT) 

In  chapter  one  we  mentioned  that  the  development  of  large  reflector  antennas  has
been  spurned  strongly  by  the  needs  of  radio  astronomers.  Interestingly,  this  is  not
entirely  the  case  for  the  spectral  range,  called  millimeter-wave  radio  astronomy,
which  we  define  as  the  frequency  range  from  30  –  300  GHz  (wavelength  10  to  1
mm).  The first  reflectors,  sufficiently accurate  to operate at  3 mm wavelength,  were
the  4.9  m diameter  antenna  at  the  University  of  Texas  (Tolbert  et  al.,1965)  and  the
4.6 m diameter dish of the Aerospace Corporation  in El Segundo,  California (Jacobs
and King,  1965).  Both instruments  were not built  primarily  for radio astronomy, but
were  however  quickly  "taken  over"  by  radio  astronomers.  Eugene  Epstein  became
“corporate  astronomer”  at  the  Aerospace  Corporation  and  made  a  career  out  of
making millimeter wavelength observations near the beach of the Pacific Ocean. The
Texas antenna was moved to the McDonald  Observatory in 1967,  where it  operated
until 2000. It has now been relocated to the 4600 m high site of the LMT in Mexico
(see Sec.7.7). In 1964 the National Radio Astronomy Observatory (NRAO) proposed
to  develop  a  large  millimeter  telescope  and  operate  it  from  a  high  and  dry  site  to
avoid  the  strong  absorption  from  atmospheric  water  vapour  at  these  wavelengths.
Peter  Mezger  (1964)  of  NRAO  summarized  the  prospects  of  astronomy  at  3  mm
wavelength in a report with the conclusion that a limited number of objects might be
observable:  "planets,  compact  HII-regions,  a  few  quasars,  perhaps  recombination
lines  of  ionised  hydrogen".  Today,  this  would  not  have  resulted  in  funding,  but  the
NSF provided  1  million  dollars  to  NRAO  to  pursue  the  project.  The  result  was  the
36-ft telescope on Kitt  Peak,  which started operation in 1968. With the discovery  of
the spectral  line  of Carbon-Monoxide  (CO)  at  115 GHz with this  telescope  (Wilson
et al,1970),  millimeter  wavelength  astronomy established itself  as a major  branch of
radio astronomy. The story of this highly productive instrument has been told vividly
by Gordon (2005) in his book "Recollections of 'Tucson Operations'".  Short  descrip-
tions of these and other mm-antennas are presented in a "Special Issue on Millimeter
Wave Antennas and Propagation" of the IEEE Transactions on Antennas and Propaga-
tion, July 1970.

  In his position as director at the Max-Planck-Institut  für Radioastronomie (MPIfR),
Peter Mezger concluded in 1972 that observing capabilities  needed  to be augmented
with  a  large  telescope  for  millimeter  wavelengths.  Preliminary  studies  led  to  a
proposal  for  a reflector  of 30 m diameter  with a surface accuracy of 0.1 mm, which
would  marginally  enable  observations  at  the  2Ø1  spectral  line  of  CO  at  230  GHz,
where  the  beamwidth  would  be  about  10  arcsecs.  A  critical  aspect  of  the  proposal
was the placement of the telescope at a site  suitable for observations at 1 mm wave-
length.  At  about  the  same  time  French  radio  astronomers  were  making  plans  for  an
interferometric  array for mm-observations,  while plans were being developed also in

7. Design features of some radio telescopes218



the  United  Kingdom  for  a  dedicated  telescope  for  wavelengths  even  shorter  than  1
mm  –  the  submillimeter  range  of  the  spectrum.  In  a  collaborative  effort,  the  three
groups proposed the creation of a joint observatory for these telescopes on a suitable
site. The proposal met with support  from the respective governments and resulted in
the end of 1975 in negotiations between the Max-Planck-Gesellschaft  and the Centre
National  de  Recherche  Scientifique  about  the  establishment  of  a  joint  mm-observa-
tory,  later  named  IRAM. The British  proceeded  on their  own,  which  resulted  in  the
JCMT on Hawaii in a collaboration with the Netherlands and later with Canada.

  The MPIfR obtained main funding for the Millimeter Radio Telescope (MRT) from
the  Volkswagen  Foundation  and  started  serious  design  effort  in  the  second  half  of
1975 with the same joint venture of companies, which built the Effelsberg telescope.
At this  time  the author  joined the  MPIfR  and  became Project  Manager  of  the  MRT
jointly with Ben Hooghoudt.

  The  specifications  of  the  MRT  formed  a  formidable  challenge  for  the  designers,
who however had the Effelsberg telescope as a good point of departure. A straightfor-
ward  downscaling  of  the  100-m  antenna  could  be  expected  to  show  the  required
small  surface  error  of  not  more  than  0.1  mm  rms.  There  were  however  serious
complications  with  this.  First,  we  needed  to  account  for  the  severe  weather  condi-
tions,  which  could  be expected  at  the high  mountain  site,  planned  for  the  telescope.
These could include icing  storms and  very high wind speeds.  Second,  we wanted to
arrange  for  a  spacious  and  easily  accessible  room  for  the  receivers  to  ease  their
operation  and  maintenance  and  to  allow  a  quick  change  of  system  depending  on
atmospheric conditions. This precluded prime focus operation and a Cassegrain room
in a scaled Effelsberg antenna would be both difficult to access and too small. Thus it
was clear that the highly symmetrical  "umbrella" support  of the Effelsberg telescope
had to be abandoned. Nevertheless, a highly homologous reflector structure would be
required to fulfill the surface specification. 

  The pointing specification of 1 arcsec also was well beyond what had been realised
in  antennas  of  similar  size,  and  moreover,  this  accuracy  had  to  be  maintained  in  a
wind speed of 10 m/s. Experience with other telescopes had taught us that there must
be  a  match  between  surface  accuracy  and  pointing  for  a  telescope  to  be  effective.
Older  instruments  often  showed  a  better  surface  than  expected,  but  this  could  nor-
mally  not  be  exploited  because  of  lack  of  pointing  accuracy  and  stability.  Thus  the
designers  were  told  that  pointing  and  surface  were  of  equal  importance  and  should
remain "matched" under all  operational conditions.  Next  to the wind, we determined
that variations and gradients  of the temperature throughout the structure could easily
cause  deformations  large  enough  to  jeopardise  the  telescope  performance.  Control-
ling the influence of these thus became a major requirement for the design.

  The requirements  for  the  MRT originated  in the  experience  with  other  telescopes,
notably  the  NRAO  140-ft  and  36-ft  telescopes,  as  well  as  early  operation  of  the
Effelsberg telescope.  For  the first  time this  was all  bundled  into one comprehensive
specification, more in terms of operational performance than of structural tolerances.
Consequently,  a  very  close  collaboration  between  the  industrial  designers  and  the
astronomers/engineers  of  the  MPIfR  was  established  from  the  early  design  phase
throughout the commissioning of the instrument.
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ing  each  three  conceptual  designs.  Of  those,  the  one  shown  in  the  cross-section  of
Fig. 7.10 was chosen. It is a compact, "turnstile", alt-azimuth antenna, well suited for
operation  exposed  to  the  hostile  climate  of  high  mountains.  All  drive  and  receiver
systems are accommodated in a two-storey cabin. The entire structure, apart from the
reflector  surface,  of  course,  is  covered  by  heat-insulating  panels,  which  themselves
can  be  heated  to  avoid  excessive  deposit  of  ice  during  icing  storms  (Fig.  7.11).  By
1975  advanced  finite  element  analysis  programs,  like  NASTRAN  and  STRUDL,
were available along with sufficient computing power, so that complete structures 

Fig. 7.10.  Cross section  of the MRT. A concrete  pedestal  (1) supports  a 5 m diameter  azimuth  bearing  (2).
The  2-storey  cabin  (3)  is  placed  between  the  elevation  bearings.  A  yoke  and  cone-section  (4),  supported
at  the  elevation  bearings  carries  the  reflector  (5).  Thermal  insulation  (6)  covers  the  entire  outside  of  the
antenna;  it is also present between reflector  panels and their support  structure.
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like  the  reflector  could  be  analysed.  This  made  the  detailed  analysis  of  structures
with limited symmetry possible.  In the MRT the reflector  backup structure  (BUS) is
composed of a space frame of 20 sections.  It is a homologous structure and in order
to exploit that, it must be supported by a mount structure which shows equal stiffness
at the attachment points. This was realised by a box-like yoke structure, supported at
the elevation bearings, with a cone shaped extension terminating in a round, flat plate
of 14 m diameter. The BUS is attached to this plate at 40 points on the outer circum-
ference.  The  entire  structure  will  now  behave  in  a  homologous  way,  if  the  plate
remains  flat  and  round  with  varying  elevation  angle.  (Brandt  and  Gatzlaff,  1981,
Eschenauer  et  al.,  1980).  This  structure  does  not  reach  a  homologous  behaviour  as
well as the Effelsberg design.  To obtain  the required small  deformations  a consider-
able amount of stiffness,  hence steel, was put into the structure.  Actually,  to survive
the specified survival loads, 200 km/h wind with 30 cm of ice on the structure, more
steel  was  needed  than  required  for  stiffness.  This  is  a  general  feature  of  exposed
antennas. There was another reason not to concentrate solely on achieving maximum
homology. As pointed out above,  achieving excellent  pointing stability under  opera-
tional  conditions  was  of  equal  importance.  This  led  to  the  idea  to  incorporate  the
quadripod support of the subreflector into the overall structural design. Often the  

Fig. 7.11.  The IRAM 30-m Millimeter  Radio  Telescope  (MRT) at 2850  m on Pico Veleta,  Spain.  The collar
on  top  is  to  avoid  ice  falling  from  the  rim  onto  the  reflector.  The  reflector  itself  can  be  heated  from  the
back to avoid ice deposit  during icing storms. (Photo by the author,  IRAM)
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quadripod  has  been supported  by the  mount,  independent  from the  reflector.  Here it
was made part of the BUS structure and the deformations of the entire structure were
optimised to obtain  small  pointing and reflector  errors,  both as function of elevation
angle  and under  wind influence.  Thus in the MRT the pointing errors  caused by the
bending of the reflector  and the quadripod (see Sec. 5.5.1) compensate each other to
a  large  degree.  This  is  shown  in  Table  7.2,  where  the  static  pointing  errors  under
gravity for the primary and secondary focus are given as function of elevation angle.
The pointing jitter under wind of 12 m/s was calculated to be less than one arcsecs.

Table 7.2  Static pointing error due to gravity
          Elevation     Static pointing error (arcseconds)
          angle (deg) primary focus secondary focus
          -----------------------------------------------------------------------------
                0      -26.7        8.7
              30      -17.5        4.6
              50         0.0        0.0
              60       11.4       -2.7
              90       52.5     -11.5

Fig. 7.12.  Computed  residual  deformations  (in mm) of the reflector  from the best-fit  paraboloid  in
horizon  and  zenith  position,  assuming  a  perfect  setting  at  50˚  elevation  angle.  The  rms
deformation  is 55 mm.

  The  residual  structural  deformation  as  function  of  elevation,  the  deviation  from
perfect  homology,  is  illustrated  in  Fig.  7.12,  where  the  surface  error  is  shown  for
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horizon  and  zenith  pointing,  whereby  we  assume  that  the  surface  was  set  to  the
theoretical  paraboloid  at  elevation  angle  of  50  degrees  (See  Sec.7.2).  This  will  be
successful  only  if  the  surface  can  be  measured  and  hence  set  at  that  angle.  It  was
achieved for the MRT by holographic measurement of the surface at 22 GHz with the
aid of a strong radio source at the appropriate elevation (Sec.6.1). 

  There remains to describe the methods used to control the influence of temperature
variations.  It  is  clear  from a  simple  calculation,  and  experienced  widely  in practice,
that  the  asymmetrical  heating  of  the  antenna  structure  by  the  Sun  can  cause  large
pointing errors and significant deterioration of the surface shape, often in the form of
large-scale, comatic or astigmatic deformations. Thus it was clear from the onset that
for the MRT these should be kept below 0.1 mm, which means controlling  tempera-
ture gradients  to about  1 K. The first  measure  was to cover the entire  outside of the
telescope  with  insulating  panels  of  polyurethane  (Fig.  7.11).  Because  the  site  was
known  to  exhibit  icing  storms,  heating  elements  were  embedded  in  these  panels,
which  are  switched  on  during  icing  conditions.  The  concrete  pedestal  and  the  mas-
sive  steel  azimuth  and  elevation  structures  have  a  long  thermal  time  constant  and
maintain  a  constant  temperature  to  within  one  degree  Celsius  during  a  24  hour
period.  Slow  seasonal  changes  are  allowed  without  influencing  the  performance  of
the telescope.

  The situation is different with the reflector  and BUS. During daytime, the Sun will
often illuminate (part of) the reflector and despite a thin, white, heat-reflecting paint,
a considerable heat flow through the panel must be expected. To keep this heat from
entering the BUS volume, insulation was also placed between the panel surface and 

Fig.  7.13.  Change  in  focal  length  as function  of  the difference  in temperature  between  BUS and yoke.
The stable,  linear relationship  is routinely  used in the focus control  software.
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the  BUS  space-frame.  The  connections  from  the  panels  to  the  BUS  are  invar,  low
heat-conducting  adjusters.  Calculations  indicated  that  the  thermal  time  constant  of
the  BUS  was  only  of  the  order  of  one  hour  and  hence  a  significant  daily  thermal
deformation of the BUS could be expected,  despite the insulation around it. We also
determined that a difference between the BUS and its supporting yoke-cone structure
leads  to  a  symmetrical  deformation  of  the  BUS  and  a  concomitant  change  in  focal
length.  This  was  later  confirmed  by  measurement  and  shown in Fig.  7.13.  Thus  the
BUS is kept at the temperature of the yoke by a system of regulated airflow, created
by five large fans and a ducting system which creates a slowly circulating  airflow to
maintain  a  homogeneous  temperature  field.  The  air  can  be  heated  or  cooled  as
required.  The quadripod is  also insulated  and maintained  at  constant  temperature  by
regulated liquid flow through a spiraling tube around the legs.

  This system contributes significantly to the stable performance of the antenna. Over
the years  with  long  and  careful  measurements  and  analysis,  some weak points  have
been  identified  and  improvements  were  implemented.  These  are  described  in  an
interesting paper by Greve et al (2005).  In particular it  could be demonstrated that a
Finite Element  Model of the antenna, loaded with a certain  temperature distribution,
accurately  predicts  the  resulting deformations.  Thus  it  is  now possible  to  predict  by
temperature measurements  how the surface will deform and which corrections to the
panel  positions  would  be  needed.  Unfortunately,  the  MRT  panels  do  not  have
motorised  adjusters.  But  these  deformations  are  normally  large  scale  and  correction
should  be  possible  by  a  deformable  secondary  or  tertiary  mirror  -  an  example  of
adaptive optics applied to a radio telescope (Greve et al, 1996).

  Summarising,  the MRT has surpassed in all aspects the original  specifications.  For
more information see Baars et al., 1987 and 1994. Over the 20 years of its operation
the telescope has  been improved  in performance  on the basis of long term measure-
ments  and analysis;  examples were mentioned above.  It is the most powerful  instru-
ment  for  the  short  millimeter  wavelength  range  (100-350  GHz),  but  it  is  being
challenged by the 50 m diameter Large Millimeter  Telescope (LMT), which we will
discuss below.

  The  MRT  uses  predominantly  the  traditional  materials  steel  and  aluminium  with
one  exception:  the  secondary  reflector  of  2  m  diameter  employs  carbon-fiber  rein-
forced  plastic  (CFRP).  This  material  was  chosen  primarily  for  its  low  weight,
because  of  the  need  for  a  chopping  secondary  to  suppress  atmospheric  fluctuations
(see  Sec.  6.3.5).  A  second  great  advantage  is  its  very  small  coefficient  of  thermal
expansion.  The  mirror  was  designed  and  fabricated  by  Dornier  in  the  form  of  a
composite  structure  of  CFRP  skins  bonded  to  an  aluminium  honeycomb  core.  The
specification  of 25 mm could  not be guaranteed  by Dornier  and  we agreed  to accept
the mirror if it was not worse than 50 mm. The fabricator met the challenge magnifi-
cently and  delivered  a  secondary  with  15  mm rms surface  quality.  After  20  years  of
service  and  more  than  5  million  chopping  cycles,  there  is  no  indication  of  any
deterioration in the reflector. 

  We will  now move  on  to the discussion  of a  telescope,  in which  the use of CFRP
was unavoidable to satisfy the extreme specifications.
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‡ 7.6. The Heinrich Hertz Submillimeter Telescope (HHT)

The first good experiences with a CFRP mirror and the excellent thermal and mechani-
cal  properties  of  the  material,  along  with  its  relative  low  weight,  made  it  an  attrac-
tive,  be  it  relatively  expensive,  choice  for  structures  with  specifications  more  strin-
gent than those of the MRT. The requirements for the mobile antennas of the IRAM
Millimeter Interferometer (Guilloteau et al., 1992) included transportability along rail
tracks between observing stations, suppression of thermal deformations and a surface
accuracy goal of 50 mm. Clearly, the use of CFRP offers an attractive alternative and
indeed the  material  was widely used in the three 15-m diameter  antennas.  The BUS
is a space-frame structure  of a combination of steel and CFRP tubular members  and
the  surface  panels  are  a  composite  of  aluminium  honeycomb  with  CFRP  skins,
similar to the technology used for the MRT subreflector. 

  This  development  took  place  parallel  to the  construction  of  the  MRT and  spurned
interest  within  the  MPIfR  for  the  design  and  construction  of  an even more  accurate
telescope,  which  would  be  usable  to  a  smallest  wavelength  of  about  300  mm.  This
submillimeter  region of  the spectrum was essentially  unexplored but promised to be
of  great  interest  for  astronomy.  Two telescopes  were  under  construction  in  the  mid
eighties,  which  aimed to penetrate  into this  spectral  region: the 15-m JCMT and  the
10-m Caltech submillimeter telescope, both located on Hawaii (see Ch. 1 for pictures
and references).

  At the MPIfR we set our goal to design and build a telescope which would comple-
ment  the  MRT  towards  submillimeter  wavelengths.  Our  goal  was  to  achieve  good
performance  in  the  wavelength  window near  0.3  mm,  where  the  atmosphere  can  be
acceptably transparent from the highest mountain sites. A collaboration with Steward
Observatory  at the University  of Arizona  in Tucson was established and the 3200 m
high Mt. Graham in the Pinaleno Mountains of eastern Arizona was selected as site. 

  We started design studies in 1984 with the companies Krupp Antennentechnik and
Dornier. It was quickly established that a temperature controlled steel and aluminium
structure  was  not  feasible  for  the  stringent  requirements  on  the  stability  of  the
antenna.  Thus we concentrated  on the use of CFRP for major  parts of the telescope.
In  the  event,  Dornier  was  replaced  by  MAN-Technologie  in  the  decisive  phases  of
the design and construction. 

  The  major  operational  requirements  for  the  submillimeter  telescope  (SMT)  were
quite similar  to those for  the MRT, but several factors  contributed to a rather  differ-
ent design.  First, we realised early that the much smaller  size of the structure would
not leave  sufficient  space  for  receivers  in a  cabin behind  the vertex  of  the reflector.
The  alternative  of  a  Nasmyth  focus  was  chosen,  which  is  realised  by  placing  a  flat
mirror  on  the  elevation  axis  under  45˚  to  the  beam  coming  from  the  secondary
reflector, thereby deflecting this beam by 90˚ along the elevation axis through a hole
in the bearing to the outside of the mount. Because only extremely dry, and therefore
high,  mountain  sites  will  enable  observations  near  1  THz  (and  that  only  for  part  of
the time),  it  was decided  to place  the antenna  in a  protective building,  which  would
be  opened  during  observations.  This  moves  the  survival  conditions  for  extreme
weather from the antenna to the building. 
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  Next  we designed  the  interior  of the building  to provide  large  rooms for  receivers
directly adjacent  to the outside  of the elevation  bearings, that is around the Nasmyth
focus. The building could also easily accommodate a control room and electronic and
mechanical workshop. The enclosure, designed at Steward Observatory, is a co-rotat-
ing  barn.  The  two  roof  panels  and  front  doors  open  wide  during  observations  (Fig.
7.14). With this arrangement, the antenna design need not be concerned with survival
conditions  and  can  concentrate  on  minimising  gravitational,  wind  and  thermal
deformations  under observing  conditions.  Because of the strong absorption  by water
vapour  at  submillimeter  wavelengths,  these  conditions  imply  a  clear  sky,  but  it  can
include relatively strong wind. 

Fig. 7.14.  The HHT on Mt. Graham,  Arizona.  The enclosure  rotates  with the telescope.  Receiver
and  control  rooms  are  just  visible  behind  the  reflector.  The  doors  and  roof  panels  are  closed
during inclement  weather.  (Photo by the author)
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It was decided from the onset to realise the reflector backup structure (BUS) in
CFRP.  A major  complication  in  the  design  of  an  all-CFRP  space-frame  structure  is
presented by the nodes.  In the mid nineties (and even at the time of writing,  2006) a
node  where  up  to  eight  or  nine  tubes  are  joined  poses  a  formidable  design  and
manufacturing  challenge,  when  realised  in  CFRP.  Thus,  the  early  concepts  for  the
BUS, worked out by Dornier, considered a BUS in the form of a box structure from
epoxied  and  riveted  CFRP  plates.  A  viable  construction  was  designed,  but  not
realised. Eventually,  the construction contract  was placed with Krupp Antennentech-
nik for  the entire  mount and BUS and to MAN Technologie for the reflector panels.
Krupp  decided  to  apply  their  great  expertise  in  space-frame  design  on  a  structure
made of CFRP.  The node problem was summarily  solved  by using  invar  steel.  This
has  the  interesting  consequence  that  the  weight  of  the  steel  nodes  is  about  equal  to
that of the CFRP tubes. Because CFRP is about 4 times lighter than steel, the overall
weight of the BUS is still rather small, compared to similar steel structures.

Fig.  7.15.  Cross-section  through  the  HHT.  The  concrete  pier  carries  the  antenna;  the  azimuth
and  elevation  sections  are  made  of  steel  and  are  insulated  to  stabilise  the  temperature.  The
BUS and the quadripod  are made of CFRP.

  The  composite  nature  of  CFRP  presents  the  design  engineer  with  additional  free
parameters  in  the  layout  of  the  structure  and  the  detailed  composition  of  the  struc-

7.6. The Heinrich Hertz Submillimeter Telescope (HHT) 227



tural  members.  The  fibers  can  be  obtained  with  different  values  for  the  modulus  of
elasticity  and  the  percentage  of  fiber  in  the  final  composite  CFRP  tube  can  also  be
varied,  as  well  as  the  way  the  fibers  are  embedded  in  the  resin.  Thus  stiffness,
thermal  expansion  coefficient  and  even  hygroscopic  behaviour  can  be  chosen  to
obtain an optimal structural behaviour under gravity and varying thermal and humid-
ity  conditions.  The  design  group  at  Krupp  undertook  the  challenge  to  perform  a
simultaneous  multi-parameter  optimisation  of  the  CFRP  members  and  space-frame
structure as a whole with the goal to obtain a structure with an optimum distribution
of  gravitational,  thermal  and  humidity  deformations  (Stenvers  and  Wilms,  1989,
Mäder  et  al.,  1990).  This  design  effort  was accompanied  by  laboratory  experiments
to  check  the  calculated  parameters  against  measurements.  As  an  example  we  show
the results on a single CFRP member in Table 7.3.

Table  7.3.  Calculated  and  measured  parameters  of  structural  member       
of CFRP tube with invar steel node

Parameter Calculation Measurement
Tube Member Tube Member

----------------------------------------------------------------------------------------------
Compliance (mm kN-1) 8.29 10.75 8.16 10.76
Thermal expansion coef. (10-6 K-1 ) 0.33   0.62 0.31   0.65
Swelling coef. (10-6 percent-1 ) 158 121 >120   ---

  A cross-section  drawing  of the  antenna  is shown in Fig.  7.15.  The mount  is tradi-
tional and made of steel. The structural optimisation included the steel section of the
elevation  structure,  the  CFRP  BUS  and  the  CFRP  quadripod  simultaneously.  The
cone-section of the elevation  structure  terminate in a flat  disc and the CFRP BUS is
supported by 24 steel blades ("knife-edges") placed along the outer circumference of
the disc. The new aspect of this design is the optimisation of the structure for several
loading  conditions  simultaneously.  The  design  team  succeeded  beautifully  and  the
specifications were significantly surpassed for most conditions.

  The  fabrication  of  the  reflector  panels  also  involved  some  new  aspects.  MAN
Technologie  had  obtained  considerable  experience  in  the  replication  of  CFRP
composite panels from steel molds for the antennas of the IRAM interferometer. Our
specification  of  7  mm  manufacturing  accuracy  was  however  more  than  twice  as
severe.  The  panels  are  composed  of an  aluminium honeycomb core  to which  CFRP
plates  are  bonded  on  both  sides.  The  parabolic  form  is  obtained  by  lay-up  of  the
CFRP prepreg on the curved mold and the panel on the mold is cured at high tempera-
ture to obtain  its  final shape.  Two new elements  enabled us  to achieve  the specified
goal. For the molds we used pyrex glass, ground to 3 mm rms accuracy at the Optical
Sciences  Center  of  the  University  of  Arizona.  The  design  of  the  composite  panel
aimed  at  a  thermal  expansion  coefficient  of  3  ÿ 10-6 K-1 ,  equal  to  that  of  the  mold
material.  This  would  minimize  the  introduction  of  stresses  during  the  heating  and
cooling  procedures  of  the  fabrication.  However,  a  slight  warping  of  the  panel  after
release  from  the  mold  could  be  expected.  These  were  corrected  in  the  final  surface
measurement by the existence of 5 or 6 adjusters per panel. Small scale errors within
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the panel surface were removed by a second lay-up on the mold in which the reflect-
ing  aluminium  foil  of  40  mm  thickness  was  bonded  to  the  panel  in  a  cold-curing
process.  A  consequence  of  this  procedure  is  that  the  physical  temperature  of  the
panels  must  stay  below  50  C.  This  is  not  a  problem  at  the  site  which  is  at  3200  m
elevation,  but  it  required  caution  during  storage  over  a  Tucson  summer  where  air
temperatures of more than 40 C are not uncommon. 

  The  overall  performance  of  the  antenna,  along  with  the  major  specifications,  is
summarised in Table 7.4. All specifications have been surpassed and the final overall
rms  surface  error  is  about  12  mm,  the  lowest  value  achieved  to  date  with  a  10  m
diameter  antenna.  The  surface  measurement  was  done  with  holography,  using  the
LES 8 satellite at a frequency of 37 GHz (Baars et al., 1999). 

       Table 7.4.  HHT specifications and achieved performance
Error component    Specification        Achieved

----------------------------------------------------------------------------------------------
Homology imperfection, assembly 7 < 3
Space-frame residual deformation 7 < 6
Panel fabrication 7    6
Panel residual deformation 7 < 5
---------------------------------------------------------------------------------------------
rss of structural/fabrication error           14      10
Reflector setting allowance           10    7
---------------------------------------------------------------------------------------------
Overall rss error (mm)           17  12

‡ 7.7. The Large Millimeter Telescope (LMT)

With the construction of the HHT we had reached a new record in the size of a radio
telescope, if one takes the shortest operational wavelength as the unit of length. This
is  illustrated  in  Fig.  7.1,  where  the  "precision"  of  the  reflector  is  plotted  against
diameter.  Taking  the  minimum  wavelength  as  16  e,  we  see  that  the  most  accurate
telescopes reach a resolution of 5 - 10 arcseconds at the shortest wavelength. In view
of the atmospheric absorption at frequencies above 1 THz it seems barely worthwhile
to push  for  increased  surface  accuracy  to  10  mm or  less.  Even  at  the  best  terrestrial
sites, now under development,  like Chajnantor  at 5000 - 5500 m altitude in northern
Chile  or  the  South pole,  the  windows  between 1  and  2  THz will  "open up" only  on
rare occasions.  But on  a good site with long-term adequate transmissivity  up  to 400
GHz,  one  might  consider  operating  a  telescope  with  a  surface  accuracy  comparable
to that of the MRT, but with a significantly larger diameter. 

  This idea was developed during 1994 in discussions between astronomers  from the
"Instituto  nacional  de  Astrofísica,  Óptica  y  Electrónica"  (INAOE)  in  Tonantzintla,
Mexico  and  the  University  of  Massachusetts  (UMass)  in Amherst,  MA,  USA.  Both
were  looking  towards  expansion  of  their  activities.  UMass  had  operated  for  almost
20 years  a  14  m millimeter  telescope  nearby  on  a  mediocre  site  and  there  appeared
room  for  a  new  large  astronomy  project  in  Mexico.  The  two  institutes  proposed  to
jointly build and operate a large mm-telescope on a very high mountain in Mexico.  
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This resulted in the LMT/GTM-Project (Large Millimeter Telescope / Gran Telesco-
pio  Milimétrico)  with  a  goal  to  design  and  construct  a  50  m  diameter  Cassegrain
antenna  on the  4600 m high  Cerro  la  Negra in central  Mexico.  The scientific  desire
was  to  observe  to  a  wavelength  of  1  mm,  perhaps  0.8  mm,  and  hence  the  primary
specification was set to 75 mm reflector surface rms error, with a goal of 70 mm, and
a  pointing  accuracy  and  stability  of  1  arcsecond,  goal  0.6  arcsecond.  These  are
formidable specifications, which have barely been met with the MRT, which with its
diameter of 30 m has just over one third of the reflector area of the LMT.

  The  first  conceptual  design  for  the  telescope  placed  the  antenna  inside  a  fixed
radome with a skin  transparent  to millimeter  waves.  This was a  natural  way (the 14
m telescope was also enclosed in a radome) to avoid the influences  of wind and  the
extreme  weather  conditions  directly  on  the  antenna.  Thus  the  antenna  could  be
light-weight,  because  survival  conditions  are  essentially  moved  to  the  radome.  But
there are serious issues with other aspects of the operation. As we have noted before,
the  thermal  equilibrium  of  the  telescope  structure  is  of  the  utmost  importance  to
reach the specifications.  This is difficult  to realise in a closed space with transparent
walls.  Strong  stratification  of  the  air  will  occur,  leading  to  large  temperature  gradi-
ents  over the  height  of the  structure,  unless  the air is mixed by large blowers  inside
the radome.  This  would  be tantamount  to  placing  the  antenna  constantly  in  a  rather
strong wind. Then there is the need for the radome to survive the extreme conditions
of storm  and  possibly  snow  and  ice.  This  amounts  to putting  the material  saved for
the antenna into the support  structure of the radome. Finally, and most severely, any
currently  available  radome  fabric  with  sufficient  strength  causes  significant  loss  to
the  received  radiation  at  short  mm-wavelengths.  For  a  discussion  of  these  aspects,
see Baars (1983).

  Eventually, it was decided to consider also an "exposed" design. After all, the MRT
in  Spain  had  been  operating  successfully  for  about  10  years  in  extreme  conditions
similar  to  those on  Cerro  la  Negra.  Thus in September  1997  a request  for  quotation
was issued, which gave bidders the option of a radome enclosed or exposed solution.
Three offers were received with highly different characteristics. One was a relatively
lightweight  antenna  in  a  radome  of  60  m  diameter,  the  others  were  exposed  tele-
scopes. A highly optimised homologous structure with a BUS completely realised in
CFRP  was  posed  against  a  homologous  steel  structure  with  an  "active"  reflector
surface consisting  of 180 sectors  each  controlled  in position  by motorised  adjusters.
The choice went to the last design, the main aspects of which we summarise now.

  The  LMT  design  originates  with  MAN Technologie  and  shows  strong  similarities
with the 30 m MRT. A cross-section of the telescope is shown in Fig. 7.16. There are
however a number of differences and original design features which deserve descrip-
tion.  These  originate  in  the  awareness  that  a  structure  of  this  size  and  performance
cannot  be  built  passively  for  an  economic  price,  if  at  all.  It  will  be  necessary  to
introduce "active" features in the design to satisfy the major specifications of surface
and pointing accuracy. In the LMT these are:

- actuator system for the correction of the reflector surface contour,        
- sensor system for the main structural deformations, mainly in the mount,      
- optical positioning system for the secondary reflector.
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reduce  the  rms  surface  error  and  improve  the  pointing  accuracy  by about  a  factor  5
under  the  defined  environmental  conditions.  To  reach  our  goal  we  have  thus  added
electrical,  mechanical  and  optical  elements  to  the  purely  structural  design  of  the
telescope; this procedure is called mechatronics (Kärcher, 1999, 2006).

  A  structure  similar  to  that  of  the  MRT,  but  enlarged  to  50  m diameter,  will  show
deviations from pure homology about three times as large, because the deformations
scale  with  the  square  of  the  diameter.  Thus  we must  count  with a  surface  deviation
on  the  basis  of  gravity  only  of  the  order  of  200  mm.  The  second  major  problem  is
posed by  the  pointing  specification.  It  is  unlikely  that  a  50  m diameter  "sail"  in the
operational  wind  of  10  m/s  can  be  held  stable  to  one  arcsecond  without  some  fast,
active  correction  mechanism.  Also,  the  deformations  due  to  temperature  gradients
must be controlled or corrected which is twice as hard as in the case of the MRT (see
Sec.7.2). These facts force us to employ the mechatronics aspects in the design. 

Fig.  7.16.  Cross-section  through  the  LMT.  The  green  concrete  foundation  carries  the  antenna
on  4  bogies  and  a  bearing  atop  the  central  concrete  pier.  The  alidade  (gray)  and  elevation
section  (purple)  are made of  steel,  as are the  BUS (brown)  and quadripod.  Note  the man in the
basement  for scale. (Drawing  LMT Project)
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But there are more mundane problems in going from 30 to 50 m diameter. For
instance,  it  was determined  that  the  single,  large  azimuth  roller  bearing,  used  in the
MRT,  could  not  be  realised.  In  the  LMT  alidade  the  vertical  load  is  carried  by  4
bogies,  each  with 4  wheels,  onto the  rail  track  with  a diameter  of  25 m.  The lateral
loads  are  carried  by  a  pintle  bearing  which  is  placed  on  top  of  a  central  concrete
pillar.  This  minimises  turn-over  moments  and  contributes  significantly  to  reducing
pointing  errors  originating  in  the  alidade.  In  the  elevation  yoke  the  support  for  the
reflector  backup  structure  (BUS)  is  realised  by  the  four  corner  points  of  the  ballast
arms, quite similar to the solution presented before for the WSRT antennas. The BUS
is a  homologous  space-frame  structure.  The calculated  gravitational  deformations  in
zenith and horizon position  are illustrated in Fig.  7.17.  These are more than a factor
ten  larger  than  allowed  in  the  specification  and  will  be  compensated  by  the  active
surface.  The  accuracy  of  current  finite  element  analysis  programs  is  such  that  this
correction  can  be  performed  reliably.  The  stiffness  of  the  BUS is  sufficient  to keep
wind induced deformations of the reflector at an acceptable level without the need to
correct these in real time. Such a correction would require a fast, real-time measure-
ment  of the deformations  or the detailed wind  pressure  over the surface  from which
the  deformations  could  be  calculated.  The  100-m  diameter  Green  Bank  Telescope
has provisions for such a measurement but it has not yet been fully implemented. 

  As was mentioned earlier, a serious source of deformation is caused by temperature
differences  in  the  structure.  The  solutions  chosen  for  the  LMT  are  quite  similar  to
those of the MRT. All steel parts are covered by thermal insulation and the air in the
BUS  volume  is  constantly  circulated  by  fans  to  avoid  stratification.  There  remains
the problem of the vastly different thermal time constant between the space-frame of  

Fig.  7.17.  Computed  reflector  deformations  of  the  LMT  from  gravity  for  the  zenith  and  horizon
positions.  The values  300-400  mm are so much  above  the specification  that active control  of the
surface will be necessary.

the  BUS  and  the  heavy  thick  members  of  the  alidade.  This  necessarily  leads  to  a
slowly changing temperature difference between BUS and the alidade and a concomi-
tant large-scale deformation of the BUS. This behaviour is very similar to that found
in  the  MRT.  The  presence  of  remotely  controlled  surface  adjustment  enables  us  to
correct  for  these  deformations  on the  basis  of  calculations  using  measured  tempera-
ture fields in the structure. We described this procedure in the discussion of the MRT.

  We come now to the important  aspect of the pointing accuracy.  For a telescope of
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expect  to  obtain  a  pointing  stability  of  better  than  3-5  arcseconds  in  the  specified
operational  wind of 10  m/s. So also here  we shall  need to introduce active elements
in  addition  to  the  encoder-servo  system.  Kärcher  (1999)  has  suggested  the  term
"flexible  body  compensation"  (FBC).  The  temperature  measurements  leading  to  a
reflector  adjustment,  just  discussed  are  an  example  of  such  an  FBC.  For  correcting
the pointing errors we need sensors for the measurement of those structural deforma-
tions  which  lead  to  pointing  change  without  being  sensed  by  the  angle  encoders  on
the main axes.  Those caused by gravity  will be constant  in time and only dependent
on  elevation  angle.  They  are  encompassed  in  the  overall  pointing  model  (see  Sec.
5.5). The errors of a dynamical nature, caused by the wind, lead to bending mainly of
the alidade. We remarked already that the reflector  itself is sufficiently stiff to avoid
significant  deformation under wind influence.  It acts as a "sail" and causes moments
on the  alidade  leading  to pointing  errors.  In the  LMT a  set  of  inclinometers,  placed
on top  of the elevation bearings,  senses the bending in elevation  and cross-elevation
direction.  Together  with  a  highly  optimised  servo-control  system  this  brings  the
pointing  errors  within  the  specification.  Simulations  indicate  that  the  FBC  system
reduces  the wind  induced  pointing  errors  by about  an order  of magnitude  to an rms
error of 0.8 arcsecond in 10 m/s wind.

  As a  last  item,  the position  of the  secondary  reflector  is also monitored  by a  laser
tracker  system.  This  enables  corrections  for  quadripod deformation.  This  is  a  rather
straightforward extension of the actuator control of the subreflector, needed to keep it
positioned  in  the  best-fit  focal  point  of  the  primary  reflector.  Position  shifts  due  to
temperature  and  wind  influences  are  sensed  by  the  laser  tracker  and  correction
signals are applied to the actuators.

Fig.  7.18.  The  panel  unit  of  the  LMT.  The  red-green  subframe  is  connected  to  the  BUS  by  4  actuators
(shown  in  blue  on  the  green  spars).  The  cyan  rectangle  with  4  blue  beams  is  the  isostatic  structure
providing  axial support  of the panel baseplate  (light blue). The green top layer is the reflecting  surface.

  We conclude the discussion of the LMT with a few remarks on the most important
part  of  the  telescope:  the  reflector  surface.  As  with  the  MRT,  it  was  decided  to
subdivide the surface in a relatively small number of panel units, which, in this case,
will be supported on their four corners by the motorised adjusters. The reflecting skin
of the units  will  be pre-adjusted  in the shop to the prescribed  paraboloid,  so  that  on

7.7. The Large Millimeter Telescope (LMT) 233



the  telescope  only  the  larger  units  need  to  be  measured  and  adjusted.  The  units  are
2

units and 720 adjusters. The error allowance of the panel units is 25 mm. This cannot
be  achieved  by  only  a  "hard"  support  of  the  unit  corners;  the  center  would  sag  by
about  300  mm.  This  is  solved  by  the  introduction  of  an  "isostatic"  intermediate
support, made of stainless steel, between the surface skin and the four-point support,
as illustrated in Fig.  7.18.  The intermediate  support  functions  similar  to the "whiffle
tree"  support  used  in optical  telescopes,  notably  the  10 m diameter  Keck  telescopes

8 points by the isostatic  structure and shows a deformation under gravity of only 10
mm.  This  baseplate  will  carry  the  surface,  for  which  several  options  are  available.
One  considered  is  a  continuous  CFRP  sheet  supported  on  some  200  adjusters  and
pre-adjusted  in  the  shop.  Another  possibility  is  the  use  of  a  number  (8)  of  separate
surface  plates.  For  the  inner  3  of  the  5  panel  unit  rings,  the  surface  will  indeed  be
composed of 8 subpanels  per unit, fabricated  in a new technology,  developed by the
company  Media Lario of  Italy  for  the European  ALMA prototype  antenna.  Because
historically this development came before its application to the LMT, we summarise
this  technology  below  in  the  section  on  the  ALMA  antennas.  These  panels  can  be
seen in Fig. 7.19, where the inner rings are being installed.

Fig. 7.19.  View of the  LMT backup  structure  with  the second  and third panel ring being  installed
(Sep.  2006).  The  approximately  5x2  m2  panels  each  carry  8  surface  plates.  Note  the  yellow
dust settled onto the surface  at the 4600 m high site. (E. Mendez,  INAOE)

  Once operational the LMT will provide exciting new observing capabilities.  At the
time of writing the mechanical assembly of the telescope is in an advanced state (see
Fig.  7.20).  The  project  is  plagued  by  cost  overruns  and  the  date  of  full  operation  is
uncertain. Once completed the telescope will add a collecting area of about 2000 m2

for  short  mm-wavelength  astronomy,  a  significant  increase  in  the  world's  supply.
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about  5  x  2  m ,  suitable  for  transportation  and  handling,  leading  to  a  total  of  180

on Hawaii (Nelson et al., 1983). The baseframe of aluminium is supported on



But,  as  is  the  case  with  all  single,  full  aperture  telescopes,  the  angular  resolution,
even  at  the  level  of  5-10",  is  still  about  an  order  of  magnitude  worse  than  that  of
optical telescopes.  A significantly  higher angular resolution can only be achieved by
the  application  of  interferometry  and  aperture  synthesis.  In  the  last  section  of  this
chapter  we  shall  discuss  some  of  the  features  of  the  antennas  of  a  high  resolution
array for submillimeter wavelengths as short as 0.3 mm.

Fig.  7.20.  The  50-m  diameter  LMT  under  construction  at  an  altitude  of  4600  m  on  Cerro  la
Negra, central  Mexico in summer 2006. (E. Mendez, INAOE)

‡ 7.8. The ALMA Prototype Antennas

For  more  than  15  years  astronomers  in  the  USA,  Japan  and  Europe  have  been
making plans for a large millimeter array, placed at a superb site. In 2000 these plans
were merged into the ALMA project, which is joint project of North America (USA
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and Canada) and Europe (ESO, representing 12 European countries) under participa-
tion  of  Japan  and  Taiwan.  The  project  comprises  54  antennas  of  12  m  diameter,
suitable for observations at 1 THz (0.3 mm wavelength) and equipped with receivers
in  the  entire  frequency  range  from  75  -  950  GHz.  In  addition,  there  will  be  a
"compact array" consisting of 12 antennas of 7 m diameter. The instrument is located
at  5000  m  altitude  in  the  Atacama  Desert  of  Northern  Chile,  hence  the  name  Ata-
cama Large Millimeter  Array (ALMA). Construction is under way and the full array
should be completed by 2012. 

  In the original independent  concepts  for a millimeter  array differences in scientific
emphasis  among  the  groups  led  to  the  choice  of  quite  different  antenna  diameters.
For the Americans the detailed mapping of extended objects was of highest priority.
This led to the proposal to build an array of 40 antennas of 8 m diameter.  In Europe
the emphasis was on the observation of weak extragalactic objects of relatively small
angular size. Hence there was a need for high sensitivity and the choice fell on dishes
of 15  m diameter.  The  Japanese considered  a  diameter  of  10 m as suitable  for  their
purpose. Eventually, a compromise was reached to select a diameter of 12 m with the
requirement that the antennas should operate well to a shortest wavelength of 0.3 mm.

  Because  the  project  plan  contained  up  to  64  of  these  antennas,  it  was  decided  to
develop a  prototype  first.  Both the US and  European  partner  placed a contract  for  a
prototype  antenna  with  two  different  companies.  The  specifications  are  stringent:
surface  rms  25  mm  with  a  goal  of  20  mm,  all  sky  absolute  pointing  2"  and  "local"
pointing and tracking stability 0.6" in 9 m/s wind and full thermal loading by the Sun
at  5000  m altitude.  There  are  two new  unusual  specifications  which  follow directly
from the  interferometric  mode  of  operation.  Any  differential  pathlength  variation  in
the  antenna  will  cause  a  change  in  the  recorded  phase  of  the  interferogram  and  be
indistinguishable  from  such  a  change  caused  by  the  brightness  distribution  of  the
observed object.  Thus  the  antennas  are required  to limit  pathlength  variations  in the
structure  to  less  than  15  mm  over  a  time  of  15-30  minutes.  Finally,  a  widely  used
mode of observation  will consist  of switching at  short  time intervals, in the order  of
10 seconds, between the main object of investigation and a calibration radio source, a
short  distance  on  the  sky  away.  To  enable  this  to  be  done  effectively,  the  antennas
must be able to switch between two positions on the sky 1.5 degree apart within 1.5
second of time. This puts high requirements on the drive and control system.

  The  antennas  will  moreover  be moved  between  some 200 baseline  stations  spread
across the site with maximum distances of 14 km. Thus a low weight is preferred, but
the  antenna  must  be  able  to  withstand  the  extreme  conditions  on  the  site,  which
includes  very strong  winds and  occasional  snow or  icing.  The US company Vertex-
RSI,  together  with  their  German  subsidiary  Vertex  Antennentechnik  (the  group
which  designed  the  HHT,  before  it  was  sold  by  Krupp  to  Vertex),  produced  an
antenna  under  contract  to  the  US  National  Radio  Astronomy  Observatory  (NRAO),
while  a  consortium  of  the  European  companies  Alcatel  and  European  Industrial
Engineering (EIE),  here  called AEC, delivered an antenna to the European  Southern
Observatory (ESO). Both antennas were erected at the site of the NRAO Very Large
Array  in  New  Mexico  (US)  and  subjected  to  an  extensive  program  of  technical
evaluation.  The  author  participated  in  this  program  and  in  the  following  pages  the
design  features  of  both  antennas  are  summarised  and  some  aspects  of  the  measure-
ment methods and equipment are presented. 
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  On  the  basis  of  the  performance  of  the  few  existing  submillimeter  antennas,  both
design  groups  decided  to  make  extensive  use  of  CFRP.  It  was  expected  that  this
would  avoid  the  need  to  incorporate  an  active  surface.  It  was  also  felt  that  the
demanding pointing accuracy would necessitate the use of metrology  (Flexible Body
Compensation)  to  correct  for  deformations  unseen  by  the  axis  position  encoders.
Finally, an economic solution had to be found for the mass production of the surface
panels at an accuracy better than 10 mm for a total area of almost 8000 m2. These all
formed significant challenges to the design engineers.

7.8.1. The VertexRSI design

The VertexRSI  antenna  is  shown in  Fig.  7.21.  The  mount  is  traditional,  made  from
steel, covered with thermal insulation on the outside. The base provides a three-point

Fig.  7.21.  Prototype  12  m  diameter  antenna  for  ALMA,  designed  and  built  by  VertexRSI.  Note
the  curved  quadripod  to  minimise  the  spherical  wave  aperture  blocking.  (N.Emerson,
NRAO/AUI)
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connection to the foundation, from which it can quickly be released for transportation
of  the  antenna  to  another  baseline  station.  The  fork  of  the  alidade  runs  on  a  roller
bearing of 2.5 m diameter.  The elevation structure rotates on two bearings in the top
of the yoke, providing a large receiver room directly behind the BUS. A receiver box
of 1 m3 can be accommodated  in this room. The elevation structure  is made of steel,
thermally  insulated  on  the  outside.  The  connection  from  the  receiver  cabin  to  the
BUS  is  realised  in  invar  steel  to  absorb  the  large  difference  in  thermal  expansion
between the steel of the receiver cabin and the CFRP of the BUS.

  The BUS is a box structure made from composite  plates  consisting  of CFRP skins
bonded  to  aluminium  honeycomb  cores.  There  are  24  sectors  providing  support  for
the surface panels.  Vertex has not used their proven space-frame solution,  pioneered
with  the  HHT,  thus  avoiding  the  expensive  fabrication  of  the  nodes  in  CFRP.
Although this was not exercised for one prototype, the box structure lends itself quite
well  to  the  use  of  assembly  templates  in  the  series  fabrication  of  the  antennas.
Consequently  the  choice  of  the  box  structure  undoubtedly  is  the  cheaper  solution.
These  structures  can  be  analysed  well  by  modern  finite  element  methods  and  the
deviation  from  homology  in  this  case  is  only  5  mm  rms.  As  we  have  seen  before,
apart from the lower weight, the CFRP BUS exhibits a very good thermal behaviour.

  As clearly  visible  in  Fig.  7.21,  the  quadripod support  of the  secondary  reflector  is
strongly curved.  This tends  to decrease  the spherical-wave  blocking (see Sec.4.5).  It
was  first  used  in  the  satellite  ground  station  at  Raisting,  Germany  in  1964.  In  the
ALMA  design,  the  Vertex  group  has  made  the  quadripod  part  of  the  load-bearing
structure, which results in a higher stiffness of the BUS-quadripod combination. The
geometrical blocking percentage lies just under 3 percent, as specified.  

  The reflector surface is composed of 8 rings of aluminium panels, for a total of 264,
each about 0.5 m2 in area. The surface is machined to an rms accuracy of 6 mm on an
accurate  milling  machine.  The  relatively  small  size  of  the  panels  is  caused  by  the
limited area coverage of the milling machine. Because the observation of the Sun for
sizeable  periods  of  time  is  a  requirement,  the  reflector  surface  must  be  specially
treated  to  avoid  concentration  of  solar  heat  on  the  subreflector  and  the  secondary
focus. Vertex tried several ways of scattering the solar visible radiation by the slight
grooves  of the  cutting  edge,  but  they proved  unsatisfactory  because of  the  "grating-
like" reflection patterns.  The final solution  is chemical etching of the surface,  which
gives  it  a  slight  roughness  at  the  1  mm  level,  which  scatters  the  visible  light  suffi-
ciently.

  The drives are pinion and gear-rack systems powered by dual dc-motors in anti-back-
lash  configuration.  To  meet  the  very  high  pointing  requirements  Vertex  includes  a
metrology system in the mount to determine the pointing errors which are not sensed
by  the  angle  encoders.  It  consists  of  an  independently  supported  CFRP  structure  in
the  forkarms  which  is  connected  through  displacement  sensors  to  the  elevation
bearings.  Together  with  a  set of  temperature  sensors  in the  steel  part  of the  antenna
these  should  help  to  correct  for  pointing  changes  due  to  wind  and  temperature
variations.

  The total weight of the VertexRSI prototype ALMA antenna is 108 tonnes, equally
divided over the azimuth and elevation sections.
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7.8.2. The Alcatel-EIE-Consortium (AEC) design

The AEC antenna is shown in Fig. 7.22. The mount of this antenna is also realised in
steel.  The  base  is  supported  on  the  foundation  by  six  flanges,  which  absorb  the
difference  in thermal  expansion  between  the  base and  the  concrete  foundation.  This
is  not  as  specified  for  the  final  array  and  the  production  antennas  will  have  a  three
point  support.  The  fork  runs  on  a  2.6  m  diameter  roller  bearing  and  the  elevation
structure rotates on two elevation bearings on top of the fork. In this design the entire
moving part of the elevation structure is made of CFRP, including the receiver cabin.
This minimises both the weight and the thermal expansion of this structure. The BUS
is  a  box  structure  consisting  of  16  sections.  The  members  are  full  CFRP  plates
bonded and bolted together to form the BUS. The computed homology deviation is 6
mm.  The  quadripod  is  a  thin,  straight  structure  and  the  geometrical  blocking  is  also
just under 3 percent.

Fig.  7.22.  Prototype  12  m antenna  for  ALMA  designed  and  built  by Actatel  -  European  Industrial
Engineering  Consortium.  This  antenna  employs  direct  drives  with  linear  motors.  The magnet  arc
of the elevation drive is well visible. (N. Emerson,  NRAO/AUI)

  The reflector is composed of 120 panels with an average area of about 1 m2 , placed
on the BUS in 5 concentric rings. A new panel technology has been developed by the
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company  Media  Lario  of  Italy.  It  is  an  application  of  electroformed,  replicated
surface  skins,  developed  for  the  XMM  (X-ray)  satellite  of  the  European  Space
Agency.  In  our  application  mechanically  figured  steel  molds  are  used  to  deposit
nickel  skins  of  about  1.5  mm  thickness  in  a  chemical  electroform  procedure.  The
form  and  surface  characteristics  of  the  replicated  skins  match  the  mold  extremely
precisely.  The  skins  are  then  bonded  to  a  core  of  aluminium  honeycomb  to  form  a
stiff,  lightweight  panel.  The  panel  accuracy  is  essentially  determined  by  that  of  the
mold and for the ALMA antenna the panels were manufactured with a surface rms of
about 8 mm. As mentioned above, such panels are also used on the LMT in Mexico.
An effective scattering of solar visible light (heat) is assured by the roughness at the
1 mm  scale  of  the  steel  molds.  A  slight  disadvantage  of  the  nickel  surface  is  its
relatively large absorptivity  for  heat.  This is counteracted  by a 200 nm thin layer  of
rhodium deposited onto the final front  surface of the panel.  An additional advantage
of  this  is  the  excellent  protection  against  environmental  influences.  The  replication
technique  is  especially  suitable  for  mass  productions,  as  will  be  needed  for  the
fabrication of the series of 25 or more ALMA production antennas. 

  The drive system of the AEC antennas is unusual  for a radio telescope.  It employs
direct drives with linear motors, hence it totally avoids gearboxes. The azimuth drive
is  placed  in  a  circle  near  the  large  roller  bearing.  The  elevation  drive  is  located
centrally  along  the  outside  of  the  receiver  cabin.   There  is  essentially  no  backlash
with  this  drive  system  and  the  drive  and  control  system  show  an  especially  good
performance in pointing and tracking stability under wind influence. Nevertheless,  to
meet  the  stringent  pointing  requirements  AEC  incorporates  a  metrology  system  to
measure the pointing errors which are not detected by the axis encoders. It consists of
a laser-based system in the forkarms  to measure  the shifts of the elevation  bearings,
together with a set of temperature sensors in the steel section of the antenna. No such
sensors are needed in the elevation section, because it is entirely realised in CFRP.

  The weight of the AEC prototype ALMA antenna is 80 tonnes, of which 65 percent
is taken by the azimuth structure and 35 percent by the elevation section. 

7.8.3. Performance evaluation of the ALMA prototype antennas

The two ALMA prototype antennas  were placed next  to each other and subjected to
an intensive  evaluation  program.  In this section we summarise  some of the methods
applied  for  this  evaluation.  The  results  of  the  program  have  been  published;  the
performance  of  the  antennas  is summarised  by Mangum et  al.  (2006),  while several
papers  have  been  written  with  descriptions  of  the  measurement  equipment  and
evaluation  methods  (Greve  and  Mangum  (2006),  Snel  et  al.(2007)  and  Baars  et
al.(2006)).

  The evaluation faced several challenges. First of all, no antenna had been built with
this combination of size and accuracy. Secondly, the site of the VLA in New Mexico
does not offer the atmospheric conditions necessary for observations at submillimeter
wavelengths.  Thus  the  usual  test  procedures,  as  described  in  this  book,  were  of
limited  use  and  we  were  forced  to  devise  other  measurement  methods  and  the
accompanying instruments to perform a satisfactory performance evaluation.
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Considering that the reflector accuracy should be better than 25 mm rms, it was out of
the  question  to  use  aperture  efficiency  measurements,  as  described  in  Sec.5.4.,  to
check  this  quantity.  We  used  near-field  radio  holography  at  3  mm  wavelength  to
measure and set the surfaces at a single elevation angle of 9 degrees. The discussion
of such  a  measurement  program has  been presented  in  Sec.6.1  with examples  taken
from the work on the ALMA antennas. The surfaces were set to an accuracy of about
16 mm with an estimated uncertainly of 5 mm. For details see Sec.6.1 and Baars et al.
(2006).

  The  antennas  were  equipped with  a receiver  for  3  and  1.2  mm wavelength.  Given
the  deficiencies  of  the  atmosphere  at  the  site,  combined  with  the  sparsity  of  suffi-
ciently  strong radio sources at  these wavelengths,  it would essentially  be impossible
to  determine  a  good  pointing  model  for  the  antennas.  To  ameliorate  the  situation,
each  antenna  was  equipped  with  an  optical  telescope  and  CCD-camera,  mounted in
the stiff BUS looking at the sky through a hole in the reflector. Using the abundantly
available  stars  it  is  now  possible  to  gather  data  for  a  good  pointing  model  of  the
antenna up  to the BUS structure.  We still need radio observations  to determine how
the  radio  beam  axis  deviates  from  the  optical  line  of  sight  as  function  of  elevation
angle  and  under  varying  conditions  as  changing  temperature.  However,  the  optical
telescope is an invaluable help in determining a starting pointing model and studying
pointing  stability  of  the  mount  and  BUS  under  wind  influence.  Once  the  optical
pointing  model  was  available,  the  millimeter  receivers  were  used  to  determine  the
offsets to the radio pointing by the use of a limited number of sources.

  By  placing  the  half-power  point  of  the  antenna  beam  on  the  radio  source,  small
variations  in  the  pointing  can  be  detected  by  the  relatively  large  change  in  output
signal. This method was used to obtain a reasonably good impression of the tracking
stability under wind. Further  information on the dynamical  behaviour of the antenna
under  wind  influence  was  obtained  from  a  set  of  10  accelerometers  which  were
placed at the rim of the BUS, in the apex near the secondary reflector and on the stiff
central  flange  for  the  receiver  box,  behind  the  vertex  of  the  primary  reflector.  By
double  integration  of  the  measured  accelerometer  signal,  data  could  be  obtained
about  the  actual  positional  changes  of  the  sensors.  This  enabled  us  to measure  both
pointing  variations  of  the  order  of  0.1  arcsecond  and  path  length  changes  of  a  few
micrometers  in  realistic  situations  under  actual  wind  influence.  This  diagnostic  tool
turned  out  to  be  extremely  useful  for  the  evaluation  of  the  antennas  and  could
certainly  find  application  in  other  cases.  The  details  of  the  method  can  be found  in
Snel et al. (2007).

  The unusual requirement of path length stability also forced us to devise a measure-
ment  method  for  this  quantity.  This  used  essentially  optical  distance  and  displace-
ment measurements  carried out with lasers, quadrant detectors and an API 5-degrees
of  freedom  laser-interferometer.  Several  critical  dimensions  in  the  antenna  were
checked with this equipment as function of elevation angle and with varying tempera-
ture. The measurement accuracy was a few micrometers and it enabled us to demon-
strate the adherence of the antennas to the specification (Greve and Mangum, 2006).
Some path length changes could also be measured with the aid of radio sources. For
instance,  the  variation  of  focal  length,  both  as  function  of  elevation  angle  and
temperature was shown in Sec. 5.5.
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  In winter the VLA site will occasionally allow observation near 1 mm wavelength.



it  has  been  possible  to  demonstrate  that  both  ALMA prototype  antennas  satisfy  the
stringent  specifications.  An  important  factor  is  the  extensive  use  of  CFRP  in  the
antenna  structure.  It  is  the  first  instance  in  which  a  box-type  backup  structure  pro-
vides a reflector support of this high accuracy and stability. Beyond this, there are no
entirely  new  design  aspects  or  technologies  employed.  The  antennas  are  however
very  well  designed  and  the  fabrication  properly  executed.  The  new  additions  of  the
mechanical  or optical  metrology systems did not perform to specification  during the
evaluation  phase.  It  is  all  the  more  remarkable  that  the  antennas  perform  close  to
their specifications  without these systems activated. Both ALMA prototype antennas
are by all consideration very good pieces of engineering.

  The  original  idea  behind  acquiring  two  prototypes  was  of  course  to  increase  the
chance for a successful design satisfying the very high demands and also to select the
best or cheapest on the basis of the evaluation. Eventually  several political,  manage-
rial  and  financial  circumstances  lead  to  the  decision  to  order  half  of  the  antennas
from each  of the two companies  and  let  each  of them deliver  antennas  of  their own
design.  It  is  hard  to  guess  what  would  have  happened  if  one  of  the  prototypes  had
been much better, much cheaper, or both than the other one. But in the current course
of the ALMA Project it is fortunate that both antennas comply with the specifications.

‡ 7.9. Conclusion

The aim of the short descriptions of these radio telescopes has been to highlight some
of the original design aspects of major antennas over the last 40 years. We have now
entered  the  era  in  which  extensive  metrology  and  active  control  of  the  reflector
surface  and  pointing  fluctuations  are  necessary  to  maintain  performance  under
operational  conditions.  The  GBT  and  LMT  are  examples  of  this  approach.  With
access to the superb sites in the Atacama Desert and the South Pole, astronomers are
proposing  to  build  submillimeter  telescopes  with  a  highest  frequency  well  above  1
THz,  and  larger  than  existing  ones.  One  example  is  the  Cornell-Caltech-Atacama-
Telescope  (CCAT).  The  proposal  entails  a  25  m  diameter  reflector  of  10  mm  rms
surface accuracy and a pointing accuracy of 0.35 arcsecond. On the other side of the
spectrum,  the  Square  Kilometer  Array  (SKA),  operating  in  the  frequency  band  100
MHz  -  25  GHz  might  be  realised  by  some  6000  dishes  of  approximately  15  m
diameter.  Here  the  challenge  is  not  so  much  surface  and  pointing  accuracy  as  low
production  cost.  A  similar  approach  of  an  array  of  relatively  small  dishes  is  being
considered for the next generation of NASA's deep-space tracking stations to replace
the aging 70 m antennas. 

  In  the  meantime,  existing  telescopes  are  adopting  active  elements  in  order  to
improve  the  performance.  An example  is  the  new "deformable"  subreflector  for  the
Effelsberg  telescope  to  correct  for  the  large-scale  deformations  of  the  primary
reflector. 

  Finally,  the  optical  astronomers  are  designing  telescopes  in  the  25  -  100  m class.
Some of these look remarkably similar to radio telescopes, but of course they require
a glass reflector with an accuracy and smoothness measured in nanometers instead of
micrometers.  However,  building  and  commissioning  these  will  require  entirely  new
methods and materials, a possible subject for another book by a different author.
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  With the aid of these test methods, the mediocre quality of the site notwithstanding,
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