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Preface

This book is intended to serve as a textbook, typically covered in two semesters,
primarily for undergraduate students in the fields of aeronautical, civil and me-
chanical engineering. Nevertheless several chapters—particularly the latter—can
be incorporated in a first-year graduate program. The book is based on class notes
for courses in solid mechanics and mechanics of materials that I have taught over
the past 30 years in the United States, Europe and Israel. The reader is assumed to
be familiar with the basic ideas of mechanics, principally statics.

In general, as an overview, the book presents the material with an emphasis
on theoretical concepts. However, although fundamental concepts are emphasised,
technological, practical and design applications are illustrated throughout by a large
number of examples.

From a perusal of the Table of Contents, it might appear that the book is similar
to other textbooks on the subject. Indeed, much of the subject matter is rather
‘classical’, as it treats a subject that has been part of engineering curricula for many
decades, if not longer. The question then arises: Why another book on this subject?
[ believe that the approach of this book to the subject is quite different from most
others and that its rational approach and level is such that it will appeal to instructors
who wish to emphasise the fundamental ideas of solid mechanics.

One might say that the text is a compromise between the approach as found, for
example, on the European continent (where the most general theory is first presented
leading later to simplified and approximate ‘strength of material’ results) and the
approach of engineering schools in the United States, where an ad hoc treatment
is often preferred. In an ad hoc approach, many of the fundamental and unifying
ideas are overlooked and neglected in most textbooks on the subject.

To avoid this pitfall, here the basic concepts are first developed in Part A of
the book, starting with an introductory chapter (Chapter 1) where it is stressed
that solid mechanics is based on three fundamental ideas: namely (a) the laws of
mechanics, (b) the kinematic (i.e. geometric) equations describing the deformation
of a solid and (c) the basic equations (i.e. constitutive equations) that describe the
general material behaviour of a solid. These fundamental ideas are illustrated in
the first introductory chapter by some simple one-dimensional examples. The next
few chapters (Chapters 2—4) are devoted to a careful development of the three basic
concepts (that were introduced in Chapter 1) of solid mechanics: stress, as a measure
of the intensity of internal force (Chapter 2); strain, as a measure of the intensity
of deformation (Chapter 3) and material behaviour, on a phenomenological level,
as described by various types of constitutive equations (Chapter 4). In this last
chapter in particular, the reader is given a general global view of materials that are
classified into several types. The concepts of ‘micro’ and ‘macro’ scales, necessary

xvii
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Preface

for a modern approach to an understanding of materials, are introduced. These
features serve to give the student a better idea of the overall picture of the behaviour
of solids. In Chapter 5, the results of the previous chapters are summarised and the
general approach to the analysis of specific problems is presented.

It should be pointed out that several features of Part A do not appear, to the
author’s knowledge, in most other textbooks dedicated for courses in this subject.
To cite but one example: the equality of the conjugate shear stress is shown to be
equally valid for bodies not in a state of equilibrium. (Too often, based on the usual
approach using static equilibrium, students are erroneously led to believe that this
property holds true only for a body in equilibrium. As a consequence, the symmetric
property of the tensor is then believed to be valid only for a state of equilibrium.)

The fundamental ideas that were developed in Part A are then applied in Part B:
Chapters 6-11 cover the basic applications to simple structural elements encoun-
tered in practice: axial behaviour, torsion, flexure and buckling. More advanced
topics (such as general torsion, unsymmetric bending of beams, etc.), which are
usually covered in a second semester, are treated in Chapters 12 and 13 and in the
chapters of Part C where the concepts of energy and virtual work are carefully de-
veloped. Each topic 1s illustrated by means of numerous illustrative examples. As a
particular feature, believing that it is not sufficient to only show the solution, many
examples are immediately followed by extensive comments in order to provide an
interpretation of the solution and encourage the student to develop physical insight.
Such comments are often accompanied by graphs to illustrate the effects of the
governing parameters.

In developing the relations for the behaviour of vanous elements, the derivations
follow either from plausible physical assumptions or from direct conclusions based
on the deformation pattern. At each stage, it is emphasised which solutions are
‘exact’ within the theory and which are ‘approximate’. To illustrate this point, I cite
but three examples: (1) After having developed the simple expressions for the axial
stress and elongation of a prismatic rod, the expressions are not blithely applied
to rods of varying cross-sections. Instead, the reader is shown quantitatively when
such an approximation is permissible. (2) After having developed the expression
for the flexural stress in beams, it is shown (using the equations of equilibrium
derived in Chapter 2) that this expression is ‘exact’ only for pure bending or when
the moment varies linearly along the beam. (3) While discussing the deflections of
relatively stiff beams using linearised Euler—Bernoulli beam theory, a clear upper
bound to the error is derived; the student is not expected to merely accept, with no
quantitative explanation, that the beam must be sufficiently stiff. These examples
serve to illustrate the underlying philosophy of the book, namely that the reader
must be provided with rigorous analytical explanations and is not expected to accept
‘hand waving’ explanations.

Another goal of this text has been to eliminate unnecessary errors, simplifications
or misconceptions that often arise in introductory courses — errors that are to be
later undone, as the student pursues more advanced studies. Thus, | have attempted
to write a text so that students ‘get it right the first time’. From the above comments,
it is clear that as the principal aim of the treatment is to provide the student with
a broad and fundamental understanding of basic principles, the book attempts to
present the reader with several unifying ideas. In this respect, the book provides the
student with a thorough preparation for more advanced studies in the field.

A word about the mathematical level: although not requiring a knowledge of
‘higher mathematics’, it is assumed that the student has a good preparation in



differential and integral calculus, differential equations and linear algebra (i.e., a
reasonable knowledge of mathematics). I have not attempted to avoid mathematics
where it is appropriate and necessary, particularly in the latter chapters of the book.
(Too often, students question as to why they are subjected as undergraduates to
mathematics courses when little use is made of what they have studied.) In fact, I
view a course in solid mechanics as an excellent opportunity to expose students to the
application of mathematics to engineering problems, to reinforce their mathematical
studies and thus enhance their analytical abilities.

Although, as mentioned above, the text has been prepared for a two-semester
course, instructors may wish to skip various sections at their discretion. I have
indicated by means of a symbol (¢) certain sections and subsections that may be
omitted on a first reading without loss of continuity.

Over 600 problems, of varying degrees of difficulty, are included in the text.
Most of these are not numerical in nature, since I believe students should be en-
couraged to first work out the solutions algebraically. Those problems (not neces-
sarily more difficult) that require a deeper understanding of the subject or a more
sophisticated approach are indicated by an asterisk (*). Answers to about half of the
problems are provided. Since any modern engineering curriculum provides students
with a reasonable facility with computers, computer-related problems can be found
throughout the text. These problems are generally not of an artificial nature; rather
they require the use of a computer (e.g., for the solution of transcendental or quartic
algebraic equations). Students are therefore encouraged to write algorithms using,
at their discretion, FORTRAN or other software such as MAPLE, MATHEMATICA or
MATLAB.

Finally, I acknowledge my debt to my teachers who had taught me while I was
an undergraduate and graduate student at Columbia University; in particular, to
Raymond Mindlin and Mario Salvadori from whom I learned to understand the
beauty of mechanics and applied mathematics and who taught me much of what [
know today.

I wish to thank my department colleagues Leslie Banks-Sills, Shmuel Ryvkin
and Leonid Slepyan, who read parts of the manuscript during the preparation of this
text, and for their discussions, comments and suggestions, as well as Dan Givoli
of the Technion, Israel Institute of Technology. A word of thanks is also due to the
Department of Engineering of the University of Cambridge (UK) where this book
was completed while I was on sabbatical leave, unencumbered by usual university
obligations.

I would appreciate receiving comments—both positive and negative—and sug-
gestions for further improvements from readers of this text.

Raymeond Parnes

Preface xix
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1

Introductory concepts
of solid mechanics

35 e SRR

1.1 Introduction

Solid mechanics is a branch of mechanics that has many applications. In ancient
times, solid mechanics was of interest primarily for the construction of structures
and buildings. The pragmatic knowledge of this subject was based on empirical rules
that were accumulated, based on both the successes (and failures) in the construction
of previous structures. Starting with Galileo and Newton, attempts were made to
determine rational laws governing the general behaviour of solids. Great progress
was made in the understanding of the behaviour of solid bodies during the eighteenth
and nineteenth centuries, notably by Bernoulli, Euler, Coulomb, Navier, Poisson,
Cauchy and others. The study of mechanics has continued into the present century,
and well-developed theories and principles have been elaborated. An understanding
of the basic laws of solid mechanics is of particular importance in mechanical,
aeronautical and civil engineering. With the advent of modern materials, it has
been necessary to develop more refined theories to ultimately achieve the most
efficient design of the relevant structures.

The study of solid mechanics has as its goal, the determination of the deforma-
tion and internal forces existing in a body when subjected to external loads. Solid
mechanics is based on the following:

(a) Physical laws that describe the behaviour of solids in accordance with exper-
imental data obtained in a laboratory. The laws must thus accord with the
general behaviour as found in the real world.

(b) Mathematical deductions to express these laws, based on simplifying assump-
tions. Such assumptions must often be made to render the solutions tractable.
In other words, one wishes to model a problem in the simplest fashion, pro-
vided it leads to solutions that adequately describe the actual behaviour of the
body.

Let us consider a typical problem that, in its simplicity, reveals several aspects
of our study. We consider a plank AB of length L, which rests at two ends. We
wish to know if it can support a person whose weight is P = Mg, standing at a
distance a from the left end, as shown in Fig. (1.1.1a). From our previous study of
rigid-body mechanics, we know that the supports at A and B can be idealised as
‘simple supports’. Furthermore, we may represent the force exerted by the person
on the plank by a concentrated force P. Thus we replace the actual problem by the
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Flgure 1.1.1
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idealised model shown in Fig. (1.1.1b). From rigid-body mechanics, we can then
find the reactions at A and B, which clearly depend on the force P.

Now, since the plank 1s not rigid, it will deform and assume a curved shape, as
shown in the figure, when subjected to the load P. From our study of solid me-
chanics, we should want to determine (a) the maximum load that the plank can
support, (b) the displacement of all points of the plank, i.e., the shape of the de-
formed curve and (c) the internal forces existing within the plank. Clearly, these
quantities depend upon the geometry of the plank, namely, the length L, the po-
sition « of P and the geometry of the cross-section and the material. In this case,
since we assume that the plank 1s made of wood, the behaviour depends also on
the type of wood. However, if the plank were made of steel or some other ma-
terial, the charactenstics of the material would obviously have to enter into our
calculations.

In particular, to establish the maximum force that the plank can bear, we must
first determine not only the internal forces that exist but also the intensity of the
internal forces. The intensity of internal forces will lead us to the concept of stress.
On the other hand, to determine the deformation, we will require a measure of the
intensity of deformation; this will lead us to the concept of struin.

Now, the analysis of this simple problem must evidently be expressed in terms of
mathematical equations. Thus, it should be clear from this discussion that we will
encounter three types of equations, namely

(a) Equations of mechanics (in this case, equations of equilibrium) that are written
in terms of forces and/or ‘stresses’.

(b) Kinematic equations, i.e., equations describing the geometry and deformation
of the body. Clearly, these are written in terms of the displacement of points of
the body and involve ‘strain’.

(c) Equations that describe the general mechanical behaviour of the material and
which are characteristic of given materials. These equations will involve the ma-
terial properties of the body. Such equations are called, in general, constitutive
equations.

Thus, based on the discussion of this simple problem, we remark that three
basic concepts exist in the study of solid mechanics: stress, strain and the intrinsic
behaviour of a material, as described by its constitutive equations.

Inthe first part of this book, we shall consider these concepts in detail and establish
themn on a firm mathematical basis in order to enable us to apply them to relevant
engineering problems.

In the next sections of this chapter, we first consider some idealisations that are
used in solid mechanics and introduce and elaborate on the above concepts via some
simple one-dimensional problems.
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1.2 Forces, loads and reactions - idealisations

In studying the behaviour of deformable bodies, we must consider how loads are
applied. Furthermore, in considering the application of loads and their reactions, it is
usually necessary to make certain idealisations. The extent and type of idealisations
are, of course, dependent on the degree of refinement of the analysis that we require.

In general, all forces and loads are represented by means of vectors. We recall
that in rigid body mechanics, a force can be represented by a ‘sliding vector’; i.e.,
one can write equations by considering a force anywhere along its line of action.
However, in studying deformable bodies, this is no longer true: one must stipulate
the actual point of application of the force. To show this, consider two bodies [Figs.
(1.2.1aand b)] subjected to three forces F, £ and F3. If these are rigid bodies then,
in both cases, the equations of equilibrium, ) F = 0 and )" M = 0, are the same.
Since, by definition, a rigid body does not deform, we do not consider any internal
deformation. However, if the bodies are deformable bodies, then clearly, the body
in Fig. (1.2.1a) is in compression while that in Fig. (1.2.1b) is under tension. It is
therefore evident that the two bodies will behave quite differently; the first will tend
to become smaller, while the second will become larger. Thus we see that in solid
mechanics it is necessary to prescribe not only the line of action of a force but also
the point of application of the force.

Fy
A
Fy F,
F
! Figure 1.2.1
(a) (b)

(a) Types of loads
In solid mechanics, a body may be subjected to two types of applied loads: contact
forces and body forces.

Contact forces are forces that are applied to the body, usually on its external
surface, by direct contact [Fig. (1.2.2a)]. Body forces are forces that act upon a
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body through action at a distance. Such forces are assumed to act on the particles
of the body and may thus be either constant or may vary throughout the body.
Gravitational force is an example of a body force: for each particle of mass m, the
particle ‘feels’ the gravitational attraction [Fig. (1.2.2b)]. A magnetic force acting
on, say, an iron bar, is another example of a body force [Fig. (1.2.2¢)]. It is noted
that body forces have units of Newton/metre? (N/m?).

never, in fact, exist in nature, for we know that a force can only be applied over
some small but finite area; it is for this reason that we state that a concentrated force
is but an idealisation. We therefore consider the following representations.

A (b) Representation of forces and loads
In our previous discussion, we represented all forces by means of vectors. This
U ' / clearly is an 1dealisation of a concentrated force acting at a point. Such a case can

/

'
W
(a)

(1) Distributed loads. A load acting over a finite area is called a distributed load.
w For example, consider a cylindrical block, whose cross-section is 4 and whose

o / weight is W, resting on a plate [Fig. (1.2.3a)]. For simplicity, we assume
@ that the weight of the cylinder is evenly distributed over the cross-section.
b)

The distributed load that acts upon the plate is then represented by W/ A
[Fig. (1.2.3b)]. Note that the units of this distributed load are N/m?,

( (it) Concentrated force or point load Consider a distributed load, as described
Figure 1.2.3 above, acting over a small arca A 4 about some point x,, y, [Fig. (1.2.4a)].

P=WA

Figure 1.2.4 (a)

Let p = W/A A4 denote this distributed load which, in effect, is a pressure. We
now consider the case where the pressure p(x, y) increases indefinitely, i.e.,
p — oo, while A4 - 0. The resultant force is then defined as

Pepp = tim [ [ peiyan (121
P=0" A4

Thus, Eq. (1.2.1) is to be taken as the mathematical definition of an ide-
alised concentrated load P acting at x,, y, [Fig. (1.2.4b)]. Note that the unit
of P is the Newton. Therefore, when we represent a concentrated load by
means of a vector, we implicitly use the idealisation defined mathernatically by
Eq. (1.2.1). We shall find that this idealisation is generally acceptable in our
study of solid mechanics.
Wlﬂ (iti) Line loads. If a distributed load is acting over a relatively thin strip, it is called
: =X a line Joad and is a function of a single coordinate, say, x [Fig. (1.2.5)]. We
note that the line load may be constant or may be a function, which we denote
by g(x). Note too that the units of g are N/m. Thus we observe that, at any
Figure 1.2.5 point, there exists a load of intensity g(x) given in N/m. The resultant force R
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of the load between any two points, x = a and x = b, is then given by
b
R= /q(x)d)p (1.2.2)

a

Note that the resultant force is represented by the area under the load function
g(x). Line loads are commonly encountered in the study of beams.

I - |

—>| [<— A,\ X
X Xp + Ax
(a) ()

Figure 1.2.6

Concentrated loads acting on beams are idealisations, defined in 2 manner analo-
gous to Eq. (1.2.1). Thus, consider a line load g(x) acting over a small distance Ax
between two points x, and x, + Ax [Fig. (1.2.6a)]. As before, let us now consider g
the case where the intensity g(x) of this distributed load increases indefinitely, 1.e., l"l/l/ﬂ
g(x) — oo, while Ax — 0. The resultant force is then defined as ~ -\l ey

xp+Ax

P(x")=,lsi13> f q(x)dx. (1.2.3)

q—>0oC

Thus, Eq. (1.2.3) is the one-dimensional definition of an idealised concentrated load
P acting at x = x,, [Fig. (1.2.6b)].
As we have observed, the concept of the concentrated force P acting at a point, ~ Figure 1.2.7

as defined either by Eq. (1.2.1) or by Eq. (1.2.3), is an artificial one and is physically

unrealistic. However, it is a useful concept that simplifies considerably the solution

of many problems. Moreover, because this concept is an artificial one, it can often

lead to solutions that contain spurious discontinuities at the point of application of P,

which contradict actual physical behaviour. Upon realising that the basic idealisation

is indeed artificial, we are then usually willing to disregard these spurious results.

()

{c) Reactions and constraints - idealisations
A body is usually supported in such a way that at certain points no motion can
take place; constraints are therefore said to exist at these points. For example,
in the beam shown 1 Fig. (1.2.7a), a constraint against translation in the x- and
y-directions exists at point A, while at point B there is a constraint against motion
in the y-direction. These constraints are idealised by a ‘pin’ at A and a ‘roller’ at
B. The forces that provide these constraints (i.e., which prevent the motion) are
called reactions: note that to each constraint there corresponds a component of the
reaction. Thus at point A, there exist reactive components Ry, and R, while at
point B there exists only a single component, Rg), [Fig. (1.2.7b)]. We refer to point
A as a (frictionless) pin support and to point B as a roller support. Collectively,
the beam is said to be ‘simply supported’. The above are in fact idealisations, in
the sense that we are referring to points in the beam at which concentrated reactive
components (1.e. concentrated forces) are acting.

We note that a ‘pin’ can exist within a structure composed of several elements. For
example, consider the structure shown in Fig. (1.2.8a) consisting of two elements  Figure 1.2.8

(®)
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P
A /
| — - ol |
(a)
P
A /
N
N
(b)
P
Rx /
26 =
M
A TRA)!
©
Figure 1.2.9
Figure 1.3.1

AC and BC supported by pins at points A and B. The two elements are connected
by a pin at point C. The role of this pin at point C is to provide a constraint against
relative translation of the two elements; that is, AC and BC cannot move apart. Note,
however, that if the two elements are not rigid, then there can indeed be relative
rotations of these two elements [Fig. (1.2.8b)]. Thus we observe that a pin does
not provide any constraint against rotation. [A pin existing within components of a
structure is also referred to as a (frictionless) ‘hinge’. Thus a hinge cannot transmit
a moment from one component of a structure to another.]

Now consider a beam shown in Fig. (1.2.9a), embedded in a rigid support at
point A. The idealised model thea is as shown in Fig. (1.2.9b). Such a support
provides constraints against both translation and rotation at the point. In addition
to the reactive components Ra. and Ra,, the reaction providing the constraint
against rotation is 2 moment M, as shown in Fig. (1.2.9¢). Such a beam is called a
cantilevered beam with a fixed end at A.

From the above discussion, we therefore find it particularly useful to define a
reaction, in general, as follows: a reaction at a point is the force that is required
to satisfy a given corresponding prescribed constraint (i.e., to prevent a prescribed
motion) of a body or structure at the point.

1.3 Intensity of internal forces — average stresses

We introduce here the concept of stress as a measure of the intensity of internal
forces acting within a body via a simple problem.

Consider a structure, shown in Fig. (1.3.12), consisting of a beam, BC, pinned at
points B and C. A wire, CD, of cross-sectional area 4, supports the pin at C and is
attached to point D. A vertical force P = 18,000 N = 18 kN acts at point C as shown.

D

A F=Fep
H £
o Feo
y H
C & _ _ 2 = Fpc A
Fep

4m

w

P =18 kN P =18 kN
(a) (b) ©

From statics, we note that both the element and the wire are subjected to forces
only at their ends; therefore, being two-force bodies, it necessarily follows that the
lines of action of the resultant end forces must fall along the longitudinal axis of
both BC and CD.

Isolating the pin at C, we therefore have, from statics [Fig. (1.3.1b)],

t+Y F,=0--3/5Fcp = 18 >—> Fep =30kN,
T3 Fo=0->> 4/5Fcp + Fac = 0 >~ Fyc = 241N,

where Fcp and Fpe are the axial forces in the respective elements. Note that the
wire CD is therefore under tension and the element BC is in compression.
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Let us now investigate the internal force in the wire. To this end, we imagine
that we ‘cut’ the wire at some arbitrary point H [Fig. (1.3.1c)]. From equilibrium
we conclude immediately that there exists a normal force F = Fep = 30 kN acting
on any cross-section. Let us assume that this force is uniformly distributed over
the cross-sectional area 4. Then the intensity of the force per unit area is F/A4.
We denote this quantity by & and will refer to it as the average normal stress;
thus

F
T =—. 1.3.1)
o] y (
Note that the units of o in the SI system are N/m?. This unit is defined as a Pascal
(Pa); i.e., | N/m? = 1 Pa. In engineering practice, one often deals with quantities
that are given in thousands or millions of Pascals; thus we often use multiples of
Pascals, defined as follows:

I N/m* = 1 Pa
10° N/m? = 1 kPa (kilo-Pascal)
10°N/m® = | MPa (mega-Pascal)
10° N/m* = | GPa (giga-Pascal).

Now, let us say that the diameter of the wire is 15 mm. Then 4 = nr? =
56.257 mm? = 1.77 x 10~* m*. Hence
3
5o 00X N oSy 10° Pa = 169.5 MPa.
1.77 x 10~* m?

We wish to determine whether the wire can withstand this stress. Now it is evident
that various materials are ‘stronger’ than others. In more precise terms, the maxi-
mum stress that a particular material can withstand is a characteristic of the material.
Let us say that CD is made of low-carbon steel. For such steel, the maximum ulti-
mate stress that the material can withstand in tension is, based on laboratory tests,
our = 400 MPa. (The ultimate normal stress, oy, of various steels can be found,
e.g., in tables giving these properties.) Clearly, since in this case, o < 400 MPa, the
steel wire can sustain the Joad P = 18 kN. However, in designing the structure, one
usually wishes to provide for a ‘safety factor’. This may be done by introducing a
maximum allowable stress, oy0, for the material. We therefore define the safety
factor, S.F., ast

Tult
SF=—;
Oaliow
thus
Tult
Tallow = ﬁ

If we choose, for example, a safety factor of 2.0, it follows that o,y = 400/2.0 =
200 MPa. Hence, we may state that since & = 169.5 < 200 MPa for the problem
at hand, the structure is ‘safe’ according to the prescribed safety factor of 2.0.

Let us now assume instead that CD is made of aluminium with o, = 160 MPa and
S.F. = 1.6 such that o,0w = 100 MPa. We therefore conclude that the wire cannot

T The allowable stresses, daliow. for a given engineering structure, are usually given according to engi-
neering specifications and depend on the type of structure to be designed. on conditions of loadings.
variations of material properties, etc.
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Figure 1.3.2

sustain the applied load and will fail since @ > G,0. Therefore a thicker wire is

required. In order to satisfy the condition & < o, We require a cross-sectional
area

(- F 30N 30x10°
" Oulow 100 MPa 100 x 108

and therefore an aluminium wire of radius » = /4 /7 =9.77, or of diameter d =
19.54 mm. We would then use in practice a wire of 20-mm diameter.

The preceding analysis is a primitive example of engineering design.

Now there exists a second type of stress: shearing stress. To introduce this, let
us first consider two smooth plates connected by a rivet (whose cross-section is A)
and subjected to two forces P as shown in Fig. (1.3.2a). Clearly the rivet is holding
the plates together. Let us ‘cut’ the body along the plane BC (we imagine that the
rivet has been cut along this plane) and isolate the lower portion as a free body. It
1s important to realise that whenever we make such an imaginary cut in a body, the
internal forces of the whole body must then be considered as external forces acting
on the isolated free body.

=0.30 x 107 m? = 300 mm?,

Equilibrium conditions for this lower portion require that a force P act along
the surface of the cross-section [Fig. (1.3.2b)]. We observe that the force P here is
acting tangentially in the cross-sectional area. As before, we assume that this force
is uniformly distributed over the area 4; we denote the average intensity of this
force by 1; 1.e.,

P

T=—. (1.3.2)

We refer to this quantity, acting tangentially to the area A, as the average shear
stress in the rivet and note too that the ST unit 15 Pa.

Thus, we conclude that there can exist two types of stresses, a normal stress and
a tangential shear stress. Both are measures of the intensity of force per unit area.
In the above two cases, there existed but one type of stress on each area. We shall
soon discover that both normal and shear stress may exist simultaneously on a given
area.

It should be emphasised here that we have only obtained the average stresses
based on the assumption, in both cases, that the internal force on an area is uniformly
distributed. This is sufficient to introduce the basic idea of stress as intensity of force
per unit area. However, we will find in our later discussion that in many bodies,
internal forces are not always distributed uniformly over an area and that it will be
therefore necessary to define the stress at a point.
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1

1.4 Intensity of a normal force acting over an area - refinement
of the concept: normal stress at a point

Consider a rod subjected to an axial force P such that the nonmal force on each sec-
tion, lying in the y—z plane, s F = P [Fig. (1.4.1a)]. As in the previous discussion,
the average normal stress is @ = F/ A, based on the assumption that the force / 1s
uniformly distributed over the area 4. We now wish to refine this concept; i.e., we
no longer will assume the uniform distribution but instead assume that the stress
varies over the cross-sectional area, i.e., 0 = o(y. z). Let us now consider that the
total area to be the sum of small elemental areas A 4, such that on each of these
areas an incremental part of the total force A F is acting [Fig. (1.4.1b)]: clearly, the
incremental force A F' is then given by

AF ~a(y, z)AA, (1.4.1a)

where the incremental area A 4 surrounds the point O [Fig. (1.4.1b)]. (Note that
the symbol =~ has been used here; although o varies ouly slightly over A4,
it cannot be assumed to be constant over the A 4.) Hence

W, z) =~ Ll (1.4.1b

oW,z)x~ Vh 4.1b)
Clearly, as A4 — 0, AF — (. However, taking the limit as A4 — 0, we have
o(y.z) = lim aF _dr 1.4.1
B = 11 —_— = —, A

V2= S0 a4 T A (14.1¢)

which represents the normal stress component at the point O(y, z).

2(} AR ( QO f
£ f3< £ — AA=AF
A

(a) (b)

<«
o1

Thus we see, according to Eq. (1.4.1¢), that the normal stress at a point can now
be defined as the limiting case of incremental normal force divided by incremental
area at the point. In the next chapter, we will generalise this concept to forces that
are not necessarily normal to the plane.

Now, the total resultant force F acting on the cross-section is evidently given
by /=) AF and therefore, as A4 — 0 and the number of incremental areas
approaches infinity, from Eq. (1.4.1a) we obtain, in the limit,

F:/dF://odA. (1.4.2)
A

We note that the internal force F, as given by Eq. (1.4.2), represents a resul-
tant force due to a summation of all the o stresses acting over incremental
areas. It is in this sense that internal forces are often referred to as internal stress
resultants.

Figure 1.4.1
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Figure 1.5.1

We observe, 1n passing, that if ¢ 1s constant, i.¢., not dependent on the particular
element d 4, then from Eq. (1.4.2),

F=affdA =0Ad, (1.4.3)
A

and we recover the expression o = F'/ 4. Thus we see that, only in this particular
case, 1§ the average normal stress, & , equal to the actual normal stress existing at
each point of the cross-section.

1.5 Average stresses on an oblique plane

We consider again a rod of cross-section 4 that is in equilibrium when subjected
to forces P acting along the x-axis [Fig. (1.4.1a)]. In our previous treatments, the
normal stress was found on a cross-section lying in the z-plane perpendicular to
the applied load. However, we are not limited to making a cut only along planes
of a cross-section; indeed we may cut the bar along any plane passing through an
arbitrary point H and isolate the two parts as a free body. Let us therefore imagine,
for example, that we cut the bar at some arbitrary point, H, by means of a plane
whose unit normal # lies in the x-y plane and is inclined with respect to the x-axis
by a given angle 8 as shown in Fig. (1.5.1). We then isolate the left segment. Let 4’
denote the area of the oblique plane of the cut.

Then, since any arbitrary part of the bar is in equilibrium, a force P clearly must
be acting on the cut in order 1o satisfy equilibrium in the x -direction. We now resolve
this force into two components: a component 7’ acting normal to the plane of the
cut and a component ¥’ acting tangential to the plane as shown in Fig. (1.5.1).

Now, from equilibrium

> F=0-— F'cosf+ V'sin6 = P, (1.5.1a)
> Fy=0—- Fsin6 - V'cos = 0. (1.5.1b)

Equations (1.5.1) represent two equations in two unknowns, whose solution is
readily given by

F' = Pcos?d, (1.5.23)
V' = Psiné. (1.5.2b)

We thus find that on this oblique plane the equilibrium conditions require that both
a normal force F~ and a tangential force ¥’ act on the plane of the cut. The average
intensity of these forces is then, by Eqgs. (1.3.1) and (1.3.2),

F’ Pcosb P

—_ 2
= = = — cos 0, 1.5.3a
T AT AJcoss 4 (1.3.32)
' ' P P
?:-1-/-: Psinf = —sin@cosd = — sin 26. (1.5.3b)
A Ajcos@® A 24
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We therefore observe that there exist on the plane of the cut both normal stresses
and tangential stresses. In particular, if 8 = 45°, 5 = P/(24) and T = P/(24).
Note too that if @ = 0, then & = P/A and T = 0; that is, we recover the average
stresses existing on a cross-section.

1.6 Variation of internal forces and stresses with position

In our previous discussion, forces and stresses acting on cross-sections were found
to be independent of the location of the cross-section. (For example, in the cases
examined in Sections 3 and 5, point H along the longitudinal axis was arbitrary.)
This clearly is not the general case; one often wishes to determine how the internal
forces vary with the location of a cross-section. To this end, consider a triangular
plate ABC of mass density o (haviog a weight W) and constant thickness ¢, hanging
from a support BC and subjected to gravity g acting downward [Fig. (1.6.1a)]. We
wish to determine the internal forces acting at any cross-section DE, located at a
distance y from the apex A due to its own weight. Note that the total weight W of
the plate is given by W = pgbhth/2.

h

Figure 1.6.1

If we isolate the lower portion [Fig. (1.6.1b)], we note that a gravitational force
pg dv acts on each clement of incremental volume dv of this portion of the plate.
(Note that the gravitational forces are in fact body forces as described previously
in Section 2.) Having made the cut along DE, we note too that in general there may
exist a resultant force F and shear force V acting along the plane of the cut.

From equilibrium, " F, = 0>~ ¥V =0and}_ F, =0—— F ~ [, [pgdv=
0 where the triple integral is over the volume of the segment ADE. Since pg is
constant, noting that the width ¢ of DE is ¢ = by/ & and that the volume of the lower
segment is fcy /2, we have v

tey bt

Fy)=rg 5 =P85y

The area of the cross-section at any location y is given by 4(y) = ¢f = bty/h, and
hence the average normal stress acting on any cross-section is

FO) _ g
Ay 27

The internal force F(y) and average stress &, are thus seen to vary parabolically

and linearly, respectively, with y [Fig. (1.6.2)). Figure 1.6.2

yi=W(/hY. (1.6.1a) "[—"7 hp=--

o(y) = (1.6.1b)

|
I
|
(
I
I
(
[
I
W F g



14 Introductory concepts of solid mechanics

Figure 1.7.1

Figure 1.7.2

1.7 Strain as a measure of intensity of deformation

Having defined stress as a measure of the intensity of internal forces in a body,
we now consider the second concept of importance in solid mechanics; namely,
strain as a measure of the intensity of deformation. This is a purely geometric (or
kinematic) concept, not intrinsically related to forces. It is important because one
wishes to know how a mechanical system deforms for, in reality, no body is perfectly
rigid.

To illustrate this concept, consider two rods, A and B, resting freely on a table:
rod A is 10 cm Jong and rod B is 100 cm long, as shown in Figs. (1.7.1a and b),
respectively. Assume that in each case, the rods undergo the same elongation, which
we denote by . Then it is evident that if, for example, § = 1 cm, this elongation
1s far more significant for the short bar (whose length has changed from 10 to
11 cm) than for the long bar (whose length has changed from 100 to 101 cm). In
other words, the ‘inteunsity’ of the deformation of rod A is much greater than that
of rod B. We wish to have a measure to this ‘intensity’. Clearly a useful quantity is
8/L, where L is the original length.

A B
 —— | [ : /3
| L |
10cm 6' : 100 cm lér-‘-
(a) (&)

Thus, assume that a rod, originally of length L, deforms to a length L*
[Fig. (1.7.2)]. Then § = L* — L. We define the ratio
_ & L*-1L
TITTI
as the average strain or the average engineering strain. Note that the strain ¢ is a
non-dimensional quantity.

In most problems encountered in engineering practice, one deals with mate-
rials that are relatively stiff (e.g., steel, aluminium, or other metals). Hence the
strain that one encounters in such materials is often very small, i.e., of the order
0O(1073). For example, if a steel bar has length L = 60 cm = 0.6 m and elon-
gatesby § = 1.5 mm = 1.5 x 1072 m, the resulting average strain is, according to
Eq. (1.7.1),

(1.7.1)

1.5 % 1073
7= 22X Y 25%107
0.6

In this discussion, we have implicitly assumed that the bar deforms uniformly
along its length. However, let us say that it deforms due to heating, which 1s not
uniform along the longitudinal axis. The average strain then does not provide an
indication of the deformation at any point along the bar. We must therefore con-
sider the deformation more carefully and find the strain at each cross-section of
the bar.

Let x denote the longitudinal axis of an undeformed rod [Fig. (1.7.3a)]. Let us
assume the horizontal displacement « of any cross-section located at the coordinate
x is known, that is, # = u(x). Now, the rod may be considered to be composed of
a series of elements, each of length Ax. If u(x) denotes the displacement of the
cross-section originally at x, then u(x + Ax) = u(x) 4+ Au is the displacement of
the right side of the deformed element [Fig. (1.7.3b)]. The average strain of the
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element, given by Eq. (1.7.1), is then

[u(x)+ Au] — u(x)

€ = =

Ax
Taking the limit, we have
)= lim 24
ax—+0  Ax
or
du(x)
€(x) = e

Figure 1.7.3

= (1.7.2)

(1.7.3)

Thus we have obtained the strain € = ¢, in the x-direction, which exists at any
cross-section. 1t is of importance to observe that the strain e is dependent on the

relative displacements of points in the rod.

Note that from Eq. (1.7.3), du(x) = €, - dx. Hence integrating this expression,

we have
u(L) L
/du =[e(x)dx.
u(0) 0

that is,

L
Uy — Ug = fe(x)d.n
0

(1.7.42)

(1.7.4b)

Since the total elongation § = u,, — g, we thus have an explicit expression for the

elongation in terms of the strain at any point, namely

L

5= fé(x)dx‘

0

Note that if €(x) is constant, then § = ¢ L.

Example 1.1: A rod, originally of length L, is heated non-uniformly [Fig.
(1.7.4)]. The increase in temperature, AT, isgiven by AT = kx(L — x), where k L
is a constant. The temperature increase at the mid-point is known to be 50°C.

(1.7.4¢)

AT

> X

I—C—————— 3 — x

Determine the elongation § of the bar if « is the coefficient of thermai L

expansion.

Figure 1.74
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Figure 1.8.1

Figure 1.8.2

o=PIA

Figure 1.8.3

Solution: Since AT(x = L/2)=50°C, k =200/L% Consequently, AT =
22 x(L — x). Noting that the strain e(x) = AT (x), from Eq. (1.7.4c),

L L
200
8=ak/x(L ~xydx = L;"/x(L ~x)dx =

0 0

100
3

L.

Let us assume that the length of the bar is I = 100 cm and that it is made of steel, for
which & =11.7 x 1078[1/°C]. (Note that the units of & are [1/°C]. The elongation
is then § =3.9 x 1072 cm =0.39 mm. O

1.8 Mechanical behaviour of materials

As we have previously noted, it is evident that if a solid body is subjected to forces, it
will respond differently depending on the material of which it is made. For example,
steel, aluminium and wood behave differently. We thus must find a way of describing
the general mechanical behaviour of these materials and express the behaviour in
mathematical terms. The equations that describe the mechanical behaviour of a
material are referred to, in general, as constitutive equations and are based on
experimental evidence. These equations, which must describe the real behaviour of
materials as they exist in nature, are established from experiments performed in a
laboratory. The simplest test that one can perform on a given material is a standard
tension test, which we now describe.

Let us consider a specimen of cross-sectional area 4 to which we apply a slowly
increasing axial load P. Let us assume that we initially inscribe two points on the
rod a distance L, apart {Fig. (1.8.1)]. (The length L, is commonly called a gauge
length.) Now, as we slowly increase the force P from zero, at each value of loading,
we can measure the distance L between these two points and thus we obtain the
elongation 8§ = L — L for each value of P. Clearly, § and P are related and we can
plot a P-§ curve as shown in Fig. (1.8.2). This curve, however, is not of much use,
for it depends on the dimensions of the specimen being tested and not intrinsically
on the material itself; i.e., it depends on (a) the cross-section of the rod, A4, and
(b) the original gauge length, L. Therefore, let us calculate

3:-}-)- and Z:i (1.8.1)

4 Ly

and plot the &—€ curve as shown in Fig. (1.8.3). This curve is called the standard
stress—strain curve. (At this point we drop the notations o and € and will refer
to the stress o and strain € with the clear understanding that these are average
values.) We observe that the o—e curve, being a curve of force per unit area versus
elongation per unit length, represents the behaviour of the material itself, since it is
independent of the geometry of the rod.

Note that in describing the test, it was mentioned that the load is slowly ap-
plied, and thus we implicitly assume that the curve is independent of the rate of
loading. This is true of many (but not all) materials, e.g., metals such as steel and
aluminium, provided the loading rate is sufficiently small. We therefore assume that
the behaviour is ‘rate-independent’.

‘We now consider the o—¢ curve obtained from a standard test on a typical ductile
material: for example ‘low-carbon steel’, whose o— curve is shown schematically
in Fig. (1.8.4). (This steel, which is of common use, consists mainly of iron and
relatively small quantities of carbon.)
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The behaviour may be described as follows: as the load is increased from zero, the
stress—strain relation is essentially linear, up to a certain stress level, o, called the
proportional limit. Thus the proportional limit is defined as the maximum stress
for which a linear stress—strain relation exists. As the load increases, the stress
reaches a value gy at which, with no further increase in the load, the metal deforms
continuously; that is, the steel suddenly ‘yields’. The stress ay, is therefore called the
yield point of the material. A typical value of the strain € at which yielding occurs
in steel is 10>, This yielding usually continues over a wide range of strain. (Note
that the curve is parallel to the ¢ axis during yielding and may be so until the strain
reaches a value of the order of 0.2.) At this point, it is necessary to increase the
load to cause the rod to elongate further; hence the stress increases. This behaviour
is called strain-hardening. The stress thus increases over this range and reaches
a maximum value oy, called the ultimate stress or more precisely the nominal
ultimate stress. At this point, the stress drops off sharply while the rod continues
to elongate until rupture takes place. For reasons that would become apparent in
Chapter 4, the entire o — curve obtained during the test is referred to as the nominal
stress—strain curve.

Let us now return to consider the initial behaviour with o < o, L.e., where the
stress o does not exceed the proportional limit. It was observed that the o —¢ relation
in this range is linear. Consequently, this initial part of the curve can be represented
by the equation of a straight line:

g = Ee, (1.8.2)

where the constant £, representing the slope of the line, is called the Young’s
Modulus. Note that the units of this modulus are given in N/m?(1 N/m? =1 Pa).
A typical value for steel is £ = 200 x 10° Pa = 200 GPa. We observe that £ is a
measure of the stiffness of the material. Thus, the larger the value of E, the greater
the stress required to deform the material.

It should be mentioned here that the relation 6 = Ee (valid for 0 <o, )isa
typical example, perhaps the simplest, of what is called, in general, a constitutive
equation. Indeed not all materials can be described by such a simple constitutive
equation.

Now, let us consider again that we start to load the material from point O to some
arbitrary point B such that 0 = op < ap and that we then remove the load; i.e.,
we ‘unload’ the material. We find, upon loading and unloading repeatedly, that the
behaviour follows the same o—¢ curve provided that we remain below o,. Indeed,
if we load the material within this range and then remove the load completely, the
strain, after removal of the load, 1s € = 0. Thus the body recovers its initial length.
The material is therefore said to exhibit elastic behaviour in this range. As a result,

Figure 1.8.4
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Figure 1P.1

the constant £ is often called the Modulus of elasticity, a terminology that seems to
be preferred 1n engineering practice. In fact, the material is said here to be linearly
elastic. (It should be pointed out that although the linear elastic range is in the range
o < op, there may also exist a nonlinear elastic region where the o—e relation is no
longer linear. We leave this for a later study.)

Now, let us assume that we load the rod from point O until we reach point
C on the o—€ curve of Fig. (1.8.4). At this point, we then remove the load. We
would find that as we remove the load, the behaviour follows a line CD, which
is parallel to the original straight line portion of the 6— curve. Thus, when we
have completely removed the load, there is a permanent strain €p in the material,
represented by point D. The matenial thus is said to behave as a plastic material, if o
exceeds o,.

The above is a description of what takes place during a typical tension test on
steel. At this stage, we have not attempted to provide explanations for the behaviour;
we have only given a description of the phenomena. A more elaborate explanation
for the behaviour will be given at a later stage, but the more fundamental study of the
phenomena in terms of the structure of the material requires an understanding at the
atomic or crystal level. Such studies belong to the field of materials science. At this
stage, we are content to provide a phenomenological description of the behaviour
of materials to pursue our study of solid mechanics.

1.9 Summary

In this chapter, we have introduced the three basic concepts that are required in
the study of solid mechanics: stress, strain and the constitutive equations. These
concepts were introduced by means of simple one-dimensional problems. In our
future study, it will be necessary to generalise these basic concepts to enable us to
treat typical problems of solid mechanics as encountered in engineering practice.

PROBLEMS  rommomsmammmsrmmemsosssrmnesem e s e sy e R e P e A e

In all the following problems, assume that the stresses are identical to the average
stresses.

Throughout this book, problems that require a deeper understanding of the subject or a more
sophisticated approach have been indicated by an asterisk (*).

1.1: Two cylindrical rods AB and BC, welded together, as shown in Fig. (1P.1), are
subjected to a force 30 kN at B and an unknown force P at C. Determine (a) the force
P such that the same normal stress exists in each segment of the rod and (b) the force
P such that the tensile stress in BC is equal in magnitude to the compressive stress in
AB. Indicate whether the P is a tension or compression force in each case.




1.2: Theshearingstress at failure of a steel plate is given as t = 90 MPa. (a) Determine
the force P required to punch a 20-mm diameter hole if the thickness of the plate is
t = 4 mm, as shown in Fig. (1P.2); (b) What is the average normal stress & in the punch
when subjected to this force?

1.3: A rectangular block of brass (E =100 GPa) and allowable stress o =120 MPa,
whose cross-section is 40 mm x 60 mm, supports a compressive load P. Determine the
maximum force P that may be applied if the block is not to shorten by more than
0.05%.

1.4: An aluminium control rod of circular cross-section is to be designed to lengthen
by 2 mm when a tensile force P =40,000 N is applied. If the allowable stress is
o =20 MPa and £ =70 GPa, determine (a) the smallest permissible diameter D and
(b) the shortest length of the rod.

1.5: The frame shown in Fig. (1P.5) consists of three pin-connected 3-cm diameter
rods. Determine the average normal stress in rods AB and AC if the force P =60 kN.

1.6 A truss, consisting of two pin-connected rods AB and AC (each made of the
same material whose density is p (N/m3) and each having the same cross-sectional
area A), supports a force P as shown in Fig. (1P.6). The truss is to be designed such that
|o], the maximum allowable normal stresses (in absolute value), are the same in each
member.

(a) Show that under these conditions, the weight W of the truss is

pPL 1 2
W= —7"| — +—|.
o [tanﬁ * sin28

(b) Assuming that P is much greater than the total weight W of the truss, determine
the angle g for which the truss has minimum weight, thus yielding an optimal design.
What is the minimum weight W expressed non-dimensionally as ;—F"L—V/—u?

1.7: Two tubular rods are connected, as shown in Fig. (1P.7), by means of an adhesive
whose allowable shear stress is 1 =4 MPa. Determine the permissible axial force P that
the connection can carry.

D=30cm

a=20cm
N —
_________ l_ —1
3 C
J——————— m————— SN
N\ I — d——
N
N

1.8: A steel rod of length £ =2 m, fixed at A, is heated by a linearly varying tem-
perature §T(x), as shown in Fig. (1P.8). The coefficient of thermal expansion is o =
11.7 x 1078(1/°C).

(a) What is the strain €(x) at any point x of the rod? (b) Determine the displacement
ulx) at any cross-section of the rod; (c) What is the total elongation AL of the rod?
(d) Determine the average strain € in the rod.

Problems 19
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5pi AT,=40°C

Figure 1P.8 l L=2m

The following problems are to be solved using a computer.

\g‘f‘ 1.9; Athree-bar truss, each of whose members has a cross-sectional area A = 2.0 cm?,

is subjected to aload P = 30 kN that is inclined with respect to the x-axis by a varying

» angle @, as shown in Fig. (1P.9). Plot the normal stress in AB and BC as a function of
"\ 30° for 0 < o« < 180°.

, =

A

1.10: For the truss of Problem 1.6, plot the weight of the truss in non-dimensional

Figure 1P9 terms, i.e. 7=, as a function of g for 0 < g < 90°.
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Internal forces and stress

2.1 Introduction

We have seen that stress as a measure of the intensity of internal forces is a funda-
mental concept in solid mechanics. In the previous chapter, the 1dea of stress was
introduced by means of some simple one-dimensional cases. However, the concept
of stress is more complex. As will become evident from the treatment below, the
quantities found previously are only components of stress. In order to develop more
fully the concept of stress, it is necessary to consider first the three-dimensional
case which, in general, exists in reality. From this more general case, we consider
the simpler two- and one-dimensional cases.

Since the stress in a body is dependent on the existing internal forces, we first
consider and analyse these forces.

2.2 Internal force resultants

Consider a body, located in an x. y, z coordinate system, under a set of external
forces Fy, F, ..., F, [Fig. (2.2.1)]. According to Newton’s laws of mechanics,
the body must satisfy two basic principles: the principle of linear momentum and
the principle of angular momentum. If the body is in equilibrium then these prin-
ciples reduce to the vector equations 3~ F = 0 and 3_ M = 0. Moreover, since all

Fy

K4

points in the body are in a state of equilibrium, it is clear that these laws must be
satisfied for any arbitrary portion of the body. Let us therefore imagine that we cut
the body by means of a plane (whose area is A4) that passes through some point O
and that we isolate the two portions of the body. First, we recognise that there are

21

Figure 2.2.1
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an nfinite number of planes passing through the point O. To identify any specific
plane, we construct a unit vector, normal to the plane, which we denote by n. The
vector a thus specifies the orientation of the plane in the x, y, z coordinate system.
We shall hereafter refer to this plane as the n-plane. Upon isolating the two portions
of the body, it is important to recognise that the top part of the body exerts forces on
the lower portion and that the lower portion exerts (equal and opposite) forces on
the upper portion.

Having isolated the two portions of the body, we examine, for example, the lower
portion as shown in Fig. (2.2.2) and consider it as a ‘free body’. In addition to the
known external forces F,, which act on the original exterior surface of the body, we
must also represent the forces acting on the plane of the cut that the upper portion
exerts on the lower portion. We wish to determine these unknown internal forces
using the laws of mechanics. These forces acting on the plane of the body will, in
general, be distributed over the cut in some arbitrary way. At this stage, we are not

interested in determining the distribution of forces but wish merely to determine
z the resultant effect. Now, whatever the distribution of these internal forces, it is
Figure 2.2.2 known that any force systern can always be represented by a single resultant and a

moment; we denote these by the vectors F* and M*, respectively, shown as acting

on the n-plane in Fig. (2.2.2).! Note that while the vectors F* and M* represent

the resultant internal force system, this force system must be considered as part of

‘external forces” when acting on the entire cut section of area 4 of the isolated free

body.

If this free body is in equilibrium, then

Y Floa+ F* =0, (2.2.1a)
ZML:xt + M =0, (2.2.1b)

where Fl., and M|, represent the forces and moments due to the externally applied
force system. Clearly, in principle, the two unknown vectors F* and M, which are
required to maintain the isolated portion of the body 1n equilibrium, can be found
from these two vector equations. We now define two other mutually perpendicular
directions by means of unit vectors s and ¢, both of which lie in the plane of the cut
n [Fig. (2.2.3)]. Since # is perpendicular to the n-plane, the three vectors n, s and ¢
are said to form an orthogonal triad. We may then resolve the internal resultant F*
& and M™ into scalar components as follows:

F*=Fn+V,s+ V¢t (2.2.22)
M =Tn+ M;s + Mt 2.2.2b)

The component F appearing above is referred to as a normal force component

or more briefly, the normal force acting on the n-plane. The components ¥, and

Figure 2.2.3 ¥,, which act tangentially to the n-plane, are called the shear forces in the s- and
t-directions, respectively [Fig. (2.2.4a)).

The component of M* in the n-direction, T, represents the moment about the

normal n-axis; i.e., T = M, It is therefore called the torsional moment (or the

torque) since it tends to twist the body. On the other hand, the components M and

<

' To distinguish the moment vector from the force vector, the moment vector 1s drawn with a double arrow.
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(b)

M, are called bending moments about the s- and r-directions since they tend to
bend the body about the s- and ¢-axes, respectively [Fig. (2.2.4b)].

We emphasise here that the above quantities represent resujtant forces and mo-
ments acting on the n-plane and that, at this stage, no consideration is made as to
their distribution over the plane of the cut.

Since F* and M represent the resultant effect of the upper portion on the lower
portion of the body, it is clear, according to Newton’s Third Law, that the lower
portion also exerts an effect that is equal and opposite on the upper portion of the
body [Fig. (2.2.5)].

We illustrate these ideas in the following examples.

Example 2.1: A body, consisting of a pipe lying in the x-z plane, is subjected
to a vertical force P = 250 N as shown in Fig. (2.2.6). Determine the compo-
nents of the resultant forces and moments at the sections a~a and b-b.

Solution: 1In the following calculations, positive forces indicate that the force is
acting in the positive coordinate direction; positive moments act about positive axes
according to the right-hand rule. (For the present, this will suffice. However, we wilt
find, in future treatments, that it is necessary to adopt a different sign convention
appropriate to solid mechanics.)

Figure 2.2.4

Figure 2.2.5
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Figure 2.2.6 P=250N

y ) 80 cm

T T R S

250
Figure 2.2.7 (b)

(2) Section a—a: To determine the forces at a—a, we consider the isolated body shown
in Fig. (2.2.7a). Note that the shear forces at this section are ¥, and Vyﬁ

Y E=0--V, =0,
+1 Y F,=0-—V,-250=0->- ¥, =250N,
Y F.=0-5—F=0.

' For simplicity, only non-zero moments are shown 1n the figure.



2.2

internat force resultants

25

Letting (3 M, ), denote the sum of the moments about an x-axis passing through
a-a, etc. we have

-+ (Z M,)a = 0= (20)(250) + M, = 0—— M, = —5000 N-cm,

(ZMV)3=0—->—>M_V=O, (ZMZ>3=O—>—>MZET=OA

(b) Section b~b: Making a cut at b-b and isolating the free body [Fig. (2.2.7b)], we
have

Y F=0->—F=0,
+1 ) F=0>>V-250=0->—,=250N.
ZFZ =0——V,=0.
—(E 4 Y (Mo = 0->—> (60)(250) + My = 0——> M, =T = — 15,000 N-cm,

Note that the minus sign indicates that 7" acts in the opposite sense to that shown
in Fig. (2.2.7b).

(ZM,,)b =0—>—> M, =0

+(X M.} = 0> M, = (80)250) = 0——> M, = 20,000 N-cm.

Example 2.2: A beam ABC consists of two elements, fixed at A, pinned at
point B and simply supported at point C, as shown in Fig. (2.2.8). Determine
the internal force resultants occurring at points D and E, due to the uniform
line load w (N/m) acting between B and C.

yT )
D B 4
|

5
= L lv-\c—+;c

E

A

|

|
|< rl‘ ~-¢ :l

L2 L2 L2

L2

Solution: We first note that this is a two-dimensional problem. Therefore, since atl
forces F act in the x—y plane, the only moments that can exist are moments about the
z-axis, which we denote below by M, i.e., M = M,.

Considering the body ABC, we note that there exist four unknowns Ra., Ra,,
My and Rc [Fig. (2.2.92)]. The equilibrium equations for this body are

Y Fe=0->> Ry, =0, (2.2.32)
+1 Y F, =0 Ray+ R —wL =0, (2.2.3b)

/
T+ (M), =0 —My+2LRe = wl(3L/D) =0 (2230)

Having immediately found R, = 0, we observe that we are left with two remaining
equations [Egs. (2.2.3b) and (2.2.3¢)] and three unknowns (Ra,, Rc and My);

Figure 2.2.8
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Figure 2.2.9
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we therefore require a third equation. However, a pin exists at point B. Therefore
Mg = Osince (as the pin, by definition, does not provide a constraint against rotation
at B) no moment can be transmitted by the pin from one part of the beam to the
other. This provides us with the additional equation: we thus make a ‘cut’ at B and
isolate BC as a free body [Fig. (2.2.9b)]. Note that although we must now show the
forces Rp, and Rg, (as external forces), which represent the effect of the segment
AB on BC, these do not appear in the moment equation if taken about point B.
Thus, for member BC, we have

/
7+ M;)B = 0—>— Rel — (wLY(L/2) =0 —>— Re = wL/2.
Substituting this in Eqs. (2.2.3b) and (2.2.3¢), we have

Ray=—Re+wL=wL/2 and Ma=2RcL -3wL?/2=—wL?/2.

Note that the minus sign appearing in {4 indicates that it is acting in a direction
opposite to the assumed direction shown in Fig. (2.2.9a).

Having found the external reactions, we may now find the internal force resultants
atDand E:

At D: Isolating A-D [Fig. (2.2.9¢)],
Y F=0—-F=0,

+1Y F=0->—>wl/2~V=0>-V=wl/2,

\7/ + (Z M,)D =0 M+ wl?/2— (wL/2)L/2) =0
> M =—wL?/4,
At E: Treating AE as an isolated body [Fig. (2.2.9d)],
Y F=0--F=0

+T2Fy=0——>——>wL/2——wL/2—V:0_>_>V____0’

/
7+ (Z M,)E = 0o M+wl?/2— (wL/)(BL/2)
+ (wL/2XL/4)=0—>—> M =wL?/8.
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It should be noted that the same results at section E could be obtained by considering
equilibrium of EC as a free body. The reader is urged to verify this. O

Example 2.3: A magnet is attached at the free end of an iron bar whose
cross-sectional area is A, as shown in Fig. (2.2.10a). The attraction force f is
found to decay exponentially, that is,

f(x) = ce ™t (N/m?)

as shown in Fig (2.2.10b), where c is a constant. Determine the normal force
F (x) that exists at any cross-section.

Solution: We note that the magnet exerts body forces on each element of the rod.
Let us make a cut at some arbitrary cross-section focated at x [Fig. (2.2.10c)]. Then,
since at any cross-section &, f(&) = ce™*/%, from Y F, = 0, the total force on the
cross-section is given by
X X x
F(x) = /f(g)A dt = c4 / el dE = —cALe | =cAL(l —e™h).
0 0 0
(2.2.4)

The variation of F(x) is shown in Fig. (2.2.10d). O

2.3 State of stress at a point: traction

It is evident that the internal force system F* and M* shown in Fig. (2.2.2) may be
considered to be composed of small increments AF* and AM*, each acting over
a small area A A4 surrounding any point O of the n-plane [Fig. (2.3.1)}. We now
examine the area surrounding this point.

(a) Traction

Let us confine our attention to point O and the increment of area A 4 surrounding it.
Now if we shrink the area A 4 to zero, it is clear that both A F* — 0 and AM* — 0.
We now define the following ratio:

ok

T,= lim ——. (2.3.1)
Furthermore, we assume that!
im AM g, 23.2)
a4—>0 AA

This assumption is based on experimental evidence and, in general, is found to be
valid for solids encountered in engineering practice.

We first observe that T, which acts in the same direction as A F*, is a vector. The
quantity T, is called the traction. We observe, too, that according to its definition,
the traction T, represents an intensity of force per unit area and that it acts in some
arbitrary direction with respect to the n-plane. In the SI system, this quantity is
given in units of N/m?, which, as we noted in Chapter 1, is defined as a Pascal (Pa).

! Asa result of this assumption, we efiminate the existence of what are known in solid mechanics as ‘stress
couples’ in the body.
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Figure 2.2.10
v
Figure 2.3.1
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Figure 2.3.2

Having noted that the vectors A F” and T, act in some arbitrary direction with
respect to the n-plane, we resolve them into their scalar components in the n-, s-
and ¢-directions defined by the unit vectors », s and ¢, respectively, as described in
the previous section.

Following Eq. (2.2.2a), the scalar components of AF* in the n-, s- and
t-directions are denoted by AF, AV, and AV, respectively. The quantity AF
thus represents an increment of normal force while AV, and AV, which act tan-
gentially to the n-plane at point O, represent increments of the shear forces in the
s- and ¢-directions, respectively. Thus we have

AF* = AFn+ AV.s + AVt (2.3.3)

Substituting this in Eq. (2.3.1), we may therefore write

R AF AV AV,
ro= i, [ S R s 3 239
Now we denote the limits of these ratios as follows:
. AF . AV . AV,
On = AIAHEO A4’ Tns = L\],;XITO AAd’ T = ABT@ AA (2.3.3)
Hence
T, =00+ 7,8 + Tk (2.3.6)

The traction 7', shown in Fig. (2.3.2), which represents the intensity of the force
acting on an n-plane per unit area, thus has been resolved into components normal
and tangential to the n-plane.

The following definitions and remarks are now in order:

s It is important to emphasise that the traction T, depends on the particular n-plane
passing through the point O. In general, a different traction exists on each n-plane.

s The scalar quantities, o,, T,s and t,,, are stress components, which represent
intensity of force per unit area. Clearly, they have units of Pascals.

® o, acts on a plane whose normal is # and acts in the direction of n. We shall refer
to o, as the normal component.

m 7, and 7, act tangentially to the n-plane in the s- and ¢-directions, respectively.
Thus 1, and 7, are called the shear components acting on the n-plane. The
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first subscript in the 7 terms refers to the plane over which it is acting while the
second subscript refers to the direction in which it acts.

= Note that it is not necessary to prescribe two subscripts to the normal component
o, since it is understood that this component acts in the same n-direction, which is
normal to the n-plane. Indeed, the symbol o, has been introduced to distinguish
it from the shear stress components t,, and 7,,. However, at times, it is more
appropriate to use a different notation: namely, 0, = 7,,. Thus, when using the
letter t to indicate a normal component, it is then also necessary to use two
subscripts.

We now examine these quantities when referred to a Cartesian coordinate system
x, y, z (with unit vectors #, j, k, respectively).

@ () () Figure 2.3.3

Let us consider the particular case where n lies in the x-direction, and let s
and £ lie in the y- and z-directions, respectively. Thus, here n—> i, s — j, t > k
[Fig. (2.3.3a)]. The traction is said to be acting on the x-plane; we denote this
traction by T,. Hence, we have

T, =04+ 10, j + Tk
or, in the alterpative notation,
T =10+ 1) + 1.k (2.3.7a)
Similarly, for the y-plane, let n — j, s — i, t — k [Fig. (2.3.3b)] so that
T, =t1,i+0,j+1,k
or
T, =1y,i+1,j+1.k (2.3.7b)
For the z-plane, we letn — k, s — i, t > j [Fig. (2.3.3¢)]. Then
T.=td+1,j+0k
or
T, =td+1yj+ .k (2.3.7¢)

In passing, we observe from Eqs. (2.3.7) that the various stress components are
given by the following scalar products; namely,

o, =T, 1, o,=T,.j, o,=T, k (2.3.8a)
Toy = Ty - f, Ty, = Ty K. (etc.). (2.3.8b)
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Thus, in general, we may write
0, =T, -n (2.3.92)

and
T =T, -8, (2.3.9b)

where n and s are unit vectors (|n| = |s| = 1) given by n = n,i 4+ n,j + n.k and
s = 8ci +5,J + 5.k

(b) Sign convention
At this stage of our treatment, it is necessary to adopt a sign convention.

W We first define a positive and negative plane with respect to a coordinate system
as follows:

A positive (negative) plane is one for which the outward normal is acting in the
positive (negative) coordinate direction. [Thus the planes shown in Figs. (2.3.3)
are all positive planes.]

At times it is convenient to use a different terminology: we refer to the plane as
a ‘face’; thus one refers to the ‘positive x-face’ instead of the ‘positive x-plane’,
the two terms being synonymous.

W Positive and negative components are defined as follows:

A positive component acts on a positive face in a positive coordinate direction; or
A positive component acts on a negative face in a negative coordinate direction.

Therefore, in accordance with this convention,

A negative component acts on a positive face in a negative coordinate direction; or
A negative component acts on a negative face in a positive coordinate direction.

It is convenient to represent the above components acting at a point, which appear
in Figs. (2.3.3), by means of a single figure. This representative figure is shown in
Fig. (2.3.4) where all the stress components are acting, It is important to note that
this figure is but a pictorial representation that permits one to show the components
acting on the positive and negative planes by means of a single figure. The element
as shown in Fig. (2.3.4), therefore, is not meant to necessarily represent a physical
element of the body.

We observe that all the stress components shown in Fig. (2.3.4) are positive com-
ponents in accordance with the above sign convention. According to our definition
and sign convention, we also observe from this figure that a positive o, compo-
nent, o, > 0, indicates tension while a negative o, component, g, < 0, indicates
compression.

(c) The stress tensor
Using the symbol t,, = g,, we have seen that there exist nine components at a
point; these are shown in the array
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\dy

Figure 2.3.4

These components define the stress at a point; the components are referred to as
stress componeuts. Therefore, in order to define the state of stress existing at a
point, it is necessary to specify nine scalar components. (It is interesting to note the
analogy with a vector in three-dimeusional space: in order to specify a vector, it is
necessary to specify three scalar components.)

The array of these nine stress components is called the stress tensor, which we
sometimes denote by the symbol 7. We shall see that it is not simply because it is
represented by an array that we call 7 a stress tensor, but rather because the compo-
pents obey certain specific laws and T possesses certain specific propertties. These
laws and properties will be found in our subsequent treatment. We mention, how-
ever, that the stress tensor is said to be a second-rank tensor, since two subscripts
are required to specify its scalar components. !

At this point, we should also note that in order to specify the traction (vector) T,
it is necessary to know three components of stress acting on the n-plane. Therefore,
it follows that if the traction on three different (orthogonal) planes passing through
a point are known, then all the components of stress are known.

(d) Equality of the conjugate shear stresses

We have observed above that, in principle, it is necessary to specify nine stress
components in order to define the state of stress existing at a point. While this is
true, we shall find that three of these are not independent,

Now, in general, the stress components will vary from point to point. That is,
Tex = TaelX, Y. 2), Ty = Tyy(x, . 2), etc. or symbolically, 7 = 7(x. y. z). Let us
isolate an infinitesimal element Ax Ay Az, having density p, surrounding a point
O (which is [ocated at its centre) through which x-, y- and z-axes are assumed

' The terminology fensor 1s perhaps new to the reader. Indeed, at this stage we do not attempt to justify
the use of this term but simply accept it as a name. As we shall see, 1n order for a mathematical quantity
to be called a tensor, it must obey specific laws, We shall find that the stress tensor obeys these laws and
it is for this reason that it is called a tensor.
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Figure 2.3.5
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to pass [Fig. (2.3.5)). Since these are axes of symmetry, they therefore are also
principal axes of the element. Now, let us assume that stress components are
acting on each face of the element as shown in the figure. (Note that all com-
ponents shown in the figure are positive according to our sign convention. For
simplicity, we have not shown stress components acting in the z-direction.) Since
the element is infinitesimal, we may also assume that the components are act-
ing at the centre of each face. It is important to note that Fig. (2.3.5) repre-
sents a real physical element of the body (as opposed to Fig. (2.3.4), which was
merely a convenient pictorial representation). However, although the element is
small, we may not assume that the stress components on opposite faces are the
same. Thus, for example, the stresses on the right (positive) face of the element,
which 1s located at the coordinate x + Ax /2, must be assumed to be different than
those on the left (negative) face, which is located at the coordinate x — Ax/2;
that 1s,

ox(x & 8x/2,y.2) = 0x(x, . 2) £ Aoy,

Too(Xx £ AX/2,y,2) = Ty(x, ¥, 2) £ ATy, (etc.).

Similarly,

oy(x,y £ Ay/2,z) = 0,(x, y,2) £ Ag,.
tyx(xsy +Ay/2,z) = r-v.r(x: y) = Aryx;

where y £ Ay/2 represent the y-coordinate of the top and bottom plane, respec-
tively.

In addition to the stress components, we must also assume that a body force B
acts through point O. These forces (which were defined in Chapter 1, and have
units of N/m?) act at various points of the body. Denoting the components of B by
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By, B, and B, we have
B =B.i+ B,j+ B:k. (2.3.10)

Now, this element must satisfy the principle of angular momentum. In particular,
let us consider the equation of angular momentum about the z-axis:

> M, =H.. (2.3.11a)

where H, = %&’ the rate of change in angular momentum about the z-axis is given
by!

H, =16, + (L~ 1,)8.6,. (2.3.11b)

In the above equation, /., /,, and /,, represent the mass moments of inertia about
the x-, y- and z-principal axes, respectively; 8., 6, represent the angular velocities
and 6, denotes the angular acceleration about the z-axis. For simplicity, let us
consider the case where the element does not rotate about the x- or y-axes. We then
have, from Egs. (2.3.11a) and (2.3.11b),

Y M, =10, (2.3.11c)

We note further that in the expression for M, components acting in the z-direction
will not appear in Eq. (2.3.11¢); it is for this reason that they were omitted from
Fig. (2.3.5).

We recall that the moment of inertia /,, appearing above can be written as

L, = pAx Ay AzkZ, (2.3.12)

where £, is the radius of gyration of the element about the z-axis. (The expressions
for I, and /,,, are similar with &, replaced by k. and &, , respectively). It is important
to note that &, is of the order of A (where AZ, a characteristic dimension of the
element, is an infinitesimal of the same order as Ax, Ay or Az) .

Taking moments about the z-axis passing through point O (and observing that all
the stress components o, 0,, 7., and 7., as well as the body forces pass through
this axis and therefore do not contribute to M,), we find, from Eq. (2.3.11c),

Ax Ax Ax Ax

Try x+7,y,z AyAz 7—# Tyy x—T,y,z AyAz >
A A
—[[r_y,\.(x,yﬁ—?y,Z)}AxAz]Ty

Ay Ay .
— H:r_‘,_x (x,y — 7.z>]AxAz]7' =1,.0.. (2.3.13)
Now, !
Ty (x + %,y, z) ~r, aar;-” %, (2.3.14a)
Ty (x.y + %, z) ~ T, & 8ary %. (2.3.14b)

! See, for example, Beer and Johnston, Vector Mechanics for Engneers.
t We assume here that all stress components vary ‘smoothly’ with x, y and z.
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Figure 2.3.6

Substituting Egs. (2.3.12) and (2.3.14) in Eq. (2.3.13),
[Tey — Ty ]AX Ay Az =~ pAXAyAzk26, (2.3.152)
and dividing through by AxAyAz:
[t — T,0] = pk26,. (2.3.15b)

Taking the limit as Ax — 0, Ay — 0 and Az — 0, and recalling that &2 is of order
Af£2, it follows that
lim0 k.= 0. (2.3.15¢)

Al —

We therefore obtain in the limit, 1y, ~ 7,, = 0; that is,
Try = Tyg- (2.3.16a)

Itis important to understand that by taking the limitas Ax — 0, Ay — Oand Az — 0
(and implicitly A£ — 0), we have established that the property ., = 1, exists a
a point.

Similarly, taking moments about the x- and y-axes and proceeding in the same
manner, we obtain

Ty, = Ty (2.3.16b)
and
Tzx = Tyzs (23]6(2)

respectively.

The equalities given by Eqs. (2.3.16) are referred to as the equality of the ‘conju-
gate shear stresses’ at a poins. Thus we have found that the shear stress components
acting at a point in perpendicular directions on any two mutually perpendicular
planes are always equal. These equalities at a point are shown in Fig. (2.3.6). Again,
itemphasised that Fig. (2.3.6) is merely a pictorial representation, which permits the
representation of the shear stresses existing at the various planes passing through
point O and does not represent a physical element.

(c)

As a result of the equality of the three conjugate shear stresses, the stress tensor
at a point contains only six independent components, namely

Tyx Txy Txz
Tyx = Tay  Tyy Tyz
Tx = Tz Ty = Tyz Tz

We observe immediately that the stress tensor is symmetric. Thus we refer to the
stress at a point as being represented by a second-rank symmetric tensor.
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It is important to emphasise that equilibrium is not a requirement for the equality
of the conjugate shear stresses; indeed the equality of the conjugate shear stresses
is valid for bodies with angular accelerations. It should be pointed out, however,
that the equality of the conjugate shear stresses follows also from the assumption
given by Eq. (2.3.2). In fact, if this assumption were not valid, we would find that
Tuy 3 Ty, €tc. and nine independent components would remain.

Now, there exist many bodies where the stress state at a point is such that all
the stress components that act in a particular direction vanish. For example, such a
case exists in a plate that lies in the x—y plane and which is subjected to forces that
lie only in this plane [Fig. (2.3.7)]; n this case, all stress components acting in the
z-direction will vanish and the array representing the resulting two-dimensional
stress tensor contains only four non-zero components. We refer to the body as be-
ing in a state of ‘plane stress’. The stress tensor, in this two-dimensional case, 1s
written as

e

Tyx Ty Figure 23.7
Tyx = Txy  Typ .

We thus observe that for this two-dimensional case, there exist only three indepen-
dent stress components: .., Ty, and ty, =7,,. We shall analyse such a state of
stress in greater detail in a subsequent section.

Having shown that the principle of angular momentum leads to the equality of
the conjugate shear stresses at a point, it remains for us to satisfy the principle of
linear momentum for any element in a body.

2.4 Stress equations of motion and equilibrium

Consider a body of mass density p in a x, y, z coordinate system as shown in
Fig. (2.4.1). In general, such a body may be subjected to external forces F as well
as body forces B that act at various points of the body and have components B, ,
B, and B,, as defined in Eq. (2.3.10).

F

B

Fn Figure 2.4.1

Due to the forces F and B, it is clear that the various points of the body will
displace and internal stresses will exist within the body. Let us consider a point
P(x. y. z) located in the body. From the previous sections, we have established that
there exist nine stress components, six of which are independent (o, . O\ 0;

STy =
Tyxs Tyr = Tpy, Tox = Tx:)-
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We first denote the displacements by
u=ui+vj+wk (2.4.1a)

Now, as we observed previously, the stress components may vary from point to
point, i.e., in general, they are functions of x, y and z. The variation of the stress
state throughout the body is often referred to as the stress field. We shall assume
that the stress field is continuous; 1.e., there exist no discontinuities in the stresses
and that all partial derivatives with respect to the coordinates exist.

Let us consider an element Ax Ay Az at the general point P(x, y, 2) where, here,
we have taken the point P to be at the corner of the element as shown in Fig. (2.4.2).
Now, according to the principle of linear momentum, ) F = mi, where m, the
mass of the element, is given by pAx Ay Az. Isolating this element as a free body,
the above stresses are considered as ‘external forces’ acting upon it. Applying the
principle of linear momentum in the x-direction, the stress components acting in
the x-direction as well as the body force B, are as shown in Fig. (2.4.2). As before,
we may assume that the stresses act at the centre of each face.

Ay
<J--
Tex Box
Ty € - s JX+EAX

P,"BY _______ Y x
z
7’
7
//
-~
Vi Tex Az
.// ’ K]
T.
< Ix
Tyx ™+ Az

0z

| N
Figure 2.4.2 / e Ax !

From linear momentum in the x-direction, i.e., y_ Fy = mii, we have
—0 AyAz + (0, + AG)AYAZ — Ty AX Az + (T + ATy )Ax Az
— T AXAY + (Toy + AT )Ax Dy + B, AxAyAz = pAxAyAzii  (2.4.2a)
or
Ao, AyAz + Aty AxAz + At AxAy + By AxAyAz = pAxAyAzu.

(2.4.2b)
Upon dividing by Ax AyAz, we obtain

Ao, At At
+ yx + 2Xx
Ax Ay Az

+ B, = pii (2.4.2c)

Taking the limits as Ax — 0, Ay — 0 and Az — 0, and recalling that in the limit,
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2
<

7

by definition, the above ratios are partial derivatives, we obtain
00, 0T, 0T.x
5x | ay | 8z
Similarly, Y F, = mi and 3 F, = mib, yield respectively,

+ B, = pil. (2.4.32)

0T, 0o, 0Ty

0x dy 0z
dt., 0t,, 0o,
ax ay + 0z

If the body is in equilibrium, it = ¥ = i = 0, and hence

+ B, = p. (2.4.3b)

+ B, = pib. (2.4.3¢)

0 Ox el Tyx 0 Tox

+ —+ Bt = O‘ 2443.
0x dy 0z ’ ( )
Irey B0y BTy p (2.4.4b)
0x ay 0z

01, | 00
0T | 0 00 4 p (2.4.4¢)

ax ay 0z -

It is important to note that the above equations are valid for any body, i.e., they do
not depend upon a particular material. In fact, these equation are valid for fluids as
well as for solid bodies.

Although Egs. (2.4.3)+2.4.4), known as the equations of motion and equilibrium,
respectively, were derived in terms of a Cartesian coordinate system, it should
be mentioned that similar equations (although of different form) exist for other
coordinate systems.

Equations (2.4.3) and (2.4.4) demonstrate that the stress components may not
vary arbitrarily from point to point within a body. They must vary in a prescribed
manner such that they satisfy Egs. (2.4.3) for an accelerating body, or Egs. (2.4.4),
if the body is in equilibrium; otherwise they will violate the principles of linear
momentum or equilibrium.

Example 2.4: The stress field of a body is given as

ox = ax4, o, = bax?y?, 07 = CxXyZz?,
Ty = b3y, Ty, = X%y, T = Oy,

where a, b, ¢ are constants (whose units are Pa/m®). In addition, the body
forces are known to be zero throughout the body.

Under what conditions do these stresses represent a state of equilibrium
at all points of the body?

Solution: In order for the body to be in equilibrium, the above stress field must
satisfy Egs. (2.4.4). Substituting in these equations, with B = 0,

4ax +bx* =0 )
3bx?y + 12ax’y + cx?y =0 (i)
3ex?y +ex?z 4+ 2cxyz =0 (ii1)

We first observe that in Eq. (iii), the constant c is the coefficient to terms of various
different powers of the coordinates x. y and z. Therefore, equilibnium in the z-direction
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Figure 2.5.1

can be satisfied at all points P(x. y, z) of the body only if ¢ = 0. The remaining two
equations, (1) and (i1), reduce to

(4a +b)x* =0 and 3(4a +b)ux?y =0,

respectively, and are satisfied at a/l points P(x, y, z) only if b = —4a. a

2.5 Relations between stress components
and internal force resultants

For simplicity, let us consider a rod of cross-sectional area 4 whose outward normal
1s in the x-direction as shown in Fig. (2.5.1). We denote here the normal force acting
on this plane by F and the shear forces in the y- and z-directions by ¥, and 7,
respectively.

The components of the traction at any point P(x, y) on this plane are given by
[cf. Eq. (2.3.5)]

AF

Oy = A]/}I’EOH, (2513)
AV,

= . 2.5.1b

= Do ad ( )
. AT,

;= . 2.5.
Tys Al;rgo A~ (2.5.1¢)
Therefore, acting on an infinitesimal area A 4 about the point P, we have

AF ~o0.AA, (2.5.2a)

AV, = 1, A A, (2.5.2b)

AV, >~ 1,AA. (2.5 2¢)

Now the resultant of these forces on the eutire plane is, clearly, the sum of all these
incremental forces over the area, 1.e.,

F=Y AF (2.5.3a)
V=) AV, (2.5.3b)
v, =) AV.. (2.5.3¢)
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Substituting Egs. (2.5.2) and taking the limit as the incremental areas shrink to
zero, we obtain

F= ff o.(y,z)d4. (2.5.4a)
A

V, = // T (y, z)d4, (2.5.4b)
A

V.= // T..(y, 2) dA. (2.5.4¢)
A

For the case where o, = const., F = o, ffA d4 = o, A. Similarly, if 7,, and 7, are
constant over the area, we obtain ¥, = 7,4 and V; = 1., 4; hence

F
X = —0 2553)
00 = (
v
o = —, 2.5.5b
Ty = ( )
v,
vz = -—z— 2.5.5¢
T y ( )

The first expression, o, = F/A, is often found to be true for a prismatic bar sub-
jected to a system of applied axial forces such that a resultant normal force F acts
on the section. However, we shall find that this result depends on the line of action
of F. (We shall study this case in greater detail in Chapter 6.)

On the other hand, as we shall see in Chapter 8, the expressions t,, = V¥, /4 and
T, = V,/ A cannot, in general, represent the true stress components at all points in
a section. These expressions merely yield some average shear stress component on
the section, as found, for example, in Chapter 1.

Consider now the moments resulting from the stresses acting on the section.
We note from Fig. (2.5.1) that the stresses acting on the element A4 produce
incremental moments about the y- and z-axes, respectively:!

AM, =zo.(y,z)AA. (2.5.6a)
AM, = —yo.(y,2)AA4. (2.5.6b)
Hence, as before, upon taking the sum and the limiting case as A 4 — 0, we obtain
M, = // z0,(y,z)dA, (2.5.7a)
A
M, = —// yo,(y,z)d4. (2.5.7b)
4

The moments M, and M, about axes that lie in the plane of the cross-section are
called bending moments since they tend to bend a straight rod into a curved shape.

' The signs of the moments are according to the right-hand rule.
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Figure 2.5.2

1t 1s worthwhile to observe that if o, = const.. then

M, = ax/fsz, (2.5.8a)
4

M, = —ox/.fydA. (2.5.8b)

A

If, in particular, point O is the centroid of the cross-section [Fig. (2.5.1)], then
M, = M, = 0; 1e., the moments about y- and z-centroidal axes due to g, = const.
acting over a section are zero.

Consider now the incremental moment about the longitudinal x-axis caused by
the stress components ., and 7, (note that o, can produce no moment about this
axis since it acts parallel to the x-axis):

AM, = y(t; AA) — z(1,, A 4), (2.5.9a)
which yields a total moment
M, = f/(yrxz —21,,) dA4. (2.5.9b)
y

The moment M, about the longitudinal x-axis of a rod is called the torsional
moment since it tends to twist the rod, and is usually denoted by T = M,.

In the above, we have discussed the state of stress in a Cartesian x, y, z system.
Now, if the geometry of a body is defined in terms of another coordinate system, for
example, a cylindrical coordinate system, it is clearly more reasonable to express
the stress components in this more natural system rather than in a Cartesian system.
For example, if we have a circular rod, we would use a polar system defined by
coordinates r. 6, x [Fig. (2.5.2)]. In this case, it is customary to define the unit vec-
tors in this coordinate system by the symbols e,, ey, €,, respectively. The resulting
traction at any point on the x-plane is then

T, = 0,8, + T,r€ + Tr€p. (2.5.10)

These stress components are shown acting on the x-plane in Fig. (2.5.2). It is
worthwhile to mention that the equality of the conjugate shear stresses remains
equally valid irrespective of the coordinate system used. Thus, since the r-, 8- and
x-directions are mutually perpendicular, we have, for this system,

Ty = Trxs Tro = Tor, Teo = Tox- (251 1)
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It should be emphasised that, at all points, the stress 7,9 acts in a circumferential
direction in this coordinate system.

The expressions for the moments given by Egs. (2.5.6)<2.5.9), were obtained
for a Cartesian x, y, z coordinate system. Expressions for the moments M, and M,
in terms of the stresses (0. Ty,. Trg) acting on the x-plane are

M, = —f/(r cosB)o, d4, (2.5.12a)
A

M, = —//(r sinf)o, d4, (2.5.12b)
A

where 6 is measured from the negative z-axis as shown in Fig. (2.5.2).1
On the other hand, the torsional moment 7' = M, is given by

T = ffrrxg(r, 6)dA. (2.5.12¢)
A

This last expression will be found particularly useful in treating the problem of
torsion of rods having circular cross-sections.

Example 2.5: Stress components acting on a rectangular cross-section as Y
shown in Fig. (2.5.3) are given by 5
ox=0y’z,  my=pP -y, =y -y -2, d
y

where ¢, 8 and y are coefficients. Determine the resultant internal forcesand ¢ |7
moments acting on the section.

Solution: From Eqgs. (2.5.4) & 2

™

d

b
szfax(y,z)dA =afy2dy/zdz=ay3/3|‘id-22/2|i,,=
A —d

b

Figure 2.5.3

d
2 2 2 3 d 8'Bbd3
Vy= | [ ma(n2)d4 =28b [ @~y dy = 20818y — y*/301¢y = =5
A —-d
Similarly,
64
v, = f/ Te(y, 2) dA = Tyb3d3.
A
From Egs. (2.5.7),
d b
3d 3 b
M, =//zox(y,z)dA =a/y2dyfz2dz= 2 S R PR Y
. A d b 3l 3 ’

d b

MZ=—f/ny(y,z)dA=—oz [y3dy/zdz=0.
Y ~d

-b

1 See previous footnote, p. 39.
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By direct substitution in Eq. (2.5.9b), we find

M, = ff(yr,z ~z7;,)d4 = 0.
4 0

Example 2.6: Stress components acting on a circular cross-section of radius
R and area A as shown in Fig. (2.5.2) are given by
oor? wr(R —r) r

Oy = —/— = — = —
X RZ Txr R2 ) Txo 05,

R
where op and 1 are constant stress values.
Determine the resulting normal force F, the bending moments M, M, and
the torsional moment T = M, acting on this cross-section.

Solution:

R
R? A
F=ffa,(y,z)dA=%%2nfr3dr:m§ _ %4
A 0

2
R 2n
M, = —ff(rcos@)adi ~ —%fr“drfcosede =0
Y 0 0
since foz” cosfdf = 0.
Similarly,
M, = ~/f(r sinf)o, d4 = 0.
Y
R

R3

T:ffrrxg(r,O)dA=EZn Pdr = 1o
R 2

4 0 0

2.6 Stress transformation laws for plane stress

(a) Derivation

We recall that there exists a two-dimensional state of stress in which all stress
components in a particular direction, say z, vanish. In this case the stress tensor at
a point was seen to be represented by the array

( Txx tx_y)
Tyx = Ty Ty

Now consider an element at a point P. Let us assume further that all stress com-
ponents do not vary with the z-coordinate. We recall that such a two-dimensional
state of stress is called plane stress. Since the z-dependency has been eliminated,
we may represent the state of stress by means of a two-dimensional figure of an
infinitesimal element as shown in Fig. (2.6.1). (We may think of this element as
having unit thickness in the z-direction.) In this figure, we have drawn all stresses
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xy

as positive according to our adopted sign convention. Let us assurme that the three
independent stress components are given with respect to the x, y coordinates; i.e.,
we assume that the stresses acting on both the x- and y-faces are known. In ad-
dition, body forces B may be assummed to be acting on the element. We now wish
to determine the stress components that exist on any other arbitrary n-face whose
normal hes in the x—~y plane.

To this end, we define the n-plane, by means of a normal n, which makes an
angle 8 (positive counter-clockwise) with respect to the positive x-axis. We further
define, as before, the unit vector ¢ as being tangential to the plane; i.e., n and ¢
are mutually perpendicular. (Note that the angle between ¢ and the positive x-axis
then is always 8 + 7 /2 according to our definition.) Since we wish to determine
the stress components existing on this plane, we therefore ‘cut’ the element along
this plane and 1solate it as a free body [Fig. (2.6.2)].

Note that the isolated portion is now a triangular element ABC. Let Ax, Ay and
As denote the infinitesimal lengths of AB, BC and AC, respectively. Clearly, having
made the ‘cut’ there must exist unknown normal and shear stresses acting on the
n-plane. We denote these by o, and 1,,, respectively.

Now, this element must satisfy the (vector) equation of Jinear momentum

> F=mi, (2.6.1)
where the mass of the element is
1 1 5 . 1 ) .
m = EprAy = EpAS sinf cos 6 = 4—pAs sin 26 (2.6.2)

and p is the mass density.

Instead of resolving the above linear momentum equationin x- and y-components,
1t is more convenient here to resolve the vector equation in the n- and r-directions;
thus we must satisfy the scalar equations

Y Fy = mi, (2.6.3a)

and

> F = mi, (2.6.3b)

where i, and i, are the accelerations in the »n- and ¢-directions, respectively.

Figure 2.6.1

Figure 2.6.2
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From Eq. (2.6.3a), we obtain

0nAs — (0, Ay)cos 8 — (0,Ax)sinf — (1,,Ay)siné
2

As . P 2 . .
= (TyxAx)cos6 + B"T sin26 = ZAS sin 26ii,, (2.6.4a)

where B is represented in terms of its components as B = B,n + B,t. But
Ax = As sin®, Ay = Ascosf. (2.6.4b)
Dividing Eq. (2.6.4a) through by As and substituting Egs. (2.6.4b) in it, we find

. ) 1
0, — 0y COS2 0 — oy sin® 9 — 217y, sinf cosH = ZAS sin26 (pi, — B,). (2.6.5)

Upon taking the limit as As — 0, the right-hand side goes to zero, and it follows
that

O, = 0, cos? 0 + oy sin6 + 21,, sinf cos 6. (2.6.6a)

Recalling the identities,

I . 1
cos? 6§ = E(l + cos 206), sin” @ = 5(1 — cos20), sin20 = 2sin# cosb,
we obtain an alternate form of Eq. (2.6.6a), namely

Oy .
0 = (1 +0526) + (1 = c0526) + s, in 26

or
oy + gy Oy — Oy .
o, = 5 + > = 05 20 + 14, SIn 26. (2.6.6b)

Similarly, from > F, = mii,,

T As + (0. Ay)sinf — (0,Ax)cos 6§ — rxy(cos2 6 — sin? 6)As
I
= ZASZ sin 20(pii, — B,). (2.6.7)

Again, dividing through by As, using Egs. (2.6.4b), and taking the limit as As — 0,
we obtain

T = rx},(cos2 6 — sin®6) — (0, — o,)cosf sinf. (2.6.8a)

Upon noting that cos?§ — sin’ @ = cos 26, we obtain an alternative form for Tnts
namely

Oy — U,V

Ty = Tyy COS20 — sin 26. (2.6.8b)

Equations (2.6.62) and (2.6.8a) or alternatively Egs. (2.6.6b) and (2.6.8b) are called
the transformation laws for plane stress. These expressions thus permit us to deter-
mine the stress components that exist on an arbitrary plane passing through a point
in terms of the stresses existing on the x- and y-coordinate planes. One may also
think of these laws as prescribing the stress components in any coordinate system
(here the n—t system) in terms of the scalar quantities in the x—y system. Thus
they transform the scalar quantities in one coordinate system to another coordinate
system. It is for this reason that they are referred to as ‘transformation laws’. In
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physical terms, the two-dimensional state of stress at a point, (oy, 0, Tyy), Is equiv-
alent to the state of stress defined by the components (g, a;. T,.). This equivalence
is shown pictorially in Fig. (2.6.3).

n

- N4

Lo A
§>/<

?—» Ty
T =Tm

0,4
]

Y Figure 2.6.3

9
an
a g,

It should be emphasised that the derivation of the above transformation laws
does not require an equilibrium state and thus these expressions are also valid at
all points of a body undergoing accelerations. It is also important to emphasise that
these laws are true for any specific point of a body; indeed one can only refer to the
state of stress ar a point. This feature should be clearly evident since, in the process
of deriving these laws, it was necessary to take the limit As — 0.

We shall find that the transformation laws possess certain interesting properties;
these will be investigated in the next section.

Example 2.7: A body is subjected to forces such that o, is the only non-zero
stress component at a point. The remaining stress components oy = 1y = 0
[Fig. (2.6.4a)]. Determine the stress components that exist on planes whose
normals are oriented by 45° and 135° with respect to the x-plane.

Iy

|

6=135°

Tpr™ " 0y2

|

gy Ty

(a) (b) (© Figure 2.6.4

Solution: On the 45° n-plane: 6 = 45°.sin26 = 1, cos 26 = 0. Therefore, from

Egs. (2.6.6b) and (2.6.8b),

o a
*22'w Tnt = ?y
On the 135° n-plane: 8 = 135° sin260 = —1, cos28 = 0. Therefore

o, = [Fig. (2.6.4b)].

On

o [of .
=7y, rm=—-2-l [Fig. (2.6.4¢)].

It is important to note the directions of the shear stresses on the two given planes. O
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Further examples illustrating the transformation laws are deferred to a subsequent
section.

(b) Remarks on the transformation laws
(stress as a tensor; invariants of a tensor)

Any quantity for which its (two-dimensional) scalar components transform from
one coordinate system to another, according to Egs. (2.6.6) and (2.6.8), is called
a two-dimensional symmetric tensor of rank 2. Here, in particular, the tensor
is a stress tensor. However, there are other quantities, for example, moments and
products of inertia (viz., I;, /,,. —1,,), which transform according to the same
laws. Therefore, one may state that the moment and products of inertia are also
scalar components of a second-rank symmetric tensor. Thus, by definition, a tensor
is @ mathematical quantity that transforms according to certain laws.

Tensors, as governed by their transformations laws, possess several properties.
We develop these properties (in two dimensions) for the second-rank symmetric
stress tensor.

Recall that Eq. (2.6.6b) represents the normal stress component o, acting on the
n-plane whose normal » is inclined at an angle € with respect to the x-axis. We also
recall that the unit vector ¢ was then defined as being inclined at an angle 8 + 7/2
with respect to the x-axis. Consequently, the normal stress component o, is given
by

oy +0, O

0 === + ; % cos 200 +1/2)+ 1,y 5in2(0 +7/2) (2.6.9a)

or

oy + 0y Oy
o, = 2 —

Adding Egs. (2.6.6b) and (2.6.9b) we obtain immediately

; P cos26 — T,, 8in 26. (2.6.9b)

Ow +0, =0y +0, =1, (constant). (2.6.10a)

From Egq. (2.6.10a) we observe that, for any given point, the sum of the normal
stresses in any two orthogonal directions is a constant. While the three-dimensional
case is beyond the scope of our treatment, we state here that for this case,

o, +o,+o;,=1I,; (2.6.10b)

i.e., the sum of the normal stresses in any three orthogonal directions is a constant.
Similarly, from Egs. (2.6.6b), (2.6.8b) and (2.6.9b), we find, after some simple
algebraic manipulations,

0,0 — t,,z, = 0,0y — rxzy = [,, (constant). (2.6.11)

The constants /,, and /,, appearing in Eqgs. (2.6.10) and (2.6.11) are called
invariants. These equations demonstrate that the two-dimensional symmetric stress
tensor possesses two invariant quantities that are true for any set of mutually per-
pendicular stress components, irrespective of their orientation in space. (In the
three-dimensional case, which again is beyond the scope of our treatment, we obtain
three invariants.) These invariant properties are significant characteristic properties
of tensors.
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(¢} Transformation law of a vector: the vector as a tensor
In our previous development, we found that the symmetric (two-dimensional) array
of the stress components transformed according to a law given by Eqgs. (2.6.6) and
(2.6.8). This law was stated as being the transformation law for a symraetric tensor
of rank 2. We further observed that there exist, in this case, two invariants that
remain valid irrespective of the orientation of the coordinates x, y.

We now digress from our study of solid mechanics to demonstrate that the con-
cepts of transformation laws and invariants, as found in the investigation of the
stress tensor, are concepts that have been encountered previously, namely, for a

vector.
Yy v
t
P Pv P
- \\ gx < - \\
8 \» -7 \\ 0 \
- n
. P \r/}{
1
\\
o 8 \
X P, X
(a) (b) Figure 2.6.5

To this end, we consider a two-dimensional vector P lying in an x—y plane. Now,
a vector is defined by two quantities: (2) its magnitude | P| and (b) its orientation;
for example, the angle @ with respect to the x-axis (in the two-dimensional case)
[Fig. (2.6.5a)]. On the other hand, this vector may be defined, instead, by its two
scalar components P, and P, as shown in Fig. (2.6.5b). We further note that the
square of the magnitude of P is given by

|P|* =P} + P} (2.6.12)

Now, instead of defining the vector P by means of its x- and y-components, it is clear
that the vector P may also be defined by means of any other two mutually orthog-
onal components. Let us therefore construct another set of orthogonal coordinates,
n and ¢, oriented with respect to the x—y system by an angle 6 as shown in
Fig. (2.6.5b). We denote the scalar components in this n—f system by P, and P,
respectively. Then, clearly,

P, = P.cosd + P,sing, (2.6.13a)
P, = —P,sinf + P,cos 9. (2.6.13b)

Equations (2.6.13) are, in fact, transformation laws that transform the scalar compo-

nents of a vector in a single coordinate system, the x—y systemn, into the components

of another coordinate system, the n— system. They are the analogues to the transfor-

mation laws given by Eqs. (2.6.6) and (2.6.8) for the second-rank symmetric tensor.
Let us consider the quantity (P2 4+ P?2). Substituting Eqs. (2.6.13) we have

P} 4+ P} = (Plcos’6 + P}sin’ ¢ + 2P, P,sin6, cos 6)
+ (P?sin® 6 + P2cos’ 0 — 2P, P, sin cos6).
=P+ P]
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that is,
P!+ P} =P+ Pl=|P*=1 (2.6.14)

This last equation expresses the invariant quality of the vector; i.e., the sum of the
squares of any two orthogonal components of the two-dimensional vector equals a
constant. Here, this constant has a simple physical interpretation: it represents the
square of the magnitude of the vector. Thus we observe that a vector possesses a
single invariant. In our examination of the two-dimensional symmetric stress tensor,
we noted that there exist two invanants, I,, and [,,. Thus the invariant represented
by Eq. (2.6.14) represents the analogue to Egs. (2.6.10) and (2.6.11).

Indeed, in mathematics, a vector is referred to as a first-rank tensor. (Note that
only a single subscript is required to specify its components.) Thus, quantities such
as a vector, or stress are called tensors since they obey specific transformation laws
such that certain tnvariant properties are maintained for 2ll coordinate systems.

2.7 Principal stresses and stationary shear stress values
(a) Principal stresses: stationary values of o,

We have seen in the previous section that if a (two-dimensional) state of stress, oy,
oy and 7., = Ty, is known at 2 point, then the normal stress o, and shear stress
for any n-plane passing through this point can be obtained by means of the trans-
formation laws. We note that ¢, = 0,(8) and 1,, = 1,,,(8). Now it is obvious that,
as they depend on 8, these stress components have maximum and minimum values,
i.e. stationary values [Fig. (2.7.1)]. We first investigate the stationary values of o,.
Treating o, as a function of 6, the necessary condition for stationary values is

do,
— =0. 2.7.1
7 (271.1)
9, 6, 6 TFrom Eq. (2.6.6b),
Figure 2.7.1 do, i

gure 2. T —(0x — 0,)8in28 + 21, cos 26. (2.7.2)

Setting this derivative to zero, we obtain
@n20 = ;- (2.7.3)

2

Now Eq. (2.7.3) possesses two relevant roots, 6, and 6,, which define two planes on
which the maximum and minimum stresses g, act [Fig. (2.7.1)]. These maximum
and minimum values of o, are called collectively the principal stresses, and the
planes upon which they act are referred to as the principal planes.

Before examining these roots in detail, we first observe, by comparing
Egs. (2.6.8b) and (2.7.2), that

do,
E’; = 21',". (274)

Hence we immediately conclude that 7,, = 0 on the plane for which d—d? = 0. Thus
we have established that on a principal plane, 7, = 0; that is, no shear stress
component exists on a principal plane.

We now turn our attention to a more thorough examination of Eq. (2.7.3). We
have remarked that this equation possesses two roots, 8, and ;. Clearly, since o, is
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a function of 8, these roots correspond to the maximum and minimum vatues of g,
[Fig. (2.7.1)] . We shall hereafter associate o, and o, with the maximum and mini-
mum values of o, respectively (algebraically, o> < o)) acting on the corresponding
principal planes defined by 6, and 6,.

| ! 20

Figure 2.7.2

Upon plotting Eq. (2.7.3) as a function of 20 [Fig. (2.7.2)], one observes that a
relation exists between the two roots, namely 26, = 26, £ «; that is,

G, =0, £n/2 (2.1.5)

Thus we immediately conclude that the two principal planes are mutually
perpendicular.

Now, having defined 6, to be the plane of maximum o,, it is necessary to identify
definitely the 8, root. Indeed, from Fig. (2.7.2), it is certainly not clear which root
corresponds to 8, and which to 8,. However, since the maximuin value o occurs at
8 = 6, it necessarily follows that

d%o,
do?
for 6 = 6,. From Eq. (2.7.2), we find

<0 (2.7.6)

8=6,

d?o, .
TR = —2[(0, — 0,)c0s20 + 21y, 5in26]
— ar,sinze |22 (LY 4 (2.7.7)
oY 21, \tan26 ' o
Hence, making use of Eq. (2.7.3), we find
d%s, . 1
7 = —41,, s5in 20 Y +1). (2.7.7b)

Noting that the term in parenthesis is always positive, we observe that the sign
of the second2 derivative depends on the sign of the product 7, sin26. Hence it
follows that dd;’; < Oatf =6, (a)ifry, > 0and0 < 26, < m or(b)if z,, < 0 and

—7T <291 < 0.
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We thus have established a criterion to identify the 6, principal plane upon which
the maximum principal stress acts; namely

Ifr,, >0, then 0 <6 <m/2
Ifr,, <0, then —7/2 <6, <0.

Having established this criterion, it is useful to examine further tan 26 as a function
of 20 [as shown in Fig. (2.7.3)]. e
cording to our criterion will correspond to, say, pomtAl if 7, y > 0;if —«—2; > Oand
7,y < 0, then the root 8) will correspond to point By. On the other hand, if —% <0
and 7., > 0, then the root 6, will correspond to point C; while if this quantlty is
negative and Ty < 0, then 8, will correspond to point D;.

tan26

B f-t - ———/A,

—7/2 w2 w20

Figure 2.7.3

Now, we recall that the two principal planes defined by 6, and 6, are mutually
perpendicular. Thus, once the angle 6, is known, the 8, plane, upon which the
minimum principal stress o5 acts, is given by Eq. (2.7.5). For consistency we shall
use

0, =6, + /2. 2.7.8)

Having found the roots 6, and 8,, the principal stresses oy and o, may be given
by Eq. (2.6.6b). To determine sin 28y and cos 26,, we may use the trigonometric
identities

tan 26 _ Tay
V1 + tan?26 \/[(ax —0,)/2P + 12,

T sin26 =

(2.7.9a)

and

!

I

1 Ty

|
26, !

26, oo, c0s20 = 1 _ (0x = 0,)/2

f
¥ =
— 2 V1 +tan? 26 \/[(Ux — )2 + 1},
|
|

(2.7.95)

On the other hand, we may turn to Fig. (2.7.4) where o, is taken as the abscissa
Figure 2.7.4 and t,, as the ordinate. We note from this figure that tan 20; is in agreement with
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Eq. (2.7.3). Denoting the hypotenuse by R, we have

2
Oy — 0y
R :\/( 3 ) + 12, (2.7.10a)

Then clearly,
O, — 0 . Ty,
c0s26; = R Y sin26, = —R—y (2.7.10b)
Similarly, since 8, = 6; + 7/2,
Ox — 0 . Txy
20, = — 2, 20, = ——. 2.7.10¢
cos 26, R sin 26, R ( )

Substituting this in Eq. (2.6.6b),

2 2 2
o, +o, 1 for—o0y Tey o, +o, 1 oy — 0O, 5
= —_| —_— = + — - + 1
7= +R( 2 ) TR 2 R 2 x

or
oy +0 Oy — O 2
g = % + (%) + Tiy. (27113)

oy +o Oy — 0 2
02=%— (—2—) +12,. (2.7.11b)

In passing, it is worthwhile noting, from Eqs. (2.7.11), that

Similarly,

oy + 0 =0y + 0y, (2.7.12)

i.e., we observe again that the sum of the normal stresses on any two orthogonal
planes is an invariant at a point.

(b) Maximum and minimum shear stress components
The planes of stationary shear stress are determined from t,,, given by Eq. (2.6.8b),

in a similar manner. As in the preceding analysis, the necessary condition for sta-
tionary values of 7,,, is

d'fn:
=0. 2.7.13
o ( )
Noting that
dzy, .
B = —21,,5in20 — (0, — 0,)c0s20, (2.7.14)
we find that the planes of stationary shear stresses are given by the roots of
tan26 = — (2.7.15)
27y,

As before, this equation possesses two relevant roots, which we denote here by 6y,
and 6;,, and where again,

0, =0, £1/2. (2.7.16)
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a, =0y
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|
2 l 26:2 :
(
{

Figure 2.7.5

Now we observe that the right-hand side of Eq. (2.7.15) is the negative reciprocal
of the right-hand side of Eq. (2.7.3).
Recalling that for any angle ¢. tan(¢ + 7/2) - tan¢ = —1, we conclude that

B, =6, — /4 (2.7.172)

and by Eq. (2.7.16),

B =6, + /4, (2.7.17b)
where we have chosen the positive sign. (It 1s noted that the positive and nega-
tive signs appearing in Eq. (2.7.16) define the same physical planes given by 6y;
however, one will represent a positive face and the other, a negative face.)

The maximum and minimum values of 7,, are then obtained by substituting
the appropriate values for 8, and 6y; in Eq. (2.6.8b). The trigonometric quantities
appearing in this equation can be obtained by a construction shown in Fig. (2.7.5).
Noting that again, the hypotenuse R is given by

2
Oy — Oy
ey (25 o

we have
. Oy — Oy
sin 20, = — sz : (2.7.18a)
TX\J
008 260,) = —=. (2.7.18b)
R
Similarly
N Oy — 0O
sin 26y, = R L (2.7.18¢)
0$26,, = —%. (2.7.18d)

Upon substituting in Eq. (2.6.8b), we find, after simple algebraic manipulations,

2
g, — 0,
Troax = \/(T}> + 7-'::2y‘

(2.7.192a)
and
T = ’\/(u>2 b2 (2.7.19b)
2 w
Using Egs. (2.7.11), we readily observe from Eq. (2.7.19a), that
T = (2.7.202)

Since, in our two-dimensional analysis, we have assumed that o, = 0, it should be

mentioned that this last expression is valid provided o1 > 0 and o3 < 0.
Although, as we have previously stated, a three-dimensional analysis 1s beyond

the scope of our present treatment, we mention here that in such cases, there exist
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three principal stresses, o3 < 03 < 01, and that

T = ;"3. (2.7.20b)

(c) Summary of results
It is worthwhile to summarise several of the basic results obtained relating to prin-
cipal planes and stresses and to stationary shear stresses.

m Principal planes are mutually perpendicular.

u The shear stress t,, = 0 on a principal plane.
— o‘ma-—a'mn
L thX - 2
m Planes of stationary shear stress are oriented at 45° with respect to the principal

planes.

These results are summarised pictorially in Fig. (2.7.6) where n,, n, denote the unit
normal to the respective principal planes, and n;,. ny, denote the unit normal to the
planes of stationary shear.

sy

\ (Tumun

(Tnl)mﬂx
ng

0, Figure 2.7.6

Finally, it is observed that we have nof found that the normal stress o, acting on a
plane of stationary shear stress is zero. It is left as an exercise to show that on such
planes, o, = 02,

(d) Parametric representation of the state of stress: the Mohr circle

In the preceding section, the transformation law for the normal stress o,
[Eq. (2.6.6b)]

Oy +Uv Ox —
O, = =
2 2

% 0820 + Ty, 51N 26

was established. Let us rewrite this as

Oy + 0 Oy — .
0 = = LAt 5 % c0s20 + T,y sin 26. (2.7.21a)
We also recall the transformation law for z,,, namely Eq. (2.6.8b), which we repeat
here:
Ox — 0O

Ty = Tyy COS 20 —

sin24. (2.7.21b)
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We now take the square of each of Egs. (2.7.21) and add them; we obtain

Oy +0 2 Oy — 0O 2
[Un_.le] +rn2,=( : 5 y) +12,. (2.7.22)

However we recognise the right-hand side of Eq. (2.7.22) as being R?, where R,
defined by Eq. (2.7.10a), is a known quantity; i.e.,

Ox — 0Oy 2
R= ——2—— + ‘L'fy. (2723)

2
o, +0o
[o., - y} +1% = R% (2.7.24)

Thus, we have

Now since oy, 0y, and 1., are given, Eq. (2.7.24) has the form
(6, —aY + 1% = R~ (2.7.25)

where a = ”’—;GK 1s known.

Equation (2.7.25) clearly has the same form as (x — a)? + y* = R?, which is
the equation of a circle with centre at x = a, y = 0 and radius R in an x—y plane.
Hence, if we construct a g,~7,, plane (with ¢, as abscissa and t,, as ordinate) and
plot Eq. (2.7.25) in this plane [Fig. (2.7.7)],! we recognise that it represents a circle
whose centre is at [(0, + 0,)/2, 0] and whose radius R is given by Eq. (2.7.23).

This feature of the transformation law was first observed by Mohr and the circle
is called a Mohr circle. We thus recognise that the Mohr circle is but a parametric
representation of the transformation laws (20 being the parameter), and that the
coordinates of each point on the circle represent the normal stress o, and shear

stress T,, acting on the various planes passing through a point.
Tot In order to determine the Mohr circle, we recall that, in general, three quantities
are required to define any circle: either three points on the circle, or two points
lying on the circle and the coordinates of the centre. Having established that the
centre O of the Mohr circle [(o, + 6,)/2, 0] lies on the abscissa, and that each point
represents the stress components on a different plane of the body, it is sufficient
to know only two points: namely, (a) the point representing the stress components
existing on the x-plane (o, and 7,,) and (b) the point representing the components
on the y-plane (o, and 7,,).
Thus, we may construct the Mohr circle as follows [Fig. (2.7.8)]:

Figure 2.7.7

W Define the 0,~1,,, space with positive t,, in the downward direction. (Note that
positive downward is an arbitrary choice.)

B Plot the stresses acting on the x-plane; we denote this point by P. Note that on
the x-face, 0, = oy, Tnr = Txy [see Fig. (2.7.92)].

W Plot the stresses acting on the y-plane; we denote this point by Q. Note that on
the y-face, o, = 6y, Ty = —Tyx = —T, [see Fig. (2.7.9b)]. Note too that point
Q is diametrically opposite to point P on the Mohr circle.

' Note that positive ,, has been taken downward, The reason for this chotce will soon become apparent.
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Q
gy, — Tyox)
g y /
20,
0y A gy o

n
\ O| 29,
SN
2
R 26 Tey
Trnax ——————————————— T(O-p Tx_y)
oy >
Tht Figure 2.7.8
n ¥
S
o‘y
y
i ’ ‘ e
Ty X n g
JJ
On=0x Gp=0y
Tt = Txy Tat = " Txy
@) ) Figure 2.7.9

m Construct the line connecting points P and Q. This line PQ then intersects the o,
axis at point O, the centre of the circle.
m Draw a circle with radius R = OP = OQ about its centre, point O.

By constructing the Mohr circle in this manner, we observe readily that the coordi-

nates of the centre are [(0, + 0,)/2, 0]. Furthermore one establishes immediately

that the circle will intersect the o,-axis at two points; namely

=232 R = ZEY g (2.7.26)
2 2

which as we observe, represent the principal stresses o and o, as found previousty

[see Egs. (2.7.11)].

We recall now that the transformation laws, as given by Egs. (2.6.6b) and (2.6.8b),
contain trigonometric terms whose argument is 20, where positive 8 1s measured
counter-clockwise with respect to the x-axis. Hence, to determine the point re-
presenting the stress (0, T,,) existing on any arbitrary n-plane whose normal s 18
inclined with respect to the x-axis at angle 8, we measure 26 counter-clockwise with
respect to the line OP (since we recall that P represents the x-plane). (The motivation
for defining 7,,, positive as downward in the ¢,~1,, space now becomes apparent; in
both the physical x—y space and the o,—1,, space, positive 8 is counter-clockwise.)
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Figure 2.7.10

We may verify from the Mohr circle that the principal plane on which oy acts is
given by
AP Ty
tan 20, = ﬁ = T;); N
which agrees with Eq. (2.7.3).
Other properties of the state of stress at a point, which were previously established
analytically, may be readily observed from the Mohr circle; namely

m The principal planes are orthogonal.
m Planes of maximum and minimum shear stress are oriented at 45° with respect
to the principal pianes.

B Toa = R, Typ = — R OF Tyax = 252,

The essential feature of the Mohr circle is that it gives us a complete pictorial
representation of the state of stress existing at a point. Although it is useful in this
sense, as developed here, it should nevertheless only be considered essentially as
a parametric representation of the analytical two-dimensional transformation laws
derived previously.

In all the following examples, we first solve the problems analytically and then
verify the solutions via the Mobr circle.

The reader should pay special attention to the related solutions of Examples 2.8,
2.9 and 2.10.

Example 2.8: Given the state of stress o, = 14 MPa, oy = —10 MPa, 7, =

5 MPa [Fig. (2.7.10a)]. Determine the principal stresses and the correspon-

ding principal planes.
-10

— 1>

5
14“—17 ‘ "-{-»M:
y 15
| 55
5 <—1—

—10 MPa
(a)

Solution: Using Egs. (2.7.11),

- 4 — (=10)\*
61‘2=14+2(10):}:\/(1—2£—~2> +2=2413,

Therefore, oy = 15 MPa, 09 = —~11 MPa.
From Eq. (2.7.3), the principal planes are determined according to the roots of the
equation

xy S
tan20 = 7o = = = 0.416

—a,
2
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(—10, _g 202.6% _2>
oy=-11 oy =15
© / 22.6° on(MPa)
/265| P
(14.5)
)
To(MP2) Figure 2.7.11

According to the established criterion [following Egs. (2.7.7)], since 7,,, > 0,20 =
22.6 ->— 6, = 11.3°. [This corresponds to point Ay of Fig. (2.7.3).] Therefore, by
Eq (275), G, =0, + 71/2 = 10].3°.

The corresponding Mohr circle 1s shown in Fig. (2.7.11) and the principal stresses
and planes are shown in Fig. (2.7.10b).

From the Mohr circle, we note too that 7y = %52 = 13 MPa and that 6| =
6, —m/4 = —=33.7° O
Example 2.9: Given the state of stress o, = 14MPa, 6, = —10MPa, 1, =
—5MPa [Fig. (2.7.12a)]. Determine the principal stresses and the correspond-
ing principal planes.

—10 MPa
5
-5
: 15
A
, . .
L —> =5
X
(a) Figure 2.7.12

Solution: Using Eqs. (2.7.11), the principal stresses are, as before, o, = 15 MPa,
o = —11 MPa. Moreover, from Eq. (2.7.3),

@2 = - =~ 2 _ _g416.
BN
According to the established criterion, since 17y, < 0,260; = =22.6 >— 6, =

—11.3°. [This corresponds to point D; of Fig. (2.7.3).] Therefore, by Eq. (2.7.5),
6, =0, +m/2 =78.7°.
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Figure 2.7.13

Figure 2.7.14

157.4°
0'2=“‘11

(~10, 5)

7 (MPa)

ni
The corresponding Mohr circle is shown in Fig. (2.7.13) and the principal stresses
and planes acting on the physical element are shown in Fig. (2.7.12b). O

Example 2.10: Given the state of stress o, = —14 MPa, 0, = +10 MPa, 1,, =
—5 MPa [Fig. (2.7.14a)]. Determine the principal stresses and the correspond-
ing principal planes.

10 MPa

e
-14—?» tlS—J =
y\— -—-—y—*—

x 10 11 MPa
(@) (b)

Solution: Using Eqgs. (2.7.11),
—14 410 —14-10\°
o2 = —2+—i\/(T) +52=-2413.

Therefore, o) = 11 MPa and 03 = —15 MPa.
From Eq. (2.7.3), the principal planes arc determined according to the roots of the

equation

Tyy -5

tan 20 = = —— = 0.416.
12

0,—0,

Since 74, < 0,26) = —157.4° >— 6 = ~78.7°. [This corresponds to point By of
Fig. (2.7.3).] Therefore, according to Eq. (2.7.5), 6, = 6, +n /2 = }11.3°.

The corresponding Mohr circle is shown in Fig. (2.7.15) and the principal stresses
and planes acting on the physical element are shown in Fig. (2.7.14b).

From the Mohr circle, we note too that 7, = #5% = 13 MPa and that 6, =
6 —n/4=—-123.7°. 0
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20,=—157.4°

(~14, =5) /
P 2

22.6° o =1l
U’l
ay=-15 (MPa)
N
20,
Q
(10, 5)
(~2.13)
T (MPa)

Figure 2.7.15
Example 2.11: Given the state of stress o, =0y, =0 and t,, = 19 > 0 [Fig.
(2.7.16a)]. Determine the principal stresses and planes.

% 0,=7,

To

l : T 6,=45°
. ;
y 0

a T, =—T,

X

(2) (b) Figure 2.7.16
Solution: From Egs. (2.7.11), the principal stresses are gy = 1o and 03 = —1p. The
principal planes defined by the roots of the equation,
T
tan26 = ;Ti;— = HO — 00.
2

Hence, since 75 > 0, 8, = 90° — — 0; = 45° and therefore 6, = 135°. The Mohr

circle, shown in Fig. (2.7.17), is observed to be a circle of radius R = 1y with centre
at the origin of the 0,~1,, plane.

0'2—_70

//'(Q

T Figure 2.7.17
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The state of stress prescribed in this example and shown in Fig. (2.7.16) is called
a state of pure shear. O

Example 2.12: Given the state of stress o, =0, 0, =10 kPa, 1,, =0 [Fig.
(2.7.18a)). Determine o, and 1,; on a plane whose normal n is inclined at
(a) 8 = 30° and at (b) 8 = 120° with respect to the x-axis.

10 kPa

7.5
T —433 a,=25kPa

6=30°
110

X
Figure 2.7.18 (a) (b)

Solution:

(a) From Eq. (2.6.6b).

r's + Oy Oy — 0O .
o, = g Y= Y 0826 + Ty SIN26.
2 2 ‘
Substituting the appropriate values and noting that cos 60° = 0.5, sin 60° = v/3/2,
we find g, = 2.5 kPa.

(7.5. —4.33)

P g, (kPa)
€, 0) (10,0)

R=35kPa

(2.5,4.33)
7, (kPa)
Figure 2.7.19
Similarly, from Eg. (2.6.8b),
~% -
l Ty = Tyy COS 20 — &% sin28 = 2.5+/3 = 4.33kPa.
(b) Using 6 = 120°, we obtain similarly o, = 7.5 kPa and <z, = —2.5/3 =
—4.33 kPa.
—0y —> | l«—— —0oy
The stress components acting on the physical element are shown in Fig. (2.7.18b) and
T the Mohr circle representation is given in Fig. (2.7.19). (]
-0 Example 2.13: Given the state of stress o, = g, = ~0p (Where oy > 0) and

Figure 2.7.20 xy = 0 [Fig. (2.7.20)]. Analyse the state of stress.
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Solution: According to Eqs. (2.6.6b) and (2.6.8b), we note that 0, = —0g and
T = 0 for all values of 6. Furthermore, according to Eq. (2.7.23), the radius of
the Mohr circle R = 0; hence we note that the Mohr circle, in this case, degenerates
to a point located at (—o g, 0) in the o,—7,,; plane [Fig. (2.7.21)].

Such a state of stress is called a hydrostatic state of stress at a point. Note that in
this case the normal stress is the same for a/l planes and no shear stress exists on any
plane passing through this point. O

©2.8 Cartesian components of traction in terms of stress
components: traction on the surface of a body!

It1s often more convenient to express the traction 7', on a given n-plane in terms of
its Cartesian components rather than its normal and tangential components, g, Ty
and 1,,, as in Eq. (2.3.6). Although the expressions developed below are valid for
any n-plane at an interior point of a body, they are particularly useful in expressing
external contact forces acting on the surface S of the body. As shown in Fig. (2.8.1),
these contact forces may be either distributed over a given area of S or concentrated
forces or couples.! Such distributed forces are thus prescribed in terms of traction
vectors T, where r is the unit normal vector at any point to the surface S. For
simplicity, we confine the discussion to a two-dimensional system of plane stress
in the x—y plane; the unit normal vector is given by

n=cosbi+sinéj. (2.8.1)

15

Now, for a two-dimensional case, the traction T, acting on an n-plane can be re-
presented in terms of two perpendicular components in the n- and (say) ¢-directions;
ie.,

T, =00+ T,t. (2.8.2a)

Since any vector can be defined by its scalar components, the traction may instead
be given in terms of its scalar components X, and ¥, in the x- and y-directions,
respectively; Le.,

To=X,i+ Y. (2.8.2b)

Subject material in this section is opuional and, as 1t is not necessary i the first 13 chapters, may be
deferred until a reading of Chapter 14. Throughout this book. the symbol (o) has been used before
certain sections/subsections that may be omitied on first reading, without loss of continuity.

We note that a concentrated force represents a particular case of distributed forces in which the intensiry
of the distributed force per area tends to infinity as the area tends to zero. [See Eqs. (£.2.1) and (1.2.3) ]

( =00 0)

Figure 2.7.21

Figure 2.8.1 and Figure 2.8.2
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From the development of Section 6, it is clear that there exists a relation between the
components X, and Y, and the stress components at all points of the body including
points on the surface S. We obtain these relations by proceeding exactly as with
the derivation of the stress transformation laws. To this end, consider an element
having density o near the surface S [Fig. (2.8.2)] and let 0, = 7, Ty, and 7, be
the stresses acting on this element. Then from the principle of linear momentum,
> F. = mii, where m = £ As?sin 26 [see Eq. (2.6.2)] , we have

o

— T Ay — T Ax + X, As = ZASZ sin 26 ii. (2.83)
Dividing through by As,
A Ax o ) .
—Tx,\"A—i) - f,yx—&; + X, = -4—AS sin 28 i,

noting that %% = cos 9, %}5 = siné, and taking the limit as As — 0, we obtain
Xy = 1,4 €056 + 1y, Sin 6. (2.8.4a)

The component of traction ¥, in the y-direction is obtained similarly from )~ F, =
mu:

—1,, A — T, Ay + Y, As = gAszsinZQ b

Dividing through, as before, by As and taking the limit as As — 0, we obtain'
Y, = 1,,8in8 + 7, cosd. (2.8.4b)

We may now rewrite these expressions in a slightly different form that i1s more
appropriate for future developments, Just as we denoted the angle 6 as defining the
orientation of the unit normal » with respect to the x-axis, we now denote the angle
1 as the onlentation with respect to the y-axis {Fig. (2.8.3)]; then

n = cosbi +cosyj, (2.8.5)
where sinf = cos 1. Therefore

Xp = Tyx €086 + Ty COS Y, (2.8.6a)
Y, = 7,,€086 + T,, cOs . (2.8.6b)

Letting £, = cosf and £, = cos s be the ‘direction cosines’ of the vector n, we
may wnte

n=ti+4,j, (287

It is worthwhile to mention here that, while we have established the desired results, namely Eqs. (2.8.4),
we could also obtain them in a simpler fashion. ) o
Treating T, given by Eq. (2.8.24), as a vector, its scalar components in the x- and y-directions are,

respectively,
X, =Ty i, Y,=Ts-j. (a)
Then, sice
n-i=cosb. n-j=smg,; t-i=-—smé. 1.5 =co0sb, (b—e)

substituting the expressions for g, and 1, given by Eqs. (2.6.6a) and (2.6.8a), respectively, into
Eq. (2.8.2a), using Eqgs. (b to ¢) and performing the required operations, leads directly to Egs. (2.8.4).
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Hence, using this notation, the components of the traction 7, are rewritten sim-
ply as

Xn = extxx + eyTy,\' (288&)
Yy = LTy + Lo (2.8.8b)

It is important to observe that if, for a given ¢, and £, X, and ¥, are known, then
in general, 1t 1s not possible to determine a/f the stress components at a point on
the surface S." (Indeed it may not be possible to find any of the stress components.)
However, if ., 7,, and 7., are known, then clearly X, and Y, are determined.

The expressions of Egs. (2.8.8) will prove useful in relating the components of
traction on the surface of a body in terms of the stress components existing at points
on the surface S.

Example 2.14: Consider a rod (of unit width) subjected to given applied trac-
tions T, as shown in Fig. (2.8.4). What are the known stress components in
each sector of the surface boundary S, namely in the sectors AB, BC, CD, DE,
etc. (Note: g; here are given in units of Pa.)

=
T e P \\\\\H\C
30°

X A T 92
45 v
F..,,—»—»—»qd—»—>—>—>E Figure2.8.4

Solution:
On AB:

te=0 (=1, X,=0, Y, = —q, are given.

it follows that Tyw = =1, Tyy =0; 17, remains unknown.
On BC:

=1, ¢, =0, X,=Y,=0are given.
It follows that z,, = 7,, =0; 7, remains unknown.

On CD:

6L, =0, ¢ =-1, X,=0.5q, Y, = —O.Sﬁqg are given.

It follows that 7,, = 0.5~/§q2; Ty = —0.5g2; 7., réemains unknown.
On DE:

b=, = 05v2, X,=Y, = O.Sﬁqg are given.
None of the stress components (., Tyy. Try) can be determined.

On EF;
£, =0, £,=-1; X.=gq.. Y, = 0 are given.
It follows that t,, = —g4.7,, =0; 17,, remains unknown.
On AF: h
t=-1, £,=0, X,=-—gs, Y, = 0 are given.
1t follows that T = g5, Ty = 0; 1, remains unknown.

i This 1s evident since 1t 1s clearly impossible to solve for threc unknowns (tyy. 7y,. Tyy) from the two
stmultaneous equations, Eqgs. (2.8.8).
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Figure 2P.1

Figure 2P.2

Figure 2P.3

Figure 2P.4

PROBLEMS

Section 2

2.1 A 12-m long rigid bar is suspended by two wires and supports a load of
1200 N, as shown in Fig. (2P.1). What are the components of the internal force
system at a cross-section (a) 2 m from each end and (b} at the centre?

4 m

1200 N

Im | 6m T 6m

Mam
2.2: The bent rod shown in Fig. (2P.2) is simply supported at A and by a roller at C.
Find the components of the internal force resultants at cross-sections B and D.

2.3: Member ABCD, shown in Fig. (2P.3a), is welded at A to a rigid plate a-e, which
is anchored to the ground by means of two bolts b and c. A force of 600 N is applied
as shown at D. (a) Find the normal force, shear force and moment at the cross-section
A and C. (b) If the piate is attached to the ground by means of the two bolts as shown
in Fig. (2P.3b), determine the forces in each bolt and indicate whether in tension or
compression.

(@)

2.4: The upward lifting force acting on a helicopter rotor blade is distributed as
shown in Fig. (2P.4). Determine the bending couple and shear force acting on the
cross-section at A.

30 N/em
\ )
Cam
%——%_
R\ W3
- >
| 4.5m 1.5 m !



2.5 The lift force on the wing of an airplane, shown in Fig. (2P.5), is given as
g(x) = go sin(wx/2L).

Determine the bending couple and shear force acting on the cross-section at A.

2.6: Athintriangular plate having thickness t hangs under its own weight, as shown
in Fig. (2P.6). The density of the plate is p (N/m3). Determine, at any cross-section a
distance y from the top, the internal force system (consisting of a moment and a
normal force acting at the centre of each cross-section).

2.7: A solid cone made of a material whose density is p (N/m3) hangs from a pin at
its vertex, as shown in Fig. (2P.7). Determine the normal force acting on a cross-section
located at a distance y from the vertex.

2.8 Amagnetisattached to the ends of aniron rod whose cross-section is A, asshown
in Fig. (2P.8). The attraction force acting at any distance, x, is given as f{x) = \/ﬁ—z/“ﬁ
where ¢ is a constant having dimensions (N/m3) and « is a non-dimensional constant.
(a)Plot f(x)intherange0 < x/L < 1forseveralvaluesofa:o =0, 1, 2, 5. (b) Determine
the normal force F (x) at any cross-section, as a function of x. (c) Using a series expansion
for the expression for (b) obtained above, show that for o« — 0, the normal force
approaches F(x) = cAx.

24 cm A

<

Figure 2P.7 Kigure 2P.8

2.9: Express the shear force V(x) and moment M(x) as a function of x for the beams
shown in Figs. (2P.9a—j) and sketch the variation with x. (Note: Assume, for all cases,
positive shear force V and moment M, as shown in the figure).

+M
| = o) (EE
+V
40 N/m 40 N/m
o I EIIFIIXIFTEN |, orv—i_ijﬁ—il ,, N,
A f\B A B Il\c
! 2m ' T em 1 6m |
() o)
/
60 N/m
ALt t ¥ — . \ - x A.IIIIIIIII. x
% I B ~ N
(c) (d)
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Figure 2P.5

DN

30°

Figure 2P.6

Figure 2P.9
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120N | 600 N 200N
A m - ‘

150 N/m
A8l __cewyap c
[ = T = s —_— X
=X x Rx B L D
| | | | ] I I |
Fam T 4m 7 4m | P 6m T am I am |
(e) (f)
100 N/m
NS
b e
Al BN B c
— - — — N — X A = —— = —_—5 X
L 120 N/m )
6m 4m
|
' 12m '
€:9) (h)
60 N/m 80 N/m 200N
NS Y= SES Y s e L op o,
N hange 5 R e & &
‘ { { fele )
6m 4m Pam Tam Dml2m
Figure 2P.9 (Continued) ® G
2.10: Express the shear force V(x) and moment M(x) as a function of x in terms of
a, P1, P, @7 and a; in the two regions 0 < x < a; and a; < x < a, for the beams shown in
1 P2 Fig. (2P.10).
aq
By B vy 2.11:  Express the shear force V(x) and moment M(x) as a function of x in terms of w
A B ﬁ@g x  and P for the beam shown in Fig. (2P.11). Sketch the variation with x if P = wi.
I‘ I: > I 2.12: Expressthe shear force V(x) and moment M(x) within the span AC as a function
Lz Ln of x for the beams shown in Figs. (2P.12a—e) and sketch the variation with x.
Figure 2P.10
P
w(N/m)E
\‘
A —% D — x
& B &t C
Figure 2P.11 N [ (n 1 L 1
A %ﬁm N]EL
B C
| 5m ‘ 5m
(c)
wIre
D
—[— 5400 N
4m
RS
B C
| |
[2m ' 8m |
Figure 2P.12 ©



2.13: The rod shown in Fig. (2P.13) is subjected to an eccentric load as shown. Deter-
mine the shear force, and bending and torsional moments as a function of x.

Figure 2P.13

2.14: The bent pipe shown in Fig. (2P.14) is subjected to a force P having components
Py, P, and P, as shown. Determine the components of the internal force system at any
cross-section. Express the answers in terms of x, y and zwhere appropriate.

2.15: (a) A thin circular member, AB, lying in the x-y plane, as shown in Fig. (2P.15a),
is subjected to two forces Py and P,. Determine the resulting internal forces at any
cross-section in terms of R and 6. (b) If the circular member is subjected to a bending
moment My and a torsional moment T, as in Fig. (2P.15b), what is the resulting internal
force system at any cross-section?

v P).] My

— P, Ty
| A A

—_—>X
N AN

(@ (d)
Figure 2P.15

2.16: Two rods, AC and BC, each weighing 10 N/m, lie in a vertical plane and are
pinned at each end, as shown in Fig. (2P.16). Determine, as a function of £ (shown in
the figure), the internal force system (normal force, shear force and moment) at any
cross-section of the rod AC.

2.17* Abeam of length L is pinned at A and is to be supported by a roller located at
point B, as shown in Fig. (2P.17). The beam is subjected to a uniformly distributed load
w (N/m). Determine the ratio b/L for which the largest absolute value of the bending
moment in the beam is 2 minimum. What is this value?

Problems 67

Figure 2P.14

1 200 cm

Figure 2P.17
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Section 4
2.18: The following stress field is found to exist in a body:

ox = ax2yz, oy = bxy2®, g, =0,
Ty = 3xy?z, Ty = ¢ 22(6y? — 5xz2), Tp = 3xy22,

where a, b and ¢ are constants. Assuming no body forces act on the body, for which
values of a, band cis the body in a state of equilibrium?

2.19> At any arbitrary point of a beam subject to zero body forces, the stress com-
ponents are given as g, = 0, = 1y, = 0 where the remaining stress components are
not zero. Show that the equilibrium eguations are satisfied only if o has the form

- ox = a + bx where a and b are functions of y and/or z or are constants.
A
Section 5
2.20: A homogeneous circular cylinder of length L and radius R hangs under its own
8 I i h weight W (N), as shown in Fig. (2P.20). Determine the stress o, at any cross-section,
l- assuming the stresses are constant for any given cross-section.
¥ g e . . . . o
% \‘ | 2.21: The stress distribution on a beam having a triangular shape, as shown in Fig.
‘ .

\l-// (2P.21) is given by

o = A +BZZ, Ty = Tyz = 0.
Figure 2P.20 ) 4 ¥ .

Determine the normal force F and the moments M, and M, due to this stress distri-
bution in terms of a, Aand B.

2.22: A circular cylinder of radius R is twisted at its ends by a torsional moment,
T = M,, as shown in Fig. (2P.22). (a) The stress distribution at any cross-section is given
as o, = 1 =0, T4 = kr, where r is the varying radial coordinate and k is an un-
determined constant. Evaluate k and express 1y in terms of 7, R and T. (b) If the stress
distribution dueto T isgiven asoy = 1, = 0, T = 70 (a cOnstant), evaluate rq in terms
of Rand T.

2.23* The stress distribution on a circular cross-section lying in the y—-zplane, as shown
in Fig. (2P.23), is given by o = 0, 74, = —2002 (MPa) and ., = 200y (MPa). Determine
the components of the internal force system acting on the cross-section.

2.24* The beam shown in Fig. (2P.24) is subjected to a bending moment M about the
z-axis. The stress distribution on a cross-section is given by

—o0, c<y=<hj2
ox = { —ooy/C, ~C<Yy<C
o0, -h/j2=sy<-¢

where ¢ is a constant, 0 < ¢ < h/2, and ap is a given constant stress. (a) Sketch the
distribution of o, as a function of y. (b) Determine M in terms of b ¢, hand op. (¢) For
a constant gp, what is the vafue of ¢ for which the moment M is a maximum? What is
the value of this maximum moment?

2.25: A bent bar having a square cross-section (b x b) is subjected to eccentric forces,
as shown in Fig. (2P.25). The stress distribution on any cross-section is assumed to be
oy =B+ Cy, Ty =1=0, where B and C are constants. (a) Determine 8 and C in



terms of P, b and e. (b) What is the stress at point d if e=0 and if e = 4b? Indicate
whether tension or compression in both cases.

2.267 A member, ABC, with L =1 m, is welded at A to a rigid plate ¢—d whose di-
mensions are 50 cm x 50 ¢m, as shown in Fig. (2P.26). The plate is anchored to the
ground by means of a single bolt (which is anchored in the same plane as ABC). A
force of 11,000 N is applied at B and a force of 1000 N is applied at C as shown.
(a) Assuming that the pressure exerted between the ground and the plate varies lin-
early from c to d, determine the maximum pressure. Where does it occur? (b) The load
at B is removed such that the member ABC is subjected only to the force P = 1000 N
at C. Assuming that the linearly varying pressure between the ground and the plate
can only be compressive, determine (i) the maximum compressive pressure and (ii) the
force exerted by the bolt if b= 10cm.

-t

Sections 6

t
e

2.27: Verify the expression for the second invariant of (plane) stress given by
EqQ. (2.6.11).

228. Ata gwen paintin a body in a state of plane stress with r,, = 0, the ratio of the
invariants, —”1 is found to be equal to 300 MPa. Hf it is known that the stress o, = ~50,,
determine c,( and Tuelmax-

2.29: On a plane passing through an arbitrary point P, two rectangular Cartesian
systems, (x, y) and (n, t), are constructed as shown in Fig. (2P.29). For each of the plane
stress cases listed below, (i) determine the required quantities and (ii) sketch the equiv-
alent states of stress (in the two coordinate systems).

(a) a¢ =200, o, = 400, 14, = 400 MPa; 6 = 30°. Find 6, 01, T

(b) ox = —400, 0, =0, 7, = 300 MPa; 9 = —30°. Find os, 07, o

() ox=0, 6,=0, 1, =300 MPa; 6 =45°. Findg,, gr, .

(d) oy = 1200, ¢, =800, 7,, = —B00 kPa; 6 = 120°. Find o, ¢ Trm.

(e) a, = —100, oy = ~50, T, = 100 MPa; 6 = 30°. Find o, Oy Try.

(f) ox =200, o, = 100, o, = 50 kPa; & = 45°. Find oy, 70t

(@) on =100, 0, = 200, 1o =0 MPa; § = 60°. Find oy, v, ot

(h) 65 =100, 0, = —200, t,r =0 MPa; 8 = 60°. Find oy, Ty Ot

2.30: Letn s and tbe three directions in a given x-y plane such that the n-direction
lies along the x-axis, as shown in Fig. (2P.30). (a) Determine Ty in terms of o, o5 and o,
if @ = 45° and (b) Determine 1, in terms of 0, o; and oy if @ = 60°.

M S : oy M | w2
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Figure 2P.21

Figure 2P22
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2.312 For each of the following plane stress states at a point lying in the x-y plane
of Fig. (2P.29), determine the angle 6 of the diraction n with respect to the x-axis.
(@) oy =0y = 100, 74y = 500, 0 = 400 MPa.
(b) ox =100, ¢, = —100, 7,y = 150, o, =0 MPa.
(Q) ox = ~0y = =15y = ¢, (c = constant) o, = 0 MPa,

2.32: A rectangular block is formed by gluing together two wooden wedges, as
shown in Fig. (2P.32) where a =6 ¢m, b= 8 ¢m and ¢ =4 cm. The joint fails if the
shear stress in the adhesive exceeds 600 kPa. What is the permitted range of o, if
a compressive stress g, = —300 kPa and shear stress t,, = 400 kPa are applied and all
other stress components are zero. {Note: Assume the stress state in the block is uniform
at all points).

2.33: A rectangular block is formed by gluing together two wooden wedges, as
shown in Fig. (2P.32) where a = b = c¢. The joint fails if the normal tension stress at the
adhesive interface exceeds 400 kPa. What is the maximum permitted value of o, if a
compressive stress o, = —300 kPa is applied and all other stress components are zero.
(Note: Assume the stress state in the block is uniform at all points).

2.34: The shear stress distribution on a circular cross-section lying in the y-z plane,
as shown in Fig. (2P.34), is given by 7,y = Cy zand 1,; = (3 y. Show that if C; = -5,
the resultant shear stress © =/t + 2 acting on the plane at any point P is directed
in the circumferentiaf 0-direction; i.e., 7 = 7,.

Section 7

2.35: For each of the plane stress cases listed below (with o, = 7y, = 1, = 0), (i) deter-
mine the principal stresses o, and o3, (i) determine sy, (iii) determine the principal
directions with respect to the x-axis as defined by 8, and 8, {iv) sketch an element
showing principal stresses and directions and {v) sketch the appropriate Mohr circle
showing oy, a2, 261, 26; and tmsx ON the circle.

(a) oy =60, g, =0, 1y, =40 MPa.

(b) ox =200, o, = —200, 1, = —200 kPa,

(&) ox =900, oy = 100, Txy = 200 MPa.

(d) ox = 400, g, = 800, 7,, = —600 kPa.

(e) ox = =200, o, = =100, z,, = 200 MPa.

(f) oy = 2000, oy =500, 7,y = —500 kPa.

(g) ox = 120, g, =40, 1,y = —~20 MPa.

(h) o, =240, o, =0, 7, = 120 MPa.

(i) ox = =200, 0, = 100, 14, = 320 kPa.

() ox =0, oy = 240, 1., = 120 MPa.

2.36: States of plane stress are shown by means of Figs. (2P.36 a—e). For each of the
cases listed below, (i) determine the principal stresses and directions, (ii) sketch the
equivalent states of stress and (iii) sketch the appropriate Mohr circle.

2.37: Letn, s and t be three unit vectors lying in a plane as shown in Fig. (2P.30). (a) If
g, = 100 MPa, o = 50 MPa and ¢, = 20 MPa, determine the principal stresses and di-
rections (with respect to the vector n) if o = 45° and show these by means of a sketch.
(b} If o, = 100 MPa, o, = —20 MPa and o, = 60 MPa, determine the principal stresses
and directions (with respect to the vector n) if @ = 60° and show these by means of a
sketch.

2.38: A circular cylindrical shaft of radius R is subjected to an axial force £ and a
torsional momeant T, as shown in Fig. (2P.38a). The resulting normat and shear stresses



at the surface of the shaft, as shown in Fig. (2P.38b), are given respectivelyby o, = F /A
and 1,y = TR/J, where Aijs the cross-sectional area of the shaft and J is a geometrical
property of the cross-section. (a) Determine the principal stresses at the surface.
(b) Determine the principal direction with respect to the x-axisif T =4FRand J/A=
k? (a constant). (c) Repeat parts (a) and (b) for the case where the axial force F =0
and T #0.

239 States of plane stress at a point, lying in the x-y plane of Fig. (2P.29), are given
as follows:
(a) ox =80, oy = -120 MPa. If oy = 220 MPa, determine oy, 8y and 6, (i) if it is
known that t,, > 0 and (ii) if it is known that 7,, < 0.
(b) ox = 80, o, = 120 MPa.If oy = 220 MPa, determine oy, 6y and 6, (i) if itis known
that 7,y > 0 and (ii) if it is known that 7,, < 0.
(¢) 0, =40, 1,, = —30 MPa. If 0y = 80 MPa, determine g,, 6 and 6;.
(d) oy = 40, Txy = —30 MPa. If o3 = —80MPa, determine g4, 6; and 6s.

Note: Verify answers via the appropriate Mohr circle.

Section 8

2.40: Arectangular plate ABCD of thickness ¢, lying in the x-y plane as shown in Fig.
(2P.40), is subjected to a loading of in-plane surface tractions. The stress field is given as

ox = C1 sinkx), oy = Ca y? sin{kx), Ty = Cay coslkx);, k=m/2a,

40 MPa

<+ > 80 mpa — x 200 MPa 4> < —

(a) ()
)’T y?
180 MPa % 140 kPa

60 MPa 4 s
<¢ ; ;-L 130 MPa —> x 200 kPa
40 kPa
<+ -+

(d)

(©

40 MPa
(e)
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(a) (b)

where Cy, C, and 3 are constants. (a) For what ratios C,/Cy and C3/C, does this stress
field represent a state of equilibrium? (b) Determine the Cartesian components of the
surface tractions, X, and Y,, acting on each of the segments AB, 8C, CD and DAand
show these by means of a sketch. (¢} Verify that for the ratios determined in (a), the
plate is globally in equilibrium, i.e., the external forces representing the surface trac-
tions over the entire boundary ABCD maintain the plate in equilibrium with respect
to both force and moment equilibrium. (Take moments about point A.)

2.41* Atrapezoidal plate ABCD of thickness ¢, lying in the x-y plane as shown in Fig.
(2P.41), issubjected to a loading of in-plane surface tractions. The stress field is given by

O‘X=C1X2y, Gy=C2y3, txy=C3xy2,

where Cy, C; and C3 are constants having units of N/m5. Repeat parts (a), (b) and
(c) of Problem 2.40 for this case.

2,42 In Section 7, the principal directions and stresses for the case of plane stress
were obtained by setting %%Q = 0. It was then observed that the shear stress, 1., van-
ishes on the principal plane. Alternatively, the principal plane can be defined as the
plane on which the shear stress vanishes. It then follows that the traction, T,, acting
on this plane is in the principal direction, that is, T, = on where o is a (scalar) constant.
(a) Using this alternative definition and the expressions of Egs. (2.8.8), show that this
leads to the following homogeneous equations on the unknowns £, and £,:

{tux — 0 )x + rxyey =0, ()
Taylx + (1yy — o)y =0, (ii)

where ¢, and ¢, are defined by Eqs. (2.8.7). Show that the condition required for the
existence of a solution to Eqs. (i) and (ii) leads {0 a quadratic equation

02 —lgqo 41y =0 (i)

[where I,, and I,, are the plane stress invariants; see Eqs. (2.6.10), (2.6.11)] whose
roots, g and g3, are the two values of the principal stresses given by Egs. (2.7.11).
(b) Show that the ratio £,/¢, leads to Eq. (2.7.3), which defines the principal direc-
tions. Note: |n the framework of linear algebra, ay,; are the eigenvalues and ¢, and ¢,
define the eigenvectors n of the problem.

The following probiems are to be solved using a computer.

2.43: Using the transformation laws for plane stress {Egs. (2.6.6a) and (2.6.8a)}, write
acomputer program to determine g, o; and 1, for any given state of stress, oy, a0y, Tuy
and g. Check the program by using some of the stress states given in Problem 2.29.

2.44; Given a state of plane stress, oy, 0, and z,, write a program to determine the
principal stresses o1 and o, and the principal directions 8, and #,. Check the program
by using some of the stress states given in Problem 2.35.



2.45: Given a state of plane stress, o, = 1, oy = 1, and 1y, {a) write a program to
find the roots, o, of Eq. (iii) of Problem 2.42, that is, to determine the principal stresses
o1 and oy; (b) determine the principal directions 6, and #,. Check the program by using
some of the stress states given in Problem 2.35.

2.46: Given the state of plane stress, ox =50, g, = 100, 7y, = 150 MPa. On what
plane (defined by the angle 6 of its normal n with respect to the x-axis) is the normal
stress o, = 225 MPa? Note: The value 6 can only be determined numerically.

Problems 73
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Deformation and strain

3.1 Introduction

Forces, when applied to a body, will evidently cause the body to deform. Since
there exists no body in nature that is infinitely stiff, the concept of a rigid body, as
used in rigid-body mechanics, is merely an idealisation. In solid mechanics, we are
specifically concerned with the study of deformable bodies; in fact, as we have seen
in Chapter 1, a primary goal of solid mechanics is to determine the deformation
of a body that is subjected to external loads. Consequently, we require a means
to describe mathematically the deformation and, in particular, we wish to describe
the intensity of the deformation of a body. In Chapter 1, this idea, introduced for
a simple one-dimensional case, led to the concept of strain. Since bodies usually
are not one-dimensional, it is necessary to examine and generalise the concept of
strain.

Our goal in this chapter will be to define a measure of the deformation of a body.
Now, ‘deformation’ is essentially described by the changes of geometry of a body.
Therefore, in this chapter, we will be concerned only with defining the geometrical
changes that occur in a body irrespective of the cause of the deformation. The
> deformation may be caused by external forces or perhaps by changes in temperature
of the body, but at this stage of our study, the causes are totally immaterial: we are
interested here only in deformation as an intrinsic concept.

Av*
by

A A

! / 3.2 Types of deformation

/ Consider a body initially at rest. Let us assume, for example, that a set of forces 18
| B applied, which causes the body to move. If the body is idealised as a rigid body, the
pl===—""" B motion in general, will be a combination of translation and rotation such that the

(b) distance between any two points in the body remains constant. However, if the body
is a deformable body, then in addition to the translation and rotation, the elements of
the body will deform as shown in Fig. (3.2.1). In order to describe the deformation
of the body, we first examine a small element. To this end, let us consider the simple

two-dimensional rectangular element Ax Ay [Fig. (3.2.2a)]. Such an element can

A undergo two types of deformation:
(a) The element may undergo a change in size: the length Ax changesto Ax* i.e.,
Ax — Ax*; similarly, Ay — Ay*. We observe that in this case the element
retains its rectangular shape [Fig. (3.2.2a)].
P (b) The element may undergo a change in shape without any change in length of

Ax or Ay; in this case, the element becomes a parallelogram [Fig. (3.2.2b)].
Figure 3.2.2 This distortion of the element, may thus be described by the angle change from

74



3.3 Extensional or normal strain 75

its original right angle ZAPB to the angle /A*PB*. We denote the change in
angle by y; thus y = /APB — /A*PB*.

In general, however, an element does not undergo only one type of deforma-
tion but undergoes simultaneously a change in size as well as a distortion. The
total motion of the element may thus be decomposed into (a) rigid-body motion,
(b) change in size and (c) distortion as is shown in Fig. (3.2.2¢). (The position after
only rigid-body motion is shown by the dashed lines in this figure.)

From this discussion, we therefore conclude that two measures of deforma-
tion are required: namely (i) elongation (or shortening) of a line element and
(i) changes in angles. We therefore seck a means to describe the deformation
mathematically. This description is expressed in terms of a quantity called strain.

3.3 Extensional or normal strain

Consider a point P in a body located in an x. y. z coordinate system. Let point Q
be a neighbouring point, an infinitesimal distance As from P {Fig. (3.3.1a)]. The
points P and Q can be defined in the coordinate system by means of the position
vectors rp, rq, respectively. The vector 136 is then represented by As n, where n
is a unit vector that defines the orientation of the infinitesimal line segment PQ
(Fig. (3.3.1b)].

(b)

Figure 3.3.1

Now, let us assume that point P displaces to P* by up and Q displaces to Q* by uq,
such that the distance |P*Q*| is As*. We define the extensional strain ¢, of an in-
finitesimal line segruent at point P, which is originally oriented in the n-direction, as

As* — As

&®) = l(g} As

As—0

(3.3.1)

From its definition, a positive extensional strain, €,(P) > 0, denotes an extension
(lengthening) of the segment, while €,(P) < 0 denotes a contraction (shortening)
of the segment. From its definition, it is clear that ¢, is a non-dimensional quantity.

It is important to observe that the deformed segment P*Q* is not necessarily
parallel to the segment PQ. Thus, according to our definition, €, denotes the exten-
sional strain of the line segment that was oriented in the n-direction in its initial or
undeformed state.

1t should be noted that if the orientation of the unit vector # is in the x-, y-
or z-direction, then the respective extensional strains for segments lying in these
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Figure 3.3.2

coordinate directjons are denoted by ¢,, ¢, and €.. From the definition of the ex-
tensional strain, the new (deformed) length As* of the original segment 1s given
by

As* =~ (1 4+¢€,)As (3.3.2a)

and the change in length, e = ds, of As is
e = €, As. (3.3.2b)

Having defined the extensional strain €, at a point, let us consider a line segment AB
within a deformable body of finite length L, and which s initially oriented in the
n-direction as shown in Fig. (3.3.2). Due to deformation of the body, assume that
the segment AB deforms to the curve A*B*. Let us also assume that the extensional
strain €, existing at all points along AB 1s known. We wish to determine the length
of the curve A*B* as well as its elongation.

Now, clearly, we may consider the original line AB to be composed of N number
of infinitesimal segments of equal lengths As as shown. Let P, denote point A
and P, denote point B with P, denoting some intermediate point. If €, is known
at all points, then a typical segment As between P, and P, becomes As/. From
Eq. (3.3.2a), we thep have

As! >~ [1 4 €,(P)] As. 3.3.3)

[Note that, as opposed to Eq. (3.3.1), Egs. (3.3.2) and (3.3.3) have been written with
a ~ sign since the expressions are not taken in the limit, i.e., they are written for a
small segment in the neighbourhood of a point, but not at the point.}

Hence if we divide the segment AB into a large number of segments As, we have

As? = [1+ €,(P)] As
Asy > [1 4+ €,(P)] As

As? = [l +€,(P)] As

Ast_y = [+ €(Pn)] As.
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The deformed length L* of A*B* is then

m—1 m—1

L*=) " ast =Y [1+&(P)]As. (3.3.4)
=1 =1
Now, if we increase the number of increments infinitely such that As —> 0, then in
the limit the summation becomes, by definition,
L L
L* =/ [+ e (s)]ds = L +/én(s)ds. (3.3.5)
0 0
where €,(s) denotes that €, depends on the parameter s along the line AB. Note that
the change in length, AL, of 4B is given by y oy
L
AL = /e,,(s)ds. (3.3.6) -

0

Example 3.1: A wire, located along the y-axis, is heated in such a way that
the strain at any point y is given by ¢, = ky/L, where k is a constant {Fig.
(3.3.3)]. Determine the change in length of the wire.

Solution: From Eq. (3.3.6), -

(¢]
L L
k kL Fignre 3.3.3
AL = | ¢,()dy = — dy = —.

f »0)dy = 7 / ydy ==

0 0
Note that the average strain €,, given by €, = AL/L = k/2, is equal to the exact
extensional strain only at the point y = L /2. 0
Example 3.2: A wire of finite length L, initially lying in the x-direction, is
stretched along a rigid track, which is a parabola y(x) = bx?. All points of the
wire displace in the y-direction onty [Fig. (3.3.4)]. Compute the strain ¢, at all
points x of the wire,

YA
As™ &
* »S
cab \// .
<\</ | E AJ—AV
=px? |
NG \ : : i Ax
11 i \
C
o) ! ; ‘!’AI:/D___ ¥
A - |- £
Ax Figure 3.3.4

Solution: We consider the wire in its initial position to be composed of a number
of infinitesimal segments, each of length Ax. {Note that here Ax replaces As of
Eq. (3.3.1).] Then, from Eq. (3.3.1),

. As™— Ax
€y = lim _—,
Ax—>0 Ax
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Figure 3.4.1

where As* is the deformed length of the segment of the wire when stretched along
the track. From geometry,

As* = /[(Ax)? + (Y] = V1 + (Ay/Ax) ] Ax.

Hence
e = lim (V1 +(ay/000] = 1] = V[T + @dy/do)?] - 1.
But dy/dx = 2bx. Therefore
€.(x) = \/m — 1.

Observe that when x = 0, ¢, = 0 and that the maximum strain occurs at x = L. This
may be readily observed from Fig. (3.3.4); the greatest deformation occurs in the
segment CD, which deforms to C*D*.

It is of interest to note that if bx & 1, 1.e., if bx is an infinitesimal quantity, then
making use of the binomial theorem, it follows that €,(x) = 2b%x?, i.e., the strain is
a quadratic function of x. O

3.4 Shear strain

Consider again point P and two neighbouring points Q and R, such that the infinites-
imal segments, PQ and PR, are mutually perpendicular as shown in Fig. (3.4.1).
Thus /RPQ = 7/2. Further let the unit vectors n and ¢ denote the orentation of
the line segments PQ and PR, respectively. As before, assume that due to deforma-
tion the displacements P — P*, Q — Q* and R — R* are given by up, ug and wg,
respectively.

2]

We define the shear strain y,., at P as the change in angle between two line
segments originally in the orthogonal - and /-directions; thus

Yi(P) = % ~ lim (R*P'Q". (3.4.1)
R—P
We note that since the shear strain defines the change in angle between two line
segments emanating from point P in the 7- and ¢-directions, it is necessary to use
two subscripts with y to define these two directions. Moreover, it should be clear
that, in general, the shear strain will be different depending on the orientation of
the n- and 7-directions.



[t is also worthwhile to observe that y,; > 0 signifies that the angle between the n-
and ¢-directions decreases. Note too that the shear strain component, having units
of radians, is a non-dimensional quantity.

Finally, it is important to observe that, based upon its definition, y,, = yi».

Example 3.3: Points A and C of a rectangular plate shown in Fig. (3.4.2) dis-
place to points A* and C* along the x- and y-axes, respectively, so that the
rectangle is deformed into a parallelogram. Lines that were initially parallel
to the x—y axes remain paralle!l lines. (a) Compute the shear strain y,, at all
points in the plate. {b) Compute the shear strain yx, assuming that y,, < 1.

v, 024L
“4 Fl__,__f—7
¢ / c* {
I /
2 / ,’
popt / _____,_-—A*-LO.ML
o 3L A 1

Solution:
(a) Atpomt P,
Yoy =7/2 = LC'P"A* = [A™P*x + [C*'P*y
or
ey = tan~1(0.24/3) + tan~'(0.24/2) = 0.0798 + 0.1194 = 0.1993

(b) Assuming y,, < 1, the angles between the sides of the parallelogram and the
x-and y-directions are small. Therefore, recalling that foro « 1, sine >~ tana >~
o, we have, at P,

Vey = 0.24/3 +0.24/2 = 0.2000.

Note that, using the property of small arguments, the percent error is (0.1993 —
0.2000)0/0.1993 = —0.0037 = —0.37%.

Since all parallel lines were stated to remain parallel after deformation, the an-
gle changes are the same at all points and hence the shear strain y,,, is constant
throughout the plate. O

Example 3.4: A plate ABCD lying in the x-y plane [Fig. (3.4.3a)] is deformed
such that C » C*, D — D*, etc. Point P displaces in the y-direction to P* by
an amount A = ab (where « is a constant) such that the diagonals PA and PB
remain straight lines in the deformed state [Fig. (3.4.3b)]. Calculate the shear
strains yn, where the n- and t-directions lie along the diagonals.

Solution: From geometry, it is evident that the angle ZBPA of the undeformed plate
is a right angle. We denote the angle /AP*B by €. Then, since point P moves in the

3.4 Shearstrain 79

Figure 3.4.2
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Vao 7 8
> =773 (3.4.22)
and hence
n 7
tan 2 —tan{ 2 — 2. (3.4.2b)
2 4 2
Recalling the trigonometric identity,
tanx * tan
tan(x j:y):—~———mt 4 ,
1¥tanxtany

we find

ya L —tan(6/2)
N T T¥wne2) (3.4.2¢)

Now, from geometry,
b 1

0
tan~ = = A 3.4.2d
Y Tt 1te (3.4.29)

Substituting in Eq. (3.4.2¢),

!

1 — —
Yt 1+a o
tan — = ——— = , 3.4.3:
s I+ 2+« (3.4.32)
and therefore,
Yo =2tan"" — (3.4.3b)

2+a
For example, if @ = 0.02, y,, = 0.0198, while if @ = 0.3, y,, = 0.259.
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In the above analysis, we determined the strain y,, for two values of a: (a) an
infinitesimal value, o = 0.02, describing a small deformation that results in an in-
finitesimal strain y,,, = 0.0198 and (b) a finite value, o« = 0.3, describing a relatively
large deformation. We now re-examine the problem for the first case of infinitesimal
strain.

If ¥, < 1, by definition, we observe that the rotations are small; in particular, the
diagonal AP rotates by an infinitesimal amount. As a result, we note that the angle
/AP*E ~ 45°_ Moreover, from Fig. (3.4.3b), we observe that the angle /PAP* =
Yne/2. Let us construct the line segment PF perpendicular to AP* [Fig. (3.4.3¢)].
Examining the triangle FPP*, |PF| = arbsin45° = ab~/2/2. Then

Yu _ IPEI_ aby2/2 (3.4.4)

2 |AP| b2 2
and hence y,, = .

If o is small, e.g. @ = 0.02, the resulting strain, y,, = 0.02, is infinitesimal and
differs from the exact result given above by 1%, while if « is not infinitesimal, e.g.
a = 0.3, we obtain a relatively inaccurate value, i.e., ¥, = 0.3, with an error of
15.6%. O

We thus observe that if the strains and rotations are infinitesimal, we may obtain
extremely accurate results using a much simplified analysis. We shall find this
conclusion to be true in general.

3.5 Strain~displacement relations

Since strain is a measure of the deformation of a body, it is clear that it depends on the
displacements of points within the body. The variation of displacements, u, given as
a function of the spatial coordinates [e.g., # = u(x, y. z) in a Cartesian coordinate
system] is referred to as a displacement field. In particular, the strain at points
within the body is a result of the relative displacements of various points within
the body. Although points of a rigid body also may undergo relative displacements,
the distance between any two points of a rigid body must remain constant. In a
deformable body, however, the distance between any two points, in general, does
not remain constant and as a result, both extensional and shear strains will exist
at the various points of the body. In our treatment below, explicit relations for the
strains in terms of the displacement field will be derived. However, to provide a
better insight in the analysis of strain resulting from known displacements in a
body, we first examine the resulting strains in some simple problems.

For simplicity, we shall investigate two-dimensional cases; i.e., cases where
all displacements are in a plane. We consider here the plane of deformation to be the
x—y plane, where (a) there exists no displacement component in the z-direction and
(b) u = u(x, y). This type of two-dimensional deformation represents a case called
plane strain.

(a) Some preliminary instructive examples
We examine the strains resulting from given displacements in a body via the
following examples.

Example 3.5: Consider a plate ABCD lying in the x-y plane. The sides of the
plate are unity and point A is assumed to lie initially at the origin of the
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Figure 3.5.1
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x, y coordinate system [Fig. (3.5.1a)]. Let the displacements of the plate be
u = u +vj, where the components in the x- and y-directions are given by
the expressions

ulx, y=a+By, vix,y)=2a-px, K1 (3.5.1)

Here @ and B are positive constants. Note that while 8 is given as infinitesimal,
a is finite. Determine (a) the average extensional strains €, along AD and €,
along AB and (b) the shear strain at point A.

Solution: We first determine the position of the plate after deformation. The orig-
mal coordinates of A are (0, 0). Due to the displacement, A — A*, and hence the
coordinates of A* become (0 + ua, 0 + vs) = (&, 2e¢). Similarly, the coordinates of
B(0, 1), which moves to B*, become (0 + ug, 1 + vg) = (@ + B, 1 + 2e). Points C*
and D* can be determined similarly. Thus, after deformation the coordinates of the
corners of the plate are given by

A" (o, 2a); B* (¢ + 8,1+ 2a);
C:(l+a+8,1+2a—8) D*: (14 a,2a—8).

Since the displacement components u and v vary linearly with the x - and y-coordinates,
the straight edges of the plate ABCD remain straight edges in the deformed plate
A*B*C*D*, as shown in Fig. (3.5.1a). From the figure it would appear that the
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displacement pattern, as given, results in a rigid-body motion. We therefore examine
the new lengths of the elements. For example, for the edge AB, we obtain

IAB** = [(a + B) — e + [(1 +20) — 20)* = 1 + B°
and hence
[A*B*| = 1 + 82 (3.5.2a)

Recalling now the binomial expansion

Vitx = 14+x/2-x*/8+, x<«<1,
it follows that
[A*B*) = 1+%2——ﬂ81+---. (3.5.2b)

Since B « 1, we neglect all infinitesimals of the second order. Hence

IA*B*| ~ 1. (3.5.32)
Similarly, we find

IB*C*| ~ 1. (3.5.3b)

[C*D*| ~ 1, (3.5.3¢)

[D*A*| >~ 1. (3.5.3d)

Thus, according to this ‘first-order’ analysis, the lengths of the edges of the plate
do not change, and hence, according to its definition, we conclude that the average
extensional strains €, = 0 (ofthe segments AD and BC)and €, = 0 (of ABand CD).

We leave it as an exercise to show that at point A, y;, = 0if 8 <« 1. O

Several features of these results should be emphasised:

m The finite parameter  appearing in this problem defines rigid-body translation.
To show this, we set 8 = 0 and, for example, let @ = 1.25. The element then
undergoes translation as shown in Fig. (3.5.1b). Observe that such a finite value
of o does not result in deformation of the element.

m Consider now a finite value of 8, say 8 = 1.25. Setting o = 0, the element
assumes the position as shown in Fig. (3.5.1c). Thus we observe that a finite
value of B results both in rotation and deformation of the element. We also note
from Eq. (3.5.2) that for finite B the strains do not vanish since |A*B*| # |AB|,
etc.

m On the other hand, if B is an infinitesimal, i.e., |8] <« 1, then as we have seen in
Fig. (3.5.1a), the rotations are small (to first order in 8) and we note, for example
from Eq. (3.5.3a), that the strains vanish if all second-order infinitesimals are
neglected.

m The strains that were obtained are average strains over the length of the sides;
1.e., we have not found the strains at a point.

Example 3.6: We consider the same plate ABCD lying in the x-y plane as in
the previous example. However, the displacement components, u and v, in
the x- and y-directions are now given respectively by

ulx, y) = a + By, vix, ) =20+ 8x, B L1 (3.5.4)
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Figure 3.5.2

Note that the displacement field defined by Eg. (3.5.4) differs from that of
Eq. (3.5.1) only by the change of sign of the gx term appearing in the
v-displacement component. (We shall find that this sign difference results
in a very different displacement pattern from that of the previous exam-
ple.) Determine (a) the average extensional strains € and €, (b) the average
extensional strain along the line AC and (c) the shear strain y,, at point A.

Solution: As in Example 3.5, the coordinates of the corners of the deformed plate
are readily obtained; namely
A*: (o, 200); B*: (o + B8, 1 + 2¢);
C:(+a+p8,1+2a+8) D*: (1 +a, 2a + B).

The resulting position of the deformed plate is shown in Fig. (3.5.2). The new lengths
of the edges of the plate A*B*C*D*, calculated as in the previous example, are

IA*B*| ~ 1, (3.5.52)
IB*C*| ~ 1, (3.5.5b)
|C*D*| ~ 1, (3.5.5¢)
ID*A*| ~ 1, (3.5.5d)

where the symbol = is used to indicate that the relation is approximate up to first
order in B for B « 1. Therefore, the average strains are €, = 0 and €, = 0 along
the respective line segments. Consequently, we conclude that the deformed plate
A*B*C*D* is a parailelogram (and more specifically a thombus). Now, although the
extensional strains vanish for line segments that lie in the x- and y-directions, it is clear
from Fig. (3.5.2) that the line segment AC of the undeformed plate changes length
and hence the extensional strain of this line segment does not vanish. Moreover, we
note that, as opposed to the previous example, the shear strain yx, 7 0 since clearly
the right angles no longer remain right angles at point A.

(a+ 8 1+20) C*(1+a+8 1+2a+p)
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We first define the orientation of the line segment AC by means of the unit vector
n [Fig. (3.5.2a)]. Then, according to the definition given in Eq. (3.3.1), the average
strain €, along AC is given by

_ _IATC - AC) ATt - V2

= 5.6
o IAC] /2 (336
since |[AC| = /2.
Now, |A*C*P={(04a+p8)—al+[(l+2a+p)—2a =2(1 +8)* and
therefore
|A*C*|= V2(1 + B). (3.5.6b)
Substituting in Eq. (3.5.6a),
V21 +8) -2
€ =—————=§. 3.5.7
€ 7 B ( )

To calculate y,, at A, we denote the inclination of A*B* and A™D* with respect to the y-
and x-directions by ¢ and ¢,, respectively [Fig. (3.5.2)]. Then, clearly, since the shear
strain represents the change in the right angle, v, = ¢1 + ¢». Now, since 8 « 1, the
rotations in this example are infinitesimals. Noting that sin ¢y ~ fl—z = B and (since
for x « 1, sinx = x) therefore ¢; = B. Similarly, ¢; = B. Therefore y,, =28 at
point A. From Fig. (3.5.2), we might anticipate that the shear strain y,, = 28 at all
points in the plate, although at this stage we cannot prove this assertion. O

We observe from the above two examples, that the expressions are considerably
simplified when the strains and rotations at all points of a body are small. In many
problems encountered in engineering practice, we find that this is precisely the case.
[For example, in Chapter 1, we noted that strains in the elastic range of steel were of
the order of O(107*).] We therefore shall derive expressions for the strains in terms
of displacements under the above assumption of infinitesimal strains and rotations.

(b) Strain-displacement relations for infinitesimal strains and rotations
For simplicity, we consider a two-dimensional body lying in the x~y plane, as shown
in Fig. (3.5.3). Let P(x, y) represent a general point in the body, and let

u(x,y) = u(x. y)i + v(x, y)j (3.5.8)

denote the displacement of any point P.

y

P*(x +u,y+v)
/ .
P(x, y)

Figure 3.5.3
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Figure 3.5.4

We analyse the deformation of the body under the following assumptions:

m The displacements u(x, y) vary continuously with the spatial coordinates and
possess continuous partial derivatives with respect to these coordinates.

m The strain components at all points P are infinitesimal.

m All elements of the body undergo infinitesimal relative rotations. By ‘infinitesimnal
relative rotations’ we mean rotations such that neighbouring points undergo smalj
rotations with respect to each other.

Consider now a rectangular element PQSR having sides Ax and Ay, as shown in
Fig. (3.5.4). Due to deformation, P — P*, Q — Q* and R — R*. The coordinates
of these points after deformation are given by

P*: (x +u,y+v); Q [x+Ax+(u+ Au), y+ v+ Av)];
R*: [x +(u+ Au), y + Ay + (v + Av)]
Now, from Eq. (3.3.1),
N e ) o]
“O=amTEa
or
[P*Q*| — Ax

= (3.5.9a)

P = i,

since |PQ| = Ax.
We note that

IP*Q*| = \/RAx + Au) + Av?] = V(1 + Au/Ax) + (Av/Ax)?] Ax.
Hence, by Eq. (3.5.9a),
& = lim VI(L+ Au/Ax)? + (Av/Ax)?] — 1

or

€ = \/[(1 + du/dx): + (dv/dx)}] - 1. (3.5.9b)

v+ Av
Ay

u-+Au
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Similarly, from its definition,

. |P*R* = Ay
= - - 5.1
€,(P) AIJTO & : (3.5.10a)
we obtain
€ = \/[(1 + 8‘1}/8)})2 + (Bu/ay)z] — 1. (3.5.10b)

du Bu fu @y

5% Bn0 5y By under the

We now examine the order of magnitude of the ratios
restriction of small strains and small relative rotations.

Let us first consider the rotations PQ — P*Q* and PR — P*R*. Denoting the
orientations of the deformed segments with respect to the x- and y-directions by
a and B, respectively [Fig. (3.5.4)], we note that the segment PQ at point P(x, y)

undergoes a rotation given by

. Av X Av/Ax
tane = lim ——— = lim ———
Ax=0 AX + Au Ax—0 (1 4 L)
or
dv/o
tana = /0% (3.5.11a)
1 4+ du/dx
If the relative rotation « is infinitesimal, then fora « 1, tana >~ «; i.e.,
av/o
o= V0 (3.5.11b)
1 4 ou/adx

Let us now assume momentarily that du /9x < 1;i.e., du/dx is also infinitesimal.
It then follows from Eq. (3.5.11b) that « = dv/dx and therefore dv/dx must also
be an infinitesimal; thus

o =9dv/dx < 1. (3.5.12a)

Similarly, by examining the rotation of PR — P*R*, we conclude that if the relative
rotation of RP is small and if dv/dy <« 1, then

B =ou/dy < 1. (3.5.12b)

Using the property of Eq. (3.5.12a), and neglecting infinitesimals of second order,
we find, from Eq. (3.5.9b)," that

€ =+/[1 4+ du/dx]* — 1 (3.5.13a)
or
a.
¢, = (1 + —”) —1, (3.5.13b)
0x

t Note that 1+ au/é)x]2 = \/[] +28u/3x + (3u/8x)?]. Hence, alternatively, by neglecting the
second-order infimtesimal (du/8x)? in addition to (9v/8x)? in Eq. (3.5.9b) and making use of the
binomial theorem,

Vl+x =14+x/2-x2/84- -,

we obtain Eqs. (3.5.13b) and (3.5.14a).
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and hence
_ Ou
=
Note that the above development was based on our previous assumption that du/3x
is an infinitesimal. Tt then follows that €, as given by Eq. (3.5.14a) is also infinites-
imal. Thus the entire development is consistent with small strain theory.
Similarly, using the property of Eq. (3.5.12b), we find, from Eq. (3.5.10b), that
_dv
Ty
is the infinitesimal strain in the y-direction.

The shear strain y,, can be obtained by noting that the change in angle at point
P is given by

€x (3.5.14a)

€ (3.5.14b)

s .
Yoy = 5 = lim (RP'Q" = o + .
Ay—0

From Egs. (3.5.12), we have

Qv o
dx  dy

Thus we have obtained explicit two-dimensional expressions for the infinitesimal

strains in terms of the displacements u = u(x, y):

Viy (3.5.15)

du
e = 2 (3.5.163)
dx
o = 3.5.16b)
y - ay’ ( . *
dv  Jdu
L 3.5.16
Yoy = 3% * dy (3.5.16¢)

Hence, if the displacement field u(x, y) is known at all points of a body, the strain
components are immediately obtained by taking the partial derivatives as given by
the above equations.

The following comments are now in order. The derivation of the above expressions
for the strain components was based on several assumptions:

(a) Relative rotations of the line segments are small. [This assumption led to
Eq. (3.5.11b).]

(b) The partial derivatives du/dx and dv/dy are infinitesimals. [This additional
property was necessary to obtain Egs. (3.5.12), namely that dv/dx and du/dy
are infinitesimals.]

(c) Note that as a result of the assumption (b), we conclude that the resulting strains
€. and €, given by Egs. (3.5.16a) and (3.5.16b), are also infinitesimals.

Similarly, from assumption (a), it follows by Eq. (3.5.16c¢) that y,, is also infinites-
imal.

Thus to summarise, the strain—displacement relations given by Egs. (3.5.16) are
valid for a body whose elements undergo infinitesimal strains and infinitesimal
relative rotations. The expressions are said to be within the limitations of small
strain theory. Moreover, since all these derivatives are of the first order (essentially
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all second-order infinitesimal terms are neglected), small strain theory is often also
referred to as being a linear theory.

For simplicity, the above expressions were derived for the two-dimensional case,
For a three-dimensional body in an x, y. z coordinate system, with displacements
u given by

u(x,y,z) =ui +vj+ wk, (3.5.17)

one finds the following equivalent expressions consistent with small strain theory:

dax
ov (3.5.18b)
€, = —, .5.
Yy 8y
(=¥ (3.5.18¢)
0z
and
v du
ey = — + —, 3.5.18d
Y ox + dy ( )
ow dv
L= — 4 —, 3.5.18
Yy 3y 57 ( e)
_0u | dw (3.5.18
Vex = 9z Ix >-181)

Example 3.7: A body is deformed such that the displacements at any point P
are given by

1
u=—[Xyi+3y%+(z—-4)Pxyk], O0<x, y<1,

B
where B > 1is a constant. Determine the strain components at all points of
the body.
Solution: From Egs. (3.5.18),
ou 1 ov 1 ow 2
Gx:——:—32’ =—-.:—123, 7= — = — —
BV 9T g =gl =g =ge-du
_3_1) au_)c3 _8w+3v_l e
Vxy ax 3y -5 Yyz = 3y 3z B(Z )x,
_u n ow 1 (z — 47
T T TBETVY

d

Example 3.8: We reconsider the plate ABCD examined previously in Example
3.5 [Fig. (3.5.1)] of this section, for which the displacement components at
each point are, as before,

ulx, y) = o + By, vix, y) =2 — fx, B K1

Determine the strain components at each point P(x, y, 2).
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Solution: For this two-dimensional problem, Egs. (3.5.16) yield
€& =€ =Yy =0

at all points. Thus, since the strains are zero everywhere, we conclude that the given
displacement ficld represents a rigid-body motion. 0O

It is important to observe that in Example 3.5, we were only able to find that av-
erage values of the strains along the line segments were zero. Hence, we previously
could only surmise that the plate ABCD undergoes only rigid-body motion, since
1t was not possible to prove that the strains vanish everywhere. It is only from the
derived expressions of Eq. (3.5.16) which yield the strain at all points, that we have
conclusively shown that the plate undergoes only rigid-body motion.

Example 3.9: We reconsider the plate ABCD examined previously in Example
3.6 [Fig. (3.5.2)] of this section, for which the displacements components at
each point are, as before,

ulx, y) = a + By, vix, ) =20+ Bx, B K1

Determine the strain components ¢,, €,, yxy at any point P(x, y, 2).

Solution: For this two-dimensional problem, Eqs. (3.5.16a) and (3.5.16b) yield
again €, = ¢, = 0 at all points. Thus the extensional strains of any line segment
parallel to the x- or y-axes vanish everywhere.

However, for the shear strain y,,, given by Eq. (3.5.16¢), we find

dv  du
= —+

Yoy = a_x ay

Thus, as we anticipated in Example 3.6, the shear strain is constant throughout the
plate. 0

There also exist cases where the displacement field u(x, y, z) is unknown but
where the strain field e(x, y, z) is known within a body. In such cases, the strain—
displacement relations, Eqgs. (3.5.18), can be integrated to yield, together with
appropriate boundary conditions on the surfaces, displacements « at all points
within the body. We illustrate this for a two-dimensional case in the following
example.

Example 3.10: A rectangular plate ABCD, lying in the x-y plane, is deformed
to A*B*C*D*, as shown in Fig. (3.5.5), such that lines AB and AD remain straight
tinesand §/L « 1 and §/h « 1. The extensional strains at any point P(x, y) are

y y
R <§>| C*
D C b
h B*.
T

A B x  A¥ x

| N

< L 1

Figure 3.5.5 (a) (b)
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given as
X2y xy
—T YT IR

2
€x

where a « 1.

By integration of the strain—displacement relations, (a) determine the dis-
placement field u(x, y); (b) determine the coordinates of points B*, C* and D*;
(c) show that the edges B*C* and C*D* remain straight lines; (d) determine
the angle between the edges B*C* and C*D* at point C*.

Solution:

(a) Using Eq. (3.5.18a), % = ax?y/L%h, integration yields u(x. y) = ax’y/3L%h +
A(y), where A(y) is a function of y only. Since the edge AD remains a straight
line, u(0. y) = %Z; it then follows that 4(y) = %;! Hence,

x3 $-
y i o-y
3L%h h

ux.y)=a

Similarly, using Eq. (3.5.18b), %;— = axy?/Lh?, integration yields v(x, y) =
axy’/3Lh* + B(x), where B(x) isa function of x only. Noting that v(x, 0) = %%,
it follows that B(x) = 2% and hence

xy? §-x

vy =agE

x3y S-y\. xy? §-xY\ .
u_(a3L2h+ P >’+(a3Lh2+ I )’

(b) The coordinates of points B*. C* and D* are then calculated as follows:

Therefore

xpr =xp+u(L,0)=L, ye =y +v(L,0) =34,
xco =xc+u(l,h)y=L+al/348, ye-=yc+v(l,Ly=h+ah/3+38,
xpr = xp + u(0, h) =6, yor = yp+ v(0.h) = h.

(¢) The coordinates of points along B*C* are given by
x*=L4+ul.yy=L+1/h)Xal/3+8)y,
y =y 4oL, y)=y+ay’/3h’ +8.

Since x* is a linear function of y, the edge B*C* is a straight line.
Similarly, the coordinates of points along C*D* are

x* =x4u(x, h)=x+4ax?/3L* 43,
Yi=h+v(x.h)=h+(1/L)ah/34+8) x.

Since y* is a linear function of x, the edge C*D* is a straight line.
(d) Using Eq. (3.5.18¢), yxy = ax*/3L%h + ay*/3Lh* 4+ 8(1/h + 1/L). Hence,
after simplification,

1
Yayle = Yo (L, h) = (E) [a(L* + h*) + (L + h)s]
Therefore, /D*C*B* = n/2 — yy,lc.

Note that B*C* is not parallel to A*D* nor is C*D* parallel to A*B*. O
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Figure 3.6.1

Figure 3.6.2

3.6 State of strain

As has been seen, the deformation of a body can be described completely by means
of the extensional and shear strains at all points of the body.

Consider now the three-dimensional body shown in Fig. (3.6.1) in an x, y, z
coordinate system, which undergoes deformation. We may consider this body to
be composed of an infinite number of infinitesimal parallelepipeds (e.g. cubes) and
may regard the total deformation of the body as the total effect of the deformation
of the elemental cubes. Let us therefore examine the deformation of an individual
cube, neglecting rigid-body motion (since by definition it does not contribute to the
deformation).

We note first that the sides originally of lengths Ax, Ay and Az, respec-
tively, may change lengths, so that the new lengths are (1 + €,) Ax, (1 + €,) Ay and
(1 + €,) Az, as shown in Fig. (3.6.2a).

¥ y
——————————— w2 ="
i e [,
7’ 7 / 71
/ ’ 7
7 s : (I+e)Ay SN s !
y 7y} fare AN
e 7/
y o LA L
R EEEE — 1/ t ! " i
' ! * / ] o2 =y, X
I | ! ’{ g .
) / g
: ? ' 4
I VA ¥ N /A W
| Ax N a2 -y
: (1+e)Ax ¢
(a) ()

We note too that the elementary rectangular parallelepiped can distort to a general
parallelepiped as shown in Fig. (3.6.2b). As is clear from our previous discussion,
this distortion can be measured by the changes in angle between the coordinate lines;
that is, the angle changes between x and y, y and z, and z and x line segments,
which we denote by ¥y, ¥ and y;,, respectively.

Hence we note that to describe completely the deformation of an element at a
point, we require six independent strain quantities: €y, €y, €z, Yry, Yy and Yz, 88
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shown in the array

€x Vxy Yz
Yys €y Vyz
Vex Y2y V€

We observe that this array is a symmetric array since, by definition, y., = Vyx. Vyz =
Veys Yoz = Vax-

Now, as in the case of stress, there exist two-dimensional cases of strain where the
displacement in a particular direction, say w in the z-direction, is zero and where
the remaining non-zero displacements, « and v, are functions only of x and y. Thus
u = u(x, y)i + v(x, y)j. As previously mentioned, such a two-dimensional state of
strain is called plane strain. From Egs. (3.5.18), it follows thate, = y,, = ¥, =0,
and hence for the case of plane strain, we have

€x Yxy
YVyx € )
where y,, = ¥)..

The above arrays have the same appearance as the arrays for the symmetric
second-rank tensor of Section 3 of Chapter 2. We might therefore be inclined to
believe that these arrays also represent second-rank symmetric tensors. However,
in order to make this assertation, we must prove that the scalar strain components
transform according to the same transformation laws as the scalar stress compo-
nents. In the following section, we derive the appropriate transformation law for
these scalar components and will discover that the above arrays do noft represent
second-rank tensors.

3.7 Two-dimensional transformation law for infinitesimal
strain components

Let us assume that the infinitesimal strains €., €, and y,, are known at any point
of a body situated in an x, y coordinate system. We derive here expressions for
the strain components in any arbitrary direction (of the x—y plane) in terms of the
above known strain components; we call these derived expressions, as in the case
of stress, the transformation laws,

It is possible to derive these laws by means of two different approaches: a geo-
metric approach and a more formal analytic approach in which we make use of the
strain—displacement relations of Section 3.5.

Each approach has its advantages. However, because the geometric approach
provides more physical insight into the concept of strain, we first derive the trans-
formation law for the extensional strain from simple geometric considerations.

(a) Geometric derivation

For simplicity we examine a two-dimensional state of strain at a point, i.e., we
assume that all points undergo displacements in the x- and y-directions only. Con-
sider therefore an element PAQB with sides Ax Ay in the neighbourhood of a
point P, which undergoes displacements such that P — P*, A — A* Q — Q* and
B — B*, as shown in Fig. (3.7.1). As we have noted previously, an element may
undergo both rigid-body displacements and deformation. However, since we have
shown that the strains depend solely on the deformation, we disregard all rigid-body
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Figure 3.7.1

Figure 3.7.2

X

motion. Therefore, taking P as our reference point, we disregard the displacement
up =PPB* and analyze the deformation with respect to point P* in the deformed
state.

Let us assume that the deformation of the element is known, i.e., the infinitesimal
strains €, €, and y,, =y, are known at the given point P.

We now pose the following question: if the above strains are known, what is the
strain of a line segment PQ whose initial orientation (before deformation) was at
some angle 8 with respect to the x-axis [Fig. (3.7.22)]? (Note that § is taken positive
in the counter-clockwise direction.)

Ay_ : >
t g

To this end, let the unit vector n define the initial orientation of the line segment
PQ, and let the unit vector ¢, lying in the x—y plane, define a direction perpendicular
to n. Further, let As = |PQ|. In more precise terms, we wish to determine the
extensional strain €, of the segment PQ. In addition, we shall determine the change
in angle between the original n- and ¢-directions due to the deformation of the
element. Clearly, this analysis is purely a problem of geometry.

Now since the strains are known, the deformation of the rectangular element of
Fig. (3.7.2a) is known and appears as in Fig. (3.7.2b). Note that we have drawn the
deformed element as a parallelogram. We may justify this on the following bases:
(a) the element PAQB is assumed initially to be infinitesimal and consequently the
strain at the adjacent points in the neighbourhood of P must be approximately the
same as at P, and (b) in the limit, we shall shrink the element to a point by taking
Ax — Oand Ay — 0.

t Consequently, while the geometric analysis for the infinitesimal element is, in general, an approximauon,
it 1s exact only in the limit (i.e., at a point).
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Having denoted the initial length of the line segment PQ by As, we let As* =
|[P*Q*|. Now, according to Eq. (3.3.2a),

As* = (1 +€,) As (3.7.1a)

and
[P*A*| >~ (1 +€,) Ax, (3.7.1b)
IP*B*| 2 (1 +¢,) Ay. (3.7.1¢)

Furthermore, for the parallelogram P*A*Q*B*, we observe that |[A*Q*| = |P*B*|
and that the angle ¥ = (B*P*A* = n/2 — y,, [Fig. (3.7.2b)].
We now make use of the cosine law for the triangle P*A*Q*:

(As*)? = |P*A** + |A*Q*|* + 2[P*A*| - |A*Q*| cos . (3.7.2)

Noting that cos ¥ =~ cos(77 /2 — ¥x,) = 8in yx, = y,, for infinitesimal y,, and sub-
stituting Eqgs. (3.7.1) in Eq. (3.7.2) we obtain

(I4+e)As? =1+ ) ax* + (1 +6) Ay +2(1 + €)1+ €,)y:y Ax Ay.
(3.7.3a)

Expanding
(1426, +€2) As® = (1 + 26, + €2) Ax? + (1 +2¢, + €]) AY?
+2(1 + € + €, + €:€,)Y,y Ax Ay.
Neglecting all second-order infinitesimals, we have
(1 +2¢,) As? = (1 +2€.) Ax® + (1 +2¢,) Ay* + 2y, Ax Ay (3.7.3¢)
and noting that As®> = Ax? + Ay?, we obtain, after dividing through by As?,
2€, ~ 26,(Ax/ As)* + 26y(Ay/As)2 +2y,(Ax/ As)(Ay/ As). (3.7.3d)
Now
cosf = Ax/As, (3.7.4a)
sinf = Ay/As. (3.7.4b)

Noting, upon taking the limit, that the approximation ~ becomes an equality, we
finally obtain’

€n = €, COS* O + € sin 6 + Yxy Sin 6 cosf. (3.7.53)

Using the standard trigonometric identities [see Eq. (2.6.6)], Eq. (3.7.5a) can be
written in the alternate form:
€x +€, € —
€ =
2 2
Equations (3.7.5) thus provide a means to obtain the extensional strain €, in any
given n-direction with respect to the x, y coordinate system, provided €., €, and y,,
are known. These equations thus represent the transformation law for the extensional
strain from the x, y coordinate system to another coordinate system, oriented with
respect to the first by an angle 6.

< cos26 + ”T sin26. (3.7.5b)

! See previous footnote.
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Figure 3.73

We observe that Egs. (3.7.5) resemble, in form, the transformation law, Egs. (2.6.6)
for the normal stress o, given in Chapter 2. However, a casual comparison reveals
that they are somewhat different since a factor of 1/2 appears in the y;, term in
Eq. (3.7.5b), which does not appear in Eq. (2.6.6b). We shall not pursue this com-
ment, but will return to this remark only after deriving the transformation law for
the shear strain term.

Now, although the transformation law for y,, can be obtained by a similar geo-
metric approach, the derivation is less straightforward since it leads to some rather
cumbersome geometry. We therefore resort to a different analytical approach that
yields the transformation laws for both extensional and shear strain components.

(b) Analytic derivation of the transformation laws

We consider a body in an x—y plane undergoing deformation where the displacement
of any point P(x, y) in the plane [Fig. (3.7.3a)] is given by

u(x,y) =ui+vj, (3.7.6)

where u(x, y) and v(x, y) describe the displacement field. Then, if all strains and
rotations are infinitesimal, the strain—displacement relations are [Eqgs. (3.5.16) re-
peated here]

0
€, = -1{, (3.7.7a)
ox
]
e, = 2% (3.7.7b)
Jv du
= — 4+ — 3.7.7
Yy = 5= 5 (3.7.7¢)
v
¢
| u n
///\ =/ I\
\\ ///‘ e
//‘/ \ l Un
uX | i
\
0 M
u P
(®)

It is useful to note that the extensional strain component in a particular direction is
given by the partial derivative of the displacement component in the given direction
with respect to the coordinate in the same direction. On the other hand, the terms
for the shear strain component are expressed in terms of partial derivatives of the
displacement components in a given direction with respect to coordinates in the
orthogonal direction.

Now, instead of resolving the displacement vector u into components in the x-
and y-directions, we recognise that the vector may also be resolved into components
in any arbitrary orthogonal directions. To this end, we first define two directions by
means of the orthogonal unit vectors n and ¢, where n is inclined by the angle ¢
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with respect to the x-axis {Fig. (3.7.3b)]. Then,
u=un+udl. (3.7.8a3)

From this figure we note that the components of the vector, u, and u,, in the n- and
¢-directions, respectively, are given by

U, = ucosb + vsinb, (3.7.8b)
u; = —u sinf + vcosfh. (3.7.8¢)

It is clear that we may consider the inclined axes as representing a new n, ¢ coordinate
system. Hence, we may consider u,, and , to be functions of the coordinates n and ¢;
ie,u, = up(n,t)and u, = u,(n, r). Therefore, analogously to Egs. (3.7.7), we may

write

oup

€6 = =2 (3.7.9a)
on
du,

= —, 7.

€ ” (3.7.9b)
ou, 0u,

= — ) 3.7.

Y=ot o (3.7.9¢)

Now, there exists also a relation between the x, y coordinate system and the n, ¢
system. Consider, for example, an arbitrary point P, which may be represented by
P(x, y) in the x, y coordinate system, or by P(n, ¢) in the n, ¢t coordinate system

¥
[Fig. (3.7.4)]. Then from the figure, we observe that the following relations exist
between the coordinate systems (x, y) and (n, ¢):
X =ncosd —tsinb, (3.7.10a) ! o
y =nsing +1cosf; (3.7.10b) TN, "
that is, we consider x = x(n, 1;0),and y = y(n, t;6), where @ is a parameter. From ! "
Eqgs. (3.7.10), we note that o1, x
X
a ,
i = cosé, (3.7.11a) Figure3.7.4
dx .
Y —sing, (3.7.11b)
dy .
Pl sing, (3.7.11¢)
a
a—i = cosé. (3.7.11d)

Taking partial derivatives of u, = u,[x(n, t), y(n, t)], we have, from Eq. (3.7.9a),

_ ou,, _ ou, 0x  Ouy 3y
T 8n dx dn 3y on

and, making use of Eqgs. (3.7.11a) and (3.7.11¢), we find

(3.7.122)

€n

Up

ox

€,y =

ou,
cosf + il sing. (3.7.12b)
dy
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Substituting from Eq. (3.7.8b), we obtain

ad 9 ad 9
€ = (—ﬁ cos + o siné)) cosf + o cosf + v sinf | sinf (3.7.12¢)
ax ax ay ay

or

= Yoo 0+ i o+ (22 4+ Y Gingcoss (3.7.13)
n=— — Sin - — 1 S1 o
ox 3y ax | 3y ) mYeos

from which, using Egs. (3.5.16), we can write
€n = € €082 0 + €, 5in 0 + Y, 5inb cosb. 3.7.14)

We note that Eq. (3.7.14) is identical to Eq. (3.7.5a), i.e., we have rederived the
transformation law for €, via this more formal, analytic approach. This approach
permits us to obtain the transformation law for y,, (i.e., the change in angle between
the n- and z-directions) in a very simple manner.
We first note that
du, du,

Y = —

on at
Again, considering u, and u, to be functions of [x(n, 1), y(n, )], taking the partial
derivatives with respect to » and ¢ and making use of Egs. (3.7.10), we find

ou, ou, ou, . ou,, ou, . ou,

— = — 0860 + —sind, = - né cosf8. (3.7.15b

on ax cosv+ ay - at 0x o+ ay ( )
Substituting in Eq. (3.7.15a), combining terms and making use of Egs. (3.7.8), we
obtain

0 3 0 0 9 0
Vs = (_u + _v) cos? 6 — (_v + _u) sin2t9+2<—v - a—“) siné cos 8,
x

(3.7.15a)

ay Ox ax = dy ay
(3.7.15¢)
which, again by Egs. (3.5.16), we can write as
Vg = y,(y(cos2 0 — sin?0) — 2(e, — €,)siné cosb. (3.7.16)

(c) The infinitesimal strain tensor - two-dimensional

transformation laws

It is useful to collect together the transformation laws for €, and y,, as previously
derived:

€ = €, 05> 0 + €, sin* 6 + y,, sin 6 cos 6, (3.7.17a)
Vot = y,,y(cos2 6 — sin® 0) — 2(e, — €,)sinf cos 6. (3.7.17b)

Using, as before, the standard trigonometric identities, the alternative form of these
laws is

€n = Gt & & T 0526 + P2 in2g, (3.7.18a)
2 2 2
Yat = Yxy C0820 — (€, — €,)sin20. (3.7.18b)

We note that Egs. (3.7.17) and (3.7.18) resemble the transformation laws for the
stress components [Eqgs. (2.6.6) and (2.6.8) respectively] as derived in Chapter 2.
They would be identical laws if o, and o, could be replaced by ¢, and ¢, and 7,
by y.,. However, we note that in Egs. (3.7.17) and (3.7.18) the y,, terms differ by
a factor of 1/2 with the corresponding ., terms of Egs. (2.6.6) and (2.6.8).
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Now, we recall from Chapter 2, that a second-rank symmetric tensor 1s said to
be one for which its scalar components transform (in two dimensions) according to
the laws given by Egs. (2.6.6)~2.6.8). Indeed, it was precisely because the stress
components obey these transformation laws that stress was said to be a second-rank
Symmetric tensor.

In the case of the array shown in Section 5 of this chapter, we observe that because
of the factor 1/2, the transformation laws for these scalar components do not satisfy
the transformation laws for a second-rank symmetric tensor. Consequently, the array
of scalar components shown in Section 5 does not represent a tensor.

Therefore, let us now define the quantities

1 1 1

1
€xy = ’2‘ny1 €y = E)’yzv €x = Eyzx: €nt = '2'Vnt- (3719)

Furthermore, as in the case of stress, we introduce a new notation for the extensional
strain, namely, €, = €,, €,, = €, and €,, = ¢,,.

With this change in notation, and taking into account the definition of €., etc.,
we write the following array:

where, now
du
€y = €, = —, (3.7.20a)
dx
dv
Cyy =€ = 5 (3.7.20Db)
ow
€, =€, = —, (3.7.20¢)
0z
e =2 (2, 00 3.7.20d
T2 \8x  ay)’ (3.7:204)
. - 1 [ow n v 3720
=\ T ez ) (3.7.20e)
LY i 3.7.20
“T2\8z  ax )’ (3.7.200
With these new definitions, the transformation laws of Egs. (3.7.18) become
€ + € € —
e = — 2 4 % 0826 + €, 5in 26, (3.7.21a)
€ —€, .
€ny = €4, COS 20 ~ > sin 20, (3.7.21b)

Comparing Egs. (3.7.21) with Eqs. (2.6.6b)~(2.6.8b), we observe that they are now
identical since there now exists a direct correspondence:

T.\'x > éxx: Tyy > nyy Txy > 6_(ya
Tnn > ennv Tnt > €py.

Thus, Egs. (3.7.21) represent the (two-dimensional) transformation laws for the
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array of scalar components shown above. The strain components of this array, as
in the case of stress, are therefore components of a second-rank symmetric tensor.
Hence, we have shown that strain at a point is represented by a second-rank tensor;
thus we refer to the strain tensor at a point.

Several remarks are now in order:

m According to its definition, the shear strain €,, = %yxy, for example, represents
% the angle change between two line segments that lay initially in the x- and
y-directions before deformation occurred.

m Double subscripts nn appearing in the extensional strain €,, indicate extension of
a line segment that was oriented initially in the a-direction before deformation.
(For convenience, we sometimes will use the notation ¢,. Thus, in cases where
the symbol ¢ appears with only one subscript, it will denote extensional strain
according to the identity, €,, = €,.)

m Having established that the strain components at a point are components of a
second-rank symmetric tensor, these components have the same properties as
the stress tensor. In particular, they satisfy the same invariant properties. Thus,
analogously to the case of plane stress [see Egs. (2.6.10)—2.6.11)], the two-
dimensional strain components satisfy the condition

€,+€ =¢.+¢€,=1, (constant) (3.7.22a)
and

2 2
€n€; — €, = €:€, — €},

= [.; (constant), (3.7.22b)

where I, and I, are invariants. As in the case of stress, for the three-dimensional
strain tensor, there exists a third invariant,

Although we have not treated the case of three-dimensional strain, we mention here,
that in that case, the first invariant is then given by

& t+e e =1, (3.7.23)

that is, the sum of three extensional strain components at a point in any three
mutually perpendicular directions is always a constant. In Section 10 of this chapter
below, we will find that this invariant lends itself to a physical interpretation.

Hereafter, and throughout the book, the expression shear strain will signify €,
€nr, €lc.; that is, it will signify one-half the angle change.

3.8 Principal strains and principal directions of strain:
the Mohr circle for strain

The extensional strain at a point €, clearly varies with the orientation 6 of the
n-direction since according to Eq. (3.7.21a), €, = ¢,(8). Treating €, as a function
of 8, the necessary condition for stationary values is

de,,
de

We might therefore proceed with the analysis exactly as with the case of two-
dimensional stress in Chapter 2. However, in the previous section, we have ob-
served that the two-dimensional strain components €, €, and €, = y,, /2 satisfy
the same transformation law as the two-dimensional stress components o,, o, and
7., Therefore all expressions derived for the principal directions, principal stresses,

=0. (3.8.1)
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etc., of Chapter 2 (Section 7), will be the same, if we replace g, by €., g, by €, and
T,y by €,,. Thus, it is not necessary to rederive the expressions for the strains; we
need only replace the stress terms with the corresponding strain terms. In particular,
corresponding to Eq. (2.7.3) we obtain the equation

tan 20 = — (3.8.2)

€x €y
P
2

whose two relevant roots are denoted by 9, and 6, with 6, = 6, + /2.

However, although the mathematics follow by analogy, it is necessary to make a
distinction in interpreting these angles. While 6, and 6, of Chapter 2 denoted the
orientation of the normal to the principal planes, here 6; and 6, denote the mutually
perpendicular principal directions of the strain. Thus 6, denotes the direction of the
line segment (existing at a point) for which the maximum value of €, occurs and 6,
denotes the direction of the line segment which has the minimum value of ¢,,.

Analogously to the case of stress, the shear strain €,, = 0, where n and ¢ lie in the
two orthogonal principal (strain) directions. Thus, the right angle existing between
the two orthogonal principal directions (in the undeformed state) does not change as
a result of deformation; i.e., line segments lying in the body in these two orthogonal
directions remain mutually perpendicular after deformation.

The stationary values of ¢, are called the principal strains. As with stress, we let
€; and ¢, denote the maximum and minimum algebraic values of strain, respectively.
Then corresponding to Eqs. (2.7.11), these are given by

2
€ + € €, — €
€ = —71 + \/(—2——y> +el, (3.8.3a)

and

2
€+ €, €x — €y
€ = T - \/(T) +€3y. (383b)

Thus, for any given values of €, € y and ¢,,, we find that a line segment oriented at
an angle 6, with respect to the x-axis will undergo the largest extension, €;. Further-
more, the smallest extensional strain (which, if €, < 0, signifies a contraction) will
occur for a line segment defined by 8, = 6, + /2. This is shown in Fig. (3.8.1a)
where the two principal directions are defined by the lines n; and n,. (We note here
that the relevant root of 9, lies in the quadrant as defined by the criteria established
in Chapter 2, for stress: namely here, according to the sign of €,,.)

We note that the angle between the two orthogonal principal directions remains
aright angle since the shear strain €,, = 0. Thus, line segments PC and PD (which
lie originally in the directions n; and n, respectively) lie, after deformation, in
the perpendicular directions n} and n3 [Fig. (3.8.1a)]. All other sets of mutually
perpendicular line segments at a point will not remain orthogonal after deformation
since then, ¢,, % 0. Analogously with the case of stress, the largest and smallest
shear strain will occur for two line segments [denoted by n,, and n,, in Fig. (3.8.1b)],
which are oriented at 45° with respect to the principal directions. Letting n,, —

n}. ng; —> ni,, we note that n; and n , the directions after deformation, are no
longer mutually perpendicular [Flg (3. 8 lb)]
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Figure 3.8.1
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Asinthe case of stress, the transformation laws lead to a parametric representation
analogous to Eqs. (2.7.25), namely

(e, — a)2 + eﬁ, = R?

2
€, —€
J(E5%) e
and where a =

Thus one can construct a Mohr circle for strain with radius R and with the centre
of the circle lying on the €,-axis at coordinates [(e, + €,)/2, 0] in the ¢,~€,, space.
The construction follows exactly as with the Mohr circle for stress [Fig. (3.8.2)].

The principal strains €, and €; are then given by

(3.8.42)

with

R= (3.8.4b)

€x-tey

€ = 2 + R, (3.8.5a)
Q:G;@—R. (3.8.5b)

We illustrate the analysis by means of two typical examples.
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> €,
P
(€xs €xy)
(Enrdmax
Y
nt = Yot/ 2 Figure 3.8.2
Example 3.11: A plate is subjected to shear forces such that at a point, the
strains are ¢, = ¢, =0 and ¢,, = 2k (where 0 < k < 1). Determine (a) the
extensional strain e, for a line segment oriented at 8 = 30° with respect to
the x-axis, (b) the shear strain €,, and (c) the principal strains and directions at
this point. Draw the Mohtr circle representing the state of strain at this point.
Solution:
(a) From Eq. (3.7.21a), the extensional strain in the n-direction is
€ = €, 8in60° = k+/3.
Similarly, the strain €; in the /-direction (with 8 = 30 4+ 90 = 120°) is
€ = €, 8in240° = —k/3.
(b) The shear strain ¢,,, obtained from Eq. (3.7.21b) with 8 = 30°, is €,, = k.
(c¢) The principal strains, given by Egs. (3.8.3), are
€ = 6xy = 2k; € = —€xy = —2k.
The principal directions are given by Eq. (3.8.2), namely
¥ 2k
tan 26 = :_ﬁy =5 o
7
Since €, > 0, 26, = 90° and therefore 6; = 45°. The direction of n, is then
given by 8, = 135¢.
The Mohr circle representing the state of strain is given in Fig. (3.8.3), which we Q
recognize to be a strain state in pure shear. 0 ¢120° = £33
€ =2k
Example 3.12: The state of plane strain at a point is given by e, = 10 x 1073, “ o
(30%) = &3

€y = —6 x 1073, ¢,, = 8 x 1073, Determine (a) the strain ¢, of a line segment
at the pointinclined at 6 = 30° with respect to the x-axis, (b) the change in
angles between two line segments originally oriented at 30° and 120° with
respect to the x-axis and (c) the principal strains and directions. Figure 3.83
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Solution:
() From the transformation law, Eq. (3.7.21a), with 6 = 30°,

. __ex+ey € —
T2 2

£ 0526 + €,y 5in 20

= [%(4) + %(16)(0.5) + S(Ji/z)] x 1073 = 12.93 x 1073,

(b) The shear strain ¢,, between the two line segments originally at 30° and 120° with
respect to the x-axisis €, (6 = 30°). Noting that sin26 = v/3/2 and cos 26 = 0.5,
Eq. (3.7.21b) yields

- i
€n = €1y COS20 — = 5 % sin26 = [8(0.5) - 76(«/3/2)] x 1072

=-293 x 1073,

Therefore, the angle between these two line segments increases by 5.86 x 1073
rad = 0.34°.

The line segments (n and t) before and after deformation (denoted by n*
and ¢*) are shown (exaggerated) symbolically in Fig. (3.8.4a).

Figure 3.8.4 ()
(c) The pnincipal strains €) and €3, given by Egs. (3.8.3), are
4 -—
€12 = [5 + /(16/2)* + 82] % 1073 = [2+/128] x 1073,

or

6 =1331x 1073, & =-9.31 %1073

€x

The principal directions are given by the roots of Eq. (3.8.2), namely tan 26 = Ty =
§ = 1. Therefore 6) = 22.5°.
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The deformation of the line segments lying originally in the principal directions
(n) and n;) are shown symbolically in Fig. (3.8.4b). Note that these line segments
remain orthogonal after deformation as opposed to the line segments of
Fig. (3.8.4a).

The Mohr circle representing the state of strain at this point is given in Fig.
(3.8.5).

(-6.8)

(2,0

/

(12.93, —=2.93)x 1073

> ¢, %1073

€,=1331%1073

P(10, 8)

A
€ X 1073 Figure 3.8.5
O

3.9 The strain rosette

One often wishes to obtain the two-dimensional state of strain at a point of a body
experimentally in a laboratory. While it is impossible to measure the strain af a
point, it 1s possible to measure the elongation or contraction of a short line segment
in the vicinity of a point when a body undergoes deformation. In this case, we
assume the strain state to be constant in the neighbourhood of the point.

We consider here the case of plane strain in the x—y plane. Now, to specify the
state of strain for this case, one usually rust know ¢,, €, and €, . However, it is very
difficult to measure experimentally the change in angle between two line segments.
Nevertheless, as we shall see, it 1s possible to find the above three components by
measuring the extensional strain components in any three arbitrary directions lying
in the plane. .

To show this, we recall the two-dimensional transformation law for strain, given / b
in the form of Eq. (3.7.17a), namely /

(3.9.1) ~

y

€x(8) = €, c08* 8 + €, 5in @ + 2¢,, 5in B cos b,

where 2¢,, has been substituted for y,,. 7 \6y 6.

Assume now that we are able to measure the extensional strain of three arbitrary * *

line segments a, b, c, as shown in Fig. (3.9.1). We denote the orientation of these  Figure 3.9.1
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Flgure 3.9.2

segments with respect to the x-axis by 6,, &, 6., respectively. Then it follows from
Eq. (3.9.1) that

€ = €,(6,) = € cos? 0, + €, sin’ 6, + 26,y SN 6, c0s 6,, (3.9.23)
€b = €,(6) = €, cos? 6, + €, sin” 6, + 2¢,, Sin 6y, cos b, (3.9.2b)
€c = €,(6;) = €, cos’ §; + €, sin’ G + 2¢,, sin b, cos b (3.9.2¢)

Now the values of €,, €, and €, as well as the orientation 8,, 6, and 6, are known.
Hence, we may consider Egs. (3.9.2) to be three simultaneous equations in the three
unknowns, €, €, and «,,,.

Various devices exist in the laboratory to determine experimentally the strains
of line segments in three given directions. Such devices are called strain rosettes.
Standard strain rosettes exist to measure strains along line segments that are oriented,
for example, at 30°, 45° or 60° with respect to each other [Fig. (3.9.2a,b,c)]. Based
on such measurements, the strain components in x- and y-coordinate directions
(¢x. €, and ¢,,) can be found as is illustrated in the following example.

y y ¢ y
C
o ()
30° b 45 b 60°
X X X
30° 45° 60°
a
a
a
@) (b) ©

Example 3.13: Assume that strains are measured by a 45° rosette such that
b is oriented along the x-axis and line segments a and ¢ are at —45° and 45°
with respect to the x-axis [Fig. (3.9.2b)]. Let €4, €, and ¢, denote the measured
strains. Determine the strain components ¢y, €, and ey.

Solution: Since b is along the x-axis, then by definition, €, = €.
Along a: sin(—45°) = —+/2/2, cos(—45°) = +/2/2
Along ¢: sin(45°) = +/2/2 = cos(45°) = +/2/2.
Substituting in Eqs. ( 3.9.2a and ¢):
0.5¢, — €x, = €, ~ 0.5¢,
0.5¢y + €,y = €. — 0.5&

Solving for the remaining components, €, and €,,,

1
exy=5(ec—ea), €, = €; + €. — €p.

Thus the three components in the x, y coordinate directions have been obtained. [
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3.10 Volumetric strain—dilatation

In our previous discussion, we defined two types of strain at a point: extensional
strain and shear strain. Analogous to the definition of the extensional strain as the
ratio of change in length to original length of a line segment, one may define a
measure of the change of volume of an element existing at a point as the ratio of
change of volume of an element to the original volume.

To this end, consider an elementary rectangular parallelepiped dx dy dz as shown
i Fig. (3.10.1). The volume of this element is then

dV = dx dydz. (3.10.1)
y
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Let us assumpe that this element undergoes deformation where A — A*, B —
B*,C — C*, D — D*, etc. such that dx — dx*, dy — dy*, dz — dz*. Then, by
Eq. (3.3.2a),

dx* = |0A*| = (1 + ¢,) dx, (3.10.22)
dy* = |0C*| = (1 + ¢,) dy, (3.10.2b)
dz* = [OB*| = (1 4+ ¢,) dz. (3.10.2¢)

In addition to the changes of length of the sides, the element also distorts so that
right angles no longer remain right angles, as shown in Fig. (3.10.1). For simplicity,
let us assume that the plane OA*B*C* lies in the x—y plane. The volume d¥* of the
deformed element is then given by

d¥V* = [Area(OA*B*C*)][dz* cos y,,] (3.10.32)
or
dV?* = [dx” dy" cos y,,][dz" cos yx.] = dx* dy* dz* cos y,y cOs . (3.10.3b)
Substituting from Egs. (3.10.2),

dV* = (1 4+ €)(1 + €)1 +€;) dx dy dz cos Yxv COS Vyz. (3.10.4)

Figure 3.10.1
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We recall the Taylor series expansion for cos x,

xz2  x*

cosx=1—a+4—!—---.
Then, if |y.,| < 1, |y:.| < 1, upon dropping second-order infinitesimals, it fol-
lows that cos y,, > 1, cos y,, = 1. Hence after expanding Eq. (3.10.4), we obtain
dV*=(+4e +e€,+¢€ +e€6+ €,€; + €6, +€,€,6;,)dxdydz. (3.10.5a)
Dropping again all second-order infinitesimal terms, we obtain finally,
dV*=(1+e¢ +¢, +¢)dxdydz. (3.10.5b)
Now, analogously to the definition of extensional strain, we define A, the measure
of volumetric strain, as
a4V 3.10.6
T (3.10.6)
Substituting Eqs. (3.10.1) and (3.10.5b),
A= (I1+é€ +e€ +e)dedydz —dxdydz
N dx dy dz

(3.10.72)

or
A=c¢,+¢€,+e¢,. (3.10.7b)

This measure of volumetric strain, A, is called the dilatation. We emphasise that
this expression for the dilatation is valid only for infinitesimal strains and rotations.

Using Eqs. (3.5.1a)-(3.5.1¢c), we note that for a given displacement field in a
body, #(x, ¥, z) = ui + vj + wk, the dilatation A is given by

L L (3.108
T ox oy | 8z -10.8a)
This simple expression may be written in vector form as
A=V u, {3.10.8b)

where V = a%i + %j + %k. Thus, for a given displacement field, u(x, y. z), the
dilatation is given by the divergence of u.

Finally, upon comparing Eq. (3.10.7b) with Eq. (3.7.23), we observe that the
invariant /.| is equal precisely to the dilatation A. Hence this invariant has an
immediate physical interpretation: namely, it represents the volumetric strain at a
point. Since the invariant is independent of any particular coordinate system, we
note that the volumetric strain at a point is a scalar quantity that does not depend
on the coordinate system that has been chosen. Indeed, from a simple physical
reasoning, we might have concluded that volumetric strain cannot depend on any

particular directions.

PROBLEMS e S T S = e =)

Section 3

3.1: A200-cm long copper wire is heated non-uniformly causing an extensional strain
which is linearly proportional to the distance from one end of the wire. If the elonga-
tion of the wire is 1 cm. (a) What is the average extensional strain in the wire?



(b) What is the largest extensional strain in the wire? (c) What is the extensional
strain at the centre of the wire? (d) If one end of the wire is fixed and x is the distance
from this end, what is the displacement u(x)} at any point x?

3.2: Arigidrod AD is pinned at A and supported by a wire BC, as finite in Fig. (3P.2a),
and subjected to a load P at D. Due to the load, the rod undergoes a finite rotation
6 as shown in Fig. (3P.2b). (a) Determine the average strain € in the wire as a function
of 8. (b) If 6 < 1, show that the average strain is given by € = £2.

C
P ja
B r
A = - ;
< D
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3.3: A heavy vertical cable ABC of length L = 200 m is attached at the top, A, to a
crane. Due to its own weight, the strain at any intermediate point B is proportionat
to the distance below B. When carrying a given load P at C, the strain is increased
uniformly by 0.001. If due to its own weight and the load P, the cable undergoes a
change in length AL = 60 cm, what is the strain at the top?

3.4 A segment of wire AB lies along the line y = mx/b, as shown in Fig. (3P.4). The
wire is strained and displaced to lie along the line y = nx/b(m < n) in such a way that
any point originally at the coordinate x/bis displaced to x*/b = %(x/b)l, (a) Show that
the extensional strain ¢, at any point of the wire is given by

/1+n2 X
en(X) = 1+—m2 (E) -1,

where x is the original coordinate of the point. (b) Determine the average strain in
the wire.

3.5:* Asegment of wire AB lies along a parabola y = ax?. The wire is stretched to the
shape of a parabola y = bx? (b > a) such that any point originally at x lies at bx/a [see
Fig. (3P.5)]. Determine the extensional strain ¢, as a function of x.

3.6: Thedefinition of extensional strain ¢, at a point P, given by £q. (3.3.1), is known as
a Lagrangian definition (since the reference is with respect to the original length
As). On the other hand, one might define extensional strain with reference to the
deformed length As® (i.e. in a Eulerian sense) as

As* — As

&P) = 21’3 As*

As"=0
where Q* — P* as Q — P [see Fig. (3.3.1b)]. Show that
€n(P) - gn(P) = én(P) En(P),

and hence if both ¢,{P) « 1 and &,{P) « 1, the difference of these two definitions is
small, i.e. of second order.

Figure 3P2

Problems

Figure 3P.4
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Figure 3P.5
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3.7: A closed circular wire, as shown in Fig. (3P.7), is heated non-uniformly such that
the extensional strain is given by ¢y = kcos? 8. Determine the increase in length of the
wire.

3.8: The average circumference of the earth (considered as a perfect sphere) is as-
sumed to be L =40,102 km = 40,102,000 m. Imagine that a rope of length L is stretched
to a length L* = 40,102,006 m and then wound around the earth (at the equator) in
the shape of a perfect circle. (a) Calculate the average strain in the rope; {b) Prior to

Figure 3P.7 making any further calculations, estimate intuitively which creature could crawl (or
hop) under the rope: (i) an ant, (ii) a frog, (iii) a cat or (iv) a human being? (¢) Based
on a calculation, check the proper answer to (b).

3.9: A circular hoop 50 ¢m in diameter is heated uniformly so that the enclosed
area is increased by 0.57 ¢cm?. To a first-order approximation, calculate the average
extensional strain in the hoop.

AD = BD 3.10: Point B of a plate is displaced to B*, where the horizontal and vertical compo-
- nents of displacement are u and v, respectively, as shown in Fig. (3P.10). (a) Express
N ey the average extensional strains in AB and BC, in terms of u, vand L; (b) Determine an
: approximate expression for these average strains if u < L and v« L.

£ lg 3.1 Astraightwire AB of length L is stretched and displaced to the position A*B*, as
"{ \; /B* shown in Fig. (3P.11). Denoting the horizontal and vertical displacement components

u of point A and B as ua, va and ug and vg, respectively, show that if up € L, va €
Figure 3P.10 L, ug € L and vg « L, the average extensional strain in the wire is given by

Ug — Ua

A .
sin¢.

€ =

Ve
cosa + -

YA

Figure 3P.11 x

Section 4

3.12: Athintriangular plate ABC, with edge AC fixed, is deformed to a shape AB*C, as
shown in Fig. (3P.12). The uniform extensignal strains along the n- and t-directions are
given by ¢, = 0.006 and ¢ = 0.005, respectively. Noting that the strains are infinitesi-
mal, determine, to first-order approximation, the change in angle, yx, due to shear
at point B.

3.13: Therectangular plate OABC, having dimensionsa x b, is deformed uniformly to
OA*B*C (i.e., with constant strain ¢, = 0.04 in the x-direction), as shown in Fig. (3R.13).
Figure 3P.12 Compute, to first-order approximation, the change in angle, yy, at point P.
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3.14* An L-shaped plate lying in the x-y plane, Fig. (3P.14a), undergoes uniform
extensional strains e, and e, at all points such that all straight lines within the plate
remain straight and all points along the x- and y-axes remain on the axes. Assuming
that ¢, and ¢, are infinitesimals, determine the change in angle, y.. Express the answer
in terms of ¢y, ¢, and 6.

3.15: (a) Determine y,; of Problem 3.14, assuming that ¢, and ¢, are not necessarily

infinitesimals. Express the answer in terms of ¢,, ¢,, a and b. (b) Simplify the expression
obtained in (a) for the case where €y and ¢, are infinitesimals, and express the answer
in terms of ¢y, ¢, and 6. Note: The following relations may prove to be useful:

tan~'(x) £tan~'(y) = tan™" |: Xty :\ : tan~ ') ~ x (x « V).
1F xy

Section 5

3.16: In the following problems, points of a plate (0 < x <1, 0 < y < 1) lying in the
x~-y plane undergo displacements v and v in the x- and y-directions, respectively. For
each case, (i) compute the strains ¢, = ex. ¢y =¢€,, and the change in angle, yx,
(ii) plot the deformed shape of the plate ifa = b= ¢ = 0.1 and indicate the coordinates
of the corners of the deformed plate.

@ u=ax+by, v=bx+cy, 0<abc«i

bByu=ax, v=0, 0<a k1

(© u=ax+bxy, v=-2ax, 0 <a b« 1

317 Asquare plate (L x L), as shown in Fig. (3P.173), is deformed as shown in Fig.
(3P.17b) such that (i) points along the edges AB and AD do not move, (ii) CD is stretched
uniformly in such a way that no point of the plate displaces in the y-direction and
(iii) all vertical lines of the plate remain straight lines. Determine e, and y,, at any
point of the plate in terms of §, L and the original coordinates of the point.

(@ (b

Problems
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Figure 3P.14
Figure 3P.17
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Figure 3P.18

P X

Figure 3P.23

Figure 3P.24

3.18: The rectangular plate shown in Fig. (3P.18) undergoes, while deforming to
OA*B*C*, changes in angle given by

Yay = ax/L +b/H +C(X/L)(V/H)/

where a, b ¢ « 1. Compute, to first-order approximation, the difference in length
between the lines O"A* and B*C* if all horizontal lines remain parallel to the x-axis.

3.19: Given a square plate (L x L) lying in the x—y plane, which is deformed such
that the extensional strains and changes in angle are given respectively by

where 0 <a « 1and 0 < b« 1 are known constants. The following boundary condi-
tions on the displacements are specified : u(0, 0) = (0, 0) = 0, u(0, L) = e. Determine
the displacements u(x, y) and v(x, y) in the x- and y-directions, respectively. Express the
answers in terms of a, b eand L.

Section 7

Note: The symbol p appearing in problems of this and subsequent sections denotes
1076 - ‘micron’; e.g., ¢ = 400, = 400 x 10~% = 0.004.

3.20: Verify the expression for the second invariant of (plane) strain given by Eq.
(3.7.22b).

3.21: At a given point in a body in a state of plane strain with e,, = 2 x 1073, the

ratio R of the invariants, R = -2 = 4 x 10~3. If it is known that the stress €y = —4¢,
Al

determine possible values of .

3.22:* At a given point in a plate lying in the x-y plane with ¢, = €5 = ¢, = 0, the
ratio R of the invariants, R = -fff is found to be equal to 4 x 103, If it is known that
the strain ¢, = —4¢,, determine the possible range of values of ¢, that can exist if this
is to represent a state of plane strain.

3.23: On a plane passing through an arbitrary point P, two rectangular Cartesian
systems, (x, y) and (n, t), are constructed as shown in Fig. (3P.23). For each of the plane
strain cases listed below, determine the required quantities.

(a) ex = 200u, €, = 400y, ey, = 400y; 6 = 30°. Find ¢,, €1, €nr-

(b) €x = —400u, €y = 0, ¢, = 3001;6 = —30°. Find ¢n, €y €nr.

(€) ex =0, ey =0, &5y = 3001; 6 = 45°. Find €y, €y €nr.

(d) ex =1.20 x 1073, €y = 0.80 x 1073, €xy = —0.80 x 1073;6 = 120°. Find e, €4, €.

(e) €n=—100p, ¢, = —50u, € = 100u; 0 = 30°. Find &, €, exy.

(f) ex =0.20 x 1073, ¢, = 0.10 x 1073, ¢, = 0.05 x 107%;6 = 45°. Find €y, €, €nr.

(9) €n = 100p, €y = 2004, €4t = 0;6 = 60°. Find &, &y, €t

(h) €n = 100y, €, = ~200u, enr = 0;8 = 60°. Find ¢y, €xy, €t

3.24: Letn, s and t be three directions in a given x—y plane such that the n-direction
lies along the x-axis, as shown in Fig. (3P.24). (a) Determine ¢,y in terms of ¢, ¢; and ¢,
if @ = 45°. (b) Determine ¢,y in terms of ¢, s and ¢, if & = 60°.

3.25* For each of the following plane strain states at a point lying in the x-y plane of
Fig. (3P.23), determine the angle 4 of the direction n with respect to the x-axis.

(@) ex = €y = 1004, €xy = 5004, €, = 400..

(b) €x =100, ¢, = —1004, ey, = 150u, €, = 0.

Q) ex = —ey = —exy =, (c = constant), ¢, = 0.
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Section 8

3.26: Determine the principal strains and the corresponding principal directions with
respect to the x~y coordinates of Fig. (3P.23) for the following given two-dimensional
strain states. Draw the associated Mohr circle and show all critical quantities, i.e.
€1, €2, 264, 262. Note the changes due to the + values of the various strain components.

(2) €x =20p, ¢, = 40, €xy = 60

(b) ex = 20y, ¢y = 404, €5y = —60pu.

(€) ex = 20, ¢y = —40p, €,y = 60u.

(d) ex =20, ey = —40u, €4y = —604.

(€) ex = —20u, ¢, = 40, €4y = 60u.

(f) ex = —20pu, €, = 40u, €,y = —60u.

(g) €x = —20;1,, €y = —40/1, Exy = 60;1..

(h) ex = —20p, €, = 40y, €5y = —60u.

3.27: For each of the plane strain cases listed below (with ¢; = ¢x; = €, = 0), (i) de-
termine the principal strains €; and ¢, (ii) determine the principal directions as defined
by 6, and 8, and (iii) sketch the appropriate Mohr circle showing ¢, €, 20, and 26; on
the circle.

(a) ex = 60u, €y = 0, €4y = 40p.

(b) ex =0.20 x 1073, &, = —0.20 x 1073, ¢, = —0.20 x 1073,

{0) ex =900, €y = 100u, €xy = 2004.

(d) ¢ = 0.40 x 103, ey, = 0.80 x 1073, &xy = —0.60 x 1073,

(&) ex = —200., €, = — 1004, €y, = 200..

(0 ex =20x 1073, ¢, =05x 1073, ¢4, = ~0.5 x 1073

(9) ex = —120p, €, = 40y, €4y = ~204.

(h) ex = 240, €y = 0, &4y = 120p.

(i) €x =—-0.20 x 1073, €, = 0.10 x 1073, ¢, = 0.32 x 1073

() ex =0, €, = 240y, ¢,, = 1204.

3.28: Let n, s and t be three unit vectors lying in a principal plane as shown in
Fig. (3R.24).
(a) If €, = 100y, ¢, = 50u and ¢; = 20y, determine the principal strains and direc-
tions (with respect to the vector n) if @ = 45°.
(b) If e, = 100y, &, = —20 and ¢; = 60u, determine the principal strains and direc-
tions (with respect to the vector n) if @ = 60°.

3.29:* States of plane strain at a point, lying in the x-y plane of Fig. (3P.23), are given
as follows:
(a) ex = 80u, ¢, = —120pu. if &1 = 2201, determine €, 8y and 6, (i) if it is known that
€xy > 0 and (i) if it is known that €,y < 0.
(b) €x = 80y, ¢y = 120u. If €; = 220y, determine ¢, 61 and &; (i) if it is known that
€xy > 0 and (ii) if it is known that ¢,, < 0.
() ey = 40p, €4y = —30u. If 5 = B0, determine ¢, 6, and 6, (i). y
(d) ey = 40p, €4y = —30u. If &, = —80p, determine ¢, 8; and 6, (i).

Note: Verify answers via the appropriate Mohr circle. b

Section 9 9

3.30: Determine the state of (plane) strain, &, €, €y, from the following ¢-strain
rosette measurements [see Fig. (3P.30)]:

13

(@) €2 = 100y, €, = 300y, €. = —50u; 8 = 45°, where a lies on the x-axis.
(b) €5 = —600u, €p = 2004, ¢ = 0; 8 = 45°, where b lies on the x-axis. Figure 3P.30
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() €2 = 50u, e, = —200u, €, = —400u; 6 = 45°, where c lies on the x-axis.

(d) ea = 1004, €, = 200ue. = 300u; 6 = 30°, where a lies on the x-axis.

(e) €a = —300u, ep =0, €. = 3004, 6 = 30°, where b lies on the x-axis.

(f) ea = —500u, €, = —10004, €. = —15004; 6 = 30°, where c lies on the x-axis.

3.31: Show that, for a 45° strain rosette, the principal strains can be given by

1 1/2
= _; = + E [Zfa(fa — 26p) + 2ec(ec — 2ep) + 465] '

€1, =

3.32:* Show that the state of plane strain cannot be determined from measurements
of three independent shear strains at a point.

3.33:* Original data from measurements of a strain rosette lying in the x-y plane
have been lost. However, based on the original data, the following is known at a
point: (i) the ratio of the invariants, R = ;—f =0.75 x 107% and (ii) the ratio of the
principal strains €1/¢; = 3. What are the possible values of the shear strain ¢, in any
arbitrary orthogonal directions, that can exist at this point?

Section 10

3.34: A plate whose area is A, and which lies in the x-y plane in the space (0 < x <
a, 0 < y < b) undergoes plane strain deformation. At any point P(x, y), the dilatation
is given as

k
A=—(x—a)y-b 2,
A(x ay(y-b)
where k « 1 and has dimensions (1/m?). Determine, in terms of a and b, the change

of area, § A, of the plate due to the deformation.

3.35: A square plate whose area is A and lies in the x-y plane in the space (0 < x <
L, 0 < y < L) undergoes plane strain deformation. The displacements in the x- and
y-directions at any point P(x, y) are given as
X X
ux ) =aly,  x = b_g,
where a/L « 1, b/L « 1 are known constants. Determine the change in area, § A of
the plate due to deformation in terms of a, band L.

3.36: A plate lying in the x—y plane in the space (-~a/2 < x <a/2, —b/2 <y < b/2)
undergoes plane strain deformation due to non-uniform temperature changes § T (x, y)

given as
8T(x, y) =8To+ 48T, [cos (na_x> cos? (”by)].

Determine the change in area of the plate, §A in terms of 8Ty, 8Ty, a, b and the
coefficient of thermal expansion, «.

Review and Comprehensive Problems

3.37:* A hollow cylinder, shown in Fig. (3P.37a), is deformed by rotating the outer
surface through a small angle ¢ while holding the inner surface fixed as shown in
Fig. (3P.37b). Assuming that the cylindrical surfaces remain circular and that all radial
planes remain plane, determine to first-order the change in angle y,, at any point
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P, located at a radial distance r from the axis. Show specificatly where the first-order
approximation is used in the solution.

3.38: A segment of a circular ring containing an arc n having an original initial
radius p, as shown in Fig. (3P.38a), is deformed into a segment such that the radius of
the arc nr’ becomes R as shown in Fig. (3P.38b). Fibres along this arc nr’ are known to
undergo no stretching (i.e. ; = 0, where ¢ is In the circumferential direction). (The arc
nr’ therefore is said to represent a ‘neutral surface’.) Further, due to this deformation
all cross-sections remain pfane and perpendicular to the ‘neutral surface’, i.e. to the
arc nr'. Show that the strain of any point B, measured a distance n from the neutral

surface, is given by
_(nY 1=R/p
«(P) = (R)' T+n/p’

(®) Figure 3P38

Note: This expression reduces 1o €(P) = n/R when p — oo, i.e., when the segment
becomes an element of a straight beam lying in the x-direction.
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3.39: Strains in the triangular plate ABC of Fig. (3P.39), lying in the x-y plane, are
given as

€ = ay, €, = 2bx%y, exy = ax + 2bxy2,

where al « 1, bL3 « 1. (a) Determine the increase in length of the edge BC; (b) de-
termine ¢, along the edge AC; (c) determine the increase in length of the edge AC and
(d) determine the angle between the lines DB and DC at point D, after deformation
if aL =0.05 and bL? = a. Express the answer in degrees.

3.40: The displacement of a given point of the plate ABCD {Fig. (3P.40)], lying in the
x—y plane, is given as

a :
u= F(xyzi-q—xzyj)

where a « 1. (a) Determine the extensional strain at any point lying along the line AC;
(b} determine the change in length of line AC; (c) determine the principal strains at
point F; (d) Is AC a principal direction of strain at point £? Why?
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3.41:" Points of a plate (0 < x <1, 0 <y < 1), lying in the x-y plane, undergo dis-
placements u=ax + 2by, v = cx + by in the x- and y-directions, respectively, where
a, band ¢ are three undetermined constants, 0 < a, b, ¢ « 1. (&) Express the principal
strains ey and ¢; at any point P(x, y) in terms of a, b and ¢; namely, express ¢ as a func-
tion of the three variables, i.e. €1 = ¢1(a, b ¢); (b) express the direction of the principal
direction ¢4 with respect to the x-axis in terms of a, band ¢; (c) obtain the ratios a/c and
b/c, which yield the extreme values of the extensional strains e; and e;; (d) from the
results of (¢), determine this maximum value of ¢; and the direction ,; (e) by means of
a sketch (indicating the coordinates of the the corners of the deformed plate), show
that the plate remains a square while undergoing rigid-body rotation and increasing
in size, What is the increase in area, A A, of the plate?

3.42; The displacements in the x- and y-directions of a given point P(x, y) of the plate
ABCD, lying in the x-y plane (see Fig. (3P.42)], are given as

X2y —L/2)?
TR
where a « L. (3) Determine the strains ¢,, €, and ¢, at any point P(x, y); (b) deter-
mine the change in length of line BC; {c) determine the change in length of line OC;
(d) determine the angle at point C*, which exist between the edges B*C* and C*D after
deformation, if a/L = 0.02. Express the answer in degrees; (e} denoting the original
and final areas of the plate as A and A*, respectively, determine the ratio § = 254,

2
V=Xt



Problems 117

3.43* Asquare plate ABCD undergoes plane strain to ABC*D, as shown inFig. (3P.43),
in such a way that points along the x- and y-axes remain fixed and such that the T N
displacement of any point P(x, y) in the y-direction, v = 0. The displacement in the L —_— -5

x-direction is given as u(x, y) = kxy/L?, where [k/L] < 1. (a) Determine the extension 7 /

Aac of line AC; (b} determine the increase in length of the parabola y = x2/L passing s
through point E, due to the deformation; (c) determine the resulting average strain S /
of the diagonal AC and of the parabola AEC. R /

3.44: A rectangular plate ABCD [see Fig. (3P.44)], lying in the x-y plane, undergoes Z il h
deformation such that (i) points lying on the y-axis undergo no displacement, (ii) the A ',’:/ B
strain in the x-direction is constant, i.e. ¢x = ¢, (Jc] « 1) and (iii} the shear strain at o I3 > X
any point P(x, y) is given by ex, = ax/L + by/L where 0 < b < a « 1.(a) Determine the Figure 3P.43

disptacements u(x, y) and vW(x, y) in the x- and y-directions, respectively; (b) determine

the principal strains at any point P(x, y); (¢) if a = 2b = ¢, along which line of the plate y

do points lie such that the x and y directions are the principal directions of strain?
Show this line by means of a sketch. (d) Determine the principal strains for all points TD
P along the line obtained in (¢) above. At what point on this line does the maximum
value |e2] occur? Show by means of a sketch and indicate the values of ¢, and ¢, at
this point. (e) Sketch the deformed plate if a = 0.2, b= 0.1, ¢ = 0.05 and indicate the
coordinates at the corners of the deformed plate.

3.45 A square plate OABC, lying in the x-y plane, is deformed to OA*B*C* as shown
inFig. (3P.45). The following conditions {(boundary conditions) are known: (i) The edges
OA and OC remain on the x- and y-axes, respectively; (ii) the displacements of points Wi L
A and C along the axes are e « L, as shown in the figure; (iii) the stretches along the '
axes are uniform; i.e., the strains ¢, and ¢, along the respective axes are constant and
(iv) the displacement of point B in the y-direction is 2e. Within the plate, the verti-
cal lines are known to remain parallel to the y-axis and the shear strain at any point
P(x, y} is given as ¢, = axy/2L3, where a is a constant to be determined. (a) By integra- s : :
tion of the strain—displacement relations, and making use of the boundary conditions ~L - B
given by (i)<iv) above, show that the displacements u(x, y) and v(x, y) in the x- and Figure 3P.44

y-directions, respectivety, are

ex Xty oy Y
UZT’ V= (F+—l__> L c* B*
4 r L"_ _______ TIze
(b) What is the average extensional strain €, of the diagonal OB? Express the answer C‘\ ‘ /B |
in terms of e and L, making use of the condition e « L. (¢) Determine the strain "\ //_ I
€, of the line segment of OB at point D, the intersection of the two diagonals. //\P |
(d) Determine the angle (in degrees) between the two diagonals after deformation if ,/ \\ l .
e=0.1L. o AlAL
L
3.46* A square plate OABC, lying in the x-y plane, as shown in Fig. (3P.46), is de- > |

Q

formed to OA*B*C*, subject to the following conditions: (i} OA and OC remain on
the x- and y-axes, respectively; (ii) the displacement of points A and C along the Figure 3P.45
x- and y-axes, respectively, is e, as shown in the figure; (iii) the strains along the x- and
y-axes are uniform, i.e. constant; (iv) the displacement of point B in the x-direction
is 2e; (v) within the plate, lines originally parallel to the x-axis remain paratlel to the
x-axis; (vi) the shear strain at any point P(x, y) is given by €,, = "2—"}; where a « L is an
undetermined constant. (a) Express conditions (i) to (v) in mathematical terms. (b) By
integrating the strain—displacement relations, show that the displacements vand vin
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Figure 3P46

the x- and y-directions are given, at any point P(x, y), by

u= E(XL—};B -+ -)LE), (l)

(c) Making use of Egs. {I) and (ll) above, determine the coordinates of B* (xp., y&-).
Based on these coordinates, evaluate to first order the change in length Agg of line
OB subject to the condition 0 < e/L « 1.(d) Determine the extensional strain ¢, at any
point P along OB and by integration, evaluate the change in fength Agg of line OB.
(e) Determine (i) the displacement |u{ of point D and (ii) the component of displace-
ment of point D in the direction of line OB. (f) Determine the change of area of the
plate due to the deformation.

The following problems are to be solved using a computer.

3.47: Using the transformation laws for plane strain [Egs. (3.7.21)], write a computer
program to determine ¢, ¢; and e, for any given state of strain, ¢, ¢y, €y and 6.
Check the program by using some of the strain states given in Problem 3.23.

3.48: Given a state of plane strain, ¢, €, and &, write a program to determine the
principal strains ¢; and ¢; and the principal directions 6, and 8,. Check the program by
using some of the strain states given in Problem 3.27.

3.49: Write a computer program to determine the state of plane strain (ey. €, €xy)
from data obtained from a g-strain rosette [see Fig. (3.9.1)], i.e. from measurements
of €5, €p and e.. Check the program using measurements given in Problem 3.30.

3.50: Given the state of plane strain, ex =2 x 1073, ¢, =4 x 1073, €,y =6 x 1073, In
what direction (defined by the angle 9 with respect to the x-axis) is the normal strain
€, = 9 x 10732 (Note: The value ¢ can only be determined numerically.)

3.51: Given the state of plane strain, ¢x = 400y, ¢y = ~300u, €xy = 600x. In what
direction (defined by the angle § with respect to the x-axis) is the normal strain
€n = 7002 (Note: The value 8 can only be determined numerically.)

3.52: Given the state of plane strain, ¢, = —200p, €, = 150y, €,y = 60u. In what di-
rection (defined by the angle 8 with respect to the x-axis) is the shear strain ¢, = 180u?
(Note: The value 8 can only be determined numericaily.)
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Behaviour of materials:
constitutive equations

4.1 Introduction

In our previous treatment, the laws of mechanics and kinematic relations (or more
specifically geometric relations) that describe the deformation of a body have been
developed. This led us to the definitions of two concepts: stress as a measure of
intensity of internal forces and strain as a measure of the intensity of deformation;
concepts that clearly are valid for any deformable body and thus independent of the
material; the definitions and derived relations are as valid for a fluid as for a rod
made of steel. Now a fluid and steel evidently behave quite differently. Therefore it
is clear that to determine the behaviour of a given body, it is necessary to specify the
general character of the mechanical behaviour of the material itself; this behaviour
must be specified in mathematical terms. The mathematical equations describing
the general behaviour of a material are known as constitutive equations. Thus, it
is only when we introduce the constitutive equations in the problem that we specify
the material under consideration.

Constitutive equations are equations that relate the various quantities (e.g. stress,
strain, stress rate, etc.) governing the general behaviour of materials. However, these
equations are idealised equations since they take into account only certain effects.
One could, for example, consider thermodynamic effects, electromagnetic effects,
etc., on the behaviour of bodies. Since our goal here is to study the mechanical
behaviour of bodies, we shall exclude these effects; we shall consider constitutive
equations that relate only the mechanical variables in describing the behaviour.

It is important to observe that while the constitutive equations are simplified equa-
tions, they must nevertheless describe as accurately as possible the real behaviour
of a material in nature. Thus we may say that constitutive equations describe the
behaviour of a representative model that conforms with experimental data obtained
for a given material,

4.2 Some general idealisations
(definitions: ‘micro’ and ‘macro’ scales)

The idealisations that we make depend on the level at which a problem is to be
studied and the purpose required. For example, all matter is known to be com-
posed of atoms and corresponding molecules and/or crystals having characteristic
dimensions measured in Angstroms or possibly microns. To understand certain phe-
nomena, it is necessary to consider the behaviour at this level, be it at the atomic,
such as in solid state physics or at the microscopic level. One studies materials at

119
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Figure 4.2.1

Figare 4.2.2

this level in order to understand why the material behaves in a particular way. In-
deed this falls within the discipline of material sciences. However, in our treatinent,
we shall be interested in a more global approach, namely, in Aow a body behaves
(e.g., under certain loading conditions). Our approach can therefore be said to be
a phenomenological approach under a macroscopic scale. Hence, in using such an
approach, the atomic or microscopic composition is ‘blurred’, and consequently
we do not consider the atoms, molecules, etc., to lie at discrete points but instead
consider the material to be distributed continuously at all points in a given space.
The body is therefore said to constitute a “continuum’ since its particles are assumed
to be located continuously at all points throughout a given (x, y, z) space.!

Before proceeding with a description of the mechanical behaviour, it is necessary
to establish a precise terminology. We first observe that a body may be considered
to be either homogeneous or inhomogeneous. A body is said to be strictly homoge-
neous if it possesses the same material properties at all points in the body. We shail
refer to this definition as the definition on the ‘micro-scale’ since we refer here to
the behaviour at various points in the body. That is, if we consider a body as shown
in Fig (4.2.1), the material is micro-homogeneous if, given any two points in the
body, P( and P, it has the same property at both points. If the material behaviour
changes from point to point, then the material is said to be inhomogeneous on the
micro-scale.

Let us now consider a real material such as steel, which is composed of iron
crystals, of carbon (and possibly minute parts of other elements). If one examines
steel under a microscope, it appears as is shown in Fig. (4.2.2); it is clear that
the behaviour of the iron crystals will be different from that of the carbon. Thus
the steel cannot, in fact, be said to be strictly a homogeneous material on the
micro-scale, However, let us consider a small representative element of steel, for
example, element ‘a’ as shown in Fig (4.2.2), which consists of a large number of
randomly oriented crystals. In this case, we do not consider the material at a point
but more globally, i.e. on a ‘macro-scale’. It is clear that the several elements, e.g.
elements ‘a’ and ‘b’, each containing crystals of iron and carbon, constitute the same

t (¢ should be poted that in the previous treatment of stress and strain, the body was implicitly considered
10 be a continuum.
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representative material. In this sense, although the steef is not micro-homogeneous,
it can be said to be homogeneous on the macro-scale or ‘macro-homogeneous’.

As another example, if we consider concrete (which is composed of cement, sand
and gravel) [Fig. (4.2.3)], one does not require a microscope to observe that the
material is not micro-homogeneous. Nevertheless, if we are interested in the global
behaviour of the concrete, we may consider the material to be macro-homogeneous
in the same sense as previously discussed; namely, the behaviour of a representative
clement is the same everywhere in the body.!

Now, let us consider the behaviour of a material ar a given point. A material
that behaves in such a way that its properties are the same in o/l directions is said
to be isotropic. Thus, since an isotropic material exhibits the same behaviour at a
given point in all directions, the material is said to have no ‘preferred’ directions.
On the other hand, if the material exhibits a different behaviour, depending on the
direction, it is said to be an anisotropic material. For example, wood clearly is an
anisotropic material since it behaves differently if it is under tension in the direction
of the grain or perpendicular to the grain [Figs. (4.2.4a and b)].

Now if we consider again, for example, steel or concrete, it is clear that neither
material exhibits isotropic properties at a point; that is, they both are anisotropic
on a micro-scale. However, observing Figs. (4.2.2) and (4.2.3), 1t is quite evident
that the component parts in any finite representative element appear to be randomly
oriented. Thus, for example, if we examine a representative element of concrete,
it clearly does not have any preferred direction, and therefore, statistically, the
properties are the same in all directions. Thus, we may consider the material to be
isotropic on the macro-scale.

Since our subsequent treatment will be concerned with the global behaviour
of bodies (e.g., subjected to external forces), our interest will be with the macro-
behaviour of such bodies. Hence, in using the terms ‘homogeneous material’ or
‘isotropic material’ our reference to these properties will be on the macro-scale.

4.3 Classification of materials: viscous, elastic, visco-elastic
and plastic materials

Based on tests conducted in the laboratory, there exist several broad classes of
solid materials. These materials are best classified according to the different types
of constitutive equations that characterise their behaviour. We may define these
classes broadly as follows:

{a) Elastic material

An elastic material 1s one for which, at any given point, there exists a direct relation
between the state of stress and state of strain. Denoting the stress and strain tensors
symbolically by T and €, i.e.}

Tex Txy Tz €xx  €xy €xz
T=|Tyx Tyy Ty E= | € €y &y |,
Tox Ty Tz €x €y €

' Clearly, in more precise analyses of fracture m solids, or 1n the reabm of solid state physics, where one
| must consider the material on a micro-scale, the concept of macro-homogeneity loses its vahidity.
= Here we use the notation o, = 1, Oy = Tyy, 0; = Tyz; €; = &y, €1C.
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respectively, we define an elastic material as one for which the constitutive equation
is of the form

T = f(€), T(e =0)=0. 4.3.1)

Note that implicit in its definition, the state of stress at points in the elastic body de-
pends solely on the final deformed state of the body, that is on the final strain.
Thus the stresses do not depend on the manner in which the deformation oc-
curred.

In the following section, we shall elaborate at length on the properties of elastic
materials.

(b) Viscous material

A viscous material is one for which the stress at a point is a function of the strain
rate; i.e.,

T = f(de/dr). (4.3.2a)
For example, the relation might be a linear relation of the form
T = a(de/dt) = wé, (4.3.2b)

where « is a constant of viscosity. In this case, the material is said to exhibit
linear viscosity. (Such materials are on the ‘borderline’ between a solid and fluid,
depending on the viscous nature of the material.)

(c) Visco-elastic material

A visco-elastic material is one for which the constitutive equations express the
stress and stress rates as a function of the strain and strain rates; thus they have the
general form

f(r, +,%,.. ) =gl &, & ... (4.3.3a)

A material of this class having a linear relation, e.g., where the strain depends
linearly not only on the stress but also on the stress rate, as in

€=oaT + BT, (4.3.3b)

where « and B are material constants, is said to be a simple linear visco-elastic
material. Hence the deformation of a body of such a material will depend not only
on the applied force but also on how fast or slowly the force is applied. The material
is said to be rate-sensitive.

(d) Plastic material

A general definition of a plastic material is not quite as straightforward. It appears
that the simplest definition would be that the stresses in a material undergoing plastic
behaviour are such that they do not depend on the final state of strain but rather
(as opposed to elastic materials) on the manner by which the state of strain was
arrived at; that is, on the previous history of the material.

Because the majority of design and analysis problems encountered in engineering
deal with elastic materials, in our subsequent treatment we shall limit our discussion
mainly to elastic materials. However, where appropriate, we shall also consider
plastic behaviour of materials.



4.4 Flastic materials

(a) Constitutive equations for elastic materials: general

elastic and linear elastic behaviour, Hooke’s law

(i) General elastic behaviour

As defined above, an elastic material is characterised by a relation between the state
of stress and state of strain at a point.

For simplicity, let us first consider the case of uniaxial stress where all stress
components with the exception of o, = 7, vanish. Thus we consider 2 rod of length
L and cross-section A under uniaxial tension. Then, as discussed in Chapter 1,
by applying a tension force P of gradually increasing magnitude to the rod and
measuring the change in length AL during a simple tension test, we calculate the
stress 0, = P/A and ¢, = AL/L and thus obtain the stress—strain curve of the
material, as shown in Fig. (4.4.1).!

Now, let us say that we apply a load to the undeformed rod up to point B of
Fig. (4.4.1) and then remove this load (i.e., we return to the point o, = 0). Clearly,
if the rod is elastic, it will return to its undeformed shape, €, = 0. If we now reapply
the same load, we return to point B. Alternatively, if we reduce the load to, say,
any point C and then reapply it, we arrive again at point B on the o—€ curve. Thus,
implicit in the definition of an elastic material as given above, an elastic material
has the following properties:

8 The final stress state at a point depends solely on the final strain state (and vice
versa); that is, it does not depend on the ‘loading history’.

B The o—¢ curve defined by the constitutive equation must be a unigue curve; e.g.,
the relation between the stress g, and strain €, must be a one-to-one relation. Thus,
for example, a constitutive equation defined as o, = kef [Fig. (4.4.2a)] cannot
represent an elastic material since for any given g, , there exist two possible strains,
namely +./0,/k and —./o, /k. However, the constitutive equation, defined as
oy = /cef, only for positive strains, i.e. €, > 0 [Fig. (4.4.2b)], does represent an
elastic material since the strain is uniquely determined.

Ox Ox

(o)

®

Let us imagine that, starting from the undeformed unstressed state, we now load
the specimen represented in Fig. (4.4.1) successively by a series of gradual incre-
mental loads. We would find that there is a maximum stress for which the material

' We assume here that, at att points in the rod, o, =&, and €, =€,, where 7, and €, are the average
stress and strain on a ¢ross-section.

4.4 Elastic materials
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behaves elastically. We call this stress the Elastic limit and denote it by og. Thus
in Fig. (4.4.1), if the stress o, < og, the material behaves as an elastic material; if
the material is stressed to, say, point D, then it will not return to its initial shape;
i.e., the rod will have a permanent deformation (or ‘set’) since it undergoes plastic
deformation. Indeed, if the specimen is loaded to op, ‘unloading’ will take place
along a different curve as shown by the dashed line in the figure. (We discuss this
un}oading process in the next section.)

We now generalise the above ideas to materials where three-dimensional states
of stress and strain, 7 and €, exist. We therefore define an elastic material as one
whose constitutive equation is of the form

T = f(&), T(e=0)=0 (4.4.12)
and which possesses a unigue inverse, written symbolically as
e= Y1), er=0)=0. (4.4.1b)

The general stress—strain curve of an elastic material is represented symbolically
in Fig. (4.4.3). We note that if the state of strain at a point is given, the state of
stress at the point is immediately known and vice versa. Furthermore, as a result of
the unique one-to-one relationship given by Eq. (4.4.1), we again conclude that the
behaviour of an elastic material is independent of the loading history; the material
has but one ‘memory’, namely its initial undeformed state to which it returns when
all stresses vanish.

(ii) Linear elastic material: Hooke’s law
A particular case of an elastic material, which is of great importance, is the case
of a linear elastic material, namely one for which the stress and strain states are
linearly related; i.e., f and f~' are linear functions.

For convenience, let us again consider the simplest states of stress: uniaxial stress
and the state of pure shear.

We consider first the uniaxial state of stress, o, = 1,,, where all other stress
components are zero. For this case, the linear relation is given by

o, = Ee,. (4.4.2)

where E(E > 0)is the modulus of elasticity. We note that the modulus of elasticity
E represents the slope of the stress-strain curve. We note too that the relation is
analogous to that of a linear spring having stiffness £ (N/m). In this case, the relation
between an applied force P and the change in length of the spring Af is P = kAL
For this reason an elastic material is often represented by a model consisting of a
spring, as in Fig. (4.4.4).

Indeed, many, but not all, materials behave initially as linear elastic Materials,
provided the stress and strain are suffictently small; that is, provided that o, does pot
exceed a certain value. Thus one may find that the o—¢ curve in uniaxial behaviour
appears as shown in Fig. (4.4.5). The linear relation (4.4.2) then holds provided that
0, < 0p, Where o, denotes the proportional limit.

Let us now consider the case of pure shear, for example, in the x—y plane.
We note that if a shear stress ., is applied to a linear elastic material, then any

< element will undergo shear deformation where we denote the angle measuring

this deformation by y;,. The resulting T—y curve in shear is plotted as shown in



Fig. (4.4.6). The relation will be linear provided t < 7, (where 7, is the proportional Ty

limit in shear); i.e.,

Tey = ny}' Or  Vxy = % (4.4.3)
Here the proportionality constant G (G > 0) is called the shear modulus or the
modulus of rigidity. Note that both E and G are positive constants and have units
of N/m? or Pa.

Having discussed the behaviour for the simplest states of stress, we furn again
to consider the general three-dimensional state of stress and strain, where we recall
that there exist six independent components of stress (Tux. Ty, Tzzy Tey. Tyzy Txz) and
Strain (€xy, €yy, €221 €xy, €yz, €x:). Since for a linear elastic material, the state of stress
is linearly related to the state of strain, it is reasonable to assume that, in principle,
for an anisotropic material, any given stress component js linearly dependent on
all six strain components. Thus we may write the general linear relation in the
following form:

Tex = Chi€cx + Cra€yy + Cr362: + Cra€yy + Cis€y; + Chgex
Tyy = Co€cx + Cn€yy + Crz€z; + Craéyy + Cas€yy + Cogésy
T.; = Cai€xx + Cn€,y + Cazeyy + Caa€yy + Cis€yy + Cagény
Toy = Ca16ex + Caz€yy + Casée + Caséyy + Cuseyy + Cagéns
Ty: = Csi€x + Cs26yy + Cs3€; + Csa€yy + Css€y; + Csgérx
Tix = Co1€xx + Cer€yy + Coa€zz + Cos€ry + Cos€yz + Cogéry

(4.4.4)

where the constants (C). Cy, ..., Ceg) are material constants for any particular
material. Alternatively, one might write the linear relations as strains in terms of
stresses:

Exx = By Tex + Bl2Tyy + BT + Bl4fx_v + Blﬁryz + B6Tax
€yy = Byt + Bgztyy + BystT., + 3241'_‘), + BQSTyz + BagT-y
€y = Bll Tey + B32'Eyy + B?Jtz: + BJ4Txy + BSST".Z + B}él’z,\’

€xy = BaiTey + BaaTyy + BazTe, + BaaTuy + BasTy: + BuagTo (4.4.5)
€v: = BsiTux + BTy, + Bs3Tux + Bsatey + Bssty: + Bsglay
€ = BoiTux + BTy + BesTe: + BoaTy + BosTyr + BosTer

where the constants (B, B2, ..., Bes) again are different material constants (but

related to the constants, C), for the particular material.

The above represents the most general linear elastic stress—strain relation; this
relation is referred to as the generalised Hookes Law for anisotropic materials. It
therefore appears that to describe a linear elastic material in its greatest generality,
we would require 36 independent constants. Although it is beyond the scope of
our present study, we mention here that, in fact, 15 of these copstants are not
independent and that therefore the most general anisotropic linear elastic material
can be described by 21 independent constants.

The purpose of the above discussion of a general linear anisotropic material has
been to consider the behaviour of materials in the framework of the general theory.
Now, there exist various degrees of anisotropy in a body and evidently, as a material
becomes less anisotropic, there will exist fewer number of independent constants.
Thus the number of independent material constants required to describe a linear

4.4 Elastic materials
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Figure 4.4.7

clastic material clearly diminishes as the material approaches isotropy; we shall
limit our treatment below to these simplest materials, i.e. isotropic materials.!

Recalling that an isotropic material is one whose properties are the same in
all directions, we therefore wish to develop the stress—strain relations for a linear
isotropic elastic material when subjected to a general state of stress.

As in the previous discussion, we again start from the simple case of a uniaxial
state of stress 0, # 0, where we recall from Eq. (4.4.2) that the strain ¢, is given by
€y = 0,/ E. Let us assume that the element is subjected to a tensile stress o, > 0
in the x-direction. The resulting strain €, > 0 therefore describes an extension of
the given element in the x-direction. However, due to o, > 0, contractions take
place in both the y- and z-lateral directions; 1.e., the element undergoes lateral
strains €, < 0 and €; < 0, as shown in Fig. (4.4.7). Moreover, since the material is
isotropic, the strains €, and €, due to o, must necessarily be the same since neither
the y-axis nor z-axis is a ‘preferred direction’. In fact, upon measuring such strains
in the laboratory, the strains ¢, and ¢, for a linear elastic material are found to be
proportional to €,; that is,

€, = —VéEy, (4.4.6a)
€ = —Véy, ' (4.4.6b)

where v > 0 is called the Poisson ratio. Thus, for a uniaxial state of stress, o, % 0,
we have

a
€, = E (4.4.7a)
g,
€ = —v»Ei, (4.4.7b)
Ox
€, = —V—. 4.4.7¢
z ( )
Y (1+e)Ax _
P o U7 wrenz T
(1+ €Ay ':__ ________ __4:/' N
Ax
€.>0,¢,<0,6<0
(@ (b)

Note that the Poisson ratio v is a non-dimensional constant. These equations
express the fact that the strain in a direction perpendicular to an applied stress is
always proportional (and of opposite sign) to the strain in the direction of the stress,
the coefficient of proportionality being —v/E.

Consider now a general three-dimensional state of stress. Let us assume that the
state of stress at the point is such that oy, o, and o, are all acting on an element.
As we have seen, the strain €, in the direction that is perpendicular to a stress
component d, is given by €, = —vo,/E. Since there are no preferred directions

t We recall that by the term ‘isotropic’ we refer to an isotropic material on the macro-scale.
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for an isotropic material, it follows that the effect on the strain €, due to the stress
o, must be the same as the effect of o, upon €,; thus the strain ¢, due to o), is given
by —vo,/E. The two-dimensional effect, neglecting the z-direction, is shown in
Fig. (4.4.8). Similarly, €, due to o, will be given by —vo,/E. Since all the relations
are linear, we may superimpose the effects of o,, o, and o;; thus we obtain

or
1
€, = E[oJc - (o, + o). (4.4.8a)

Furthermore, since there are no preferred directions for an isotropic material, the
effect of normal stresses acting in the y-, x- and z-directions on the strain €, in the
y-direction must be the same as the effect of the normal stresses acting in the x-,
y- and z-directions, respectively, on the strain ¢, in the x-direction. We may arrive
at similar conclusions for the strain €, by using the same arguments based on the
definition of isotropy. Therefore we have

1
€ = E[o}, —v(o; + o,)] (4.4.8b)
and
1
€, = E[Gz —v(o, +0,)]. (4.4.8¢)

Note that, having established Eqs. (4.4.6) and (4.4.7), Eqs. (4.4.82-4.4.8¢) follow
directly simply from the basic definition of isotropy.

If we examine the behaviour due to shear, we conclude that since the isotropic
material has no preferred directions, the shear relations in the y—z and z—x planes
must be of the same form as that in the x—y plane, as given by Eq. (4.4.3); thus

Yye = —% (4.4.92)
and
e = 22, 4.4.9b)
Vzx G (

Combining the above, and recalling that the shear strain is defined as half the
change in angle (e.g., €, = yx,/2,¢etc.), the general stress—strain relations for a
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linear elastic material are

Gx=%[0'x — (o + 03)] éxy=§%
e=1tloy —v(o:+0x)] €)== (4.4.10a-f)
&=glo—voit+a)]  e=%

Note that the above represents six scalar relations between the six independent stress
and strain components. We observe that any shear strain component is proportional
only to the corresponding shear stress component and is independent of the normal
y stress components. These linear relations are known as Hookes law for a linear
isotropic elastic material. It therefore would appear that in order to represent the
constitutive equation for a linear elastic material, we require three constants: £, G
and v. We now show that only two of these are independent constants.
Tay=Tyx We first pote that Hooke’s law is valid for any state of stress and strain. Let
us therefore consider a two-dimensional state of stress with 0, = 7., = 7,, = 0,
and furthermore, for this case of plane stress, let us consider, in particular, an el-
———— x ement in a state of pure shear with 7, # 0, 0, = 0, = 0 [Fig. (4.4.9)]. For this

case of pure shear, the principal stresses o1 = 1, and 03 = —1,, are immedi-
ately determined. [The corresponding Mohr circle is shown in Fig. (4.4.10a). Note
I that this case of pure shear was treated in Example 2.11 of Chapter 2.] Using
Figure 4.4.9 Hooke’s law (with o, = 0), the strains in the corresponding directions, €| and ¢, are
given by
€ = % ~ ngZ, (4.4.11a)
o o
6 = Ez - ufl. (4.4.11b)
Substituting for the values of o) and o2, we obtain
¢ = t%(1 ), (4.4.122)
Tyy
€ = ——E—(l + v). (4.4.12b)

AN =T 7
T, Cxy 26

Y 7,

Figure 4.4.10 (a) ®



Recalling that the shear stress acting on any principal stress plane vanishes (here
712 = 0), it follows from Hooke’s law that the shear strain with respect to the ‘1’
and ‘2’ directions also vanishes, i.e., €, = 0. Hence, the shear strains €; and ¢; are
actually principal shear strains.

Now, instead of first determining the principal stresses and then using Hooke’s
law to find the principal strains, let us reverse the process; i.e., we first use Hooke’s
law and then determine the principal strains.

Thus, for the given case of pure shear with o, =0, =0, it follows that
€, = €, = 0. Furthermore, using Hooke’s law, the shear strain ¢,, = ;—é There-
fore, the strain state is also one of pure shear, and hence (e.g., as seen in the Mohr
circle for strain [Fig. (4.4.10b)]), the principal strains €| = €,, and €; = —¢,,. It
follows that

Tyy
€ = ek (4.4.13a)
Ty 4.4.13b
€y = G ( e )
Upon comparing Eqs. (4.4.12) with (4.4.13), we conclude that

_E
T 21 4v)

Thus, we have found that only two of the three elastic constants (E, G, v) are
independent: given any two constants, the third may be determined.

At this stage, it is useful to further define another constant. From Hooke’s law, as
given by Eqgs. (4.4.10), it follows that

(4.4.14)

1
€& t+e€,+e€ = E(l —~2v)(o: + 0, +0,). (4.4.15)

Now, from Chapter 3, we recall that the dilatation A, which represents the volu-
metric strain, is given by A = ¢, + €, + ¢, [see Eq. (3.10.7b)] and that this is the
first invariant of strain [Eq. (3.7.23)]. Furthermore, from Chapter 2, we note that
the quantity appearing on the right-hand side of Eq. (4.4.15) is precisely the first
invariant of stress [Eq. (2.6.10b)]. Thus, Eq. (4.4.15) is valid at any given point,
irrespective of the chosen coordinate system. Let & here define the mean normal
stress at a point:

1
o= g(ax + 0, +02). (4.4.16)

We may then write Eq. (4.4.15) as

& ql

: (4.4.17)

where

E
K= ——.
31 —2v)
The constant « is called the bulk modulus. Note that Eq. (4.4.17) expresses the

volumetric strain at a point in terms of the mean stress existing at the point. For
example, Eq. (4.4.17) permits one to determine the dilatation for a hydrostatic state

(4.4.18)
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of stress. Indeed, the bulk modulus is widely used in fluid mechanics. From physi-
cal reasoning, we conclude that x > 0.

Finally, using the properties that £ > 0, G > 0 and « > 0, we can established
certain limits on the Poisson ratio. Since £ > 0, G > 0,

Similarly, since E > 0,« > 0,

Therefore we have established bounds on the Poisson ratio; namely
—1 <v=<05. 44.19)

While these are theoretical bounds, the Poisson ratio for real materials is found to
fall in the range 0 < v < 0.5, Typical values for v and E are: steel, v = 0.30, £ =
200 GPa; copper, v = 0.35, E = 100 GPa; aluminum, v = 0.33, £ = 70 GPa.
(Other typical values of mechanical properties for selected materials are given in
Appendix D.)

It is interesting to note from Eq. (4.4.18), that as v — 0.5, the bulk modulus ¥ —
o0. Thusas v approaches 0.5, A — 0; namely, the material becomes incompressible.
Thus, whatever the state of stress, the volume of any given element tends to remain
constant as v — 0.5.

{b) Elastic strain energy

(i) Development of the concept

The concept of elastic strain energy, as energy ‘stored’ in a body due to deformation,
can be introduced most simply by considering some very familiar examples.

B As a first example, let us consider the operation of a mechanical watch: in order
for the hands of the watch to move, one winds a spring. In doing so, one deforms
the spring from its relaxed state. The hands of the watch are seen to move as the
spring unwinds: energy is transferred (in the form of kinetic energy) to the watch
hands by the spring. In effect, energy was ‘stored’ in the spring due to its initial
deformation.

& Another, more simple example, is that of a model airplane that flies under the
action of a propeller. In such model airplanes, the propeller rotates due to the
unwinding of a rubber band. Thus, by initially twisting the rubber band, one
stores energy in it; this stored energy is then released to the propeller as the
rubber band unwinds.

These two simple examples illustrate the idea of storage of energy in an elastic
body by means of deformation; such energy is called elastic strain energy. Having
considered this basic concept, we now define this form of energy more precisely in
terms of known mechanical quantities.

To this end, let us consider a rod of length L and cross-sectional area A(x) sub-
jected to a uniaxial load P, as shown in Fig. (4.4.11), where the material properties
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of the elastic rod are represented by the stress—strain curve shown in Fig. (4.4.12).
We note that for the elastic material o, = o (¢y).

Let us assume that we apply the load P statically, i.¢., we start from a zero force
and gradually increase P until it reaches its final value P = P'. For any intermediate
vatlue 0 < P < P, the entire rod will lengthen, causing all elements in the bar to
elongate. Consider a small element of cross-section A4 and original length Ax.
The force on this small element will then be AF = o, A4 and the resulting strain
will be ¢, [Fig. (4.4.13)].

The length of the element under the load P is then given by (1 + €,) Ax, and
its elongation is €, Ax [see Egs. (3.3.2)]. Consider now that P is increased by a
small amount d P, causing an increase in the strain, d¢, ; the element thus elongates
by an additional amount de¢, Ax. The work done by the stress components when
P — P + dP is then

d(AW) = [ox(er) AA)(dex AX)
or (4.4.20)
d(AW) = [o,(e,) de, ] (A4 AX).

In the above, AW signifies that the work is done on a differential element and ‘d’
that the work is due to an increase in value of P by d P. Now, if we wish to determine
the total work done by the stresses when P goes from zero to its final vatue Pf, we
must sum up all the increments of d(A #). In the limit, this summation becomes an
integral and the work done by the stress o, on this element is

f
X

AW = fax-(ex)dex AA Ax, (4.4.21)
0

€

where €! denotes the final strain occurring when P = P.
Letting AQ = A A4 Ax denote a volume element, the total work W of the internal
stresses is obtained by integrating over the volume of the body, V; thus

- [orse | 20 .
v [}

The term in bracket is the work done by the stresses per unit volume and we see
that it is a function only of the final strain state, €.

Now, for an elastic material, the work W is ‘stored’ within the body as energy.
We call this stored energy the elastic strain energy, since it is stored in the body
as a result of deformation. We shall call the strain energy per unit volume, strain
energy density and denote it by Up; thus

N
€x

Uo = | o, (ey)de,. (4.4.23)
[
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Figure 4.4.14

The total strain energy stored in the body, U, is then given by

U= f / f Uy d2. (4.4.24)
14

In passing, it is worth observing that it is possible to represent the strain energy
density geometrically. From the known geometric representation of the integral of
Eq. (4.4.23), it is clear that U, may be represented by the area under the stress—
strain curve, as in Fig. (4.4.14a). Indeed, we note that the units of the area are
(N/m?) - (m/m); i.e. (N m)/m? or energy per unit volume.

T Oy

o= of f—————

@ (&

As an example, assume that the elastic material obeys the law o, = kef, €. >0,
k > 0 {Fig. (4.4.2b)]. Then

&

1

Us = f ke dey = Zk(e])’. (4.4.25)
0

‘We now consider the special case of the linear isotropic elastic material. For the

case of uniaxial stress, o, = E¢,, since all other stress components vanish for a

slender bar. Then, substituting in Eq. (4.4.23),

&

Up=E / €cde, = %(Ef)z. (4.4.26)

X

o

Using again the stress—strain relation, we may write

2 2
GO C G
2 2 2F
These three alternate expressions are equally valid. We also observe that the strain
energy density for a linear elastic material is represented by the triangular area in
Fig. (4.4.14b).
At this point, we shall simplify our notation. For convenience we shall drop the
superscript f and write Eq. (4.4.23) for the general uniaxial case as

(4.4.27)

€x

Uy = / o.(€x) dex. (4.4.28)
0



Similarly, Eq. (4.4.27) for the linear case becomes

Ee?2 o6, 02
_ k& _o& o 4429
Uo== 2 2F ( )

In the above, it must be clearly understood that the quantities represent the final
actual values of the stress and strain components. Since the modulus £ > 0, it
follows from Eq. (4.4.29) that the strain energy density Up is always positive for
any €, # 0. Although the proof is beyond the scope of our treatment, we mention
here that it can be shown that Uy 1s always positive for any state of strain. The strain
energy U is therefore said to be ‘positive definite’.

Our purpose here has been to introduce the concept of strain energy via a simple
uniaxial state of stress. In Chapter 14, we shall consider strain energy under general
states of stress and strain and shall find that strain energy proves not only to be an
important concept in the study of solid mechanics, but also proves to be of great
use in solving various types of problems.

There exists, in particular, a very fundamental principle for elastic matenals,
namely the principle of conservation of energy. We prove this principle here for the
simple case of a uniaxial state of stress.

(ii) Conservation of energy

Consider a rod having a cross-sectional area A and length L, which is subjected to
an axial load P, as shown in Fig. (4.4.15). The rod then undergoes displacements
u(x) under a state of uniaxial stress o, = P/A,! where all other stress components
vanish. Using Eq. (4.4.29), we first express the strain energy density in the form

O€x
Uy = 2. (4.4302)
Substituting for o,, and using the strain—displacement relation, €, = 3'(;(:)
[Eq. (3.5.182)], '
P du(x)
U=— . 4.4.30b
0= T ( )

Noting that the elementary volume dQ = 4 - dx, the total strain energy U in the
body becomes

L
3u(x) _ P u(x)
L[] m g a3
0
Integrating, and observing from Fig. (4.4.15) that «#(0) = 0, we obtain
P Pu(L
U= Su@lf = “2( ), (4.4.32)

We recognise the displacement u(L) as the elongation A of the rod, i.e. the dis-
placement of the externa)l force P [Fig. (4.4.15b)]. Hence, the right-hand side of
Eq. (4.4.32) represents the work W = % of the statically applied force P. ¥ Thus

! We assume. as before [sec footnote p. 123] that oy = 7.

 Fora linear clastic matenal, we may give the followmg heunstic explanatton for the ‘1/2’ term: 1f a load
1s applied statically to a linear body, then the ‘average’ force applied is equal to the sum of one-half the
initial (zero) force and the final force P. The work done is then the product of the ‘average’ force and
the displacement through which it acts.

/7.
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we have
U=W. (4.4.33)
This last relation leads to the statement of the principle of conservation of energy:

If a linear elastic body is in equilibrium under an external force system, then the
internal strain energy due to deformation is equal to the work of the externally
applied force system.

This basic principle is, in fact, applicable to all elastic bodies. The above restricted
proof was confined to a linear elastic body under a uniaxial state of stress. In
Chapter 14, we shall provide a more general proof for a body under a general state
of stress.

4.5 Mechanical properties of engineering materials

(a) Behaviour of ductile materials

We discuss here some of the mechanical properties of materials that are commonly
encountered in engineering practice. While we recall that a description of the be-
haviour of materials was given in Chapter 1, we elaborate here on the behaviour
and properties of materials and define certain terms in a systematic manner as they
appear in our discussion.

A material commonly used in engineering practice is structural steel, which
consists mainly of iron combined with a small percentage of carbon. We develop
several ideas and definitions based on a description of a tension test on steel since
the behaviour of this material is typical of a number of ductile metals.

Ductility: The property of a material that enables it to undergo plastic deformation
to a considerable extent and to sustain a load before fracture. A material that is
not ductile is said to be ‘brittle’.

As in our previous discussion, we describe a simple standard tension test on a
specimen (having cross-sectional area 4y and gauge length L) under a statically
increasing applied load P. By measuring the elongation AL at incremental steps
of P, we obtain the typical o—e curve [Fig. (4.5.1)] where o and € are given by
P AL
0 =—, €= —.
Ao Lo
For reasons that will become clear, the stress ¢ and strain ¢, as calculated above,
are called the nominal stress and nominal strain, respectively. The corresponding
o—e€ curve is referred to as the nominal stress—strain curve.
Initially the o0 —€ curve is linear and follows Hooke’s law with o = E'e. The linear
relation is valid for all stresses that do not exceed the ‘proportional limit’ o,. Note
that £ is represented by the slope of the o—¢ curve.

4.s5.1)

Proportional Limit (0,): The largest stress which a material is capable of sustain-
ing without deviating from Hooke’s law.

Initially, the material behaves elastically but if stressed to some value that exceeds
o, the Elastic limit, the material ceases to behave elastically.

T We should note that in an actual tension test, one applies a deformation (i.¢. strain) in incremental steps
and. via a device called a loading cell, one then measures the applied load.
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Figure 4.5.1

Elastic Limit (og): The largest stress under which the material behaves elastically
and for which no permanent deformation exists when a load is removed.

Note here that, by definition, o, and o are different points. However, for steel and
for many other ductile metals, the difference between them on the o—€ curve is often
indistinguishable so that og = 0,. Hence, for such metals, they may be considered,
in practice, to cotncide.

As the material is stressed beyond oy, the curve deviates from a straight line and
at some value of stress the curve becomes horizontal. The material is thus said to
‘yield’; that is, with no apparent increase in stress, the material undergoes increasing
deformation. The stress at which this yielding occurs is called the yield point or
yield stress.

Yield stress or yield point {o,): The stress in a material at which there occurs a
large increase in strain with no appreciable increase in stress.

Having reached the yield stress, the material undergoes increasing strain (several
orders of magnitude greater than that at the onset of yielding, €,). This stage is
referred to as plastic deformation. Now, let us imagine that the specimen yields
until it reaches some strain, say point C of the o—€ curve, and that upon reaching
this strain, the load is slowly removed; that is, the stress is reduced to zero. The
material is said to undergo ‘unloading’. The unloading process is described by an
‘unloading path’, which is found to be parallel to the original linear elastic curve.
[Thus, the unloading path in this case is from point C to point D of Fig. (4.5.1).] If the
specimen is now reloaded, the reloading curve will follow the straight line DC, unti)
it rejoins the original o—e curve. The specimen will then continue to yield along
the horizontal segment of the o—¢ curve until sore point, point F, after which an
increase in stress is required for any further deformation. This latter phenomenon is
known as strain-hardening. The stress is then observed to increase until it reaches
some maximum (ultimate) value, the nominal ultimate stress, which we denote as
out- Having reached this point, we observe that the material then yields rapidly
under a decreasing stress until the specimen finally ruptures.

Nominal ultimate tensile stress (o). The maximum stress, in a tension test, cal-
culated as oy = Prax/ 4o {Where 4y is the undeformed original cross-sectional
area), which a specimen is capable of sustaining.

An interesting and perplexing question can now be posed: why does the material
apparently rupture under a stress that is less than the nominal ultimate tensile stress.
The key to the answer lies in the term ‘nominal’. To explain this apparent paradox,
it is first necessary to describe more precisely the deformation of the specimen.
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Figure 4.5.2

We recall that, according to Hooke’s law for linear elastic behaviour, when an
element is subjected to a tensile stress o, > 0, lateral contractions occurs in the
cross-section of the element. Clearly, the same is true for the overall dimensions
of the cross-section of the specimen. Although the lateral contractions are quite
small while in the elastic range, with increasing deformation of a ductile material,
these lateral contractions become quite large and important. As a result, the original
cross-sectional area A of the specimen decreases considerably in a region of large
deformation. This effect, which starts as P approaches Py, is known as ‘necking’
of the specimen [as shown in Fig. (4.5.2)] and becomes particularly significant as o
approaches oy As aresult, a cross-section of initial area 4 is reduced, in the region
of necking, to an area A, which is considerably smaller than 44. Consequently, the
average stress, calculated according to o = P/ Ay, yields but a nominal value; we
therefore now write c,om = ou = P/ Ay.

Necking
o B G

A
(b)

The more exact average stress, i.e. ‘true’ average stress in this region, given
instead by oye = P/ 4, is a more accurate reflection of the state of stress.! Thus,
specifically, while the nominal ultimate tensile stress is calculated as oy = Prmax/ Ao,
the true average stress under this load is oyye = Prax/ A4, from which we note that
Otroe > Ouir- AS the ratio 4/ Ao during necking decreases (in fact just prior to rupture
it may be of the order of 0.10), the ratio oy /0neom can become quite large.

1If we now examine the strains, the expression for the strain € = AL /Ly, while
quite valid for small strains (of the order of 10~3), fails to provide a good or ‘true’
measure of deformation for larger deformations. We therefore refer to this strain as
the ‘nominal strain’, i.e., €xom = AL/Ly. For large deformations, a more physically
significant measure of the strain would be to consider the small change of strain
occurring for each incremental increase of length d¢ /£ (where £ is the current length
at any stage of the deformation). Then the ‘true’ strain €. is given by

ds
€irne = Zde = 7 (4.5.2a)

or in the limit
L

as L
€irue = [ (7) =In (L_()) . (452b)

0

Then, since the final length L, expressed in terms of the nominal strain €,om, i8 given

1 We note that the stress owge 1s the average true stress. The actual state of stress in the region of necking
and fina! rupture is found to be extremely complex and cannot be treated by the methods developed here.
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by L = (1 + €nom)L0o, we find the relation between the nominal and true strain:
€trne = IN(1 + €nom)- (4.5.3)

Now, as mentioned at the beginning of the discussion, the c— curve, as shown in
Fig. (4.5.1), represents a nominal stress—strain curve. If we were to plot oy VS. €irue,
the curve would appear as the dashed curve in Fig. (4.5.3). Thus we have essentially
answered the paradox: the specimen only appears to rupture under a stress smaller
than the nominal ultimate stress; in fact, the true average stress at rupture is much
larger than o Note that the nominal and true o—e curves differ only in the region
of relatively large strains.

>

L4 3

o

However, although it is clear that the nominal stress does not accurately reflect
the true stress state during plastic flow (yielding), the nominal ultimate tensile stress
ou 1s nevertheless a useful quantity since it serves as a nominal measure of the
stress that the material is capable of sustaining. Thus, for example, after calculating
the maximum stress due to a given load on a structure or body, it is possible to
determine whether the calculated stress is acceptable by comparing with the oy
according to some established criteria (e.g., a factor of safety). Moreover, although
oyt is but a nominal quantity, it provides us with a measure of the relative strengths of
various materials; thus, for example, one may state that steel (with o, = 400 MPa)
is far stronger in tension than cast iron (with o, = 170 MPa).

We recall now that the area under the o—¢ curve represents the energy of defor-
mation per unit volume. As a result, the area under the o—¢ curve up to og, the
elastic limit, represents the maximum elastic strain energy of deformation (per unit
volume). Accordingly, the following property is defined:

Modulus of resilience (MR): The modulus of resilience is the greatest strain
energy (per unit volume) that a body can absorb without undergoing any perma-
nent deformation. It is calculated as the area under the o—¢ curve for20 < of in
a tension test [Fig. (4.5.3)]. (For the common case og = 0;,, MR = 252;—.)

Similarly, we define another quantity related to energy absorption of a material:

Modulus of toughness (MT): The modulus of toughness is calculated as the total
area under the nominal stress—strain curve of a material from its undeformed
state until rupture. It represents the nominal maximum strain energy (per unit
volume) that a body can absorb before fracture, or conversely, the strain energy
(per unit volume) required to cause a material to fracture,

Figure 4.53
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It is evident that MT, as defined above, is a rather fictitious quantity and does not
represent the real energy of deformation of any given material. However, it provides
a useful measure of the relative ability of various materials to absorb energy. Thus,
for two different materials of the same strength, the MT of a very ductile material
will be much greater than that of a moderately ductile material.

From the above discussion, it is clear that the behaviour of materials in the range
beyond the elastic limit is considerably more complicated than the initial elastic
behaviour. To treat problems in this range, certain simplifying models are used.
These will be discussed in the next section.

Having described the behaviour of steel as a ductile material under tension, we
now consider the behaviour in compression. From laboratory tests, we observe
that initially, in the elastic range, the o—¢ relation is the mirror image of tension;
that is, the behaviour follows Hooke’s law as shown in Fig. (4.5.4). Note that the
modulus of elasticity £ is the same in compression as in tension. Furthermore, for
large compressive strains, no necking occurs; instead local bulging, which causes
a slight increase in the cross-sectional area, may occur [Fig. (4.5.5)]. However, this
bulging effect is not as significant as the necking effect and therefore the nominal
and true o€ curves in compression are approximately the same.

In the above discussion of the behaviour of steel as a ductile material in tension,
we note that a sharp yield stress o, exists. However, we mention here that there
also exist materials, such as aluminum alloys which, although they exhibit ductile
behaviour, do not possess a definite yield stress; their 0— curve appears as in
Fig. (4.5.62).
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If such a material is to be used in engineering design, it is necessary to define
some measure of an allowable design stress. Since, as we have observed no yield
point exists, one must therefore choose a value arbitrarily; this value is called the
yield strength or alternatively the proof stress and will be denoted by oys (to
distinguish it from the measured yield stress oy). A standard method of defining
the yield strength is to first choose a strain arbitrarily and, from this point, draw a
straight line parallel to the initial slope of the o—¢ curve. The stress at which this
line intersects the o—e curve is then defined as the yield strength [Fig. (4.5.6b)].
This common method is referred to as the ‘offset method’ and one therefore refers
to the ‘yield strength for a given percent offset’ or the ‘percent proof stress’. For
example, the yield strength shown in the figure is for a typical offset of 0.2%.
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Finally, we mention here that some ductile materials may indeed initially be-
have elastically but not linearly. The results of a standard tension test can then be
expressed by nonlinear empiric expressions, which represent closely the resulting
o—¢ curve. One such typical expression is the Ramberg-Osgood equation, valid for
loading behaviour of ductile materials; namely

c o\’
=—4+C1—1 . 454
“=o 2(@)‘ 34

where C|, C,, Cs are constants and » is an integer.
Another approximation for ductile materials, for example copper, is the so-called
sinh law, given as

€ = €9 sinh(c/oy), (4.5.5)

where ¢; and oy are prescribed constants.

(b) Behaviour of brittle materials

Brittle materials are characterised by their inability to undergo large deformation;
hence a material which is not ductile, is said to be brittle. Cast iron, concrete, stone
and ceramics are typical examples of brittle materials. The o—¢ curve of a brittle
material in a standard tension test has the usual form as shown in Fig. (4.5.7a). We
note that this curve is characterised by the absence of a yield point. The material
ruptures at the maximum value of the attained stress; we observe that the largest
strain € which a brittle materia] attains is quite small and that no necking occurs.
Thus, in a tension test for brttle materials, no distinction is made between the
nominal and true o—¢ curves.

o4 A
Rupture (Fracture)
tan~'(E,)o \
g I |
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] gys —< ______ // :
|
: 4 // I
” / |
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| // // (
| / (
| 4 /'\ wn'E, |
| / t |

|<—>| ~0(10-3) e ~0(10—3) i
offset

(a) ®

The maximum strain is often given as a percentage. Thus, the brittleness (or
conversely the ductility) of the material is often measured by the maximum
strain that a material can undergo before fracturing; this quantity is often de-
fined as the percentage of elongation (or strain) in a specified (original) gauge
length:

L—1L,

0

- 100,

where L and L are the final and original gauge lengths of the specimen.

Figure 4.5.7
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Moreover, very often, the initial behaviour of brittle materials, while approxi-
mating a linear behaviour, is not always truly linear. In this case, it is convenient
to describe the initial behaviour as following Hooke's law, using an approximate
value for the modulus of elasticity. Recalling that £ for a linear elastic material
is represented by the slope of the o—¢ curve, we define the ‘tangent modulus’ E,
as the tangent to the o— curve, i.e., £, = do/de at a given point on the curve. In
particular, at the point (o = 0, € = 0), we obtain the initial tangent modulus (E,)q
[see Fig. (4.5.7a)].

As discussed above for the case of ductile materials having no definite yield
stress (yield point), if a brittle material is to be used in engineering design, it is also
necessary to define arbitrarily a yield strength or proof stress, oys, as a measure of
an allowable design stress. Since, as we have observed, no yield stress exists for
brittle materials, one must choose a value arbitrarily. As previously described, the
yield strength oys can be defined as the intersection of the o€ curve with a straight
line parallel to the initial tangent of the o—¢ curve that passes through the arbitrarily
chosen strain offset [Fig. (4.5.7b)]. Note that here one must first determine the initial
tangent modulus (£,)g.

Another method for establishing the yield strength is to arbitrarily decide on its
value as a fraction of the ultimate strength of the material. For cast iron with an
ultimate strength in tension of o = 170 MPa, one might choose to arbitrarily define
the yield strength, say, as oyg = 100 MPa. Corresponding to this stress value, we
may also arbitrarily define the secant modulus of elasticity, £, as the slope of a
straight line between the origin (o = € = 0) and the intersection of the o—¢ curve
at ovs [Fig. (4.5.7b)).! Using this method, one first chooses arbitrarily the strain
offset and then determines the secant modulus E.

It is clear that the modulus of toughness (as represented by the area of the o—¢
curve up to the point of rupture) of a brittle material is far less than that for ductile
materials. Indeed, a main charactetistic of brittle materials is their inability to absorb
energy of deformation. This explains, for example, why if a piece of chalk —a typical
brittle material - is dropped from a relatively low height, it will fracture immediately
upon hitting a rigid surface, whjle the same piece, if made of rubber, will deform
without breaking.

The modulus of resilience and modulus of toughness, being measures of the
ability of a material to absorb energy, are important factors in designing structural
parts to resist impact or dynamic loads.

The general shape of the stress—strain curve for brittle materials in compression
resembles closely that of a tension test with a significant exception: the compressive
stress at which fracture occurs is far greater than the maximum tensile stress. Indeed,
it may often be greater by an order of magnitude. It is a characteristic of brittle
materials that they are relatively strong in compression and particularly weak in
tension.

(c) Behaviour of rubber-like materials

The initial behaviour of plastics or rubber-like materials is generally elastic but
nonlinear and can be described by a stress—strain curve as shown in Fig, (4.5.8).
We note the absence of a yield point. Thus, if a material having a given elastic

1 1t 1s evident that the values of oys obtained by these two methods are not necessarily the same since
they are determmed arbutrarily. The two different values of oys are shown 1n Fig. (4.5.70).
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limit o, as in the figure, is subjected to a stress 0 < og, the behaviour will be
elastic.

At this point, it is worthwhile to recall again that the area under the o~€ curve
within the elastic range represents the elastic energy absorbed by a unit element of
the material. According to our definition of elastic behaviour, if the stress 0 < og is
now removed, the material will ‘unload’ along the unique o —¢ curve. In the process
of unloading, energy is retrieved; the material is said to ‘give off” or ‘return’ all the
stored energy.

However, let us now consider the case where the specimen is loaded along the
o—€ curve to a stress o > o, say along the curve OCB. Since ¢ > op, it will then
unload along the curve BDF (since, by definition it no longer behaves elastically).
As we have observed, energy is retrieved from the material during the unloading
process. However, we note that the area under the curve BDF is less than that under
the original elastic curve OCB. Thus we conclude that some of the energy is not
retrieved, namely that represented by the area OCBDF (shown shaded in the figure).
We therefore conclude that this area represents dissipation of energy.

From the above discussion, we reach an important conclusion: following its basic
definition, an elastic material 1s one for which no dissipation of energy can take
place. Note that this conclusion follows directly from the unique one-to-one relation
[Egs. (4.4.1)] between stress and strain of the material.

4.6 Plastic behaviour: idealised models

As we have seen, the behaviour in the plastic range is much more complex than
the simple relations governing elastic materials: for example, Hooke’s law. Thus if
we consider the stress—strain curve of Fig. (4.5.1), it is clear that some simplifying
assumptions must be made if one is to treat a problem of such a material outside the
elastic range. One therefore must model the material in such a way that it adequately
approximates the behaviour of the material. Noting that the stress—strain curve is
approximately horizontal for a large range of strains, for example, 103 < e < 0.1
(i.e. for about two orders of magnitude), and observing that the yield point oy does
not deviate greatly from the o}, a reasonable model is to assume that the o—¢ curve
is as shown in Fig. (4.6.1) with oy representing the yield stress. Note that in this
case, we assume implicitly that oy = o, = 0. This simplification permits one to
obtain reasonable solutions to many problems that would otherwise prove to be
intractable. The material represented by this o—e curve is called an ideal elastic—
plastic material or a perfect elastic~plastic material. Note too that in this model
the unloading path is parallel to the initial elastic load path.

A further simplification can also be made. Since the elastic behaviour of the ma-
terial occurs within a small range of the strains (i.e., the major behaviour takes place
in the plastic range) one chooses, at times, to neglect the elastic range completely.
The resulting o—¢ curve representing this model then appears as in Fig. (4.6.2).
Thus, according to this model, the material undergoes no deformation (i.e. it re-
mains rigid) provided ¢ < op. Hence such a material is referred to as a rigid plastic
material.

The phenomenon of strain-hardening, discussed in Section 5, can also be treated
by means of a simplifying model. Depending on the given material, one can, for
example, approximate the o—¢ curve by means of two straight lines as shown in
Fig. (4.6.3). In this case, the material is known as an elastic strain-hardening ma-
terial or a linear-hardening material. Such a material is typically described by

Figure 4.6.1
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Figure 4.6.2
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Figure 4.6.3
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the relations

& o =20y
€=1 e , (4.5.6)
£ 9 T aF O 20

where « is a constant, which depends on the material.

We thus observe that one may choose various models to describe the material.
The type and choice of the model will clearly depend on the type and range of
behaviour that is to be studied.

PROBLEMS s s s s e e S e e e et
4.1: The state of stress in a steel plate lying in the x-y plane (F = 200 GPa, v = 0.3)
is given as ox = 20 MPa, oy = —30 MPa, 7,y = 40 MPa, 0, = Ty; = Tz = 0. Determine
the principal strains and the principal directions with respect to the x-axis.

4.2: Show that the principal directions of strain are normal to the principal stress
planes at any point of a linear isotropic elastic material.

4.3: Show that for a state of plane stress in the x—y plane (o7 = ©y; = 1,z = 0), Hooke's
law relating the extensional strain components to the extensional stresses may be
written as

_ &t ey €y + VEx
w=EaT y=ES T
and that
v
EZ:_—'—(éx"’Ey)-

T—v

4.4: Recalling that for a state of plane strain in the x-y plane, ¢, = 0, show that the
extensional strains, ¢, and ¢,, from Hooke’s law are given by

1 *
€Ex = ‘E;[O'x— V*Uylr €y = F[U‘V—U oxls

where
" Vv

and V= —+

E” T

= (1 —v?)
and that o, = v(ox + 0})

4.5: From strain rosette measurements at a point on the surface of a thin aluminum
plate (E = 70 GPa, v = 0.30) lying in the x-y plane, the following strain components
are known:

éx =60y, ¢, =301, ey=15u.
Using the results of Problem 4.3, determine the principal stresses o3 and o,.

4.6: A linear elastic plate with modulus of elasticity £ and Poisson ratio v is subject
to a uniform compressive stress og, as shown in Fig. (4P.6), such that at all points
the only non-zero stress is oy = 0. () Show that the change in slope of line AC,
A = tan(x + ) —~ tana, is given by

_b 1 4 (vao/E) N
A= 5[ 1 — (00/E) 1}



(b) if oo/E « 1 show that A = (b/a)(1 + vXoo/E). () What is A if the material is in-
compressible? (d) Calculate (i) the change in slope and (ii) the change of angle, éu
{in degrees), if a=24 v = 0.25 and ¢, = 1073. (€) Derive an expression for the change
of angle, $o in terms of v, and the ratios b/a and oo/E . (f) Re-evaluate 8« using the
numerical values given in (d) above.

4.7: Hooke's law can be written in the form

Ox = AN + 2 ey, oy = AA 4+ 2pu€y, 0y = AN+ 2p€;,
Ty = 2léxy, Tyz = 2[U€yz T = 2{l€x,

where A = ¢, + €, + ¢, is the dilatation and A and u are called the Lamé constants.
Show that the following relations exist (i) between £, v and %, 1 and (ii) between E, G
and A, pu!

Ev E

R (D e (R

- _ G(E - 2G)

(i) p=G, A= BETY

4.8: Using the results of Problem 4.7, show that an alternative expression for the
bulk modulus « as defined in Eq. (4.4.18), written in terms of A and y, is x = 2422,

4.9: A hard rubber cylinder (£ = 1.5 MPa, v = 0.40), inserted in a pressurised tank,
is subjected to a hydrostatic pressure p of 10 MPa; i.e., oy = 0, = 05 = — p at all points
within the body. If the cylinder is 20 cm in diameter and has a height h of 50 cm,
determine the change in (a) diameter, (b) height of the cylinder and (¢) volume. Note:
Assume that the cylinder behaves as a linear isotropic elastic matertal.

4.10: The data given in the table below was obtained from a tensile test of a 1.50-cm
diameter specimen of a magnesium alloy. A 5-¢cm gauge length extensometer was
used. (a) Plot the stress-strain curve; (b) determine the proportional limit and the
elastic modulus; (¢) determine the yield strength for a 0.2% offset; {(d) determine both
the tangent modulus £ and the secant modulus £, for ayield strength ovs = 260 MPa.

4.11: Show that € rye > €nom, Where eyye is defined in Eq. (4.5.2b) and where engm =
AL/Ly & 1.

Problems
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4.12: The Ramberg-Osgood equation describing the stress-strain curve of a material
during loading is given as
3
g g
= — C —_—
‘TG T (Ca) '

where C; = 1.5 x 10", C; = 200, C3 = 2.5 x 10'°. (a) Determine (i) the initial tangent
modulus (E4)o, (i) the tangent modulus E, and the secant modulus E for a given yield
strength oys = 175 MPa. (b) Determine the elastic energy U, per unit volume stored
in the material (N m/m3) if the material is loaded to a stress ¢ = 175 MPa.

4.13: Given a material whose loading curve is represented by the Ramberg-Osgood
equation [Eq. (4.5.4)], with C4, C,, C3 positive. Show, for any stress o, that the secant
modulus is always greater than the tangent modulus, i.e., E;/E, > 1 for any integer
value n> 1.

The following problems are to be solved using a computer.

4.14: Write a program to plot the ratio «/E as a function of Poisson’s ratio v and plot
this ratio for 0 < v < 0.5.

4.15: Using the results of Problem 4.7, write a program to plot the ratio A/E as a
function of Poisson’s ratio v and plot this ratio for 0 < v < 0.5.
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Summary of basic results
and further idealisations:
solutions using the
‘'mechanics-of-materials’
approach

5.1 Introduction

In this brief chapter, we review and summarise the previously developed results.
In particular, we recall that three fundamental relations have been derived and
developed, namely (a) the equations of mechanics, (b) the kinematic equations and
(c) the constitutive equations. These relations must, in general, be satisfied at all
points within a body.

In the following chapters, we shall use the derived relations to analyse a number
of problems of practical interest. However, since a major portion of our future study
will be devoted to the analysis of linear elastic members —rods, beams, shafts, etc. —
it is worthwhile and instructive to first discuss these problems from an overall, or
general, point of view.

We recall that, in principle, our goal in solid mechanics is to determine internal
forces and describe the deformation of a body when subjected, say, to external
forces; specifically, we wish to determine the following quantities at all points P in
a body [Fig. (5.1.1)]:

» three displacement components: 1, v, w
B SiX Strain components: €,, €, €;, €, €,;, €«
| SiX stress components: oy, 0, 0z, Tyy, Tyz, Tox

We thus observe that, essentially, there exist 15 unknown quantities at each point
of a body. However, as shown in Table 5.1, there also exist 15 equations for these
unknowns. It is therefore reasonable to assume, in principle, that one can theoret-
ically solve for the unknowns. If unknowns are found which satisfy all the given
equations as well as the boundary conditions on the body (e.g., the applied forces),
the solution is then said to be an exact solution to a given problem. This approach
is that of the theory of elasticity, and in particular, the equations in Table 5.1 are
referred to as the equations of linear elasticity. However, this approach is usually
quite mathematical and, at this stage, is beyond the scope of our present study.
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Table 5.1 Summary of unknowns and relations - linear isotropic elastic bodies

Nevertheless, there exists another fruitful, but simpler approach; namely that of
mechanics of materials. Using this approach, instead of attempting to satisfy all
the relevant equations at a/l points of the body, we seek solutions that satisfy the
relevant equations globally; for example, at the cross-sections of a rod or a beam.
This approach can then lead to either exact or approximate solutions, depending
on the problem at hand. Indeed, one is often satisfied to obtain approximate but
reasonably accurate solutions, which are of practical importance for a wide range
of engineering structures; such solutions are often called engineering solutions. In
the case of approximate solutions, one can then determine the degree of accuracy
by substituting the solution back in the exact equations of elasticity.

In the following chapters, we shall apply the mechanics-of-materials approach to
various types of problems and, in particular, we shall study the behaviour of simple
bodies that are subjected to various loading conditions. As we have seen previously,
in practice, most solids undergo rather small deformations while in the elastic range.
Since this is particularly true of most engineering structures encountered in prac-
tice, in the subsequent chapters, we therefore shall generally limit our treatment to
bodies undergoing small strains (and rotations). Consequently, in addition to the
equations of equilibrium, and Hooke's law, we note that the strain—displacement
relations are also linear.! Thus, as a result of this limitation, the equations govern-
ing the behaviour of the mechanical system (e.g., those shown in Table 5.1) are
all linear and the mechanical system itself is therefore said to be linear. Linear
systems possess an important property, namely the property of superposition. We
demonstrate below that, subject to the above conditions, this property, known as the
principle of superposition, can be applied for both strains and stresses.

! We recall that finitestmal strams also mmply linearity since the strams are expressed in terms of lin-
ear spatial derivatives of the displacements of the body where afl quadratic spatial derivative of the
displacements are neglected. (See footnote p. 87).
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5.2 Superposition principles

(a) Superposition of infinitesimal strains

Consider a body that, due to various causes, undergoes deformations where all
strains are infinitesimal. If such a body is subjected only to infinitesimal strains, it
follows that the strains are simply additive and that we may therefore superimpose
the strains. To show this, let us, for simplicity, again consider the case of a rod that
undergoes axial elongation. For example, assume that the rod is first heated and
that due to the temperature increase, the strain of any element Ax is given by e
[Fig. (5.2.1a)]. The length of the element therefore becomes [see Eq. (3.3.2a)]

Ax*>~[1+€P]Ax. (5.2.1a)

Now, let us assume that in addition the rod is also subjected to an axial force P
such that each element undergoes an additional strain, ex [F1g (5.2.1b)]. Clearly,
due to €'?, the element will change length from Ax* to Ax**; thus we have

Ax* =[1+eP]Ax*. (5.2.1b)
Substituting Eq. (5.2.1a),
Ax* > [L 4+ P14+ €] Ax
or
Ax* =1+ € + €2 + ePeP]Ax. (5.2.1¢)

If the strains are infinitesimal, the last terms above are infinitesimals of higher order
and therefore, keeping only the linear terms, we have

Ax** =~ [1+ €+ P]Ax. (52.2)

Now, using the definition of extensional strain given in Chapter 3 [see Eq. (3.3.1)],
the total strain with respect to the initial undeformed element, Ax, is given by
. Ax™ — Ax
€ = lim ——. (5.2.3)

Ax—0 Ax

Comparing Egs. (5.2.2) and (5.2.3), we observe that
e =e+e?. (5.2.42)

Thus, in this case we conclude that if a body undergoes infinitesimal strains, we
may then determine the total strains by simple addition; we say that the strains can
be ‘superimposed’.

It is clear that if strains €,, €.y, etc. exist in the body, then similarly, they can also
be superimposed by simple addition; i.e.,

e, =€) +e? (5.2.4b)
€y =€) + €. (5.2.4¢)

It is important to emphasise that in referring to the superposition of the strains, we
can only superimpose the same components of the strain tensor; thus, for example,

we may not superimpose 6(” + 6(2).

Axt=[1+€"]ax

()

*

| Ax |

At =[1+ @A

Figure §.2.1

(b)

_._.:.___..
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Figure 5.2.2

(b) Basic principle of superposition for linear elastic bodies
We consider here a two-dimensional body under plane stress (0. = 1., = 7,, = 0)
under aset of forces such thatat any point the state of stress is o, cry“) [Fig.(5.2.2a)].
Using Hooke's law, Eq. (4.4.10), the strains €., efv” at the point are given by
1 i
[€) 1) 1) Dy _ | 1
€’ = E[O‘x - va}(. ], e; = E[ay( ) — vo! ] (5.2.52)
Let us say that due to some other forces, a second state of stress, 0“52) , cry(Z), exists at
the point [Fig. (5.2.2b)]; then
1 1
@ _ 2 2) 2
e = E[G)E F—va P}, e = E[o}(‘z} —vo]. (5.2.5b)
If all the strains are infinitesimal, then according to Egs. (5.2.4a), the strains are
simply additive; thus for the total strain, we may write

e, =€ &

or
1
€ = E[U;n +0®] - u[cr},” + cr;z)]‘ (5.2.63)
Similarly,
1
€ = E[gym +aP] = v[o{" + o). (5.2.6b,

Now, the total stress state, o, and o), due to the combined applied stress state, is
given by [Fig. (5.2.2¢)]

gy = O';I) +U.r(2)’ oy = 0'.‘{1) + 0}(,2). (527)
1t follows that
1
« = —[oy —va,], 52.8
€ T o, —vo,] ( a)
1
€, = E[Jy — o] (5.2.8b)

Thus we observe that the total strain at the point due to two separate ‘causes’, ‘1’ and
‘2", can be found by simple addition of the two effects. Note that to do so, we require
that the strains be infinitesimal and that the elastic stress—strain relation be linear.
The principle is therefore referred to as the principle of linear superposition. We
shall find that the use of this principle leads to considerable simplifications in the
analysis of problems in mechanics since it permits us to analyse separately the
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behaviour due to any particular cause. Thus, for example, when a body is subjected
to 2 complex loading system, the principle also permits one to identify the effect
due to any specific load.

In the following example, we demonstrate that the principle of superposition
becomes invalid for an elastic material whose constitutive law is nonlinear.

Example 5.1: Consider a rod of uniform cross-section A subjected to an axial
load as shown in Fig. (5.2.3a). The stress-strain relation of the material is
given as [Fig. (5.2.3b)]

oy =k/ex, €x=0. (5.2.93)

Determine the total elongation AL of the rod, assuming that the stress o, at
any point of the rod is given by the average stressox = P/A; thatis,ax = P/ A

>

P<—“ . |—/ 2 %—»P

@

Solution: From Eq. (5.2.9a), €, = (0, /k)* and hence

P 2
== 5.2.9b
= (1) (5:2.95)
Then, using Eq. (3.3.6),
L 2
P
AL = f e (x)dx = (H) L =cP? (5.2.10)

4

where ¢ =L /(kA4)*. Thus we note that for any given force P the elongation varies
with the square of P.
Let us consider the application of three separate forces: Py, Py and Py = P, + P,.

Dueto P): AL, = cP12
Dueto Py: AL, = CP22
Dueto P5: AL3=cP?

Therefore ALy = ¢(P + P2)2 = (P[z + P22 + 2P Py)# AL+ AL,.

Thus, the elongation of the bar due to the force P; cannot be obtained by superim-
posing the elongations due to Py and P,, respectively; the principle of superposition
clearly is not valid here since we cannot simply add the effects separately.

Finally we re-emphasise that the principle of superposition is valid only under
conditions of (a) infinitesimal strains and (b) linear stress—strain relations.! We note
too that these are necessary, but not sufficient, conditions. a

t See previous footnote.

Figure 5.2.3
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Figure 5.3.1

Figure 53.2

5.3 The principle of de Saint Venant

The principle of de Saint Venant, first based mainly on physical intuition and stated in
1855, is of great practical importance and is used repeatedly in solid mechanics. We
find it appropriate to furst introduce the principle by means of a simple example. To
this end, let us consider a bar of uniform cross-section subjected to a tensile force P
[Fig. (5.3.1)]. If the load is a point load as shown in the figure, a very complex stress
state will exist at all points in the vicinity of the point of application. For example,
it is clear that near and on the right end, the stresses will be very great at points
lying on the x-axis, while for all points (x = L, y # 0, z # 0) the surface traction
on the end surface, T, = 0 and hence at these end points, o, = 7,, = 7., = 0.

3 Iy

(3 ¢) —>» X

= ¥ amL

If we imagine the undeformed rod to be composed of elements as shown in
Fig. (5.3.2a), the deformation will appear as shown in Fig. (5.3.2b). We observe,
however, that the complex deformation pattern at the right end is highly localised.
Indeed, at points away from the vicinity of load application, the deformation, and
therefore the distribution of stresses appear to be quite uniform. Thus, since the
complex stress state is highly localised, we conclude that at points sufficiently far
away from the applied loads, the strain and stress states do not depend on the precise
manner in which the force is applied. Having developed these ideas, we now state
the principle of de Saint Venant:

Two different distributions of force acting on the same portion of a body have
essentially the same effect on those parts of the body that are sufficiently distant
from the region of load application provided that the applied force distributions
represent equivalent force systems (namely, they possess the same resultants that
pass through the same line of action).

By ‘sufficiently distant from the region of load application’ we shall mean at
distances roughly greater than the largest dimension of the surface acted upon.
Moreover, by ‘essentially the same effect’, we mean that any difference in the

~

(a)

®)
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stresses-(or strains) due to the two separately applied distributions is less than these
calculated stresses (or strains) by several orders of magnitude. Or, in other words,
the stress and strain fields at points sufficiently distant from the region of application
are essentially the same due to the two distributions

To illustrate the principle, let us consider specifically a rod of rectangular cross-
section b x A, (b < h), loaded as shown in Figs. (5.3.3a and b). Near the end, the
strain and stress states will be quite different in each case. However, at points located
roughly at a distance greater than £, the three different loading systems will produce
the same effect.

\ 8

REGION OF
SAME EFFECT
(a)
J TR
P2
§ 7
N
®) Figure 5.3.3

It is of interest to observe that, as a corollary to the principle, a self-equilibrating
system (i.e., one whose resultant R = 0) produces no stress or deformation in a
region away from the points of application. This is illustrated in Figs. (5.3.4aand b).

T B S RS S AT ; 1P op
F— —x
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(a)

v
yull

REGION OF NO DEFORMATION ~—— §

® Figure 5.3.4

We mention here that although first enunciated in 1855, no exact or complete
proof exists to the principle of de Saint Venant. However, it has been verified
repeatedly, for various bodies and loading conditions, by sophisticated analyses,
numerical solutions and laboratory experiments. Its justification should therefore
be accepted mainly based on sound empirical evidence although it is also clear that
its acceptance can be based largely on physical intuition.!

In the following chapters, we shall tacitly apply the principle of de Saint Venant
in the analysis of all problems. However, we note that in applying the principle

' Note that the principle was given only for lincar elastic solids. However, based purely on intuition and

using the same type of reasoning, one should expect the principle to be valid for a body undergoing
nonlinear elastic or even plastic behaviour. In practice, the principle is therefore usually also applied to
such bodies.
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to bodies subjected to concentrated forces, we are able, using the mechanics-of-
materials approach, to determine the behaviour only at points far away from the
applied loads; implicitly, we neglect all localised effects near the points of load
application. Therefore, the solutions that we shall obtain will be valid only if the
regions of localised complex stress—strain states represent but a small portion of the
entire body. As a result, the mechanics-of-materials solutions can be valid only for
relatively long slender bodies (e.g. rods, shafts or beams) where the major portion
of the body is distant from any applied loads.
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Axial loadings

6.1 Introduction

In this chapter, we study the behaviour of an element where one dimension, in
the ‘longitudinal’ direction, is considerably greater than the other two, namely the
dimensions defining the cross-section. One refers to such an element as a ‘rod’ (or
attimes a ‘bar’). In particular, we study here the behaviour of a rod that is subjected
to an axial force acting in the longitudinal direction. Although this represents the
simplest possible case and loading condition, the resulting relations permit us to
treat several interesting types of problems that are encountered in practice.

We shall discuss mainly elastic behaviour but at a later stage will consider the
behaviour when the material enters the plastic range.

6.2 Elastic behaviour of prismatic rods: basic results

Consider a Jong prismatic elastic rod, i.e., a rod of constant cross-sectional area 4
and of length L whose longitudinal axis lies along the x-axis. The rod is assumed
to be linearly elastic with modulus of elasticity £ and Poisson ratio v. Let the rod
be subjected to an axial load P, which acts along this x-axis [Fig. (6.2.1a)]. Note
that we have not specified the exact location of this axis; we know only that this
axls intersects the cross-sections (lying in the y—z plane) at some point O as shown
in Fig. (6.2.1a).

From equilibrium, the resultant internal force system at any cross-section consists
of an axial force " = P (as in Chapter 2), which acts along the x -axis [Fig. (6.2.1b)].
Furthermore, the moments about the y- and z-axes of the cross-section are neces-
sarily zero; thus the internal force system acting on any cross-section is given by

=P, M, =0, M, =0. (6.2.1)

Now, it is reasonable to assume that due to this applied load, the rod will undergo
extension in the axial x-direction. We therefore make the following assumptions on
the deformation based on physical reasoning:

(a) the axis remains straight after deformation, and
(b) all plane cross-sections remain plane and perpendicular to the x-axis.

It is these kinds of assumptions, namely plausible assumptions on the nature of the
deformation, which are typical of the approach generally referred to as mechanics
of materials.

As a result of the above assumptions, all points in a given y-z plane have
the same displacements in the x-direction. Thus, if we consider a small segment
as shown in Fig. (6.2.1c), any line segment (or ‘fibre’) AB undergoes the same

155
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Figure 6.2.1

strain €, ; therefore €, cannot be a function of y or z but, at most, is a function only
of x; that is, €, = €,(x). Moreover, as a result of assumptions (a) and (b) above, the
shear strains €., = 0 and €., = 0 throughout the rod. Since 7,, = 2Ge,y, Ty, =2Gé,,,
this assumption leads us to conclude that the shear stress components

T = 0, - =0 6.2.2)

at all points of the rod.
Since we are studying a linear elastic isotropic bar, the stress—strain relations for
normal stress and strain components are governed by Hooke’s law [Egs. (4.4.10)]:

1
€ = E[Gx —v(o, +0,)],

& = oy = v(o: + 0], (623)

|
€ = —E—[O'Z - v(o, +0,)].

For simplicity, let us for the moment, consider a rod having a rectangular cross-
section, as shown in Fig. (6.2.2). Clearly, since no external forces are acting on the
top and bottom faces of the rod, o, =0 and t,, = 0 on these surfaces. Similarly,
o0 =0 and 7,, =0 on the two lateral surfaces of the rod; thus, in particular,

o)y =+d/2) =0, o.(z==%b/2)=0,  1.(y=+d/2)=0,
Ty(z = +b/2) = 0. (6.2.4)

We now limit our analysis to that of a long rod, namely one for which b « L and
d « L, thatis, arod for which the lateral dimensions are small relative to the length
L. Since these stress components vanish at the boundary of the cross-section, and
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Figure 6.2.2

since the distance between the lateral surfaces is relatively small, it is reasonable to
assume that the stresses oy, 0, and 1, cannot vary very much from top to bottom or
from one side to another within the cross-section. Therefore, we make the following
reasonable assumption: the stress components o, =0, o, =0, 7,, =0 at all points
in the rod (in addition to 7., = 7., = 0 as previously established). Note that we are
able to make this assumption only for relatively long thin rods. Clearly, if the rod
is short and stubby, the above reasoning does not hold and therefore the results
obtained below will not be valid for relatively short rods.

Based on the above assumption, the stress—strain relations, Egs. (6.2.3), reduce to

X E ) L
€ = (6.2.53)
Ox
= —y—=, 2.5b
€, v 6 )
=—y= 6.2.5¢)
€, = v . L.
‘ E (

In particular, o, = F¢, and since ¢, can only be a function of x, we note that, at
most, o, = o, (x) also.

We now consider the cross-section to be composed of a large number of incre-
mental areas d4. Then, as in Section 5 of Chapter 2, on each area d4 an incremental
force dF =0, d4 acts [Fig. (6.2.3)] and consequently the total normal force F is

F= // Ox(x)dA. (6.2.6)
A

Since o, is independent of y and z, F =0, [ [ 444 =0, 4 and therefore we have
the simple relation

S

Oy =

(6.2.7)

Figure 6.2.3

Furthermore, we recall from Chapter 2 [Eq. (2.5.82)], that dM,, =0, - zd4; hence

Mv=//a,-sz=oxf/sz. (6.2.8)
A A

However, from Eq. (6.2.1), M, =0. Therefore

/fsz=o. (6.2.92)
A
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Figure 6.2.4

Similarly, from Eq. (2.5.8b), M, = — o, ff,ydA4 =0, and therefore

f/ydA = 0. (6.2.9b)
A

Since the integrals appearing in Egs. (6.2.9) vanish, it follows by definition, that
point O is the centroid of the cross-section. Thus, consistent with our assumptions
(namely that the x-axis does not beud, and that o, =0, = 0), we have established
that the longitudinal x-axis must be a cenfroidal axis. Hence we conclude that a
uniform stress distribution of o, will exist only if P passes through the centroid;
only in this case, is it true that o, = £,

4
Now, from Eq. (6.2.5a), the strain at any cross-section x of the rod is

Ox F
= = = = 6.2.10
“=F " Ed (62.10)
The elongation dA of any element dx [Fig. (6.2.4a)] is then, according to Chapter 3
[Eq. (3.3.2b)]), dA =¢, dx = ﬁ dx. Hence the total elongation A of the rod js

L L

F
AzfdAzfﬂdx. (6.2.11)
0 0

If A and F = P are constants, we have finally [Fig. (6.2.4b)]

L
P
=— fdx = —, 6.2.12
A Af E4 ( )

The following example serves to provide an idea of the order of magnitude of the
elongation of an elastic rod as encountered in engineering practice.

P <

! L A
®

Example 6.1: Asteel rod (£ =200 GPa, v = 0.25) with cross-sectional area A=
4cm? and L =240 cm is subjected to an axial force P = 50,000 N. (a) Determine
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the elongation of the rod. (b) If the cross-section is a circle, what is the change
in the original diameter D?

Solution:

(a) From Eq. (6.2.12),

_(50,000)(2.40)
T (200 x 10%)(4 x 10—4)

We observe that for such a rod, the total elongation is very small indeed. Note that
the behaviour remains elastic since o, = %0_% =125 x 10° N/m* =125 MPa
does not exceed the yield point of steel, o, = 200 MPa.

(b) The original diameter D =2./4 /. From Eq. (6.2.5b), ¢, = —0.25P/EA =
—0.156 x 1072 Therefore the change in diameter,dD = ¢, D = 2¢,, - / A/ =
—0.353 x 10~ cm. Note that the negative sign of dD indicates a shortening
of the diameter. We observe that the ratio |[dD|/ A = 0.0024; that is, the change
in the dimensions of the cross-section is much smaller than the elongation of

the rod. O

=15%x10">m=0.15cm.

Example 6.2: Asin Example 2.3 of Chapter 2, a magnet is attached at the free
end of an iron rod of length L and cross-sectional area A, as shown in Fig.
(6.2.5). The magnetic force of attraction can be represented by the function
f(x) =ce~*/t (where ¢ is a constant with units N/m3). Assuming that the rod
behaves as a linear elastic material with modulus of elasticity £ determine
the extension due to the attractive magnetic force.

Solution: The pormal force F(x) acting on any cross-section was found, in
Example 2.3, to be [Eq. (2.2.4)] F(x)=cAL[1 — e*/%]. Using Eq. (6.2.11), simple
integration yields

L
=if [ — e/ ] T
E Ee

0

6.3 Some general comments

(a) In the development of expressions for axial loading of a rod, we observe that
there exist two key points in the derivation: (i) the basic assumptions on the
deformation pattern and (ii) the assumption that the stresses o, and o, vanish
at all points in the interior of the rod. Once these assumptions had been made,
we arrived at the simple expressions for o, and the axial elongation, and we
concluded that the stress o, is uniformly distributed over the cross-section only
if the axial force acts through the centroid. It is important to observe that we
did not initially assume the x-axis to be a centroidal axis.

Figure 6.2.5
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(b) We also recall that in Chapter 1 we defined the average stress o, on a cross-
sectionasc, = % . From the derived expression of the preceding section, o, = 5,
we now see this gives the true stress at all points in the cross-sectton when the
axial force acts through the centroid. Indeed, this simple expression is known
to be an ‘exact’ expression according to the linear theory of elasticity. [We may
further check the validity by verifying that all points of the rod are in equilib-
rium according to Egs. (2.4.4).] Note that for the prismatic rod considered, the
cross-sectional areas are constant and hence o, is not a function of x.

(c) From Eq. (6.2.12), we observe that the elongation A is linearly proportional to
the applied force P and inversely proportional to the quantity £4’. We therefore
refer to £ A4 as the axial rigidity of the rod since, for a rod of given length L
subjected to a given force P, the elongation will decrease as E A increases. We
observe that the axial rigidity is a function of the material property E and of
the geometric property A, the cross-sectional area.

(d) We note, according to Egs. (6.2.5b) and (6.2.5c), that non-zero strains €, and
€, exist in the rod and since v < 0.5, |, /€,| < 1 and [€,/€,| < 1. From these
equations, we also observe that €, and ¢, are of opposite sign to €, ; therefore,
as expected, for a rod in tension the lateral dimensions contract while, if the
rod is in compression, the lateral dimensions increase [Fig. (6.3.1)]. However,

I L+A N
I 1
,——'.;«,....———“.-;',"—‘—';‘—’%——_,;‘..'_;;;,;;-;‘_n';._‘_; -
P<—=- & ! 2 ; AT —ll—> P
|< >
| L |
et et e —
1
P—> : ', - P
2
P o
[ L—A |
. >

Figure 6.3.1

we recall that for a thin rod the lateral dimensions of the cross-section are, by
definition, much smaller than the longitudinal dimension. Therefore, due to the
application of an axial load, the changes in dimensions of the cross-section
will be much smaller than the elongation (or shortening) of the rod. Letting 4™
denote the cross-sectional area of the deformed rod due to such changes, we
may write

A* = A(L +dA/ A), (6.3.1)

where d 4, representing the change in area, is given byt
an=[[1o+eltiziorel [[ar=lo+ela 632
A A
since €, and ¢, are assumed to be only functions of x. (Note that for a tensile
force with o, > 0, d4 < 0.)

t Note that [dA] = |ff,[(1 + el +e) — 1dAl =[] [ex + € +ere]dd| = [f, I(ex +ey) dA
since |ex| K 1. {éy] K 1.
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Thus, for infinitesimal strains [say of order O (1073)],d4/4 = (¢, + &) K 11s
an infinjtesimal. Now, since the deformed cross-sectional area is 4*, it follows,
in principle, that a uniform distribution of the stress o, would require that o, be
given by the expression o, = F'/ 4*. However, using the binomial expansion

x?2  x?
=l-x+— ==+, 1,
T5> X+ 3-|- x| <
we may write, using Eq. (6.3.1),
F F da 1 /da\’
= === - 6.3.3
ST A{ A+2<A)+ ] (63.3)

Since d4/A is an infinitesimal, we may drop such terms and thus recover
Eq. (6.2.7), namely o, = F/ A. This expression for oy is thus seen to be consis-
tent within the accuracy of our (first-order) linear theory.

(e) We point out here that, throughout this book, our treatment will be confined to
bodies that undergo small strains and changes in geometry. Therefore, although
in principle, we examine all bodies in their deformed state, we neglect infinites-
imal changes in geometry (with respect to the original geometry) and there-
Jore we write all expressions in terms of the given original geometry (lengths,
areas, etc.). This procedure, consistent with the ‘linear theory’ as discussed in
Chapter 5, will be followed in all subsequent developments in this book.

(f) Finally, it should be remembered that in the above analysis we have implicitly
invoked the principle of de Saint Venant. Clearly, as discussed in Chapter 5,
this principle is valid in the case of axial loading of a rod only for long thin rods
and fails to have any validity for short rods.

The use of the principle of de Saint Venant is particularly useful in the analysis
of a rod where more than a single force is applied or for rods consisting of more
than one component where an abrupt change in cross-section occurs. For example,
for the rod with applied forces as shown in Fig. (6.3.2), we obtain, from the free-
body diagram, the resultant axial force /= P, in BC while in the region CD,
F = P,; L.e., our simple free-body analysis leads to a discontinuous axial force at
the cross-section C. Furthermore, at C, we note that there is a discontinuity in the
cross-sectional areas. As a result of these discontinuities, there can no longer be a
uniform distribution of stresses in the region of C. However, for a long thin rod, we
may consider the behaviour in this region to be a localised effect. For such rods,
these localised effects are usually neglected by implicitly invoking the Principle of
de Saint Venant.

24

B % ¢ D

2

Figure 6.3.2
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Figure 6.4.1

Example 6.3; If the rod shown in Fig. (6.3.2) is composed of two elements
having cross-sectional areas Ag and 2 A, determine the total extension of
the rod due to applied axial forces acting through the centroid at points B,
CandD.

Solution: From a free-body diagram, the axial force in element BC is Fgc = P and
in CD, Fep = P> Note that both segments are under tension. The total lengthening is
A= ABC + ACD or

A

_ bl Py ] [P.Ly+0.5P,L,] 0
T AGE T 24gE  EAy- Tt TR

We observe that in this problem, we have disregarded the local effects in the region
of C when calculating A. This is permissible only if each segment of the rod is
sufficiently long.

6.4 Extension of results

According to the discussion of the previous section, the expressions given by
Egs. (6.2.7) and (6.2.12) are ‘exact’ for the case of a prismatic rod. Let us now
consider the case of a non-prismatic rod, that is, a rod for which 4 = A(x)
[Fig. (6.4.1)]. Clearly o, will then be a function of x. Now, recalling that the
analysis for the prismatic beam was based entirely on assumptions (a) and (b) of
Section 2, it is evident that if we accept the same assumptions for the present
case of the non-prismatic rod, and follow the development of Section 2 step by
step, we conclude that the distribution of o, over the cross-section is uniform,
with

_ F
O‘X——A(x).

(6.4.1)

However, we show now that, in particular, assumption (b), namely that plane sec-
tions remain plane and perpendicular to the x-axis is no longer valid for the case
of non-prismatic rods. We recall that from this assumption it follows that the
stresses T, = T, =0 [see Eqgs. (6.2.2)]. Hence, if we can demonstrate that for a
non-prismatic rod there must exist non-zero shear stresses, we will have shown that
our basic assumption is no longer valid for non-prismatic rods.

A(x)

To do so, let us consider the simple case of a rod with varying depth but whose
width b is constant with respect to x, as shown in Fig. (6.4.2a). We first isolate
a small wedge-shaped element as in Fig. (6.4.2b). Now, on the right face (having
area b - Ay), there exists a force [o(b - Ay)]. Clearly, if no shear stresses exist,
the wedge cannot be in equilibrium in the x-direction. Thus we see that for a non-
prismatic rod, shear stresses must necessarily exist and therefore plane sections will
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no longer remain plane as in our basic assumption. To examine the magnitude of
such shear stresses, we consider equilibrium in the x-direction:

(a)

Y Fe=0y(b- Ay) = Tyu(b- Ax) =0 (6.4.2a)
so that
A
Tyy = Ux(x)_yv (642b)
: Ax

where y(x) represents the variation of the depth with x.

Taking the limit as Ax — 0, we note that 7,, — 0 as Ay/Ax — 0, i.e, as the
slope of the upper surface of the rod tends to zero. However, if 0 < Ay/Ax <« 1,
then 0 < |7, /0x| « 1. Therefore we conclude that for a rod with a slowly vary-
ing cross-section, our basic assumption will have a small error. Consequently,
Eq. (6.4.1) is a good approximation if A(x) is a slowly varying function of x,
e.g., for rods having a relatively small taper as in Fig. (6.4.2a). For rods with a
strong variation of 4(x), Fig. (6.4.3), Eq. (6.4.1) may lead to highly inaccurate
results.’

dl<X<L_d2

T
5
E

[

I

The above analysis can also be applied to rods containing a notch or cut-out
[Fig. (6.4.42)]. If we examine, for example, a small wedge in the region of the notch
where Ay/Ax is not small [Fig. (6.4.4b)], we arrive at the conclusion that shear
stresses of the same order of magnitude as o, will exist; consequently Eq. (6.4.1)
will not yield a good approximation for o, in this localised region. The equation
will simply give some average o, acting on the cross-section in the sense of our

} From the viewpoint of the principie of de Saint Venant, we are led to the same conclusion. From
Fig. (6.4.3), we observe that for a rod with a large taper, d> is necessarily of the same order of magnitude
as L. We recall, following our discussion in Chapter 5 (Section 3) that according to de Saint Venant’s
principle, a solution for stresses due to applied concentrated forces, as applied here, 15 valid only at
distances dy < x < L — dj. In this case, the range of validity of x 1s insignificant compared to the entire
rod. It therefore is evident that the principle cannot be mvoked for rods with a strong vanation in A(x).

6.4 Extension of results
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Figure 6.4.4

Figure 6.5.1
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discussion in Chapter 1.! However, invoking again de Saint Venant’s principle,
the stresses at distances far removed from these localised regions are given by
Eq. (6.2.7).

For rods where Eq. (6.4.1) yields a good approximation for o, it follows that the
elongation of the rod A is given by Eq. (6.2.11):

A=/dA=ij(x)dx. (6.4.3)

0 0

6.5 Statically indeterminate axially loaded members

Up to this point in the previous developments, it has always been possible to deter-
mine the internal forces in a body by means of the equations of statics. However,
as we shall see, it is not always possible to do so, in general, for all systems; that
is, there exist systems for which the equations of statics are not sufficient to permit
one to obtain all forces: such mechanical systems are said to be statically indeter-
minate. The simplest statically indeterminate systems, encountered in the case of
axial loading, are examined here. To illustrate these ideas, we consider the following
specific problem.

¥
(Stes})
¥ o EA
(A1) (b -
EA,——
L, /—E,Aa :
| ¢ Y
s P
| b ' p b [

Consider a rigid (but weightless) plate, which is suspended by three symmaetri-
cally placed wires at A, B and C, as shown in Fig. (6.5.1). The centre wire is steel

t More sophisticated analyses, based on the theory of elasticity, are possible, but are beyond the scope of
our study. We simply mention here that in these localised regions the stress field usually conststs of high
stresses defined by stress concentration factors.,
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(with modulus of elasticity, £5 =200 GPa and cross-sectional area 4;) and the two
outer aluminium wires each have cross-sectional areas 4, and modulus of elasticity
E, =70 GPa. Note that the lengths of the steel and aluminium wires are L, and Ly,
respectively. A load P is assumed to be applied at the centre point C. We wish to
determine (a) the resisting force in each wire and (b) the downward displacement
of the plate, assuming elastic behaviour.

We denote the resisting force in the steel wire by Fy and let Fy; and F,, be
the forces in the aluminium wires, as shown in the free-body diagram of the plate
[Fig. (6.5.2)].

From the equations of equilibrium, we have
ZEV:F81+F82+Fs“P=0- (6.5.1a)

It is important to observe that, according to the free-body diagram, all the resisting
forces in the wires have been assumed to be under tension.
Taking moments about point C,

> M =bF,) —bF =0 (6.5.1b)

from which F,, = F,,. We therefore denote the force in each of the aluminium wires
by Fa; i.e., Fa = Fal = Faz.T
Equation (6.5.1a) then becomes

2F, + Fy = P. (6.5.2)

Note that we have used all the equations of equilibrium (X Fy =0 is satisfied iden-
tically) but are unable to determine the two unknowns, F, and F, from the single
equation, Eq. (6.5.2). It is for this reason that the problem is said to be statically
indeterminate, since the equations of statics are not sufficient to yield the solution.
Clearly, we require another equation to solve for the two unknowns.

Now, if we consider the deformation for this system, we observe that due to the
symmetry of the problem, the rigid plate must necessarily remain horizontal. It
follows that the downward displacement A at all points is the same [Fig. (6.5.3)];
specifically, the elongation of the steel and aluminium wires must be identical. Thus
we write

As = A, (6.5.3)

[Note that in Fig. (6.5.3), the downward displacement A corresponds to elongations
ofthe wires. This elongation is consistent with the assumed tension of the wires. We
alsoremark that Eq. (6.5.3) is an equation that represents the geometric compatibility
of the system. Although this comment may appear here to be superfluous, it is, as we
shall see, an essential feature in the solution of statically indeterminate problems.]

Now, from Eq. (6.2.12), we write, for the aluminium and steel wires,

FL
A, = Ea A*’a, (6.5.42)
FiLs
A= : 6.5.4b
*T 4,E, (6.5.4b)

T Note that we might have initialty concluded from symmetry that the two aluminium wires carry the same
load; however, we should observe that this 1s not an independent conclusion since, in fact, 1t 1s derivable
from equations of mechanics.

Figure 6.5.2
¥
2 g ¥
A C B

Figure 6.5.3
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respectively. Then using the equation of geometric compatibility,

Faly KoL
E Ay EA,

(6.5.52)

from which

F—(LsE*‘Aa F, 6.5.5b
YTNLEdy )T (6.5.5b)

Substituting in the equation of equilibrium, Eq. (6.5.2),

[1+2<L5E*‘Aa) F,=P 6.5.6
L, EA s = (6.5.6a)

or
(z2)

CoereER)

(6.5.6b)

We now consider a numerical case; let us assume that L = Ly=L, =30 cm and
that 4, =0.5A4, with 4, =0.05 cm?. Then,

20
Fo=-P=0741P. (6.5.7a)

From Eq. (6.5.2), we obtain
F,=05(P - F,) =0.130P. (6.5.7b)
The stresses o and o, in the steel and aluminium, respectively, are, from Eq. (6.2.7),
oy = % = [4.82P (N/cm?), Oy = % = 5.20P (N/em?) (6.5.8)
s a

To find the displacement of the plate, we use either of Eqgs. (6.5.4); e.g.,

_FLy  0.741P- (30 x 1072
T E.ds (200 x 109)(0.05 x 10-4)
=2.22 x 107°P cm (P in Newtons).

A =222x1077Pm,

We observe, for the numerical example considered above, with L, = L, that 74%
of the load P is carried by the steel wire and only 13% is carried by each of the
aluminium wires.

A further examination of the above results leads us to greater physical insight.
For the present case (L, = L) we have, from Eq. (6.5.6b),

F ESAS
s E A
— = (6.5.9a)
B A
P2+ %)
Then, since F, =0.5(P — Fy),

F, B

Ta B (6.5.9b)
E A4,

P (1 + zEgAs)
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Note that for L, = Lg, Eq. (6.5.52) yields

I _ Eds (6.5.10)
F,  EA,

Thus we see that the resisting forces in the wires are proportional to their axial
rigidities as defined in Section 3. A plot of Eqs. (6.5.9) is shown in Fig. (6.5.4). We
observe that for the case of a relatively thin steel wire, e.g., EsAs/E,4, =0.3, we
have F,/ P =0.1304 and F,/ P = 0.4348. For a large ratio, e.g., E;As/E, A, =9.0,
we find F;/P =0.8182 and F,/P =0.0909. When E;A;/E,A,=1, we have
F,/P = F,/ P =0.333, that is, each wire carries an equal portion of the load. In the
limiting case, as E A/ E, 4, =0, it is clear that F, =0; that is, the entire load is
carried by the aluminium wires alone.
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From an analysis of this stmple problem, we arrive at an important and generally
valid conclusion: in a statically indeterminate structure consisting of several com- i
ponents, each component tends to resist applied loads in proportion fo its relative
stiffness. This very general principle provides us with a physical insight that proves
to be very useful in understanding the behaviour of more elaborate and complex
indeterminate systems encountered in structural mechanics.

To illustrate further some of the ideas in the solution of statically indeterminate
problems, we consider the following example.

Example 6.4: A rod consisting of two rigidly connect elements, '1’ and ‘2,
is rigidly held at the top and bottom at points B and D, as shown in Fig.
(6.5.5). The cross-sectional areas and moduli of elasticity are Ay, E1 and A, E,,
respectively. A force P is applied along the ‘collar’ at Csuch that its resultant
passes through the centroid. Determine the resisting reaction at 8 and D.

Solution: Let us assume that the reactions at B and D are both upward; we denote
these reactions by Rg and Rp, respectively, as shown in the free body of Fig. (6.5.6a).  Figure 6.5.5
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Figure 6.5.6
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[While the assumed upward directions of both of the reactions follow logically from
physical intuition, it should be noted that the assumed positive direction is completely
arbitrary.] From Fig. (6.5.6b), with the above assumed reactions, rod 1 is clearly under
tension since | = Rg while rod 2 is in compression since F, = Rp.

From equilibrium, we write

ZFyzRB-I-RD—P:O (6.5.11a)
or
Fi+ /=P (6.5.11b)

Again, we evidently require a second equation to solve for the two unknowns. As in the
previous example, this additional equation is an equation of geometric compatibility.

Now, in order to be consistent with our assumed forces, in considering the deforma-
tion of the rods, we must assume that rod 1 will elongate; similarly, we must assume
that rod 2 shortens (since, according to the free-body diagram, it has already been
assumed that it is in compression). We denote the assumed elongation ofrod 1 by A
and the shortening of rod 2 by A,.

However, from the physics of the problem, rods 1 and 2 do not detach from
one another, nor do they overlap. Thus, the assumed elongation of rod 1 must be
equal to the assumed shortening of rod 2. The geometry of deformation is shown in
Fig. (6.5.7), where for pictorial clarity, we have offset the two separate bars.

The condition of geometric compatibility is therefore

Ay = A, (6.5.12)
Now, from Eq. (6.2.12),
L L,
'S EA 2= 54, ( )
Substituting in Eq. (6.5.12),
Al Bl (6.5.14)
E A4, ErA4y

and since Rg = F\(+F, — tension) and Rp = Fo(+F, — compression), we have

= (E*Al 2) . (6.5.15)

Ey4s Ly

From the equation of equilibrium, Eq. (6.5.11b), we find

Eid, L,
Z\FB=r 6.5.16
I:l + E2A2L1:| 2 ( )
from which
EyAsrLy 1
Ro=F = P. 6.5.17a)
p=2 [EleLz-I-EzAle_ (

Then, substituting back in Eq. (6.5.11b),

E ALy 7
= = P. 6.5.17b
Re = F, l:EzAzLi + E1 AL,y | ( )
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For the case where Ly =L, = L,

Ey 4, ] l: E2 Ay :|
Rp=|———— P, Rpy=|—""|P. 6.5.17¢
? [E1A1+E2A2 D E\Ay + Ey 4> ( )

Having found F| = Rp, F> = Rp, the stress ¢ in each rod is given by
o= —. 0y = —. (6.5.18)

Note again that since F) represents a tension force, positive o7 1s a tensile stress; sim-
ilarly, since Rp represents a compressive force, positive o, represents a compressive
stress.

As mentioned above, the assumed positive sense for each of the unknown forces Rp
and Rp may be chosen arbitrarily. In order to emphasise this point and to clarify some
aspects of the solution, we shall solve this same problem under different assumptions.

Alternative solution: We consider the identically same problem as above
[Fig. (6.5.5)]. Let us now choose the unknown reactive force Rp to be in the downward
direction and Rp to be in the upward direction, as shown in Fig. (6.5.8a). Clearly,
this now implies that rods | and 2 are both in compression with F) = Rg (+F1 —
compression) and £, = Rp (+F; — compression) [Fig. (6.5.8b)]. From equilibrium,

Y Fy=Ry—Ry—P=0 (6.5.19a)
and hence

Fy—F = P. (6.5.19b)

We now consider the deformation. Since both bars have implicitly been agsumed to
be in compression to maintain consistency, they must both be assumed to shorten as
shown in Fig. (6.5.9) (where again for pictorial simplicity the bars have been drawn
offset). Now, from the physics of the problem, there can be no separation of the two
rod elements. Therefore, from Fig. (6.5.9), we have

Ay + Ay =0. (6.5.20)
Here, again

_ KL _ L,
T EA] 2T oAy

Note that, just as the assumed positive values of the forces Fy and F; signify compres-
sion, so do Ay > Oand A, > 0 signify contraction. (This is in contrast to the A and
Az of Eq. (6.5.13) where A > O represented elongation, while A, > 0 represented
a contraction.) Substituting Eq. (6.5.21) in Eq. (6.5.20), we have

E 4, L,

- =y 5.22
Ead, I, (6.5.22)

Ay (6.5.21)

Fi =

and hence using Eq. (6.5.19b),

E 4, L,
1+ — | =P 6.5.23
[ EzAzL|:| ? ¢ )

from which

(6.5.242)

RD = F2 = [ E2A2Ll jl

EA\Ly+ Ex A2l

Figure 6.5.8
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Figure 6.6.1

Then, substituting back in Eq. (6.5.22),

EvAL, }
Rp=F = — 6.5.24b
i ! [E2A2L|+E|A1L2 ( )
The stresses 1n rods 1 and 2 are then given, as before, by
! F
= = 6.5.
ol h o YR (6.5.25)

Note, however, that F, > 0 while F| < 0. Since positive F; = Ry was taken to be
compression, the negative value obtained in the solution indicates that physically the
normal force F| is under tension (which agrees with the physics of the problem and
with the previous solution). O

For emphasis, we summarise here the general features that characterise the proce-
dure for solving statically indeterminate problems subjected to axial [oads:

m Equations of equilibrium are written in terms of unknown external forces which
are chosen as positive in an arbitrary direction.

m The positive internal normal forces are then determined according to the free body
diagrams of each element. (These will then be either tension or compression).

B The equation of geometric compatibility must be written in terms of elongations
(or shortening) of an element which are consistent with the assumed tension (or
compression) of the element.!

6.6 Temperature problems: thermal stresses

An interesting class of problems whose solutions can be obtained quite simply us-
ing the relations developed in Section 2 of this chapter occurs in problems due to
temperature changes of a rod.

Consider first a bar of length L, which is subjected to a change of temperature AT .
Due to such a temperature change, the bar, in general, will undergo a change of length
AT, given by [Fig. (6.6.1)]

AT =« - AT, (6.6.1)

where « is the coefficient of thermal expansion. For example, for steel @ = 11.7 %
107¢ em/em/°C.

Now, if there is no restraining force, for example, if the bar is testing on a fric-
tionless table, it will expand or contract freely (depending if A7 > 0 or AT < 0,
respectively) and hence no internal stresses will be induced. However, if there is a re-
straining force, that is, a force which prevents a free expansion or shortening, internal
stress will occur. The internal stresses induced by these restraining forces are called
thermal stresses. We now illustrate this idea by means of a simple example.

Example 6.5: A steel rod of cross-sectional area A, length L, modulus of elas-
ticity £ (F =200 GPa) and coefficient of thermal expansion « undergoes a

1 We mention that the procedure as outlined here 1s, in principle, a general procedure used in the analysis
of any statically indetermmate system. Since the unknowns appearing in the resulting equations are
forces, this general procedure is known, 1n structural analysis, as the force method. The ideas of the force
method will be used in Chapters 7 and 9 to solve indetermimate problems due to torsion of rods and
bending of beams.
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change of temperature AT. Determine the resulting stress if the bar is held
between two rigid walls as shown in Fig. (6.6.2a).!

Solution: Solutions to this class of problems are casily obtained using the superpo-
sition principle; i.e., we first imagine that the rod expands freely with no restraint by
an amount A7 [Fig. (6.6.2b)]. For this simple case, it is clear that the walls actually
exert a compressive force so as to prevent the rod from expanding in the longitudinal
direction [Fig. (6.6.2¢)]. Thus, if we imagine that the process takes place in two stages,
the wall will then exert a compressive force R to ‘push back’ the rod to its original
length. Denoting the shortening effect of the reaction R by A, AR = 2% t we have
the stmple relation

AR = AT, (6.6.2a)

This relation is again, in fact, a trivial example of an equation of geometric compat-
ibility, which, written explicitly, 1s

RL
— ol 6.2b
—Z =ol-AT (6.6.2b)
or
R=AEa - AT. (6.6.2¢)

The axial stress is therefore ¢ = Eo - AT. We observe that for this problem, the solu-
tion is independent of the length L. It is important to note here that we have implicitly
assurned positive R to be compression and hence the positive stress o here corresponds
to a compressive stress. Assuming a temperature increase of S0°C, the stress in the
rodis o = (200 x 10°) . (11.7 x 1077) - (50) = 11.7 x 107 N/m? = 117 MPa. 0

Example 6.6: Consider two bars of different materials (brass and steel),
having the same cross-sectional area A, which are held rigidly at B and C
and are initially separated by a gap ‘6’ [Fig. (6.6.3)]. The temperature of
the entire system is increased by an amount AT, which is greater than that
required to close the gap. Determine the resulting axial stress.

Ly | 5

Qs EbA -)

Solution: As the temperature is increased, the rods will first elongate freely, accord-
ing to Eq. (6.6.1), until the gap is closed. Clearly, since the existing supports at B and
C are rigidly fixed in space, the supports will then exert forces that tend to restrain
any subsequent elongation due to a further increase in temperature.

In solving this problem, we again make use of the principle of superposition; i.e.,
we first determine the free elongation due to the temperature increase disregarding

t We assume implicitly that the wall 1s frictionless and therefore that the rod 15 free to deform laterally
with no constraints.

 Note that although the length of the bar after the temperature change 1s imagined to be L* =L 4 AT
(AT « L) (see Fig. (6.6.2b)], in calculating A®, we use the length of the ongnal geometry, L [see
comment (e) of Section 6.3).
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Figure 6.6.4

Figure 6.6.5

any restraints. To these elongations, we then superimpose the effect of the restraints.
We denote the free-temperature effect by A7 and the restraint effect by AR,

Thus, assuming that the bars are allowed to expand freely, the free expansions of
the brass and steel bars are Ag and AT, respectively.

However, since the two supports are rigid, after the gap has been closed, these
supports clearly exert compressive resisting forces that tend to prevent any further
elongation of the system. Moreover, since no other external forces are acting on this
system, it follows from equilibrium that the reacting forces must evidently be the
same [Fig. (6.6.42)]; we denote these (unknown) reactive forces by R. Thus both the
steel bar and the brass bar are subjected to the same compressive axial force F = R,
as shown in the free-body diagrams of Fig. (6.6.4b).

Brass ; Steel p) N
R R
(a)
] E— — | =
R F F R

()

Due to the resisting compressive axial force R, the shortening of the two bars 1s
given by

RLy RL,
Af =" Af=—2 6.6.3
YT EA S EA (6-6.3)

Then, using superposition, the final changes in length are
Ay = A — AL, As= AT — AR (6.6.4)

The deformation of the bars, showing the temperature and reactive effects of the bars,
1s shown in Fig. (6.6.5). From the simple geometric relations of this figure, we write

Ap + Ay = 6. (6.6.5)

Note that this relation is the basic geometric compatibility equation governing the
deformation of this system. Substituting Egs. (6.6.4),

(AL =8+ (Al = Al =5, (6.6.6a)
%
= ——— - ] ~«—— R
° Brass) < >l >
A, A
- Ny
5 |
a3 A
‘ Steel) N
R —_— —CT T s - s Rnact —

"
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which we rewrite as

AR+ AR = Al + AT -6 (6.6.6b)
Now, from Eq. (6.6.1), we have
Al =ayLy - AT, AT =L AT (6.6.7)
Substituting Egs. (6.6.3) and (6.6.7) in Eq. (6.6.6b), we have
R[Ly Ly
— | —+4 — | =(aply +asLs) - AT — 8 (6.6.8)
A[EbJFEJ (oL + 05 L)
from which we finally obtain
AEWEs
= ———— [(ayLlp +asls)- AT —8]. 6.6.9)
L.Ey +LbES[(ab b sLs) ] (

We consider a numerical example that proves to be instructive. Let
A=3em’, L=Ly=L;=100cm, AT =80°C.

Note that we have not yet assigned here a value to 8. Furthermore, we recapitulate
the properties of the two materials

Ey = 120 GPa, E, = 200 GPa,
ap = 18.7 x 1076 °C~!, a, = 11.7 x 1076°C~",
From Eq. (6.6.9),
AEyEq
R = AT —§/L]. 6.6.10
Eot E. [(ap + ) /L] ( )

Substituting the above values,

_x 107%) - (2.4 x 10%)

R
3.2 x 10"

[(30.4 x 107%) - 80 — 8/L]

or
R=7225x%10%2.432 x 1073 = 8/L)

If, for example, § = 0.2 cm, then with L = 100 ¢cm, R = 9720 N from which we find
o = 32.4 MPa (compression) in both bars.

It is instructive to compare this result with the case § =0, that is, when no gap
exists. The reactive force is then R = 54,720 N and o = 182.4 MPa. O

From the numerical results of the above problem, we observe that the thermal
stresses induced by the given temperature changes are reduced from o = 182.4 MPa
to o =32.4 MPa (i.e. by 82%) by the mere introduction of a very small gap of § =0.2
cm in the system.

The important influence of the gap in a system may be seen more clearly if we
examine the above problem where both rods are of the same material. Thus letting
Ey,=E;=F and ap, = s =, Eq. (6.6.10) becomes

R= AE(aAT —8/2L) (6.6.11a)

and therefore the stress o in the system is

= ExAT |1 o/L 6.6.11b)
o= anT ) (6.6.
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Figure 6.7.1

We note that the quantity ‘o AT is usually very small (generally of the order of 10™*
for AT < 100°C). Hence we observe that for a small gap § with §/L of this same
order, the stress o 1s reduced considerably.

Indeed, the magnitude of stresses in any statically indeterminate mechanical or
structural system is very sensitive to ‘gaps’ existing in the system. With this know!-
edge, one often purposely introduces, if possible, such gaps in the design of a struc-
ture, in order to minimise induced thermal stresses. This result has many practical
applications in the construction of structures. For example, ‘construction jomts’ in
bridges and roadways are usually introduced to prevent high induced stresses due to
temperature changes.

The above problem, representing a typical example of the evaluation of thermal
stresses due to axial loading, is in fact a statically indeterminate problem. We em-
phasise again that, as is true for this class of problems, we require an appropriate
equation of geometric compatibility in addition to the appropriate equation(s) of
equilibrium.

6.7 Elastic—plastic behaviour: residual stresses

At this stage, we have considered only elastic behaviour under axial loadings. How-
ever, as discussed in Chapter 4, it is clear that if the loads acting on a body are
sufficiently large, the body may cease to behave elastically and may enter the plas-
tic range. We introduce here a simple problem to illustrate the analysis of a system
in which elastic—plastic behaviour occurs.

Consider a system consisting of a rigid (weightless) plate, supported symmetri-
cally by steel and (hard drawn) copper wires, as shown in Fig. (6.7.1a). The copper
and steel wires each have the same cross-sectional area 4. A force P is applied
at the centre. The steel and copper wires are each assumed to behave as an ideal
clastic~plastic material with 0—e diagrams as given in Figs. (6.7.2a and b), respec-
tively.

¥ ¥ ‘T/“_‘_

Cu - (StCCl)_/ Cu\
E.A EA

c
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We consider the case as a force P, of gradually increasing magnitude, is ap-
plied (loading) and which is removed (unloading) after the system undoes plastic
deformation. Specifically, we wish to determine

w the load P = P, at which yielding first occurs and the corresponding vertical
displacement A;

® the ultimate load P, that the system can carry.

@ The vertical displacement A, as P approaches Py.

® The permanent deformation after unloading.

Using the condition of symmetry, the same force F; exists in each of the copper
wires. (Note that by taking ) M =0 about the midpoint of the plate, we arrive at
the same result.) From equilibrium, > Fy, =0, we have [Fig. (6.7.1b)]

2F, + Fy = P, (6.7.1)

where Fy and I are the forces in the steel and copper wires, respectively. Note that
this equation is independent of the material properties and therefore remains always
valid.

Due to the rigidity of the plate and the symmetry of the system, we immediately
write the geometric compatibility equation

Ag = A, (6.7.2a)

Flgure 6.7.2
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We find it here more appropriate to express the compatibility equation in terms of
the axial strains in the wire; thus (since the wires are of the same length L), we have

€ = €. (6.7.2b)

Evidently, the initial behaviour of the system is elastic provided P < P,. Yielding
first takes place when the stress in one of the wires, steel or copper, reaches the
value (09)s or (oo)c, respectively. From Fig. (6.7.2), this is equivalent to stating
that yielding occurs when the strain first reaches (€g)s or (€g)c. Using the given
numerical values as shown in this figure and the o—e¢ relations, o = E¢, these strains
are (€9)s=1.5 x 1073 and (g). =2.0 x 1073, Since (&g)s < (€o)c, it follows that
yielding will first take place in the steel wire when the strain ¢, reaches (&p)s.

From Eq. (6.7.2b), the strain in the copper €, = (¢g); at this first yielding and thus
the corresponding stress in the copper wire is

oc = Ecec = (120 x 10%) - (1.5 x 107%) = 180 x 10° N/m?. (6.7.3)
Hence the forces in the wires are
F.=(300x10%-4 and F,= (180 x 10%)- 4, (6.7.4)

respectively. (We note that this value of F; is the maximum force F|mq.x that the
steel wire can carry.)
Then by Eq. (6.7.1), the force P at the first yielding is

P, = (300 x 10%) - 4 +2(180 x 10%)- 4 = (660 x 10°) - 4 (6.7.5a)
and the corresponding displacement is
Ay = (&) L =(15%x10"% L. (6.7.5b)

As P increases beyond Py, the stress in the steel remains constant, (o), . However,
the stress in the copper increases gradually with increasing P until it reaches the
value (0¢). with a corresponding strain (€g).. Thus, the maximum force that the
copper wire can carry is Fi|ma = (240 x 10%) - 4. At this point, the force P has
reached its ultimate value, Py, given by

Puit = Filmax + 2Felmax = (300 x 10%)4 + 2(240 x 10%)4 = (780 x 10%)4.
(6.7.62)

As P reaches P = Py, (which occurs just as the copper yields), the displacement is
Ay = (€0)eL =2.0 x 107°L, (6.7.6b)

Thereafter the system continues to yield under Py,.

A plot of the load—displacement relation is shown in Fig (6.7.3). The original
line OB represents purely elastic behaviour; the line BC represents partly elastic
behaviour (of the copper) and plastic behaviour (of the steel); the horizontal line
CG represents purely plastic behaviour (yielding) of the entire system. We note that
the slope of the line OB is considerably greater than BC. Recalling that the slope is
a measure of the stiffness, a physical explanation is clear: initially, both the copper
and steel wires offer resistance to deformation resulting in a relatively stiff system.
Once the steel wire has yielded, the only resistance to increased deformation is
due to the copper wire and hence the system is less stiff, as reflected by the lower
slope of BC. At P = P, the copper yields and assuming that the force P = Py, is



6.7 Elastic—plastic behaviour: residual stresses

177

Elasto-plastic

All Elastic <— —— All plastic
PIAA
— D
800 - A ———— e e = C G
FP A= —————— ' s
600 — Y B/ :
o a
400 — : : /4— unloading
loading : I
200 - L rd
| (
| |
0 | | 1 )/I | | | = e=AJL
1.0 2.0 30 4.0 x10

thereafter maintained, all wires having yielded, the entire system undergoes increas-
ing deformation as represented by the horizontal line P = Py.

Let us assume that the load is slowly removed when the displacement reaches
A = Ap (with the corresponding strain, ép = Ap/L in the wires). The system is
said to undergo ‘unloading’. We recall from Chapter 4 [Fig. (4.6.1)], that for a given
material having ideal elastic—plastic behaviour, the unloading is elastic and is repre-
sented by a line on the —e diagram, which is parallel to the original loading curve.

We now wish to study the behaviour of the system during unloading. The respec-
tive o—e curves for the steel and copper (representing both loading and unloading)
are shown in Fig. (6.7.4). It is clear that since the system has undergone plastic
deformation, we cannot expect that it will return to its original position: that is,
the system will undergo a permanent deformation after the load is completely re-
moved. We denote the resulting permanent displacement by & and denote €™ = §/L
as the corresponding (final) permanent strain. Note that the compatibility condition,
Eq. (6.7.2b), remains valid; i.e., the strain in all the wires must be identical for this
symmetric system. We wish to determine §.

We observe that after removal of the load, the equilibrium equation, Eq. (6.7.1),
with P =0, is

QFF+Ff =0 (6.7.72)
and hence
of = =207, (6.7.7b)

where the superscript F indicates the final value after removal of the load. Thus if
both 6 # 0, of 5 0, the two stresses must necessarily be of opposite sign; either
the copper is under tension and the steel in compression or vice versa.

Now, the general o—e equations of the straight (unloading) lines for the copper
and steel are, respectively [see Fig. (6.7.4)],

€ =ep - [(U")E—_U“] , (6.7.82)
€ = ep — [(“0);:—:"5} . (6.7.8b)

1 Since the slope of the steel 1s greater than the corresponding slope of the copper, 1t 1s clear that unloading
will take place at a faster rate in the steel than in the copper. Furthermore. for the given numencal values
of the matenal properties as shown in Figs. (6.7.2a and b), % > % We therefore can anticipate that
af > 0andof < O when the foad P is removed. ¢ ¢

Figure 6.7.3
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Figure 6.7.4

o2
MPa A
300 . D
200 — unloadin
T~ loading £
STEEL
100 ~
0 ‘ — : ‘ ‘ > e=AJL
1.0 20 | 3.0 40 50  x1073
I
o
SIL o
(a)
log
MPa,
C D
200
loading unloading
COPPER
100 —
A — ,
0 | ] | | | | —> c=A/L
1.0 2.0 3.0 40 5.0 x1073
| o
' SIL !

(b)

In particular, the final strains existing in the copper and steel, €! and €f, are given
by Eqgs. (6.7.8) with o, =0 and o, =4[, respectively. But, from compatibility,

€f = €F'; we therefore have
(00)c — 0F _ (o0)s — of (6.7.93)
E. E;
from which it follows that
of — of (Es/ES) = (00)s — (Go)c - (Es/ Eo). (6.7.9b)
Using Eq. (6.7.7b), we find, upon solving for o/,
e _ (@) - (Es/Ee) = (00), 67.10)

© 2+ (E/E)

Substituting the appropriate numerical values, o =27.3 x 10® N/m* =27.3 MPa
(tension). Then from Eq. (6.7.7b), of = — 54.6 MPa (compression).



The permanent deformation § is then found by substituting in either of Eqs.
(6.7.8): e.g.,

6.7.11
i ( )

F
§=¢ L =Ap— [M]L
Let us assume that ep=4.0 x 107>, Then §=4.0 x 1073L — (1.77 x 107%) -
L=223x107°L.
Thus we note that if a system undergoes plastic deformation, not only will there be
a permanent state of deformation (after removing all external loads) but also a non-
zero state of stress may thereafter exist in the unloaded system. The stresses of and
ocF are therefore called residual stresses. We emphasise, however, that such residual
stresses as calculated above can only exist in a statically indeterminate system.

Note: In all problems below, the material behaviour of the members is assumed to be
linear elastic unless specified otherwise. Neglect all localised effects in the solution of
problems.

The following constants are to be used in solving the problems.

Steel E; = 200 GPa, as=11.7 x 1078 (cC™")

Aluminium E,= 70GPa, s =23.6 x 1078 (°C™")

Brass E, = 120 GPa, ap=18.7 x 1078 (-C™")

Bronze Epr = 105 GPa, opr =18 x 1076 (°C™ 1)

Copper E. = 120 GPa, 2w =169 x 1078 (C™")
Sections 2-4

6.1 A cylindrical steel rod of length L =50 ¢cm and cross-sectional area Ais subjected
to an axial tensile force P =12kN. If the allowable tensile stress is oaow = 120 MPa,
and the maximum permitted elongation is AL =200, =200 x 10~® m, determine the
minimum required diameter d.

6.2: A rod, consisting of two segments AB and BC with moduli of elasticity £ and
Eac, respectively, is subjected to axial loads, as shown in Fig. (6P.2). If C is not permitted
to displace, determine the required ratio Aag/Asc-

6.3: A cylindrical rod, part of a sensitive instrument, consists of two segments AB and
BC bonded to each other, each having the same cross-sectional area A = 140mm?, as
shown in Fig. (6P.3). Segment AB is aluminium. As a design specification, it is required
that under a compressive axial load P = 12kN, the displacement of C is not to exceed
1 mm nor be less than 0.9 mm. Which material(s) can be used for segment BC - steel,
aluminium, brass, bronze or copper?

6.4: A linear isotropic elastic cylindrical rod with modulus of elasticity £ is fixed at
one end and subjected, as shown in Fig. (6P.4), to a force located at point O, which
attracts any given element of thickness Ax with a (body) force given by Af = x—"zAAx,
where Ais the cross-sectional area of the rod, x is the distance from O to the element
Ax and k is a constant. Determine the elongation of the rod.

6.5: Body forces, varying as f(x) = Ce*/® (where C is constant having units N/m3), act
in the x-direction on a prismatic rod having axial rigidity AEf and length a, as shown in
Fig. (6P.5). (a) Show that the resulting stress o, at any cross-section, x, is o, = Cale — e*/?)
and (b) determine the change in length AL of the rod.
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6.6: A copper-nickel alloy tube 40 ¢m in length, whose cross-sectional area is
A=60mm?, is subjected to an axial tensile force of 8000 N. The material behaviour
of the copper is governed by the ‘sinh law’ [given by Eq. (4.5.5) of Chapter 4] with
oo = 100 MPa and ¢p = 0.006. Determine the change in length AL.

6.7: A tapered rod AB with modulus of elasticity £ and thickness t, having a width
varying linearly from a to b(a < b) and length L, is subjected to axial forces P, as shown
in Fig. (6P.7). Assuming that the taper is sufficiently small (i.e., "—[5 <« 1), the normal
stress can then be assumed to be uniformly distributed over the cross-section, i.e.,
ag= ﬂ’}) is a reasonable approximation to the true state of stress. Using this approxima-
tion, show that the change in length of therod is AL = %ﬁ; % or in non-dimensional

Al Int/a) \where Ag is the cross-sectional area at A.

terms, 5174 F = a-1+

(Note: See computer-related Problem 6.42.)

6.8: Arigid rod ABCD is simply supported at A and by a steel wire at C, whose cross-
sectional area, A, =15 mm?. Under zero load, a gap 6 =2 mm exists at the right end
between D and F, as shown in Fig. (6P.8). (a) Determine, in terms of £, A, 8, h, L and
P, the distance from A (i.e., the distance a) at which a load P should be applied such
that the right end makes contact with point F. (b) Sketch the position a/L as a function
of P in terms of the non-dimensional quantity 5-;#. If h=2m and the maximum load
P that can be applied is P =900 N, what is the shortest distance a/L?

6.9: A rigid plate is supported by cylindrical steel and brass rods whose diameters
are as shown in Fig. (6P.9). Determine a, the position of the load P, if the rigid plate
remains horizontal.

6.10: By means of a rigid end plate, an axial force, P =120 kN, passing through the
x-axis is applied to the composite member consisting of a steel core and an outer
aluminium cylindrical shell, as shown in Fig. (6P.10). Determine (a) the axial stress in
the core and in the shell and (b) the change of length AL.

40 mm
25 mm

6.11: A structure consists of a rod BC, which is simply supported at C and supported by
a steel wire BD, whose cross-sectional area is A;=1.2 cm?, A load P = 18 kN is applied
at point B, as shown in Fig. (6P.11). Assuming that the rod BC is rigid, determine vsg,
the vertical component of displacement of point B.



6.12:* Determine the horizontal and vertical components of displacement of point B,
ug and vy respectively, of the structure of Fig. (6P.11) if the rod BC is made of aluminium
and has a cross-sectional area, A, =3cm?,

6.13: A compressive axial force P =500kN is applied, by means of a rigid plate, to
a concrete column 3m in height and having cross-sectional dimensions 20cm x 30cm
[see Fig. (6P.13a)]. The column contains 8 steel reinforcing bars, placed uniformly
within the column, each of whose cross-sectional area is A; =2 cm? [see Fig. (6P.13b)].
The modulus of elasticity of the concrete is £, =20 GPa. If the plate remains horizon-
tal, determine (a) the compressive stress in both the concrete and the steel bars and
(b) the shortening, AL, of the column.

P =500 kN

20 cm

l<
<

e

0em

(@) (b)

6.14: Rigid plates are connected to the ends of a composite rod, made of two ma-
terials, as shown in Fig. (6P.14). The moduli of elasticity of the two components of
the rod are £, and £,, where £; > E,. Determine the value of e (measured from the
interface) at which an axial load must be applied to produce a uniform extensional
strain throughout any cross-section.

rEl ~ b

\;TQP a

/
/
E)

6.15:* A structure, consisting of an elastic rod AB having axial rigidity £o Ay, is sup-
ported by means of a wire at A (whose axial rigidity is A;E,) and simply supported at
B. A force P, making an angle o with the rod, acts at point A, as shown in Fig. (6P.15).
Determine the ratios us/L and va/L of the horizontal and vertical components of
displacement of point A, as a function of «.

{Note: See computer-related Problem 6.43.)

6.16: A composite rod of length L, having a cross-section as shown in Fig. (6P.16),
is made of two materials with moduli of elasticity £; and £;. A load P is applied at
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the end plates such that the strain is uniform throughout any cross-section. Determine
(a) the value of & as shown in the figure and (b) the elongation of the composite rod.

Figure 6P.16
Section 5
6.17: A rigid rod ABCD is suspended by means of three identical wires, as shown in
Fig. (6P.17), and carries a load P at B. (a) Determine the tensile force in each wire as a
function of P and the ratio b/a. (b) If b=3a, P = 19 kN and the allowable tensile stress
in the wires is ¢ = 100 MPa, what are the required diameters of the wires?
A B C D
e o le le o
a7y a7l b |
P
Figure 6P.17

6.18: A pin-connected truss is composed of three rods of the same material. The
cross-sectional area of rod BD is Ay and that of AD and CD is A,. The truss is subjected
to a force P at D, as shown in Fig. (6P.18). (a) Show that if Ag = Ay, the axial forces are
given by

Pcos?

_ 90°).
1+2cos38’ 0 < <909

Fap = Fep Fep

132 cos3 8

(b) For this case, namely if Ag = Ay, determine the required cross-sectional area if the al-
lowable tensile stress in the rods is o = 120 MPa, if P=50kN andifa=3mand h=4m.

Figure 6P.18



6.19:* The rods of the truss shown in Fig. (6P.18) have different cross-sectional areas
and are made of different materials: rods AD and CD are made of steel with A; = A,
and rod BD is made of aluminium with Ay = A,. (a) If the allowable stresses in the steel
and aluminium are given as o|a = 120 MPa and c.}.1 = 90 MPa, determine the angle
B such that each rod is stressed to its maximum allowable value when subjected to the
load P, as shown in the figure. [Note that this value provides the optimal configura-
tion for the given material properties and cross-section of the rods.] (b) If Ay =2 cm?
and A; =4cm?, what is the maximum allowable load P.

6.20: A tapered member having constant thickness t is welded at A and B to rigid
supports, as shown in Fig. (6P.20). Assuming that the taper is small (i.e, 2 — b « L) such
that the axial stress can be considered to be uniform at any cross-section, (a) determine
(in terms of a, band P) the reactions at A and B due to an axial load P acting at the
centre and (b) show that if b— a, Ra=Rg=P/2.

6.21: Atapered member, asshown in Fig. (6P.21), having constant thickness tis rigidly
attached to supports at A and B. Assuming that the taper is small (i.e., a — b « L) such
that the axial stress can be considered to be uniform at any cross-section, (a) determine
(in terms of a, b and P) the reactions at A and B due to an axial load P acting at the
centre, C and (b) show thatif a — b, Ra=Rg = P/2.

6.22: Atapered member, asshown in Fig. (6P.22), having constant thickness tis rigidly
attached to supports at A and B. An axial force P is applied at section D located a dis-
tance oL from A (0 < o < 0.5) as shown in the figure. Assume that the taper is small
(i.e., a — b « L) such that the axial stress is uniform at any cross-section. (a) Show that
the reactions at A and B are given, respectively, by

In[{(1 - 2a)a + 2ab] — Ina

Ra =P 2[iInb—1Ina)
R — lenb—lna—ln[(1 —2a)a + 2ab)
8= 2lnb—1Ina]

(b) Show that if « =05, RA = RB = P/Z

al
D

I < |
f Ln ' Lr I

6.23: A conical rod ACB whose diameter varies linearly from dy > 0 to D is rigidly
attached to supports at A and B, as shown in Fig. (6P.23). A force P is applied at the
centre C. Determine the reactions at A and B in terms of dy, D and P.

' L2

L/2
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| | |
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Figure 6P.24

Figure 6P.25

Figure 6P.26

Figure 6P.27

Section 6

6.24: A bronze and an aluminium rod, having cross-sectional areas A, = 1800 mm?
and Apr = 1500 mm? respectively, are bonded together as shown in Fig. (6P.24) and are
placed between two rigid supports such that a gap § =0.6 mm exists at the left end.
Determine (a) the compressive reaction on the rods due to a uniform temperature
increase of 150°C, (b) the stress in each rod and (c) the resulting change in length of
each rod.

6.25: An assembly consists of a steel bolt whose cross-sectional area is A; =0.6.cm?
surrounded by a hollow aluminium cylinder of cross-sectional area A, =1.5cm?, as
shown in Fig. (6P.25). Determine (a) the stress in each member and (b) the change in
length if the entire assembly undergoes an increase of temperature AT =50°C.

<—|

Aluminum
" Steel

6.26: An assembly is designed to be used at very high temperatures. The assembly
consists of a titanium rod whose cross-sectional area is Ay =0.6cm? surrounded by
a hollow monel alloy cylinder of cross-sectional area Ay =1.5cm?. The assembly is
bounded by rigid end plates, as shown in Fig. (6P.26a). The titanium as well as the
monel are assumed to be elastic—perfectly plastic with stress-strain curves as shown in
Fig. (6P.26b). Determine the change in temperature AT at which first yielding occurs.
(Given: a7 =9.5 x 1076°C™", am =13.9 x 1076°C""))

o (MPa)
Monelp

" Titanwmy

0.002
(2) ()

6.27: An assembly, consisting of a rigid plate, is supported by means of two steel rods
each having a cross-sectional area A; =5cm? and length h=2m. A copper rod with
A = 10cm? is inserted at the centre where a gap § =0.50 mm exists between the rod
and plate, as shown in Fig. (6P.27). If the temperature of the entire system is increased
by 60°C, determine (a) the axial stress in the copper and steel rods, (b) the deflection
of the rigid plate.

A\ N\ NN NNNNY
Steel | Cu g™ Steel A
A B




6.28* Given that all rods of the truss of Fig. (6P.18) have identical axial rigidities (i.e.,
AoEo= AyE, = AF) and undergo the same increase in temperature AT. (a) Determine
the axial force in each member due to this increase in temperature in terms of the
geometry, and the coefficient of thermal expansion «. Show that the force in rod BD
is a maximum when 8 =64.4°.

(Note: See computer-related Problem 6.44.)

6.29:* The square frame shown in Fig. (6P.29) consists of four aluminium rods that
are pinned at the corners and braced by two diagonal steel wires. The ratio of the
cross-sectional area of the aluminium rods to that of the steel wires is given as 20:1.
Determine the axial stress in both the rods and wires if the entire frame is subjected
to an increase in temperature of 40°C.

Section 7

6.30: A rigid plate BCDF is simply supported at B and by two wires whose cross-
sectional areas are A=0.5cm? at C and D, as shown in Fig. (6P.30). The wires are
assumed to behave as elastic-perfectly plastic materials with a yield stress of oo and
modulus of elasticity £. A load P is applied at point F. Determine, in terms of oo, A
and h, (a) the force P, at which yielding first takes place, (b) the displacement of point
Fwhen P = Py, () the ultimate foad Py, (d) the displacement of point F as P reaches
Py and (e) plot P vs. A and show the values at all critical points.

6.31: A rod BCD of cross-sectional area A and made of an elastic-perfectly plastic
material (with modulus £ and yield point ay) is rigidly attached to supports at B and
D. Initially, the bar is free of all stresses. An axial force P is applied at C, as shown in
Fig. (6P.31). (a) Determine the displacement §¢ of the cross-section at C as P increases
from zero to its ultimate value, P,. {b) Plot the results P vs. 8¢, and show all critical
points on the graph.

6.32:* Given three rods of equal length L and cross-sectional area A. The rods are
fixed at A and D, are connected at B and C and are subjected to a slowly applied
axial load P, as shown in Fig. (6P.32a). The rods are assumed to behave as elastic-
perfectly plastic materials; the modulus of elasticity of rods AB and CD is given as
Ey and that of BC is £;=E/4, where the stress-strain curves of the two materi-
als are shown in Fig. (6P.32b). (a) Determine (in terms of ¢o, A, L and E) the re-
lation between the displacement 5c of point C and P for values 0 < P < Py;.
{b) Plot P vs. 8c showing all critical values on the graph. (c) If the road is loaded
until 8¢ =600l /E, what is the permanent displacement 8c|,erm after the loads are
removed.

i
>
W
2]

_300
(a) (b)
Review and comprehensive problems

6.33:* Given a plate (a x b) lying in the x—y plane, as shown in Fig. (6P.33), subjected
to a distribution of body forces f=Ce*? (where C is a constant having units N/m3),
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Figure 6P.33

Figure 6P.35
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which act in the x-direction. The material properties of the plate are given as £ and
v, respectively. (a) Show, by means of a simple sketch, that due to the symmetry of
the applied loads, 7,,(x, 8) =0. (b) If b « a, one may then assume, upon making use of
this given geometry, that 7, (x, y) =0 at all points of the plate. Explain the reasoning.
(c) Making use of the assumption of (b), show that the solution to the stress equations
of equilibrium for plane stress yields a stress field g, =0 and gy, as given in Problem
6.5. (d) Determine the angle /ABD after deformation where the distances between
A, B and D are assumed to be infinitesimal. (e) Determine the displacements in the
x- and y-directions of point B.

i
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6.34: Making use of the principle of conservation of energy for a linear elastic body
(see under Hooke's law in Chapter 4), solve part (a) of Problem 6.8.

6.35: Awire AB of length L is pre-stressed to a given tension 7y and attached to rigid
supports at the two ends. A weight W is attached at some intermediate point, located
at a distance a=c«L (0 <o < 1), from one end, as shown in Fig. (6P.35). Show that the
tensife reactions Ra and Ry at A and B, respectively, are

Ra= W —1+y), Re = Wx +y),
where y = Tp/ W.

(Note: See computer-related Problem 6.45.)

6.36:* An elastic cylindrical rod of diameter D, modulus of elasticity £ and length
L is inserted in a bore having the same diameter. To tower the rod, an axial force P
must be applied at the top, as shown in Fig. (6P.36), to counteract the frictional force
f(y) along the tateral surface, which is found to vary as f=ky?, where k has units
N/m*. (a) Assuming that plane cross-sections in the rod remain plane, determine the
the axial stress o(y) at any cross-section. (b) Determine the change in length AL of the
rod when the force P is applied.

6.37:* Acircular cylindrical rod of length L whose material density is p (N/m?), hangs
from a rigid support, as shown in Fig. (6P.37). The radius of the rod varies parabolically
as r{y)=r, + (ro — ra)(y/L)%, where r, —ry « L such that the variation of the cross-
sectional area is ‘slow’. (a) Assuming that all cross-sections remain plane, determine
the (average) axial stress g, at any cross-section y. (b) Show that the elongation AL of
the rod is given by

AL ’5 126834 5%°5) o,
pL2/E "f 1+ 2p82 + p2£4 ’
0

where B=ry,/r, — 1and £ = y/L . (c) What is an appropriate criterion for 8, that permits
use of the above approximation?

(Note: See computer-related Problem 6.46.)



6.38:* A shock absorber consists of a steel rod (with modulus of elasticity £;) of diam-
eter d=4 cm and length L =30 cm, surrounded by a rubbery material which is encased
in a rigid cylindrical shell whose inner diameter is D =50cm, as shown in Fig. (6P.38a).
When subjected to an axial force P, the system deforms as shown in Fig. (6P.38b). The
rubbery material is assumed to behave elastically with a shear modulus G =6 MPa.
(a) Determine the displacement § of the bottom of the rod, in terms of d, D, G and P,
(b) Evaluate (a) for the given numerical values of the parameters of the problem if
P =100 kN. (c) Assuming that all cross-sections of the rod remain plane, determine the
shortening AL, of the rod, in terms of d, D, E, L and P. (d) Evaluate AL numerically.
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6.39: An elastic rod of length L and uniform cross-sectional area A, whose material
behaviour is elastic-perfectly plastic with modulus of elasticity E, yield point o5 and
coefficient of thermal expansion v, is welded to two rigid supports while at a tem-
perature Ty after which it undergoes an increase in temperature AT. (a) What is the
largest increase in temperature AT = ATg for which the rod remains elastic? (b) Deter-
mine the residual stress if the rod is first subjected to a uniform temperature increase
AT > ATg and then cooled down to its original temperature Tp. Indicate if in tension
or compression. (c) Evaluate the results numerically if the rod is made of steel, with
0o =250 MPa and AT =60°C.

6.40: Composite materials are often made of thin carbon graphite fibres or high-
strength glass fibres {(each having a cross-sectional area A; and modulus of elasticity
Es), which are embedded in a ‘soft matrix’ (usually consisting of an epoxy) whose
modulus of elasticity is En,. £y is usually orders of magnitude greater than £, i.e.
Es > En. Arepresentative element, having an area A, of the cross-section of this ma-
terial is shown in Fig. (6P.40).

(a) Assuming that a perfect bond exists at the fibre/matrix interfaces, and that all
cross-sections remain plane under axial loading and undergo a strain ¢, deter-
mine the ratio of the axial stress in the fibre, oy, to that in the matrix, om.

(b) ¥f nfibres exist within the representative cross-sectional element, determine the
axial resultant force P, which exists on the area Aintermsof oy, o, A¢ A and n,
where A, is the cross-sectional area of the matrix within the element.

T

Figure 6P.37

Figure 6P.38
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Figure 6P.40

representative
element

(c) Defining the fibre volume fraction, v, of the fibres as v =nA;/A and that of
the matrix as v, = An/ A{where A, is the net area of the matrix) (note that v +
Vm = 1), show that the “average” axial stress & on the cross-section, defined as
T = %, in terms of oy, oy, V§ and Ve, is given asG = V¢ 65 + Vm Om.

(d) Upon defining the effective modulus of elasticity for this material as Eey = ‘f’:
show that £.¢ can be expressed as Ee¢f = Vi E5 + Vi Em.

(e) Typical material constants for carbon fibres embedded in an epoxy matrix are
E; =300 GPa and £, = 2.4 GPa, respectively. (i) Using these values, evaluate E 4
for a composite material with a typical value vi = 0.2, (ii) determine the average
stress 7 and the change of length of a rod if an axial force P =6000kN acts in
the direction of the fibres on a rod whose cross-sectional area is A=4 cm? and
whose length is L =4 m and (iii) determine the stresses of and oy, in the fibres
and matrix, respectively.

6.41: Using the results of Problem 6.40, repeat part (e) of Problem 6.40 for a typi-
cal glass/fepoxy composite having the following properties: £:=72 GPa, £m =2.4 GPa
with v¢=0.45.

The following problems are to be solved using a computer

6.42: Write a computer program to evaluate the elongation of the slightly tapered
rod of Problem 6.7, having length L, in terms of the non-dimensional quantity, viz. in
terms of PL%\OE in the range 1 < b/a < 10 and plot the results. For what range of b/a

are the results meaningful?

6.43: Write a computer program (a) to evaluate the forces Fag/P and Fac/P of the
structure of Problem 6.15 as a function of ¢ and (b) the displacements ua and v in
non-dimensional form (i.e., uaAgEo/PL,vaAoEo/PL) and plot the results for values
0 < < 180°C.

6.44; Plot the forces Fap and Fgp in rod AD and BD, respectively, of the truss of
Problem 6.28 in non-dimensional terms (i.e., Fap/AEa AT, etc.) as a function of 8, and
determine numerically the maximum/minimum values of the defined ratios.

6.45; (a) Using the results given for the pre-stressed wire of length L of Problem
6.35, express the ratio 8 = Rg/Ra in terms of the position of the weight, # =a/L and
y = To/ W. (b) For several discrete values of (1 < B < o0), plot a family of curves for
y as a function of & [this does not require a computer]. For what position of « does
Rs =2Ra and Rg=3R, if y =1.5 and y =1, respectively. () Alternatively (for several
discrete values of y, 1 <y < 10) plot a family of curves for 8 as a function of «.



(d) What are, respectively, the required pre-tensions (as measured by y) in order that
B > 2and B < Jirrespective of the position of the weight, «. (e) What conclusions may
be drawn from the above curves.

6.46: Using the results given for Problem 6.37, evaluate numerically the integral that
yields the change in length (given in non-dimensinal form, ﬂ—LA,L/—E) of the parabolically
tapered rod and plot as a function of g =ry/r, — 1, where r, and ry, are shown in Fig.
(6P.37).
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Figure 7.1.1

Torsion of circular
cylindrical rods:
Coulomb torsion

7.1 Introduction

In this chapter, we study the behaviour of slender elastic rods, which are subjected
to moments about their longitudinal axis. We limit our study to rods that have the
shape of a circular cylinder with cross-sections as shown in Fig. (7.1.1). Due to
these moments, it is evident that the rod will twist: the rod is then said to be in
torsion and the applied moment is referred to as a torsional moment or torque.
We shall use these two terms interchangeably.

Circular rods under this force system are, in practice, referred to as shafis, as
they are often used to transfer energy from engines, for example, in automobiles,
aircraft or other machinery.

We shall be interested in determining the internal stresses and the rotation due to
applied torques. We first study elastic behaviour and, at a later stage, will consider
elastic—plastic behaviour of such rods.

7.2 Basic relations for elastic members under pure torsion

{a) Deformation analysis: conclusions
based on axi-symmetry of the rod
We consider a prismatic circular rod of radius R whose longitudinal axis lies along
the x-axis, which passes through the centroids of the cross-sections, point O. Ap-
plied torsional moments M, = T are assumed to act at the two ends, as shown in
Fig. (7.1.1). Note that the same moment then exists at all cross-sections of the rod;
that is, the resisting torque is not a function of x. The rod is therefore said to be in
a state of ‘pure torsion’.

In our study, we adopt the following sign convention for the torque 7: T > 0
if it acts on a positive x-face of the rod in a counterclockwise direction. Note that
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7.2 Basic relations for elastic members under pure torsion

191

this is equivalent to stating that 7 > 0 if its vector representation acts on a positive
(negative) x-face in the positive (negative) x-direction according to the right-hand
rule [Fig. (7.2.1)]. Correspondingly, a positive rotation of a section occurs in the
counterclockwise direction when viewed from the positive x -axis.

According to the discussion of Chapter 5, and as seen in the previous analysis of
axial loadings, we recall that to obtain the solution, we are required to satisfy three
types of equations: (a) equations of equilibrium, (b) strain—displacement relations
and (c) stress—strain relations (Hooke’s law) governing elastic behaviour.

— = —_—x
X T=M,
T

Following the methodology discussed in Chapter S and used in the previous
chapter, we start our analysis by considering the possible deformation pattern of
the rod, based on plausible physical reasoning.

For any given circular cylindrical rod, we observe that the rod is symmetric about
the x-axis, which passes through the centres O of the cross-section; there are clearly
no ‘preferred directions” in the plane of the cross-sections. The system is therefore
said to be axi-symmetric about the x-axis. It follows that the cross-sections will
rotate about point O (i.e., about the x-axis of symmeiry). We refer to point O as the
centre of twist of the cross-section.

We first investigate whether plane cross-sections remain plane or whether they
warp under the applied torque. To do so, let us assume that the sections actually
warp so that the rod appears as in Fig. (7.2.2). Since the rod is prismatic, i.c., all
cross-sections are identical, and since the same moment M, = 7T acts throughout
the rod, the warping must be identical at all cross-sections. In particular, we note
from the assumed deformation shown in the figure that the right end ‘bulges out’.
Furthermore, if the rod is observed from a point along the x-axis to the right of the
rod, the applied moment appears to be acting in the counterclockwise direction.
Let us imagine that we now observe the rod from a point on the x-axis to the left
of the rod. From this vantage point, the torque T again appears to be acting in
the counterclockwise direction. However, the left-hand cross-section appears to be
‘bulging inward’. Now, since we have established that due to the symmetry of the
member, all cross-sections deform identically, it is not possible that if viewed from
the right the cross-section bulges out and if viewed from the left it bulges inward
under the same torque.” We therefore conclude that no bulging can occur; that is,
all cross-sections must remain plane and do not warp. Moreover, due to the axi-
symmetry of the cross-section, all planes cross-sections remain perpendicular to
the longitudinal x-axis.

Niiiacaias: - s ;
T << } { —> — X

Let us now investigate the deformation within the cross-section. Due to axi-
symmetry, it is evident that in twisting, all points at the outer edge of a given

' Note that, as viewed from either end, the torques are seen to act win the same sense; 1n this case, as
counterclockwise. This 15 essential to the arguments of symmetry.

Figure 7.2.1

Figure 7.2.2
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Figure 7.2.3

Figure 7.2.4

Figure 7.2.5

cross-section will rotate through the same angle. We now examine the deformation
of radial lines emanating from point O. Let us assume that if viewed from the right,
straight radial lines as in Fig. (7.2.3) deform as shown in Fig. (7.2.4a). However
if viewed from the left, the deformed lines appear as in Fig. (7.2.4b). Now, we
observe that the torque T is acting in the same sense (here, counterclockwise) in
both Figs. (7.2.4a and b). Since all sections deform identically, the two patterns
must show an identical appearance if viewed from either the right or left ends.
Therefore, noting that an identical appearance can exist only if the radial lines
remain straight, we conclude that all (straight) radial lines must remain straight
lines after deformation (twisting).

(2) (b)

Thus, based on simple arguments of symmetry, it is possible to conclude that
(a) cross-sections rotate with respect to the centre of twist lying along the x-axis,
(b) cross-sections remain plane, (c) all plane cross-sections remain perpendicular
to the longitudinal x-axis and (d) radial lines remain straight. We emphasise that
these are not assumptions. Finally, we should mention that these conclusions are
valid only for a circular cross-section, since perfect axi-symmetry can exists only
for such sections.

Having established the basic deformation pattern, let us now consider the resulting
strains in the rod. Before determining these strains, we first remark that since we
are examining a circular member, it is clearly more natural to use a polar coordinate
system (r, 8, x), as shown in Fig. (7.2.5), rather than a Cartesian system. We refer to
the r-coordinate as the radial coordinate and the §-coordinate as the circumferential
coordinate.

YA y

As aresult of conclusions (b) and (c) above, namely that all cross-sections remain
plane and perpendicular to the longitudinal x-axis, we conclude that line segments
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in the x- and r-directions remain orthogonal and therefore, since there is no change
in angle, €, = 0. From conclusion (d) above, all radial lines remain orthogonal
to the circumferential direction and hence ¢,4 = 0. Therefore, by Hooke’s law,
T, = 2Ge,, = 0 and 7,4 = 2G¢,9 = 0. Thus, the only non-zero shear stress in the
rod is T, = Tp,.

(b) Basic relations

Due to the applied torque, the cylinder will twist and any line originally parallel to the
x-axis (a ‘generator’ of the cylinder) will assume the shape of a helix [Fig. (7.2.6)).
Since we are interested in determining the strain at any point within the circle, let us
consider an imaginary circle within the rod of arbitrary radius » and let P be some
point on the circle through which a generator of the imaginary cylinder is drawn,
passing through all the cross-sections, as shown in Fig. (7.2.7a).

T T
Y

generator

‘Ax' < o~ >

(a) ®

For convenjence we consider the left end, x = 0, to be fixed against rotation, and
let ¢(x) denote the rotation at any section x. Since ¢ is not constant, we examine
an element Ax within the rod, as shown in Fig. (7.2.7b), and let A¢ represent
the relative rotation of the two cross-sections, Ax apart. We denote two points of a
typical generator, as P and Q, at the two ends of the element. Since we are considering
the relative rotation, we examine the geometry assuming the section at P is fixed.
Due to the rotation A¢, point Q will then rotate to Q*, as in Fig. (7.2.7b), and the line
segment PQ — PQ*. Thus we note that the line PQ* is no longer parallel to the x -axis
and, in particular, after deformation PQ is no longer perpendicular to the segment
PM lying in the circumferential direction 8. The change of angle differs by y, where
y = LQPQ*. We recall from its definition, that the change in angle between two
line segments, which were originally orthogonal, is represented by the shear strain.
Since PQ and PM were originally in the x - and #-directions, we therefore denote this
angle by y,s." From the geometry of Fig. (7.2.7b), QQ* =r - A¢. Furthermore,
from this figure, may write QQ* ~ y - Ax. Hence we have

Yoo - Ax 27 - Ag. (7.2.1)
Dividing through by Ax and taking the limit,
d
Yoo = lim r% = r—¢. (7.2.2a)

ax—0 Ax dx

! Here we have referred loosely to y = yyg as the shear sirain.

Figure 7.2.6

Figure 7.2.7
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Figure 7.2.8

e ]

Figure 7.2.9

Thus, based on the displacement pattern, we find that the shear strain y, is propor-
tional to the radial distance from the centre of twist. Note that Eq. (7.2.2a) expresses
a strain—displacement relation. Recalling that we defined the shear strain as y /2,
we have

€Exg = ir_d__x_‘ (722b)
which, we observe, is a purely geometric relation and is independent of the material
behaviour of the rod.
Since we are studying the behaviour of an elastic member, we now apply Hooke’s
law, namely Eq. (4.4.10),

Ty = 2Géyg, (7.2.3)
and therefore
d¢
Ty = Gra (724)

Thus, the shear stress is proportional to the radial distance from the centre of
twist O and acts in a circumferential direction, as shown in Fig. (7.2.8). The shear
deformation of typical elements is shown for a portion of the imaginary cylinder in
Fig. (7.2.9).

From equilibrium, the internal resisting moment M, at any cross-section must
be equal to the applied torque T, i.e., M, = T. Moreover, the resisting torque at the
cross-sections is, in effect, the stress resultant of the shear stresses (as defined in
Chapter 2). Now, from Fig. (7.2.8), the incremental moment about the x-axis due
to the shear stresses 7,4 acting on an element d4 at a distance » from the x-axis is
[see also Eq. (2.5.12¢)]

AT =r - 19dA. (7.2.5a)
Substituting Eq. (7.2.4),
de
AT = Gr’—dA. 7.2.5b
e (7.2.5)
Therefore, the total moment T acting on the cross-section of area 4 is given by
d¢
=G 2= d4, 7.2.6a
T / / s ( )
A
and since d¢p/dx is independent of d 4,
) )
T=G— dA. 7.2.6b
=[] (7.2.6)
A

We denote the integral by J, i.e., J = ff, r? dA, which we recognise as the polar

moment of the area about the x-axis." Thus,
@ _ T 72.7)
dx GJ

! This 1s also referred to loosely as the polar moment of inertia (see Appendix A.1).
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Now, ¥ & represents the rate of change of the angle of twist. Since we are considering
the case of pure torsion, i.e. 7 % T'(x), it follows that for this case, % o % isalso constant
through the rod. We denote this constant by © and therefore write

d¢
dx

From its definition, we observe that ® represents the ‘unit angle of twist’; that 1s,
© represents the relative rotation of two cross-sections a unit distance apart. Note
that © has units of ‘radians per length’ (e.g., rad/m).

Thus, from Eq. (7.2.7), the unit angle of twist is given by the simple expression

T

-0. (7.2.8)

= —. 7.2.9
¥ (7.2.9)
Substituting Egs. (7.2.8) in Eq. (7.2.4),
1,0 = Gr % = Gr®, (7.2.10)
and therefore, by Eq. (7.2.9), the shear stress is finally given by
Tr
Teg = - (7.2.11)

This last expression relates the shear stress to the torque existing at the section.
It is of interest to note that if 7 is known, the shear stress 1.y is independent of the
material properties; that is, the stress is the same for a rod of any given material.
For convenience, in our subsequent development, we shall denote the shear stress
due to torsion by 1; i.e., we let T = 7,4.

From Eq. (7.2.11), we observe that the maximum stress occurs at the outer edge
r =R, 1e.

TR

The shear stress distribution of T = 1,4(7) is shown in Fig. (7.2.10). We note that
the shear components act in the circumferential direction at all points within the
cross-section. From Eq. (7.2.12), we note too that a rod of matenal having a yield
point 1 1n shear, will behave elastically provided the torque 7" does not exceed the
elastic torque Tg given by?

r()J

Te= (7.2.13)

At this stage we calculate the polar moment of the area, J, for a solid rod. Noting
that an incremental area d4 is given by d4 = » d9 - dr [Fig. (7.2.11a)], we have

2n R R4 2 4
R
J=f frsd, 49 = ___/d@ =t (7.2.14)
4 2
¢ \0 0

t We assume here effectively that 7y = tz |, 1.¢.. that the proportional limit, the elastic limit and the yield
pont in shear 7o coincide; namely, the material 15 an ideal elastic—plashic material (see Chapter 4,
Section 6).

Figure 7.2.10

Figure 7.2.11

(®)
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Substituting this value in Eq. (7.2.12), we find that the maximum shear stress in
arod is given by

27
Tmax = m; (7.2.15)

that is, the maximum shear stress occurring in a solid rod is inversely proportional
to R3.

Using Eq. (7.2.7), we may now determine the relative rotation of any two cross-
sections, say x = xg and x = x, (x¢ < x,), by simple integration:

T'(x)
= —=dx. 2.
d¢ 7 (7.2.16)
Therefore
h | Xy
o xp
or
$ —Po = ! nT( ydx 7.2.17)
1 0= G x)dax. (7.2.

X9
For pure torsion, T = constant,

T (x —xo).

b0 =1 — ¢o = 7

(7.2.18)

Note here that the notation ¢; o represents the rotation of the section x| with respect
to section x. Using this notation, it is clear that

$oi1 = —¢1p = —($1 — o). (7.2.19)
I[f¢pg=0andx; =L,
TL
(L) = G (7.2.20)

which is the rotation of a cross-section at x = L when the end x = 0 is held fixed
under a state of pure torsion.

We note, by comparing Egs. (7.2.9) and (7.2.20), that the angle of twist ¢ for the
case of pure torsion is

¢p=9©.L. (7221)

We observe that the unit angle of twist ® is proportional to the torque 7" and
inversely proportional to GJ. We therefore refer to the quantity GJ as the torsional
stiffness or torsional rigidity of the circular rod. Note that the torsional rigidity
depends on a material property (here, the shear modulus &) and the geometry of
the cross-section.



7.3 Some comments on the derived expressions

197

Now, the above development was not necessarily limited to solid rods. Indeed,
the only restriction placed on the development is that the rods be circular. Thus, all
the relations remain valid for a hollow rod having inner and outer radii R, and R,,
respectively, as shown in Fig. (7.2.11b). However, instead of the polar moment of
the cross-sectional area for the solid rod, given by Eq. (7.2.14), we now have

2 / R, e
1
J :f /r3dr do = (R} - R;‘)fde - ’2—”(12;‘ ~RY. (71222)
0 R 0

The above development, first derived by Coulomb in 1784, is known as the
Coulomb torsion solution for circular cylinders.

Example 7.1: (a) What is the maximum torque T¢ that can be applied to a
solid steel cylindrical shaft 8 cm in diameter [Fig. (7.2.12)] if the shaft is to
remain elastic? The elastic limit in shear and the shear modulus are 75 =
145 MPa and G = 76 GPa, respectively. (b) Determine the relative rotation of
the two ends due to this torque if L = 2.0 m.

Solution:

(a) From Eq. (7.2.13), the maximum elastic torque Tg is 7z = ERl.

For R=4cm, J =7 R*/2= 1287 cm*, and therefore Tt = (145 x 10%)(1287)/
4=14.58 x 10° N-cm = 14,580 N-m.

(b) From Eq. (7.2.9),

T 14,580 0.048 rad/m = 2.7°/
= e— = = U. = 4. m.
GJ (76 x 109)(1287 x 10~8)
Therefore, the relative rotation is ¢ = OL = 5.4°, 0

We observe that for usual materials encountered in engineering practice, the unit angle
of twist @ is indeed very small.

7.3 Some comments on the derived expressions: extension of the
results and approximations

{a) Comments on the solution
(i) The expressions derived in the preceding section, namely'

T

r=7r, (7.3.1a)

®=_ (13.1b
=GJ 3.1b)

' In the rest of this chapter, the shear stress 7, when written without subscripts, denotes Tyg; 1.€.. T = Typ.

Figure 7.2.12
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Figure 7.3.1

are valid only for prismatic circular cylinders under pure torsion. Since the
shear stress v = 1,4 acts in the circumferential direction at all points within
the cross-section, in particular, at the outer edge, ¥ = R, the shear stresses act
tangentially to the circle defining the cylinder.

We recall from the previous section that as a result of the deformation pattern
resulting from the axi-symmetry of the problem, we determined that the stress
component in the radial direction is 7, = 0 at all points, » < R, within the
rod. We might also have reached this conclusion by consideration of the stress
state existing at the boundary r = R of the rod. Let us therefore consider the
case assuming that non-zero components t,, are acting on the cross-section at
the outer edge, » = R. Since shear stress components always exist in conju-
gate pairs, stress components 7,y = T,, would then exist on the outer lateral
cylindrical surface of the rod, as shown in Fig. (7.3.1a). However, the r = R
lateral surface —i.e., the ‘r-face’ —isa free surface, and consequently no stress
component can exist on it; i.e., 7, = 0 [Fig. (7.3.1b)]. Therefore, it necessar-
ily follows that t,, = 0 in the cross-section at » = R. We therefore conclude
that at all points of an edge corresponding to a free lateral surface, the resul-
tant shear stress in the cross-section must always act tangentially to the edge
[Fig. (7.3.1¢c)]." Moreover, because of axial symmetry of the rod, 7,, = 0 at
the point O. Recalling that the above treatment pertains to relatively slender
rods (i.¢., rods whose diameters are small compared to their length), and since
7, = 0 at the ends of the diameter as well as at the centre, we expect that any
variation of 7., over a relatively small diameter would necessarily be small,
that is infinitesimal. Hence, we assert that 1., = 0 everywhere throughout the
rod. Moreover, since the lateral surface r = R is a free surface, 1, = 0 must
also be true. Following the same above reasoning for t,, given for slender rods,
we conclude that 7,, = 0 everywhere throughout the rod.* While it appears,
from the above argument, that this latter assertion is merely an assumption, we
mention here that this assertion is indeed correct and conforms with an exact
solution found according to the Theory of Elasticity. Moreover, according to
this exact solution, all normal stresses vanish on the coordinate surfaces, that
iS T, = Tpa = Ty = 0 throughout the rod.!

@ ®)

" This statement is not limited to rods subjected to torsion but 15 a general statement valid for all bodies

at points existing at a free surface.

i Note that a similar argument (leading to the concluston that o, = 0, = 0 throughout the rod) was used

n Section 2 of Chapter 6 for slender rods under axial foadings.
These conclusions will be shown to be true 1n Chapter 12.
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(i) We observe that when stating that ‘the rod is subjected to a torque T at a
particular section’, we have not specified in what manner this torque is applied.
For example, it might be applied by means of a gear acting on the outer lateral
surface. On the other hand, it might be applied at the longitudinal axis by means
of a wrench, as in Fig. (7.3.2). Irrespective of the manner by which the torque
is applied, it is clear that a complex state of stress (in equilibrium with the
given applied torque) will exist near the section of application. Such a complex
stress state cannot be described by the expressions (7.3.1) above. However, as
mentioned in Chapter 5, provided this stress distribution has a resultant equal
to T, these expressions will be valid, according to the principle of de Saint
Venant, at points sufficiently distant from the point of the applied torque. For
example, for the shaft shown in Fig. (7.3.3), the calculated stresses 7. are
only valid at a distance s > d, from section B. Thus, by invoking the principle
of de Saint Venant, we assert that, for a sufficiently long shaft, L > d, the
Coulomb solution describes the behaviour of the shaft except in these localised
regions. In practice, we therefore essentially neglect these localised effects
and assume that the behaviour of the entire rod is described by the Coulomb
solution.

Figure 7.3.2

The same reasoning applies if a torque is applied at a particular interior
section, for example, at x = x¢ (i.e., at section C) of Fig. (7.3.3); we then
disregard effects in the localised region xc —d < x < x¢ +d.

Figure 7.3.3

The above comments are equally valid for a rod whose cross-section changes
abruptly, such as section D of Fig. (7.3.3), where again, a more complex stress
distribution exists. Therefore, in treating such problems, we again implicitly
neglect such localised effects.

Having found that the shear stress varies linearly from the centre of twist
for circular cross-sections, one might expect the same to be true for non-
circular cross-sections — for example, for a rectangular cross-section, as shown
in Fig. (7.3.4), whose centre of twist coincides with its centroid. However, we
have found that the shear stress must always act tangentially at all points lo-
cated at the edge of a cross-section. It follows that for this cross-section, the
shear stresses 1, and 1, at a corner (e.g., point B) must necessarily be zero, for
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Figure 7.3.4

=

Figure 7.3.5

@

(b)

x6

otherwise non-zero stress ,, and 7., would be acting on the lateral surfaces.
Now, if the shear stresses are proportional to the distance from the centre of
twist of this section, they clearly will not be zero at the corners since the cor-
ners are the farthest points from the centre, point O. Thus we conclude that for
this rectangular section, shear stresses do not vary linearly with the distance
from the centre of twist. Indeed, this will be shown to be true for any non-
circular cross-section. Solutions for the torsion of non-circular cross-sections
are far more complex than the Coulomb solution; these will be treated later in
Chapter 12.

. T?J'>\E$_L\C XL
] = T o
Z

(@]
(w)

{b) An approximation for thin-wall circular tubular cross-sections

We derive here an approximate relation for the average shear stress existing in a
thin-wall tubular circular cross-section. Consider a closed thin-wall section having
inner and outer radii R, and R,, respectively. By a ‘thin wall’, we mean a section
whose thickness ¢ is small with respect to the mean radius R of the tube, i.e.,
t/R « 1, where R = (R, + R))/2 [Fig. (7.3.5a)].

We first observe that for a thin-wall section, the shear stress, as given by
Eq. (7.3.1a), cannot vary greatly across the thickness of the wall in the small
interval R, < r < R,. According to Eq. (7.2.22), the polar moment of the cross-
sectional area for this cross-section is

T
J=3 (R - RY); (7132)

the shear stress is therefore given by

_ 27Tr _ 2Tr
T RRI-R) T R(R-R)-(R2+RY)

(7.3.3)

We first note that
(R* = R¥) =(Ro+ R)Ro,— R)=2R -t
and
(R2+RY) =[R +1/2' +[R—1/2) =2R " + 2

— 2R [l +(t/2R) 1~ 2R"
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since ¢/R < 1. It follows that T = Tr/2nR 3t. The average stress T at » = R is

then given by
T = 7;2 (7.3.42)
27R 't
or
T
=, 7.3.4b
YT (7.3.45)

where A = 7R represents the area within the circle of radius K.

This expression is thus an approximation for the average shear stress acting in
the circumferential direction within the thin wall, as shown in Fig. (7.3.5b). Since
we have observed that the shear stress has a small variation throughout the wall
thickness, this simple expression proves to be an excellent approximation, provided
R « 1.

In Chapter 12, it will be shown that Eq. (7.3.4b) yields the average shear stress
in a closed thin-wall tubular section having any arbitrary geometry.

(c) Extension of the results: engineering approximations

(i) Torsion of non-prismatic rods

We recall that the expressions developed in the preceding section are based on
the conclusions that all plane sections remain plane and all radial lines remain
straight lines. These fundamental conclusions were established using argunments of
symmetry, which are valid only for rods whose cross-sections do not vary with the
longitudinal coordinate x, that is for prismatic circular rods.

Let us now consider a circular rod with a varying radius R = R(x), as shown
in Fig. (7.3.6). Clearly, since the cross-sections are not identical for such a non-
prismatic rod, the arguments of symmetry of the previous section cannot be used
and therefore the conclusions are no longer valid; that is, for non-prismatic rods,
we can no longer deduce that plane cross-sections remain plane, nor can we as-
sert that radial lines remain straight. However, the deviation from the behaviour
of the prismatic rod evidently depends on how sharply the radius R(x) varies
with x. If this variation is relatively small, then the deviation from our conclu-
sions will be relatively small. Hence, for rods whose cross-sections vary slowly
with x, it is reasonable to expect that the above expressions will yield a good
approximation to the true solution. Thus instead of Egs. (7.2.9) and (7.2.11),

we write
_ I 73.5
T = ?](T)! ( N a)
T
Ox) = GI’ (7.3.5b)

Figure 7.3.6
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Figure 7.3.7

(ii) Rods subjected to a general torsion, T = T(x)

The above analysis has been concerned with a circular rod in pure torsion. Now
let us assume that the rod is subjected to torsional moments, not only at the ends
but continuously along its axis; i.¢., there exists a distribution of torques, say ¢(x)
(having units N-m/m), which is a function of x, as shown in Fig. (7.3.7), such that
the torque at any section is 7' = 7'(x). Then, again, the arguments of symmetry,
which were used to establish the basic displacement pattern, no longer hold true:
since one can no longer state that all cross-sections deform identically, one cannot
assert that plane sections remain plane and that all radial lines remain straight
lines. Consequently, the results given by Eqgs. (7.2.9)-(7.2.21) are no longer exact.
However, if we now assume that any warping of the sections is small and that straight
lines do not deviate much from straight lines in the deformed state, then, starting
from this basic premise, we arrive at the same expressions, except that 7 now is a
function of x. It then follows that, in lieu of Egs. (7.2.9) and (7.2.11), we have the
approximate expressions

T
T(x)
7(x) = T(j)r, (7.3.63)
Ox) = % (7.3.6b)

Example 7.2: An aluminium shaft (with yield strength in shear, 1o = 55 MPa,
and shear modulus G = 26 GPa) is composed of two segments AB and BC, as
shown in Fig. (7.3.8a). Externally applied torques, T{ = 8,000 N-m and T; =
5,000 N-m are applied at B and C, respectively. Determine the maximum shear
stress in each section and the total angle of twist at Cif the shaft is held fixed
at A.

Solution: From the free-body diagrams [Fig. (7.3.8b)], we find that Tap=
13,000 N-m in sector AB and 7ac = 5000 N-m in sector BC. The torque 7(x) is
plotted as a function of x in Fig. (7.3.8¢c).

From Eq. (7.2.14), with R = 6 cm, Jag = 7 R*/2 = 6487 cm*. Similarly, in sector
BC, Jac = 1287 cm?.

In sector AB: 1y = B8% = (13 x 10%) - g = 3830 N/em” = 38.3 MPa. Using
Eq.(7.2.18),

bp — da = Tanlne _ (13 x 10%) - 20 =4.91 x 107 rad.

GJan (26 x 107)(648x - 10-5)
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TX)A
(N-m) 13,000
L—_——I 5000
0 > X
©
Figure 7.3.8
In sector BC: 7,5 = Zg = (50 x 104) . % = 4970 N/cm? = 49.7 MPa.
TacLpe , 1.0 .
— = =(5x1 . =4.78 x 107 “rad.
b= "gr G x 109 5o 10°)(1287 - 10-8) x
Noting that ¢4 = 0, the total angle of twist ¢¢ is therefore
dc = (d5 — da) + (¢c — ) = (4.91 + 4.78) x 1072 = 0.0969 rad = 5.55°.
Note that we have implicitly neglected the localised effects at sections A, B, and C.
g
Example 7.3: A series of rotating gears acts along the surface of a circular
shaft of radius R and length L, producing a torque t (N-m/m) per unit length
along the shaft, as shown in Fig. (7.3.9a). Determine the maximum shear
stress in the shaft and the angle of twist ¢ at x = 0. Express the answer in
termsof t, R, J, L and G.
¢ (N-m/m) £ (N-m/m)
ey T(x)
*‘ 2 o dddDT™
i L R ‘—x*|
@) €))
TI
o} > X
—tL L__I_i:g ________________
© Figure 73.9

Solution: Using a free-body diagram [Fig. (7.3.9b)], we note that the torque T'(x)
at any section x is given by T'(x) = —f - x. The linear variation of 7(x) is shown in
Fig. (7.3.9¢). The maximum torque therefore occurs at the right end and is given by
T=—tL.
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(a)

Figure 7.4.1

(b)

From Eqgs. (7.3.6),

ey = LR _ LR 7373)

max|— 7 = 7 ( S./a
—tx

Bx) = —. 7.3.7b

&)=~ (7.3.70)

Since, here, the torque T = T(x), we can no longer use Eq. (7.2.18) or (7.2.20) to
determine the rotation, but must instead use Eq. (7.2.17); thus

L
1 1L?
- = =, 7.3.
$p — ¢a = re¥i / YT, (7.3.8a)
0
Since ¢g = 0, we find that the section at x = 0 rotates through an angle
L 7.3.8b)
AT 26T (7.3.
Note that ¢4 > 0 indicates a counterclockwise rotation. O

7.4 Some practical engineering design applications of the theory

The results obtained in the previous section find particular use in the application
to several engineering design problems. We consider two such applications in the
examples below.

Example 7.4: It is required to design a shaft such that when subjected to a
torque, the maximum shear stress and unit angle of twist ® should be kept to
a minimum. Because of space limitations, the maximum permitted diameter
is 5 cm. Two members are available: a solid shaft having a radius R=1.5wm
and a hollow tubular section with inner radius R, =2.0 cm and outer radius
=2.5 ¢cm [Fig. (7.4.1)]. Determine the ratio of maximum shear stress of
the solid to hollow section, i:‘ii and the ratio ©,/0y, where &, and ©
denote the unit angle of twist for the solid and hollow shafts, respectively.

Solution: We note first that the cross-sectional areas of the two shafts are the same;
namely 4; = 7 R? = 2.257 and 4y, = 7(R% — R?) = n(6.25 — 4) = 2.257.
For the solid shaft,

TR
Tinax, —I ’ (74 la)
T
O, = —, 7.4.1b
=G ( )
while for the hollow shaft,
TR
Tmas, Jho, (1.4.1¢)
On = L (7.4.1d)
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If the two shafts are subjected to the same torque, then

Towy _ Ry (7.4.22)
rmaxh RU Js '
95 = ﬁ (7.4.2b)
Oy Js

For the given values,

s w(Re—RN/2  Ry—-R/ (25" -2

— = = =4.51.
. TRY)2 R 1.5%
Therefore
1.5 ]
Tmav _ 2 L 451=272. =2 =45l
Tmaxy 2.5 (")h

We therefore conclude that for two members having the same cross-sectional area,
the hollow one is much more efficient than the solid one. The solid member 1s less
efficient because stresses in the section close to the centre of rotation contribute little
to the resisting torque as the ‘lever arm” (with respect to the x-axis) at these points
is relatively small. In the case of the hollow shaft, all points in the cross-section have
relatively large lever arms. Thus, in the hollow cylinder, the stresses provide a greater
contribution to the resisting torque. (Although, as we have observed, a hollow shaft
is indeed more efficient than a solid one, we mention here that other design criteria,
such as stability of the shaft, may nevertheless often require that a solid shaft be used
in the design.)

Example 7.5: Two steel shafts are to be connected by means of eight bolts
acting through the flanges of the shafts, as shown in Figs. (7.4.2a and b).
The bolts are evenly spaced and are located along a circle whose diame-
ter is Dp =20 cm. If the average permissible shear stress in the bolts is v =
40 MPa, determine the minimum required diameter d of each bolt if a torque
T =5600 Nm must be transferred between the shafts.

Figure 7.4.2

Solution: Since the function of the bolts is to transfer the torque, they must each
exert a force, in the circumferential direction, F,=27/n Dy [Fig. (7.4.3)]. Clearly
this force is transmitted via shear stresses, 7y, in the bolts. Assuming that the average
shear stress in the bolt is evenly distributed throughout its cross-section, we write
Ty = Iy / Ay, Where Ay is the cross-sectional area of each bolt. Therefore we have

2T
nDb - Tp (743) Figure 743

Ay =
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and hence
2-(5600 x 10%)

- = 1.75cm?.
8- (20) - (40 x 107) cm

b

The required diameter is therefore d = 2./4,/m = 1.49 c¢m. In practice one would
use bolts with a diameter 4 = 1.5 ¢cm.

It is worthwhile to remark on the use of the term ‘average permissible shear stress
in the bolt’. From previous observations, we recall that shear stresses at the edge
of a cross-section, which represents a free lateral surface, must necessarily be zero.
Therefore, in using the above relation 1, = F,/ Ay, we obtained but a rough average
value; it clearly does not represent the true shear stress distribution found in the cross-
section. Such an expression is a typical example of crude approximations, which are
often used for engineering design purposes. (i

Circular shafts evidently are widely used in transmitting power in machinery. For
example, in an automobile, power of the engine is transferred to the wheel axes by
means of a circular shaft. Similarly, shafts are used to transfer power in electric motors.
We consider a practical application of the theory to such a problem.

Example 7.6: The solid steel shaft of Example 7.1 (D =8 ¢m, 7,= 145 MPa) is
to be used as a transmission shaft to transmit power from an electric motor.
Determine the maximum power that the shaft can deliver and remain elastic
if it rotates with N = 1200 rpm (revolutions per minute). Express the answer
in Watts. [Note: Watt=1 N-m/s.]

Solution: In Example 7.1, the maximum elastic torque T was found to be Tg =
14, 580 Nm.

Recalling that power represents work per unit time, we first calculate the work
done by the torque Tt. Now, since the work of a torque (torsional moment) is given
by W = Ta, where o is the angle through which the torque rotates, the work done
in one revolution is W = 2 T'. If the shaft rotates, for example, at N revolutions per
minute, the power P (work per minute) of the torque is then

P=2aNT (N =rpm). (7.4.4a)

Alternatively, power can also be expressed as work per second in terms of Hertz
(Hz = frequency per second) according to the relation

P=27fT (f=Hz). (7.4.4b)
Substituting T = T% in this last expression (with /= 1200/60 =20 Hz),
P =2mfTg = 27(20)(14.580) = 1832 x 10° N-m/s = 1832 kW.

Thus we find that the given shaft can transmit up to 1832 kW and still remain elastic.
]

7.5 Circular members under combined loads

Consider a solid shaft of radius R (with polar moment of area, J) subjected to a
torque 7' as well as an axial load P acting along the centroidal x-axis, as shown in
Fig. (7.5.1). From Eq. (6.2.7), the axial stress is 0, = %, while from Eq. (7.2.12),
the maximum shear stress is T, = T~

From the previous results, we have determined that for elastic behaviour, the
strains and rotations are indeed quite small. Consequently, since the relations are also
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Figure 7.5.1

linear, according to the discussion of Chapter 5, use of the principle of superposition
1s permissible.

We now examine an infinitesimal element near the outer edge of the rod, as shown
in Fig. (7.5.2a), with the stresses o, and 7 acting upon this element. If the element
is sufficiently small, its curvature can be neglected and therefore the state of stress
may be considered to be two-dimensional, as in Fig. (7.5.2b). Consequently, the
stress components acting in any given direction can be calculated using the stress
transformations Jaws, Eqs. (2.6.6) and (2.6.8) of Chapter 2 [where the coordinate 6
corresponds to —y of Fig. (2.6.1)].

Tp.

X
-

—_—

Tox
(a) ) Figure 7.5.2

In particular, if P =0, the element is in a state of ‘pure shear’, as shown in
Fig. (7.5.3a). Therefore, according to the results of Chapter 2 (see Example 2.11),
the principal planes will, for this case, be oriented at 45° to the x-axis with principal
stresses oy = T and 03 = —t, as shown in Fig. (7.5.3b). Recalling that brittie materi-
als are weakest in resisting tensile stresses, we expect a rod made of brittle material
to fracture along such 45° lines. Indeed, from simple experiments, we find that
brittle rods subjected to torsion fracture atong a ‘helicoidal’ surface [Fig. (7.5.4)].

gy = -
5} Tx§

> : s
Figure 7.5.3

(a) (b)

helix

7.6 Statically indeterminate systems under torsion

Consider a rod fixed at two ends A and C against rotation and subjected to a torque
T at B, as shown in Fig. (7.6.1a). We wish to determine (a) the stress in sector AB
and BC a