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Preface

Engineering decisions must be made in the presence of uncertainties which
are invariably present in practice. In the presence of uncertainties in the
various parameters encountered in analysis and design, achievement of
absolute safety is impossible. It is now more than twenty five years since it
was proposed that the rational criterion for the safety of a structure is its
reliability or probability of survival. In structural reliability, the probability
of failure (which is taken as one minus reliability) is taken as a quantitative
measure of structural safety. Probabilistic concepts are used in reliability
analysis, and in the design of structures. Using structural reliability theory,
the level of reliability of the existing structures (structures designed by
existing structural standards) can be evaluated. It can also be used for
developing a design criterion, that is, calibrating codes and developing
partial safety factors, the use of which will result in designs with an accepted
level of reliability. Structural reliability has been applied to many decision-
making problems, such as development of partial safety factors, establishing
inspection criteria, taking suitable decisions for improving the capability of
existing structures, development of maintenance schedule etc., in the field of
engineering.

Presently, only four or five books are available on this topic. These
books, written by foreign authors, are very expensive and beyond the reach
of Indian students and engineers. A book on this topic giving information to
readers on the results of the reliability study of reinforced concrete structural
elements and frames, with the field data pertaining to Indian conditions, is
also presently not available. There has been an overwhelming need among
students (present and past), fellow teachers in engineering institutions,
scientists in research organizations, and field engineers for such a book on
reliability analysis and design of structures giving fundamental concepts of
structural reliability theory and illustrating its applications to practical
problems. Teaching the course to postgraduate students for the last eighteen
years, delivering a series of lectures given periodically to the participants of
short-term courses, and research experience have motivated me to write a
book which treats the topic in a simple manner so that structural reliability is
easily understpod and appreciated by readers.

The main aim of this book is to introduce the probabilistic bases of
structural reliability, the techniques and methods of evaluating the reliability
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of structural components and systems, the methodology in the development
of reliability-based design criteria, and the evaluation of partial safety factors
(code calibration). The whole ficld has been developed in such a way that
it is easily understood and followed by readers. Proofs and mathematical
derivations are given only if they serve to explain basic ideas, otherwise,
the original literature is ciled for proof. Another important aim of this book
is to focus the attention of academicians and engineers on the importance of
an awareness of the need for a reliability-based design criterion, which is
being followed in Norway, Canada, USA, UK and other countries which are
in the process of modifying their standards. The book takes care of beginners
as well as experienced specialists. Though the book in general deals with
reinforced concrete and steel structurcs, the theory presented and the
methods indicated could be applied to other structures also. The book will
serve as a useful text and reference book for students, teachers, scientists and
engineers. It is hoped that the book will provide enough foundation for
further research work.

This is the only book which deals with the reliability analysis of
reinforced concrete frames, adaptive sampling method (for component and
system) and response surface method to estimate reliability, and fatigue
reliability evaluation of bridges. The reliability analysis of structural
components as well as systems is covered in a single volume. The book
gives the results of analysis of field data on basic variables and the reliability
study of concrete structures for Indian conditions. Nearly 110 examples are
worked out. Problems with answers are given under "Exercise” at the end of
each chapter.

Basic concepts of structural safety are introduced in Chapter 1. Certain
inadequacies in the conventional safety checking methods are exposed and
the need for a probabilistic criterion is emphasized. A history of the
structural safety is also briefly traced in Chapter 1. The necessary
background on statistics and probability, required for understanding the
subsequent chapters and reliability analysis, is included in Chapters 2 and 3,
respectively. A number of examples are given, illustrating the applications
of probability theory in civil engineering.

The collection of field data on basic variables, and a statistical analysis
of the same, is a very important part of reliability study. The statistical
analysis of resistance variables and load variables is presented in Chapters 4
and 5, respectively. The established statistics of basic variables for Indian
conditions are also given.

The computation of the structural reliability for the fundamental case of
two variables, load and resistance, is treated in Chapter 6. Difficulties
encountered in the probabilistic analysis of structures are brought out, and
how the Monte Carlo technique can be used to tackle such problems is
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explained in Chapter 7. Applications of the Monte Carlo technique in
structural engineering problems are outlined and illustrated.

Simple methods of computation of reliability using first-order second-
moment mean-value methods, and Level 2 and advanced Level 2 methods
are treated in detail in Chapter 8. Statistics of basic variables, established in
Chapters 4 and 5, are used to illustrate the methods of evaluating structural
components' reliability. A number of problems are solved. The results of the
reliability study of the existing reinforced concrete designs as per the present
IS 456-1978 code are also given. Chapter 9 deals with the computation of
the partial safety factors for a specified or required level of reliability. The
method of fixing optimal partial safety factors, which will ensure uniform
target reliability under all design situations, is introduced. The methodology
of the calibration of code is also treated in the same chapter. Results of the
study of the evaluation of partial safety factors for Indian conditions are also
presented.

The system performance and its reliability are of more concern and
importance to engineers. The modelling of structures for the computation of
reliability is demonstrated in Chapter 10. Bounds on the reliability of
structural systems are introduced. Methods of generation of dominant
modes, and the reliability analysis of steel and reinforced concrete frames
are presented. Results of the reliability study of reinforced concrete frames,
designed as per the Indian Standard Code, are also given.

Considerable research work has been done in developing methods to
improve the estimate of reliability and also better sampling techniques in
simulation methods. Second order reliability method is briefed in Chapter
11. Advanced simulation methods to calculate reliability, based on
importance sampling method (ISM) and adaptive sampling method (ASM),
arc explained in detail and illustrated with examples. Response surface
method is also presented which can be clubbed with ISM and ASM.
Application of ISM and ASM to system reliability evaluation is included
with examples.

Fatigue is one of the principal modes of failure in bridges, offshore and
ship structures, pressure vessels etc. In Chapter 12, evaluation of reliability
of joints / details under fatigue is explained in a simple manner using S-N
curve approach. Reliability evaluation using lognormal format and Weibull
format are presented. For the desired reliability level, estimation of design
stree range for fatigue criterion and partial safety factors are also dealt with.
Number of examples are solved to demonstrate the fatigue reliability
evaluation. Application to offshore structures and bridges are explained.
Fracture mechanics (FM) approach is also introduced. The method of
evaluation of reliability, based on FM approach, is also presented.

While teaching the course, advanced topics discussing the generation
of dominant modes in frame structures, reliability analysis of reinforced
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concrete frames and advanced reliability methods may be omitted. Spending
only about 5 to 6 hours on Chapter 3, a course on first ten chapters can be
completed in a 35-hour lecture series. In case if the students have
background on basic statistics and probability, saving 6 hours in Chapters 2
and 3, Chapter 12 can also be completed.

I express my gratitude and indebtedness to Prof. P. Dayaratnam, former
professor, Indian Institute of Technology, Kanpur, who initiated me into the
field of structural reliability and suggested that I write a book on the said
field. He encouraged me throughout with his useful comments and
suggestions. | have used many of the results of the research work of students
who have worked under my supervision. [ sincerely thank them, viz. A. G.
Deshpande, Padmini Chikkodi, Neville Kumar Shetty, David Arulraj,
Bajare, C. P. Joshi, Ravi, Kulkarni, Potkar and Prabhu for their contributions
to the book. Thanks are also due to the students who attended my lectures
and who, through their participation and comments, led to the development
of the book. My wife's encouragement throughout the hard days of writing
this book is greatly appreciated.

R. RANGANATHAN
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Concepts of Structural Safety

1.1 GENERAL

"The evaluation of the safety of structures is a task of much importance. It
has been one of the subjects of interest for engineers. The safety of a
structure_depends on the resistance, R, of the structure and the action, S,
(load or load effect) on the structure. The action _is a function of loads
(live load, wind load, etc.), which are random _variables. ‘mmlar]y, the
resistance or response of the structure depends on the physical properties
of materials and the geometric properties of the structurc which are also
kilown that the above parameters were random vanahied, no seridus dttunpt
was made to consider their random variations, till 1960, in the analysis,
and design, and evaluation of safety. It was, probably, due to the reason
that engineers were not confident of applying probability theory or statis-
tics or other mathematical tools. It was only around 1960 that engineers
and research workers started realising the need for the evaluation of safety,
taking into account the random variations of the design parameters.

1.2 DESIGN METHODS

General principles for checking safety define a method for calculating the
behaviour and strength of structures subjected to loadings. Desngn methods
may be classified in the following ways.

1. By the way the coefficients related to safety are introduced:

Permissible Stress Method

This is also called the working stress design (WSD) method. Here, stresses
occurring under maximum service loads (working loads) are compared with
fractions of the strengths of materials. These fractions of the strengths of
materials are called permissible stresses. A structure is assumed to have
failed if stresses developed at any point of the structure are greater than the
permissible stresses. The safety is defined in terms of the factor of safety,
which is given by

failure stress

permissible stress

Factor of safety =

For ductile materials, viz. steel, the vield stress is taken as the failure stress,
and for brittle materials, viz. concrete, the ultimate stress is taken as the
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failure stress. In this method, the elastic behaviour of the material is
considered, (i.e. Hooke's law is valid) and the load deflection curve of the
structure is linear.

For structural sleel. the factor of safety is about 1.67. What does this
mean in connection with the safety of a steel structure ? [t does not also
convey how much load the structure will withstand. If" the factor of safety
is doubled, does it mean that the capacity of the structure is also doubled?
Definitely it is not because the behaviour of the material and structure is
inelastic near the collapse load. Just because the stress at a point is more
than the permissible stress, it does not necessarily cause the collapse of the
structure, especially in the case ol indeterminate structures, In the case of
reinforced cement conerete (RCC) structure, the use of permissible stress
method by introducing two different factors of safety—one to concrete
(about 3) and another to reinforcing steel bars (about 1.78) invites more
criticism, What is their combined ecffect in defining the safety of RCC
structure ? The points that were raised with respect to the steel structure
are more pertinent to RCC structure also where the behaviour is nonlinear
and inelastic.

Whenever combinations of loads are considered, viz., dead load - live
load -+ wind load or dead load + live load - earthquake load, an increase
in the allowable stresses (334 per cent) is considered since the likelihood of
all the loads reaching their maximum values simultancously, is remote.
However, there is no rational basis for the selection of the value, viz. 33}
per cent. It may be said that the safety defined in the permissible stress
does not reflect the true safety, or the actual safety that is available, The
structure designed by the permissible stress method is safe under service
load and is assumed or expected to carry the ultimate load.

Merits of WSD are:

() simplicity and
(i) familiarity.

Demerits of WSD are:

(1) A given set of permissible stresses will not guarantec a constant level
of safety for all structures. For example, if two roof structures—(a) RCC
“shell type and (b) RCC beam and slab type, designed for the same live
load using the same permissible stresses, are considered, the ratio ol the
dead Toad to live load for the shell type will be considerably much lowe;
than the ratio for the slab and beam type. Since the dead load can be esti-
mated and predicted more accurately than the live load, which is subjected
to more probabilistic variation, the shell roof structure will have a higher
chunce of failure than the heavier slab and beam type roof structure. That
is to say, two structures designed for the same live load using the same
permissible stresses will have different levels of safety.
(ii) The working stress checking format may be unsafe when one load
counteracts the other load. FFor example, consider a column, shown in
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Fig. 1.1, subjected to dead load D and wind load, . ‘The column has been
designed by the working stress method by limiting stresses uader service
loads in tension and compression to fifty percent of their respective strength
values, 3 N/mm? in tension and 20 N/mm?® in compression. The stress
distribution under service loads 1.0 D -|- 1.0 Wis shown in Fig. |.1c. When
the wind load is increased by twenty six per cent, it can be seen that the
stress at the point B reaches its failure level. Therefore, using the WSD
method can lead to designs with safety less than conceived adequate under
normal conditions, when loads counteract each other.

lD «
A — -
: 2
(a) “'”[ TTTTITIT 45  Stresses in N/mm
L (H":'._.IJ_ Due to D
575 .
(b) ‘l!z‘\
| Ll‘b\-\i |”| Due to W
100 T!]J
T s
(c) ¢ ™
i -
- . ‘LJ_“} ..‘”“Qm\l* Due to 10D+ 1-0W
(d) ¢ Tj
|1
._A L“ I B8 ey o

]
\E\la 00

FIG. 1.1 Working stress design with one load counteracting the other

Ultimate Strength Design and Plastic Design Method

In these methods, the safety is cnsured by magnifying the service loads (or
load effects, such as bending moments, etc.) and checking the structure at
this magnified load called collapse load. The magnification factor is called
the load factor, defined as the ratio of the ultimate load to service load: In
~ these methods, the safety is atleast related to the capacity of the structure.
“They take into account the inelastic behaviour of the material: In the
ultimate strength design, the elastic analysis is first carried out, and only
sections are designed for the factored load. Hence, moment redistribution
is not taken into account in the ultimate strength design applied to RCC
structures. However, the plastic design applied to steel structures takes into
account the redistribution of moments, and the analysis of the structure is
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carried out at the collapse load. The plastic design as compared to the
ultimate strength design, relatively gives a better picture of the true safety
of the structure.

In these methods, separate load factors are assigned to different loads.
Specifying a larger factor to the live load or wind load than the dead load,
reflects that the variability in the live load or wind load is known to be
larger than in the dead load. However, these factors have been selected
more or less only on the subjective judgement without any rational basis.

Factured load is an imaginary load which never comes on the structure.
These load factors, hke factors of safety, are not related to the life of the
structure If the load factor 2, assumed to ensure a 50 year life of the
structure, is increased by 50 per cent, it does not mean that the life to the
structure also increases by the same amount (1 e. life of the structure need
not be 75 years). The structure designed by the ultimate strength design
method or the plastic design method is safe against collapse load and the
same structure is assumed or expected to perform satisfactorily under
service load.

Limit State Method

A limit state is a state beyond which a structure or a part of a structure,
becomes unfit for use, or ceases to fulfil the function or satisfy the condi-
tions for which it has been designed.

The limit states are placed in two categories:

(i) Ultimate limit states—these correspond to the maximum load carrying
capacity (i.e. strength of the structure).

(ii) Serviceability limit states-—these correspond to the criteria (durability)
under normal load (service load) conditions.

The coefficients of safety are related to ultimate load conditions and service
load conditions. That is, increased loads (or load effects) are compared
with the relevant resistance of the structure where effects of the service load
are compared with specific values. This method is definitely better than the
previous methods as the safety is ensured under collapse load and service
load conditions.

2. The second way of classifying the design methods is based on the
safety conditions.

(i) Deterministic design methods where basic parameters (e.g. loads,
strength of materials, etc.) are treated as non-random.

(ii) Probabilistic design methods where design parameters are considered
as random.

In the conventional deterministic design method, it is assumed that all
parameters are not subjected to probabilistic variations) However, it is well
known that loads (live load on floors, wind load, ocean waves, earthquake,
etc.) coming on structures arc random variables. Similarly, the strengths of
materials (strength of concrete, steel, etc.) and the geometric parameters
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(dimensions of section, effective depth, diameter of bars, etc.) are subjected
to statistical variations. Hence, to be rational in the estimation of the
structural safety, the random variations of the basic parameters are to be
taken into account. Since load and strength are random variables, the safety
of the structure is also a statistical variable.)

In overcoming the uncertainties in the design parameters,i{ the safety
factor is ensured by taking the smallest value of the strength (Rs) and the
largest value of the load (Sl)) The safety factor, v, is taken as Ry/Si. This
way of fixing the safety in design is very conservative and leads to un-
economical design.

The second way of fixing safety is as follows:

Let 4R be the allowed deviation from R and 4 the allowed deviation from

S. For the safety of the structure,

R>S
R—4R > S + 48

4R as

R a8 AR)
G > ( 1+ 5 )/( 1 R
Hence, the minimum, value of the safety factor is
. 45 _ _AA)
v = ( 1+ S /( 1 R

If the maximum variations in R and § are 10 per cent and 20 per cent of
their respective computed values, i.e.

Ag =0.2 and ARE = 0.1
then the minimum value of v is
_ (1402
(1—-0.1)
= 1.33

The safety can also be expressed as the ratio of the mean values of R
and S. This safety factor is called the central safety factor, v, defined as

__ mean value of R
mean value of §

Definitions of safety factors vary widely and are probabilistically inaccurate.
To understand the drawback in defining the safety by central safety factor
consider Fig. 1.2 where probability density functions of R and § are plotted.
When R and S are plotted, it will be seen that both distributions overlap.
The shaded portion (overlap) in Fig. 1.2 gives an indicative measure of the
probability of failure of the element or structure.
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FIG. 1.2 Overlap of action and resistance distributions indicating failure
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1t will be seen now that for the same ve, the value of pr will be different.
Consider Fig. 1.3 where mean action and mean resistance are increased in
the same proportion keeping their standard deviations constant. Thus
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k=125
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fr(r)
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40 50

FIG. 1.3 Effect of failure probability due to proportional changes in action
and resistance

It is observed from Fig. 1.3 that even though v. remains the same, the
overlap of the two curves change, meaning the change of pr. Same things
hold good when kj is < 1.

If the mean values of R and S are kept constant and dispersions in R
and S are changed (Fig. 1.4), it is seen again that the overlap of the two
curves changes, indicating a change in the value of pr. Since the mean values
of R and .S arc not changed, v remains the same; but pr is different. The
probability of failure is affected by (i) the mean values R and S, (ii) the
standard deviations of R and §, and (iii) the point of intersection of the
two curves. (This clearly shows the inadequacy of defining safety by the
central safety factor. The best way to deline safely is by the probability of

B T T T T s o o S i 7 e :
failure or reliability, Freudenthal (1.1) said: “Because the design of «

-— W ; Y s . . .
structure embodies uncertain predictions ol the performance of sfructural
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FIG. 1.4 Effect of failure probability due to changes in dispersion of action
and resistance

materials as well as of the expected load patterns and intensities, the
concept of probability must form an integral part of any rational analysis
or design; any conceivable condition is necessarily associated with a nume-
rical measure of the probability of its occurrence. It is by this measure
alone that the structural significance of a specified condition can be
evaluated”. Since, the achievement of absolute safety or reliability in the
uncertain world is impossible, a probablllslu, approach to the evaluation of
safety becomes a sensible solution. The parameters encountered in civil
‘engincering problems are subjected to random variatjons. There is a need
for a rational approach to the evaluation of structural safety, taking into
account these random variations. The study of variability comes under the
domain of statistics and probablhty Usmg the IObdbthth approach, there
isa possnblhty of obtammg uniform rcllfﬁmny (umform performance in
Structures under dillerent. design _situations) which may probably lead to
economical designs. Hence, probabilistic approach must be used. Hence-
forth(safety will be defined by reliability which is defined as the probability
of survival of a structure under given environmental conditions. It is
nothing but the ability of the structure to fulfil its assigned functions
satlsfactonly for some specified time. In structural analysis and design, it is
the probability that a structure will not attain each specified limit during a
specified reference period. For convenience, the reliability is defined in
terms of the probability of failure (probability of unsatisfactory per-
formance) which is equal to I-the reliability of the structure)) When
probability theory is used in the limit state design, the method 1s called
probability-based limit state design.

Probab:hty-based Ltmlt States Destgn

In this design method, probabilistic methods are used to guide the selection
of the partial safety factors to loads and resistances of the structure or
structural element or materials of the structure, and they result in the de-
sired overall safety. The principal advantages of this design method
are (1.2);
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(i) more consistent reliability is attained for different situations as the
different variabilities of the various resistances and loads are considered
explicitly and independently

(ii) the reliability level can be chosen to reflect the consequences of
failure

(iii) it is a tool for exercising judgement in nonroutine situations

(iv) it provides a tool for updating standards in a rational manner.

The conceptual framework for the analysis of structural reliability and
probability-based design is provided by the classical reliability theory.

1.2

1.3
1.4
LS
1.6
1.4
1.8

REFERENCES

Freudenthal, A.M., “Safety and the Probability of Structural Failure”, Transac-
tions, ASCE, Vol. 121, 1956, pp. 1337-1375.

Ellingwood, B.R., T.V. Galambos, J.G. McGregor and C.A, Cornell, “Develop-
ment of a Probability Based Load Criterion for American National Standard
A58, National Bureau of Standards, Special Publication 877, Washington, D.C.,
June 1980.

EXERCISE

Is it possible to account for the uncertainties in loads in the working stress
method?

Is it possible to account for the uncertainties in loads and material strengths in
the ultimate load method?

What do you understand by limit state dcsign?

What is central safety factor?

What factors affect the probability of failure of a structure?

What do you understand by uniform reliability in structure?

Do you think that the use of factor of safety is related to the life of structure?

Do you think that a design obtained using the ultimate load method with a set of
load factors will ensure a particular life of the structure?
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Basic Statistics

S

/,/
| /Z,J’INTRODUCTION

~ In most engineering problems, experiments are generally conducted. Experi-
ments may be carried out to study a particular property of a material, such
as strength or, to study a natural phenomenonlee wind velocity, earth-
quake intensity or, to assess the stren Jth gf a beam, etc. Decisions are to
be made on tne basis of these experiments, Experiments or observations are
usually repeated several times under unlform or similar conditions. Even
though great care is taken to keep the conditions of experiments as uniform
as possible, the individual observations exhibit an intrinsic variability that
cannot be eliminated.
LConsnder the _production of concrete. If a concrete mix is prepared and a
set of three or five cubes are made out of this concrete mix and they are
tested for the compressive > strength, it will be found that each cube - will gwe a
different strength. If another batch of concrete is prepared for the same mix
ratio under the same conditions and a set of cubes are made out of this
concrete and tested, it will be found again that these cubes will give another
set of values for the strength of concrete. The average strength of concrete,
calculated for each set, will also be different. A typical set variation of
average strength of M 20 concrete, obtained from a project (2.1), is shown
in Fig. 2.1. It is found that the results of the strength obtained vary and do
not give the same value repeatedly for the same mix. Thls means thatthe

450 7
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FIG. 2.1 Set variation of cube strength of concrete
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strength of concrete of a mix is subject to random variations and it is nol
possible to predict the exact outcome of the test.

If a survey on live load on butldings is conducted, it may be observed
that the intensity of live load varies from bay to bay. A typical variation of
floor load intensity (IFL1) of an office building (2.2, 2.3) is shown in Fig 2.2.
The occurrence of live Joad 1s purely a random phcnomcnon It varies with
umc' It has been found that there is a variation {rom room to room in the
same floor, from floor to floor in the same building, and from building to
building.

L <
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Bay number

FIG. 2.2 Variation of floor load intensity

Normally there is sufficient control in the production of a particular size
of a material or the raw materials in the pr‘o‘dﬁ‘c’lél However, there will be
some variations This can be observed in the production of bricks or stcel
of column depth, observed i ma\ mldmg. pro;ect (2.4), |s shown in Flg 23,
Variations are generally small.”Variations are more proncunced in natural
phenomenon e.g. wind, rainfall, stream flow, height of ocean waves, etc.
Figure 2.4 gives the observed data on yearly maximum wind speed at

Bangalore (2.5). It can Le again observed that one cannot definitely tell
what will be the maxnmum\wmd speed in the coming year. The wind speed
i is probabilistic in nature.

~ 850
£
840} 5
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(o370 PO TN G -——, SEMN | 1 1
4 8 12 16 20

Column number

FIG. 2.3 Variation of column depth

It can be concluded that there exists a certain uncertainty in many of the
variables with which ¢ivil ¢ngineets are concerned, There are inherent varia-
tions in all the physical properties of materials, loads, natural phenomena,
viz, wind, earthquake, raifull, number of vehicles crossing a road junction,
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FIG. 2.4 Variation of yearly maximum wind speed at Bangalore

¥~ etc. The outcome of the event is not determmntc and it is_purely random

or pl‘ObdblllSllC in nature. [The degr'eev of unccrtamty or variations vary'

from sample to sample. =

Having accepted that there is bound to be some pattern of variations
inherent in all observed data, it is now the problem for an engineer to take
decisions based on the data. If the degree of variability is small and not of
practical significance, he may decide to ignore it by simply estimating the
variablc with its avcrage ofall observations [f (hc dcgrec of unccrtainty is

mmblc Ior cxample he 1 may choose the lowest value of the obscrvatlon
instéad-of the average. Such conservative decisions may niot always result in
economical designs and these estimates are at best the ‘rules of thumb’ for
the design to circumvent the challenges posed by the uncertainty.

However, in many problems the variations are too large 1o be overlooked
and hence call for a statistical or probabilistic approach. Data obtained
from measurements or experiments needs to be manipulated so that it
presents to the engineer some useful information. Statistics provides a power-
ful tool for this purpose. A basic notion of statistics is the notion of
variation. It is the science of making decisions on incomplete informations;
that is, drawing conclusions from the observed data.

2.2 DATA REDUCTION

From the collected data one can see that there is a range of possible values
of a random variable. The different values of the random variable are
associated with different probabilities of their occurrence. It is necessary to
rcplacc' a collection of data by a single number. One wants to give the best
esiimate of a random variable. Probably, the mean value (average value) of
the random variable is commonly used in getting a typical representation
of a group of data. An infinite number of observations are required in order
to determine this quantity. In practice it is impossiblé; one can only get a
best estimate of the population mean by a sample mean.
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Sample Mean

Sample mean X of a random variable X, is defined as

e 2 3 @.1)
n i=q

where x1, x2, . . ., xnis the sequence of the observed values, For illustration,
a set of data on the compressive strength of brick is given and its mean
value worked out in Table 2.1. The mean is a measure of the central
tendency (central value). This is by far the best statistic to numerically sum-
marize a distribution and the centre of gravity of the data. For a given data,
if one 1s asked to give only a single number, he would probably use this
sample mean as his best prediction of the variable. The mean value is
highly susceptible to extreme values of the observed data. Other measures
of the central tendency are the mode and the median.

TABLE 2.1 Computation of mzan, SD and CV of a set of data

SI. Strength of brick [x; — X| ;- Xn
No. (N/mm?)
I 290 3.1 9.6

2. 27.7 1.8 3.24

3. 29.7 38 14.44

4. 214 4.5 20.25

5. 24.7 12 1.44

6. 25.2 0.7 0.49

7. 20.0 5.9 34.81

8. 27.1 12 1.44

9. 29.7 38 14.44

10. 30.8 4.9 24.01

11. 20.6 53 28.09

12; 20.6 53 28.09

13: 30.1 42 17.64

14. 28.0 2.1 44|

15. 239 20 4.00

n=15 X = 388.5 Z = 206.40

X = 385 Variance = M = 1474

15 n-1
= 25.9 N/mm? s = 4/14.74 = 3.84 N/mm?
3.84
3 = %9 = 0.148

Mode is the most frequently observed data whereas the median is the
middle value of the observation when the values are arranged in the ranked
order of magniwude. If the number of observations are even, then the
average of the¢ two middle observations is taken as median. Mode is not
unique.

For the given set of data, it is desirable (o specify a number which gives
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an idea of the dispersion variability of the observations. The range, the
standard deviation (SD) and the coefficient of variation (CV) arc the general
measures of dispersion. ™

Range
The range R is given by
R = x1 — X (2.2)

where x1 and x;, are the largest and smallest values of n values of the obser-
vations respectively, It is seldom used as a descriptive parameter of popula-
tion since it indicates very little about the way the distribution appears
inside the interval of values. However, this measure is attractive mainly
because it is computationally convenient and simple.

The amount of scatter is clearly dependent on how much the set of values
devnatus from the central value. The greater the scatter, the larger the tota]
devratnon The standard devnatron is a measure of dlspersmn

Standard Deviation

This is defined as the positive square root of the average squared deviation
from the mean, i.e.,

52 = - [2‘ (xi — X)2 (2.3)
where s is the standard deviation. The above formula gives an estimate of s.
An estimator whose expected value is not equal to the parameter it has
estimated is said to be a biased estimator. The unbiased estimate of s is
given by

1 s
- fios X)B :
= —= Em-D (2.4)

Variance

This is defined as the square of the standard deviation. It is difficult to say,
purely on the basis of standard devialion or variance whether the dispersion

this reason, the coefﬁcrent of variation (CV) is often preferred and 1t is a
convenient measure for comparing the relative dispersion of more than one
kmd of data

Coqﬂic" ent of Variation
“This is defined as

—% (2.5)

where & is the coefficient of variation.
The calculations of variance, SD and CV, are illustrated in Table 2.1.
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2.3 HISTOGRAMS

The preceding section was mainly concerned with the collection of data and
the calculation of mean, SD and CV of a set of observations. Next step is
the presentation of the collected data in a useful form. The observations
are made and noted down as they occur and hence the collected data will be
in an unorganised form. This unorganised data is arranged properly. The
values are marked in increasing order. These ordered values are then divid-
ed into intervals and the number of observations (frequency of observations)
in each interval is plot't'cd as bar. The plot obtained is called a histogram.
For plotting histograms, the approximate number of intervals may be select-
ed by using the following formula (2.6):

a=1+33logn (2.60)

where a == number of intervals between the minimum and maximum
values and
n == sample size (number of observations)

If the proper interval for drawing a histogram is not taken, the plot may
not give the correct picture of the underlying distribution of the variable,

Let the length of the brick be considered as a variable. A sample of 400
bricks are tested. Using Eq. (2.6a), the number of intervals for drawing a
histogram for a sample size of 400 is

a = 1- 3.3 logio 400 = 9.59 (2.6b)
The grouped data on the length of bricks is given in Table 2.2. For this
grouped data, the histogram of the length of brick is shown in Fig. 2.5a.
The histogram gives the investigator an immediate impression of the range
of the data, its most frequently occurring values and the degree to which it
is scattered.

TABLE 2.2  Grouped data on length of brick for drawing histogram

Range (nmim) Frequency Relative frequency Cumulative frequency
221 223 | 0.0025 0.0025
223 225 3 0.0075 0.0100
225 227 25 0.0625 0.0725
227 229 71 0.1775 0.2500
229 231 92 0.2300 0.4800
231-233 88 0.2200 0.7000
233 235 75 0.1875 0.8875
235 237 33 0.0825 0.9700
237 239 10 0.0250 0.9950
239241 2 0.0050 1.0000

n 400 1.0000

Relative frequency is obtained by dividing the number of observations in
an interval by the total number of observations. The calculation of relative
frequency is illustfated in Table 2.2. In Fig. 2.5a, the relative frequency is
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also marked on the Y-axis on the right side. The relative frequency yields
the investigator an immediate idea that what is the chance of the variable
lying within a specified range. From Table 2.2 and Fig. 2.5a, it can be seen
that the chance (probability) of a value for a length L lying between
229 and less than 231 is 0.23, That is

P(229 < L < 231) = 0.23

— e ———

where P(X) should be read as the fn‘dbébility of X.
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In Table 2.2, cumulative frequency has also been computed, The cumula-
tive frequency— “less than a particular value”—is obtained by adding the
frequencies one by one starting from the top of the frequency table, Similarly,
cumulative relative [requency can be computed as shown in Table 2.2. From
the table it can be interpreted that the chance of getting a value for the
length of brick less than 231 mm is 0.48. That is

P(L < 231) = 0.48

The cumulative frequency diagram of the length of brick is shown Fig. 2.5b.
From this diagram one can quickly say what is the chance of getting a
value for a length less than a particular value. For instance, this is equal to
0.7 for the specified value of a length equal to 233. Frequency distributions
of the field data on the strength of M 15 concrete, floor live load in office
building, yearly maximum wind speed and the strength of over-reinforced
prestressed concrete beam are shown in Figs. 2.6, 2.7, 2.8 and 2.9 res-
pectively (2.1, 2.3, 2.5, 2.7).

The histograms shown in Figs. 2.6 to 2.10 have different shapes. It can
be seen in Fig. 2.5 that the histogram is symmetrical about the mean whereas
other histograms are not; that is, they are skewed. Whether a histogram is
symmetrical or not can be found by computing the coefficient of skewness.

108 ——— 027
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Oz 2 26 36 7 370

Cube strength (N/ mm?)

FIG. 2.6 Frequency distribution of M 15 concrete
Coefficient of Skewness

The sumple coeflicient of skewness is related to the third moment about the
mean. The coeflicient of skewness e is given by

¢l ‘IT[I L"'l (xi — X)J] 2.7

N e

The coefficient of skewness is 4 measure o skewness or asymmetry about
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the mean. The coefficient is positive for histograms skewed to the right (i.c.
with longer tails to the right) and negative for those skewed to the left (i.e.
with longer tails to the left).

/2‘)4 SAMPLE CORRELATION

Engincers on many occasions may have to deal with two variables of
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related interest; one viniable may depend on the other. When pairs of data
of two variables are plotted as shown in Fig. 2.10, a plot called scattergram
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is obtained. A numerical summary of the tendency of the high values of one

variable X pairing with the high values of the other variable Y or, the high

values of X pairing with the low values of Y is given by the sample
covariance Sy, which is defined as
l n

Syy = 1 lZl (xl T Y)(}’: =~ Y) (2~8)

n—

If syy is positive, it means that the high values of X pair with the high
values of Y and if s, is negative, the low values of X pair with the high
values of Y.

Sample Correlation Coefficient

The sample correlation coefficient is obtained by normalizing the sample
covariance with standard deviations. The sample correlation coefficient, ry,,

is given by
Sxy 1 d xt—z‘_’)(y:—Y)
o BT o >

v T sy m— 1 1=1( £y 5y @)

rxy is a dimensionless quantity and its value varies from —1 to +1. The
correlation coefficient gives a measure of the degree of the linear depend-
ence of the two variables. If ry, is equal to 1, variables are perfectly
positively correlated, and if r equal to — 1, variables are perfectly negatively
correlated. If ry, = 0, there is no linear dependence between the two
variables. Calculations of the sample covariance are illustrated in Table 2.3.

TABLE 2.3 Computation of sample covariance and correlation coefficient

Cube Cylinder
SI. strength strength ;- X) -9 -0, -9
No. Xy Y
(N/mm?) (N/mm?)
1. 15.17 9.86 —6.565 —3.955 +25.965
%, 17.92 11.29 -3.815 —2.525 + 9.633
3. 20.13 12.48 —1.605 —1.335 + 2.143
4, 22.54 . 14.65 +0.805 +0.835 4 0.672
s. 24.80 15.38 +3.065 +1.565 + 4.797
6. 18.67 11.95 —3.065 ~1.865 ~ 5.716
7 22.91 14.43 +1.175 +0.615 + 0.723
8. 21.70 18.00 +5.965 +4.815 +28.721
9. 29.24 18.42 +7.505 +4.605 +34.561
10. 18.27 11.69 ~3.465 —2.125 + 7.363
Z 211.35 138.15 108.862
X =21.735; ¥ =138I5; sy =4.533 sy = 2868
1 - A
syy = (lo—_—l)(los.ssn = 12.096 | fk _
- 1209 oo Sy T T o

'XY T I533%2.868 /
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From Table 2.3, it is noted that rxy = 0.93, indicating that the cube strength
and the cylinder strength of concrete are linearly positively correlated.
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EXERCISE

2.1 The test results of the compressive strength (N/mm?) of 50 concrete cubes obtain-
ed from a building project are given below:

17.24 16.18 16.53 15.20 18.40
19.73 17.24 20.53 19.38 2342
17.60 18.76 20.00 20.36 20.27
19.82 20.09 21.78 19.82 19.11
2142 22.31 21.66 21.15 20.36
13.60 14.98 15.08 18.01 14.93
13.96 15.64 15.56 16.09 13.96
13.87 15.75 12.11 17.18 16.20
15.65 16.27 14.83 13.24 15.03
13.96 15.58 17.36 16.29 16.71

Calculate the mean, the standard deviation, and the coefficient of variation of the

strength of concrete for the given data. Plot a histogram. Determine the chance of
getting a value fess than 15 N/mm?,

(Ans. X =1741,s =276, P(X < I5) = 0.37)

2.2 Samples of soil are collected from various depths below ground level and tested in
the laboratory to determine their shear strength. The collected field data are given

below:
Depth (m) 2 ) 4 ) 6 i
Shear (kN/m?) 148 203 32.2 39.0 4.0 56.4

strength
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Determine the sample covar’ ince and correlation coefficient between the depth of
the soil and its shear strength. What do you infer?

(Ans. syp = 2799 ryyp = 0.987)
For the data given in Exercisc 2.1, determine the coeflicient of skewness. What do
you infer? {(Ans. 0.27)
What do you understand when you get a negative correlation for a given set of
data? Give an example in a civil engincering field where negative correlation
appears?
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Probability Theory

3.1 INTRODUCTION

In every walk of life pcople make statements that are probabilistic in nature
and that carry overtones of chance; example, we might talk about the
probability that a bus will arrive on time, or that it may rain tomorrow,
or that a child to be born will be a son, or a flood may occur in a river this
year...,and so on. What is the characteristic feature in all the above pheno-
mena? It is that they all lack a deterministic nature. Past informations, no
matter how voluminous, will not allow us to formulate a rule, and to deter-
mine precisely what will happen when the experiment is repeated. Phenomena
of the above type are called random phenomena. The theory of probability
involves their study. Variables in engincering problems can be classified as
shown in Fig. 3.1. In a deterministic study, parameters may be considered
as a function of time (time variant) or in sonc problems they may be inde-
pendent of time (time invariant). Similarly, in a probabilistic study variables
may be treated as time invariant or in many cases time variant (e.g. wind
wnd. occan-wave height, earthqgpake, etc.). When a random varjable as-
sumes values as a function of time, the variable is called a stochastic
variable. The probabilistic study of stochastic variables is called stochastic
process or random process. In most engineering problems, random variables
of interest are stochastic in nature. However, for simplicity, variables are
considercd as time invariant. This chapter deals with random variables
which are not stochastic.

/ Time invariant
Deterministic
Time variant

Time invariant

Probabilistic i

_ Time variant
(Stationary and norstationary)

FIG 31 Vanables and classification
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3.2 RANDOM EVENTS

Preliminary Ideas

Before discussing probability theory a few preliminary ideas that are used
in subsequent discussions are introduced in this section. The first is the
concept of an event.

Sample Space and Events

Consider a number of persons boarding a bus at a particular bus stop.
A survey is carried out daily at the same time. The capacity of the bus is
60. Let X be the number of persons boarding the bus. It can be seen that
X can assume value 0, 1, 2, 3, . . ., 60. Each onc is a possible outcome of
the experiment (experiment in a general sensc; here experiment is the
counting of the number of persons boarding the bus). Each of these out-
comes is called a sample point. The collection of all these possibie outcomes
of the experiment is called a sample space. Hence this sample space
consists of a set S of points called sample points. Each of these outcomes,
a sample point, is called a simple or elementary event. Let a simple event be
denoted by Ei, the subscript 7, here, denoting the number of persons. Then
for this example, ihere are sixty-one simple events denoted by Fo. E, Fa, . . .,
Ei, . .., Feo. Where E; is an event representing the occurrence of the variable
X taking a value i. The sample space for this experiment is

S = {Ev, Ey, E2,. . ., Eso, Eoo}

One may be interested in the collection of a set of outcomes in an
experiment. In this case, one may note down the number of persons board-
ing the bus—(i) less than 4 or (ii) greater than 5 and less than 10. Such events
are called compound events or simply events. If A is the event representing
the number of persons less than 4, then sample points in the evenl A are

A 2 {an EI, El) EJ}
and if the event B is defined as the number of persons boarding greater
than 5 and less than 10, then sample points in the event B are

B~ {Es, 9, ..., Eo}

If C is an eventdenoting the number of persons boarding the bus greater
than or equal to 4, then

C = {E4, Es, . .., E¢o}

when cvents 4 and C are compared, it can be seen that cvent €' consists of
all points that are not included in event A. Such two cvents are called
complementary cvents. A 1s the complement of C.

The formal definitions of various events are given below:

(i) Simple cvent: An event consisting of a single sample point. A simple
event cannot be decomposed into a combination of other events.
(i) Compound event: An event made up of two or more sample points.
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(iii) The complement event A¢ of the event A consists of all sample points
in the sample space not included in the event 4. In the cited example

A= C

(iv) Certain event: An event constituting all sample points in the sample
space.

(v) Null event is the complement of a certain event and is generally
designated as ¢.

In the experiment—number of persons boarding a bus-the sample points
have individually discrete entities and are countable. Such a sample space
is called a countably discrete sample space. If such a sample space has
finite nu-aber of peints, it 1s called countably finite discrete sample space.
A second example of the finite sample space is the observation of the
number of days in a year with temperature higher than say 30°C at a
particular location. Fach day of the yeur is a possible saumple point. The
sample space consists of 365 sample points. This is a discrete finite (count-
ably) sample space. Another example is the observation of a successful bidder
among the number of contractors bidding for a particular job.

Sometimes a discrete sample space may have sample point which are
counlably infinite. For example, the number of persons undergoing an ear
operation in a year in the whoie world. In this case the number of persons
could be theoretically any integer from zero to infinity. Such a sample space
is calivd « discrete (countably) infinite sample space. Another example is
the obscivation of the number of accidents along a busy road durning a
veat

Many cngineering problems or physical situations involve measurements.
Consider the experiment, the measurement of a deflection during the load
test of a reinforced concrete beam. It may be possible to get ainy value
(noninteger) of the deflection starting from zero with the instrument (dial
gauge). If the least count of the dial gauge is 0.001 mm, deflections could
be obtained at an increment of 0.001 mm siarting from zero. The sample
points may be 0.000, 0.001, 0.002, 0.003, .. » where nisthe number of
points which may be effectively large. The sample space will have a conti-
nuum of sample points. Such a sample space is called a continuous sample
space. Lor convenience, a continuous sample space is defined from 0 to <o,
e, any value greater than zero is assumed as a possible outconmie of an
cxpetiment. In some situations, the variable of intecrest may assume negative
values. For o example, the deflection of a simply supported prestressed
concrete beam. During the initial loading stages of the beam, the beam
will have an upward (negative) deflection, and after a certain Tevel of the
external load, a downward (positive) deflection. In this case, the interval
— ¢ to | o beecomes the saumple space. Another example of this case is
the measurement ol error,

In some plhiysical situations, it mayv be known [rom physical conditions
that a continuous variable ol interest can assume a value within a finite
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interval only. For example, (i) wind directions can be observed from 0° to
360° and this finite interval becomes the sample space, (ii) the strength of
M 15 concrete if one assumes that the strength value cannot exceed 40
N/mm? or be less than 8 N/mm?. Then the interval 8 to 40 N/mm? is the
sample space. Events in a continuous sample space can also be defined. A
few examples are given.

ExampLE 3.1 Consider a traffic engineer noting down the number of vehicles
ou asmall bridge at a particular instant. The maximum number of vehicles
that can be at a time is 10. Sketch the sample space and show the events
(i) observing less than four vehicles, and (ii) observing greater than 5 and
less than 9 vehicles.

Solution: Let
Ei = the event observing i vehicles.
Hence, the sample space is
S = {Eo, E\, Ea, . .., E}

and this is shown in Fig. 3.2. This is a finite discrete sample space.

_~—Event A /~Event B
- e b .;_._A_v,_‘z.,-u*,_
e O e R e 1 [ Tt o |
€0 € E; €3, €, Es |Eg E; Egy
l__...__.r_..__..__.l L g i et s g ;i d
Eg Eyo

FIG. 3.2 Sample space and events—Example 3.1

Let

A = the event observing < 4

B = the event observing > 5 and <9
These events are also shown in Fig. 3.2.

ExXAMPLE 3.2 An engineer at an airport is measuring the wind speed at
regular intervals of time. Sketch the sample space and mark the event A4
observing the wind speed less than 40 kmph and the event B observing the
wind speed 60 kmph.

Solution The possible outcomes of the measurement of wind speed can be
from 0 to co. Hence, this is a continuous sample space. This is sketched in
Fig. 3.3. Events 4 and B are also marked in the same figure.

In many problems we are interested in events which are actually the
combinations of two or more events. Although the reader must surely be
familiar with these terms, let us review them briefly.

Let us now define relations between events. Consider counting the number



26

‘8

- '—‘?‘ T
0 20 40 60 a0 100 -

- A | W:nd zpecd (4mph)

FIG. 3.3 Sampvle space and events—Example 3.2

of vehicles on a bridge at a time (Example 3.1). The sample space 1s
S s {ko, L1 Ea, B, ..., Eo}

Let A - = the event observing < 4 vehicles

C - the event observing > 2 and < 7 vehicles
Then we have the following relations between 4 and C:

(i) Both 4 and C occur together. This situation will happen when the
simple ¢vent £3 occurs. This is written as ANC and it is read as A
intersection C.

(ii) Either A or C or both occur. In the present example, this is the event
having sample points (Fo, E1, Fa, E3, Es, Es, Es). This is written as AUC
and is read as A union C, i.e. sample points in the event A U C are

AU C = (Eo, E1, E2, L5, Ea, Es, Es)

Lct D be the cvenl observing more than 7 vehicles. Then it can be seen that
the events A4 and D have no points in common. The event AN D is impos-
sible. This is written as

AND =0

and A and D are called mutually exclusive or disjoint events. Relations
AU C and ANC are marked in Fig. 3.4,

r - AUC ""J]
Event A~ /-AnC Vi Event C
T T e
"EW__E__E~,—\Q £, €5 € 'E
v Ep 1 2 &J 4 5 6 « E?
| == = i U VY [N J

; Stz
(i = |
L Y .
\ Event D

FIG. 3.4 Relationship among events

The union and the intersection of events are best understood by drawing
Venn diagrams shown in Fig. 3.5. In Venn diagrams, the sample space is



27

represented by a rectangle while events are represented by regions within
the rectangle.

.\ ANC
S 3
%7
(a) (b)
S A 3
OO | O
(c) (d)

FIG. 3.5 Venn diagrams for (a) intersection, (b) union, (¢c) mutually
exclusive and (d) complement of events

Consider the observation of the direction of wind speed at an airport.
This has a continuous sample space with the variable taking any value
from 0 to 360°. Let

A be the event observing wind direction < 100°
and B is the event observing wind direction > 100°

If the accuracy of the measuring instrument is 0.1°, then

S =#0:0,20.1,0.28 4wy, 100105-100. 15 B4 . ,360)
4 =(0.0,0.1,...,100)
= (100.1, 100.2, . . . , 360)

It can be seen that the union of the two events 4 and B contains all sample
points in the underlying sample space and these two are collectively
exhaustive. In general, two or more events are collectively exhaustive if the
union of all these events constitutes the underlying sample space.

A listing of a number of important laws obeyed by the combination of
the events is given below without formal proofs.

Identity laws tAUé =4, ANS =4
AUS = 6, AN$ = ¢
Idempotent laws : AUA = A4, ANA =

Complement laws : AUA° =S8, ANA°=¢
Commutative laws: AUB = BUA
ANB = BNA
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DeMorgan’s Law The complement of the union and intersection of events
is the intersection and union of their respective complements.

(AU BY = AN B* 3.1
(AN B) == AU B¢ (3.2)
Associative Laws:
AUBUC) = (AU B)UC (3.3)
ANBNC) = (ANBNC (3.49)
Disiribuiive Laws:
AUBNC) = (AUBN(4UC) (3.5
ANBUC) = (ANBUMUNC) (3.6)
Venn diagrams for associative and distributive laws are shown in Fig. 3.6.
) 3

(AUB) UC L(Ane)nc

FIG. 3.6 Venn diagrams for associative and distributive laws

Probability Measure and Axioms

The empirical notion of probability is that of relative frequency; the ratio
of the total number of occurrences of a situation to the total number of
times the experiment is repeated. When the number of trials is large, the
relative frequency provides a satisfactory measure of the probability asso-
ciated with a situation of interest.

A random experiment is a repetitive process or operation that in a single
trial, may result in any one of a number of possible outcomes such that a
particular outcome is determined by chance, and is impossible to predict.
Under a given set of conditions, a random experiment has N exhaustive,
mutuoally exclusive and equally likely outcomes A, A2, ..., An. If M of
the outcomes are associated with the occurrence of an event 4 and N-M
outcomes with the nonoccurrence of A, the probability of the occurrence
of A 15 (MIN), i.c.,

M

P(4) = N

If an experiment has a sample space and an event A is defined on &, then
P(A) is a real number called the probability of the event A4, or the probabi-
lity of A, and this P(A) must satisfyv the following axioms:
(i) For each event A of &
0<PA) <1
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(i) P(S) =1

(iii) If A1, A2, . ., are denumerable mutually exclusive events defined on
S, then
P(A1UA2UA3U. . .) = P(41) + P(A2) + P(43) + . . .
For a finite number of mutually exclusive events, say k,

k
P41UAU. . .U4) = 2 P(4) (3.7)

The probability of any event is the sum of the probabilities assigned to the
sample points within which it is associated.

From the axioms of the probability theory, the following formulae can be
obtained (students are expected to prove them) by drawing Venn diagrams:

P(AUB) = P(4) + P(B) — P(AN B) (3.8)
P(AUBUC) = P(4) + P(B) + P(C) — P(ANB)
--P(BNC) — P(ANC) +- P(ANBNC) (3.9)
This can be extended to the union of a number of events.

ExampLeE 3.3 During the route survey of a transport mini bus, 100
observations of the total number of persons travelling by the bus on a

particular length of the route yielded the following results (Table 3.1).
Observations have been made at random.

TABLE 3.1 Data for Example 3.3

No. of Number of- Relative

persons observations frequency
0 0 0
1 0 0
2 0 0
3 0 0
4 0 0
k] 0 0
6 1 0.01
7 2 0.02
8 1 0.01
9 3 0.03
10 4 0.04
i1 4 0.04
12 2 0.02
13 | 0.01
14 5 0.05
15 6 0.06
16 8 0.08
17 16 0.16
18 14 0.14,,
19 17 0.17 -~
20 16 0.16
Total number 100 Z =100

(Note: Capacity of minibus = 20)
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Define

A == more than 15 persons travelling by the bus

B =: >~ 12 and < 18 persons travelling by the bus
Solution  Assuming the number of persons travelling are mutually exclu-
sive events, we can use the relative frequencies given in Table 3.1 to repre-
sent the corresponding probabilities.
Hence,

P(4) = 0.08 -+ 0.16 -I- 0.14 - 0.17 - 0.16
= (.71

P(B) = 0.01 -+ 0.05 -+ 0.06 -+ 0.08 + 0.16
= 0.36

The verification of Eq. 3.8 is
(AN B) = (Exs, E)
Hence, P(ANB) = 0.08 - 0.16 = 0.24
According to Eq. 3.8,
P(AUB) = 0.71 + 0.36 - 0.24 = 0.83
This can also be calculated as
(AUB) = (Eu, Ex4, . . ., E9, E20)
= 0.0l + 0.05 + 0.06 - 0.08 |- 0.16
+ 0.14 - 0.17 -+ 0.16

= 0.83
Hence, the theorem (Eq. 3.8) is verified.
Two Dimensional Sample Space
Consider the same experiment discussed in Sec. 3.2, namely the number of
persons boarding a bus at a bus stop. Instead of counting the total number

of persons, one is interested to note down how many males and females
board the bus. Let

Eij == the event representing i men and j women boarding a bus

Then the sample space for such a case can be sketched as shown in Fig. 3.7.
The experiment in two-dimensional space involves an observation of 2
numbers at the same time.

Aunother cxample is that an airport engineer may be interested to note
down the wind speed and the wind direction for the orientation of an
airport. ‘This is & continuous two-dimensional sample space which is shown
in Fig. 3.8.

In some situations it is also possible to have a discrete-continuous
sample space. For example, in Example 3.1 if the traffic engineer records
not only the number ol vehicles on the bridge, but also the total weight of
the vekicles on the bridge at the same time, for such a case, assuming the
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FIG. 3.7 Two-dimensional sample space-number of men and
women boarding a bus (Note i +- j > 60)
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FIG. 3.8 Continuous two-dimensional sample space-wind
speed and direction

minimum weight of a vehicle is 30 kN and the maximum 300 kN, and the
maximum number of vehicles on the bridge at a time is 6, the sample space
will be as shown in Fig. 3.9.

Conditional Sample Space

If one is interested in the possible outcomes of an experiment, given that
some event 4 has occurred, the set of events associated with the event 4 can
be considered a new reduced sample space. In Example 3.3, given that 15 or
more men have been observed, the number of women boarding the bus will
have a reduced sample space as shown in Fig. 3.10. This is a conditional
sample space.

Suppose that in sampling the number of persons bording a bus at a bus
stop we restrict our observations only to women. Here, there is a new sample
space including only part of the elementary events in the original sample
space. This new reduced sample space is also a conditional sample space.



32

o
s

o
e

&
S

r~a
i e ¢

nNnumber of vehicles
- w

(=]
—

sl o e W e e e S
3 6 9 12 15 18
Total weight X1J0(kN)
FIG. 3.9 Discrete continuous sample space: number of vehicles

and their total weight observed over a small bridge
at an instant

20
c19y °
LT
E‘IB LY
8
;'17 ® e o
§
216 o0 o 0
1980 o 0o oo —_—, L -
5 10 15 20

Number of women
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Conditional Probability

As the title suggests, we are interested in the probabilities ol cvents, given
some condition. The conditional probability of an event 4, given the occur-
rence of an cvent B, is defined by

P(A | B) = %’—” k (2.10)

provided P(B) £ 0. P(4 | B) is not delined if P(B) =: (.

Examert: 3.4 In the previous Example 3.3, let usassume that it is given that
6 persons are travelling in the bus. Now under this condition, it is required
to find out what is the chance of observing 3 or fewer women travelling in
the bus.

Solution Lel

T the cvent observing 6 persons travelling
F the cvent observing 3 or fewer women
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The sample points in T are
(Esy0, Es,1, Fay2, E3,3, E2,4, E1,s, Eo,6)

Let it be assumed that the probability of observing a man travelling in the
bus is equal to that of observing a woman travelling in the bus. All proba-
bilities in the reduced sample space must add up to one. The probability of
observing each sample point in the reduced sample space is equal to 1/7.

Sample points in the event (T ) F) are

(Es,0, Es,1, E4,2, E3,3)

Hence.
KTNF) _ 4

P(T) 7
Note that all probabilities in the reduced sample space must add up to 1.

P(F|T) =

“XAMPLE 3.5  From acertain lot, 100 mild steel bars were selected at random
and tested for their yield strength and ultimate strength. If a specimen has
an yicld strength less than the guaranteed yield strength and less than the
guaranteed ultimate strength specified by code, we may define those cases as
failures. Under this condition, it was found that 25% of the specimens had
failed against yield strength, 209, against ultimate strength and 10% in
both.

(i) If a specimen had failcd against yield strength, what is the probability
that it had also failed against ultimate strength?

(i) If it had failed against ultimate strength, what is the probability it had
also failed against yield strength?

(i) What is the probability that a specimen failed either against yield
strength or against ultimate strength?

Solution Lct

Y = (specimens which failed against yield strength)
Z = (Specimens which failed against ultimate strenglh)
Given,
P(Y) = 0.25 P(Z) = 0.20
P(YN Z)=0.10
(i) The probability that a specimen also failed against ultimate strength,
given that it had failed against yield strength is
P(Y N Z)_ 0.10
P(Y) 0.25
= 0.4
(ii) The probability that a specimen also failed against yield strength,
given that it had failed against ultimate strength is
PY N Z) 0.10
P12 == = o0
= 0.5

MZ|Y) =
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(iii) The probability that a specimen failed either against yield strength ar

against ultimate strength or against both is
P(YUZ)=P{Y)+P(2Z)—P(Y N 2Z)
= 0.25 4+ 0.20 — 0.10
y = 0.35

AMPLE 3.6 Two vehicles are approaching a road junction. The action of
the driver of the following vehicle is dependent on the action of the leading
vehicle. The probability of the leading vehicle turning right is 0.3 and the
probability of the following vehicle turning right is 0.6. The probability of
both the vehicles turning right is 0.1. Determine (i) the probability of the
following vehicle turning right if the leading vehicle turns right.

Solution Let

L = the event that the leading vehicle is turning right
F = the event that the following vehicle is turning right

Given;
P(L)= 03, P(F) = 0.6
P(LNF) = 0.1
. _ 01 _ 1
(i) PF|L) = 03 3

P(LUF) =034 0.6 — 0.1 = 0.8

(ii) What is the probability of the following vehicle not turning right
when the leading vehicle is not turning right? i.e. to determine P(Fc | L°).

el Fey — }:(E‘;O !‘_c.).
P(Fe| L9) = PLY)
From DeMorgan’s Law,

P(Fe N [f) = P(F U L)

= | —=PFU L)
1 —0.8 =0.2
Hence
c €Y == _& - _z
P(Fe| L) = (t—=03) 7

(i) What is the probability of the tollowing vehicle not turning right
when the leading vehicle turns right? i.e. determine P(F¢ | L)
oty = PUS 0 L)
PIFL L) = =5
But
P(Fe () L) == P(L) - P(L N F)

0.3 —-0.1=02
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Hence

[3*]

0. 2
PEID=55=73
Rule of Multiplication

The probability of the joint occurrence of two events is equal to the margi-
nal probability of one of the events multiplied by the conditional probability
of the other, given that the first event has occurred.

We can rewrite the formula, Eq.( 3.10), to yield

P(4'N By = P(B)-P(4] B)> ' 3.11)

This is called the general rule of multiplication of the probabilities and is
extremely useful in many instances to find the probability that two events
will occur simultaneously.

The above theorem can be extended to the joint probability of a number
of random events A4y, A2, . . ., Au:

P(AI N Az, ..., N An) = P(ADP(A2| ADP(A3 | A1 N A2) ...
P(An| A1 N A2, . ..y ) Anzt)

ExaMmpLE 3.7 Twelve concrete cubes are being cured in the laboratory.
Out of them, 9 cubes were prepared from a batch of M 15 concrete mix and
the other three belonged to M 42 concrete mix. During curing, the marking
face of the cubes have been kept at the bottom by mistake. Now three cubes
are drawn at random from the curing tank one after the other. Find the pro-
bability that all the three cubes belong to M 15 concrete.

Solution Let
A1 = the event that the first cube is M 15 concrete

Similarly 42 and A3 are defined.
The probability that the first cube is M 15 concrete is 9/12 since 9 out of
12 cubes are M 15 concrete, i.e.

If the first cube is M 15 concrete, then the probability that the next cube is
M IS5 concrete is 8/11 since only 8 of the remaining 11 cubes are M 15
concrete, 1.e.

8

P(A2 | A1) = I

Similarly, it can be written that
7
P(A3 ] 41 N A2) = 10

(A1 N A2) implies that the first two cubes selected are M 15 concrete. Hence
the probability that the first three cubes selected one after the other at
random are M 15 concrete is
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P(A; N Az N As) = P(A1)P(Az2| ADP(43 | A1 N A2)

- 2(:—95)(%)(%

Probability Tree Diagram

In practice, a finite sequence of experiments are conducted. Each experiment
will have a finite number of outcomes with associated probabilities. A con-
venient way of describing such a process and computing the probability of
any event is by a probability tree diagram, illustrated below. The multipli-
cation theorem is used to compute the probability.

ExaMpLE 3.8 Consider a reinforced concrete rectangular beam, The ulti-
mate strength of beam is a function of the cube strength of concrete, [,
the yield strength of steel, f,, and other parameters. If the cube strength of
concrete and steel and other parameters are considered as not subjected to
random variations, the given beam is under-reinforced deterministically.
However, il fou and f; are subjected to random variations, then the beam
may be under-reinforced or over-reinforced, depending on the values assumed
by fiw and f;. When the beam is subjected to an external bending moment,
the beam may fail or survive depending on whether the external moment is
greater than or less than the resisting moment of the beam. It is given that
under a given external moment, the probability of the beam becoming under-
reinforced is 0.6 and the chance of failure of the beam is 0.1 under this
given event. The probability of failure of the beam is 0.2 if the beam is
over-reinforced. Assume the events under-reinforced and over-reinforced as
independent. Compute the probability of failure of the beam.

Solution Let

A = the event that the beam is under-reinforced

B == the event that the beam is over-reinforced

J- = the event failure

S - the event survival
the probability tree diagram is shown in Fig. 3.11. The probability of failure
of the beam, py, s

pr P(AP(F| A) - P(B)P(F | B)
- (0.6)(0.1) -I- (0.4)0.2)
0.06 -- 0.08 = 0.14

Statistical Independence

11" the occurtence ol an event 4 is not affected by the occurrence of another
event B, then it is said that the (wo events A and Bare statistically indepen-
dent. Mathematically, (wo cvents are said to be independent if and only if

P(A| B) = P(A4) (3.12)
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FIG. 3.11 Probability tree diagram—Example 3.8

Erom this definition, it can aslo be written

P(A N B) _
P(A N B) = P(4A)P(B) (3.13)
or P(B| A) = P(B)

Equation (3.12) or (3.13) is generally used to define the independence of two
events. By Eq. (3.13), it is meant that if the two events are independent, the
probability of their joint occurrence is equal to the product of their indivi-
dual probabilities of occurrence.

Extending Eq. (3.13) to a number of N events, 4, B, . .., N are mutually
statistically independent if and only if

} PANBN...N0 N)=PAPB) .. .P(N)» (3.14)

‘

In practice, an engineer may postulate that two e-vents are independent,
or it may be clear from the nature of experiments, or he may be able to con-
clude after sampling that there is no apparent relationship between the two
events.

ExamrLE 3.9 Two lakes a and b supply water to a city. The probability of
lakes @ and b becoming dry in summer is 0.2 and 0.1 respectively. Lake a
can supply 60% of the city’s full requirement when b fails (i.e. becomes dry),
and b can supply 80% of the city’s full requirement if a fails. The proba-
bility that both will become dry is 0.05. Calculate the probability that the
city will have its full supply of water during summer, if there is a failure of
the lake.

Solution Let

A = event lake a becomes dry

= event lake b becomes dry
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Then
P(A) =02  P(B) = 0.1
P(A N B) = 0.05

From the physical situation, it can be said that the chance of 4 becoming
dry does not depend on 8.

Hence
0.05
D>, e NS o
P(4]| B) s = 0.3
0.05
P(B| A) = 0.2 = 0.25

When there is failure, the conditional probability of the lake @ not becom-
ing dry, pi, is given by
P(4°0) B)
P(AUB)
. PA|BPB)
P(4) + P(B) — P(B| A)P(A)
(1 — 0.50)0.1) _ 005

4l

T (02) + (0.1) — (0.25602) ~ 0.25
Similarly, when there is failure, the conditional probability of the lake b not
becoming dry, p2, is given by

_ P(B° N A)
P2="P(4 0 B

_ P(Be | A)P(4)
P(A U B)

(1 — 0.25)0.2) _
025 =

If there is a failure of the lake, the probability that the city will have its full
supply of water during summer is

p1%0.6 + p2x0.8 = 0.6
Total Probability Theorem

0.2

0.6

Suppose B is an event which is accompanied by a set of events Ay, 42, .. ., A,
which partition the sample S such that they are mutually exclusive and
collectively exhaustive as shown in Fig. 3.12. One is interested in finding out
the probability of the event B, P(8B), which probably is not possible to obtain
directly. This is obtained as follows:

From Fig. 3.12, it is clear that

PB)=- P(BN A)+ PBN A2) + ...+ P(BN An

= 2 PO A (3.15)
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FIG. 3.12 Venn diagram for total probability

Expanding each term using the conditional probability theorem, we get,
n
P(B) = Z P(B|A)P(4) (3.16)

This is called the total probability theorem. This is illustrated with examples.

ExaMpPLE 3.10 Two cities, 500 km apart, are to be connected. Alternatives
are: connecting them by rail (R), highway (H) and air (4) by constructing
airports at 2 cities. The government will decide on the basis of the cost and
merits of each. The chance of selecting R, H and 4 is 0.4, 0.5 and 0.1 res-
pectively. However, if the government decides on constructing a railway line
the probability of completing it in 3 years is 0.3; similarly, for highway and
air link, the corresponding probabilities that they will be completed in 3 years
are 0.7 and 0.4 respectively.

(i) What is the probability that the two cities will have the means of
transportation in 3 years?

(ii) If some transportation facility between the two cities is completed in
3 years, what is the probability that it will be a rail transport?
Given:

P(R) =04  P(H)= 0.5
P(4) = 0.1
Solution Let B = the project completed in 3 years,
Then it is given,
P(B|R) =03 P(B|H) = 0.7 and P(B|A) =04

(i) Using the total probability theorem, the probability that the cities will
have a transport facility in 3 years is

P(B) = P(B | R)P(R) + P(B | H)P(H) + P(B | A)P(4)
= (0.3)(0.4) + (0.7)(0.5) + (0.4)(0.1)
= 0.51
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(ii) It is given that transportation facility is completed in 3 years. Uinder
this condition, the probability that this will be a rail link is given by

P(R N B)
P(B)

_ P(B| RP(R)

' P(B)

_ 10.3)(0.4) .

= 05] = ).233

P(R|B) =

(iii) It the government rejects outright the proposal of air connection,
what is the probability that the final decision will be a highway?
This is given by

PLH (1 (R U H)I
PR U H)
P(H)

P(R) -+ P(H)

0.5 5

0.4 -- 0.5 9

P(H|R U H) =

ExaMPLE 3,11 A waler supply system is to be designed to meet the demand
during any given day during a summer. There are three demand levels, Dy,
D2 and D3, being equal to 200,000, 300,000 and 400,000 litres/day 1espec-
tively. The probabilities of mecting these demand levels are 0.7,0.2 and 01
respectively. If the demand level is 200,000, the probability of the supply
being adequate during any given day in the summeris I and the correspond-
ing values for 300,000 and 400,000 litres/day are 0 8§ and 0.6 respectively
during any given day in the sumner.

(i) Find the probability that the supply will be adequate during any eisen
day in the summer.
Given:

P(Dy) =07 P(Dy) = 0.2 P(D3) == 0.1
Solution et
A the supply s adequate during uny day in the summer
Fhen s given,
PO Dy =]
MA| Dy = 0.8 and P(A | D3) = 0.6

Using the total probability theorem, the probubility ol the supply being
adequate on any one day in the summer is culeulated.

P(A) POALDO)PDY - P(A ] D)P(D2) - P(A | D3)P(D3)
(D7) 5 (0.8)(0 ) 1 (0.6)(0.1)
=07 | 016 | 0.06 (i 2
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(ii) If the adequate supply is observed, what is the probability that the
demand 1evel is 300,000 litres/day?

P(D2 N A)
P(A)

P(A | D2)P(D>)
i P(A)

- (0.8)(0.2) 4
092 23

P(D21{ A) =

Bayes' Theorem

If A1, A2, . . ., An are mutually exclusive and collectively exhaustive events
of the sample space &S, and B is anyevent in S as shown in Fig. 3.12, then
for any event 4,
i ; C{ W )
pai| B) - PBLANPA) (B0 2 3 19)
& P(B| A)P(4) ¢ 8
=

This can be considered as a converse problem of total probability theorem.
Bayes's theorem is quite useful in updating the available data.

ExaMPLE 3.12 Many government projects are executed by a contractor.
The chief engineer knows from his previous experience that the chance of
getting a good quality of construction from the contractor is 0.8 and a bad
quality of construction 0.2. The evaluation of the quality of construction is
decided by the hammer test (nondestructive testing in situ). 1f the strength
of concrete in situ obtained from the hammer test is >> 20 N/mm?, it is
decided that the quality of work is good. However, it is known that the
hammer test is not very reliable. The probability of a good quality work
passed by the hammer test is 0.7 and that of a bad quality work 0.2,

After a project is completed by the contractor, there is a dispute between
the contractor and the engineer about the quality of construction. The
hammer test is then conducted. If the good quality construction has passed
the test, what is the updated probability of expecting a good quality work
from the contractor?

Solution Let
G = good quality of work
B = bad quality of work
C == the work passes the test
Given: P(G) = 0.8
P(B) = 0.2
P(C|G)=07 P(C|B) =02
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The updated probability of expecting a good quality work from the
contractor is
g PGP(C | G)
P(C | G)P(G) -+ P(C | B)P(B)
0807
(0.8)(0.7) -+ (0.2)(0.2)

PG| o) =

0.56 ;
060 B34
In future, the engineer will use this value (0.93) as the probability of getting
a good quality of work from the contractor.
If another project is executed by the same contractor and that work also
passes through the hammer test, then
(0.93)(0.7)

PIGTO= (0.93)0.7) - (0.07)(0.2) = 09789

3.3 RANDOM VARIABLES

The random variable is a numerical variable whose specific value cannot be
predicted with certainty before an experiment. The value assumed bya
random variable associated with an experiment depends on the outcome of
the experiment. This value is associated with every simple event defined on
the sample space, but different simple events may have the same associated
value of the random variable, e.g. the strength of concrete, the wind specd
observed at a location, the number of persons waiting at a bus step, etc.
Sometimes artificial values may be assigned to a random variable associated
with simple events. For example, a random variable, of the quality of a
product, may assume different ~lates: poor, satisfactory, good, very good,
etc. Then each state may be artilicially assigned value as 1, 2,3, .. ., elc. A
random variable X on a sample space § is a function from the sample space
to a set of real numbers. The probability law of X, describing its behaviour,
is characterized by the probability distribution of X.

Discrete Variables
The probability law ol a discrete random variable is described by its pro-
bability mass function (PMY). For a random variable X, it is written as

py(x) = P(X = x) (3.18)

P(X == x) is read as the probability of X, taking a value x. The PMF of a
random variable must satisfy the three axioms of the probability theory.
Hence
(1) 0 < px(x) <1 for all x
(i) 2 px(xi) = 1
all x;

i
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all v < b
(it) Plu < X < bl= 2 px(xi)
all x, > a
If the PMF of a random variable is s given or known, one can immediately
tell the probability of the random variable X assuming a value x.
The probability distribution of a random variable X i is also described by
its cumulative distribution functlon_(CDF) "Fx(x). This is defined as

Fx(x) = P(X < x) for all x " (3.19)
For a discrete raﬁdom variable, o
| Fx(x) = LE e (3.20)
all x, < x

ExampiE 3.13  Let X be the number of days in a week at a place having a
rainfall greater than 5 cm. The following probabilities are assigned to the
possible values that X can assume.

[ 0.05 x=0
0.10 x =1
0.15 x=2
pa(x) = 0.30 x=3
0.20 x =4
0.10 x=1235
0.08 x=26
| 0.02 x =17
2 1.00

Note that the axioms of probability are satisfied. Plot the PMF and CDF of
X. Find the probability of observing

(i) two or fewer days having a rainfall greater than 5 cm
(ii) 3 or more days having a rainfall greater than 5 cm.

Solution The plots of PMF and CDF of X are shown in Fig. 3.13
From CDF, it is easy to calculate the probabilities. Thus,

(i) P(2 or fewer days) = Fx(2)
= px(0) + px(1) + px(2)
= 0.3

(ii) The probability of observing 3 or more days having a rainfall greater
than 5cm:

P(3 or more days) = 1 — Fx(2)
=1-03=
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Py (x)

PMF
03t

°;4 L'

Fx(x)
10

08 gt
_

06+

T

04}
02 !

0

—

P— L e " — T e TS, Di——
0 1 2 3 4 S 8 7 X
FIG. 3.13 PDF and CDF of X—Example 3.13

The PMF can be recovered from CDF. For example,

px(x = 4) = Fx(4) — Fx(3)

=08 — 0.6 =02

That is,

px(x)) = Fx(xi) — Fx(xi — €) 3.21)
where € is a positive integer which is equal to 1 in this problem.
Continuous Variable
This is a function which can assume a continuum of points in a given inter-
val. The probability of such a variable, X, assuming a particular value is

zero. Its probability law is described by its probability density function,
fx(x). The probability of X in the interval is given by

Pla< X < b) = r fx(x) dx (3.22)

It is to be noted that fx(x) itself does not give the probability. Itis only a
measure of the densnly of pl'obdblllly at the point. Probabilities are given
by integrals only. = B A

The PDF of X, in fact, is defined by

fx(x) — dFx(x)

dx
where Fx(x) is the CDF of X.

(TS S

(3.23)



45

If X can take values right from — to {0, then

Fx(x) = PIX < x] = J fx(x) 5 (3.242)

If X can take values only from O to co, then
TR = [ ods (3.24b)
For Fx(x) to be a proper disu"ibin’i(;n function, the following conditions

must be satisfied:
(i) Fx(—) =
(ii) Fx(c0) =1
(iii) Iw fx(x) dx =1
(iv) /x(x) = 0
(v) Fx(x) = 0 and is nondecreasing with x
It is obvious that

)‘ﬁ(h<xsb)=ib

—a0

Sx(x) dx — f_w Sx(x) dx
: = Fx(b) — Fx(a)
This is displayed in Fig. 3.14. )

— X

FiG. 3.14 Continuous random variable

ExaMpLE 3.14 The bearing capacity, Y, of a soil below a foundation is
known to vary from 200 to 400 kN/m?2, Its PDF is given as

— L <y <
o { 1 25) 200 <y <40

0 elsewhere

where k is a constant.
Determine the probability of failure of the foundation if the uniform load
on the foundation is 300 kN/m?.

Solution For the given function to be a proper distribution function,

400 ot
Loo () dy =1
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400 v 5
koo (1 = ) v = 50k = 1
k = 1/50

Therefore,

1 _ _y_) e
) = % 50(1 366 200 < y < 400

. 0 elsewhere
(i) The probability of failure of the foundation is
P(Y << 300) = Fy(300)

300 | y
= [l — ab) v =03
Jointly Distributed Discrete Variables

Here, two or more random variables are treated simultaneously. Consider
a number of persons travelling in a mini-bus having a maximum capacity
of n. One is conducting a survey and finding out how many men and
women are travelling in the bus for every kilometre length. Let X be the
number of men and Y the number of women travelling in the bus. These
random variables on a sample space with respective image sets are

XGS) == i 005 « 6 05,00
Y(S) = (v, 2, .« oy Yi)
The product set

X(S)Y(S) = {(x1, y1), (x2, y2) . . .}

is made into a probability space by defining the probability of the ordered
pair (xi, yj) to be P(X = x;; Y = y;) which is written as pxy(x;, y;). This— -~
funcfion iscalled the joint probability mass function of X and Y. Hence,

the joint PMF is

pxr(x, y) = Pl(X = x)N(Y = y)] (3.25)
the joint CDF is defined as
Fxr(x, y) = P(X < x)N(Y < p)] (3.26)
For discrete variables X and Y,
Fxv(x, ) = 2 2 pxy(xi, y) (3.27)

X Sxy <y
The conditions to be satisfied are
pxr(xi, ) =2 0
z PA pxy(xi, y;)) = 1

all AV all Y;

The joint PMF and the joint CDF describe the joint probability law or the
joint probabilistic behaviour of the variables.
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ExaMpPLE 3.15 Five RCC beams are tested in the laboratory to determine
the load at the first crack, and at failure. If the load at the first crack is
greater than 20 kN, it is classified as safe against cracking. Similarly, if the
failure load is greater than 35 kN, it is taken that the beam is safe against
collapse. Let

X = number of beams safe against cracking
Y = number of beams safe against collapse
Because of the random behaviour of the beam, if the beam is safe against

cracking, it is not necessary that it should be safe against failure. The joint
PDF of X and Y is given in Table 3.2 and displayed in Fig. 3.15.

TABLE 3.2 Joint PMF—Example 3.15

Y
N 0 | 2 3 4 5

XN\
0 0 0.02 0 0 0 0 2 =0.02 = py(0)
1 0.01 0.05 0 0 0 0 Z = 0.06 = pyll)
2 0.02 0.0t 0.1 0.01 0 0 Z =0.14 = py(2)
3 0.03 0.015 0.01 0.15 0.015 0.00 2 =022 = py(d)
4 0.04 0.02 0.015 0.0l 0.25 0.01 Z = 0.345=p,(4)
5 0.05 0.02 0.02 0.015 0.0! 0.10 2 = 0.215=px(5)
z 0.150 0.135 0.145 0.185 0.275 0.110 1.000

py(0) Py Py(2)  py(3) Py(d) py(5)
Pxy(x,y)

S P77

o AT 7

e L b s
% S L
LV

Gt

Determine the probability of the event £ which is defined as the count in
which the number of beams safe both in cracking and in collapse are the
same. (It does not imply that the same beam is safe in cracking and
collapse).



48

Solution
PE) = P(Y == X) == 2 P(X = x;, Y = yi)
= pxr(0, 0) + pxy(1, 1) + pxr(2,2) +
Pxy(3, 3) -i- pxv(4, 4) -+ pxx(5, 5)
= 0 4+ 0.05 -F 0.10 + 0.15 + 0.25 -+ 0.10
= 0.65

Marginal Distribution

bution of individual variables. The distributions of individual variables arc
called marginal distributions,/The marginal distribution of X is found by
summing over all the valueg of the other variable Y. That is,

px(x) = P[X = x] = 2 pxy(x, y)- (3.28)

/ all v,

The derivations of marginal distributions of X and Y are shown in Table 3.2
by adding values horizontally and vertically. Marginal distributions of X
and Y are displayed in Fig. 3.16.

From the joint distribution o;?«(i variables, it is possible to get the distri-

0# 04

-

oar 03k

ozr 02L

01;- 01
1 l | ] |
Oty =t R T T

A

FIG. 3.16 Marginal distributions of X and Y—Example 3.15

Fx(x) = PIX < x1= Z px(xi).

X;<x
= 3 X pxr(xi, ) (3.29)
x;&x all 7

Similar expressions can be written for the marginal distribution of Y.

It is to be noted that marginal distributions alone are not sufficient to
define the joint distribution. In Example 3.15 (Table 3.2), there are 36
points describing the joint distribution while two marginal distributions
have only 12 points,

Conditional Distribution

Given two discrete random variables X and Y with values x and yi, the
conditional probability mass function of X given that Y takes on the value
y1 is defined as

pxy(x, 1)

pxw(x fy) = pr(y1)

(3.30)
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The denominator is the marginal distribution of Y evaluated at the given
value of y1. For a proper conditional PMF of X,
0 < pxiv(x, y) < 1
and "2 pxiy(x, y) = 1
X

a

ExAMPLE 3.16 Consider the previous example and derive the conditional
distribution of X if Y takes a value of 1.

Solution The conditional PMF of X, given Y = 1, is

_ pxlx, 1)
pX'Y(x l ]) o p)'(l)

From Table 3.2, py(1) = 0.135
px1(0,1) _ 0.02

pxiv(0, 1) = 0135 = 0.135 — 0.148
O T "g_‘f;’sl) = 2 = 0371
par(2, 1) = p/g.(lz:isl = 00.'10315 = 00
= B0 08 o
pxir(4, 1) = px(;(;i»igl) 0(:."&25 = 0.148
an(s, 1) = P0G _ 002 0.148

0.135 ~ 0.135  Z1.000

“The plot of pyjv(x | 1) is shown in Fig. 3.17.

Py (x11)
0 4f
03F
02} %
Tl
0 A
o [ | 2 3 WS

A ———
FIG. 3.17 Conditional PMF of X--
Example 3.15

Jointly Distributed Continuous Variables

If X and Y are continuous random variables, their joint probability law is
described by their joint probability density function, fxv(x, ), defined as
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as b’
P <X <ay b Y b)= j jb Sxv(x, y) dx dy (3.31)

This is the volume under the function over the region.
For a proper joint PDF, the following conditions are to be satisfied:

(i) fxr(x,y) > 0  for all values of x, y
(ii) j J fey(x, y) de dy = 1
The joint PDF is also given by
o
Sxv(x, y) = MFXY(.\‘, ¥) (3.32)

where  Fxy(x, ) = PX < x; Y < y)

The probability density function of one variable, i.e. marginal density
function can be obtained by integrating out the other variable. Symbolically,
it is written as

fx(x) = JO_D Srev(x, p) dy (3.33)
The marginal CDF of X is obtained as
Fx(x) z=P(X < x) :»J’iw fx(x) dx (3 34)
= Fyr(x, @)

The conditional PDF of X, given that Y has taken a value yi, is defined

* (x. ‘l)

fx|y(x|V1) j\) (.Vl) 13.13)

-

The conditional CDF of X is defined as
Fyilx 'y = J' Iy b ) dy (3.36)

\AXAMPH 3.17 Il'two random variables, A" and Y, have a joint distribution

given by
. Xy 0 <<v < 0«3y« i
./.\')‘(.\', l') ¥
0 elsewhere

determine (i) the joint CDF of XY, (ii) the marginal distribution of X, and
(iii) the conditional PDF ol Y.

Solution (1) The joint CDE of XY is

Faylxoy) - J f (v v)dydy
vJu
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(ii) The marginal density function of X is

2
(¥ = IO Sxv(x, y) dy

= j'~ xy dy
0
= 2x Ol < |
(iii) The conditional PDF of Y is
(ol y) o S3r(e ¥)
f‘ [/‘(} I X) = fY(.\)

= _ ¥ :
o 3 O<y<2

Independent Random Variables

Two random variables are independent if and only if

) Fxv(x,y) = Fx(x)-Fy(y) -/ (3.37)
for all values of the random variables for w?wich the respective functions

are defined.
Two discrete variables X" and Y are independent if and only if

pxir(x | ) = px(x)

pxy(x, y) = px(x)-pr(y) (3.38)
Two continuous variables X and Y are independent if and only if
Txr(x, y) = fx(x)fr(y) (3.39)

Sxlv(x | ) = fx(x)
Srie(v | x) = fr(y)
Fxiv(x | y) = Fx(x)

The assumption of independence of two events permits one to get a joint
distribution from marginal distributions.

In the case of jointly distributed variables, only two variables have been
considered; however, whatever that has been done can be extended to
multiple variables.

3.4 FUNCTIONS OF RANDOM VARIABLES

Civil engineering problems often involve the functional relationships, which
predict the value of one variable (dependent) from the value of another
basic (independent) variable. For example, (i) the lateral pressure on a wall
is a function of the density of water and the level of water in the tank,
(ii) the intensity of wind pressure is a function of the drag coefficient and
the square of the wind velocity. If the basic variable (wind speed or the level
of water) is random, the dependent variable (lateral pressure or the intensity
of wind pressure) is also a random variable. This section deals with the
determination of the probability law of one variable from the other.
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Functions of Sing % Random Variable
Consider the case of one random variable X. Tt is given that
Z = g(X)
Where g(X) is a monotonically increasing function and Z is a single valued

function of X. For such a function, = = zi if and only if x = xi, namely

that the value for which zi = g(xy), as shown in Fig. 3.18, or when Z = z,
x = g~z) where g~! is the inverse function of g, then

P[7 = 2] = P[X = x]

= PIX = g7'(3)]

g(x) 227,

- — - = z=g(x)
I
|
[
|
}——.X g X1
/ Xl1 ‘ x

xy=a'(zy)

FIG. 3.18 Relation between random variable X and random
variable Z

Hence if X is a discrete random variable, the PMF and CDF of Z are
given by

pz(z) = palg™ ()] ¢ (3.40)
Fz(z) = z px(xy) s (3.41)
al!x/ < _\'"(z) &

If X is a continuous random variable, the CDF of Z is
Fz(z) = P[Z € z] = P{X < x]
= Felg ()] - -

Hence
s
Felz) = J‘i 5 Sx)dx 4 (3.42)
Since x = g7z),
dy = d—[‘l"d—:'ﬂ dz

Now Eq. (3.42) becomes

Fr(z) = Ju Sxlg ()] diz” ()] dz

dz
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Hence the PDF of Z is

fold) = L (g2 filg )]

~ % g @) v

[n gencral, the above equation 19 wi 1ttcn as

fa[g '( (3.43)

file) = [

The absolute value of d.\/dz is necessary sincc for some functions g(X), a
positive dx corresponds to a negative d= and vice versa (i.e. the function
may be a monotonically decreasing tunction).

Note: 1If each value of z corresponds to n values of x, i.c. the inverse
function x = g~!(z) is multivalued, then

fale) = | L\ g0 (3.44)

xRefer Example 3.21.

_EBXAMPLE 3.18 A column is to be designed for a load W which is equal to
its self weight s and a fraction of the live load L on the beam supported by
the column, That is,

W= s+ cL

where c is a constant (positive). Assume that L alone is a random variable.
Find the PDF of W if the PDF of L is

Sull) = \7—2—- exp(—=£2) 120

Solution When

W = w,

= (w—35)c=gNz)
a_ 1
v~ ¢

Using Eq. (3.43),

Sw(w) == — fL (u)
Aok HN]

Fiv(w) = j g Sy o) dw

The CDF of Wis
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This can also be obtained it the CDF of L is given:
Fw(w) = P[W < w]

-—-—P[Lg'”:s]-——n(w'_‘

¢

)

In casc, in a particular physical situation, the relationship is

W=g—cL

then,

The PDF of Wis

fw(w) =

1
c

g — w
£ (£52)
and the CDF of W can be obtained as follows:

Fw(w) = P[W < w]
= Plg - CL < w]

- p[L > _g_____l"]
e

1R (S :;‘_")
c

ExamrLE 3.19 In Example 3.18, if

~l <1< 41

o] —

(i) =

0 elsewhere
what is the PDF of W?

Solution  From Example 3.18,

firl) = - fi (W - s)

a
v

—rfzic,s--c<w<s+c
Sketches of fr(/) and fiw(w) are shown in Fig. 3.19.
fL(IJ’ fw(w)’
12 1/2¢
=== ] " —T_J-‘Ej‘—"— (s+c) w

FIG. 3.19 Probability density functions of L and W—Example 3.19
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ExampLE 3.20 The intensity of wind pressure, W, is given by the relation
W = ap?
where « is a constant (equal to 0.006 as per IS code) and V is the annual

maximum wind speed. If the PDF of V, following Type II extremal (largest)
distribution, is given as

u

kAt
fy(v) = —5—(-—) : exp [—(u/v)k] v=20

v

determine the PDF and CDF of W. k and u are parameters (constant)
of V.

Solution When W assumes a value w, then
12
-+ ()
o
ela b,
dw Vaw
Hence, using Eq. (3.43), the PDF of W is

Jirly = lz\/‘—_‘; {m(\/ &) - fel— /)] (3.45)

For the given PDF of V,
fr(@) = 0 for v << 0

Hence Eq. (3.45) becomes
1

Siv(w) = Ve FlN Wi
v i) e Cavimn]
Let . — 2
Then the PDF of W simplifies to
; k [ \Kk2t1 '
i) = 507 (7) exp [=(r/ w2 w20 (3.46)

(Note that W also follows the Type Il extremal (largest) distribution with
parameters we = cu? and k/2).
The CDF of W is derived as follows:

Fw(w) = J; Sw(w) dw

Substituting for fir(w) in the above cquation and putting (we/w) = y,
we have

g

Fwliv) =J =

0

"

vk

= exp [=AEI2]

wofe
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Let x = yk?
then
Fy(w) = — j; e*dx = ¢*
Hence the CDF of Wis
Fuw(w) = exp [—(w/w)*/?] w20 (3.47)

The CDF of W can be oblained by directly using the CDF of ¥, which
is given by

Fiv) = exp [—(ujv)¥] v =0
Fir(w) = P(W < w)
= P(eVi < w)

A By erfre- /B

x«

Y

The second part is equal to zero as ¥ cannot take a negative value. Hence,
(using Eq. 3.47)

Fv(w) = P(V < A/ wja)
k
= exp [»_ (\7','9__/_;) ]

Fi(w) = cxp [—(we/w)F/2] w =0

Let . = ou? Then,

ExamrpLE 3.21 Given
Z=asinX

| .
f:\'(.\‘) _ {'2; 0< x < 27
0 otherwise

Find the PDF of Z.

Solution Equation (3.43) has been derived on the assumption that Z is a
single valued function of X. In this case X is a double valued function for
cach value of Z. Hence for such a function, Eq. (3.43) becomes

1z(z) = 2fxlg™"(2)]

dx
dz

In general, if cach value of z corresponds to n values of x (i.c. the inversc
function of x = ¢v(z) is multivalued), then

A malg@n | &
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for the given function,

, Juy fiz
x = sin~! {—
a

dx 1

— = e —-—g<<z<a

dz ‘\/az - 22

Hence,

fz(z) = _a;l—_z"‘- 2fx [sin‘I (721—)]

___2_._(L)
V@ -2\

fule) = ?/?l""(i) g s

2 2 \T

Functions of Two Random Variables

In many situations, an engineer may have to deal with cases where one
variable depends on two or more variables. For example, (i) the total
moment induced on a column may be the sum of the moments due to live
load and wind load. Since live load and wind load are random variables, the
total moment on the column is also a random variable. One has to derive
the PDF of the total moment from the known distributions of wind load
and live load. (ii) Strain in a tension member is the ratio of the force in the
member to its area of cross section. If area and force are random variables,
strain is also a random variable whose PDF is to be obtained from the
known distributions of force and area. In general, functional relations may
be of the following types:

Z=X-Y Z=X--Y
X
Z= v Z=XY
Case (i): Z=X-1Y (3.48)
Let Y take a particular valuc y, i.e. Y = y. Then,
Z=X+y
The conditional PDF of X, given Y = y, is
b i ) ./_:\'7'(»\'. l_)//':
xiv(x, p) - e R

Treating y temporarily as a constant,
Xx=z—y and }‘g:“l
Hence,
Jopr(z, ) = [ U vz~ p, »
e (3.49)
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But it is known that
Szx(z, ¥) = fz,v(z, P)I(p) (3.50)
using Eq. (3.49) in Eq. (3.50}, the joint distribution of ZY is oblained as
T2z, ) = fxiv(z — y, WY())
= fxr(z — 3, 9) (3.5D)

fxy(z - ¥, ¥) is nothing but the joint probability of X and Y evaluated at
X=rz—vand Y = y.

From thc joint dlstnbutlon [Eq. (3.51)], the marginal dlstnbullon of Z can
be obtained as i =

fz(':) == In Sxylz =y, y)dy </ (3.52)

When X and Y are independent,
f2(2) = J: fx(z = () dy (3.53,
Similarly for other cases, the marginal distribution of Z can be obtained.

Case (ii): Z=X—-Y

@) = [* forte + 0y (3.5

Case (i11): Z = LX};
f2(2) = J:l v | far(zy, y) dy (3.55)

Case (iv): Z =XY
fz(z) == r_o f\'y( . y) dy (3.56)

Note:  All the above cquations, consldermg X and Y as continuous random
variables, are valid for discrete variables also, keeping in mind that instead
of integration, summaltion is to be carried out.

Examprr 3.22  Let the stress in a member, X, and the area of scction, Y,
be independent random variables. The force Z in the member is then
given by

Z=XY
It is given that
f\(x)——% 0<x<4
; 1
SJr(y) P 0<y<a

Determine the PDF of Z.
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Solution Since X and Y arc independent, Eq. (3.56) becomes
. - ]
i = 7| H (2 ) s @y

lFor the given PDF of ¥,

In the above equation substitute for fx (-J‘—) using the given fx(x). For the
relation —:7 == x with limits for x, 0 < v < 4 implies that 0 <-

Corresponding limits for y arc

[*

N

4,

1]

-

z B
=z Ly L w,

Hence,

4
z e 1
" 8a f w 7Y /
-{ -i] o<:<4a//
ExamrLE 3.23 A water tank is supplied with waler through an inlet pipe
at a constant rate for a period of time X. The water flows out through the

outlet pipe from the tank at the same rate for a period of time Y. If X and
Y are independent with distributions

Srx) =A™ 20
fi) =By >0
determine the PDF of Z == X — Y, the change of the amount of water in

the tank after one cycle of inflow and outflow, assuming that the tank can-
not become dry, or overflow.

Solution 1t is given that

; Z=X—Y
Since X and Y are independent, Eq. (3.54) becomes
Jz(z) == J‘i Sx(z - yj./Y()’) dy
Since fr(y) =0 for <O,
1240 = [ 3t + 90 50)

wI:Avﬁwﬂﬁfhw
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In the above cquation substitute for fx(z + ) using the given fx(x).
Since fx(x) = for X <0,
[x(z + yjis zero forz +y <0
For z < 0, y should be > --z.

Jz(@) =] A M) B e by
AEI.

For 7 >0, v > 0,
1) = [} Ao g ety

-3 ’\lﬁﬂ) =

)

M o
(g~ =0

Hence the PDF of Z is

¥}

<0

Sz(z) =

3.5 MOMENTS AND EXPECTATION

The complete description of a random variable requires a probability
distribution in one of its various forms. However, in many applications,
the form ol the distribution function is not known in all details. In such
situations, concise descriptors which describe the dominant features of the
function may be valuable, and enough for engineering applications. These
descriptors may be expectation (mean), variance, etc.

The expected value of a discrete random variable X, denoted by E(X), is
dcfined as

EX)= 2 xipx(xi) (3.57)
all x;
If X is continuous, then
B0 = [* st s (3.58)

The same quantity, £(X), is also called the mean of X or the first moment
of the distribution of X. This should not be confused with the sample
mean which is computed from the data and has statistical entity. An
expectation is caleulated from the probability distribution. Tt can be con-
sidered as the weighted average ol the values of X in which each possnble
value is weighted by the probability of its occurrence.
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A family of averages, called moments, define the probability distribution
of a variable as £ <3

' - z
,ml = FE(Xi) =J’ Lt Sx(x) (Ixj (3.59)

where m; is the i moment of X about the origin, The first moment is the
mean value of X and is designated by u. That is when { = 1,

o0

m = EX)=p= I X [x(x) dx

i
I
| i
Moments are generally defined, with respect to the mean and are called
central moments, c;. They are defined as._ '
' @ .
ei= F[(X — p)]l = J. X — 1) fr(x) dy (3.60)
-

The first four moments are commonly used. The first central moment is
zero. The second ccntr'll moment is the variance, given by

Var(,\)i—» Fl(\ — ,uYJ

- L (v = 107 fx5) d__ (3.61)

/
The third central moment is related to the symmetry of the distribution

iR
and 1s incor porated in the dimensionless coefficient of skewness, 71, given by

(!»

no=-) (3.62)
L
whcre o i3 the standard dc.vntmn

Il the distribution is symmetrical, ri = 0. If r1 is positive, the distribu-
tion is called positively skewed and will have a long tail (upper tail) at the
right. 1 ry is negative, the distribution is called negatively skewed and will

have a long tail (Tower tail) on the left. The variation of the shape of the

density function with ry is shown in Fig. 3.20.

n<0 n=0 n>0

A

%

FIG. 3.20 Variation of PDF with coefficient of skewness

The fourth ccntml moment is related-to the flatness is_ the coefficient of

kurtosns r, gnven by

7= (3.63)

It is often compared to a standard value of 3 for normal distribution. 1f
r2 > 3, the distribution is said to be flatter, and if <3, the distribution is
more peaked than normal.
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ExAMPLE 3.24 The lateral strength, S, of a frame is subjected to random
variations. The PDF of S is given as

6

—Q2s- 12~ 9 152
fs(s) = {5

0 elsewhere

Determine the mean and variance of S.

Solution The mean value of S is obtained using Eq. (3.58)

= fj s[—g— 2s — (2 — s)] ds

The variance of S is given by

Var(S) = J'j[s — -75—]2[% 2s—1 (2 - s)] ds

—
100
Algebra of Expectations
The expectation has a number of convenient properties which are useful.
For any random variable X, and constant a,
E(aX) = a E(X)
EX -+ a) = EX)a /
For any two random variables X" and ¥,
EX 4+ Y)= EX) + E(Y)

Expectation is a linear operation and the expected values of a sum is the
sum of the expected values. The same relation can be extended to sums of
more than two variables, and is valid whether the variables are indepen-
dent or not. Whenever X and Y are independent, the expected value of the
product will decompose, that is,

E(XY) = E(X) E(Y) ~
The above relation is not valid when X ‘and Y are dependent.

The expectation of an arbitrary function of a random variable X is
casily expressed. If X is discrete, then

ElgX)) —= 2 gX)px(x) (3.64)
all X, o/
and if X is continuous, then

Elg(X)] = f .

o g(x) fx(x) dx 7 (3.65)
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In other words, g(x) merely replaces x in the definition of expectation. These
expressions are not a new definition, bul are derived by considering a
random variable ¥ == ¢g(X) and relating the distribution of Y to the distri-

bution of X. If g¢1(X) and g2(X) are any two functions of X, then
Fla(X) -+ g(X)] = Ela(X)N+ Elg(X)

Conditional FExpectation

The conditional expectation of a random variable X, given the value of a

related random variable Y, is defined as L=
EX|Y=y = “Z' Nilprv(xi | yD

alr x,

when X and Y are discrete, and

EX|Y =y):= J _x{Uyvly | ) dx

when X and Y are continuous.
If X and Y are independent, then
EX|Y =) = EX) ¥y
The expectation of marginal distribution of X is
EX)= & EX|Y =y priy)

when X and Y are discrete, and

G VEXPS f ® XY= felYdy

- 00

when X and Y are continuous.
A brief way to express these is

E(X) = E[EQX | Y = )]

Note: E[X | Y == v|is a constant and
EiX | Y]is a randém variable.

Properties of Variance
As given earlier [Eq. (3.61)] the variance of X is given by
Var(X) = E[(X -1)*]
= L(XE A pt — 2Xp)

= E(X?) + E(r?) — 21 E(X)

= E(X?) & p2 - 22
Hence the variance of X is
Var(X) = oy = E(X2) — 2
or (r(yz);ng‘Z\

The linearity property of expectation is not valid for variances.

(3.60)

(3.67)

(3.68)

(3.69)

(3.70)
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If a and b are constants, then

(i) Var(a) =

(ii) Var(aX) = a? Var(X)

(iti) Var(a =- bX) = b2 Var(X) .~
The conditional variance of X, given ¥, is defined as

Var(X | Y == y) = E[(X — pxip)?| Y = y] (3.71)
For discrete X and Y,
Var(X | Y = 3) = & (xi — pyw)? pxyr(xi [ »)

all x;

For continuous variables X and Y,

k3

VarlX | ¥ = ) == J (x = juep)? Lepr{x 1) dx

/?he concepts of expectation and moments can be extended to jointly dis-
tributed random variables. 1f Z is a function of two continuous randont
variables X and Y, i.e.

7Z=gX,7)
then the expectation of Z is
E(Z) = Elg(X, Y)]

— jw J"’Jw l‘:,'(x, y) ./:\')r-(.\', ‘y) dx ([Jy (3'72)

—mn

The joint moments of the order of m 4+ n of a joint distribution of X and
Y are defined as

E[X"Y"] = J- J_ X" fey(x, 3) dx dy (3.73)

The central moments, cun, are similarly defined. Thus,
omn = E[(X — p)" (Y — po)] (3.74)

where ju1 and pz correspond to the first order moments obtained by putting
(m =" 1, n-=0)and (m = 0, n = 1) respectively in Eq. (3.73). That is, for
example

o =j:, jw x fxv(x, y) dx dy
- wa "‘[J’:J Jxr(x, y) dy] dx

— J i’ X fi(x) dx = E(X)

Similarly, p2 = E(Y)

/' Covariance and Correlation Coefficient

The central moment obtained by putting m = l.and n = 1 in Eq. 3.74 is
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called the covariance of X and Y. That is,
COV(X Y) = oxy = E[(X — u1) (Y — w)]

— Iw jw (x — ) (y — pa) fxr(x, y) dx dy

—w

The above expression can be shown to be equal to
Cov(X, Y) = E(XY) — E(X) E(Y) (3.75)

Relating to meCha;lifCS, the variance corresponds to the moments of inertia
about axes x and y passing through the centroid of a plate and the cova-
riance corresponds to the product moment of inertia with respect to the
axes x and y, mentioned earlier.

2\ The correlation coefficient, a dimensionless quantity, is obtained by nor-

malizing the covariance with standard deviations of the corresponding pair
of variables. That is, the correlation coefficient between the variables X and
Y is defined as

Cov(X, Y)-
————

axay

Py == (3.76)

Some important points about the correlation coeflicient P are:

(i) The value of P lies between --1 and -1, i.e.
-1 < p < 1

A1) When P is between 0 and 1, the higher values of x will match with
the higher values of y [Fig. 3.21(a)]. Variables are positively correlated.
Aifi) When P is between — 1 and 0, the higher values of x will match with
‘the smaller values of y Fig. [3.21(b)]. Variables are negatively correlated.
(iv) pis a measure of the linear dependence between {wo variables.
(MO <P <lor—1<P<0,itis said that atleast some depen-
dence exists between X and Y.

A0 If P s close to 1,itis said that a good linear relationship exists

“between X and Y.

(vii) 1f # == 1 or —1, it is said that there is a perfect linear relationship
between X and Y. [Figs. 3.21(c) and 3.21(d)].

(viii) If X and Y are independent, P == 0.

(ix) If » = 0, it does not mean that X and Y are independent (unrelated).
It means that the linear relationship does not exist between X and Y, but

the lonship cog

there may be a perfect’ nonlmear relationship ((lependence) between Y and
YIFig. 321(e)). — —

(x) In engineering problems, the independence of variables is assumed

(i.e. P = 0) to simplify the problem.

Mean and Variance of Functions of Variables

If Z is a linear function of variables X1, X2, ..., Xn, say
Z = Z bX;
=1




Y -1<p<0

X X
{a) Pasitive Correlation (b) Negative Correlation
y
P=1 % Pz
e e ———— e — ——en _.r e e e ———— et e ————etl

{c) Perfect Positive Correlation

y P=0 P=0
L ]
¢ .. . .. ¢ L[ ]
o 4 ®
//\ '.. B e .o
i . : ‘e ‘e
® ¢ ® ..
= — X TR g
{e)Zero Correlation; But (f) Zero Correlation;
Nonlinear Relationship No Retationship
FIG. 3.21 Significance of correlation coefficient
then the expected value of Z is
FE(Z) == 2 bi E(X)) (377)
jm]

The above relation is valid whether variables X; are independent or not.
n

If Xi are correlated, then
af
Var{Z] = % b Var(X) 1 2 X 2," hiby Cov(Xi. i’j) (3.78)
=4 i1 >
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If X; are independent, the above equation simplifies to
n
Var(z) = I b Var(X)) (3.79)

When X, and Xz are independent, their expectation of the product will
decompose. That is, if

Z = X1X2
then, £(Z) = E(Xh) E(X2) (3.80a)
Var(Z) = pios + pioi + oio3 (3.80b)
and 8% = 8 + 83 + 8187

where p;, ; and §; are the mean, the standard deviation and the coefficient
of variation of X; respectively.

If Z is a nonlinear [unction of several variables X, the approximate mean
and variance of Z are obtained by using Taylor’s series expansion and
truncating the series to the required approximation. If

Z=2gX, X2 ..., X
the first order approximations of E(Z) and_\\’gr(Z) are given by

E(Z) = pz =< glp, 1, . . ., 1a) (3.81)
var (@) = o3~ 2 7 22| %1 covxi,x)  (3.82)
=t j=1 9Xil. 0X)lu P :
%{— means that the derivative is evaluated at the mean values of the
s e e
variables.

If X; are uncorrelated, then

. [ og
Var(Z) =~ i-fl; [3Xl

, |
] var(x)) / (3.83)

/KAMPLE 3.25 A simply supported beam is subjected to loads Pi, P> and
Py as shown in Fig, 3.22.

Py ) P4

i el

FIG. 3.22 Simply supported heam—
Example 3.25
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Itis given that
E(P) = 20 kN Var(P)) = 2 (kN)?
E(P2) = 40 kN Var(P2) = 4 (kN)?
E(P3) = 50 kN Var(P3) = 10 (kN)?

Determine the expected value and standard deviation of the shear force at
the left end if (i) loads Py, P2 and P; are statistically independent and (ii) if
loads are correlated with correlation coefficients

pr2 = 0.7 P33 =108 p3 = 0.6
Solution The shear force V at the left end of the beam is
V=075P + 0.5P2 + 0.25 P;
The expected value of V, using Eq.(3.77) , is

E(V) = 0.75%20 + 0.5x 40 + 0.25x50
= 47.5 KN
Case (i) Loads are independent

The variance of V is calculated using Eq. (3.79):

Var(V) = (0.75%)(2) + (0.5%)(4) -+ (0.252)(10)
= 2.75

The standard deviation of ¥ is equal to = 4/2.75 = 1.658 kN.
Case (ii) Loads are correlated

The variance of V is calculated using Eq. (3.78). Before using Eq. (3.78), the
covariance between the variables is to be calculated. The covariance is given
by Eq. (3.76):

Cov(P\P2) = P120102
(p12) [Var(P1)]'/2 [Var(P2)]!2
= (0.7)(2Y2)(41/2) = 1,98

I

Similarly,
Cov(P2P3) = (0.8)(41/2)(101/2) = 5.06
Cov(P3Py) = (0.6)(101/2)(21/2) = 2,68
The variance of Vis
Var(V) == (0.752)(2) 4+ (0.5)%(4) + (0.252)(10)
+2[(0.75% 0.5)(1.98) + (0.5% 0.25)(5.06)

+(0.75x0.25)(2.68)]
= 2.75 - 2(2.763) = 6.505

The standard deviation of 1" is equal to 2.55 kN.



3.6 COMMON PROBABILITY DISTRIBUTIONS

There are a number of discrete and continuous probability distributions
which are used in engineering applications. It is always convenient to have
a mathematical function (PDF or CDF) to describe a random variable.
Before an engineer uses or proposes a probability distribution (probabilistic
model), it is necessary and better that he knows how these models have arisen
and what physical situation has given rise to the distribution. Many of the
common distributions are tabulated for convenience and ready use. Out of
the several probability distributions, only some of the models which are
often used in reliability analysis and design of structures are dealt with. The
other models which are not discussed are tabulated at the end.

\/lﬂu'form Distribution

This is a continuous distribution. Here the random variable X is equally
likely to have any value between the lower limit / and the upper limit w.
The PDF of X is given by

frln) = [

u--1

l<x<u (3.84)

0 elsewhere
The mean and the variance are

L I+ u
! - 2
(e — 1
g o

When the uniform distribution is described between the limits 0 and 1, it is
cailed the standard uniform distribution. In the case of the standard
uniform distribution, the cumulative probability of the variable Y, taking
a value yi, is equal to the value of yy itself. That is,

FY (y))= B4
This property is used in the inverse transformation technique applied for
generating the random variates (Chapter 7). The sketches of the uniform

probability distribution and the standard uniform distribution are shown
in Fig. 3.23.

fx(x) fy(y)

1
u-l i ?

[ U X v
(a) {b)
FIG. 3.23 (a) Uniform distribution and (b) standard uniform distribution
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- Normal Distribution: N(u., )

If a phenomenon (a random variable) arises because of several factors and
if the effects of these several factors act in an additive way to result the
phenomenon, then the model arising out of such a situation will be a
normal distribution. In short, this model arises out of an additive mecha-
nism. This distribution is also known as the Gaussian distribution. The PDF
of a normal variate is given by

fx(x) = 7\—/17;- exp [—— }_(x = )2] —0 <x < ©® (3.85)

2 o

where p and o are the parameters, mean and standard deviation of the
distribution respectively. In future, this distribution will be designated as
N(u, o).

A normal distribution with parameters # = 0 and o = [ is called a
standard normal distribution and is designated as N(0, 1). The PDF of the
standard normal variate U is given by

Ju(u) = \/_— exp( - -;— uz) —o U w (3.86)

Because it is so frequently used, the standard normal density function and
its CDF are given special notations, #(u) and ®(u) respectively. Hence P(u)
is the cumulative probability of a standard normal variate. That is,

D) = Fu(u) = P(U € u)
The PDF and CDF of U are shown in Fig. 3.24. Referring to Fig. 3.24,
we have

D(uy) == pi

fy (v

-
(-3o)  (-20) (-o) : (o) (20) (o)

FIG. 3.24 Standard normal density function

Conversely, the value of 1y at a cumulative probability of py is given by
1w = 9 1(py)
The standard normal variate is widely tabulated. It is to be noted that
DCow) =1 - D)
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If &(—u2) = pa, then

uz == — ®-(pa)
because of symmetry, The CDF of X with distribution N(u, 0) is written
as
2u- M _l__x—“)z] 3.87
Fx(x) = = E‘TTJ—"O exp[ 2( 3 dx (3.87)
Let P A
g
Then du = dx|o

Using these in Eq.(3.87) , we have

| (%—-p)]o 4
Fx(x) = —\—/—2;1J~w exp (—u?/2)du

N ¢(x—#) (3.88)
ag

Hence, using normal probability tables, probabilities of any other normal

distribution can be obtained. Modern computers have built-in functions to

compute P(u). A polynomial is used to evaluate P(u).

./E/XAMPLE 3.26 The cube strength of concrete, X, follows the normal
distribution with parameters, ¢ = 30 N/mm? and o = 4.5 N/mm?
(Fig. 3.25). Calculate the probability of getting a value for a strength

(i) less than 25 N/mm?* and (ii) less than 40 and greater than or equal to
30 N/mm2,
X is distributed as N(30, 4.5).

'x(l)

044

’

ST WO \ NN
rlle s NN NN

165 20 255 300 1 A T |
FIG. 3.25 PDF of X—Example 3.26

Solution (i) The probability ol getting a value less than 25 N/mm? is

i 30)

PX < 25) = Fx(25) = <1>( =

D(--1.11)
= 1= P(L.11) =1 - 0.8667 == 0.1333
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(ii) The probability of getting a value less than 40 and greater than or
equal to 30 is

P(30 < X < 40) = Fx (40) — Fx(30)

_ 4030y (30 30
”(D( 4.5 ) (p( 4.5 )

= 0.9869 — 0.5 = 0.4869
Some properties of normal variables are:

(i) The distribution is symmetrical; hence the coefficient of skewness is
2eros

(i) The mean, median and mode are the same.

(iii) The coefficient of kurtosis 1s equal to 3.

(iv) The normal distribution is reproductive, that is the sum and the
difference of two or more normally distributed random variates is itself
normally distributed,

IfZ = X1+ X2+ ...3 X»and X; are independent normal variates
with parameters s and o, Z is also a normal variate with parameters u
and oz, given by

pz = g 2= o kL. O e

2 2 2, o 3
0z ~=oy-l-o2 - ... o

If Xi are corrclated, then

n n n
o2=Ya? +23 Y cCovlx, x,)

i e |

At this stage, it is very useful to know the remarkable result established

by the Central Limit Theorem which says, when stated loosely, that the
sum of a large number of arbitrarily distributed randow variables will tend
to be normally distributed. Hence, physical process which is the result of
the combined effecis of several factors (irrespective of their individual
distributions) would tend to be normally distributed.

Lognormal Distribation: LN(Z, o1 2)

This model arises out of 5 multiplicative mechanism acting on a number of
factors. Such mechanisms are expected to occur in the crushing of aggre-
gates and the [atigue strengthy of materials. Let the random variable

X=IhZ (3.89)

be normally distributed with parameters N(ux, ox); then (he random

variable Z is said to follow the lognormal distribution whose PDF is
given as

O 7

. (R 1JIn 22 ; "
~ f2(2) = Tz v cxp [ - 2{————}] >0 (3.90)
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where Z, the median of Z, and o1, 7, the standard deviation of In Z are
the parancters of the distribution. This distribution is designated as

LN(é, oiu z). The parameters ar2 calculated by the following equations:

Z = pz exp (— %oﬁ, z) (3.9~

and olhz = In (8% + 1) (3.92) 7~
where 87 is the coefficient of variation of Z. The cumulative probability of
a lognormal variate can be caléulated using standard normal tables D(1).

Let
1

Oz
1
20z
Substitution of the above values in Eq. (3.90) yields

1 u
F. = — —u?/2) di
z(2) \/2”“’_@ exp (—u?/2) du
— o) = qs[ﬂ‘—(i/ﬁ] (3.93)/
Oinz
Similarly the PDF of Z can be connected to the PDF of the standard
normal;

In (z/Z)

U=

du = dz

o) = o g [ 2] (3.94)

20m z UinZ
the lognormal distribution for various values of o1 z is plotted and shown
in Fig. 3.26. It can be observed that as the coefficient of variation decre-
ases, the curve approaches the normal distribution.

fz(Z)
po= 150 ‘
24l Tin2 =01
18
12+
O'lnz:l
06} Tinz =05
% 04 08 12 6 20 24 28 %

FIG. 3.26 Lognormal density functions
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+ExAMPLE 3.27 The compressive strength, Z, of M 15 concrete follows the
lognormal distribution. It is given that
== 24.04 N/mm? 6z - 576 N/mm?
®

Determine the probability of getting a strength less than the specified value,
15 N/mm?.

Solution The coellicient of variation of Z is equal to
8z == 5.76/24.04 = 0.24

Using Egs. (3.91) and (3.92), we have

ofa z = In (0.24% + 1) == 0.056

o0 z == 0.236
(Note: For 8z < 0.25, oz =2 8)

Z == 24.04 exp ( 0.056/2)
=: 23,37 N/mm?

Heince Z is distributed as LN (23.37, 0.236). The probability of getting a
value less than 15 N/mm? is
P(Z < 15) = Fz(15)

_ofIn U5233n ]
= @[_, 07336 ] = 0.03

Some properties of the lognormal variate Z are:
() If X =1nZ thenpx=1InZ

(i) Z is always less than juz
(ifi) Z is positively skewed
(iv) omze28z for 3z <025
VLY =2Z122...: 7
and if the Z; are independent and lognormally distributed with para-

meters Z; and oia z-, theu Y is also lognormally distributed with parameters

Y=2y2Z2... Zn (3.9%)
n 2 1/2
Ony = [Z‘l T Z,] (396)

If Wis the quotient of the two independent lognormally distributed variables
Zi and Z2, i.e.

2
W= Z>

then W is also a lognormal variate with parameters
W o= 2,'/22 (3.97)

Ot w = [0t 21 + of 22]12 (3.98)
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Gamma Distribution G(k, ))

The sum of independently and identically distributed exponential random
variables results in the gamma distribution. If the occurrence of an event
constitutes a poisson process, (Ref. 3.1), then the time until the kth occur-
rence of the event, is described by the gamma distribution. Let Xx denote
the time till the kth event. Then the probability density function of the
gamma variable X« with parameters k and A is given by

k-1 5 A
S (x) = A%—'T)T x>0 (3.99)

Hercafter, the suffix k for X is removed.

Parameters k and A are connected to the mean and variance by the following
equations:

(3.100)

T
"

L3
)
L0

(3.101)

ll

ok
A

[X}

The gamma distributed variable X with parameters k and A is designated as
Glk, A).

The parameter k need not be integer valued. For a noninteger valued £k,
the PDF of X is written as

(3.102)

where I'tk) = J‘ : ekt gt (3.103)

The gamma distribution function is widely tabulated as the incomplete
gamma function, given by

Ik, x) = f: etk dt
This can be used to evaluate the CDF of X:

Fx(x) = j: Sx(x) dx

Nk
= Tk

Substituting y = Ax, the integral becomes

x
J. e —f\xxk—l dx
0

Fx(x) = g k).r eryk-1dy

_ Tk, Ax)
== (3.104)
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Equations (3.100) and (3.101) are valid for noninteger values of k also.
The shape of gamma distribution is shown in Fig. 3.27. This distribution is
widely used because, like observed data from many phenomena, the vari-
able is limited to positive values and is skewed to the right, The gamma
distribution is used to describe the maximum river flows, the vield strength
of the reinforced concrete members (3.2), the sustained floor load in build-
ings, etc. For an integer valued k, the gamma distribution [Eqg. (3.99)] is
also known as the Erlang distribution. The gamma distribution [(Eq. 3.102)]
is also called the Pearson Type I11 distribution,

fx(l) M =60
0-018+
k =1
k=4
/
0012+
/k =4
0-006}
0 1 - ) .. A i, L I
0 20 40 60 30 100 120 "

FIG. 3.27 Shapes of gamma distribution

The tables for an incomplete gamma function have been tabulated by
Karl Pearson (3.3). This table directly gives the cumulative probability of an
incomplele gamma variate. The algorithm AS32 given by G.P. Bhattacharjee
(3.4) can be used to compute the incomplete gamma function. However,
modern computers have built-in functions to compute the cumulative
probability of an incomrlete gamma variate.

Pearson tables give values of (i, p), where I(u, p) is the cumulative proba-
bility of (he variate. One enters Pearson tables with p == &k — | and |
u = Ax/A/k and finds the value of I(u, p).

Exampie 3.28 The floor live load, X, on an office building is found to
follow the gamma distribution with parameters & and A being 3.86 and
7.55 < 10" ? respectively. Calculate the probability of the floor load exceed-
ing the value 1500 N/m?2.

Solution The mean and standard deviation of X are calculated using
Egs. (3.100) and (3.101). Thus
k 3.86

px = 5 = 755%103 — 511.6 N/m?

_Vk /33

T e— 3 == 2
ox X T35 % 103 260.35 N/m
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The probability of the floor load exceeding the value 1500 N/m? is
P(X > 1500)= 1 — P(X < 1500)
=1 — Fx(1500)

o § = I'(k, Ax)
B T'(k)

_ I\(3.86, 11.325)
T T(3.86)

=1 — 0.9968 = 3.2x1073

=

Some properties of the gamma distribution are:

(i) It can take only positive values.
(ii) It is positively skewed.
(iii) Tf Xy is G(ki, A) and X2 is G(k2, A), and if Y = X1 -+ X2, then Y is
also gamma distributed with parameters ki1 + k2 and A,

Eéta Distribution: BT(a, b, p,q)

Many of the random variables in practice, say the strength of steel or
concrete, take values within certain limits. Under these conditions, the
appropriate probability distribution for a random variable whose possible
values lie in a restricted interval, say between limits @ and b, is the beta
distribution.

A standard beta distributed random variable, X, is defined over the range
0 < x < 1. TtsPDF is

N e = gy~
Tx(x) = —Fa 0<x<1 (3.105)

where B(p, ¢q) is the beta function which is tabulated directly or may be
obtained from tables of the gamma function from the relation

r(pr
B(p, @) = rﬁl,’,) . q)) (3.106)

The mean and variance of X are

px ;{—q (3.107)

2oy rq
KTl tat D) e
The standard beta distribution is designated as BTx(p, q). When a beta
distributed random variable, say ¥, has a range a < y < b, the simplest
approach is to transform Y according to

Y —a

o b—a
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Then the PDF of Y is
; 1 ) y—a
Jry) = b— afx(b — a)

(y — a)p 1(h - y)r!
B(p, q)(b — a)Pte a<y<b (3.109)

nm:m@;9

The mean and variance of Y are given by

wy == a +p—_%;](b =) (3.110)

TR Pq

=&~ ot | il
Depending on the parameters of p and ¢. the density function of the beta
distribution will have different shapes as shown in Fig. 3.28. Whenever p
and ¢ take noninteger values, the beta function is called the incomplete
beta function. The cumulative probability of the incomplete beta function
is tabulated by Pearson (3.5) as B«(p, ¢). Hence, Pearson's tables can be
used to caleulate the cumulative probability of a beta variate Y. It must be
noted that the tables are given for p = ¢. For p < ¢,

Bdp, ¢) = 1 — Ba-»{q, p)

'Y(Y) !:2,b:12 pi= 3, tjei p=b.q 2
0:204 p=2,q=2
015} p=1,qz=1
010 r
% % 6 8 0 12 y

FIG. 3.28 Shapes of beta distribution

For example, il p = 2 and ¢ = 4,
Bo(2,4) = 1 — Bo.1(4,2)

Modern computers have built-in functions to compute the cumulative proba-
bility of an incomplete beta variate. The algorithm AS 63 given by
Majumder and Bhattacharjee (3.6), and modified by Cran, Martin and
Thomas (3.7), can be used 1o evaluate the incomplete beta variate.

Examperi 3.29 It is given that the strength Y of M 35 concrete follows the
beta distribution. The mean and standard deviation of Y are 42,50 N/mm?
and 6,25 N/mm? respectively. It isTound from data that the minimum and
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maximum values of ¥ are 30 N/mm? and 55 N/mm? respectively. Calculate
the probability of the strength of concrete being less than 35 N/mm?.
Solution 1t is given:

wy == 42.5 N/mm? ay — 6.25 N/mm?
a = 30 N/mm? b = 55 N/mm?
Using Eqgs. (3.110) and (3.111), we have

4
42,5 = 30 + ——(55 — 30)
p+ f/(
952 — B 1 I . . ]
e = [(p A g ptg 4= 1)
Solving the above two equations, p and ¢ are
p=15 q==15

Hence the strength of concrete is distributed as BT (30, 50, 1.5, 1.5). The
- probability of the strength of concrete being less than 35 is

P(Y < 35) == Fy(35)

In terms of standard beta variate X,

— [P
Fy(35) = Fx (b — a)

=30\
= FA(G—%) = Fx(0.2)

As per Pearson’s tables,

Fx(0.2) = Bo.2(1.5, 1.5)
= (0.1423 (from tables)

3.7 EXTREMAL DISTRIBUTIONS

Civil engineers are more concerned with the occurrence of the largest or
the smallest of a number of random variables in the analysis and design
of structures. The structural safety of a determinate truss (system) may
depend only on the extremes, for example, on the strength of the weakest of
many elementary members (components). A civil engineer may be interested
to know the value and the distribution of the likely maximum wind
speed, or the floor load acting on a building during its lifetime.

Let X be the largest of the » random variables Y1, Y2, ..., Yu The
probability that all the values in n variables will be less than a specified value
Xg 18

FX(Xl) = P(Y < x;)
= P (all » of the ¥ < x,)



80

If the Y are independent,
FX(‘\‘S} == P(YI < X:)p(YZ <~ Xs) % 8w P( Yn S «\'.\‘)
= Frix)Fyxs) ... Fr(xs)

If all the ¥; are identically distributed with a common distribution Fy(y),
then

FX(X:) o i.FY(-Ys)I" (31 ]2)

It the X; are continuous random variables with a common PDF, fx(x), then
d . .
fx(xy) = JX'F‘\'(XI) = n[F (v\‘.\‘)]"_lj}'(.\'x)

From past experience if an engineer knows the distribution of the maximum
wind speed Y; observed in any one year, he may be able to determine the
distribution of the largest wind speed in a particular lifetime of the struc-
ture, say 50 years.

It has been found that for some parent distributions of specific general
types, the extreme value distribution can be approximated by certain
theoretical distributions, called asymptotic distributions, forlarge n. As n
increases, it is more and more accurate. It is not necessary to know the
underlying distribution of Y; precisely. It is enough if the general trend of
the tail portion of the Yiis known. There are three asymptotic distributions
proposed by Gumbel. They are described below:

\/’ ype 1 Extremal (Largest) Distribution: EXy 1 (u, )
This distribution requires that the upper tail of the parent distribution that
contains the extreme value be exponential in nature (normal, Weibull,
exponential, gamma, and other similarly shaped density functions). The
distribution of X, the largest of many independent random variables with a
common exponential type of upper tail distribution (Fy(y)="1—exp (—h(»)),
has the form of Type 1 extremal (largest) distribution, given by

fe(x) = aexp[—o(x — ) —exp{—a(x —w)}] —ow < x < o (3.113)
Fx(x) = exp [—exp {-a{x — w)}] —o <x< o (3.114)

The parameters u (locacion, here it is median) and « (dispersion) are given by

wp == g g 22712 (3.115)
o

2 m? i

e (3.116

This distribution is also called the Gumbel distribution and is positively
skewed. The cocflicient of skewness is 1.1396, The distribution is designated
as EX1,.(u, «). The shape of the distribution for u = 0.275 and o = 2.566
is shown in Fig. 3.29. This model is usec for describing the maximum
annual flow in a river, the maximum annual wind speed at a location, etc,
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FiG. 3.29 Shape of Type 1 extremal (largest) distribution
EXAMPLEV&(QO/ The yearly maximum wind speed, X, observed at Pune
follows the Type 1 extremal (largest) distribution. It is given:
px = 83.67 kmph ox = 15,97 kmph

Calculate the parameters of the distribution and determine the probability
of the wind speed exceeding 117 kmph.

Solution Parameters of the distribution are calculated using Egs. (3.115)
and (3.116).

15972 = —;:—2
« = 0,0803
u = 83.67 — g—g%%
= 76.48 kinph
Hence the CDF of X [Eq. (3.114)] is
Fx(x) = exp [—exp {--0.0803(x — 76.48)}] —0 < x< ©

The probability of the maximum wind speed exceeding 117 kmph in any one
year is

P(X > 117) = 1 — Fx(117)

|

=1 — exp [—exp {—0.0803(117 ~ 76.48)}]
=1 — 0.962 = 0.038
\/rﬁ(e 1 Extremal (smallest) Distribution: EX\,s(u, «)

This distribution is similar to Type 1 extremal (largest) except that the
lower tail of the parent distribution has an exponential form. The distribu-
tion of Z of the smallest of many independent variables with a common
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unlimited distribution with an exponential lower tail has the form of Type
1 extremal (smallest) distribution given by

fy) =aexpla(y —u) —exp{a(y —uw)}] —c0o<p< oo (3.117)
Fy(y) = 1 —exp [—exp {a(y — u)}] —0 K<y ®w (3.118)
The parameters v and « are given by
My = U — 0'5”772 (3.119)
2 2
gy = —&7 (3.120)

This distribution is negatively skewed and the coefficient of skewness is
—1.1396. A typical shape of the Type 1 extremal (smallest) distribution is
shown in Fig. 3.30.

-

10

08 u =0.728

o =2 566

1 1 1 i
-1:0 -05 0 05 10 15 20 Y
FIG. 3.30 Shape of Type 1 extremal (smallest) distribution
ExamPLE 3.31 The minimum annual tlow Y in a river is assumed to follow

the Type 1 extremal (smallest) distribution. The mean and standard devia-
tion of ¥ are

py = 5mi/s o, = 2mYs

Calculate the probability of the minimum annual flow in a year being less
than 2 m?/s.

Solution The parameters of the distribution arg [Eqs. (3.119) and (3.120)]

o= o = 0.641
A 62
0.5772
= 2o I
=5 0.641 59

Hence the CDF of minimum annual flow is
F(y) = 1 — exp [—exp {0.641(y — 5.9)}]
The probability of the minimum annual flow in a year less than 2 m3/s is
P(Y < 2V = Fe(2)
1 exp [-exp {0.641{2 — 5 9)}] = 0.079
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Type 2 Extremal (largest) Distribution: EX2,1(u, k)

This is another model for the largest value of many independent identically
distributed random variables. Here, the form of the parent distribution is
not generally defined. This model is generally selected on the basis of an
empirical fit to a set of data. The PDF and CDF of the variable X, the
largest of many Y; are

fx(x) = —5[—:‘;],‘4.‘ expl—(u/x)¥] x=0 (3.121)
Fx(x) = exp [—(u/x)¥] ’ x=z0 3.122

where « and k age parameters of the distribution, They are connected to the
mean, variance and coefficient of variation of X as follows:

ke ur(l N ._) k> 1 (3.123)

03(_—..,,2[1"(1.._,3— ~1‘2(1—71~)] k>2  (3.124)

= ——t -1 k>2 (3.125)

The above equation has been solved and the values of k for the corres-
ponding values of 8 are given in Table 3.3. Type 2 extremal largest distri-
bution, designated as EX2,1(u, k), is used to model the annual maximum
wind speed, the maximum annual flood, the maximum atmospheric tempe-
rature, etc. A typical shape of Type 2 extremal (largest) distribution is shown
in Fig. 3.31.

TABLE 3.3 Falues of k for corresponding values of 8 for Type 2
extremal (largest) distribution

3 k 3 k p 3 k
0.30 5.5 0.2! 6.95 0.12 11.62
0.29 5.29 0.20 7.255 0.11 12.65
0.28 5.45 0.19 7.59 0.10 13.88
0.27 5.61 0.18 19 0.09 15.425
0.26 5.79 0.17 8.395 0.085 16.35
0.25 5.98 0.16 8.87 0.08 17.4
0.24 6.195 0.15 9.415 0.075 18.62
0.23 6.42 0.14 10.04 0.07 20.03
0.22 6.675 0.13 10.77 0.06 237
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fx{x)

FIG. 3.31 Shape of Type 2 extremal (largest) distribution

ExaMpLE 3.32 The yearly maximum wind speed X, observed at New Delhi
follows the Type 2 extremal largest distribution. It is found (from data)
that

py = 100 kmph  ox = 23 kmph

Calculate the probability of the annual maximum wind speed exceeding
120 kmph.
The parameters of the distribution are first calculated. Thus

23
=55 ™ 0.23

Sy
From Table 3.3,
k = 6.42 for 8y = 0,23
Using Eq. (3.123),

100 _ 100 _
u _('—l) DEREEE 89.29 kmph

6.42

The probability of the wind speed exceeding 120 kmph in any one year is

P(X > 120) = | — P(X < 120) = 1 — Fx(120)
Using Eq. (3.122),

Fx(120) — exp [-—(89.29/120)5]
- 0.864

Hence,

P(X > 120) == 1 — 0.864 == 0.136
Type 3 Extremal (smallest) Distribution: EX3,s(u, k)

This model is for the smallest of the many random variables. This distribu-
tion is also called the Weibull distribution which is extensively used in



reliability studics. The PDF and CDF of a variable X following Type 3
extremal (smallest) distribution are

Sa(x) = "——-It_——I(%—_*—-;)k ; exp [_(x — !)k] x =1 (3.126)

w—1
el |
Faly) = | — cxp[—("—_—;) ] X 2 ! (3.127
The parameiers w and & arc given by
pex =1 (u - l)l'(l 5- -,l:) (3.128)
2 o 2 - 1
oy = (v — 1)} P(l 4- s rey+ E (3.129)

This model has been uscd to represent the material strength in tension and
fatigue.

For many practicable problems, it may bc reasonable to assume ! = 0. If
[ =20, Eqgs. (3.126) and (3.127) simplify greatly. The CDF of X for / = 0 s,

Fx(x) = 1 —cxp[—(v/w)}] x20 (3.130)

with
py = ul’ (l + —Ii-) (3.131)
ox = m[r( | 4 -1\2—) = P:( | < -,‘\-)] (3.132)

i1 4 L
o %)
i+ )

k

The values of k corresponding to the values of 8x are given in Table 3.4.
Gumbel has studied droughts using this model with / = 0. A typical shape
of Type 3 extremal (smallest) distribution is shown in Fig. 3.32.

== (3.133)

TABLE 3.4 Values of k for corresponding 8 for Type 3
extremal (smallest) distribution

3 k 3 k 3 k
0.300 in 0.180 6.54 0.10 < 1245
0.250 4.56 0.170 6.97 0.095 13.18
0.240 4.77 0.160 7.45 0.090 14.00
0.230 5.00 0.150 7.99 0.085 14.92
0.220 5.25 0.140 8.6l 0.080 1597
0.210 3.52 0.130 9.34 0.07 18.59
0.200 5.83 0.120 10.19 0.065 20.25

0.1%0 6.17 0.110 11.22 0.06 22.27
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FIG. 3.32 PDF of Type 3 extremal (smallest) distribution

ExampLE 3.33 The flexural strength X of an over-reinforced prestressec
concrele section has been found to follow the Type 3 extremal (smallest
distribution with the lower bound / = 0. It is given:

px = 825.8 kN m gy = 48.5 kN m

Calculate the probability of failure of the beam when the external momen
on the section is 437.5 kN m.

Solution The parameters of the distribution are first calculated as follows:
dx = 48.5/825.8 = 0.0587
Using Eq. (3.133),

1'(1 + -,2;)
J i &
(1 4 k)
Solving the above equation or using Table 3.4, the value of k is found to be
22.86. Using Eq. (3.131),

g eIl e RN

|
d (‘ i)
Hence the CDF of X is
Fy(x) = 1 — exp [—{x/846)1'¢] x =0

The beam fails when the strength of the section is less than the external
moment acting on the section. Hence the probability of failure, pr, of the
seclion s
o= PUX < 437.5)
=1 -~ ¢xp | —(437.5/840)2% 6]
- 0,284 10¢

The PDI of all the common distributions is listed in Table 3.5 also fo



TABLE 3.5 Cosmmon probabilistic models and their parameters

Distribution and designation

PDF

Relation between parameters and
mean and variance

Uniform

Normal (Gaussian) N(uy. 6oy)

Lognormal LN (X oy, y)

Gamma G(k. X

Beta BT (a, b, p, ¢)

Type 1 extremal (largest)
EXI, L, @

Type 1 extremal (smallest)
EX‘, slu, @)

I'ype 2 extremal (largest)
EX,, W, k)

! 1 (¥ — By\:
°-\’\/2_:°x0['?( e )] —w<x<®

1 1fin N
3o /2% P | T 2 Gy »&A

AMAv)k—1p-Ax
BRI o5 ek ADG
T

(x —a }h — x*1
B(p. gh — wyr+a—1

agSxsh

axexp [—xz(v —u) —expi—a(vx —uw}] —o <y < ©

e expla(v — u) —expifa(x — )] —~ @ Ly <

k f u\k+1
= -—\—) exp [—(u/x)k] x>0

I +u

Ex=™n

2 (u— 1P
X e

kL oa k
Ex = 3 %% =5
—g e P
By= a5 ——i(h—a
X 2 q( )
| T P4
g =te “”[(p e VT 1)]
0.5772, . _ =
By = U -~ < » BX = e
05772 » _ T2
ey == 1 — - X 6a2

u,y=ul"(l ——;‘—) kE>1

o= u=[r(1 = —:—) —r*(n ) -I"-)] k>2

(Contd.)

L8



TABLE 3.5 (Coutd)

Relation between parameters and

Distribution and Designarion PDF VS i —
mes ari 2

Type 3 extremal (smailest) k (x — k1 X — I)k _ _ 1

EX3:S(II, ki " — I(u — I) exp [— (u - ] 4 = ux=1I+@—-0r (l + T)
) 2 1
= - m[ri+5)-r(t+ +)]

~A
Poisson PiAr) u'_)xe'____f = 0. By = Ar
> s

GE\, = Ar

Exponenlial EX (A) Ae—2x v >0 ry = %
s 1
oy = xs—'

! X 1(x —
Rayleigh = eXp [— —2-(-:-) ] x 20 by = ag/Z)2




ready reference. The distributions, (i) (-distribution (ii) chi-squarc distri-
bution and (iii) F-distribution, which are generally used for statistical tests
(hypothesis testing), are not given.

Throughout, it has been assumed that the parameters of the distribution
are known. They are to be estimated from the data using (i) the method of
moments or (ii) the method of maximum likelihood. Readers are suggested
to refer any book on probability and statistics for parameter estimation.

For a given data, the suitability of a probabilistic model is checked using

chi-square Lest or Kolmogorov-Smirnov test (Refer 3.1).
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EXERCISE
During the monsoon season in Bombay, a strong wind may come [rom any direc-
tion between 8 = 0 (south) and 8 = 90 (west), The maximum wind speed cannot
be greater than 200 kmph. Sketch the sample space for the wind direction and the
wind speed. Show the event, the wind speed greater than 30 kmph, and the wind
direction, 20 < 8 < 60, in (he sketch.
A simply supported beam of span [/ is to be designed for shear. There are two
loads @y = 20 KN and Qg = 50 kN which can come on the beam; but they can act
only al discrete points, 0.25/, 0.5/ and 0.75/ on the beam. It is not necessary that
both loads should act at the same time. Sketch the sample space for the shear at
the left end of the beam.
The completion of a water tank involves the successive completion of four stages.
Let j
A — excavgtion completed on time; P(A) — 0.9
B =: foundation complcted on time; P(B) = 0.8
C = columns and bracings completed on time; P(C) = 0.7
D -= tank completed on time; P(D) = 0.7
If the events are statistically independent,
(i) what is the probability of the whole structure completed on time?
(Ans. 0.3528)
(ii) what is the probability of the tank portion complcted on time and atleast one
of the other three works is not completed on time? (Ans. 0.3472)
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3.5

3.6

3.7

3.10

I'tiere are three members in a determinate truss subjected (o a given system load-
ing. If p; is the probability of failurc of the member 4, it is given as: pp - 0.1,
P2 - 0.2and p; - 0.3, The performance of a member depends on other membeis
It is given:

PO L F.OE 08 P 09

Determine the reliability of the truss.

(Ans. 0.784)
A policy decision, like limiting the maximum salary of an Indian to Rs. 1.500 . is
to be taken by the Government. This depends on the clection results. Suppose il
the party A wins, the probability of implementing the decision is 80°, while it is
207, Tor the purty B and 407 for the party ¢, Assume there are only three parties,
Without knowing which party will win in the election, one cannot say the chance
of introducing the decision. [f the chance of A4 winning the clection is 0.6, of B
0.1, and of C 0.3, determine the chance of introducing the decision.

(Ans. 0.62)
T'he probability density function of rainfall in a day during thc monsoon scason
is given by

/X(.\') =z J2e—4x x20

Calculate the mean and the variance.
(Ans. p = 2,0 25)
Two variables, X and Y, follow the lognormal distribution, I Z == X¥ and vari-
ables X and Y arc statistically independent, prove that Z follows the lognormal
distribution.
The cube strength of M 35 concrete, .V, follows the normal distribution with
parameters p = 42,28 N/mm? and o = 5.6 N'mm®,
(i) What is the probability of .\ < 35?
(A4ns, 0.0983)
(ii) What is the probability of 30 £ X < 50?
(Ans, 0.9018)
The yield strength of stecl, .Y, follows the lognormal distribution with mean
— 1568 N/mm?® and o = 48.8 N/mm?. What is the probability of getting a vicld
strength valtue less than 1500 N mm?3?
(Ans. 11.0793)
The fatigue life of a structural component, measurcd in terms of the number of
cycles of a particular load, is modelled having Weibull distribution which is given
by )
Sy(x) — afaB=1exp (—ax)p Ne, >0

o and B arve parameters of the distribution given by 0.001 and 0.5 respectively.
The mean valuc of X and the parameters are related by the cquation

1
7 -l/ﬁI’(l - ——)
Py o ]

(i) How long can such structural component be expected to last.

g (Ans. 2x10° cycles)

(ii) What is the probability that such a component will last more than 3 x 108
cycles?

(Ans. 0.1769)
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Resistance Distributions and
Parameters

4.1 INTRODUCTION

The first step in the reliability analysis and design of structures, is to study
the variability of the strength of the structural (RCC, steel, prestressed
concrete, masonry, etc.) members in flexure, shear, compression, bond, tor-
sion, etc. The strength of a structural member may vary from the calculat-
ed or ‘nominal strength’ due to variationsin the material strengths and in the
dimensions of the members, as well as variabilities inherent in the equations
used to calculate the strengths of members. One has to identify the sources
of variability and quantify (statistics) the same. The fundamental require-
ment in the reliability study is the collection of data on strength and other
physical properties of the materials of the structures, and the geometric
parameters of the sections and the statistical analysis of the same.

The structural designer specifies the characteristic strengths of materials
and the builder tries to procure the materials satisfying the specifications,
and thereby, tries to achieve the same strength as assumed by the designer.
However, if the quality control is poor, then the strength of the structural
member will be less than that assumed. This may endanger the safety of the
structure. Hence for providing a design with an assured level of reliability
the systematic identification of the uncertainties in the strength of materials
and the dimensional parameters and statistical analysis of the collected
data becomes an important task.

In this chapter, information on statistics of basic variables, viz. physical
properties of concrete, reinforcing steel bars and bricks, and dimensional
variations of RCC members, based on actual field data, are furnished.
Methods are also indicated to account for other uncertainties and thus to
determine the allowable stresses of materials for a given reliability or
probability of failure,

4.2 STATISTICS OF PROPERTIES OF CONCRETE

The cube strength (compressive strength), the modulus of rupture (flexural
strength), and Young’s modulus (initial tangent modulus and secant modulus)
are the properties of concrete that are generally required in the design of
concrete structures.
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The strength of concrete in a structure may be diflerent from the specificd
strength, and also, the strength may not be uniform throughout the structure.
There are several sources of uncertainty which contribute to the total
variation in the strength of concrete. Sources are (4.1):

(i) variations in the quality of materials

(ii) variations in the placing of concrete

(iii) variation in the supervision

(iv) variations in weighing

(v) variations in the mixing proccdures

(vi) variations in the transporting methods

(vii) variations in the testing procedures

(viii) variations due to the actual strength of concrete in a structure
being different from the control specimens (cube or cylinder) and

(ix) variations in the methods of curing

In construction projects, samples of concrete cubes ol 150< 150 x 150 mm
size are generally cast during every batching of concrete. These cubes are
tested in a laboratory at the end of the 28th day of curing. The mean value
and standard deviation of each set of a concrete mix can be obtained. The
computed mean value of the strength of each sct can be plotted as shown in
Fig. 2.1. It is generally found that the in-batch variation, which may bc
considered as a variation in the testing procedures, mixer inefficiencies and
the actual concrete strength, varies from 3 to 10 percent. All the test results
of a particular concrete grade belonging (o a project can be clubbed and a
histogram can be drawn. A typical plot of a histogram of the cube strength
of M 15 concrete belonging to a project is shown in Fig. 4.1, (4.2). Concretes
of the same strength and with the same quality control may be prepared in
diflerent projects. All these samples are combined to form a class of con-
crete. Figure 4.2 gives the histogram of a typical class of M15 concrete. It
can be observed, as expected, that the variation and cocfficient of skewness
for the class is more than for a group shown in Fig. 4.1. As more and more
groups are combined, the distribution may become more and more skewed.

g 201 n =63 4032
s Mean = 2029 N/ mm? >
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160 185. 2+0 235 260 285 310
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FIG. 4.1 Histogram of M15 concrete for a typica! project group
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A national building code must specify the coefficient of variation for a par-
ticular class of concrete, irrespective of source. It is also felt that this
specified coefficient of variation must be related to the quality control. In
the present code IS : 456-1978, the code specifies the values of standard
deviation for various grades of conerete; but the degree of quality control
is not attached to these values.

n= 399
Mean = 203 N/mrl'\2
SD= 5-76N/mm?
108} 4027
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Cube strength (Nlmmz)

FIG. 4.2 Histogram of a typical class of M 15 concrete

After drawing the histogram, a mathematical probabilistic model is fitted
to the data. The different types of models that are normally used to describe
the compressive strength of the concrete cube are:

(i) normal distribution
(ii) lognormal distribution and
(iii) beta distribution

The suitability of a probabilistic model to fit the data is arrived at after
applying the chi-square or the Kolmogorov-Smirnov goodness-of-fit tests
(4.3). The chi-square test is briefly explained below: /.

i-square Test '

1. Draw the histogram for the observed data.

2. Assume the model with its parameters calculated from the data.

3. Select the level of significance . Generally o is taken as 5 or | per cent.
4. Calculate the value of chi-square as

a ar 2
X = lz" (_"L_e‘L’) (4.1)
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where
Xz = the calculated value of chi-square
0; == the observed frequency in the /th interval
¢; = the expected frequency corresponding to the assumed distribution in
the /th interval
a == number of intervals considered
5. Compute the number of degrees of frecdom N given by
N=a—r-—1 (4.2)

where r is the number of parameters estimated from the data.

6. For the assumed «, and computed N, find the value of chi-square [rom
the standard chi-square table available in any text-book on statistics (4.3).
Let this be designated as X3, J—

7 1 X241 is less than the vaiue obtained from the tables, accept the dis-
tribution with its parameters at the assumed level of significance. Otherwise,
reject the hypothesis.

The chi-square test is demonstrated in Table 4.1 for a set of data of M 15
concrete (4.4). Readers should read a specialist’s book (4.3) for this topic.

TABLE 4.1 Demonstration of chi-square test

r\i‘)’. Interval 0, e (0; — ¢€)e;

1 < 14 16 19.6 0.66

2 14-16 53 53.9 0.02

3 16--18 88 75:1 222

4 18-20 45 573 2.64

5 20-22 30 28.9 0.04

6 22-24 15 10.9 1.54

7 024 3 4.2 0.34
250 250 7.46

(i) Model assumed—lognormal with parameters

X = 17.36 N/mm? and ojo x = 0.152

(i) o« assumed — 59,
(iii) Calculation of ¢::

er = (mpi where n = sample size
p‘ = P(/Y < ]4) = ¢"{lnaf——14}(—/X)} = 0.0785

er == (250)(0.0785) = 19.6
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Similarly, ez = (m)pz,

p2==P(X < 16) — P(X 2 14)

e {In (16/X)} — 0.0785 = 0.2156

Tin X
e2 = (250)(0.2156) = 53.9
Similarly, other values of e; are calculated and given in Table 4.1.

(iv) Degrees of freedom N =a —r—1=7—2—1=4
(v) From chi-square Tables (4.3),

xle.“-a) = X%, 0vs = 9.49

(vi) X2 = 7.46 < 9.49

(vii) Hence accept lognormal model with parameters at & = 5 per cent.

The procedure that is explained for the collection of samples for the com-
pressive strength of concrete, can be followed for the collection of samples
of cylinders (15 cm dia. % 30 em height) and beams (10 em > 10 em % 50 cm)
belonging to different grades of concrete. Cylinders can be tested to get the
data on the initial tangent modulus, E., and the secant modulus, E, of
concrete. Collected beam specimens can be tested in the laboratory at the
end of the 28th day of curing to get data on the modulus of rupture of
concrete, f,. Table 4.2 gives the results of the statistical analysis of the data
on varjous properties of concrete collected by the author (4.4, 4.5,4.6) at
various places in India. Frequency distributions of E. and fr of M 135
concrete are shown in Figs. 4.3 and 4.4.
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FIG. 4.3 Frequency distribution of Initial tangent modulus of M 16
concrete



TABLE 4.2 Results oy statistical analysis of various properties of concrere

. ! Specified strength n o E Probability Quality
Variable and source Tl (N/mm?) (N/mm?) (N/mm?) (%) distribution control
Cube Strength
IIT, Kanpur M 15 15 24.03 5.76 23.96 LN Nominal niix
M 20 20 29.16 5.49 18.83 N ¥
M 25 25 30.28 3.77 12.45 N Design mix
i M 35 35 42.28 5.60 13.24 N vi
REC, Calicut M 15 15 22.67 5.01 22.10 LN Nominal mix
IIT, Bombay M 15 15 17.56 2.69 15.33 LN Design mix
b M 20 20 26.80 404 15.07 N, LN -
Cylinder Strength
IIT, Bombay M 15 11.10 1.92 17.28 N, LN
. M 20 17:21 3.34 19.40 N, LN
Initial Tangent Modulus
IIT, Bombay M 15 22,076 25,147 3,398 13.51 N, LN
A M 20 25,491 34,100 5.009 14.65 N, LN
Secant Modulus
IIT, Bombay M 15 - 19.606 3,397 172.07 N -
il M 20 - 28,031 4,951 17.66 N, LN &
Modulus of Rupture
IIT, Bombay M 15 2.7 3.682 0.871 23.64 N
" M 20 3.13 5.893 0.603 10.26 N, LN

896
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FIG. 4.4 Frequency distribution of modulus of rupture of M 15 concrete

4.3 STATISTICS OF PROPERTIES OF STEEL

The yield strength, f, and the modulus of elasticity of steel, E., are the two
main physical properties of steel that are used in the design of RCC and steel
structures. In the case of prestressed concrete structures, the ultimate strength
of high tensile steel wires is used in the design. The variation in yield strength
is due to the variation in (i) material strength, (ii) cross-sectional area,
(iii) rate of loading during testing, and (iv) the effect of strain at which the
yield is defined (4.7). The amount of variation in strength within a single
bar continuously cast for a particular length in a single cast 1s very small,
(less than one per cent) and may be negligible as shown in Fig. 4.5. How-
ever, the in-batch variation for a given heatisslightly larger. For a construc-
tion work, the reinforcing bars may be supplied by a particular manufactur-
ing firm having a number of steel rolling mills. Hence, the supplied bars
may be from different rolling mills. It the chemical composition of steel is

~
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FIG. 4.5 Variation of ultimate strength in a single cast length
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well controlled during the production, it is reasonable to expect the vari-
ations in strength from cast to cast to be small; otherwise it will be signi-
ficant. 1f the bars are supplied to the sitec by different manufacturers, the
variation in strengths may be high due to different rolling practices and
quality control adopted by different manufacturers. The variation in the
strength of steel due to the change in (he mean strength with bar diameter
is significant. From these discussions, it is evident that there are several
sources which contribute to the overall variation in the strength of bars.
Specimens can be collected from various rolling mills belonging to a parti-
cular firm and these can be tested in a laboratory to determine fy and Ei.
Test results of ull samples irrespective of the diameler are clubbed, and the
mean value and standard deviation of such a data belonging to a particular
mill are calculated. A histogram can be drawn for such a data. Figure 4.6

n =745
Mean =647-61 N/ mm?Z
! SD=17 26 Nimm?2

¢ 222F H0:3
@]
> (7]
g N 2
L1148} \ . Lognormal 402 ?
[=} -
B 3
T °
8 - 401
5 % £
/ N
oL=1 | S o

400 420 440 4660 480 S00 510
Yield strength (N/mm?)

FiG. 4.6 Frequency distribution of yield strength of Fe 415
grade steel from a rolling mill

shows a typical histogram of yield strength of high yeild strength deformed
bars (HYSI™) belonging to a mill. The procedure is repeated by collecting
speeimens from various rolling mills or at various stages of a construction
project. To know the statistics of the yield strength of steel, irrespective
of (he source and diameter, all samples belonging to rolling mills and from
the construction project sites (field specimens) arc clubbed and the mean
value, standard deviation and coefficient of variation of Fy or Fy for sach a
data can be obtained. A histogram is drawn for such a data (Figs. 4.7 and
4.8). Suitable probability distribution can be fixed for the collected data
using any one goodness-ol-fit tests. Table 4.3 gives the results of the statisti-
cal analysis of the data on the strength of reinforcing bars collected by
the author at various places in India (4.2, 4.4, 4.8),
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TABLE 4.3 Results of statistical analysis of yield strength and
Young's modulus of steel

Variable and Grade Diameter m a 3 Probability
source d (mm) (N/mm?) (N/mm?®) (%) distribution

Yield Strength

T, Kanpur Fe 495 25,28,32 §37.1 22.88 4.26 N
HT, Kanpur Fe 425 25,28,32 441.7 24.29 5.50 N
11T, Kanpur fp 15,000 7 1568 48.76 <A N
REC. Calicut Fe 235 6 to 20 295.3 16.24 5.50 LN
1IT, Bombay Fe 250 8 to 20 320.0 27.50 8.61 N
IIT, Bombay Fe 415 8to 32 468.9 34.20 7.32 N
Modulus of Elasticity
IIT, Bombay Fe 250 8to 32 204100 15600 7.62 LN
and
Fe 415

Note: N—Normal; LN—Lognormal
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4.4 STATISTICS OF STRENGTH OF BRICKS AND MORTAR

For the reliability study of brick masonry construction and reinforced brick
masonry structures, the statistics of the strength of brick, strength of mortar,
thickness of bed joints, water absorption, reinforcing steel bars etc. are requi-
red. The strength of masonry depends on several factors, such as the
strength of the brick unit, strength of mortar and thickness of bed joint, the
type of supervision given in construction, etc. The effect of the uncertainty
or variability of different parameters is responsible for the variability of
masonry strength. The statistical variations in brickwork depend very much
on the constructional practice and the degree of quality control.

Dayaratnam and Ranganathan (4.9) have collected samples of bricks
manufactured by different firms around Kanpur (U.P.) and Calicut (Kerala),
and have done detailed study on the various properties of bricks. Results
of the statistical analysis of the strength of bricks are presented in Table 4.4,

The strength of the prism decreases at a faster rate with increase in the
joint thickness for perforated bricks as compared with the solid bricks. So it
is expected that the variability of joint thickness will affect the strength of
brickwork. Results of the statistical analysis of the thickness of horizontal
and vertical joints in existing structures are also given in Table 4.4.

TABLE 44 Results of statistical analysis of bricks, moriar strength
and joint thickness (4.9)

Probability

Source Parameter M 500 il
Bricks
Kanpur Zone Length (mm) 228.5 1.6 N
Breadth (mm) 109.4 2.3 N
Height (mmy 633 3:3 N
Water absorption (%) 15.1 22.3
Compressive strength
(N mm?) 19.9 310 N
Calicut Zone Length mm) 327 1.0 N
Breadth (mm) 116.0 2. N
Height (mm) 8.7 4.8 N
Water absorption (Y,) 16.4 129
Compressive strength
(N/mm?) 9.8 29.8 N
Mortat
Horizontal Joint Thickness (mm) 12,9 13.5 N
Vertical Joing Lhickness (mm) 12,0 [6 4 N
Mix 1.3* Strength (N/mm®) 2.8 133 N, LN
Mix [ .4* Strength (N mm-) 4.3 10.0 N, LN
Mix |.5% Suength (N mm?) 0.4 18.1 N, LN

*Laboratory made specimens
Nore:  N—Normal; LN =1 ognormal



101

The mortar is used as the binding material between brick units. The
results of the statistical analysis of the strength of cement mortar cubes
belonging to different mixes - 1.3, 1.4 and 1.5 - are presented in Table 4.4.

4.5 DIMENSIONAL VARIATIONS

The dimensions of RCC members may not be the same as specified. There
may be deviations from the specified values of the cross-section shape and
dimension, which may be due to size, shape and the quality of formwork,
and concreting and vibrating operations. Variationsalso occur in the effec-
tive depth of members. The actual effective depth available may be different
from the specified values because of the improper placement of reinforcing
steel bars, not providing proper cover blocks and change in values when
needle vibrators are used during casting of members. The amount of varia-
tion in dimensions vary from place to place and structure to structure depend-
ing on the quality of construction techniques and the training of the site
personnel, Mirza and MacGregor (4.10) studied the variations in dimensions
of RCC members for American conditions.

The difference between the nominal and the built-in dimensions are best
characterized by the mean and standard deviation of the error. The coeffi-
cient of variation of the error increases as the size of the member decreases.
Nineteen multistoreyed buildings have been visited during construction, and
actual field data have been collected on the various gcometric parameters of
RCC members (4.11). The data are to be collected during the construction,
and the measurements of members are to be taken in an unplastered
condition. The results of the statistical analysis of variations in dimensions
of slabs, beams, columus and foundations, carried out by Ranganathan and
Joshi (4.4, 4.11), are presented in Table 4.5. The relationship connecting the
coefficient of variation and nominal size of the member has been found to be

8/' = 4.9/”/, (4.3)

where /1, is the nominal size of the member in mm. The frequency distribu-
tion of deviation in beam rib depth is shown in Fig. 4.9. All variables follow
the normal distribution.

4.6 CHARACTERIZATION OF VARIABLES

The basic information required o describe behaviour of a random variable
is the probability distribution with its parameters. However, in the case of
first-order-second moment method of reliability, variables are characterized
by their means and coefficients of variation. The concept of uncertainty is
conveyed through the coeflicient of variation. In reliability study, all uncer-
tainties which affect the design reliability must be accounted for. These
uncertainties must include the inherent statistical variability in the basic
variables and, the additional sources of uncertainties arising due to model-

ling. Modelling uncertainties would include errors in the estimation of



102

TABLE 4.5 Results of statistical analysis of variations in dimensions

of RCC members
Mean Standard .
Type deviation deviation Size range
(mm) (mm) i)
Slab (13 slabs) 100 to 110
Overall depth + 7.89 543
Top cover -19.75 6.89
Bottom cover -+ 3.27 7.8
Effective depth + 1.87 6.8
Beam (252 beams)
Breadth +10.29 9.47 200 to 350
Overall depth -+14.37 9.38 250 to 700
Effective depth + 6.25 3.79 270 to 370
Top cover - 0.56 8.41 30
Column (364 columns)
Breadth - 0.25 5.69 250 to 300
Depth + 0.11 7.89 250 to 1000
Cover (for 62 columns) —19.09 12.13 40
Distance d,* 6.24 11.89 360 Lo 710
Footing (6 footings)
Length —40.25 46.50 1500
Breadth +37.73 32.28 1300
Note: *d, is the distance from one end of the column to the centrc of bars on the
other side.
o S s n =252 e
Mean =14:37mm
SD =9-38mm
75 —03
Fq\e,l Normal 402

25 /
ol e

il JL_ T S lo
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FIG. 4.9 Frequency distribution of deviation in beam rib depth

parameters, probability distribution, idealizations, testing procedures, human
errors in calculation, ctc.
Let

A be a basic variable

py be the true mean of X
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8x be the true coefficient of variation of X
X be the sample mean
dx be the sample coefficient of variation

X and 8x are calculated from the data collected under carefully controlled
conditions. Hence, dy describes the inherent statistical variability. If the bias
and coefficient ¢f variation of' uncertainties, attributed by other factors, are
considered as M and 8y, then ux and 8x are estimated as (4.12)

px = MY (4.4)
dx = (8% + 812 (4.5).

If 8ar is due to n factors, 8ar can be broken and written as
Spp o= (87 + 83 4 ... 82 (4.6)

If the model is unbiased, M is taken as 1. In this approach, what is done is,
wy is predicted by .Y, Using this approach, the overall variation in the basic
random variables can be fixed. This is illustrated below.

4.6.1 Compressive Strength of Concrete in Structure "~
Let \

Y be the cubc strength of concrete
X be the strength of concrete in structure

The mean value of the strength of concrete in struclure is taken as 0.67
times the mean value of the cube strength of concrete. That is,

sy o= 0.67u

In section 4.2, the coeflicient of variation of Y, representating inherent
variability, was obtained. Taking into account the uncertainties involved in

the testing procedure (3iy) and in site variation of the strength of concrete
(8in Jmﬁthc coefficient of variation of the strength of con-
crete 1n structurc can be written as (4.‘_\{).
8% = 8% + dluest + Shui
If
Sintest = 0.05 Sin sie = 0.1
then,
8% = oy + 0.0125
From Table 4.2, for M 15 concrete (design mix),
dy = (.1533
Hence the total variation in the strength of concrete is

Sy = [(0.1533)* + (0.05)2 4+ (0.1)2)'12
=0.18
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Similarly, the mean value and coefficient of variation of the compressive
strength of concrete in structure for various grades are calculated and given

in Table 4.6.

TABLE 4.6 Statistics of strengths of concrete and steel

Variable Mean Coefficient of Probability
(N/mm?) variation distribution
(i) Compressive strength of
concrete in structure
(a) Nominal Mix M 15 15.19 0.24 LN
M 20 19.54 0.21 N
(b) Design Mix M 15 11.78 0.18 LN
M 20 17.96 0.15 N
M 25 20.29 0.15 N
(ii) Initial tangent
modulus of concrete
Design Mix M 15 25147 0.187 N, LN
M 20 34100 0.206 N, LN
(iii) Modulus of rupture
of concrete
Design Mix M 1S 3.682 0.246 N
M 20 5.893 0.125 N, LN
(iv) Yield strength of
steel
Fe 250 320 0.10 N
Fe 415 469 0.10 N
(v) Modulus of elasticity
of steel
2.04x10° 0.091

4,6.2 Yield Strength of Steel

In the case of steel, we must include the variation that may occur due to the
testing procedures and the method of specifying yield point. If the coefficient
of variation in the testing procedures (Sinwest) is taken as 5 per cent and the
coefficient I vaciation in the method of specifying yield (8p. 1ever) is also

taken as 5 per ceat, the total variation in the yield strength of Fe 415 grade

steel is

2 2 2 2
8loml — Sacma! + ainles! + 8sp. level

From Table 4.3, Sactual = 0.073. Hence,
8ot = [(0.073)2 + (0.05)% + (0.05)211/2

= 0.102

For mild stee! (Fe 250), it is expected that

Sw- level €2 0
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For Fe 250 grade steel, S is
Ootal [(0.0861) = (0.05)2]"/" - 0.1

For Indian conditions, the statistics of the strength ol conerete and stecl,
given in Table 4.6, may be used for code calibration.

4.7 ALLOWABLE STRESSES BASED ON SPECIFIED \/
RELTABILITY (4.13)

The working stress design (WSD) analyses o structure for working loads,
and designs the members such that the actual stresses in the members e
limited to a portion of the yield stress or eritical or ultimate stress that can
be carricd by the material.

Design criteria in WSD cun be specified as

fiM, GE, GS, DL, LL, WL) < fu (M, EA, GE, GS. DL, LL, WL). (4.7)

where /i is the stress developed in the structure and fu:is the allowable stress.
The subscript 7 relers to tension or compression of llexure or shear or bond
stress, clc.

The stress developed in the structure can be axial or bending or shear. It
is a {unction of the material propertics (M), geometry of clements (GL),
geometry of structurcs (GS), dead load (DL), live load (LL), wind load
(WL), cte. The allowable stress is a function ol the material. It also depends
on the specifications for testing the materials. A liberal specification on
material standards has to be compensated by lower allowable stress. /i
depends on functional aspect (IFA) of the structure. A high pressure vessel
for liquid is to be treated differently from a high pressure vessel tor the
containment shell of a nuclear reactor.

Allowable stresses in compression are governed by the buckling criterion,
which depends on the geometry of the clement and structure. Allowable
stresses in a single load condition are different from those tna combined load
condition and hence it is a function of load combination. LExpressions
similar to Eq. (4.7) can be written for other design criteria based on allow-
able deflection and cracking. The code specification tor permissible stresses
has to take care of (he many complicated situations.

Probability of Failure of Material in WSD v~

When the stress developed in the material is greater than the allowable stress,
it is defined as a failure. Hence the. probability of failure of material, py,
can be written as

=5 e e v (4.8)

where X is the random vzfriablc, namely the srength of the malerial.
If X is normally distributed.

= (b(,”&ﬂ) (4.9)
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ExampLE 41  The cube strength of M 20 concrete, Y, follows normal distri-
bution. Given:
py = 26.8 N/mm? 8y = 0.18
Jfa = 0.34 x{cube strength of concrete)
= 0.34(20) = 6.8 N/mm?
Determine the probability of failure of concrete in the structure.

Solution The strength of concrete in structure, X, isequal to 0.67 times the
cube strength. Hence

px = 0.67 py = 17.96 N/mm?
ox = 0.67 oy
= 0.67(0.18)(26.8)
= 3.23 N/mm?
Using Eq. (4.9), the probability of failure of concrete in the structure is,

{680 — 17.96
- o{s2,,05)

= P(—3.455) = 2.75% 107

ExamMPLE2 The yield strength of HYSD bars (Grade Fe 415), X, follows
the normal distribution. Given:

px = 468.9 N/mm? 8y = 0.1
fa = 190 N/mm?
Determine the probability of failure of steel,
Solution
oy == (.1 - 468.9 = 46.89 N/mm?
Using Eq. (4.9),

46.89
== (—5948) = 1.4x 107°
~ﬁet¢rmination of Allowable Stress

e (p(wo - 468.9)

The allowable stress can be fixed for a given reliability or probability of
failure of the material. If the strength of the material follows the normal
distribution, then Eq.(4.9) can be rewritten as

Ja = px o _
s = PYpr) =k (4.10)

Substituting ox = Sxpx, the above equation becomes

px 1
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kx and oy are obtained from the field data and hence they are known.
Knowing puy and 8x and & for a given py, the allowable stress can be fixed.

Factor of safety, v, is defined by the convention of WSD as the ratio of
the ultimate stress or yield stress to the working stress of the material.
Hence

J12% |
= = Al
TR T Tt ko) Gy
The fixing of allowable stresses for a given reliability is illustrated with the
following examples.

Exampre 4.3 It is given that thc ratio ol the mean value of the cube
strenizlh of M 15 concrete (design mix) to its characteristic strength is 1.4
and the coeflicient of variation ol the strength ol concrete is 0.18. Determine
the allowable stress for the probability of failure of concrete cqual to 1072,

Solution n the case of concrete, the allowable stress is fixed as a fraction
of the charactcristic cube strength of cancrete. For pr == 1073, & == = 3.091
(from tables).
Let
Jfew == the characteristic cube strength of concrete
X == the strength of concrete in the structure

The mean valuc of the cube strength of concrete is given as 1.4 f.,. Hence
Eq. (4.11) becomes

e e I.4(l "" k&/\')

As (he allowable stress in the element of the structure is to be fixed, the
prism strength (that is the strength of concrete in the structurc) is to be
used and the above equation can be written as

fi"— = (0.67)(14)1 — (3.091)0.18)]

= 0.416

If the specified cube strength of concrete is 15 N/mm?, the allowable stress
for pr = 1073, is
Jfa = 0.416 % 15 = 6.24 N/mm?

Similarly, for various values of py, the allowable stresses can be calculated
for a particular characteristic strength. They are given in Table 4.7.

TABLE 4.7 Fuctor of a safety and allowable stress for M 15 concrete (design mix)
Jor different values of probability of failure

P 10-2 10-¢ 10-5 10-¢
k ~3.091 -3.719 ~4.265 —4.754
v 2.40 32 4.59 7.39

£, (N/mm?) 6.24 4.65 327 2.03
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It can be seen (rom the above table that as py decreascs, the allowable
stress also decreases as expected.

EXAMI_’\!__;/4.4 In the casc of steel, the allowable stress is fixed as a {raction
of thevyield stress. From the data it is found that the ratio of the mean
value of the yield strength of sleel to its characteristic strength is 1.13 (for
IFe 415 - Table 4.3). The overall variation in the strength of steel has been
found as 0.1 (Sec. 4.6). Determine the allowable stress for steel for
Pre 1073,

Solution  The (actor of safety for HYSD bars. using Eq. (4.11), can be
written as {ollows:

Let

X == yicld stress of the material
/) — the characteristic yicld strength of steel

1t is given that

px — 113/,
Using Eq. (4.11)
fa 113(1 -t ko)
For pro= 1074 k — - 3.091
and Sy == 0.1, Thus,
N —
S 1.13[1 - (3.091)(0.1)]
'—ff‘f = 1.281

For Fe 415-grade stcel, f, — 415 N/mm? Hencc the allowable stress for
pr= 103 is

415
0¥ = 324 NYmmi2
28] 324 N/'mm*®
It py = 1074, the value of allowable stress can be similarly calculated and
it is cqual to 294.5 N/mm?.

If one takes the guaranteed yield strength itsclf as its mean strength, then
the value of allowable stress for py == 1073 is

fo = f,l1 — (3.091)(0.1)]
== (415)(1 — 0.3091) = 286.7 N/mm?
It must also be noted that the safety has been calculated based on the
yielding of steel (i.c. if steel yields, it is considered as a failure). However,
the actual failure (that is by breaking of steel) occurs at a value of 1.2 times

the yield stress of material. Hence, the actual safety available is more.
The collection of different data on the strengths of different materials

fa -
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and on geometric parameters have been discussed, and the statistics of
variables based on the actual field data and the published works for Indian
conditions have been presented. By and large, the statistical descriptions
suggested are based on published works. It is recognized that the knowledge
of the behaviour of materials is continually evolving and the means, vari-
ances, and distributions of the variables may be changing as more and more
data is collected, or when data is updated. Research workers also have not
used the same model and parameters for reliability studies during the last
two decades. For the same data, there may be a number of distributions
which appear to fit the data equally well. Extreme caution should be
exercised if the type of distribution is chosen on the basis of sample data.
A better or preferable approach is to make use of physical reasoning about
the nature of each variable to guide the choice of the distribution, In
engineering problems, most of the time we may have to resort to empiri-
cally fitted distributions. It is to be noted that the variables that have been
discussed are the basic variables of a resistance variable of the structure.
Hence it is important, and to be recognized, that the selected models must
be simple, convenient, and reasonably good for these basic variables.

Modelling of the resistance variable of a structural element and a struc-
ture is a difficult task. The resistance is a function of these basic variables,
viz. strengths of materials, geometric parameters, etc. Getting field data for
the resistance of an RCC column, beam or frame or steel elements and
structure in civil engineering is quite expensive and impossible. One may
have to resort to the simulation technique (to be discussed in a later chapter)
or physical reasoning to choose appropriate models. We have already dis-
cussed different models in Chapter 3 and also the conditions under which
they arise. They may be helpful in choosing a model. Normal, lognormal,
Weibull, beta, and sometimes gamma distributions are generally used to
characterize the resistance of a structure. Again, it is important that the
selected models must be simple and convenient, otherwise it will lead to
difficulties in evaluating the reliability of a structure.

The estimation of parameters is important as the accuracy of prediction
depends on the parameters estimated from the data. The methods that are
generally used are:

(i) method of moments
(i1) method of maximum likelihood
(iii) mean rank plot-graphical procedure

The method of moments is the simplest. The graphical procedure is easy to
apply for simple probability distributions. The method of maximum likli-
hood is difficult to apply as it often involves iterative calculations. However,
it is supposed to be the best method as the estimators have all the desirable
properties, viz. unbiasedness, efficiency, and consistency. The description of
the methods are beyond the scope of this book. Readers should study and
refer to any of the standard books (4.3, 4.14).
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EXERCISE

The cube strength of M 20 concrete follows the normal distribution with para-
meters p = 29.16 N/mm?* and o == 549 What is the characteristic strength of
concrete? (Ans. 20.16 N/mm?)
The yield strength of steel follows the lognormal distribution with g = 295.3
N/mm?* and ¢ = 16.24 N/mm?®. If the specified strength of steel is 235 N/mm?,
determine the characteristic strength of steel, (Ans. 2694 N/mm?)
If the ratio of the mean value of the cube strength of M15 conerete to its characteristic
strength 15 1,51, and the cocfficient of variation of the strength of concrete is 0.24,
determine the allowable stress for a reliability of 0.9999? (Ans. 161 N/mm?)
If the yield strength of steel follows the normal distribution with u = 468.9 N/mm?
and o = 46.89 N/mm”*, determine the allowable stress for a reliability of 0.9999,
(Ans. 294.5 N/mm?)
The flexural strength (ultimate) of a prestressed concrete beam follows the normal
distribution with the coeflicient of variation being 0.05. The beam is subjected to
dead load and live load, Assume the loads are deterministic. If the combined load
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factor, £, is defined as the ratio of the mean value of the strength of beam to the
moment due to working loads, what is the value of £, for a desired reliability of
0.99%9? (Ans. 1.228)
1f the ratio ol dead load to tive load is 0.5, and load factor for dead load is 1.2,
what is the load factor for live load for a desired reliability of 0.9999?

(Ans, 1.193)
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Probabilistic Analysis of Loads

5.1 GRAVITY LOADS

5.1.1 Introduction

The accurate evaluation of gravity loads and the proper assessment of the
maximum loads that a structure will have to carry during its lifetime are
very important for a safe and economical design. After the advent of high
speed digital computers, accurate techniques are available to analyse and
design any complex structure under given loads. However, the state of
knowledge about the analysis of loads is not comparable, The loads remain
an estimate based on experience, judgement, tradition, trial, and error.
Recently, during the past 15 years, considerable attention has been drawn
to the measurement, analysis, and modelling of loads because of the increased
familiarity of the engineers with the probabilistic and statistical methodology
necessary to treat the load phenomenon in the quantitative manner, which
engineers expect.

Loads on structure are stochastic in nature. They vary with space and
time. This spatial and temporal variability is to be taken care of in the
design. In recent years, a significant amount of live load survey has been
conducted in many countries (5.1-5.9). At thc same time, the trend has
been set up to develop probabilistic limit state design and reliability based
codes. The characleristics of the loading is probably the most important
parameter to a reliability based analysis and design. In the formulation of
reliability based codes, considerable attention will have to be focussed on
‘the acquisition of reliable load data of a form suitable for the estimation of
key statistical parameters. Concurrent to this, there is a growing awareness
to develop probabilistic models and estimate the statistical parameters. The
study of floor loads in buildings with respect to how live loads are measured,
analysed and modelled, is presented.

5.1.2 Load as a Stochastic Process

Loads or actions in general are the forces acting on the structures due to
external influences (self weight, superimposed loads, snow, wind and wave
loads) and imposed deformations (differential settlements and temperature
variations). Loads are subjected to random variations in magnitude and
position with time. Loads are, therefore, desuribed as time varying, free
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positioning, and dynamic effect producing and hence loads are to be
modelled as a stochastic process.

A single time history representing a random phenomenon is called a
sample function. When this evolves in time, it leads to a process. A stocha-
stic process is the collection of all possible sample functions, which the
random phenoiitenon might have produced.

A sample function of a continuous time varying stochastic process of
load X(¢) is shown in Fig. 5.1, in which x(#;) is the magnitude of a time
varying load X(r) at time 1. This x(t1) is called the arbitrary point-in-time
load. It is simply the load that would be measured if the load process were
to be sampled at some time instant, e.g. in a load survey. This load is a
random variable. If this is designated as X, the PDF of X is shown in
Fig. 5.1. In the same figure, if Xmay is represented by the random variable
Z, then the PDF of Z, fz(z), will be as shown in Fig. 5.1.

N x(1)
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| | |
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D S 1 1 d
i 4y T ==
= ..
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FIG. 5.1 Continuous time varying load

In the case of reliability study, the treatment of load as a stochastic
process is inconvenient. For practical reliability analyses, it is necessary to
work with the random variable representation of load rather than with the
random process representation (5.10). Again, in the case of reliability study,
the designer is interested in the value of the maximum load that is likely to
occur during the life of the structure. This load is called lifetime maximum
load. Ultimately one is interested to know the probability distribution of
this load. This may be physically interpreted as the distribution that would
be obtained if the lifetime maximum load were measured in an infinite
number of identical structures (5.11). In later sections, we will see how we
achieve this. .

Gravity loads are divided into dead loads and live loads. Live load is
again divided into (i) sustained load and (ii) transient load or extraordinary
load.
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/$.1.3 Dead Load

Permanent loads are considered as dead load. This is mainly the weight of
the structural system. This may undergo a little reduction because of wear
and tear during its lifetime. This is negligible and can be ignored. Dead
load may undergo increase because of the addition of some partition wall
or covering during the life of the building. These may be rare events. This
also induces a modest change only. Hence the dead load can be assumed
to remain constant in time throughout the life of the structure. This is
depicted in Fig. 5.2(a).

X x(1)

< e i s -

A 0 )

(a) Dead Load

X x(1)

— "

I
.Z Lx(ty)

P I
.,:‘:“"_“*‘—‘ 4 o
(b) Sustained Load

x x(t)
... | o | Jl ' | ,J_J.._..‘
>

(c) Extraordinary Load
FIG. 5.2 Types of loads

The total dead load to be supported by a structure is generally the sum
of self-weights of many parts. Hence the :lead load is modelled with a
normal probability distribution. The variability in dead load is strongly
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affected by the weights of nonstructural items, such as roofing, partitions,
etc. As there is a tendency to underestimate the total dead load, it is
assumed (5.10) that the ratio of the mean load to nominal load is 1.05, and
the coeflicient of variation is 0.10 for code calibration.

<&.1.4 Live Loads

Live loads may in general, be defined as any load produced by the occu-
pancy of the building. Nonpermanent gravity floor loads arising during the
service life of the buildings are considered as live loads. That means, live
loads include the weight of people and their possessions; furniture, movable
partitions and other portable fixtures and equipment. The total live load on
a floor is considered under two components, viz. (i) a sustained load compo-
nent (long term), (ii) extraordinary load (transient load) component.

;S_'usmined Load

A sustained load is the load of furniture, equipment and other loads needed
for the activity and the normal personnel involved in the activity. Sustained
loads shown in Fig. 5.2(b) may change at discrete times, but inbetween
changes, remain relatively constant. A change at discrete times may be
thought of as change due to change of occupancy (tenancy). The variation
of load inbetween changes is due to the changes wbich a normal activity
brings. New pieces of furniture may be added or exchanged or shifted, and
the contents in desks and cabincts and other storage places vary. The
persons who are involved in the activity are not present all the time which
brings a variation ol the load. As stated earlier, this variation between two
load changes is limited and small compared to the total load. Hence a cons-
tant load between load changes is assumed in the load analysis. It may be
noted in Fig. 5.2(b) that sustained loads may be entirely absent for a certain
duration. This may be considered as the *ime gap during change of tenants.

The sustained load is the load usually measured in live load surveys. This
isreferred o as the arbitrary point-in-time load, Lapt. The PDF of this load is
also shown in Fig. 5.2(b). This load is a spatially varying random function.
This is assumed constant in time within a particular change of occupancy.
[t is therefore known as the long term load. The load changes with change
of occupancy are assumed to occur as poisson arrivals.

Extraordinary Load

This arises from infrequent clustering of people above and beyond normal
personnel load. That is, the extra personnel load. This extraordinary load
(EL) is also due to the event when many pieces of furniture or equipment
have been gathered together in one place at some instant of time, for
example, at remodelling events, The EL is very unpredictable and it occurs
with relatively high intensities and in short durations (in most cases a couple
of hours). The term short duration is used in the sense that their durations
are very small relative to permanent and sustained load. Hence they create
a spike on the lifetime history of the load as shown in Fig. 5.2(c). It is very
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difficult and almost impossible to get data on EL. It cannot be measured in
the regular live load survey.

The total load is therefore split up into three parts. This is a simplified
model. The division is mainly on the difference in the time history between
the loads. As the dead load, already discussed, has been considered as con-
stant in time and can be modelled with a probabilily distribution, it can be
combined with other loads. In future, live load only will be discussed.

Live Load Survey

The development of new codes, based on the reliability theory or prob-
abilistic limit state design, needs more and more information about loads
based on the actual field data. This has initiated the conduct of load survey.
During the past decade, numerous load surveys have been conducted in the
U.S.A., Europe, Canada, Sweden, Australia, India, etc.

J. Bryson and Gross (5.2) have developed the methodology of load
surveys. The live load survey is the process of measuring the actual floor
loads, Lapt, and collecting the extensive scientific and systematic data, and
information, such as (i) building data which includes geographic region,
location, height and number of storeys, age, type of occupancy, floor plans
of building, layout of framing systems, number of rooms/bays, floor area
of building, etc., (ii) occupancy data giving information about the types of
firm, spatial orientation and duration, (iii) room/bay data, which incor-
porates details about the floor level, room number, location of the room,
room use, room size, floor area, openings, surface finishings, floor cover-
ings, occupants including number and weight, item description including
location, contents and weights, etc., (iv) extraordinary load information
about occasions of persons gathered, frequency, furniture stacking occasions,
painting and remodelling, etc.

The scientific live load survey provides a sound statistical basis for (i) the
adoption of an appropriate probability model for live loads, (ii) the proper
assignment of parameters (o the probabilistic model, (iii) the refinement of
probabilistic load models, (iv) better understanding of the randomness of
live loads, and (v) the modification of the existing loading standards.

Simple Statistical Analysis of Live Loads

Before we consider the rigorous statistical analysis of floor loads as an area
dependent random process, let us first understand the simple treatment of
the load analysis.

Assume that live load survey has been conducted in a building and the
position and magnitude of loads are known on each bay (or room) of the
building. Assume constant area. The floor load intensity (FL1), Q, is the
total load acting on a bay (or room) in a floor divided by the floor area of
the bay (or room). The actual live loads (measured in load surveys) may
have any random positions and distributions. From the design point of view,
the effects of actual live loads (i.e. stress resultants) developed in the floor
slab or supporting beams and columns, are important. Therefore, it is
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necessary to convert the survey loads into uniformly distributed loads. This
uniformly distributed load intensity, which would produce the same load
effect as the actual set of loads, is called the equivalent uniformly distri-
buted load (EUDL). Let EUDL be designated as L. Hence the set of point
loads on each bay, with actual magnitudes and positions measured in load
surveys, must be transformed to EUDL by using influence surface methods
or energy methods or finite element methods, taking into account the
boundary conditions and the configuration of the supporting systems. Once
a probability model is selected and the parameters established for L, the
characteristic load, Lk, can be fixed. If px is the probability ofa load greater
than Lk, then

pe= PIL>L]=1—PL < Ly
=1 — Fu(Ls) .0
or Ly = FL'(1 — py) (5.2)

If the occupancy does not change during the lifetime of the building, the
above calculated load gives the lifetime maximum live load with a prob-
ability of its exceedence equal to px.

For live load on buildings, it is usually assumed that the occupancy
varies a few times during the lifetime of a building, T, in a completely inde-
pendent way. Assuming that the whole building is occupied by only one
tenanl (i.e. single tenant model) at a time, let the building be occupied by
N tenants during the lifetime of the building. The live load during each
occupancy isarandom variable, Let Ly, L2, ..., Li..., L~v be the random
variables representing the maximum live load intensity (EUDL) during each
occupancy. It is assumed that the live load does not change with respect to
time during each occupancy. If Fr( ) is the CDF of L; and Fr,( ), the
CDF of the lifetime maximum live load, L., then the probability of L less
than or equal to a particular load, say characteristic load Lk, during the
litetime of the building is given by

P(Lw < L) == PULy < L)N(L2 < LN . .NP(Ly < Li)]
If Li are ussumed as statistically independent, the above equation becomes
P(Lin 72 L) = P(Lt < L)P(L2 < Ly) ... P(LN < Lk)
Fr, (L) = Fr(L)FrLs) . .. ['},N(Lk)
If L; are identically distributed, the above equation simplifies to
Fr,(Lx) = [FeLa)l¥ (5.3)

where F7,(Lk) is the probability distribution reflected in a histogram of
live load data measured during a short period of time (initial fitted distri-
bution for Lap). If Fz, (' ) has an inverse at Lx = (1 —px)VV, then

= F;I[(1 — p)'™] (5.4)

The above Lg is the lifetime maximum live load for A tenancies and p; is
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the probability of live load exceeding Lx. Hence for a given number of
tenancies and a specified value of pk, the value of Ly can be calculated from
the initial fitted distribution for the live load. This is illustrated with the
following example.

/ IE'-.'AMP@/{l From the statistical analysis of live load survey, it is found
(hat live load follows the lognormal distribution with parameters
L = 1217 N/m*  ojpz = 0.368

Determine the characteristic load for px = 0.05 if (i) there is no change in
tenancy and (ii) the building is going to be occupied by 5 tenants during
the lifelime of the building.

Solution
Case (i):
Using Eq. (5.2), the characteristic load is given by
Ly = FLNU = ) = FL'(1 — 0.05)
Fr(Lk) = 0.95
Since L follows the lognormal distribution, using Eq. (3.94),

Jln L

(p[ ﬂ_(Lk/L)] — 0.95
Lo=1L exp [o1a P71(0.95)]
= [217 exp [0.3681(0.95)]
== 2220 N/m?
Case (Ii):
It is given that N = - 5 and px = 0.05. Using Eq. (5.4), the value of L. during
the lifetime of the building is

Li = FL'l(1 -~ 0.05)!5)
— F£'(0.9898)

= L exp (019" 1(0.9898)]
~= 1217 exp [0.368D (0.9898)]
= 2860 N/m?

Similarly, the values of L« for different numbers of tenancies are calculated
and given (o Table 5.1, It is scen from the table that Lx increases for a
given value ot pi, and L decreases as pn increcases for a given valuc of N,

Area Dependent Sustained Load Intensity Model

Tn the last scction, it has been assumed that the bay or room arca is cons-
tant and the Noor Toad does not depend on the area, i.e. not as a function
of the area. However, it is well established that the Noor load depends on
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TABLE 5.1 Lifetime maximum live load for differenst number of
tenancies—Exanmple 5.1

Period Lifetime of Lifetime maximum load for
of building N Py = 0.05 pi = 0.10
tenancy (years) (kN/m?%) (kN/m?)
5 25 5 2.86 2157
5 30 6 2.92 2.65
5 40 8 3.04 2.76
5 50 10 3.17 2.76
5 100 20 343 3.13
10 50 5 2.86 2.57

the area. Live loads vary from building to building, floor to floor, bay to
bay, point to point, and also time to time. To quantify these variations and
uncertainties, to some extent rationally, the instantaneous live load survey
data of arbitrary point-in-time loads on floors of selected bays of selected
buildings have to be analysed to model live loads with certain assumptions
and simplifications.

Statistical Assumption

The load intensity on a floor can be characterized as a stochastic process
which is assumed stationary both in space and time.

The assumption of stationarity in space implies that the load in build-
ings, used for the same type of occupancy, can be represented with the same
statistical distribution. This assumption is generally used, and is necessary
so that with a proper selection of the buildings out of the whole population,
good estimations of the statistical properties can be achieved.

The assumption of stationarity in time implies that the statistical distri-
bution of the load from one point in time to another is the same. This
assumption is needed. It is not possible to conduct a continuous load survey.

The procedurc of analysis of live load is to start with the preposition of
a probability model for the load intensity. From this, a probability model
for the load effect or the equivalent uniformly distributed load (EUDL) is
derived.

Load Intensity

The sustained load intensity at any location on a floor of a building is
modelled as the superposition of

(i) the main trend,
(ii) the periodic components, and
(iii) the random fluctuations

According to the assumption about stationarity in space, a constant mean
load intensity is chosen. Hence the main trend is the mean load intensity,
which is assumed to be constant for a type of occupancy. It is to be noted
that the mean load intensity will be diflerent for different types of occupancy.
That is, say between hospital buildings and office buildings.
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The periodic components are the variations in the load intensity around
the mean due to different buildings, different floors, and different bays.

Random fluctuations take into account unknown uncertain deviations
{from thec mean load intensity.

The load intensity model is assumed to be noncorrelative. That is, the
correlations between load intensities from floor to floor, and bay to bay, and
point to point which have a very little effect on the total load (or load effect)
are not considered. Therefore, the correlations are neglected for simplicity
and hence the load intensity model is assumed to be noncorrelative. With
the above assumptions, Pier and Cornell (5.12) proposed a model for the
load intensity as

w(x, ¥) = m 4 r 4+ D(x,y) (5.5)
where
w(x, ¥) = the load intensity at any location on a bay of a floor of a
building
m = overall mean load
r = a zero-mean random variable which can be split up to
represent dillerent variations
D(x, y) = a zero-mean random process which represents unknown
spatial variations,
The above model has been applied by various research workers (5.9, 5.13-
5.17) and it is expected that this will be the general method for the analysis
of sustained load. The r term may be split up into

rudg - teprescnting building variations
ry - representing floor variations
ruay — representing bay variations

The split is justitied if every building is occupied by one organization. That
is, a single tenant model is assumed. This is the casc in most of the office
buildings. In case il a building is occupied by many organizations (this will
be in the case of tall buildings), then rpwg can be considered as rorg repre-
senting variations between organizations.

The smallest structural unit used in the load intensity model is a struc-
tural bay. Hence the load intensity is integrated over the bay area to get
the total Joad. 1t is recalled that the spatial Joad intensity has been assumed
as a noncorrelative random process. However, the total spatial load over an
area is assumed to be dependent on the area. Hence the model is an arca
dependent random process. Since D(x, 3) is a zero-mean random process,

L [(J:f D(x, y) dx d)')/A] =0 (5.6)

The vartance of Dy, ») is given by

IJ U Cov I D(x, v), D(u, )] dx dv du de
i

A

I
Var (D) = —
ar ( y
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Since the spatial load intensity has been assumed as a noncorrelative random
process, we have

Var (D) = —114— Var UJD(x, y) dx dy ]
Y

— % y 4 (5.7)
A

where o3 is the spatial variance.
Let Lp be the total spatial load over the area. This is dependent on the
area. Hence

E[lLp(A)] =E UI D(x, y) dx dy]
=0 (5.8)
Var [Lp(A)] = Var UID(x, y) dx dy]
A
= 0pA (5.9)
Cov [Lp(A1), Lp(A42)] = Cov U;JD(x, ) dx, dy, L!’D(x, y) dx dy]

=0 if AiNd2=¢ (5.10)

¢, here, means null set.

Statistical properties of w(x, y) over an area can be written by using the
above derived results for the spatial load. Let L be the lotal load, i.e. the
sum of the load intensity over any finite area. Then the mean value of L is

EL(4)] = E ['U w(x, y) dx dy]

( A
= ElmA] + E[rA] + E[D(x, y)A] (5.11)
As ris a zero-mean-random variable,
E(r) = (5.12)
Using Eqs. (5.8) and (5.12) in Eq. (5.11),
E[L(A)] = mA (5.13)

The variance of L is
Var [L(4)] = Var [ U w(x, y) dx dy]

= Var [mA] + Var [rA] 4 Var [D(x, y)A]

N P o [ Sy S
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Using Eq. (5.9),
Var [L(A)] = 0 - o} A2 4 0pAYA
= of A2 + 0.l (5.14)

2. ; ;
where o; is the variance of r.
The covariance of loads between two different influence areas 11 and {2 is

Cov [L(A41), L(A42)] = Cov UJ wix, v) dx dy, ‘” wiy, y) dx (1_1']

= oAy il AiNAxr = (5.15)

To obtain the unit load, Uz, the total load over the arca s divided by the
areu. Hence

UL(A) = L("”
Moments of unit load are |
ELULA)] = E [-’:f‘ﬂ)] = m (5.16)
L(A)

Var (UL(A4)] = Var [ ] = 711‘5 Var [L(A4)]

A
Using Eq. (5.14), the above equation bec:omcs

2
Var [Ur(4)] == o% -+ %’3 (5.17)
Cov [UL(AD), U(d2)] = Covy “,(4,:'/1)2 1(A42))

Using Eq. (5.15), we have
Cov[UL(41), UL(42)] = o} (5.18)

So far we have not considered thc load effect. This can be taken carc of
by determining the coefficients with which the load should be multiplied to
get the load effect. The load effect is to be obtained by the influence surfaces.
Instead of integrating over the influence area, the influence surface is used.
As every load effect has its own influence surface, the theoretical load effect
can be obtained for any case.

The correct solution for the influence surface is very complicated. To
simplify the solution, two dimensional cxtension of influence lines is used
(5.5).

Let

H = the load effect
Then the load effect over the influence area is

H(4) = jj wix, y) I(x, y) dx dy (5.19)
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The equivalent uniformly distributed load, L, that produces the same load
effect, is obtained by dividing load effect by the integral under the member’s
influence surface, (This load L is also a function of 4. However, for con-
venience A4 is removed in the notation).

”w(x, y), Kx, y) dx dy
L =4 (5.20)
le(x, y)dxdy
A

where I(x, y) is the influence surface function for the particular load effect
sought and 4 is the influence arca over which I(x, ») assumes nonzero
values. The statistical properties of L are

f I f I(x, y)w(x, y) dx dy

ElL]=E{ 4
J. jl(x, y) dx dy J

4

(JI I(x, y) dx dy
T {lL”I(x,y)dxdyJ

A

=m (5.21)
The variance of L which is a function of 4, is

|r I I wix, yM(x, y) dx dy]

!
1\ U'I(x, y) dx dy

_ _ Var(H(4)
U I I(x, y) dx dy]2

4

Var [L] = Var

(5.22)

The variance of H(4) is
Var (H(A4)) = Var w(x, y) I(x, y) dx dy
[ ]

= v [[[its9m + 7+ 65, 0]
L5 i
=0+ ( ;[ f](x, y) dx dy)

+ Var U I(x, y)D(x, y) dx dy] (5.23)
A
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It can be derived (5.5) that

Var Ujl(.\‘. 1)D(x, y) dx rly] = o} J‘JIZ(.\', ¥) dx dy (5.24)
A A
Hence the variance of L is
2 J I Px, y) dx dy
Var [L] = o7 + =2 2 g (5.25)
’ UJI(.\', ¥) dx dy|
1
Using Eq. (5.19)
Cov | L(A),L(42)) = v} (5.26)

Let
-Ulz(x, y) dx dy
P A

5 (5.27)
(JI[(.\', ) dx (1)')
Y

The coefficient k is the mean squared influence divided by the square of the
mean influence; k is always greater than or equal to I. It depends on the
type of member, its structural configuration and boundary conditions, and
the type of response sought. k can be obtained for any load effect and it is
relatively insensitive to load effect type (5.5).1t has been found by McGuire
and Cornell (5.13) and Sentler (5.5) that the values of k are

k

== 2,04 (or cnd moments in beams (intcrior bay)

= 2.2 for column axial loads

= 2.76 for mid-span beam moments

= 1,98 for mid-span beam moments if the beam is simply
supported

k == 1.34 to 1.5 for mid-span moment ol a slab

>xoa

Ellingwood and Culver (5.15) have taken an average value of 2.2 for their
analysis of loads. The analysis carried out by Rao and Krishnamoorthy

(5.7) shows that considering all load effects, & varies from 1.92 to 2.46.
Hence we can write

E(L) =m (5.28)
2
Var (L) = o} = o + f’fk (5.29)

If we are considering the load effect for beams, the statistical properties of
L of a beam are

E(L) =m

oi = 0,2 -} ;—%k
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as tHe influence area for a beam is twice the area of the structural bay; the
value of k corresponds to the corresponding beam effect (mid-span beam
moment, end moment; mid-span shear, etc.). Similarly, the statistical pro-
perties of EUDL of one storey interior column loading is

F(L)=m
02
of, =af + Zﬁ

as the influence area for onc storey interior column is four times the struc-
tural bay area 4. The value of k for column loading is 2.21 5.5, 5.13). If
the interior column supports n floors, then

F(L)=m
ob
na*

It is generally found that lognormal and gamma distributions closely fit the
data (Lap:) from load surveys (5.5, 5.8, 5.9, 5.18). However, since a constant
mean load intensity model has been assumed, the probability distribution
characterizing the sustained load should have a reproductive property. The
gamma distribution has this property but not the lognormal distribution.

2 2
op =0, +

Maximum Sustained Load Intensity Model

The maximum sustained load, L, is the maximum of the various sustained
loads supported by a given arca during the lifetime of the building. That is,
this is the maximum load which will occur during the lifetime of the
building. This is also called the lifetime maximum sustained load.

The following assumptions are used in the stochastic analysis of Lu
(5.12):

(i) The sustained load (SL.) during each occupancy is constant, but this
value is random.
(ii) The stochastic load process of SL is homogeneous in time and space.
(iii) One tenant and one floor model is adequate.
(iv) The successive sustained loads on any area are independent and
represented by a probability distribution over the ensemble.
(v) The probability distribution of occupancy durations are independent
of each other and do not change with time.
(vi) When an occupancy change occurs, it occurs simultaneously every-
where over the area A.
(vii) The successive sustained loads follow the gamma distribution.
(viii) The load changes occur according to the Poisson process.
(ix) The duration of occupancy is exponentially distributed.
(x) A fixed number of changes occur during the lifetime of the building.

Let

Lm = maximum sustained load during the lifetime T of the building
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T = duration of sustained load, i.e. lifetime of the building
L(r) = sustained load on the floor at time ¢, i.e. instantaneous SL

Then lifetime maximum load is

L == max [L(I)] 0<t1<T (530)
L is also a random variable. The cumulative distribution of Lm is
FLIII(a) = P[L'" < “J (531)

If the number of occupancy changes is N, then (N -4 1) is the number of
occupants (tenants) who have occupied the building during T years. Hence
(N - 1) load values occur during the load history. It has been assumed
that the SL is constant during each occupancy of the building and has a
distribution Fr(=). Hence if the building is subjected to N occupancy changes
during the time 7, then (N -- 1) values of L will be observed during 7.
This set of (N - 1) values can be considered as a random sample. If it is
assumed that the number of occupancy changes, N, is known, i.e. a constant
or fixed, then
Fr,(%) = Plmax. load < o]

= Plall (N + 1) loads < o] (5.32)
Since successive sustained loads are assumed to be independent, and identi-
cally distributed, the above equation becomes

Fr,(«) = [F(@)]N*! (5.33)

However, the duration of an occupancy of the building is not determi-
nistic, i.e. varies randomly. Tn such a case, N is a random variable and the

CDF of L is
Fr,() = E'o PI(N + 1) loads < « | N = n]P(N = n)
As successive sustained loads have been assumed to be independent,
Fr,, (@) = ";ZZ [FL@IVHP(N = n) (5.34)

It has been assumed that the number of load changes in a period of time

(0, t) occur according to the Poisson process with mean rate of arrival, v.

Hence

e~ Vi(v)n
n!

using this in Eq. (5.34), the CDF of Ln during lifetime T is

© L n
FLm(a) = "50 [FL(“)]"H en'(}‘L)

_yr LFL()(vT)}
n!

P(N = n) = (5.35)

= Fr(a) 2 €
n=0

= Fr(«)e™T exp [vTFL(2)]
= Fr(«) exp [—vT{l — Fy(x)}]
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For high cumulative levels; the above equation:-can be written as- .55 i
FLm(a') = exp [_VT{I = FL(‘X)}] (5.36)
ez -- vT[1 ~ Fr()] (5.37

Hence if the piobability distribution of the sustained load at any arbitrary
point-in-time (obtained from lodd survey) is known with its parameters, the
cumulative probability distribution of maximum SL can be obtained.

ExaMmpLE 5.2 From the analysis of the live load survey data, it is known
that (5.9)

E(L) = m = 717.3 N/m?

o} = 2663 - !9@9 k

Calculate the maximum sustained load at 0.932 fractile (i.e. Fi,, () = 0.932)
for the following given-conditions:

(i) Fr(«) follows the lognormal distribution
(i) v=1/8, T = 64 yrs

(iii) 4 = 27Tm2

Giv) k= 2.2

Solution Tt is :giveni that : i
Fr, () = 0.932
Using Eq. (5.36)
exp [<¥T(1 « Fi(w)}] = 0,932
Substituting the values of vand T, i
exp [—8{1 — Fi(@)}] = 0932
F1(®) = 0.991

Using the given probability distribution and parameters of L,

The parameters L and oy, 1. are estimated as follows:
For A= 2Tm? k = 2.2

ok = 2663 + ('690000)2 2
= 140366.7 (N/m2)?
oL = 374.6 N/m?
3746 0,503

L =313
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Using Eqs. (3.91) and (3.92), the parameters of L are
o = |In (0,5222 + 1|2
= 0.491

&

1= 7113 exp(—%)

= 635.8 N/m?

Using the calculated values of L and ojn ¢,

b [ln (2/635.8)

ST ]: 0.991
v = 2048.9 N/m?

This is the maximum value of the lifetime sustained load with the pro-
bability of its exceedence during the lifetime of the building being

(I — 0.932) = 0.068

ExaMmPLE 5.3 For the same example, calculate the maximum sustained load
if L follows the gamma distribution.

Solution The parameters of L [ollowing the gamma distribution are
(Egs. 3.100 and 3.101)

m 7113
Y=l T Oraer 000

k = Am = (0.0051)(717.3)
= 3,658 N/m?

From the previous example,

I'(k, Az)

I'(k)
Using Pearson’s table, it is found that the value of « = 1870 N/m?2

For the code calibration or the reliability analysis of structures, it may be
necessary to know the probability model of L, with its parameters. It is
also of interest to know the expected value and variance of L for the
purpose of structural design. Approximate formulae for the mean and vari-
ance of Lin may be derived (5.15) by fitting a Type 1 extremal (largest)
distribution to the upper load fractiles and calculating the mean and vari-
ance of the fitted Type | distribution. This involves

Fi(a) = = (.991]

(i) the calculation of the values of L. at two fractile levels in the upper
tail, say Lm = 0.932 and L = 0.992 for various values of A

(ii) the calculation of the parameters u and « of the assumed Type 1
distribution for each area

(1ii) calculation of the mean and variance from the calculated values of
u and « for each value of A4
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(iv) the plotting of the values of E(Lm) and Var(Lx) with the correspond-
ing values of 4.

(v) the fitting of a suitable curve to these points (may be the least square
fit) connecting (a) E(Lm) and A and (b) Var(L») and 4.

Transient Load

This load includes (i) the weight of the probable assembly of persons dur-
ing the office party or get together functions or some other activity, (ii) the
weight of the probable accumulation of equipment and furnishing during
remodelling of the premises, and (iii) the weight of the probable storage of
the materials. Normally, the concentration of people in combination with
the sustained load causes the highest load. Because of this only, the activity
of persons is generally considered. Again, the clustering of people above the
normal personnel load only is considered as the normal personnel load,
which is the load of persons normally present in the activity already con-
sidered as one part of the sustained load.

The knowledge of transient load is very limited. Very few transient live
load surveys have been carried out because of the difficulties involved in
this type of survey. Transient loads are to be obtained by conducting
surveys continuously in time. This would give necessary date about the
magnitude and the time aspect of transient loads. This procedure is, how-
ever, difficult to employ. The other way of collecting the data is through
questioning about the transient load events in the past. This method may
be easier but less accurate and may bring many uncertainties. The transient
load occurs for a short time and is commonly modelled as a Dirac delta-
function with magnitude equal to the intensity of the maximum load
applied during the event. The transient load occurs instantly and is assum-
ed to arrive as a Poisson event. Each event is modelled by a random
number of randomly positioned and sized load cells, occurring randomly in
space. The EUDL associated with an extraordinary load, B, is assessed by
modelling the load event as a series of randomly distributed load cells,
each of which contains a cluster of loads, The model is based on Poisson
occurring independent events, each of negligible duration. Basic compon-
ent loads Q (weight of single concentrated load in the cell, ‘i.e. weight of
single person) are assumed with specified mean value o and variance ué.
Each load cell contains a random number R of component loads (i.e. R is
the number of loads per cell, i e. the number of persons in one load cell)
with mean gz and variance 02;;- The number of load cells in a given area
is assumed to be Poisson distributed with parameter A, which is the mean
rate of load cells in 4. Q is generally assumed to be independent of 4. It it
is assumed that Q and R are independent, the mean and variance of B are
given by (5.13)

E|B] =£[%£B (5.38)



130

If it is assumed that Q and R are independent [using Egs. 3.80(a) and
3.80(b)], then

E[B) = "2br (5.39)

KN(shad + K373 |- 0hoR)
: i e

Var[B] = ¢} = (5.40)
It may be noted that even though the transient load events are probably to
a certain degree area dependent, a constant mean load intensity model is
assumed and the random process is made dependent on the area to reflect
the fact that a high concentration of people is more likely to occur in
small areas than in larger ones. The probability distribution of B is gener-
ally assumed to be gamma (5.5, 5.15) as the gamma distribution has a
reproductive property. An exponential distribution has also been suggested
by Sentler (5.15).

Life Time Maximum Transient Load

The distribution of the lifetime maximum transient load, B, is obtained in
the similar way used for the sustained load. The occurrence of B is assumed
to be Poisson with mean occurrence rate of v. Hence the CDF of B, during
the lifetime T is given by

Fem(x) = Fg(e) exp [— vT{1 — Fg(a)}] (5.41)
where Fpgm(2) = CDF of Bm
Fp(e) = CDF of B
Maximum Total Load Model

Two types of live load, namely sustained load and transient load have been
discussed. The total live load, which is some combination of the above-
mentioned live loads at any instant, is of interest. Based on certain assump-
tions, the total live load is derived.

It is assumed that the sustained and the transient loads are independent
of each other in time and space.

As the live load has been considered in two parts, of which one is conti-
nuous in time, the total load is a two dimensional stochastic variable. The
assumption of independence simplifies the problera as the joint density
function is the product of the individual density functions.

Chalk and Corotis (5.14, 5.16) have suggested a load model combining
all possible load cases, each weighted by its respective likelihood of occur-
rence. The maximum total load during the lifetime of a building may arise
from one of the following situations:

Casel :Li= Lm + B

Casell : Lt = Bn -+ L

Case I1I : Li = Lin -} B (542)
CaselV:Li=L - B
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where Lm = the maximum sustained load, Bm = the maximum extra-
ordinary load, B1 = largest extraordinary load occurring during the duration
of Lm, L = instantaneous sustained load, and B = instantaneous extra-
ordinary load. The case 1V is not considered as the probability of its
occurrence is small.

If E(}) is the average duration of the sustained load and T is the lifetime
of the building, then the probability that Case I or Case II occurs is
[T — EQ)]/T, and the probability that Case III occurs is E(A)/T. The
probability of the maximum total load can be written as

PlLi <!]=P[(Lm + B) <I'P[(Bn + L) < IJ[T_TE(’\)]

+ Pl(Lm + Bm) < 1" (")

If it is assumed that Lm, Bm, B, (Lm + B1) and (Lm + Bm) follow the
Type 1 extremal distribution, the CDF of L is

Fu(l) = exp [— exp (— wi)] exp [— exp (— w2)] [T E(A)]

E(A)

+ [— exp (— ws)] (5.43)

where wi, w2 and ws are reduced variates corresponding to (Lm -+ Bi),
(Bm + L) and (Lm + Bm) respectively.

In conclusion, the analysis of live load is complicated. The probabilistic
analysis of live loads to predict the mean of lifetime maximum total load at
desired reliability level is based on the live load survey data collection,
data reduction, and the probability models of sustained, extraordinary, and
total loads. The procedure of the analysis is summarized as (i) the estima-
tion of parameters m, o2, a% and v from the survey results, (i) establishing
the statistics of sustained load and extraordinary load that are obtained
from the respective load models, and (iii) the estimation of mean and
variance of the maximum sustained load, the maximum extraordinary load,
and the maximum total load by fitting Type 1 extremal (largest) distribu-
tion to the respective cumulative distributions.

Live load survey has been carried out on three office buildings in
Bombay (5.9, 5.18). These buildings are modern office buildings occupied
for a sufficient length of time for normal occupancy consolidation, and the
age of the buildings varies from 20 to 40 years. All the three buildings are
multistoreyed. The total area and the number of bays covered in the survey
are 1800 m? and 386 respectively. The bay areas in the buildings vary from
27 to 67 m2 It has been found that the floor load intensity varies from 0.1
to 4 kN/m?2 The results of the suitability of the mathematical model for
FLI are given in Table 5.2. The collected data for all the buildings has
been combined, and for the combined data, the mean and the coefficient of
variation of FLI are 0.717 kN/m? and 0.52 respectively. Using the model
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TABLE 5.2 Suitability of mathematical model for bay FLI of office buildings (5.18)

_ Distribution and Remarks of
Sl1. No. Description ;
parametcrs chi-square (est
1. Administrative Building,
1.L.'T, Bombay
=059 kN'm* LN(0.54, 0.42) Accepted o = 5%,
3 = 0446 G(5.027. 8.435) Accepted a -= 5%
2 Head Office Walchand
Building, RBombay
w= 0728 kN/m? LN(0.713, 0.202) Accepted « = 5%
3 = 0.207 G(23.34, 32.06) Accepted o0 = 59
3 Central Railway
Administrative
Building. Bombay
p = 0.745 AN m* LN(0.620, 0.618) Accepted a = 5%,
3 = 0.67
4 All Buildings combined
together
= 0.7i7 kKN m? LN(0.636, 0 488) Accepted 2 = 5%
$ =052

proposed by Pier and Cornell (5.12), and the method of analysis explained
in the text, and the approach used by Ellingwood and Culver (5.15), the
collected data have been analysed and the following values for the mean and
coeflicient of variation of Lmax have been suggested by Ranganathan (5.18)
for buildings. The value of v has been taken as 8, For lifetime maximum
total live load, Lmas.

Model : Type 1 (extremal largest)
Mean : 2.48 kN/m?

Coefficient of variation : 0.283
Mean 2,48

Nominal 4.0

For arbitrary point-in-time varying live load, Ly,
Model : Tognormal
Mean : 0,717 kN/m?2
Cocfficient of variation : 0,52

Mean | 0.717
Nominal =~ 4

= 0.179

5.2 WIND L.LOAD

5.2.1 Introduction

The wind load, W, acting on a struclure can be written in the form
W = BY2 (5.44)
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where B is a parameter covering all components of the wind luad (except
the basic wind speed), i.e. pressure coefficients, area reduction factors,
velocity multipliers for height and exposure, etc. ¥ is the wind speed,
generally referred to a height of 10 m. Wind loads are random in nature
due to random variations of wind speed and uncertainties in the estima-
tion of the pressure coefficients, the exposure factor, and the gust factor.
The modeiling of wind load is much more complex and difficult than the
modelling of speed. Because the velocity appears in the equation as a
squared value, its statistics is very important. However, the uncertainties in
the various factors contained in B contribute to the overall variability in
the wind load.

5.2.2 Wind Speed

Tke wind velocity is stochastic in nature. It has spatial and temporal vari-
ation during a storm. Wind speed, V(X, ¢), in a given direction in a point
of position vector X, at time ¢ during a storm is generally considered as the
sum of two terms (5.19), viz.

X, 1) = V(X) + Vi(X, 1)

in which Vo(X) is the steady component equal to the average velocity dur-
ing the storm and Vi(X, ¢) is a zero-mean process describing the gusts. The
above model is useful when the structure under investigation behaves
dynamically under wind excitations. However, many structural engineering
problems are concerned with structures in the static field. If only the static
behaviour of the structure is involved, the velocity is expressed in the form

V = V*a(2)G (5.45)

where V* is the steady (average) velocity at a reference height (10 m), «(2)
the multiplication factor for height, and G the gust factor. The maximum
value of V over an appropriate time interval T is of interest in structural
reliability analysis. For this purpose, the mean arrival rate (or the mean
occurrence interval T = 1/A) of ¥ must be specified. Hence, it is necessary
to associate return periods T with the values of wind speed. This can be
done on the basis of cumulative distribution of yearly maximum wind
speed.

Wind velocities are measured in a horizontal plane with the aid of
anemometers or anemographs, which are installed at the meteorological
observatories at heights generally varying from 10 to 30 m. The different
types of anemometers are (i) pressure anemometer (ii) rotation anemo-
meters, and (iii) gust measuring anemometers. The one which is usually
used in India is the cup anemometer which falls in the category of rotation
anemometer. Very strong winds (greater than 80 kmph) are generally
associated with cyclonic storms, dust storms, or vigorous monsoons. A
cyclone is one in which the wind speed exceeds 80 kmph. The wind velocity
recorded at any locality is extremely variable and in addition to steady
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wind at any time, there are effects of gusts which may last for a few seconds.
Wind forces acting on structures are significantly large only during strong
winds and these occur only during storms. Hence only these extreme wind
forces are of interest to the structural engineer. Attempts are, therefore,
always made to collect data on extreme wind speeds and suggest a suitable
probabilistic model for the same.

The continuous recording of wind velocities is generally carried out in
meteorological stations. Out of these values, one is interested in the extreme
or the maximum. From the continuous recording, it is possible to obtain
daily, monthly, and yearly maximum wind speeds. Figure 5.3 shows the
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FIG. 5.3 Frequency distribution of annual maximum wind speed at New Delhi
(Safdarjung)
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variation of annual maximum wind speed observed at New Delhi (Safdar-
jung). Since the yearly maximum wind speed can be interpretated as the
largest of daily values or perhaps the largest of many gusts, velocities, the
statistical behaviour of the yearly maximum wind speed is represented by
two types of extremal distributions with unlimited upper tail. One is the
Type 1 extremal (largest) distribution, so called Gumbel distribution and
the other one is the Type 2 extremal (largest) distribution, also called
Frechet distribution. The choice of the underlying distribution can be made
after the analysis of fitting closeness to the data. It was suggested that
Type 2 distribution is an appropriate model to employ in most of North
American Region (5.20), although recent studies (5.21, 5.22) have indicated
that Type 1| is more appropriate. In Japan (5.23) and Australia (5.24),
Type 1 is found to be more suitable on the basis of statistical analysis. In
Germany, Schueller and Panggabean (5.25) have fitted Type | and Type 2
distributions to maximum yearly gust and average velocities. The Type |
distribution has been used (o describe the statistical behaviour of the yearly
maximum wind speed in India (5.26, 5.27). The mean rank plotting
(Fig. 5.4) of the data on the yearlv maximum wind speed observed at
Delhi shows a good straight line fit, encouraging the use of Type 1 extre-
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mal (largest) distribution. The parameters of the selected distribution are to
be estimated using any-one of the methods (5.28). However, Simiu, Bietry,
Filliben and Grigoriu (5.22, 5.29, 5.30) have proposed an improved techni-
que for the analysis of wind speed data.
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FIG. 5.4 Mean rank plot for Type 1 extremal (largest) distribution for Vg,
observed at New Delhi (Safdarjung)

5.2.3 Return Period

A very common problem in wind analysis is to assume the return of an
observed extreme wind speed or cyclone. For design purposes, one often
attempts 10 estimate the magnitude of an extreme wind of a particular
return period. The return period, R, which is called the mean recurrence
interval, is defined as

1 |
R=7=T="Fwm
where v, is the specified design wind speed, Fy() is the CDF of yearly
maximum wind speed, ¥, and p is the probability of wind speed V exceed-
ing us in any year,

The return period is to be understood as the interval between events.
Hence a 10-year return period wind (i.e. p = 0.1) is the wind which could
be expected to occur in the long term, about once in every 10 years. It does
not mean that there will be a period of 10 years between winds of a parti-
cular size. The occurrence of wind in time is a random process and so it is
quite possible that I in 10-year wind could be exceeded more than once in
one year, or in successive years, or that there may be a period of more than
30 years in which no heavy wind as large as in the 1 in 10 year wind

(5.46)
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occurs. The one 1 in 10 year event is the event that could be expected to be
equalled or exceeded about 10 times in a 100-year period. Hence the | in
10-year wind has a frequency of 0.1, that is, there is a 10 percent chance
that it will be equalled or exceeded in any year.

E)?AMPLE’ 5.4 The yearly maximum wind speed follows the Type ! distri-
bution with parameters

u = 97.6 kmph o = 0.066
Determine the return period of the design wind speed 158.1 kmph.
Solution 1t is given that V follows the Type | distribution. Hence

Fy(v) = exp [— exp {— alv — w)}]
Then

Fy(vs) = Fy(158.1) = exp [— exp {— 0.066(158.1 — 97.6)}]
= 0.9817

Using Eq. (5.46), the return period of the design wind speed is

R = 09517

= 54.7 years
In case if one wants to find out the 20-year return period wind speed,
then

P = % = 0.05

| | I

I — Ft)  p 005
Fr(v) == 0.95
Then the wind speed corresponding to this probability is given by

exp | —exp {— 0.066(v — 97.6)}] = 0.95
v = 142.6 kmph

Hence the 20-year return period wind speed is 142.6 kmph.

In the current design procedures, wind loads are treated semi-probabiiis-
tically. The annual maximum wind speeds are recorded and an appropriate
probability distribution is fitted (o the data. A wind with some specified
probability of exceedence in any one year is then selected for design pur-
poses. Usually, a 0.02 exceedence probability for 50-year return period is
used. Although 50-year return period has attained a somewhal mystical
status 1n civil enginecring, its use does not hold up well under closer
examination. In fact, the 0.02 exceedence level for a Type | extreme value
distribution, normally used for wind speeds, corresponds o an exceedence
level of 0.63 in a lifetime of 50 years (5.31..
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5.2.4 Estimation of Lifetime Design Wind Speed

Occasionally, it is necessary to design a structure against wind load for a
fixed period from the period of construction. For example, it a structure is
built which is only to be used for 3 years following construction, or is to
be removed at the end of 3 years, the risk ol damage exists only for this
period. Thus what is required for design is wind speed associated with a
probuability of being exceeded in the fixed period starting with the building
of the structure. This design wind speed is designated as lifetime design
wind speed.

I( vqis the lifetime design wind speed, | — Fi(va) is the probability of
the annual extreme wind speed exceeding the design value vy, Hence, the
probability of no extreme wind exceeding v4 in the first m years is [Fira)]".
(This derivation is similar to the one that is derived for the lifetime design
live load). The probability of atleast one extreme speed exceeding vq is

=1 — [Fv(ea)I"

Fr(ua) = L1 — pw]tim (5.47)
Here pn and m are chosen by the designer. For cxample, if m = 50 years
and the designer has chosen a chance of the design wind speed being
exceeded to be pso = 0.05 or one in twenty, then the value F computed by
Eq. (5.47) becomes equal to 0.9989746. (it is to be noted that this
corresponds to a return period of 975 years). The characteristic wind speed
for the ultimate limit state is defined (5.31) as the wind gust speed with an
estimated probability of exceedence of five per cent in a lifetime period of
fifty years of the structure. Based on this definition, substituting » 50
and pso = 0.05 in Eq. (5.47), the computed design speed v becomes the
characteristic wind speed for the ultimate limit state.

(AMPLE #.% For the same data given in Example 5.4, calculate the lifetime

3
design'wWind speed for m = 50 years and pn = .05,
Solution Using Eq. (5.47),
Fy(va) = [1 — pu]'/m
= [I — 0.05]"/50 = 0.9989746
Since V follows the type 1 extremal distribution,
Fy(va) = exp[—expt—a(v — u)}]
That is,
exp{—exp{—0.066(vs — 97.6)}] == 0.9989746
7g == 201.88 kmph

This is the characteristic wind speed to be used for the design under ulti-
mate limit state.

Similarly, the design wind speed can be calculated for different values of
m and pm. The variation of lifetime design wind speed with the service
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period of structures for different probabilities pm, is shown in Fig. 5.5 for
New Delhi (Safdarjung) station. As expected, for a given value of pm, the
design speed increases with the lifetime of the structure, and for a given
lifetime of the structure, it increases with decrease in the values of risk
(i.C. pm).
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FIG. 5.5 Variation of design wind speed with fixed life period of the
structure

5.2.5 Probability Model for Wind Load
Recalling Eq. (5.44), the wind load on structure can be written in the form
W = BV?

where B is a parameter covering all components of the wind load except
the basic wind speed. The parameter may be assumed to be made up of the
product of the number of variables as follows

8=KCEGD (5.48)

where K is the analysis factor, C is the pressure coefficient depending on
the geometry of the structure, E is the exposure coefficient depending on the
location (e.g. urban area or open country), G is a gust factor depending on
the turbulence of wind and the dynamic interaction between the structure
and wind, and D is a directionality factor to take into account the effects
of the wind direction. Hence the wind load may be written as

W=KCEGDHV? (5.49)
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If one wants to find out the probability model for W, the Monte Carlo
simulation (dealt in Chapter 7) technique can be used, which requires the
probability distribution and the parameters of individual variates. To deter-
mine the lifetime maximum wind load model, the probability distribution
and parameters of lifetime maximum wind speed must be known. If V
follows the Type 1 distribution, the lifetime design speed for m years, V,,
also follows the Type 1 distribution. The mean and coefficient of variation
of V. are given by (5.32),

ks

Vm = V(l + \/6 SV In(m)) (5.50)

B = Sv g (or oy, = o) (5.51)
m
P and 8y, are the mean and coefficient of variation of Vim.
The approximate mean and coefficient of variation of W can be found
out by the following expression assuming all variables in Eq. (5.49) as
independent:

W=RCEGDW (5.52)
Bw)? = (3x)* + (Bc)* + (Be)* + (6e)* + (®p)* + (284)*  (5.53)

Since W is the product of the number of random variables, the probabilis-
tic model for W may tend towards the lognormal distribution. However,
Ellingwood (5.32) has proposed Type 1 extremal (largest) distribution
(based on Monte Carlo technique) for W for the assumed mean and co-
efficient of variation of the different variables in Eq. (5.49).

The author has collected data on the annual maximum wind speed
observed at 48 stations, and the daily maximum wind speed observed at 4
stations in India, and has statistically analysed the collected data. The
Type 1 extremal (largest) distribution, in general, is found to fit the data on
annual and daily maximum wind speed. Using the results of the analysis of
wind speed, the analysis of wind load has been carried out taking into
account the uncertainties in various parameters affecting the wind load,
and statistics of wind loads have been fixed for a probabilistic criterion.
The analysis of wind load is carried out for the maximum wind load, Wy,.,
corresponding to the lifetime maximum wind speed, annual maximum wind

TABLE 5.3 Statistics of wind load

Variable Mean ) u o Probabiljty
distribution
W nax! Wa 0.804 0.334 0.683 4.75 Type 1 extremal
(largest)
W Wy 0.349 0.392 0.287 9.31 '

Wl Wa 0.0452 0.743 0.030 38.15 o
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load, Wi, corresponding to the annual maximum wind speed, and the daily
maximum wind load (which is considered as an arbitrary point-in-time
varying wind load), Wap, corresponding to the daily maximum wind load.
The final statistics of wind load established for Indian conditions are given
in Table 5.3 (5.27).
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EXERCISE

The live load on a building follows the lognormal distribution with mean
= 1,3 kN/m? and 8 == 0.381. If the specified design load is 2.5 kN/m?, what is the
probability of exceeding the specified design load? (Ans. 0.0256)
What is the value of live load with a probability of exceedence of five per cent?
(Ans. 2.22 kN/m?*)
The live load on a building follows the lognormal distribution with mean
= 1.3 kN/m?* and 8 = 0.381. The lifetime of the building is 50 years and the
period of tenancy is 5 years. What is the lifetime maximum design live load for
the building with a probability of exceedence of five per cent during the lifetime?
(Ans, 3.17 kN/m?%)
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3.3

5.4

5.5

The annual maximum wind speed observed at a station follows the type 2 extrema!
(largest) distribution with parameters v« = 81.00 kmph and k& = 7.05. What is the
return period of the design wind spced = 182.5 kmph? (Ans. 309.6 yr)
At the same station a temporary structure is to be designed to serve for a
period of 3 years only. If the engineer takes a risk of five per cent, what value of
design speed will he choose for the design of the structure?
(Ans. 144.2 kmph)
If the annual maximum wind speed at Bombay follows the Type | extremal
(largest) distribution with parameters 1« = 81.4 kmph and « = 0.126, determine
the characteristic wind speed for the ultimate limit state.
(Ans. 136 kmph)
What are the mean value and coefficient of variation of the 50-year lifetime
maximum wind speed? (Ans. 116.9 kmph, 0.086)
The model for wind load is given by Eq. (5.50):

W=KCEGDYV?

If the variations in K and D are neglected, and if 8§, = 0.12, 8 = 0.16, 8; = 0.11
and 3, = 0.114, determine 8, (Ans. 0.322)



Basic Structural Reliability

6.1 INTRODUCTION

The performance of a structure is assessed by its safety, serviceability, and
economy. The information about input variables is never certain, precise,
and complete. The sources of uncertainties may be (i) inherent randomness,
i.e. physical uncertainty, (ii) limited information, i.e. statistical uncertainty,
(iii) imperfect knowledge, i.e., model uncertainty, and (iv) gross errors. In
the presence of uncertainties, the absolute safety of a structure is impossible
due to (i) the unpredictability of (a) loads on a structure during its life,
(b) in-place material strengths, and (c) human errors, (ii) structural idealiza-
tions in forming the mathematical model of the structure to predict its
response or behaviour, and (jii) the limitations in numerical methods.
Therefore, some risk of unacceptable performance must be tolerated. With
respect to risk of life, the structural safety is important. In the conventional
deterministic analysis and design methods, it is assumed that all parameters
(loads, strengths of materials, etc.) are not subjected to probabilistic vari-
ations. The safety factors provided in the existing codes and standards,
primarily based on practice, judgement, and experience, may not be
adequate and economical.

The concept of reliability has been applied to many fields and has been
interpreted in many waysﬂc most common definition, and accepted by
all, of reliability is that reliability is the probability of an item performing
its intended function over a given period of time under the operating condi-
tions encountered.}It is important to note that the above definition stresses
four- significant elements, viz. (i) probability, (ii) intended function,
(iii) time, and (iv) operating conditions. Because of the uncertainties, the
reliability is a probability which is the first element in the definition. The
second point, intended function, signifies that the reliability is a performance
characteristic. For a structure to be reliable, it must perform a certain
function or functions satisfactorily for which it has been designed, i.e.
safety against shear or flexure or torsion, etc. The reliability is always related
to time. In the case of structure, it is related to the lifetime of the structure.
During this specified life of the structure, it must perform the assigned
function satisfactorily. The last point is the operating conditions. This
establishes the actions or stresses that will be imposed on the structure.
These may be loads, temperature, shock, vibrations, corrosive atmosphere,
etc. Reliability also changes with respect to qualijty control, workmanship,
production procedure, inspection, etc.
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As stated in Chapter 1, in structural analysis and design, reliability is
defined as the probability that a structure will not attain each specified limit
(Aexure or shear or torsion or deflection criteria) during a specified reference
period (life of the structure). For convenience, the reliability, Ro, is defined
in terms of tlie probability of failure, pr, which is taken as

Ro=1—p (6.1)

In the case of the classical reliability theory, for reliability prediction
informations on life characteristics of the system, operating conditions and
the failure distribution are needed. Life characteristics are measured by the
failure rate or the mean time between the failures or the mean time to
failure. Assuming the failure rate is constant over time, the failure rate A is
defined as

e ,
A= 2 (6.2)
where f is the number of failures during a specified test interval and T is
the total test time. That is, A is a ratio of the number of failures during a
specified test interval to the total test time of the components or items. The
smaller the value of A, the higher is the reliability.
If the failure rate is constant during the operating period, the mean time
between the failures is the reciprocal of the constant failure rate.
If there are n components with failure times 1, f2, . . ., £, then the mean
time to failure is defined as

M

MF = L li {0.3)
n

=1

Let a set of NV items (structures) be repeatedly tested. After a time ¢ (this
may be considered as the time clapsed since the structure is put into service.
i.e. the age of the structurej, let n components fail (1 structures in a fuatled
condition). Then the probability of failure at time ¢ can be expressed as
£
N
This F(1) is called the failure function or the lifetime failure distributior
function for the set, and the reliability function or survival function, R(r),
is given by

F@) = (6.4)

R(t) =1 —F(1) (6.5)

The failure rate function is given by the derivative of the failure function.
That is,

fio = %0 6.6)

The hazard rate or hazard function is the instantaneous failure rate as the
interval length tends to zero. It is defined as the probability of failure per
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unit of time given that the failures have not occurred prior to time f. That
s,

\ H(t) = ﬁ((?) \J 6.7

where H(1) is the hazard tjurﬂg_n If f(f) is exponential and the failure rate
is constant, the hazard rate is also constant and becomes equal to the cons-
tant failure rate. If a structure has a constant failure or hazard rate (say A),

and f() is exponential, the various functions can be shown in Fig. 6.1.

f(t)
F(t)

Frequency of tailures

R(t)

¢t @

FIG. 8.1 Various reliability functions

Hence, if the informations on failure rate, time between failures or break-
downs, reliability function, and hazard function are available, based on
actual data, many predictions can be made about the system performance
and decisions can be taken based on that.

For structural systems it is difficult to predict the expected life or the
expected failure rate or the expected time between breakdowns. In the
reliability format, it is assumed that structural failures are not due to dete-
rioration, The structures cannot be assumed to be nominally identical. The
structural failures cannot be expressed in terms of the relative frequency.
Thus, the structural reliability theory differs from the classical reliability
theory in many such aspects except in the probabilistic nature because of
the uncertainties. The probability of failure of a structure is a subjective
probability. The reliability of a structure is not a unique property. It chang-
es as the state of knowledge about the structure changes. ‘

The acceptable probabilities for structural failures are very low, e.g. (i) of
the order of 1073 for serviceability limit states, meaning thereby that on an
average, out of 1000 nominally identical structures, one may deform exces-
sively or (ii) of the order of 1076 for ultimate limit states, which means that
out of one million identical structures, one may collapse. In practice,
structures are never identical in a large number. Moreover, these low pro-
babilities are to be estimated from the statistical properties extrapolate
from the available statistical data around the central values of the random
variables. Therefore, it will be proper to consider these probabilities as
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conventional, comparative values without having much statistical signi-
ficance. In the light of this, probabilistic methods play an important role in
making rational comparisons between alternative structural designs. The
currently developed reliability analysis of structures aims at evaluating
the probability of failure (or reliability) ol a structure.

6.2 COMPUTATION OF STRUCTURAL RELIABILITY

Consider a simple structure with one element only. Let R be the resistance
(capacity or strength) of the structure and S the action (load or load effect,
viz. bending moment, shear force, etc.) on the structure. The structure is
said to fail when the resistance of the structure is less than the action. That
is,

pr=PR<S)
=PR—-85<0) (6.8)
Or pe= P(RIS < 1) (6.9)

where pr is the probability of failure of the structure. If fr(r) is the proba-
bility density function (PDF) of R and if S is assumed as deterministic, the
hatched portion shown in Fig. 6.2 gives the probability of failure. This is
expressed as

S
pr = J fR(I‘) dr — 0 LK r<om (6.10)

fr(r)

P

%

FIG. 6.2 Determination of probability of failure for
deterministic action

s r

Fundamental Case

In real situations, both R and S are random variables. The plots of the
density functions of R and S are shown in Fig. 6.3. The hatched portion
shown in Fig. 6.3 is an indicative measure of the probability of failure. The
probability of failure is computed as follows (v.1):

The probability of S assuming a value s, is cqual to the area A, marked
in Fig. 6.4.
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The probability that R > s is equal to the shaded area A2 under the
resistance density curve:

PR >5) = J’jfn(r) dr = Az

When S takes the value s, the reliability is the product of these two
probabilities, i.e.. Z

|\ aRye= ey j‘” £ e

the reliability of the structure, Ro, is the probability of R being greater than
all the possible values of S:

= [ae= [ ol 0] s o <ssn 6

[ S .
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Hence the probability of failure is

Sp=1— ko=t — [ 6N — R ds

- f Fels)Fals) ds (6.12)

The reliability can also be found by considering whether the structure sur-
vives when the action remains less than the given value of the resistance.
Following the same procedure given above, Ro and prcan be expressed by
the following equations also

w

R, = LfR (r)[ jfs(S) dS}d’ (6.13)

pp= 1~ Jmm fr(r)Fs(r) dr (6.14)

It must be noted that the integrals in Egs. (6.12) and (6.13)areto be
evaluated numerically. Except for a few cases, the closed form solutions are
not available.

The closed form solutions for the evaluation of pr, when both R and S
are normal and both R and S are lognormal, are given below:

‘ ase I:  Both R and S are normal
~"The probability of failure of a structure is given by Eq. (6.8):

pr=Pl(R— ) < 0]
Let

M=R-—S (6.15)
where M is defined as the margin of safety. When R and § are independent
and normally distributed, M is also normally distributed. The mean value
of M, pp, and the standard deviation of M, o, are given by

UM = MR — HS and oM = (ok + ad)ir2

Hence the probability of failure is given by

pr= P(M <0)

= Fag(0) :q)(() = Mnf)
aar

p=o| et .16
i+ BT
If R and S arc correlated with correlation coefficient, p and if the joint
distribution of R and S is normally distributed, the value of py is given by

ol - Ks — PR ]
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Let

B = LM (6.18)
oM

Then the value of py corresponding to B is given by

pr= PC-f)
and the value of 8 corresponding to a given pr is
B= —0Yp) 6.19)

Hence 8 is related to the i)robabxhty of failure and is called the ‘reliability

index’”. The value of B is affected by the mean values and standard devia-
tions of R and S, and also by the level at which the distributions of R and §
intersect with each other.

\/6ase 2: Both R and S are lognormal
The probability of failure of a structure is given by Eq. (6.9):

wr{5)<1]

; R
Z = s§ (6.20)

When R and § are mdependent and lognormally dxstrlbuted it is known

that Z is also lognormally distributed with parameters Z and oin z, where Z
is the median of Z and o1, z is the SD of In Z. Thus

Let

pr=PZ<1)
nli/7)|,
Py = [_;(‘_)J{, (6.21)
InZ

When R and S are distributed as LN(R, o1 z) and LN(S, o010 5) respectively,

the parameters 5 and oz of the lognormally distributed Z are given by

z=% (6.22)
I S el

and TP W x Uln}\ (6.23)

Substituting the above equations in Eq. (6.21), we get

In (S/R) ]
. ¢[ (6.24a)
&t (cln r + o'ln 2 e
“ [ _In(S/R) ] (6.24D)
[In {(8& + D@5 + D}
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But if X is lognormally distributed, then

= 1
In(X) = In px — —2—012;1){

Ty [ oy ]
% 4 1)

Using similar equations for In R and In S and substituting them in
Eq. (6.24b), we have

In {’_"_S 0% +_1}
{In [Bk + NG5 - DIy

It is to be noted in the above equation that ps has been written in terms of
the mean values and the coefficients of variation of R and S only. When oz
and &g are less than about 0.3, Eq. (6.25) becomes

pr = Oln (us/pr)/(5% -+ 83)12) (6.26)

If R and S follow exponential distributions with parameters Az and As
respectively, it can be easily proved that (6.2)

)
Pr= 07T )

For other combinations of distributions of R and S, Eq. (6.12) or (6.14) is

to be used to compute the probability of failure. The closed form solutions
are generally not available.

ExXAMPLE 6.1 Derive an expression for the probability of failure when S
(say action due to wind) follows the Type 2 extremal (largest) distribution
and R (say strength of steel) follows the lognormal distribution. Given

Falr) = <1>[‘10—fi/§)] r >0 (6.27)
and [fs(s) = %—(—’;—)Hl exp [—(u/s)k] s20 (6.28)

Solution As random variables can assume only positive values, Eq. (6.12)
for the probability of failure becomes

,w<ﬁﬁ@ﬁmw (6.29)

Equation (6.28) is rewritlen as

s \ kD
fs(s) L( : ) exp [—(s/u)™*]

u\u
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Substituting the above equation and Eq. (6.27) in Eq. (6.29), and putting
sfu = v, we get

or= kj:<p [M] (0)~%+D exp [—0~*] do

Tin R
Let

and vk =y

SR
t
™

Then
I L

Oln R

o | == % Int —Inp
= J. P etdt (6.30)
0 Cln R

This can be evaluated using the Laguerre-Gauss quadrature formula.

Similarly, for other combinations of prohability distributions of R and §,
expressions (integral form) for the reliability or probability of failure can
be develo

\/éXAMP .2 The axial load carrying capacity of a column, R, is normally
distributéd with pr = 1000 kN and og == 200 kN. The column is subjected
to ad axial load, S, which is normally distributed with s = 700 kN and
os = 300 kN. Calculate the reliability of the column assuming R and § are
independent.

Solution The margin of safety is given by
M=R-S

Since R and S are normally distributed, M is also normally distributed.
Using Eq. (6.16),

- _!fs_:_ﬂ_n_]
P (ok + o)

700 — mog}]
(3007 4 200%)1 2

= @P(—0.832) = 0.2027
Ro =1 — 0.2027

7

. 0.7973
’\AAMPLE 6.3 A prestressed concrete pole is subjected to wind load, which
is as shown in Fig. 6.5, lognormally distributed as LN (1000 N/m?, 0.2).
Determine the mean depth of the pole at the limit state of deflection for u
reliability of 0.999. It is given that

(1) allowable deflection: span/325
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Wind —— |
load (w) —=
i v
SR om
200mm ——
T O 1
Section on x x ==
—y
- e

FIG. 6.5 Concrete pole—Example 6.3

(ii) Young’s Modulus of concrete (E):
LN (2.6 x 10* N/mm?, 0.2)
(iii) breadth of pole: 200 mm
(iv) variations in depth () and breadth of the pole are negligible.

Solution The maximum deflection, i.e. at the top of the pole, is given by
__ (1< 200)(6000)*
Yemax 8EI
where w is the wind pressure in N/mm? and 7 is the moment of inertia in
mm#,
Since,

;. (200a%)
T

S . « 1015

Ymax Ed? x 1.94 < 10
At the limit staie of deflection, the failure will occur when the allowable
deflection, yan, is less than ymay, i.e.

Yall < Ymax

or the probability of failure of the pole is given by
Yall
=PI{l— < ]
i [(,anx ) ]

Yall 6000 (_Ed_z)

T Yemax w

Let

325% 1.94:2 1015

As E and w are lognormally distributed and d is deterministic, Z is also
lognormally distributed. The parameters of Z are given by

Z = 395104y 105\ =

~

= 6000 (JZ"d3 )

= 24810743
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Uln? = [Ulan + Ulan]llz
= (0.22 + 0.23)!2 = 0,28

Since Z is lognormally distributed, we have

e @ [m (1/2)

Olaz
=1 —0.999 = 103
In (1/2.48X 1077 d3) = 01az®~H1073)
= (0.28)(—3.1)
Solving the above we get, d = 212.56 mm

XAMPLE 6.4 A reinforced concrete beam of an effective span, 8 m, is
subjected to live load. The cross section has been designed with M 25 con-
crete and steel grade Fe 250. The area of steel (4s) is 1400 mm? and the
self-weight of the beam 3 kN/m. It is given that the random variables, the
cube strength of concrete (fcu) and the yield strength of steel (fy) are
normally distributed.

Breadth of the beam (b) = 240 mm
Effective depth of the beam (d) = 480 mm
Mean value of fcu = 30.28 N/mm?
Mean value of fy = 320 N/mm?
SD of fou = o¢ = 4.54 N/mm?
SD of fy = o, = 32.0 N/mm?

Calculate the probability of failure of the beam if the live load (L) is
normally distributed with mean, 6 kIN/m and standard deviation, 3 kN/m.

Solution The action, here, is the bending moment at mid-span due to dead
load (D) and live load on the beam. Assuming the dead load and span
length as deterministic, us and os are calculated as follows:

The mean value of S is

_ 3x8  w(8?)
ps=—5— + ¢

=24+ 6X8=72kNm

82
v al)

=3x8 =24kNm

The resistance, here, is the ultimate resisting moment of the beam. This is
given by (as per Indian Standard Code),

o 077 fydu ]
R —fyAnd[l —_—bdfm
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In the above equation, only feu and fy are considered as random variables.
The approximate . values ol mean and standard deviation of R are
calculated using Eqs. (3.81) and (3.83). It is assumed that fy and fe are
independent.

0.77 ¢ 1400 320

== 193,774 kN m
Using Eq. (3.84).

e (BRI . (OR V-
o= (o) 7+ () = oy
oR| 154 ,4“,“,]
j;, 4 - As‘ d [l h (/ Hfcu
.54 1400 320

= 1400480 [' T 240480 30.2§]

=054 106
R| (0_-7,7__4..:1 _f*%y)
‘/;'“ o ,)P'I’S'u

- (T ot
240 > 30,282
= 0.70:< 108
Using the above values in Eq. (6.31)
0% = (0.54 < 10872(32)* + (0.7 109%(4.54):
op = 17.56 KN m

Since live load is normally distributed, S is also normally distributed in this
case. Assuming R is normally distributed, the value of pr is obtained using
Eq. (6.16), i.c.

(24* F 17.56%)172
= O(—4.0965) = 2.4/ 10-3

, [ 72 — 193.774
1){ ==
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EXERCISE _
6.1 If the probability density functions of resistance R and action S are
Sr — Ag exp (—=Agr)
and Sg = Agexp (—Ags)
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derive an expression for the reliability, Ry, and prove that it is given by

As
Be= ta i
If R and S follow gamma distributions, given by
n n-le-Ar
(r) =2 A Y20
I r'm z
m m—1 —fBs
fos) =B e B 520
s [.,(m) ﬁ z
derive an expression for R,.
I(m - n) (11040
= — wym=tyn—1
(Ans. R, TomT(m J o (I — wm-tun—1 dy
I'(m - n) )
R oy = A/A
T ) B,(m, n) where t = B/

If the resistance of a structure follows the lognormal distribution, and the action
on the structure due to wind follows the Type 1 extremal (largest) distribution,
derive an expression for R, and show how will you solve it numerically.

It is assumed that the strength of a RCC column is given by the sum of the
strengths of concrete, C, and reinforcing bars B;. C and B, follow normal distri-

butions with parameters given by co
i

//‘1

y -]
Aec= BNmm* Gc= 5N/mm? “qflé Al vt %
/[’k \\ ug; = 460 N/mm? ap; = 46 N/mm? FK”; Q"@(&P

If the size of the column is 250x 400 mm and if it is provided with four 20 mm
diameter bars, determine the mean value and standard deviation of the strength
of the column. The column is subjected to a dead load, D, and live load, L, with
distributions N(1500, 200) kN and N(500, 200) kN respectively. Compute the

reliability of the column. (Ans. Ry = 0.96638)
The strength of a column, R, is given by
niEl
=

where E is the Young's modulus, [/ the moment of inertia and a the length of the
column. It is subjected to load Q. The mean values and coefficient of variations
of all the variables are given below:

g = 2.03x10°* N/mm? 3;=0.1

pr = 12.5x10* mm* 3y = 0.05

Bg = 5000 mm 3g = 0.05

#g = 700 kN 3, =03
If all the variables are lognormally distributed, determine the probability of
failure of the column. (Ans. 0.11365)

A tension member of a steel truss is subjected to an axial load, Q. The strength
of the member is given by 5 A, where £, is the yield strength of steel and A is the
area of cross section of the member. Given:

#g = 20 kN 8g =04

ufy= 286 N/mm?* 3, =01

Find the area of the member for the specified reliability of 0.99865. That is,
Pp = 1.35%1072. Assume variation in area is negligible. (Ans. 167.8 mm?)

o
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Monte Carlo Study of
Structural Safety

7.1 GENERAL

In the process of giving predictions about some physical system, the follow-
ing four steps arc involved: (i) observation of a physical system, (ii) formula-
tion of a hypothesis, (iii) prediction of the behaviour of the system on the
basis of the hypothesis, and (iv) performance of experiments to test the
validity of the hypothesis. Sometimes it may be either impossible or
extremely costly to observe certain processes in the real world. It is evident
that there are many situations which cannot be represented mathematically
due to the stochastic nature of the problem, complexity of the problem
formulation, or the interactions needed to adequately describe the problem
under study. For such situations defying mathematical formulation, simula-
tion is the only tool that might be used to obtain relevant answers. Even if
a mathematical model can be formulated to describe some system of inter-
est from the limited data available, it may not be possible to obtain a
solution to the model by straightforward analytical techniques and in turn
make predictions about the behaviour of the system. For example, let us
consider the probabilistic behaviour of a prestressed or reinforced concrete
flanged beam. We want to determine the reliability of the beam.

7.1.1 Failure of a Flanged Section (7.1, 7.2)

Prestressed concrete members usually have symmetrical or unsymmetrical 1
sections. Because of the random variations of the parameters of the resis-
tance of a section, the failure of a flanged section can take place with the
occurrence of any one of the following events:

Y1 -the section is under-reinforced with the neutral
axis in the flange

Y2-the section is under-reinforced with the neutral
axis in the web

Y3 —the section is over-reinforced with the neutral axis
in the flange

Ya-the section is over-reinforced with the neutral axis
in the web
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The occurrence of each event has a certain probability. The probability
tree for the failure of a section at the limit state of strength is given in
Fig. 7.1. If the above events are assumed mutually exclusive, it can be seen
that the probability of failure, ps, of a flanged section is the sum of the
conditional probabilities of failures of the section under each given event,
and the same can be written as

4
pr= ,Z‘lP(FI Yi) P(Y7) (7.1)
Yq : o
Y2
RO
Y
3 F
Y4
R
Fo
RO

FIG. 7.1 Probability tree diagram

where P(F | Yi) denotes the conditional probability of Ffor a given event ¥;.
F denotes the event ‘failure’. In Fig. 7.1, Ro represents the event ‘reliable’
(i.e. safe). The conditional probability of failure of a section for any given
event (say Y;) is given by

P(F|Y)=P(R-S) < 0| VY] / (7.2a)
or P(F| Y) = PURIS) < 1] YilJ (7.2b)

where S is the action (load or bending moment) on the section and R is the
resistance of the section. The resistance of a section is a function of the
various material and geometric properties of the section:

R=gXi, X2, ..., X») (7.3)

Because parameters X; are usually random variables, the resistance is also a
random variable with density function fk and cumulative distribution Fr.
If X are correlated, their joint distribution must be known. Assuming the
X; in Eq. (7.3) are statistically independent, their joint density function is

R L O B (X

and its cumulative probability is
FrR() =P(R<r=Ja... I}Ul Sxi(xp) dx; (7.5)

The restriction R < r defines the region of integration G in Eq. (7.5). The
integral contained in the equation cannot be evaluated in a closed form.
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Added to this, the evaluation of ps requires the evaluation of the probability
of occurrence of each given event ¥;. Defining:

Bi - the event that the section is under-reinforced
B> —the event that the section is over-reinforced

B3 ~the event that the neutral axis lies in the flange
By the event that the neutral axis lies in the web

the probability of occurrence of the event Y is
P(Y1) = P(BiN B3) (7.6)

The events By and B3 are dependent on each other and the density function
of each is again the function of the material and geometric properties of
the section. Hence, the evaluation of the probability of occurrence of each
event Y; is difficult. Finally, to calculate the conditional probability of
failure for the given event, Eq. (7.2a) or (7.2b) is to be used which involves
numerical integration. The evaluation of ps thus becomes a formidable task
even when adequate statistical data are available. In such cases, simulation
becomes a satisfactory substitute for finding solutions. Simulation is a
process of creating the essence of reality without ever actually attaining the
reality itself. As defined by Naylor (7.3): ““Simulation is a numerical techni-
que for conducting experiments on a digital computer, which involves
certain types of mathematical and logical relationships necessary to describe
the behaviour and structure of a complex real world system over extended
periods of time”.

7.2 MONTE CARLO METHOD

7.2.1 Introduction

The Monte Carlo method is a simulation technique. One of the usual
objectives in using the Monte Carlo technique is to estimate certain para-
meters and probability distributions of random variables whose values
depend on the interactions with random variables whose probability distri-
butions are specified. As it is known that the ultimate resisting moment,
M:, of a section is a function of several random variables, the probability
distribution of M: depends on the equation connecting these random
variables. As explained in the previous section, as closed form solution for
the calculation of the cumulative probability of M; is not possible, the
Monte Carlo method can be used to study the statistical prcnerties of M:.
Secondly, as explained in Sec. 7.1.1, the failure of a flanged section can
take place under different events. Hence to study and simulate the complete
random behaviour of the section at the limit state of strength, the Monte
Carlo technique is the best suited method.

7.2.2 Monte Carlo Method (7.4)

Provided high speed digital computing facilities are available, a simple
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Monte Carlo technique can often be wuseful in obtaining the distribution
Fr(r). Let R be a function of »n independent random variables Y;:

R=gY,Ys...,Yn
The technique consists of three steps:

1. Generating a set of values i for the material properties and geometric
parameters Y; in accordance with the empirically determined or assumed
density functions fvi. The suffix / is used to denote the ith variable and
suffix k is used to represent the kth set of values (yik, Yok, - . ., Viky -« «
vak) of the corresponding variables (Y1, Y2, ..., Y;, ..., Ya).

2. Calculating the value r« corresponding to the set of values yi obtained
in step 1, by means of the appropriate response equation for resistance of
the section. That is

%L = g(P1k, Y2k, -« o Viky o o o 5 Vrk)

3. Repeating steps 1 and 2 to obtain a large sample of the values of R
and therefore, estimatingﬂg@

This method can also be used to obtain distributions for M and Z where

L= R=§ (7.7)
7 R
SZ = 5 (7.8)

Here, R is the resistance and S the action. It is then only necessary to
obtain additional sample values for S in accordance with the density func-
tion fs and to combine the equation for resistance with Eq. (7.7) or (7.8) to
provide the direct means of calculating the values of M or Z.

The procedure for generating a random deviate from a specified distribu-
tion generally follows this pattern:

1. Generate a random number from the standard uniform distribution.

2. Perform a mathematical transformation of the standard uniform
random number (or numbers) which produces a random deviate from lbc
desired distribution.

3. Use the transformed deviate in the experiment as required.

Various methods have been developed for the generation of uniform
pseudo-random numbers. Subroutines for this purpose are readily available
(7.3, 7.5). Built-in programmes are generally available in all the computer
centres to generate uniform random numbers. The transformation of the

uniform random number to the random variate of the desired distribution

is obtained by the i inverse trausformauon ‘method, if possible.
Inverse Transformation Technique

Consider the cumulative distribution function, Fr(y), of the distribution to
be simulated. Fy(p) is defined over the interval (0, 1). Consider the standard
uniform variate ¥, which is also defined over the interval (0, 1).
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Generate a value v for the standard uniform random deviate. For a
standard uniform variate V, the cumulative probability of ¥ < v is equal
to ¢. That is, Fr(v) = v. Hence if we set

Fr(y) = »
Then y is uniquely determined by the relation
Fr(y) = vy = Fr ()
This is graphically shown in Fig. 7.2. The PDF of V is shown on the left
side. The generated uniform random number ¢ is projected on the curve of
the CDF of Y. The point C on the curve is projected down on the horizon-

’ ' -1 . .
tal axis 1o get the corresponding value y. Hence, y = Fy (v) is the variate
desired from the given distribution of Y.

fy(y)d
PDF of Y

>

Porw

2 1‘01-._
>
@
L.
S
a “H>—— —=V|— —|—= — —
= o
<
&

FIG. 7.2 Inverse transformation technique

When the inverse of Fy(y) i.e. Fr'(2), does not exist or, it is so compli-
cated as to be impracticable, other techniques such as rejection technique,
composition method, and approximation methods (7.5) are to be used.
Hence, the suggested procedure for drawing the kth set of input values yu
from the corresponding distributions of Fy; is to generate first a set of n
random numbers, #, with uniform density in the range 0 < v < 1.0, The
values of yix are then obtained from

v = Fri(ou) (7.9)
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The method of obtaining a random deviate of Fr; ( ) using the inverse
transformation technique is illustrated in the following example.

ExampLe 7.1 Using inverse transformation technique, develop expressions
for generating random deviates of Y having the following distributions:

(i) Uniform distribution, (ii) Exponential distribution, (iii) Weibull distri-
bution, (iv) Type 1 extremal distribution, (v) Type 2 extremal distribution,
and (vi) Type 3 extremal distribution.

Solution Uniform distribution:

, 1
Given fr(y) = [b vy [asrsh
0 elsewhere
Th Fr(y) = [ad
en Y y) —J.a([;—_—a) dt
=
“\b—a
Set v =Fy(y) = i—:—f})

The inverse transformation is
y=F}71(v) =a-+ (b—a)v (7.10)

where v is a uniform random number with uniform density in the range 0
and 1.
(ii) Exponential distribution:

Given fr(y) = de N y=20
Fr(p) =1 — e
Set = FY(y) =1 — M
Pl L U (,} —1 7.11)
However, one can straightaway use the following equation:
i __h,\lﬂ). (7.12)

rather than Eq. (7.11), since (1 — o) is also from the uniform distribution.
(iii) Weibull distribution;

Given fr(y) = afyf-le®® 3y >0
Fo)=1-¢*’
Set v=1— g®®

1p
Hence y= [— s Inw ] (7.13)
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(iv) Tyoe 1 Extremal (largest) distribution:

Given Fr(y) =exp[ —exp{ —a(y —w)}] -0 <y<ow
Set v=exp[— exp{— aly — u)}]
Then y=u-— ll[—t:L(U)]— (7.14)

(v) Type 2 Extremal (largest) distribution:

k
Given Fy(y) = exp [— (%) ] y=0
u \k
Set v = ex [— (—) ]
e P "
Then y = u/( — In v)V/k (7.15)
(vi) Type 3 Extremal (smallest) distribution:
k
Given Fr(p) =1 - exp[ = (}’&) ] y=20
e i
Set v =1 exp [ (u)]
Then y=ul —In(1— v)jlk (7.16)
One can straightaway use the expression
y = ul — In (0)]'* (7.17)

since (I — v) is also from the uniform distribution.

For normal distribution, the Box and Muller technique is used to
generate normal variates. Here, standard normal deviates are obtained by
generating two uniform random numbers »; and v2 (with a uniform density
range between 0 and 1) ata time. Then the desired standard normal variates
are given by (7.5)

ur = [2 In 1/11]"2 cos (27 v2) (7.18)

uz = [2 In 1/o]Y2 sin (27 uy) (7.19)
ExaMmpLE 7.2 (Normal distribution) Generate normal variates from the
distribution of Y following the normal distribution with mean ¢ and
variance o2,

Solution First generate two uniform random numbers v; and v; in the
range 0 and [. Then, the standard normal variates are given by Eqs. (7.18)
and (7.19). We know that the standard normal variate is connected to the
normal variate Y as follows:

Y =

g

=U (7.20)
where U is the standard normal variate. Hence we can get two normal
variates yi and ya, using Eqs. (7.18) — (7.20). Thus.

»o=ou + p

Y2 = ouz + p
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That is
y1 = p + o[21n 1/21]V/2 cos (2mv2) (7.21)
y2 = p + o[2 In 1/v/]!/2 sin (2702) (7.22)

ExampLE 7.3 (Lognormal distribution) Generate the lognormal variates
from the distribution of Y following the lognormal distribution with para-

meters Y and oy, v.

Solution  As in the case of normal distribution, here also, we first generate
two uniform random numbers »; and v2 and get two standard normal
variates using Eqgs. (7.18) and (7.19). Using the following transformation

oM _ (1.23)
Oy
for transtorming the lognormal variate to the standard normal variate, we
get two values of the lognormal variate Y:

y1= ¥ exp (U101 v)

y2= Y exp (4201 v)
Using Egs. (7.18) and (7.19),

yi = Y exp [o1a v(2 In 1/01)!/2 cos (2m2)] ‘ (7.29)

y2 = ¥ exp [owr(2 In 1/o1)!72 sin (2722)] (7.25)

ExAMPLE 7.4 (Beta distribution) The PDF of the standard beta distribution
is given by Eq. (3.105) with parameters p and g, i.e.,

Ja = B(.lv. )

The procedure to generate beta deviates is as follows (7.5):
Generate two standard uniform random numbers 1 and v2,

Set g = (v)lle and h = ()
Check whether g+h<1
If g + h < 1, the standard beta deviate is given by

xP~1(1 — x)a1 0<x<1

x=G%W (7.26)

If we want to generate a random deviate from the beta distribution of ¥,
given by [Eq. (3.109)]

xat —-I(h — -
fr() = (;‘;( = ;))('}) f’a)pfq)f,' a<y<b

then use the transformation to transform the beta variate to the standard
beta variate, i.e.

_(y—a

*=W—0




164

Hence, the required beta random deviate is given by
. y=x(b—a)+a (7.27)

ExaMpLE 7.5 (Gamma distribution) We are interested in generating gamma
distributed random deviates. The PDF of the gamma distribution is given
by Eq. (3.102), i.e.
k=1 p—Ax
S =2 EET x>0
MNkz=0
where A and k are parameters of the distribution. The procedure to generate
gamma deviates is as follows (7.6):
(i) Let k* = 1 be the integer part of k.

(i) Generate k' -+ 3 standard uniform random numbers, i.e. »1, v2, . ..,
Vi 43, satisfying the condition
R A (7.28)

(iii) The gamma distributed deviate is given by

V&
i k43 UIII\

1
x=-< i§4 In v - ;\-‘( — In v3) ‘U:ﬁ;y“—_k) (7.29)

7.3 APPLICATIONS
The Monte Carlo method has a variety of applications. [t can be used to
study the distribution of a variable, which is a function of several random
variables, to simulate the performance or behaviour of a system, and to
determine the reliability or probability of failure of a system or a component,
The simulation technique has been used in the reliability study of structures
by several research workers. Some of the applications are illustrated through
the following examples.
ExAMPLE 7.6 The strength of an axially loaded short column is given by
= 0.67 CA; + As

where C is the cube strength of concrete, F the yield strength of the
reinforcing bars, A, the area of concrete and A the area of steel. Given:

Size of the column = 250 mm X 500 mm

pe == 19.54 N/mm? oc = 4,1 N/mm?

pur = 469 N/mm? or = 46.9 N/mm?

Ay == 1250 mm?
C and F are normally distributed. The problem is to determine the distribu-
tion of R using the Monte Carlo method.
Solution Area of concrete (4.) == 250X 500 — 1250

= 123750 mm?
R = 0.67x123750 C -+ 1250 F
= 829125 C + 1250 F (7.30)
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Using Egs. (7.21) and (7.22), the random deviates of the normal variates of
C and F are first generated. Using these values in the prediction equation
for R, random deviates for R are generated using the Monte Carlo method.

The mean value and standard deviation of R, calculated after the genera-
tion of 500 and 1000 values, are given below:

ur = 2,216 X 106 or = 3.466 X 105 (after S00 values)
pr = 2,207 X 108 og = 3.460 X 105 (after 1000 values)

These values, when verified with the theoretical exact values
pr = 82912.5 pe + 1250 pr
= 2,206X 106 N

ahd or = [(82912.5 oc)? + (1250 of)?]'2
= 3.4496 % 10° N

agree very well. The error on the estimates of mean is almost nil and on
standard deviation about 0.3 per cent,

The frequency distribution of generated R is shown in Fig. 7.3. The
coefficients of skewness are —0.01 and + 0.016 at the end of 500 and 1000
generated samples respectively. Coefficients of Kurtosis are 2,637 and 2.989
at the end of 500 and 1000 simulations respectively. R, being normal, the
theoretical values of the coefficient of skewness and Kurtosis are zero and
3 respectively. The normal distribution fits very well for the generated data.
Theoretically also, R should follow the normal distribution.

7.3.1 Sample Size

We have seen in Example 7.6 that the generated data is used for estimating
the mean and standard deviation of the resistance of the column. As
larger and larger samples are used, the estimates are closer to the population
values. The minimum size of the sample depends on the desired accuracy
of the estimates.

For the estimate of the population mean of a random variable X, the
minimum sample size is specified (7.3) such that the probability of the true
mean falling within the confidence interval

Xy b @ (_si‘z) 7.31)
/2 vn (
is (I — o) percent where X,, and 5. are the sample mean and standard

,deviation of X, and « is the level of significance. Pq)2is the value of the
standard normal variate at a cumulative probability of a/2. If en is the
specified acceptable error in the estimate of the mean value of X, thén

en= Dl (\‘/—E) (1.32)
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FIG. 7.3 Generated distribution of R: (a) frequency distribution of R and
(b) CDF on normal probability paper—Example 7.6

then the minimum size of the sample for the estimate of the population of
X is given by
n= @2 Fi]z (7.33)
«/2 Cm &
For a large sample size (say n > 120), the standard deviation of 3y is
equal to 5,/ \/2n. Hence for the estimate of the standard deviation of X,

the minimum size is specified such that the probability of the true standard
deviation falling within the confidence interval (7.3)

5y %,Z( \“‘/2_") (7.34)




167
is (1 — «) per cent. Specifying

e = d&,:(—i":) (1.35)

2n
the minimum sample size for the estimate of the population standard devia-
tion of X is given by
1 i.12
= ¢021./2[_es—] (7.36)

where ¢s is the acceptable error in the estimate of the standard deviation of
X. Generally, the acceptable error = 5% and « = 59, are taken.

If the Monte Carlo technique is used to generate straightaway the samples
for the margin of safety and determine the probability of failure, Shooman
(7.7) has proposed the following expression for the percentage of error on
the estimated probability of failure:

e 1/2
9, Error ‘=200 ['fw’lf—] (1.37)

Using this equation, the sample size can be calculated for the required
accuracy.

ExampLe 7.7 Calculate the sample size, required for the case study in
Example 7.6, to estimate the mean and standard deviation for an accept-
able error of five per cent on the estimates of the mean and standard devia-
tion, and a level of significance equal to five per cent.

Solution 1t the mean value and standard deviation of the generated samples
for R (say after 500 samples) are

R = 2216x108 Sg = 3.466 % 10°

then the sample size required to terminate the simulation process, using
Eq. (7.33), is
5. 12
= P2, |
: i [ €m ]

For a« = 0.05, confidence level = 1 — « = 0.95. Thus
Doz = Do.o2s = D71(0.975) == 1.96

The allowable error on the mean = li()() R
Hence the sample size required to estimate the mean with « = 5% and
em = 5% is

3.466% 105 12
— v | (L ol LA 2 LS
n = (1.96) [0.05><2.21 X 106]

= 38
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The sample size required to estimate the standard deviation with « = 5%,
and e; = 5%,, using Eq. (7.36), is

2
P 1 ‘7’212 [?ﬁ]
€s

)

1 L [ 3.466% 105

=g X1 (0.05x 3.466 % 105)
— 768

Considering both, the minimum sample size required is 768. In Example
7.6, it can be seen that at the end of 1000 simulations (n = 1000), the
error on the estimate of the standard deviation of R is less than five
per cent.

ExamMpLE 7.8 Consider the column in Example 7.6, the strength of which
is given by Eq. (7.30). The column is subjected to an axial load Q. Given:

po = 12X 106 N oo = 0.35%X 106 N
pc = 19.54 N/mm?  o¢ = 4.1 N/mm?
pr = 469 N/mm?2 o = 46.9 N/mm?

Variables Q, C and F are normally distributed. Determine the probability
of failure of the column using the Monte Carlo method.

Solution The resistance of the column is given by [Eq. (7.30)]
R = 82912.5C + 1250 F
The safety margin equation is
M = 82912.5C - 1250 F — Q (7.38)

Using the given distributions and the corresponding parameters of C, F
and Q, the simulation is carried out and 20,000 samples are generated for
* M. During the process of generation, the number of values of M falling
below zero are counted. At the end of 20,000 simulations, the number of
sample values of M falling below zero is obtained as 417. Hence, the
probability of failure of the column is

_ 417
e v Pr = 36000

Using Eq. (7.37),if we want to have an estimate of pr (say 0.02) with an
error = 10 per cent, the sample size required is
s 2002 (1 — 0.02)
0.02 102
= 19600

We have generated 20000 samples. Hence there is a 95 per cent chance that
the percentage error in the estimated py is less than 10 per cent,
The theoretical valies of war and vy, using Eqs. (3.77) and (3.79), are

gy == 1.006> 10° opm = 0.489 1 108

= 0.02085
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Since C, F and Q are normal, M also follows the normal distribution.
Hence the theoretical value of py is

pr=P(M <0)

o [0_—_@1]
oM

= ®(— 2.0488) = 0.0202

From the Monte Carlo method, the value of ps has been obtained as 0.02085
at the end of 20000 samples values of M.

During the process of code calibration, reliability analyses of existing
designs as per the current codal provisions are carried out for various limit
states criteria. For this, the probability distribution and statistics of the
strengths of members (say, in flexure, tension, shear, torsion, etc.) for
various failure criteria are to be known, Statistics of the strengths of
members are established using the Monte Carlo method (7.8, 7.9). The

determination of the statistics of the flexural strength of RCC beam is
illustrated below.

ExampLE 7.9 A simply supported reinforced concrete beam of span / is
subjected to a uniformly distributed live load L and a dead load D. The

breadth, effective depth, and area of steel on the tension side are b, d and
As respectively. It is given;

b=300mm g =550 mm As = 1039.5 mm?
pe = 17.58 N/mm? oc = 3.164 N/mm?
pr = 469 N/mm? op = 45.9 N/mm?

b: xhean deviation = 4+ 10.29 mm o = 9.47 mm

d: mean deviation = 6.25 mm o = 3.79 mm

C and F are the cube strength of concrete and the yield strength of rein-
forcing bars respectively, Their nominal values are 15 N/mm? and
415 N/mm? respectively. The above data are based on the actual field data,
given in Chapter 4, for Indian conditions (7.9). C follows the lognormal
distribution and all other variables are normally distributed.

Study of Distribution of Strength in Flexure

The theoretical model for the ultimate resisting moment of a RCC beam is

_ 0.77 FA;
R = Fd, d[ e -—M—C—] (7.39)
This equation is obtained when the material reduction factors attached to
the strengths of concrete and steel are removed in the equation given by
I1S: 456-1978 for computing the design strength of a singly reinforced
beam. There will be, in general, a certain model error associated with every
prediction equation for the strength of a member. If B is the model para-
meter, let s and op be the mean and standard deviation of B. For flexural
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strength, pp = 1.01 and op = 0.0465 (7.8). Attaching this model parameter
8 to the prediction equation, Eq. (7.39) becomes

077 FA, ]

R == BFAs d[ 1 e (7.40)

" hdC
From the given data, u, = 300 + 10.29 = 310.29 mm and pg = 550
, 6.25 == 556.25 mm.

Using the Monle Carlo technique, random deviates of various variables
are generated (B is assumed to follow normal) and then, using the same in
the prediction equation, sample values of R are generated.

Generally, the values of R are normalized with its corresponding nominal
value Rn, so that the statistics of R of different designs could be compared.
R, is obtained by substituting the nominal values of the variables in the
prediction equation. For this problem,

_ _ 077415 1039.5
Rn = (1.0)(415)(1039.5)(550)[ 1 300 % 550 % 15 ]

= 2.055..108 N mm

Hence, instead of studying the distribution of R, the distribution of R/R,
is studied. It is to be noted that R, is deterministic and is constant for a
particular design. The frequency distribution of the generated samples of
R/Rn and the statistics of R/R, are given in Fig. 7.4. It is found that the
normal distribution fits the generated data well (based on the chi-square
test at five per cent level of significance).

7 —— — e
n =30000 |
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N
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i

Number ot observations X1O3

0 U V. .
0-720 0834 0-947 1061 1175 1-289 11402 1516 1630

R/Rp
FIG. 7.4 Frequency distribution of the resistance of RCC beam—Example 7.9

During the reliability analysis of the present designs, the statistics of the
strengths of members for various combinations of basic variables for each
failure criteria (shear, flexure, torsion, etc.) are studied in detail using the
Monte Carlo technique, and then fixed. To be consistent, Ellingwood, et al.,
(7.8) have fitted a normal distribution to the lower tail below five per cent
fractile of the generated strength distribution, and the statistics (mean and
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standard deviation) of R/R, are established. Typical values of resistance
statistics of RCC members, established for Indian conditions, are given in
Table 7.1 (7.9). In Table 7.1, g is the ratio of the design value of R to its
nominal value.

TABLE 7.1 Typical resistance statistics of RCC members

Steel Concrete
HiElyeer grade grade ¥R R, g "R
Slabs
One way (SS) Fe 250 M 15 1.433 0.124
Fe 415 M 15 1.275 0.124 Range
Two way (SS) Fe 415 M 15 1.281 0.124 0.835-0.865
One way (C) Fe 415 M 15 1.263 50.136 Average
Two way (C) Fe 415 M 15 1.286 0.129 0.85
Beams (flexure)
Singly reinforced Fe 250 M i5 1.288 0.104
Fe 415 M 20 1.179 0.103 Range
Fe 415 M 25 1.169 0.101 0.835-0.845
Fe 415 M 15* 1.197 0.105 Average
Doubly reinforced Fe 415 M 15 1.151 0.103 0.84
Beams (shear)
Fe 250 M 15 1.355 0.166 Range
Fe 415 M 15 1.277 0.165 0.855-0.865
Average
0.86
Columns
Compression failure Fe 415 M 20 1.29 0.152 Range
Fe 415 M 20* 1.38 0.224 0.68-0.79
Average
0.725
Tension failure Fe 415 M 20 1.19 0.13 Range
Fe 415 M 20* 1822 0.15 0.68-0.89
Average
0.8

Note: SS = Simply supported
C = Continuous
* = Indicates nominal mix

Sometimes in engineering problems we may have to deal with situations
while studying the performance of a system under two failure criteria or
two different designs when they are correlated. Under such conditions the
correlated sampling technique may be used. This is illustrated in the
following example. ;

ExampLE 7.10 Consider the portal frame shown in Fig. 7.5. Consider the
two failure modes shown in Figs. 7.5b and 7.5c. It is given that

purms = pms = ppms = 300 kN m

opm3 = opa = op5 = 30 kN m

pM1 = pM2 = pps = par = 50 kN m

oMt = OM2 = Op6 = 0p7 = 5 kN m
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po = 180 kN oo = 40 kN
pr = 40 kN o = 10 kN

Q Q
P T W
P ; 16 i T 6
4
4m
L :
———m ———
(a) Frame (b} Failure Mode 1
Q
; .
2 6
1 7

{c) Failure Mode 2z

FIG. 7.6 Correlated failure modes—Example 7.10

where M; is the plastic moment capacity of section /. All variables are
normally distributed.

Using the mechanism method of analysis (7.10), sefety margin equations
for the two failure modes can be written as

Zy = M+ 2Ms + M — 30 (7.41)
Zy =M + M2+ Ms + M7 — 4H (7.42)
The probability of failure of the frame under failure mode i is
pri = P(Zi < 0)
The probability of failure of the frame under failure modes Z; and Z2 is
priz = P(Z1 < 0NZ2 < 0) ' (7.43)
The problem is to generate the joint distribution of Zi and Z2 and then

calculate py12. .

It can be seen that Z; and Z» are correlated as they depend on the same
basic variables M> and Ms. The correlation sampling technique can be used
to generate the joint distribution of Z; and Z2, and to calculate pri2. The
procedure is to generate normal deviates of M1, M2, Ms, Ms, M7, Q and H
using their respective parameters. Substituting the generated deviate of each
variable in the equations for Z) and Z>, the random deviates of Z, and Z
are generated. While generating random values z1 and z; for Zy and Z», a
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count is made when z; < 0 and z2 < 0 are simultaneously observed. The
process is repeated for generating a number of samples. The procedure is
outlined in the flow chart given in Fig. 7.6, where the number of simula-

tions has been fixed at 20000.

/.'. .

| Input: parameters and distribution
‘ of each variable Mq, M3, M4Mg

Set n:=0 I
L=0

- _H:Generate 7 valués
V1, V2,V3 3 Vl. ,Vs,VG,V7

_—

|
i
i M2,Q and H. Select n =20000

| Transform to
deviates My, My, My, Mg, Mg
q,h of corresponding distri

| butions of My My, My Mg,

| M97,Q and H.

I

Use Eqs 7-39 and 740

b 27 =mi+2ma+ m4 - 3q
z, :m,+m2+m4+m6-4h
Generate z, and z,,

|

[Set nz n +1

~ Check

Yes

Is 29<0 and 2, <0

No

"

Set L= L+

No {15 n - 20000 |

Yes

-

FIG. 7.6 Flow chart—Example 7.10
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Result:
Number of samples for the condition
(zi < 0and z2 < 0) = 374
Hence

374

priz = P(Z) < O0NZ2 <0) = 30000

= 0.0187

Let us compare this with the theoretical value:
pz1 = 160 ozt = 134
pz2 = 40 oz2 = 41.2
The probability of occurrence of failure mode 1 is
pri = P(Zi < 0) = D&(—160/134) = 0.1162
Similarly,
pr2 = P(Z2 < 0) = &(—40/41.2) = 0.1658
The correlation coefficient between Z; and Z> is (Eq. 3.77)
p = Cov (Zi, Z»)

0Z1922
_ (1) Var (M2) + (1)(1) Var (Ms)
0z10Z2
= 0.009

This being negligible, and assuming Z1 and Z: are statistically independent,
we have

priz = (pr1)(pr2) = 0.0193

The value 0.0187 obtained from the Monte Carlo technique agrees well with
the theoretical value.

In engineering problems, quite often we come across situations when
variables in the safety margin are correlated. Let the safety margin M be

M=X — X

The variables X; and X2 are correlated. We want to determine the joint
distribution of X and X2, i.e. the distribution of M. In such situations, the
correlated variables are first transformed to uncorrelated variables Y; and
Y2 using the transformation matrix [T].

Y = [TFX (7.44)

where each column of matrix [T'] contains an eigen vector corresponding to
the eigen value of the covariance matrix [Cx].

[ Var (X1) Cov (X1, X2) ]
Cov (X1, X2) Var (X2)

[Cx] =




1756

If Ay and A2 are the eigen values of the matrix [Cx] and e1 and ez are the
corresponding eigen vectors,

el €12
[T) = [ei, e2] == [ ]

el en
The expected value and covariance of variables Yy and Y2 are
E(Y) = [TVE(X) (7.45)
[Cy] = [TICxIIT] (7.46)
where [Cy] is the covariance matrix of the variables ¥i and Y2. The dia-
gonal elements of [Cy] are Var (Y) which are equal to the eigen values of
|Cx). [T} is read as the transpose of [T].
Var (Y) is nothing but a matrix having diagonal elements equal to the
eigen values and other terms zero. That is

oAb 0
Var (Y) = (7.47)
0 A
Since [ T] is an orthogonal matrix,
X = [T]Y (7.48)

Hence, the given equation for M can be written in terms of the uncorrelated
variables Y. Knowing the mean and standard deviation of Y, the sample
values for M can be generated using the Monte Carlo method. This is
illustrated in the following example:
ExaMmPLE 7.11 Consider the safety margin equation

M= XiX2— X3
where X and X are correlated. The covariance matrix is given as

© 700222  0.0111 0
[Cx)=| 0.0111 0.011 0
0 0 0.0308
r1.222 0.149 '\
px = | 1.050 ox={ 0.105
L 0.620 L 0.1755 J

It is given that all X; are normally distributed. The problem is to determine
the distribution of M.
Eigen values of the matrix [Cx] are A1 = 0.02903; A; = 0.004167;

A3 = 0.0308. (Note: . The computation of eigen values is illustrated in
Example 8.11).

The corresponding normalized eigen vectors are

[ 0.8516 —0.5242 0
er = | 0.5242 e = 0.8516 es=( 0
0 0 1
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Hence the transformation matrix is

0.8516 —0.5242 0
[T =1 0.5242 0.8516 0
0 0 1
Using Eqs. (7.43) and (7.44),
[ 1.591 0.1704
by = 0.2536 oy = | 0.06456
l_ 0.62 0.1755

Using Eq. (7.46),
X1 = 0.8516 Y1 — 0.5242Y>
X2 = 0.5242Y, + 0.8516Ya
Xa= T3
Hence
M = (0.8516Y: — 0.5242Y>) (0.5242Y1 + 0.8516Y>) — Y;

Now Yi, Y2 and Y3 are independent variables. Since Xi, X2 and X3 arc
normal, Vi, Y2 and Y3 are also normal. Knowing the mean and standard
deviation of Y}, the normal deviates of Y; can be generated. Using the usual
Monte Carlo technique, the required samples for M can now be generatcd
to study the distribution and establish the mean and standard deviation ol
M. Figure 7.7 shows the generated cumulative distribution of M.

10 —
0.8}
Mean:= 0671
SD =033
Z06F
%
& 04}
02}

L re 1 i
0216 0573 0930 110 1466 1823
Safety margin ,M

0 1
0499 -014

FIG. 7.7 CDF of safsty margin with correlated variables—Example 7.11
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EXERCISE
It is given that
Y= XX,

where X; and X, are statistically independent lognormal variates. Given the
parameters

X, =10 X, =35
Tjnx, = 03 Tlaxs = 0.05

determine the distribution of Y using the Monte Carlo method and check whether
it is lognormal with parameters

Y=5 and o, = 0304
If the variable Y is
Y=X,+ X,

where X, and X, are exponentially distributed independent variates with respective
parametres A, and A,, where being 6 and 12 respectively, determine the distribution
of Y using the Monte Carlo method and check whether it follows the exponential
distribution with parameters A = 4 and py = 1/4

The annual maximum wind speed observed @l a station follows the Type 1
extremal (largest) distribution with parameters

u=8l.4kmph a=0.126

Determine the distribution of a 20 year maximum wind and the probability of the
lifetime maximum wind speed excecding the specified design speed = 120 kmph.
Use the Monte Carlo method.
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7.6

The total load Y on a structure is given by
Y=D+ L
where D and L are correlated with the correlation coefficient 0.5, It is given that
pp =50 py =100
op=75 oy = 40
Generate the distribution of Y if D and L are normally distributed. Check whether

it is normal.

The distribution of L__. follows the gamma distribution with parameters

A=2387 Kk =0.328

Determine the distribution of the lifetime maximum live load for 10 occupancy
changes during the life of the building using the Monte Carlo technique.
The ultimate strength of an axially loaded short RCC column is given by

R =kCA+ Ys

where k is a constant, C is the cube strength of concrete, A4 is the area of concrete,
Y is the yield strength of steel, and s is the area of steel. It is given that k = 0.67
and s = 1250 mm?. Variables C, Y and 4 follow uniform distributions as given
below:

apt

1

f(;((‘)=-cl_ca asC<aq
1
Jy() = —— Nn<LY<y,
N Y3
1
= — <
Sala) a —a, aqsAdASa
where  ¢; = 18 N/mm? ¢y — 25 N/mm®
¥y == 420 N/mm?® g = 460 N/mm?
a, —= 1000 cm? a; = 1100 mm?

Determine the distribution of R using the Monte Carlo technique.
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Level 2 Reliability Methods

8.1 INTRODUCTION

The Joint Committee on Structural Safety (8.1) classified the structural
reliability analysis and the safety checking into three groups. They are term-
ed as Level 1, Level 2, Level 3 methods. The levels are defined as follows
(8.1, 8.2).

Level 1

A design method in which appropriate levels of structural reliability are
provided on a structural element basis (exceptionally on a structural basis)
by the specification of a number of partial safety factors, related to some
predefined characteristic values of the basic variables.

_Level 2

A design method incorporating safety checks only at a selected point (or
points) on the failure boundary (as defined by the appropriate limit state
equation in the space of the basic variables) - rather than as a continuous
process, as in Level 3.

Level 3

Safety checking based on ‘exact’ probabilistic analysis for whole structural
systems or structural elements, using a full distributional approach based
on failure probabilities, possibly being derived from optimisation studies or
assessed by other approach criteria.

The present structural design (8.3) with explicit consideration of the
number of limit states (being called as limit state design) is nothing but Level
1 design. It is advocated that the present design be called as Level 1 design.
The limit stateis a criterion to define a particular failure or performance
condition. In Level 2 methods, certain idealisations and assumptions are
used. Mean values and variances of the random variables only are required.
In advanced Level 2 methods, distributions also can be taken care of in-an-
approximate way. Reliability levels are defined by safety indices or equivalent
“‘operational’’ or “notional’’ probabilities. Level 2 methods are approximate
compared to Level 3 methods where full joint probabilistic description of
the randem variables are used, and they are purely probabilistic methods
and are exact in estimating the reliability. It is recognised that Level 3
methods will be used rarely— for checking special structures or at research
level. Level 2 methods are more practical-oriented and are quite suitable for

———— e —
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design. They are suitable for calibrating codes on reliability basis. Level 2
methods will be used by committees engaged in calibrating codes for the
evaluation of partial safety factors in a rational manner. It is realised that
structural designers will be working with Level 1 methods of checking. It is
also to be understood that Level 1 method is not a reliability method.

This chapter deals with Level 2 methods (including advanced Level 2
methods) of reliability analysis.

8.2 BASIC YARIABLES AND FAILURE SURFACE

In any engineering problem, several random variables are involved. In
structural engineering problems, geometric parameters of the section (i.e.
dimensional variations), physical properties of the materials (cube strength
of concrete, yield strength of steel, Young’s modulus of steel and concrete,
etc.) and loads (live load on floors, wind load, etc.) coming on structures
are subjected to random variations. If the coefficient of variation of a
random variable is very small (e.g. dimensional variations in many cases),
probably this may be ignored and the variable may be considered as deter-
ministic. Hence in any engineering problem, the parameters which are to be
considered as random variables are initially fixed and those random variables
are called as basic variables. Let these basic variables be X1, X2, ..., Xa
Any equation that is developed for a particular limit state condition (failure
condition) of the structure will be interconnecting these basic variables and
hence it is a function of these variables.
Let this function be

g(A,h X2v S: ro oy Xﬂ) (8.‘)

This function is called a failure function. This is nothing but representing
the margin of safety, M, which can be written as

M=R-—S (8.2)
where the resistance R and the action S will be in terms of the basic
variables X1, Xa, . . ., X». Hence,

M = g(X1, X2, . .., Xa) (8.3)
When this faiture function is made equal tp zero, i.e.
gX, X2,..., X0)=0

it is called a failure surface (or limit state surface). The safety is ensured by
specifying a small value for the probability of reaching a particular limit
state. The magnitude assigned depends on the serviceability of the conse-
quences of reaching the particular limit state. If f (x) is the probability
density function of the jointly distributed variables Xi, X2, ..., X, then
the probability of failure (or probability of reaching the limit state) is

- j J L(O - j 0 dx 8.4)
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where X=X, X2, X;5,..., Xa)~
X = (x1, X2, X3, .« ) Xu) =
} dx = (dXI, dxs2, i vy dx':)./

The multiple integral is to be evaluated over the region g < 0.
[ The failure surface equation divides the design space into two regions,
viz. (i) safe and (ii) unsafe failure regions. For the two variable case, i.e. if
“ the failure function is g(X1, X2), this is shown in Fig. 8.1. It may be noted
that the same failure surface may be represented by different equivalent
failure functions.

]

“y

Failure
g(xy,x2)<0

9‘“1;”2):0

.

FIG. 8.1 Concept of design space, failure surface
and failure and safe regions

Recall the fundamental case-A structure with resistance R subjected to
an action S —discussed in Chapter 6:

M=gR, S)=R— S
the failure surface equation is
gR,S)=R—85=0
{ It has already been derived [Eq (6.12)], assuming R and § independent, i.e.

t pr= f Ss(X)Fr(x) dx & o (8.5)

Equation (8.5)isa partlcular case ot Eq. (8.4) and differs in two main respects.
Equation (8.5) is not expressed in terms of the basic variables X;; but in
terms of state variables R and S. Equation (8.5) is concerned with a specific
failure mode related to the form of R and S. In general, R and S
will be in terms of the basic variables Xi. The PDF of R and § will depend
on the PDF of individual basic variables and the nature of functions relat-
ing them to particular state variables R and S. In many practical cases, R
, and S will be related to some of the same basic variables and hence will be
0 correlated. Initially, the structural safety was assessed using Eq. (8.5), ignoring
' correlation between R and S, if it exists. Use of Eq. (8.5) is not satisfactory
because of the lack of statistical data for the variables R and S. If the

| ——
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distributions of R and S are directly known and if they are uncorrelated,
Eq. (8.5) will give the exact value of the probability of failure.

The probability of failure provides a basis for quantifying structural reli-
ability. All uncertainties in the joint probability law of all basic variables (in
the fundamental case, R and §) must be known. However, in practice, these
probability laws are seldom precisely known due to general scarcity of data.
In many cases, the probability laws of individual basic variables will not be
known and it may be difficult to obtain. The joint distribution of all the
basic variables, in general, is impossible to get in the field. If the failure
function is highly nonlinear, it may be difficult to numerically evaluate the
integral [Eq. (8.4)] even if the marginal distributions of the variables are
known. These difficulties have motivated the development of approximate
methods of evaluating structural reliability.

_8:3 FIRST-ORDER SECOND-MOMENT METHODS (FOSM)

In these metods, the random variables are characterized by their first and
second moments. In evaluating the first and second moments of the failure
function (i.e. say, the mean and variance of M which is a nonlinear function
of the basic variables), the first order approximation is used. That is why
these methods are called first-order second-moment methods. In the case
of nonlinear faiture functions, linearisation is performed using Taylor’s series
expansion in the reliability analysis.
Consider the fundamental case with only two basic variables R and S:

pr= Pk <S)
M=g(R,S)=R— S (8.6)
The failure surface equation is
R—§8=0 (8.7)

Cornell (8.3) first defined the reliability index B as

B=£r (8.8)

i azy "f
where par and oar are the mean value and standard deviation of M. That is,
B is the reciprocal of the coeflicient of variation in M. The concept of 8 is
illustrated in Fig. 8.2a which shows the PDF of M for the fundamental
case ~ iwo variable problem. The safety is defined by the condition Af > 0
and therefore, failure by M < 0. The reliability index may be thought of as
the distance from the origin (M == 0) to thé mean par measured in standard
deviation units. As such, B is a measure of the probability that A will be-
less than zero. If o

par — Boy 2 0 (8.9)

then the reliability in terms of the safety index is atleast B,
When both R and $ are normal and independent,
pll it

bl z .
Bar = R s op = (og - 05)ii2
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B = _J;R____;_"s__ (8.10)

When both R and S are lognormal and independent, the alternative
formulation for failure [Refer Eq. (6.9)] is taken. That is, for failure

(§) <

In (%) <0
The failure surface equation is
R
M =In ('E) =0

Using the small variance approximations,

oo (8]

ofs == Var []n (-Isi)] =~ (8% + 83

_In(palps) -~
P = Gi+ oy s

The above format of Eq. (8.11) (the corresponding reliability concept depict-
ed in Fig. 8.2b) has been used for the development of probability based
load and resistance factors for the design of steel structures (8.5).

M=0 W M>0 M«Q M>(Q
e — . amad m—n

M=In(R/S)

0 In(ris)
uM:ln(PRlus)

(b)
FIG. 8.2 Concept of reliability index (a) M = R — S; (b) M == {n (R/S)

If the safety margin is a linear function of basic variables and if basic
variables are normally distributed, the safety margin M is also normally
distributed.

Let

M = bo 4 biXy + DbaXa + ... 1 DX (8.12)
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Using Eqs. (3.77) and (3.78),

um = bo + 21 bipi (8.13)
0.%4 — z”‘l 01 + 2 2,; ; 2 Pijbibjaioj (8.14)
i=1 i= =i+

where bo and b; are constants and p;; is the correlation coefficient between
Xi and Xj, and pi = px; and o; = ox;. The probability of failure is related
to the reliability index as follows:

pr=9(—B) (8.15)
or B = —@ I ps) < (8.16)

For a linear combination of the normally distributed variables, using 8 the
true value of reliability can be obtained.

\_FxaMpLE 8.1 Calculate the reliability index of the beami (against the limit
state of collapse in flexure), shown in Fig. 8.3, subjected to a self-weight
0 and a live load Q2. The flexural resisting moment capacity of the beam
is R. It is given that

po = 400N op, == 10N
#oy == 5000 N op, = 2000 N
pr = 10000 Nm  og = 1000 Nm

Q:
b—2m —=f 2
TREREETERRAEN
e _“LLH.

FIG. 8.3 Simply supported beam—Example 8.1

Solution Maximum bending moment due to external loads is

M. = O1 -L 4 Qzl'

-0 (—) +e:(3)
= 0s
The failure function (R - S)is

Q

Hence, Action S

«(Q1, 02, R) = R — .Q_' — 0,

This is a linear function of variables R, Q¢ and Q..

M= R "-(——I—Qz
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Using Egs. (8.13) and (8.14) and assuming R, Q1 and Q2 are mutually
independent,

1
MM = UR — ‘2“P'Q| - K@y
, 1\
= s+ (5) b + b
Substituting the given data, we have

pm = 10 — %(0.4) — 5 =48kN

e = (1P + ( ) 0,012 + (22

oy = 2.236 kN

Hence the reliability index is

4.8
P (° 236) =&

It has so far been assumed that the failure function is a linear combina-
tion of the basic variables. However, this may not be true most of the times
in practical cases. If the function for M is nonlinear, the approximate
values of par and oar are obtained using Taylor's series expansion of linearis-
ed safety margin M. Let

M=gX, X2,..., Xn)
Using Taylor’s series expansion about the point

X = (X1,X5 ..., X

M =gXi,X3, ..., X») + 2 (a , )(X: Xi)

X,
n o )(Xf——Xf')f
B (ax,’ JESEE 8.17)

dg -
Recall that ( 3 X:) means that _37 is evaluated at X*.

Retaining only the linear terms, we get

Ma~gX X5, ..., X,,)+“( )(X; ey (8.18)

In the case of mean value methods, the point X; = py; = i That is, the
expansion is about the mean point. In such a case, for Eq. (8.18),

py = E[g(X)] =2 g(ut, p2, . . ., pa) + 0 (8.19)
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as E(Xi -~ - i) =
oir == Var [g(X)] = Var [g(p1. . . . tn)]

ovee | w (98 et
| Vax[‘;é;l (5“!;»)({\' IM)]

cgidX, |y means that ég/eXi is evaluated at fex;, fxp . - . KX,
Since Var {g(r, pa, . . ., ta)] = 0, and assuming X; are uncorrelated,

—

N (8.20)

ohr = Var [g(X)] 2 2,‘ [

oXi

where o; — ox;, It is to be noted that both uar and oas are only ﬁrst order
approximations. i

If the second order terms in Eq. (8.17) are taken into account, the second
order approximation of uas is obtained as

8.21)

far =2 glgey, gy oo oy Jte)

Even in the second order approximation of s, only the mean value and
variance are required. Hence in practice, the second order approtimation for
mar and first order approximation for oar are used. However, in Level 2
methods the nonlinear function is linearized retaining only linear terms in the
Taylor’s series expansion, and hence the first order approximate values of
rarand oag are used. The extent to which the values for uasand o obtained
by using Egs. (8.19) and (8.20) are accurate, depends on the effect of neglec-
ting higher order terms in the Taylor's series expansion and the magnitudes of
the coefficient of variation of X;. If g( ) is linear and the basic variables
are uncorrelated, Egs. (8.19) and (8.20) are exact. If X; are correlated, the
lirst order approximation of oas is obtained as

" 2 n‘ n. (,g
a 2 2 S
\ = --I jo ( Xl »)(‘?X!

Fyasteer 8.2 Determine the reliability index for a steel tension member,
having tensile strength R, subjected to a tensile load Q. Given:

ur == 280 N/mm? op = 28 N/mm?
pwo = 5000 N g = 2000 N

Cov (X1, X/)’\ (8.22)

pp = 6 mm op = 0.6 mm
The member is circular in cross-section of diameter D.
Solution The induced stress in the memberis 4Q/mD? and this is the action
(i.e. load effect). Hence the safety margin is

40

M=R~-5
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Using Eqgs. (8.19) and (8.20)

4
f“D

= 280 - %(ﬂ) — 103.16 N/mm?

36

L) @+ Gy @b+ (Gal) @

—(1)2><’82)+( ) @ + (%) ©b

2
,
Py (“)<g)+(8"") (o)

L))

= (282) + (0.00125)(2000)? + (3474.7)(0.6)
o3t == 784 4 5003.5 -I- 1250.9

e S

op = 83.9
B = (103.16/83.9) = 1.23
4 ExampLE 8.3 The reliability index for the beam given in Example 8.2 is

calculated using a different failure function.

Solution Let us consider Q as the action and the capacity of the section
as (R)(@wD?/4). Then the margin of safety M is

m=m®(Z) - o

The failure occurs when M is less than zero. The mean value and variance
of M are calculated using Eqgs. (8.19) and (8.20):

mub
( pm = (uR) (T) — Ko

2
= (230)(’12—) — 5000 = 2916.8 N

%= (), @ + (0], b + (52). @
- (__%’)2 (e3) -+ (""”‘ 2 (020) + oh

= (’14—) (289) + (m 280 X 6/2)2 (0.67) + (20002)

! oy = 26709 N
Hence the reliability index 8 is
B = (2916.8/2670.9) = 1.0918
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I[n the last two examples, the safety margin A/ is a nonlinear function of
the basic variables. The mean value method has been used and lineariza-
tion of M is about the mean valueq It can be observed that different values
of B have been oblained for the same problem. That is, 8 changes when
different but equivalent nonlinear failure functions are used. This can also
be demonstrated again. B

For the fundamental case when R and S are uncorrelated,

M=R—S
M MR — B§
Ar= oM [(“2 + 02)"’2] G.2)
If the equivalent failure function, given below,
R
M=In (-—S—) =InR—InS (8.24)
is selected, we get
_. [Hn(RiS)
ﬁ ‘ TR/ §)

If linearization of the safety margin
M=InR-~1InS
is done about g and ps, then

By = (———g“‘(“"/;‘)‘,),, (8.25)

It is clear that B: and Bz are not equal. Hence the reliability index B,
defined by the equation == pa/on, is thus not invariant with regard to
the choice of the failure function. If the linearization is done about the
mean value, the method can give different values of 8, that is different
values of py, for the same problem. When the failure functions are linear
functions of the basic variables, they will yield same values of 8, and hence
the same pr. In general, an expansion of M about the mean point should
not be used. Mean value FOSM methods have two basic shortcomings:

(1) g( ) is linearized at the mean value of basic variables. When g is
nonlinear, significant errors may be introduced at increasing distances from
the linearizing point by neglecting higher order terms in the Taylor’s series
expansion. In most structural engineering problems, the mean point is, in
fact, at some distance from the failure surface g( ) = 0 and thus there are
likely to be unacceptable errors in approximating the equation

M=gXi,X2...Xn)=0
by the equation

~ “ 7 ag . i ”
A[-—- G(Xl‘/\ 5 &3 X) ]l—,_z; (aZ)x* (Xl = Xl)
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(i) Mean value methods fail to be invariant to different mechanically
equivalent formulations of the same problem. The lack of invariance arises
because linear expansions are taken about the mean value point. The pro-_
blem is avoided by linearizing g( ) at some point on the failure surface.
This is because g( ) and its partial derivatives are independent of -how-the
problem is formulated only on the failure surface g( ) = 0.

Consider again the fundamental case of the two variable problem, i.e.
M=R-—S

The failure surface equation for a set of the realization of values of R and
S is

r—s=20 (8.26)
The above Eq. (8.26) is shown in Fig. 8.4(a).
Let
Z = (R — pr) 7y = (S — ps)
OR ay

For a set of realization of R and S,

_ (r—pn) 2.4 (s — ps) (8.27)

R ags

2y

Hence, the safety margin Eq. (8.26) bcéomcs ~ 1,,//)
‘L
Z10R + PR — 2205 — ps = 5L (8.28)

Z10R — 2205 + pr — ps = 0

The above equation is represented in Fig. 8.4b. This is in the normalized

coordinate system since R and S have been ndrmahzed with respect_to.

their corresponding mean values, The mean values Z and Zp are equal to

zero and their variances are equal to one. In Fig. 8.4b, OD is drawn per-

pendicular to the failure surface and it can be proved easily that OD = B.
Proof : In Fig. 8.4b,

(rr — ps)
i

2

s
Failure Failure (
r-820 (z .2%) Sale
. 0 r / B8 0 7y

{a) Original Coordinate System  (biNormalized Coordinate System
FIG. 8.4 Linear failure surface
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oC — Hr = 1)
gs
fan £ DBC == 28
(TS'
sin /_OBC —y — ..,OR

((;25, -I- rJ'3R_)"i

OD = OB sin LOBC

_ R HR_ - jis
(0‘% - a%e)'-"2 oR

=,
(a2 J- g2 )1 s
s R "

Hence it is proved that 8 is the shortest distance to the linear failure surface
from the origin O in the normalized coordinate system. This is used in the
definition of the reliability index defined by Hasofer and Lind.

8.3.1 Hasofer and Lind’s Method (8.6)

Let the failure function g be a function of independent basic variables

X1, Xoo oo ., X, de. g(X1, X2, . ... X)), The basic variables are then
normalized using the relationship
X i .
Zi= -"'"U—.-"-L-" = 1 2,0 waht (8.29)

where i == juy; and a; == oy, In the = coordinate system, the failure surfuce
is a function of z;. Using Eq. (8.29) in the failurc function and equating it
to zero, the failure surface equation 1s written in the normalized coordi-
nate system, i.e. the = coordinale system. This failure surface also divides
the design sample space into two regions, safe and failure. Because of the
normalization of the basic variables,

pz; =0 and Oy, = 1 (8.30)

It is also to be noted that the - coordinate system has a rotational
symmetry with respect to the standard deviation and the origin O will
usually lie in the safe region. A two dimensional example is shown in
Fig. 8.5. It is to be noted that as the failure surface g(z1, z2) moves away
from the origin, the reliability, g(Z) > 0, increases and as it moves closer
to the origin, reliability decreases. Hence, the position of the failure surface
with respect to the origin in the normalized coordinate system determines
the measure of reliability.

Hasofer and Lind (8.6) defined the reliability index B as the shortest
distance from the origin O to the failure surface in the normalized coordi-
nate system. The point D (Fig. 8.5) is called the design point, and it is on
the failure surface. This point is also called the check point for the safety
of the structure. Now B is related to the failure surface (and not to the
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FIG. 8.5 Formulation of safety analysis in
normalized coordinates

failure functions). The safety measure obtained is invariant to the failure
function, since equlvalenl failure functions w:ll-"result the same failure
surface The rehablhty index, ﬁ = parloar, defined by Cornell will coincide
with the value obtained by Hasofer and Lind when the failure function is
a linear function of basic variables. Hence in this method also (Hasofer and

Lind), the important relation,
f o DR iy == (< B) (8.31)

can be used, provided the failure function is a linear function of the nor-
mally distributed basic variables.

From the above discussions, it is obvious that B defined by pa/fop can
be obtained for a nonlinear function by expanding the function about the
dcsngn Qomt D, This corresponds to app_rbmmatmg the nonlinear failure
surface by its tangent plane at the design point D as shown in Fig. 8.5.
For a nonlinear failure surface, the shortest distance of the origin (nor-
malized coordinate system) to the failure surface is not unique as in the
case of a linear failure surface. The computation of the probability of
failure involves numerical integration. For practical purposes, an approxi-
mation to the exact value is required. Shinozuka (8.7) has proved that the
point D on the fatlure surface with minimum distance to the origin “(norma-
fized coordinate system) is the most probable failure point. The tangent
plane to the design point D may then be used to approximate the value of
B. If the failure surface is concave towards the origin, the approximation
will be on the safer side, while for the surface convex towards the origin it
will be on the unsafe side.

Thg_problcm thergforc reduces to ﬁndmg out the minimum value of the
dlstance 0D (Fig. 8.5).




Let
oz, z2, .. ,z) =0 (8.32)
be a nonlinear failure surface in the normalized coordinate system and
D=2 =(z,22,...,2) (8.33)
be the design point on the failure surface. That is
g1(z) =0
The distance from a point z == (z1, z2, . . . , zu) on the failure surface to the
origin is
- [2 z?]“z - (8.34a)
(=1 g
= (z' 2)!2 (8.34h)

The problem is to minimize r subject to the constraint gi(z) = 0
Using the Lagrange multiplier method, the problem can be solved. The
Lagrange function L is

L=r++ z\gl(z)
== (2! 7)'2 4 Agi(z) (8.35)
For minimum
JL - Zi dg - .
Z)—Zi f(z"-—z)—la'f‘/\(?’; =0 = ,2....)1 (83())
ar, :
a—ﬁ- == 01zl Zay0 v » Z) =210 (8.37

There are n -~ 1 equations. In matrix notation, the n equations [Eq. (8.36)]
can be written as

(z,—:—)m 142G = 0 (8.38)
5 b .
where G = (% < IE8 %—‘) (8.39)
) i o
The solutions for z, and A" are obtained as Ce
7z, = —MrG, ©7 ., (8.40)
> o L .
Ao = (Gi Go)~112 Ty (8.41)

Premultiplying both sides of Eq. (8.40) by G. and using Eq. (8.41), it is
obtained as
Z'.' Ga

ik ‘Gf G. )1/2 (8.42)

This 7 is the minimum distance and is equal to B. G4 is the gradient vector
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at the design point (21,23, <. ., 2x): Tn scalar form, the above eqfiation ’Ts'
written as: TUREETILE o i Lo L, o

. 38 ]

6‘2; g

(08/9z))x means that the derivative is evaluated at (21, 2 ..., zs). Using
the minimum value of r, equal to B, in Eq. (8.40) and using Eq. (8.41), the
design point on the failure surface becomes

- ﬁG.

AR i
I;jasgalar form, the components of Z, at1¢ .
n=%B 7 i=1,2...,n (8.45)
-—(Bm/c?z.)

. (8.46)

where - = ,

i ()

\\/ [ z (3({1/ f)n] L/

are the direction cosines along the axes z;.
Let the nonlinear failure surface function gi(z) be expandéd around the
point D using Taylor’s series expansion, i.e.

ai(z) = 2 k'[ agl) (zi— = )"] (8.47)

Using the linear approximation, i.e; deleting the terms with k 2 2 in the
aboye equation, .we: gct Qi i

"" 3' . ‘.
gn(z) = (ﬁ) (zi — 1) (8.48)

0z [ » |

\

The expected value and standard deviation of the above function guz),
assuming statistical independence of the variables, are

u )
Flatn) = — & - ("”57') (8.49)
n ] 5 112
Opi(z) = [’3 ((agzl’).] p (8.50)
If B is taken as .
_ Llgi(z)) (8.51)
Tgy(2) ’

5 ig_n)
g lilz'(aZI *

- ¥ (8.52)
n agl 2 1172
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the comparison of Eqgs. (8.43) and (8.52) indicates that both are same, The
ratio, defined by Eq. (8.52), isalso the distance from the tangent plane of the
failure surface at the design point D = z* to the origin in the normalized
variate coordinates.

The problem of finding the minimum value of 8 for a nonlinear failure
surface is solved iteratively. The problem can be solved in many ways. One
simple method is solving the following n equations [Eq. (8.46)]

_ _ (Og[dz)x

o = K =1,2,...,)I

with (n - 1)th equation

gz, z3, ..., 20 =0

n 1/2
e B [’2 (g‘i‘) ] (8.53)

zi == of
and searching for directional cosines which minimize 8.
The following steps are involved in the method:-

J. Write the limit state equation, g{xi, x2, .. ., x») = 0, in terms of the
basic varlahkfs. . . ‘ . Y«- M

2. Normalize the basic variables using Eq. (8.29). ?“ >

3. Write the (limit state) failure surface equation in terms of lﬁ: norma-
lized coordinate system. i.e.

gz, 2,000z =0
Write expressions for 0gy/dzi, i = 1,2,.. ., n

At the design point zi == 8. Using this, write gi(z) in terms of B and ;.
Write the equation such that

B e g(B, Oy, A2, . . o O(.,,)

for computation purposes.
4, Select a value for B and values for
%y, %2, ..., o, satisfying ot =
While choo;mg values for 2;, select positive values for load variables and
negalive values for resistance variables.
5. Start the iteration. Calculate the new value of B using the equation

:B = g(ﬁ‘ A L R %)
6. Calculate

7. Determine new values of o;

1 agx) L
o == ?(3z,* = 1,250 el
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. j/ With these new values of B and o, start the next iteration. Go to
step 5
. ﬁtop the procedure when the values of B obtained from two successive

iterations is within the acceptable error.

(Note: 1If the equation gi(z) is linear or quadratic, it may not be necessary
to start the procedure assuming a-value of B.)
The procedure is explained with examples.

\/EXAMPLE 8.4 Determine the reliability index of a simply supported I beam
at the limit state of shear. The beam is subjected to a point load Q at mid-
span. It is given that

po = 4000 N  op = 1000 N
ps, = 95 N/mm? a7, == 10 N/mm?

o4 = 2.5 mm Td; =40 p#d = 50 mm

where d is the depth of the beam, tv is the thickness of the web, f; is the
shear strength of the material. The coefficient of variation of rw is negligible.

Solution
9
2

Maximum shear force =

It is assumed that the web resists the whole shear. The beam fails in
shear if

ﬁ’w d— —g— <0
Hence the failure surface equation is
¢X) = fitnd — 2 =0

As variation in tv is negligible, tw is considered as deterministic,

Let
s
1 = —_of.
o d - pa)
22 == __"Td—_
2= @~ ro
UQ

Substituting them in the equation for g(X), we get

. 1
gi(2) = twlojzy - pploaza + pa) — 579073 "—,-0 =0

L—- 50 . . i
A " = 05210470 b opzipd + prOa 22 + pyal
% < 40 ‘ .
)

7023 Ko
il S
2

2
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Substituting the given data, we have
g1(z) = 625z1 + 296.88z2 + 31.25z122 — 500z3 + 3937.5=0
At the design point, z; = Bay [Eq. (8.45)].

g1(z) = 625Ba; + 296.88Bay + 31,25B8%x 02
—5008x3 + 39375 =0

g —3937.5
62501 + 296.88a2 + 31.25B0122 — 500c;

Taking partial deviatives of gi(z),

(ag‘) = (625 + 31.2522)x
*
= 625 + 31.258x;

7

(ggn ) = (296.88 + 31.25z))«
*

= 296.88 + 31.258x;

(72), = —s00
Start with
B=¢6 ap = —0.58 oy = —0.58 o3 = -4-0.58
Using these in Egs. (8.54) to (8.57), we have
39375

(8.54)

(8.55)

(8.56)

(8.57)

B = 625(—0.58) -+ 296.88(~ 0.58) + 31.25(6)(—0.58)(-—0.58)—500(0.58)

= 3937.5/761.62 = 5.17
Using Eqgs. (8.46) and (8.53)

_ ?_f:_:_)
= K(fn'l’t *
Ry B _ 53129
wy = K[()zs + 31.25(5.17)(—0.58)] = N
== — %[296 K8 -+ 31.25(5.17)(—0.58] = — 2%
e U
K2 = (—531.29)? -+ (—203.18)2 -+ (500)?
= 573551.17
K = 757.33
Hence
" 53129 _ _ 5a0

751313
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20308
= sy - 08
500
% =75733 — 10.66

With these new values of B, «j, &2 and a3, the cycle is repeated till B con-
verges to the minimum. Summarized results are given in Table 8.1,

TABLE 8.1 Computation of f—Example 8.4

Iteration
Variable
Start 1 2 "3
B 6 517 4,82 4.796
o —-0.58 -0.702 —0.738 —0.741
ay —0.58 -0.263 —0.241 —-0.234
ay +0.58 —+0.660 +0.63 +0.629

The solution is: B = 4.796 Pr= ®Y(-4.796) = 6x10-7
= —0.74! ag= —0.234 o, =0.629

The design point is:  z¥ = (B2,, fa, Bas)
Bl =2 =

\/{X'AMPLE 8.5 For the same failure case, in Example 8.4, determine the
mean depth of the beam for a reliability index of 5. The beam is subjected
to a point load @ at mid-span. It is given that

g = 300 kN oo = 80 kN
#s, = 95 N/mm? oy, = 10 N/mm?

g¢= 5 mm -ti= 40

Coefficient of variation of fw is negligible.

Solution As the coefficient of variation of r is negligible, it is considered
as deterministic. .
The failure surface is

Sitwd — % = (8.58)
Let
/s Fefg
Z) =
Uf.g
Z2 = d i
a4
- 0 — no
Lde)
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Substituting the above equations in Eq. (8.58), we get

tl(orz1 + pe)oaz2 + pa)] — b _be_y¢ ha “ﬁ*

Using the given data, we have
©dl50212z2 + 10paz; + 47522 + 95p4] — 1600 103 z3 — 6000X 103 = 0

(8.59)
At the design point, using zi = «;8, the above equation becomes &
u3(50a1 + 95) + (12500122 4 237502) — 8000 x 10%x3 — 6000 X 103 = 0
(8.60)
Using Eq. (8.46),
By e %[ (250a; -+ 10M)] 8.61)
0 = L0500 + 475)] (8.62)
0x 103
4y o K' (8.63)
Start with «; = —0.58 % = —0.58 a3 = 0.58

Substituting the values of «;, @2 and «3 in Eq. (8.60),
(pa)X(66) + 1a(2795.5) — 10640 X 10° = 0
Solving the above equation,
ta = 380.9 mm

Using this value of ps = 380.9 mm, new values of «;, a2 and «; are
obtained.
Using Eqs. (8.61) to (8.63),

iy = %[330 380.9 550% —0.58 + 10 380. 9)]
L (34890)
- K

11380

By == — 7[ 80.9 550 (0.58) + 475)]
_ (11_2)
- K

e = 20x10°

’ K
Using the relation o + o + af = I
K = 51371

Hence o« = —0.656 2 = —0,059 o3 = 0,752



199

Now the whole process is repeated till the maximum value of ug is obtained.
Summarized results are given in Table 8.2,

TABLE 8.2 Summarized results—Example 8.5

Iteration
Variable Start
I 2 3

o -0.58 -0.656 —-0.729 —0.733
o, -0.58 -0.059 —0.083 —-0.082
oy +0.58 +0.752 }-0.688 +0.685
Ly 380.9 420.0 422.8 423.0
(mm)

The solution is:
By = 423 mm

8.3.2 Non-normal Distributions

So far, the mean values and standard deviations of basic variables Xi only
have been used in evaluating the reliability index. Probability distributions
of the variables X have not been considered. If the safety margin equation
is linear and X; are normally distributed, the evaluated reliability index can
be connected to the true value of the probability of failure of the structure
(Eq. 8.15). as M is normally distributed. However, in practical situations,
many of the basic variables are non-normal, e.g. wind speed, live load,
strength of low strength concretes, etc. In such cases, the value of B (or py)
can be obtained using cquivalent normal distributions (8.8, 8.9) at the
design _point. The transformation of a non-normal variable to a normal
variable at the design point is done as follows:

“~ At the failure point (i.e. the design point D)x!,

(i) the probability density ordinate of the original non-normal variable
Xiis made equal to the probability density ordinate of the equivalent
normal variable X{. That is

fxi(xp) - - fxfx)) (8.64)
(]
(ii) the cumulative probability of the original non-normal variable X; is

made equal to the cumulative probability of the equivalent normal variable
Xi. That is

Exi(x?) « Fafx?) (8.65)

If 1k, and o%; are thc unknown mean and standard deviation of X7, then
L2q. (8.65) becomes

’
Ty,

.\.o £y o
Fxfx}) = ¢( - --—’-‘-f—') (8.66)

\
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The above equation leads to
pk, = — ok @7 [Fx(x])] + x} (8.67)
Considering Eq. (8.64),

R E
fx (n )=_'__ 8328 (8.68)
ox, ox,
since X/ is a normal variable.
Substituting Eq. (8.67) in Eq. (8.68), we get

 HOERD
ok, = W (8.69)

Since Fx, and fx, are given or known, the values of s, and o%; of equiva-
lent non-normal can be obtained using Egs. (8.67) and (8.69). The pro-
cedure of determining B for the failure surface having non-normal basic
variables involves the following steps:

(i) Write the limit state equation in térms of the basic variables, i.e.
gX, X2, ..., Xn) =0
(ii) Normalize the basic variables using Eq. (8.29).

. Xi — px,
For normal variable X, AP e |
(7,\"
| Xj — ply
For non-normal variable Xj, Z; = _’_’L'_
g xj

where pk, and o, are the unknown mean and standard deviation of equi-
valent normal X; of non-normal X; at the failure point.

(iii) Write the limit state equation in terms of the normalized variables
and unknown values of

px; and ok
(iv) Select values for B and ai, @2, ..., @, as explained in the previous
section and values for pk, and o%,.
(v) Start the iteration. Calculate new values of B, «), «, ..., %, as
explained in the previous section.
(vi) For non-normal variables (say X)), the design point is

xj. = Fi’} + ajﬁa:\’j

(vii) At this design point xj, find new values of ik, and o¥, using
Eqgs. (8.67) and (8.69).

Go to step 5 and repeat the procedure till B converges to the minimum.

The procedure is illustrated with the following examples.

ExampLe 8.6 A cantilever steel beam (ISLB 450) of span / is subjected to



x
LT T T S T Wy g e

201

a load P at the free end. The resisting moment capacity of a section is taken
as F,Z, where Fy is the yield stress and Z is the section modulus. Hence at
the limit state of collapse in flexure, the safety margin can be written as

M = F,Z — Pl
Given:
For F,,  p =032 kN/mm? o1 = 0.032 kN/mm?
Z, @2 = 1400X 103 mm?3 g2 = 70X 10? mm?
P, p3 = 100 kN o3 = 40 kN

Fyand Z are normally distributed and P is lognormally distributed, Calculate
Bif /= 2m. e
Solution Denote

Xi=F Xa=Z X;=P

W= px; o) = 0oy,
Then the failure surface equation is rewritten as

g(X) = X1X2 — 2000X3 = 0

Let p3 and 0’3 be the mean value and standard deviation of the equivalent

normal X4 of the non-normal X3 at the design point. Normalizing the
variables

X _ N
o o2

2|

X5 — p4
2y et
g5

Substituting these in the failure surface equation and using the given data,

81(z) = a102z122 + oypazy + oamiz2 + w2
— 2000(04z3 + pi)

= 22402122 + 4480021 - 22400z2 — 200004z3
+ 448000 — 20004} (8.70)

At the design point, zi == «;8 and gi(z) = 0. Using thesc in Eq. (8.70),
4 2000p3 — 448000

s 8.71
22402038 + 448002 4 2240022 — 20000503 e
Taking partial derivatives of g1(z),
_ 1 {dg) |
X = — 7{-(—(5;[) = — —k—(22400:2ﬂ -+ 44800) (8.72)
oy = ——-l—(@) = — —-1~(2240a1ﬁ +- 22400) (8.73)
K\dzn K i
~ L% _ _ L o500 :
= K(az,) = — —(~2000%) (8.74)

e
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As X3 is lognormal, the parameters of X3 are first calculated.
o xy — LIn (83, i DJV2 = 0.385

X3 = pxyexp (—-3ok () - 92,85 kN
Using L:q. (8.69) und CDF of X3 [Eq. (3.93)].

o bEP(In (x3/ Xl )]}
f\s(\:)

Xy

4lln (/X3 o xi]
_ fx(x3)

But the PDI- of lognormal X3 is given by

Felo3) = e G X ot 1, (8.75)
X310,

Using Eq. (8 75) in the above equation for U,l\»“ we have
Oy = X3 X (8.76)

———

The mean valuc ; 1\, is calculated using Eq. (8.76) in Eq. (8.67).

#;\', =—'x;Uln.\'hcbwl[d){lﬂ(x;/)?s)/O'mx, }] + x3

== x3(1 = Inx} 4-In )7_1) . (8.77)
Assume
B --5,
o = 205  ar=-— 05 a3= + 0707
i = 1000 93 = o3 = 40 kN
and start the prochure. Using Eq. (8.71),

8 ) B (2000)(100) — 448000 B
T (2240)(0.5)(5) - (44800)(0.5) — 22400(0.5) - 2000(40)(0.70)

= 2.839
Using Eqgs. (8.72), (8.73) and (8.74),

1 <= — 5 [240(~0.5)(2.839) + 44800]

41620
= K

2 = — 2 [2240(—0.5)2.839) + 22400)

19220
K
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ay os - 1]<— [-2000(40)]
_ 8000
K
Using oaf + o + af = l, K = 92200. Hence
ar = — 0.451 w0 = — 0.209 ay = 0.868

The design point, x3 = ph, | «3Bo’y,
== 100 -|- 0.868(2.839)(40)
= 1985
As X3 follows the lognormal distribution, using Eqgs. (8.76) and (8.77). new
values of uj and o3 are calculated:
o} = (198.5)(0.385) — 76.42
ph o= (198,5)(1 -- In 198.5 4 In 92.85)
T = 4775

Carry out the second iteration with the new values of B, &), %2, a3, 03 and
#3. The whole process is repeated till the convergence is achieved. The
results of each iteration are given in Table 8.3. '

TABLE 8.3 Computation of B—Example 8.6

lieration
Variable Start
| 2 3 4

B 5 2.839 2.247 2.192 2.192
o, ~0.500 —0.451 -0.273 ~0.260 —0.264
oy —-0.500 -0.209 —-0.126 —0.124 —-0.126
oy --0.707 +0.868 4-0.954 +0.958 1-0.956
.\'; - 198.5 21145 208.4 208.2
o3 40 76.42 81.40 80.21 80.12
#3 100 47.75 3751 40.04 40.23

R;;u:!is are:
B =12192  pp= -1 (-2.192) == 0.0142
Design point: (s 3 23) = B (—0.264, — 0.126, 0.956)
= (—0.579, —0.276, 2.095)
(x§, 3, x3) = (0.3149, 1381000, 208.2)
(Note: x§ = 40.23 + (0.956)(40.23)(2.192) = (208.2)

The same problem has been solved for various values of the coefficient of
variation of P, and corresponding values of B have been computed. The

~
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variation of B with 8p is shown in Fig. 8.6. As expected, 8 decreases (i.e
reliability decreases) as 8p increases.

[ N
5\
l‘r
[l
‘.
Zir ———
]
| |
0 0 02 03 06 05
8p

FIG. 8.6 Variation of B with 8p - Example 8.6

ExampLE 8.7 An RSJ section is used as a column. The height / of the
column above ground level is 10 m. It is subjected to a wind load W which
follows the Type 2 extremal largest distribution. The allowable deflection
at the top of the column is H/250.

Given:

For Young’s Modulus (£): (Normal)
w1 = 2.041x 102 kN/mm? o) = 0.156 X 102 kKN/mm? (6 = 7.62%)
For Moment of Inertia (7): (Normal)

w2 = 315:< 108 mmn* o3 = 15.75 <106 mm?* (0 = 5%)
For wind load (W): [Type 2 extremal (largest)]
3 = 6 kN o3 = |.38 kN (3 = 23%)
Parameters: u = 5.358 k = 6.42

Compute the reliability of the column at the limit state of dellection.
Solution For a uniformly distributed wind load,

. . WH?
Maximum deflection = SE]
The failure surface cquation is
H _ WH
250 8EI

H is considered as a deterministic variable. Substituting the given value of

H, the above equation becomes

(10000)*
8EI

Ef — 0.3125X 10 W =0

40 — W =20

Let
X1=F X=1 and X3 = W
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Hence the failure surface equation is
XiX2 — (0.3125X1019) X3 = 0 (8.78)

Let #3 and o3 be the mean and standard deviation of equivalent normal X3
at the design point. After normalizing the variables, the above equation
becomes

g1(z) = 01022422 + oypazy + oapiza + ppa — 0.3125 X 10'9(0hz3 + P'ﬁ)
Using the given data,

g1(2) = aziza + bz + cz2 + 6429% 107 — doszs X dp3

where « = 245.7> 106 bh = 4914x 106 ¢ = 3215x 1086
d= 3125x 10§

At the design point, z; = «;8 and gi(z) = 0
Using these, it can be written that

dps — 6429 % 107

g= ax 028 + bay -+ car — dojuy (8,79

The directional cosines are given by
oy 7=~ IL—(aazﬂ + b) (8.80)
a = —~ R]-(aaxﬁ -+ ¢) | (8.81)
0 = = - (= dog (8.82)

. [2 (g \?|
where K ~[£1 (r’)z;).]
Start with
=25 o = — 0.5 02— — 0.5 ay = 0.707

u§=m=6 03 = 03 = 1,38
Substituting these values in Eq. (8.79), we get
' B = 6691

Using Eqs. (8.80), (8.81) and (8.82),

g s ]% (4092 3¢ 105)
1
w2 = — 2 (2393X 109

1 6
% (4313109

Using «f + a3 4 o = 1, K = 6408 105, Hence
@ = — 0.6385 @y = — 03734 a3 = 0,6730

a3 =
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The design point X3 is given by
X3 = p3 + 3oy = 12,21

X follows the Type 2 extremal largest distribution. The PDF and CDF of
X are [Egs. (3.121) and (3.122)]

Fxy(x3) = exp [ (}l,l‘ )A]
Srxy) = _/;_[;ug]kuexp [__ (;u;‘ )k]

'Using x3 = 1221  u = 5358, and k = 6.42, we get
Fx(x3) = 0995  fx,(x3) = 0002637

Using Egs. (8.67) and (8.69), the new values of o3 and w3 are calculated:

| ${0-1(0.995))
o = 0002637 Y7

py = x3 — O 1 Fy,(x3)]os
12.21 — D-1(0.995)(5 597)
= — 1.961

I

e ! . . I
Using these new values of B, a1, a2, u3 and o3, successive iterations are
carried out. Results are summarized in Table 8.4.

TABLE 8.4 Computation of f— F\amplc 8.7

Iteration
Variable Start
{ 2 3 4 5
B 5.000 6.691 4.536 3.587 3.531 3.528
a —0.500 —0.639 —0.25 —0.113  —0.128  —0.1342
o ~0.,500 -0373  -0.139  —0.07t  —0.082  —0.086
ag +0.707 +0.673  +0.958  --0991 0988 - 0.987
x3 — 12.21 21.97 20.28 19.58 19.53
a 1.380 5.507 1341 11.98 11.40 11.36
By 6.000 —1.961 —27.40  —22.24  —20.19 —20.03

Result: Relxabmty index = 3.528
Probability of failure = ® (—3.528) = 2,093 :< 104

ExaMPLE 8.8 An under-reinforced concrete beam of breadth (b) 240 mm
and effective depth (d) 480 mm is reinforced with steel bars (grade Fe 250)
of area (A4;) 1400 mm?2 The grade of concrete used is M 15 (nominal mix).
The beam is subjected to a moment M. Given:

Variable Fy: Normal

p = 320 N/mm? ¢ = 32 N/mm?
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feu: Lognormal

= 22.67 N/mm?* a — 5,44 N/mm?

Parameters:  fe = 22,08 0pfey = 0.237
M Type | extremal (largest): -

{ o 72% 108 N mm o = 242106 N mm
Parameters: 1= 612x108 « = 0,534:<107¢

Determine the reliability of the beam at the limit state of collapse in flexure.

Solution The ultimate strength of thE beam is given by

B _0.77 FyAs
R*--AsFyd[l —_—I‘cuhd ]
The failure surface equation is given by
g()=R--M
e o _ 077 Fyds] _
- AsFy d[ i i ] ] M (8.83)

[et
Xy Fy XZ::f‘eu Xs=M

Using the given values of As, b and d in Eq. (8.83), the failure surface
equation becomes

gX)=aXiXa —aXi — @3 X3Xa = 0 (8.84)
where «a = A; d = 672000 K
(m)( 17 A ) = 6288 a = |

Let pi2 and 02, and p-s and o3 be llu. values of the mean and standard devi-
ation of the equwalent normals X2 and X3 at the design point,
Normalizing the variables Xi, Eq. (8.84) becomes

. 2,2
ai(2) = (01032122 + oypazy + oayuza) — axAeiZi + 201zip1)
¢ ‘ ‘
— a3(02032223 - “;P'S-‘-'Z -+ 0'3,“4323)
: 2 ¢
+ ayup2 — apn — asliz#:‘;

At the design point, z; = %8 and gi(z) = 0.
Using these, the above equation can be rewritten as

5 oty - apud ~ i) (8.85)
by b, ~b,

where b1 = ai(oy05%1228 +. oy + T201%2)

by = az(ofafﬁ -+ 201011)
by = ax(0:%53B + aapsay + Oypuats)
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The directional cosines are given by

i e 71<_ [ai(0105228 + o1u3) — 2an(0tasf + o)) (8.86)
% = — ]]{— [ai(e10,18 + o3p1) — as(ozo3038 + ojuy)] (8.87)
= — % [—as(o303B + ojp))] (8.88)
3 2/
where K= [27 (?) ]l 2
1=1\OZi [
Start with

B=5 oa=-—05 ®=—05 «=0707
ph = p2 = 22,67 03 = 03 = 5.44.
py = py = 72X 106 03 = 03 = 24X 106
Substituting these values in Eq. (8.85), we have
B = 4,449
Using Eqgs. (8.86), (8.87) and (8.88), we get

iy s e -}?(127.1 X 106)

o = —%(107.3>< 106)
S = iK(— 253.6% 106)

Using«f + o3 + o3 =1, K = 303.3x106
the directional cosines are

oy = —0.4191 o = —0.3537 a3 = 0.8362
The design point x and x3 are given by
x3 = pj + wxfol
= 22.67 +(0.3537)(4.449)(5.44) = 14,11
x5 = p§ + osfo}
= 72x 105 4+ 0.8362(4.449)(24 x 106) = 161.3 X 106

It is given that A2 follows the lognormal distribution. Using Eqs. (8:76) dand
(8.77), new values of u$ and o} are calculated:

o2 = 3.336 B2 = 20.4
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X follows Type 1 extremal (largest) distribution. The PDF and CDF of X3
are [Eqgs. (3.114) and (3.115)]

Sxa(x3) = o exp [— (s — u) — exp {— oa(xs — w)}] (8.89)
Fx){x3) = exp [—exp {— x(x3 — w)}] (8.90)
Using the above equations, at the design point x;V
Fx,(x3) = 0.9953  fx,(x3) = 0.253% 10~
Using Eqs. (8.67) and (8.69), the new values o3 and u} are

W Canl17E2)
Txi(x3*)
ph = x3 — O~1[Fxy(x3)lo%,
= 161.3 X% 106 — $~1(0.9953)(54.50 X 106)
= 19.89 % 106

= 54.50 106

1

Using these new values of B, a1, a2, a3, w3, o3, u3 and o}, the whole process
is repeated and successive iterations carried out till the required convergence
is achieved. Results are summarized in Table 8.5.

TABLE 8.5 Computation of reliability—Example 8.8

Iteration
Variable Start " 3 3 2

B 5.000 4.449 3.310 2.932 2.904
o —0.500 ~0.419 ~0.261 -0.241 -0.259
o —0.500 -0.358 -0.0518 ~0.084 -0.104
“ +0.707 +0.836 +0.964 +0.967 +0.960
A = 14.11 19.83 20.77 20.52

a3 5.44 3.34 4.69 4917 4.858
) 22.67 20.40 21.93 22.00 21.99

3 - 161.3X10°  193.7x10°  174.1x10°  172.2x10°
o 24 %100 54.50x10*  63.88x10*  58.34x10°  57.78x10°
iy 72 10° 19.89x10*  —7.0x10°  —9.5x10° —11.70x10%

Result: Reliability index g = 2.904
Design point : (—0.259, —0.104, 0.96)

8.3.3 Determination of 8 for Present Designs

During the process of code calibration, the reliability analysis of structural
components designed as per the present code are first carried out, and then
the reliability levels of the present designs under different design situations are
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established. Different design situations may mean different load combina-
tions, viz. D+ LorD + Wor D+ L + W. Again, different ratios of
loads under each load combination may also be considered. The process of
establishing the reliability level is explained in the following section.

Consider the case: the reliability study of RCC beams at the limit state of
collapse in flexure. Let R be the ultimate strength of a RCC section in flexure.
This is the true or actual strength based on the theoretical model to compute
the ultimate strength. After identifying the basic variables in the theoretical
model, the statistics of R are established using the Monte Carlo method,
(explained in Chapter 7) taking into account the model error also. Let R,
be the nominal strength of the member.

When the nominal values of variables are used in the theoretical model,
the strength obtained is called the nominal strength. When strength is calcu-
lated substituting nominal values of variables in the equafion given by the
code, it is called the design strength Rp. Let Y& be the strength reduction
factor given by Rp/R,. If the load combinaticn D -- L is considered, the code
(8.3) specifies that member is to be designed for ¥YpD, + yrLa, where ¥p and
vy are the partial safety fuctors for dead load and live load respec-
tively, and D, and L, are nominal values of*/2 and L respectively. As per
IS Code (8.3). Yp = ¥, 1.5. Hence the design strength of the member is

R[) o IS(DH '}‘ [n) (8 9”

Since Rp == I 4¥r, the above equation becomes

Rn LH
. = 2)
D 1,5(1 +D,.) (8.92)
Yr
Lect the failu-e surface equation under the D -i- L load case -be
R— D — L =1

Dividing by D,, the above equation can be written as

R Rn 1) Dn 14 Lﬂ .
(R‘n)(m) - (m) m) N (E)('E,,)" i
Using Eq. (8.92),

I 52420) - (B)- ()80 o

For a known value of Yr, the reliability analysis can be carried out and f
computed for various ratios L,/D,. When the reliability is estimated at the
limit state of collapse (ultimate limit states), the statistics of the lifetime
maximum live load is to be used. This is illustrated in the following example.

*EREXAMPLE 8.9 From the statistical study of the flexural strength of doubly
reinforced sections, with M 20 grade of concrete (nominal mix) and Fe 415
grade of steel, it has been found that the mean value and standard devia-
tion of R/Ry are EE:Z and 0.149 respectively. Yg = 0:844,1f L,/D, = 0.5,

———
’
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determine the reliability of the beam under the load combination D + L.

Glven:
For
A (é_) tp =062 o=0.1755
n

R and D are normal and L is Type 1 extremal (largest).

Let
- R D _L
=g Ty =R
a1=l.5[l+£l!&] " a3 =£ﬂ_
TR Dn

For Yz = 0.844 and L./D» = 0.5, a1 = 2.666. The safety margin given by
Eq. (8.93) becomes

M=aXi—X:—aX;=0 (8.94)

In the present case, a1 = 2.666 and a3 = 0.5.
Let p#3 and o5 be the mean ‘and standard deviation of equivalent normal
X3 at the design point. The failure surface equation, being a.linear equation,

BM = Qip — M2 — PR3
3,45 2
oa = [aio] 4 03 + (as03)?]12

g — BM Ay — g2 — aps

oM mM+é+mwT2

(8.95)

The above equation can be verified by normalizing the variables and follow-
ing the usval procedure in the previous examples. 8tart the procedure assum-
ing values for the unknown o4 and p3.

Start with oy = a3 = 0.1755
w3 = p3 = 0.62
Using Eq. (8.95),
B = 2.666(1.222) — (1.05)—= 0.5(0.62)
[2.6662%(0.149)% 4-0.1052 + 0.52(0.1755)2]1/2
1.898 o
= 0.420] = 4.517
[l;o‘l;
Ay = — | ——
=<1

_ (0.5)(0.1755)

0.4701 = 0.2089
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The design point x3 is

x3 = p§ + ayfio}
= 0.62 + (0.2089)(4.517)(0.1755)
== (.7856

X3 follows the Type 1 extremal largest distribution.
Following the procedure in Example 8.8,

Fx,(x3) = 0.8458 Jxo(x3) = 1.035
Using Egs. (8.67) and (8.69), new values of o3 and “.3 are
o = (.2466 p3 = 0.5327

The whole process is repeated till B converges, Summarized results are given
in Table 8.6.

TABLE 8.6 Computation of reliability—Example 8.9

Iteration
Variable Start
1 2 3 4
B s 4,517 4.529 4.526 4,525
af 0.1755 0.229 0.247 0.255 0.259
34 0.62 0.552 0.533 0.522 0.517

Result : Reliability index 8 = 4.525 -
Probability of failure Pp= ?(—4.525)

== 2.465x107°

The same problem has been solved for various values of L./D» and the
variation of B with La/D, is shown in Fig. 8.7. It may be observed that the
values of B range from 4.33 to 4.66, which are high. Normally, for compo-

6, S CESNSS S ———

Doubly reinforcéd beam
5_.
p
1‘_
] e il p— ! L i A L
0 025 050 075 100 1-25 150

L{n/Dn

FIG. 8.7 Variation of B for doubly reinforced beam with L,/D,
—Example 8.9
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“hent failure, a value of B about 3(8.10) is considered for code calibration.

The high value obtained is due to the fact that for office buildings the value
«of nominal live load specified by IS Code (8.11) is quite high.

The formulation for determining B for the load combination D + W is
same as for the L + D case. Lis to be replaced with W in all Equations
from (8.91) to (8.93). The failure surface equation is

R—D—-WwW=0

R D w
or by (-R—"’) = l_); —b3 (m =0
where b= 15 (!LM) (8.96)
Du ?R

The value 1.5 in the above equation is as per the present IS Code (8.3). If
we consider the shear strength of the beam (limit state of collapse in shear),
it has been found that the statistics of R/R, for a RCC beam (with M 15
design mix and Fe 250 steel grade) are u == 1.355, o = 0.225, and Yr =
0.85 (8.12). The normal distribution has been fitted to the tail region. Using
the statistics of R/Ry, D/D, and W/ Wy, given in Table 5.3, the reliability
analysis can be carried out for various ratios of Wa/D,. The variation of B
with W./D, for the case of a beam in shear under the load combination
D - W case is shown in Fig. 8.8 (Ref. 8.12). Values of B vary from 3 to
3.5. Instead of the steel grade Fe 250, if Fe 415 is used, the statistics
of R/R. for the same case changeto p = 1.277 and o = 0.2105. The results
of the reliability analysis for beams in shear using Fe 415 grade is also
shown in Fig. 8.8. It can be observed that beams with stirrups of Fe 250
grade have higher reliability than those with stirrups of Fe 415 grade. It is
mainly because the ratio of the mean value of the yield strength to its
specified strength for the Fe 250 grade steel is much higher than the ratio
for the Fe 415 grade steel (Table 4.3).

S
1, M15 (design) +Fe 250
2. M15(design) +Fe 415

4~
3k /‘__\\ 1
2
2 A 1 1 1 1
0 05 10 15 20 25 30

FIG. 8.8 Variation of B with W, /D, for RCC beam in shear
under load: O + W,
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The reliability analysis of members under load combination D + L 4 W
can be formulated as follows. The failure surface equation is

R—-D—L—-—W=0 (8.97)

Dividing each term by D,, the equation can be rewritten as
R Rn D DII [J Ln W Wll _—
(R_,.)(E) (D,.)(D,,) B (f)(ﬁ) a (W,.)(D,.) =0 ey
As per the IS code (8.3),

Rp = ]2(Dn + L. + Wn)
Dividing by D., and using the relation R, = Rp/¥x,

Ru | + L./Dy + Wn/Dn)
R 1.2( : (8.99)
Hence the failure surface equation becomes,
R D L w
Ci (R”) D CJ(D—") - Cy (Wn) (8.100)
wherc =12 (I hhnDe 't B 'jD")
YR
n - WH
Cy = %,, Cy = D,

Now for different combinations ol L,/D, and W./D, ratios, the reliability
analysis can be carried out.

ExAMPLE 8.10 It is desired to determine the reliability of a column under
a load combination of gravity plus wind loads, viz. D 4+ L. + W. From the
statistical study of rectangular RCC columns subjected to axial load and
uniaxial bending, it has been found that (8.12) for compression failure,

= 0.725
BR/Rn = 1,22 og/rn = 0.171 (6 = 14%)

Mean and standard deviation ol D/D, and L/L, arc

Hat g C=105 o= 0.105(5=0.1)

. [; . .

T"or o = (.62 o= 0.1755 (6 = 0.28)
w .

F oy W Copo=().804 o= 0.268 (0 = 0.334)

Roand D Tollow normul. / m«l H' follow Type 1 extremal (largest). Deter-
mine Bt L,/Dy =05 and B.'D, = 1.0,
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~ Solution The failure surface is given by Eq. (8.100) Let :

. R -2
Yi=% %=y,

L 4
XJ —*L" X4 W"'

The failure surface Eq. (8.100) becomes

M=CXi—X:— CGXs —CsXs =0 (8.101)
\vhcrc CI _— ‘2“ "|" Ln/Dn + Wn/Dn)
Yr
Cy = D, Cs D
Por &' = 05, —z-'- = 1.0, ¥g=0.725

[)II
C1f= 4.138, ‘ C3 = 0.5, Ci=1.0

It is given that the live load and wind load follow the Type 1 extremal
distribution. Let p3 and o} be-the mean value and standard deviation of the
equivalent normal X3-at the design:poiint. Similarly, 1§ and &5 are for X4.
The failure surface equation being linear

tar = Cl;ﬁll'- H2 — il — Caph
orr = (Cro1? + o} + (Caob) + (Caoh2)12

Y
- oM
— a' =it & 0')
oy = — (_—-(22—3-) Uy = — (it
oM oM

5 v
x§ = pf + asfaj X4 = p§ 4 wafoi

The procedure of computation is similar to the one explained in the previous
example. Summarized results arve given in Table 8.7.

The variation of 8 with W,/D, and Ls/D» for RCC columns under. the
load combination D + Ly + Wy is shown in Fig. 8.9.

8.3.4 Correlated Variables

In all the previous problems, we have assumed that all variables in the failure
surface equation are statistically independent, and have computed reliability
index based on this assumption. In practice, we may have to deal with cases
when all variables or some of the variables are correlated. The procedure of
solving such- cases is explained below.
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TABLE 8.7 Computation of reliability—Example 8.10

Iteration
Variable Start Z
1 2 3 4 5
B — 3.755 3.728 3.698 3.689 3.687
A 0.1755 0.1955 0.185 0.182 0.181 0.181
uj 0.6200 0.5795 0.585 0.586 0.587 0.587
LA 0.268 0.387 0.455 0.495 0.516 0.527
' 0.804 0.657 0.555 0.481 0.438 0.416
Result : Reliability index B = 3.687
C:Compression failure 1:Ln/Dn=05
T:Tension failure 2:Lp/Dn=1-0
3k Lln/Dp=15
Design mix
4.0 -
p 3-S5}
30}
2-5 4 1 1 1
0 05 10 1:5 2:0

Wnlon

FIG. 8.9 Variation of 8 with W,/D and L,/D, for RCC columns under
load; D Ln: Wm

let X1, X2, . .., X be the set of correlated variables appearing in the
failure surface equation. Let [Cx] be the covariance matrix of the correlated
variables. That is

" Var (X1) Cov (X1, X2) Cov(Xi, X3) ... Cov(X1, X
Cov (X2,X1) Var (X2) Cov (X2, X3) e, Cov (X2, Xu)
[Cx] = ' ' i ;
f 5 ’ i o &
e Cov (Xn, /Y-l) Cov (Xn, XZ) ......... wis . Var (Xu)
(8.102)

Let Ao Ay, oo Ay be the eigen values and [V] be the matrix having each
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b column represented by an eigen vector corresponding to each eigen value.
' That is, if ¢;; is the eigen vector for 4;, then the elements of matrix [V] are
;] [ en e vy elj cae Cin
1 021 22 R 3 Wl C2n
J V= ' : £ ' (8.103)
i . ;
I__ Cut Cn2 i e Cnj & o Cun _J

‘4 This matrix [V'] is an orthogonal transformation matrix. Then the required
] sot-of uncorrelated variables Y is given by (8.2)

Y = VX (8.104)

where Y = (Y1, Y2, ..., Y}t and X = {Xi1, X2, . ., X", The, superscript
t denotes the transpose. Since (V] is orthogonal, [V]~! = | V. Hence,

X = |V]Y (8.105)
The cxpected valucs ol-' Y are given by [Eq. (8.104)]
E(Y) = [V]E(X) (8.106)
The variance matrix of Y, [Cy], is given by
[Cy] = [V}CxILV]
[ A 0 0 0 —]
0. X ;
|

=[] = (8.107)

L0 0 A
That is, the eigen values of [ V] are also the variances of respective variables

Yy, Y2, ..., Y. Knowing the mean values and standard deviations of Y,
the variates Y; can be normalized as usual, i.c.

(Vi —= py,)

Oy,.

Zi= (8.108)

and B can be determined following the procedure given in the previous
sections. Hence the following steps are involved for correlated variables:

(i) Determine the eigen values and the corresponding eigen vectors of the
j covariance matrix. That is, determine the matrix [V].

(ii) Write the safety margin equation in terms of the uncorrelated
| variables using Eq. (8.105).
(iii) Determine the mean values of Y using Eq. (8.106) and the variances
| of Y using Eq. (8.107).
| (iv) Normalize the variables Y; using Eq. (8.108) and write the safety

I
‘l <




218

margin equation in terms of the normalized variables Zi. Note that using
Eqgs. (8.105) and (8.108), we have

X = ] [o12 + iy |
= [Vloy]Z 4 [Viy (8.109)

where
" oy, 0 0...

(8.110)

By = (Byy fyay o o By,
zZ= (Zl, ZZ, o v ey Zn)l

(v) Determine B.
With the orthogonal transformation of Eq. (8.104), it can be shown (8.7)
that the reliability index of Eq. (8.44) becomes

e Z’OGn
. (GMCIGY) 2 (8.111)

ExaMpLE 8.11 For the same problem in Example 8.9, assume that R and
D are correlated. The correlation arises because both depend on the
dimensions of the beam. Assuming Cov (R, D) = 0.0111, determine the
reliability index.

Solution The failure surface equation is [Eq. (8.94)]
aXi — X2 — wX3 =0

where Xi=R, Xa=D and X3 =1L
ay = 2.666 a3 = 0.5

The covariance matrix is & b CL

o[ 0022 00111 0 -
G
[Cy) =p| 00111  00tt0 0 -

0 0_ 0.0308
The corresponding determinant equation is
(0.0222 — V) 0.0111 0 T

Det| 0.0111 00Il—% 0 -
' 0 0 (0.0308 — A)
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The characteristic equation of [Cx] is
(0.0222 — A)[(0.011 — A)(0.0308 —A)] — 0.0111{0.0111(0.0308 — A)] = 0
A3 — 0.06402 4- 11.436X 1074\ — 3.725 x 06 = 0
Thi'eigen values, given by the roots of the equation are )
A1 = 0.02903 A = 0.004167 Az = 0.0308

The corresponding normalized eigen vectors are

0.8516 " —0.5242 =07
e =| 05242 e=| 08516 G=| 0
.0 0 '
Hence, the orthogonal transformation matrix is
| 0.8516 0.5242 07
lV]=1] 0.5242 0.8516 0
0 0 ]
Hence, using Eq. (8.104),
Y = (VX
The expected values of variates Y/arc LEq. (8.106)]
My, ~ 0.8516 0.5242 0 1:222
) by, | = | —0.5242 0.8516 0 1.050
— Ky, 0 0 | L 0.620

This yields
By, = 1.591 . py; = 0.2536 Hy; = 0.62

The variances of Y, given by eigen values, are, {:}
b, = 0.02903 0¥, = 0.004167 %, = 0.0308 ){\
that i
at is {:\. )
oy, = 0.1704 oy, = 0.06456 oy, = 0.1755 p §%
/
Using Eq. (8.109), it is obtained as é\

X1 = 0145121 — 0.0338Z; + 1,222 (8.112)
Xo = 00B93Z: +0.085Z: + 1050, @113)
~ Xy = 0.175525 + 0.62__ (8.114)

Substituting these in the failure surface equation, the equation in terms of
the uncorrelated normalized variates becomes
a1(0.1451Z; — 0.0338Z; -+ 1.222) — (0.0893Z; + 0.055Z2 + 1.05)
—~ a30.1755Z3 + 0.62) = 0
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Substituting the values of ¢y = 2.666 and a3 = 0.5 in the above equation,
we get
0.2975z; — 0.1452z2 — 0.0878z3 + 1.898 = 0O
The above equation being linear, and since pz;, == 0 (normalized variates),

g — 1.898
= 1(0.2975)7 + (0.1452) + (0.0878)2]'72

= 5.54

The same problem can be solved straightway without using the trans-
formation matrix, since the failure surface equation is linear. The given
equation is

M=uX —X:2— aX3 =0
The reliability index is
— BM
B = S
EM = aipx, — px, — Gy, = 1,8978
om = [(a1ox,)? + 0%s 4 (@0x,)? — 2a1 Cov (X1, X2)]' 2

= [(2.666 X 0.149)2 - (0.105)2 + (0.5 x0.1755)
—2%2.666>0.0111]}

0.342

B =

ExampLE 8.12 Consider the same problem of the cantilever beam, given in
Example 8.6. The limit state failure equation is of the form

XiXa — X3 =
If
px, = 14102 oy, = 0.7 % 10*
px, = 32 ox, = 3.2
fxy == 20 103 oy, == 8X 103
Cov (X1, X2) = 1.12X10*  Cov (X2, X3) = 8103
Cov (X2, X3) = 45X 10*

determine the reliability index if all, X1, X2 and X3 follow the normal
distribution.

Solutiecn The variance matrix is

4900 112 45x 104

[Cxl =] 112 10.24 8000
45::104 8000 64 X 106
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N
The eigen values are
Al = 64108 A2 = 1738 Ay = 7.442

The corresponding [V] matrix given by Eq. (8.103) is

0.7031x 1072 0.9995 —0.03224 )
[Vl =] 0125x107" 0.03224 0.9995
1.0 —0.7032x 1072 0.1017x 1073

The uncorrelated variables Y are given by [Eq. (8.104)]
Y = [V]*X

The expected values and standard deviations of ¥; are [use Eqs. (8.106) and
(8.107)]

iy, = 20010 fty, = 1260 my, = —11.11
ay, = 8000 ay, = 41.69 ay, == 2,728

Since all X follow normal distributions and Yiis a linear combination of
X1, Yi also follows the normal distribution with the corresponding para-
meters py, and oy;. The original failure equation is written in terms of the
uncorrelated variables using

X = VIV (8.105)
as X = 0.7032% 10-2Y; - 099957 — 0032245

X2 = 0.125 X101 -+ 0.032247: + 0.9995Y;

Xy = Y1 — 0.7032 X 10-2¥; + 0.1017 % 10-Y;

Normalizing the variables Y,

Y . .

(1)"

X can be written in terms of Z.

X = [ViloylZ + [Viny (8.115)
where
~8000 0 0
o] =| 0 4169 0
L o 0 2728
- 20010

ry =| 1260

I__—ll.ll
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Substitution of [ V], [ey] and my in the above equation yields

X = 58.48Z:1 + 41.67Z, — 0.08795Z; (8.116)
X2 = Zy+ 1.3442Z: -+ 2.7272Z3 (8.117)
X3 = 8000Z; — 0.293Z, + 2.782 X 1074Z, (8.118)
The given failure surface equation is
XiX2— X3=0

Using Egs. (8.107) to (8.109), the failure surface equation in terms of the
uncorrelated normalized variates becomes

@1(z) = 56.25z1 + 56.0z5 — 0.242% -+ 117.262122 + 153.32124
4-113.52223 — 4799z, + 321721 -+ 381623 + 24850

The procedure of determining B is the same as explained in Example 8.6.
Results of iterations are summarized in Table 8.8.

TABLE 8.8 Computation of B—FExample 8.12

Iteration
Variable Start | 2 3 e % —
B 5.000 -17.519 3.721 3.533 3.533
N -0.5 —0.624 -0.714 -0.699
%q —-0.5 —0.457 —-0.424 —-0.437
ag 0.707 -+0.634 0.557 0.565

From Table 8.8
B = 3.533 pr= @(—3.533) == 2.023 < 10~*

the design point: = = o« B
(z], 23, 23) = (—2.47, —1.544, 1.994)
xT = 58.48z] 4 41.67z3 — 0.0879523

= 208.78
X3 =z} + 1.344z; - 2.7272%
= —4,544
x% = 8000zf — 0.29323 + 2.782x 10423
= 19759.5
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EXERCISE

For the problem in Example 8.6, what is the reliability of the beam if the coeffi-
cient of variation ol the load is 20%: All other data remain the same.

(Ans. B = 3.558)
For the problem in Example 8.8, what is the reliability of the beam if the mean
value and standard deviation of the strength of concrete are 30.28 N/mm? and
4,54 N/mm? respectively. All other data are the same.

(Ans, B = 3.293)
For the same problem in Example 8.6, what is the reliability of the beam if P
follows the Type 1 extremal largest distribution with mean, 100 kN and standard
deviation, 30 kN.

(Ans. = 2.608)
IFor (he samc problem in Example 8.6, what is the reliability of the beam if P
follows the Type 2 extremal largest distribution with parameters «# = 89.3 kmph and
k = 6.42. The corresponding mican = 100and standard deviation = 23 kmph.

(Ans. B = 2.7)

For the same problem in Example 8.11, determine the reliability index if
(i) the correlation coefficient between the variables X, and X, is 0.5

(Ans. B = 5.169)
(ii) p» between X, and X, is 0.5 and p between X, and X4 is 0.8.

(Ans, B = 4.901)
(1) The shear strength, R. of a RCC beam is given by the following model

equation

v d A, g\us
R~ B[ LA, f - 1.8566hd ( b ,a_) ]
where B is the model error, A, is the area of stirrups, & is the breadth, d is
the effective depth, s is the spacing of stirrups, 4 is the area of lension steel
and a is the shear span.
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1t is given:

fyiw= 469 N/mm? ¢ = 46.9 N/mm?
fou = 17.58 N/mm? ¢ = 3.16 N/mm?

b:p = 3103 mm ¢ = 947 mm

d:p = 5563 mm g =379 mm

s =150 mm g = 13.5mm

B:ip=12 a— 013
Vpiw=T3430 N a=T7343 N
Vp:w= 57830 N s = 16400 N

where Vp and V¥, are the shear forces due to dead load and live load, respec-
tively. f,, and ¥ follow the lognormal and Type 1 extremal (largest) distribu-
tions, respectively. All other variables are normally distributed. Determine
the reliability index of the beam at the limit state of collapse in shear if

Asy = 100.5 mm?, A/bd=0.008 and a/d=4
(Ans. B = 7.68)

(ii) If the shear strength of the beam is predicted by the following model
hd {3_/1_-1 50 — [}]
f

what is the reliability of the beam if 8 is 2.175

R = B[fy/l“%l +

(Ans. B =445)
(8 7/ (i) The safety checking format of a steel column subjected to axial load P and
bending moment M is as follows.

i) ' (7)
el A (! I
B =
(Mp 2,
where Mp is the plastic moment capacity of the column when there is no axial
load and P is the ultimate axiul load carrying capacity of the column under
pure axial load case.

Area of the cross-seclion is 6496 mm? and plastic section modulus of the
section is 678700 mm?. 1t is given:

For j_'y T 2625 N mm? g -~ 26,25 N/mm?
Ppoip= 039810 N o = 0.398x 10° N
Ppip o 03108::10° N 6 - 0.870:<10° N
My ip — 01785 16) N mm g - 0.1785:x 10" N mm
My ip =5 01394 10° N mm o = 0.3945:<10” N mm

where Py and Py are axial loads due dead load and live load respectively.

Mp and Af; ure momeals due to dead load and live load respectively.
Determine the reliability of the column.

(Ans. B = 3.463)

(i) If the safety checking format uses a nonlinear model given by the following

equation
)+ ()
e — ) <1
(:\'fp Pu =

what is the reliability of the column?
(Ans. B = 4.22)
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Reliability Based Design

9.1 INTRODUCTION

In the last chapter, we studied the Level 2 (including advanced Level 2)
methods in detail. Using the same methods, the evaluation of the reliability
of structural elements was illustrated, Now the problem is reverse. One
wants to produce a structural design which will ensure a certain level of
reliability. That is to say, to provide a design for a specified level of risk/
reliability. This was demonstrated in Example 8.5 also, where the depth of
the girder was calculated to be safe against the limit state of collapse in
shear, ensuring the required reliability level.

Consider the fundamental case: a structural element/system with a
resistance R subjected to an action S. If R and S are independent normal
variates,

. il .

vV ok + 0§
Therefore, the mean resistance (representing the design) required to ensure
the specified reliability or target reliability, Bo, is

pr = ps + BoV o% + o (9.2)

If one uses the other safety format, assuming R and S are independent
lognormal variates, the median value of the required resistance of the
design is

B (9.1)

R = Sexp[ By (5% +62)"* | (9 7).

But in practice, R is represented in terms of several resistance variables and
design constants, and § in terms of load variables and design constants,
For safety,

gR(XI,/YZ, b .,Xm, Cl, Ca. .. ) = ,Q’S(Xm\l, 4‘/'!”!2, R

Ko G Gl o) 9.4)
where, X1, . . ., X are the resisting variables, Xm1, ..., X, are the loading
variables, and Ci, C2, ..., C;...are design constants., gr and gs are

resistance and load effect functions respectively.
* . . . . .
If x; are the design values of variables, then the design equation is
gR(.\‘;, x;, S x"n, Ci,Ca...) = gs(.\',:.H,x;wz, o ChCir .. )
(9.5)
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The partial safety factor or the safety factor is defined with respect to a
particular value of the variable. If it is defined with respect to the mean
value, as given below,
Yei = —.&
i
It is called the central safety factor. w; is the mean value of Xi. If the partial
safety factor is specified with respect to the specified characteristic value,
xki of Xi (corresponding to five per cent fractile in the case of resistance
variable and 95 per cent fractile in the case of load variable), then

(9.6)

Yki = 9.7)

Xki

The partial safety factor, ¥i, defined with respect to the nominal value, X,
of the variable X; is given by
x;
Yi= — 9.8
Xni ( )

In this text, whenever ¥ is used, it refers to the partial safety factor with
respect to the nominal value, Using these yi, the design equation (Eq. 9.5)
becomes

V1 Xu1, YaXazs o - s YXok, €1 Crv o5 ) 2
(8

86 ki Yoo b8 Ko i svmmssCegnlC it 0m) 9.9)

EL O o s 5
Presently. the reliability based desigi means arriving at these values of

partial satzety factors for a given target reliability for a particular failure
criteria. Once safety factors are calculated, the design values are known
and hence the design is proposed for the specified reliability. The computa-
tion of partial safety factors and the process of reliability based code
calibration are dealt with in this chapter.

9.2 DETERMINATION OF PARTIAL SAFETY FACTORS

The reliability based design criteria is developed using the first-order second-
moment approach. In the last chapter, the reliability analysis was introduced
and illustrated using the Level 2 method. The probability of failure or
reliability (in terms of B) was calculated for given safety factors for a given
limit state. Now the process is reverse: partial safety factors are to be
evaluated for the given target 8. The same Level 2 reliability method can
be used. In the normalized coordinate system, for a given failure surface,
the shortest distance from the origin O to the failure surface defines the
safety of the design. Different levels of safety (i.e. 8) will yield different
failure surfaces, as shown in Fig. 9.1, amounting to different designs.
Hence, in the reliability based design, the problem is to determine the
design values of the variables that will result in designs having failure sur-
faces that comply with a required safety index B. If xi is the design value
of the original variable X;, the failure surface equation is

X1, x5 xm =0 (9.10)
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FIG. 9.1 Design corresponding to different reliability indices

If the partial safety factors are attached to the nominal values of variables,
the above equation becomes

g(‘ylxnl, Y2Xn2. .. vy ')'HXnn) =0 (9] ])

The design point should be the most probable failure point. Now the
problem is to determine the most probable failure point. In the normalized
coordinate system, the most probable failure point is given by [Sec. 8.3.1:
Eqgs. (8.45) and (8.46)]

P (9.12)

. —(@g1/0z1)°
where oy [E( ;llalil)?]nz (9.]3)

The original variates are given by
xi = pi+ oz
= i + ozip 9.14)
This equation can also be written as

xi = ul] + 8iB) (9.15)

where &; is the coefficient of variation of X;.
Hence the partial safety factor required for the given B is

xi (1 +8aif)
Xai Xnj

Y= (9.16)
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If the partial safety factors are specified with respect to the mean values, i.e.

ycl = 'x—,
M
then Y= 1+ 8 aif 9.17)

If the partial safety factors are referred to the specified characteristic values,
then the nominal values are replaced with the characteristic values in

" Eq. (9.16). The procedure of computation of the partial safety factors is
illustrated in the following examples.

/ﬁx.\MPLE 9.1 A simply supported steel beam (RSJ) of span 8 m is designed

> for the following data:

Variable jean izl § Distribution
Nominal value
X1: Yield strength 1.10 250 N/mm? 0.10 normal
of steel
X2: Dead load 1.05 11.0 N/mm 0.10 normal
X3: Live load 0.70 12.0 N/mm 0.40 normal

Determine the partial safety factors for the design variables X; if the target
reliability is 4.0.

Solution The limit state equation in the original space, g(X) = 0, is

2 2
X1Zy, — X2 (-g')—XJ (_é-) =0 (9.18)

where /is the span and Z;, is the plastic section modulus of the section.
Normalizing the variables by using the equation

_Xi— i

oy

Z
the limit state equation in the z space is

2 2
21(z) = Zp(o1z1 + 1) —1—8(0222 + w2),— (o323 + ;13)% =0

Let
Zi
A= _129_
Then
g1(z) = A(oyzi + p1) — (o222 + p2) — (0323 + p3) = 0 9.19)

Using Eq. (8.46),

_ __L ‘781)
M= K(—a_z.—*
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where .
L] \271/2
L (2]
f=1 aZl .

ap = — —ll? (014)

€2y = — -11{- (—0'2)
oy = — _Il,{. (—a3)

Since the limit state equation is linear, and all variables follow the normal
distribution, the reliability index is given by

— AP’] — M2 — 3 9 20
[(dor)? + of + o3]' (320

In this design problem, the value of B is already given as 4. Hence

Api — 2 — s _ B
(421 + oF + a3)'2
(Ap1 — p2 — 3 = B(A%] + of + oF)
The quadratic equation in 4 becomes
bid? — bd + b3 =0

where
by = p} — 2o}
by = 2p(p2 + p3)
bs = p3 + p3 + 2paps — B0} + of)
Substituting the given values of pi, ¢; and B, and solving the quadratic
equation, we have
b1 = 63525, b2 = 10972.5, by = 196
A=0.153
Using the computed value of A4, the directional coSines «; can be calculated.

w = — 2 (21.53X0.153)
1.1 3.36
ST TR
Using Zai=1 and K = 5.507, we have

oy = — 0.764, a2 = 0.21, a3 = 0.61
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Design points in the original space are
X1 = p1 + o1 Boy
= 275 — 0.764 x4x27.5 = 190.96

x2 == 11.55 + 0.21 x4X 1,155 = 12.52

I

x3 = 8.4 + 0.61x4x3.36 = 16.6

Hence, the partial safety factors with respect to the nominal values are

190.96
Y= 250 0.764
y2 = 20 _ 1.138
11
16.6
y == — ' —
3 2 .l.383

Here 7 is the partial safety factor (multiplying factor) for the yield strength
of steel. (Note: In IS and British codes, 1/7| is taken as the partial safety
factor for !materials. That is, 1/0.764 = 1.309). Hence the design equation

2
0.764 fyZ, = LS- (1.138 Do + 1.383 La)

will ensure a reliability level of B equal to atleast 4 for the given data. fy.
is the nominal value of f;.

For example, if a beam is to be designed for a span of 6 m and for the
same nominal loads, the section modulus required is given by the condition

36 10°
8
Zp required is 685930 mm3. If this Z, is provided, the reliability analysis

can be performed and it will be found that § = 4 for the same mean values
and standard deviations of f, D and L.

0.764X250 Z, = (1.138x 11 +1.383%12)

ExampLE 9.2 For the same problem in Example 9.1, what are the values
of the partial safety factors with respect to (i) the mean values and (ii) the
characteristic values.

Solution Case (i)
From Example 9.1, the design points in the original space are

o= 190.96, x3= 1252, X = 16.6

Hence, the partial safety factors with respect to the mean values are

Y= xi
Wi
).9
Y = S - 0694

T 25
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12552 1 3
2= 1155 1.084

1660
Yy = R4 1.976

Hence the design equation is
2
0.694 pyZp =2 —18—(1.084 pp + 1.976 L)

to ensure a reliability level of 8 = 4.

Case (ii)

The partial safety factors with respect to the characteristic values are
x

Xki

Y=

where xi; is the characteristic value of xi. For the yield strength of steel,
(5%, fractile)

Xk = p1 — 1.64 o4
=275 — 1.64x27.5 = 229.9
For dead load (95 fractile)
X2 = p2 -+ 1.64 02
= 11.55 - 1.64%x1.155 = 13.44
For live load (95% fractile)
xk3 = p3 + 1.64 03
= 8.4+ 1.64%x3.36 = 13.9

Hence, the partial safety factors with respect to the characteristic values
are ’

190.96

Yer = 5799 = (.831
1252

Yi: = Ba 0.932
_16.60

Yy = 390 1.194

Hence the design equation for 8 = 4 is

2
0.831 fxZo = % (0.932 Dy + 1.194 Ly)

where fyk, Dx and Lk are the characteristic values of fy, D and L respectively.

EXAMPLE 9.3 For the same problem in Example 9.1, what is the value of
the combined load factor ?
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Solution From Example 9.1, the design equation is

0.764 fyuZp ?%— (1.138 Do + 1.383 L)

We want to propose the design equation
2
| 0764 £ 2, > [72(Da - Lo

such that it will ensure B8 equal to alteast 4. ¥r is the combined load factor
on total load. This is computed as follows:

1.138 Dn -+ 1.383 L, = Y1(Da - Lo)

_ 1138 Do + 1.383 L,
- Du + La

L138X 11 + 1.383712
- 11+ 12

Yi

= 1.266

Hence the design equation becomes
2
0.764 fynZ, = I? [1.266 (Do + L))

In Example 9.1, no iteration is involved as the failurc surface equation is
a linear function of the normal variables. If the failure function is nonlinear
and/or the variables are nonnormal, the problem is to be solved iteratively.
This is illustrated in the following example.

\ﬁMPLE 9.4 Consider the same problem in Example 9.1. Determine the

partial safety factors for B = 4, il the yield strength of steel (X1) and live
load (X3) follow the lognormal and Type 1 extremal (largest) distribution
respectively.

Solution The [ailure surface equation is

zxi~Lx - Ly 0
LpA | 8 2 8 AJ =
Let the design constant 4 be
Z
A==g —/5"— 9.21)
I x1, x2 and x3 are the design points, then
Axi— x2— x3=0 (9.22)

Since X1 and X3 are nonnormal, the equivalent means and standard devia-
tions of nonnormal variables (X, X3) are to be used.
Hence the failure surface equation in normalized variables becomes

Aoz + 1) - (G222 ++ p2) — (o323 + p3) = 0
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Using Eq. (8.46), the directional cosines are computed:

ay = ___(’_4K_"'2 9.23)
g, % (9.24)
o3 -_-;{.3 (9:25)

The procedure of computation of the partial safety factors is as follows:

(i) Start with any xi. x2 and x3.
Using Eqgs. (8.67) and (8.69), compute oy and M and o3 and m of the

non-normal variables X and X3 at the design point x*.

(iii) Compute A4 using Eq. (9.22). » _
(iv) Determine the directional cosines «; using Eqs. (9.23) to (9.25.)

(v) Determine the new design point
X; =p; +0;,0,; B
(vi) Go to step (ii) and repeat the procedure till the required convergencg

is achieved.
For example, stop if

Ai — Aj-i <
[—”—A, ] < 0.005 9 26
and/or
[.\‘jl — x/—s,c] < 0.005 i=1,23 927
Xii

where j stands for the jth iteration.
For calculating the equivalent orand pi of Xi, parameters oinxi an

X1 are computed usmg Egs. (3.91) and (3.92):
oyt = [In 3% + 1D]/2 = 0]
X = H1 exp (— —;— o?nx;) = 273.6

Using Egs. (3.115) and (3.116), the parameters of X3 following the Type
extremal distribution are calculated:
m

® = — = (),
\/6 o 0.382
_ __0.57722
u = 8.4 038 = 6.839
Start with
X1 = pyp = 275




234

At x1 = 275, using Egs. (8.76) and (8.77),

o = x1 Tlaxt = 27.43

fy = xi(1 — In x; 4+ In /\7l) = 273.6

At x3 = 8.4 using Eqs. (3.113) and (3.114),

F(x3) = exp [—exp {—0.382(8.4 — 6.839)}]
) = 0.5704
f(x3) = 0.382 exp [—0.382(8.4 — 6.389)
—exp{—0.382(8.4 — 6.839)}]
=0.1222

Using Egs. (8.67) and (8.69),
o S D1(0.5704)]

N (N §5)
= 3.213
3 = 8.4 — o3{®-1(0.5704)}
= 7.831

Using Eq. (9.22) compute 4:
A = (11.55 + 8.4)/275
= 0.0725

The directional cosines are
= —0.504 o =0.292 a3 = 0.813
New design points in the original space are
x1 = 273.6 — 0.504X27.43x 4 = 218.4
x3 = 11.55 + 0.292X4X 1.155 = 12.9
x3 = 7.831 + 0.813x4x3.213 = 18.28

With these new values of xi, the whole process is repeated till the required

convergence is achieved. The results are summarized in Table 9.1.
At the end of the fourth iteration,

A =0.1812
x} =2351 x2= 1203 x}=30.57
The partial safety factors with respect to the nominal values are

235.
yl = ny = _jgvl = 0.94



TABLE 9.1  Computation of partial safety factors—Example 9.4

Iteration
Variable Start . " 3 2
Ay 275.0 218.4 231.8 234.8 235.1
X 11.55 12.9 12.26 12.07 12.03
X3 8.40 18.28 27.54 30.38 30.57
A 0.0725 0.1428 0.1717 0.1807 0.1812
o 27.43 21.76 23.11 23.42
™ 273.6 267.6 270.2 270.7
a 321 6.79 9.50 10.21
™ 7.83 3.12 —4.47 -6.97
o —0.504 —0.411 —0.383 —0.381
ay 0.292 0.153 0.112 0.104
ay 0.813 0.899 0.917 0.919
12.03
Y, =Yp = ——— = 1.093
TP T 0
57
V=V, = ‘3(1)— = 2.548
Hence the design equation is iy 3

2 . g g
0.94 Zofy = £8_ (1.093 D - 2.548 L] (\ "5& ST
AN :

to gnsure a reliability level of B = 4.
ﬂ b/:mw 9.5 The ultimate strength of a RCC beam is given by +. -

REEED Ay
s ]

Let the beam be subjected to a bending moment M due to the dead load
and live load. Then the failure surface equation is

R—M=0 (9.29)

The main basic variables in this case are fy, feu and M. However, if we
compute the partial safety factors for fy, fou and M, we may end up with a
value of ¥ for concrete > 1,0 and sometimes with high values more than
1.5, This can be quite misleading. This happens because the compressive
strength of concrete does not play a significant role in determining the
flexural strength of the RCC beam. Hence what is done is, the partial safety
factor for concrete is prefixed or selected to account for the various uncer-
tainties. The concrete strength may play a significant role in columns.

Let the partial safety factor for concrete strength be 0.667 (given in the
present code as 1/Ymc = 1/1.5). Therefore, the design strength of M 15
concrete is 10 N/mm?,
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It is given:
Variable f: (normal)
Mean = 320 N/mm? o == 32 N/mm?2
Nominal value == 250 N/mm?
.Variable M: (Normal)
Mean = 0.82 < 108 N mm o == 0,12x 100 N mm

Nominal value = 0.8 x 108 N mm

Compute the partial safety factors for steel strength and bending moment
for a reliability index B = 4, b = 240 mm and d = 480 mm.

Solution Let
Xi=f Xo=M
Using Egs. (9.28) and (9.29), the failure surface equation becomes

10 Asd B — (0—2—7) AX—10X2=0 (9.30)
Start with s 2 o R LE h

X1 =320  x2=0.82%108

Substituting the above values, and given values of & and d in Eq. (9.30)
and solving the same, we have

As = 6147 mm?
The directional cosines arc

o = -—'7[(10.4561— '—b‘ﬁ‘ A3 .\-I) 01] @31

P —'k- (10 03) (9.32)

Using the calculated value of 4, = 614.7 and other data, the directional
cosines can be evaluated. They are

ay == —0.502 oy = 0.865
The new values of design points, using
xi = wi + o; Boy
are given by
xi = 2558  x3=0.124%10°

With these new values of xi, the whole process is repeated till the required
convergence is achieved. Results of iterations are given in Table 9.2.
The design points are

X1 =2293  x3=11.6x107
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TABLE 9.2 Summary of calculations—Example 9.5

' . Iteration
Variable Start ] > 3 2
TH 320.0 255.8 233.2 229.8 2293
.\'5 8.2x107 12.4x 107 11.7x107 11.6x107  11.6x10°
A 614.7 1291 1318.8 1319.6 1319.7
ay ~0.502 -0.678 —0.705 —0.709
oy 0.865 0.735 0.709 0.706
The partial safety factors are
229.3
Yy = ij.—— 550 0.917
11,6 x107
"2 =M = G307 108
= 1.45
\/E@LE 9.6 The shear strength of a RCC beam is given by (9.1)
/3
R=114uf 2+ 18566 bd(fcu & d) 9.33)

where Ag is the area of the stirrups, s is the spacing of the stirrups, 4, is the
area of the tension steel and (a/d) is the shear span ratio. For the limit
state of collapse in shear, the failure surface equation is

R—Vp—Vr=0

where Vp and VL are the shear forces due to dead load and live load res-
pectively. It is given:

b = 300 mm d = 580 mm s = 100 mm

—Z— =4 ;7—“; = 0.008

Variable fy: (Nominal value = 250 N/mm?)

# = 320 N/mm? ¢ = 32 N/mm?
Variable fou! (Nominal value = 20 N/mm?2)

= 26.8 N/mm? o = 4,02 N/mm?
Variable ¥p (Nominal value = 70.0 kN)

p = T3.5kN o = 7.35 kN
Variable ¥z: (Nominal value = 50 kN)

= 41.35 kN = 1170

Determine the partial safety factors for fy, fou, Vo and Vi for o = 5,
assuming all variables are normally distributed.
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Solution Let
Xi=/ X2 = feu
Xs =1Vp Xo= V1
d 580

m=11— =1L lxm—’ = 6.38
— 1.8566 bd(A‘ ")
hd
(0.0
18566><300><580( ‘“x) — 40701
Then the failure surface equation can be written as
AT F @ X1 =X —X1=0 (9.34)
Start with
Xy = 220 ;=18
X3 = 80000  xi = 70000

Using these values, and a; and a2 in Eq. (9.34),

As’v T 30.87
The directional cosines are
l -
Xy = —F (Ul Asv (Il)
Sy e _L(_;’z_l!z )
2 K \3ahHn
0y = 2 ny = 3
UK YUK

Substituting the computed value of Asy and other given ‘data in the above
equations, the computed directional cosines are

a1 = —0.368 oy = —(0.463
a3 = 0.429 o4 = 0.683
The new values of x; using
xi = pi -+ xibo;
are given by
xi= 261 xx= 115
X3 = 89260  xi = 81300

With these new values, the whole process is repeated till the required con-
vergence is achieved. At the end of the second iteration, the final values of

x are (Table 9.3):



X =

248.8

x3 = 88600

TABLE 9.3 Results of iterations—Example 9.6

x3 == 17.69
X3 = 79610

multiplying factors.

factors are

Yme = 0.9
Yme = 08

I

l_

W

W

UA.:«!/SA-FETY CHECKING FORMATS

Iteration
Variable Start
| 2
x; 220.0 261.0 248.8
x3 18.00 17.50 17.69
x5 80000 89260 88600
x: 70000 81300 79610
Agy 30.87 38,96 39.16
g —0.368 —0.445 —0.449
«y —0.463 -0.453 —0.451
oy 0.429 0.411 0.413
o4 0.683 0.654 0.657
The partial factors are
248.8 .
yl yfy W = 0.995
17.69
Vo=V, = —— =0,
2 =¥, = 55— = 0.885
- G 88600:
¥s =y, = 25500 = 1:266
T 1 79760
e Rl d et - gl ]

= 1.005

= 1.131
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Note: Readers’ attention is drawn to the point that in.the text all ¥; are

As stated in Example 9.1, in the IS and British codes, 1/7; is taken as
the partial safety factor for materials, and are collectively called as the
: material reduction factors. As per this, the partial material reduction

The safety checking format for a code is defined as the number of partial
safety factors and the way in which they are introduced into the design
equations. For the safety of the structure,

Factored resistance = effect of factored loads
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In the development of probability based limit state design criteria, different
national codes use different formats.

NBC-(Canadu) Format
The National Building Code of Canada (9.2) uses the following probability

factor format
yRRH = as {yDDu "' llU(‘}'I.LN _{" yWWn + o= Ll 'yFEn)} (9.35)

where gs refers to the function that converts the loads to load effects in
brackets, and Yp, yL, ... are the corresponding partial safety factors or
load factors for the loads. ¥ is a load combination probability factor
depending on one, two, or three loads included in the brackets. The value of
¥ is less than or equal to I. This factor takes care of the reduced probabi-
lity of the simultaneous occurrence ol loads. The values given are 1.0, 0.7,
and 0.6, respectively, for one or two or three loadings acting simultane~
ously. The terms ¥p, Y1, . . . take care of variations in the load itself plus
variations in the load effects due to uncertainties in the load model and the
structural analysis.

The lactor Yx represents the overall resistance factor, based on character-
istic strengths, material properties, dimension, etc. This factor is intended
to reflect the probability that the member as a whole is understrength.

CEB Format
CEB committee (9.3) recommends the following format

)
ol == os(Pr1752Y 9 36
ok (ymlymly/»ﬂ - gS( e ISQ/\) ( )

where gr and gg are the resistance and load effect functions which convert
the terms in the brackets to resistance and load effects respectively. /i and
(O« are the characteristic strengths and loads respectively. ¥ is the material
reduction factor. It is to be noted that Y. = 1. ¥ is the multiplicative

factor on the load.
The material reduction factor ¥, is intended to take into account (9.3)

(i) the material strengths occasionally falling below the specified charac-
teristic value

(ii) the possible difference between the strength® of the material in the
structure obtained from control test specimens

(iii) the possible weakness in the structural material or element structure
resulting from the construction process

(iv) the possible inaccurate assessment of the resistance of a structural
element resulting from modelling errors (say, models derived from the
elementary strength of materials)

(v) the eflects of poor dimensional accuracy in the finished structure on
the resistance of a section

The partial factors for loads, ¥y, are iniroduced to account for the follow
ing factors:
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= (i) Yex: for the possibility of loads occasionally exceeding their character-
- IMic values
i (i) Yr2: multiplicative load combination factor for the reduced probability
ol nll toads exceeding their characteristic values simultaneously
(1ii) yr3: multiplicative factor on load effects for possible errors in pre-
dicting load effects as a result of inaccurate structural analysis and as a
~ fosult of neglecting dimensional inaccuracies.
In addition, either Ym OF ¥t may be modified to take care of the nature
- 'of the structure and the seriousness of attaining the limit state.
The European Concrete Committee Model Code (9.4) recommends the
following equation:

8r (i:l_y:/“%m) 2 gg {YD#D + YQ[Qlk +;>zn:| (‘I’O;Q,-k)]} 9.37)

. where O« represents the characteristic value of the main time varying load
@i, and Qx . . ., Qw are the characteristic values of other less dominant
time varying loads Q2 ..., Qa ¥o, is considered as the ratio of the
arbitrary point-in-time value of the jth load to the characteristic value of
that load. g is the load factor on the combination of time varying loads. It
consists of Yr1¥r3, While determining the maximum factored load effect for a
cise involving several time varying loads, it may be necessary to consider
several combinations with each of the loads considered as the most domi-
nant load (i.e. Qix) in turn. Hence, in the above format, when a structure
has to resist a number of stochastically independent time varying loads, a
number of load combinations are to be considered. For a situation with
dead, live, wind and snow loading, the CEB format requires a checking of
32 load combinations. If the NBC format [Eq. (9.35)] is selected for loads,
viz. dead load, live load, wind load and snow load, a total of 14 load com-
binations are to be considered.

However, the Load Resistance Factor Design (LRFD) checking format,
discussed below, requires only four load combinations to be considered.

LRFD Format

The load and resistant factor design checking format, proposed by Ravindra
Galambos, Ellingwood, et al. (9.5, 9.6) recommends only four load combi-
nations to be considered. They are

YaRa = Yopp + YipL, (9.3%)
YRR 2 Yoo + Yapier,,, + Ywpw,, (9.39)
YRRn 2 Yoo + Yapthiry, + Vsvis,, (9.40)
YRRy = Ywpw,, — Vbpp 9.41)

where pp is the load effect due to the mean dead load, g, pw,, and ps,,
are the load effects due to means of the maximum lifetime live load, maxi-
mum lifetime wind load, and maximum lifetime snow load respectively.
Here the term Yapt pur,, in Eq. (9.39) is equivalent to
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2s(e1¥e3¥W0,0x = Yo¥0;Q)x) in Eq. (9.37), the major difference being that
the load is given as a multiple of the maximum load (¥o,Qjx) in Eq. (9.37)
but as a separate loading case with its own load factors in Eq. (9.39). The
load factors, in general, should be applied to the loads before performing
the analysis which transforms loads to load effects. If the relation between
load and load effect is linear, load factors can be applied directly to load
effects.

9.4 DEVELOPMENT OF RELIABILITY BASED DESIGN CRITERIA

Before starting the procedure for the development of design criteria (evalu-
ation of partial safety factors), the precise scope of the work should be
defined. That is, the types of structures for which it is applicable, the types
of materials that will be used, and the range of parameters that will be
covered. The proposed work should be compatible with the present code.
It should also specify the range of application of the code and the different
limit states (ultimate and serviceability) considered in the.work.

One must specify the safety checking format selected. By format is meant
the number of partial factors and the way in which they are introduced in
the design equations (i.e. on loads, load effects, material strengths, resist-
ances, etc.).

It must also specify the basis on which the loads have been developed.
That is to say, whether the loads have been developed for a 50-year design
period or a 25-year design period. It means specifying the selection of the
period for a risk assessment for the class of structures being considered.

The development of a reliability based design criteria involves the follow-
ing steps:

(i) collection and statistical analysis of the data on basic variaples.
Defining of the probability distribution of each variable—at least in terms
of mean values, standard deviations and probability distribution type

(ii) statistical study of the strengths (resistances) of members and establi-
shing their statistics

(iii) reliability analysis and determination of the reliability index B for the
members designed as per the present code for each load combination

(iv) selection of the target reliability index, Bo, (i.e. accepted or specified
level of reliability)

(v) determination of the partial safety factors for the desired uniform
reliability Bo under all design situations within the scope of the work.

For illustration, let us assume that the scope of our work is to determine
the partial safety factors for RCC members (slabs, beams, columns) for
Indian conditions. The limit states considered are the limit states of collapse
in flexure, shear, combined axial load and bending moment in columns,
The lifetime of structures is selected as 50 years. The safety checking format
used is as per the LRFD method.

An extensive data on the basic variaoles, viz. the mechanical properties
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: Mbm slabs, beams, and columns, mcludmg the position of steel for
‘lﬁdlln conditions, has been collected and statistically analysed, and the
~ fesults of the same (9.7-9.10) are given in Chapter 4. The consolidated list of

]ldltlcs of the basic variables is given in Table 9.4. The statistical analysis
J‘ ‘f the data on live loads on office buildings, and wind loads based on wind
meds observed at various stations in India is given in Table 9.4 (9.11, 9,12,
‘A_? - 9.13). The statistics of the lifetime maximum live load Lm and the lifetime
"~ maximum wind load Wm, given in Table 9.4, are based on the selected
~ design period of 50 years.

TABLE 9.4 Statistics of basic variables

Variable X &x/xa 3 Probability
distribution
Jo
Nominal Mix M 15 1,51 0.24 Lognormal
M 20 1.46 0.21 Normal
Design Mix M 15 1.17 0.18 Lognormal
M 20 1.34 0.15 Normal
M 25 1.21 0.15 Normal
Jy
Fe 250 1.28 0.10 Normal
Fe 415 113 0.10 Normal
Slabs
d (mm) 1.87* 4170 Normal
Beams
b (mm) 10.25* 1 Normal
d (mm) 6,25% BN Normal
s (mm) 0.00 13350%* Normal
Columns
h (mm) —0.25* 5.69** Normal
D (mm) 0.113* 9.89%* Normal
Bar placement (mm) 0.640* 12.00%* Normal
Loads
D .05 0.10 Normal
L 0.620 0.28 EXy
Lapl 0.179 0585 Lognormal
W, 0.804 0.334 EX, T
Wapt 0.045 0.743 EX, .

*Deviation from mean (mm); **Standard deviation (mm)
| EX,,, denotes Type 1 extremal (largest).

Statistical Study of Strength of Members

The concrete members, considered here, are slabs, beams, and columns. The
limit states considered are the limit states of (i) collapse due to flexure and
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shear in beams, (i) collapse due to flexure in slabs, and (iii) collapse of
columns subjected to axial load and uniaxial bending. Hence, the partial
factors presented apply to only these cases.

The strength of RCC members vary from the calculated nominal strength
due to variations in the material strengths and dimensions of members, as
well as due to uncertainties inherent in the theoretical model chosen to
compute the member strength. The Monte Carlo technique, dealt with in
detail in Chapter 7, is used to establish the statistics of the strengths of
members in flexure, shear, etc. The procedure involves the following steps:
(i) Selection of a theoretical model to calculate the member strength for a
particular limit state and the model error associated with the same. The
model error, say for the flexural strength of beams, is to be obtained by
collecting data on the experimental results of beams tested for the ultimate
strength in flexure and comparing these values with values obtained by
using the theoretical model equation for predicting the ultimate strength of
beam. The collected data can be statistically analysed and the mean and
standard deviation of the model error can be fixed. (ii) Choosing a series of
representative cross sections or members (different sizes, different boundary
conditions, different spans, different percentages of steel, different grades of
concrete and steel, etc.), each defined by a set of nominal strengths and
dimensions. (iii) Establishing the statistics of the resistance of cach selected
member is carried out as follows: For the selected member nominal resist-
ance, Ry, is compuled based on the nominal material strengths and dimen-
sions substituted in the theoretical model with the resistance factor as unity.
This value ol R, corresponds to the failure mode expected when nominal
strengths exist in the members. The design resistance, Rp, is computed from
the model cquation given by the present code using nominal values with
partial factors or material reduction factors (for concrete Yme = 1.5, for
steel Yis - 1.15). The resistance reduction factor ¥Yr is evaluated using
Yr = Rp/Ry. A sct of material strengths and dimensions is generated
randomly from the statistical distributions of cach variable and are used to
calculate the theoretical resistance, R, along with the randomly generated
value for the model error. Then strength ratio R/Rais determined. This
procedure is repeated and a large number of samples of R/R, is generated.
A probability model is fitted to the generated data. A normal distribution
is fitled to the lower tail of the data and the statistics of R/R, are establish-
cd. By repeuting steps (ii} and (iii), the statistics of the strength ratio of
different members are established. The procedure ot the Monte Carlo
method was dealt with in detail in Chapter 7. A few typical values of the
established resistance statistics and the range of Yr values observed lor
RCC members are given in Table 9.5.

Using the established statistics of resistance ratios and loads for Indian
conditions, the reliability analysis of RCC members designed according to
the present code (9.14) procedures is carried out using Level 2 methods
described in Chapter 8. The reliability levels of the present designs are
found out using the Level 2 method for various load combinatione:
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TABLE 9.5 Typical resistance statistics of RCC members

Momber Steel Concrete R, Rn 3 YR
grade grade
vOno way (SS) Fe 250 M 15 1.433 0.124  Range
£ } Fe 415 M 15 1.275 0.124 0.835-0.865
i t’fl‘wo way (SS) Fe 415 M 15 1.281 0.124  Average
~ One way (C) Fc 415 M 15 1.263 0.136  0.85
~; 'rwo way (C) Fe 415 M I5 1.286 0.129
ms (flexure)
Ilnaly reinforced Fe 250 M5 1.288 0.104
-1“ Fe 415 M 15 1.170 0.104 Range
:ﬁy Fe 415 M 20 1.179 0.103 0.835-0-845
s Fe 415 M 25 1.169 0.101 Average
EEJ'} Fe 415 M 15* 1.197 0.105 0.84
: \1 Doubly reinforced Fe 415 M IS 1.151 0.103
i' Mounis (shear)
Range
5"' Fe 250 M 15 1.355 0.166 0.855- 0.865
Y Average
1 Fe 415 M 15 1277 0.165 0.86
- Columns
Range
~ Compression Fe 415 M 20 1.29 0.152 0.68 0.79
th Average
Fe 415 M 20* 1.38 0.224  0.725
i Range
v fension Fe 415 M 20 1.19 0.13 0.68--0.89
5 Average
Fe 415 M 20* 122 0.15 0.8

Note:  SS = simply supported; C = continuous
* = indicatcs nominal mix.

(VD + Lw (ii)) D+ W, and (iii) D + Lm + Wm. A summary of the
tesults of the same is given in Table 9.6. Based on the above study, a proper
turget reliability is selected. For the selected target reliability, partial safety
fuctors are evaluated for different load combinations for cach member/limit
ptute. The evaluation of the partial safety factors is illustrated below.

LxaMpLE 9.7 (Load Combination: D ++ Lw) Consider a RCC beam. After
considering all the possible combinations of the grades of concreteand steel
wtutistics of the flexural strength of RCC beams have been taken, as given
below, for the study ol the partial safety factors at the limit state of col-
lapse in flexure (9.12).

Grade of steel R/ R o Distribution

Fe 415 .17 0.122 Normal
Fe 250 1.289 0.1289 Normal
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TABLE 9.6 Range of reliability indexes for RCC members

Load Range of Average

combination p B B ¢ Refik

D4 L,
Slabs 4.2104.8 4.5
Beams (flexure) 4.31t05.5 4.9 Range of L ID,
Beams (shear) 33t03.8 3.6 0.25 10 2.0
Columns 33to4.6 3.9

D + Wm
Beams (flexure) 35105.1 4.3 Range of W /D,
Beams (shear) 3.2t03.5 3.33 0.25102.0
Columns 321042 3.50

D+ Ly~ Wy
Beams (flexure) 29t04.6 3,75 Range of L,/D,
Beams (shear) 291034 315 0.5,1.0,135
Columns 2.8 t0 4.1 3.5 Range of Wn/Dll

0.25 10 2.0

The load statistics (from Table 9.4) and resistance statistics of the beam
at the limit state of collapse in flexure (for the steel grade Fe 415) arc

Variable R/Rn: (Normal)
p = 1.17 o ==0122
Variable D/Ds: (Normal)
no=1.05 o = 0.105
Variable Ln/Ln: Type | extremal (largest)
wo 0.62 o= 0,1755
Parameters W 0315 %t 1,895

If Fe 415 steel grade is used for reinforcing bars, determine the partial
safety factors for the limit state of collapse in flexure under the foad combi-
nation D - L if Lo/Dy == 1.0 and Bo == 4.5.

Solution The safety checking format (LRFD) under dead load D and live
load L is

YrRn > YDDn + yLLn
The limit state equation is
R—D - L =0

The equation can bhe rewritten as

R D L
(F)R (7)")1) (T)L -0 (9.42)
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~ Then Eq. (9.42) becomes
' RoXit — X2Dn — a3X3Dy = 0

"M

~ ultimate limit state. The reliability index is given by

_ by
p =t
;, = Rapt — 2Dy — aawiDa
{5, [(Rnol)z + (02D0)% + (a_‘g;D")Z]lll

|
)
]
{
¥
+
f

- design point be

- - .
X1 = M1 X2 = M2 X3 = K3

03 = 0.1678  pf = 0.5903

in Eq. (9.43), we have

‘. 4.5 = LI7Ry — 1.05Dn — 0.59Dy
7 [(0.122Rn)* + (0.105D0)* + (0.168D,)%]'72

Solving the above quadratic equation in Ra, we get
Ry, = 3.004D,
The directiohal cosines are

oy o= ‘]]<(Rn01)

|

1 S
= — (3.004X0.122) Dy = ——(0.366Dx}
. s
) = 71<-(02D.,) = T(O.IOSDn)
oy = —,]\-;(a_;oéDn) = —}(-(0,‘68Dn)

Using Z ol =1 and K = Q.4l7D,}, we have
o= —0.878 @2 =0252 a3 = 0.403
The new design point x3 is given by ‘

x3 = pj + oyfios
= 0.5903 -+ 0.403X4.5%0.168 = 0.894

- 247

e 11 i to be remembered that for L, the statistics of Lm must be used for the

(9.43)

~ where ¢4 and of are the mean and standard deviation of the equivalent
~ normal X3 of the nonnormal variable X3 at the design point. Let the starting

AL == 0.62, the parameters o3 and uj for the Type 1 extremal
(lurgest) distribution are calculated as illustrated in Example 9.4. They are

Substituting the values of B = 4.5, a3 = 1, 0, p3, and other oy and g values
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At this new design point, new values of o3 and p3 are calculated and the
whole process is repeated till the required convergence is achieved. Results
of subsequent iterations are given in Table 9.7.

TABLE 9.7 Swnmary of computations—Example 9.7

Variabi Iteration
ariable Start
ar I 2 3 4
i 117 0.687 0.730 0.772 0.802
X5 1.05 1.169 1.152 1.139 1.131
] 0.62 0.894 1.177 1.141 [.553
o} 0.168 0.270 0.368 0.440 0.479
B} 0.590 0.501 0.313 0.126 0.0056
R,'D, 3,004 3.193 3.304 3.348 3.3591
ozx —0878 —0.802 —0.725 —~0.67
o 0,252 0.216 0.189 0.172
« 0.403 0.556 0.062 0.722
At the end of the sixth iteration
RI\
— = 1.361
Dn
AT=082  x3= 113 xy=1.62

The partial safety factors with respect to the nominal values are

Ld
x s
Vo= S e RV
Xin
since the variables X have been initially normalised with respect to their
corresponding nominal values, Hence
Y1 =Yg = 0.82 Y2=yp =113
Yy =Y, = |.62
The design equation is
yRRn = yUDn + yI,Ln

0.82Rs 2 1.13D, + 1.62Ls

v

The same problem has been solved for various values of La/Dy equal Lo
0.25, 0.5, 1.0, 1.5 and 2.0, and the variation of the partial salcty factors
with Luo/Dy is shown in Fig. 9.2. If the steel grade Fe 250 is used, pr/go

1.289, or &, = 0.1289. For this case also, the variations of y&, Yp and 7.
,With Ly/Dn are shown in the same Fig. 9.2. It is observed that yx increases
shghtly with an increasc in the Lu/Dy ratios. This is due to the use of the
higher values of 1. at higher Ln/Dn ratios. The dead load factor ¥p shows a
stight fall with an increase in the .4/Da ratio; but can be treated to be a
tairly constunt value, The variation in ¥y is very small because the variation
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i dead 1oRd is small eompared to other load variables. o incréases with
. terease in the Lo/Da ratio as its higher variability becotes increasingly

p=4~s
: 201 Fe 415 1
TL 15
o
. Y,
R 1ol D
/"ng
05}
0 1 1 1 1
0 05 10 15 20 2°5
20

p=45 /—-TL
Fe 250

Y 15
|
Tq 10 =10
R Ok Py
0-5F
i 1 1L 1
0 05 10 15 20 25

Ln/Dn

FIG. 9.2 Variation of partial safety factors for RCC beam in
flexure under load: D + L

Load Combination: D + W,

The procedure of computation of the safety factors for the load combina-
tion D - Wy is same as used for the load case D |- L, explained and
illustrated in Example 9.7. The only difference is that the corresponding,
statistics of W are to be used instead of those of Lm. Typical curves
showing variation of the wind load factors Yw, ¥p, and Y& with respeet to
the Wa/Dy ratio are shown in Fig. 9.3, Here also, similar observations are
made about ¥z, ¥p, and yw as in the previous case D - Lw, i.e. Yr increases
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shghtly with increase in B! Da, Yp remuuns fairly constant, and Yy increascs
as Wa/Dn increases

2-5
=35
Fe 415 - . (Y
,-/.-’-"‘_._
20t p
Tw
Tp
TR V'5F
L
10 - *'*‘———___"*:10
/
i i 1
O3y—13 0 5 2.0
I'p-35 P
20_F9 250
1.
W1,5~
Yo
10F /
R
0S¢5 70 75 20

Wn/Dp

FIG 9.3 Variation of partial safety factors for RCC
= beam in flexure under load: D + W,

The determination of B for the load combination D - Lapt + W is
illustrated below.

ExampLE 9.8 (Load combination: D -+ Lap + Wa) Consider the same
problem in Example 9.7. The beam is subjected to wind load along with the
gravity loads. From Table 9.4, the following load statistics are taken.
Variable: D/D.: (normal)

wo=1.05 o =0.105 38 =0.10
Variable: Lapi/Ls:  (lognormal)

w=0.179 o = 0.098 8 = 0.55
Variable Wn/Wxa: (Type 1 extremal (largest)) -

© = 0.804 c=0.269 & =0.334
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~ ' he resistance statistics are the same as given in Examplé 9.7. That is, the
b‘monn and standard deviation of R/Ra are 1.17 and 0.122 respectively.
~ Determine the partial safety factors for fo = 4. It is dlso given that

Ly Wa _
1 D, = 1.0 D. = 1.0
‘~' Sulution The failure surface equation is
R —D - Lapt - Wn =10 (9-44)
Rewriting the equation, we have
R D Lapt) ( Wm)
D n TN N = = n = 9.
(R)rn - (2)oe - (B2)ea = (g2)we =0 039
W Let
_ R _ D
“.‘;‘ Xi = Rn X2 = D;.
Xo= Luglls M= DO
P e T W,
==y -t =y
. - .‘ Dn 3 Dn 4
Then the failure surface equation becomes
fi3 RoXi — XaDy — X3a3D -~ XaasDa = 0 (9.46)
| The reliability index is given by
) }HR" }l-an " ”5“31)11 i Id‘“l)ﬂ (()4-‘,)
t[ [(o1R)? + (2D + (aiasD, ) - (dasDn)?]V2
8 The directional cosines are..
oy = -- TL:(UlRﬂ wy = }((Gan)
.o -—— —112-(65d3Dn) o4 - 7](‘(‘73(14Dn)

Start with
x=pr= D17 X == 1.05
¥i=p=0179 xs=ps = 0.804

The procedure of computation is the same as explained in Example 9.5.
Summary of the results is given ip Table 9.8. After the fifth iteration,

e . x; = 0.908 x2 = 1.1

: X =019  xi=229

The partial safety factors are
Y1 =% =0908 Y2="Yp=1.1
Vi=".=0199 Y4="Yp=229
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I'ABLE 9.8

Summary of results—Example 9 8

leration

Varable Start | 5 1
1y 170 (). 883 0.NTT 0,890
: [RYANN | =2 illo 1.103
v 0179 0249 (1,231 0209
¥ 0804 ] 189 2,000 2,213
RTUN T 2 0.11v 1) 107
I 0 136 0134 0142 0149
1 D253 TIIIN 0.669 0.728
T 0.759 0457 0.060 ~-0.120
R, D, 1.738 3.294 181y 3.935
@y {).587 --0,60] - (.561 -0.543
o, 0.29] 0157 0,127 0119
oy 0,254 0.191 0.143 0.121
oy 0711 0.760 0 803 0.823

Hence the design cquation is
0.908[&1 ;} l.‘Dn ‘E- O.IggLn ‘i_ 2.29W’n

Similarly, for various values of W,/Da, the values of Y&, ¥p, and Yi» can be
determined. The variation of the partial safety factors for various values of
Wa/Da is shown in Fig. 9.4. [t can be observed that Yp remains fairly con-
stant. YL decreases with increase in Wa/Dn up to Wo/Dn == 1, and for
Wa/Da = 1, 71 temains fairly constant. Yw increases with increase in Wa/Da,
increase is more up 1o Wa/Dn == 1.0. The region of interest in design is up
10 La/Dn < 1 and Wo/Da < 1. In this region, the variation of load factors
is observed to be high (Figs. 9.2, 9.3 and 9.4). The process of code calibra-
tion involves proposing one set of partial factors for Level | code, irrespec-
tive of the load ratios (e.g. Lo/Dn or Wi/Dn), and probably other design
situations -different limit states, ensuring uniform reliability. For this, the
simple optimisation technique proposed by Ellingwood, et al. (9.6) or the
method used by Baker (9.15), can be used after assigning weighting factors
to load occurrence. They are explained in the following section.

9.5 OPTIMAL SAFETY FACTORS

As seen in the previous section, the partial safety lactors are not constant
for a given safety checking format and a given target 8. For convenience,
the partial safety factors in the code checking format are to be constant
atleast over a large group of design situations.

As said earlier, the aim of code calibration is to determine a set of safety
factors which will ensure the best approximate uniform reliability over
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FIG. 9.4 Variation of partial safety factors for RCC beam in flexure
under foad: D -+ L, -+ Wy,

different design situations. If a constant set of factors are prescribed, the
associated reliabilities will deviate from the target reliability Bo. To select
one set (optimal set) of load factors, a function, S(¥:), which measures the
“closeness’ between the target reliability and reliability associated with the
proposed partial factors set. is defined and this function is minimised to get
the optimal safety factors.

For a given set of partial factors with an associated Po, there is some
corresponding nominal resistance. Let it be called Ry, obtained using the
Level 2 method. This is a function of the load ratio and load combination.
Let the nominal resistance corresponding to a design equation, which pres-
cribes a set of partial factors that are constant for all foad ratios be Ry
which may differ from Ry - Rn corresponds to Level 1 code. The problem is
therefore, to find ¥;, minimizing the function, S, defined by (9.6)

S = ;(R,‘,‘ — REYwi (9.48)

over a predefined set of combinations of dead, live and wind loads wherein
wi is the relative weight assigned to the ith load ratio. The function selected
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is the square ol the difference between Ry, and R. so that the deviations
from Bo on cither side can be cqually penalized. The determination of the
optimal safety factors is illustrated below,

Examprr 9.9  Let the salety checking format be

YrRo = YuDa |- Vil (9.49)
for the loud combination D+ L.
Tuking Dy~ 1,

(Y, + Ve
Rh - et (9.50)
"
where ;i == (La/Dn)i. The S function, given by Eq. (9.48), becomes
Yo L a¥L |2
SOr, VYo v,) = & [R.‘]' - P-—-ykf’——’»] i (9.51)

To find the minimum value of S, the partial derivatives of S with respect to
Yr, ¥p, and Y. are taken and made equal to zero. This leads to the following
two equations:

ZwiaiR\?% — 2 wiai¥p — Zwiai Ve = 0 (9.52)
1 1
Z wiRn'yr — Z wi¥p — X wia¥r = 0 (9.53)

The equations corresponding to dS/6Yx and d5/37p are the same.

The computed values of Yr, ¥p, and Y. for various values of La/Dq for
RCC beam in flexure are given in Table 9.9. The weights to be assigned
should be based on the likelihood of different load situations in practice.
The assumed weighting factors w; in percentage (9.6) are also given in the
same lable.

TABLE 9.9 Values of partial safety factors for beam in flexure—Load
combination D + L,

Lo
i D
Partial n Rerrsk
factor 0.25 0.5 1.0 1.5 2.0
YR 0.802 0.860 0.937 0.964 0.977 Bo =35
YD 1.200 1.154 1.105 1.087 1.078 FLmyia = 0827
Y 1.057 1.505 1.859 1.954 1.995 8L, = 0.283
' L, = 3 kN/m?®
Weights For RCC
W, 10 45 30 10 5 beams

(per cent)
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4 n : ' .
= The values of Ry fori = 1 to 5 are calculated using the expression

1 (YD; + ZL,IJ_:)

) P yR.

i

(9.54)

. and the values of ¥ given in Table 9.9. For example, for i = |, Ln/Dn
- = (.25,

QY _ (120 + 1.057x0.25)
"= 0.802
= 1,82

. Using weighting factors given in Table 9.9, we get

b no_
‘Z'l widiRni = 2.6369

> It
iE wiRni = 2.8049
=1

i=|

5 s
121 wia; = 0.8 2w =1.0

Using these values, Egs. (9.52) and (9.53) become
2.6369Yg — 0.8yp — 0.844Y, = 0 (9.55)
2.8049Yr — ¥p — 0.800Y. = 0 (9.56)

From the study of the results (Table 9.9), it is observed that ¥p remains fairly
constant around 1.1. This has been observed for various load combinations
and failure states(9.12). Since the value 1.1 is low and may not be accept-
ablc by the profession, the value of yp is fixed as 1.2. Using this value,
Egs. (9.55) and (9.56) become

2.6369Yr — 0.8447, = 0.96 9.57)
2.8049Yr — 0.8007, = 1.2 (9.58)

Solving the above equations
Yr = 0.9495 Y = 1.829

If it is desired that yx must be around 0.85, asexistingin the present designs
corresponding to the material reduction factors Ymc = 1.5, ¥ms = 1.15 and
other material specifications, so that the partial safety factors for material
strengths and other material specifications on the resistance side are not
changed, then keeping the present value of ¥z = 0.85, and using the same
in Eqs. (9.57) and (9.58), two values of ¥r are obtained. They are 1.52 and
1.48. Taking the average, ¥. is fixed as 1.50. Hence, the optimal safety
factors for this case in this example are

Yr = 0.85 Yp=12 Yo=15

Similar studies can be done [or other combinations of variables and other
limit states.
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The approach used was suggested by Ellingwood, et al. (9.6). The approach
used by Baker (9.15) is given below.
The function used for §'is

S = Z(logypr — logm/)n);zwi (9.59)

where

(pr), = is the failure probability or the case (say ith load ratio La/Dn)
(pr)i == corresponding target failurc probability

To determine the partial factors for the new code checking format, trial
values of partial factors are used in the new code format and B, values and
corresponding (pr)i are computed. These values are substituted in Eq. (9.59)
and the value of § is calculated. The process is repeated for different trial
values of ¥i. Finally, the set of partial factors corresponding to the mini-
mum value of S is taken for the new code checking format. This method is
itlustrated below.

ExaMPLE 9.10 For the same problem in Example 9.9, determine the opti-
mal partial safety factors using Baker’s approach (9.15). Bo = 3.5.
Solution As in the previous case, let us fix

7R = (.85 y() == 1.2

The problem is to find the optimal value of y,.

First select a trial value for ¥r. say 1.3.

Using Y& = 0.85, ¥p == 1.2, and y. = 1.3, determine B (as exnlained in
Sec. 8.3.3 and Example 8.9) for each value of a:. Find the corresponding
value of (pr)i = @(—B)i. Using Eq. (9.59), calculate S. A summary of the
calculations for yo = 1.3 are shown in Table 9.10. Repeat the process for
different trial values of ¥, and calculate the corresponding valuzs of S. Y.
corresponding to the lowest value of S is the optimal value of ¥,. The opti-
mum value can be obtained by plotting Y1 versus S. The optimum value of
Sis 1.45,

TABLE 9.10  Sununary of calculations—Example 9.10

LD, 8 pex10-¢ w; (log pg — 108 pgy2yy; Remark
0.25 341 3.305 0.10 0.00233 Py = P(=13.5)
0.50 3.42 3.133 0.45 0.00753 = 2.326% 107
1.00 3.19 7.094 0.30 0.07036
1.50 3.04 11.665 0.10 0.04904
2.00 2.95 15.655 0.05 0.03429

Z == 1.00 S =2 =0.1635

For vy = 1.4 S = 0.0531

vp =15 S = 0.0547

S == 0.16108

I
&

YL
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" The procedure of calculation of optimal safety factors for the load combi-
Mtion D + Lapt + Wm is same as explained in the previous load case:
D + L. This is illustrated in the following example for the same member
. RCC beam in flexure.

i

. ExampLe 9.11 Consider RCC beams in the limit state of collapse in flexure

under load combination D 4 Lap: + Wm, as considered in Example 9.8.
The safety checking format is

YRRn = yDDn + yLLm + yWWn (960)
 Taking Dy = 1,
RI — (vp + @ ¥ + a;Yw) (9.61)
n Yr :
La W,
where a = D Y= D:

The function S defined by Eq. (9.48) becomes

Vi ¥ 4 Yw]?
S(yr, ¥, YL, Yw) = ?Jz] {[RII]I _"p -+ f’_,'_.y.'; - ai w] w,'} -

(9.62)

The partial derivatives of S with respect to Yr, vp, ¥, and Y result in the
following equations:
Z X Rl'wiwjyr — Z Z wiwjyp — 2 jZ'afwm'/YL — 2 2 wiwiai¥w = 0
iJj i j i ! T 4

(9.63
{-‘ ]Z' R wiwjaivg — 2,7 /2 wiwsai¥p -—.’Z' jZ' alwiwi¥r — 2‘? %’ wiwja¥w = (z
(9.64)

4:3 /Z' RiMwiwjajYr — 2'7 12 Wiwja;¥p — %‘ ,2 aiggwiw¥, — .'/‘J ,2 wiwa¥w = 0
(9.65)

It is to be noted that dS/@¥gr and 4S/dyp will yield the same equation.
Here four variables are to be determined with three equations. Hence, the
value of one of the partial factor, generally ¥p, is assigned or selected and
the other three factors are evaluated. The procedure is similar to that of the
gravity load case, D +- L.

The computed values of ¥; for the various values of Wo/Da and La/Dy are
given in Table 9.11 for fo = 3.5. The assumed weighting factors w; and w;
are given in Table 9.12,

Since ¥p is fairly constant as can be seen in Table 9.11, yp can be fixed.
The value of Y& is also fixed. Selecting ¥p = 1.2 and Yr = 0.85, and using
values given in Tables 9.11 and 9.12 in Eqs. (9.63)-(9.65), the following
three equations are obtained:

0.725 Y. + 0.713 Yw = 13748

0.7125 Y, + 0.5218 Yw = 1.1356
0.5218 Y. 4+ 0.7127 Yw = 1.32
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TABLE 9.12  Weighting factors in percentage for load combination D - Lﬂpl-l- W,

Example 9.11

TABLE 9.11 Values of partial safety factors for RCC beams in flexure—Load
combination: D + Lgy + W, —Example 9.11
W,
bx Partical D—:.
D, factor e S — Remark
0.25 0.50 1.0 1.5 2.0
03 Yy 0.791 0.836 0.94 0.984 1006 B, = 3.5
v,  1.163 1.137 1.098 1082 1074w ).
= 0.239
a3 0.324 0.281 0.240 0229 0224 L, — 3 kN/m?
Yy 0.996 1.436 1.998 2157 2224 ¥y,n /Ly = 0.55
10 YR 0.854 0:827 0.900 0.954 0.984
) 5123 1.121 1.077 1.082 1.074
v,  0.647 0.456 0.290 0.255  0.241
Y 0.884 1.137 1.802 2.052 2157
1.8 YR 0.932 0.900 0.87 0.927 0.962
1) 1.095 1.097 1.095 1.082 1.074
v, 0911 0.772 0.397 0292 0.263
Yy 0.828 0.937 1.527 1.921 2.076

m

Weighting factor a
-ID'" for -2 o Dy
n n 0.25 0.5 1.0 1.5 2.0
(w)) (w;)
0.5 055 10 45 30 10 5
1.0 0.35 30 45 15 7 3
1.5 0.10 45 30 15 7 3

Using any (wo equations, three sets of ¥z, and Y,y can be obtained:

@Y. = 0.712 Yw = 1.2
(i) Y1, = 0.512 Yw = 1477
(iii) Y. = 0.267 Yw = 1.656

Any one set or taking the average of the three values, Y. = 0.496 and
Yw = 1.44 may be selected with Yz = 0.85 and ¥p = 1.2,

This exercise of establishing the optimal safety factors for the various
values of target Bo can be done for various cases. A typical variation of the
opiimal values of partial safety factors for RCC beams in flexure for
various load combinations are shown in Figs. 9.5, 9.6 and 9.7 (9.16). These
are applicable to Indian conditions. There are three values of Ly given in
the figures. The data used for live load is the one based on the load survey
of office buildings. The Tndian Standard Code (9.17) suggests nominal live
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FIG. 9.5 Optimal values of partial safety factors for RCC beams in
flexure under load: D + L,

5 load of 2.5 to 4 kN/m? for office buildings depending on the separate

storage facilities available. Office buildings are generally designed for a
nominal live load of 4 kN/m? assuming no scparate storage facilities. The
analysis of live load on office buildings indicates the mean value of Lm as
2.48 kN/m2 However, the whole study has been carried out assuming
other values of L. equal to 3.0 and 2.5 kN/m? (i.e. prm/za = 0.827 and
1.00), with a view whether it is possible to reduce the design loads for
office buildings in India.
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9.6 SUMMARY OF RESULTS OF STUDY FOR INDIAN
STANDARDS -RCC DESIGN (9.16)

The development of reliability based design was illustrated for RCC beams
for limit state of collapse in flexure, A similar study (9.12) for Indian con-
ditions has been made for RCC slabs, RCC beams for limit state of collapse
in shear, and RCC columns for limit state of collapse under combined axial
load and uniaxial bending moment. A summary of typical resistance
statistics and results of reliability analyses of the RCC members mentioned
above have been given in Tables 9.5 and 9.6. While proposing a set of
partial safety factors for Indian conditions, the same material factors given
in the present code (9.14) have been retained, and hence the corresponding
resistance factor (yg), evaluated by using nominal values during the statisti-
cal study of RCC members, has been kept constant. The variation in ¥p
has been found to be small in all cases and can be considered almost con-
stant around 1.1. However, this value being very small and that the pro-
fession may not accept this, a value of 1.2 has been selected for ¥p. The
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FIG. 9.7 Optimal values of partial safety factors for RCC beams in
flexure under load: D + L, + Wy,

optimum values of ¥z and ¥w have been fixed based on the above condi-
tions for all the cases for the target reliability Bo. A set of curves for slabs
and beams in shear are given in Figs. B1<B5 (given in Appendix), connect-
ing optimal values of ¥, and Yw with Bo. Table BI is also given in the
Appendix for the optimal values of 7. and Yw for columns. Some of the
observations and conclusions on safety factors for concrete design in Indian
conditions are given below:

(i) The yield strength of steel has a significant effect on the statistics of
the strength ratio R/Ra for all RCC members.

In the case of columns, the concrete grade also has a significant effect on
the statistics of the strength ratio in the region of compression failure. In



262

the case of slabs, the effective depth also has a significant effect on the
statistics of the strength ratio.

(ii) The members designed as per the present code (I1S: 456-1978 limit
state approach) have different safety levels under different design situations
and vary widely. For slabs, 8 varies from 4.2 to 4.8, for beams in flexure
from 3.2 to 4.7, for beams in shear from 3 to 3.8, and for columns from
2.9 to 4.6. The safety levels of slabs and beams in flexure are higher than
that of beams in shear and columns.

(iii) Results of reliability based designs for slabs and beams clearly
indicate that the nominal live load of Lo = 4 kN/m?, used for the design
of office buildings 1s high, With this value of nominal live load, the load
factors obtained are low and may not be accepted by the profession. Hence,
it is proposed to use Lo = 3 kN/m? for the design of office buildings.
Although in column design it is not necessary to take the lower value of
L, but, for the sake of uniformity, the value of L, = 3 kN/m? is suggested
for office buildings.

(iv) In all the cases of the reliability study of members and for all load
combinations, it is observed that the dead load factor, Yp, remains fairly
constant around a value of 1.1. This value being very low and that the
profession may not accept this, a value of ¥p = 1.2 is suggested for all
load combinations.

(v) The values of resistance factor ¥g are taken as obtained by using the
nominal values of basic variables with Y. = 1.5 and Vs = [.15. This is
done so that the same material factors, suggested by the present code, can
be used.

(vi) A reliability level of 3.5 is suggested for the component failure.

(vii) The rcliability based design for the load combination D-+ L+ Wap
indicates that Yw has a very low value (<< 0.1) and hence, this case tends to
the load combination, D -+ L., case. The load combination, D - Lm--Wan,
is therefore not considered for the selection of partial safety factors for the
gravity load plus wind load combination.

(viii) For Yp = 1.2, the target reliability Bo = 3.5, and for the resistance
factor Yr corresponding to the material safety factors, Yme = 1.5 and
Yms = 1.15 of the present code, the values of the live load factor and the
wind load factor to be used for different load combinations are given in
Table 9.13.

(ix) For slabs, beams in shear, and beams in flexure and columns, curves
or tables are also presented in Appendix B to choose the load factors Y.
and Yw corresponding to the different reliability levels as desired by the
designer.

(x) In the case of columns, the quality of concrete (design mix or nominal
mix) significantly affects the partial safety factors for live and wind loads.

(xi) For columns, now-a-days at least M 20 concrete is used and the con-
crete is prepared bused on the design mix proportions in major construc-
tions. Hence a partial safety factor for loads ranging from 1.4 to 1.8 for
different load combinations, as given in Table 9.13, is suggested. In the
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‘TABLE 9.13 Partial safety factors for different components and load combinations

at ultimate limit states o = 3.5,¥p = 1.2 and L, = 3 kN[m

5. No. Load combination Component Yr 147 Yw
1L, D+ L, Slab 0.85
Beam in flexure 0.85 1.5
Beam in shear 0.85 2.0
Column
Comp* failure/Design mix 0,725 1.4
Tens™ failure/Design mix 0.80 1.8
2. D+ W, Beam in flexure 0.85 1.6
Beam in shear 0.85 2.0
Column
Comp failure/Design mix 0.725 1.5
Tens failure/Design mix 0.80 2.0
3. D+ Ly, i W, Beamin flexure 0.85 0.45 14
Beam in shear 0.85 0.90 1.5
Column
Conp failure/Design mix 0.725 0.27 1.5
Tens failure/Design mix 0.8 0.24 1.8

Nore: *Comp — Compression
*Tens - ‘Tension

case of minor works where nominal mix is used for columns, higher safety
factors for live and wind load are to be used as suggested in Table Bl in
Appendix B.

(xii) The suggested values of ¥, and y,, are for the case when steel grade
Fe 415 is used. If steel grade Fe 250 is used, these values of load factors

~ will'ensure a slightly higher reliability than that conceived with the use of

steel grade Fe 415. If the same reliability is to be achieved, irrespective of
steel grade, then slightly lower values of ¥, and ¥p may be used when steel
grade Fe 250 is used. However, the difference is very marginal. Hence, the
safety lactors based on steel grade Fe 415 are finally suggested to be on
the safer side.

(xiii) The proposed partial safety factors for loads, given in Table 9.13,
will lead to more cconomical designs compared to the present values given
in the code (9.14).

(xiv) Even though the live load data on office buildings has been used in
the study, the curves or tables are presented for various ratios of ftLm/La 0
that they could be used for any case of known ptrwe assuming the coeffi-
cient of variation of L does not change significantly.

(xv) The Indian standard code for RCC design has not been yet calibrat-
ed by the Indian Standard Institution. It is expected that they may usec the
CEB checking format as followed by the British Standards. The LRFD
format has been used in arriving at the results given in Table 9.13. However
it is felt that the results will be only marginally affected, and negligible,
since, while arriving at these values of ¥p, Y1, and Yw, the value of Y& for
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each case corresponding to the same matcerial reduction factors and mate-

rial

specifications as per present IS: 456-1978 (9.14) is used. Hence, the

present code format with new optimal values of ¥p, ¥r and ¥4 may be
used.

The study has revealed many things for Indian conditions. It has given
insight into (i) the present level of reliability available in RCC members,
(ii) how the safety factors vary with target B, (iii) what is the reasonable
value of Bo, and (iv) how optimum safety factors could be fixed and how
these change for different failure criteria.
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EXERCISE

Determine the partial safely factors for the variables, the yield strength of steel,
dead load, and live load for the given limit state equation

N

hta-by-Ly

where [ is the span,fy is the yicld strength of steel and Z; is the plastic section
modulus.

it is given:
Variable fy: p = 275 N/mm? ¢ == 27.5 N/mm?
Variable D: p = 11.55 N/mm? o == 1.155 N/mm?
Variable L: p = 8.4 N/mm? g = 3.36 N/mm?

The nominal values offy‘ D, and L are 250 N/mm?, [1 N/mm? and 12 N/mm?
respectively.

(i) If the span is 8 m, determine the partial safety factors for 8, = 3 assuming
% and D are normal and L is Type | extremal (largest).

(Ans: 0.955, 1.091, +.787)

(ii) Determine the combined foad factor. (Ans: 1.454)
(iii) Determine the partial safety factors with respect to mean values.

(Ans. 0.868, 1.039, 2.553)

For the problem in Exercise 9.1, if the standard deviation of Zp is 60000 mm?

and the mean deviation zero, determine the mean and partial safety factor for Z,

and the combined resistance factor for 8, — 3. (Ans. v, = 0968

Yionib ™= 0.928, mean of Zp = 1,139 10° mm?,

vfy = 0.956, yp = 1.091, vy, = 1.75)

The limit state cquation for the shear strength of steel beam is taken as
/yr,,a'-— Vp— V=0
It is given:
Variable f,; p = 275 N/mm? a = 27.5 N/mm?
Nominal = 250 N/mm?
Variable Vp: u = 270.9 kN g = 27.09 kN
Nominal = 258 kN
Variable ¥p: p, = 224 kN o = 63.4 kN
Nominal = 361 kN

t,= 89 mm, If the standard deviation of d is 20 mm and the mean deviation 0,
determine the partial safety factors of Sy Vo Vi, and dfor By = 5, assuming
Sy Vp. Vi and d follow lognormal, normal, Type 1 extremal (largest) and normal
respectively, What is the combined resistance factor? (Ans. ‘ Yd = 0973

v, = 0.878,7, = 1.105, ¥, = 2229, Yopp = 0.855)
The shear strength of RCC beam is given by

R =y 5+ VO T{VIZH =1]
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i he limit state equation is
R—1tp=1,--0

where Fp and J, are shears due to dead and live load. It is given: g7 = 2.9,
b = 300 mm. d = 580 mm, 5 == 100 mm.

Variable f\ @ 320 N/mm? ¢ == 32 N/‘mm?

Variable fo,,: p - 26.7 N/mm? o = 4.02 N/mm?

Variable Vpi i == 94.5 kN ¢ = 9.45 kN

Variable V;: ¢ == 75.0 kN o= 21.22 kN
‘The nominal values of £y, f,. ¥p and ¥ are 250 N mm?, 20 N mm?, 90 kN and
90.69 kN respectively.
Determine the partial safety factors of Jyo four Vp and ¥y for By = 5ifall
variables arc normally distributed.

(Ans, )'fy = 0.898, rfcu = 0.97, Py = 1.202 and Yy, = 1.588)

9.5 The ultimate strength of a RCC beam in shear is given by Eq. 9.32. Consider the
problem in Example 9.6.
(i) The statistics of shear force due to dead and live load arc as follows:

Variable 1’5 (Nominal value = 79.5 kN)

u = 83.5 kN s = 8.35kN
Variable ¥, : (Nominal value = 54.41 kN)
p-=450kN o= 1273kN
The statistics of f,, and fy, and all other data are the same as given in Example
9.6. Determine the partial safety factors for £, fy- Ve and ¥y for By = 5.
(Ans. Py 0.9438; Yfeu = 0.9566; vp = 1.269 and y; = 1.571)
(ii) If the code committee fixes the material reduction factor for concrete as 1.5,

determine the partial safety factors for fy, ¥, and ¥y, for gy = 5.
(Aus. v, = 0.859; vp = 1.267, ¥, = 1.563)

(iii) If the code committee fixes the material reducation factor for steel as 1.15,
determinc the partial safety factors for f,, ¥p, and V.
(Ans. v = 0817, 7p = 1288 and ¥, = 1.673)
9.6 A column is subjected to combined axial load and bending moment. Under this
combined action, let the equivalent strength of column be R. The column is
subjected to dead, live and wind load, It is given:

Variable R/R: (normal)
w=122 3§ =014
Variable D/D: (normal)
p =105 3 =0.1
Variable L, /L (lognormal)
p=0179 8§ =0.55
Variable W,/W . [Type 1 extremal (largest)]
p=20804 3§=033%
Study the variation of the partial safety factors for various values of Wy /D, = 0.5
0.75, 1.0, 1.5 and 2 for By = 3 and plot the same. Assume L /D, = 1.0.
9.7 The limit state equation of a structural component subjected to dead and wind
load is given as
R-D—-W=0
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_The slatistics of the variables arc given below.

Variable R/R: p = 1.355 ¢ = 0.225 (normal)

Variable D/D,: p. = 1.05 o = 0.105 (normal)

Variable W/W,: 1 = 0.804 o = 0.269 [Type 1 extremal (largest)]
Plot the vgrialion gf,v:thc partial safety factors g, ¥, and y, with W, ‘D, ranging
from 0.5, 0.75. 1.0, 1.5 and 2 for go = 3.5. Determine the optimal values of vg, ¥p

and ¥y, using the method adopted by Baker (9.15) assuming suitablc weighting
factors for the occurrence of each W, /D, ratio.
The limit state equation for an axially loaded short column is assumed as:

0.67]’@“Ac+];As— D-L=0
The arca of concrete, 4., is 113000 mm?, It is given:
‘Variable £, : (normal)
p = 268 N/mm? &= 402 N/mm?
Variable fy: (norrﬁal) ]
- ‘ b= 469 N/h\li\" o = 46,9 N/mm’
e . Dead load D: (Normal)

v

e p = 420 kN o = 42 kN
Live load L: [Type 1 extremal (largest)]
u = 166.8 kN a =472 kN

If the nominal values of £, /y, D, and L are 20 N/mm?, 4[5 N/mm?, 400 kN and
269 kN respectively, determine the partial safety factors for variables for gy = §.
(Ans. Yy = 0.458; vy, = 1.044; v, = 1.15; 7, == 1.075)
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Reliability of Structural Systems

10.1 GENERAL

We have so far studied the reliability analysis and design of structural
components. The code calibration based on component reliability was
also introduced and illustrated in Chapter 9. But a structure or a structural
system, viz. building, bridge, offshore platform, water tank, etc. is built
up of many components (elements). The capacity of a structural system
will depend on the capacities of its components. The behaviour of the
system is probabilistic as it depends on the performance of its components
whose behaviour is random. Civil engineering structures are invariably
a kind of system. Information is available only on the statistical per-
formance of components. With this information, the reliability of the
structural system must be determined. A structural system may have
several failure modes. These failure modes are to be identified, modelled,
and combined to determine the system reliability. Hence, the reliability of
structures/structural systems of multiple components and with multiple
failure modes is to be considered from the system point of view.

10.2 SYSTEM RELIABILITY

One of the important applications of probability theory is the evaluation
of the reliability of a system which is made up of components with known
reliabilities. The reliability of a component is the probability of its satis-
factory performance against the purpose for which it has been designed.
Block diagrams are used to demonstrate the computation of the reliability
of a system. Systems are classified basically into three groups as given
below:

(i) series system
(ii) parallel redundant system
(iii) mixed system

10.2.1 Series System

The term, commonly used in the field of electrical engineering, is easily
understood by everyone. In this system, even if one component fails to
function satisfactorily, the whole system will fail. Therefore, a series system
performs satisfactorily only when every component works satisfactorily.
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The block diagram for this system is as shown in Fig. 10.1 and the reliabi-
lity of the system is calculated as explained below:
Let

Ai = the event that component i works satisfactorily

pss = probability of survival of the system

pes = probability of failure of the system

Pss=]"pfs
S BR r}

FIG. 10.1 Series system

As every component should funcfion satisfactorily for the system to be
reliable,
P = P(AINA2N. .. NAn (10.1)
If the events A; are independent, the above equation simplifies to
pss = P(A1)P(42) . .. P(4s)
= l{'i; (1 — pr) (10.2)

where pri = the probability of failure of the component i, and n = the
number of components.

The model is also called the ‘“‘weakest link model”.

In the case of structural systems in civil engineering, the values of pr are
very small. If p € 1, Eq. (10.2) can be rewritten as

Pss == 1 — I{‘I Dfi (10.3)
and Prs ﬂizl' Dri (10.4)

10.2.2 Parallel Redundant System

In this case, the system survives even if one component has failed, The
system fails to function satisfactorily only when every component of the
system has failed to function satisfactorily. The block model diagram for
the computation of reliability is shown in Fig. 10.2. The reliability of the
system is given by

Du = 1 — ps
=1 — PAINAIN...NA4%) (10.5)

where Ai = the event that component i does not function satisfactorily. If
events A are independent, Eq. (10.5) simplifies to

Pu = 1 — [P(A)P(A3) .. . P(4%)]
- { T (10.6)

(wt



270

— 1

SER—————— g )

FIG. 10.2 Parallel redundant system

In structural engineering, this system may be referred to as a parallel
system with n perfectly ductile elements.

10.2.3 Mixed System

This is a combination of series and parallel redundant systems. The block
model diagram for the computation of the reliability of a mixed system is
shown in Fig. 10.3. This is visualised to consist of subsystems S1 and Sz as
shown in Fig. 10.3. S is a series system and Sz a parallel redundant system,
and subsystems S1 and S2 are connected in series. For this mixed system
to survive, each subsystem should survive under the given conditions. Hence
the reliability of the system is given by

Pss = P(E\N E2)

i e 1 l 3
| |
= 1 *——‘ 2
| |
L A e i iy ) B
Sy 52

FIG. 10.3 Mixed system

where Ei = the event that subsystem | functions satisfactorily and F2 = the
event that subsystem 2 functions satisfactorily. Knowing how to compute
the system reliability of the series and parallel redundant systems, the
probability of the survival of this mixed system, shown in Fig. 10.3, is
given by

Dss = P(EI)P(E2)
= (1 — pm)(1 — prx2) (10.7)
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L where prsi is the probability of failure of the subsystem 7. It has been
assumed that events A; are statistically independent.

ANameLe 10,1 Calculate the reliabilities of the systems shown in Figs. 10.3
~and 10.4 assuming the performance of components is statistically indepen-
~ dent. Compare the results. Given:

prL = 0.1 Pr2 == pr4 = 0.2 Pr3 = 0.3

1 2 3

FIG. 10.4 Block model—Example 101

(i) The reliability of the mixed system (Fig. 10.3):
" The reliability of the subsystem 1, using Eq. (10.2), is

P(Ey) = (1 - 0.0 - 0.2)
= (.72
= Using Eq. (10.6), the reliability of the subsystem 2 is

P(E2) = 1 ~ pripra
= [1 - (0.3)(0.2)]
= 0.94

Hence the reliability of the mixed system is (Eq. 10.7)

Pss = P(E1)P(Ey)
= (0.72)(0.94) = 0.6768

(if) The reliability of the series system, shown in Fig. 10.4, is
pss = (1 — 0.1)(1 — 0.2)(1 — 0.3)
= 0.504

When the reliabilities of the two systems are compared, it can be seen
that at the cost of an additional redundant component 4, the mixed system
is more reliable than the one shown in Fig. 10.4.

~ Examrre 10.2 Consider a nuclear power plant designed for a tevel of
 earthquake intensity. At this particular level of the earthquake intensity,
the controlled shutdown of the reactor depends on the functioning of the
control systems; the cooling systems and the primary containment vessel.
There are two redundant control systems, two redundant cooling systems,
and a single primary containment vessel with two components 4 and B in
series.

(a) Draw the block model for the computation of the reliability of the
plant with respect to shutdown at the given earthquake level,

(b) If it is assumed that there will be no major accident if either the
shutdown is controlled or the reinforced concrete secondary containment
~ vessel C performs properly, model the total system with respect to the
~ major accident reliability.
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Solution Let

pri = probability of failure of the component §

(a) The block model diagram for the computation of reliability is shown

in Fig. 10.5(a). The reliability of the plant with respect to shutdown at the
given earthquake level is

Pss = (1 — pripea)(l — pespea)[(1 — pea)(l - pra)]

Control system

[ ! Cooling system Primary contaiment
vessel
— 3 r—=— - == -
| |
it | I
| A 8 1
i |
A | 3
2
{a)
Control system
' Cooling system  Primary contaiment
vessel
3 - - - = -7
| |
Iafie~ L=}
'
e _1'-1‘ ! o o
2
i
R C C vessel
C
(b)
FIG. 10.5 (a) Block model for case a and (b) block model for case b—
Example 10.2

(b) In this case, there will be no major accident if either shutdown is
controlled or the secondary concrete containment vessel C performs satis-
factorily. The block diagram is shown in Fig. 10.5(b). The reliability of the
system with respect to no major accident is

Py =1—[1—{U — pupr)l — pespa)(l — pra)(1 — per)})(pec)
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) MODELLING OF STRUCTURAL SYSTEMS

T.l General

Mlictures can be considered as a system and can be modelled into any-one
i he three basic systems, depending on the physical behaviour for comput-
) its reliability. The modelling of a few structural systems for the com-
tlon of reliability is explained in the following sections.

i simply supported beam is subjected to a load as shown in Fig. 10.6, the
I lure of the beam occurs when the strength of the critical section (the
Wilon subjected to the maximum moment) is less than the external load.
Ihe beam can be considered as a system with one component (critical
. wilon) only. It is similar to a case of a tension member subjected to a load
shown in Fig. 10.6(c).

L dad,
" A A
A
1 l L
(a) Beam (b) Model {c) Tension Member

FI1G. 10.6 Single member single load condition

"lyslcm, since for the beam to be reliable, the critical section should survive
- fé'q)r be reliable under each Joad. The block model is shown in Fig. 10.7(c),
~ where the Section A under each load is imagined as a component and is

25,
B

 (enoted as Ai.
.

L xAMPLE 10.3 Consider a steel tension member, shown in Fig. 10.7(b), sub-
- Jected to m independent repetitions of load L. It is given that the means
~ und standard deviations of the resistance of the member R and L are

e — 50 kN or - SKN

wr == 25 kN ur == 12 kN

m-=5
Compute the reliability of the member if R and L are normally distributed.
Solution Consider the member as a system subjected to m independent

repetitions of L. The block model for the system to compute the reliability
will be a series system. The reliability of the system is

pa = (1 = pe)|™



274

(a) Beam (b} Tension Member

{c) Block Model
F1G. 10.7 Single member m foad conditions

where pr is the probability of failure of the member under 7.. The value of
pris computed as given below:
pr= PR < L]
= P[(R — L)< 0]
Since R and 7. are normal, using Eq. (6.16), we get
pr == P(—-B)

— | m e ]
[(oﬁ + op )12

Substituting the given data, we have

25 — 50
=l [152 4,-‘127)'75]

= ®(— 1,92) = 0.02743

The probability of survival of the system under repetition of L for five
times is

Pss = (1 -- 0.02743)5
= (.87

[t is to be noted that the reliability of the system decreases as m ncreases,
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Bridge System

Idge structural system consists of girders, piers, and abutments, as
wn in Fig. 10.8(a). For the reliability of the system of piers, each pier
Id function satisfactorily. Hence, the reliability model for the system of
% will be a series system. Similarly, for the reliability of the system of
ments, each abutment should be reliable under the given loading con-
on, Hence, the reliability model for the satisfactory performance of the
of abutments is a series system. Likewise, for the reliability of the
of girders, each girder should be reliable under the given conditions.

ce the reliability model for the system of girders is a series system.

[ Lirger

- | LA i " )
. -;!._‘

{a) Bridge System

Girder system Pier sysiem Abuiment system

""""""""""""" N e - o T )

[ ! I |

y ! D D D D I II:] D !

| bl ‘

: J I !

o e T T I J

T

\ (b) Block Model 3

FIG. 10.8 Modelling of a bridge system

‘ k For the whole bridge system to survive under the given loading condi-
flon, each subsystem, i.e. system of girders, system of piers, and system of
~ pbutments, should survive. Hence, all the three subsystems are to be con-

nected in series to compute the reliability of the system. The block model

~diagram is shown in Fig. 10.8(b).
- f‘y%ipw 10.4 Compute the reliability of the bridge system. shown in

£ Fig, 10.8(a), having four piers, five girders and two abutments. The probabi-
».f-;llly of failure of each pier, girder and abutment is 10~4, 10~5 and 1076
% .;a'espcctively. Compute the reliability of the bridge system,
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Solution 'The probability of failure of the pier system is [Eq. (10.4)]
(pr)pier = é"l pri= 4x10-4

The probability of failure of the girder system is [Eq. (10.4)]
(Pr)Girder = él pri = 5x1075

The probability of failure of the abutment system is [Eq. (10.4)]
(pe)abue = él pi = 2% 1076

Hence the probability of failure of the bridge system is

(pe)Bridge = (4X107%) ++ (5x 1075) + (2% 1076)
= 4.52x 10

The reliability or probability of survival of the system is
pss =1 — 4.52x 1074

10.3.4 Truss System

Consider the truss shown in Fig. 10.9(a). Itis subjected to aload L as shown
in the figure. This is a determinate structure which is considered as a system
having six members (components). For the truss to perform satisfactorily,
i.e. to be reliable under the given load L, every member of the truss should
perform satisfactorily, i.c. should carry its load safely. Hence, this truss
can be modelled as a series system with five components, as shown in

Fig. 10.9(b), to compute the reliability,

{a) Truss System

[-]

[} femed o)
2 3 4
L& 2
(b} Block Mode!
FIG. 10.9 Modelling of a truss system
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L PLE 10.5 The truss shown in Fig. 10.9 is subjected to a random load
ith parameters

ur = 25 kN or = 12 kN

) parameters of resistances of members are given as

' pri=50kN  om=5SkN i=1,2...,6

pr1 = 60 kN op7 = 6 kN

.'utc the reliability of the truss system assuming resistances of the

mbers are independent, and also that resistance and load are independent
R and L are normal.

I'he block model for the computation of reliability is shown in Fig. 10.9(b).

{ the given load, the forces developed in the members are given in
10.9(a).

)

efore calculating the system reliability, the reliability of individual com-
jents must be computed. Since members 1, 3, 4 and 5 carry the same
il L and their resistances are the same, the probability of failure of these
mbers is the same:

' — | AL BRI ]
- [“—_«& T oh)
25 — 50
=e [(52 + 122)'/2]
= &(—1.92)
= 0.02743
Py = pra = pes = pry = 0.02743

The force in the members 2 and 6 is IV 3)2. Hence, the mean value and
- Mlundard deviation of the force in member 2 are (\/ 3/2)ur and (V' 3 [2)ar
| 5p tively. Hence,

A KL — UR2

- b 2
P2 = pfe = P {(VT )2 2}”2
2 or) + oRr2

» d,[ 21.65 — 50 ]
{(10.392)7 + 532

= ®(—2.458) = 0.006986

vV 3pL — ww ]
=¢ -
e [ (V3 o0 + opi}!”

L d,[ 43.3 — 60 ]
» (20,782 + 6?3)172
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16.7
w (et ) = B(-0.772
(21.63) =070

= 0.224338
Using Eq. (10.2), the probability of survival of the system is

Pss: = ]; (l - [71'i)

i=1 y.
(1 — 0.027423)(i -~ 0.006986)(1 — 0.02743) X
(1 — 0.02743)(1 — 0.02743)(1 — 0.006986) X
(1 — 0.22438) /

= (.68625

Consider the trusses shown in Figs. 10.10(a) and 10.10(b) in which the
number of members are 3 and 11 respectively. Reliability of these trusses
can be computed as above and are 0.948 and 0.148 respectively. Including
the result for the same type of truss with seven members, it can be observ-
ed that as the number of members increases, the reliability of the

system decreases when the performance of the members are statistically
independent.

I

(b)
FIG. 10.10 Trusses

In the case ol truss systems, for a given number of members, if the resis-
tances of members are correlated, the reliability of the system increases

with the increase in the correlation coefficient between member performances
(resistances of members).

10.3.5 Indeterminate Beam

Consider a fixed steel beam shown in Fig. 10.11. This is a redundant, per-
fectly ductile structure. In this case, the failure of the structure does not
occur if one section yields; failure occurs only when a sufficient number of
sections have yielded to form a collapse mechanism. In the case of the fixed
beam shown in Fig. 10.11, the beam fails only when the critical sections 1,
2 and 3 (positions of maximum moments) have yielded. Hence, the given
beam can be considered as a parallel redundant system, the block model
diagram of which is shown in Fig. 10.11(b).

In the case of redundant structures, the reliability of the system increases
as the number of redundant components increases if R; are statistically
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-
1
L
Ll_ 1 2
J K}

h 7 TEE 2
oot —————f

A J

{b) Block Model
{a) Fixed L _am

FIG. 10.11 Modelling of a fixed beam

hilependent. It can be proved also that in the case of a redundant parallel
yatem, if the resistances of members are correlated, the reliability of the
teim decreases with the increase in correlation.

03,6 Frame Structural Systems

.ﬂimc structures are highly redundant structures. In this case, the failure
il o single section (component) does not result in the failure of the frame
stem). Assuming a perfect ductile structure, the frame fails only when a
* suflicient number of plastic hinges are developed to cause a collapse
' Mhanism. Again, there may be a number of possible collapse mechanisms
1 n \ [rame structure. These possible collapse mechanisms are to be synthe-
#ed and the system failure probability is to be computed.

A failure mode, i.e. a collapse mechanism is composed of component
Aaection) failure events that are in parallel. For a failure mode to be formed,
~Whery critical section in that mode must have failed. Hence, to compute the
'-:{-plhlbility of the frame under a particular failure mode, the critical sections

{0 that mode are to be connected in parallel. For the frame to be reliable,
C has to survive under all the possible failure modes. Hence, to compute
- Uhe system reliability, these parallel subsystems are to be combined as a
- wrics system. The block model for the computation of the reliability of a
frame structure is shown in Fig. 10.12(e). It is clear that this is a mixed

system. The individual failure modes may be correlated because of common

‘load and resistance variables, There may be correlations between single

dloments in the same failure mode. The system reliability depends on

(1) topology, (i) post failure behaviour of components, and (iii) correlation

characieristics of different variables and different failure modes.

In the case of ideal plastic structures, each collapse mode, called cotlapse
mechanism, (i.e. limit state) can be represented directly by an equation in
tlerms of the plastic moments of hinged sections in the mechanism and the
length factors multiplied by loads (10.1), using the mechanism method of
analysis (10.2). Hence, the safety margin equations for failure modes can be
Alireetly written and the reliability of a frame under each failure mode can
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(a) Frame {b) Mode 1
w . »I/
e \}/’W ”“—]\“76
i 7
(c) Mode 2 {d) Mode 3
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7
L
Mode 1 Mode 2 Mode 3
(e) Block Model
FIG. 10.12 Modelling of a frame system
be calculated. Then the structure is modelled as a series system with the

failure modes as components, and the system reliability is determined. This
is illustrated in thé following example.

“/émmiu; 10.6 Consider the rigid steel frame shown in Fig. 10.13(a). It is
given that
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2 6 2 6
A
1 7
P
(a) Frame {b) Mode 1
Y49 - W %.@
w
3 I 5
4
9 {c) Mode 2 (d) Mode 3
h N0 NLO
L 1,0 My 20 + M5O nr :
?
4
{e) Mode &
Mode 1 Mode 2 Mode 3 Mode 4

(f)Block Model
FIG. 10.13 Frame, failure modes and block model—Example 10.6

BM1 = pM2 = pus = pm1 = 490 kKN m
OM| = Op2 = Opm6 == Op7 = 73.5 kN m
M3 = {M4 = [LALS =653 kN 1.11

OM3 = OpMg4 = Op5 = 97.95 kN'm

w = 446 kN oy = 69.9 kN
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where Afiis the plastic moment capacity of scction /. Compuie the system
reliability of the frame assuming all A arc independent, M; and W inde-
pendent and all variables AM; and W normally distributed.

Because ol the random behaviour of the resistances of various critical
scetions and load, the frame may fall under failure modes having hinges at
2, 4and 6,0r 3, 4uand 5 or3,4and 6, or 2,4 and 5 which are shown in
Fies 10.13(b)-10.13(e).

The virtual work method of plastic analysis (10.2) is used to determine the
resistance ol the frame, and action at collapse for cach mode. For the safety
ol the frame under failure mode 1 {Fig. 10.13(b)]:

Ma0 + 2Ms8 + Mo > 310
where @s the virtual rotation at section 2. Hence, the safety margin is
Z = M-+ 2Ms 4 M¢ -~ IV

The probability ol survival of the frame under a mode is ps = P(Z = 0).
As Z is a lincar function of the variables M; and W, we have

Pz = par - 2008 S ias — Spa
== 490 - 2(653) -I- 490 — (3)(446) = 948 kN m
oz = |(1)%hs2 4- (2)20%4 + (1)20h6 + (3)1'0’?;']”2
= [73.5% 4 (4)(97.95)® 4 73.5% - (9)(69.9)]' "
= 3052 kNm
As Z is a linear function of the independent, normally distributed variables,

7 is also a normal variable. The probability of failure of the frame under
the mode | is

pri = P(Z < Q) = d’("ét‘z)

az
—948
® (305.2)
= @(--3.106) = 9.35x 10~*

Similarly, for other failure modes shown in Figs. 10.13(c), 10.13(d), and
10.13(e), the probability of failure of the frame under each failure mode can
be calculated; the calculations are shown in Table 10.1. To compute the
probability of survival of the system under all failure modes, a block model
is drawn connecting all modes in series as shown in Fig. 10.13(f). Assuming
all failure modes are statistically independent (Note: this is not true as all
Zi are correlated as seen in Table 10.1) and using Eq. (10.2), we have

I

4
Pss = .-n; (I — pri)
= (I —9.35%1074)(1 — 3.97x1079)
2(1 — 1.85:7107%)(1 — 1.85% 1074
== 0.9986553
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TABLE 10.1  Reliability analysis of the portal frame—Example 10.6

Z Bz 5zi Py B
(kN m) (kN m)

(Fig. 10.13(b)] M. = 2M = Al — S 948 3052 9.35x10°% 3,106
V[ Fig 10.13(0)] Mg+ 2Af, - Mg — 3W 1274 3187 3UTx10% 3,997
N [Fig. 10.13(] AL 20, M= 3W 11T 3120 185x107  3.561
W |Fig. 10.43)] My 201, < My~ 30 1111 3120 1.85x10-¢  3.56]

Blinple bounds: 9.35x10-* < py, < 133710
Thie probability of failure of the structural system is
prs = 1 — 0.9986553

= 1.3447:< 1073

4
Pisez 5 P

44.1 Introduction

In the previous problem, it has been assumed that Z; are statistically
; iidependent during the computation of the reliability of the system. It is
bvious when the equations of Z; are cxamined. (Table 10.1), that Z; are
Lorrelated, as the same random variables appear in the equations. For
sxample, if Zi and Z2 are considered. M4 and W appear in both the equa-
Mons. Hence, Z1 and Z2 are correlated.

n

Zi = _2; aiXi (10.8)
d
n Zi = X bk, (10.9)
c§ =
]

i (@, and by are constants)
- the covariance between Z; and Zx is given by

| \

Cov(Z;, Zi) = 2 aibio; €10.10)
Thc correlation caoefficient between Z; and Zx is given by
Pzi,zk = LoviZ, %) (10.11a)
Oz‘. Uz};
orrelation coefficients can alsd be calculated using directional cosines o,
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aircctly obtained during the computation of reliability index using Level 2
method. The correlation coeflicient between Z; and Zx is given by
n
MG 2y = .I:‘-JI Xk
W
"“he above cquation and Eq. (10.112) are same. This can be casily verified
for linear Egs. (10.8) and (10.9) for Zi and Zx. For nonlincar equations,
directional cosines evaluated at the design point, e, on the failure surface
are used. Thal is, in general,
n

Pz’., Tk = )4; a.‘f,o.;, (lO”b)
=

The probability of survival of the system is given by Eq. (10.1). That is,
Pss = P[A“ o 0]

o 0
= . J-( T2t 22, . oo, zu(zy, 22, . oL, za) dzy, dzzy . L L, dza
0 )
n=_old
where fz,, z,, ..., z, (21, 22, . . ., za) is the n-dimensional joint probabi-

lity density function of Zy, Z2, . . ., Zu. The joint probabilities are gene-
rally not known and the computation of n-fold integration is very difficult,
and may not be possible. Therefore, the above equation is simplified by
certain assumptions to derive bounds on the probabiiity of failure. It is
generally not possible to compute the unique value of the reliability of the
system and therefore, the reliability of thie system is specified by its bounds.

10.4.2 Simple Bounds

Cornell (10.3) has established simple bounds on the reliability of structural
systems subjected to n failure modes and m load conditions. The assump-
tion that all farlure modes, i.e. Z;, are perfectly correlated yields the upper
bound as

pss =1 —max P(Z; < 0) = 1 — max pr

The assumption of all failure modes to be slatistically independent yields
the lower bound as

pss = g (1 — pri)
Heuce, the reliability of the system is bounded by
g (1= pr) < pas < 1 — max pr (10.12)
If pri € 1, the bounds on pss become
I — ié Pri S ps< | — m'_ax Pri (10.13)
‘The bounds on the probability of failure of the system can be written as

n
max pri < prs < _Zl Pri (10.14)
] i=
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;'h" the system is subjected to several m load conditions, the bounds on pas
Mnd pr are given by (10.3)

n n

1 — 2 X prj < ps < 1 — max prij (10.15)
il jeel I
\
o : nm n m
J : max pri; < ps S 2 2 pri (10.16)
W I} — I=1 j=1

' ‘_ where pey is the probability of failure of the frame under mode i and load

~ The assumption of perfect correlation or, no correlation between failure
~ modes, is not proper. The modes are usually positively correlated. The
- correlation coefficients between modes can be calculated using Eqs. (10.10)
- and (10.11a). Ditlevsen (10.4) has developed narrow bounds for the structural
~ pystem failure probability through indicator function algebra. The lower
~ hound on prs is

pes =2 P(Z) < 0) + 122 max {P(Z; < 0)
i—1
- ,2' Pl(Zi < 0) N (Z; < 0)], 0} (10.17)
~und the upper bound is

s 2 PZ<0) -~ 225 , max Pl(Z; < 0) N (Z; < 0)]

(10.18)
Let E=(Zi<0)
Ei=(Z; <0)
; Then the above Eqgs. (10.17) and (10.18) become
n -1
pes = pr - iZ‘Z max [pg — _Z" P(E: N E)), 0] (10.19)
» = _
and
n n v
' < 2 pn— 2 maxP(E;NE) (10.20)
I=1 1=2, J<i

The joint probability, P(E;NEj), may be approximated as follows. For
lower bound (Eq. 10.19)

P(E/NE;) = P(A) + P(B) (10.21)
upper bound (Eq. 10.20)
P(EiN Ej) = max [P(A), P(B)] (10.22)
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| = pil |
where PiA) = (- B) <1)[ »'3'__? ,,_f‘ ] (10.23)
\ =y
: ﬂl l"rif";
P(B) = D(—B;) Pl — . (1 (10.24)
. VA l';‘.
where B; = L& B; == &
"'/‘ G]J

ExanmeLe [0.7  For the same portal ftame in Example 10.6, compute the
simple and narrow bounds on the probability of lailure of the frame.
Simple bounds:

For the possible four failure modes, the probability of failure of each mode
has already becn calculated and given in Table 10.1. The bounds on the
probability of failure of the system, using Eq. (10.14), are

4
Upper bound == 2 pri
i=1

N

= (9.35%107%) 4 (.17 X 1073} 4- (1.85% 1079)
4 (1.85%107%)

= [3.37x 1074

Lower bound = n}ax Pri = Pty

= 9.35% 10
Hence, the bounds on pys are
9.35%107% < prs < 13.37X 1074
Narrow bounds:

The faiiure modes are first renumbered, or ordered, in the descending order
of pyi values. Hence, from Table 10.1,

Mode | : Z1 = M2 + 2Ms + Me — 3W = 3.106
Mode 2 : Z2 = Mi -+ 2M4 + Ms — 3W B = 3.561
Mode 3: Zs = M2 4 2Ms + Ms — 3W B = 3.56i
Moded: Zs = M3 -+ 2Ms + Ms — 3IW B = 3.997

The correlations among failure modes (that is safety margins Z; and Z;) are
next computed.

Using Eq. (10.10),

Cov(Zi, Za) = (2)(Qonis + ()(1)onts + (—=3)(—3)oly

= 4x97.952 4 73.52 + 9x 69.92

= 87753
Using Eq. (10.11a),
87753
0z, 07,
__87753
305.2x 312

le; Zy =

= 0.922
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~ thie correlation between Zi and Z3 is

C(D(Dass + (2)(2)osds -+ (—3)(-—3)oiv
—

Zi. Z
07. (Y‘(3

_ 73.52 4 4x97.95° -+ 9% 69.92

= ¥
305.2% 312 0.922

v _'fSimilurI,v the correlation between other pairs of Z;Z; can be computed. They
i

Pz, 7, = 0.847 Pz, zy = 0.846

Pzay 7y = 0.925 Pz 74 = 0.925

'1‘ I'or the calculation of bounds, bounds on joint probabilities, P(EE;), are
~  to be computed first,

Bounds on P(E\Es):
Using Eq. (10.23),

o= otpo o]t

= B(—3.106) (p[# 3.561 — 0.9223¢3.106 ]

(== o
= P(—3.106) P( -1.802)
= 0.334% 104

P(B) = B—fi én,[.f S

T piyn

= B(—3.561) rp[_ 3.106 — 0.922 3.56]]

(1 --0.922%)172
= @(—3.561) $(0.458)
= 1.25x 104
“Lower bound on P(E1 Ez) = P(4) + P(B)
= (0.334 4 1.25)x 10
= 1.584 X104
Upper bound on P(EiEz) = max [P(4); P(B)]
= 1.25X% 104
Since  pr2=pir and B3 = B,
P(E1E3) = P(E\E2)
Bounds on P(EEs):

-
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e _3.997 — 0.847%3.106
P(4) = $(—3.106) cp[ s ]

= O(—3.106) P(—2.569) = 0.048 x 104

L 3,106 — 0.847 % 3.997)
P(B) = #(—3.997) ¢,[ (1 — 0847212 ]

= ®(—3.997) &(0.5258)
= 0.222%x 10~
P(A4) + P(B) = 0.27 X 1074
max [P(4); P(B)] = 0.222 % 104
Joint probability: P(E2E;3)

P(A) = O(~-3 56])¢[_3.56l — 0.846 ><3.56l]

(1 — 0.8462)!12
= P(--3.561) D(—1.029) = 0.281 > 104
P(B) == P(A) Vo Bi= B

P(4) + P(B) = 0.562Xx 104
max [P(4); P(B)] = 0.281x 104
Joint probability: P(E2Es)

. _3.997 — 0925 3,561
P(4) = ®(—3.561) <p[ Rl ]

= P(—3.561) B(—1.85) = 0.059 % 10~4
P(B) = 9(—3.997) 9(0.358) = 0.203x 10~
P(A) + P(B) = 0.262x 10~
max [P(A4); P(B)] = 0.203 % 104
Joint probability: P(E3 Es)

B _ 3997 — 0.925%3.561
P(4) = &(—3.561) <p[ B,

= 0.059 x 10—*
P(B) = 0.203 X 104
P(4) + P(B) = 0.262% 104

max [P(4); P(B)] = 0.203 x 10~*

Bounds on the probability of failure of the system are calculated using

Egs. (10.19) and (10.20).
Lower bound:

n —1
pss = po + :Ez max [{pn — /21 P(E.Ep)}; 0]

]
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2 po -+ max [{pr2 — P(E2E1)}; 0]
+ max [{prs — P(E3E1) — P(E3E2)}; 01
+ max [{pu — P(E4E1) — P(EsE2) — P(E4E3)}; 0]
= {9.35 + max [(1.85 — 1.584), 0]
+ max [(1.85 — 1.584 — 0.562); 0}
+ max [(0.317 — 0.27 — 0.262 — 0.262); 0} X 10~

> 9.616x 104

~ Upper bound:
m< Z py— T max[P(EE)]
i=1 =2, J<1I

< 33‘ pri — max[P(E2E;)] — max[P(E3Ey); P(E3E2)]

I
— max[P(EsE\); P(EsEz); P(E4E5)]
< [(9.35 + 1.85 + 1.85 + 0.317) — 1.25 — max (1.25; 0.281)
— max (0.22; 0.203; 0.203)] x 104
< 10.648 X 104

9.616 X107 < pes < 10.648 x 1074

‘_]'f“'leuan 10.8 An under-reinforced concrete beam of breadth (5) 240 mm
." und effective depth (d) 480 mm is reinforced with steel bars of area (A4s)
I3 1400 mm?. The span of the beam (/) is 6 m. The beam is subjected to a

. total uniformly distributed load Q over the entire span and a torsional
moment T at a distance of 1 m from one end. It is given:

Variable f; ¢ p = 320 N/mm?; ¢ = 32 N/mm?
(Fe 250)
Variable fou : - ¢ = 22.67 N/mm?; o = 5.44 N/mm?2
(Mix M 15)
Variable Q : u =16 N/mm; o = 5 N/mm
aniablc T g =5%106 N mm; o = 1.5% 106 N mm

The beam is reinforced with shear stirrups of area, Ay = 56.57 mm?,
8pacing of stirrups, s = 300 mm. Three limit states of collapse (i) in flexure,
(ii) in shear and (iii) in combined bending and shear are considered. Deter-
mine the probability of failure of the beam considering all the three failure
modes. Assume all variables are normaHy distributed.

Solution Collapse in flexure The ultimate resisting moment of the beam is

. 077 fys
R_f,A,d[l B ]
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The failure surface equation is
2
Z=R-—-0Q T 0

Substituting the given data, and designating
Xi=fu; Xa=fy; =0
the failure surface equation becomes
Z == 672000 X1 X2 — 6288 X3 — 45105 X1X3 = 0
Using Level 2 method (Sec. 8.3.1), the problem is solved and the following

results are obtained.
Bi= 3,305 pr= 47.42x 1074

ay = --0.9878; 3 = 0.0325; &} == 0.152

Collapse in shear The shear strength of the beam is given by
S
. ) —
R -—“_/:V/IS\ *(\l— ; Q6("I \/08 ,/;?u [\/ I l’f)s_f ‘_I]

_0g ks
C0.89 py
100 4s

P b

0 is an empirical coefficient depending on few and g In this problem, 6 1s
assumed deterministic constant. For fo = 15, 4, = 1400, b = 240, d =
480, 6 =: 1.439. The failure surface is given by

where 4 1

Z = R - Qé == ()

Using the given data, the above equation becomes,
7 =22222%"" 1 905 X2 - 3000 Q == 0
Using Level 2 method explained in Ch. &, following resulls are obtained.
B == 3.814 pr = 6847 10 4
m o= —0.8753; o3 = —0.0917; a3 = 0.4749

Collupse in combined shear and torsion For checking under combined shear

and torsion, 1S: 456-1978 gives the foilowing equation to calculate the
equivalent shear (Vo).

. Vil

Ve=V -+ 1.6 b

where ¥ is the shear at the section due to load Q. At the section (1 m from
end) where torsional moment is acting,

Ve = Q(—j— " 1000) & 14 ﬂ%

= 2000 Q + 0.00667 T
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LUsing the resistance part in the failure surface equation derived in the pre-
Vious failure case, the failure surface equation under combined shear and
“lorsion becomes

Z = 22222 X1 + 90.5 X2 — 2000 X3 — 0.00667 X,

~ this failure case.

| B = 3.262; pe = 55.3x 1074
a = —0.8223; @ = —0.1142
a3 = 0.3942; i = 0.3942

553%107* < pn < (47.42 + 6.847 + 553)x 10~4
5.53%107? < prs < 10.96 1072

o Mode L: Z1 = 22222 X0° + 90.5 X2 — 2000 XJ - 0.00667 X4

\ Correfation between mode 1 and mode 2: Using Eq. (10.11b),

4

Pz, 2y = El ot”xn

= (—0.8223)(—0.9878) -+ (—0.1142)(0.0325)
- (0.3942)(0.152)
. \ = 0.8685
~ Joint probability : P(Ei E2)
Using Eqs. (10.23) and (10.24),

V1 — 0.8685
== 9.346 % 10~
L T— [_ 3.262 — 0.8685 ~ 3.305]
VT — 0.86852
= 10.184 210~

P(A4) +- P(B) == 19.53>107¢
max[P(A4); P(B)] = 10.184> 10~*
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Correlation between mode 2 and mode 3: Using Eq. (10.11b),
Pz, z; = (—0.9878X—0.8753) + (0.0325)(—0.09168)
+ (0.152)(Q.4749)
= 0.9338

Joint probability: P(E2 E3)
Using Egs. (10.23) and (10.24)

v/1 — 093382
= 1.004 x 10~
3.305 — 0.9338x% 3.814
P(B) = ®(—3.814 d>[—- ]
() ( ) V1 — 0.93382
= 5.219%x10~4

P(A) + P(B) = 6.223x 1074
max [P(A); P(B)] = 5.219x 1074
Correlation between modes 3 and 1:
Pzy. 7, = (—0.8753)(—0.8223) + (—0.09168)(—0.1142)

-+ (0.4749)(0.3942) + (0)(0.3942)
= 0.9174

For failure modes 3 and 1, we have

6D —
P(A) = D(—3.814) P [_3.—& 0.9174 3,314]

V1= 091742
= 4,958 % 1074

3.814 — 0.9174 3,262]

P(B) = ®(—3.262 ¢[-
(B) ( ) V1 — 091742

= 1.073 X104
P(A) -+ P(B) = 6.031x 104
max[ P(4); P(B)] = 4.958x 1074
Lower bound on pr, is (Eq. 10.19)
pe = 55.3x1074 + max [{pr2 — P(EiE2)}; 0]
+ max[{pr3 — P(E:E1) — P(E3E»)}; 0]
> 55.3x 1074 + max [(47.42 — 19.53)x 1074 0]
-+ max[(6.847 —~ 6.031 — 6.223) % 1074; 0]
> (55.3 + 27.89 + 0)x 1074 = §3.19x 1074
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Uppcr bound on pn is [Eq. (10.20)]

pr< 2.‘ pri — max [P(E:E)]

3 — max [P(E>Ey); P(E3Ez))

< [(55.3 + 47.42 4 6.847)
—10.184 — max (4.958; 5.219)] X 104

< 94.164 x 1074

| -The problem of the reliability analysis of a frame structure becomes formid-
- Mble if one uses sophisticated probability models for the basic random
" variables and safety margins, as well as nonlinear analysis of structures. In
~ order to obtain tractable analytical models, the methodology of the reliabi-
ity analysis of plane frame structures is developed using the stiffness matrix
~ method, the linear elastic and piecewise linear elastic-plastic (PWLEP)
~ Mtructural analysis, and the first-order second-moment method of reliability.
~ Along with the usual assumptions in the conventional plastic analysis of
struictures, it is also assumed that (i) applied loads are concentrated forces,
* (il) the PWLEP analysis is based on the mean values of basic random
variables, (iii) plastic moment capacities of sections, M, and applied loads,
- (), are the only random variables, and (iv) plastic moment capacities of
sections are statistically independent of applied loads.

10.5.1 Failure Models

‘At any stage of the structural analysis, the failure of a section (member end)
Is assumed to take place when the plastic moment capacity of the section is
reached. This failure is called the formation of ‘the “plastic hinge at the
section.

. In a redundant structure, a collapse mode forms only when a sufficient
number of hinges have developed. The failure mode of a structure is defined
as the formation of a collapse mechanism. When the PWLEP analysis is
carried out by moving from one hinge to another, the criterion of determin-
ing the formation of a mechanism is given by the singularity of the stiffness
matrix, (K], i.e. |[K]| =0. | [K]|is read as the determinant of matrix [K].
The finally formed hinge converts the structure into a collapse mechanism
and the failure model of the finally hinged section corresponds to the
collapse mechanism.

10.5.2 Safety Margin Equation -
The results of PWLEP analysis enable one to write the safety margin equa-
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tions of a potential hinge section (the section selected for forming a hinge)
at any stage of a failure path interms of M; and Q;. The safety margin is
the difference between the plastic moment capacity of the section and the
bending moment at the section, just before formingthe hinge due to applied
loads and plastic moment capacity of earlier sections. For example, if the
frame shown in Fig. 10.14 is considered and, if the sequence of hinges
formed in a failure path are at member ends 2, and 4,. and at 6 (the poten-
tial hinge), the hinge is going to be formed, the safety margin, Zs, of the
section 6 at this stage can be written as

Ze = aexM2 + ucaMs - aseMo — '21 beiQj (10.25)
e

G2

1 4 -
24 ; 7 <+ 4 I
Fy

o o
}._ Jm —-}-——73m «w}

EJ I Represents member number

i
-|>— I Represents member end number

FI1G. 10.14 One-bay one storey frame—Example 16 9

where A is the plastic moment capacity of section 7, aei is the moment at
section 6 due to unit Mi, bg; is the bending moment at section 6 due to unit
load Qj, and n is the number of loads. It is to be noted that aes is unity.
P(Zs << 0) gives the probability of failure of the section 6, given that
sections 2 and 4 have already failed. As the analysis progresses, at every
stage of the progressive failure tree the safety margin equation for the hinge
to be formed can be written. As PWLEP analysis is carried out by moving
froin one hinge to another, when the stiffness matrix of the structure
becomes singular, the finally formed hinge converts the structure into a
mechanism and the failure model of the finally hinged section corresponds
to the collapse mechanism. The safety margin of the finally formed hinge
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lquauon coincides \\uh the salcl) margin equation obtamcd lrom the con-

Aentional mechanism method of plastic analysis. When a mechanism is

&£ furlmd P(Zi < 0) gives the probability of occurrence of the Tfailure

. mode i,

- The salety margin, in general, for a potential hinge section i or, the safety
Mrgin of a mechanism having the last hinge at section i/, is expressed as

m

Zi=2 agM; — & buQk (10.26)
J=1 k=1

- torresponding coetlicient aij = 0. For i = j, aiy = 1.
' ll' random variables M and Q are grouped in X, Eq. (10.26) can be

= [A]{X} (10.27)

~The mean value and standard deviation of Z; are
= [Al{px} (10.28)
o = [A)Cx]LAY (10.29)

iy , - Where [A] is a row matrix of coefficients ay and bix for ali variables X;, [4)
is the trauspose of matrix [A4], {#x}is a column matrix of the means of all
~ tandom variable Xj, and [Cx] is a covariance matrix of all random
~ variables Xj. The reliability index B; for the safety margin Z; is given by

Kzi
B =2
As Zi is a linear function of the number of variables Xj, the distribution of
Z: tends to normal, [based on the central limit theorem (10.5)] irrespective
of the individual distributions of the variables. Hence, assuming normal
distribution for Z;, the probability of a structure under a collapse mechan-
Ism i can be computed.
The methodology of the reliability analysis of ductile structural systems
involves the following steps:

(i) Data

(a) structural data
(b) probability description of the random variables

}b

Xj in terms of p Oy; and py; yy
(i) Linear elastic analysis
(1) determination of coefficients aij, bix
(iii) For any potential hinge location
(a) writing the safety margin Z; from Eq. (10.27)
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(b) computation of pzi und oz using Egs. (10.28) and (10.29)
(¢) computation of £

(iv) Selection of the next hinee location

(v) Formation of the plastic hinge at the sclected member end

(vi) Modilication of the member stifiness matrix having plastic hinges at
the ends, as shown in Figs. 10.15, 10.16 and 10.17

(vii) Application of a plastic moment at the hinge in the form of equi-
valent forces, as shown in Figs. 10.15, 10.16 and 10.17.

(viii) Determination of the structure stitlness matrix [K]

(ix) Lincar elastic-plastic anaivsis and determination of coefficients a;.

(x) Repetition of steps (iii) to (ix) until the formation of a mechanism.

The above procedure is illustrated with an example.

My

—0'5My
1) (2]
|
5w | o T
) M
(=) -(—
- | y
fa) Member Loading Induced by My
g o A G,
i
JEI JEI JEI
2 G
0 o o o
i B s
JEL 3El
T !
3E!
-

() Member Stiffness Matrix

FIG. 10.16 Effect of hinge: left ev-d of member hinged
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(a} Member Loading Induced by M3
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JEI o
|

(o]

(b) Member Stiffness Matrix
FIG. 10.16 Effect of hinge : right end of member hinged

ExaMPLE 10.9 A simple oane-storey, onc-bay portul frame is subjecied to
vertical and horizontal loads, is shown in Fig. 10.14. The data [or the
problem is given in Table 10.2.

For this frame the degree of redundancy is three, and the maximum num-
-ber of hinges required for a mechanism is four. The stepwise procedure of
generating a mechanism is illustrated below. '

(i) The linear elastic analysis of the structure is performed to compute the
bending moments at the member ends, expressed in terms of the coefficients
ai;jand bik. The structure at this stage is considered intact and this stage is
called the first stage. The number of critical sections (potential hinge sec-
tions), m, is equal to eight. They are marked in Fig. 10.14. The number of
loads, n, is equal to three. =

(ii) At this stage, for all critical sections the safety margin equations in
terms of aij, M), bix and Qir are generated and reliability indices, B, are
comnuted.



298

Mo ’ M7
T i (g ==
£l "‘l
(M1I+M2)T 1 (M,jl_f_M_L)
(5 —_ - -

_EI_A o o . E'.‘i‘. o o W
o o o o 0
0 o o )
SYM Elﬁ o o
o o
o
L —

{(b) Member Stiftness Matrix
FIG. 10.17 Effect of hinge : both ends of member hinged

TABLE 10.2 Data for frame in Fig. 10.14—Example 10.9

Section or EA El

variable (kN) (kN m?) # .

Section

1,2,3,4 0.367 x 107 0.92x 10!

5,6,7,8 0.965 x 107 0.406x 104

Variable

M,, M,, My, M, 121.57 kN m 9.969 kN m

Mg, My 135.04 12.424

M, M, 344.65 32.74

X 105.0 kN 10.5 kN
1Q, 36.0 14.4

Qs 24 1.032

Note: All variables are statistically independent.
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Wihien the external acting moment, S, at the section due to loads is positive,

e safety margin is written as

Salety margin = resistance — action
=R--8S=R--(+9)

[ S is negative,
Safety margin = R -|- S = R +- (—5)

) "
4 ,?}”OI example, if the potential hinge section 7 is considered, the safety margin
o1 section 7 at this stage 1, using Eq. (10.26), is

8 3
Z7 = X aiM; — X buQx
j=1 k=1

~ From the clastic analysis of the frame,
bn = — 1.24 b1y = — 1.24 hnn =0

~ The negative sign shows that the direction of the bending moment is clock-
wise. The sign conventions for forces are shown in Fig. 10.14. Since this is
" stage I, there is no hinge at any member end j. All aj; coefficients are zero
except @77 = 1. The capacity of the section is M7. The action is —- (1.24 O
- 1.24 Q2). Hence, the safety margin equation for section 7 is

Z;=1.0M7— 124 Q1 — 1.24 0>

o

H
f
'

fhc mean value and standard deviation of Z7 are
nz1 = 344.65 — 1.24x 105 — 1.24< 36
== 169.81 kN m
= [(32.74)* + (1.24 X 10.5)% -+ (1.24x 14.4)}]'”2

0z7
= 39.4 kN m
- 16981

Br = 304 = 431

Similarly, for all other potential hinge sections, safety margin equations
“can be written and B values found out at this stage.

‘ (iii) Let us now assume that the first hinge is formed at section 7. Now
“the stiffness matrix of the member 4 having plastic hinge at the left end is
modified as given in Fig. 10.15.

(iv) A clockwise moment of 344.65 kN m, (i.e. negative moment), equal
to the plastic moment capacity of section 7 is applied at the left end.
Corresponding to this moment, a self-equilibriating force system, shown in
Fig. 10.15, is considered as an additional load case for further analysis.

(v) The structure stiffness matrix is assembled and the determinant | [K] |
is computed and found to be greater than zero.

(vi) The linear elastic-plastic analysis at this stage 2 is carried out to
determine ai; and bix for all the potential hinge sections. Knowing ay and
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bit, safety margin equations lor all potential hinge sections can be written.
For example, if section 4 is considered,

ap = - 1.0 byt = 1.5 by = 1.5
bay = 1.2 ass = 1.0
The capacity of the scction is M4, ass = 1.0. Hence, the safety margin

equation for section 4, given the hinge at section 7 has formed, is

Ze=10Ms— (-1OM7 + 150 + 150+ 1203
=My + M7r— 1501 —150:— 1.2 Qs
Using the given data in Table 10.2,

prze = 121.57 + 344.65 — 1.5N 105 — 1.5X36 — 1.2X2.4
== 251.84
ozs = [(9.969)* + (32.74)* + (1.5X10.5)% + (1.5% 14.4)?
+ (1.2% 1.032)2}1 /2
=43.44

251.84
oA o

Ba=
Similarly, for all potential hinge sections (excluding section 7 where the
hinge is already formed) at this stage, the safety margin equations can be
written and B8 found out given that the hinge at section 7 is already formed.

(vii) Now another hinge (second hinge) location, say section 4, is selected
and the hinge is formed at that section, and the whole process is repeated
from steps (iii) to (v). Now the stiffness matrix of the member 2 having
plastic hinge at the right hand side member end 4 is modified as given in
Fig. 10.16. At section 4 an anti-clockwise moment of 121.57 kN m, equal to
the plastic moment capacity of section 4, is applied. Corresponding to this
moment, a self-equilibriating force system, shown in Fig. 10.16, is consider-
ed as an additional load case for further analysis.

The stiffness matrix of the structure is assembled and | {K] | is found to
be greater than zero. The linear elastic—plastic analysis is carried out at this
stage 3 to determine the coefficients ai;. If section 2 is considered, from
analysis

a7 = 2.0 as = 1.0
by = —3 bzz = - 30 b23 >~ 0
an = |

Hence, the safety margin equation for section 2, given hinges at sections 7
and 4 have formed, is

Z2= 1.0 M2 + 2 M1 + My — 301 — 30 (10.30)
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pz2 == 509.4 oz2 = 85.7
B 1 B2 = 5.94

section 2 is selected for the next hinge location, a hinge is formed at the
jeetion. A clockwise moment of 121.57 kN m, equal to the moment capa-
:T}O‘ly of section 2 is applied at the member end 2. The stiffness matrix of
" member | with a hinge at the right member end 2 is modified as shown in
© L. 10.15. The stiffness matrix of the structure is now assembled and | (K]

|5 found to be < zero. This shows that when hinges are formed at sections
’ 7, 4 and 2, a mechanism is formed. This is a beam mechanism. Using the
. mechanism method of plastic analysis (10.2), one can directly write the
~ pfety margin equation for this failure mode:

Z=M +2M1 - Mi— Q13— 0273

J1 can be observed that this cquation, i.c. the safety margin equation [or the
" nechanism, coincides with the safety margin equation (Eq. 10.30) for the
" potential hinge section 2, written just before the hinge is formed there.
It has been shown in the example how a mechanism can be generated,
~und how the safety margin equations are written at every stage of analysis
~ und Bi values for potential hinge sections computed, and how the failure
" surface equation or the failure model of the finally hinged section corres-
ponds to the collapse mechanism. Bi of the last hinged section becomes B
of the mechanism.

10.6 GENERATION OF DOMINANT MECHANISMS

In the last example, only one mechanism was generated out of 15 possible
failure mechanisms. A plane frame structure may fail in different collapse
mechanisms, called failure modes. The reliability analysis of frames mainly
involves identification, modelling and synthesis of all possible failure modes
{0 estimate the system reliability. In the case of a frame structure of a high
degree of indeterminancy, the number of possible collapse mechanisms is
quite large. To illustrate, for a one-bay two-storey rectangular frame with
~ fixed bases, the number of elementary mechanisms, N,, is equal to 8. The
number of possible collapse mechanisms is given by 2V — 1 = 255, Due
to uncertainties of load and resistance variables, it is likely that the structure
may fail under any of the possible collapse mechanisms. Hence, the relia-
bility of frames of multiple components and with multiple failure modes is
considered from the system point of view. Out of the innumerable possible
collapse mechanisms, generally only a few mechanisms, having compara-
tively large failure probabilities, contribute significantly to the system
failure probability, pr. These collapse mechanisms are called stochastically
dominant failure modes. The identification and combination of these domi-
nant collapse mechanisms are necessary in the reliability analysis of a
frame structure to estimate its system reliability. It is practically difficult
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and rather impossible to identitfy these dominant failure modes. There is
no method which assures, and mathematically proves, that all stochastically
dominant modes are generated. However, (he methods, namely (i) exhaus-
tive enumeration, (if) simulation, and (iii) heuristic search, are generally
used for this purpose. The ecarlier studies (10.6, 10.7) concentrated on the
reliability analysis of known failure modes. The foremost essential step ol
the identification of dominant failure modes in a frame structure has been
the subject of research during the past eight years, Ma and Ang (10.8) have
suggested a method of determining the most probable modes by using a
mathematical programming technique, based on independent failure modes,
obtained deterministically by Watwood'’s (10.9) method. Murotsu (10.10,
10.11) has proposed a complex method, based on the joint probabilities of
hinged sections, for the automatic generation of stochastically dominant
failure modes. Moses (10.12) has proposed a strategy, using the incremental
load approach, to identify and enumerate the significant failure modes of
trusses. Tang and Melchers (10.13) have proposed a truncated enumeration
method to scarch for stochastically dorinant failure modes. Ranganathan
and Deshpande (10.14) have proposed a heuristic search technique to
generate dominant modes in frames. This is explained below.

10.6.1 Heuristic Technique (10.14)

The strategy developed for a sequential search of plastic hinge locations
leading to dominant mechanisms is explained below.

Search for Plastic Hinge Locations

It is quite logical to sclect the potential hinge section with the lowest
reliability index, for the plastic hinge at any stage of the analysis, to get
stochastically dominant mechanisms. However, it has been observed that
this logic fails in certain situations. Dominant failure paths ol equal likeli-
hood of occurrence may intermix, resulting in a nondominant mechanism,
Therefore, the following strategy for the selection of plastic hinge locations
is suggested.

Selection of First Hinge and First Dominant Mechanism After performing
the intact analysis and computing B for all potential hinge sections, the
potential hinge section having the lowest value of B is selected as the
location for the first plastic hinge. This B is called the first damage
reliability index and denoted as Bo. The arithmetic mean of the reliability
indices of all potential hinge sections at the initial stage is termed as the
average reliability index Bav. The reliability of a mechanism is always higher
than the reliability of its hinges at each stage, and the reliability index of a
mechanism corresponds to 8 for the member end hinged at the stage of
mechanism. Hence, after selecting the first hinge, it is logical to select the
subsequent plastic hinge locations such that the reliability index of the sec-
tion is the lowest at that stage and is also greater than Bo. Following the
above strategy, hinges are selected and the first probabilistically dominant
mechanism is generated.
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Branching Strategy After generating the first dominant mechanism, it is
obvious that if this mechanism is branched at all stages with alternative
potential hinge sections in succession, it may be possible to identify all the
possible mechanisms. This procedure is computationally prohibitive as there
- can be a very large number of reanalyses to perform. Moreover, during this
process the same mechanisms may be repeatedly generated and ingignificant
. mechanisms identified, which are of no interest from the viewpoint of the
- system faijlure probability. In the light of this, primarily, dominant mecha-
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nisms are branched only at the mechanism stage (primary branching) to
develop the first failure tree and secondly, the first mechanism is branched
at the initial stage with alternative potential hinge sections to develop other
failure trees with the help of primary branching. This is secondary
branching (Fig. 10.18).

(i) Primary branching at the mechanism stage: A mechanism is branched
at its final stage with the potential hinge sections having B greater than Bo
in succession. Two cases arise for this branching (Fig. 10.18).

(a) Partial collapse mode stage
Partial collapse mode is the mechanism having a number of hinges less than
(r -+ 1), where r is the order of indeterminacy of the structure. For this
case, the branching may result in a mechanism oi the extension of the failure
path (Fig. 10.18),

(b) Full collapse mode stage
Full collapse mode is the one having (r - 1) hinges. The branching at this
stage results in a mechanism and this is the terminating stage (Fig. 10.18).

(ii) Secondary branching at the initial stage: Secondary branching is
nothing but an alternative selection of the first hinge. A mechanism is
independent of the order of the hinges involved in it. Therefore, while
making an alternative choice of the first hinge, all the hinges of the first
mechanism except the last are discarded. Out of the remaining possible
locations, it is again logical that there is no propriety to start with the
hinges having B of a higher order. Hence, the first dominant mechanism is
branched at the first stage by selecting the potential hinge sections having
B < Bav in succession. In the context of this heuristic technique based on
the logical strategies to identify dominant mechanisms, the various termino-
logy used is indicated in Fig. 10,18.

System Reliabiliry ~ After generating all the dominant mechanisms and cor-
responding Z;, the probability of failure of the frame under euch mode, py,
is calculated. The correlation coefficients between pairs of the generated
mechanisms are computed. The failure modes are ordered as per the decreas-
ing values of pysi, and simple bounds and Ditlevsen’s narrow bounds (10.4)
are established for the system failure probability. The method is illustrated
with the following examples:

ExampLE 10.10 The same frame, considered in Example 10.9 and shown in
Fig. 10.14, is taken here to illustrate the generation of dominant mechani-
sms. The data required for the reliability analysis of the frame is given in
Table 10.2. For this frame, the degree of redundancy is 3, the maximum
number of hinges required for a mechanism is 4, and the number of ele-
mentary mechanisms is 4, whereas the number of possible mechanisms is 15,
The stepwise procedure of generating dominant mechanisms, and reliability
analysis, is explained below:

(i) The linear elastic analysis of the structure is performed to compute the
bending moments at the member ends, expressed in terms of the coefficients
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i), The signs of the bending moments are noted. The structure at this stage
I8 oonsidered as intact and this stage is called the first stage.
(i) At this stage, for all potential hinge sections, the safety margin
Wguations in terms of aij, My, bik, and Q« are generated and reliability indices
| ure computed (explained in Example 10.9) as given in Table 10.3. The
potential hinge sections are ordered with increasing reliability index. It is
found that Bo = 4.31 and B = 7.28.
~ (iii) From Table 10.3, it is noted that the sections 6 and 7 have the same
Mo, Therefore, comparing the reliability indices at both ends of the members
" Jond 4 (sections 5 and 8), section 7 with the lowest reliability index of 4.31
1 selected as the first hinge.
* (iv) The first plastic hinge is formed at section 7. The safety margin of
" the structure at this stage, with the hinge at section 7, is given in Table 10.3.
~ (v) The stiffness matrix of member 4 having a plastic hinge at the leftend

I8 modified as given in Fig. 10.15,

~ (vi) The moment of 344.65 kN m, equal to the plastic moment capacity
fof section 7 is applied at the member end, in the direction of the bending
moment developed at the member end in the elastic analysis. Correspond-
lnx to this moment, a self-equilibriated force system, as shown in Fig. 10.15,
~ |y considered as an additional load case for further analysis.
(vii) The structure stiffness matrix [K] is assembled and the determinant
- | [K]| is computed and found to be greater than zero.

~ (viii) The linear elastic-plastic analysis at this stage is carried out to
~ determine a;; and bi for the potential hinge sections.
(ix) Steps (ii) to (viii) are repeated as explained below. At the second
" Mage, the reliability indices for potential hinge sections are computed, which
~Are given in Table 10.3. The second plastic hinge, having the lowest reliabi-
~ lity index of 5.79 and greater than By, is formed at section 4, as shown in
~ Fig. 10.18. Corresponding to the first and second plastic hinges at sections
- 7 and 4 respectively, the modified member stiffness matrices for members 4
~ and 2, and additional load cases equivalent to plastic moment capacities of
. sections 7 and 4, as shown in Figs. 10.15 and 10.16, are considered for
further analysis. The safety margin of the structure having the second hinge
at section 4 is given in Table 10.3. The determinant of the structure stiffness
matrix is found to be greater than zero.

At the third stage, according to the selection strategy explained earlier,
the plastic hinge 1s formed at section 2, as shown in Fig, 10.18. As|[K]|
£ 0, the first dominant mechanism is generated.

(x) This mechanism consists of three hinges at 7, 4, and 2. It is therefore
a partial collapse mechanism. The safety margin equation of this mechanism
is same as the safety margin equation of the hinge at section 2 (Table 10.3).
This mechanism is the most dominant mechanism, having a reliability index
5.94 and a probability of failure 0.145x 1078,

(xi) As per the branching strategy, this mechanism is branched as shown
in Fig. 10.18. To do this, the last hinge of this mechanism at section 2 is
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TABLE 10.3 Details of development of first fuilure tree in Fig J0.14—Example 10.10

90¢

Stages of Reliability index of sections Selected
analysis " - 3 2 5 o P 3 Safety margin equation ——Hinge
section B

First 10.3 7.87 9.67 7.35 7.43 4.31 4.31 7.01 Z, = 1.0M, — 1.24Q, — 1.240, 7 4.31

Second 8.17 5.92 7.90 5.79 6.13 0.0 0.0 601 Zy= 1.0M, + 1.0M, — 1.50, 4 5.79
—1.5Q0, — 1.200,

Third 11.9 5.94 6.71 0.0 6.07 0.0 0.0 00 Z., = 1.0M, 4+ 1.0M,+ 2.0M; 2 5.94

(Mecha- - —3.00, — 3.00.

nism 1)

Third 11.9 5.94 6.71 0.0 6.07 0.0 0.0 0.0 Zs = 1.0M  + 1.0Mg 4 2.0M, 5 6.07

{Mecha- —3.00, — 3.00.

nism 2)

Third 11.9 5.94 6.71 0.0 6.07 0.0 0.0 0.0 Zs = 1.0M; + 1.0M, 5 1.5M, 3 6.71
—2.250, — 2.25Q, — 2.500,

Fourth 8.39 5.94 0.0 0.0 6.07 0.0 0.0 0.0 Zy = 1.0M; + 1.0M,; + 2.0M, 1 8.39

(Mecha- + 2.0M, — 3.0Q, — 3.00.

nism 3) —5.00,
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ppressed and replaced by sections, in succession, except 7, 4 and 2 and
pse having a reliability index at this stage greater than fo.

{xli) As shown in Fig. 10.18, the selection of section 5 with 8 as 6.07
ults in a dominant mechanism. The failure path continues with the selec-
b1 of the section 3 with B as 6.71, as shown in Fig. 10.18. Again, accord-
ig o the selection strategy, the next hinge, i.e. the fourth plastic hinge is
brmed at section 1 having B as 8.39. Since | [K] | < 0, the full collapse
hechanism is formed at this stage. The branching of this mechanism does
| result in any new mechanism. As this is the terminating stage, the
lopment of the first failure tree is completed.

. (xili) To initiate other failure trees, according to the strategy of the selec-
lon of alternative first hinges, only one alternative is possible in this case,
M shown in Table 10.4.

TABLE 10.4 Selection of first hinge for failure trees other than the
first in Fig. 10.14— Example 10.10

B at Possibility of
first selection of Remarks
stage first hinge
10.3 Not possible B> B,
7.87 Not possible 8> 8.,
9.67 Not possible B> By,
7,35 Not possible Involved in the
first mechanism
7.43 Not possible B> B
431 Not possible Equinodal to 7
4.3) Not possible Involved in the
first mechanism
7.01 Possible 2 < B,

(xiv) The first hinge of the second failure tree is selected at section 8. and
~ this failure tree is developed using the procedure similar to the first tree.
. The failure tree diagram for this example, including the dominant
mechanisms generated, is shown in Fig. 10.18.
(xv) The identified mechanisms are arranged in the increasing order of the
reliability index, as given in Table 10.5.
(xvi) The correlation coefficients of mechanisms, calculated using
Eqs. (10.10) and (10.11a), are presented in Table 10.6.
(xvii) Simple bounds are computed using Eq. (10.14), and narrow bounds
using Eqs. (10.19) and (10.20). They are also shown in Table 10.5.
From the rusults it can be seen that for this example, the first dominant
mechanism, having a probability of failure of 0.145>:1078, is the most
- gignificant mechanism. Therefore, the lower thund on the system collapse
~ probability of 0.159 x 1078, is close to the failure probability of the first
dominant mechanism.



TABLE 10.5 Details of generated dominant mechanisms and results of reliability analysis of frame in Fig. 10.14—Example 10.10

SI. Hinged
No. sections
1. 2,4,7

2. 4,5,7

3. 2,7,8

4. 5178

5. 1,3,4,7
6. 1,3,7,8

1.0M, + 1.0M, + 2.0M, — 3.00, — 3.00,
1.0M, + 1.0M; + 2.0M, — 3.00; — 3.00,
1.0M, + 2.0M; + 1.0M, — 3.00, — 3.00,
1.0M; + 2.0M, + 1.0M, — 3.00, — 3.00,
1.0M, + 1.0M, + 2.0M, + 2.0M; — 3.00, — 3.0Q, — 5.00,

Failure
& £ Pr tree
5.94 0.145x 10°* 1
6.07 0.642x 10 1
6.07 0.642x10~* 2
6.20 0.282x 10~ 2
8.39 0.239x 101 1
8.57 0.542x 1077 2

1.0M, + 1.0M, + 2.0M; + 2.0M; — 3.00; — 3.0Q0. — 5.00,

System failure probability

Simple bounds 0.145x10-® < pg, < 0.302x 10-®
Narrow bounds 0.159X107® < pg < 0.214x107°
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Correlations )

1 2 3 4 5 6
1.0 0.982 0.982 0.965 0.972 0.932
1.0 0.965 0.963 0.968 0.928
1.0 0,983 0.942 0.969
1.0 0.938 0.965
1.0 0.935

Symmetrical 1.0

XaMrLE 10.11  An unsymmetrical two-storey two-bay frame, carrying
‘i‘cal and horizontal loads, is shown in Fig. 10.19. The data for the

Q2
9 0, l N 1
3 6m
Qy G
; 15
o i S l ORI W o T &
2t +14 18 19 +22
J 6m
1 o 12 -+ ._21 L
ey T

- 30m —<—30m B o«»--l--: om—d
FIG. 10.19 Two-storey two-bay unsymmetrical frame—Example 10.11

example is given in Table 10.7. For this structure, the number of elementary
‘hechamsms is 10 and the number of possible mechanisms is 1023. The
~ ldentified dominant mechanisms for this example are indicated in Fig. 10.20.
The results of the identified dominant mechanisms and of the reliability
. unalysis are given in Table 10.8. The correlation coefficient matrix, repre-
lcnting the correlation betwcen pairs of mechanisms, is shown in Table 10.9,

- ' Most of the dommant mechanisms are identified in the: first tree only.
The same problem has been solved by Ma and Ang (10.8) and Murotsu
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TABLE 10.7 Daya for frame in Figure 10.19—Example 10.11

EA El

Scction/Variable (kN) (KN m?) ® 3 p
Section

1,2,3,4,2], 22 0.105 x 107 0.105 % 10
56,7, 8 0.132 %107 0.277x 108
9,10, 11, 12 0.101 x 107 0.154 x 10*

13, 14,15, 16 0.101 < 107 0.758 x 10

17, 18, 19,20 0.116 % 107 0.207 x 108
Variable
My, M, M,
Ml M"} 950kNm 0.15 1.0
My, My, Mg, Myo 95.0 0.15 1.0} Other-
My, My, My, My 204.0 0.15 1.0 wise un-
My, Myo, My, My, 122.0 0.15 1.0l correlated
Mz, Mys. Mys, Mo 163.0 015 1.0’

0, 169.0 0.15  Loads arc
0. 89.0 0.25  independent
Qs 116.0 0.25  except
Q,; 62.0 0.25 PQ4~Q5 st |
Qs 31.0 0.25

Discussion and Conclusion (10.14) Tracing of the critical failure path is cru-
cial. It is observed in Fig. 10.18 that while tracing the critical path, if the
reliability indices of the sequential hinges are monotonically increasing, the
failure path is efficient, and it leads to the most dominant failure mode and
also that branching this path at the mechanism stage results in many of the
dominant mechanisms in the first failure tree.

The number of branchings and the number of failure trees vary with the
type of problem, depending on the structural topology, load distribution,
etc. The more the parallel failure paths, the more the branching operations
will be. If parallel paths get mixed, the randomness increases. In some
circumstances, inadmissible mechanisms are generated. In certain situations
there can be a very large number of cycles to perform.

It is observed that in Example 10.11, all the dominant modes generated
by other research workers have also been obtained using the proposed
method. However, more modes, including a few insignificant modes, are
generated in the process. It is found from Tables 10.5 and 10.8 that the
most dominant failure mode is obtained in the first tree for both the prob-
blems. In Example 10.11 (Table 10.8), all the modes identified by Ma and
Ang (10.8) and Murotsu (10.10), except one have been generated in the first
tree itself,

It is observed that the accuracy of estimating prs may be improved margi-
nally by generating more failure trees, but is quite cxpe‘nsive. For all practi-
cal purposes, the generation of the first failure tree and the system failure
probability calculated based on that appears to be adequate.

Itis concluded that the proposed method used simple logical strategies
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~ probabilistically dominant mechanisms. It is simple, fairly cfficient, and is
- capable of generating the dominant mechanisms for a practical complex
structure. However, being a heuristic technique, it is not possible to prove
~ theoretically whether all dominant mechanisms can be generated by using
~ the proposed technique. For practical problems, it is felt that it is enough
o - . . . .

Il the first failure tree is generated and the system failure probability calcu-

“lated based on the generated mechanisms in the first failure tree.

7
=
s



TABLE 10.8 Details of generated dominant mechanisms and results of reliablity analysis of frame in Fig. 10.19—Example 10.11 w
N
St Hinged Failure Whether identified by
No. sections Z £ fr tree
Ma and Ang (10.8) Murotsu
Ei F2 (10.10)
(6)) 2) 3) (4) (5) 6) @) 8) ©®
L. 1,2, 13, 14 1.0M, + 1.0M, + 1.0M,, + 1.0M,, + 1.0M,, 1.97 0.247x 1071 1 Yes Yes Yes
21,22 + 1.0M,, — 3.60Q, — 3.60Qs
2. 1,7, 8,11, 1.OM, + 2.0M; + |.0Mq 4- 2.0M,, - 1.0N1;, 1,99 0231 %10~ 1 Yes Yes Yes
13, 14, 15, + 1.0M, + 1.0M,5 + 2.0M g + | OM,,
16, 21, 22 + 1.0M,, — 3.0Q0, — 3.0Q'2 ~ 360, — 7.20s
3. 4,11, 16 1.0M + 2.0My;, + 1.0M;s — 3.0Q: 2.05 0.200% 10~ 1 Yes Yes Ves
4. 17,19,22 1.0M,; + 2.0M,s + 1.0M,, — 3.00, 2.06 0.198x 107! 3 Yes Yes Yes
S. 1,7, 8,11, 0.5M, + 1.0M; 4+ 1.0M, + 1.0M,, -+ 0.5M 2.06 0.197x 107 1 Yes No Yes
13, 16, 18, + 1.0M,s + 1.0M,4 + 0.5M,, + 1.6M,,
21,22 —1.50, — 1.5Q, — 1.50; — 1.804 — 3.60s
6. 1,3,7,8 1.0M, + 1.0M, + 2.0, + 1.0M, + 1.0M, 2.09 0.183%107* 1 Yes No Yes
13, 14, 21 1.0M,q + 1.0M,, + 1.0M,, — 3.00,
22 — 3.60Q, — 3.6Cs
7. 5,7, 8 1.0M + 2.0M; + 1.0M; — 3.00, 2.14 0.160x 107* 1 Yes Yes No
8. 9,11, 16 1.0M, + 2.0M,;, + 1.0M,;s — 3.0Q, 2.21 0.134x 10! 1 Yes No No
9. 4,11, 12 1.0M, + 2.0M,, + 1.0M;, — 3.00, 221 0.134%10°* 4 No No No
10. 9, 11, 12 1.0M, + 2.0M,, + 1.0M,, — 3.0Q, 2.23 0.124x 10} 4 No No No
11. 1,4,7,8, 1.0M, + 1.0M, + 2.0M, + 2.0M, 4 1.0M 4 2.28 0.112x 10 3 No No No
13, 16,19, + 1.0Mye + 2.0My + 1.0M,, + 2.0M,,
21,22 — 3.00, — 3.00; — 3.604 — 7.204



19, 10, 17, + 1.0My4 + 2.0M,, + 1.OM,, + 2.0M,, [ e o
21,22 ~ 3.00, - 3.00, - 360, - 720,

Ty -
v 2 i

1.0M, + 2.0M, + 1.0M, + 2.0M,,

15, 16 + 2.0M,, — 3.00, — 3.00, — 3.60, : -
13, 1,789, 1.0M, + 2.0M, + 2.0M, + 1.0M, + 1.0M,, 241 0.795x 10~ 3 No No No
13, 16, 18, + 1.0M,q + 2.0M,q + 1.0My, + 2.0M,,
21,22 —3.00, — 3.00; — 3.60 — 7.20;
14, 2,3,7,8 1.0M, + 1.0M, + 2.0M, + 1.0M, — 3.00, 2.44 0.734x 10~ 4 No No No
15. 3, 11,15, LOM, + 2.0M,, 4 1.0M, + 2.0M,¢ 2.48 0.664 x 10-* 2 No No No
16 - 3.00, - 3.60s
16. 1,7,8,11, 1.0M, + 2.0M, + 2.0M, + 2.0A,; + 1.0M,, 2.74 0.3073< 10~ 1 No No No
13, 16, 17 +2.0M,q + 1.0M,7 + 1.0My, + 1.0M,y
21,22 — 3.00, — 3.00, — 3.60, — 7.20s

System failure probability
Simple bounds 0.247x 10"t £ pg, € 0.205
Nurrow bounds 0.702:<10 * € p;, € 0.147
[(pgs = 0.116 given by Ma and Ang (10.8) using Monte Curlo simulation with sample size 5000 and 0.745% 10" & Py € 0.907:<10°* given by

Murotsu (10.10)]

el



TABLE 10.9 Correlations between generated mechanisms—Example 1011

\

vie

M?cha- Correlations p;;
nism —_—
No. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1.0 0.65 0.0 0.09 0.551 0.672 0.0 0.0 0.0 0.0 0582 0.197 0.584 0.084 0.197 0.568
2 1.0 0.435 0.045 0.894 0.905 0.595 0.407 0.407 0.363 0.814 0.866 0.818 0.660 0.577 0.978
3 1.0 0.0 0.347 0.031 0.0 0.965 0.905 0.866 0.045 0.571 0.06 0.041 0.921 0.389
4 1.0 0.453 0.054 0.0 0.0 0e c0 0.479 0.012 0.48 0.015 0.0 0.109
5 1.0 0.835 0.615 0.335 0.335 0307 0.946 0.796 0.953 0.651 0.454 0.921
6 1.0 0.726 0.014 0014 0.0 0.883 0.739 0.88 0.784 0.195 0.906
T 1.0 0.0 0.0 0.0 0.651 0.782 0.652 0.977 0.00 0.650
8 1.0 1.0 0.977 0.021 0.335 0.062 0.019 0.838 0.375
9 1.0 0,977 0.021 ) 335 0.062 0.019 0.838 0.375
10 Symmetrical 1.0 0.0 0.477 0.061 0.0 0.727 0.345
11 1.0 0.668 0.095 0.689 0.216 0.84%
12 1.0 0.672 0.823 0.602 0.886
13 1.0 0.683 0.210 0.857
14 1.0 0.068 0.722
15 1.0 0.509
16 1.0

e e
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I8 the salety margin for the potential hinge section /7, let the event

Er = P(Zi"&'D)

8 illustrated method, when the hinges were selected at any stage along
dlure path before a mechanism is formed, the hinge location E; (over the
ol all eligible locations) with the greatest probability of failure (i.c. min.
s selected. A better, or more rational logic may be to select the next
@ location such that the joint probability of occurrence of the hinge
ugnce, including the selected hinge location, is maximum. That is, at the
ge, select jth hinge location such that

. PEINEN ...NE) = max (PAEINESN ... NEY] (10.31)

here the maximum is over the set of all possible hinge locations at that
jection stage, that is, all hinge locations other than the sections where
jges have already formed All events Ei are correlated because of the
wimmon load variables in all equations for Z;. The evaluation of the joint
pobability is complicated and time consuming. In the proposed method,
{his joint probability was never used. Murotsu (10.10) used thesc approxi
mutions, given below, which might be the upper bounds for Eq. (10.31).

P(EYNE2. . .NEy) < max [PAE))] j= 1 (10.32)

PESNE: N...NE) << max [P(EN E)| j= 2 (10.33)

= 10.7.1 Introduction

~ The failure of a frame structure by the formation ot a collapse mechanism
. requires a large rotational capacity of plastic hinges. Steel structures satis(y
" these requirements. Nonlinear and inelastic deformation characteristics of
~ RCC structures do not allow to use the available resistance of sections to
maximize the structural reliability. Moment-rotation relationships and the
limited rotation capacity of RCC sections pose difficulties and limitations
in the reliability analysis of plane frame structures.

The reliability analysis of RCC frame structures was initiated by Ticky
and Vorlicek (10.15). They formulated the reliability of RCC structures
subjected to loads from one or several sources based on the ultimate load,
and it was shown how the deformability (ductility) of critical sections could
be taken into account in studying RCC frames. Webster (10.16) presented
a probabilistic procedure to forecast the performance of RCC frames sub-
jected to an arbitrary number of sequential loads. Chou, McIntosh and
Corotis (10.17) had investigated the correlation between resistance and
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reliability for a simple RCC frame with known collapse mechanisms.
Ranganathan and Deshpande (10.18) presented a method of the reliability
analysis of RCC frames, considering the limited rotation capacity of con-
crete sections. A reliability model compatible with the collapse mechanism
was proposed for the rotation failure mode and the method was illustrated
with examples. The same thing is presented in this section.

In the case of RCC frames, any critical section, hinged earlier, may fail
due to an insufficient plastic rotation capacity before a collapse mechanism
is formed This mode of failure will be called a rotation failure mode.
Considering the limited plastic rotation capacity in RCC frames, a method
ts suggested 1o verify and analyse the identified dominant mechanisms and
to gencrate rotation failure modes, if necessary. A reliability model com-
patible with the collapse mechanism is proposed for a rotation failure mode
on the basis of partial utilization ol the plastic moment capacity of an
incipient hinge section at the failure stage. The rotation failure modes are
then combined with other possible mechanisms to assess the system
reliability of a RCC frame. The method is illustrated with examples,

10.7.2 Strength and Stiffness of RCC Sections in Flexure
Idealisations

The nonlinear stress—strain and moment-rotation relationships of RCC
sections pose some difficulty in the assessment of their strength-stiffness
properties, required to carry out a reliability analysis for RCC frames.
Using the idealized stress-strain curves for concrete and steel, shown in
Fig. 10.21, and the bilinear moment rotation diagram of RCC plastic
hinges, shown in Fig. 10.22(a), computational methods are developed to
determine the moment capacity, flexural rigidity, and rotational capacity of
RCC plastic hinges. Furthermore, nonlinear behaviour is approximated as
lincar elastic and piecewise linear elastic-plastic (PWLEP) to simplify the
structural analysis. Also, first-order second-moment (FOSM) method is used
to formulate the reliability analysis.

The limits /, and /A, shownin Fig. 10.22(a), are considered as idealised
elastic and plastic limits respectively (10.19). The elastic limit /i corresponds
to either a maximum compressive strain in the concrete, eq, equal to 0.002
[Fig. 10.21(a),] or the yielding of steel by attaining the yield strain esy in
mild steel bars as shown in Fig. 10.21(b), or offset strain of 0.001 in high
yield strength deformed bars as shown in Fig. 10.21(c), according to which-
ever condition is attained first. The resisting moment of the section corres-
ponding to /1 in Fig. 10,22(a) is termed as the yield moment, My. The plastic
limit /2 is attained when either the concrete or steel fails corresponding to
the maximum strain ec2 (taken as 0.0035) for concrete as shown in
Fig. 10.21(a), or strain of 0.01 in steel as shown in Fig. 10.21(b) or 10.21(c).
The resisiing moment of the section at /; is taken as the plastic moment, M.
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Resisting Moment and Flexural Rigidity

The resisting moment of a rectangular or tee section at limits /y or /2 can
be computed by satisfying force equilibrium and strain compatibility.

Referring to the bilinear moment-rotation diagram, shown in Fig. 10.22(a),
the flexural rigidity, EI, of a RCC member is assumed to be constant in the
range 0 to /i. Also, EI is assumed constant between critical sections of the
member. The value of a uniform EI obtained from stress and strain con-
ditions at limit /; is given by (10.19)

EJ = Mycl =, MM = C|) (10.34)
€cl Esy

where ¢ is the depth of neutral axis at limit /i and d is the effective depth.
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FIG.10.22 (a) Moment rotation diagram for a RCC
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Plastic Rotation Capacity

The rotation capacity of a RCC plastic hinge, 8, shown in Fig. 10.22(a), is
the angular rotation which the section can sustain under the constant
plastic moment without the local failure of the section due to limiting strain
conditions at the plastic limit /2 defined earlier. The plastic rotation capa-
city of a section depends on the (i) material properties, (ii) amount of rein-
forcement, (iii) confinement percentage, and (iv) axial load. The plastic
rotation capacity can be derived (10.19) as a function of the (i) ultimate
strain of concrete, (ii) strain variation in concrete from /1 to /2, (iii) spread
of the plastic zone, i.e., the length of the plastic hinge, and (iv) position of

the neutral axis.
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fotation capacity of RCC regions. Empirical formulae have been repurted
by various research workers. Baker and Amarakone (10.20) have proposed
)l set of curves representing the permissible plastic rotation capacity, 6y, as
function of the depth of the neutralaxis at limit /2 for different percent-
Miges of confinement in the member, Hence, one can use these curves to get
Il permissible rotation.

L

{10,7.3 Statistics of Plastic Moment Capacity

) ariations in geometric parameters of a section, generally being small, are
ieglected. Hence, for establishing statistics of M, the random variations of
-w and fy only are considered. Using the developed prediction equations
{or M, and using a first order approximation, the mean value and standard
4 dcvmllon ol M are calculated from the known statistics of fo and fy.

" 10.7.4 Reliability Analysis of RCC Frames (10.18)

(fdmmuaiié Generation of Dominant Mechanisms

}" Aller cstablishing the strength and stiffness properties of RCC members
~ lind the statistics of M of various critical scctions, stochastically dominant
¢ mechanisms are generated using the stiffness method of linear elastic and
- PWLEP analysis of the structure, and FOSM method of reliability analysis,
- jssuming. initially an unlimited rotational capacity available for all plastic
fhinges to form a collapse mechanism. To simplify the analysis, the axial
‘?‘ pgidity, £4, and flexural rigidity, EJ, arc assumed as deterministic. The
"| sequential selection of the most probabie hinge locations, to determine the
- s¢t of plastic hinges which converts the structure to a mechapism having a
large probability of failure, is the key consideration in the process of gene-
~ rating the dominant mechanisms. Methods suggested by Murotsu (10.10)
or Ma and Ang (10.8) or Tang and Melchers (10.13) can be used to gene-
~ rate stochastically dominant mechanisms; however, using the technique
" (10.14) explained and illustrated in the previous section, stochastically
dominant mechanisms are generated.

Checking of Plastic Rotations

The technique for generating stochastically dominant mechanisms selects
the plastic hinges on the basis of 8 and determines the set of hinges which
converts the structure into a mechanism without verifying the plastic rota-
tions of the hinged regions. It is observed that this set of hinges may consist
of inactive hinges; moreover, the sequence of hinges may be random with
respect to load factors. When the actual plastic rotation of plastic hinges is
to be checked against the permissible plastic rotation, the physical process
of the sequential occurrence of plastic hinges due to load increments has to
be considered. Therefore, the sequential analysis of dominant mechanisms
based on the load factor is employed to check the plastic rotation of hirges
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at each stage of the sequential anahvsis, and to formulate the failure prob-
abitity if the rotation check lails.

The plastic rotation is assumed to be concentrated at the critical section.
Therefore, the relative slope at the node of the plastic hinge of the section
is considered as the plastic rotation of the section, i.e. the angle of dis-
continuity as represented in Fig. 10.22(b). The rotations of nodes, obtained
from the analysis, correspond to the slopes at the intact ends of the
members meeting at the node, and not to the hinged ends. The slope at the
hinged end of a member is obtained by slope deflection equations of the
corresponding member. Then the plastic hinge rotation, as shown in
Fig. 10.22(b), is given by the difference between the slope at the hinged end
and the rotation of the corresponding node.

An identified mechanism with known active hinge sections is regenerated
sequentially for checking the rotations of hinge sections on the basis of load
factors. The load factor, 7 for a potential hinge section / at anv stage is
given by

h a, 1[1

g == (10,35)
L b Ok
A

At any stage, let the selected potential hinge section be 7 having the
lowest load factor #,. and the earlier hinged sections be j and A. The actual
plastic rotation at j (or &), 8, is

i i
0,' e .‘S 0,‘;/1’,\‘ : 'I][l b H}';Q,} ”036)

s=1 =i
where A is the plastic moment capacity of the critical section s, Q. is the
fin applied load on the structure, €, and 0 are the plastic rotations at the
hinged section ; due to the unit plastic moment Af, and unit load O,
respectively. 8, corresponding to A/, of the nonhinged section is zero. It is
possible that 6; and/or 6, may exceed permissible plastic rotation capacities
8p; and b, respectively. In such a case it is not possible for a hinge to be
formed at section / as indicated in Fig. 10.23. If 8, > &,;, then, considering

e
Intact n. :"]' :
structure j /_ ;
X )‘R Rotation failure mode
\
Al T)k M 91<9m At T]I ,61>(3p| and /or

8,> 8,

FIG. 10.23 Checking of plastic rotation of hinged sections during regeneration
of a mechanism
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fhe rotation capacity, the load factor A; at which 0; = 0, is glven by
{10.18)

[gﬂj = eisMs]
M=—t=l (10.37)

[£ 0,01

“Bimilarly, if 6k > 8y, the expression for the load factor &, at which

| h = bk, can also be obtained. A; and A« are now compared and the lowest

pelected and denoted by Az, At this value of Az, the RCC frame is assumed

0 fail under the rotation failure mode, prior to the formation of the

jechanism. As the rotation check fails, a full strength of section i is not

. Ulilized. Whereas a plastic hinge at section i forms at the load factor. Ag,
Ahe coefficient ai;, instead of being unity, is modified as (10.18)

" n
ai = L5 ayht) — el £ 5u0i)(57) (10.38)
J=1 k=1 i

4 Jei

: i"ﬁubstituling this value of ai in Eq. (10.26), the safety margin Z; of the
| rotation failure mode is formulated and the reliability index B and prob-
nbility of failure py are calculated as usual. The process of regeneration of
" the mechanism is terminated at this stage.

- Likewise, all dominant mechanisms identified earlier, assuming full
~ redistribution, are regenerated and analysed, in addition, a plastic rotation

- and establishing statistics of M;, (ii) generation of doininant mechanisms
. assuming unlimited rotation capacity of sections, and a reliability analysis,
(iii) regeneration of failure modes with checking of plastic rotations of
hinged sections, and (iv) synthesis of all failure modes and assessment of
- prs. A flowchart for the reliability analysis of RCC frames is given in
~ Fig. 10.24. The proposed method is illustrated in the following examples
(10.18).

ExampLE 10.12 The simple one-bay one-storey RCC frame, shown in
“Fig. 10.25, has been designed as per ISS (10.21) with the following data:
(i) Characteristic loads:

Live load : 4 kN/m?
Wind load : 1.5 kN/m?

(ii) Load combinations with partial safety factors:

(a) 1.5(D + L)
(b) L.5(D + W)
(c) 12D+ LH- W)
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P

(iit) Characteristic strength of materials:

Concrete (M 20) : 20 N/mm?
Steel (Fe 413) : 415 N/mm?
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FIG. 10.26 One-bay one-storey RCC frame and details of cross-
sections—Example 10.12

(iv) Partial safety factors for material strengths:
Concrete : Yme = 1.5
Steel $¥ms = 115
(v) Young’s modulus of elasticity:

Concrete (M 20) : 25.5 kN/mm?
Steel : 200 kN/mm?



324

Using the strain compatibility condition, and force and moment equili-
brium equations, expressions for ultimate resisting moments of rectangular
and tee beam RCC sections can be written in terms of design parameters
and basic random variables fcu and fy (10.19). For the developed expression
for M, using the Monte Carlo technique or first order approximation
[Egs. (3.82) and (3.84)], the mean value and standard deviation of M can be
computed using statistics of fou and fy. Let us assume that this has been
done and the computed values of the mean and standard deviation (or
coefficient of variation) of moment capacities of critical sections are known.
They are given in Table 10.10 along with other data (including 6,,) required
for the reliability analysis. The reliability analysis is carried out for two load
combinalions, viz. (l) D -+ Ln A Wap1 and (ll) D -+ Lapl -+ W

TABLE 10.10 Properties of cross sections and statistics of variables for
RCC frame-Example 10.]2

Section or LA El 0,

variable (KN) (kN m®  (radian) , .
Section

1,2,3,4 0.356 107 0.915 10¢ 0.017

5.8 0.949: 107 0.392 10° 0.018
6,7 0.949 107 0,392 108 0.019
Variable
Lo 26.81 N/mm? 0.150
y 469 0.100
My, My, Mg, M, 122,34 kN m 0.082
Mg, Mg 136.37 0.093
Mg, M 332,97 0.099

Mean/nominal

D 1.05 0.100
(L) 0.558 0.334
Ly 0.319 0.397
W(w,) 0.693 0.236
W Wam) 0.200 0,420

Remark: All variables are statistically independent,

Case (1) D + Lm -~ Wapt

Assuming full rotation capacity at all critical sections for the formation of
mechanisms, and using the method (10.14) explained in Sec. 10.6, stochasti-
cally dominant modes are first generated, as shown in Fig, 10.26, for the
load combination D 4 Lw -+ Wi The identified mechanisms are ordered
and the system reliability is assessed from the synthesis of theses mechanisms,
which are represented by their hinges as shown in Fig. 10.27, and safety
margins as given in Table 10.11. The correlations between dominant failure
modes are computed (Table 10.12). Details of the identified mechanisms
and results of the reliability analysis of the frame, assuming full redistri-
bution (i.e. without limiting the plastic rotations of hinges), are presented
in Table 10.11.




326

43 575 5-89
7 4 —-@ 1
First
e 603
O
Intact
structure
672 5-89
O
847
Second ‘_@4
tree
6-63 5-60 603
(® )
617
-0
6-87 6 03
8 66
8

FIG. 10.26 Failure tree diagram for RCC frame in Fig. 10.25 under
D+ L, + Wy, —Example 10.12

Each identified mechanism, indicated in Fig. 10.27, is regenerated, as
shown in Fig. 10.28, according to the procedure outlined in the flowchart,
given in Fig. 10.24, for checking the plastic rotations of hinged sections
against their permissible plastic rotations, 6,. The final failure modes,
corresponding to the possible mechanisms or rotation failures are generated
as explained in Sec. 10.7.3, and are given in Table 10.13. Correlations
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10.12

TABLE 10.11  Identified Mechanisms and Results of Reliahility Analysis of RCC

Frame in  Fig. 10.25, Assuming  Full Redistribution Under
B Ly = Wapl—[i\'ample 10.12
SI. Hinged y Failure
No. scclions s b i tree
1, 2,4,7 1.0M, 4 1.OM, + 2.0M, — 3.0D — 3.0L  5.89 0.197x10-® 1
2. 4.5,7 1.0M4 + 1.0My 4 2.0M, — 3.0D — 3.0L 6.03 0.821 x 10~ 1
3. 2,7,.8 1.0M, +- 2.0A1; -+ 1.0Mg — 3.0D — 3.0L 6.03 0.82] 2 10-° 2
4, 5,7,8 1.0AM g - 2.0M; + 1.0My — 3.0D — 3.0L 6.17 0.338 % 10-? 2
S. 1,3.4,7 1.0M, + 1.0M, 4 2.0My -+ 2.0M, 8.47 0.124x 1071 |
- 30D — 3.0L — 4.0W
6. 1,3,7,8 1.0M, 4 1.0M; - 2.0M; -- 2.0M, 8.66 0.239:210-1* 2
— 3.0D - 3.0L — 4.0W

Simple
Narrow

Bounds on system probability of failure
0.197 107" < pgg < 0.395>10-2

021521078 < pp, < 0.284: 10-°
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EYABLE 10.12  Correlations betwscn mechanisms given in Table 10.11—Example 10.12

Py

1 2 3 4 §-— - 6
1.0 0.981 0.981 0.962 0.971 0,927
1.0 0.962 0.981 0.966 0.923
20 0.981 0.938 0.968
1.0 0.934 0.963

Symmetrical

1.0 0.929

1.0

TABLE 10.13 Regenerated failure modes and results of reliability analysis of
RCC frame in Fig. 10.25 under D + L, + Wy, —Example 10.12

Hinged

: i R« k
sections Safety margin B Py emarks

2,4,7 1OM,+ L.OM, + 2.0M, — 30D 589  0.197x10-® Mechanism

—3.0L failure
4,5,7 1.0M, + 0.939M; + 2.0M, 594 0.144x10-® Rotation
- 3.0D - 3.0L failure
2778 1.0M,; + 2.0M, 4 1.0M, 6.03 0.821 x 10~ Mechanism
3.0D — 3.0L failure
578 0.991 Mg + 2.0M, + 1.0M, 6.16 0.368 x 10~® Rotation
- 30D - 3.0L failure
3,4,7 0.620M; + 1.0M, -+ 1.5M, 6.02  0.861:<10-* Rotation
— 0.225D - 0.225L — 2.0W failure
3,7,8  0.636M, + 1.5M; + 1.0M, 6.23  0.235%x10~® Rotation
— 0.225D — 0.225L — 2.0W failure

Bounds on system probability of failure:
Simple 0.197x107% £ pg, < 0.57x 10-*
Narrow 0.245%10°* < p, < 0.371 2 107°

TABLE 10.14 Correlations between failure modes given in Table 10.13-Example 10.12

Failure Py
mode No. | 2 3 4 5 6
;18 1.0 0.982 0.962 0.986 0.981 0.959
2 1.0 0.981 0.983 0.983 0.956
< A 1.0 0.959 0.981 0.982
4. Symmetrical 1.0 0.963 0.967
5. 1.0 0.986
6. 1.0

between failure modes are computed (Table 10.14) and the bounds on
system failure are established. Results of the same are given in Table|10.13.
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FIG. 10.28 Regeneration of individual mechanisms in Fig. 10.27 for checking
plastic rotations under load case O + L + W,,—Example 10.12

Case (ll) D - Lapt + W

The procedure is repeated for this example to assess the system reliability
under the second load combination D -+ Lap -+ Wn. The generated domi-
nant mechanisms, assuming full redistribution, and their safety margins and
results of the reliability analysis based on these are given in Table 10.15.
The mechanisms are regenerated as shiown in Fig, 10 29. Table 10.16 gives
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»4 T'ABLE 10.15 Identified mechanisms and results of reliability analysis of
RCC frame in Fig. 10.25, assuming full redistribution under
D 4 Lypy + Wy—Example 10.12

Hinged " Failure

sections ol A o trec
1.0M, -~ 1.0M, - 2.0M, — 3.0D 6.79 0.567x 101 |
—30L

4,5.7 1.0M¢ 5+ 1.0Mg -+ 2.0M; — 3.0D 6.93 0.206: 1071 1
— 3.0L

2,7, 8 1.0M, - 2.0M; ¢ 1.0M, — 3.0D 6.93 0.206 .2 01! 2
— 3.0L

57,8 1.0Af5 - 2.0M. + 1.0Afy — 3.0D 7.08 0.736.:10-12 2
— 3.0L

1,3,4,7 1.0My 4 1.0My + 2.0M, i 2.0M, 9.14 < 101 1
3.0D — 3.0L — 4.0W

1,3,7,8 1.OM, - 1.OM, 3 2.0M, i 2.0M, 932 <10°% . 2

— 3.0D - 30L - 4.0W

Bounds on system probability of failure:
Simple  0.567x% 10-11 < p,s < 0.105 < 1010

Narrow 0.626:x 107"t < pg, £ 0.8123¢ 101

4 ABLE 10.16 Regencrated fuilure modes and results of reliability analysis of RCC
frame in Fig. 10.25 under D - Lam o W -Example 10.12

Hinged
sections

g8l Safely margin B pr IS

2.4, 0.877M, - 1L.OM, ' 2.0M, 6.61 0.193::10-1  Rotation failure

—3.0D0 - 3.0L

4,5,7 1.OM, ¢+ 0.786M; - 2.0M, 6.60 0.211 < 10-1*  Rotation failure
—3.0D0 — 3.0L

2.7:8 0.931A1, -- 2.0M; |- 1.0M g 6.83 0.414:- 101 Roftation failure
—-3.0D — 3.0L

57,8 0.835M -+ 2.0M; ' 1.0M, 6.82 0.457:210"1  Rotation failure
—3.0D - 3.0L

3,4,7 0.729M, - 1.OM; - 1.5M, 6.93 0.218.£10*  Rolation failure
—2.25D — 2.25L - 2.0W

3,7.8 0.749M, |- 1.5M, - 1.0M, 7.14 0.469>10°*  Rotation failure
—225D — 2.25L — 2.0W

Bounds on system probability of failure:
Simple 02111071 g pe. < 0.518:< 1020
Narrow 028941071  pr. < 0.378 <1071

the final failure modes obtained after checking the plastic rotations of the

- hinges. The correlations are computed. The estimated system reliability is
given in the same Table 10.16.

ExaMpLE 10.13  The two-bay two-storey RCC frame, shown in Fig. 10.30,
has been designed as per the ISS (10.21) with the same data given in

©
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FIG. 10.29 Regeneration of individual mechanisms in Table 10.15 for check-
ing plastic rotations under load case D + Lopy + W,—
Example 10.12

Example 10.12. Details of cross-sections of the frame are given in
Fig. 10.30. Flexural rigidities, plastic moment capacities, and permissible
plastic rotation capacities of sections are calculated and given in Table 10.17.
The results of the reliability analysis for the two load combinations
(i) D + Lm + Wapt and (ii) D + Lapt + Wm are given in Tables 10.18,
10.19, 10.20, and 10.21.
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TABLE 10.17 Properiies of cross sections and statistics of variables for RCC frame—
Example 10.13

Section or EA El 8

p N )
variable (kN) (kN m?) (radian)
Section
1to4, 13to 16. 03563107 0.786 x 10* 0.014
25 to 28
5,9,20,24 0.453% 107 0.294 x 10% 0.017
8,12, 17 21 0.453 <107 0.294 % 108 0.013
6,7, 10. L[, I8, 19, 0.453 <107 0.294> 10° 0.017
22,23
Variable
M, (i = [tod, 11478 kN m  0.058
13 to 16, 25 to 28)
M;, (j=5,92024) 178.49 0.092
My, (k =8,12,17,21) 315.80 0.090
M, (+-:6,7,10, 11, 274.11 0.098

185 19; 22, 23)

Remarks: Statistics of variables f,, fi. D, L
given in Table 10.10
All variables are statistically independent.

apte Lmr Wape and Wy, are the same as

TABLE 10.18 Identified mechanisms and results of reliability analysis of RCC frame
in Fig. 10.30 assuming full redistribution under D + L+ W.m-—
Example 10.13

i . Failure
o P T
1 4,11, 12 1L.OM, -+ 2.0M, + 1.0M,, 717 0.38x10°1 1
—3.0D, — 3.0L,
2 21,22, 28 1.0M,, + 2.0M,y 4- 1.0M 7.17 0.38x10-12 2
—3.0D, — 3.0L,
3 9,11, 12 1.0M, -+ 2.0My, - 1.0M,, 7.85 0.216x {014 1
—3.0D, — 3.0L,
4 17, 18, 20 1.0My; + 2.0M,q 4 1.0M,, 7.85 0.216x 10714 1
_3.0D3 - 3.0L;
5 21,22,24 1.0M,, + 2.0M, - 1.0M 4 7.85 0.216x 1014 2
—3.0D, — 3.0L,
6 5,6,8 1.0Mg -+ 2.0M,4 + 1.0M, 7.85 0.216x 10714 1
—3.0D, — 3.0L,
7 2,3,6,8 1.0M, + 1.0M, + 2.0M, 8.62 0.347x 10~%7 2
+1.0Mg — 3.0D; — 3.0L,
8 17, 18, 26, 27 1.OMy; + 2.0M;s + 1.0My 8.62 0.347x 10~V 1
+1.0M,, — 3.0D, — 3.0L,
9 4, 10, 16, 21 1.0M, + 2.0M,, + 1.0M, 8.62 0.347x 10-V 2
+1.0M,, — 3.0D; — 3.0L,
Bounds:
Simple 0.380 <1071 < ppo € 0.769 x [0~12

Narrow 0.765 10711  pg, £ 0.765x 10~
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£ 10.19 Regencrated failure modes and results of reliability analysis af RCC
frame in Fig. 10.30 under D + Ly, + Wapr—Example 10.13

Hinged

sections Safety margin g Py Remarks

4,11, 12 1.0M¢ 4 2.0M,, - 1.0M,, 717 0.38x107?  Mechanlsm

—3.0D, — 3.0L, failure
21,22,28 1.0My -+ 2.0M;, + 1.0My 717  0.38x10-*  Mechanism
-3.0D, — 3.0L, failure
9,11,12  0.671M, + 2.0M,, + I'8M,, 7.19  0.330x10-2 Rotation
-3.0D, - 3.0L, failure
17, 18,20  1.0My; 4- 2.0M s -~ 1.0M 7.85 0.216 x10-* Mechanism
—-3.0Dy — 3.0L, failure
21,22,24  1.0M;, + 2.0M,, 4 0.714M, 728 0.172x10-'2 Rotation
—3.0D, — 3.0L, failure
5,6,8 1.0M; 4- 2.0M¢ - 1.0M, 7.85 0.216:<10"* Mechanism
~3.0D, — 3.0L, failure
3,6, 8 0.955M ;5 + 0.967M 4 827  0.605:<10°'* Rotation
+0.484M, — 1.45D, failure
-0.325W,
17, 18, 1.0My; -+ 2.0M,5 + 0.792M 4 8.32 0.438x10-¢ Rotation
X 26,27 +1.0M,; — 3.0Dy — 3.0L, failure
') 4,190, 16 1.0M, + 2.0M,, + 0.374M 1.72 0.593 % 10-1¢ Rotation
21 +1.0M; — 3.0D, — 3.0L, failure

Hounds:
0.380% 107** £ pg, < 0.127x 1071
Narrow  0.952x107 < py, < 0.108x10-%

"I'ABLE 10.20 Jdentified mechanisms and results of reliability analysis of RCC franie
in Fig, 10.30 assuming full redistribution under D + L., + W, —
Example 10.13

B Failure

8!. Hinged
Py
tree

No. sections Safety margin

1 4,11, 12 1.0M, + 2.0M,, + 1.0M,; — 3.0D, 825  0.809x10-* 1

—3.0L,
2 21,23,28 1.0My + 2.0My + 1.0Mys — 3.0D, 825  0.809x10-¥ |
3 17, 18,20 1.0M;; + 2.0Ms + 1.0My — 3.0D, 894  0.217x10-® 1
"3.0L|
4 56,8 0.5M5 + 1.0Mq + 0.5M, — 1.5D, 894  0.217x10- 1
—1.5L,
5 9,11, 12 1.0Af, + 2.0M}; + 1.0M,, — 3.0D, 894 0.217x10~1 1
—3.0L,
6 17, 18, 1.0M,3 + 2.0M,e + 1.0Mg + 1.0M,, 9.78 < 10-» 1
26, 27 —-3.0D, — 3.0L,
7 12,16,  10M, + 1.0My, + 2.0M,, + 1.0M,, 978 < 10-1 1
23,28 —-3.0D, - 3.0L,

Bounds on system probability of failure:
Simple 0.809x 101 Pre & 0.162X 10-1
Narrow 0.162x10-% g pg, & 0.162x 10~
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TABLE 1021  Regenerated failure modes and results of reliability  Analysis of RCC
Wo,—=Example 1013

Srame in Fig. 10.30 under D - Lapl -
]\SI:\ ::él(]ig(::l Safety margin 3 I'g Remarks
| 4,11, 12 09527, - 2.0V, < LOM, 8.18 0.148 0 18 Rotation
-3.0D, - 101, failure
2 21,23, 28  LIOM,, <& 20N, 1.0M g 8.25 0.809 10~ Mechanism
~30D, — 3.0L, failure
3 17,18, 20 1.OM,q -1 2.0M 1.0, 8.94 0,217 10-*# Mechanism
—-3.0D, - 3.0, failure
4 5.6, 8 0.802\, - 2.0/, 1.0Mg 8.54 0.694 [0V Rotation
-=3.0D, - 3.0L, failure
5 9.11,12 0.612M, - 2.0M,, | 1.0M,, 8.13 0.217: 101 Rotation
—-3.0D, — 30L. failure
6 17, 18, 1.0Mp:: 2005 -0 1 0My, 9.78 < 018 Mechanism
26, 27 4 1.0M, — 3.0D, — 301, failure
7 12, 16. 1.0M,, - 012371, 2.0M5; .44 0.158 [0 Rotation
23 28 S 1.0M. — 3.0D, - 3,04, failure

Bounds on system probability of failure:
Simple 0.217 1071 < pp, £ 0468 10710
Narrow 0379 10" < pp; < 0.416 10710

10.7.5 Discussion

A simple and practical method of the reliability analysis of RCC frames,
considering the limited rotation capacity of RCC sections, had been deve-
loped and illustrated. The probability of failure of a rotation failure mode,
generated from the mechanism through a check for plastic hinge rotation,
is found to be higher than that for mechanisms with unlimited rotational
capacity, which is expected. Thisincrease in pr is observed to be considerable
in the case of the least dominant mechanism.

A comparison of results for limited ductility and full redistribution shows
that the bounds on pss are generally higher and wider for limited ductility.
For the two case studies, it is noted that the probability of failure of the
frame under the load combination D + L -+ Wape is more than that of
under D + Lapt -+ Wn. The effect of limited rotational capacity on py is
found to be more critical under D -+ Lapt - Wnthanunder D + Lm -+ Wap,
for these two case studies.

For the two case studies of RCC frames (design according to ISS), the
system failure probability is found to be of the order of 107° for the one-
bay oume-storey frame and 107'2 for the two-bay two-storey frame. These
values of failure probability are very small. This is due to high design loads
and low material design strengths specified by the IS code.

The checking of plastic rotations of hinges and remodelling of the failure
modes improves the accuracy of the system reliability of RCC frames. How-
ever, the improvement in the present case studies, where the load combina-
tion D + Lm + Wap is more dominant than D + Lapt + Wm, is not
significant in the context of computer effort.
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10.8 STRUCTURAL SAFETY IN OTHER FIELDS

Reliability analysis is a tool in the design process. It can be applied to any
field. The importance of making reliability assessments, especially for the
purpose of making comparative design judgements, has received recognition
in the last decade. Even though the reliability analysis and design of steel
and RCC building structures are mainly treated in the examples of this

335
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book, mcthods can be applied to other types of strucures and other fields
of engineering, as well, viz, aeronautical, mechanical and nuclear. The
reliability theory has been used extensively in the analysis and design of
bridges, buildings, transmission towers, effshore structures, ship structures,
nuclear power plants, and in the development of general purpose structural
design codes. In this book, mainly failure criteria based on strength have
been considered. The reliability methods given can be applied to other
criteria, such as serviceability limit states, viz. deflection, cracking, corrosion,
etc. Fatigue and fracture behaviour is an important consideration in the
design of bridges, offshore structures, aircraft structures, pressure-vessels,
cranes, elc. Hence, reliability predictions against fatigue crack initiation,
growth, and fracture is important. A considerable research has been done
and is going on in developing analytical techniques for fatigue reliability.
In the case of dynamically sensitive structures subjected to dynamic loads,
the reliability analysis of such structures is more involved. This is so in the
case of deep offshore platforms. Reliability analysis with respect to such a
type of structure is briefly explained below.

Offshore Structures

The safety of an offshore structure depends on predicting the environmental
phenomena. such as wind, current, wave, seismic loading, accurate calcu-
lation of the response of the structure to these loads, and determining the
strength of the structure. Level 2 reliability methods have been used in the
evaluation of component reliabilities in jacket structures. The various steps
that are involved for such an analysis are (10.22):

(i) defining the basic random variables for the structural resistance and
loading, viz. extreme wind speed, drag coefficient, inertial coefficient,
current speed, marine growth, deck load, yield strength of steel. tube
thickness, leg diameter, damping coefficient, strength model uncertainty,
etc.

(ii) selecting the appropriate failure criterion and the associated model
uncertainty for the compounent under consideration

(iii) developing an appropriate idealisation of the structure for the
purposes of evaluating combined wave and current forces

(iv) developing an appropriate mathematical model relating the natural
frequency of the structure in its dominant mode of vibration to the basic
random variables which affect it, such as the soil and structure stiffness,
superimposed deck loads, thickness of marine growth, and the coefficient
of the added mass

(v) developing an efficient algorithm to determine the stochastic response
of the structure under dynamic loads

(vi) obtaining the relationship between the displaced shape of the struc-
ture and the loads and moments in the individual components of the
structure, by an appropriate structural analysis

(vii) combining the mathematical mode’s given by steps (ii) to (vii) above
to obtain the safety margin ecauation and
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ii) determining B for the failure criteria.

ker (10.22) has done the reliability analysis of jacket platforms in the
Sea. The Level 2 reliability methods have been applied for taking
isions for the safety of offshore structures against fatigue (10.23).
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EXERCISE

Consider the structural system (5 member truss) shown in Fig. 10.31. It is given:

A, = 4.5cm? Ay = A = 1.67T cm?

A;=12cm? As = 4.5 cm?
Variable fyiu=276kN/m* o =276 kN/m?

Q1 0::6=30kN o=6kN

Qy:p=50kN o=15kN
Assume all variables are independent and normal.
(i) Compute simple bounds on the reliability of the system (pg,).
(Ans. 0.0602 < p;, < 0.0896)

(ii) Compute Ditlevsen’s narrow bounds on pp,.

(Ans. 0.0732 £ pg, £ 0.0773)
For the same problem given above, determine the narrow bounds on pg, if Q.
(s, and Q; follow the Type 1 extremal (largest) distribution and f, follows the
lognormal distribution.

(Ans. 0.0223 < pg, < 0.0236)
Consider the indeterminate truss shown in Fig. 10.32. It is given that for
Variable:

Ri. Ris. Rye p = T77.6 kN ¢ = 1.76 kN
R, u = 88.6 kN a = 8.86 kN
Ry # = 50 kN ¢ = 5 kN
R b =67.6kN o =676kN
Rs r = 78.6 kN o = 786 kN
Rg g = 40 kN a = 4 kN
Rh Rh Rl: Rw B = 75 kN e =7.5kN
R,(i=11t014) g = 50 kN o = SkN
0. 0 B = 50kN o = 10kN
s » = 20 kN a = 6 kN

Assuming all variables are normally distributed and statistically independent,
determine simple bounds on the pg, of the system.
(Ans. 0.00866 < pg, < 0.019)

Consider the RCC frame, shown in Fig. 10.25, and given in Example 10.12. All
data are the same as given in Table 10.10 except that for L, Mean/Nominal
= 1.38 and 8 = 0.25. Generate dominant modes for the load combination
D+ L + Wapt and determine
(i) The bounds on pg, assuming full redistribution.

(Ans. 0.726X10-* § pp, < 0.978X107?)
(ii) The bounds on pg, assuming limited ductility,

(Ans. 0.724x10-° < pg, < 0.818x107%)




105  The steel frame shown in Fig. 10.33 is taken from Reference 10.8, The data for
the frame is given in Table E 10.5. Generate dominant modes and determine
Ditlevsen’s narrow bounds on the probability of failure of the system. Results
are available in Reference 10.14.

(dns. 0.227x107* € py, < 0.322X 107"

Q7
13 V-J 15 16
Gy -t +-+ t
1071 T
ol 366"1
1 7 41
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FIG. 10.6 Two-storey one bay frame

TABLE E 10.8 Data for frame in Fig. E 10.5

Section/
variable

EA
(kN)

El
(kN m¥) *

3

Section
1,2,3,4,9,
10,11, 12
5.6,7,8,13,
14,185, 16
Variable
MID'MII M!l Ml
MO! Mu- Mllo
My,

M;, My, M,

Miv Mll) Mllv
Mll' MI‘

0.105X30"

0.168x 107

0.84 > 10*

0.336% 10

110.0 kN m

275.0

180.0 kN
90.0
320
16.0

015 10

015 1.0

0.15
0.25
o’zs
0.25

;
|

]
1
r

| W

Independent

Loads are in-
dependent
except

PQe. Q¢ = 1




11
Advanced Reliability Methods

11.1 INTRODUCTION

In Chapter 7, Level 2 reliability method has been explained and illustrated in
detail. The method can be applied to linear or non-linear limit state functions of
correlated or uncorrelated normal or nonnormal variables. In this method, the
failure surface is linearized at the design point and reliability index is
calculated. The method is also called as First Order Reliability Method
(FORM). Here, probability of failure is taken as

pr = O'(-B) (11.1)

given by Eq. 8.31. Only in the case of linear function of normal variables, the
value of probability of failure estimated by the above equation gives the exact
value. In other cases, it gives only approximate value called as notional value of
probability of failure. In general, the probability of failure estimated by Eq. 11.1
is sufficiently accurate and holds good for the majority of complex engineering
problems with number of variables as long as the probabilty of failure is not too
small and the distributions of the variables do not deviate too far from the
normal distribution. This estimate of probability of failure is enough and quite
adequate for decision making problems in the field viz. fixing partial safety
factors, calibrating codes, development of inspection strategy and maintenance
schedule etc. The estimated p; by Eq. 11.1 gives significant error when the
failure surface has large curvature and highly nonlinear and the function is in
terms of correlated nonnormal variables. In such cases, when one is interested
in estimating more accurate value of pr, he may have to use Second Order
Reliability Methods (SORM). Basic Monte Carlo technique explained in
Chapter 7 gives true value of pg; however, it takes more time and large number
of samples are to be generated to estimate py with a cerlain minimum
confidence level in the estimated p;. Better sampling methods, which are called
here as advanced simulation methods, are available to estimate p; without much
statistical error. In this chapter, the principle behind second order reliability
method is just introduced and advanced simulation methods are explained in
detail and illustrated with examples.

11.2 SECOND ORDER RELIABILITY METHOD

The first order reliability methods are easy and simple to apply but
approximation used to linearise the failure surface at design point does not
always hold good. When the failure surface is very non-linear, the estimated
reliability index shows an erroneous pr value. The figure 11.1 brings out the
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drawback of FORM. In Fig. 11.1 two failure surfaces arc shown. Surfhce'B 1g
more mnon-linear than the surface A. It can be easily seen that the probability
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FIG. 11.1 Drawback of FORM

of failure of B is less than that of the surface A. But using the Hasofer-Lind
method, the values of reliability index P evaluated for both surfaces for
linearization at design point D are the same. This shows that not only the
distance of a design point D from the origin in the independent standardized
co-ordinate system but also the nature of the failure surface affects the failure
probability. Thus it becomes essential to take into account the nature of the
failure surface while evaluating the probability of failure in problems involving
non-linear surfaces. It is drawn to the attention of the readers that if the
original distributions of the variables significantly deviate from the normal

Parabelic
surface

Fallure ‘J

| -

FIG. 11.2 Parabolic approximation to failure domain
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point =
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distribuiton, original smooth surface ( even if the original equation is linear)
can become distinctively curved in the normalized space. But it is particularly
difficult to find the exact nature of the surface every time. The second order
approach in the space of normalized variables will yield results close to the
exact value. In the second order reliability method the failure surface in the
standard normal space is approximated by a parabolic surface (Fig. 11.2) at the
design point, the axis of the parobola being the direction of z* (the design point
in the independent standard normal space) The corresponding probability
content is determined by asymptotic formula and by approximate formulac
(11.1, 11.2). Tvedt (11.3) has presented a method calculating from the full
second order Taylor series expansion of the failure function at the design point
Z5..

11.3 IMPORTANCE SAMPLING METHOD

In Monte Carlo simulation, as probability of failure for any structure is
generally very low, large number of samples will have to be generated to get
sufficient number of points in the failure domain. This will require evaluation
of structural response for large number of times which affects the efficiency of
the method. This drawback is overcome by replacing the joint density function
fx(x) by new sampling function hx(x) which ensures the sampling in the region
which contribute most to the probability of failure. The probability of failure is
given by,

N »

E1{gs0 ) LX)

i=! N 'X (X[) (l 12)
§

where
N;, is the number of simulations and
I { } is an indicator function given by

{ I{}= 1 forgx)<0

0 otherwise

The main purpose of the new density function i.e. weighting function is to
centre the simulation in the most important region i.e. around design point. It is
possible theoretically that variance of the results from Eq. 11.2 can be reduced
to as low as zero, if the values of the weighting function are equal to values of
the actual probability density in the failure domain. This assumes that the
information of the design point is exact along with the right choice of the
weighting function. Because of the finite number of weighted simulation, there
will be always some statistical uncertainty, apart from due to choice of
weighting function. Applying statistical analysis, this uncertainty can be
estimated. The variance (s°) of the calculated probability of failure can be
estimated as,

e —————
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The so called standard error (or statistical error) in the estimate of py is given

by,
s (11.4)

From the above equation it is clear that statistical error is not only dependent
upon the number of simulations but also type of weighting function hx(x).

Choice of weighting function

It is obvious from Eq. 11.4 that, whole success of the importance sampling
approach depends upon the choice of the weighting function hx(x). Several
suggestions have been made for the choice of hx(x) in the importance sampling.
Harbitz (11.4) suggested the weighting function as the same original joint
density function but only shifted at the design point, which is calculated by
Level 2 method. But the question comes, as once the design point by Level 2 is
known, why to go for further analysis, unless some improvement in accuracy is
needed. Also original distribution may be complex when variables are
correlated, which causes difficulty in sampling process.

Another choice for weighting function hy(x) is to use independent standard
multinormal density function, centred at the design point and standard
deviation equal to or greater than the original standard deviation (11.5, 11.6,
11.7). Design point can be calculated based on the assumption of uncorrelated
Gaussian variables or uncorrelated with original distributions. Generally hy(x)
is taken as independent n-dimensional multinormal density function, centred at
the design point calculated on the assumption of uncorrelated Gaussian
variables. The standard deviation is taken as, one to three times of the original
standard deviation. As this choice for hyx(x) will produce the sample points
unbiased with respect to all variables, it will cover the wide region around the
design point. Due to this advantage exact form of limit state g(x) is not
necessary while evaluating the probability of failure. Due to simplicity of the
hx(x) generation of the sample points can be done very efficiently. As hx(x) is
the independent multinormal density function, unless the failure surface is
highly nonlinear, there will be 50 % probability that sample point falls in the
failure domain. Random deviates for the normal distribution are generated
using Box and Muller technique explained in Chapter 7.

Correlated nonnormal variables

In Level 2 method explained in Chapter 8, the treatment of correlated
nonnormal variables has been explained when the covariance matrix [Cx] is
known. If the correlation matrix [px] is given, the procedure is slightly
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modified and is explained below. It can be easily proved that the correlation
matrix of original variates becomes covariance matrix of reduced variates. Here
reduced variate Z; means,

7, =i (11.5)
o

where ; and o; are mean value and standard deviation of X;. In the case of
correlated non-normal variables, the original probability density fx(x) is found
at the sample point in consideration by transforming them into equivalent
independent Gaussian components. This is done by first transforming them
(nonnormal variables) into equivalent normal at the sample point by using the
procedure explained in Chapter 8. The Gaussian components obtained are then
transformed into independent components by orthogonal transformation. For
the correlation matrix [px] the eigen values are evaluated from which eigen
vectors are found out for each eigen value. Then the transformation matrix [T]
will be the matrix with each column as eigen vector for respective cigen value.
The independent standard normal variates Y,, Y,...... Y, will be given by,

Y=[T]'Z (11.6)
E[Y] = [T]'E[Z) (11.7)
[Cy] = [T]" [px] (T] (11.8)

That is eigen values of [px] are the variances of the respective variates Y.
Though this transformation is approximate, it can be applied very efficiently
and gives results within good approximation.

Following steps are involved in the computation of pe using ISM when
statistics of all variables, the correlation matrix and the limit state function are
given:

1. An cigen value analysis of the correlation matrix is carried out to find the
transformation matrix [T]. Each column of the transformation matrix is an
eigen vetor corresponding to the respective eigen value (Refer Chapter 7).

2. Find the design point x* using Level 2 method. For simplicity, assuming all
variables as uncorrelated normal variables, x* can be found out and this
may be used as a sampling point.

3. Two uniform random numbers v, and v, are generated between 0 and 1 for
each variable.

4. A standard normal variate u tor each variable is obtained as

u=[2 In(1/ v;)]'? cos(2nvy)
5. Select a value for standard deviation multiplier, Sy, from 1 to 3. A sample
point x is obtained as
x=x*+Ssn Uo
6. The value of limit state function g(x) is evaluated.
7. If g(x) < 0 proceed ; otherwise go to Step 3.
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8. The equivalent mean and standard deviation at point x are found oul as
explained in Chapter 8. They are given by Eqs. 8.67 and 8,69,

Hx, = —djr,o"[Fx, (-‘l)]"' X; (11.9)
-1
oY, -Llo—f]{{%‘(f—)}] (11.10)
!

9. The equivalent normal variables Z are found at the point X as

X4, |
z, <2kl (11.11)
oY%,

10.The independent variables Y are found at point X as
Y=[T]'Z (11.12)

11.The probability density and the sampling density at X are found out as

2
fx = : rnl—'—expi -—’—-”f (11.13)
(T/znf;ir-l"h =\ 2y,
2
I 5l b X 1 Xi=XD
hy = [T—expZ- Lo (11.14)
‘Jz_;;-yl-l"'x‘ =1 2\ ox,

Here hy is independent multinormal density function at X
12. Calculate fx / hx . Go to Step 3.

The whole process is repeated from Step 3 to Step 12 for number of

required simulations N, .
13. Compute prusing Eq. 11.2 and ;¢ using Eq. 11.4.
The procedure explained above is shown in the flow chart given in Fig. 11.3.
The importance sampling method is illustrated with the following examples.
EXAMPLE 11.1 The limit state function is given by

gX) =X, Xz- X,

Here the number of variables is 3. The statistics of the variables are given in
Table 11.1. The correlation matrix is follows:
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10 05 00
[pd = (05 1.0 00
00 00 1.0

Reoad No. of variables, their distribution

and correlation maotrix Read also the
limit stote tunction and no. of aimuiations

to be done

Find the design point by assumption{
of uncorrelated gaussian variables

Do for 1 = % to Ns

l

Generate the sample point uval
independent multinormal density

centered at design point

[sum=sum +F\Hx -

Sum
Pt = " Ne

FIG. 11.3 Flow Chart for importance sampling

TABLE 11.1  Statistics of variables - Example 11.1

Variable Mean Standard deviation Distribution
X1 40.0 5.0 Type I extremal
(largest)
Xz 50.0 2.5 Normal
X; 1500.0 100.0 Lognormal

Compute pr by using ISM taking SDM equal to 1.

Detailed stepwise calculation for the computation of pris given below.
Step 1: For the given correlation matrix [px] the eigen value analysis is
carried out.
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The eigen values of the correlation matrix are A; = 1.5 ; A, = 0.5 ; A5 = 1.0, The
transformation matrix is obtained as

0.707 -~0.707 0.000
[T}={0.707 0.707 0.000
0.000 0.000 1.000

Step 2: Using Level 2 method, the design point x* and corresponding [ are
obtained.

33.029 |
x*={ 4764 ;B = 2.0868
1623.47
Step 3: The two uniform random numbers v, and v, generated for first
variable, are
vi=08704; v,=0.3995

Step 4: The normal variate is

u = [2 1.{;11—)]% cos(27v4)

=-0.4254
Step 5: The sample point x, is given by

X1 =X * + Sen Wy ox,
=33.029 + (1.0)(-0.4254) 5
=30.901
Similarly random numbers are generated for random variables X, and X5 and
the values for the other two variables are evaluated as
X, =49.6598; x3=1582.928

Step 6: The value of the limit state function is
g(x) =X1X2-X3
=(30.9018) (49.6598) - 1582.928
=-48.350

Step 7: Check g(x). Since g(x) is negative, it is proceeded further.
Step 8: The equivalent mean and standard deviation of variables at the sample

point are calculated. The parameters o and u of X, following Type 1 extremal
(largest) distribution, are determined as follows using Eqs. 3.115 and 3.116.
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= = 0.2565

_0.5772
a

= 40,0. 95712
0.2565

=37.175

The probability density function of random variable X,, following Type 1
extremal (largest) distribution is given by Eq. 3.113.

fi, = worel-as (o )-exple (o -4}
The value of fXl atx =x is
i, = 0.2565 exp [-0.2565(30.9018-37.75)-exp{-0.2565(30.9018-37.75)}]

=0.004532
The cumulative distribution function of X is given by Eq. 3.114.

Fx, = expl-expl-a (n -u)}]
The value of Fy atx=x, is
} Fy, = exp [-exp{-0.2565 (30.9018-37.75)}]

I = 0.00305
Using Eqs. 11.9 and 11.10, mean and standard deviation of equivalent normal
at x, are obtained. They are caiculated as

RGY

Cer =T

lﬂ . ¢h“(0.00305)} - GBI
0.004532 '

Hy, =-0x, 0 Fx, Ol +x
= (-2.0012) o?! [0.00305] + 30.9018 = 36.3942

Similar procedure is followed to evaluate the equivalent mean and standard
deviation of variables X, and X;. They are given as

Ky, =500 i a'y,= 2.5
Hy, = 1494239 : o'y, =105.412

Step 9: The equivalent normal variables at the sample point in the normalised
co-ordinate system are obtained using Eq. 11.11
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_Xi-#x _ 305018-363942

. = -2.7445
Ty, 2.0012

5. - Xa—Hx, _ 49.6598-500 = -0.1361
2 ¥, 25 .

. - X3-Hx, _1582928-1494.239° 0.8414
T on, 105412 '

Step 10: Using the transformation matrix [T] the variables are converted into
independent variables using Eq. 11.12.

0.707 0.707 0.000| |-2.7445 -2.0369
Y =(-0.707 0.707 0.000{1{-0.1369; = { 1.8444
0.000 0.000 1.000] | 0.8414 0.8414

Variance of Y; is given by eigen value A; . Hence

oy, = V1.5 = 1.225 : ay, =05 = 0707
oy, =f10=10

Step 11: Using Eqs. 11.13 and 11.14 the probability density fy and the
sampling density hy are compuated as follows:
1

1
Jx = ( J27? 2.001x1.225) (2.5x0.707) (105.4121)
=8.14x107

LG RCRCe]
L8 1 ]

2=) 60)@3) {000) >

X 30.901-33.029)2 +(49.6958—47.64 2+[1582.928—1623.47 "
2 50 25 100.0

=3,084 x 10°

The ratio of fx and hy is calculated and stored. The process is repeated for the
specified number of simulations. The value of p; is computed using Eq. 11.2
and the statistical error using Eq. 11.4. The results obtained for different values
of specified number of simulations are given below.

S1. No. N, Pt e (%)
1 500 0.0291 10.567
ok 1000 0.032 7.178
3. 1500 0.0328 5.950
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The exact value of pr, by Monte Carlo method is 0.032. It can be obscrved tha
as number of simulation increases, the accuracy of pr also increases and
percentage error decreases. It should be noted that the set of random numbers
obtained for different starting points will be different. Hence for the same
number of simulations, the value of pr obtained will not be exactly same.

I:XAMPLE 11.4 The limit state function is given as

1

gX)= — (,\'12+X§+X§) —X4+40
Variables X; are normally distributed with mean and standard deviation of cach
variable are 0 and 1 respectively. That is, they are standard normal variablcs
The variables are uncorrelated. Determine the probability of failure by using
ISM.
The starting point is the design point obtained by Level 2 method. That is

0.250

0.250

0.250

3.997

The procedure of computation of p; is same as explained in the previous
example. It is to be noted that since the given variables are uncorrelated
standard normal variables,

x* =

ez :

where x is the sampling point obtained by generating random numbers and
using standard deviation multiplier. All the intermediate steps in the
computation for SDM = 1 for the first simulation are given in Table 11.2. The
whole process is repeated for number of simulations and the values of p;and e
are computed using Eqs. 11.2 and 11.4 respectively.

TABLE 11.2  Results of the analysis in the first simulation using ISM -
Example 11.2

Initial point Random x gx) y=z=x Fy hy
numbers
0.25 05134 02456 -02456
0.25 0.3206 0.1930 [ -0.6996 01930 | 0.431x 0.1056x
X = -6 -1
0.25 06311 08012 -08012( 10 10
3.997 0.2595 46072 46072

05278
{0.4401}
0.7832
{0.9289}
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The problem is solved for various values of number of simulations and SDM.
The results are given in Table 11.3. It can be observed from the table, that the
statistical error decreases for SDM equal to 2 at which the results are very
consistent in successive runs. The corresponding value of pr agrees with the
exact value of 0.423 x 107

TABLE 11.3  Results obtained by ISM - Example 11.4

o Number of simulations )
1000 1500 2000

SDM pe €pt Pt ot Pt Cpf
(%) (%) (%)

1.0 0326x10° 2377 0315x10° 17.54 0303x10° 14.76
1.5 0.412x10°  10.90 0.422x10° 874 0.435x10° 7.68
20 0423x10° 9.59 0.417x 103 787 0.409x10° 6.97

11.4 ADAPTIVE SAMPLING METHOD

The main limitation to the importance sampling method is the difficulty in
selecting a good sampling density. To choose such a density one needs to know
which part of the failure domain has a relatively high probability density. This
knowledge is not usually available priori and hence it is difficult to choose a
good sampling density. Adaptive sampling method (ASM) can be used to
overcome this difficulty. This technique utilises the fact that even with a poor
initial choice of importance sampling density, the knowledge about the failure
domain increases with the sampling process. Hence after each sample the
importance sariipling density can be modified for this increased knowledge and
finally a good sampling density can be obtained.

It is already said that the much prior knowledge about the important region or
the region where probability density is relatively high is not available. This may
result into the poor initial choice for the sampling density. If such a poor
density is used, the sample points generated may lie in the region where
probability density is relatively low. Thus the sample points are clustered
around an unimportant region. However, while sampling with such a poor
density some sampling points may have relatively more probability density than
that of the chosen point. Thus while sampling, the knowledge about the
important region increases i.e. the region of relatively more probability density
is known. Adaptive sampling technique makes use of this knowledge to move
towards the more useful density. For this, the sample point having more
probability density is chosen as the new centre of the sampling density. Thus
the sampling density is moved towards the more important region. Figures 11.4
and 11.5 show the poor and improved choice of sampling density respectively.
The steps involved in the procedure of computation of pr using ASM are almost
same as given for ISM except the following changes.

In Step 2, any point x, can be chosen as the starting point for mean of
sampling density. At this point, the original variables are converted into
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independent normal variables Y. The probability density at point x. ix
calculated as independent multinormal density and is taken as fi.y

)
Failure
ldeal choice
Safe
Paor choice
B 4
¢ |
0 X1 |
(0,0)

FIG. 11.4 Poor Choice of sampling density

All the steps from 3 to 11 are same.
In Step 12, after calculating fy / hy check whether fy > £,
If fx > fyu, shift the point x, to x and go to Step 3 and repeat the

whole process. Otherwise go to Step 3 directly and repeat the process
for numbes of simulations.

)(71

Fallure

Ideal cholce

Sate Improved choice

~ Poor choke

‘</

0
(0,0

Xy

FIG. 11.5 Improved choice of sampling density



Step 13: Compute p; using Eq. 11.2 and e, by using Eq. 11.4, 7 5!}' i 'f.:.;
The whole t?rooedure is shown in the flowchart given in Fig, 11.6. The
procedure of computation of p using ASM is illustrated with. m '
examples. 2l

Start

Read No. of variables, their
distributions and correlation
limit state function, No.of
simulations o be done

| ‘ s fx (X)>tmax ?

Find design point using FORM
and take it as starting point X¢

Find 1 (%)

Fmax H 'I (xc)

Sums0-0

< Doforl = No of simulations (Ng) >

Generate two random numbers
for each variable and obtain o
normal variate for edach variable

Generate o sample point X using
independent multinormal density
cenired at point Xc

—

Yes
|Find 1 (X) and hy(0)|

[sum = Sum+ te (X)/ ny (X) |

FIG. 11.6 Flow chart for ASM
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EXAMPLE 11.3 The same problem given in Example 11.1 is considered here.
gX)=X; X5-X,

Statistics of the variables are same as given in Example 11.1. Determine pr
using ASM.

Step 1:
For the given correlation matrix [px], the transformation matrix is obtained. it
is same as obtained in ISM.

0.707 -0.707 0.000
[T] = [0707 0707  0.0000
0.000 0000 1.000

Step 2:
Any starting point can be selected. However, here the design point obtained by
FORM is taken as the starting point,

33.029
X, =x*= 1 47.64 ‘
1623.47 I

At this point, original correlated nonnormal variables are converted into
independent normal variables. Mean and standard deviation of equivalent
normal at x* are

p;‘,l =37.665 v pjyz =50.0 : My, =1491.45
oy, = 2554 : ax,= 250 2 a,=108.112

The equivalent normal variables at the sample point in the normalized
coordinate system are obtained as

X1 - My, _ 33.029-37.665 _

Z, = - -1.815
o, 2.554
Xo -y =
7, = Xasdty 48500 _ 0
X, 2.5
‘Xv - ‘I, = .
z, = B3Hx, 162347149145 ) )

oy, 108.112

Using the transformation matrix, the variables are converted into independent
variables using Eq. 11.12.
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0.707 0.707 0.000| [-1.815
Y =|=0.707 0.707 0.000]4{-0.944
0.000 0.000 1.000| | 1.221

-1.951
= { 0.616
1.221

Standard deviation of Y are square roots of eigen values of [px]. They are
oy,=1225 : ay,=0.707 : oy,=10

The probability density is computed at point x* as independent multinormal
density and is taken as

1 1
( ,/27;)’ (2.554x1.225) (2.5x0.707) (108.112x1.0) *

| o297 2]

= 0.9698 x 10°

fnux=

Step 3 to Step 11 are same as in the previous case solving by ISM in Example
11.1. (They are not repeated here).
At the end ofStep 11, 3

fx = 8.146 x107 ; hy = 3.084 x 10°

The ratio of fx and hx is calculated and stored. Since fx is less than ., , the
starting point is not shifted and one simulation is over. The procedure is
repeated from Step 3 for specified number of simulations. The probability of
failure and percentage error are calculated using Eqs. 11.2 and 11.4. At the end
of 500 simulations using standard deviation multiplier equal to one, the
probability of failure is found to be 0.039 with e;;=11.4 %.

The problem is solved using different standard deviation multipliers. The
simulation is carried out for 500, 1000 and 2000 number of simulations with
different “SEED” i.e. different starting points for generating random numbers.
(Note: In all available programmes for generating random numbers, starting
point, called SEED, is to be given). The results obtained by ASM are given in
: Table 11.4. The exact probability of
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TABLE 11.4  Results obtained by ASM - Example 11.3

S S
D E Number of simulations
M E
D -
500 1000 2000
Pr Se p(’ Se Pt Se
(%) (%) (%)
1 0.0390 11.40 0.0355 7.59 0.0340 5.23
1.0 2 00335 12.58 0.0330 7.76 0.0328 5.01
B 3 00300 1269 0.0320  7.88 0.0350 4.99
1 1.0373 14.19 0.0345 9.30 0.0326 6.38
1.25 2 0.0310 1542 0.0316 9.72 0.0320 6.39
3 0.0280 14.43 0.0312  9.15 0.0340 6.06

Note: The exact prbbability of failure is 0.032 as per Monte Carlo Method

failure is found to be 0.032. From Table 11.4, it is observed that the statistical
error is found to be decreasing with the increasing number of simulations. For
2000 simulations the statistical error is very low and the results are very close
to the exact value.

EXAMPLE 11.4 Consider the same limit state function given below (11.4).

r v y2
Xs X1 X
gX) = X2X3X4—#-
Xg X7
All the variables are normally distributed and uncorrelated. The statistics of the
variables are given in Table 11.5. Compute peusing ASM.

Xy

TABLE 11.5  Statistics of variables - Example 11.4

Variable Mean Standard deviation Distribution
X 0.01 0.003 Normal
Xa 0.30 0.015 Normal
X, 360.0 36.0 Normal
X, 2.26 x 107 1.13x10° Normal
X5 0.50 0.05 Normal
Xe 0.12 0.006 Normal
X5 40.0 6.0 Normal

The results obtained by using ASM for different starting points, different seeds,
and for different number of simulations are given in Tables 11.6 and 11.7.
From the tables, it can be seen that certain minimum number of simulations are
required to get probability of failure close to the exact value. In general, as
number of simulations increases, statistical error in estimated p; decreases. It
should be noted also, that the value of standard deviation multiplier plays a
role. For this problem, it appears that percentage error is very less for SDM =
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1.25. It can also be noted that the selection of starting point affects the result in
this case. The choice of seed is not affecting the result significantly when
large

number of simulations is used. The probability of failure is found to be very
close to the exact value 0.34 x 107 .

TABLE 11.6  Results by ASM with starting point 1 - Example 11.4

s S Starting point 2 : x.=(0.015, 0.25, 300.0, 2.26 x 10*, 0.5, 0.12, 40.0)'
4 . Number of simulations
M E
D
500 1000 1500 2000
P ept pr & pr et pr By
x10* (%) x10* (%) x10* (%)  x10* (%)
1 39 41.84 427 25.75 3.74 2106  3.60  17.00
125 2 800 3038 s.21 23.81 4.58 1835 410 1557
3 4.04 30.74 3.28 19.88 3.38 13.85 330 11.43
1 235 38.16 4.13 27.18 3.91 2021 337  16.59
ILs - 2.1333 57.08 2.50 23.53 3.35 2065 331  16.72
3 7 2.72 3.80 18.60 3.85 15.16  3.60  13.56
1195 78.76 1.44 34.08 2.66 31.63 270 2683
200 2" 320 40.46 3.12 35.00 3.21 2648  2.65 2420
3130 39.73 2.56 28.73 257 2553 260  23.45
General points

The value of SDM is generally found to vary between 1 and 2.

While simulating using ASM or ISM, a suitable value of SDM is chosen by
performing a few number of simulations with different SDM values
between 1 and 2 and the best one is to be selected and it is the one with the
least statistical error. The same value is to be used for calculating pr by
conducting enough number of simulations.

Generally, while solving problems with ASM and ISM, it is suggested that
the termination criterion to stop the simulation, may be where statistical
error in computing pris less than 20 percent.

The starting point affects the convergence of pr value. For a good starting
point, the value of py converges to the exact value with less number of
simulations and less statistical error, as compared to the poor starting
point. The design point obtained by Level 2 method is a good starting
point. _

Generally ASM requires less number of simulations to evaluate p; value by
maintaining the same statistical error as that of the ISM,

For any arbitrary starting point, ASM is preferable as it is requires less
number of simulations.
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TABLE 11.7  Results by ASM with starting point 2 - Example 11.4

Starting point 2 : x.= (0.015, 0.25, 300.0, 2.26 x 10%,0.5,
0.12, 40.0)'
Number of simwulations

S
D
M

Ummwm

500 1000 1500 2000

Pr Cpt pr Cpt Pr Cpr Pr Cpt
x10% (%) x10" + (%) x10° (%) x10" (%)

386 2053 391 1428 382 1106 375 9.1l
309 1574 320 13.00 291 1051  3.03  10.09
227 1846 254 1227 280 1053 3.02  10.84

1

2

3

1 242 4761 323 2413 355 1744 347 1695
1.5 2 209 3231 287 2456 267 1875 255 1538

3

1

2

3

136 2684 290 2422 345 1777 329 1484
1.11 58.96 1.85 26.23 1.80 2177 225 2546
8.80 4599 7.27 31.93 6.00 28.31 5.63 24.45
4.40 67.06 3.75 4308 4.18 3520 396 2949

2.0

11.5 RESPONSE SURFACZ METHOD

Advanced Monte Carle simulation methods are exact and computationally
efficient from probabilistic point of view. While evaluating the structural
reliability, the maximum time is spent for evaluating structural response only.
Since simulation methods are numerical experiments carried out randomly,
they require the full analysis of the structural system for each generated set of
load, resistance and system random variables. This may result in large
computational efforts to an unacceptable level. Hence it is desirable to simplify
the whole mechanical process by a new mechanical model for evaluating the
structure/system response. While developing the new model, it is important that
it will allow an easy and efficient computation of failure function response
under loading/ system conditions but still preserves the essential features of the
structure/ system. This new mechanical model representing the original limit
state function is called response surface. e =

The representation of the limit state function by response surface should be
independent of properties of the basic variables involved. However for
improving efficiency and accuracy of the method including subsequent
reliability analysis, some prior knowledge of the stochastic properties of the
variables is to be used. In most of the cases, mean value and standard deviation
of variables are known, Use of such information will produce response surface
suitable for wide range of stochastic properties of basic variables.

The aim of the response surface is to replace the original failure function
g(X) by an equivalent function R(X) by which computational procedure can be
simplified maintaining the accaracy. The limit state surface can be represented
in polynomial form (11.8),
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RX) = a+3bX; +3eX? (11.15)
=] i=1

where X;,1=1, 2, ...... , 1 are basic variables and parametersa, b, ¢;, 1= 1, 2,

., I are constants to be determined. Here Eq. 11.15 does not contam mixed
terms X;X; , hence the function R(X) basically represents the original function
g(X) along the coordinate axes X; only. As number of free parameters in Eq.
11.15 are less i.e. 2n+1, only few numerical experiments are required to obtain
unique R(X). However this implies that, in general, sample between the axes
will not be covered sufficiently, This is improved by using information on mean
and standard deviation of basic variables while updating the R(X).

Bucher and Bourgand (11.8) suggested the way of obtaining R(X) by
interpolation using points along X;. The starting central point chosen is the
mean vector, (see Fig. 11.7). Around this starting point 2n points are generated
as X;=u;+to; ,i=1,2, ..., n, in which t is the arbitrary factor varying from 1

FIG. 11.7 Starting approximation for response surface

to 3. Using function values of original surface at 2n+1 points, the parameters a,
b;, ¢; are obtained by solving the set of 2n+1 linear simultaneous equations.
Thus first approximation to R(X) is obtained.

In the next stage, function R(X) is used along with the information on mean
and standard deviations of basic variables to obtain the estimate of the design
point. The estimate is based on the assumption of uncorrelated Gaussian
variables. This design point obtained by Level 2 method is used for
mterpolatxon tofirid the new centre point on original failure surface which is in
the area of interest ie. area from which maximum contribution to the
probability of failure is made ' (see Fig. 11.8). So the new centre point for
interpolation of R(X) can be obtained as,
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X = g+~ )bl (11.16)
g(x)-g(Xp)

X2

Fig.11.8 Upating the interpolation point for response surface

where Xy is the new centre point and Xp, is the design point obtained for first
approximation to R(X). This interpolation guarantees that the new centre point
is sufficiently close to the exact limit state g(X) = 0. The response surface is
updated by evaluating the coefficients a, b, ¢, 1=1, 2, ...., n at the new centre
point Xy. So the total number of evaluation of the original limit state equation
required is 4n+3.

The update of the polynomial ensures that the critical domain is sufliciently
covered by the numerical experiments from the full mechanical model. Once
the R(X) is found, the reliability analysis can be proceeded in any suitable way,
preferably using advanced Monte Carlo technique - Importance sampling
method or ada_piive sampling method. R(X) need not produce the exact limit
state surface in entire space but, only sign of original limit state near the design
point (i.e. in the region which contributes most to the failure probability) is
important (11.8). A simple computer program can be easily written combining
response surface method with ISM or ASM. A flow chart for RSM is given in
Fig. 11.9.

In some problems, the response surface obtained by using Eq. 11.15 may not
give sufficiently accurate mechanical model. To improve the accuracy, mixed
terms may be added to Eq. 11.15 as given below:

n n
gX)= a+ TbX; + T X+ X TdyXX; (11.17)
i=1 i=1 i*)

Various numerical and structural engineering problems solved using the
response surface method with ISM are given below. Probability of failure is
calculated using Level 2 and Importance sampling technique for both, original
failure surface and response surface and results are compared.




CSt;rtj

First approximation is the
mean vector p

)

Generate the 2n points around
this, and evaluate coefficients
ot the résponse surface.

B!

Find the design point Xp for
the response surface assuming

uncorrelated gaussian variables.

!

Evaluate g, (X) at Xp

|

Find the new center .point XN as

P

gy (M)
gx (u) -gx (XD)

AN M +(Xp-p)

1

Generate 2n points around XN
Evaluate 2n +1 coefficients at
new center point and update
response surface

FIG. 11.9 Flow chart for response surface method

361

il



362

EXAMPLE 11.5 Reliability analysis of the three bay five storey R.C.C. frame
shown in Fig. 11.10 is carried out in this example. The structure data and tho
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FIG. 11.10 Three bay five storeyed portal frame Example 11.5



statistical data of the random variables imvolved aro given {n Tublo 11,8 and

11.9 respectively. The limit state criterion is the displacement at top of the
frame (i.e. at point A) should not exceed h/350, where h is the total height of
the structure. So limit state function can be written as,

8(X) = 4.10 - 3,(A) (11.18)

where &,(A) is the function of the loads acting on the structure and material
and geometrical properties of the structure. Here all these parameters i.e. loads,
material properties and geometrical properties of the structure are random
variables. In addition to the horizontal and vertical random loads, each beam is
carrying a constant dead load of 24.50 kg/cm.

TABLE 11.8  Structure data - Example 11.5

Element No. Moment of inertia Cross section
1,4,5,8, 24, 25, 26, 28, 31, 34 L A,
2,3,6,7,10, 11, 14, 15, 18, 19 I, Az
9, 1 13, 16, 17, 20, 21, 22, 23 L As
27,29, 30, 32, 33, 35 L Ay
TABLE 11.9 Statistics of the random variables - Example 11.5
Variable Mean Standard deviation Distribution
P; (kg) 3000.0 1200.0 EX;L*
P, (kg) 4284.0 1235.20 EX; L
E (kg/cm®) 0.225E+H06 0.225E405 Lognormal
A; (cm?) 1045.15 52.25 Normal
A; (cm?) 2264.51 113.22 Normal
Az (cm?) 870.96 43.55 Normal
A4 (cm?) 1393.54 69.67 Normal
L(cm*) 0.182E+06 0.182E+05 Normal
I(cm*) 0.986E+05 0.986E+04 Normal
Iicm*) 0.105E+06 0.105E+05 Normal
Ly(cm*) 0.431E+06 0.431E+05 Normal

Correlation coefficients are pp o = pra = pr1 = 0.30

* EX;, 1. denotes Type 1 extremal (largest)

The response surface is generated and probability of failure is found out for the
generated surface using Level 2 and importance sampling methods. The results
are compared with that of the results obtained by Level 2 analysis using
original failure surface. All the results are presented in Table 11.10. It can be
seen from the table that the reliability analysis using response surface is
showing considerable computational advantage over that of the use of original
failure surface. Also, results with response surface are very close to that using
original surface.

‘M,
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TABLE 11.10  Results of the reliability analysis - Example 11.5

Using Ry (X) Using g, (X)
1. Level 2 method
Beta 3.255 3.274
P¢ 0.567E-03 0.528E-03
Computer time (CP sec) 24.90 (For RS) 239.88
0.65 (for pr)
2. Importance sampling
Number of simulations 5000
SDM 1.0
Pt 0.520E-03
eor (%) 11.28
Computer time (CP sec) 25.16 (for RS)

14.18 (for pr)

EXAMPLE 11.6 Reliability analysis for the 25 bar transmission tower shown
in Fig. 11.11 is carried out. The tower is considered as a space truss. The
structure data and the statistical data for the random variables involved are
given in Table 11.11. Failure criterion is the displacement at top (i.e. at point P
in Fig. 11.11) should not exceed h/250, where h is the total height of the
structure. For this, failure function is given by,

gX) = 0.02 - 3,(P)

Here 8, (P) is the function of loads acting on the truss and geometrical and
material properties of the structure which are random variables. Reliability
analysis is carried out for the response surface, using Level 2 and importance
sampling method. Results can been compared with Level 2 analysis using
original failure surface. All the results are given in Table 11.12.

TABLE 11,11  Statistics of the random variables - Example 11.6

Element Variable Mean Standard Distribution
No. deviation
1 A, (m?*) 6.45E-05 9.675E-06 Normal
2103 A, (m?) 2.43E-04 3.635E-05 Normal
6109 A; (m?) 3.04E-04 4.560E-05 Normal
10to 13 Ay (m?) 6.45E-05 1.290E-05 Normal
14 to 21 As (m?) 1.79E-04 2.680E-05 Normal
2210 25 Ag (m?) 2.45E-04 3.678E-05 Normal
E(KN/m?*)  2.04E+08 1.860E+07 Normal
P, (KN) 10.0 3.5 EX, L

P, (KN) 15.0 4.0 EXyp

Correlation coefficients are pAi,Aj=025 ; p Plﬂ,ﬁ2m= 0.5
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FIG. 11.11 Twenty five bar fransmission tower — Example 11.6
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Here also, reliability analysis using response surface is showing considerable
compulational advantage over the use of original surface with rcasonable
accuracy. In Level 2 with response surface analysis, it can be seen (ha
maximum time is taken for the evaluation of response surface, while Level 2
analysis is taking negligible time.

Response surface method is not to be used for the cases where explicit linnt
state functions are directly available. It is advocated only in those cases where
repetition of structural analysis is (o be carried out number of times o gencrale
the limit state function at every time,

TABLE 11.12  Results of the reliability analysis - i-xample 11.6

Using R, (X) Using g, (X)
Pt 0.934E-05 0.621E-05
Computer time (CP sec) 10.16 (For RS) 84.21
0.42 (for py)
2. Importance Sampling
Number of simulations 5000
SD Multiplier 1.3
pr 0.810E-05
% S, 12.20
Computer Time (CP sec) 10.38 (for RS)

10.41 (for pr)

11.6 ASM and ISM in SYSTEM RELIABILITY

System reliability has been introduced in Chapter 10. If the system probability
of failure is formulated as union of component failure events, i.e.

pa = P[(Zi<0)U(Zy<0)u ... U (Z. < 0)] (11.19)

then the adaptive sampling method or importance sampling method can be
applied to evaluate system probability of failure also. The method is so
developed that it evaluates the probability of failure for each component and the
system simultaneously. As a sampling density is used for a component, it is
required to use the same sampling density for system also. The sampling
density for a system is taken as the combination of all these component
sampling densities with weights w; attached to every component sampling
density (11.6). This is shown in Fig. 11.12. The sampling density for a system
is expressed as

h.y, =why +wahy+ . + wyh, (11.20)

where w; + Wo + i, +w, =1
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Fail

X4

FIG. 11.12 System sampling density
Karamchandani (11.6) suggests equal weights i.e.
W1 TWa2 T e = Wn

The procedure for evaluating the system probability of failure is very much
similar to the procedure used for component except that the sample generated is
checked for failure for not only the component (of which sampling density is
used to generate a sample) but also for all other components. If the sample
point is observed to be failed with reference to one or more components, the
sampling density for these components is updated if required. Also the
sampling density for a system is updated. The probability of failure of the
system is given by

1 N fx ()
=— Y gX)<0§-2—~ 11.21
Pi =y, Ee®0sobEe s (11.21)
The procedure of computation of probability of failure of a structural system
using ASM is illustrated with the following examples.

EXAMPLE 11.7 A structure can collapse under any one of the three limit
states whose equations are given below.

gX) =2, =X, +X; + X4+ Xs - 5.0X¢ (11.22)
8:X) = Z, =X, +2.0X; + 2.0X4 + X5 - 5.0Xs - 5.0X, (11.23)
g(X) = Z; = X, + 2.0X, + X, - 5.0X; (11.24)
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The individual variables are uncorrelated and lognormally distributed. The
statistics of variables are given in Table 11.13. Compute system failuro
probability using ASM.

TABLE 11.13  Statistics of Variables - Example 11.7

Variable Mean Standard deviation Distribution
X to X5 1349 13.49 Lognormal
Xe 50.0 15.0 Lognormal
X5 40.0 12.0 Lognormal

Here the variables are uncorrelated: hence the evaluation of transformation
matrix is not required. For ASM, any point on the failure surface can bc
selected as starting point. However to get a good starting point, FORM is
carried out and design point for each failure criterion is found out. They are as
follows:

131.281 131.616 134.900
131.281 134.90 129.878
134.90 128473 125231
x; = {131.281 X3 = {128473 x3 = {129.878}
131.281 131.616 134.900
90.484 84.22 50.000
400 59.528 81.053

A sample point is found out from the first starting point x,” using the generated
random numbers as explained in Example 11.3. The sample point (for SDM =
2) is given by

130.0149
109.3791
156.8981
X = {122.4430;
114.6321
115.6861
26.9407
The values of limit state functions are calculated by substituting the value of
sample point in Egs. 11.22 - 11.24. They are as follows:

g ()=-101.94 ;g,()=90.2152 ; g3 ()=410.9148
Since only g, < 0, the sample point fails under first failure criterion only, The

equivalent mean and standard deviation of variables are calculated as explained
in Example 11.1. They are as follows:
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[134.1642) 12.9711]
1317732 109107
132.4160 15.6508
Wy = {133.6971} oy ={122138}
132.7642 11.4347|
13.6572 33.9608
| 36.4279 | 7.9087

The independent equivalent normals are calculated as explained in Example
11.1. They are given as:

[-0.3183
-2.0525
1.5643
-0.9214}
-1.5822
3.0043 -
-1.1996

Y)

The probability density fx and sampling density hy which are multivariable
normal densities are calculated as explained in Example 11.3. As there are
three failure criteria, there are three different sampling densities namely hy; ,
hx, and hy;s .Their values are given below:

fx = 0.4092x 1072
hy; = 0.23767x10"° : hyx; = 0.20109x 10" ; hy = 0.32618 x 107°

The probbility density evaluated at x,” is taken as ;. . This is given as
fre = 0.69226 x 10”

Since the sample point Y; fails under first failure criterion only, for evaluation
of probability of failure under first failyre criterion, the term fx /hx, is used in

Eq. 11.2.

Here the system is expressed as union of three failure criteria, Hence failure
of any criterion causes the failure of the system. Thus here the generated
sample point which fails under first failure criterion causes the failure of the
system. Fcr evaluation of system failure probability, the term fx /hx.ys is used

in Eq. 11.21 where hx,, is given by Eq. 11.20. Attaching equal weights i.e. w;

=W2'—'W3=1/3,
1

1 1
hxm = -3—hxl +-§hx2 +—3—hX3
= 0.1862 x 107
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As the probability density fx at sample point is less than f. , the sampling
density is not improved and is kept the same. That means, the point x,” is not
shifted and remains same for the next simulation. Similarly using points x,"
and x5, sample points Y, and Y, are generated as explained earlier. The pro-
cedure of calculation for hxm for points Y, and Y; is as explained for Y,,

All the intermediate values are given in Table 11.14, With this the three
simulations are completed.

TABLE 11.14  Intermediate values in computing system probability of

Jailure using ASM - Example 11.7
Initial point Independent fx hy h,,, Next point
Normal point x 10" x10"  x 100
131.281 (-0.3183 0.41 24 018 131.281
131.281 - 2.0525 0.02 131.281
X;* = 134.90 | 5643 32 X, 134.90
131281y =) (9914l 131.281
131.281 | s 131.281
90.484 . 90.484
400 0043 40.0
~1.1996
Not improved
131,616 ~0.6816 0.75 20 0.16 131.616
134.90 | 6301 0.018 134,90
X, = :22233 |- 02101 27 X, = 112232
A7 Y, = 14138 0 ‘
131.616 e 131.616
84.22 [ 7 { 84.22
3207R
59.528 | shlai | 59.528 |
| 1.2098 |
) Not improved
134.90 | (~0.5013] 24 29 0.21 13490
, .
129 878 b 2956 0.017 129.878
X, = 125.231 | 03301 19 o 125.231
1298780y ) 3603t 1129.878}
134.90 | ) 134.90
().4752
50.0 i 50.0
| 2,1243
81.053 | 81.053
’ | 22274 | ‘

Not improved
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The same procedure is repeated for a number of simulations and the
probability of failure under each failure criterion and the probability of failure
of the system is evaluated using Eq. 11.21. After 500 simulations and using
standard deviation multiplier as 2.0, the probability of failure under the three
failure criteria and the probability of failure of the system are found to be,

Ps=268x10" pp = 2.98x10° Pg, = 2.65x 107

and  pg = 505x10°

where Dy is probability of failure under i" criterion.

In the above illustration, equal weight has been attached to each sampling
density. One may try by attaching different weights to each sampling densities
probably according to Ps values. But it is found that this technique doesn’t

give good results and also gives large statistical error. In general, attaching
equal weight to each sampling density is found to give better results with less
statistical error.

The procedure for evaluating system probability of failure using ISM is very
much similar to the procedure of ASM. In ISM starting point is found out
using FORM and the simulation is carried out. The difference between ISM
and ASM is that the sampling density in ISM once selected is not improved
during further simulations . That means once the starting point is taken it is
not changed throughout the simulation process. The remaining procedure for
ISM is similar to the ASM procedure.

The method of computing system reliability using the method explained in
Example 11.7 has been applied to roof trusses and frames (11.10).

11.7 APPLICATION-OF ASM TO STRUCTURAL SYSTEMS

Application of ASM to compute reliability of a steel truss is illustrated.
Reliability analysis of a steel truss, shown in Fig. 11.13 is to be carried out and
the system reliability is to be found out. The truss is located in Mumbai and the
height of the building is assumed to be less than 10m. The truss has been
designed as per Indian Standard specifications (11.12, 11.13). The loading
cases considered for design are as follows:

1. Dead load + Live load

2. Dead load + Wind load

Formulation of safety margin equation
The safety margin equation is basically formulated as
M=R-§
where R is a resistance and S is an action. The resistance and action are further
modelled as explained below.
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FIG. 11.13 Roof truss

The action S here is developed force in member due to dead load, live load,
wind load. Thus S is expressed as

S = Bf(W,D,L) (11.24)
where
B = Uncertainty due to assumption in analysis
f(W, D, L) = Force in member due to dead load, live load, wind load

The resistance R of a member is a resistance in tension or compression. R is
expressed as ;
R =AY,{(M,F,P) (11.25)
where

A = Cross sectional area of a member

Y, = Nominal value of yield strength

M = Material variability

F = Fabrication variability

P = Professional Factor
Statistics of strength variables

The length of each member is assumed to be statistically independent of

each other, The yield strength of a member is expresses as

Y=Y.MFPA (11.26)
where A is assumed to be deterministic. The statistics of variables M, F, P are

given in Table 11.15. For compression member buckling is considered by
taking into account the effective slenderness ratio.

o= 2] \/Z (11.27)
r n VE

KL
=
E = Modulus of clasticity
o = Slenderness constant

where

= Effective slendcrness ratio
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The critical strength in buckling, Y is obtained from the following equations
depending upon value of .

Yo=(1-0250%)Y ifo <1.414 (11.28)
Y, = Lz ifo > 1414 (11.29)
(1] ;
Statistics of load variables

i) Basic wind velocity
The truss is located in Mumbai for which the mean, standard deviation and
coefficient of variation of 50 year life time maximum wind speed are
4y =32239m/s oy =3417m/s &y = 0.106
The model for wind load can be expressed as (Refer Eq. 5.49)
W=ApKCEGV? (11.30)
where A = Projected surface area, p = Air density, K = Uncertainty in
modelling of load, C = Pressure coefficient depending on geometry of a

structure, E = Exposure coefficient and G = Gust factor. The nominal design
wind load is given by

Wi =Aq pu Ka CuE, G, Vi (11.31)
The variable is considered as ratio of probabilistic wind load fo the nominal
wind load and is following Type 1 extremal (largest) distribution.

W___ ApKCEGY?
W Ani’nKnCnEnGnVn2

(11.32)

Considering A and p as deterministic, mean of W/W,, is given by

2
: &M&[&) o
W = .

Hw )=k C.EG, |7,
1 -
S w,) = [51% +08 + 55 + 6% +4513}/’ (11.34)

The combined mean of (K E C G) is taken as unity and the coefficient of
variation of C, E and G are given as

86c=0.12 g =0.16 86=0.11

The nominal wind speed for Mumbai is 40.04 m/s. Using the same in Egs.
11.33 and 11.34, :
RV 2
" . . MJ = 0.648
Hor ) [V,,] (40.040

1
Sww,) = [(0-12)2 +(0.16) +(0.11)? +4(0.106)2]/2 = 0312

ii) Live load
For 50 year life time maximum live load, the following data are taken.
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B = 065 & =03
Ly
The live load is following Type 1 extremal (largest) distribution

iii) Dead load
The mean and coefficient of variation for dead load D are given as follows.
£~ 105 8p=0.1

n

iv) Uncertainty due to assumption in analysis
From analysis point of view, members of a structure are assumed to be
connected by pin jointed frictionless hinges; but each joint has some rigidity
which actually decreases the force in a member. The statistical data for the
variable B is taken as

us = 0.909 8 = 0.1

The statistical data of all the variables are given in Table 11.15. In the table,
D, , L, and W, , are the nominal values of D, L and W respectively. Failure of
a member in direct tension or compression is called as a failure mode in a
determinate roof truss. The analysis of truss is carried out and the forces in
members under the load combination of (a) Dead load + Live load (b) Dead
load + Wind load are determined. The truss, being determinate, fails even if
one member fails. After analysing the truss and knowing the force in each
member, the safety margin equation for each member is written. Using the

TABLE 11.15  Statistics of variables (Roof truss - Fig. 11.13)

Variable Mean Standard deviation  Distribution
D/D, 1.05 0.105 Normal
L/L, 0.65 0.195 Gumbel
W/W, 0.648 0.312 Gumbel

¥ 305.29 N/mm? 22.77 N/mm? Normal
B 0.909 0.0909 Normal
In tension
M 1.0 0.0898 Normal
F 1.0 0.05 Normal
P 1.0 0.001 Normal
In compression
M 1.0 0.0925 Normal
F 1.0 0.05 Normal
P 1.0 0.016 Normal

statistics of variables given in Table 11.15 and FORM, the reliability index is
calculated for each member. It is found that the value of § for members 9, 12,
22 and 23 are very small compared to the values of § for the remaining
members. Hence, the members 9, 12, 22, 23 will only contribute significantly to
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the system probability of failure. Safety margin equations are given in Table
11.16 only for these dominant members. Probability of failure of these membe .+
is evaluated using ASM, System reliability is calculated using ASM with values
of standard deviation multiplier and number of simulations 1.0 and 1000
respectively as explained in Example 11.2. The same problem is solved using
ISM also and the system reliability is evaluated. Using FOPM, the value of B
for each dominant member is determined and using these results, bounds on
system probability of failure are established as explained in Chapter 10. These
results are also given in Table 11.17. From the table it is seen that the
probability of failure of the truss is about 0.006 and the corresponding value of
B is 2.522.

TABLE 11.16  Safety Margin Equations (Roof truss - Fig. 11.13)

Failure = Member Safety Margin Equation Failure in
Mode No.
1 9 497.76 MF P Y+B(68276.25 D-131245W)  Compression
2 23 347.4 MF P Y+B(29261.25 D-74524.77W)  Compression
3 12 497.76 M F P Y+B(58522.5 D-106404.7TW)  Compression
4 22 3474 M F P Y+B(19507.5 D-49683.18W) Compression

TABLE 11.17  Results by Adaptive Sampling Method
(Roof truss - Fig. 11.13)

Failure Reliability

mode  Index (B) Probability of failure
FORM Importance Adaptive
Sampling Sampling
P Pr S. Pr S,
(%) (%)
1 2.537 0.00562 0.00596 12.22 0.00584 11.34
2 2.722 0.00325  0.00407 17.41 0.00412 15.36
3 2.962 0.00154 0.00208 23.23 0.00188 19.96
4 3.587 0.000168  0.000629 21.16 0.000618 19.54

System failure probability bounds are 0.00578 < pg < 0.00629
System failure probability obtained by ISM ps = 0.00605
System failure probability obtained by ASM ps = 0.00594

In this chapter, advanced reliability methods have been explained and
illustrated. It must be remembered that in general, when explicit functions for
limit states are available, response surface method is not to be used. For
decision making problems, application of FORM is sufficient. Only in cases
where more accurate values of probability of failure are to be estimated, SORM,
ISM and ASM are to be used.
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EXERCISE

For the problem 8.6(a) under Exercise in Chapter 8, determine the
probability of failure of the RCC beam in shear using (a) ISM, (b)
ASM and (c) response surface with ISM

(Ans. pr=4.1x 10%)
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112 For the problem 8.7(ii) under Exercise given in Chapter 8, determine
probability of failure of the steel column under combined bending and
axial load using (a) ISM, (b) ASM and (c) importance, surface with

ASM
(Ans. pr=1.22x 10%)
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Fatigue Reliability

12.1 INTRODUCTION

The word “fatigue” refers to the behaviour of materials under the action of
repeated stresses or  strains as distinguished from the behaviour under
monotonic or static stresses. Fatigue is defined as follows (12.1)

3[< “Fatigue is defined as the process of progressive localized permanent
structural change occurring in a material subjected to condition,
which produce fluctuating stresses and strains at some point or points
and which may culminate in cracks or complete fracture after a
sufficient number of fluctuations”.

This definition implies that fatigue process occurs over a period of time or
usage and operates at local areas rather than throughout the entire component
or structure. The ultimate cause of all fatigue failures is that a crack has grown
to a point at which the remaining material can no longer resist the stresses or
strains and sudden fracture (i.e. the separation of the component into two or
more parts) occurs.

The fatigue life of a structure is determined by the sum of the elapsed cycles
required to (i) initiate a fatigue crack and (ii) to propagate the crack from sub-
critical dimensions to the critical size. The size of the crack at the transition
from initiation to propagation is usually unknown and often depends on the
point of view of the analyst and the size of the component being analyzed. For a
research worker using microscope to measure crack size, it may be on the order
of crystal imperfection or location of a 0.1 mm crack while to the engineer on
the field, it may be the smallest crack that can be detected with the available
equipment for nondestructive tests. Depending on the nature of the structure
and the service loads applied to it, either crack initiation or crack propagation
or both phases may be important in assessing structural performance.

The need to consider fatigue damage in the design of structural components
arises when the service loading conditions involve cyclic or pulsating
variations. Fatigue can be classified into two categories; low cycle fatigue and
high cycle fatigue. For low cycle fatigue, plastic strain predominates and
ductility controls performance. For high cycle fatigue, elastic strain dominates
and strength controls performance, The dividing line between low and high
cycle fatigue depends on the material being considered; but usually falls
between 10 and 10° cycles. In the case of transmission towers, offshore




structures and bridges, their vibration amplitudes arc within the
range. They come under high cycle fatigue (their life span cxcess of 10* syele
For many components in high cycle fatigue, the fatigue lifc is dominated by

NS™ = K

Stress range S

Cycles to toilure N
FIG. 12.1 S-N Curve obtained from constant amplitude test results

crack initiation. On the other hand, when stress fluctuations are high or cracks,
) notches and other stress risers are present, fatigue crack initiates quite early and
: a significant life portion of the service life may be spent propagating the crack
to critical size.
The classical approach to fatigue has focussed on the S-N diagram (Fig.12.1)
which relates fatigue life (cycles to failure, N) to cyclic stress, S, which may be
specified in terms of stress amplitude or cyclic stress range. Common terms
used with S-N diagram are fatigue life, fatigue strength and fatigue limit. The

Ronge
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!
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Cycle 4 s
0'? = 2

FIG. 12.2 Nomenclature for constant amptitude loading
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fatigue life. N, is the number of cycles of stress or strain of a specified characler
that a grven specimen sustains before failure occurs. There are four possible
basic parameters, which can be used in the definition of stress cycle to which a
fatigue test specimen is subjected Referring to Fig. 12.2, they are

() The minimum stress in the cycle S,
(i) The maximum stress in the cycle Spax

(ii1) The mean stress : Sy, =% (Siiie * Sid (12.1)
(iv) The stressrange : S; = Spax - Suin (12.2)
Graphical representation of above is shown in Fig. 12.2. The cycle is fully

defined when any two of these four quantities are known. Following definitions
are also used when discussing mean and alternating stresses.

Stress amplitude S, = %(Sm— Ssid (12.3)
y Syt
Stress ratio R = —mm (12.4)
max
. . Sa
Amplitude ratico A = — (12.5)
Sm

Most design engineers find it convenient to think in terms of minimum stress
and maximum stress in the cycle, which in many cases corresponding to dead
load stress and dead load plus live load stress respectively. Some times the
cycle is referred to by the stress ratio R which is defined as the algebraic ratio
of minimum stress to the riaximum stress. Tensile stress is being taken as
positive and compressive stress as negative. Bascline fatigue data usually are
obtained by cycling testing specimens at constant amplitude stress (or strain)
until the specimen fails. Such tests are repeated several times at different stress
levels to establish the S-N curve. Generally, in an S-N curve, both S and N are
plotted on logarithmic scales and the resulting curve is a linear representing the
mean of the data (Fig.12.3). The results do not lic on a single line but are
scattered on each side of it. Hence the line represents the mean of the data. This
scatter is inherent feature of the fatigue tests. In general, the degree of scatter
tends (o increase as the applied stress is decreased and also tends to be greater
as the stress concentration effect decreases. Certain materials have an
endurance or fatigue limit which is a stress level below which the material has
an infinite life. For engineering purposes, the infinite life is usually considered
to be one million cycles. Knowing the endurance stress and the ultimate or
yield stress of the material, available data may be converted into a Goodman
diagram (12.2) to account for the effect of mean stress. As value of mean stress
increases, life (in terms of number of cycles) of the specimen will decrease. The
fatigue base line S-N data are from the case of polished smooth specimens
loaded under fully reversed stress. The endurance limit S,, obtained from this
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' test is to be modified for design taking into account effect of various factors
! ‘viz. size, type of loading, surface finish, surface treatment (notches, residual

logNzlogK-m log$

log S

fogN
FIG. 12.3 S-N Curve on log-log plot

(notches, residual stress) temperature and environment. The effects of these
factors are quantified experimentally through modification factors which are

applied to S, whichis obtained from the baseline S-N data.

Se = (S en) Kiize) Kioad) Kewrtim) (12.6)
where K,;,, is the modification factor for the size effect. The modification
factors are supposed to be applied to determine endurance limit and the
modification for the reminder of the S-N curve is not clearly defined. However,
a conservative approach is to use these modification factors on the entire S-N
curve.

The fatigue strength at any particular life is defined as the stress at which the
S-N curve cuts the particular value of N. Further the curve being a straight line
in log-log plot, a linear equation can be formulated to predict the value of S for
any given value of N and vice versa. Fatigue is one of the principal modes of
failure in bridges, offshore structures pressure vessels etc. However, most of the
civil engineers in India may not know how to check the safety and evaluvate a
given bridge under fatigue. Presently there is no Indian standard code for
fatigue design and evaluation of a bridge. Even though considerable
development has taken place in reliability analysis and design, most fatigue
assessment procedures, currently used, do not take advantage of such
developments. Instcad, typical fatigue assessment guidelines for structural
elements require that engineers refer to stress range cycle life curves (S-N
curves). Fatigue strength is determined from S-N curve drawn approximately
setting at two standard deviations below mean curve obtained from laboratory
testing. This approach does not consider the inherent variation in loading
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models. The evaluation of safety also does not consider the interaction between
resistance and action. Hence this way of checking does not provide consistent
evaluation or safety of joints. This has been observed by Albrecht and Moses
(12.3,12.4) while checking reliability of structural joints of steel bridges
designed as per AASHTO (12.5) specifications.

Performance of a structure in fatigue generally depends on number of cycles
of load, stress-strain history, operating environment, physical properties of
materials, geometry at the crack initiation locations and other factors. In
practice, informations on these input variables are never precise, certain and
complete. Most of the parameters are subjected to significant random
variations. The fatigue process is clouded with uncertainties arising from errors
in idealization and incomplete information. Engineering decisions can be
improved if efforts are made to identify the sources of uncertainty and quantify
them. In view of these uncertainties, achievement of absolute prevention
of some fatigue damage is impossible. Therefore, risk must be considered in
structural design against fatigue and fracture. Since many of the parameters
involved in fatigue analysis and design, as said earlier, are random in nature,
the relevant measure of structural performance is the reliability which is taken
as

Reliability = 1 - pr

where pr is the probability of failure. The application of structural reliability
theory to design has several advantages (i) The use of reliability (or probability
of failure) is the most meaningful index of structural performance (ii) It
provides a systematic method of treatment of uncertainties (iii) Provides a tool
for making rational decisions (iv) All components can be designed to a
balanced reliability level thereby producing an efficient system (v) The
technique permits the sensitive studies of uncertainties with the greatest impact
on the solution to be evaluated (vi) It is a tool for establishing partial safety
factors to result designs with uniform reliability under different design
situations (vii) It is a tool for updating standards (viii) It is a tool to develop an
inspection criteria or remedial measures on existing structures.

Evaluation of fatigue reliability of joints in bridges appears to have started in
1981 (12.1, 12.3). The problem has been initially formulated on S-N curve. In
1982, the ASCE Committee on Fatigue and Fracture Reliability (12.1)
presented a series of papers dealing with the state of art on fatigue reliability
aspects and introducing fatigue reliability models for reliability analysis and
development of criteria for assuring integrity against fatigue and fracture using
principlcs of structural reliability. Afterwards, the attention of research workers
was diverted to evaluation of fatigue reliability using system approach based on
S-N curve. Fracture mechanics approach is essential for the development of
inspection and maintenance strategy. Research was carried out in applying
fracture mechanics approach for the evaluation of fatigue reliability of bridge
structures. The formulation of fatigue reliability analysis and design based on
S-N curve and fracture mechanics approaches are presented in this chapter.




" The most commonly used model for fatigue behaviour under constant
- amplitude loading is of the form ‘

N §" =K (2.7

intercept on S axis respectively. N is number of cycles to failure and S is the
- applied stress range. When Eq. 12.7 is plotted on log-log scale, the S-N
- relationship has a linear form (Fig. 12.3) as given below.

logN = logK -m log S (12.8)

12.2.1 Equivalent Stress Range , -~

In practice, the loading on structures does not take the form of a cyclic
constant amplitude stress. Rather the loading is a sequence of variable
amplitudes and frequencies, which do not repeat themselves. For variable
amplitude loading the concept of equivalent stress range based on Palmgren-
Miner’s (P-M) cumulative damage hypothesis is generally used. It states that
- “failure occurs when the total sirain energy due to n cycles of variable
~amplitude loading is equal to the total strain energy from N cycles of constant

~ amplitude loading. That is the cumulative damage, D, is written as

B B
D=3% D=3 ni/N; (12.9)

i i
where D; is the damage incurred at stress level S; , n; is the number of stress
cycles at stress range level S; and N; is the number of cycles at constant stress
range level §; (from S-N curve) to cause failure. B is the number of stress range

blocks. D is generally taken as 1 at failure. Equivalent stress range is calculated
as given below (12.6)
If Ny is the total number of cycles in the life of the structure, then number of

cycles, n; , in the stress range block i is given by (Fig. 12.4)
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FIG. 12.4 Histogram and probability density function for induced stress range
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n = N{pg(sj) As]. (12.10)
where ps(s; )is the probability density function for induced stress. Using Eq.
12.10 in Eq. 12.9.

B . A
D= ¥ N lPsb(I-f.)-\al (12.11)
] 1

i=1

From Eq. 127,
N,’ S K/S:n

Substituting the same in Eq. 12.11

B N
D=3 — S"[ps(s)As]

i=1

N B
= — ¥ 8§ [ps(s)as)
K =
N
= — i 12
= E(S™) (12.12)

E(S™) is read as expected value of S™. For continuous random variable S, as
As - 0, Eq. 12.11 becomes

o m
D J' NS™ pg(s)
K

V]

_ N g
= E(S™) (12.13)

If S, is the equivalent constant amplitude stress range for random variable
amplitude, then
N 1

K s

ds

(12.14)

If D is assumed to be equal to one,
S, = [B(S™)"" (12.15)

If variable amplitude stress range history is available in the form of histogram,
then

S, = [E p S pm (12.16)

Where p; is the frequency of occurrence of the ith stress range. If
Si= ¥ Sy (12.17)
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where ‘P, is the ratio of the mean value of the stress range block i to the design
stress range and S,4 is the allowable design stress based on design load, then

i=1

B 1/m
S,={ Y B ¥ } Srd (12.18)

In 1983, Albrecht (12.3) presented a lognormal format method of calculating
reliability of a structural detail of a highway bridge, maintaining the concept,
the resistance is given by number of cycles to failure and the load by the
applied stress range history. Load spectra in the form of stress histograms is
replaced by a lognormal distribution of equivalent stress ranges. The fatigue
properties of a detail are represented by an S-N curve. At any point S on the
mean regression line, the fatigue life considered as resistance, is found to be
lognormally distributed about the point with mean pg = log N and standard
deviation oR =ojog N. This defines the resistance. This is shown in Fig.

12.5.
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|
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|
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1
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]
1
1
1
i

Number ot cycles WQ)

FIG. 12.5 Transformation of resistance

12.2.2 Load Curve

Field measurements of actual stress ranges by the application of live load or
actual load from loadometer surveys are generally available in the form of a
histogram of stress range (or‘truck weight) versus frequency of occurrence. For
development of load curve, stress range histograms recorded on several bridges
are required. For each stress range histogram, S, is calculated. This replaces
that histogram and provides a point for the load curve. Calculation of values of
S, for all histograms and plotting them on a vertical line through Ny results the
load curve. Ny is the total number of cycles estimated to occur in the design life
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of the structure. Mean value of S. and coefficient of variation of S, arc
computed. On S-N curve (Fig.12.5) plotted on log-log scale, point d represents
mean value of log S, along a vertical line through log N4. For lognormally
distributed S., standard deviation of log S.. g s, , IS given by

Tlog s, = [0.4343 log (1 + 6412 (12.19)

This is called as standard deviation of load, (action or load effect) o . Hence
dg. represents coefficient of variation of S,. The prime added to Q represents
that it 1s measured along vertical line.

12.2.3 Transformation of Resistance

Calculation of reliability requires that load and resistance are expressed in
terms of the same basic quantities i.e. either cycles to failure or stress range.
That is both load and resistance curves are to be plotted on the same axis.
Hence, in the present case, one of the curves is to be transformed. Transforming
the resistance, when distribution of resistance is plotted along the vertical line
through point b (Fig.12.5), the points with the same survival probability must
lie on the same line parallel to the mean resistance. From geometry, it is clear
that

Tlog N
m

op =2R = (12.20)
m

og indicates the standard deviation of resistance measured along the vertical

line. The prime added to any symbol indicates a quantity measured along a

vertical line in Fig. 12.5 (Note : If load curve is transformed, oq = mab) . The

distance between the mean resistance and mean load, measured along the
vertical line d-b, in Fig. 12.5, is given by

' ' 1
BR-Hg = — (UR - HQ) (12.21)

Reliability index is given by

. HM
ﬂ—o_M

L g - g
p:gﬂk—#o

(O"Q + a}g )” 2
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(log N - log Ny)/ oy (12.22)

where

[(mayeg s,)° +(o10g N)*1V2 (12.23)

at

If one is interested in evaluating design life for specified reliability index g,,
it can be calculated as follows. Using Eq. 12.22,

logNg =log N - 8, oy (12.24)
Using Eq. 12.8, and substituting for log N,
Log Ny = (log K - B, oy) - mlog F,, (12.25)

Here F, is the allowable equivalent stress range. The above equation can be
rewritten as

100og K - fyoy)
Ny = —_(—F_)"-'—_— (12.26)
re

For the known value of Ny from the actual field data, the value of F,, can be
calculated for a given B, . The method developed has been applied to designs

meeting AASHTO specifications (12.3). Computation of S against fatigue
failure criterion based on the. above method is illustrated in the following
examples.

EXAMPLE 12.1 For a particular joint or detail in a highway bridge, the
value of K and m from test results are

K =037x10%and m = 3.0

The coefficient of variation of N is 0.24. From the field data, mean value and
coefficient of variation of equivalent stress range S, calculated from 100
histograms are 36.5 N/mm® and 0.114 respectively. The actual number of
cycles for a 50 year design life is estimated to be 4.56 x 10’ cycles. Determine
the probability of failure of the joint against fatigue.

The resistance mean S-N carve plotted on log-log scale is shown in Fig. 12.6.
The position of the actual design point d and load curve are also shown in the
same figure. Using Eq. 12.19, standard deviation of log S, is calculated.
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FIG. 12.6 S-N curve for example 12.1

Tlog 5, =[04343 log (1 +0.14%)] 2

=0.0494
Here log S, is considered as load (action). Hence
0Q =Olog 5, =0.0494
Similarly, using Eq. 12.19,
Tlog N =[0.4343 log (1 +0.24%)}/2

=0.1028
Here log N is considered as resistance. Hence

OR =0jog N =0.1028
Using Eq. 12.23,
oy =[(m log S, )% + (log N)?]"/?

= [(3 x 0.0494)% +(0.1028)211/2 =0.1804
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At this given value of S, = 36.5 N/mm? the actual number of 3
joint can withstand is obtained using the resistance mean S-N curve, It I :im

by,

logN = log K -31log S,

log (0.37x10'%) - 3 log 36.5
6.881

N = 7.603 x 10° cycles

The reliability index g is obtained using Eq. 12.22 for given Ny = = 4.56 x 10,

nnn

ﬂ=logN-logNg

ot
_ 6.881-6.676 _ 0205
- ot - 4

The numerator of the above expression is.qqual to 2. alc;g N - That is
50205 20108 N
- 01804 03804

=1.136

The fatigue specifications for bridges give the allowable stress range as a
function of type of detail and number of loading cycles Ny They specify
allowable S-N line which is set at two standard deviations, 2 og , to the left of
the resistance. The spwtﬁcauons do not make any allowance for load
variability. Ewrea , i j v A

EXAMPLE 12.2 Consider the same problem in Example 12.1. The allowable
design S-N curve is given by (12.7),

log N = 0.2306 x 10'* -3 lag Sy

The value of K for design S-N curve, K4, can be obtained from the mean curve
by using the following equation (12.7).

Ks = K)o A*
where d = 2, when design curve is drawn at two standard deviations from the
mean curve and A = 0.7893

Ka = (0.37 x 10'%) (0.7893)° = 0.2306 x 10"
The mean S-N curve and allowable (dcsngn) S-N curve are shown in Fig. 12.7.

If the detail is to be desngncd for 2 x 10° cycles, the desngn stress is given by the
point e in Fig. 12.7.

log S 5 [log 0.2306 x 10'* - log 2.0 x 10%]

S, = 48.672 N/mm?

This is the hypothetical design point. To locate the actual design point, d, one
must find equivalent stress range, S,, and the actual number of loading cycles,
Ng estimated from the data. Let us assume that the gross vehicle weight
distribution based on lodometer survey yielded.
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FIG. 12.7 Mean and design S-N curves on log-log-plot- Example 12.2

=Zpiy = 035

(0.35) ' S

= 0705 Sy

(0.705) (48.672) = 36.5 N/mm’
Corresponding value of Ny (from design S-N curve) is

I

P
Then Se

1]

Log Ny
Ny

log 0.2306 x 10'? - 3 log 36.5
4.56 x 10° cycles.

Generally fatigue design specifications do not reflect the actual fatigue
conditions that occur. High stress range is specified with low number of stress
cycles to produce a reasonable design. But in actual field conditions, fatigue
stresses are well below this value (equivalent stress is very much lower) ; but a
much higher number of cycles. For the above value of Ny, point on the design
curve is given by the point d in Fig. 12.7. This is the actual design point. The
actual number of cycles that the joint can withstand at S, = 36.5 N/mm? is

7.603 x 10° cycles (Refer Example 12.1).
The reliability index p is given by

o 10w (7603 5 106) - log (4.744 x 10%)
gy
_6881-6.676 0205
Tt oy
20108 N

ay
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If the coefficient of variation of load is zero, i.e. oq = 0, or-if this is not
considered,

then oy =oyeg N . Hence

201 N
Tlog N

B= = 2

The value of probability of failure corresponding to g = 2, is
f=01(=2)=00227=23%

In the conventional fatigue design, the uncertainty in load is not taken into
account. Because of this, for different values of Jdq =djgs. the values of S

will differ significantly. For example,

For Slogse = 0.114,
o, = 01804, g =1.136
Similarly for jeg 5. =0.25,
oy = 0337, g = 02716

Hence the conventional design will not give consistent level of safety in
different design situations,

In the regular design, one would have selected the value of design stress
range 48.67 N/mm’ for the desired life 2 x 10° cycles. This is given by the point
e in Fig. 12.7. The detail would have been designed for this stress. But the
actual strength of joint is given by point e, for which the number of cycles that
the joint can withstand is 3.207 x 10° cycles. The distance e-e;, is equal to d-d,
and is equal 10 2 03y \y . Value of # is equal to 2 when uncertainty in load is

not taken in to account.

EXAMPLE 12.3 The mean resistance S-N curve and the allowable resistance
curve, shown in Fig.12.8, for a detail are given by '

v

logN = 1log(0.37x 10'%) - 310g S

log N

log(0.2306 x 10'%) - 3log S
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FIG. 12.8 Determination of allowable design stress range — Example 12.3

From the load history, equivalent constant amplitude stress range is equal to
0.75 S,4 and the number of loading cycles is 4 x 10° cycles. It is given :

6N = 02, bg.= 012

Determine the allowable stress range for design based on equivalent truck
weight and for design based on design load for the desired level S, = 2.
Using Eq. 12.19,

Ologse = [0.4343 log (1 +0.12%)]' = 0.052

Olog N = [0.4343 log (1 +0.2%)]'* = 0.086
Using Eq. 12.23,

o, =[(3 x0.052)* + (0.086)"]'* = 0.178

Reliability index is given by Eq. 12.22

log N-log N
g = R8T,

gt

For the desired reliability level g
log N -log Ny
The design life Ny is
log Ng = logN - g o,

Po =12,
2x0.178 = 0.356

Using the mean resistance S-N curve,

log Ny = (log K-mlogS,)- g o,
log (0.37x10'%) -3 log S,-0.356
11.212 - 3 log .

]
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Using the above equation, S, can be calculated for given Nq = 4 x 10°, Honce,
S % [11.212 - log (4 x 10%]

S, = 34.408 N/mm’
This is the alivvable equivalent stress range for §; = 2. Knowing S, = 0.75 x
S.4, the allowable stress based on design load

g, = 34408
wd 0.75

For S, = 34.408 N/mm? the corresponding value of N from resistance curve is

= 45.88 N/mm’

log N = log (0.37x10'%)-3 log 34.408
= 11.568 - 4.61 = 6.958
N = 9.078 x 10° cycles
12.3 LRFD FORMAT

In LRFD format( Refer Chapter 9) uncertainty in random loading can be taken
care of explicitly. Adoption of the format makes the designer to determine
partial safety factors to resistance, yg , and partial safety factor to load, ys , for
the desired reliability level. Smith and Hirt (12.8) proposed a safety format
similar to LRFD format for calibrating European convention for constructional
steel works (ECCS) 1985 standards, For safety

SRI"/R 2 Ys Se (12.27)

The fatigue strength Sy is defined by the S-N curve corresponding to the
detail/joint which is evaluated. The equivalent constant amplitude stress range
Se 1s calculated from the resulting stress histories due to the application of
design load spectra and applying the reservoir or rain flow method of cycle
counting. The safety factor yg reflects the uncertainty quantified by

e variations in effects of fabrication, workmanship, size, shape, local stress
concentration and fatigue crack shapes

e size of detail, residual stresses, metallurgical effects.
Total uncertainty in fatigue strength is represented by Jy, .
The partial safety factor ys reflects the uncertainty

e in estimating the effects of stress analysis
o due to errors in fatigue model and use of Miner’s rule

¢ in developing stress histories due to loads and determining stress ranges
and counting number of cycles using rain flow or reservoir method

e in estimating the equivalent constant amplitude effects of the design
spectrum.,
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Total uncertainty in load (action) is represented by &g, . In the lognormal

safety format all variables are assumed to be lognormally distributed. When
limit state equation is written in terms of stress ranges, Eq. 12.22 becomes

_ log Sg -log S,
(0R)? +(5)?]2
If the resistance curve is defined in terms of design S-N curve drawn at
20155 N from mean S-N curve, then the above equation becomes

= log Sp +20p —log S,

(12.28)

(o im)
Taking logarithm on both sides of Eq. 12.27
log Sg = log S, + logys + logyr
Substituting the same in Eq. 12.29, reliability index expressed in terms of
partial safety factors becomes,

v ‘, \
5= log 75 +log yr +20g (12.29)
(o /m)

For given vz, vs and m, one can compute 5 ifSg and &g, are known from the
field data.

Since in fatigue design, design S-N curves are drawn at mean minus two
standard deviations o take care of varation in R, yz is taken as one.
Considering the same Smith and Hirt (12.8) have found that g varies from 2 to

3.5 at the end of service lifc for fatigue designs of details designed as per
ECCS. With the above format it is possible to establish partial safety factors yg
and ys directly for the specified reliability index g, . This approach has been

used in updating fatigue provisions of Swiss code for steel
design. This method of calculating g for given yg and yg and (ii) calculating
vr and ys for desired g, is illustrated below.

EXAMPLE 12. For a given detail used in a bridge, it is found from the field
data that the values of 6y and 55, are 0.36 and 0.2 respectively. For the

particular detail, m = 3, the code has specified yp = 1 and ys = 1.8.
Determine .

Using Eq. 12.19, standard deviation of log S, and log Sk can be computed.
TlogSe = [0.4343log(1+0.22)]12 = 0.086

OR  =0lgN =[0.4343 log(1+036%)2 =0.15

OR = o‘R/m

= 0.15/3 = 0.05



Using Eq. 12.23,

[(3 x 0.086)° + (0.0647)%]
0.298
The value of g is calculated using Eq. 12.29.

g = log 1.8 + log 1.0 + 2x 0.05
- (0.298/3)

oy

=33
EXAMPLE 12.4 A detail is to be designed for a reliability level of g, = 2.5.
Determine s fixing yg = 1. It is given
bdge =02, 6 = 036, m=3
From the prevxous example for: the above values of &g, and &p.
- Glog s, = 008 oogr =0.15;, =0.298

Using the above values and given values of Sy and m in Eq. 12.29,

_ logyg +log(1.0)+2(0.15/3)
(0.298/3)

2.5

log 7S =0 148
it YS '? 1ﬁ407

Hence the partxal safety factor for stress range is 1.487. Similarly for different
valus of &g, and P, corresponding values of ys can be calculated. Variations ys

with &g, and g are shown in Fig. 12.9. It can be noted that as 8s increases,
¥s increases for given . Again for given 8s,, as p increases ysdecreases.
22

Op=0-05
20
18}

IR

1.4

1.2|

"oo 0.1 0.2 0.3

Fig. 12.9 Variation of 7S with 554
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So far failure function has been formulated based on number of cycles or
stress range. In general limit state function for evaluation of fatigue reliability
can be of any one of these when S-N curve approach is used.

1) pe=P[T; <T,] (12.30)
ii) pc =P(D¢ <Dy) (12.31)
iii) pr =P(N <Nr) (12.32)
iv) pr =P(S, <8g) (12.33)

Here T¢ denotes actual time to fatigue failure and T, is the service life (desired
life) of the structure with which is deterministic. T is a function of several
random variables. D¢ is the cumulative damage at failure and D, is the specified
damage. N is the actual number of cycles that the detail/joint can with stand
and Ny is the total number of cycles in time T, (desired number of cycles).
Moses et al (12.9), in 1985, have dealt with modelling of bridge loads and its
application to fatigue design of bridges in accordance with AASHTO
specifications using damage based failure criterion.

12.4 APPLICATIONS IN BRIDGES
Ravi and Ranganathan (12.10) started the formulation for fatigue reliability
assessment from Eq. 12.30. For a particular bridge in service, general
formulation of limit state equation for a bridge is explained below.
Let the limit state equation under fatigue loading is defined by

Z=Y- Y, (12.34)
Where Y is the life at failure and Y, is the specified life. Both Ycand Y, are in
terms of years. Limit state is reached when Z is equal to zero. The damage
accumulated per year, Dy, using Miner’s law (Eq. 12.9) is written as

J
D}‘ = Zn,-/N,-
i=1

where j is the number of distinct stress ranges. Alternatively, D, can also be
written as

D= ¥ _L_ 12.35
y E] NS (12.35)

by taking each stress range into summation. Here, N(S;) is the number of cycles
to failure at a constant amplitude stress range S, From the S-N curve,
represented by Eq. 12.7, it can be written as
K
N g; (12.36)

Substituting this value of N in Eq. 12.385,
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1 al S 14
D, = 7 TS (12.37)
1=1
The true stress range for any truck crossing of a bridge depends on several
variables and may be written as

S, = Wi(l+ig ) (ig ) (8) (h) (12.38)
Zx
Where W; = i th truck crossing gross vehicle weight,
iz = impact factor
g = lateral girder distribution (expressed as percentage of gross

span moment or force carried by single member)
h = factor to account for closely spaced or multilane presence of
vehicles which amplify the load effect

z, = the actual section modulus or cross sectional area

, 1, = theinfluence factor which converts the load to load effect.

Influence factor is defined as

i = absolute maximum load effect (12.39)
total load on span

Representing the volume in total number of equivalent stress cycles in a year by
V, Dy is written as

3 m
.V [a+in ) @®™] o Wi
i [ 2 ] i (12.40)

The term within the summation in the above equation can be represented by
equivalent fatigue truck weight, W, which is given by Eq. 12.16

I/m
n
W, = [Z’ffi w;“] (12.41)
i=1

where ny, is the number of load categories, f; is the relative frequency of the load
category i and W; is that part of the load acting on the structure corresponding
to maximum load effect for category load i. Here, maximum load effect can be
bending moment or shear force etc. Hence Eq. 12.40 can be written as

p,= I:W“l(l"'iﬁ: () (8) (h)]’ s
X

The equivalent number of cycles per year, V, can be expressed as
V = (Nr)(Ng) (12.43)
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in which Ny is annual traffic (truck traffic in vehicles per day x 365 or train
traffic) and N, is equivalent number of stress range cycles per passage of train
or truck crossing. Thus Eq. 12.42 1s rewritten as

] ; 3
Nt Neq [Weq(1+ig) (i) (g) (h
p, - N1 Y [ q +uz)<u.>(g)< )] T

Y represents the life at failure when the cumulative damage of Miner’s model
is equal to one. However, this cumulative damage is seen to be a random
variable, its value lying anywhere between 0.84 to 2.06 (12.1). Hence
cumulative damage at failure, X, is treated as a random variable. Knowing the
damage accumulated per year as Dy , Y¢can be written as

3
¥, = 2K [ Zx } (12.45)

Nt Ngg Weq (1 +ig) (y,) (8) (h)

Hence the limit state equation 12.34 becomes

3
7 = X K Zx - ¥ (12.46)
N1 Ngg Weq (1+i5) (i) (8) (h)

The S — N curve intercept, K , is expressed as

K=N§
where N, is the desired life in cycles. It is calculated as
N, = Nt Ny Y, (12.47)
where Ny and N, are the mean values of Ny and N,,. Hence
= 3
Nt Ngg Y. AW
g7 = ZX 0 2 L -y, (12.48)
N1 Neg Weq(I+i5) (igi) (8) ()
Let A = NoNp (12.49)
N
B = =2 (12.50)
Neq
and L = l+g (12.51)

where A and B represent the volume ratio and equivalent cycle ratio
respectively. I is the combined impact factor which takes care of live load and
impact effects. Hence Eq. 12.48 becomes




=rs

3
X Y, 2y S
Z= 8 X -Y, (12.52)

AB [weq lﬁi,,gh] .

The above equation represents the limit state equation in terms of actual values.
This equation is normalized as follows. Defining

= Zx (12.53)
Z4 .
in which z, is the section modulus as per design. This is given by
= Wa(1+iga)igg ha 8a (12.54)
Srd
Using Eqgs. 12.53 and 12.54, the expression for Z (Eq. 12.52) becomes
- 3
PWy( hg S
7= X Y | P Wal ‘Hffi)lfd 8d hd -y, (12.55)
AB Weq (1+if)igi Srggh
Let
w = Woeq/Wy (12.56)
1+ig
= s ) 12.5
Iy 1+ig ()
P o da (12.58)
1
G = £ (12.59)
Ed
Su = S/84 (12.60)
H = hhy (12.61)
Using the same Eq. 12.55 becomes
3
XY, PS,
- - 12.6
< AB [W.Ip ILGH] ¥ (1260
The failure surface equation becomes (ie Z = 0),
3
X PS
Z=—|—2 -1 =0 12.63
AB[W.IF ILGH] e

The above equation represents the failure surface in normalized format. The
random variables included in the above fatigue criterion contains material
terms X, P and S,, truck variables, W, A, B, I} and H and analysis uncertainties
Ir and G. Once the probability distribution and parameters of all random
variables are known, probability of failure can be evaluated using any reliability
method. This is demonstrated with examples.
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EXAMPLE 12.5 The fatigue reliability of a riveted railway plate girder bridge
of span (L) 32 m is to be evaluated. Here reliability for a joint in tension flange
at mid span is computed. The joint detail comes under category class D as per
British standards (12.7). Statistics of variables are given in Table 12.1. In the
case of railway bridges, the factors G and H are not considered in Eq. 12.63.

TABLE 12.1 Statistics of variables - Example 12.5

Sr. Variable Mean ) Median o
No

1. | X - Model uncertainty 1.04 | 0.300 | 0.999971 | 0.293560
2. 0.855 | 0.100 | 0.851055 | 0.099751

P - Sec. Mod. ratio

3. | S - Stress range ratio 1.380 | 0.142 | 1.365799 | 0.141292
4. | A - Volume ratio 1.000 | 0.100 | 0.995037 | 0.099751
S. | B - Equivalent cycle ratio | 1.000 | 0.011 | 0.999940 | 0.011000
6. | W— Weight ratio 0.536 | 0.100 | 0.532842 | 0.099751
7. | Ir— Impact factor ratio 1.000 | 0.150 | 0.988936 | 0.149166
8. | I — Influence factor ratio | 0.986 | 0.111 | 0.979981 [ 0.110660

The mean value of sectional modular ratio is first computed as follows.

Assuming that the live load, given by IRS bridge rules (12.11), holds good
for fatigue design also, the design value of section modulus is calculated from
Eq. 12.54 deleting factors G and H.

24 = Wa(l+igg) (igg)

- (12.64)
Sed

But
Su= (KN)'™

From British standards (12.7), for design S — N curve of class D detail,
K=152x10"%and m=3.0
For a désired life of 2 x 10° cycles,

1/3
12
s =['52_x“35__] = 91258 N/mm’
2x10

For plate girder of span 32 m, design values of Wy and I obtained from IRS
bridge rules (12.11) are,

Wy = 1.437x10° N;
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For single track spans,

. A 8
=015 +{——
'nd {6+L}

ForL=32m,ig= 0.361
For simply supported uniform distributed beam,
span 32 _

' 4m
Hence
‘ _ 1.437x10% (1+0.361) (4x10%)
A il 91258
| = 8.569 x 10’ mm’
g But the section modulus provided by Railways is
’ %= 733 x 10 mm ,
Mean value of z, is taken as the provided section modulus. Hence the mean
value of P is
5. 1:330x 1077 - 0.855
8.569x 10
Considering Eq. 12.63, let
R=X@®S)’ (12.65)
and Q = AB (W I IL) (12.66)

in the problem all variables are lognonnallv distributed. Their parameters are
given in-Table 12.1. Using gl}em parameters of lognormally distributed R and
Q can be calculated as follows.

R = X PS)® (12.67)
= (0.999971) (0.851 x 1.366)> = 1.57
Q=ABWT 1)’ (12.68)

= 0.995 x 0.99994 (0.533 x 0.989 x 0.98)° = 0.137

Using the given values of coefficients of variations of variables, values of
omr and oy  are calculated as follows.

o2 o =tl(1+62)1+52)° 1+62)°] (12.69)
= ¢n(1+0.3%) (1+0.1)°+ (1+0.142%°]

OmR = 0.596

ol & =zn[(1+5,§)(1+5§)(1+5§, )9(1+o‘12r )"’(1+¢>‘[2L Y1 (12.70)

= ¢n [(140.1%) (1+0.011%) (1+0.1%° (1+0.15%° (1+0.111%°]
omqQ = 0.64
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Since R and S are lognormally distributed, (R/S) is also lognormally
distributed. Hence reliability index is given by (Refer chapter 6).

ln[g]
i
2 2
JalnR +0'an
o] 157
0.137
V0.5962 +0.642

This is the fatigue reliability index of the joint in the tension flange at mid span
of the bri=dge.

= 2.788

EXAMPLE 12.6 Fatigue reliability of the lower chord member L, L3 of the
riveted truss bridge of span 36 m, shown in Fig. 12.10, is to be evaluated. The
statistics of the variables are given in Table 12.2.

The mean value of section area ratio is computed as follows. The design value
of sectional area z4 is

_Wa(+igg)(igd)
Sed

TABLE 12.2 Statistics of variables — Example 12.6

Sr. Variable Mean o Median B,
| No.
L X - Model uncertainty 1.040 | 0.3000 | 0.999971 | 0.293560
2. 0.985 | 0.1000 | 0.985 0.099751
P — Cross sectional area
ratio
3, S - Stress range ratio 1.380 | 0.1420 | 1.366 0.141292
4, A - Volume ratio 1.000 | 0.1000 | 0.995 0.099751
5 B - Equivalent cycle ratio | 1,000 | 0.0065 | 0.99994 | 0.00647
6. W - Weight ratio 0.513 | 0.1000 | 0.510 0.10
7. Ip - Impact factor ratio 1.000 | 0.1500 | 0.989 0.150
8. — Influence factor ratio | 0.005 | 0.0990 | 0.990 0.099

From Brmsh standards (12.7), for design S — N curve of class D detail,
K=152x10%and m=3.0
For desired life of 2 x 10° cycles,
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llo
— 6x 6m ponels )
—f
(a) Tnmbddgoeonﬂguutlon-Spm-:iBM.
97
i .
'l: 6m 3

(b) Influence ine fof force in member LL,

Fig. 12.10 Truss bridge - Enmpl.‘1‘2.10

1/3
12
-[‘_52_"&] = 91.258 N/mm’

For truss bridge of 36 m, design values of W4 and Iy are obtained using IRS
bridge rules (12.11). They-are

Wa = 15955kN;

iy =034
The influence line diagram for force in member L; L, is shown in Fig. 12.10.

Using this
a2 LW ) !
a=\5* 5 | %t
=0.643
.
Hence z4= 1595:5 x10” x(1.34) (0.643)

91.258
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= 1.507 x 10* mm?
But the area provided by Railways is
z, = 1.484 x 10* mm®
Mean value of z, is taken as the provided sectional area. Hence the mean valuc
of Pis

4
p-lAMXI0° 9848

1.507 x 10%

For the known or assumed &y, median of P and standard deviation of ¢n P

can be calculated. They are given in Table 12.2. The procedure of further
calculations is same as given in the previous example. The median values of R
and Q are

R = (0.999971) [ (0.985) (1.366)]>

2.397

0.995 x 0.99994 (0.51 x 0.989 x 0.990)

0.124

Value of o, g is the same as calculated in the previous example i.e.

Q

OmR ™ 0.596

Using Eq. 12.70,
o  =¢n[(1+0.099751%) (140.00647) (140.1%° (1+0.15%° x

(1+0.099%°)
o Q = 0.623

Hence the reliability index is

o 2397

f=—eeOl28 - 3435

\’0.5962 +0.6232

This is the value of fatigue reliability index for the member L, L; of the riveted
railway truss bridge.

12.5 APPLICATIONS IN OFFSHORE AND SHIP STRUCTURES
Lognormal format

Wirsching (12.12) has formulated the fatigue reliability problem of welded
joints in offshore structures and given a closed form expression to compute p¢
assuming lognormal format. If f, is defined as the average frequency of the
cycle, that is

Nt

L= - (12.71)
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then cumulative damage D, using Eq. 12.13, can be written as
D= (fLKI) E(S™) (12.72)

where Nr is the total number of cycles in time T, If spectral approach is used
for analysis of random process and if it is assumed that the process is
stationary, Gaussian and narrow band, then (12.13),

£, E(S™) = A(m) (2¥2)™ (.‘22 +1) ,_EI 5 f; ol (12.73)
i=
where f; is the frequency of wave loading in i th sea-state and o; is the root
mean square (RMS) stress process in the i th sea-state. f; and o; can be
calculated from the given spectral density function W; (f) for the fatigue stress
range. r; is percent of time in the i th sea-state, and 4, is a correction factor to
be used for the narrowdand assumption. It is computed by calculating D; from
rain flow analysis and comparing it to the narrow band assumption. Wirsching
(12.13) has found that A (m) =~ 0.86 form =3 and A (m) ~ 0.76 for m = 4.38.
Instead of spectral approach, if Weibull model is assumed for long term
distribution of stress range S, then

LNk
Fg(s) =1 - e_xp[-(%) } §20 (12.74)

where u and k are parameters of the distribution. The weibull shape parameter
k varies from 0.5 to 1.4 for offshore platforms and is equal to one for ship
structures (12.12). If Ny is the total number of cycles in service life T, long term
design stress range, S.q4, is defined as

P[S >S4] = ﬁ (12.75)

This is the stress Sy that is exceeded, on the average, once every Ny cycles. S4
is also called as “once in a life time” stress.. Hence using Eq.12.74,

Fs(Sw) = P[S < Sul

]
2 Lo s (.L_) (12.76)

u

Using Eq. 12.75, it can be written as

k
e | ol To g 4 L]
lexp[(“)JlNT

S =u[fnN;]™
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Or u=Sq[enNg| "
If S follows Type 3 extremal (smallest) distribution(Weibull), S" atso follows
the same distribution with mean,

E(S™ = u" r[%n) (12.78)

Using Eq. 12.77 in the above equation,

(S:)™ [ ¢n Np ™ r[% % IJ

1

E(Sm)

E(SII\)

1l

A(m) (S)™ [¢n Ny ™ r({‘_—nj (12.79)

Miner's rule states that failure under variable stress range occurs when D = |
But random fatigue experimental results show that the critical value of the
cumulative damage at failure, Dy, is not always close to 1.0 ; but in fact varies
widely. Therefore, Dy is taken as a random variable which quantifies modelling
crror associated with Miner’s rule. Failure can be defined as the event D > D¢,

If T denotes time to fatigue failure and letting D = Dy, the basic damage
expression Eq. 12.72 can be rewritten as

Dy K
T= —L — _ (12.80)
B™ £, E(S™)

where B is model error in estimated stress range. That is, if S is the estimated
stress range, actual stress range = B S Since D¢, k and B are random
variables, T is also a random variable. If T, is the service life of structure,
fatigue failure of a joint occurs when T < T,. Then

pr= P(T<T (12.81)

Failure function is
B()=T-T, (12.82)
Here, T, is deterministic. If statistics of random variables D; , K and B are

known, B can be calculated using Level 2 reliability method. If Dg, K and B are
lognormally distributed, then
én [ 1]
Ty

T 1

g = (12.83)

where

1/2
omT = [en{(1+s,§r)a+s,%)a+s,§)""}] (12.84)
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P il (12.85)
B™ f, E(S™)

Using the above approach, Wirsching (12.12) demonstrated the computation of
fatigue reliability of welded joints in offshore structures.

The model parameter B which is a random variable can be split into several
factors, as given below. which contribute to the overall variation (uncertainty)
in B Let

B = Br Bs By By By (12.86)
where

Br = uncertainty due to fabrication and workmanship

Bs = uncertainty due to sea state description

Bw = uncertainty due to wave load prediction

By = uncertainty in predicting nominal loads

By = uncertainty in estimation of hot spot stress
concentration factor

The above factors are the sources which contribute to the overall uncertainty in
the estimation of fatigue stress. Any other factor can be included. If the
coeffocient of variation of each variable is known, the overall variation in B can
be computed.

2 _ g2 2 2 2
o5 =0} +6% +5% +5% 46 (12.87)

2
By
If the variables are assumed lognormally distributed, the parameters B and
o B Of the lognormally distributed B can be found out as follows.

B =By Bg By By By . (12.88)

_[.2 2 2 2 2 Ju2
TnB “["zn B "9 By Tt By TPtmBy Tt BH] (12.89)

or &2 =[(1+5§F)(1+5gs)(1+sgw)(1+agN)(1+5§H)-1]”2 (12.90)

B,is the median of B; . Wirsching (12.12) has suggested B about 0.7 and
Sp about 0.5 in evaluating fatigue reliability of joints in offshore platform.

Values of Dy and dp, equal to 1.0 and 0.3 respectively have been recommen-

ded. The procedure of computation of fatigue reliability of a joint in offshore
structure is illustrated with an example.

EXAMPLE 12.7 Determine the reliability of a welded joint in an offshore
platform using Wirsching’s approach assuming all variables are lognormally
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distribgtedA It is given that for a .'%0 year life, long term stress range is 3¥3.3
N/mm-~ (That is S,y = 383.3 N/mm"~) and long term stress range follows Weibull

distribution. Following data are also given.

T, = 20 yr d k

m = 3 : o

K = 1.9365x 10" . Sg =

b, = 1.0 : dp,

B = 0.7 ' 513 = 0.50
AMm) = 0.86

Mean value of S™ s first calculated using Eq. 12.79

E(Sm) - )“ (m) (Srd)m [fn NT ].m/k F(.Ikﬂ 4 ])

= 0.25 hertz.

Substituting the given values, each term in the above equation, is calculated as

follows.

= 41

Nr=f, Ts

0.25 x 20 x 365 x 24 x 3600
1.575 x 10° cycles in 20 years

3/069
[enNp /% = Pn(l.S?leos)I

= 2.836x 10°
(Sa)™ = (3833 = 56314010
Hence mean value of S™ is
E(S™ = (0.86) (56314010) (2.836 x 10 ) x 41
5629.3
f,E(S™ = 0.25x5629.3 = 1407.33
Since all variables are lognormally distributed, using Eq. 12.85,

5 b,k
B™ f, E(S™)

_ (1.0)1.9365x10'%)
(0.7 1407.33)

=129139 yr
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Using Eq. 12.84

Tpnt = [én{(] + sgf) b+ 51%) (1 k 63)"2 Hl/z
O tnT = [z,, (1 + 0.32) (1 + 0.732) (1 + 0,52)93/2

= 1,588
Using Eq. 12.83, the reliability index is calculated.
5 129210.39
Y
=262

Using the lognormal format explained above, it is also possible to determine the
allowable (design) stress range for required service life of the structure and
target reliability level. This is illustrated in the following example.

EXAMPLE 12.8 Determine the minimum allowable stress range for 20 year
life, for the design of a welded joint in an offshore platform for a reliability level
of B, = 3 against fatigue. All the variables are lognormally distributed. Long
term stress range follows Weibull distribution. Following data are given.

Ts = .20yr. 4 k = 069
m = 3

F, = 0.25hertz L A(m) = 086
K 1.9x 108 . dx = 107
b, = 10 ‘ ép, = 03
B = 07 : Bp = 05

Using Eq. 12.83
T =Ts exp [Bo 41 ]
Using the same in Eq. 12.85 -
B (fo Ts )exp(ﬂo U'tnT)

For long term stress range following Weibull distribution, Eq. 12,79 gives
E(S™). Using the same, the expression for design (allowable) stress range for
given B, becomes
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B,k
o) AmB™ exp(6s 0tsr )1 241

The various terms in the above equation are first calculated. The value of
o a1 > USINg Eq. 12.84, is )

[ln (1 + 0.32) (1 + 0.72) (1 + 0452)9}]/ ;
= 1.579
r(ﬂﬂ):r(iﬂ)ﬂu
k 0.69
explB, o gar )=[3) (1.579)] =114.09
f,Ts = 0.25x20x365x24x3600

Sra = [n(f,T5) VE (12.91)

T ¢nT

= 1.575x 10°
Substituting the above values and other given data in Eq. 12.91,
13
13
- Ln (1.575x108)]1/0'69 0 Aal i .
(1.575::10 ) (0.86)(0.7)" (23.52) (41)

(70.592) (4.437)
313.2 N/mm’

This is the design stress range or allowable stress range for 20 year service
period for the required reliability level B, = 3.

Weibull format

Here N and long term stress range are assumed to follow Weibull distribution. If
N 1s a random variable denoting the number of cycles to failure in variable
amplitude fatigue loading and if it is assumed that N follows Weibull
distribution (Type 3 extremal smallest distribution - refer Chapter 3) with
parameters u and ky . then (12.14)

kv = Bw) '™ (12.92)
fhy = I‘[%H) (12.93)

It is 1o be noted that Eq. 3.133 is approximated by Eq. 12.92 and Eq. 3.131 and
Eq. 12.93 are same. Cumulative distribution of N is given by Eq. 3.130.

u

k.
Fy (n)=1—cxp{-(l] '\} nx0 (12.94)
If n= N7 . failure occurs when N < Ny . Hence

pr = P[N < Ni]
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i S

If pr < < 1, the atove equation can be approximated. For py <<1,

&
(A2)" s,

N
Or ll=‘(p—-ﬁ;-
Ve

Using the above equation in Eq. 12.93, the mean value of N is given by e

Ny r[ﬁ + 1] .
= N (12.94)
s f /KN

Assuming Miner's Tule is applicable and D = 1 at failure, for safety
ES)" s E& (12.95)

where parameters K and N in S-N curve, are random variables with mean px
and py respectively. Using Eq. 12.94 in Eq. 12.95

N
Ny E(S™) r(n + LJ
kn

Py = 1 (12.96)
If kn =~ 8x)"*, then
(5~)—1.os
Ny E(S™) F(l + ;'-]
pr = N (12.97)

HK

Expression for E(S™) is given by Eq. 12.79 assuming Weibull distribution for S.
In the above treatment, ky is a function of 3y . To compute 8y . let the fatigue
model be

= fK §™ (12.98)

where the parameter f accounts for the scatter in the constant amplitude S-N
data. Using Taylor's series expansion, approximate value for dy is given by

8% = 8% +(um)? (8,07 +6F + (um tnpuy)? 63, (12.99)
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Uncertainties in workmanship and fabrication are also included in &; . Once
overall variation in N is determined, probability of failure can be evaluated
using Eq. 12.97. Munse et al (12.15) analysed fatigue reliability of ship details
using Weibull format.

Using Weibull format an expression for design stress range S,y can also be
written. If pg, which is equal to P [N < Ny ], is specified, then Eq. 12.96 can be
rewritten as,

Np E(S'")F[l +;L

N) g (pf)l/k,v

Hx
Assuming long term stress range follows Weibull distribution, the expression for
E(S™) given by Eq. 12.79, can be used in the above equation. Hence

N r(l + -LJ
ky {

A(m)(Spg)" (enNpy™'k l‘(ﬂ + 1]]=(pf)“"~
bk k

Rewriting the same equation for Sy,

1/m
s, - |4 (pf)”':” I (12.100)
‘Nr T(l + m) Am)[en Ny T r(% +1)
But from the mean S-N curve,
ﬂf_=(§)'" (12.101)

Nt

Here § is the value of stress obtained from the constant amplitude mean S-N
curve (from the test results). Using A(m) = 1, Eq. 12.100, can be rewritten as

1/ m
Sy [ Sz ' )
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Let
I/m
1Vky
Ry = (py) 1 (12.102)
F(HE
-1/m
£= Ny (2] (12.103)
Then
Sa=RES (12.104)

Munse (12.15) calls R¢ as reliability factor and £ as random load factor. Hence
to get the design stress range, the stress range obtained from mean S-N curve is
to be multiplied by Ry and £ . Here, the idea is to reduce the equivalent stress
range by reliability factor. The equivalent stress range is found by using the
mean value of the fatigue life for calculating stress range from the S-N curve.
The reliability factor contains the term 8y (ky is related to 8y ) which covers
the uncertainty of all the factors in resistance and the term p; which contains the
desired level of the exceedance of design life. The random load factor connects
the constant amplitude equivalent stress range for the loading to the once in a
lifetime design stress. For ship structures, k is generally found to be 1. If the
same value is used,

¢ =(tnNp)T(m+1)7V/"

Using the same, White and Ayyub (12.67) have determined the design stress
ranges for details of ship structures.

EXAMPLE 12.9 The design stress range is to be suggested for the fatigue
design of a welded structural detail in a ship. Determine the design stress range
using Munse's approach based on Weibull format for the desired reliability level
of 0.999 for a design life, Ny , of 10° cycles. It is given:

o = 1.137 : m = 7.0

K = 7.4 x 10° (Mpa units) for mean S-N curve.

Ny = 10° in Eq. 12.103.
1-0.999 = 0.001. It is known

Since design life is given as 10° cycles, Ny
Required reliability level = 0.999. Hence Py
N Ss*" =K
Using the given values of Ny and K,

1/7
74 x102!
§ =|—%—
10

= 95,79 N/mm?
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The value of ky is calculated using Eq. 12.92

kn = Gn)' %
k—‘—:(l.m)‘ 08 11487
N

Using Eq. 12.102, the value of reliability factor is calculated.

1/m 17

(PflllkN | (ooon:!487
1 iy 1
i | ER——
r(”k,\,] ( 11487)

Taking the value of k as 1 in Eq. 12.103, the random load factor is
=in(Np)[Clm + )"

on (10“){1‘[(7) sl

(18.42) (0.2959) = 5.45

=03187

Hence the design stress range for reliability level of 0.999 for a life of 10 cycles
1s

Su= S)R &)
= (95.79) (0.3187) (5.45)
= 166.38 N/mm"

12.6 FRACTURE MECHANICS APPROACH

Application of Fracture Mechanics for modeling fatigue crack growth
propagation is well established (12.2. 12,16, 12.17). Fracture mechanics
provides the methods by which techniques of applied mechanics can be applied
to structures in the presence of a crack. In majority of fatigue situations, the
crack will occur under elastic conditions., Hence the size of the plastic zone at
the crack tip would be small compared to the crack size, thus making way for
using Linear Elastic Fracture Mechanics (LEFM) concept. Inherent assumptions
are small displacements and general linearity between stresses and strains. The
behaviour of a cracked component is characterized by stress, crack size and
structural dimensions. The effect of these parameters is modelled by defining
Stress Intensity Factor (SIF), which is deterimined as

k=Y(a)S\ma (12.105)

in which a is the crack size. S is the stress acting on the component and Y(a) is
a geometric function depending on the shape of the specimen and crack
geometry.
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There are, generally three models of loading which involve different crack
surface displacements (12.2) in fracture mechanics study. They are

e Model: Opening or tearing mode,

¢ Modell; Sliding or in-plane shear, and

e Modelll: Tearing or out-of-plane shear.

Mode I is the predominant loading mode in most of the structures (12.2). For an
infinite plate subjected to uniform tensile stress (Mode I), SIF is given by

k=Sma (12.106)

At the moment of failure, the value of SIF reaches a critical value known as
fracture toughness which is a material parameter. Fracture toughness represents
the ultimate ability of a material to resist progressive crack extension. This
property of a material has to be determined experimentally. It is seen that
fracture toughness decreases with increase in specimen thickness upto a certain
limit beyond which it almost becomes a constant.

One of the important parameters required for application of fracture mechanics
is the crack size which can be suitably assumed or obtained by field
measurements. The parameters involved in fracture mechanics studies, like
fracture toughness, stress range, crack size, cannot be quantified exactly. There
is always a certain amount of uncertainty in these parameters. Hence the
principles of structural reliability can be made use of for estimating the
probability of failure of a structure. Here a method for finding fatigue life is
explained using principles of LEFM as applied to fatigue.

It is well known that fracture mechanics gives a better picture of fatigue crack
growth than empirical S-N curve approach. In FM approach, Paris law (12.18) is
used for modelling crack growth. The concept of equivalent stress range for
representing the variable amplitude stress history is used.

Fatigue crack propagation is modelled using the concepts of LEFM. The crack
growth rate is a function of stress intensity factor range which is given by

Ak = Knax - Knin (12.107)

where k.. is the maximum SIF and k., is the minimum SIF. The rate of
fatigue crack propagation follows Paris crack growth law (12.18) given by,

da
w=C (aky (12.108)

in which a is the crack size, N is the number of cycles, C and n are crack
growth parameters. C and n have to be determined experimentally. Figure
12.11 represents the typical crack growth rate curve. The curve has three distinct
regions. Region I begins with a threshold value of SIF range, A ky, , below
which crack does not propagate. Region Il is the zone in which the plot is linear
where Paris law holds good. Region III has a steep slope and the curve
approaches the maximum stress intensity factor range which is equal to the



416

fracture toughness of the material. The steep gradient indicates unstable crack
extension.

Crack growth rate,log da/dN

-1 3T
Siress intenslty ronge log &K

Fig. 12.11 Regions of fatigue crack growth

The general expression for stress intensity factor range is

Ak=Y(@)Sra (12.109)

in which S is the far field stress range from applied load. In actual situations, the
stress range is not of constant amplitude, but of varable amplitude and
frequency. For such a case equivalent static stress range, S, is determined, and
the same is used in Eq. 12.109. Hence stress intensity factor range, A k, becomes

A k=Y(a)Seyra (12.110)

Y(a) depends on the dimensions of the component. For various shapes and crack
configurations, equations for determination of SIF are available (12.2, 12.19,
12.20). Once the expression for SIF is known, fatigue propagation life can be

determined from Eq. 12.108 by separation of variables and adopting numerical
integration. The fatigue life

a
f
N:jda

a, C (k)"

(12.111)
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where g; is the initial crack size and a, is the final crack size. N is the number of
cycles required for the crack to grow from a; to a¢. Using Eq. 12.109 in the
above equation,

a

I/ da_ _ _CcNST (12.112)
a.E(a)J?Jf;

For constant stress range S, and Y(a) constant (that is Y(a) = Y ) during crack’
growth from a; to a; over N cycles, the above equation simplifies to

NS™ = 1 ] (12.113)

m m_m/2| ™_, My
(2 l)CY % "12 _a}

This correspond to an S-N curve N S™ = K and suggests that the constant K
can be expressed as a function of more basic quantities. Final crack size using
the above equation becomes,

2/(2-m)

ayp al('"%)+(1_%)c(yse JzI' N (12.114)

For stress cycles of varying Amplitude, Eq. 12.113 may be used as S-N curve
equation and reliability analysis can be carried out as explained earlier under S-
N curve approach.

For reliability analysis two separate types of failure criteria can be used.

i) Failure occurs when the crack developed exceeds the predetermined or
specified critical size a, . The limit state function is written as

Z=2a -2 (12.115)
This criterion is based on the concept that when the crack has developed to the
size a. , it becomes unstable and the component is assumed to fail. This comes

under serviceability limit state.

ii) Failure occurs when the stress intensity factor K at the leading edge of
the crack exceeds the fracture toughness K . The limit state function is

Z=-K-K
=K. -Y(@) S {za (12.116)
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The resistance is characterized by the material parameter K, . The criterion
comes under ultimate limit state. If small variance approximation is uscd,
rchiability index is given by (12.1),

L’n[ K, __.]
SN2
B 0.637 S (ma ) | (12.117)

1/2
|i ‘ ]

Hence P can be calculated if statistics of K. , S and a are known. Here K,
means the sample mean value of K .

For the development of inspection strategy and maintenance, it is necessary 1o
know the number of cycles required to propagate the crack from a to a crack
size ac . The general expression for stress intensity factor range Ak is given by
Eq. 12.109. Y(a) depends on crack shape, size and other factors. Sometimes Ak
is generally written as

Ak=k k; ks ky...... S Jra (12.118)

where k; are correction factors for crack shape, free surface effect, finite width
effect, stress gradient effect etc. Equations for stress intensity factors are
available for a variety of problems (12.2, 12.19, 12.20). The expression for SIF
being known, the fatigue propagation life can be determined from Eq. 12.108 by
separation of variables and adopting numerical integration. Hence fatigue life,
N, is given by

ay
T ... (12.119)
U
a C(Ak)
The final crack size is calculated using Eq. 12.110
2
1| K
i [Y(a)S,] (12.120)

where K_ is the fracture toughness. Equation 12.120 is to be numerically solved
since Y(a) is a function of a . Newton Raphson method can be used. The scheme
of computation for a; is as follows.

i) For the problem on hand, appropriate expression for SIF is selected.
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ii) Knowing the initial cracks size and the fracture toughness, the final
crack size is computed using Eq. 12.120. In the expression for SIF, g,
is substituted for a.

Monte Carlo Simulation

The variables involved in the scheme of computation for N are random variables
in nature. Hence the number of cycles to fatigue crack propagation will also be a
random variable which brings the concept of probability of failure. Monte Carlo
technique is generally used for computing probability of failure for various
desired number of cycles. The scheme of computation is as follows:

i) Knowing the distribution and parameters of random variables
considered (say a; , m, K, , model parameter attached to the calculated
stress range etc.), random values are generated for each of the
variables.

ii) The final crack size, a;, is computed using the generated values at the
given stress range level and using Eq. 12.120.

iii) Knowing a; and a;, number of cycles elapsed for the crack propagating
from a;to ar is determined from Eq. 12.119.

iv) The desired life in terms of cycles, N, , being given, the limit state
function is

Z = N-N,
in which N is the number of cycles computed in step (iii).

V) Steps (i) to (iv) are repeated for a number of times say, n, , to get an
ensemble of realizations for Z.

vi) The probability of failure is then calculated as
Py _i"’L (12.121)
s

where n¢ is the number of times Z < 0 during simulation. Reliability index is

taken as

p=-0"(py)
The number of simulations, n, , is fixed on the Schooman's error criterion (Refer
Eq. 7.37 in Chapter 7).

Considerable work has been done on the fatigue rehablhty evaluation of
riveted railway steel bndges in India (12.23, 12.24), welded steel bridges in
U.S.A. (12.22) and marine structures (12.21, 12.25, 12.26) and application of
fatigue reliability to offshore platform inspection (12.27, 12.28).
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EXERCISE

Determine the fatigue reliability of a detail in a bridge designed as per
LRFD format. It is given:
8r = 0.36 : 8se =0.15 : m=3
Yr = 10, Ts = 1.536
(Ans. p=3.5)2

A detail is to be designed for a reliability level of By = 3.5. Determine
ysfixing yg = 1.0. Itis given :
Bse =0.25 ; dr =0.36 ; m=3

( Ans.ys = 2.056)

Determine the fatigue reliability of a welded joint in an offshore
platform using Wirsching’s approach for a 20 year life and long term

‘design stress range Sg = 383.3 N/mm?®, It is given:

Ts = 20yr : k = 069 - AMm) = 0.79
m = 442 ‘ Jo = 0.25herz

£ = 922x10" - 5 = 135

B =07 8 = 0.5

D¢ = 1.0 . op, = 03
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Long term stress range follows Weibull distribution and all other
variables are lognormally distributed,
( Ans. p =2.09)

Determine the design stress range of a welded detail in a ship using
Munse’s approach based on Weibull format for the desired fatigue
reliability level of 0.999 and for a design life of 10° cycles. It is given:
8y =0.78 : m=3.71
K =2.53 x 10'* (Mpa units)

‘ ( Ans. 109.7 N/mm?)



APPENDIX A

Standard Normal Tables

TABLE A 1 Cumulative probability of standard normal variate = ®(u)

u ®(u) u D(u) u D(u)
0 .50000
-.01 .49601 =37 .35569 -.73 .23270
-.02 .49202 —.38 35197 -.74 .22965
—-.03 48803 -.39 .34827 -.75 .22663
—.04 .48405 -.40 34458 —~.76 22363
.05 .48006 - .41 .34090 -1 .22065
—.06 47608 - .42 33724 —.78 21770
—.07 47210 —.43 33360 -.79 21476
—.08 46812 — .44 .32997 —.80 21186
-.09 46414 — .45 .32636 —-.81 .20897
-.10 .46017 ~.46 32276 —.82 .20611
—.11 45620 — .47 31918 -.83 20327
—-.12 45224 —.48 31561 —.84 .20045
—.13 44828 - .49 31207 —.85 19766
—.14 .44433 --.50 .30854 —.86 .19489
-.15 .44038 —.51 .30503 —.87 19215
- 16 43644 -.52 30153 —.88 .18943
-.17 43251 —.53 .29806 —.89 18673
—.18 42858 —.54 .29460 -.90 .18406
-.19 .42465 —.55 29116 -91 18141
-.20 42074 —.56 28774 -.92 17879
—-.21 41683 -.57 28434 —-.93 17619
-.22 41294 -.58 .28096 -.94 17361
-.23 .40905 —.59 27760 -~.95 17106
—.24 40517 —.60 27425 —.96 16853
-.25 .40129 —.61 .27093 -.97 16602
—.26 .39743 —.62 .26763 —-.98 16354
-.27 39358 - .63 .26435 —~.99 16109
—.28 .38974 —.64 .26109 —-1.00 15866
—-.29 .38591 — .65 .25785 —1.01 15625
-.30 .38209 —~.66 .25463 —1.02 .15386
-.31 37828 —.67 25143 -1.03 15151
-.32 .37448 — .68 24825 —1.04 .14917
-.33 37070 —.69 24510 -1.05 .14686
-.34 .36693 -.70 .24196 —1.06 14457
-.35 36317 - .23885 —1.07 14231
-.36 .35942 -.72 23576 -1.08 14007

Y
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u [ ()] u ®u) u ®(u)
—~1,09 13786 —~1.60 05480 =211 01743
-1.10 13567 —1.61 05370 -2.12 .01700
—1.11 .13350 —1.62 .05262 -2.13 01659
—1512 13136 ~1.63 05155 —2.14 01618
~1.13 .12924 —1.64 05050 ~2.15 .01578
-1,14 12714 ~1.65 04947 —-2.16 01539
—1.15 .12507 —1.66 04846 —217 .01500
-1.16 12302 ~1.67 04746 —2.18 01463
-1.17 12100 —1.68 .04648 —-2.19 01426
-1,18 .11900 —1.69 .04551 —2.20 .01390
~1.19 11702 ~1.70 04457 -221 01355
—1.20 11507 —1.71 04363 =222 ..01321
—-1.21 11314 -1.712 04272 -2.23 01287
—1.22 11123 -1.73 04182 —2.24 01255
-1.23 10935 - —1.74 .04093 —2.25 01222
—1.24 .10749 -1.75 04006 -2.26 01191
-1.25 .10565 —~1.76 .03920 ~227 01160
—-1.26 .10383. -1.77 .03836 =228 01130
=1:27 10204 —~1.78 03754 -2.29 .01101
—-1.28 10027 —1.79 .03673 —-2.30 01072
~1.29 .09853 —1.80 103593 —2.31 .01044
~1.30 109680 —1.81 03515 =232 .01017-
-1.31 09510 —1.82 03438 -2,33 .00990
-1.32 09342 —1.83 03362 =2 00964
-1.33 09176 —1.84 03288 -2:35 00939
=134 09012 —1:85 03216 —2.36 00914
—1.35 08851 —1.86 03144 —2.37 .00889
—-1.36 08691 —1.87 03074 -2.38 00866
-1.37 08534 —1:88 .03005 -2.39 00842
-1.38 08379 189 02938 -2.40 .00820
~1.39 .08226 —1.90 02872 —2.41 .00798
~1.40 08076 -1.91 02807 =214 00776
—~1.41 07927 -1.92 02743 243 00755
—1.42 07780 -1.93 .02680 —2.44 00734
143 07636 —1.94 02619 —2.45 00714
~144 07493 —1.95 02559 —2.46 100695
—~1.45 07453 —1.96 02500 —2.47 00676
~1.46 07215 -1.97 02442 ~2.48 00657
—147 07078 —-1.98 .02385 —2.49 00639
—-1.48 .06944 —1.99 .02330 —2.50 00621
—1.49 06811 —2.00 02275 —2.51 00604
—1:50 06681 %2701 02222 —2.52 .00587
—1.51 .06552 -2.02 .02169 —2.53 .00570
—1.52 06426 —2.03 02118 ~2.54 00554
-1.53 .06301 —2.04 .02068 =255 003539
—1.54 06178 —2.05 .02018 —2.56 00523
—-155 06057 —2.06 01970 —2.57 00508
—~1.56 05938 -2.07 01923 —2.58 .00494
-1.57 05821 —2.08 .01876 —2.59 00480
—~1.58 05705 —~2.09 01831 —2.60 00466
~1.59 105592 -2.10 01786 —2.61 00453

(Conrd.)
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TABLE A 1 (Contd.)

u Q(u) u D(u) u P(u)
—-2.62 00440 =3,13 .87403E—03 —3.64 A3632E—-03
—2.63 00427 -3.14 .84474E—03 =365 A3112E—-03
—-2.64 00415 —3. 1§ 81635E—03 —3.06 A2611E--03
—2.65 00402 -3.16 .78885E—03 —3.67 12[28E—03
—2.66 00391 -3.17 J6219E--03 —3.68 A1662E—03
—2.67 00379 —-3.18 .73638E—03 —-3.69 A1213E—03
—2.68 00368 =3.19 .71136E--03 —-3.70 A0780E--03
—-2.6Y 00357 =3.20 .68714E—03 =3.71 J10363E—03
-2.70 00347 -3.21 66367E—03 -3.72 9961 [E—-04
=271 00336 -322 .64095E—03 =373 .95740E—04
-2.72 .00326 =3:23 .61895E—03 —-3.74 92010E—04
-2.73 00317 —-3.24 .59765E—03 —3:15 B84 17E—04
—-2.74 00307 -3.25 .57703E—03 -3.76 .84957E—04
-2.75 00298 —-3.26 .55706E—03 -3.77 81624E--04
—-2.76 .00289 ~3.27 .53774E—03 —3.78 . 78414E—04
—-2.77 .00280 —3.28 S1904E—03 —3,79 .75324E—04
—2.78 .00272 -3.29 .50094E—03 —3.80 .72348E—04
-2.79 00264 -3.30 .48342E—03 —3.81 .69483E—04
—2.80 00256 =33l .46648E—03 —3.82 .06726F—04
—2.81 00248 —-3.32 45009E—03 —3.83 .04072E—04
—2.82 00240 -3.33 43423E—03 -3.84 GOIS1TE—04
—-2.83 .00233 —3.34 41889E—03 —3.85 .59059E—04
—2.84 00226 ~=3.35 .40406E—03 -3.86 .S6€94E-—04
—2.85 00219 —3.36 J8971E—03 -3.87 .54418E—04
—2.86 .00212 —3.37 37584E—03 —3.88 .52228E—04
—2.87 .00205 —3.38 .36243E—03 —3.89 S0122E—04
—2.88 00199 —-3.39 .34946E—03 —3.90 48096E—04
—2.89 00193 —3.40 J33693E—03 =3.9] .46 48E—04
-2.90 .00187 —3.41 .32481E—03 —-3.92 44274E—04
-2.91 00181 —3.42 31311E—03 -3.93 42473E—04
~2.92 00175 —-3.43 .30179E—03 —3.94 40741 E—04
-2.93 00169 —3.44 .29086E—03 —-3.95 .39076E—04
—~2.94 00164 —-345 .28029E—03 -3.96 .37475E—04
—2.95 00159 —3.46 .27009E—03 -3.97 .35936E—04
—2.96 .00154 —3.47 .26023E—03 =3.98 .34458—04
-2.97 00149 —3.48 .25071E—03 -3.99 .33037E—04
—2.98 00144 —3.49 .24151E—03 —4.00 J31671E—04
-2.99 00139 —3.50 .23263E—03 —4.0( .30359E—04
-3.00 .00135 —3.51 .22405E—03 —-4.02 29099E—04
-3.01 13062E—02 —3.52 21577E—03 —4.03 .27888E—04
—3.02 12639E—02 —3.53 .20778E—03 —-4.04 26726E—04
-3.03 12228E—02 -3.54 .20006E—03 —4.05 .25609E—04
—3.04 .11829E—02 =3.55 19262E—03 —4.06 .24536E—04
—-3.05 11442E—02 —3.56 18543E--03 —4.07 .23507E—04
—-3.06 A1067E—02 ~3.57 .17849E—03 —-4.08 22518E—04
-3.07 .10703E—02 —3.58 17180E~—03 —-4.09 21569E—04
-3.08 10350E—02 -3.59 16534E—-03 —4.10 20658 E—04
—-3.09 .10008E—02 —3.60 AS9IIE—03 —-4.11 J19783E—04
—-3.10 96760E — 03 —3.61 AS310E—03 —4.12 .18944E—04
=3.11 93544E—03 —-3.62 14730E—03 —-4.13 18138E-—04
=312 .90426E—03 —-3.63 A14171E—03 —-4.14 A 7365E—04
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u ®(u) u ®(u) u (u)
—4.15 .16624E—04 —4.82 J1779E—06 —5.84 .26100E—08
—4.16 15912E—04 —4.84 .64920E—06 —-5.86 23143E—08
—4.17 15230E—04 ~4.86 .58693E~—06 —5.88 .20513E—08
—4.18 14575E—04 —4.88 .53043E—06 -590 .18175E—08
-4.19 .13948E—04 -4.90 .47918E—06 -592 .16097E—08
—4.20 13346E—04 —4.92 43272E—06 —5.94 .14251E—08
-4.21 12769E—04 —4.94 .39061 E—06 -5.96 .12612E—08
—4.22 12215E—04 —4.96 .35247E—06 —~5.98 A1157E—08
—-4.23 .1168SE—04 —4.98 31792E—06 —6.00 .98659E—09
—-4.24 11176E—04 -5.00 .28665E—06 -6.02 .87209E—09
—4.25 .10689E—04 -5.02 .25836E—06 ~6.04 .77057E—09
—4.26 .10221E—04 -5.04 23277E—06 —6.06 .68061E—09
—4.27 .97736E—05 —5.06 .20963E—06 —6.08 60091 E—09
—4.28 .93447E—05 —5.08 .18872E—06 -6.10 .53034E—09
—4.29 .89337E—05 ~5.10 .16983E—06 —6.12 A46788E—09
—4.30 .85399E—05 -5.12 .15277E—06 —-6.14 41261 E—09
—-4.31 .81627E—05 -5.14 13737E—06 —6.16 36372E—09
—-4.32 .78015E—05 -5.16 .12347E—06 —6.18 .32051E—09
—-4.33 T4555E—05 -5.18 .11094E—06 —6.20 28232E—09
—-4.34 T1241E—05 —5.20 .99644E—07 —6.22 .24858E—09
—4.35 .68069E—05 -5.22 .89462E—07 -6.24 21879E—09
—4.36 .65031E—05 —-5.24 .80288E—07 ~6.26 .19243E—09
—-4.37 .62123E—05 ~5.26 .72028E—07 -6.28 .16929E—09
—4.38 .59340E—05 —5.28 .64592E—07 -7.30 .14882E—09
—-4.39 .56675E—05 —5.30 57901 E—07 —-6.32 .13078E—09
—4.40 S54125E—05 -5.32 .S1884E—07 —-6.34 .11488E—09
—4.41 .51685E—05 —-534 46473E—07 —6.36 .10088E—09
—442 .49350E—05 -5.36 41611E—07 —6.38 .88544E—10
—4.43 A4T117TE—0S —5.38 .37243E—07 —-6.40 .77688E—10
—4.44 44979E—05 -540 .33320E—07 —6.42 .68137TE—10
—4.45 .42935E—05 —-542 .29800E—07 —-6.44 .59737E—10
—4.46 .40980E—05 —5.44 .26640E—07 —6.46 .52351E—10
—4.47 .39110E—05 —5.46 .23807E—07 —6.48 .45861E—10
—4.48 .37322E—05 —5.48 21266E—07 —-6.50 .40160E—10
—4.49 .35612E—05 -5.50 .18990E—07 —6.52 .35154E—10
—4.50 .33977E—05 —5.52 .16950E—07 —6.54 .30759E—10
—4.52 .30920E—05 —5.54 15124E—07 —6.56 .26904E—10
—4.54 .28127E—05 —5.56 .13489E—07 -6.58 23522E—10
—4.56 25577E—05 —5.58 12026E—07 —6.60 .20558E—10
—4.58 .23249E—05 —5.60 .10718E—07 —6.62 17960E—10
—4.60 21125E—05 —5.62 .95479E—08 —6.64 .15684E—10
-4.62 .19187E—05 —5.64 .85025E—08 —6.66 13691 E—10
~4.64 .17420E—05 —5.66 .75686E—O08 —6.68 J11947E—10
—4.66 .15810E—05 —5.68 .67347E—08 —6.70 .10421E—10
—4.68 14344E—05 —-5.70 .59904E—08 -6.72 J90862E—11
—-4.70 .13008E—05 -572 .53262E—08 —-6.74 79193E—11
—-4.72 11792E—05 —5.74 .47338E—08 —6.76 .68996E—11
—4.74 .10686E—05 -5.76 .42057E—08 —6.78 .60088E—11
-4.76 96796E—06 -5.78 .37350E—08 —6.80 52310E—11
—-4.78 .87648E—06 —5.80 .33157E—08 ~6.82 45520E—11
—4.80 .79333E—06 ~5.82 .29424E—08 —6.84 39597E—11

(Contd)
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TABLE A 1 (Cond)

u @(u) u P(u) u ®(u)
—6.86 .34430E—11 —7.88 .16369E—14 —-8.90 27923E—18
—6.88 .29926E—11 ~-7.90 .13945E—14 —8.92 23314E—18
-6.90 26001E—11 —-7.92 .11876E—14 —8.94 .19459E— |8
-6.92 22582E—11 -7.94 .10109E—14 --8.96 .16234E—18
—6.94 19605E—11 -7.96 .86020E—15 —8.98 .13538E—18
—6.96 .17014E—11 —7.98 .13167E—15 -9.00 .11286E—18
—-6.98 14759E—11 —8.00 .62210E—15 -~9.02 .94045E—19
—7.00 .12798CE—11 —8.02 .52873E—15 -9.04 .78336E—19
—-7.02 J1093E—11 —8.04 .44919E—15 —-9.06 .65225E—19
-7.04 96120E—12 —8.06 38I47E—15 -9.08 .54287E—19

-7.06 83251E—12 —8.08 .32383E—15 -9.10 45166E—19
—7.08 J72077E—12 —-8.10 .27480E—15 -9.12 .37562E—19
-7.10 .62378E—12 —8.12 .23309E—15 -9.14 31226E—19
—-7.12 53964E—12 ~8.14 19764E—15 -9.16 .25949E—19
—7.14 A46665E—12 —8.16 16751E—15 -9.18 21555E—19
-7.16 40339E—12 —8.18 .14192E—15 -9.20 .17897E—19
—-7.18 .34856E—12 —8.20 12019E—15 —-922 .14855E—19
-7.20 .30106E—12 —8.22 10175€—15 -9.24 A2325E—19
—-7.22 .25994E—12 —-8.24 .86105E—16 -9.26 10222E—19
—-7.24 22434 —12 —826 12836E—16 —9.28 .84739E—-20
—7.26 .19355E—12 -8.28 .61588E—16 ~9.30 .70223E—20
—-7.28 16691E—12 —8.30 .52056E—16 -9.32 .S8170E—20
-7.30 14388E—12 —~8.32 43982E—16 —-9.34 A8197E—20
-7.32 12399E—12 —8.34 37145E—16 —-9.36 .39868E--20
—7.34 .10680E—12 —8.36 31359E—16 —-9.38 .32986E —20
—~7.36 91955E—13 —8.38 .26464E~— 16 —9.40 L27282E—20
-7.38 .19145E-—13 --8.40 22324E—16 —9.42 22554E--20
—-7.40 .68092E—13 —~8.42 .18824E—16 —9.44 .18639E—20
—-7.42 58560E—13 —~8.44 15867E—16 —9.46 A5397E—29)
~7.44 .50343E—13 —8.46 13369E—16 —9.48 12714E--20
—7.46 .43261E—13 ~848 .11260E-—16 —-9.50 .10495E—20
—7.48 J37161E—13 - 8.50 .94795E—17 --9.52 .86590E— 2!
-17.50 .31909E —13 —8.52 T9777TE—17 —-9.54 T1416E—2¢
-7.52 .27388E—13 —-8.54 67111E—17 —9.56 .58878E—21
—~7.54 23499E~13 --8.56 .56434E—17 -9.58 48522E-21
—17.56 .20153E—13 -—8.58 474376—17 —9.60 .39972E—21
—7.58 17278E—-33 --8.60 .J9858E—17 —-9.62 32916E—21
—7.60 148071 --13 —8.62 33477E—17 —9.64 .27094E—21
—7.62 .12684E—13 —8.64 28107E—17 —9.66 22293E—21
—-17.64 10861E—-13 —8.66 23588E—17 -9.68 .18336F---21
—7.66 .92967E—14 -8.68 .19788E—17 —-9.70 15075E—21
—7.68 .79544FE—14 -8.70 16594E—17 -9.72 12389E—zi
-7.70 .68033E—14 -8.72 13910E—17 —-9.74 .10178F—21
~T1.72 58165E—14 -8.74 .11656E—17 —9.76 .83578E—22
—-7.74 .49708E—14 —-8.76 .97625E—18 —9.78 .68605E—22
-7.76 A42465E—14 -~8.78 .81737E—18 —9.80 .56293E—22
—17.78 .36262E—14 —8.80 .68408E—18 —-9.82 46172E—22
-17.80 .30954E—14 —8.82 .S7230E—18 —-9.84 3785SE—22
—-7.82 26412E—14 ~8.84 A7859E—18 —~9.86 .31025E—22
—17.84 22527E--14 —8.86 A40007E—18 —9.88 25416E—22
—7.86 .19207E—14 —8.88 .33430E—18 -9.90 20814E—22
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u ?(u) u @(u) " @)
-9.92 17038E—22 =232 102 —-5.20 10-7
—9.94 A3941E—22 -3.09 10 —5.61 10~
~9.96 11403E—22 =370 104 —6.00 10-*
-9.98 93233E—23 —-4.26 10~ ~6.36 10~
=10.00 . - .76199E—2)}- —4.75 10-¢ —6.71 101
=128 . . 107




APPENDIX B

Partial Safety Factors for RCC
Members
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FIG. B1 Optimal values of partial safety factors for, RCC slabs in
flexure under load D -+ L, for steel grade Fe 250
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FIG. B2 Optimal values of partiai_safaty’ factors for RCC slabs in
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flexure under load D + L, for steel grade Fe 415
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Optimal values of partial safety factors for RCC beams in
shear under load O + W,
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FIG. Bb ~Optimal values of partial safety factors for RCC beams in

shaar under load D + L, + Wy,



TABLE B1 Optimal partial safety factors for loads for columns

yp =12 ForComp. v =0.725
For Tens. Yy = 0.80

Load Combination D+L, D+W, D+Lg, +W,
Mix Failure B, Y "w YL "w
Case (i)
L,=3 Design ~ Comp. 3.0 1:2 1.2 0.30 1.1
kN/m3 35 14 1.5 0.27 1.5
4.0 1.9 2.0 0.24 2.0
. Tension 3.0 1.3 1.5 0.25 14
35 1.8 2.0 0.24 1.8
4.0 24 2.5 0.23 23
Nominal Comp. 3.0 14 1.6 0.20 1.6
3.5 2.5 2.6 0.17 2.6
4.0 4.0 3.6 0.15 3.6
Tension 3.0 1.4 1.5 0.22 1.5
35 23 23 0.20 23
4,0 35 32 0.18 32
Case (ii)
L,=4 Design Comp. 3.0 0.8 1.2 0.20 1.1
kN/m? 3:5 1.1 1.5 O.Ig 1.5
4.0 1.5 2.0 0.1 2.0
Tension 3.0 1.0 1.5 0.18 1.4
35 1.4 20 0.17 1.8
4.0 1.8 2:5 0.16 23
Nominal Comp. 3.0 1.1 1.6 0.15 1.6
35 2.1 2.6 0.13 2is
4.0 3.9 3.6 0.17 KR
Tension 3.0 1.0 15 0.17 1.3
35 1.7 2.3 0.15 2.3

4.0 2.7 32 0.12 32







Adaptive sampling method (ASM) 351,
m &

Advanced FOSM 181
Advanced Level 2 mmethod * 225

Basic variables 180, 186
Baye's theorem 41
Beta distribution * 77, 78, 87 93, 109, 163
parameter estimation TI 78
standard 77
Beta function 77
incomplete 89
Bounds
Comell 284
correlation 283
Ditlevsen 285 339
Bricks 100
Bridge systems 275
Bridges 378,39
plate girder 400
truss 402

CEB format 240
Central limit theorem 72
Characteristic

load 118

test 89; 93, 94,132,170
value of 93,94
Code calibration 209, 213, 223, 252, 268
Coefficient of skewness 16,165 -
of random variable 61
Coefficient of kurtosis 17, 165
of random variable 61
Coefficient of variation 13
Collapse mechanism 278, 279, 293, 301,
305
partial 305
Concrete
compressive strength of 91, 95, 103,

104
control 93, 96

Index

cube strength of 91, 92, 96, 107
cylinder strength of 96 ‘
modulus of rupture of 91, 95, 97 104
reinforced cement 2
secant modulus of 91, 95, 96
mmcaof;topuhesof 9
Yoglzssmod\ﬂusof 9, 95 96, 100,
Conditional expectation 63
Confidence mtzrval 165
Correlation s
coefficient 64 65,174
negative 65, 66
positive 65, 66 - SR
Covariance 64, 175 Bt
matrix 174, 216,217, 218

Crack size 415 -
initlal 417
final 417
Cumulative damage 383
Palmgren-Miner's 383

Cumulative distribution function (CDF)
43 :

DeMorgans law 28,34

probabilistic 4

probability based limit state 7

ultimste strength 3, 4

working stress |
Design point 191, 192, 199, 200
Design S-N curve 389
Dimensions

statistical properties of 101
Dimensional variations 110, 264
Dmtt;;n:l cosines 193,205, 229, 233-
Distribution function

conditional 48, 50

cumulative 50

joint 48, 51

marginal 48, 50, 51, 58
Dominant mechanisms 301
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generations of 301, 309
stochastically 302

Eigen values 216-221
Elastic
analysis 3
behaviour 2
Equivalent normal 211
Erlang distribution 76
Events
certain - 24
collectively exhaustive 27, 41
complement of 24
compound 23
disjoint 26
intersection 26
mutually exclusive 26, 29, 41
nult 24
random relationships among 26
simple 23,43
union 26
Expectation 60
algebra of 62
conditional 62
of a function 62
Expected value 175, 193,217, 221
Exponential distribution 88, 130, 150,
161
Extremal distributions 79
Rayleigh 88
Type 1 (smallest) 81, 28, 87
Type 1 (largest) 55, 80, 81, 87, 128,
132, 134, 136, 139, 162, 209, 212-
216, 246
Type 2 (largest) 83, 84, 87, 88, 134,
150, 162, 204, 206
Type 3 (smallest) 84, 85, 86, 162

Factor of safety 1, 107, 108 (see safety
factor)
Failure
function 144, 180, 191
modes 172, 293, 301
correlated 172
probability, (see probability of failure)
rate 145
surface 180, 181, 183, 189
path 294
point 199
Fatigue 378

=

strength 381, 393
Fatigue reliability of details / joints in
bridges 382, 396
highway bridges 387
offshore structures
railway bridges 400, 407
ship structures 404, 413
First order reliability method (FORM)
340
First order second-moment (FOSM)
method 182, 188, 316
Fracture mechanics 414
Fracture toughness 418
Frames
reliability analysis of 337, 362
Frechet distribution 134
Frequency distribution
relative 14, 15,29
cumulative 14, 16

Gamma distribution 75-77, 87, 109, 125,
128, 130, 159, 164

Gamma function
incomplete 75, 89

Gaussian distribution, (see normal
distribution)

Goodness-of-fit tests 93

Gumbel distribution 80, 134

Hasofer Lind method 190
Hazard function 144
High yield strength

deformed bars 98, 108
Histogram 14

Inelastic 2

Importance sampling method (ISM) 342

Influence area 122, 123, 125

Influence surface 122

Inverse transformation technique 159,
161

Joint probability distribution
cumulative distribution function 157
probability density function 157

Kolmogorov-Smirnov test 89, 93
Kurtosis
coefficient of 61



Lagrange multiplier method 192
Lifetime 118,125
design wind speed 137
maximum live load 117
maximum wind speed 139
Limit state
ultimate 4, 137
Limit state design
probability based 240
Live load
survey 116, 127, 129, 131
Load
arbitrary point in-time 113, 125, 127,
132
dead 1-3,111-114
2
factored 4
floor 10,112,132
equivalent uniformaly distributed
117,119, 123, 125, 129
extraordinary 113-115, 132
lifetime maximum 113, 117, 119,
126, 130, 210, 241, 243
live 1,2,10,111-119,163, 199
modeling
maximum total 114, 130
sustained 113-118, 120, 126, 128
service 2
transient 129, 130
lifetime maximum 130
ultimate 2,3
wind 1-3,132,138
Load factor 3, 111, 241, 319, 321
combined 232
Lognormal distribution 72, 87, 93, 109,
125, 127, 139, 149, 163, 203
format 394,404
variate 74
LRFD (load and resistance factor design)
223,241, 242, 246, 263, 264, 393

Material reduction factor
Maximum likelihood
method of 109
Mean
functions of variables 65
of a random variable 60

sample 17,18
value method

239, 240, 244

185
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Medim 12 \
Mode
of a random variable 12
Moments
methods of 109
of jointly distributed variables 64
of random varisbles 60
Monte Carlo
method 158, 164-167, 175 (see also
technique)

sample gize 165-167

simulation 139-

technique 139, 158, 159, 167, 170,
176,244,324

NBC (Canada) format 240
Normal distribution 70, 87, 93, 109, 149,
162,221
equivalent 199, 247
standard 70

1-“almgrcn-383 Miner's cumulative damage
Paris crack growth law 41§
Pearson Type 3 distribution 76
Piecewise linear elastic plastic (PWLEP)
293,294, 316
Poisson distribution 88
Poisson process 125, 126
Probability
axioms 42,43
conditional 32, 38
joint 35, 46,287, 288
mass function 43
notional 179,
tree diagram 36, 37
Probability density function
conditional 51, 57
joint 46,47, 50
marginal 48, 50, 51
Probability of failure 7, 144, 146, 148,
157, 167, 269, 270
conditional 157, 158
of material 105 ;
Probability of survival 7, 143, 269

Quality control 91, 93, 143

Random number generation 159
composition method 160



438

from beta distribution 163
from exponential distribution 161
from gamma distribution 164
from lognormal distribution 163
from normal distribution 162
from Type 1 extremal (largest)
distribution 161, 162
from Type 1 extremal (smallest)
distribution 161
from Type 2 extremal (largest)
distribution 161, 162
from Type 3 extremal (smallest)
distribution 161, 162
from uniform distribution 161
from Weibull distribution 161
inverse transformation technique 159
pseudo random numbers 159
Random process 22
Random variable 43
continuous 44, 45, 51, 60
discrete 43,48
functions of 51
independent 51
jointly distributed 46, 49
Range 13
Rayleigh distribution 89
Reliability 7, 143, 144, 148
analysis 146,177,213, 226, 268
analysis of RCC frames 315, 319,
322,334
analysis of trusses 371
based design 226, 242, 262
factor 413
index 149, 183
target 225, 245, 253, 256, 262
Resistance factor 240
Response surface method 358
Return period  133-135
Risk 137,138
Rotation failure mode 316, 334
Rule of multiplication 35

Safe region 181
Safety checking format 224, 239, 246,
256

Safety checking methods
Level 1 179, 180, 253
Level 2 179, 180, 225, 226, 244, 253
Level 3 179

Safety factor

Steel properties

- Stochastic variable 23

‘\I.t
'H

central 5,226
characteristic 226, 231
partial 226, -229, 239, 245, 257-263
optimal 252,254, 257, 258, 259, 260, \
346-349
stress range 395
Safety margin 148, 172, 175, 183, 189,
202, 282
Sample size 14, 165-167
Sample space 23
conditional 24
continuous 24
discrete 24
reduced 33
two dimensional 30
Second order reliability method (SORM)
340
Series system 268-270
Simulation 302 (see also Monte Carlo
simulation
Skewness ]
coefficient of 16, 61 :
S-N curve approach 382 i
Standard bete variate 77 5
Standard deviation 13, 61 3
Standard normal :
density function 70
tables  340-345
variable 70 .
Standard normal variate 70 1,
Standard uniform distribution 69 ’
Statistical independence 36

.
[}
elasticity, modulus of 97, 99, 104 |
statistics of 97 '
ultimate strength 97
yield strength  94-97, 104
Young's modulus 99
Stochastic process 23

ot e,

Stress .
. permissible 1,2 i
ultimate 1,2 A
intensity factor :
Stressrange 379 |
constant amplitude 383, 393
equivalent constant amplitude 384
design 385 {
long term design 405
Structural design 223, 225 i&




Structural reliability 8, 145, 146, 182
Systems
bridge 275
mixed 268,270, 271,279
modeling of 273
parallel redundant 268, 269, 271, 278
probability of failure 269
probability of survival 269
reliability 304
series 268-271,278-290
truss 276
System reliability 268
namrow bounds 285
simple bounds 284
importance sampling 371
adaptive sampling 371

Total probability theorem 3841
Transformation matrix 217, 219, 220
Truss 276

Uniform distribution 89, 162, 178
standard 159, 161

Variance 13, 61
conditional 64
functions of variables 65
of a random variable 61

propertiesof 63

sample 13
Variations in dimensions

statistical analysis of 101, 102, 264
Venn diagram 26, 27, 29

Wave force 336
Weakest link model 269
Weibull distribution 90, 109, 161
Weibull format 410
Weighting factors 256, 257
Wind
cyclone 133
load 1-3, 132, 133, 138-140, 250
lifetime maximum 139
statistics of 139
pressure 152
speed 133-138, 199
daily maximum 134
lifetime design 137, 139
lifetime maximum 241
monthly maximum 134
yearly maximum 134-136
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