










Preface 

Engineering decisions must be made in the presence of uncertainties which 
are invariably present in practice. In the presence of uncertainties in the 
various parameters encountered in analysis and design, achievement of 
absolute safety is impossible. It is now more than twenty five years since it 
was proposed that the rational criterion for the safety of a structure is its 
reliability or probability of survival. In structural reliability, the probability 
of failure (which is taken as one minus reliability) is taken as a quantitative 
measure of structural safety. Probabilistic concepts are used in reliability 
analysis, and in the design of structures. Using structural reliability theory, 
the level of reliability of the existing structures (structures designed by 
existing structural standards) can be evaluated. It can also be used for 
developing a design criterion, that is, calibrating codes and developing 
partial safety factors, the use of which will result in designs with an accepted 
level of reliability. Structural reliability has been applied to many decision­
making problems, such as development of partial safety factors, establishing 
inspection criteria, taking suitable decisions for improving the capability of 
existing structures, development of maintenance schedule etc., in the field of 
engineering. 

Presently, only four or five books are available on this topic. These 
books, written by foreign authors, are very expensive and beyond the reach 
of Indian students and engineers. A book on this topic giving information to 
readers on the results of the reliability study of reinforced concrete structural 
elements and frames, with the field data pertaining to Indian conditions, is 
also presently not available. There has been an overwhelming need among 
students (present and past), fellow teachers in engineering institutions, 
scientists in research organizations, and field engineers for such a book on 
reliability analysis and design of structures giving fundamental concepts of 
structural reliability theory and illustrating its applications to practical 
problems. Teaching the course to postgraduate students for the last eighteen 
years, delivering a series of lectures given periodically to the participants of 
short-term courses, and research experience have motivated me to write a 
book which treats the topic in a simple manner so that structural reliability is 
easily underst:Dod and appreciated by readers. 

The main aim of this book is to introduce the probabilistic bases of 
structural reliability, the techniques and methods of evaluating the reliability 
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of structural components and systems, the methodology in the development 
of reliability-based design criteria, and the evaluation of partial safety factors 
(code calibration). The whole field has been developed in such a way that 

it is easily understood and followed by readers. Proofs and mathematical 
derivations are given only if they serve to explain basic ideas, otherwise, 
the original literature is cited for proof. Another important aim of this book 
is to focus the attention of academicians and engineers on the importance of 
an awareness of the need for a reliability-based design criterion, which is 
being followed in Norway, Canada, USA, UK and other countries which are 
in the process of modifying their standards. The book takes care of begi1mers 
as well as experienced specialists . Though the book in general deals with 
reinforced concrete and steel structures, the theory presented and the 
methods indicated could be applied to other structures also. The book will 
serve as a useful text and reference book for students, teachers, scientists and 
engineers. It is hoped that the book will provide enough foundation for 
further research work. 

This is the only book which deals with the reliability analysis of 
reinforced concrete frames, adaptive sampling method (for component and 
system) and response surface method to estimate reliability, and fatigue 
reliability evaluation of bridges. The reliability analysis of structural 
components as well as systems is covered in a single volume. The book 
gives the results of analysis of field data on basic variables and the reliability 
study of concrete structures for Indian conditions. Nearly 110 examples are 
worked out. Problems with answers are given under "Exercise" at the end of 
each chapter. 

Basic concepts of structural safety are introduced in Chapter 1. Certain 
inadequacies in the conventional safety checking methods are exposed and 
the need for a probabilistic criterion is emphasized. A history of the 
structural safety is also briefly traced in Chapter 1. The necessary 
background on statistics and probability, required for understanding the 
subsequent chapters and reliability analysis, is included in Chapters 2 and 3, 
respectively. A number of examples are given, illustrating the applications 
of probability theory in civil engineering. 

The collection of field data on basic variables, and a statistical analysis 
of the same, is a very important part of reliability study. The statistical 
analysis of resistance variables and load variables is presented in Chapters 4 
and 5, respectively. The established statistics of basic variables for Indian 
conditions are also given. 

The computation of the structural reliability for the fundamental case of 
two variables, load and resistance, is treated in Chapter 6. Difficulties 
encountered in the probabilistic analysis of structures are brought out, and 
how the Monte Carlo technique can be used to tackle such problems is 
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explained in Chapter 7. Applications of the Monte Carlo technique in 
structural engineering problems are outlined and illustrated. 

Simple methods of computation of reliability using ftrst-order second­
moment mean-value methods, and Level 2 and advanced Level 2 methods 
are treated in detail in Chapter 8. Statistics of basic variables, established in 
Chapters 4 and 5, are used to illustrate the methods of evaluating structuraJ 
components' reliability. A number of problems are solved. The results of the 
reliability study of the existing reinforced concrete designs as per the present 
IS 456-1978 code ate also given. Chapter 9 deals with the computation of 
the partial safety factors for a specified or required level ofreliability. The 
method of fixing optimal partial safety factors, which wilJ ensure oni~ em 
target reliability under all design situations, is introduced. The mcthodoJoAy 
of the calibration of code is also treated in the same chapter. Results of U1e 
study of the evaluation of partial safety factors for Indian conditions are also 
presented. 

The system performance and its reliability are of more concern and 
ii'Jlportance to engineers. The modelling of structures for the computation of 
reliability is demonstrated in Chapter 10. Bow1ds on the reliability of 
structural systems are introduced. Methods of generation of domi rumt 
modes, and the reliability analysis of steel and reinforced concrete frames 
are presented. Results of the reliability study of reinforced concrete fran1es, 
designed as per the Indian Standard Code, are also given. 

Considerable research work has been done in developing methods to 
improve the estimate of reliability and also better sampling techniques in 
simulation methods. Second order reliability method is briefed in Chapter 
11. Advanced simulation methods to calculate reliability, based on 
importance sampling method (ISM) and adaptive sampling method (ASM), 
are explained in detail and illustrated with examples. Response surface 
method is also presented which can be clubbed with ISM and ASM. 
Application of ISM and ASM to system reliability evaluation is included 
with examples. 

Fatigue is one of the principal modes of failure in bridges, offshore and 
ship structures, pressure vessels etc. In Chapter 12, evaluation of reliability 
of joints I details under fatigue is explained in a simple manner using S-N 
curve approach. Reliability evaluation using lognormal format and Weibull 
format ru;e presented. For the desired reliability level, estimation of design 
stree range for fatigue criterion and partial safety factors are also dealt with. 
Number of exampies are solved to demonstrate the fatigue reliability 
evaluation. Application to offshore structures and bridges are explained. 
Fracture mechanics (FM) approach is also introduced. The method of 
evaluation of reliability, based on FM approach, is also presented. 

While teaching the course, advanced topics discussing the generation 
of dominant modes in frame structures, reliability analysis of reinforced 
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concrete frames and advanced reliability methods may be omitted. Spending 
only about 5 to 6 hours on Chapter 3, a course on first ten chapters can be 
completed in a 35-hour lecture series. In case if the students have 
background on basic statistics and probability, saving 6 hours in Chapters 2 
and 3, Chapter 12 can also be completed. 

I express my gratitude and indebtedness to Prof. P. Dayaratnam, former 
professor, Indian Institute of Technology, Kanpur, who initiated me into the 
field of structural reliability and suggested that I write a book on the said 
field. He encouraged me throughout with his useful comments and 
suggestions. I have used many of the results of the research work of students 
who have worked under my supervision. I sincerely thank them, viz. A. G. 
Deshpande, Padmini Chikkodi, Neville Kumar Shetty, David Arulraj, 
Bajare, C. P. Joshi, Ravi, Kulkarni, Potkar and Prabhu for their contributions 
to the book. Thanks are also due to the students who attended my lectures 
and who, through their participation and comments, led to the development 
of the book. My wife's encouragement throughout the hard days of writing 
this book is greatly appreciated. 

R. RANGANATHAN 
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1 
Concepts of Structural Safety 

1.1 GENERAL 

r:The evaluation of the safety of structures is a task of much importance. It 
has been one of the subjects of interest for engineers. T~e safety of a 
,syuctute_<k e ds O,!l ,the r~nce 8, Qf the s tructure and the action , S, 
(load or loa9 ~ff~t) QO the. structure. The ac iop. ·s ,a Juncti _n . of loads 
(live load, wind load, etc.), which are random vari ables. Similarly, the 
resistanc~ p_r response of the structure depends on the J?hysical properties 
of materials, and the geometric properties of the structure which are also 

's~ to stati~tical v.ariations, and are probabilis itic7 Evcn though it was 
~nown that the above para meters were random variables, no seri us attempt 
was made to consider their random variations, till 1960, in the analysis, 
and design, and evaluation of safety. It was, probably, due to the reason 
that engineers were not confident of applying probability theory or statis­
tics or other mathematical tools. It was only around 1960 that engineers 
and research workers started realising the need for the evaluation of safety, 
taking into account the random variations of the design parameters. 

1.2 DESIGN METHODS 

General principles for checking safety define a method for calculating the 
behaviour and strength of structures subjected to loadings. Design methods 
may be classified in the following ways. 

1. By the way the coefficients related to safety are introduced: 

Permissible Stress Method 

This is also called the working stress design (WSD) method. Here, stresses 
occurring under maximum service loads (working loads) are compared with 
fractions of the strengths of materials. These fractions of the strengths of 
materials are called permissible stresses. A structure is assumed to have 
failed if stresses developed at any point of the structure are greater than the 
permissible stresses. The safety is defined in terms of the factor of safety, 
which is given by 

fa ilure stress 
Factor of safety = . 'bl t -permtsst e s ress 

For ductile materials, viz. steel, the yield stress is taken as the failure stress, 
and for brittle materials, viz. concrete, the ultimate stress is taken as the 
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failure stress. In this method, the elastic beh il vi \lllf of the material is 
considered, (i.e. Hooke ' ~ Jaw is valid) and the ln<~d ddlcction curve of the 
structure is linear. 

For structural steeL the factor of safety is about I .67. What does thi s 
mean in connection with the safety of a steel structure'! [t does not also 
convey how much load the lructure will with tan I. lf the l'act r of safe! 
is doubJed, docs it mean that the capacit ' of the ..,tructure i · al o do ubled? 
Definitely it is no t because the behavi ur f th e.: mater ia l and , tru lme is 
inelasti near th e c !lapse load . Just because the :-; trcs. al n p( int i more 
than the permi siblc stress, it does not nccc ari ly ca use the c Jl ap e ol' the 
stn.1cture cspt' ia lly in the case indeterminate st ructure . In the case of 
reinforced cement concrete (R .) stru lure, the use of permissi ble stre s 
mctho 1 by intr ducin' tw dHTcrcnt fa t . rs or safe ty-one to ·on rete 
{abo·ur 3) and anmhcr t .rei nrorcing steel bars (u buut 1.7 ) invite nt re 
critici m. What i their c mbincd ciTect in defi ning tlw nfely f R 
structure ? The point s that wer ra ised wuh rc. pc 1 ll lh ted st ru 'turc 
arc more pertinent to RCC structure nlso where the behaviour is nonlinear 
and inelastic . 

Whenever combinations of loads arc considered , viz. , de:1d load + li ve 
load wind load o r dead I ad + li e I ud + earthqua ke lo HI , an in rcasc 
in th e all wa le stresses (33!· per cent) is cun siucrcd sincr. the ltkclihoou f 
all the load r aching their mnx imu1n va lue : itttldt anc u~l y , i · rem He. 
H wever, ther is no ra ti onal busis t'or the ck lll n of th e 'lluc, vi;,. k 
per cent. Tt muy be said that the afet dcfineu in the r ·rmissib l• stress 
d cs not rcft e t the true safely , r the actua l ~a fety that L avai lable. T he 
structure designed by the permissible stress method is safe under service 
load and is assumed or expected to carry the ultimate load. 
Merits of WSD are: 

,. (1) s11nplicity and 
.. Yf) familiarity . 

Deme1 its of WSD are: 

(i) A ,eiven set of permissible stresses will not guarantee a constant level 
of sa fe! I'M nil structure ·. lW c ·amrlc. if two ronf s1 ruct ure~-(u) R T 
. hcl'l tvr t.: and (b R beam and slah type . de igned for the sa 111 C I I\'C 

load ti:>i nl! tile , nmc permis ihle Ires cs. are c n idcred , the rn tio nt the 
d ad load I<' li c loa d f 1r t li e ~ hell type will b co nsidcrn hly 11111 ·h io WC I 

titan lh l· ra tiO ror tit -: slnb and be<tm t pe. Si nce the dead I wd ~a n b~.: csli· 
mat ·d <11ld r m li l' t ·d more nccll ratc l th :1n the li \' c load,' hi It i. ubjcclc l 
!1 mnrc pr11bubiitsltc \' <III<~ti o n . the shell r< t's tnu.: lu rc will hHvc a higher 
ch un l' 11f f:Ji llll c th:1n the hcavtcr sinh and bl.'am ty c 1 oof ~ l rut· t u rc. Thnt 
is to s:1 ' · twn ~ 1ru ' 1111 •• dcsi ' ltcd for I he :.amc live I rtJ u ·in the amc 
permiss ible ~ II"l' \Sl'S will ha v difTc r •nt leve ls t' ur •ty. 

(ii) The workin , . trc~s ·h · ·k111,:t l'llrmat mny be un. afc when ne lnad 
counte-racts the other load . For cx:unplc, consider a column, shown in 
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Fig. 1. 1, subjected to dead load /) and wind load , 11 ·. The column h~s been 
designed by the working stress method hy limiting stresses u .. uer service 
loads in tension and compression to lirty per cent of Lh~.:ir respective strength 
values, 3 N/mm2 in tension and 20 N/mm 2 in compression. The stress 
distribution under service loads 1.0 D + 1.0 W is shown in Fig. 1.1 c. When 
the wind load is increased by twenty six per cent, it can be seen that the 
stress at the point B reaches its failure level. Therefore, using the WSD 
method can lead to designs with safety less than conceived adequate under 
normal conditions, when loads counteract each other. 

(a) 1111111 WLilllll! m 4

.

25 
Stresses in Ntmm2 

Due to D 

5·75~ 

10 o --~ I ~!Tj 
·~ ~575 

'Ql(] l·50 

(b) 
Due to W 

(c l 
Due to 1·00 + 1·0W 

(d) 

Due to 1·00 + 1·26 W 

3 00 

FIG. 1.1 Working stress design with one load counteracting the other 

Ultimate Strength Design and P/a.~tic Design Method 

In these methods, the safety is ensured by magnifying the service loads (or 
load effects, such as bending moments, etc.) and checking the structure at 
this magnified load called collapse load. 'The magnification factor is called 
the load factor, defined as the ratio of th~ ultimate load to service load) In 
these methods, the safety is atlcast related to the capacity of the structure. 

: -Th~y take into account the inelastic behaviour of the materiat: In the 
ultimate strength design, the elastic analysis is first carried out, and only 
sections are designed for the factored load. Hence, moment redistribution 
is not taken into account in the ultimate strength design applied to RCC 
structures. However, the plastic design applied to steel structures takes into 
account the redistribution of moments, and the analysis of the structure is 
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carried out at the collapse load. The plastic design as compared to the 
ultimate strength design, relatively gives a better picture of the true safety 
of the structure. 

In these methods, separate load factors are assigned to different loads. 
Specifying a larger factor to the live load or wind load than the dead load, 
reflects that the variability in the live load or wind load is known to be 
larger than in the dead load. However, these factors have been selected 
more or Jess only on the subjective judgement without any rational ba5is. 

Fact red_l_()_a9. i~ ~n _i~agi11ary load which never C()!lles on t.h~ structwe. 
These load factors, like factors of safety, are not related to the life of the 
~!r~·cilire. !~_the load factor i, ·assumed to ensure a 50 ye(lr life of -the 
structure, is increased by 50 per cent, it does not mean that .the life t.o. the 
si-~~cture also increases by the saine amount (i.e. life of the structure need 
not be 7 5 years). The structure designed by the ultimate strength design 
method or the plastic design method is safe against collapse load and the 
same structure is assumed or expected to perform satisfactorily under 
service load. 

Limit State Method 

A limit state is a state beyond which a structure or a part of a structure, 
becomes unfit for use, or ceases to fulfil the fi.mction or satisfy the condi­
tions for which it has been designed. 

The limit states are placed in two categories: 

(i) Ultimate limit states-these correspond to the maximum load carrying 
capacity (i.e. strength of the structure). 

(ii) Serviceability limit states-these correspond to the criteria (durability) 
under normal load (service load) conditions. 

The coefficients of safety are related to ultimate load conditions and service 
load conditions. That is, increased loads (or load effects) are compared 
with the relevant resistance of the structure where effects of the service load 
are compared with specific values. This method is definitely better than the 
previous methods as the safety is ensured under collapse load and service 
load conditions. 

2. The second way of classifying the design methods is based on the 
safety conditions. 

(i) Deterministic design methods where basic parameters (e.g. loads, 
strength of materials, etc.) are treated as non-random. 

(ii) Probabilistic design methods where design parameters are considered 
as random. 

In the conventional deterministic design method, it is assumed that all 
parameters are not subjected to probabilistic variations~: f:rowever, it is well 
known that loads (live load on Ho . rs, wind load, oceari waves earthquake, 
etc.) coming on structures arc random variables. Similarly, the strengths of 
materials (strength of concrete, steel, etc.) and the geometric parameters 
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(dimensions of section, effective depth, diameter of bars, etc.) are subjected 
to statistical variations. Hence, to be rational in the estimation of the 
structural safety, the random variations of the basic parameters are to be 
taken into account. Since load and strength are random variables, the safety 
of the structure is also a statistical variable) 

In overcoming the uncertainties in the design parameters.( the safety 
factor is ensured by taking the smallest value of the strength (R.) and the 
largest value of the load (SJ~~ The safety factor, v, is taken as Rs/SJ. This 
way of fixing the safety in design is very conservative and leads to un­
economical design. 

The second way of fixing safety is as follows: 
Let LJR be the allowed deviation from R and LJS the allowed deviation from 
S. For the safety of the structure, 

R>S 

R - LJR > S + LJS 

R(l- ":) > s( I+"%) 
-~ > ( l + "ff)/( I - LJRR) 

Hence, the minimum, value of the safety factor is 

If the maximum variations in R and S are 10 per cent and 20 per cent of ,. 
their respective computed values, i.e. 

LJS = 0 2 s . 
then the minimum value of v is 

V= 

and 

(l + 0.2) 
(1 - 0.1) 

1.33 

,:j:= 0.1 

The safety can also be expressed as the ratio of the mean values of R 
and S. This safety factor is called the ~Lg\_fu!x f~ct~r, vc, defined as 

mean value of R 
Vc = ----,------;~ 

mean value of S 

Definitions of safety factors vary widely and are probabilistically inaccurate. 
To understand the drawback in defining the safety by central safety factor 
consider Fig. 1.2 where probability density functions of Rand S are plotted. 
When R and S are plotted, it will be seen that both distributions overlap. 
The shaded portion (overlap) in Fig. 1.2 gives an indicative measure of the 
probability of failure of the element or structure. 
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r, s 

FIG. 1 .2 Overlap of acti on and resistance distributions indicating failure 
probability 

It will be seen now that for the same vc, the value of pr will be different. 
Consider Fig. 1.3 where mean action and mean resistance are increased m 
the same proportion keeping their standard deviations constant. Thus 

krR R 
v. = - ·- =-~ -
~ krS S 

Resistance 
,., ... 

Action 
I \ 

I \ 

I 
I 
\ 
\ 

\ 
\ 

\ 

' ' 
r,s 

FIG. 1.3 Effect of failure probability due to proportional changes in action 
and resistance 

It is observed f rom Fig. 1.3 that even though vc remains the same, the 
overlap of the lw curve · change, meaning the change of pr. Same things 
hold g od when kr i. < I . 

If the mean values of R and S are kept constant and dispersions in R 
and S are changed (Fig. 1.4), it is seen again that the overlap of the two 
curves changes, indicating a change in the value of pr. Since the mean values 
of R and ,",' arc not changed, vc remains the same; but pr is different. The 
probability of failure is affected by (i) the mean values R and S, (ii) the 
standard deviations of R and S, and (iii) the point of intersection of the 
two curves. d:his clearly shows the inadequacy of defining afety ~y the 
central sa fety factor. The best way t~ delrne sa fely 1 by the probability of 
failure or reliabilitY., Frcll lcnth ul ( 1.1 ) said: "Because the design of u 
structure embodies uncertain prcdic\inns or the performance of s,t ructural 
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•. 

R~sistance 

r, s 

FIG. 1.4 Effect of failure probability due to changes in dispersion of action 
and resistance 
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materials as well as of the expected load patterns and intensities, the 
concept of probability must form an integral part of any rational analysis 
or design; any conceivable condition is necessarily associated with a nume­
rical measure of the probability of its occurrence. It is by this measure 
alone that tbe structural significance of a specified condition can be 
evaluated". Since, the achievement of absolute safety or reliability in the 
um:ertain w rid IS unpo sible, <!Probabilistic appr ach t~ the -evaluation of 
safety becomes a sensible solution. The parameters encountered in civil 
engineering -problems are subjected to random variations. There is a need 
for a rational approach to the evaluation of structural safety, taking into 
account these random variations. 't_he _stud.y_,<?,_f_~a,r}~~i!!ty _comes under the 
domain of statistics _a~<;l prQ~.a~ility. Using the r babilistic approach, ~_here 
is a p ssi6Tiity of obtainitW uniform relta 1ty (!.!_!liform performance in 
S rucltir~S 11 er I J:i.en .design S.iUIJ ti ,I ) which- may probably Jead to 
econ mical designs. Hence, probabilistic approach must be used. Hence­
forth ilfety will be defined by reliability which is defined as the probability 
of survival of a structure under given environmental conditions. It is 
nothing but the ability of the tructurc to fulfil it ns igned funcli( 1is 
atts actorny forsome SQecifieJ time. In structural analysis 11nd design, it is ---- - . 

the probabi li ty tHat a stnl~Jure willnot'attain each specified limiL during a 
pecified reference period. F r co nvenience the reliability is defined in 
terniSOfthe probability of failure (probability of un atisfnctory per­
formance) which is equal to l-thc reliability of the stmc1urep When 
probability lheory is used in the limit tale de ign, the method 1s cu ll ~d 

probability-based limit stale design. 

Probability-based Limit States Design 

ln this design method, probabilistic methods are used to guide th~ selection 
of the partial safety factors to loads and resistances of the structure or 
structural element or materials ofthe structure, and they result in the de­
~ired overall safety. The principal advantages of this design method 
are ( 1.2): 
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(i) more consistent reliability is attained for different situations as the 
different variabilities of the various resistances and loads are considered 
explicitly and independently 

(ii) the reliability level can be chosen to reflect the consequences of 
failure 

(iii) it is a tool for exercising judgement in non routine situat ion 
(iv) it provides a tool for updating standards in a rational manner. 

The conceptual framework for the analysis of structural reliability anu 
probability-based design is provided by the classical reliability theory. 

REFERENCES 
1.1 Freudenthal, A.M., "Safety and the Probability of Structural Failure", Transac­

tions, ASCE, Vol. 121, 1956, pp. 1337-1375. 
1.2 Ellingwood, B.R., T.V. Galambos, J.G. McGregor and C.A. Cornell, "Develop­

ment of a Probability Based Load Criterion for American National Standard 
A58", National Bureau of Standardr, Special Publication 577, Washington, D.C., 
June 1980. 

EXERCISE 
1.1 Is it possible to \!Ccount for the uncertainties in loads in the working stress 

method? 
1.2 Is it possible to account for the uncertainties in loads and material strengths in 

the ultimate load method? 
1.3 Wh<~t do you understand by limit state design? 
1.4 What is central safety factor? 
1.5 Whnt factors all'ect the probability of failure of a structure? 
1.6 Whnt do you understand by uniform reliability in structure? 
1.7 Do you think that the usc of factor of safety is related to the life of structure? 
1.8 Do you think that a design obtained using the ultimate load method with a set of 

load factors will ensure a particular life of the structure? 



2 
Basic Statistics 

In most engineering problems experiments are generally conducted. Experi­
ments may be carried out to study a particular roperty ofi 1natedal~ ·s-uch 
as strength or to study a natural phenomenon like win ve octly, earth­
quake mtensity or, to assess t e s ren t l a eam,_;!c. ect 1 ni are to 
be made on tile basis of these ex riments Experiments or observations are 
usually repeated several times under umform or similar conditions. Even 
though great care is taken to keep the conditions of experiments as uniform 
as possible, the individual observations exhibit an intrinsic variability that 
cannot be eliminated. 

Consider the production of concrete. If a concrete mix is prepared and a 
set 0 three or five cubes are macfe'out of this concrete mixal!.~ they are 
tested for the CQJ.n ressive stren th it will be found that each cube will give a 
dT ereilt-sl;n th. If another batch of conCrde is prepared for the samernix 
ratio under the same conditions and a set of cubes are made out of this 
concrete and tested, it will be found again that these cubes will give another 
set of values fgr the .strength of concrete. Tbe average strength ~f concrete, 
calculated for each set, will also be diftcr~nt. A typical set variaTt nof 
average strenglb of M 20 concrete, obtained from a project (2.1), is hown 
in Fig. 2.1. It is found that the resu t the st~ne;th obtf!ioed var,taqd do 
not give the same value repeatedly for the same mix. This means that the ---=--------.:..---_:;_ _____ --~-- ····· 

4001-

1 ~,L-~6~~,,~~,s~~z~,--~2b6--~J~,--~3~6--4f.,~~4~6~cst, --•s~s:-.~~ 
Set nucnber 

FIG. 2.1 Set variation of cube strength of concrete 
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strength of concrete of a mix is ~ut,jcu to ranllom variations and it rs nol 
possible to predict the exact--ou tcnrm or tire tesT.'"' 

If a surl'cy on Jive load ('fl buildings is conducted, it may be observed 
that the intensity of Jive load varies from bay to bay. A typical variation ol 
floor load intensity (FLI) of an ofticc building (2.2. 2.3) is shown in Fig 2.2 . 
The occurrence of liv~ loa~ 1_s purely a random phenomenon. It varies with 
iltile-.- It !1-~;;, bc_;1 fou;1d that there is a variation from room 'to room in the 
same !lll-or. from floor to floor in the same building, and from building to 
building. 

4 8 12 16 20 24 28 
Bay nurnber 

FIG. 2.2 Variation of floor load intensity 

Normally there i. sufficient contrnl in the prod uction of a particular size 
of a ma terial or the raw materia ls in the pi'Oclucts. However, th re will be 
s ,me variations. This ca n be observed in the production of bricks or steel 
bars or casting of concrete members. The variation of the mean deviation 
of column depth, observed in .a...,_bu ilding pr<~J~~t (2 ~4), i shown in Fig. 2.3·. 
Variations are gener_rt lly smalLJ Varia(i ns arc more pronounced 10 natural 
p~enom-enoil; e.'g~- wi_nd, rainfall, stream flow, height of ocean waves, etc. 
Figme 2.4 giv_es the observed data on yearly maximum wind speed at 
B_a n&al re (2.5). It can i_,e aga in observed that one cannot definitely tell 
whaL will be the maximuw-....wltid speed in the coming year. The wind speed 

( is-probabilistic in nature. .._ · 

Colurnn number 

FIG. 2.3 Variation of colun1n depth 

It can b· c ncllldcd that 111 ·rc ex ists a ce rtain uncertainly in many of the 
van . blcs witlt whi h t: r 11 ' ll .' im·c• :1re concerned. There arc inherent varia· 
tic ns in all the phy I a! pr pcr11 · · or materia ls, loads, natural phenomena, 
viz. wind, eartbqunkc, rainl'all . nullll cr ()f vchide cto si n' a road junction, 

-------
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Sample Mean 

Sample mean X of a random variable X, is defined as 

-- I • 
X=- I: x, 

n i-t 
(2 . 1) 

where x 1, x2 , . .. , x, is the sequence of the observed values. For illustration, 
'! ~et of data on the compressive strength of brick is given and its mean 
\'alue w rkcd ut in Table 2.1 . The mean is a measure of the central 
tenden y {central va lue). This is by ar the best ~tatisl ic t. numerically sum~ 

'•mt rizc ::1 di stributi n and the centre of gravity of the data . Fo r a given data, 
if o ne is asked t give only a s ingle number, he would proba bly use this 
sample mean as his best prediction of the variable. The mean value is 
liighly susceptible to extreme values of the observed data . Other measures 
of the central tendency are the mode and the median. 

TABLE 2.1 Computation of mza11, SD and CV of a set of data 

Sl. Strength of brick I x1 - X' I (x1 - X)' 
No. (N/mm1) 

I. 29.0 3.1 9.6 
2. 27.7 1.8 3.24 
3. 29.7 3.8 14.44 
4. 21.4 4.5 20.25 
5. 24.7 1.2 1.44 
6. ~5.2 0.7 0.49 
7. 20.0 5.9 34.81 
8. 27.1 1.2 1.44 
9. 29.7 3.8 14.44 

10. 30.8 4.9 24.01 
II. 20.6 5.3 28.09 
12. 20.6 5.3 28.09 
13 . 30.1 4.2 17.64 
\4. 28.0 2.1 4.41 
IS. 23.9 2.0 4.00 

II = }5 E o= 388.5 E = 206.40 

- 3H8.5 v . . 206.40 14 74 X'= -~ 5- anaoce = --
1 

= . 
tt -

= 25.9 N/mm• s = V 14.74 = 3.84 N/mm1 

8 = 
3

·
84 = 0 148 25.9 . 

Mode _is the m;)s\ frequently observed data whereas the median is the 
middle value or the observation when the values &re arranged in the ranked 
order of magnilUJe. If the number of observations are even, then the 
average of the two middle observations is taken as median. Mode is not 
unique. 

For the given set of data, it is desirable to specify a number which gives 

J 
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an idea of the dispersion variability of the observations. Th~ range, the 
standard deviation (SO) am! the coefficient of variation (CV) arc the general 
measu_'::~. o_f_ d!!_p~rsion. ~ ,, . 

Range 

The range R is given by 

R =X!- Xs (2.2) 

where Xt and Xs are the largest and smallest values of n values of the obs~r­
vations respectively, It is seldom used as a descriptive parameter of popula­
tion since it indicates very little about the way the distribution appears 
inside the interval of values. However, this measure is attractive mainly 
because it is computationally convenient and simple. 
~_amount of sc11tt~t ~s -~lt:<! rly_q~p~ndenLon ho\y __ rnllch the set of values 

~vi!t_~s _[r_<?!!l_ ~h~_<;entr'!.L~a.!.l1~.: The greater the scatter, the _l~rger the ~I 
~~i_<!_tis>!l · The standard deviation is a measure of dis ersion. 

Standard Deviation 

This is defined as the positive square root of the average squared deviation 
from the mean, i.e., · 

I n 
s2 = - 1.: (x; -- X) 2 (2.3) 

11 1= 1 

where s is the standard deviation. The above formula gives an estimate of s. 
An estimator whose expected value is not equal to the parameter it has 
estimated is said to be a biased estimator. The unbiased estimate of sis 
given by 

Variance 

S2 - I }; (Xi - -· X)2 . -· ;;--=:[ i=l (2.4) 

This is defined as the square of the standard deviation. It is difficult to say, 
purely on the basis of standard deviation or variance whether the dispersion 
is large or small. T~i~jL~<::an i ngfu! Q.nly r_ell!~ive to the central val!Je. For 
this reason, the coefficient of variation (CV) is often preferred and it is a 
convenient measure for comparing the relative dispersion of more than one 
kind of data. 

Cf!dfi ,;;;,'"of Variation .... 
--This is defined as 

(2.5) 

where 8 is the coefficient of variation. 
The calculations of variance, SO and CV, are illustrated in Table 2.1. 
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2.3 HISTOGRAMS 

The preceding section was mainly concerned with the collection of data and 
the calculation of mean, SD and CV of a set of observations. Next step is 
the presentation of the collected data in a useful form . The observations 
are made and noted down as they occur and hence the collected data will be 
in an unorganised form. Th_is tmorganise~ data is arranged properly. The 
values are marked in increasing order. These ordered values are then divid­
ed Into int rvnl and the number of observations (frequency of observations) 

.. ., 
in each interval is plotted as bar. The plot obtained is called a histogram. 
For plotting histograms, the approximate number of intervals may be select­
ed by using the following formula (2.6): 

a = 1 + 3.3 log10 11 

where a '"'= number of intervals between the minimum and maximum 
values and 

n =·c sample size (number of observations) 

If the proper interval for drawing a histogram is not taken, the plot may 
not give the correct picture of the underlying distribution of the variable. 

Let the length of the brick be considered as a variable . A sample of 400 
bricks are tested . Using Eq . (2 .6a), the number of intervals for drawing a 
histogram for a sample size of 400 is 

a = 1 + 3.3 Jog1o 400 = 9.59 (2.6b) 

The grouped data on the length of bricks is given in Table 2.2. For this 
grouped data, the histogram of the length of brick is shown in Fig. 2.5a. 
The histogram gives the investigator an immediate impression of the range 
ot' the data, its most frequently occurring values and the degree to which it 
is sea ltercd . 

TARLE 2.2 Grouped data 0 11 lcng llz o( brick for drawing histogram 

Rangr (111111 ) 

221 221 

22J l25 
225 227 
227 224 
229 211 
2J I -211 
2JJ 21~ 
2:l5 2:17 
237 2:\'l 
239-241 

Frequency 

25 
71 
'l2 
RR 
75 
)J 
10 
2 

11 400 

Rel a ti ve frequency 

0 .0025 I 

0.0075 
0 .0625 
0 . !775 
0 .2300 
0.2200 
0 .1875 
0.0825 
0 .0250 
0 ,0050 

1.0000 

Cumul a ti ve frequency 

0.0025 
0 .0100 
0 .0725 
0 .2500 
0.4800 
0.7000 
0.8875 
0 .9700 
0.9950 
1.0000 

Relative frequency_ is obtained by dividing the number of obs~rvations in 
an interval by the total numhcr of observations. The calculation of relative 
frequency is illustrated in Table 2.2. In Fig. 2.Sa, the relative frequency is 
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FIG. 2.5 Histogram and cumulative frequency of length of brick 
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also marked on the Y-axis on the right side. The relative frequency yields 
the investigator an immediate idea that what is the chance of the variable 
lying within a specified range. From Table 2.2 and Fig. 2.5a, it can be seen 
that the chance (probability) of a value for a length L lying between 
229 and less than 231 is 0.23. That is 

P(229 ~ t < 231) = 0.23 

where P(X) should be read as the probability of X. 
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In Table 2.2, cumu lut.ivc frequency ha. also been computed. The cumul a­
ti e frequ•ncy- " lcss than a particular value''- i obtnincd by add ing the 
frequencies one by nest. rting from the l p of the frequency table. imilarly, 
cumulativ relative frequcn y can be omputed as shown in Table2.2. Fr 111 

the table il C<lll be interpreted that the chance f geLLing a va lue for the 
length of brick less thf1n 23 1 mm is 0.48. That i 

P(L < 231) = 0.48 

The umtllativc frequency diagram of the length of brick i shown Fig. 2.5b. 
Fr m !hi ~ <lia ram one can qu ickly ay what i the chance of ge tting n 
va lue f r a length less than a particular value. For instance, this is equal to 
0. 7 for the spe ified value of a length equal t 233. Frequency distribution 
nf the field da ta n the trength of M 15 collcrete floor live load in office 
building, yearly maximum wind speed and the trength of over-rei nforced 
prcstre .eel oncretc beam are shown in Figs. 2.6, 2.7, 2.8 and 2.9 res· 
pectively (2. 1, 2.3, 2.5, 2.7). 

The histograms shown in Pigs. 2.6 to 2. 10 have differe nt shapes. It can 
be see n in ·ig. 2.5 that the hi togram is symmetrical about the mean whereas 
other hi togram. are not· that i 1 t e arc skew~; W 1cther a hi togram is 
~ nHnolrica l or not can be ou nd by computing the coefficient of skewnes . 

108 
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n = 399 -
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~ SO = 5·76 N/mm2 

~ 
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1--
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~ 

20 28 36 44 
Cube strength (N/mm2) 

-

-

0·27 

Cll 
> 

0·09·~ 
'ii a:: 

52 ° 
FIG . 2 .6 Frequency distribution of M 15 concrete 

Coefficient of Skcwnus 

The sumple coelllcicnt of skewness is related to the third moment about the 
mean. The coelllcient of skcwnes e1 is given by 

I' I · - - .E (xt -- .fp I [I n ] 

.1'1 II 1-1 
(2.7) 

The coefficient of sk.ewnes~ iH u measure o ;· skewness or asymmetry about 
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FIG. 2.1 Frequency distribution of floor live load in office building 
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FIG . 2.8 Frequency distribution of yearly maximum wind speed at Colaba 

the mean. The coefficient is positive for histograms skewed to the right (i.e. 
with longer tails to the right) and negative for those skewed to the left (i.e. 
with longer tails to the left). 

)'J*' SAMPLE CORRELATION 

Engineers on many occasions may have to deal with two variables of 
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30 

FIG . 2.10 St:utli"llt:lllt of the dat<t connecting cube ~trength and cylinde1 strength 

related interl'~t ; nne v:tl i:thil- 111 :1y depend nn the other. When pairs of data 
of two vari<1 blcs arc plot ted as shown in F;g. 2. 1 0, <1 plot called scattergram 
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is obtained. A numerical summary of the tendency of the high values of one 
variable X pairing with the high values of the other variable Y or, the high 
values of X pairing with the low values of Y is given by the sample 
covariance Sxr• which is defined as 

] n 

Sxy = n _ 1 /}.
1 

(x1 - X)(y; - Y) (2.8) 

If sxr is positive, it means that the high values of X pair with the high 
values of Y and if sxr is negative, the low values of X pair with the high 
values of Y. 

Sample Correlation CoelficUnt 

The sample correlation coefficient is obtained by normalizing the sample 
covariance with standard deviations. The sample correlation coefficient, rxr• 
is given by 

Sxy 'l n (X;- x)(y;- Y) 
'xr = sxsy = n -1 /~1 sx Sy (2.9) 

rxr is a dimensionless quantity and its value varies from -1 to + 1. The 
correlation coefficient gives a measure of the degree of the linear depend­
ence of the two variables. If r XY is equal to I, variables are perfectly 
positively correlated, and if r equal to -1, variables are perfectly negatively 
correlated. If rxy = 0, there is no linear dependence between the two 
variables. Calculations of the sample covariance are illustrated in Table 2.3. 

TABLE 2.3 Computation of sample co1•ariance and correlation coefficient 

Cube Cylinder 
Sl. strength strength (x1 - XJ (y,- YJ (XI- X)(Y;- YJ 
No. XI Y1 

(N/mm•) (N/mrn•) 

I. 15.17 9.86 -6.565 -3.955 +25.965 
2. 17.92 11.29 -3.815 -2.525 + 9.633 
3. 20.13 12.48 -1.605 -1.335 + 2.143 
4. 22.54 . 14.65 +0.805 +0.835 + 0.672 
5. 24.80 15.38 +3.065 +1.565 + 4.797 
6. 18.67 11.95 -3.065 -1.865 - 5.716 
7. 22.91 14.43 +1.175 +0.615 + 0.723 
8. 27.70 18.00 +5.965 +4.815 +28.721 
9. 29.24 18.42 +7.505 +4.605 +34.561 

10. 18.27 11.69 -3.465 -2.125 + 7.363 

E 217.35 138.15 108.862 

X = 21.735; y = 13.815; sx = 4.533; 

sxr Co 
1
_ ~)(lo8.861) = 12.096 

12.096 093 -; .. 
'xr 4.533 x 2.868 = · ,.. 
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From Table 2.3, it is noted that rxy = 0 .93, indicating that the cube strength 
and the cylinder strength of concrete are linearly positively correlated. 
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EXERCISE 
2.1 The test results of the compressive strength (N/mm•) of 50 concrete cubes obtain­

ed from a building project are given below: 

17.24 !6.18 16.53 15.20 18.40 

19.73 17.24 20.53 19.38 23.42 

17.60 18.76 20.()1) 20.36 20.27 

19.82 20.09 21.78 19.82 19.11 

21.42 22 .31 21.L6 21.15 20.36 

13.60 14.98 15.08 18.01 14.93 

13 96 15.64 15.56 16.09 13.96 

13.87 15.75 12.11 17.18 16.20 
15.65 16.27 14.83 13.24 15.03 

13.96 15.58 17.36 16.29 16.71 

Calculate the mean, the standard deviation, and the coefficient of variation of the 
strength of ::oncrete for the given data. Plot a histogno.m. Determine the chance of 
ge!ting a value less than 15 N,'mm1 . 

(Ans. X= 17.41, s = 2.76, P(X < 15) = 0.37) 

2.2 Samples of soil are collected from various depths below ground level and tested in 
the laboratory to determine their shear strength. The collected field data are given 
below: 

Depth (m) 

Shear (kN/m1 ) 

strength 

2 

14 8 

4 

20.3 32.2 

5 6 7 

39.0 42.0 56.4 
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Determine the sample covar' lltee and correlation coefficient between the depth of 
I he soiJ and its shear strength . What do you infer? 

(Ans. sxy = 27.99; '..tY = 0.987) 
For the data gi\·en in Exercise 2.1, determine the coeffiCient of sk.ewnes>. What do 
you infer? (Ans. 0.27) 

2.4 What do you understand when you get a negative correlation for a given set of 
data? Give an example in a civil engineering field where negative correlation 
appears? 
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Probability Theory 

3.1 JNTRODUCTJO!\ 

In every walk of life people make statements that are probabilistic in nature 
and that carry overtones of chance; example, we might talk about the 
probability that a bus will arrive on time, or that it may rain tomorrow, 
or that a child to be born will be a son, or a flood may occur in a river this 
year ... , and so on. What is the characteristic feature in all the above pheno­
mena? It is that they all lack a deterministic nature. Past informations, no 
ml;ltter how voluminous, will not allow us to formulate a rule, and to deter­
mine precisely what will happen when the experiment is repeated. Phenomena 
of the above type are called random phenomena. The theory of probability 
involves their 5tudy. Variables in engineering problems can be classified as 
shown in Fig. 3.1. In a deterministic study, parameters may be considered 
as a function of time (time variant) or in some problems they may be inde­
pendent of time (time invariant). Similarly, in a probabilistic study variables 
may be treated as time invariant or in many cases time variant (e.g. wind 
~<)'ad ocean-wave height, earthq~ake, etc.). When a random varjable as­
~um ·s values as a fun c tion of time, the variable is C'llied a stochastic 
variable. The probabilistic study of stochastic variables is called stochastic 
process or random pro~ess. In most engineering problems, random variables 
of interest are stochastic in nature. However, for simplicity, variables are 
considered as time invariant. This chapter deals with random variables 
which are not stochastic. 

Time invariant 

Dl.'lerministic 

Time variant 

Time invari~t 

--......__ Time vanant 
(StaLonM'/ c.r>d nor.stationary) 

fIG :l 1 Var111l>l" s ;, rHI classlirc<Jtion 
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3.2 RANDOM EVENTS 

Preliminary Ideas 

Before discussing probability theory a few preliminary ideas that are used 
in subsequent discussions are introduced in this section. The first is the 
concept of an event. 

Sample Space and Events 

Consider a number of persons boarding a bus at a particular bus stop. 
A survey is carried out daily at the same time. The capacity of the bus is 
60. Let X be the number of persons boarding the bus. It can be seen that 
X can assume value 0, I, 2, 3, ... , 60. Each one is a possible outcome of 
the experiment (experiment in a general sense; here experiment is the 
counting of the number of persons boarding the bus). Each of these out­
comes is called a sample point. The collection of all these pos,ib<e outcomes 
of the experiment is called a sample space. l-Ienee this sample space 
consists of a set S of points called sample points. Each or these outcomes, 
a sample point, is called a simple or elementary event. Let a simple event be 
denoted byE;, the c;ubscript i, here, denoting the number of persons. Then 
for this example, there are sixty-one simple events denoted by Eo. Et, E2, . .. , 
E,, . . . , E60, where E; is an event representing the occurrence of the varinble 
X taking a value i. The s~m1ple space for this experiment is 

S = {Eo, Et; E2, ... , Es9, E6o} 

One may be interested in the collection of n set of outcomes in an 
experiment. In this case, one may note down the number of persons board­
ing the bus-(i) less than 4 or (ii) greater than 5 and lesslhan 10. Such events 
are called compound events or simply events. If A is 'the event representing 
the number of persons less than 4, then sample points in the event A are 

A .- {Eo, E1, Ei, EJ} 

and if the event B is defined as the number of persons bonrding greater 
than 5 and less than 10, then sample points in the event Bare 

B -· {Er, , h, ... , E9} 

lf Cis an event denoting the number of persons boarding the bus greater 
than or equal to 4, then 

C = {£4, E~ . ... , EGo} 

when events A and C arc compared , it can be seen that event C consists of 
all points that arc not included in event A. Such two events are called 
complementary events. A is the complement of C 

The formal definitions of various events arc given below: 

(i) Simple event: An event consisting of a single sample point. A simple 
event cannot be decomposed into a combination of other events. 

(ii) Compound event: An event made up of two or more sample points. 
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(iii) The complement event Ac of the event A consists of all sample points 
in the sample space not included in the event .4. In the cited example 

Ac "'·~ C 

(iv) Certain event: An event constituting all sample points in the sample 
space. 

(v) Null event is the complement of a certain event and is generally 
designated as </>. 

In the experiment-number of persons boanling a bus-the sample points 
have individually discrete entities and arc countable. Such a sample space 
is called a countably discrete sample space. If such a sample space has 
finite nu ·nbcr of points, it IS called countably finite discrete sample space. 
A second example of the finite sampk ~ pace i' the observation of the 
number of days in a year wilh l·~nlperature higher than say JOoC at a 
purticular location. fach day of the year is il possible sample point. The 
sample space con~ists of 365 sample point~. This is a discrete finite (count­
ably) sample space. Another example i~ the observl:tion of a successful bidder 
among the number of contractors bidding for a parti~:ular job. 

Sometimes a discrete sample space may have sample point which arc 
countably infinite. for example, the number of persons undergoing an car 
operation in a year in the wlloie world. ln this case the number of persons 
could he thcor<:::tically any integer from zero to infinity. Such a sample space 
is calkd a c!iscretc (countably) infinite sample space. Another example is 
the ob~e' '- ation of the number of accidents along a busy road during a 
yca1 

Many e11gineering problems or physical situations involve measurements. 
Consider the experiment, the measurement of a deflection during the load 
test of a reinforced concrete beam. It may be ro~sible to get ,,;1y value 
(noninteger) of the deflection starting from zero with the in:;trumcnt (dial 
gauge). If the least count ('l the dial gauge is 0.001 mm, deflections could 
be obtained at an increment of 0.001 mm starting from zero. The sample 
points may be 0.000, 0.001, 0.002, 0.003, .. n where n is the number of 
points which may be etfcctively large. The o.ample space will have a conti­
lllllllll ol' sample points. Such a sample space is called a continuous ~ample 
~p:IL'C. l·or convenience. a continuous sample <;pace is defined from 0 to co, 

l.l'. any value g1cater than zero is assumed as a possible outcome of an 
L'\IH.'IIIIH.'III l11 'ome situations, the variable of interest may assume negative 
vallll.:' . I"' nan1ple, the deflection of a simply supported prestressed 
conu-clt' hc:1111. During the initial loading stages of the beam, the beam 
will havl' : 111 UJHValll (negative) deflection, and after a certain Tevel of the 
att..:rn:d load, a dt>ll'llll'<lrll (positive) deflection. In this case, the interval 
--- oo to ! co become' I he sample space. Another example of this case is 
the measurement ol' l'l nor. 

In som,~ f-!ijsical situ:lll<lJIS . il 111:1\' he known rrom physical conditions 
that a continu,lliS v:u iahlc (II iniL'ITSI c:~n :1s,umc a \';lluc within a tinite 
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interval only. For example, (i) wind directions can be observed from 0° to 
360c and this finite interval becomes the sample space, (ii) the strength of 
M 15 concrete if one assumes that the strength value cannot exceed 40 
N/mm2 or be less than 8 N/mm2• Then the interval 8 to 40 N/mm2 is the 
sample space. Events in a continuous sample space can also be defined. A 
few examples are given. 

ExAMPLE 3.1 Consider a traffic engineer noting down the number of vehicles 
on a small bridge at u particular instant. The maximum number of vehicles 
that can be at a time is I 0. Sketch the sample space and show the events 
(i) observing less than four vehicles, and (ii) observing greater than 5 and 
less than 9 vehicles. 

Solution: Let 

E; = the event observing i vehicles. 

Hence, the sample space is 

S =-= {.Eo, Et, Ez, ... , £10} 

and this i~ shown in Fig. 3.2. This is a finite discrete sample space. 

Event A / Event B 

r ----- -- - --, 
lEO El E2 EJI E4 

r- ------, 
I E6 E7 Es I 

L_ ____ f" ____ _J 
L - -- - -- - J 

FIG . 3 .2 Sample space and events- Exampl e 3.1 

Let 

A = the event observing < 4 

B = the event observing > 5 

These events are also shown in Fig. 3.2. 

and <9 

EXAMPLE 3.2 An engineer at an airport is measuring the wind speed at 
regular intervals of time. Sketch the sample space and mark lhe event A 
observing the wind speed less than 40 kmph and the event B observing the 
wind speed 60 kmph. 

Solution The possible outcomes of the measurement of wind speed can be 
from 0 to co. Hence, this is a continuous sample space. This is sketched in 
Fig. 3. 3. Events A and B arc also marked in the same figure. 

In many problems we are interested in events which arc actually the 
combinations of two or more events. A It hough the reader must surely be 
familiar with these terms, let us review them briefly. 

Let us now define relations between events. Consider counting the number 
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0 

f--
20 40 

A 

60 r.o 100 -a: 

FIG. 3 .3 Sample space und events-E xample 3 .2 

ol· vehicle~ l'll a bridge at <I lime (Example 3.1). The sample ~race is 

S · {Ln, 1~·1. b, EJ, .... E,o} 

Let A · 'the e\cnt ohscrving < 4 vehicles 

C , .. the event observing> 7. and < 7 vehicles 

Then we have the following relations between A and C: 

(il Both A and C occur together. This situation will happen when the 
simple event EJ occurs. This is \1 rilten as An C and it is read as A 
intersection C. 

(ii) Either A or Cor both occur. In the present example, this is the event 
having sample points (Eo, L1, E2, E\ E4, Es, EG). This is written as AU C 
and is read as A union C. i.e. sample points in the event A U C arc 

AU C = (Eo, E1, E2, b, £4, Es, EG) 

Let D be the event observing more than 7 vehicles. Then it can be seen that 
the events A and D have no points in common. The event AnD is impos­
sible . This is written as 

AnD= 0 

and A and D are called mutually exclusive or disjoint events. Relations 
AU C and An Care marked in Fig. 3.4. 

AUC 

L 

Event 0 

FIG. 3.4 Relationship among events 

The union and the interscdion of events are best understood by drawing 
Venn diagrams shown in Fig. 3.5. In Venn diagrams, the sample space is 
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represented by a rectangle while events are represented by regions within 
the rectangle. 

(a) (b) 

s 

(c) {d) 

FIG. 3.5 Venn diagrams for (a) intersection, (b) union. (c) mutually 
exclusive and (d) complement of events 

Consider the observation of the direction of wind speed at an airport. 
This has a continuous sample space with the variable taking any value 
from 0 to 360°. Let 

A be the event observing wind direction ~ I 00° 

and B is the event observing wind direction > 100° 

If the accuracy of the measuring instrument is 0.1 o, then 

s = (0.0, 0.1' 0.2, ... , 100.0, 100.1, ... , 360) 
A = (0.0, 0. \, ... , \00) 
B = ( 100.1, 100.2, ... , 360) 

It can be seen that the union of the two events A and B contains all sample 
points in the underlying sample space and these two are collectively 
exhaustive. In general, two or more events are collectively exhaustive if the 
union of all these events constitutes the underlying sample space. 

A listing of a number of important laws obeyed by the combination of 
the events is given below without formal proofs. 

Identity laws : A U<P =A, A nS = A 
AUS = S, An<P = <P 

Idempotent laws : AU A = A, A n A = A 
Complement laws : AUAc = S, AnAc = <P 
Commutative laws : AU B = B U A 

AnB = BnA 
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De Morgan's Law The complement of the union and intersection of events 
is the intersection and union of their respective complements. 

A.~.wciative Lau•.1: 

Disiribuiive LaiVs: 

(AUB)<' = Acnnc 

(An B)< ~" ACU nc 

A U ( B U C) = (A U B) U C 
A n<sn c)= (An B)nc 

A U(Bn C)= (AU B)n(A U C) 

A n(BU C)= (An B)U(A nc) 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

Venn diagrams for associative and distributive laws are shown in Fig. 3.6. 

(AUB)UC 

FIG. 3.6 Venn diagrams for associative and ~istributive laws 

Probability Measure and Axioms 

The empirical notion of probability is that of relative frequency; the ratio 
of the total number of occurrences of a situation to the total number of 
times the experiment is repeated. When the number of trials is large, the 
relative frequency provides a satisfactory measure of the probability asso-­
ciated with a situation of interest. 

A random experiment is a repetitive process or operation that in a single 
trial, may result in any one of a number of possible outcomes such that a 
particular outcome is determined by chance, and is impossible to predict. 
Under a given set of conditions, a random experiment has N exhaustive, 
mutually exclusive and equally likely outcomes A1, A2, ... , AN. If M of 
the outcomes are associated with the occurrence of an event A and N-M 
outcomes with the nonoccurrence of A, the probability of the occurrence 
of A is (M/N), i.e., 

P(A) = ~ 
II' an experiment has a sample space and an event A is defined on S, then 
P(A) is a real number called the probability of the event A, or the probabi­
lity of A, and this J>(A) must satisfy the following axioms: 

(i) For each event A <'f 8 
0 ~ P(A):::; I 
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~ii) P(S) ,= I 
(iii) If A1, A2, . . . are denumerable mutually exclusive events defined on 

S, then 

P(A1UA2UA3U ... ) = P(AI) + P(A2)-+ P(A3) + .. . 
For a finite number of mutually exclusive events, say k, 

k 

P(A1UA2U .. . l)Ak) = .E P(A;) 
i-1 

(3.7) 

The probability of any event is the sum of the probabilities assigned to the 
sample points within which it is associated. 

From the axioms of the probability theory, the following formulae can be 
obtained (students are expected to prove them) by drawing Venn diagrams: 

P(A U B) = P(A) + P(B)- P(A n B) (3.8) 

P(AUBUC) = P(A) + P(B) + P(C)- P(AnB) 
--P(BnC) --- P(AnC)-+ P(AnBnC) (3.9) 

This can be extended to the union of a number of events. 

EXAMPLE 3.3 During the route survey of a transport mini bus, 100 
observations of the total number of persons travelling by the bus on a 
particular length of the route yielded the following results (Table 3.1). 
Observations have been made at random. 
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Define 

A =---" more than 15 persons travelling by the bus 
B , ' > 12 and < 18 persons travelling by the bus 

Solution Assuming the number of persons travelling are mutually exclu­
sive events, we can use the relative frequencies given in Table 3.1 to repre­
sent the corresponding probabilities. 
Hence, 

P(A) = 0.08 + 0.16 -!- 0.14 + 0.17 + 0.16 
= 0.71 

P(B) = 0.01 + 0.05 --1- 0.06 + 0.08 + 0.16 
= 0.36 

The verification of Eq. 3.8 is 

(An B) = (EJ6, E11) 

Hence, P(A n B) =-= 0.08 + 0.16 = 0.24 

According to Eq. 3.8, 

P(A UB) = 0.71 + 0.36 --- 0.24 = 0.83 

This can also be calculated as 

(AU B) = (£13, £14, .•. , E19, E2o) 

= 0.01 + 0.05 + 0.06 + 0.08 + 0.16 
+ 0.14 + 0.17 + 0.16 

= 0.83 

Hence, the theorem (Eq. 3.8) is verified. 

Two Dimensional Sample Space 

Consider the same experiment discussed in Sec. 3.2, namely the number of 
persons boarding a bus at a bus stop. Instead of counting the total number 
of persons, one is interested to note down how many males and females 
board the bus. Let 

l~tj "- the event representing i men and j women boarding a bus 

Then the sample space for such a case can be sketched as shown in Fig. 3. 7. 
The experiment in two-dimensional space involves an observation of 2 
numbers at the same time. 

Another example is that an airport engineer may be interested to note 
down the wind speed and the wind direction for the orientation of an 
airport. This is a continuous two-dimensional sample space which is shown 
in Fig. 3.!\. 

In some situations it is also possible to have a discrete-continuous 
samplu space. 1-' 11 ".'Wmplc, in Example .I if the traffic engineer re ords 
not only the nurnhcr ul' vcltich:s < 11 the bridge, but al o the total weight of 
the vehicles on the bridge at the same time, f r s-uch a case, assuming t11e 
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• • • • • 
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• • • / 
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FIG. 3.7 Two-dimensional sample space-number of men and 
women boarding a bus (Note i + j > 60) 

-,. 360 
2' / '0 
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Wind sp~~d ( k mph) 

FIG. 3.8 Continuous two-dimensional sample space-wind 
speed and direction 
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minimum weight of a vehicle is 30 kN and the maximum 300 kN, and the 
maximum number of vehicles on the bridge at a time is 6, the sample space 
will be as shown in Fig. 3.9. 

Conditional Sample Space 

If one is interested in the possible outcomes of an experiment, given that 
some event A has occ'-lrred, the set of events associated with the event A can 
be considered a new reduced sample space. In Example 3.3, given that 15 or 
more men have been observed, the number of women boarding the bus will 
have a reduced sample space as shown in Fig. 3.10. This is a conditional 
sample space. 

Suppose that in sampling the number of persons bording a bus at a bus 
stop we restrict our observations only to women. Here, there is a new sample 
space including only part of the elementary events in the original sample 
space. This new reduced sample space is also a conditional sample space. 
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Fig 3.10 Conditional sample space-number 11 women 
in a bus given 15 or more men 

Conclitio,al Probability 

As the title s11ggcsts, we nrc interested in the probabil;ties ol rvenh. gi\cll 
some condition . The conditional probabilit y or :111 event A. gi\en the occur­
rence or an event IJ, is defined by 

P(4/ 8),c: P(A n B) 
, ' P(IJ) 

( 3 .I()) 

provided /'(/1) 1- 0. P(A I B) is not defined if P(B) = • 0. 

ExAMPI.I-. .lA In the rrevious Example 3.\ let us assume th<H 11 is given that 
()persons <~rc travl'lling in the bus. Now under this condition, it is required 
lo find out what is tht: clwnce of observing 3 or fewer women travelling in 
the hus. 

Sol11tion Let 

T the event observing (l persons travelling 
F thl: event observing 3 or fewer women 
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The sample points in Tare 

(E6,o, Es,1, E4,2, £3,3, £2,4, Et,s, Eo,6) 
Let it he assumed that the probability of observing a man travelling in the 
bus is equal to that of observing a woman traveJJing in the bus. All proba­
bilities in the reduced sample space must add up to one. The probability of 
observing each sample point in the reduced sample space is equal to 1/7. 

Sample points in the event (T n F) are 

Hence. 

(E6,o, Es,1, £4,2, £3,3) 

P(Fl T) = !!_(T n F) = 47 
P(T) 

~c that all pr babilities in the reduced sample space must add up to I. 

~X AM Pt. 3.5 From n ertai n lot, 100 mild steel bars were .eJec ted at random 
and tc ted for their yield strength and ullimale trength. Tf a spe imen has 
an yield strength less than the guaranteed yield strength and less than the 
guaranteed ultimate strength specified by code, we may define those cases as 
failures. Under this condition, it was found that 25% of the specimens had 
failed against yield strength, 20% against ultimate strength and 10% in 
both. 

(i) If a specimen had failed against yield strength, what is the probability 
that it had also failed against ultimate strength? 

(ii) If it had failed af!ainst ultimate strength, what is the probability it had 
ulso failed against yield strength? 

(ii) What is the probability that a specimen failed either against yield 
strength or against ultimate strength? 

Solution Let 

Given. 

Y = (specimens which failed against yield strength) 

Z = (Specimens which failed against ultimate strength) 

P(Y) ~,.--. 0.25 

P( Y n Z) = 0. 1 0 

P(7.) 7 0.~0 

(i) The probability that a specimen also failed against ultimate strength, · 
given that it had failed against yield strengt~ is 

P(z I Y> = P(Y n z> =o o.w 
P( Y) 0.25 

= 0.4 

(ii) The probability that a specimen also failed against yield strength, 
given that it had failed against ultimate strength is 

P(Y 
1 
z> = P(Y n z) = o.1o 

PCZ) 0.20 

= 0.5 



34 

(iii) The probability that a specimen failed either against yield strength or 
against ultimate strength or against both is 

P(YUZ) = P(Y) + P(Z)- P(Y fl Z) 

= 0.25 + 0.20 - 0.10 

= 0.35 

AMPLE 3.6 Two vehicles are approaching a road junction. The action of 
the driver of the following vehicle is dependent on the action of the leading 
vehicle . The probability of the leading vehicle turning right is 0.3 and the 
probability of the following vehicle turning right is 0.6. The probability of 
both the vehicles turning right is O.l. Determine (i) the probability of the 
following vehicle turning right if the leading vehicle turns right. 

Solutim1 Let 

Given: 

L = the event that the leading vehicle is turning right 

F = the event that the following vehicle is turning right 

P(L) = 0.3, P(F) = 0.6 

P(L n F)= 0.1 

(") I 0.1 I 
I P(F L) = 0.3 = 3 

P(LUF) = 0.3 + 0.6 - 0.1 = 0.8 

(ii) What is the probability of the following vehicle not turnmg right 
when the leading vehicle is not turning right? i.e. to determine P(F" I U). 

P(F' I U) = P(P n U) 
P(U) 

From DeMorgan's Law, 

Hence 

P(fC n U) =: P(F U L)c 

= I - P(F U L) 

- I -- 0.8 = 0.2 

P(Fc I U) :-= 
0·2 

(I -
2 
7 

(iii) What is the probability of the following vehicle not turning right 
when the leading vehicle turns right? i.e. determine P(F i L) 

But 

P(rc In = P(P n L) 
- P(L) 

P(F () L) ,. ~ P(L) -- P(L (I F) 

- 0.3 -- 0.1 = 0.2 
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Hence 

Rule of Multiplication 

The probability of the joint occurrence of two events is equal to the margi· 
nal probability of one of the events multiplied by the conditional probability 
of the other, given that the first event has occurred. 

We can rewrite the formula, Eq.( 3.10), to yield 

P(A n B)= P(li)·P(A-Im'- (3.11) 

This is called the generalrulc of multiplication of the probabilities and is 
extremely useful in many instances to find the probability that two events 
will occur simultaneously. 

The above theorem can be extended to the joint probability of a number 
of random events At, A2, ... , A,.: 

P(A1 n A2, ... , n A,.) = P(At)P(A21 A,)P(AJ \At n A2) ... 
P(A,. I AJ n A2, ... , fl An-t) 

EXAMPLE 3.7 Twelve concrete cubes are being cured in the laboratory. 
Out of them, 9 cubes were prepared from a batch of M I5 concrete mix and 
the other three belonged to M 42 concrete mix. During curing, the marking 
face of the cubes have been kept at the bottom by mistake. Now three cubes 
are drawn at random from the curing tank one after the other. Find the pro­
bability that all the three cubes belong toM I5 concrete. 

Solution Let 

At = the event that the first cube isM 15 concrete 

Similarly A2 and AJ are defined. 
The probability that the first cube is M 15 concrete is 9/12 since 9 out of 

12 cubes are M 15 concrete, i.e. 

. 9 P(AJ) =-
12 

If the first cube is M 15 concrete, then the probability that the next cube is 
M 15 concrete is 8/11 since only 8 of the remaining II cubes are M I5 
concrete, i.e. 

8 
P(A2 I Ar) = TI 

Similarly, it can be written that 

(A I n Al) imp I ies that the first two cubes selected are M 15 concrete. Hence 
the probability that the first three cubes selected one after the other at 
random are M 15 concrete is 
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P(AJ n A2 n AJ) = P(AJ)P(A2 1 AJ)P(AJ 1 A1 n A2) 

Probability Tree Diagram 

= (tz)(A)C~) 
21 

=55 

In practice, a finite sequence of experiments are conducted. Each experiment 
will have a finite number of outcome. with associated probabilities. A con-
cnien t way of describi ng uch a process and computing the probab il ity of 

any cv nt is by a pmbability tree diagram, ill ustra t d below. The mu ltipli-
ation theorem is u·cd to c mpu te the probabili ty. 

ExAMPLE 3.8 Consider a reinforced concrete rectangular beam. The ulti­
ma te stren"lh or benm i a funcli n of the cube trcngth < f co ncrete feu, 
the yield strength f steel, r. Bnd other parame ters. If the cube strength of 
co ncrete and steel nnJ other poramct r arc t.: nsidercd <ts not subjected to 
random variations, the given beam i under-reinforced dctermini ti all y. 
Tl owever, if r • ., ami;;, are subjected to random variation.' then the beam 
may be under-reinforced or over-reinforced, depending on the values assumed 
by f,.;, and_(; .. When the beam is subjected to an external bending moment, 
tho beam may tail or surviv depending on whether the external momen t is 
greater than or lcs · Hwn the resisting monh:nl f the beam. lt is gi en that 
un lcr a given ex ternal m mcnt, the pr babi iity of the bea m becoming undcr­
rci nf<>r ·cd i 0.6 and the chance of failure of the beam i 0.1 under thi 
given event. The probability of failure of the beam is 0.2 if the beam is 
over-reinforced. Assume the events under-reinforced and over-reinforced as 
independent. Compute the probability of failure of the beam . 

Sol!i t ion Let 

A =' the event that the beam is under-reinforced 
8 ~.-= the event thilt the beam is over-reinforced 
F ·= the e\·e11t failure 
S --· the event ~un•ivai 

the pn>h;1hility tree diagralil is shown in Fig. 3.11 . The probability offailurc 
or the hcam, ,.,-.is 

{'( P(A)P(F I A) + P(B)P(F I B) 

. (0.6)(0.1) -1- (0.4)(0.2) 

().()6 + 0.08 '-~ 0.14 

.'lt(l t i.\·t ical I IIIII' J'l'lldl'll<'t' 

I r 1 he nee un cncc o I" an even 1 A is not affected by the occurrence of another 
event B. then 1t i.'> said that the two events A and Bare statistically indepen­
dent. Mathematically, two events are said to be independent if and only if 

P(A \ B) ,= P(A) (3. 12) 



FIG. 3.11 Probability tree diagram-Example 3.8 

From this definition, it can aslo be written 

or 

P(A n B) = P(A) 
P(B) 

P(A . n B) = P(A)P(B) 

P(B I A) = P(B) 

37 

(3.13) 

Equation (3. I 2) or (3.13) is generally used to define the independence of two 
events. By Eq. (3.13), it is meant that if the two events are independent, the 
probability of their joint occurrence is equal to the product of their indivi­
dual probabilities of occurrence. 
Extending Eq. (3.13) to a number of N events, A, B, ... , N are mutually 
statistically independent if and only if 

) P(A- n JJ n ... n N) = P(A)P(B) ... P(N) 
I . 

(3.14) 

In practice, an engineer may postulate that two events are independent, 
or it may be clear from the nature of experiments, or he may be able to con­
clude after sampling that there is no apparent relationship between the two 
events . 

EXAMPLE 3.9 Two lakes a and b supply water to a city. The probability of 
lakes a and b becoming dry in summer is 0.2 and 0.1 respectively. Lake a 
can supply 60% of the city's full requirement when b fails (i.e. becomes dry), 
and b can supply 80% of the city's full requirement if a fails. The proba­
bility that both will become dry is 0.05. Calculate the probability that the 
city will have its full supply of water during summer, if there is a failure of 
the lake. 

Solution Let 

A = event lake a becomes dry 

B = event lake b becomes dry 
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Then 

P(A) '= 0.2 P(B) = 0.1 

I'( A n IJ) ,=, o.o5 
From the rhysica1 situation , it can be said that the chance of A becoming 
dry docs not depend on H. 

Hence 

P(A I ll) = ~~~~ = o.s 

P(B I A) = 00~~ = 0.25 

When there is failure. the conditional probability of the lake a not becom­
ing dry, p1, is given by 

PI 
P(Acn B) 
P(X08) 

- P(AC I B)P(B) 
- P(A) + P(.B) - P(B I A)P(A} 

- (I - 0.50)(0. 1) 0.05 = 0 2 
- (o.2f--F (O.t) - (0.25)(0.2) '= 0.25 · 

Similarly, when there is failure, the conditional probability of the lake b not 
becoming dry, p2, is given by 

P(.Bc n A) 
Pl = P(A U B) 

P(Bc I A}P(A} 
:- P (A um 
= ( I - 0.25)(0.2) = O 6 0.25 . 

If there is a failure of the lake, the probability that the city will have its full 
supply of water during summer is 

Pl X 0.6 + p2X 0.8 = 0.6 

Total Probability Theorem 

Suppose JJ is an event which is accompanied by a set of evCIHS A1, A2, .. . , A., 
which partition the sample .S such that they are mutually exclusive and 
collectivcl_v cxhausti ve as shown in Fig. 3.12. One is interested in finding out 
the probability of the event B, P(B), which pro ably is not possible to obtain 
directly. This is obtained as follows: 
From fig. 3.12, it is dear that 

P(B) ,.. I'(IJ n A1) + P(B n A2) + ... + P(B n A.) 
n 

"- 1.: l'(IJ r 1 A, l 
i-1 

(3.15) 
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(BOAt.> -

FIG. 3.12 Venn diagram for total probability 

Expanding each term using the conditional probability theorem, we get, 

" P(B) = E P(B I Ai)P(Ai) (3.16) 
1~ 1 

This is called the total probability theorem. This is illustrated with examples. 

EXAMPLE 3.10 Two cities, 500 km apart, are to be connected. Alternatives 
are: connecting them by rail (R), highway (H) and air (A) by constructing 
airports at 2 cities. The government wi II decide on the basis of the cost and 
merits of each. The chance of selecting R, H and A is 0.4, 0.5 and 0.1 res­
pectively. However, if the government decides on constructing a railway line 
the probability of completing it in 3 years is 0.3; similarly, for highway and 
air link, the corresponding probabilities that they will be completed in 3 years 
are 0.7 and 0.4 respectively. 

(i) What is the probability that the two cities will have the means of 
transportation in 3 years? 

(ii) If some transportation facility between the two cities is completed in 
3 years, what is the probability that it will be a rail transport? 
Given: 

P(R) = 0.4 

P(A) = 0.1 

P(H) = 0.5 

Solution Let 

Then it is given, 

B = the project completed in 3 years. 

P(B I R) = 0.3 P(B I H) = 0.7 and P(B I A) = 0.4 

(i) Using the total probability theorem, the probability that the cities will 
have a transport facility in 3 years is 

P(B) = P(B I R)P(R) + P(B I li)P(H) + P(B I A)P(A) 

== (0.3)(0.4) ~- (0.7)(0.5) + (0.4)(0.1) 

= 0.51 

J 
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(ii) It is given that transportation facility is completed in 3 years. Tlnder 
this condition, the probability that this will be a rail link is given by 

P(R I B)= PCR n IJ) 
P(B) 

P(B I R)P(Rl 
- P(B). 

=.-. ~0.3) llAl = () 235 
0.5 1 .. 

(iii) If the government rejects outright the proposal of air connection, 
what is the probabiltty that the final decision will be a highway? 
This is given by 

P(llj R U H) 
PI II (!? U 1-nl 

P R U H) 

P(fl) 
P(R) + P(ll) 

0.5 5 
0.4 -;- 0.5 9 

LXAMPLE 3.11 A water ~upply system is to be dcsigneJ to meet the demand 
during any given day during a summer. There are three demand levels, Dt, 
1>2 and J)J, being equal to 200,000, 300,000 and 400,000 litres/day tespec­
tivcly. The probabilities (lf meeting these demand levels are 0.7,0.2 and 0 I 
respectively. If the dcnwncl level is 200,000, the probability of the supply 
being ~1dequatc during an} given d~lY in the summer is I and the cut rcspon<J­
ing values f,,r 300,000 anJ 4DO,fJOO litr..:s/!Liy :1re 0 Sand 0.6 rcspccti\dy 
during :111y .~i,en day in the sunu>1er. 

( i) Find the pmbability tbat lhl· supply will be adequate during any gi .. ~11 
day in the summer. 
Given: 

f'(Dtl == 0 7 

.\olution l.et 

·I tilt.: Slipp!Y ;s <tdequatt.: during any day in the summer 

111~.:11 il ,, !'.1\'l:ll, 

/'( , I iJ; ; . = I 

l'(A I D1) • c 0.8 and P(A i DJ) = 0.6 

using tilt.: ll>liil ptub~ibilil} theorem, the probability or the supply being 
adequate on :11ty one day in the summer is calculated. 

P(A) /'( il \ /),)/'(/) tl :- P(A l D2)P(D2) + P(A I DJ)P(DJ) 

(I )(tl.7) : (tU)(O :) : (0.6)(tl, I) 

= 0.7 i \l.lh i ().()(, 119~ 
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(ii) If the adequate wpply is observed, what is the probability that the 
demand i~vel is 300,000 litres/day? 

Bayes' Theorem 

P(D 1 Al = PCD2 n AJ 2 
· P(A ) 

P(A I Dl)P(Dl) 
P(A) 

(0.8)(0.2) 4 = '----'-:-o~ 
0.92 23 

If A 1, A2, ... , An are mutually exclusive and collectively exhaustive events 
of the sample space S, and B is any event in S as shown in Fig. 3.12, then 
for any event A;, 

P(A; I B) ---' 
P(B L A;)P(A;) 

R 

1..: P(B I A;)P(A;) 
i = I ' 

~ (l '. r i\ , ; (3.17) 

\ . r, .. 

This can be considered as a converse problem of total probability theorem. 
Bayes's theorem is quite useful in updating the available data. 

ExAMPLE 3. I 2 Many government projects are executed by a contractor. 
The chief engineer know3 from his previous experience that the chance of 
getting a good quality of construction from the contractor is 0.8 and a bad 
quality of construction 0.2. The evaluation of the quality of construction is 
decided by the hammer test (nondestructive testing in situ). rr the strength 
of concrete in situ obtained from the hammer lest is > 20 N/mm?., it is 
decided that the quality of work is good. However, il is known that the 
hammer test is not very reliable. The probability of a good quality work 
passed by the hammer test is 0. 7 and that of a bad quality work 0.2. 

After a project is completed by the contractor, there is a dispute between 
1 • the contractor and the engineer about the quality or construction. Th~ 

hammer test is then conducted. If the good quality construction has passed 
the test, what is the updated probability of expecting a good quality work 
from tl1e contractor? 

Solution Let 

Given: 

G = good quality of work 

B = bad quality of work 

C = the work passes the test 

P(G) = 0.8 

P(B) = 0.2 

P(C I G)= 0.7 P(C I B)= 0.2 
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The updated probability of expecting a good quality work from the 
contractor is 

I'(G I C) .. C P(G)P(C I G) 
P(C I G)P(G) 1- P(C I B)P(B) 

(0.8)(0.7) 
- (0.8)(0.7) + (0.2)(0.2) 

~ ~:~ = 0.93 

[n future, the engineer will use this value (0.93) as the probability of getting 
a good quality of work from the contractor. 

If another project is executed by the same contractor and that work also 
passes through the hammer test, then 

3.3 RANDOM VARIABLES 

The random variable is a numerical variable whose specitic "alue cannot be 
predicted with certainty before an experiment. The value assumed by a 
random variable associated with an experiment depends on the outcome of 
the experiment. This value is associated with every simple event defined on 
the sample space, but different simple events may have the same associat•;d 
value of the random variable, e.g. the strength of concrete, the wind speed 
observed at a location, the number ol' persons waiting at a bus stop, etc. 
Sometimes artificial values may be assigned to a random variable associated 
with simple events. for example, a random variable, of the quality or a 
product, may assume different .-Late~: poor, satisfactory, good, very good, 
etc. Then each slate may be ;Jrtilicially assigned value as I, 2, J, ... , ek. A 
random variable X on a sample space S is a function from the sample space 
to a set ol' real numbers. The probability law of X, describing its behaviour. 
is characterized by the probability distribution of X. 

Di~-crete Variable~ 

The probability law of a discrete random variable is described by its pro­
bability mass !'unction (PM!:'). For a random variable X, it is written as 

Px(x) = P(X ~= x) (3.18) 

P(X cc.= x) is read as the probability of X, taking a value x. The PMF of a 
random variable must satisfy the three axioms of the probability theory. 
Hence 

(i) 0 !( px(x) ::.; I 
(ii) E px(x;) "= I 

all x; 

J'or all X 
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all .v
1

.;; b 

(iii) Pla ::::; X ::::; b\ o-= E px(x;) 
all x 1 >a 

If the PMF of a random variable is ~"~ iven or known , one can immediate~ 
tellthe pro a 1 1ty of the random variable X assuming a-val~e x. 

The probability distribution -~fa random variable X is alsOdescri bed by 
its ~umtilatlv-ntlstr115u I OilfuncTioll(CDF)~-·px(:X)."-Thi~ is defined as- · -

( x(x)== P(X ~ :X) - -- for all x · (3.19) 

For a discrete rand m variable, 

Fx(x) = E px(x;) (3.20) 
a ll x

1
.;; x 

ExAMPLE 3. 13 Let X be the number of days in a week at a place having a 
rainfall greater than 5 em. The following probabilities are assigned to the 
possible va lues that X can assume. 

r o.os x=O 

0.10 x= I 

0.15 x=2 

0.30 X= 3 
px(x) = 

0.20 x=4 

0.10 X= 5 

0.08 x=6 

L o.o2 X= 7 

~ 1.00 

Note that the axioms of probability are satisfied. Plot the PM F and CDF of 
X. Find the probability of observing 

(i) two or fewer days having a rainfall greater than 5 em 
(ii) 3 or more days having a rainfall greater than 5 em. 

Solution The plots of PMF and CDF of X are shown in Fig. 3.13 
From CDF, it is easy to calculate the probabilities. Thus, 

(i) P(2 or fewer days) = Fx(2) 

= px(O) + px(l) + px(2) 

= 0.3 

(ii) The probability of observing 3 or more days having a rainfall greater 
than 5 em: 

P(3 or more days) = 1 - Fx(2) 

= l- 0.3 = 0.7 
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FIG. 3.13 PDF and CDF of X-Example 3.13 

The PMF can be recovered from CDF. For example, 

px(x = 4) = Fx(4) - Fx(3) 

= 0.8 -- 0.6 = 0.2 

That is, 

px(x;) = Fx(x;) - Fxtx; - E) 

where Eisa positive integer which is equal to l in this problem. 

Continuous Variable 

(3.21) 

This is a function which can assume a continuum of points in a given inter­
val. The probability of such a variable; X, assuming a particular value is 
zero. Its probability law is described by its probability density function, 
fx(x). The probability of X in the interval is given by 

P(a ~ X ~ b) = J: fx(x) dx (3.22) 

It is to be noted that/x(x) itself does not give the probability. [tis only a 
measure of the density of probability at the poinl. Probabilities are given 
by integrals only . - -· 

The PDF of X, in fact , is defined by 

r ( ) _ dFx(x ) 
!XX - - ~ 

where Fx(x) is the CDF of X . 

(3.23) 

·~ 
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If X can take values right from -- oo to +co, then 

Fx(x) = P[X ~ x] = r"" fx(x) dx 

If X can take values only from 0 to oo, then 
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(3.24a) 

~) dx 1 (3.24b) 

For Fx(x) to be a roper distribution function, the follbwing conditions 
must be satisfied: 

(i) Fx(-oo) = 0 
(ii) Fx(oo) = 1 

(iii) J:"' .fy(x) dx = I 

(iv) fx(x) ~ 0 
(v) Fx(x) ~ 0 and is nondecreasing with x 

It is obvious that r < X ~ b) = ~"" fx~ - r"' fx(x) dx 

- "- Fx(b) - Fx(a) 

This is displayed in Fig. 3.14J -

fx (x) Fx (b)- Fx (a> 

-· FIG. 3.14 Continuous random variable 

EXAMPLE 3.14 The bearing capacity, Y, of a soil below a foundation is 
known to vary from 200 to 400 kN7m2• Its PDF is given as 

{ 
k(l -- ...L) 

Jy(y) = 0 400 
200 ~ y ~ 400 

elsewhere 

where k is a constant. 
Determine the probability of failure of the foundation if the uniform load 
on the foundation is 300 kN/m2• 

Solution For the given function to be a proper distribution function, 

J
400 • 

200 Jy(y) dy = i 
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k I - - dr ""' SOk J40:l ( \ ' ) 

200 400 -

k = 1/50 

Therefore, 

200 :( y :( 400 

elsewhere 

(i) The probability of failure of the foundation is 

P( Y < 300) = FY(300) 

-- J::: 51
0( 1 -- 4~0 ) dy = 0.75 

Jointly Distributed Discrete Variable.1· 

Here, two or more random variables are treated simultaneously. Consider 
a number of persons travelling in a mini-bus having a maximum capacity 
of n. One is conducting a survey and finding out how many men and 
women are travelling in the bus for every kilometre length. Let X be the 
number of men and Y the number of women travelling in the bus. These 
rnndom variables on a sample space with respective image sets are 

X(S) = (XJ, X2, ... , Xn) 

Y(S) = (y1, y2, ... , Yn) 

The product set 

X(S) · Y(S) = {(Xt, Yt), (x2, y2) ... } 

is made into a probability space by defining the probability of the ordered 
pair (x;, yj) to be P(X = x;; Y = yj) which is written as pxy(x;,-YJJ,Ttrts-- -­

furttt1on Tscalled the joint probability mass function of X and Y. Hence, 
the joint PMF is 

pxy(x, y) = P[(X = x) n ( Y = y)] {3.25) 

the joint CDF is defined as 

Fxy(x, y) = P[(X :o::;; x) n ( Y :o::;; y)] (3.26) 

For discrete variables X and Y, 

Fxy(x, y) = I: 1.: pxy(x;, Y;) 
X; ~X Yj ~ y 

(3.27) 

The conditions to be satisfied are 

PXY(Xt, YJ) ~ 0 

E E pxy(X;, y;) = 1 
all.\ allyj 

The joint PMr and the joint CDF describe the joint probability Jaw or the 
joint probabilistic behaviour 'or the variable£. 

-- ----~-
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ExAMPLE 3.15 Five RCC beams are tested in the laboratory to determine 
the load at the first crack, and at failure. If the load at the first crack is 
greater than 20 kN, it is classified as safe against cracking. Similarly, if the 
failure load is greater than 35 kN, it is taken that the beam is safe against 
collapse. Let 

X = number of beams safe against cracking 

Y = number of beams safe against collapse 
• 

Because of the random behaviour of the beam, if the beam is safe against 
cracking, it is not necessary that it should be safe against failure. The joint 
PDF of X and Y is given in Table 3.2 and displayed in Fig. 3.15. 

TABLE 3.2 Joint PMF-Examp/e 3.!5 

0 2 3 4 5 

0 0 0.02 0 0 0 0 E = 0.02 = Px(O) 

0.01 0.05 0 0 0 0 E = 0.06 = Px(l) 

2 O.Q2 0.01 0.1 0.01 0 0 E = 0.14 = Px(2J 

3 0.03 0.015 0.01 0. 15 0.015 0.00 E = 0 .22 = Px(3) 

4 0,04 0,02 0.015 0.01 0.25 0.01 E ,= 0.345=flx{4l 

5 0.05 0.02 0.02 0.015 0.01 0.10 E = 0 . 215 ~~px(5l 

E 0.150 0.135 0.145 0.185 0.275 0.110 1.000 

Py(O) Py(ll Py(2l Py(3) J!y(4) Py(5) 

1 )C 

FIG. 3.15 Joint PMF-Example 3.15 

Determine the probability of the event E which is defined as the count in 
which the number of beams safe both in cracking and in collapse are the 
same. (It does not imply that the .same beam is safe in cracking and 
collapse). 
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Sol!lfion 
P(£) -=-- P( Y "= X) = l' P(X =" x;, y = y;) 

= pxr(O, 0) + pn( I, I) ! · pxr(2, 2) + 
Pxr(3, 3) + pxr(4, 4) + p.n-(5, 5) 

= 0 + 0.05 + 0.1 0 + 0. 15 + 0.25 + 0. I 0 

= 0.65 

Marginal Distribution 

From the joint distribution of t variables, it is possible to get the distri­
bution of individual variables. he distributions of individual variables arc 
called marginal distribution he marginal distribution of X is found by 
summing over all the valut: of the other variable Y. That is, 

px(x) = P X= x] = 2 PXY(X, Yr) '- (3.28) 
all .v1 

The derivations of marginal distributions of X and Yare shown in Table 3.2 
by adding values horizontally and vertically. Marginal distributions of X 
and Yare displayed in Fig. 3.16. 

~ ~(x) Py (y) 

Q I · 04 

0 ·3 OJ 

02 

__ l 
02 ll __ 0 1 0 1 

0 0 
0 3 '· 5 (1 ) 4 

x- Y---

FIG . 3.16 Marginul distributions of X and Y-·Example 3.15 

Fx(x) ~ P[X ~ x] = E px(xr) 
X;~X 

E PXY(Xt, Yi) 
x1"x all YJ 

5 

Similar expression~ can be written for the marginal distribution of Y. 

(3 .29) 

It is to be noted that marginal distributions alone are not sufficient to 
define the joint distribution. In Example 3.15 (Table 3.2), there are 36 
points describing the joint distribution while two marginal distributions 
have only 12 points. 

Conditional Distribution 

Given two discrete random variables X and Y with values x and y,, the 
conditional probability mass function of X given that Y takes on the value 
Yi is defined as 

· pxr(x, · I) 
PXIY(X I Yl) = 0 

py(yJ) 
(3.30) 



The denominator is the marginal distribution of Y evaluated 
value 0f yr. For a proper conditional PMF of X, 

0 ~ PXIY(X, y) ~ 1 

~ PXIY(X~o y) = l 
all X; 
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at the given 

ExAMPLE 3.16 Consider the previous example and derive the conditional 
distribution of X if Y takes a value of l. 

Solution The conditional PMF of X, given Y = I, is 

( I I)
_ p,n(x , I) 

PXIY X - PI{ I) 

From Table 3.2,pr(I) = 0.135 

pxr(O, 1) 0.02 
PXIY(O, I) = 0.135 = 0.135 = 0.148 

pxrO, 1) 0.05 
PXIY(I, J) = 0.135 = 0. 135 = 0.371 

(
? I) pxJ(2, I) O.Ol O 074 PXIY -• = OJJS --= 0.135 = . 

px t(3, I) 0.015 
PXIY(3, I)= 0.135 = 0.135 = 0.111 

pxr(4, 1) 0.02 
PXJY(4, I)= {[135 = O.J) 5 = 0.148 

Pxt(5, I) 0.02 0. I 48 
PXIY(S, I) = 0. I 35 = 0.135 = L'l.OOO 

'The plot of pxw(x I I) is shown in Fig. 3.17. 

Px1v (llll > 

04 

03 

0 2 

x-
FIG. 3.17 Conditional PMF of X·­

Example 3.1 5 

Jointly Distrihllted Continuous Variables 

.. 

1i If X and Yare continuous random variables, their joint probability law is 
-\'. described by their joint probability density function, /XY(X, y), defined as 
11' 



50 

(3.31) 

This is the volume under the function over the region. 
For a proper joint PDF, the following conditions are to be satisfied: 

(i) (yy(x, y) ?: 0 for all values of x, y 

(ii) J:<X) J:<X) .fyy(x, y) dx dy --: I 

The joint PDF is also given by 

o2 r:n{x v) = ';}""1)""Fxr(x J') · · '· Bxoy ' (3.32) 

where Fxr(x, y) = P(X ~ x; Y ~ y) 

The probability density function of one variable, i.e. marginal density 
function can be obtained by integrating out the other variable. Symbolically, 
it is written as 

fy(x) ~ J:oo fi(Y(X, y) t~l' 
The marginal CDF of X is obtained as 

Fx(x) ~P(X ::::;; x) =- rc.o t:y(x) tf.,· 

= Fxr(x. co) 

(3 .33) 

0 34) 

The conditional PDF of X, given that Y has taken a value ,1'1. is def1ncd 

· ( ) fxr (x · Yt ) 
fx1r xlyt = fy (y,) 1.3. 15) 

The conditional CDF of X is defined as 

F.lw(.\· 'yd =-= f."' /ltrL\·! yl) dx \.1 . .16) 

fi~AMI'l.l 3.17 H two random variables. X and Y, have a join! di~11 ibution 
given by 

~ 0\')' 
/n(x,y) · l 

O<x<l 

elsewhere 

() < l' < 2 

determine (i) the joint CDF of X Y, (ii) the milrginnl distribution ol' A.', and 
(iii) the conditional PDF or Y. 

Solutio11 til The joint CDF of XY is 

1 1 l Lr. I') L t ( 1 . ,1') dx dy 

II·· r< 1: O· : y<2 



) (ii) The marginal density function of X is 

.fr(x) = J: /H(x, y) dy 

= J: X)' dy 

= 2x 0 < x < 
(iii) The conditional PDF of Y is 

fl'ix(y I x) = fn(x, y~ 
.fx(x) 

X)' )' 

=2x= 2 
Independent Random Val'iables 

0<y<2 

Two random variables are independent if and only if 

FXY(X, y) = Fx(x) · Fr(y) '-~' -
,, 
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(3.37) 

fur all values of t~.e random variables for which the respective functions 
are defined. 

Two discrete variables X and Yare independent if and only if 

PXIY(X I y) = px(x) 

PXY(X, y) = px(x) · py(y) 

Two continuous variables X and Yare independent if and only if 

/XY(X, y) = .fx(x)(y(y) 

/YiY(X I y) = .fx(x) 

.fn y(y I x) = fr(J•) 

FxiY(X I y) = Fx(x) 

(3.38) 

(3.39) 

The assumption of independence of two events permits one to get a joint 
distribution from marginal distributions. 

In the case of jointly distributed variables, only two variables have been 
considered; however, whatever that has been done can be extended to 
multiple variables. 

3.4 FUNCTIONS OF RANDOM VARIABLES 

Civil engineering problems often involve the functional relationships, which 
predict the value of one variable (dependent) from the value of another 
basic (independent) variable. For example, (i) the lateral pressure on a wall 
is a function of the density of water and the level of water in the tank, 
(ii) the intensity of wind pressure is a function of the drag coefficient and 
the square of the wind velocity. If the basic variable (wind speed or the level 
of water) is random, the depend-ent variable (lateral pressure or the intensity 
of wind pressure) is also a random variable. This section deals with the 
detennination of the probability law of orie variable from the other. 
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Functions of Sing~Ranilom Va.·iah/e 

Consider the case of one random varia hie X. It is given that 

Z =-= g(X) 

Where g(X) is a monotonically increasing function and Z is a single valued 
function or X. For such a function, = ;.::,: zt if and only if x ;.::,: x,, namely 
that the value for which zt = g(x,), as shown in Fig. 3. I 8, or when Z = z, 
x = g-1(:) where g-1 is the inverse function of g, then 

P[7. = zl = P[X ,_~ xl 
= P[X = g-1(z)] 

FIG. 3.18 Relation between random variable X and random 
variable Z 

Hence if X is a discrete random variable, the PMF and CDF of Z are 
givett by 

pz(z) = px[g-l(i)] 

Fz(z) = E px(.,·;) / 
al'.<; .;; ~-l(z) 

If X is a continuous random variable, the CDF of Z is 

Fz(z) = P[Z ~ :] = P[X ~ x] 

Hence 

Since 

= Fx[g-1(::)] . 

fg-1(=) 
Fz(z) ::=.' fx(.,·) dx .·'/ 

-co 

x = g-1(z), 
d[ u-l(z)] 

dx = od; dz 

Now Eq. (3.42) becomes 

f7.(z) ="' fx fy[g-l(z)] I[R~' (z)] dz 
-«> z 

(3.40) 

(3 .41) 

(3.42) 
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Hence the PDF of Z is 

d 
fz(z) =' d::: [g-1(:::)]Jx[g-1(z)] 

~ dlx f:r[.rr '(::)] .,. ; ( z . ..........-

In general, the above equation is written as 

I 
dx ~-" ------

(£(::) = - fx[g-- 1(z )] ; 
· dz · J - - --~ 

(3.43) 

The absolute value of dx/dz is necessary since for some functions g(X), a 
positive dx corresponds to a negative d: and vice versa (i.e. the function 
may be a monotonically decreasing function). 

Note: If each value of z corresponds to 11 values of x, i.e. the inverse 
function x = g- 1(z) is multivalucd, then 

/z(z) = I ~~ lnf.,-lg-l(:)j (3.44) 

·AMPLE 3.18 A column is to be designed for a load W which is equal to 
its self weight sand a fraction of the live load Lon the beam supported by 
the column. That is, 

W = s -1- cL 

where c is a constant (positive). Assume that Lalone is a random variable. 
Find the PDF of W if the PDF of L is 

Solution When 

Using Eq. (3.43), 

/L(/) = . } - exp (-/2/2) I ~ 0 
v 277 

W=11·, 
I = (w - s)/c = g-t(z) 

dl l 
dw = -; 

I (II'-- s) Jiv(w) =- (L --c . c 

The CDF of W is 

Ill' 

Fw( w) = , fw( w) dw 

lV ;;;.: S 
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Tim can also be obtained if the CDF of Lis given: 

Fw(w) = P[W ~ w] 

=-~ p [ L ~ w ~ s] = FL (w ~- s) 
In case, in a particular physical situation, the relationship is 

W= g- cL 

then, 

l=g-w_ 
c , 

dl 
dw = -- ~ 

The PDF of W is 

fw(w) =I+ j.h (g ~ w} 
and the CDF of W can be obtained as follows: 

Fw(w) = P[W ~ w] 

=--= P[g -- CL ~ IV] 

[ 
g- w] '·"' p L ~ --c-

. (g ... IV) 
'"= 1 - - FL · --;;-

ExAMPLE 3.19 In Example 3.18, if 

what is the PDF of W? 

Solution From Example 3.18, 

- 1<1<+1 

elsewhere 

/iv(11') = + /L (w ~ s) 
1 _, - . s - c < 11' < s + c 

2c 

Skcl\.:hes of/i.(/) and /iv(ll·') arc shown in Fig. 3.19. 

fw(wJ I 

- _, b 
( )_ c) · ( s +- c_,),---w 

112 

FIG. 3.19 Probabil1ty density !unctions of Land W-Example 3.19 



EXAMPLE 3.20 The intensity of wind pressure, W, is given by the relation 

W = 01:V2 

where 01: is a constant (equal to 0.006 as per lS code) and V is tne annual 
JnllXimum wind speed. If the PDF of V, following Type II extremal (largest) 
distribution, is given as 

k ( u )k·il fv(v) = - - exp [ -(ufv)k] 
u v 

v ;;.: 0 

determine the PDF and CDF of W. k and u are parameters (constant) 
of' V. 

Solution When W assumes a value w, then 

v = ± (: r2 
I dv I 1 

dw = \! lXII' 

Hence, using Eq. (3.43), the PDF of W is 

.fiv(W) = 1- l -I (/v( VtviOC) + /v( -- y' 1;1/IX )J 
2V!'I.w 

For the given PDF of V, 

fv(v) = 0 

Hence Eq. (3.45) becomes 

fiv(w)-= J fv('\lw/t:~.) 
2 IY.!II 

for v < 0 

- - 1--(!.(- 11 - )k+l exp { -(u/V wf-x )k}] 
-- 2 V lXlV II V i1•/1X 

Let 

Then the PDF of W simplifies to 

k (II' )k/211 /iv(lv) == --- ---E cxp [ -·(11·,/u•)k'~J 
2wc IV 

w~O 

(3.45) 

(3 .46) 

(Note that W also follows the Type IJ extremal 
parameters We = cu2 and k/2). 

(largest) distribution with 

The CDF of W is derived as follows: 

Fw(w) '-" J~· Jiv(1v) dll' 

Substituting for .!iv(w) in the above equation and putting (lvc/w) :;= y, 
we have 

Jl' _kL_ 
Fw( 11') = "' 

2 
I' exp [ -- ykl2] (~V 
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Let 

then 

X = y"/2 

Fw(w) = - f~ e-x dx = c-" 

Hence the CDF of W is 

Fw(w) = exp [ -(w)w)"ll] w>O (3.47) 

The CDF of IV can be obtained by directly using the CDF of V, which 
is given by 

Fv(v) = cxp [-(ufu)k) 

Fw(ll') '-'-' P( W G 11') 

= P(rt.V2 ~ w) 

v ~ 0 

= p(v ~ /'v) +J>(v ~ - /2~} 
~ " ~ ~ 

The second part is equal to zero as V c; ;,,Jot take a negative value. Hence, 
(using Eq. 3.47) 

Fw(w) = P(V ~ y~-;j;j 

Let ll'c ~= rt.u2• Then, 

Fw(ll') =-= cxp [ -·(wc/w)k/2) 

ExAMPLE 3.21 Given 

Z =a sin X 

(x(x) ~ {2~ 0< X< 21T 

otherwise 

find the PDF of Z. 

w~O 

Solution Equation (3.43) bas been derived on the assumption that Z is a 
s!n r.,IL- valuec.J function of X. In this case X is a double valued function for 
each value of Z. Hence for such a function, Eq. (3.43) becomes 

·I dx I fz(z) = 2/x[g- 1(z)] dz 

In general, if each value of:: corresponds to 11 values of x (i.e. the inverse 
function or.\ ,-_ gw 1(:) is mullivalued), then 



for the given function, 

Hence, 

x =sin- I (:) 

dx 
dz = va?. - zl 

- a < z <a 

/z(z) = ---;-~1 
=:::=- 2/x [sin-1 (_!_a-)] V a2 - z2 

- -V---:a=::2=':_= z2:::= U~) 
/z(z) = 1 (_!__) 

ya2 - z2 ~ 
-a < z <a 

Functions of Two Random Val'iab/es 

57 

In many situations, nn engineer may have to deal wit h cases where one 
variable depends on two or more variables. For example, (i) the tot <t l 
moment induced on a column may be the sum of the moments due to li ve 
load and wind load. Since live load and wind load are random variables, the 
total moment on the column is also a random va riable. One has to derive 
the PDF of the total moment from the known distributions of Wtnd -load 
and live load. (ii) Strain in a tension member is the ratio of the force in the 
member to its area of cross section. Jf area and force are random variables, 
strain is also a random variable whose PDF is to be obtained from the 
known distributions of force and area. In general, functional relations may 
be of the following types: 

Z=X -1 Y Z = X - - Y 

Z=; Z=XY 

Case (i): Z = X + Y 
Let Y take a particular value y, i.e. Y ~ y. Then, 

Z=X+y 

The conditional PDF of X, given Y = y, is 

I. ( f.VI'(X , J) ./ 
. xir x, y) c." · .fr(y) ,_:/ 

Treating y temporarily as a constant, 

Hence, 

x=z-y and ~=Ill 
dz 

/7. ~ r(z, y) - = I I ! .h I I ' (~ ·- · y , y) -f 
= /Zii'(Z ·-- )',}') 

(3.48) 

(3 .49) 
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But it is known that 

/zl (z, y) ='-' .fL 1 y(Z, y)/i·(y) (3 .50) 

u~ing Eq . (3.49) in Eq . (3 .501, the joint distribution of ZY is obtained as 

/z1 (::, y) -= [x 1 r(z - y, y){l'(y) 

~-= fxr(z - )', y) (3 .51) 

fxr(z - y , y) is nothing but the joint probability of X and Y evaluated at 
X ~~ : --- y and Y = y. 

From the joint distribution lEq. (3 .51)], the marginal distribution of Z can 
be obtained as ---

fz('::.) = r"' /Xl'{: __ y. y) dy // 

When X and Yare independent, 

fz(z) = ]:., fx(:: - J'!fr(y) dy , 

(3.52) 

Similarly for other cases, the marginal distribution of Z can be obtained . 

Case (ii): Z = X - Y 

fz(z) = J:., !xr(z + y, y) dy (3.54) 

Case (iii): 

Case (iv): 

Z= X 
y 

fz(z) = J:., I Y I fxr(zy, y) dy 

Z'-"XY 

/z(:) = J:J ;, I fyy (; , Y) dy 

(3.55) 

(3.5n> 

Notf! : All the above equations, considering X and Y as continuous random 
variables, are valid for discrete variables also, keeping in mind that instead 
of integra ti on, summation is to be carried out. 

~AMJ'LI 3.22 Let the stress in a member, X, and the area of section, Y. 
be indcr cmlcnt random variables. The force Z in the member is then 
given by 

It is given that 

1 
fy(x) = g x 

fr(y) -.- __!__ 
a 

Determine the PDF of Z. 

Z=XY 

O~x~4 



• ... • 
,..,'o/ution Since X and Y arc indepenJent, Eq. (3.56) becomes 

h1r the given PDF of Y, 

//.(z) '· J." _..!_ (y(.!..)- 1
- dv 

0 y - y u ' 

59 

In the above equation substitute for fx ( f,) using the gi\'Cil /r(x). For the 

relation_:_ =--= x with limits for x, 0 ~ x :( 4 implies that 0 
y 

Corresponding limits for y arc 

z . 4 ~ )' ~ 00, 

Hence, 

(z(z) = -- _:_- c/1' fa 1 1 (.,) I 
::4 y 8 y a · 

~ .-=-­
y 

~ ~J~4 .1~ dy 

~~ 2H 1 -- ;J / 0:(z:(4a~ 

~ 4. 

ExAMPLE 3.23 A water tank is supplied with water through an inlet pipe 
at a constant rate for a period of time X. The water flows out through the 
outlet pipe from the tank at the same rate for a period of time Y. If X and 
Yare independent with distributions 

/x(x) ~ .\e-x~ x ~ 0 

JY(y) = {3 c-fly y ~ 0 

determine the PDF of Z """ X -- Y, the change of the amount of water in 
the tank after one cycle or inflow and outflow, assuming that the tank can­
not become dry, or overllow. 

Solution J t is given tlwt 

Z ==X-- Y 

Since X and Yare independent, Eq. (3.54) becomes 

Since jy(y) = 0 

/L(:) -'= J~.,.- /x(z ·i· y)/r(y) dy 

for j• < o .. 

fz(z) = J~ /x(z -1- y) /r(y) dy 

;·" J"' f.-..:(z + y ) {3 e-fl.v dy 0 .• 
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In tile above equation substitute for /r(z + y) using the given /x(x). 
Since f'<(x) = 0 for .Y < 0, 

t:~(:: + yj is zero 

.For : < 0, y shouiJ be > -- z. 

for z + y < 0 

/z(z) = ]:, A e-A(z-l-yJ ~ e-#y dy 

= ( 3!._ ) e~' :: < 0 
"- + P 

For z > 0, _I'> 0, 

Hence the PDF of Z is 

{(~ } cP' :: < 0 
" + f3 

fz(z) = (_M_ ) e--Az ;; > 0 

" +fJ 

3.5 MOMENTS AND EXPECTATION 

The complete description of a random variable requires a probability 
uistributi n in one of' its arious forms. However, in many applications, 
the form of the di lribution funcli n i not known in all details. In such 
situati ons, c ncise d crip tor whid1 describe the dominant features of the 
function may be valuable, and enou •h for engineering applications. These 
descriptors may be expectation (mean), variance, etc. 

The expected value of a discrete random variable X, denoted by E(X), is 
dclincu as 

If X is continuous, then 

E(X) = 2; Xt px(Xt) 
all x1 

E(X) = [:., x fx(x) dx 

(3.57) 

(3.58) 

The same quantity, L(X), is also called the mean of X or the first moment 
of the dtstributiou of •. This h uld not be c nfu ed with the ampl e 
mean whic.:l1 is · Hnputcd fr m the data and ba · ·tatistical entity. An 
expcctati n is <'~tkulatcd from the pr babilily distribution . lt can be c n· 
siJercd u. til ..: w..:i)!.hlcd avl:rag..: < r th • values of X in which each possible 
value is wei ht ..:d by the pl'l)habilit of its currence, 
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A family of averages, called moments, define the probability distribution 
nf a variable as 

m1 ~¥1) = J:"' x 1 fx(x) dx 0.59) 

where m; is the i''' moment of X about the origin . The first moment is the 
mean value of X and is designated by f.'. That is when i = I, 

mt = E(X) = ft = J:., x.fx(x) dx 

tn the mean and are called 

(3.60) 

The first four moments are commonly used. The first centrnl moment is 
zero. The~e:9~~ central. m~~,~~~!_!~~,~~!·iancc, given_hy 

Var(X) = c2 = E[(x - ftFJ 

= J:., (x - 11F f-,:(x) ~ (:Ui I) 

The third central moment is related to the symmetry of the distribution 
and is incorporated in the dimcnsio~less coefficient of skewness, n, given· fiy -

(, ~,--a; 
·,_:_v 

where a is the standard deviation . 

(3.(i2) 

. If the distribution is symmetrical, rt = 0. If rt is positive, the distribu­
tion is called positively skewed and will have a long tail (upper tail) at the 
right . If rt is negative, the distribution is called negatively skewed and will 
ha\·e a long t~i l (I wer tail) on the left. The varlnti n of the shape of the 
density function with n is shown in Fig. ~.20. 

FIG. 3.20 Variation of PDF with coefficient of skewness 

The fourth central moment is related to the flatness is the coefflG.ient of 
kurtosis, r2, given by 

C4 rz =­
a4 

0.63) 

It is often compared to a standard value of 3 for normal distribution. I r 
r2 > 3, the distribution is said to be flatter, and if <3, the distribution is 
more peaked than normal. 
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ExAMPLE 3.24 The lateral strength, S, of a frame is subjected to random 
variations . The PDF of Sis given as 

{ 

~ (2s -- 1) (2 -· s) 
{s(s) o"' -

0 

J<;s~2 

elsewhere 

.Determine the mean and vnriancc of S. 

Solution The mean value of Sis obtained using Eq. (3.58) 

1~ =- J: s[-~(2s- 1)(2- s)] ds 

= ~ [5;3 ---- s2 s4 ]2 
2 I 

7 
= -

5 

The variance of Sis given by 

Var(S) ~~ f[s 
G 

=- 100 

Algebra of Expectations 

~ r[ ~ (2s - I) (2 -- s)] ds 

The expectation has a number of convenient properties which are useful. 
For any random variable X, and constant a, 

E(aX) = a E(X) 

E(X + a) ""' E(X) + a / 

For any two random variables X and Y, 

E(X + Y) = E(X) -t- E(Y) "/ 

Expectation is a linear operation and the expected values of a sum is the 
sum of the expected values. The same relation can be extended to sums of 
more than two variables, and is · valid whether the variables are indepen­
dent or not. Whenever X and Y are independent, the expected value of the 
product will decompose, that is, 

E(XY) = E(X) E(Y) . 

The above relation is not valid when x·and Yare dependent. 
The expectation of an arbitrary function of a random variable X is 

easily expressed. If X is discrete, then 

l:'[,t:(X)l ~ 1) g(Xt) px(xt) 
1

,. 
:til X1 

and if X is continuous, then 

E[g(X)] 0
"' • g(x) /x(x) dx I J

"' . 
-00 ' .. / 

(3.M) 

(3.65) 
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In other words, g(x) merely replaces x in the definition of expectation. These 
expressions are not a new defin ition, but are derived by considering a 
rnndom variable Y ~-= g(X) nnri relating the distribution of Y to the distri­
bution of X. Tfg.(X) nn.d g2(.Y) are any two functions of X, then 

~fg.Cn + g2(X)] 7 = ~[gl(Xl] + £L1!'2(X)l-~ 
Contlitional E.rpectatio11 

The conditional expectation of a random variable X, given the value of a 
related random variahlc Y, is defined as 

E(X I y = y) = E .\'; (p.-.:IY(;; I ;.y (3.M) 
all X; __ _ --

when X and Yare di_screte, and 

E(X I y ~= y) __ r"' . \"~ f.\ 

when X and Y are continuous. 
If X and Yare independent, then 

E(X I y = .rl ~~ I:(X) -~­

The expectation of marginal distribution of X is 

[(X)-=--~ E E(X I y ,.---, y) py(y) 
:til,. 

when X and Y arc discrete, and 

when X and }'arc Ct)ntinuous. 
A brief way to express these is 

/:"(,\'} ~= £ [£(X J )" o.:: y)l 

Note: E[X ; Y ""-' _rl is a constant and 
E1 X\ Y] is a rand</lm variable. 

Propel'tie.~ of Val'iancc 

As giYen earlier [Eq . 0 .61llthc variance of .X is f!ivcn by 

Hence the variance of Y is 

or 

Var(X) = E[(X -,u)
2

] 

..,.= n X 2 + ft~- 2Xp) 

=' E(X2) -\- E(!-1-2) - - 2tL E(X) 

-= £( .¥2) -! tt'l -- 'Jpl 

Var(X) = a~' = E(.''(2) - 1-1-2 

( r:(xi) ·~-- ~; --r :·~ 
.... __ -----~- --- _____ ............. 

The linearity property of expectation is not valid for variances. 

(.1 .67) 

0.69) 

(3.70) 
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J r a and b are constants, then 

(i) Var(a) = o 
(ii) Var(aX) =c= a2 Vnr(X) 

(iii) Var(a + bX) = h2 Var(X) 

The conditional variance of X, given Y, is defined [-lS 

Var(X I Y ""' y) = E[(X --- JLXtr) 2
1 Y = y] 

For discrete X and Y, 

Var(X I Y =' y) ,.--, I: (x,- - f'X t}')2 P>.w(x; I y) 
all .\"; 

For continuous variables X and Y, 

Var(X \ Y = y) ~- J '·· (x - - JLXtYf (r;rC\ ! y) dx 
-00 

(3.71) 

(

'file t:once.pts of expectation and moments can be extended to jointly dis­
ribuled random vnriahles. 1f Z is a function oftwo continuous random 

variables X and Y, i.e. 

7 = g(X, Y) 

then the expectation of Z is 

E(Z) = E[g(X, Y)] 

f"' I"' = -rn -co g(x, y) fn(x, y) dx dy (3.72) 

The joint moments of the order of m + 11 of a joint distribution of X and 
Yare defined as 

E[X111 Y"] = reo r .. x"'y".fn(:x, y) dx dy 

The central moments, c,,, are similarly defined. Thus, 

c," = Er(x - /.I.J)"' (Y- M)"J 

(3.73) 

(3.74) 

where /l! and /L2 correspond to the first order moments obtained by putting 
(m c' I, 11 -~ 0) and (m = 0, n = 1) respectively in Eq. (3.73). That is, for 
example 

''l =I"" -oo 

Si 1ilarly, 1'2 = I~(Y) 

J:"" xfn(x, y) dx dy 

x[f:oo fxr(x, y) dy 1 dx 

x fx(x) dx "'""' E(X) 

Co1•ariance and Correlation Coefficient 

The central moment obtained by putting m = ).and n = I in Eq. 3.74 is 



called the covariance of X and Y. 

Cov(X, Y) = axy = E[(X- t-'1) (Y - t-'2)] 

o--, J:, J:«> (x -- ftl) (y - t-'2) fxr(x, y) dx dy 

The above expression can be shown to be equal to 
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Cov(X, Y) = E(XY) - E(X) £'0:1 (3.75) 

Relating to mechanics, the variance corresponds to the moments of inertia 
about axes x andy passing through the centroid of a plate and the cova­
riance corresponds to ihe product moment of inertia with respect to the 
uxes x and y, mentioned earlier. 

r 
The correlation coefficient, a dimensionless quantity, is obtained by nor­

lalizing the covariance with tandar~l deviations of the corresponding pair 
f variables. That is the correlation coefficient between the variables X nnd 
' i. defined as 

Px r - Cov(X, Y);: (3 .761 
O',yOy 

Some important points about the correlation coeflkient Pare: 

( i) The value of P lies bet ween ·- I and +I, i.e. 
-· 1 ~ p ~ -1-1 

, 'ii l When P is between 0 and I , the higher values of · will match with 
the h' •her va lue nr y [Fig. J.2 l(a l. Variables arc positively c rrelated . 

· i When Pi between - I and 0, lhe higher values of · will match with 
' the smaller values of J Fig. rJ .2 1 ( b)l. Variable. u rc nega tively correlated. 

(iv) p is a measnre of the linea r <lep ndence between two varinblcs. 
v) If 0 < P < I or - I < P < 0, it is said th ut at least some depen­

dence exi l between X and Y. 
_// 1) lf P is close to I , it is sa id thot a good linear relationship exi ls 

Jctwccn X and Y. 
) vii) lf P -· I or - I , it is said that there is a perfect linear relationship 
between and Y . [Fig .. 3.21(c) and 3.2J(d)l. 

(viii) If X and Y arc independent, P = 0. 
(ix) If P -= 0, it does not mean that X and Yare independent (unrelated) . 

Jt means that the linear relationshi doc. not exist between X and Y. hut 
tl-;ere;Tiay he a perfe t non 1near relationship (depen( ence) b~tw·e~~; X and 
YTFig~ T2T(c) . -- -·· 

(x) In engineering problems, the independence of variables is assumed 
(i.e. P = 0) to simplify the problem. 

Mean ami Variance of Functions of Variables 

If Z is a linear function of variables X1, X2, ... , Xn, say 
II 

Z = E h;X; 
i~1 
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v 0</<1 

v 

(e) Zero Correlation; But 
Nonlinear Relationship 

y -1<.!< 0 

f~O 

• • • • • • • 
• • • • • • • • • • • • • • • • • • 

~----------------·-x 

lfl Zero Correlation; 
No Relatfonship 

FIG. 3.21 Significance of correlation coefficient 

then the expected value of Z is 

II 

£( Z) =~ 1: b; E( Xi) ,_, (3 77) 

The ab q· relation is valid whether variables X; are independent or not. 
If X; art' corrclaled, then 

II 

Var[Zl ,.." L' b~ Var(X,) 
i-· ·1 

fl II 

" L' 1' h;b1 Cov(X;. Xj) 
i -- I }>i 

(3 .78) 
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If X; are independent, the above equation simplifies to 

" 2 Var(Z) = E b; Var(X;) (3.79) 
1-1 

When X1 and X2 are independent, their expectation of the product will 
decompose. That is, if 

z = x.xz 
then, E(Z) = E(X•) E(Xz) (3.80a) 

(3.80b) 

and 

whert: ft;, a, and 8, are the mean, the standard deviation and the coefficient 
of variation of X1 £espectivcly. 

If Z is a nonlinear function of several variables x,, the approximate mean 
and variance ol' Z are obtained by using Taylor's series expansion and 
truncating the series to the required approximation. If 

Z = g(X1, X2, ... , X,.) 

the first order approximations_of E(Z) arutYar(Z) are given by 
. ----

(3.81) 

, " " ag I ag I 
Var (Z) = oz ~~~ /!.

1 
ax, ,. ax, ,. Cov(X;, Xi) (3.82) 

::, L means that the derivative is evaluated at the mean values of the 

yariab~s. 
If X; are uncorrelcted, then 

" [a I ]2 · Var(Z) = 1~ ai, ,. Var(X;) ) (3.83) 

~AMPLE 3.25 A simply supported beam is subjected to loads P!, P2 and 
PJ as shown in Fig. 3.22. 

f h _, f-- '-'4 -
~ ~ --+---~ -I 2 2 

FIG. 3.22 Simply supported beam­
Example 3.25 
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It is given that 

E(P,) = 20 kN Var(PJ) = 2 (kN)2 

E(P2) = 40 kN Var(P2) = 4 (kN)2 

E(P3) = 50 kN Var(PJ) = 10 (kN)2 

Determine the expected value and standard deviation of the shear force at 
the left end if (i) loads P1, P2 and PJ are statistically independent and (ii) if 
loads are correlated with correlation coefficients 

Pl2 = 0.7 P23 = 0.8 PJI = 0.6 

Solution The shear force Vat the left end of the beam is 

V = 0.75 P, + 0.5 P2 + 0.25 PJ 

The expected value of y, using Eq.(3.77) , is 

E(V) = 0.75X20 + 0.5X40 + 0.25.><50 
= 47.5 kN 

Case (i) Loads are independent 

The variance of Vis calculated using Eq. (3.79): 

Var(V) =- (0.752)(2) + (0.52)(4) + (0.252)(10) 
= 2.75 

The standard deviation of Vis equal to = V2.75 = 1.658 kN. 

Case (ii) Loads are correlated 

The variance of Vis calculated using Eq. (3.78). Defore using Eq. (3.78), the 
covariance between the variables is to be calculated. The covariance is given 
by Eq. (3.76): 

Cov(P,P2) = P,2a1a2 

Similarly, 

= (p12) [Vai(PJ)]112 [Var(P2)11.'2 

= (0.7)(2112)(41/2) ,... 1.98 

Cov(P2P3) = (0.8)(4112)(10112) = 5.06 
Cov(PJPI) = (0.6)(101i2)(21t2) = 2.68 

The variance of Vis 

Var( V) ,-c (0.752)(2) + (0.5)2(4) + (0.252)(10) 

--f-2[(0.75 X 0.5)( 1.98) + (0.5 X 0.25)(5.06) 
+ (0, 75 X 0.25)(2.68)] 

c- /..75 + 2(2.763) =6.505 

The standard deviation of I· is equal to 2.55 kN. 
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3.6 COMMON PROBABILITY DISTRIBUTIONS 

There are a number of discrete and continuous probability distributions 
which are used in engineering applications. It is always convenient to have 
a mathematrcal functiop (PDF or CDF) to describe a random variable. 
Before an engineer u es or proposes a probability distribution (probabilistic 
111 del) it is necessary and better that he knows how these models have arisen 
and wh;H physical situation has given ri e to the distribution. Many of the 
· rnm on distribution are tabulated for convenience and ready use. Out of 
the several probability distributions, only some of the models which are 
often useu in reliability analysis and design of structures are dealt with. The 
other models which are not discussed are tabulated at the end. 

Jniform Distrih11tion 

Thi i a continuous distribution. Here the random variable X is equally 
likely to have any value between the lower limit I and the upper limit u. 
The PDF of X is given by 

/x(x) =~ { -
1
-u --- I 

0 

ICx~u 

elsewhere 
The mean and the variance are 

I+ u 
JL "··'-" -2-

(11 ·- l)2 
a2 = - ..,..-,---'--

12 

(3.84) 

When the uniform distribution is described between the JimHs 0 and I, it is 
c:.~lled the tandard uniform distribution. In the case of the standard 
unif, rm distribution, th cu mulative probability of the variable Y, taking 
a value Yl, is equal to the value of Yl itself. That is, 

Fy(y,)= y, 

Thi properLy is u ed in the inver ·e Lransformation technique applied for 
generati ng the random variates (Chapter 7). The sketches of the uniform 
probability di tribution and the standard uniform distribution are sh wn 
in Fig. 3.23. 

1 
u:r 

(a I 

fy (y) 

(b) 

FIG. 3.23 (a) Uniform dtstribution and (b) standard uniform distribution 

y 
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Normal Distribution: N(p,, a) 

If a phenomenon (a random variable) arises because of several factors and 
if the effects of these several factors act in an additive way to result the 
phenomenon, then the model arising out of such a situation will be a 
normal distribution. In short, this model arises out of an additive mecha­
nism. This distribution is also known as the Gaussian distribution. The PDF 
of a normal variate is given by 

fx(x) = 1 exp [-- .!.( x -- !L )
2
] 

· uy277 2 a 
-oo:::;;x:::;;oo (3. 85) 

where p, and a are the parameters, mean and standard deviation of the 
distribution respectively . ln futme, this distribution will be designated as 
N(p,, a). 

A normal distribution with parameters p, = 0 and a = l is called a 
standard normal distribution and is designated as N(O, 1). The PDF of the 
standard normal variate U is given by 

fu(u) = V~77 exp( - ~ u2
) -·-oo ~·u ~ oo (3.86) 

Because it is so frequently used, the standard normal density function and 
its CDF are given special notations, ¢>(u) and (})(u) respectively. Hence 1/>(u) 
is the cumulative probability of a star.dard normal variate. That is, 

1/>(u) = Fu(u) = P(U :::;:; u) 

The PDF and CDF of U are shown in Fig. 3.24. Referring to Fig. 3.24, 
we have 

-J 
(-J ()) 

'u tul 

0 02275 

FIG . 3.24 Standard normal density function 

3 
(3 (1") 

u 

Conversely, lhc value of 111 at a cumulative probability of Pt is given by 

The standard normal v:11 iate is widely tabulated. It is to be noted that 

</J( II!) ~ I -· r/J(u2) 
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If <1>(- u2) = p2, then 

Ul =- ' -- rJH (p2) 

because of symmetry. The CDF of X with distribution N(p,, a) is written 
as 

Fx(x) = ~j·' exp [- J.(x- P-}2]dx 
(]v'21T - <X> 2 (] 

Let u= 
X .. .. (J-

Then du = dx/a 

Using these in Eq.(3.87) , we have 

I J(x-,.)/" 
Fx(x) = A 1 -

·v br -oo 

(x-p,) = <J) -(]-

exp ( -u2/2)du 

(3.87) 

(3.88) 

Hence, using normal probability tables, probabilities of any other normal 
distribution can be obtained. Modern computers have built-in functions to 
compute <P(u). A polynomial is used to evaluate <J>(u). 

AxAMPLE 3.26 The cube strength of concrete, X, follows the normal 
distribution with parameters , p, = 30 N/mm2 and a =--' 4.5 N/mm2 

Fig. 3.25). Calculate the probability of getting a value for a strength 
(i) less than 25 N/ mm2 and (ii) less than 40 and greater than or equal to 

30 N/mm2• 

X is distributed as N(JO, 4.5). 

FIG. 3.25 PDF of X-Example 3.26 

Solution (i) The probability or getting a value less than 25 N/mm2 is 

P(X < 25) = Fx(25) = <1> ( 
25 

4
-:-; 

30
) 

= <1>(- - I. 1 1) 

=-I ·- tf>(l.ll) ~I- O.XCi67 =-= 0.1333 
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(ii) The probability of getting a value less than 40 and greater than or 
equal to 30 is 

P(30 < X < 40) = Fx (40) --- Fx!30) 

= tP( 40 - 30) -- !J> ( 30 - 30) 
4.5 4.5 

= 0.9869 - 0.5 = 0.4869 

Some properties of normal variables are: 

(i) The distribution is symmetrical; hence the coefficient of skewness 1s 
zero. 

(ii) The mean, median and mode are the same. 
(iii) The coefficient of kurtosis is equal to 3. 
(iv) The normal distribution is reproductive, that is the sum and the 

difference of two or more normally distributed random variates is itself 
normally distributed. 

If Z = X1 ± X2 ± ... ± X, and X; are independent normal variates 
with parameters /LI and a,, Z is also a normal variate with parameters J.l.x 

and az, given by 

f.'z = /LJ ± f.'2 ± ... ± """ 
a~ c_; 0~ -1- a~ - \ . 2 

••• -j (J!l 

If X; arc conclated, then 

cr; = fa? + 2 f f Cov (x; ,X J 
i --1 i , j j>\ 

At this stage, it is very useful to know the remarkable result estnhlishcd 
by the Central Limit Theorem which says, when stated loosely, that the 
sum of a large number of arbitr.;rJiy distributed ranuom variables wi!i te-nd 
to be normalJy distributed. Hen-.:c:, physical process which i.' the result of 
the combined effecis of several factors (irrespective of their individual 
distributions) woulll tend to be normally distributed. 

Lognol'mal Distribution: Ll\.(Z, a1o z) 

This model arises out of . ., multiplicative mechanism acting on <1 number of 
factors. Such mechanisms are expected to occur in the crushing of aggrc· 
gates ami the Jittigue strength of materials. Let the random variable 

X= lnZ (3.89) 

be normally distributed with parameters N(p.x, ax); then the random 
variable Z is said to follow the lognormal distribution whose PDF is 
given as 

[ '{lnt:/Z)}] cxp - -
2 <IJu 7 

::>0 (3.90) 



I 

73 

where Z, the median of Z, and UJn z , the standard deviation of In Z are 
the paran1.:ters of the distribution. This distribution is designated as 

LN(Z, UJn z). The parameters ar~ calculated by the following equations: 

- ( 1 2 ) Z = p.z cxp - 2a'." z (3.91),......... 

and ' 2 aj, z = In (8z + I) (3.92) / 

where 8z is the coefficient of variation of Z. The cumulative probability of 
a lognormal variate can be calCulated using standard normal tables r/J(u). 
Let 

I -u = -- In (z/Z) 
UJn Z 

1 
du = --. - dz 

ZUJnZ 

Substitution of the above values in Eq. (3.90) yields 

J fu Fz(z) =. 1 - exp (-tN2) du 
v 27T -<» 

= r/J(u) = rp[ In (z/Z) ] 
· Utn Z 

(3.93)/ 

Similarly the PDF of Z can be connected to the PDF of the standard 
normal: 

fz(z) = _1 _ rp [In (z/Z) ] 
ZO'J n z O'Jn Z 

(3.94) 

the lognormal distribution for various values of a1n z is plotted and shown 
in Fig. 3.26. It can be observed that as the coefficient of variation decre­
ases, the curve approaches the normal distribution. 

f z ( Z) 

JJ. = 1.50 1 
l4 

, 8 

1 2 

06 

FIG. 3.28 Lognormal density tunctit'ns 
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vExAMPLE 3.27 The compressive strength, Z, of M 15 concrete 
lognormal distribution . It is given that 

flz ""'~ 24.04 N/mm 2 az - 5.76 N/mm2 

• 

follows the 

Determine the probability of getting a strength less than the specified value , 
I 5 N/mm 2• 

Solution The coellicient of variation of Z is equal to 

8z =~ 5.76/24.04 =~ 0.24 

Using Eqs. (3.91) and (3.92), we have 

(Note: For 8z :::;; 0.25, 

arn z =' In (0.242 + 1) = 0.056 

UJn z =-"' 0.236 

Z =---= 24.04 exp ( 0.056/2) 

= 23.37 N/mm 2 

He1ke Z is distributed as LN (23.37, 0.236) . The probability of getting a 
value less than 15 N/mm2 is 

P(Z < 15) = rz (15) 

= f/J[Ln __ (_I~{f~}_?) ) = o 03 
0.236 . 

Some properties of the lognormal variate Z are: 

(i) If X = In Z, then flx = In Z 
(ii) i is always less than fLz 

(iii) Z is positively skewed 
(iv) CTJn z ~ 8z for 8z ,; 0.25 
(v) If Y = Z1 ·Z2· ... ·Z, 

and if the Z; are independent and lognormally distributed with para­

.meters z, and CTJn z_, , theu Y is also lognormalfy distributed with parameters 

[ 

n 2 ] l/2 
CTJn y = _E CTJn z 1 ,_, 

(3.9 . .-:J 

(3. 96) 

If W is the quotient of the two independent lognormally distributed variables 
Zr and Z2, i.e. 

W=z' 
Z2 

then W is also a lognormal variate with parameters 

w = z1(i2 
11Jn w = [urn zr + afn z2]ll2 

(3.97) 

(3.98) 
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Gamma Distribution G(k, >.) 

The sum of independently and identically distributed exponential random 
variables results in the gamma distribution. If the occurrence of an event 
constitutes a poisson process, (Ref. 3.1), then the time until the kth occur­
rence of the event, is described by the gamma distribution. Let Xk denote 
the time till the kth event. Then the probability density function of the 
gamma variable Xk with parameters k and >. is given by 

x~O (3.99) 

Hereafter, the suffix k for X is removed. 
Parameters k and >. are connected to the mean and variance by the following 
equations: 

k 
!J.x=-r 

2 k 
ax= -rz 

(3.100) 

(3.101) 

The gamma distributed variable X with parameters k and >. is designated as 
G(k, >.). 

The parameter k need not be integer valued. For a noninteger valued k, 
the PDF of X is written as 

where 

fx(x) = >.(>.x)k-le- >.x 
T(k) x~O (3.102) 

,\ ~ 0, k ~ 0 

(3.103) 

The gamma distribution function is widely tabulated as the incomplete 
gamma function, given by 

F(k, x) = J: e-ttk-l dt 

This can be used to evaluate the CDF of X: 

Fx(x) = J:!x(x)dx 

),k J"' = T(k) o e-~xxk-1 dx 

Substituting y = >.x, the integral becomes 

Fx(x) = T~k)J:x e-Yyk-l dy 

T(k, Ax) 
= f(k) (3.104) 



76 

Equations (3.1 00) anu (3.1 0 I) arc valid for non integer values of k also. 
The shape of gamma distribution is shown in Fig. 3.27. This distribution is 
widely used because, I ike observed data from many phenomena, the vari­
able is limited to positive values and is skewed to the right. The gamma 
distribution is used to describe the maximum river flows, the yield strength 
of the reinforced concrete members (3.2), the sustained floor load in build­
ings, etc. For an integer valued k, the gamma distribution [Eq. (3.99)] is 
also known as the Erlang distribution. The gamma distribution [(Eq. 3.102)] 
is also called the Pearson Type Ill distribution. 

FIG. 3.27 Shapes of gamma distribution 

The tables for an incomplete gamma function have been tabulated by 
Karl Pearson (3.3). This table directly gives the cumulative probability of an 
incomplete gamma variate. The algorithm AS32 given by G.P. Bhattacharjee 
(3.4) can be used to compute the incomplete gamma function. However, 
modern computers have built-in functions to compute the cumulative 
probability of an incomrlete gamma variate. 

Pearson tables give values of /(u, p), where l(u, p) is the cumulative proba­
bility of the variate. One enters Pearson tables with p ~-= k - I and 
u = >.xlvk. and finds the value of I(u, p). 

EXAMPLE 3.2!\ The floor live load, X, on an office building is found to 
follow the gamma distribution with parameters k and >. being 3.86 and 
7.55 :< 10- 3 respectively. Calculate the probability of the floor load exceed­
ing the value 1500 N/m2 • 

Solution The mean und tandard deviation of X are calculated using 
Eqs. (3.100) and (3 . 101 ). Thus 

JLx ~ ~ = 7 _ 5 ;:~0_3· = 511.6 N/m2 

ax= 
v k '\1'3.86 
- A- = 7.55 X IO· 3 = 260.35 N/m2 

-----------



The probability of the floor load exceeding the value 1500 N/m2 is 

P(X > 1500) = 1 - P(X ~ 1500) 

= I - Fx(ISOO) 

I _ T(k, i\x) 
T (k) 

=I 
T(3.86, 11.325) 

r cJ .86) 

= I - 0.9968 = 3.2 >< I0-3 

Some properties of the gamma distribution are: 

(i) It can take only positive values. 
(ii) It is positively skewc£1. 
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(iii) Tf x, is G(k, , i\) and Xz is G(b, i\), nnd if Y = x, + X2, then Y is 
also gamma distributed with parameters k1 + b and .\. 

~a Distribution: BT( a, h, p, q) 

Many of the random variables in practice, say the strength of steel or 
concrete, take values within certain limits. Under these condit ions, the 
appropriate probability distriburionfor a rand om ariable whose possible 
value. lie in a res tricted interva l, say betwee n limits a nnd h, is the beta 
distribution . 

A standard beta distributed random variable, X, is defined over the range 
0 ~ x ::;; I. Tts PDF is 

xP- I( J _ x}q ~ l 

.fx(x) = B(p, q) (3.105) 

where B(p, q) is the beta function which is tabulated directly or may be 
obtained from tables of the gamma function from the relation 

B(p q) = T(p)r(q) 
' T( p + q) 

The mean and variance of X are 

p.x= _P_ 
p+q 

a~= pq 
(p -1- q)'2(p + q + I) 

(3.106) 

(3 . I 07) 

(3.108) 

The standard beta distribution is designated as BTx(p, q). When a beta 
distributed random variable, say Y, has a range a ~ y ~ b, the simplest 
approach is to transform Y according to 

X= Y - a 
b - a 
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Then the PDF of Y is 

_h(y) =--= _1 _ !x(y - a) 
b-a b-a 

_ (y - a)P· '(b -- y)H 
B(p, q)(b - a)P+q- 1 

(
y - a) Fy(y) = Fx iJ~a 

The mean nnd variance of Yare given by 

p 
p.y""' a+ --(b --a) 

p+q 

a~=(b-a)2 [ PfJ ] 
(p + q)2(p-\- q + 1) 

(3.109) 

(3.11 0) 

(3.111) 

Depending n the parameters ol' pant.! q, the den it y function of the bcw 
d istributi n wi ll have different hapc as h wn in Fig. 3.2 . Whenever fJ 
an I q take nonintegcr v!l lues, the bela fun ction i. cu ll ed the inco mplete 
beta function. The ·umulative pr babi lity of the incomplete beta fun tion 
is tabulated by Pear on {3.5) us .Bs{ p, 11 . l-Ienee, Pearson's tables can be 
met! to ~aku l ate the cum ulnti e probabi lity of a beta variate Y. 1t mu t be 
noted tlwl the ttLb le are given for p ~ q. For p < q, 

0·20 

0-15 

0 ·10 

0·05 

Rlp, q) = I - Bo-,>(q, p) 

,P= '1, q :4 p:4,q:: 2 

p:1 t q:1 

0o~----¥----c~----+-----+-----~----~----~r 

FIG. 3.28 Shapes of beta distribution 

For examrle, if p = 2 and q = 4, 

Bo.3(2, 4) = I - Bo.7(4,2) 

Modern computers have bui lt-in fu ncti n to compute the cumulative proba­
bility of an in ·om plctc hcta ariute. The nlg rithm AS 63 given by 
Majumder and Dlulltacharj ·e (3 .6), and modified by Cran, Martin and 
Th ma (3 . 7) . ·an he u~cd to evaluate the incomplete beta variate. 

E XA MPU3 3.29 It is given that the strength Y of M 35 concrete fqll ows the 
beta distribution. The 111'1111 and str1ndard deviation of Y are 42.50 N/mm2 
and 6.25 N/mm2 rcspc~: t iv cly. lt is,. und from data that the minimum and 
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maximum values of Yare 30 N/ mm2 and 55 N/mm2 respectively. Calculate 
the probability of the strength of concrete being less than 35 N/mm2. 

Sol11t ion It is given: 

J.Lr "'"' 42.5 N/mm2 

a= 30 N/mm2 

Using Eqs. (3.110) and (3.111), we have 

ay ~ 6.25 N/mm2 

b =-= 55 N/mm2 

4~ . 5 ,...., 30 + __ f!_t-__ (55 - 30) 
p - q 

6.252 = (55 -- 30)2 [ - - --· ·- ___ pq__· -- . ] 
(p + q)2(p + q +I) 

Solving the above two equations, p and q are 

p = 1.5 

Hence the strength of concrete is distributed as BT (30, 50, 1.5, 1.5). The 
· probability of the strength of concrete being less than 35 is 

P(Y < 35) c" Fr(35) 

rn terms of standard beta variate X, 

F r(35) =~ Fx --(
y- a) 
b -·a 

~ FxG~ _ ~~) -~ Fx(0 .2) 

As per Pearson's tables, 

Fx(0.2) = Bo.2(1 .S, 1.5) 

= 0.1423 (from tables) 

3.7 EXTREMAL DISTRIBUTIONS 

Civil. engineers are more concerned with the occurrence of the largest or 
the smallest of a number of random variables in the analysis and design 
of structures. The structural safety of a determinate truss (system) may 
depend only on the extremes, for example, on the strength of the weakest of 
many elementary members (components). A civil engineer may be interested 
to know the value and the distribution of the likely maximum wind 
speed, or the floor load acting on a building during its lifetime. 

Let X be the largest of the 11 random variables Y1, Y2, ... , Yn. The 
probability that all the values in n variables will be less than a specified value 
x, is 

Fx(x.) = P(Y ~ x,) 

= P (all n of the Yt ~ x,) 
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If the y,. are independent, 

Fx(xs) = c P( Y1 <( x,)P(Y2 <( Xs) . . . P( Y" <( x.) 

~~ F y,(x ,)Fyb:s) .. . Fy,(Xs) 

Jf all the Yt are identically distributed with a common distribution Fy(y), 

then 

Fx(Xs) ""' jFy(Xs)l" (3.112) 

If the X; are continuous random variables with a common PDF, fx(x), then 

fr(x ,) ~ ~~.Fx(x,) = n[Fr (x,)ln-lf'y(x,) 

_From past experience if an engineer knows the distribution of the maximum 
wind speed Y; observed in any one year, he may be able to determine the 
distribution of the largest wind speed in a particular lifetime of the struc­
ture, say 50 years. 

It has been found that for some parent distributions of specific general 
types, the extreme value distribution can be approximated by certain 
theoretical distributions, ·called asymptotic distributions, for large n. As 11 

increases, it is more and more accurate. It is not necessary to know the 
underlying distribution of Y; precisely. It is enough if the general trend of 
the tai I portion of the Y; is known. There are three asymptotic distributions 
proposed by Gumbel. They are described below: 

~ype 1 Extremal (Largest) Distribution: EX1,L (u, IX) 

i 

This distribution requires that the upper tail of the parent distribution that 
contains the extreme value be exponential in nature (normal, Weibull, 
exponential, gamma, and other similarly shaped density functions). The 
distribution of X, the largest of many independent random variables with a 
common exponential type of upper tail distribution (Fy(y) = 1- exp ( -h(y)), 
has the form of Type I extremal (largest) distribution, given by 

fv(x) = !X exp [ -CY.(x -- u) - cxp{ ·-IX (x ·- u)}l -co ~ x ~ oo (3.113) 

Fx(x) = ~xp l-exp f- :z(x ·- u)}l - oo <( x ~ oo (3.\14) 

The parameters u (locacion, here it is median) and o: (dispersion) are given hy 

0.5772 
/-LX =co II -;- - ­

IX 
(3.! 15) 

(3. 1 16) 

This distribution is also called the Gumbel distribution and is positively 
skewed. The coefficient of skewness is 1.1396. The distribution is designated 
as EX1,I.(u, IX). The shape of the distribution for u = 0.275 and o: = 2.566 
is shown in Fig. 3.29. This model is usee' for describing the maximum 
annual flow in a river, the maximum annual wind speed at a location, etc. 
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1 0 

u: 0·275 

-o.e lC 

FIG. 3.29 Shape of Type 1 extremal (largest) distribution 

EXAMPLB/oThe yearly maximum wind speed, X, observed 
follows the Type I extremal (largest) distribution. It is given: 

at Pune 

/LX = 83.67 kmph ax= 15.97 kmph 

Calculate the parameters of the distribution and determine the probability 
of the wind speed exceeding I I 7 kmph. 

Solution Parameters of the distribution are calculated using Eqs. (3.115) 
and (3.1 16). 

(X = 0.0803 

0.5772 
ll = 83.67 - 0.0803 

= 76.48 kmph 

Hence the CDF of X [Eq. (3.114)] is 

Fx(x) = exp [ -exp {--0.0803(x- 76.48)}] -oo::;;x~oo 

The probability of the maximum wind speed exceeding 117 kmph in any one 
year is 

P(X > 117) =I- Fx(I17) 

= l - exp [--exp {-0.0803(1 17- 76.48)}] 

= I - 0.962 = 0.038 

~e 1 Extremal (smallest) Distribution: EX1,s(u, (t,) 

This distribution is similar to Type 1 extremal (largest) except that the 
lower tail of the parent distribution has an exponential form. The distribu­
tion of Z of the smallest of many independent variables with a common 
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unlimited distribution with an exponential lower tail has the form of Tyre 
1 extremal (smallest) distribution given by 

fy(y) = IX exp [1X(y - u) - exp {1X(y - u)}] -- oo ~ y ~ w (3. I I 7) 

Fy(y) = 1 - exp [ -exp {1X(Y- u)}] --oo ~ y ~ oo (3. I!~) 

The parameters u and IX are given by 

0.5772 
fl-y= u- -oc- (3 . I I 9) 

2 1T2 

ay = 6<X2 (3.120) 

This distribution is negatively skewed and the coefficient of skewness is 
-1.1396. A typical shape of the Type I extremal (smallest) distributi0n is 
shown in Fig. 3.30. 

·1· 

f v ( y) 

1·0 

0·8 

0·6 

0 0 ·5 1·0 

u :0·725 
c(. ,.z S66 

2·0 y 

FIG. 3.30 Shape of Type 1 extremal (smallest) distribution 

EXAMPLE 3.3 I The minimum annual tlow Yin a river is assumed to follow 
the Type I extremal (smallest) distribution. The me:1n and slandard deYi:t­
tion of Yare 

Calculate the probability of the minimum annual llow in a year being less 
than 2 m3/s. 
Solution The parameters of the distribution an~ [Eqs. (3.1 I 9) and (3.120)1 

1T 
"'-~ 0.64l IX= ,-

V 6/2 

- - s _,_ ~).577_2 - ~ 9 
11 . - ' 0.64 I - - . 

Hence the C'DP of minimum annual flow is 

F~(l') = I - exp 1--exp {0.64J(r --- 5.9)}] 

The probability of the minimum annual flow in a year less than 2m 3/sis 

P(Y < 2) Fr(2l 

· C'Xp 1-- exr {0.641(2- 5 Q)}] = 0.079 
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Type 2 Extremal (la1·gest) Distribution: EXz,t(u, k) 

This is anotlier model for the largest value of many independent identically 
distributed random variables. Here, the form of the parent distribution is 
not generally defined. This model is generally selected on the basis of an 
empirical fit to a set of data. The PDF and CDF of the variabltl X, the 
largest of many Y; are 

k [ u 1k+J /x(x) = u x exp [ -(u/x)k] x~O (3.121) 

Fx(x) = exp [ -(u/x)k] x~O (3.122) 

where u and k a~e parameters of the distribution. They are connected to the 
mean, variance and coefficient of variation of X as follows: 

k>l 

a~ = 112 [ r( I - ~ ) - r2( 1 - ! ) ] 
r( I- f ) - t 

r2( r - ! ) k>2 

(3.123) 

k > 2 (3.124) 

(3.125) 

The above equation has been solved and the values of k for the corres­
ponding values of ;) are given in Table 3.3. Type 2 extremal largest distri· 
bution, designated as EX2,r.(u, k), is used to model the annual maximum 
wind speed, the maximum annual flood, the maximum atmospheric tempe­
rature, etc. A typical shape of Type 2 extremal (largest) distribution is shown 
in Fig. 3.31. 

TABLE 3.3 Valun of k for correspo11di11g values of 3 for Type 2 
extrl'lllflf (largest) distribution 

8 J.:. 8 k II k 

0.30 5.15 0.21 6.95 0.12 11.62 

0.29 5.29 0.20 7.255 0.11 12.65 

0.28 5.45 0.19 7.59 0.10 13.88 

0.27 5.61 O.IR .. 7.97 0.09 15.425 

0.26 5.79 0.17 8.395 0.085 16.35 

0.25 5.98 0.16 8.87 O.OR 17.4 

0.24 6.195 0.15 9.415 0.075 1R.62 
0.23 6.42 0.14 10.04 om 20.03 
0.22 11 675 0.13 10.77 0.06 23.72 

•• 
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FIG. 3.31 Shape of Type 2 extremal (largest) distribution 

EXAMPLE 3.32 The yearly maximum wind speed X, observed at New Delhi 
follows the Type 2 extremal largest distribution. It is found (from data) 
that 

p,x = 100 kmph ax= 23 kmph 

Calculate the probability of the annual maximum wind speed exceeding 
120 kmph. 

The parameters of the distribution are first calculated. Thus 

23 8x=-,..,.... 0.23 
100 

From Table 3.3, 

k = 6.42 for 8i = 0.23 

Using Eq. 0.123), 

100 
I. I} = 89.29 kmph 

The probability of the wind speed exceeding 120 kmph in any one year is 

P(X > 120) == I - P(X ~ 120) = I - Fx(i20) 

Using Eq. 0.122), 

Hence, 

Fx(l20) ,..- exp r---(89.29/12W' 5] 

-., O.R64 

P(X > 120) ceo I - 0.864 """ 0.136 

Type 3 Extremal (smallest) Di.~tl'ihution: EXJ,s(u, k) 

This model is for the sm:tllest ol' tht: many random variables. This distribu­
tion is also called the Wcibull distribution which is extensively useLf in 
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reliability studies. The PDF and CDF of a variable X following Type 3 
ext rem a I (smallest) distribution are 

k ('" - ')k·J [ (\: •- /)k] /v(x) 'o= -- -· - cxp - ·--
11 · ·- I II - I II - I 

(3.126) 

[ (\: ·-· ')k] rr(X) ,_-~ I - exp - ;, - I x;-:1 (3.] 27) 

The parameters 11 and k arc given by 

JL_,. = 1 + (11 - nr( 1 + ! ) (3.128) 

u~- :c~ (11 - n{ r (' + ; ) - r2 ( 1 + ! ) ] (3.129) 

This moue! has been used to represent the material strength in tension and 
fatigue. 

For many practicable problems, it may be reasonable to assume I = 0. If 
I=' 0, Eqs. (3.126) and (3.127) simplify greatly. The CDF of X for I= 0 is, 

Fx(x) = I - cxp [ --(x/u)kJ x ~ 0 (3.130) 

with 

(3.131) 

(3.132) 

(3.133) 

The values of k corresponding to the values of8x arc given in Table 3.4. 
Gumbel has studied droughts using this model with I = 0. A typical shape 
of Type 3 extremal (smallest) distribution is shown in Fig. 3.32. 

TA8LE3.4 Va lue.r of k for cot-respotrditrg 3 for Type 3 
ex/remal (smlllleJt) distributio11 

8 k ll k 3 k 

0.300 3.72 o.rxo 6.54 0.10 12.45 
0.250 4.56 0.170 6.97 0.095 13.18 
0.240 4.77 0.160 7.45 0.090 14.00 
0.230 5.00 0.150 7.99 0.085 14.92 
0.220 5.25 0.140 8.61 0.080 15.97 
0.210 5.52 0.130 9.34 O.o7 18.59 
0.200 5.83 0.120 10.19 0.065 20.25 
0.190 6.17 O.t 10 11.22 0.06 22.21 
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FIG. 3.32 PDF of Type 3 extremal (smallest) distribution 

ExAMPLE 3.33 The flexural strength X of an over-reinforced prestresse( 
concrete section has been found to follow the Type 3 extremal (smallest 
di lribulion with the I wcr bound I = 0. It is given: 

p.x = 825.8 kN m ax = 48.5 kN m 

Calculate the probability of failure of the beam when the external momen 
on the section is 437.5 kN m. 

Solution The parameters of the distribution are first calculated as follows: 

Sx = 48.5/825 .8 = 0 .0587 

Using Eq. (3.133), 

( 2) r I+-
(0.0587F = kl - 1 

r2( 1 + T) 
Solving the above equation or using Table 3.4, the value of k is found to be 
22.86. Using Eq. (3.131), 

825.8 
u = ( I ) = 846 kN m 

r I + 2 1.6 

Hence the CDF of X is 

Fx(x) = I - cxp [ -<.x/846)21 '~] x~O 

The beam l'aib when the strength of the section is less than the extern~l 
m mcnt acti ng on the section. Hence the probability of failure, Pf, of th~ 
section is 

/ 11 - ~ I'(X < 437.5) 

= I -- cxr l--(437.5/846)2Hr•J 
- o. 284 · w-r. 

The PDI (lf :111 the l'lllllmnn distributions is listed in Table 3.5 also fo 



Distribution and designation 

Uniform 

l\'ormal (Gaussian) N<p,x. axl 

Lognormal LN (X. "In x) 

Gamma G!k. A1 

Beta BT (a. b. p, t/) 

Type I extremal (largest) 

EX1,L (11, «) 

Type I extremal (smallest) 
EX~,s(u, «) 

Type 2 extremal (largest) 
EX2,L (11, k) 

TABLE 3.5 Common probabilistic nwdels a11d their parameters 

PDF 

u-=-, I~ X ~ II 

1 [ '(x-p.x)'] -= exp - -::;- ---
0X~2~ - ax 

1 
.\"<11n XV:!:t exp [-

~{ln (>·{X)}•] 
- aln.\' 

A!A.r)k- le- Ax x ~ O: k. >. ;;>- 0 
rck l 

(x - a)p-J(h - xiq-l 
B(p. q)th - u)p+q-l 

u ~ x ~ h 

CIO~X~CIO 

x~O 

"'exp [ -Ot(x- u) - exp { -tz(x -til}] -oo ~ x ~ co 

« exp [tz(x - u) - exp {<L(x - u)}] -co ~ x ~ GO 

k ( u )k+l - - exp [ -(u/x)kj x ~ 0 
II X 

Relation between parameters and 
mean and variance 

l+u 
l'x = 12 

2 (u - /)• 
CX=~ 

~X and a2 
X 

- ( I 2 ) X= 11-xexp - TalnX 

a~n X = ln (&i + J) 

k k 
p. X = ...,...; a\ = ,.--

" "' 
' p . I'•' =a,-- (b- a) ,, p + q 

s [ pq ] 
"X = (b - a)% tP -;- tl)' (p + q + I) 

O.ST12 • ,.. 
!1-x = II -;- - «- ; ax = ~ 

0.5772 t :t• 
~...- ~~ 11 - -"-; ax = (;i 

11-x = ur(t - -}) k > 1 
c~r = u=[r(l - ~) -r•(t - +)] k > 2 

(Collld.) 
CD 

""' 



Di~tributiL'Il and Designa!ion 

Type 3 .:xtn:mal (smJIIes!) 
EX3, 5 (u, In 

Po:sson P(),t) 

E'.ponenlial EX(.\) 

R;~yieigh 

TABLE 3.5 (Coutd) 

PDF 

k (x - f)k-t [ (x - / )k] -- --- exp - --u-lu-1 u-1 x~l 

(Ar ).re- >.r 
X= 0 . J. 2 .... ,,-• 

~e-Ax X~ 0 

X [ ] ( \" )"] ;o exp - 2 -;- x ~ 0 

Relation between parameters and 
mean and variance 

l'x = I + (u - I)F (I + ~ ) 

cr\=(u- l)•[r {1 + !) -ro(t +f)] 
l'x = >.t 

? crx =At 

l 
P-x =y 

l 
.. \ .. = ~· 

l'x = a.-J-:-:!2 

cr} = a.•(z - ; ) 

CD 
CD 
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ready reference. The distributions, (i) !-distribution (ii) chi-square distri­
bution and (iii) F-distribution, which arc generally used for statistical tests 
(hypothesis testing), are not given. 

Throughout, it has been assumed that the parameters of the distribution 
arc known. They are to be estimated from the data using (i) the method of 
moments or (ii) the method of maximum likelihood. Readers are suggested 
to refer any book on probability and statistics for parameter estimation. 

For a given data, the suitability of a probabilistic model is checked using 
chi-square lest or Kolrnogorov-Smirnov test (Refer 3.1 ). 
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EXERCISE 
J.l During I he monsoon sc:1~un in Uombay, a Mrong winll may co me l'rom uny dircc­

lion h •I ween 9 = 0 ( outhJ and 8 = 90 (WO. t) . The maximum wind speed cannot 
he greater lhan :wo kmph. Sketch I he sa mple pace for the wind direction and the 
wind speed. Show the event , the wind speed greater than 30 kmph, and the wind 
direction, 20 < 9 < 60, in the sketch. 

3.2 A si mply supported bcum of span I is to be designed for hcur. There are two 
load. Q, 20 k N ;rnd Q1 = 50 kN which ca n come o n the beam; but they can act 
only at discrete points. 0.25/, 0.5/ and 0.75/ on the beam. Lt is not necessary that 
both loads should act lll I he SillllC time. Sketch the sa mple space for the shear at 
the left end of the beam. 

3.3 The completion of a water l<~nk involves the successive completion of four stages. 
Let , 

A ~ cxcaV<ftion (;omplcted on lime; P(A) ~ 0.9 
JJ ~~" foundation completed on time; P(B) ~ _0.8 
C ~" columns and bracings completed on lime; P(C) = 0.7 
D ·" tank cumpleteJ on time; P(D) = 0.7 

If !he events :nc statistically in<jcpcndcnt, 
(i) what is the probability of the whole structure completed on time? 

(A11s. 0.3528) 
(ii) whnt is the prohability of the tank portion completed on .time and atlcast one 

of the other three works is not completed on time? (Ans. 0.3472~ 
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3.4 !"here arc three member~ in a dctcrrninalc tnt's subjected loa ~;ivcn ~yslcm lo;~d-

ing. If P; is the probability of failure of the mcmb~.:r i, it is given as: /' 1 0.1, 

p, - 0.2 and p 3 - ' 0.3. The performance ul' a member dcpcnJs on other 1ncmlm' 
II is given: 

/'ll-'1 I F,nlal 0.8 

Determine the reliability of the truss. 
(:lu.r. 0. 784> 

3.5 A policy dcci;ion, like limiting the maximum salary of an lnJian to Rs . 1.500. ;, 
10 be raken hy the Govcrnnwnl. This det end on the elec tion rcsulb Supr ~c lt 
tile party ·I wins, the probabil ity f imp lementing the Jccis ion i flO%. while it IS 

20~ u fm lh ' p:r rt y flnnll 40 ~~ fur the Pill'tY ( ', ' ~~t l lllC thCI'C OirC nly three r~rties . 

Wl llwul "nowing whil: h part y will 1 in in the elect ion, one Clllll l 1 ay tilt' t: hunc • 
of inlrot.lucing the decision. If the chance of .1 winning the cle~.:lion is 0.6. of B 
0.1, and of C 0.3, determine the chance of introdu~:ing the t.lccision. 

(A111. 0.62) 
3.6 fhc probability density function of ntinfall in a t.lay during the monsoon ;cason 

is given by 

3.7 

fx(x) ~= 32e-4.< 

Calcul<ttc the mean and the variance. 

x~O 

(Am. IL ·~ ~; a• "' 25) 
Two variables, X ant.! Y, follow the lognormal distribution. It' Z -'~ ,\")' and vari­
ables X and r arc statistically indl·pemlcnt, prove that Z follows the lugno1 n1:tl 
t.listribution. 

3.8 The cube strength of M 35 concrete. X. follows the normal distribution with 
parameters p, ~ 42.28 N 1mm• and a ,_ , 5.6 N 'mm•. 

li) What is the probability or X < 35? 
(.4/1.1. 0.0983) 

(iiJ What is the probability of 30 ~ X~ 50? 
(Ails . 0.90 \SJ 

3.9 The yield strength or steel. X, follows the lognormal t.listribution with 111CIIIl 

~ 15M N/mm 2 and a ~ 48.8 N/mrn2 • What is the probability <~f getting a ykld 
strength value less thanl500 N,mma? 

(Ans. Cl.t\793) 
3.10 'I he fatigue life of a structur;tl component, rneusurcd in terms ol the number of 

cycles of a particular lout.!. is mot.lellcd having Wei bull distribution" hich is ~,:iven 
by 

f~:(x) ct.ft.r~-1 cxp (-ct..\')~ .\',<X, ft > 0 

ct. and fJ arc parameters of the distribution given by 0.001 and 0.5 respectively. 
The mean value of X ;1nd the parameters arc rc.latcd by the CC(Uation 

l'x .co 0(-1/ll/'(t -r- f) 
(il How long t:an such structural component be expected to last. 

(Ans. 2 x IO" cycles) 
(ii) What is the probability that such a component will last more than 3 x 10' 

cycles'/ 
tAns. 0.1769) 



4 
Resistance Distributions and 

Parameters 

4.1 INTRODUCTION 

The first step in the reliability analysis and design of structures, is to study 
the variability of the strength of the structural (RCC, steel, prestressed 
concrete, masonry, etc.) members in flexure, shear, compression, bond, tor­
sion, e~c. The strength of a structural member may vary from the calculat­
ed or 'nominal strength' due to variations in the material strengths and in the 
dimensions of the members, as well as variabilities inherent in the equations 
used to calculate the strengths of members. One has to identify the sources 
of variability and quantify (statistics) the same. The fundamental require­
ment in the reliability study is the collection of data on strength and other 
physical properties of the materials of the structures, and the geometric 
parameters of the sections and the statistical analysis of the same. 

The structural designer specifies the characteristic strengths of materials 
and the builder tries to procure the materials satisfying the specifications, 
and thereby, trie5 to achieve the same strength as assumed by the designer. 
However, if the quality control is poor, then the strength of th..: structural 
member will be less than that assumed. This may endanger the c;afety of the 
structure. Hence for providing a design with an assured level of reliability 
the systematic identification of the uncertainties in the strength of materials 
and the dimensional parameters and statistical analysis of the collected 
data becomes an important task. 

In this chapter, information on statistics of basic variables, vil. physical 
properties of concrete, reinforcing steel bars and bricks, and dimensional 
variations of RCC members, based on actual field data, are furnished. 
Methods are also indicated to account for other uncertainties and thus to 
determine the allowable stresses of materials for a given reliability or 
probability of failure. 

4.2 STATISTICS OF PROPERTIES OF CONCRETE 

The cube strength (compressive strength), the modulus of rupture (flexural 
strength), and Young's modulus (initial tangent modulus and secant modulus) 
are the properties of concrete that are generally required in the design of 
concrete structures. 
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The strength of concrete in a structure may be diflercnt from the specified 
strength, and also, the strength may not be uniform throughout the structure. 
There are several sources of uncertainty which contribute to the total 
variation in the strength of concrete. Sources arc (4.1 ): 

(i) variations in the quality of materials 
(ii) variations in the placing of concrete 
(iii) variation in the supervision 
( iv) variations in weighing 
(v) variations in the mixing proccdun:s 
(vi) variations in the transporting methods 
(vii) variations in the testing procedures 
(viii) variations due to the actual strength of concrete in a structure 

being different from the control specimens (cube or cylinder) and 
(ix) variations in the methods of curing 

In construction projects, samples of concrete cubes or 150 :< 150 ;..: ISO mm 
size are generally cast during every hatching of concrete. These cubes are 
tested in a laboratory at the end of the 28th day of curing. The mean value 
and standard deviation of each set of a concrete mix can be obtained . The 
computed mean value of the strength of each set can be plotted as shown in 
Fig. 2.1. It is generally found that the in-batch variation, which may be 
considered as a variation in the testing procedures, mixer inefficiencies anu 
the actual concrete strength, varies from 3 to 10 percent. All the lest results 
of a particular concrete grade belonging to a project can be clubbed and a 
histogram can be drawn. A typical plot of a histogram of the cube strength 
of M 15 concrete belonging to a project is shown in Fig. 4.1, ( 4.2). Concretes 
of' the same strength and with the ame quality control may be prepared in 
din'ercnt projects. All these samples are combined to form a class of con­
crete. Figure 4.2 gives the histogram of a typical class of M I 5 concrete. It 
can be observed, as expected, that the variation and coefficient of skewness 
for the class is more than for a group shown in Fig. 4. I. As more and more 
groups are combined, the distribution may become more and more skewed. 

~ 
.Q 20 .. 
0 
> 
G; 15 
Ill 
.Q 
0 

..... 10 
0 

n =63 
M•an .. 20·29N/mm2 

SO :'l' 49N/mm2 

r---

--- I'---\ 

I I 
I I 

16·0 18 .5 . 21·0 23·5 26·0 28·5 31·0 
Cube str•noth ( N /m m2) 

0·32 
>­u 

0·24 ~ 
~ 

0·16 .... 
Gl 
> 

0(18 :s 
li 
a: 

0 

FIG. 4.1 Histogram of M15 concrete for a typica 1 proie~! group 
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A national building code must specify the coefficient of variation for a par­
ticular class of concrete, irrespective of source. It is also felt that this 
specified coeffic ient of va ri ntion must be related to lhc quality contro l. ln 
the present c de IS: 456- 1978, the cod t: specifi s the values f tanda rd 
devia tio n for various grade of concrete; but the degree of qua lity control 
is not a ttached to these values. 

n = 399 
Mean= 24·03 N/mm2 

SO: 5·76N/mm2 

Ill c: 
0 
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~72 
Ql 
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~ 
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' 12·0 I 20·0 ) - l 28·0 ~ i 36·0 A • 44·0 

Cube strength (N/mm2) 
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- 0 
52·0 

FIG. 4.2 Histogram of a typical class of M 15 concrete 

After drawing the histogram, a mathematical probabilistic model is fitted 
to the data. The different types of models that are normally used to describe 
the compressive strength of the concrete cube are: 

(i) normal distribution 
(ii) lognormal distribution and 
(iii) beta distribution 

The suitability of a probabilistic model to fit the data is arrived at after 
applying the chi-square or the Kolmogorov-Smirnov goodness-of-fit tests 
(4.3) . Th" chi-~q uare test is briefly explained below: ~~ 

~uflre Test 

I. Draw the histogram for the observed data. 
2. Assume the model with its parameters calculated from the data. 
3. Select the level of significance 11.. Generally 11. is taken as 5 or I per cent. 
4. Calculate the value of chi-square as ' 

X~al = X ( QI - e,)z (4.1) 
1-J er 
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·-
where 

X~nl = the calculated value of chi-square 

o; ,-, the observed frequency in the ith interval 

e; -, the expected frequency corresponding to the assumed distribution in 
the ith interval 

a = number of intervals considered 

5. Compute the number of degrees of freedom N given by 

N =,a-- r -- 1 (4.2) 

where r is the number of parameters estimated from the data. 
6. For the assumed a, and computed N, find the value of chi-square from 

the standard chi-square table available in any text-book on stntistics (4.3). 
Let this be designated as X~. 1- a 

7 If X~,11 is Jess than the vaiue obtained from tl)e tables, accept the dis­
tribution with its parameters at the assumed level of significance. Otherwise, 
reject the hypothesis. 

The chi-square test is demonstrated in Table 4.1 for a set of data of M 15 
concrete (4.4). Readers should read a specialist's book (4.3) for this topic. 

TABLE 4.1 Deii/OIIIfratioll of chi-square 11'.>1 

Sl. 
No. 

Interval oi ('· 
I 

2 

3 

4 

5 

6 

7 

< 14 1() 19.6 

14-16 53 53 9 

16--18 RS 75.1 

18-20 45 57.3 

20-22 30 28.9 

22-24 15 10.9 

> 24 3 4.2 

250 250 

(i) Model assumed-lognormal with parameters 

X = 17.36 N/mm2 and OJn x = 0.152 

(ii) rx assumed ~ 5% 
(iii) Calculation of e;: 

e, o=o (n)p; where n = sample size 

p1 --, P(X < 14) = rp .Jln °4/X)} = 0.0785 
, O(n X 

e1 = (250)(0.0785) = 19.6 

(o1 - e1)2/e1 

0.66 

0 02 

2.22 

2.64 

0.04 

1.54 

0.34 

7.46 



Similarly, e2 = (n)p2, 

pz = P(X < 16)- PCY ~ 14) 

= <~>{ 1 " <t 6Ji>}- o.o1ss = o.21so 
Oln }{ 

e2 = (250)(0.2156) ::= 53.9 

Similarly, other values of e, are calculated and given in Table 4. I. 

(iv) Degrees of freedom N = a -- r - I = 7 - 2 - I = 4 
(v) From chi-square Tables (4.3), 

2 2 
XN,fl-rx) = X4. o•>~ = 9.49 

(vi) X~al = 7.46 < 9.49 

95 

(vii) Hence accept lognormal model with parameters at oc = 5 per cent. 
The procedure that i. c plained for the collection of samples for the com­

pressive strength of concrete. can be f0l lowed for the collection of amples 
of cylinders (15 em din . X30 em height) and beams (10 em X 10 em X 50 em) 
belonging to different grade. 0f concrete. ylinders can be tested to get the 
dnta on the initial tangent modulus, E, ., and the secn nt modulus, E.,r. or 
concrete. ollected beam specimen can be tested in the lrtboratory at til~: 
end of the 28th day of curing to get datl't on the modulus of rupture of 
concrete, f;.. Table 4.2 give. the result. of the tali tical una lysis of the data 
on various properties of concrete c llected by the author 4.4, 4.5 , 4.6) at 
various places in lndia . Frcquen y distribution of E,r and f, of M 15 
concrete are shown in Figs. 4.3 and 4.4. 
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FIG. 4.3 Frequency distribution of Initial tangent modulus of M 16 
concrete 



TABLE 4.2 Results uj statistical analysis of •·arious propcrticr of cmun•!e CQ ., 
-

Mix 
Specified strength !-' cr 8 Probability Quality 

Variable and source 
(N/mm') (N/mm•) (N/mm') ~~~) distribution control 

Cube Strength 
liT, Kanpur M 15 15 24.03 5.76 23.96 LN Nominal mix 

M 20 20 29.16 5.49 18.83 N 
M 25 25 30.28 3.77 12.45 N Design mix 
M35 35 42.28 5.60 13.24 N 

REC, Calicut M 15 15 22.67 5.ot 22.10 LN Nominal mix 
TIT, Bombay MIS 15 17.56 2.69 15.33 LN Design mix 

M20 20 26.80 4 04 15.07 N, LN 

Cylinder Strength 
liT, Bombay M 15 11.10 1.92 17.28 N,LN 

M20 17.21 3.34 19.40 N,LN 

Initial Tangent Modulus 
liT, Bombay M 15 22,076 25 ,147 3,398 13.51 ::-r,LN .. M20 25,491 34,100 5.009 14.65 N,L::-r 

Secant Modulus 
liT, Bombay M 15 - 19.606 3,397 17.07 N 

M20 - 28,031 4,951 17.66 N, LN 

Modulus of Rupture 
IIT,,Bombay M 15 2.71 3.682 0.871 23.64 N 

M20 3.13 5.893 0.603 10.26 N,LN 
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FIG. 4.4 Frequency distribution of modulus of rupture of M 15 concrete 

4.3 STATISTICS OF PROPERTIES OF STEEl~ 
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The yield strength , _(;.and the modulus of elast ic ity of steel, Es, arc the two 
main phys ica l proper ties of steel that are used in the des ign of RC and steel 
st ructu res. In the case of prestressed concrete structu res, the ultimate st rength 
of high tensile steel wires is used in the design. The variation in yield strength 
is due to the variation in (i) material strength, (ii) cross-sectional area, 
(iii) rate f loading during testing . and (iv) I he effect of t rai n at wh ich the 
yield is de fi ned (4.7). The amount o f varia tion in trenglh wi th in (l sinp.h: 
bar cont inu ously ca.L for a part icul ar length in u ingle cast is \!cry · m .:~ ll . 

(less than one per ent ) and may he negligible as sh wn in Fig. 4.5. How­
ever the in-b. lch variation fo r n gi ven hea t i slightly !u rge r. For a on. truc­
tion w rk, the reinforc ing bar. may be su ppl ied by o pH rti ~,; ul ur ma nu rnctl lr­
ing firm havi ng a number r ·tccl ro ll ing mil t . Hen c.:e, the supp lied bar. 
may be fr c1111 difl'erent rolling mi lls. If the chel11ical compo itlc n of s1e I is 

"' 
~ 1850 

.c: 
~1750 
Q, 

~ 1700 

Specimen number 

4mm 4JHTS 
w i rt' 

FIG . 4.5 Variat ion of ult imate strength in a single cast length 
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well controlled during the production, it is reasonable to expect the vari­
ations in strength from cast to cast to be small; otherwise it will be signi­
ficant. If the bars are supplied to the site by different manufacturers, the 
variation in strengths may be high due to different rolling practices and 
quality control adopted by different manufacturers. The variation in the 
strength of steel due to the change in the mean strength with bar diameter 
is significant. From these discussions, it is evident that there are several 
sources which contribute to the overall variation in the strength of bars. 

pccimens can be collected from varioliS rolling mills belonging to a parti­
cular firm <1 nd these can he te ted in a laboratory to determine _(~ and E.,. 
Test results of all samples irrespective of the dian1eter are clubbed, and the 
me<Jn value and standard deviation of such a data belonging to a particular 
mill arc calculated. A histogram can he drawn for such a data. Figure 4.6 

~ 222 
0 

0 
> 
~ 
~148 
0 

n = 745 
Mean:447·61 N/mm2 

50:17 26Nimm2 

Vield strl'ngth ( N fmm 2) 

0·3 

Cll 
> .... 
0 

0·1 ~ 
a: 

FIG. 4.6 Frequency distribution of yield strength of Fe 415 
grade steel from a rolling mill 

shows a typical histogram of yield strength or high yeild strength deformed 
b:1r (1-IYSr) belonging to a mill. The procedure is repeated by collecting 
specimens from various rolling mills or at various stage of a construction 
project. To know the statistics of the yield strength of steel, irrespective 
of the sou1ce :~nd diameter, all samples belonging to rolling mills and from 
the construction project sites (field specimens) arc clubbed and the mean 
value, standard deviation and coefficient of variation of Fy or r, for such a 
data can be obtained. A histogram is drawn for such a data (Figs. 4. 7 and 
4.8). Suitable probability distribution can be fixed for the collected data 
using any one goodness-of-fit tests. Table 4.3 gives the results of the statisti­
cal analysis of the data on the strength of reinforcing bars collected h\' 
lhe author at various places in India !4.2, 4.4, 4.8). 
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4.4 STATISTICS OF STRENGTH OF BRICKS AND MORTAR 

For the reliability study of brick masonry construction and reinforced brick 
masonry structures, the statistics of the strength of brick, strength of mortar, 
thickness of bed joints, water absorption, reinforcing steel bars etc. are requi­
red . The strength of masonry depends on several factors, such as the 
strength of the brick unit, strength of mortar and thickness of bed joint, the 
type of supervision given in construction, etc. The effect of the uncertainty 
or variability of different parameters is responsible for the variability of 
masonry strength. The statistical variations in brickwork depend very much 
on the constructional practice and the degree of quality control. 

Dayaratnam and Ranganathan (4.9) have collected samples of l;lricks 
manufactured by different firms around Kanpur(U .P.) and Calicut (Kerala), 
and have done detailed study on the various properties of bricks. Results 
of the statistical analysis of the strength of bricks are presented in Table 4.4. 

The strength of the prism decreases at a faster rate with increase in the 
joint thickness for perforated bricks as compared with the solid bricks. So it 
is expected that the variability of joint thickness will affect the strength of 
brickwork . Results of the statistical analysis of the thickness of horizontal 
and vertical joints in existing structures are also given in Table 4.4. 

TABLE 4.4 Rt•stdts o./ statiltica/ analysii o/ hri< k s. mortar .\ ll'rngt!t 
and joint thicknesr (4 . 9) 

--------- ---------·-
Source 

Bricks 
Kan pur Zonl: 

Calicut Znnc 

Mo1l<11 

HOI i/'.lllta I J <>illl 

Ve1 tic~1l Join I 

Mix I. J' 

Mix 1.4'' 

Mi~ 1.5* 

Parameter 

Length (rnm) 

Arendth (mmJ 

Height (mmJ 

Wat~r ahsorp1inn ( 0 ~) 

Compre"i'- e str<·ngth 
IN mm'J 

Len!,\th (lllllll 

Breadlh lmrn) 

Hcighl 11111111 

W~ilCI' absorpliOll (~ 0 ) 

Compres,;ive strengt h 
tN;mm'J 

1 hi~knc~s (1111111 

I hicknc" (1111111 

Strength (N :mm'J 

Strength <N 111111'l 

StJ<:IIgth tN 111111') 

*L.aboJ<IlOI) made spc~imcns 
Nott•: ~--Normal; LN --Lt>!.\IH•IIII;II 

p. 

:!28 .5 

109.4 

o3.3 

15 I 

ILJ 9 

::'.32 .7 

116.0 

75 .7 

I (•.4 

lJ.~ 

12 .4 

12.tJ 

2 1. 5 

1-U 

1114 

WJ 
Probability 

distribution 

1.6 N 

2.3 N 

3.3 N 

22.3 

3 l.ll " l ,tl N 

2.3 N 

4.8 N 

12 ') 

29.X N 

13.5 N 

16 4 N 

13 .3 i'i. LN 

10.0 N, LN 

18.1 N,LN 
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The mortar is used as the binding material between brick units. The 
results of the statistical analysis of the strength of cement mortar cubes 
belonging to different mixes- 1.3, 1.4 and 1.5- are presented in Table 4.4. 

4.5 DIMENSIONAL VARIATIONS 

The dimensions of RCC members may not be the same as specified. There 
may be deviations from the specified values of the cross-section shape and 
dimension, which may be due to size, shape and the quality of formwork, 
and concreting and vibrating operations. Variations also occur in the effec­
tive depth of members. The actual effective depth available may be different 
from the specified values because of the improper placement of reinforcing 
steel bars, not providing proper cover blocks and change in values when 
needle vibrators are used during casting of members. The amount of varia­
tion in dimensions vary from place to place and structure to structure depend­
ing on the quality of construction techniques and the training of the site 
personnel. Mirza and MacGregor (4.10) studied the variations in dimensions 
of RCC members for American conditions. 

The difference between the nominal and the built-in dimensions are best 
characterized by the mean and standard deviation of the error. The coeffi­
cient of variation of the error increases as the size of the member decreases. 
Nineteen multistoreyed buildings have been visited during construction, and 
actual field Jata have been collected on the various geometric parameters of 
RCC members ( 4.1 I). The data are to be collected during the construction, 
and the measurements of members are to be taken in an unplastered 
condition. The results of the statistical analysis of variations in dimensions 
of slabs, beams, columns and foundations, carried out by Ranganathan and 
Joshi (4.4, 4.11 ), are presented in Table 4.5. The relationship connecting the 
coefficient of variation and nominal size of the member has been found to be 

lh - 4.9/11, {4.3) 

where It, is the nominal size of the member in mm. The frequency distribu­
tion of deviation in beam rib depth is shown in Fig. 4.9. All variables follow 
the normal distribution. 

4.6 CHARACTERIZATJON OF VARIABLES 

The basic information required to describe behaviour of a random var iable 
' is the proba bility ui :. tribution with 1L · parameters. Howe er, in the ca e of 

lir t-order·scconJ moment n1cthod of reli ability , aria ble are characterized 
by Lheir mean · and coeffi ienl or variation . The conce1 ~ of uncertninty i 
c nveyc I through the coeflkie nt or variat ion. l n I'Ciit-tb ili ty study, ~ill unccr· 
tainl ic · whi h affect the de. ign reliabi lity must be nccounlcd for . The e 
uncertainties must inc lude the inherent stati stical variability in the basic 
\'n riable and the add itional wrcc~ nf uncertainties nri si nl! due l model· 
ling. Modelling uncerlnintic '' uld incluJ errors in the ~:sli1111lion ot' 
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TABLE 4.5 Results of statistical analysis of variations in dimensions 
of RCC members 

Mean 
Type deviation 

(mm) 

Slab (13 slabs) 
Overall depth + 7.89 
Top cover -19.75 
Bottom cover -1- 3.27 
Effective depth + 1.87 
Beam (252 beams) 
Breadth +10.29 
Overall depth +14.37 
Effective depth + 6.25 
Top cover - 0.56 
Column (364 columns) 
Breadth - 0.25 
Depth + 0.11 
Cover (for 62 columns) -19.09 
Distance d, * fi.24 
Footi11g (6 footings) 
Length -40.25 
Breadth +37.73 

Standard 
deviation 

(mrn) 

5.43 
6.89 
7.8 
6.8. 

9.47 
9.38 
3.79 
8.41 

5.69 
7.89 

12.13 
11.89 

46.50 
32.28 

Size range 
(mm) 

100 to 110 

200 to 350 
250 to 700 
270 to 370 

30 

259 to 300 
250 to 1000 

40 
360 to 710 

1500 
1300 

Note : *d, is the distance from one end of the column to the centre of bars on the 
other side. 

----n·=-2::-cs=-2::----- ---,o ·io 

Mean :14·37mm 
SO :9·38mm 

-5 25 
Devial1on in· beam rib depth ( mm) 

FIG. 4.9 Frequency distribution of deviation in beam rib depth 

parameters, probability distribution, idealizations, testing procedures, human 
errors in calculation , etc. 
Let 

X h..: a ba ~ i~· ,·ariuhlt! 
1'-.r he the liul' llll'atl nl· X 
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ox be the true coefficient of variation of X 
X be the sample mean 
ox be the sample coefficient of variation 
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X and Sx are calculated from the data collected unde( carefully controlled 
conditions. Hence, llx describes the inherent statistic~! variability. If the bias 
and coefficient 0[ variation of uncertainties, attributed by other factors, are 
considered as M and 8M, then 1-'X and 8x are estimated as (4.12) 

-o 2 
&x = (ox + oM)1t2 

If 8!11 is due to 11 factors, 8/11 can be broken and written as 

OM = (ll~ + 8~ + ... ll~)l/2 

(4.4) 

(4.5). 

(4.6) 

If the model is unbiased, M is taken as I. In this approach, what is done is, 
1-'X is predicted by f(. Using this approach, the overall variation in the basic 
random variables can be nxed. This is illustrated below. 

4.6.1 Compressive Strength of Concrete in Structure v 
Let 

Y be the cube strength of concrete 
X be the strength of concrete in structure 

The mean value or the strength of concrete in structure is taken as 0.67 
times the mean value of the cube strength of concrete. That is, 

/1X = 0.67/LJ 

ln section 4.2, the ClH!Ilkicnt of variation of Y, rcprc~entating inherent 
variability, was obtained. Taking into ac~:ount the uncertainties involved in 
the testing procedure o;.,t,st) and in siru \' ~tria lion of the strength of concrete 
(8;" •'"'), the e 1imate qf the coefficient of variation of the strength of con­
crete in structure can be written as (4.1). 

\ 
~2 < 2 . "~ + ,2 
OX = or + Oiii!C~l Oitr Hill 

If 

O;n situ = 0.1 

then, 

si- = oi- + o.oJ 25 

From Table 4.2, for M 15 concrete (design mix), 

Sr = 0.1533 

1-Ienc.:e the total \'ariation in the strength of concrete is 

8x = I (0.1533)2 + (0.05)2 + (0.1 )2]!12 

= 0.18 

1 1 
I 
J 

'i 

ij ' 
I; 
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Similarly, the mean value and coefficient of variation of the compressive 
strength of concrete in structure for various grades are calculated and given 
in Table 4.6. 

TABLE 4.6 Statistics of strengths of concrete and steel 

Variable Me1tn Coefficient of Probability 
(N/mm1) variation distribution 

(i) Compressive strength of 
concrete in structure 
(a) Nominal Mix M 15 15.19 0.24 LN 

M 20 19.54 0.21 N 
(b) Design Mix M 15 11.78 0.18 LN 

M 20 17.96 0.15 N 
M 25 20.29 0.15 N 

(ii) Initial tangent 
modulus of concrete 

Design Mix M 15 25147 0.187 N,LN 
M 20 34100 0.206 N,LN 

(iii) Modulus of rupture 
of concrete 

Design Mix M 15 3.682 0.246 N 
M20 5.893 0.125 N. LN 

(iv) Yield strength of 
steel 

Fe 250 320 0.10 N 
Fe 415 469 0.10 N 

(v) Modulus oi elasticity 
of steel 

2.04 x 10' 0.091 

4.6.2 Yield Strength of Steel 

In the case of steel, we must include the variation that may occur due to the 
testing procedures and the method of specifying yield point. If the coefficient 
of variation in the :esti ng procedures (ointcst) is taken as 5 per cent anJ the 
coefficient of vari&i'ion in the mcth d of specifying yield (8ap. level) is also 
taken as 5 per cent, the total variation in tlie y1eld str ngth o f Pe 4 15 grade 
steel is 

From Table 4.3, 

• 2 2 2 
atot~t = 8actuat + 8iutest + 8sp. level 

Sactual = 0.073. Hence, 

Ototal = [(0.073)2 + (0.05)2 + (0.05)2] 1/2 

= 0.102 

For mild steel (Pe 250), it is expected that 

o,p. level C:.!. 0 f 
I 
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for Fe 250 grade steel, ?>"'''" is 

For J;,dian conditions. the >tatistics of the strength ol' cuncrek and steel, 
giYen in Table -l.6, may be used for code calibration. 

4.7 ALLOW.\BLE S J'RESSES U:\SED ON SPECIFlEO / 
HELIABILITY (4.1Jl 

The 1\tlrking ~Ires' de.-ign ( WSD) :lnaly,es :1 \trul'lut·c i"ur \\'Urking load-.. 
ami dc~igns the members such that the :1ctual :-tresses in the members :11C 
limited lo :1 portion o[' the ) icld S(I'C 'l '> or critical Or ultimate 'tre ' ~ that l\111 
be carried b~ the material. 

Dc>ign criteria in WSD can be ..,pccilied a' 

/i(!'vl, (it-:, GS, DL, LL. WLJ < 1;" tM, .!::_6.. GE. GS. DL, LL. WL) (~.7) 

where;; is the 'Ires-, developed in the structure and t> is the ;tlltnl able 'tress. 
The sub ~cript i rei"e rs 111 tethiPn or .comprcs,iun 1>1" 11c.\lll e or shear or buml 
stress, etc. 

The stress ,leveiL'Ped in thc structure can bt: axi:tl •lr lxnding nr shear. It 
is a function of the material properties (MI. geLllllCtr) of dements fGU, 
geometry of ~tructure~ (GS), dead lu,td ( DL), li \'e lu:1d (LL), wind f,);td 
(WLl, etc. The allowable stress is a Cunction ol' the material. It also depend' 
on the specifications for testing the m:1terials. A liberal spccilicatilln llll 
material standards has to be compensated by lower allowable st1 C'>S . 1,, 

depends on functional aspt:ct (FA) of the structun:. A high pre ~sure \e~s l'l 

for liquid is to be treated diffcJently from a !ugh pressure I'Csscl t'nr the 
containment :-hell of a nuclea1 reactor . 

Allowable stresses in compression are go verned hy the buck I i ng cri t<.:rion, 
which Jepends on the geometry 11f the clement and strul'lure. :\llm\·:1hk 
~tresses in a single load condition arc dillcrcnt t'ron1 tlwsc in a combined l(laJ 
conditi.on and hence it is a function ol· load combination. Expressiun' 
simibr to Eq. (4.7) can be written for other Jcsign criteri :! bcl>cd on allm~­

able deflection and cracking. The code spccilicati•11t fur pcrmi~sihlc strc~sc-, 
has to lake care of the many complicated situatil'llS. 

Pl'ohability of Failw·e of M11terial in WSD V 
When the stress developed in the material is greater than the <illowablc s1rc''· 
it is defined as a failure. Hence the probability or t'ailur~: of material, /'J, 
can be written as 

{11 C-'O P(X < _fa) 
-~ -· · ··"" .. ,._... ____ ~ , .. 

where X is the random variable, namely the srcngth of the malcnal. 
If X is normally distributed. 

,, ( {;, /lX) flf = Cj) '----
. ax 

(4.8) 

(4.9) 

I 1 
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EXAMPLE f The cube strength of M 20 concrete, Y, follows normal distri-
buti n. tven: 

J.tY = 26.8 N/mm2 8y~-=0.18 

/a = 0.34 X (cube strength of concrete) 

= 0.34(20) = 6.8 N/mm2 

Determine the probability of failure of concrete in the structure. 

Solution The strength of concrete in struct'.lre, X, is equal to 0.67 times the 
cube strength. Hence 

p.x = 0.67 p.y = 17.96 N/mm2 

u,y = 0.67 uy 

= 0.67(0.18)(26.8) 

= 3.23 N/mm2 

Using Eq. (4.9), the probability of failure of concrete in the structure is, 

Pr = f/>( 6.80 -=.._!_7.96) 
.23 

= f!>(- 3.455) = 2. 75 X )0-·4 

EXAMPL~ The yield strength of HYSD bars (Grade Fe 415), X, follows 
the normal distribution. Given: 

s; = 0.1 P.x = 468.9 N/mm2 

[a= 190 N/mm2 

Determine the probability of failure of steel. 

Solution 

ux = 0.1 ·-. 468.9 = 46.89 N/mm2 

Using Eq. (4.9), 

::z (/) ( 190 - 468.9) 
p; . 46.89 

~" •P - 5.948) = 1.4X I0-9 

/Determination of Alloll'ablc Stress 

The allowable stress can be fixed for a given reliability or probability of 
failure of the material. lf the strength of the material follows the normal 
distribution, then Eq. (4.9) can be rewritten as 

./~ -·· P.x = f!>-l(p1) = k (4 .10) 
vx 

Substituting ax =--= 8x~-tx, the above equation becomes 

/tx I 
J,, ~-= I+ k c_;. 
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/Lx and ax are obtained from the field data and hence they are known. 
Knowing JJ. ¥ and ~x and k for a given Pf, the allowable stress can be fixed. 

Factor of safety, v, is defined by the convention of WSD as the ratio of 
the ultimate stress or yield stress to the working stress of the material. 
Hence 

/LX I V=- = 
fa ( l + k8x) 

(4. ll) 

The fixing of allowable stresses for a given reliability is illustrated with the 
following examples. 

EXAM,P-!:E~t is given that the ratio or the mean value of the cube 
stren'gth of M 15 concrete (design mix) to its characteristic strength is 1.4 
and the coeflicient of variation of the strength of concrete is 0. 18. Determine 
the allowable stress for the probability of failure of concrete equal to to· 3• 

SoltJtioll In the case of concrete, the allowable stress is fixed as a fraction 
of the characteristic cube strength of C"'llCrete. For flf '-" I o-J, k "-' -3.091 
(from tables). 
Let 

fCII =o the characteristic cube strength of concrete 
X == the strength of concrete in the structure 

The mean value of the cube strength of concrete is gi ven a~ 1.4 .fw. Hence 
Eq. (4.11) becomes 

[~ -'~ 1.4(1 + kf>x) 
f eu 

As the allowable stress in the element of the structure is to be fixed, the 
prism strength (that is the strength of concrete in the structure) is to be 
used and the above equation can be written as 

!a = (0.67)(1.4)[ 1 - - (3.091 )(0.18)] 
}CU 

= 0.416 

If the specified cube strength of concrete is 15 N/mm 2, the allowable stress 
for PI = 10-3, is 

fa = 0.416 X 15 = 6.24 N/mm2 

Similarly, for various values of Pf, the allowable stresses can be calculated 
for a particular characteristic strength. They are given in Table 4. 7. 

v 

TABLE 4.7 Factor of a safety aud allowable stress for A! 15 concrete (design mix) 
for different values of probability of failure 

_, fa (N/mm1) 

to-• 
-3.091 

2.40 
6.24 

JO-' 
-3 .7t9 

3.22 
4.65 

IQ-6 

- 4.265 
4.59 
3.27 

to-• 
-4.754 

7.39 
2.03 
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It can b\! seen 1'1 0111 the above tabk that as fi t decreases. the ;lilo\vablc 
stress also decreases as expected. 

EXAM~4.4 In the case of steel, the allowable stress is lixcd as a fraction 
\lf theyield stress . From the data it is found that the ratio of the mean 
'alue \)r the yield strength of steel to its characteristic strength is 1.13 (for 
Fe 415- Table 4.3). The overall variation in the strength of steel has been 
found as 0.1 (Sec . 4.6). Determine the allowable ~tress for steel for 
Pr ' I0- 3• 

Solution The factor of safety for HYSD bars. using Eq. (4.11 ), can be 
written as follows: 
Let 

lt is given that 

Using Eq . (4.1 I) 

for 

and 

x· '--" yield stress of the material 

f.;. ·- the characteristic yield strength of steel 

!lX ·- I.JJ_f;, 

t; l 
v--' j~ = 1.13(1 .! kSx) 

PI = JO- J, k ~- - 3.091 

8x '-'" 0.1. Thus, 

f v 
v '-= '--'- = .f;, 

fv g fn -= 1.2 ] 

I 
Cl3~3"'.09I)(0.1 >J 

For Fe 415 --grade steel, J.;. ·-· 415 N/mm2• Hence the allowable stress f(•r 
Pl =' 10 3 is 

r. 41 5 , 4 N ' 2 
a- m ' ~' .l2 ,mm ' 

If p1 '-~ 10--4, the value of allowable stress can be similarly calculated and 
it is equal to 294.5 N/mm2• 

If one takes the guaranteed yield strength itself as its mean strength, then 
the value of allowable stress for f'f ~= I o-3 is 

fn '-"' ,!;.[! --- (3.091 )(0.1 )] 

'·= (415){1 - 0.3091) = 286.7 N/mm2 

It must also be noted that the safety has been calculated based on the 
yielding of steel (i.e. if steel yields, it is considered as a failure). However, 
the actual failure (that is by breaking of steel) occurs at a vaiue of 1.2 times 
the yield stress of material. Hence, the actual safety available is more. 

The collection of different data on the strengths of different materials 
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and on ge metric parameters have been discussed, and the statistics of 
variables based on the actual field data and the published works for Indian. 
c nuit i ll S have been pre ented . By and large, the talis1ica l descriptions 
suggest I r. re baed on pu blished work . . It is re ognizeu that the knowledge 
of the behaviour f materinl is c ntinually evolving and the mean , vari­
ances, and distri bution. of the variable may be changing a more and more 
data is collected or when da ta is updated. Re earch wo rkers also have not 
used the ame model und parameters fo r reliab il ity st ud ies during the las t 
tw decades. For the amc data there may be a number of distribution. 
wh ich appea r to li t the data equally well. Ex treme cauti n hould be 
exerci eel if the type 0f distribution is chosen on the basis .of ample data. 
A better or preferab le appro·lch i. to make u e f physical rea oning about 
the nature or each variable to guide th ehoicc of rhe distribution. In 
engineering r>roblem , most of the tim e we may have to resort to empiri­
cally fi tted di tributi ns. It is to ben lted that the var iables t hat have been 
discussed are the basi var ia bles of a re istance variable of the structure. 
Hence it is important. and to be recognizer!, that lhe elected models must 
be simple, convenient , and reasonably good for these bas ic variables. 

Modell ing of the resistance varinble of ·1 . lructural element and a stru -
wre is a diflieult tn k. The rcsi tance is a function f these ba. ic vnriables, 
viz. strength of mater iu Is, geometric parameters, etc. Getting field data for 
the res i lance of an R column, beam or frame or steel elements and 
structure in civil engineering is quite expensive and impossible . One may 
have to resort to the simulation technique (to be discusseJ in a later chapter) 
or physica l reasoning to choose appropriate models. We have already dis­
cussed diliercnt models in Chapter 3 and also the conditions under which 
they arise. Th y may be helpful in choosing a model. Normal, lognormal, 
Wci bull. bew, and sometimes gamma distributions are generally u cu to 
characterize the resistance of a structure. Again, it is important that the 
selected models must he simple and convenient, otherwise it will lead to 
difficulties in evaluating the reliability 0f a structure. 

The estimation of parameters is important as the accuracy of prediction 
depends on the parameters estimated from the data. The methods that are 
generally used are: 

(i) method of moments 
(ii) method of maximum likelihood 

(iii) mean rank plot-graphical procedure 

The method of moments is the simplest. The graphical procedure is easy to 
apply for simple probabil ity distributions. The method of maximum likli­
hood is difficult t apply as it often involves iterative calculations. However, 
it is supposed to be the best method as the estimators have all the desirable 
properties, viz. unbiasedness, efficiency, and consi tency. The description of 
the methods are beyond the scope of this book. Readers should study and 
refer to any of the standard books (4.3. 4.14). 
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EXERCISE 
4. 1 The cuhe I rength of M 20 concrete foll ows the normal distribution with par:~ ­

mc t ~r~ t' = -9.16 N/mm~ and " = 5.49 What is the characteris tic strength of 
concrc1e? (A11s. 20.16 N/mm1) 

4.2 The yie ld strcn ~;th of steel follows the I gnormal distribution with I' = 295.3 
N/mm• 1111d" = 16.24 N/mm•. lf the specified strength of steel is 235 N/Qim1, 

detc nni nc the chnracteris tic strength of steel. ( A11s. 269.4 N/mm') 
4.3 If the ratio or the mcw1 value of lhe cube strenglli of MIS concrete to its characteristic 

strength i~ 1.5 1. rutd the coollicicnl of variation of the strength of concrete is 0.24 , 
dctennim: the nllowablc stress for a reliability of 0.9999? (Ans. 1.61 N/mm2) 

4.4 If the yield strength of steel follows the normal distribut ion wilh I' = 468.9 N/mmD 
and" = 46.R9 N/mm' , determine the nllowoble stress for a reliability of 0.9999. 

(A ns. 294.5 N(mm'l 
4.5 The flexu ra l strength (ultimate) of n prestressed concrete beam follows the normal 

d istribution wic h lhe coemcicnt of variation being 0.05. The beam is subjected to 
dead load and live load . Assume the loads are deterministic. If the combined load 
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factor, r,. is defined as the ntlio of the mean value of the strength of hc: urn to the 
moment due to working loads. what is the value ofF" for a desired re liability of 
0.999Q? (!Ins. 1.22!!) 

4 6 If !he ratio or d.:ad load to live load is 0 .5, and load factor for dead load is 1.2. 
''hat is the load factor for live load for a desired reliability of 0.9999'1 

(Alii". 1.193) 
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Probabilistic Analysis of Loads 

5.1 GRAVITY LOADS 

5.1.1 Introduction 

The accurate evaluation of gravity loads and the proper assessment of the 
maximum loads that a structure will have to carry during its lifetime are 
very important for a safe and economical design. After the advent of high 
speed digital computers, accurate techniques are available to analyse and 
design any complex structure under given loads. However, the state of 
knowledge about the analysis of loads is not comparable. The loads remain 
an estimate based on experience, judg.ement, traditi.on, trial, and error. 
Recently, during the past 15 years, considerable attention has been drawn 
to the measurement, nnalysis, and modelling of loads because of the increa&ed 
familiarity of the engineers with the probabilistic and statistical methodology 
necessary to treat the load phenomenon in the quantitative manner, which 
engineers expect. 

Loads on structure are stochastic in nature. They vary with space and 
time. This spatial and temporal variability is to be taken care of in the 
design. In recent years, a significant amount of live load survey has been 
conducted in many countries (5.1-5.9). At the same time, the trend has 
been set up to develop probabilistic limit state design and reliability based 
codes. The characteristics of the loading is probably the most important 
parameter to a reliability based analysis and design . In the formulation of 
reliability based codes, considerable attention will have to be focussed on 

·the acquisition of reliable load data of a form suitable for the estimation of 
key statistical parameters. Concurrent to this, there is a growing awareness 
to develop probabilistic models and estimate the statistical parameters. The 
study of floor loads in buildings with respect to how live loads are measured, 
analysed and modelled, is presented. 

5.1.2 Load as a Stochastic Process 

Loads or actions in general are the forces acting on the structures due to 
external influences (self weight, superimposed loads, snow, wind and wave 
loads) and imposed deformations (differential settlements and temperature 
variations). Loads are subjected to random variations in magnitude and 
position with time. Loads are, therefore, d.<.,;,ribcd lls time varying, free 



113 

positioning, and dynamic effect producing and hence loads are to be 
modelled as a stochastic process. 

A single time history representing a random phenomenon is called a 
sample function. When this evolves in time, it leads to a process. A stocha­
stic process is the collection of all possible sample functions, which the 
random phenoti:enon might have produced. 

A sample function of a continuous time varying stochastic process of 
load X(t) is shown in Fig. 5.1, in which x(!t) is the magnitude of a time 
varying load X(t) at time 11. This x(tl) is called the arbitrary point-in-time 
load . It is simply the load that would be measured if the load process were 
to be sampled at some time instant, e.g. in a load survey. This load is a 
random variable. If this is designated as X, the PDF of X is shown in 
Fig. 5.1. In the same figure , if Xmn' is represented by the random variable 
Z, then the PDF of Z.fz(z), will be as shown in Fig. 5.1. 

N ~co .. : 

t, 

I 

:~max 
I 

Timeo • t 

FIG. 5.1 Continuous tima varying load 

In the case of reliability study, the treatment of load as a stochastic 
process is inconvenient. For practical reliability analyses, it is necessary to 
work with the random variable representation of load rather than with the 
random process representation (5.10). Again, in the case ofreliability study, 
the designer is interested in the value of the maximum load that is likely to 
occur during the life of the structure. This load is called lifetime maximum 
load. Ultimately one is interested to know the probability distribution of 
this load . This may be physically interpreted as the distribution that would 
be obtained if the lifetime maximum load were measured in an infinite 
number of identical structures (5.11). In later sections, we will see how we 
achieve this. , 

Gravity loads are divided into dead loads and live loads. Live load is 
again divided into (i) sustained load and (ii) transient load or extraordinary 
load. 
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0.1.3 Dead Load 

Permanent loads are considered as dead load. This is mainly the weight of 
the structural system. This may undergo a little reduction because of wear 
and tear during its lifetime. This is negligible and can be ignored. Dead 
load may undergo increase because of the addition of some partition wall 
or covering during the life of the building. These may be rare events. This 
also induces a modest change only. Hence the dead load· can he assumed 
to remain constant in time throughout the life of the structure. This is 
depicted in Fig. 5.2(a). 

,._ 
~ 

>< ..-

- < >< 
~ 

>< 

x x(t) 

X 

0 

(a) o~ad load 

X \) 

(b) Sustained Load 

X (t) 

I c l Extraordinary Load 
FIG . 5.2 Types of loads 

: )( ( t,) 
I 

t 1 

The total dead load to he supported by a structure is generally the sum 
of self~weights of many parts. Hence the dead load is modelled with a 
normal probability distribution . The variability in deaJ load is strongly 
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affected by the weights of nonstructural items, such as roofing, partitions, 
etc. As there is a tendency to underestimate the total dead load, it is 
assumed (5.10) that the ratio of the mean load to nominal load is 1.05, and 
the coefficient of variation is 0.10 for code calibration. 

·...6.1.4 Live Loads 
Live loads may in general, be defined as any load produced by the occu­
pancy of the building. Nonpermanent gravity floor loads arising during the 
service life of the buildings are considered as live loads. That means, live 
loads include the weight ofpeople and their possessions; furniture, movable 
partitions and other portable fixtures and equipment. The total live load on 
a floor is considered under two components, viz. (i) a sustained load compo­
nent (long term), (ii) extraordinary load (transient load) component. 

Sustained Load 

A sustained load is the load of furniture, equipment and other loads needed 
for the activity and the normal personnel involved in the activity. Sustained 
loads shown in Fig. 5.2(b) may change at discrete times, but inbetween 
changes, remain relatively constant. A change at discrete times may be 
thought of as change due to change of occupancy (tenancy). The variation 
of load inbetween changes is due to the changes which a normal activity 
brings. New pieces of furniture may be added or exchanged or shifted, and 
the contents in desks and cabinets and other storage places vary. The 
persons who are involved in the activity are not present all the time which 
brings a variation of the load. As stated earlier, this variation between two 
load changes is limited and small compared to the total load. Hence a cons­
tant load between load changes is assumed in the load analysis. It may be 
noted in Fig. 5.2(h) that sustained loads may be entirely absent for a certain 
duration. This may be considered as the ~ime gap during change of tenants. 

The sustained load is the load usually measured in Jive load surveys. This 
is referred to as the arbitrary point-in-time- load, Lapt· The PDF of this load is 
also shown in Fig. 5.2(b). This load is a spatially varying random function. 
This is assumed constant in time within a particular change of occupancy. 
It is therefore known as the long term load. The load changes with change 
of occupancy are assumed to occur as poisson arrivals. 

E:rt1·am·dinary Load 

This arises from infrequent clustering of people above and beyond normal 
personnel load. That is, the extra personnel load. This extraordinary load 
(EL) is also due to the event when 111any pieces of furniture or equipment 
have been gathered together in one place at some instant of time, for 
example, at remodelling events. The EL is very unpredictable and it occurs 
with relatively high intensities and in short durations (in most cases a CO\Iple 
of hours). The term short duration is used in the sense that their durations 
are very small relative to permanent and sustained load. Hence they create 
a spike on the lifetime history of the load as shown in Fig. 5.2(c). It is very 
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difficult and almost impossible to get data on EL. It cannot be measured in 
the regular live load survey. 

The total load is therefore split up into three parts. This is a simplified 
model. The division is mainly on the difference in the time history between 
the loads. As the dead load, already discussed, has been considered as con­
stant in time and can be modelled with a probabilily distribution, it can be 
combined with other loads. In future, live load only will be discussed. 

Li1•e Load Survey 

The development of new codes, based on the reliability theory or prob­
abilistic limit state design, needs more and more information about loads 
based on the actual field data. This has initiated the conduct of load survey. 
During the past decade, numerous load surveys have been conducted in the 
U.S.A., Europe, Canada,' Sweden, Australia, India, etc. 

J . Bryson and Gross (5.2) have developed the methodology of load 
surveys. The live load survey is the process of measuring the actual floor 
loads, Lapt, and collecting the extensive scientific and systematic data, and 
information, such as (i) building data which includes geographic region, 
location, height and number of storeys, age, type of occupancy, floor plans 
of building, layout of framing systems, number of rooms/bays, floor area 
of building, etc., (ii) occupancy data giving information about the types of 
firm, spatial orientation and duration, (iii) room/bay data, which incor­
porates details about the floor level, room number, location of the room, 
room use, room size, floor area, openings, surface finishings, floor cover­
ings, occupants including number and weight, item description including 
location, contents and weights, etc., (iv) extraordinary load information 
about occasions of persons gathered, frequency, fmniture stacking occasions, 
painting and remodelling, etc. - 1 

The scientific live load survey provides a sound statistical basis for (i) the 
adoption of an appropriate probability model for live loads, (ii) the proper 
assignment of parameters to the probabilistic model, (iii) the refinement of 
probabilistic load models, (iv) better understanding of the randomness of 
live loads, and (v) the modification of the existing loading standards. 

Simple Stati.~tical Analysis of Lb•e Loads 

Before we consider the rigorous statistical analysis of floor loads as an area 
dependent random process, let us first understand the simple treatment of 
the load analysis. 

Assume that live load ~urvcy has been conducted in a building and the 
position and magnitude of loads are known on each bay (or room) of the 
building. Assume constant area. The floor load intensity (FLI), Q, is the 
total load acting on a bay (or room) in a floor divided by the floor area of 
the bay (or room). The actual live loads (measured in load surveys) may 
have any random positions and distributions. From the design point of view, 
the effects of actual live loads (i.e. stress resultants) developed in the floor 
slab or supporting beams and columns, are important. Therefore, it is 
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necessary to convert the survey loads into uniformly distributed loads. This 
uniformly distributed load intensity, which would produce the same load 
effect as the actual set of loads, is called the equivalent uniformly distri· 
buted load (EUDL). Let EUDL be designated as L. Hence the set of point 
loads on each bay, with actual magnitudes and positions measured in load 
surveys, must be transformed to EUDL by using influence surface methods 
or energy methods or finite element methods, taking into account the 
boundary conditions and the configuration of the supporting systems. Once 
a probability model is selected and the parameters established for L, the 
characteristic load, LA, can be fixed. If Pk is the probability ofa load greater 
than Lk, then 

or 

Pk = P[L > Lk] = l - P(L :::>; Lk) 

= I- I·L(Lk) 

Lk = Fi 1(1 - Pk) 

(5.1) 

(5.2) 

If the occupancy does not change during the lifetime of the building, the 
above calculated load gives the lifetime maximum live load with a prob­
ability of its excecdencc equal to pc 

For live load on buildings, it is usually assumed that the occupancy 
varies a few times during the lifetime of a building, T, in a completely inde· 
pendent way. Assuming that the whole building is occupied by only one 
tenant (i.e. single tenant model) at a time, Jet the building be occupied by 
N tenants during the lifetime of the building. The live load during each 
occupancy is a random variable. Let L1, L2, ... , Lt ... , LN be the random 
variables representing the maximum live load intensity (EUDL) during each 
occupancy. lt is assumed that the live load does not change with respect to 
time during each occupancy. If FL;( ) is the CDF of L; and FL

111
( ), the 

CDF of the lifetime maximum live load, L,,, then the probability of L, less 
than or equal to a particular load, say characteristic load Lk, during the 
lifetime of the building is given by 

P( Lm ~ L") "'" Pl(LI ~ Lk) n {1.2 :S: Lk) n ... n P(LN :::>; L~c)] 

If L; urc as~umeJ as statistically independent, the above equation becomes 

P(L, 'c. L1..) = P(LI :S: Lk)P(L2 :S: Lk) ... P(LN :S: Lk) 

li,(Lk) = Fi. 1 (Lh)FiiL~;) ... l·L1,,(Ld 

If L; are identically distributed, the above equation simplifies to 

h111(L~;) = [f'LI(L!c)]N (5.3) 

where FL
1
(Lk) is the probability distribution reflected in a histogram of 

live load data measured during a short period of time (initial fitted dish+ 
bution for Lnvt). If FL 1( ) has an inverse at Lk = (I -pk)IIN, then 

(5.4) 

The above L~c 1s the lifetime maximum live load for l\' tenancies and P;. is 
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the probability of live load exceeding Lk. Hence for a given number of 
tenancies and a specified value of pk, the value of Lk can be calculated from 
the initial fitted distribution for the live load. This is illustrated with the 
following example . 

. J r~ · AMP~ From the statistical analysis of live load survey, it is found 
th:1t live load follows the lognormal distribution with parameters 

L = 1217 N/m2 Gin L = 0.368 

Determine the characteristic load for Pk = 0.05 if (i) there is no change in 
tenancy and (ii) the building is going to be occupied by 5 tenants during 
the lifetime of the building. 

,')'olution 

Case (i): 
Using Eq. (5.2), the characteristic load is given by 

L1, -'--' Fii(l - ph)~ FL'i(l --- 0.05) 

FL(Lk) "-= 0.95 

Since L follows the lognormal distribution, using Eq. (3.94), 

Case lii ): 

w[ In (Lk/L)] = 0.95 
Gin L 

L = f exp [aio LW- 1{0.95)] 

~"' 1217 exp l0.36Wl~"~(0.95)J 

c= 2220 N/m2 

It is given th<Jt N •- 5 and p~o · 0.0). UsingEq. (5.4), the value of L1. during 
the lifetime of the building is 

Lk ~ Fi 1l(l -· 0.05)ii 51 

-' Fi 1(0.9898) 

= L exp [alnt<P· 1(0.9898)] 

- - 12 I 7 cxr l0.368cP 1(0.9898)] 

• ltl60 N/m2 

Similar!), the values of /.1, for different numbers of tenancies arc calculated 
and given in Table :'i.l. It is seen from the table that Lk increase~ for a 
gin' II value ur fil,, :11HI /.1, decrease~ as fil, increases for a giYcn value of N. 

Area l>epelltit'llt Su.l'tuincd ],ot/11 /ntell.l'ity Model 

ln the last section, it has been :1ssumed that the bay or room area is cons­
tant and the llul'r luad doe'> nt't depend on the are:1, i.e. 110t as a function 
or the :1rea. However, it i' 11elle,,ablished that the noor lo:td depends on 
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Period Lifetime of Lifetime maximum load for 
of building N Pk- 0.05 Pk- 0.10 

tenancy (years) (kNjm•) (kN/m1) 

5 25 5 2.86 2.57 
5 30 6 2.92 2.65 
5 40 8 3.04 2.76 
5 50 10 3.17 2.76 
5 100 20 3.43 3.13 

10 50 5 2.86 2.57 

the area. Live loads vary from building to building, floor to floor, bay to 
bay, point to point, and also time to time. To quantify these variations and 
uncertainties, to some extent rationally, the instantaneous live load survey 
data of arbitrary point-in-time loads on floors of selected bays of selected 
buildings have to be analysed to model live loads with certain assumptions 
and simplifications. 

Statistical Assumption 

The load intensity on a floor can be characterized as a stochastic process 
which is assumed stationary both in space and time. 

The ~ssumption of stationarity in space implies that the load in build­
ings, used for the same type of occupancy, can be represented with the same 
statistical distribution. This assumption is generally used, and is necessary 
so that with a proper selection of the buildings out of the whole population, 
good estimations of the statistical properties can be achieved. 

The assumption of stationarity in time implies that the statistical distri­
bution of the load from one point in time to another is the same. This 
assumption is needed. It is not possible to conduct a continuous load survey. 

The procedure of analysis of live load is to start with the preposition of 
a probability model for the load intensity. From this, a probability model 
for the load elfcct or the equivalent uniformly distributed load (EUDL) is 
Jerivcd. 

Load Intensity 

The sustained load intensity at any location on a floor of a building 1s 

modelled as the superposition of 

· (i) the main trend, 
(ii) the periodic components, and 
(iii) the random fluctuations 

According to the assumption about stationarity in space, a constant mean 
load intensity is chosen. Hence the main trend is the mean load intensity, 
which is assumed to be constant for a type of occupancy. It is to be noted 
that the mean load intensity will be diiTerl.!nt for diiTcrent types of occupancy. 
That is, say between hospillll buildings and otlkc buildings. 
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The periodic components are the variations in the load intensity around 
the mean due to different buildings, different floors, and different bays. 

Random fluctuations take into account unknown uncertain deviations 
from the mean load intensity. 

The load intensity model is assumed to be noncorrelative. That is, the 
correlations between load intensities from floor to floor, and bay to bay, and 
point to point which have a very little effect on the total load (or load effect) 
are not considered. Therefore, the correlations arc neglected for simplicity 
and hence the load intensity model is assumed to be noncorrclative. With 
the above assumptions, Pier and Cornell (5. 12) proposed a model for the 
load intensity as 

where 
w(x, y) = m +· r + D(x, y) (5.5) 

1\'(X, y) '= the load intensity at any Jomtion Oll a bay Of a floor of a 
building 

m = overall mean load 
r = a zero-mean random variable which can be split up to 

represent di!Ierent variations 
IJ(x, y) = a zero-mean random process which represents unknown 

spatial variations. 
The above model has been applied by various research workers (5.9, 5.13-· 
5.17) anu it is expected that this will be the general method for the analysis 
of sustained load. The r term may be split up into 

!'bldg- representing builuing variations 
I}'- representing floor variations 

l'booy- representing bay variations 

The split is justified if every building is occupied by one organization. Thai 
is, a single tenant model is assumed. This is the case in most of the office 
buildings. In case if a building is occupied by many organizations (this will 
l•c in the ~:asc of tall buildings), then l'bldG can be considered as l'or11 repre­
senting variations between organizations. 

The sm;illcst structural unit used in the load intensity model is a struc· 
tural bay. Hence the load intensity is integrated over the bay area to get 
the Iota! load. It is recalled that the spatial load intensity has been assumed 
as a noncorrclativc random process. However, the total spatial load over an 
area is nssu1ned tn be dependent on the area. Hence the model is an area 
dependent random process. Since D(x, y) is a zero-mean random process, 

E [ (J J D(x, )') dr dy)j A] = 0 (5.6) 
, I 

' !Ill~ \ arian~:e ol' D(.Y, _r) i~ given by 

Var (!>) = ~ J JJ J (\,v IJ>(x. r), D(u, ;·Jl dx (rl' dud<· 
A I 
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Since the spatial load intensity has been assumed as a noncorrelative random 
process, we have 

Var (D) = ~ Var [J J D(x, y) dx dy] 
A 

2 
= liD -¥ A 

A 

where u~ is the spatial variance. 

(5.1) 

Let LD be the total spatial load over the area. This is dependent on the 
area. Hence 

E[Ln(A)J = E [f f D(x, y) dx ely] 
A 

=- 0 

Var [LD(A)] = Var [JJv(x, y) dx dy] 
A 

Cov [LD(AJ), LD(A2)] = Cov [f J D(x, y) dx, dy, J J D(x, y) dx dy] 
A1 A1 

(5.8) 

(5.9) 

= 0 if A1 nA2 = ,P (5.10) 

c/>, here, means null set. 
Statistical properties of w(x, y) over an area can be written by using the 

above derived results for the spatial load. Let L be the Iota! load, i.e. the 
sum of the load intensity over any finite area. Then the mean value of L is 

E[L(A)] = E [J J w(x, y) dx dy] 
A 

= E[mA] + E[rA] + E[D(x, y)A] 

As r is a zero-mean..random variable, 

E(r) = 0 

Using Eqs. (5.8) and (5.12) in Eq. (5.11), 

E[L(A)] = mA 

The variance of L is 

Var [L(A)] = Var [lj w(x, y) dx dy 1 
= Var [mA] + Var [rA] + Var [D(x, y)A] 

(5.11) 

(5.12) 

(5.13) 
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Using Eq. ,(5.9), 

Var [L(A) ! ~~' 0 + a; . .J2 + a7JA 2/ .- f 

(5.14) 

where a; is the variance or/', 
The covO.Jriance of loads between two difYcrent influence area ~ :f 1 and . b is 

Cov [L(A,), L(A2)] = Cov [f J w(x, y) dx {~~· . J J ll'(x, y) dx dy] 
.4, ,.,, 

(5.15) 

To obtain the unit load, VL, the total load over the area 1s uivided by the 
area. :-fence 

Moments of unit load are 

VL(A) ~- L(A) 
A 

ELLh(A)] = E [ ~1_)] = m 

Var LVL(A)I ;;-"" Var [ L~:)] "--' ~2 Var LL(A)] 

Using Eq. (5.14), the above equation bec.:omcs 
2 

. 2 an 
Var lUL(A)] = aA + A 

Using Eq. (5.15), we have 

ov LL(A ,). L(A2)J 
AIA1 

Cov[U L(A ,), U L(A2)] = a~ 

(5.16) 

(5.17) 

(5.1 !)) 

So far we have not considered the load effect. This can be taken care or 
by determining the coefficients with which the load should be multiplied to 
get the load effect. The load effect is to be obtained by the influence surfaces. 
Instead of integrating over the influence area, the influence surface is used. 
As every load effect has its own influence surface, the theoretical load effect 
can be obtained for any case. 

The correct solution for the influence surface is very complicated. To 
simplify the solution, two dimensional extension of influence Jines is used 
(5.5). 

Let 

H = the load effect 

Then the load effect over the influence area is 

H(A) = J J w(x, y) I(x, y) dx dy (5.19) 
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The equivalent uniformly distributed load, L, thul produces tho same load 
effect is obtained by dividing load etl'ect by the integral under the member's 
influence surface. (This load L is also a function of A. Howe er, for con­
venience A is removed in the notation). 

J J w(x, y), l(x, y) clx dy 

L -- A (5.20) 
- JJ l(x, y) dx dy 

A 

where I(x, y) is the influence surface function for the particular load effect 
sought and A is the influence area over which l(x, y) assumes nonzero 
values. The statistical properties of L arc · 

ElL] ~ E J lj/(x, y)w(x, y) dx dy 1 
l !fl(x, y) dx dy J 

r J J I(x, y) dx dy l 
= m if J I(x, y) dx dy r 

LA J 
=m 

The variance of L which is a function of A, is 

t
r I JIV(X, y)I(x, y) dx dy l 

Var [L] = Var A J 
~JI(x, y) dx dy 

Var(H(A)) 

= [JJJ(x, y) dx dy r 
A 

The variance of IJ(A) is 

Var (H(A)) ~= Var [f I w(x, y) I(x, y) dx dy] 
A 

= Var [Ifl(x, y){m + r + D(x, y)} dx dy] 
A 

= 0 + a~(JII(x, y) dx dyr 
A 

+ Var [J J I(x, y)D(x, y) dx dy] 
A 

(5.21) 

(5.22) 

(5.23) 
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It can be derived (5.5) that 

Var [J Il(x, y)D(x, y) dx ely] = (]~ I I f2(x. y) """ dy ,, .I 

Hence the variance ot' L is 

Yar [L] = n; 
2 
f J fl(x, y) dx dy 

+ av ~A~--------~ 

A [f J l(x, y) d.\' dy 
2 

I 

Using Eq. (5.19) 

Cov lL(Ad,L(;h)J = u~ 
Let 

I J l 2(x, y) dx t(l' 

k = ~A.-------~~ 
(ff I(x, Y> dx dyy 

A 

(5 .24) 

(5.25) 

(5.26) 

(5.27) 

The coefficient k is the mean squared influence divided by the square of the 
mean influence; k is always greater than or equal to I. It depends on the 
type of member, its structural configuration and boundary conditions, and 
the type of response sought. k can be obtained for any load effect and it is 
rclatively insensitive to load effect type (5.5).1t has been found by McGuire 
and Cornell (5.13) and Sentler (5.5) that the values of k arc 

k =" 2.04 for end moments in beams (interior bay) 
k = 2.2 for column axial loads 
k = 2.76 for mid-span beam moments 
k = 1.98 for mid-span beam moments if the beam IS simply 

supported 
k =-~ 1.34 to 1.5 for mid-span moment of' a slab 

Ellingwood and Culver (5.15) have taken an average value of 2.2 for their 
analysis of loads. The analysis carried out by Rao and Krishnamoorthy 
(5.7) shows that considering all load etl'ects, k varies from 1.92 to 2.46. 
Hence we can write 

E(L) = m 
2 

Var (L) = ail = a; + a; k 

(5.28) 

(5.29) 

If we are considering the load effect for beams, the statistical properties of 
L of a beam are 

I:.:(L) = m 
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as tlie influence area for a beam is twice the area of the structural bay; the 
value of k corresponds to the corresponding beam effect (mid-span beam 
moment, end moment ; mid-span shear, etc.) . Similarly, the statistical pro­
perties of EUDL of one storey interior column loading is 

E(L)-= m 
2 

2 2 ao a1. =a,+ 4A 

as the influence area for one storey interior column is four times the struc­
tural bay area A. The value of k for column loading is 2.21 r5.5, 5.13). If 
the interior column supports 11 floors, then 

E(/.l = m 
2 

2 2 uo 
uL = u, + 4nAk 

It is generally found that lognormal and gamma distributions closely fit the 
data (Lapt) from load surveys (5.5, 5.8, 5.9, 5.18). However, since a constant 
mean load intensity model has been assumed, the probability distribution 
characterizing the sustaiucd load should have a reproductive property. The 
gamma distribution has this property but not the lognormal distribution. 

Maximum Sustained Loatl Intensity Model 

The maximum sustained load, L.,, is the maximum of the various sustained 
loads supported by a, given area during the lifetime of the building. That is, 
this is the maximum load which will occur during the lifetime of the 
building. This is also called the lifetime maximum sustained load. 

The following assumptions are used in the stochastic analysis of L, 
(5.12): 

(i) The sustained load (SL) during each occupancy is constant, but this 
value is random. 

(ii) The stochastic load process of SL is homogeneous in time and space. 
(iii) One tenant and one floor model is adequate. 
(iv) The successive sustained loads on any area are independent and 

represented by a probability distribution over the ensemble. 
(v) The probability distribution of occupancy durations are independel\t 

of each other and do not change with time. 
(vi) . When an occupancy change occurs, it occurs simultaneously every­

where over the area A. 
(vii) The successive sustained loads follow the gamma distribution. 
(viii) The load changes occur according to the Poisson process. 

(ix) The duration of occupancy is exponentially distributed. 
(x) A fixed number of changes occur during the lifetime of the building. 

Let 

Lm = maximum sustained load during the lifetime T of the building 
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T = duration of sustained load, i.e. lifetime of the building 
L(t) = sustained load on the floor at timet, i.e. instantaneous SL 

Then lifetime maximum load is 

Lm = max [L(I)] 0 ~ I~ T (5.30) 

Lm is also a random variable . The cumulative distribution of Lm is 

h
11
k/.) = P[Lm ~ ll] {5.31) 

If the number of occupancy changes is N, then (N + I) is the number of 
occupants (tenants) who haveoccupie I the building during T years. Hen ·e 
(N ·!- 1) load values occur during the load history. It has been assumed 
that the SL is constant during each occupancy of the building and has a 
distribution h(oc). Hence if the building is subjected to N occupancy changes 
during the time T, then (N + I) values of L will be observed during T. 
This set of(N -1 I) values can be considered as a rand m sample. If it is 
assumed that the number of occupancy changes, N, is known, i.e. a constnnt 
or fixed, then 

F1.
111

(oc) ~ P[max. load ~ IX] 

~ P[all (N + I) loads ~ o:J (5.32) 

Since successive sustained loads are assumed to be independent, and identi­
cally distributed, the above equation becomes 

FJ.m(a) = [FL(a)]N+I (5.33) 

However, the duration of an occupancy of the building is not determi­
nistic, i.e. varies randomly. In such a case, N is a ,random variable and the 
CDF of Lm is 

co 

FL
111

(a) = E P[(N + 1) loads ~a I N = n]P(N,...., n) 
n~o 

As successive sustained loads have been assumed to be independent, 
<0 

FL (a) = E [FL(1X)]"'+1P(N = n) 111 
n=O 

(5.34) 

It has been assumed that the number of load changes in a period of time 
(0, t) occur according to the Poisson process with mean rate of arrival, v. 
Hence 

e- v'(vt)" 
P(N = n) = - ,-,1-

using this in Eq. (5.34), the CDF of Lm during lifetime Tis 

oo e-vt(vT)n 
FL (IX) = E [F£(1X)]"~' - -'---'--

"' n~o n! 

= FL(1X) i e-vT [FL(~X)(vT)]n 
n-o n! 

= FL(iX)e-vT exp [vTFL(1X)) 

= FL(oc) exp [ ~vT{l - h(1X)}] 

(5.35) 



FM high cumulative levels; the above equation·can be writte1las · 1:_-,.:, 

FL,(rJ.) = exp [-:vT{<I ·- FL(oc)}] (5.36) 

~ -- IIT[I - FL(ot)] (5.37) 

Hence if the ptobability ~listripU:tion of t~e sustained load at any arbitrary 
point-in-time (obtained from load survey) is known with its parameters, the 
c~mulative probability distributiqn of maximum SL can be obtained. 

EXAMPLE 5.2 From the analysis of the live load survey data, it is known 
that (5.9) 

E(L) = m = 717.3 N/m2 

a2L = 2661 -1 · ~690000 k . • A 

Calculate -the maximum sustained load at 0.932 fractile o:e. FL,;,(«) =- o~932) 
for the following given,conditions: 

(i) FL(«) follows the lognormal distribution 
(ii) 11 = 1/8, T := 64 yrs 

(iii) A ~ 27m2 · 

(iv) k = 2.2 

Solution It is given thnr 

Using Eq. (5.36) 

Substituting the values of 11 and T, 
,, 

exp [ -8{1 - FL(oc)}l = 0.932 
FL(Ii) = 0.991 

Using the ~iv~n probability distribution and parameters of L, 

. . FL(f/.) = [ In (ocfi.)] - 0;991 
· Ufn L 

The parameters L and a1n z. are estimated as fo llows: 
For A = 27 m2, k = 2.2 

a}. = 2663 + ( 1 69~~00 ) 2.2 

=;: 140366;7 (N/tn2)2 

aL = 374.6 N/mi 

a = 374•6 · o s·22 
L 717.3 • 
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Using Eqs. (3.91) and (3.92), the parameters of L arc 

Din 1. =lin (0.522 2 + I )li/2 

= 0.491 

~ ( (0.4291 p) /, = 717.3 exp 

= 635.8 N/m2 

Using the calculated values of Land Din L , 

rp [In (7./635.8)] -= 0 99 1 
0.491 . 

"'- = 2048 .9 N/m~ 

Th[s is the IHaXimum \' alue of the lifetime sustained load with the pro­
b:lhility o i' its exceede1Ke during the lifetime of the building being 

(1 -- 0.932) = 0.068 

ExAMPLE 5.3 For the same t:'(ample , calculate the maximum sustained load 
if L follows the gamma di stribution . 

Solution The parameters of L following the gamma distribution are 
( Eqs. 3.100 and 3.101) 

>. = _!!!___ 
( D ,y 

7 17·3 ,---, 0.0051 
(374 .6)2 

k = >.m = (0.005 1)(717.3) 

= 3.658 N/m2 

From the previous example, 

F,. (r~-) =- r~(k~«) = o.991 

Using Pearson's table, it is found that the value of rx = 1870 N/m2. 

For the code calibration or the reliability analysis of structures, it may be 
necessary to know the probability model of Lm with its parameters. It is 
also of interest to know the expected value and variance of Lm for the 
purpose of structural design. Approximate formulae for the mean and vari­
ance of Lm may be derived (5.15) by fitting a Type 1 extremal (largest) 
distribution to the upper load fractiles and calculating the mean and vari­
ance of the fitted Type 1 distribution. This involves 

(i) the calculation of the values of Lm at two fractile levels in the upper 
tail, say Lnr = 0.932 and Lm = 0.992 for various values of A 

(ii) the calculation of the parameters u and rx of the assumed Type 1 
distribution for each area 

(iii) calculation of the mean and variance from the calculated values of 
u and rx for each value of A 
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(iv) the plotting of the values of E(L,.) and Var(Lm) with the correspond­
ing values of A. 

(v) the fitting of a suitable curve to these points (may be the least square 
fit) connecting (a) E(Lm) and A and (b) Var(Lm) and A. 

Transient Load 

This load includes (i) the weight of the probable assembly of persons dur­
ing the ofr1ce party or get together functions or some other activity, (ii) the 
weight of the probablr. accumulation of equipment and furnishing during 
remodellillg of the premises, and (iii) the weight of the probable storage of 
the materials. Normally, the concentration of people in combination with 
the sustained load causes the highest load. Because of this only, the activity 
of persons is generally considered. Again, the clustering of people ab ve the 
normal personnel load only is considered as the normal per~onnel load, 
which is the load of persons n rmally present in th ' ucli~ity already t:on­
sidered as one part of the ustained load. 

The knowledge of transient load is very limited . Very few transient live 
load surveys have been carried ou t because of th l: difficu ltie. ill\o lvcd in 
this type of survey. Transient I nels are tu b~ obtained by wnducting 
surveys continuously in time. This would give ne•;c .. a ry dal<• ab1 ut the 
magnitude anq the time a peel of transient loads. Thi rrocedu rl! is, lww­
ever, difficult to employ. The other way of coll.ccting the data i. through 
questioning about the transient load events in the past. This method may 
be easier but less accurate and may bring many uncertainties. The trans ien t 
load occurs for a short time and is commonly modelled as a Dirac delta­
function with magnitude equal to the intensity of the maximum lt1ad 
applied during the event. The transient load occurs instantly and is assum­
ed to arrive as a Poi son event. Each event is modelled by a random 
number of randomly positioned and sized load cells. occurring random ly in 
space. The EUDL as o iated with an e tra rdinary load B is assessc I by 
modelling the load evenl as a erie of r 111domly distributed load ce ll s, 
each of whiob contains a lu ter of loads. The mod\l l i. h:l~cd on Poisson 
occurring independent events, each f neg ligib le tlur(lti >n. Ba ic compo n­
ent loads Q (weight of ingle concentrated load in the c II, i.e. weight of 
sin gle person) are assumed with specified mean value I'Q and va rian e v~. 
Each load cell contain a random number R of compom:nt loads (i.e. R is 
the number of loads per cell, i e. the number ol' person~ in one load cell) 
with mean fi-R and variance a~. The number of load cells in a gi\'en area A 
is assumed to be Poisson distributed with parameter,\, which is the mean 
rate of load cells in A. Q is generally assumed to he independent of A. If it 
is assumed that Q and Rare independent, the mean and variance of Bare 
given by (5.13) 

EiB] = E[QRl" 
. A 

(5.3~) 
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H it is assumed that Q and R are independent [using Eqs. 3.80(a) and 
3.80(b)], then 

E[Bl = Ap,~P,R (5.39) 

kA(p,l. aR2 + i-Ll a2 l 2 o 2) 
Var[B] = aBl = Q R Q - - ao R 

A2 - (5.40) 

It may be noted that eve11 though the transient load events are probably to 
a certain degree area dependent, a constant mean load intensity model is 
assumed and the random process is made dependent on the area to reflect 
the fact that a high concentration of people is more likely to occur in 
;,;mall areas than in larger ones. The probability distribution of B is gener­
ally assumed to be gamma (5 .5, 5.15) as the gamma distribution has a 
reproductive property. An exponential distribution has also been suggested 
by Sentler (5.15). 

Life Time Maximum Transient Load 

The distribution of the lifetime maximum transient load, B,, is obtained in 
the similar way used for the sustained load . The occurrence of B is assumed 
to be Poisson with mean occurrence rate of v. Hence the CDF of B, during 
the lifetime Tis given by 

Fam(oc) """Fo(oc) exp [- vT{l - Fs{oc)}] (5.41) 

where Fam(a.) = CDF of Bm 

Fa(a.) = CDF of B 

Maximum Total Load Model 

Two types of live load, namely sustained load and transient load have been 
discussed. The total live load, which is some combination of the above­
mentioned live loads at any instant , is of interest. Based on certain assump­
tions, the total live load is derived. 

It is assumed that the sustained and the transient loads are independent 
of each other in time and space. 

As the live load has been considered in two parts, of which one is conti­
nuous in time, the total load is a two dimensional stochastic variable . The 
assumption of independence simplifies the problem as the joint density 
function is the product of the individual density functions. 

Chalk and Corotis (5.14, 5.16) have suggested a load model combinin,!! 
all possible load cases, each weighted by its respective likelihood of occur­
rence. The maximum total loftd during the lifetime of a building may arise 
from one of the following situations: 

Case I : Lt = Lm + Bt } 
Case II : Lt = Bm + L 
Case III: L, -,.., Lm + Bm 
Case l V : L, = L -1- B 

(5.42) 
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where Lrn = the maximum sustained load, Bm = the maximum extra­
ordinary load, Bt = largest extraordinary load occurring during the duration 
of Lm, L = instantaneous sustained load, and B = instantaneous ex.tra· 
ordinary load. The case IV is not considered as the probability of its 
occurrence is small. 

If E()..) is the average duration of the sustained load and Tis the lifetime 
of the building, then the probability that Case I or Case II occurs is 
[T - E()..)]/T, and the probability that Case IH occurs is E()..)/T. The 
probability of the maximum total load can be written as 

P[Lt < I] = P[(Lm + Bt) < I]· P[(Bm + L) < I] [T-TE()..)] 

E()..) + P[(Lm + Bm) < /] --T 

If it is assumed that Lrn, Brn, Bt, (Lm + Bt) and (Lm + Bm) follow the 
Type I extremal distribution, the CDF of Lt is 

FLt(l) = exp [- cxp (- Wt)] exp [- exp (- w2)l [T-TE()..)] 

E(>t) ., + [- exp (- WJ)] T (5.43) 

where Wt, w2 and Wl are reduced variates corresponding to (Lm + Bt), 
(Bm + L) and (Lm + Bm) respectively. 

In conclusion, the analysis of live load is complicated. The probabilistic 
analysis of live loads to predict the mean of lifetime maximum total load at 
desired reliability level is based on the live load survey data collection, 
data reduction , and the probability models of sustained, eJCtraordinary, and 
total loads. The procedure of the analysis is summarized as (i) the estima· 
lion of parameters m, a~, a~ and v from the survey results, (ii) establishing 
the tati tics of sustained load and extraordinary load that are obtained 
fr m the respective load models, and (iii) the estimation of mean and 
variance of the ma)timum sustained load, the maximum extraordinary load, 
and the maximum total load by fitting Type 1 extremal (largest) distribu· 
tion to the respective cumu lative distributions. 

Live load survey has been carried out on three office buildings in 
Bombay (5.9, 5.18). These buildings are modern office buildings occupied 
for a sufficien t length of time for normal occupancy consolidation, and the 
age of the buildings varies from 20 to 40 years. All the three buildings a(e 
multistoreyed. The total area and tbe number of bays covered in the survey 
are 1800 m2 and 386 re pectively. The bay areas in the buildings vary from 
27 to 67 m1. [t has been found that the floor load intensity varies from 0.1 
to 4 kN/m2• The results of the suitability of the mathematical model for 
FLl are given in Table 5.2. The collected data for all the buildings has 
been combined, and for the combined data, the mean and the coefficient of' 
variation of FLI are 0.717 kN/m2 and 0.52 respectively. Using the model 
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TABLE 5.2 Suitabi/iiY of mathenwtical model fur bay FU of o./fice buildings (5.18) 

Sl. No. 

I. 

Description 

Adn1illistrativc Building, 
I.I.T, Bombay 

t< =- 0 5% k N 'm' 
8 = 0.446 

2 Hc~d Office Walchand 
Ruildin~. H0mbay 
!'- = 0 7:!8 kN ,'m' 
8 = 0.207 

3 ( c'nlr,d R:til ~v:\\ 
!\dmitti'irali'c 
Building. Homhay 
tJ. = 0. 7.15 1-N m" 
8=-0,67 

4 All Ru ;ldings comb ined 
!0gc•t ht' l 

t< -0.717 kN m' 
~ =- 0 52 

Distribution and 
parameters 

LN(0.54, 0.42) 
G(5.027. 8.435) 

LN(O. 713 , 0.202) 
G(23.34, 32.06) 

LN(0.620, 0.618) 

L~(0.(,3fi, 0 488) 

Rem8rks of 
chi-square lest 

Accepted"' ~ 5% 
Accepted "' ··" 5% 

Accepted "' = S% 
Accepted rx ~ 5~,~ 

Accept ed ot =~ 50,~ 

.'\cccpted "' = 5% 

proposed lw Pier :1nd Cornell (5. 12), and the method of analysis explained 
in the text, and the <lppro::tch used by Ellingwood and Culver (5.15), the 
colkcted tbta have been analysed and the following values for the mean and 
c0etTicic-nt 0f variation of T.mn• have been suggested by Ranganathan (5 . 18) 
for buildings. The value of v has been taken as 8. For lifetime maximum 
total live load, Lnnx. 

Model : Type 1 (extremal largest) 

Mc<~n : 2.4R kN/m2 

Coefficient of variation : 0.283 

~- = 2•4 
I = 0.62 

\)fllln::tl 4 .0 

For arhitr<try roint-in-timc \ar~ing li\e load, Lap,, 

Model : lognormal 

5.2 WlNil LOAD 

5.2.1 lntrodmtion 

Mean : 0. 717 kN/m 2 

('octllcient of variation : 0.52 

'nmin al 
: 0.7417 = 0.179 

The wind load. W, acting o n :1 str11cture can be written in the form 

11·· = BV 2 (5.44) 
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where B is a parameter covering all components of the wind luad (except 
the basic wind speed), i.e. pressure coefficients, area reduction factors, 
velocity multipliers for height and exposure, etc. V is the " ind speed, 
generally referred to a height of 10 m. Wind loads are random in nature 
due to random variations of wind speed and uncertainties in the estima· 
tion of the pressure coefficients, the exposure factor, and the rust factor. 
The modeJiing of wind load is much more complex and difficult than the 
modelling of speed. Because the velocity appears in the equation as a 
squared value, its statistics is very impo:'lant. However, the uncertainties in 
the various factors contained in B contribute to the overall variability in 
the wind load. 

5.1.1 Wiacl Speed 

The wind velocity is stochastic in nature. It has spatial and temporal vari· 
ation during a storm. Wind speed, V(X, t), in a given direction in a point 
of position vector X, at time t during a storm is generally considered as the 
sum of two terms (5.19), viz. 

V(X, t) = Vo(X) + V1(X, t) 

in which Vo(X) is the steady componcnt equal to the average velocity dur­
ing the storm and v,(X, t) is a zero-mean process describing the gusts. The 
above model is useful when the structure under investigation behaves 
dynamically under wind excitations. However, many structural engineering 

· problems arc concerned with structures in the static field. lf only the static 
behaviour of the structure is involved, the velocity is expressed in the form 

V = V*«(z)G (5.45) 

where v• is the steady (average) velocity at a reference height (10m), at(z) 
the multiplication factor for height, and G the gust factor. The maximum 
value of V over an appropriate time interval Tis of interest in structural 
reJaability analysis. For this purpose, the mean arrival rate (or the mean 
occurrence interval T = 1/A) of V must be specified. Hence, it is necessary 
to associate return periods T with the values of wind speed. This can be 
done on the basis of cumulative distribution of yearly maximum wind 
speed. 

Wind velocities are measured in a horizontal plane with the aid of 
anemometers or anemographs, which are installed at the meteorological 
observatories at heights generally varying from 10 to 30m. The different 
types of anemometers are (i) pressure anemometer (ii) rotation anemo­
meters, and (iii) gust measuring anemometers. The one which is usually 
used in India is the cup anemometer which falls in the catego,.Y of rotation 
anemometer. Very strong winds (greater than 80 ~ph) are generally 
aaooiated with cyclonic storms, dust storms, or vigorous monsoons. A 
cyclone is one in which the wind speed exceeds 80 Jcmpb. The wind velocity 
recorded at any locality is extremely variable and in addition to steady 
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wind at any time, there are effects of gusts which may last for a few seconds. 
Wind forces acting on structures are significantly large only during strong 
winds and these occur only during storms. Hence only these extreme wind 
forces are of interest to the structural engineer. Attempts are, therefore, 
always made to collect data on extreme wind speeds and suggest a suitable 
probabilistic model for the same. 

The continuous recording of wind velocities is generally carried out in 
meteorological stations. Out of these values, one is interested in the extreme 
or the maximum. From the continuous recording, it is possible to obtain 
daily, monthly, and yearly maximum wind speeds. Figure 5.3 shows the 
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FIG. 5.3 Frequency distribution of annual maximum wind speed at New Delhi 
(Safdarjung) 

vanatton f annual maximum wind speed observed at New Delhi ( afdar­
jung). Since the yearly maximum wind speed can be interpretated a the 
largest of daily values or perhaps the largest of many gusts, velocities, the 
statistical behaviour of the yearly maximum wind speed is represented by 
two types of extremal distribution with unlimited upper tail. One is tbc 
Type 1 extremal (largest) distribution, o cal led Gumbel distribution and 
the other one is the Typ 2 extremal (largest) distribution also ca lled 
Frechet di ·tribulion. The choice of the underlying distribution can be made 
after the analysis of fitting closeness to the Jata. ll was sugge red that 
Type 2 di ' lributi n is an appropriate model to employ in mo t of N rth 
American Region (5.20), although recent tudies (5.21, 5.22 have indicated 
that Type I is more appropriate. In Japan (5.23) and Australia (5.24), 
T pc I is r und l be m re suitable n the basis of statistical analy is. Ln 
Germany, ciJUeJier and Panggabean (5.25) have fitted Type I and Type 2 
di tribution to maximum yearly gu t and average velocities. The Type 1 
distribution has been used to lcscribe the tatist ical behaviour of the yearly 
maxin10m wind peed in India 5.26 5.27). The mean rank pi tting 
(Fig. 5.4) of the data on the year ly maximum wind speed observed at 
Delhi shows a good straight line lit , en ouraging the use of Type I extre-

J 
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mal (largest) distribution. The parameters of the selected distribution are to 
be estimated using any-one of the methods (5.28). However, Simiu, Bietry, 
Filliben and Grigoriu (5.22, 5.29, 5.30) have proposed an improved techni­
que for the analysis of wind speed data. 
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FIG. 5.4 Mean rank plot for Type 1 extremal (largest) distribution for Vann 
observed at New Delhi (Safdarjung) 

5.2.3 Return Period 

A very common problem in wind analysis is to assume the return of an 
observed extreme wind speed or cyclone. For design purposes, one often 
attempts to estimate the magnitude of an extreme wind of a particular 
return period. The return period, R, which is called the mean recurrence 
interval, is defined as 

I I R=- = p I - F11(vs) 
(5.46) 

where u. is the specified design wind speed, F11(v) is the CDF of yearly 
maximum wind speed, V, and p is the probability of wind speed V exceed­
ing Vs in any year. 

The return period is to be understood as the interval between events. 
Hence a 10-year return period wind (i.e. p = 0.1) is the wind which could 
be expected to occur in the long term, about once in every I 0 years. It does 
not mean that there will be a period of 10 years between winds of a parti­
cular size. The occurrence of wind in time is a random process and so it is 
quite possible that I in to-year wind could be exceeded more than once in 
one year, or in successive years, or that there may be a period of more than 
30 years in which no heavy wind as large as in the 1 in 10 year wind 
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occurs. The one I in 10 year event is the event that could be expected to be 
equalled or exceeded about I 0 times in a 1 00-year period. Hence the I in 
10-year wind has a frequency of 0.1, that is, there is a 10 percent chance 
that it will be eq ualled r exceeded in any year. 

XAMPLE 6.4 The yexrl maximum wind peed follows the Type I distri­
.._ but ion ~i th para meters 

u = 97.6 kmph IX = 0.066 

Determine the return period of the design wind speed 158.1 kmph. 

Solution It is given that V follows the Type I distribution. Hence 

Fv(v) = exp [ -- cxp { -·- a.(u -- u)}] 

Then 

Fv(us) = Fv(I 58.1) = exp [- exp { -- 0.066( 15R.I - 97.6)} I 
= 0.9817 

Using Eq. (5.46), the return period of the design wind speed is 

I 
R =" 1 _ 0_9Rl? = 54.7 years 

In case if one wants to find out the 20-year return period Wind speed, 
then 

I 
p = 20 0.05 

I 
I - Fv(z·) p 0.05 

Fv(v) - ·• 0.95 

Then the wind speed corresponding to this probability is given by 

exp I --exp [- O.Ofi6(t•- 97.6)}1 = 0.95 

v = 142.6 kmph 

Hence the 20-year return period wind speed is 142.6 kmph. 
1 n the current design procedures, wind loads arc treated semi-proba hi 1~>­

tically. The annual maximum wind speeds arc reco rded and an appi\lj1rialc 
probability distribution is fitted lo the data. A wind with some speciliecl 
probability of exccedencc in any one year is then selected for design pur­
poses. Usually, a 0.02 cxceedcnce probability for 50-year return period is 
used. Although 50-year return period has attained a somewhat mystical 
status in civil engineering, ils use doc> not hold up well under closer 
examination. ln fact, the 0.02 excecdcncc level for a Type I extreme value 
distribution, normally used for wind spcl:ds. corre~ponds to an exceeclence 
level of 0.63 in a lifetime of 50 years (5.31 .. 
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5.2.4 Estimation of Lifetime Design Wind Speed 

Occasionally, it is necessary to design a structure against wind load for a 
fixed period from the period of construction. For example, if a structure is 
built which is only to be used for 3 years following construction, or is to 
be removed at the end of 3 years. the risk ol" damage e.-.;ists only for this 
period. Thus v:hat is required for design is wind speed associated with a 
probability of being exceeded in the fixed period starting with the building 
of the structure. This design wind ~reed is designated as lifetime design 
wind speed. 

Jr l',t is the lifetime design wind ~peed, I - h(vc~) is the probability of 
the annual extreme wind speed exceeding the design value I'"· Hence, the 
probability of no extreme wind exceeding v,1 in the first m years is (Fv(r,J)]"'. 
(This derivation is similar to the one that is derived fnr the lifetime deoign 
live load). The probability of atleast one extreme speed exceeding 11rl is 

f?m ·= I - 1Fv(rc~)] 111 

( 5.47) 

Here Pm and m are chosen by the designer. For example, if m = 50 years 
and the designer has chosen a chance of the design wind speed being 
exceeded to be pso = 0.05 or one in twenty, then the value F computed by 
Eq . (5.47) becomes equal to 0.9989746. (It is to be noted that this 
corresponds to a return period of 975 years). The characteristic wind speed 
for the ultimate limit state is defined (5.31) as the wind gust speed with an 

estimated probability of exceedence of five per cent in a lifetime period ot 
fifty years of the structure. Based on this definition, substituting m 50 
and pso "-= 0.05 in Eq. (5.47), the computed design speed , ."become~ the 
characteristic wind speed for the ultimate I imit tale. 

AMfLF.f.i' For the same data given in Example 5.4, calculate the lifetime 
de igr~ speed for rn = 50 years and p, = ().05 . 

Solution Using Eq. (5.47), 

Fv(vtl) = [I - Pm]l/m 

= [I - 0.05] 1150 = 0.9989746 

Since V follows the type I extremal distribution, 

That is, 

Fv(vtl) = exp[-exp{-ot(v- u)}J 

exp[ -:-exp{ -0.066(vrt - 97.6)}] = 0.9989746 

Vtf = 201.88 kmph 

This is the characteristic wind speed to be used for the design under ulti­
mate limit state. 

Similarly, the design wind speed can be calculated for different values of 
m and pm. The variation of lifetime design wind speed with the service 
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period of structures for different probabilities Pm, is shown in Fig. 5.5 for 
New Delhi (Safdarjung) station. As expected, for a given value of pm, the 
design ~peed increases with the lifetime of the structure, and for a given 
lil'ctimc of the structure, it increases with decrease in the values of risk 
( i. C. {lm) . 
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FIG. 5.5 Variation of design wind speed with fixad life period of the 
structure 

5.2.5 Probability Model for Wind Load 

Recalling Eq . (5.44), the wind load on structure can be written in the form 

W= BV2 

where B is a parameter covering all components of the wind load except 
the basic wind speed . The parameter may be assumed to be made up of the 
product of the number of variables as follows 

(5.48) 

where K is the analysis factor, C is the pressure coefficient depending on 
the geometry of the structure, E is the exposure coefficient depending on the 
location (e.g. urban area or open country), G is a gust factor depending on 
the turbulence of wind and the dynamic interaction between the structure 
and wind, and D is a directionality factor to take into account the effects 
of the wind direction. Hence the wind load may be written as 

W ,;, K C E G J> V1 (5.49) 
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If one wants to find out the probability model for W, the Monte Carlo 
simulation (dealt in Chapter 7) technique can be used, which requires the 
probability distribution and the parameters of individual variates. To deter­
mine the lifetime maximum wind load model, the probability distribution 
and parameters of lifetime maximum wind speed must be known. If V 
follows the Type I distribution, the lifetime design speed for m years, Vm, 
also follows the Type t distribution. The mean and coefficient of variation 
of Vm are given by (5.32), 

v-r"' = r( I + - .,.,6 
Sv ln(m) ) 

Ji' 
8v, = 8v o­

P'm 

(5.50) 

(5.5 I) 

Ji' nr and 8vm are the mean and coefficient of variation of Vm. 
The approximate mean and coefficient of variation of W can be found 

out by the following expression assuming all variables in Eq. (5.49) as 
independent: 

W = K C E a D Ji'1 (5.52) 

(8w)2 = (Sx)l + (8c)2 + (8s)2 + (Sa)2 + (So)2 + (2Sy)2 (5.53) 

Since W is the product of the number of random variables, the probabilis­
tic model for Wmay tend towards the lognormal distribution. However, 
Ellingwood (5.32) has proposed Type l extremal (largest) distribution 
(based on Monte Carlo technique) for W for the assumed mean and co­
efficient of variation of the different variables in Eq. (5.49). 

The author bas collected data on the annual muimum wind speed 
observed at 48 stations, and the daily maximum wind speed observed at 4 
stations in India, and has statistically analysed the collected data. The 
Type 1 extremal (largest) distribution, in general, is found to fit the data on 
annual and daily maximum wind speed. Using the results of the analysis of 
wind speed, the analysis of wind load has been carried out taking into 
account the uncertainties in various parameters affecting the wind load, 
and statistics of wind loads have been fixed for a probabllistic criterion. 
The analysis of wind load is carried out for the maximum wind load, W m••• 
corresponding to the lifetime maximum wind speed, annual maximum wind 

TABLE5.3 Statistics of wind load 

Variable Mean a u Ill Probability 
distribution 

WmuiWa 0.804 0.334 0.683 4.1S Type 1 extremal 

w.twa 0.349 0.392 0.287 
(largest) 

9.31 " 
w.p,IWa 0.04S2 0,743 0.030 3B.IS 



140 

load, Wa, corresponding to the annual maximum wind speed, and the daily 
maximum v.ind load (which is considered as an arbitrary point-in-Lime 
varying wind load), Wapi, corresponding to the daily maximum wind load. 
The final statistics of wind load established for Indian conditions are given 
in Table 5.3 (5.27). 
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EXERCISE 
5.1 The live load on a building follows the lognormal distribution with mean 

~~ 1.3 kN/ma and 3 ~~ 0 .381. If the specified design load is 2 .5 kN/m1 , what is the 
probability of exceeding the specified design load? IAns. 0.0256) 

What is the value of I ive load with a probability of cxceedence of five per cent? 
(Ans. 2.22 kN/rn') 

5.2 The live load on a building follows the lognormal distribution with mean 
= 1.3 kN/m' and 8 = 0.381. The lifetime of the building is 50 years and the 
period of tenancy is 5 years . What is the lifetime maximum design live load for 
the buildin11 with a probability of exceedence of five per cent during the lifetime? 

(Aru. 3.17 kN/m') 
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5.3 The annual maximum wind speed observed at a station follows the type 2 extrcm;il 
(largest) distribution with parameters 11 = 81.00 kmph and k ~c 7.05. What is the 
Jclurn period of the design wind speed = 182.5 kmph? (Ans. 309.6 yrl 

At the same station a temporary structure is to be designed to serve for a 
period of 3 years only. If the engineer takes a risk of five per cent, what value of 
design speed will he choose for the design of the structure? 

(Ans. 144.2 kmph) 
5.4 Tf the annual maximum wind speed at Bombay follows the Type I extremal 

(largest) distribution with parameters 11 = 81.4 kmph and 11 = 0.126, determine 
the characteristic wind speed for the ultimate limit state. 

(Ans. 136 kmph) 
What are the mean value and coefficient of variation of the 50-year lifetime 

maximum wind speed? (Ans. I 16.9 kmph, 0.086) 
5.5 The model for wind load is given by Eq. (5.50): 

W = K C EG D Jl9 

If the variations in K and D arc neglected, and if llc = 0.12, liE = 0.16, 80 = 0.11 
and llv = 0.114, determine llw. (AilS. 0.322) 



6 
Basic Structural Reliability 

6.1 INTRODUCTION 

The performance of a structure is assessed by its safety, serviceability, and 
economy. The information about input variables is never certain, precise, 
and complete . The sources of uncertainties may be (i) inherent randomness, 
i.e . physical uncertainty, (ii) limited information, i.e. statistical uncertainty, 
(iii) imperfect knowledge, i.e., model uncertainty, and (iv) gross errors. In 
the presence of uncertainties, the absolute safety of a structure is impossible 
due to (i) the unpredictability of (a) loads on a structure during its life, 
(b) in-place material strengths, and (c) human errors, (ii) structural idealiza­
tions in forming the mathematical model of the structure to predict its 
response or behaviour, and (iii) the limitations in numerical methods. 
Therefore, some risk of unacceptable performance must be tolerated. With 
respect to risk of life, the structural safety is important. In the conventional 
deterministic analysis and design methods, it is assumed that all parameters 
(loads, strengths of materials, etc.) are not subjected to probabilistic vari­
ations. The safety factors provided in the existing codes and standards, 
primarily based on practice, judgement, and experience, may not be 
adequate and economical. 

T he concept of reliabilit ha been applied to many fields and has been 
in terpreted in many ways he most common definition, and accepted by 
all , of reliabili ty is that re 1a ility is the probability of an item performing 
its intended function over a given period of time under the operating condi­
tions encounter . It is important to note that the above definition stresses 

· -' 
four · significant -elements, viz. (i) probability, (ii) intended function, 
(iii) time, and (iv) operating conditions. Because of the uncertainties, the 
reliability is a probability which is the first element in the definition. The 
second point, intended function, signifies that the reliability is a performance 
characteristic. For a structure to be reliable, it must perform a certain 
function or functions satisfactorily for which it has been designed, i.e. 
safety against shear or flexure or torsion, etc. The reliability is always related 
to time. In the case of structure, it is related to the lifetime of the structure. 
During this specified life of the structure, it must perform the assigned 
function satisfactorily. The last point is the operating conditions. This 
establishes the actions or stresses that will be imposed on the structure. 
These may be loads, temperature, shock, vibrations, corrosive atmosphere, 
etc. Reliability also changes with respect to quality control, workmanship, 
production procedure, inspection, etc. 
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As stated in Chapter 1, in structural analysis and design, reliability is 
defined as the probability that a structure will not attain each specified limit 
(flexure or shear or torsion or deflection criteria) during a specified reference 
period (life of the structure). For convenience, the reliability, Ro, is defineu 
in terms of tl1e probability of failure, PI· which is taken as 

Ro ~-co. 1 - p1 (6.1) 

In the case of the classical reliability theory, for reliability prediction 
informations on life characteristics of the system, operating conditions and 
the failure distribution are needed. Life characteristics are measured by the 
failure rate or the mean time between the failures or the mean time to 
failure. Assuming the failure rate is constant over time, the failure rate A is 
defined as 

(6.2) 

where f is the number of failures during a specified test interval and Tis 
the total test time. That is, A is a ratio of the number of failures during a 
specified test interval to the total test time of the components or items. Tb~ 
smaller the value of A, the higher is the reliability. 

If the failure rate is col1stant during the operating period, the mean time 
between the failures is the reciprocal of the constant failure rate. 

If there are n components with failure times It, 12, ... , tn, then the mean 
time to failure is defined as 

J n 
MF =- .E 11 

n {c~l 
(o.Jl 

Let a set of N items (structures) be repeatedly testerl. After a time 1 (this 
may be considered as the time eiapscd since the structure is put intl) service. 
i.e. the age of the structure), let n components f<til VI structures in a faibi 
condition). Then the probability of failure at time 1 can be express~d as 

F(t) = .!!_ 
N 

(6.4) 

This F(t) is called tht failure function or the lifetime failure distributim' 
function for the set .. and the reliability function or survival function, R(t1 
is given by 

R(t) = 1 - F(t) (6.5) 

The failure rate function is given by the derivative of the failure function. 
That is, 

f(t) = d~~t) (6.6) 

The hazard rate or hazard function is the instantaneous failure rate as the 
interval length tends to zero. It is defined as the probability of failure per 
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unit of time given that the failures have not occurred prior to time t. That 
is, 

0 ,. 
u 

t 
~ 
0" • ... 

I&. 

(6.7) 

t • 
FIG. 8.1 Various reliability functions 

Hence, if the informations on failure rate, time between failures or break­
downs, reliability function, and hazard function are available, based on 
actual data, many predictions can be made about the system performance 
and decisions can be taken based on that. 

For structural systems it is difficult to predict the expected life or the 
expected failure rate or the expected time between breakdowns. In the 
reliability format, it is assumed that structural failures are not due to dete­
rioration . The structures cannot be assumed to be nominally identical. The 
structural failures cannot be expressed in terms of the relative frequency. 
Thus, the structural reliability theory differs from the classical reliability 
theory in many such aspects except in the probabilistic nature because of 
the uncertainties. The probability of failure of a structure is a subjective 
probability. The reliability of a structure is not a unique property. It chang-
es as the state of knowledge about the structure changes. · 

The acceptable probabilities for structural failures are very low, e.g. (i) of 
the order of IQ-3 for serviceability limit states, meaning thereby that on an 
average, out of 1000 nominally identical structures, one may deform exces­
sively or (ii) of the order of 10-6 for ultimate limit states, which means that 
out of one million identical structures, one may collapse. In practice, 
structures are never identical in a large number. Moreover, these low p~­
babilities are to be estimated from the statistical properties extrapolateM 
from the available statistical data around the central values of the random 
variables. Therefore, it will be proper to consider these probabilities as 
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conventional, comparative values without having much statistical signi­
ficance. In the light of this, probabilistic methods play an important role in 
making rational comparisons between alternative structural designs. The 
currently developed reliability analysis of structures aims at evaluating 
the probability of failure (or reliability) of a structure. 

6.2 COMPUTATION OF STRUCTURAL RELIABILITY 

Consider a simple structure with one element only. Lel R be lhe resistance 
(capacity or strength) of the structure and S the action (load or load effect, 
viz. bending moment, shear force, etc.) on the structure. The 'structure is 
said to fail when the resistance of the structure is less than the action. That 
is, 

Or 

PI= P(R < S) 

= P(R- S < 0) 

P.r = P(R/S < I) 

(6.8) 

(6.9) 

where PI is the probability of failure of the structure. If /R(r) is the proba­
bility density function (PDF) of Rand if Sis assumed as deterministic, the 
hatched portion shown in Fig. 6.2 gives the probability of failure. This is 
ex pressed as 

{Jf = roo _(R(r) dr 

fR(r) 

--- w~r~w 

FIG. 6.2 Determination of probability of failure for 
deterministic action 

Fundamental Case 

(6.10) 

In real situations, both R and S are random variables. The plots of the 
density functions of R and S are shown in Fig. 6. 3. The hatched portion 
shown in Fig. 6.3 is an indicative measure of the probability of failure. The 
probability of failure is computed as follows (rj,l): 

The probability of S assuming a value s, is equal to the area A 1 marked 
in Fig. 6.4. 



fs{s), 

FIG. 8.3 Probability of failure for random variations of S 
and R 

fR(r) U~r tail ofS 

I 

FIG. 8.4 Determination of reliability 

P(s - ~ < S < s + d;) = fs(s) ds = At 
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s,r 

The probability that R > s is equal to the shaded area Az under the 
resistance density curve: 

P(R > s) = J~ /R(r) dr = Az 

l dRo = /s(s) ds r f.{r) dr 

the reliability of the structure, Ro, is the probability of R being greater than 
all the possible values of S: 

l Rp = f dRo = J:, /s(s)U: /R(r )dr] ds 1 

~ -------
(6.11) 
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Hence the probability of failure is 

/ Pr = I - Ro = I - J: .. ,fs(s)[l - FR(s)] ds 

= roo .fs(s)FR(S) ds (6.12) 

The reliability can also be found by considering whether the structure sur­
vives when the action remains less than the given value of the resistance. 
Following the same procedure given above, Ro and PI can be expressed by 
the following equations also 

Roo If, (.-Hf,(s)d} (6,13) 

PJ = I -- J:,., .fR(r)Fs(r) dr (6. 14) 

It must be noted that the integrals in Eqs. (6.12) and (6.13) are to be 
evaluated numerically. Except for a few cases, the closed form solutions are 
not available. 

The closed form solutions for the evaluation of PI, when both R and S 
are normal and both R and S are lognormal, are given below: 

. .£ase 1: Both R and S are normal 
'---' The probability of failure of a structure is given by Eq. (6.8): 

PI = P[(R - S) < 0) 

Let 

M=R-S ( 6.15) 

where M is defined as the margin of safety. When R and S are independent 
and normally distributed, M is also normally distributed. The mean value 
of M, /LM, and the standard deviation of M, aM, are given by 

/LM '= P.R - /LS and aM = (a~ -1- a~)l/2 

Hence the probability of failure is given by 

PI= P(M < 0) 

. [ !LS - /.I.R ) . , 
flf = (/) - /,. 

I. 2 - 0'~· )1 12 / 
\CIU " . 

(6.16) 

If R and S arc correlated with correlation coefficient, r and if the joint 
distribution of Rand Sis normally distributed, the value of PJ is given by 

(6.17). 



Let 

{J = J.'M 
CIM 

Then the value of Pi corresponding to {3 is given by 

PI = til(- {J) 

and. the value of {3 corresponding to a given PI is 

{J = -~-l(pl) 
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(6.18) 

(6.19) 

Hence {3 is related to the probability of failure and is called the 're · lbllity 
in ex'. T te va ue o JS a ected by the mean va ues an standard devia­
tions of R and S, and also by the level at which the distributions of R and S 
intersect with each other. 

~ase 2: Both R and S are lognonnal 
The probability of failure of a structure is given by Eq. (6.9): 

Let 

l z = ~ (6.20) 

When R and S are indepen ent and lognormally distributed, it is known ,... 
that Z is also lognormally distributed with parameters Z and a1n z, where Z 
is the median of Z and 17Jn z is the SD of In Z . Thus 

PI= P(Z <I) 

P f =en[ In~ I z)] ~ 
O"~a z 

(6.21) 

- -When RandS are distributed as LN(R, a1n R) and LN(S, a1o s) respectively, -the parameters Z and OJnz of the lognormally distributed Z are given by 

and 

- R 
Z=;:;:;-

S 

Substituting the above equations in Eq. (6.21), we get 

~[ ln (S/R) ] ./' PI= 2 2 -
(aln R + Clln s)l /l / 

--
- rr>[ In (S/R) ] 
- [In {(8~ + 1)(81 + l)}]112 

(6.22) 

(6.23) 

(6.24a) 

(6.24b) 
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But if X is lognormally distributed, then 

- I 2 
In (X) = In /LX - 2a1n X 

) [ ttx ] 
= n o~ + J) l/2 

Using similar equations for In Rand In S and substituting them in 

Eq. (6.24b), we have 

PI = <P[ In {~~J ~; -7 1
1

} J '/ 
{In [(13~ + 1)(13~ --1-- 1)]}"2 

(6.25) 

lt is to be noted in the above equation that PI has been written in terms of 
the mean values and the coefficients of variation of R and S only. When oR 
and Bs are less than about 0.3, Eq. (6.25) becomes 

(6.26) 

If R and S follow exponential distributions with parameters An and As 
respectively, it can be easily proved that (6.2) 

AR 
Pr = (An +As) 

For other combinations of distributions of RandS, Eq. (6.12) or (6.14) is 
to be used to compute the probability of failure. The closed form solutions 
are generally not available. 

ExAMPLE 6. 1 Derive an expression for the probability of failure when S 
(say action due to wind) follows the Type 2 extremal (largest) distribution 
and R (say strength of steel) follows the lognormal distribution. Given 

Fn(r) = IJ'>fln (r/R)] 
l U!n n 

,. ~ 0 (6 .27) 

and k ( u )k+l /s(s) = - - exp [ -(u/s)k] 
.!/ s 

s~O (6.28) 

Solution As random variables can assume only positive values, Eq: (6.12) 
for the probabii:ty o f failure becomes 

Pr ·. c J'"' fs(s)Fn(s) ds 
() 

(6.29) 

Equation (6.2R) is rcwril!cn as 

fs(s) -k·( S )-(k I I) 
u ll 

exp [ --(s/u)-k] 
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Substituting the above equation and Eq. (6.27) in Eq. (6.29), and putting 
s/u = v, we get 

Let 

Then 

PI= kJ<rJ ~ [ln(uv/R)) (v)-<k+O exp [ -v-k] dv 
o <Tro R 

R 
-={3 
u 

and 

PI = Jo rp[ln (u/{3)]e-t( -dt) 
oo <Tin R 

v-k = t 

"' [- ! In t - In fJ] 
= J ~ e- 1 dt 

0 !7Jn R 

This can be evaluated using the Laguerre-Gauss quadrature formula. 

(6.30) 

Similarly, for other combinations of probability distributions of R and S, 
expressions (integral form) for the reliability or probability of failure can 
be develo 

0xAMP .2 The ax:ialload carrying capacity of a column, R, i normally 
distri d with f.tR = 1000 kN and aR = 200 kN. The column is subjected 
to a axial load, S, which is normally di tributed with fJ.S = 700 kN and 
as = 300 kN. Calculate the reliability of the column assuming' R and S are 
independent. 

Solution The margin of safety is given by 

M= R -- S 

Since R and S are normally distributed, M is also normally distributed. 
Using Eq. (6.16), 

PI = d>[(~s; ~~;112] 
[ 

700 - 1000 ] 
= <P (3002 + 2002) 112 

~-~ tl>( -0.832) = 0.2027 

Ro = 1 - 0.2027 

/ = 0.7973 

~XA~PLE 6.3 A prestressed concrete pole is subjected to wind load, which 
is as shown in Fig. 6.5, lognormally distributed as LN (1000 N/m2, 0.2). 
Determine the mean depth of the pole at the limit state of deflection for a 
reliability of 0. 999. It is given that 

(i) allowable deflection: span/325 
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l f-d---.j 

200mm I J 

f 
St>cl ion on x x 

Wind 
load(w) 

FIG. 6.5 Concrete pole-Example 6.3 

(ii) Young's Modulus of concrete (E): 
LN (2.6 x 104 N/mm2, 0 .2) 

(iii) breadth of pole: 200 mm 
(iv) variations in depth (d) and breadth of the pole are negligible. 

Solution The maximum deflection, i.e. at the top ofthe pole, is given by 

(w:< 200)(6000)4 
Ymax == - SEJ --

where w is the wind pressure in N/mm2 and I is the moment of inertia in 
mm4. 

Since, 

H' 
}, - -~ ' · 1 94 ,, I 0 15 ·mox - £d 3 A • ,, 

At the limit state of deflection, the failure will occur when the allowable 
deflection, Yan, is less than }'max, i .e. 

}'all <}'max 

or the probability of failure of the pole is given by 

PI= P[(;~~~ )< l ] 
Let 

z '-- _Y•II = 6000 ( £d
3 

) 

- Ymox 325 >~ 1.94:: 1015 W 

As E and w are lognormally distributed and dis deterministic, Z is also 
lognormally distributed. The parameters of Z are given by 

:- Gooo (£d3) z ="' 325 < 1.94·>, ]QIS- -:­
W 

= 2.4S .·, 1 o- 7 d 3 
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UJoZ = [alnE + UJnw] 1/2 

= (0.22 + 0.22)1'2 = 0.28 

Since Z is lognormally distributed, we have 

PI= tl> [In (1/Z) ] 
GJnZ 

= I - 0.999 = I0-3 

In ( 1/2.48 X IQ-7 dl) = a 10zcJ>-l(lQ-3) 

= (0.28)(-3.1) 

~lving the above we get d = 212.56 mm 
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...hxAMPLE 6.4 A reinforced conctete beam of an effective span, 8 m, is 
subjected to live load. The cross sectjon has been designed with M 25 con­
crete and steel grade Fe 250. The area of teel (Aat) is 1400 mm2 and the 
self-weight of the beam 3 kN/m. It is given that the random variables, the 
cube strength of concrete (feu) and the yield strength of steel (jy) are 
normally distributed. 

Breadth of the beam (b) 
Effective depth of the beam (d) 
Mean value off cu 

Mean value of h 
SO Of feu = CTc 

SO of/y = CTs 

= 240 mm 
= 480 mm 
= 30.28 N/mm2 

= 320 N/mm2 

= 4.54 N/mm2 

= 32.0 N/mm2 

Calculate the probability of failure of the beam if the live load (L) is 
normally distributed with mean·, 6 kN/m and standard deviation, 3 kN/m. 

Solution The action, here, is the bending moment at mid-span due to dead 
load (D) and live load on the beam. Assuming the dead load and span 
length as deterministic, p.s and crs are calculated as follows: 
The mean value of S is 

P.s = 3 X 8
2 + P,L(8

2
) 

8 8 

= 24 + 6X 8 = 72 kN m 

crs = CT£ (~) 
= 3x8 = 24 kN m 

The resistance, here, is the ultimate resisting moment of the beam. This is 
given by (as per lndi~n Standard Code), 

R = f,Att d [1- 0·~7/[c~'] 
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Tn the <lbClve equation , onl y /~u and/~ are considered as random variubles. 
The appr xinHliC , 11aluc~ ul' mean und standard devia tion f R are 
calculated using Eqs. l3 .!)1) and (3.83) . lt is a.sumed lhlll fy and }~ u are 
independent. 

[ 
0. 77 .• 1400 320 ] 

i'u = 320 1400 4~0 1 - 240 ,, 480 ~· 30.::! i{ 

Using Eq. (3.~41. 

193.774kN m 

, (O· RI )l , ( o I~ 1 )2 , 
a'R '--= fl./.~/~ a;+ ~{r," ~~ a-c 

~ R I ~~ Ast d [I _. l .54.Ast/lfy] 
iJjy /l h d /lfcu 

= 1400 ·· 480 [t- l.5
4

X 
1400 :>.: 3 2~] . 240 A 480 30.28 

== 0.54 106 

.~ R I = (CL77 A~t ~~y) 
/cu ~ ~~f~ u 

= (Q: 77~ l40~2 3202
} 

240 ,; 30.282 

= 0.70 :< 106 

Using th~ abuve values in Eq. (6.31) 

a1 = (0.54 : 106) 2(32)l + (0.7 ~~ 106) 2(4.54)" 

aR = 17.56 kN m 

(6.31) 

Since live load is normally distributed, S is also normally Jistributcd in this 
case. Assuming R is normally distributed, the value of pr is obtained using 
Eq. (6.16), i.e. 

REFERENCES 
6 . 1 Haugen, E. B. l'robabilistit! Approach to Design, John Wik) , N.:w York, 19(,8 . 
6 .2 Kapur, K. C. and L. R. Lambt:rson, Reliability in E11 •in("tillg De.l'i[/11, John 

Wi!ey, New York, 1977. 

EXERCISE 
' 

6.1 If the probability d<!nsily functions of resistance Rand actionS are 

!R - ~R exp ( -~Rr) 

and 
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1 
I 

derive an expression for the reliability, R0 , and prove that it is given by 

As 
Ro = (AB + ~s> 

6.2 If Rand S follow gamma distributions, given by 

)." n- 1e- J..r 
[R(I') = /' 11, .\, Y;;<: 0 

r(n) 

Dnl m- t - 1'• 
fs(s) = --'-" -;:;" ,.,---,,e_ 

F(m) 

derive an expression for R0 • 

Ill, (J' s ;;,: 0 
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rem + II) fl/(l +IJ 
R0 = r(m)F(n} 0 (I - u)m-Jun-1 du 

r(m + n) ) 
= F(m)F(n) B1(m, n) where t = PIA 

6.3 If the resistance of a structure follows the lognormal distribution, and the action 
on the structure due to wind follows the Type 1 extremal (largest) distribution, 
derive an expression for R0 and show how will you solve it numerically. 

6.4 It is assumed that the strength of a RCC column is given by the sum of the 
strengths of concrete, C, and reinforcing bars B1• C and B1 follow normal distri· ~ 
butions with parameters given by ,- 0 '1-"1 

/~'c= 25N/rrtm• ~ = 5N/mm• .J.tl\=-r{)t.-;Ut.- 1-" .... :J .. ....,~ 
Jk. \... I'Bt = 460 N/mm1 a81 = 46 N/mm2 O'lt "';f r._. '~--+-,;~>.. !..-

If the size of the column is 250x 400 mm and if it is provided with four 20 mm 
diameter bars, determine the mean value and standard deviation of the strength 
of the column. The column is subjected to a dead load, D, and live load, L, with 
distributions N(1500, 200) kN and N(500, 200) kN respectively. Compute the 
reliability of the column. (Ans. Ro = 0.96638) 

6.5 The strength of a column, R, is given by 

R = ff
1E/ 
a' 

where E is the Young's modulus, I the moment of inertia and a the length of the 
column. It is subjected to load Q. The mean values and coefficient of variations 
of all the variables are given below: 

P.E = 2.03 xI ()I N/mm• 

P.r = 12.5 xI ()I mm• 

p.,. = 5000 mm 

I'Q = 700 kN 

llE = 0 .. 1 

81 = 0.05 

a.= o.o5 
aa = o.3 

If all the variables are lognormally distributed, determine the probability of 
failure of the column. (A.ns. 0.11365) 

6.6 A tension member of a steel truss is subjected to an axial load, Q. The strength 
of the member is given by fy A, where fv is the yield strength of steel and A is the 
area of cross section of the member. Given: 

I'Q = 20 kN 
v./y= 286 N/mm• 

sa= 0.4 
3/y = 0.1 

Find the area of the member for the specified reliability of 0.99865. That is, 
Pt = 1.3Sx to-•. Assume variation in area is negligible. (A.ns. 167.8 mm1) 



7 
Monte Carlo Study of 

Structural Safety 

7.1 GENERAL 

In the process of giving predictions about s me phy ical system, the follow­
ing four step arc involved: (i) observation of a physica l system, (ii) formula­
tion of a hypothesis, (iii) prediction of the behaviour of the system on the 
basis of the hypothesis, and (iv) performance of experiments to test the 
validity of the hypothesis. Sometimes it may be either impossible or 
extremely costly to observe certain processes in the real world. It is evident 
that there are many situations which cannot be represented mathematically 
due to the stochastic nature of the problem, complexity of the problem 
formulation, or the interactions needed to adequately describe the problem 
under study. For such situations defying mathematical formulation, simula­
tion is the only tool that might be used to obtain relevant answers. Even if 
a mathematical model can be formulated to describe some system of inter­
est from the limited data available, it may not be possible to obtain a 
solution to the model by straightforward analytical techniques and in turn 
make predictions about the behaviour of the system. For example, let us 
consider the probabilistic behaviour of a prestressed or reinforced concrete 
flanged beam. We want to determine the reliability of the beam. 

7.1.1 Failure of a Flanged Section (7.1, 7.2) 

Prestressed concrete members usually have symmetrical or unsymmetrical I 
sections. Because of the random variations of the parameters of the resis­
tance of a section, the failure of a flanged section can take place with the 
occurrence of any one of the .following events: 

y, - the section is under-reinforced with the neutral 
axis in the flange 

Y2 --the section is under-reinforced with the neutral 
axis in the web 

YJ- the section is over-reinforced with the neutral axis 
in the flange 

Y4- the section is over-reinforced with the neutral axis 
in the web 
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The occurrence of each event has a certain probability. The probability 
tree for the failure of a section at the limit state of strength is given in 
Fig. 7.1. If the above events are assumed mutually exclusive, it can be seen 
that the probability of failure, PJ. of a flanged section is the sum of the 
conditional probabilities of failures of the section under each given event, 
and the same can be written as 

4 

PI = 1: P(F I Yt) .P( Yt) 
1-1 

(7.1) 

FIG. 7.1 Probability tree diagram 

where P(F I Yt) denotes the conditional probability ofF for a given event Y1. 
F denotes the event 'failure'. In Fig. 7.1, Ro represents the event 'reliable' 
(i.e. safe). The conditional probability of failure of a section for any given 
event (say Yt) is given by 

P(F I Yt) = P[(R-S) < 0 I Yt] / 

P(F I Yt) = P[(R/S) < I I Ytlf or 

(7.2a) 

(7.2b) 

where S is the action (load or bending moment) on the section and R is the 
resistance of the section. The resistance of a section is a function of the 
various material and geometric properties of the section: 

R = g(Xt, X:z, .. . , Xn) (7.3) 

Because parameters X1 are usually random variables, the resistance is also a 
random variable with density function /R and cumulative distribution FR. 
If X1 are correlated, their joint distribution must be known. Assuming the 
X1 in Eq. (7.3) are statistically independent, their joint density function is 

~_.,.-, 

n ' 
/Xu Xu • . • , Xn (Xl 1 X2, .• , , Xn) ll /XJ(XJ) 

1 
(7.4) 

J- 1 j 
and its cumulative probability is 

" FR(r) = P(R ~ r) = fa ..• f n !xJ(XJ) dXj (7.5) 
J~t 

The restrictiDn R ~ r defines the region of integration Gin Eq. (7.5). The 
integral contained in the equation cannot be evaluated in a closed form. 
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A2ded to this, the evaluation of PI requires the evaluation of the probability 
of occurrence of each given event Y;. Defining: 

B,- the event that the section is under-reinforced 
R2 - the event that the section is over-reinforced 
83 - the event that the neutral axis lies in the flange 
8~ the event that the neutral axis lies in the web 

the probability of occurrence of the event Y1 is 

(7.6) 

The events 8, and BJ are dependent on each other and the density function 
of each is again the function of the material and geometric properties of 
the section. Hence, the evaluation of the probability of occurrence of each 
event Y; is difficult. Finally, to calculate the conditional probability of 
failure for the given event, Eq. (7.2a) or (7.2b) is to be used which involves 
numerical integration. The evaluation of PI thus becomes a formidable task 
even when adequate statistical data are available. In such cases, simulation 
becomes a satisfactory substitute for finding solutions. Simulation is a 
process of creating the essence of reality without ever actually attaining the 
reality itself. As defined by Naylor (7.3): "Simulation is a numerical techni· 
que for conducting experiments on a digital computer, which Involves 
certain types of mathematical and logical relationships necessary to describe 
the behaviour and structure of a complex real world system over extended 
periods of time". 

7.2 MONTE CARLO METHOD 

7.2.1 Introduction 

The Monte Carlo method is a simulation technique. One of the usual 
objectives in using the Monte Carlo technique is to es timate certain para­
meter and probability distributions of random variables whose values 
depend on the interactions with random variables whose probability distri­
butions are specified. As it is known that the ultimate resisting moment, 
Mr, of a section is a function of several random variables, the probability 
distribution of M, depends on the equation connecting these random 
variables. As explained in the previous section, as closed form solution for 
the calculation of the cumulative probability of Mr is not possible, the 
Monte Carlo method can be used to study the statistical prc!_";,rties of Mr. 
Secondly, as explained in Sec. 7.1.1, the failure of a flanged section can 
take place under different events. Hence to study and simulate the complete 
random behaviour of the section at the limit state of strength, the Monte 
Carlo technique is the best suited method. 

7 .2.2 Monte Carlo Method (7 .4) 

Provided high speed digital computing facilities are available, a simple 
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Monte Carlo technique can often be useful in obtaining the distribution 
FR(r). Let R be a function of n independent random variables Y;: 

R = g(YJ, Y2, ... , Y,) :­..-
The technique consists of three steps: 

I. Generating a set of values y;k for the material properties and geometric 
parameters Y; in accordance with the empirically determined or assumed 
density functions fn The suffix i is used to denote the ith variable and 
suffix k is used to represent the kth set of values (Ytk, y2k, ... , .l';k, .... 
y,k) ofthe corresponding variables (YJ. Y2, ... , Y;, ... , Y,). 

2. Calculating the value rk corresponding to the set of values y;k obtained 
in step I, by means of the appropriate response equation for resistance of 
the section. That is 

,-:f"rk = g(yJk, Y2k, ... , y;k, ... , Ynk) 

3. Repeating steps I an 2 to obtain a large sample of the values of I? 
and therefore, estimatin I n(r) . 

This method can also be used to obtain distributions for M and Z where 

·:>M=R-S 

R 
'- '> Z=­
v · S 

(7.7) 

(7 .8) 

Here, R is the resistance and S the action. It is then only necessary to 
obtain additional sample values for S in accordance with the density func­
tion fs and to combine the equation for resistance with Eq. (7 .7) or (7 .8) to 
provide the direct means of calculating the values of M or Z. 

The procedure for generating a random deviate from a specified distribu­
tion generally follows this pattern: 

I. Generate a random number from the standard uniform distribution. 
2. Perform a mathematical transformation of the standard uniform 

random number {or numbers) wiJ_i.£!1 produces a rand m deviate fromt]le 
desj~ed distribu iQJl. · --- "' 1 

· 

3. Use t 10 transformed deviate in the experiment as required. 

Various methods have been developed for the generation of uniform 
pseudo-random numbers. Subroutines for this purpose are readily available 
(7.3, 7.5). Built-in programmes are generally available in all the computer 
centres to generate uniform random numbers. The transformation of Jb.~ 
uniform random number to the random varia e of the desired.distrib~1tion 
ts o tained by the inverse transformation method, if ossible. 

ln,erse Transformation Technique 

Consider the cumulative distribution function, Fy(y), of the distribution to 
be simulated. Fy(y) is defined over the interval (0, 1). Consider the standard 
uniform variate V, which is also defined over the interval (0, 1). 
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Generate a value v for the stanuard uniform random deviate. For a 
standard uniform variate V, the cumulative probability of V ~ vis equal 
to i ' . That is, Fv(ll) = v. Hence if we set 

Fy(y) = ;• 

Then y is uniquely determined by the relation 

Fy(y) = v * y = FY" 1
(v) 

Th is is pruphicnlly hown in Fig. 7.2. The PDF f Vis shown on the left 
-; ide. The gcnemlcu uniform random number v is projected on the curve of 
1he DF <' I' Y. The p int on the curve i projected down on the horizon­
ltd uxis '" ge t I he corresponding va lue y. Hence, y ...,.., Fr

1
(11) is the variate 

desired from the given distribution of Y. 

> 
.... 
Q 

LL. 
0 
a.. 

> -

fy(y) 

> 

f 
~---1(') 

- >---v -

I 
I 
I 

- r-

I c 
_, __ _ 
' 
' y _, 

y =Fy (v) 

PDF of V 

CDF of V 

FIG. 7.2 Inverse transformation technique 

-Y 

- v 

When the inver e f Fy(y) i.e. Fy 1(v), does not exist or, it is so compli­
cated a 1 I e impracticable, other techniq ues such as rejection technique, 
compositi on metho I, and approximation methods (7.5) are to be used. 
Hence, the suggested procedure for drawing the ktb set of input values y1k 

from the c rrespondin distribution of Frt is to generate first a set of n 
random numbers, l l ik, with uniform density in the range 0 ~ v ~ 1.0. The 
values of y;k are then obtained from 

Ylk = Fit'(vlk) (7.9) 
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The method of obtaining a random deviate of FYI ( ) using the inverse 
transformation technique is illust~ated in the following example. 

EXAMPLE 7.1 Using inverse transformation technique, develop expressions 
for generating random deviates of Y having the following distributions: 

(i) Uniform distribution, (ii) Exponential distribution, (iii) Weibull distri· 
bution, (iv) Type 1 extremal distribution, (v) Type 2 extremal distribution, 
and (vi) Type 3 extremal distribution. 

Solution Uniform distribution: 

Given 

elsewhere 

Then Fr(y) =J:(b ~ a) dt 

=(~) b - a 

Set v = Fy(y) (Y~E) b-a 

I The inverse transformation is 

y=Fi1(v) =a+ (b- a)v (7 .10) 

where v is a uniform random number with uniform density in the range 0 
and 1. . 
· (ii) Exponential distribution: 

Given fr(y) = ~e->.y y ~ 0 

Fr(y) = 1 - e->.y 

Set v = Fr(y) = 1 - e->-Y 

-In (l - v) 
y= 

A 

However, one can straightaway use the following equation: 

- In (v) 
y = A 

(7 .11) 

(7.12) 

rather than Eq. (7.11), since (1 - v) is also from the uniform distribution. 
(iii) Weibull distribution: 

Given Jy(y) = (l,~yll-le-a.ytJ y ~ 0 

Fy(y)=l-e 
-ayP 

Set 

Hence (7 .13) 
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(iv) Type I Extremal (largest) distribution: 

Given Fy(y) = exp [ - exp { - (1.(y - u)}] -- oo :::::; y :::::; oo 

Set v =---= exp [ - exp { - (1.(y - u)}] 

Then 
In [ - In (v)] 

y=u- -
cc (7 .14) 

(v) Type 2 Extremal (largest) distribution: 

Given Fy(y) = exp [- (; rJ y~O 

Set v = exp [- (~ rJ 
Then y = u/( - In v)l/k (7. 15) 

(vi) Type 3 Extremal (smallest) distribution: 

Given Fy(y) = 1 - cxp [ - (~fJ y~O 

Set v = 1 - exp [ ·- ( ~ rJ 
Then y = u[ - In ( 1 - v)]llk (7 .16) 

One can straightaway use the expression 

y = u[ - In (v)]l/k (7 .17) 

since (I - v) is also from the uniform distribution. 
For normal distribution, the Box and Muller technique is used to 

generate normal variates. Here, standard normal deviates are obtained by 
generating two uniform random numbers v1 and v2 (with a uniform density 
range between 0 and l) at a time. Then the desired standard normal variates 
are given by (7.5) 

Ul = [2 In 1/u.] 1i 2 cos (21T v2) 

uz = [2 In I/v1] 1'2 sin (21T v2) 

(7 .18) 

(7 .19) 

ExAMPLE 7.2 (Normal distribution) Generate normal variates from the 
distribution or Y following the normal distribution with mean J.L and 
variance a2 • 

Solution First generate two uniform random numbers v1 and v2 in the 
range 0 and I. Then, the standard normal variates are given by Eqs. (7.18) 
and (7.19). We know that the standard normal variate is connected to the 
normal variate Y as follows: 

Y-f..l. --=U 
a 

(7.20) 

where U is the standard normal variate . Hence we can get two normal 
variates Y• and y2, using Eqs. (7.18)- (7.20). Thus. 

Yl = Ot/( + jL 

Y2 = OU2 + jL 



.. 
That is 

Yt = I' + a[2ln l/vt]112 cos (2'11'112) 

yz = I' + a[2 In 1/vt]1/2 sin (2.,.oz) 
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(7.21) 

(7.22) 

ExAMPLB 7.3 (Lognormal distribution) Generate the lognormal variates 
from the distribution of Y following the lognormal distribution with para· 

~ 

meters Y and a1n y, 

Solution As in the case of normal distribution, here also, we first generate 
two uniform random numbers Vt and vz and get two standard normai 
variates using Eqs. (7.18) and (7.19). Using the following transformation 

In (y(Y) --"'-'----'- = u 
O'JnY 

(7.23) 

for transforming the lognormal variate to the standard normal variate, we 
get two values of the lognormal variate Y: 

Yt = Y exp (UtO'tn y) 

Y2 = Y exp (u2a1n y) 

Using Eqs.(7.18) and (7.19), 

Yt = Y exp [ a1n y(2 In I ivt)1 12 cos (2'1TV2)] (7.24) 

(7.25) 

EXAMPLB 7.4 (Beta distribution) The PDF of the standard beta distribution 
is given by Eq. (3.105) with parameters p and q, i.e., 

1 
/x(x) = - - xr1(1 - x)q-t 0 ~ x ~ 1 

B(p, q) 

The procedure to generate beta deviates is as follows (7.5): 
Generate two standard uniform random numbers v1 and v2. 

Set g = (vt) 11P and 

Check whether g+h~l 

If g + h ~ I, the standard beta deviate is given by 

X= g 
(g + h) 

(7.26) 

If we want to generate a random deviate from the beta distribution of Y, 
given by [Eq. (3.109)] 

(y _ a)P- t(b _ y)q- t 
Jy(y) = B(p, q)(b - a)P+g 1 0 ~ Y ~ b 

then use the transformation to transform the beta variate to the standard 
beta variate, i.e. 

(y - a) 
x = -i':(b;-_-a+-) '" 
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Hence, the required beta random deviate is given by 

y = x(b- a)+ a (7.27) 

EXAMPLE 7.5 (Gamma distribution) We are interested in generating gamma 
distributed random deviates. The PDF of the gamma distribution is given 
by Eq. (3.102), i.e. 

,\(Ax)k - l e-~ -' 

.fx(x) = T(k) x;:?:O 

A,k;:?:O 

where ,\ and k are parameters of the distribution. The procedure to generate 
gamma deviates is as follows (7.6): 

(i) Let k' ~ I be the integer part of k. 
(ii} Generate k' + 3 standard uniform random numbers, i.e. 111, v2, ..• , 

Vk' +3, satisfying the condition 

(7.28) 

(iii) The gamma distributed deviate is given by 

I k'+J I v\'k 
x = -·- I: In v; + ,(-·In v3) Ilk+ 11(1-kJ 

,\ i-4 11 Ill V2 
(7.29) 

7.3 APPLICATIONS 
The Monte Carlo method has a variety of applications. It can be used to 
study the distribution of a variable, which is a function of several ~andom 
variables, to simulate the performance or behaviour of a system, and to 
determine the reliability or probability of failure of a system or a component. 
The simulation technique has been used in the reliability study of structures 
by several research workers. Some of the applications are illustrated through 
the following examples. 

ExAMPLE 7.6 The strength of an axially loaded short column is given by 

R == 0.67 CAc -+ As 

where C is the cube strength of concrete, F the yield strength of the 
reinforcing bars, Ac the area of concrete and As the area of steel. Given: 

Size of the column = 250 mm x 500 mm 

11-c "~· 19.54 N/mm2 ac = 4. I N/mm2 

1-'I ~~ 469 N/mm2 ap = 46.9 N/mm2 

A, ·--~ 1250 mm2 

C and Fare normally distributed. The problem is to determine the distribu­
tion of R using the Monte Carlo method. 

Solution A rea of concrete (A c) =•-= 250 X 500 - 1250 

•= 123750 mm2 

R = 0.67 >~ 123750 C + 1250 F 

= 82912.5 C + 1250 F (7.30) 
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Using Eqs. (7 .21) and (7 .22), the random deviates of the normal variates of 
C and Fare first generated. Using these values in the prediction equation 
for R, random deviates for Rare generated using the Monte Car1o method. 

The mean value and standard deviation of R, calculated after the genera­
tion of 500 and 1000 values, are given below: 

/kR = 2.216X 106 

P,R ,: 2.207 X 106 

fiR = 3.466 x 105 (after 500 values) 

fiR = 3.460 x 105 (after 1000 values) 

These values, when verified with the theoretical exact values 

and 

/kR = 82912.5 p.c + 1250 P.F 

= 2.206 X 106 N 

fiR = [(82912.5 flc)2 + (1250 fl£)2]112 

= 3.4496 X 10s N 

agree very well. The error on the estimates of mean is almost nil and on 
standard deviation about 0.3 per cent. 

The frequency distribution of generated R is shown in Fig. 7.3; The 
coefficients of skewness are -O.ot and+ 0.016 at the end of500 and 1000 
generated samples respectively. Coefficients of Kurtosis are 2.637 and 2.989 
at the end of 500 and 1000 simulations respectively. R, being normal, the 
theoretical values of the coefficient of skewness· and Kurtosis are zero and 
3 respectively. The normal distribution fits very well for the generated data. 
Theoretically also, R should follow the normal distribution. 

7 .3.1 Sample Size 

We have seen in Example 7.6 that the generated data is used for estimating 
the mean ·and standard deviation of the resistance of the column. As 
larger and larger samples are used, the estimates are closer- to the population 
values. The minimum size of the sample depends on the desired accuracy 
of the estimates. 

For the estimate of the population mean of a random variable X, the 
minimum sample size is specified (7.3) such that the probability of the true 
mean falling within the confidence interval 

(7.31) 

is (I - oc) per cent where Xm and s.~ are the sample mean and standard 
, deviation of X, and oc is the level of significance. ~~12 is the value of the 

standard normal variate at a cumulative probability of rx/2. If em is the 
specified acceptable error in the estimate of the mean value of X, then 

em= ~~/2 ( ~;;) (7.32) 
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then the minimum size of thy sample for the estimate of the population of 
X is given by 

= cp2 (Sx ]2 n 11./2 em 
(7 .33) 

For a large sa mple size say n > 120), the stand ard deviati n C>f sx is 
equal lo 'Sx/ '\1 2n. Hence ftl r I he estimate of the statH.Inrd deviation of X, 
Lhe minimum ~ izc is speci fic I sul.!h that the probabi lity of the true standard 
deviation falling within the confidence interval (7.3) 

Sx ± cpot/2( ;;
2
J (7.34) 
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is (I - ex) per cent. Specifying 

e, = ~«1 2(J;n) (7.35) 

the minimum sample size for the estimate of the population standard devia- 1 

tion of X is given by 

_ 1 2 [ Sx ]2 
n- 2 ~«12 -;; (7.36) 

where e. is the acceptable error in the estimate of the standard deviation of 
X. Generally, the acceptable error = 5% and ex = 5% are taken. 

If the Monte Carlo technique is used to generate straightaway the samples 
for the margin of safety and determine the probability of failure, Shooman 
(7.7) has proposed the following expression for the percentage of error on 
the estimated probability of failure: 

o/ Error = 200 'I ( 
1 - p ]1 /2 

t o liP! 
(7.37) 

Using this equation, the sample size can be calculated for the required 
, 1 accuracy. 

ExAMPLE 7.7 Calculate the sample size, required .for the case study in 
Example 7.6, to estimate the mean and standard deviation for an acc~pt­
able error of five per cent on the estimates of the mean and standard devia­
tion, and a level of significance equal to five per cent. 

Solution If the mean value and standard deviation of the generated samples 
for R (say after 500 samples) are 

R. = 2.216 >~ t06 SR = 3.466 X 105 

then the sample size required to terminate the simulation process, using 
Eq. (7.33), is 

2 ( s' ]2 11 = f[>«/2 - · e, 

For ex = 0.05, confidence level = 1 - oc = 0.95. Thus 

~a/2 = ~0.025 = ~-1 (0.975) =--= 1.96 

. 5 -
The allowable error on the mean = 

100 
R 

Hence the sample size required to estimate the mean with oc = 5% and 
e, = 5% is 

_ 2 [ 3.466 X 105 
]

2 

11
- (1.96) 0.05 X 2.2 1 X 106 

----= 38 
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The sample size required to estimate the standard deviation with at = 5% 
and e, = 5%, using Eq. (7.36), is 

n = _!_ 1/>~,2 ( SR ]2 
2 · e, 

_ _!_ 2 ( 3.466X lOS ) 
- 2XI,96 0.05X3.466XIOS 

= 768 

Considering both, the minimum sample size required is 768. In Example 
7.6, it can be seen that ~t the end of 1000 simulations (n = 1000), the 
error on the estimate of the standard deviation of R is less tban five 
per cent. 

EXAMPLE 7.8 Consider the column in Example 7.6, the strength of which 
is given by Eq. (7.30). The column is subjected to an axial load Q. Given: 

fJQ = 1.2 X 106 N ao = 0.35 X 106 N 

~tc = 19.54 N/mm2 

/tF = 469 N/mm2 

ac = 4.1 N/mm2 

aF = 46.9 N/mm2 

Variables Q, C and Fare n:Jrnudly distributed. Determine the probability 
of failure of the column using the Monte Carlo method. 

Solution The resistance of the column is given by [Eq. (7.30)] 

R = 82912.5 C + 1250 F 

The safety margin equation is 

M = 82912.5 C : 1250 F- Q (7.38) 

Using the given distributions and the corresponding parameters of C. F 
and Q, the simulation is carried out and 20,000 samples are generated for 
M. During the process of generation, the number of values of M falling 
below zero are counted. At the end of 20,000 simulations, the number of 
sample values of M falling below zero is obtained as 417. Hence, the 
probability of failure of the column is 

417 
PI = 20000 = 0.02085 :-- (. ~ ' ' 

Using Eq. (7.37), if we want to have an estimate of Pf (say 0.02) with an 
error ± lO per cent, the sample size required is 

2002 ( I - 0.02 
n = 0.02 >~ 102 

= 19600 

We have generated 20000 samples. Hence there is a 95 per cent chance that 
the percentage error in the estimated fJJ is less than I 0 per cent. 

The theoretical.va!Ltcs of {tAJ and aM, u~;ng Eqs. l3.77) anJ (3.79), are 
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Since C, F and Q are normal, M also follows the normal distribution. 
Hence the theoretical value of p1 is 

I I PI = P(M < 0) 

= ~ [0 -::M] 
= ~(- 2.0488) = 0.0202 

From the Monte Carlo method, the value ·or p1 has been obtained as 0.02085 
at the end of 20000 samples values of M. 

During the process of code calibration, reliability analyses of existing 
designs as per the current codal provisions are carried out for variou·s limit 
states criteria. For this, the probability distribution and statistics of the 
strengths of members (say, in flexure, tension, shear, torsion, etc.) for 
various failure criteria are to be known. Statistics of the strengths of 
members are established using the Monte Carlo method (7.8, 7.9). The 
determination of the statistics of the flexural strength of RCC beam is 
illustrated below. 

EXAMPLE 7.9 A simply supported reinfo,rced concrete beam of span I is 
subjected to a uniformly distributed live load L and a dead load D. The 
breadth, effective depth, and area of steel on the tension side are b, d and 
Aa respectively. It is given: 

b = 300 mm d = 550 mm A, = 1039.5 mm2 

P.c = 17.58N/mm2 ac = 3.164N/mm2 

P.F = 469 N/mm2 ap = 45.9 N/mm2 

b: mean deviation = + 10.29 rom a = 9.47 mm 

d: mean deviation = 6.25 rom a = 3.79 mro 

C and F are the cube strength of concrete and the yield strength of rein­
forcing bars respectively. Their nominal values are L5 N/rom2 and 
415 N/mm2 respectively. The above data are based on the actual field data, 
given in Chapter 4, for Indjan conditions (7.9). C follows the lognormal 
distribution and all other variables are normally distributed. 

Study of Distribution of Strength in Flexure 

The theoretical model for the ultimate resisting moment of a RCC beam is 

R = FAs a[ 1 -
0

·
1Za%A,] (7.39) 

This equation is obtained when the material reduction factors attached to 
the strengths of concrete and steel are removed in the equation given by 
IS: 456-1978 for computing the design strength of a singly reinforced 
beam. There will be, in general, a certain roo,del error associated ~ith every 
prediction equation for the strength of a member. If B is the model para­
meter, let p.s and 1111 be the mean and standard deviation of B. For flexural 
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strength, fLB = 1.01 and aB = 0.0465 (7.8). Attaching this model parameter 
8 to the prediction equation, Eq. (7.39) becomes 

R ""c BFAs d[ I - _9_.7? FA,, J (7.40) 
bd 

From the given data, f-tb = 300 + 10.29 =--= 310.29 mm and f-td = 550 
-, 6.25 ,-, 556.25 mm. 

Using the Monte Carlo technique, random deviates of various variables 
are generated ( B is assumed to follow normal) and then, using the same in 
the prediction equation, sample values of Rare generated. 

Generally, the values of Rare normalized with its corresponding nominal 
value Rn, so that the statistics of R of different designs could be compared. 
R, is obtained by substituting the nominal values of the variables in the 
prediction equation. For this problem, 

Rn = (1.0)(415)(1039.5)(550)[ 1-
0 ·7J0~~~;5~~0I3i' 5 ] 

= 2.055, 108 N mm 

Hence, instead of studying the distribution of R, the distribution of R/R. 
is studied. It is to be noted that Rn is deterministic and is constant for a 
particular design. The frequency distribution of the generated samples of 
R/ Rn and the statistics of R/R,. are given in Fig. 7.4. It is found that the 
normal distribution fits the generated data well (based on the chi-square 
test at five per cent level of significance). 
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FIG. 7.4 Frequency distribution of the resistance of RCC beam-Example 7.9 

During the reliability analysis of the present designs, the statistics of the 
strengths of members for various combinations of basic variables for each 
failure criteria (shear, flexure, torsion, etc.) are studied in detail using the 
Monte Carlo technique, and then fixed. To be consistent, Ellingwood, et al., 
(7 .8) have fitted a normal distribution to the lower tail below five per cent 
fractile of the generated strength distribution, and the statistics (mean and 
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standard deviation) of R/ R, are established. Typical values of resistance 
sta tistics of RCC member , established for Indian conditions, are given in 
Table 7.1 (7 .9) . In Table 7. I, YR is the ratio of the design value of R to its 
nominal value. 

TABLE 7.1 Typical resistance statistics of RCC members 

Member 
Steel 
grade 

Slabs 
One way (SS) Fe 250 

Fe 415 
Two way (SS) Fe 415 
One way (C) Fe 415 
Two way (C) Fe 415 

Beams (flexure) 
Singly reinforced Fe 250 

Fe 415 
Fe 415 
Fe 415 

Doubly reinforced Fe 415 
Beams (shear) 

Fe 250 
Fe 415 

Columns 
Compression failure Fe 415 

Fe 415 

Tension failure Fe 415 
Fe 415 

Note: SS = Simply supported 
C = Continuous , 
* = Indicates nominal mix 

Concrete 
grade 

M 15 
M 15 
M 15 
M 15 
MIS 

M 15 
M20 
M 25 
M 15* 
M 15 

M 15 
M 15 

M20 
M 20* 

M20 
M 20* 

ILRtR 11 
8 

1.433 0.124 
1.275 0.124 
1.281 0.124 
1.263 ... 0.136 
1.286 0.129 

1.288 0.104 
1.179 0.103 
1.169 0.101 
1.197 0.105 
1.151 0.103 

1.355 0.166 
1.277 0.165 

1.29 0.152 
1.38 0.224 

1.19 0.13 
1.22 0.15 

"'R 

Range 
0.835-0.865 
Average 
0.85 

Range 
0.835-0.845 
Average 
0.84 

Range 
0.855-{),865 
Average 
0.86 

Range 
0.68-0.79 
Average 
0.725 

Range 
0.68-0.89 
Average 
0.8 

Sometimes in engineering problems we may have to deal with situations 
while studying the performance of a system under two failure criteria or 
two different designs when they are correlated . Under such conditions the 
correlated sampling technique may be used. This is illustrated in the 
following example. 

EXAMPLE 7.10 Consider the portal frame shown in Fig. 7.5. Consider the 
two failure modes shown in Figs. 7.5b and 7.5c. It is given that 

I'M3 = P,M4 = P,Ms = 300 kN m 
CIMJ = CIM4 = CIMS = 30 kN m 
1-'Ml = P,M2. = P,M6 = I'M1 = 50 kN m 
CIMI = CIM'J. = CIM6 = 11M1 = 5 kN m 
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FIG. 7.5 Correlated failure modes-Example 7.10 

where M; is the plastic moment capacity of section i. All variables are 
normally distributed. 

Using the mechanism method of analysis (7.10), sefety margin equations 
for the two failure modes can be written as 

Zt = M2 -t- 2M4 + M6 - 3Q 

Z2 = Mt + M2 + M6 + M1 - 4H 

The probability of failure of the frame under failure mode i is 

Pfi = P(Z; < 0) 

(7 .41) 

(7.42) 

The probability of failure of the frame under failure modes Zt and Z2 is 

P/12 = P(Z1 < onz2 < o) (7.43) 

The problem is to generate the joint distribution of Zt and Z2 and then 
calculate P/t2. 

It can be seen that Zt and Z2 are correlated as they depend on the same 
basic variables M2 and M6. The correlation sampling technique can be used 
to generate the joint distribution of Zt and Z2, and to calculate P/12· The 
procedure is to generate normal deviates of Mt, M2, M4, M6, M1, Q and H 
using their respective parameters. Substituting the generated deviate of each 
variable in the equations for Zt and Z2, the random deviates of Zt and Z2 
are generated. While generating random values z1 and Z2 for Zt and Z2, a 
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count is made when z1 < 0 and z2 < 0 are simultaneously observed. The 
process is repeated for generating a number of samples. The procedure is 
outlined in the flow chart given in Fig. 7.6, where the number of simula­
tions has been fixed at 20000. 

E•r 
r:. -
i Input: paramt'ters and distribution 

I 
L_ 

of t'ath variablro M, M2,M4,M6 
M7,a and H. Selt'tt n:. 20000 

Gt'nt'rate 7 valut's 
v1 , v 2 , v3 . v4 . v5 • v6 • v7 

Transform to 
dt'viatE's m1 ,m2 • m4 ,m 6 ,m7, 

q, h of torrE'Spondin g distri­

butions of M1 1 M21 M4• M6 1 

M7, Q and H. 

Us£' Eqs 7·39 and u.o 
ZJ = m1 +2m2+ m4- 3q 
z 1 = m1 t m2+ m4+m6 -4h 

Gt'nt'ratE' z 1 and z2. 

Is and z2 < 0 

No 

No 

Yes 

FIG. 7.6 Flow chart-Example 7.10 
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Result: 
Number of samples for the condition 
(zt < 0 and z2 < 0) = 374 
Hence 

fiJI~ ,-~ P(Zt < onz2 < O) = 2~~~0 = o.o187 

Let us compare this with the theoretical value: 

/-LZI = 160 Uz[ = 134 

/-L7.2 = 40 

The probability of occurrence of failure mode l is 

Pit= P(Zt < O) =--' cJJ(-160/134) = 0.1!62 

Similarly, 

Pf2 = P(Z2 < O) =-= f/1( -40/41.2) = 0.!658 

The correlation coefficient between Zt and Z2 is (Eq. 3.77) 

Cov (Z1, Z2) 
p = -· 

Uz t11Z2 

= (1)(1) Var (M2) + (1)(1) Var (M6) 
Uzt<1Z2 

= 0.009 

This being negligible, and assuming Zt and Z2 are statistically independent, 
we have 

P/t2 = (PJ"t)(PJ2) = 0.0193 

The value 0.0187 obtained from the Monte Carlo technique agrees well with 
the theoretical value. 

In engineering problems, quite often we come across situations when 
variables in the safety margin are correlated. Let the safety margin M be 

M = Xt- X2 

The variables Xt and X2 are correlated. We want to determine the joint 
distribution of Xt and X2, i.e. the distribution of M. In such situations, the 
correlated variables are first transformed to uncorrelated variables Yt and 
Y2 using the transformation matrix [T]. 

Y = [T]'X (7.44) 

where each column of matrix [T] contains an eigen vector corresponding to 
the eigen value of the covariance matrix [Cx]. 

[ 

Var (Xt) 
[Cx] = 

Cov (X1, X2) 

Cov (Xt , X2) ] 

Var (X2) 

l 
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Jf ~~ and ~2 are the eigen values of the matrix [Cx] and e1 and e2 are the 
corresponding eigen vectors, 

I Tl = [c1, e2l ~, [ e
11 

e
12 

] 

e21 e22 

The expected vallle and covariance of variables Y1 and Yz are 

E(Y) = [T]1 E(X) 

[Cy] = [T]t[Cx][T] 

(7.45) 

(7 .46) 

where [Cyl is the covariance matrix of the variables Y1 and Yz. The dia­
gonal elements of [Cy] are Var (Y) which are equal to the eigen values of 
ICxl. [T]1 is read as the transpose of [T]. 

Var (Y) is nothing but a matrix having diagonal elements equal to the 
eigenvalues and other terms zero. That is 

[ 
~~ 0 ] 

Var (Y) = 
0 "2 

Since rTJ is an orthogonal matrix, 

X= [T]Y 

(7.47) 

(7.48) 

Hence, the given equation forM can be written in terms of the uncorrelated 
variables Y. Knowing the mean and standard deviation of )', the sample 
values for M can be generated using the Monte Carlo method. This is 
illustrated in the foJlowing example: 

EXAMPLE 7.11 Consider the safety margin equation 

M = X1Xz- X3 

where X1 and Xz are correlated. The covariance matrix is given as 

' [ 0.0222 0.0111 0 ] 

[Cx] = 0.0111 0.011 0 

0 0 0.0308 

[ 

1.222 ] 

P.x = 1.050 

0.620 

I 0.149 l 
ax= l 0.105 J 

0.1755 

It is given that all Xt are normally distributed. The problem is to determine 
the distribution of M. 

Eigen values of the matrix [Cx] are t\1 = 0.02903; t\2 = 0.004167; 
t\3 = 0.0308. (Note: . The computation of eigen values is illustrated in 
Example 8.11). 
The corresponding normalized eigen vectors are 

l
-0.8516 ] 

e1 = 0.5

0

242 
[

-0.5242 J 
ez = 0.~16 



176 

Hence the transformation matrix is 

[ 

0.8516 

[ Tl = : 0.5242 

0 

-0.5242 

0.851(1 

0 

Using Eqs . (7.43) nnd (7.44), 

Using Eq. (7.46), 

Hence 

11.591 ] 

!Joy= l 0.2536 

0.62 l 0.1704 J 
ay = 0.06456 

0.1755 

X1 = 0.8516 Yt - 0.5242Y2 

X2 = 0.5242 Y1 + O.R516 Y2 

X,= YJ 

M = (0.85l6ft --- 0.5242Y2)(0.5242Yt + 0.8516Y2) -- YJ 

Now Y1, Y2 and YJ are independent variables. Since X1, X2 and XJ arc 
normal, Y1, Y2 and YJ are also normal. Knowing the mean and standa1d 
deviation of Y;, the normal deviates of Y; can be generated. Using the usual 
Monte Carlo technique, the required samples forM can now be genera tell 
to study the distribution and establish the mean and standard deviation nl' 
M. Figure 7.7 shows the generated cumulative distribution of M. 

10r-------------------------------~~--------~ 

0·8 

~0 ·6 

0·2 

Safety margin ,M 

M~n= 0·671 

so= 0·313 

FIG. 7.7 CDF of safety mrJrgin with correlated variables-Example 7.11 
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EXERCISE 

7.1 It is given that 

Y= xlx. 
where X 1 and X, are statistically independent lognormal variates. Given the 
parameters 

X1 = 10 x. = 5 

"lnXI = 0.3 alnX2 = 0.05 

determine the distribution of Y using the Monte Carlo method and check whether 
it is lognormal with parameters 

y = so and alnY = 0.304 

7.2 If the variable Y is 

Y = xl + x. 
where X 1 and X 1 are exponentially distributed independent variates with respective 
parametres .\1 and .\1 , where being 6 and 12 respectively, determine the distribution 
of Y using the Monte Carlo method and check whether it follows the exponential 
distribution with parameters,\ =i 4 and ILy = 1/4 

7.3 The annual maximu m wind speed obscrvedal'a station follows the Type I 
extremal (largest) distribution with parameters 

u = 81.4 kmph IJt = 0.126 

Determine the distribution of a 20 year maximum wind and lhe probability of the 
lifetime maximum wind speed exceeding the specified design speed= 120 kmph. 
Use the Monte Carlo method. 
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7.4 The total load Yon a structure is given by 

Y~D+L 

where D and L are correlated with the correlation coefficient O.S. It is given that 

I'D = SO I'L = 100 

aD= S DL = 40 

Generate the distribution of Y if D and L are normally distributed. Check whether 
it is normal. 

7.5 The distribution of Lapt follows the gamma distribution with parameters 

A= 23 .87 k = 0.328 

Determine the distribution of the lifetime maximum live load for 10 occupancy 
changes during the life of the building using the Monte Carlo technique. 

7.6 The ultimate strength of an axially loaded short RCC column is given by 

R = kCA + Ys 

where k is a constant, Cis the cube strength of concrete, A is the area of concrete , 
Y is the yield strength of steel , and sis the area of steel. It is given that k = 0.67 
and s = 1250 mm2• Variables C, Y and A follow uniform distributions as given 
below: 

fc(c) = 

/y(J') = 

/A(a) = 

where r1 = 18 N/mm2 

)'1 = 420 N/mm• 

a1 ~ 1000 em• 

--- c, ~ c ~c. c1 - c1 

---- Yt ~ Y ~ J's 
Yt- Ya 

--- a1 ~A~ a, a,- a, 

c2 ~ 25 N/mm• 

Ya ~, 460 N/ mm2 

a2 ~' 1100 mm2 

Determine the distribution of R using the Monte Carlo technique. 
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8 
Level 2 Reliability Methods 

8.1 INTRODUCTION 

The Joint Committee on Structural Safety (8.1) classified the structural 
reliability analysis and the safety checking into three groups. They are term­
ed as Level I, Level 2, Level 3 methods. The levels are defined as follows 
(8.1, 8.2). 

Levell 

A design method in which appropriate levels of structural reliability are 
provided on a structural element basis (exceptionally on a structural basis) 
by the specification of a number of partial safety factors, related to some 
predefined characteristic values of the basic variables. 

/Leve/2 

A design method incorporating safety checks only at a selected point (or 
· points) on the failure boundary (as defined by the appropriate limit state 
equation in the space of the basic variables)- rather than as a continuous 
process, as in Level 3. 

Leve/3 

Safety checking based on 'exact' probabilistic analysis for whole structural 
systems or structural elements, using a full distributional approach based 
on failure probabilities, possibly being derived from optimisation studies or 
assessed by other approach criteria. 

The present structural design (8.3) with explicit consideration of the 
number of limit states (being called as limit state design) is nothing but Level 
I design. It is advocated that the present design be called as Level 1 design . 
The limit state is a criterion to define a particular failure or performance 
condition. In Level 2 methods, certain idealisations and assumptions are 
used. Mean values an iances of the random variables only are required. 
In advanced Level 2 methods, distributions also can be taken care of in-an­
approximate way. Reliability levels are defined by safety indices or equivalent 
"operational" or "notional" probabilities. Level 2 methods are approximate 
compared to Level 3 methods where full joint probabilistic description of 
the randcm variables are used, and they are purely probabilistic methods 
and are exact in estimating the reliability. It is recognised that Level 3 
methods will be used rarely- for checking special structures or at research 
level. Level 2 methods are more practical-oriented and are quite suitable for 
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design . They are suitable for calibrating codes on reliability basis. Level 2 
methods will be used by committees engaged in calibrating codes for the 
evaluation of partial safety factors in a rational manner. It is realised that 
structural designers will be working with Level 1 methods of checking. It is 
also to be understood that Level 1 method is not a reliability method. 

This chapter deals with Level 2 methods (including advanced Level 2 
methods) of reliability analysis. 

8.2 BASIC VARIABLES AND FAILURE SURFACE 

In any engineering problem, several random variables are involved. In 
structural engineering problems, geometric parameters of the section (i.e. 
dimensional variations), physical properties of the materials (cube strength 
of concrete, yield strength of steel, Young's modulus of steel and concrete, 
etc.) and loads (live load on floors, wind load, etc.) coming on structures 
are subjected to random variations. If the coefficient of variation of a 
random variable is very small (e.g. dimensional variations in many cases), 
probably this may be ignored and the variable may be considered as deter­
ministic. Hence in any engineering problem, the parameters which are to be 
considered as random variables are initially fixed and those random variables 
are called as basic variables. Let these basic variables be Xt, X2, ... , Xn . 
Any equation that is developed for a particular limit state condition (failure 
condition) of the structure will be interconnecting these basic variabies and 
hence it is a function of these variables. 

Let this function be 

(8.1) 

This function is called a failure function. This is nothing but representing 
the margin of safety, M, which can be written as 

M=R-S (8.2) 

where the resistance R and the action S will be in terms of the basic 
variables Xt, X2, .. . , Xn. Hence, 

M = g(Xt, X2, ... , Xn) (8.3) 

When this failure function is made equal to zero, i.e. 

g(Xt, X2, ... , Xn) = 0 

it is called a failure surface (or limit state surface). The safety is ensured by 
specifying a small value for the probability of reaching a particular limit 
state. The magnitude assigned depends on the serviceability of the conse­
quences of reaching the: particular limit state. If fx. (x) is the probability 
density function of the jointly distributed variables X1, X2, ... , Xn, then 
the probability of failure (or probability of reaching the limit state) is 

(8.4) 



where X = (X1, X2, XJ, .•. , X")../ 

X= (XJ, X2, XJ, ..• , X,) ~ 

dx = (dx1, dx2, ... , dx,)~ 

The multiple integral is to be evaluated over the region g < 0. 
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The failure surface equation divides the design space into two regions, 
viz. (i) safe and (ii) unsafe failure regions. For the two variable case, i.e. if 
the failure function is g(X1, X2), this is shown in Fig. 8.1. It may be noted 
that the same failure surface may be represented by different equivalent 
failure functions. 

Foilur• 
g(xl ,x2 )<0 

FIG . 8.1 Concept of design space . failure surface 
and failure and safe regions 

Recall the fundamental case-A structure with resistance R subjected to 
an action S- discussed in Chapter 6: 

M = g(R, S) = R - S 

the failure surface equation is 

g(R, S) = R - S = 0 

r: It has already been derived [Eq. (6. 12)], assuming R and S independent, i.e. 

FJJ.<·~ dx ' \ 'V (8.5) 

Equation (8.5) is a particular case of Eq. (8.4) and differs in two main respects. 
Equation (8.5) is not expressed in terms of the basic variables X1; but in 
terms of state variables R and S. Equation (8.5) is concerned with a specific 
failure mode related to the form of R and S. In general, R and S 
will be in terms of the basic variables X1. The PDF of R and S wilt depend 
on the PDF of individual basic variables and the nature of functions relat­
ing them to particular state variables R and S. In many practical cases, R 
and S will be related to some of the same basic variables and hence will be 
corre la ted . l ni tiaJiy, the st ructural sa fety was assessed using Eq. (8.5), igo ting 
correlnti~m GeiW'CenRandS, i(Udts. "'Ose OfEq. (8.5) is not sat isractory 
"-- --- .,......__ oecause o the lack of sta tistical data fo r the variables R and . Lf rhe 
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distributions of R and S are directly known and if they are uncorrelated, 
Eq. (8.5) will give the exact value of the probability of failure. 

The probability of failure provides a basis for quantifying structural reli­
ability. All uncertainties in the joint probability law of all basic variables (in 
the fundamental case, R and S) must be known. However, in practice, these 
probability laws are seldom precisely known due to general scarcity of data. 
In many cases, the probability Jaws of individual basic variables will not be 
known and it may be difficult to obtain. The joint distribution of all the 
basic variables, in general, is impossible to get in the field. If the failure 
function is highly nonlinear, it may be difficult to numerically evaluate the 
integral [Eq. (8.4)] even if the marginal distributions of the variables are 
known. These difficulties have motivated the development of approximate 
methods of evaluating structural reliability. 

/ 8;'3 FIRST-ORDER SECOND-MOMENT ~ETHODS (FOSM) 

In these metods, the random variables are characterized by their first and 
second moments. In evaluating the first and second moments of the failure 
function (i.e. say, the mean and variance of M which is a nonlinear function 
of the basic variables), the fir st order approximation is usecL That is why 
these methods are called first-order second-moment methods. In the case 
of nonlinear failure functions, linearisation is performed using Taylor's series 
expansion in the reliability analysis. 

Consider the fundamental case with only two basic variables R and S: 

Pf = P(l< < S) 

M = g(R, S) = R -- S 

The failure surface equation is 
R-S=O 

Cornell (8 .3) first detlned the reliability index ~as 

(8.6) 

(8.7) 

(8.8) 

where fl.M and aM are the mean value and standard deviation of M. That i~, 

~ IS the reciprocal of t11e coellic i~ nt r VClrlation in M. The concept of~ is 
illustrated in fig . 8.2a which -sh w the PDF of M for the fundamental 
case - two variable problem. The safety is defined by the condition M > 0 
and therefore, failure by M < 0. The reliability index may be thought of as 
the distance from the origin (M "'"' 0) -to the mean fl.M nu:_<m.\~ed in standard 
deviation units. As such, ~ is a 111 ~, 1 s ure of' lhc pr.o..llll.bilil¥JllaL11L\Y.ilLb 
less thun zero . If 

!l :lf - f3a .-., ? 0 (8.9) 

then the reliability in terms of the safety index is atleast ~ . 

When both R ami .)' are normal an~dent, 

I'M .. ~. i'R · l' s aM = (a71 + a])i !Z 
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D J.ioR - J.ioS ( ) 
,.. = (a~ + cr~)l /2 8.10 

When both 1J. and S are lognormal and independent, the alternative 
formulation for failure [Refer Eq. (6.9)] is taken. That is, for failure 

(;) < 1 

In ( ~) < 0 

The failure surface equation is 

M =In ( ~) = 0 

Using the small variance approximations, 

aXt = Var [1n ( ~)] ~ (8~ + 8~) 
f3 = In (P.R!P.s) ~ 

(8J + 8~)1/l (8.ll) 

The above format of Eq. (8.11) (the corresponding reliability concept depict­
ed in Fig. 8.2b) has been used for the development of probability based 
load and resistance factors for the design of steel structures (8.5). 

M<O -

ln(r/s) 

(b) 

FIG. 8.2 Concept of reliability index (a) M = A - S; (b) M = In (R/S) 

lf the safety margin is a linear function of basic variables and if basic 
variables are normally distributed, the safety margin M is also normally 
distributed. 

Let 

(8.12) 
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Using Eqs. (3.77) and (3.78), 
n 

/-LM = bo + E bt/-Li 
i-1 

2 n 2 2 n 
aM = E bt a, + 2 E 

i=l i=l 

(8.13) 

n 

E Pub;bja;aj 
J-1+1 

(8.14) 

where bo and b; are constants and PU is the correlation coefficient between 
X1 and Xh and /-Li = /-LX; and a; = ax,.. The probability of failure is related 
to the reliability index as follows: 

Pr"'-= cP(-~) ..:/ 

or ~ = --<P-l(pJ) {/ 

(8.15) 

(8.16) 

For a linear combination of the normally distributed variables, using {3 the 
true_ value of reliability can be obtained. 

v,..£XAMPLE 8.1 Calculate the re liabil ity index of the beam (against the limit 
state of collapse in flexure), shown in Fig. 8.3, subjected I<> a self-weight 
QJ and a live load Q2. The flexural resisting moment capacity of the beam 
is R. It is given that 

fto 1 = 400 N 

!tQ2 ~~o 5000 N 

au
1 

~ -, 10 N 

UQ2 = 2000 N 

/-LR = 10000 Nm a11 = 1000 Nm 

FIG. 8.3 Simply supported beam-Example 8.1 

.";'ol111ion Maximum bending moment due to external loads is 

I I 
Me= Qt -8- -+· Q24 

CCC Qt (:) + Q2 (:) 

Hence, Action S = ~ 1 
-!- Q2 

The failure function (R -· - S) is 

This is a linear function of variables R, Q1 and Q2 • 

.M =-~ R -- Q, - Qz 
2 
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Using Eqs. (8o 13) and (So 14) and assuming R, Q1 and Q2 are mutually 
independent, 

Substituting the given data, we have 

1 
P-M = 10 ·- 2(0.4) - 5 = 4o8 kN 

u~ = (1)2 .+ (..!.)\o.01)2 + (2)2 . 2 . 

UM = 2.236 kN 

Hence the reliability index is 

~ = (2~~6) = 2.147 

[t has so far been assumed that the failure function is a linear combina­
tion of the basic variables. However, this may not be t~ue most of the Limes 
in practlca cases. 1e function for M is nonlinear, the approximat 
va lues of P-M and UM are obtained using Tay!or"s series expansion of lincaris­
ed safety margin M. Let 

oM = g(X1, X2, . o ., X,) 

Using Taylor's series expansion abo~~ · the point . ( . . -• X = x,,Xz,. o ., X,) 

( • • • • ( ag I ) . M = g X1,Xz, o. o' X,)+ 1: oX · (X1- X1) 
1-1 1 x• 

'' ( ()2g / )(x, - x,•)2 +I: - 2 2 + .. 0 

1-1 ax/ x• 
(8.17) 

Recall that ( :.:.) x• means that 0~ is evaluated at X*. 

Retaining only the linear terms, we get 

~ • • " ( ag) • M e:t g(Xt ,Xz, o •• , Xn) + 1: oX (X, --X1) 
1-1 1 x• 

(8.11)) 

In the case of mean value methods, the point x; = ~" = That · • the 
expansion is about the mean 01nt.Tn such a case, for Eq. (8.18)-

P-M = E[g(X)] e:t g(p.i, f'-2, o • o, p.,) + 0 (8.19) 

--
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Var [g(X)] ~ Var [g(/lJ, ... J.l·n)J 

[ " ( '·g I ) J -1· Var E -; (X; -- ft;) 
;_, a ' '"" 

(·g:(lx, II'- means that cgjoX; is evaluated at f.I.Xp flX2' ... , flX,. 

Since Var r.dtiJ, fL2, .. . , f.l.n)l = 0, and assuming X; are uncorrelated, 

2 " [ ag ) ]2 aM = Var [g(X)] ~ _1..: -:>X· (a;)1 

·~I c; I 1'-
(8.20) 

11 here a; ·-= ax;. It is to be noted that both flM and aM arc only first order 
:IJ)~.!.lns. 

If the second order terms in Eq. (8.17) are taken into account, the second 
order approximation of flM is obtained as 

' II iJlg I 2 
fLM = g(ftl. fL2, .. . , fln)-, E --, (a,/2) 

; .. , axr '"" 
(8.21) 

Even in the second order approximation of /-LM, only the mean value and 
'aria nee are required. Hence in practice, the second order approximation for 
ft_\t nnd first order approxin~ation for aA-i are used. H~vet:_,_ in Level 2 
methods the nonlinear function is linearized retaining only linear .terms in the 
T~ylor's series expansion, and hence the first order approximate values of 
1111 and aM are used. The extent to which the values for /-LM and aM obtained 
h~ using Eqs. (8 .19) and (8.20) are accurate, depends on the effect of neglec­
lillg higher order terms in the Taylor's series expansion and the magnitudes of 
1 he coefficient or variation of X;. If g( ) is linear and the basic variables 
:11-c uncorrelated, Eqs. (8.19) and (8.20) are exact. If X; are correlated, the 
lir~t order approximation of a.\1 is obtained as 

n~ , · 
1 
~ i;; (a~, /J(a:

1 
IJcov (X, X1)l (8 .22) 

I 

J l ' \1 1'1.1. l' ,_ Determine the r liability intlcx ~ r a !ilecl tension member, 
l11n in!! ten~lie st reng th R, ubjected to a tensile lood Q. Given: 

1-LR = 280 N/mm2 

flQ ~, 5000 N 

aR = 28 N/mm2 

aQ = 2000 N 

an= 0.6 mm /-LD = 6 mm 

The member is circular in cross-section of diameter D. 

Solution The induced stress in the member is 4Q/1TD2 and this is the action 
(i.e. load effect). Hence the safety margin is 

4Q 
M=R -­

-rrDl 
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Using Eqs. (8.19) and {8.20) 

/1-M ~ /1-R - ..i.(/1-Q) 
rr 11-~ 

= 280 _., ! ( 5~~0 ) = 103.16 N/mm2 

aL ~ (~~/J
2 

<a~> + (~~IJ2 <a~> + (~~tr (ab) 

= (1)2 >~ (282) + (.,~2 ): (a~) + (!23): (a~) 

( 4 )2 2 (8fta)2 2 = 282 + - 2 (a0 ) + - 3 (av) 
rr~-tn '"'-'D 

= (282) + (0.00125)(2000)2 + (3474.7)(0.6)2 
, 

a:it = 784 + 5003.5 -\- 1250.9 

aM '= 83.9 

fJ = {103.16/83.9) = 1.23 
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ExAMPLE 8.3 The reliability index for the beam given in Example 8.2 is 
calculated using a different failure function. 

Solution Let us consider Q as the action and the capacity of the section 
as (R)(rrD2/4). Then the margin of safety M is 

(
rrD2) M = (R) 4 -- Q 

The failure occurs when M is less than zero. The mean value and variance 
of Mare calculated using Eqs. (8.19) and (8.20): 

/1-M= (/1-R) (TT~b) - /-!Q 

= (280)t~·r) _ 5000 = 2916.8 N 

alt ==(~~):(a~) + (~~): (ab) + (~~): {ab) 

=('"~by (ak) + (rr~rD r (ab) + a~ 

= ("!2Y (282) + (rr 280 X 6/2)2 (0.62) + (20002) 

<1M= 2670.9 N 

Hence the reliaQility index {J is 

fJ = (2916.8/2670.9) = 1.0918 
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In the last two examples, the safety margin M is a nonlinear function of 
the basic variab les. The mean value method has b · d and lioeariz~­

tion of M is ab ul the mean value . ll can be observed that differen.t value 
of f3 haveoeei1o btamed- for the same problem. That is, f:J cha_ng~s when 
different but equivalent nonlinear failure functions are used. This can also 
be demonstrated again. --- - · - -- . 

For the fundamental case when R and S are uncorrelated, 

M=R--S 

~. = ~: = [(af~ -"D~'2 ] 

If the equivalent failure function, given below, 

is selected, we get 

M = In (:) = In R - ln S 

{3
2 

= /t tntR/S) 

UJu(Rt SJ 

If linearization of the safety margin 

M =In R -- InS 

is done about P.R and P.s, then 

(8.23) 

(8.24) 

(8.25) 

It is clear that f3, and ~2 are not equal. Hence the reliability index {3, 
defined by the equation {3 = P.M/aM, is thus not invariant with regard -to 
the choice of the failure function. If the linearization is done about the 
mean value, the method can give different values of ~. that is different 
values of Pf, for the same problem. When the failure functions are linear 
functions of the basic variables, they will yield same values of~. and hence 
the same p1. In general, an expansion of M about the mean point should 
not be used. Mean value FOSM methods have two basic shortcomiv.gs: 

(i) g( ) is linearized at the mean value of basic variables. When g is 
nonlinear, significant errors may be introduced at increasing distances from 
the linearizing point by neglecting higher order terms in the Taylor's series 
e~pansion. In most structural engineering prqblems, the mean point is, in 
fact, at some distance from the failure surface g( ) = 0 and thus there are 
likely to be unacceptable errors in approximating the equation 

M = g(Xt, X2, ... Xn) = 0 

by the equation 

M !~ g(X~. x;, . .. , x;) + E (~xg) · (X;- Xt) 
i-t ox, x• 
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M=R-S 

The failure surface equation for a set of the realization of values of R and 
Sis 

r-s=O 

The above Eq. (8.26) is shown in Fig. 8.4(a). 
Let 

Z2 = (S - P.s) 

For a set of realization of R and S, 

(r - P.R) 
Zl = - Z2 = 

as 

(s - Its) 

Hence, the safety margin Eq. (8.2~) be~omes ~ 
. f_l 

ZJUR + /LR - Z2US - /LS = 0 6" fi-
ZICTR - ZzCTs + /LR - /LS = 0 

(8.26) 

(8.27) 

(8.28) 

The above equation is represented in Fig. 8.4b. T . .;.h:..:.i.:;..s ....:;',;;-s ~';.;;:n_.;.;~~..:;..;..;..~--.... 
coordinate system since R and S have b'een no~d -"w.....,..._..., 

etr cor ndin mean va e The mean values Zt anci Zz ar 
zero and their variances are equal to one. In Pig. 8.4b, OD is drawn per­
pendicu ar to the at ure sur ace and it can be proved easily that OD = {3. 

Proof: In Fig. 8.4b, 

OB = (J.'R - /LS) ~ 
C1R V 

s 
zz 

(al Original Coordinate Syste111 (bJNorlllaliud Coordinate Syste111 

FIG. 8.4 Linear failure surface 
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fTR tan !._ O BC -~- -
as 

/ 

Sill L OBC '"" (~~ + a~) ll~ 

on =--= OB sin LOBC 

= (~~~~?;-~)Iii [ c~R au /lS )] 

Hence it is proved that~ is the shortest distance to the linear failure surface 
from the origin 0 in the normalized coordinate system. This is ltsed in the 
deflnition of the reliability index defined hy Has0fer and Lind. 

8.3. 1 Hasofer and Lind's Method (8.6) 

Let the failure function g he a function of independent basic variahles 
Xt , X2 ... . , X", i.e . g(X,, X2 , .. . . X"). The basic variables are then 
normalized using the relationship 

X, i'; Z;= -·--- - -- -­
a; 

I == I' 2, .. . , fl (R.29) 

where /Li ,-, /l.l'; and a; =ax;· In the::: coordinate system , the failure surface 
is a function of z;. Using Eq. (8.29) in the failure function and equating it 
to zero, the failure surface equation is written in the normalized coordi­
nate system , i.e. the :: coordinate system . This failure surface also divides 
the design sample space into two regions. safe and failure. Because of the 
normalizati on of the basic variables, 

i'Z; ~· () and (8.30) 

It is also to be noted that the ::: coordinate system has a rotational 
symmetry with respect to the standard deviation and the origin 0 will 
usually lie in the safe region . A two dimensional example is shown in 
Fig. 8.5. It is to be noted that as the failure surface g(:::t, ::2) moves away 
from the origin, the reliability, g(Z) > 0, increases and as it moves closer 
to the origin, reliability decreases. Hence, the position of the failure surface 
with respect to the origin in the normalized coordinate system determines 
the measure of reliability . 

Hasofer and Lind (8.6) defined the reliability index ~ as the shortest 
distance from the origin 0 to the failure surface in the normalized coordi­
nate system . The point D (Fig. 8.5) is called the design point, and it is on 
the failure surface. This point is also called the check point for the safety 
of the structure. Now ~ is related to the failure surface (and not to the 



FIG. 8. 5 Formulation of safety analysis in 
normalized coordinates 
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failure functions). The )U sure obtained is invariant to the failure 
functio.n. since equiva)ent failure functions will - res-uJtth~- ·~~;;~--r;TI~~e 
;·;·.~race. Th~ r~i~bility index, ~ = J.I.M;ro:~,d~firled'bY Cornell~ will~cide 
with the value obtained by Hasofer and Lind when the failure function is 
a linear function of basic variables. Hence in this method also (Hasofer and 
Lind), the important relation, 

(8.31) 

can be used, provided the failure function is a linear function of the nor­
malfv.ilis.tributed basic variables. 

from the above discussions, it is obvious that ~ defined by /.I.M/aM can 
be obtained for a nonfinear unct10n by expa ilding tiiel'U nction abQ.t!l •.u< 
design oi 1 This correspon s to approximating the nonlinear. failure 
surface by its tangent plane at the design point D as shown in Fig . 8.5. 
For a nonlinear failure surface, the shortest distan.ce of the origin (nor­
n1 alized coordinate system to the. fai ure surface is not unique as in the 
C!lse of a linear failure surface,_ The computation of the probability of 
failure involves numerical integration. For practical purposes, an approxi­
mation to the exact value is required. Shinozuka (8.7) has proved that the 
point D. on the faflure surface with 'minimu~l •stance tot eon in norma­
fized coordinate system ~the m OS! p,rQba,.ble f@u~poinl. The tangent 
plane to the design point D may then be used to approximate the value of 
{3. If the failure surface is concave towards the origin, the approximation 
will be on the safer side, while for the surface convex towards the origin it 
will be on the unsafe side. 

The roblem therefore re~uces to finding out the minimum value of the 
distance OD Fig. 8.5). -- ·- -
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Let 

(8.32) 

he a nonlinear failure surface in the normalized coordinate system and 
. . . . 

D '-"= z· = (.:::,, Z2, ... 'Zn) 

be the design point on the failure surface. That is 

g,(z•) = 0 

(X.33) 

Tht: distance from a point z ,.---, (z,, z2, ... , Zn) on the failure surface to the 
origin is 

The problem is to minimizer subject to the constraint gt(z) = 0 

(8.34a) 

(8.34h) 

Using the Lagrange multiplier method, the problem can be solved. The 
Lagrange function L is 

L = r + l.g!(z) 

-= (z' z)''2 + !.g,(z) (8.3.'i) 

For minimum 

~L = ~ + /. ~g, """ 0 i = ' 1, 2 .... n 
oz; (z1 z) 1 ' uz; 

(8.36) 

~~' = gt(ZI, 22 , ... , Zn) '-~ 0. (8.37) 

There are n + l equations. In matrix notation, then equations [Eq. (8.36)1 
can be written as 

z 
(z' z)''2 + /.G = 0 

where ( 
ag, ag, ag,) 

Gt = -a . -a-·· .... -~-z, ~2 rz, 

The solutions for z~ and ,\' are obtained as 
( , 

-'• = (G! G·)-112 

... ...;,r ;1 

c \'' 
, -:-."A 

r (• ~;: ' 

(8.38) 

(8.39) 

(8.40) 

(8.41) 

Premultiplying both sides of Eq. (8.40) by G~ and using Eq. (8.41), it ts 
obtained as 

z~ G. 
r---r---....-

- (G! G. )tt2 (8.42) 

This r is the minimum distance and is equal to ~. G. is the gradient vector 
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the comparison of Eqs. (8.43) and (8.52) indicates that both are same. The 
ratio, defined by Eq. (8.52), is also the distance from the tangent plane of the 
failure surface at the design point D = z* to the origin in the normalized 
variate coordinates. 

The problem of finding the minimum value of {3 for a nonlinear failure 
surface is solved iteratively. The problem can be solved in many ways. One 
simple method is solving the following 11 equations [Eq. (8.46)] 

i = 1, 2, ... , II 

with (n + l)th equation 

where !<. -- E-/ _ ( " (ag 1 )2 ] 112 
i=J az, * (8.53) 

and searching for directional cosines which minimize {3. 
T he fc,llowit g _s_teps arullYul.ved in the- method:.---
I. Write the limit state equation, g(x;, x1, ... , x,.) = 0, in terms of the 

bi1sic va riablcs. . '/-' _ }J '1 

2. N nnnlize the basic variables using Eq. (8.29). li -:. ~ 
J. Write the (limit state) failure surface equation in terms of tfei norma­

lized coordinatt> system. i.e. 

Write expressions for agi/()z; i = I' 2, ... , II 
At the design point z; = C1. Jf3. Using this, write gt(z) in terms of f3 and 11.1. 

Write the equation such that 

{3 = g({J, ex 1, 11.2, ••• , IX,.) 

:·or computation purpose~ . 

4. Select a value for {3 and values for 
. f'. E 2 I :x1, IX2, ••. , ex,. satts ymg :t.; = . 

While choosing values for 7.;, select positive values for load variables and 
negative values for resistance variables. 

5. Start the iteration. Calculate the new value of fJ using the equation 

{3 =, g({J, (/.1, ·:X1 • . . ., ex,) 

6. Calculate 

/-- [II ( O~ J )2]1'2 f<. . .. E ~ * 
I= I _ , 

7. Determine new values of a.; 

i=l,2, ... ,1l 
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. With these new values of f3 and llt ," start the next iteration. Go to 
step 5 
Jstop the procedure when the values of f3 obtained from two successive 
'terations is within the acceptable error. 

(Note: If the equation g,(z) is linear or quadratic, it may not be necessary 
to start the procedure assuming a value of {3.) 

The procedure is explained with examples. 

/ExAMPLE 8.4 Determine the reliability index of a simply supported I beam 
at the limit state of shear. The beam is subjected to a point load Qat mid· 
span. Jt is given that 

/lQ = 4000 N UQ = 1000 N 

Ill. = 95 N/mm2 

ud = 2.5 mm 

ufs = 10 N/mm2 

d - = 40 /ld = 50 mm tw 
where d is the depth of the beam, lw is the thickness of the web, J. is the 
shear strength of the material. The coefficient of variation of lw is negligible. 

Solution 

Maximum shear force = ~ 
It is assumed that the web resists the whole shear. The beam fails in 
shear if 

Q 
.f.Twd- 2 ~ 0 

Hence the failure surface equation is 

g(X) = .fsfwd- ~ = 0 

As variation in fw is negligible, fw is considered as deterministic. 
Let 

(/s --- Ns) 
ZJ = 

(d - - lld) 
Z2 = 

(Q - · !Jo) 
ZJ = -·--- -

11(1 

Substituting them in the equation for g(X ), we gel 

g,(:) '-''· lw(af,'::i -\ /LJ9)(adZ2 ~- /Ld) - · ~ C1QZ3 -- ~Q = 0 

~- . 50[ J" 

~ '='~ , -::;: 40 °fsZJUd !2 f· 0 JoZI/Ld + fLfsad Z~ + 1-'!slld 

1..\0 
rTQZl -· fLO = O 

2 2 
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Substituting the given data, we have 

g1(z) = 625ZI + 296.88Z2 + 31.25ZIZ2 - 500Z3 + 3937.5 = 0 

At the design point, Zt = f3a, [Eq. (8.45)]. 

g1(z) = 625{3al + 296.88{3a2 + 3 I .25{32(1.1(1.2 
-500{3a3 + 3937.5 = 0 

f3 -3937.5 (8.54) 
= 625aJ + 296.88a2 + 31.25f3aJ't2 - 500aJ 

Taking partial deviatives of g1(z), 

( ~~: ) * = (625 + 31.25z2). 

= 625 + 31.25f3a2 (8.55) 

( ~;~ ) * = (296.88 + 31.25zl)* 

= 296.88 + 31.25{3al (8.56) 

( ~/! l ) = -500 (8.57) 
OZJ * 

Start with 

f3 = 6 (1.1 = -0.58 (1.2 = -0.58 (1.) = +0.58 

Using these in Eqs. (8.54) to (8.57), we have 

f3 
--3937.5 . 

= 625(- 0.58) + 296.88( - 0. 58) + 31.25(6)(- 0.58)( --0.58)- 500(0.58) 

= 3937.5/761.62 = 5.17 

Using Eqs. (8.46) and (8.53) 

Hence 

a;= - ~erzJ* 
(1.[ =- ~[625 + 31.25(5.17)(-0.58)] =-

53 ~29 

- - _!_l"'~9(i " __j_ 31 25(5 17)(-0 '8] = -
203 · 18 

a2 - K - ) Xo , . . ·"' K 

I _ 500 
IX.J -= - K-l- .:-.00] = K-

K2 = (- 531.29)2 + (-203.18)2 + (500)2 

= 573551.17 

K = 757.33 

tXJ = - ~;~·~~ = -0.702 
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203 .18 
IX2 = - 757.33 = -0.263 

500 
IXJ = 757 .33 = +0·66 

With these new values of {3, «1, «z and IXJ, the cycle is repeated till {3 con· 
verges to the minimum. Summarized results are given in Table 8.1. 

TAQLE 8.1 Computation of ~-Example 8.4 

Iteration 
Variable 

Start 2 

fJ 6 5.11 4.82 
«t -0.58 -0.702 -0.738 
ac, -0.58 -0.263 -0.241 
«• +0.58 +0.660 +0.63 

The solution is: fJ = 4.796 PJ= 111-1(-4.796) = 6x 10-7 

ott= -0.741 «1 = -0.234 ot3 =0.629 

The design point is: z* = (/h1, fJot2o fJac3) --

3 

4.796 
-0.741 
-0.234 
+0.629 

~AMPLE 8.5 For the same failure case, in _Example 8.4, determine the 
mean depth of the beam for a reliability index of 5. The beam is subjected 
to a point load Qat mid-span . It is given that 

N! = 300 kN ao = 80 kN 

P./1 = 95 N/nim2 

ad= 5 mm 

afs = 10 N/mm2 

d -=40 
fw 

Coefficient of ·variation of lw is negligible. 

Solution As the coefficient of variation of lw is negligible, it is considered 
as deterministic. ' 

The failure surface is 

Lel 

h!wd- !£ = 0 
2 

J~ - fll s 
ZJ = 

d - fld 
Z2 = -­

ad 

ZJ = Q - ILQ 

aQ 

(8 .58) 
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Substituting the above equations in Eq. (8.58), we get 

[( )( )] 
OQZ3 P,Q 

tw OJ5Zl + /kf5 ad Z2 + ftd - -
2
- -- 2 = 0 

Using the given data, we have 

ttd[50zsz2 + lOttdZs + 475z2 + 95ttd}- 1600 x 103 zJ- 6000x 103 = 0 
(8.59) 

At the design point, using z; = rx;{3, the above equation becomes f? 5 

tt~(50rxs + 95) + iJ-d(l250rxsrx2 + 2375rx2)- 8000 , l03rx3 - 6000 X 103 = 0 
(8.60) 

Using Eq. (8.46), 

(8.61) 
I 

cx1 = - ~ [~~(250rxz + 10ttd)] 

rx2 = -- ~[~~(250cxl + 475)] (8.62) 

40 x 103 
OtJ = -=---

K 

Start with 1X1 = -0.58 'X2 = -0.58 OCJ = 0.58 

Substituting the values of cx1, IX2 and OtJ in Eq. (8.60), 

(ttd)2(66) + /-Ld(2795.5) - 10640 X 103 = 0 

Solving the above equation, 

t-td = 380.9 mm 

(8.63) 

Using this value of ftd = 380.9 mm, new values of rx1, Otz and OCJ arti 
obtained. 

Using Eqs. (8.61) to (8.63), 

1 [380.9 ] OCJ =- K 40(250X -0.58 + lOX 380.9) 

= _ c4~90) 

1 (380.9 ] 
()(2 = - K 4()(250 X (0.58) + 475) 

=- c~2) 
40 x 103 

OtJ = --x-

using the relation IX~ + IX~ + IXi = I' 

K = 51371 

Hence oq = -0.656 IX2 = -0.059 lltJ = 0. 752 

.. 
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Now the whole process is repeated till the maximum value of JLtl is obtained. 
Summarized results are given in Table 8.2. 

TABLE 8.Z Summarized results-Example 8.5 

Variable 

ILd 
(mm) 

The solution is : 

Start 

-0.58 
-0.58 
+0.51! 
380.9 

8.3.1 Non-normal Distributions 

-0.656 
-0.059 
+ 0.752 
420.0 

lld "' 423 mm 

Iteration 

2 

-0.729 
-0.083 
1-0.688 

422.8 

3 

-0.733 
-0.082 
+0.685 
423.0 

So far, the mean values and standard deviations of basic variables X; only 
have been used in evaluating the reliability index. Probability distributions 
of the variables X; have not been considered. If the safety margin equation 
is linear and X; are normally distributed, the evaluated reliability index can 
be connected to the true value of the probability of failure of the structure 
(Eq. 8.15). as M is normally distributed. However, in practical situations, 
n1any of the basic variables are non-normal, · e.g. wind speed, live load, 
strength of low strength com:rctes, etc. In such cas.es, the value of f3 (or PJ) 
L'an be obtained using cg uivalent norma l distributions (8.8, 8.9) at the 
d~point. The ti·ansformalion of a non-normal variable to a normal 
variable at the design point is done as follows: 

At the failure point (i.e .. the design point D)xi. 

(i) the probability density ordinate of the original non-normal variable 
X; is made equal to the probability density ordinate of the equivalent 
normal \ariable x:. That is 

(8.64) 
I 

(ii) the cumulative probability of the original non-normal variable X; is 
made equal to the cumulative probability of the equivalent normal variable 
X1. That is 

(!t65) 

If ft\-; and a'r; are the unknnwn mean and standard deviation of XI, then 

Lq . (~.651 becomes 

(8.66) 
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The above equation leads to 

,.,.}1 = - o~1«'-I[Fx1(x;>] + x~ 
Considerina Eq. (8.64), 

(8.67) 

fx, ~:)=-~ J xt -.J4~] 
ux, 1 ux, 

(8.68) 

since XI is a normal variable. 
Substituting Eq. (8.67) in Eq. {8.68), we get 

~{<J>- 1 [Fx1(x;)]} 
o_K1 = {.tj(X;) (8.69) 

Since Fx1 and/x1 are given or known, the values of ,.,.}1 and ox1 of equiva­
lent non-,normal- can. be obtained· using Eqs. (8.67) llfte (8.6Q), The pro­
cedure of determining fl for the failure surface having non-normal basic 
variables involves the following steps: 

(i) Write the limit state equation in terms of the basic variables, i.e. 

g(Xt, X:z, .. . , X,)= 0 

(ii) Normalize t~e basic variables using Eq. (8.29). 

For normal variable X1, 

For non-~ormal variable XJ, 

X; - ,.,.x, z,= --­
ax, 

where ,.,.x1 and ax1 are the unknown mean and standard deviation of equi­

valent normal X) of non-normal X1 at the failure point. 
{iii) Write the limit state equation in terms of the normalized variables 

and unknown values of 
and ox) ,.,..rj 

(iv) Select values for fl and ott, 

section and values for ,.,.}1 and o'xr 
«:z, .•. , otn as explained in the pre.vious 

(v) Start the iteration. Calculate new values of {l, otJ, oc.2, .•• , otn 

explained in the previous section. 
(vi) For non-normal variable~ (say XJ), the design point is 

• I + Q I XJ = ,.,.x1 a.J,.ax1 

as · 

(vii) At this design point xj, find new values of P.'x1 and a'x1 using 
Eqs. (8.67) and (8.69). 

Go to step S and repeat the procedure till {l converges to the minimum. 
The procedure is illustrated with the following examples. 

EXAMPLE 8.6 A cantilever steel beam (ISLB 450) of span I is subjected to 
.I 

r 

I 

·' , 
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a load P at the free end. The resisting moment capacity of a section is taken 
as FyZ, where Fy is the yield stress and Z is the section modulus. 'Hence at 
the limit state of collapse in flexure, the safety margin can be written as 

Given: 

For Fy, 

z 
' 

P, 

M = FyZ- PI 

J.Lt = 0.32 kN/mm2 
fl2 = 1400x 103 mmJ 

fk3 = 100 kN 

ot == 0.032 kN/mm2 

oz = 70 X 103 mm3 

OJ= 40 kN 

Fy and Z are normally distributed and Pis lognormally distributed. Calculate 
~if I= 2m. 

Solution Denote 

Xt = Fy 

J.LI =fiX; 

Then the failure surface equation is rewritten as 

g(X) = X1X2 - · 2000XJ = 0 
I 

Let p,) and cr3 be the meaJl value and standard deviation of the equivalent 
normal X! of the non-normal XJ at the design point. Normalizing the 
variables 

x,- fit 
Zt=-­

UJ 

ZJ = 
XJ - -- P-3 

O' J 

X2 - 11-2 
Z2 = ---

02 

Substituting these in the failure surface equation and using the given data; 

gt(z) = Ot02ZtZ2 + 0Jjh2Zl + U2P,tZ2 + /h1/h2 
-- 2000( o5z3 + p,J) 

= 2240ztzz + 44800zt + 22400zz - 2000aSzJ 

+ 448000 - 2000p,i (8. 70) 

At the design point, z; = IX;{3 and gt(z) = 0. Using these in Eq. (8.70), 

f3 = . 2000p,) - 448000 (8.71) 
2240~ t 1X2~ + 44800rx t + 22400G<2 - 2000a51X3 

Taking partial derivatives of gt(z), 

1Xt = - l ( ~~ ~ .) ~ - l (22401XzfJ + 44800) 
(_ 

(8.72) 

IX2 = - .!.( Ogt ) = :_ j_(22401Xtf3 --j- 22400) 
K 8z2 K 

(8. 73) 

IX) = - J..( a g. ) = - J..<-2oooa5) 
K 8z3 K 

(8.74) 
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As XJ is lognormal, the parameters of XJ arc lir~t calculatecl. 

u1n .\'J --' lin (oL > I)J 112 o 0.385 

XJ - /1_,, cxp ( --kafn 1 ,) c_ 92.85 kN 

U~ing Lq. (8.69) and CDFof XJ lEq. (3.93)]. 

-
~ q,un (x;/ XJ)/aln .nJ 

/ r.,(x;) 

llul the PD 1- of lognormal XJ is given by 

.t:r,(x~> c~ - .-

1 
- -- rJ,tiJ~:y;;,rJ)/aJ" .,,J 

. .Tl <T Jn.r, 

Uslll!! Eq. (8 75) in the above equation for (/r,, we have 

' . ax, = XJ<TJn Xa 

' -===-The mean value i ., is calculated using Eq. (8.76) in Eq. (8.67). 

Assume 

J.i~, =-~; O'lnx~<l>-- 1 f<l>{ln(x;ix3)/0'Jnx, }J + x; 
c·• x;( I - In x; + In XJ) 

f3 -.. 5' 

IXJ ·--~ · 0.5 IX2 = -- 0.5 OtJ =co= + 0. 707 

tJ.; -· • /J,J == I 00 _u; = a3 = 40 kN 
~ .. ~ 

(8.75) 

(8.76) 

(8.77) 

and start the procedure. UsingEq. (8.71), 

(2000)(100) -· 448000 
/J --• (2240)(0.5)(5) -- (44800){0.5) 22400{0.5) - -2000(40)(0. 70) 

=· 2.839 

Using Eqs. (8.72), (8.73) and (8.74), 

I 
IXJ '"" -- K [2240( --0.5)(2.839) + 44800] 

41620 = --
K 

<X2 = - ~ [2240(- 0.5)(2, 839) + 22400) 

19220 
K 

r ,: 
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'XJ .c -- k [-2000(40)] 

8000 =---x 
Using iXr + IX~ + :Xi = 1, 

IX( = - 0.451 

K = 92200. Hence 

iX2 = ....:... 0.209 

The design point, xi= p.\·, ·: Ct.Jf3a\·, 

== 100 -1· 0.86R(2.839)(401 

= 198.5 / 

IXJ :-...c 0. 868 
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As X.1 follows the lognormal distribution, using Eqs. !X.76) and (8.77). new 

values of 1-'J and a.l are calculated: 

1 = (198.5)(0.385) '--' 76.42 

!tJ --~ ( 198.5)(1 -- In 198.5 + In 92.85 I 

= 47.75 

Carry out the second iteration with the new vnlues or {3, :XJ, cx2, :XJ, a) and 
p.). The whole process is repeated till the convergence is achieved. The 
results of each iteration are given in Table 8.3. 

TABLE 8.3 Cumpututimr 4 8-J::xanrp/e 8.6 

lleration 
Variable Start 

2 3 

fl 5 2.839 2.247 2.192 
«t -0.500 -0.451 -0.273 -0.260 
otz -0.500 -0.209 -0.126 -0.124 
«a + 0.707 +0.868 +0.954 +0.958 
• 198.5 211.5 208.4 "'3 

"j 40 76.42 81 .40 80.21 

l'j 100 47.75 37.51 40.04 

Result.> are: 

fl = 2.192 Pf = tfl-1(-2.192) =• 0.0142 

Design point: (;: 1 Zi, z)) = {J ( -0.264, - 0.116, 0.956) 

= ( -0~579, -0.276, 2.095) 

(xj, .ti, .\:)) = (0.3149, 1381000, 208.2) 

(Note: xJ = 40.23 + (0.956)(40.23)(2.192) = (208.2) 

4 

2.192 
-0.264 
-0.126 
J-0.956 
208.2 

80.12 

40.23 

The same problem has been solved for various values of the coefficient of 
variation of P, and corresponding .values of f3 have been computed. The 
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variation of f3 with Sp is shown in Fig. !l.6. As expecteu, {:3 decreases (i.e. 
reliability decreases) as Dp increases. 

4 

r J 

2 -
0 01 02 &p 0 J 04 OS 

FIG. 8.6 Variation of P with 3p --- Example 8.6 

ExAMPLE 8.7 An RSJ section is used as a column. The height H of the 
column above ground level is 10m. Jt is subjected to a wind load W which 
follows the Type 2 extremal largest distribution. The allowable deflection 
at the top of the column is H/250. 
Given: 

For Young's Modulus(£): (Normal) 
tt• = 2.041 x 102 kN/mm2 CTJ = 0.156x 102 kN/mm2 (S = 7.62%) 
For Moment of Inertia (!): (Normal) 

J.l-2 = 315 ;~ 106 mm4 CT2. = 15.75 :;.; 106 mm4 (8 ,_, 5% ! 

For wind load (W): lType 2 extremal (largest)] 

J.I-J = 6 kN CTJ = 1.38 kN (8 = 23%) 

Parameters: u = 5.358 k = 6.42 

Compute the reliability of the column at the limit state ut' dellection. 
Solution For a uniformly distributed wind load, 

WH 3 

Maximum deflection = SE! 

The failure surface equation is 

H 
250 

His considered as a deterministic variable. Substituting the given value of 
H, the above equation becomes 

Let 

40- (IOQOO)l W = 0 
8El 

El- 0.3125x 1010 W = o 

Xt =E X2 = I and XJ = W 
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Hence the failure surface equation is 

x.x2 - (0.3125 x I010) XJ = o (8.78) 

Let ,_,; and a; be the mean and standard deviation of equivalent normal X~ 
at the design point. After normalizing the variables, the above equation 
becomes 

g1(z) = UJC12ZIZ2 -j- C1JfL2Zl -j- U2fliZ2 -j- /lJfL2 -0.3125 X 1010(aSzJ -j- 1-LS) 

Using the given data, 

g1(z) = QZJZ2 -j- bz1 -j- CZ2 -j- 6429 X 107 - da;z3 X d/-'i 

where a= 245.7 X 106 h = 4914 X 106 c = 3215X 106 
d= 3125 X J06 

At the design point, z; = «;{3 and g,(~) = 0 
Using these, it can be written that 

f3 = dp.3 - 6429 X 107 
aa.,cx2f3 + b,, + c1X2 - das!XJ 

The directional cosines are given by 

I 
IXJ ,..= -- K (a1X2{3 + h) 

I . 
IXl = - K (a1XJ{3 + c) 

I 
I>:) = --- K (- dG§) 

where K=[E 
I-I 

(ag, )2]'12 
azl • 

Start with 

~ = 5 IXJ = - 0.5 C1.2,...., - 0.5 

,.,; = /L3 = 6 (1; = C!) = 1.38 

Substituting these values in Eq. (8.79), we get 

f3 ='-" 6,691 

Using Eqs. (8.80), (8.81) and (8.82), 

1 
lXI ":"- K (4092 >< J06) 

1 
~>:2 =- K (2393X J06) 

IXJ = }c (4313 x 106) 

Using oci + oci + oci = I, K = 6408 :< I 06• Hence 

IX) = 0.707 

CXi ='= - 0.6385 «2 = - 0.3734 «3 = 0,6730 

(8.79) 

(8.80) 

(8.81) 

(8.82) 
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The design point x; is given by 

x; = JL; + 1X3~a~ = I 2.21 

XJ follows the T c 2 extremal largest distribution. The PDF and CDF of 
X3 are [Eqs. (3 ."121) and 3.122)1 

Fxix;) = exp [- (;; rJ 
/Yix;) = : [:; r+J exp [ -- c~ rJ 

Using x; = 12.21 u = 5.358, and k = 6.42, we get 

fx,(x;) = 0 002637 
I f 

Using Eqs. (8.67) and (8.69), the new values of a3 and JLJ are calculated: 

I - 4>ffl>-1(0,995)} 5.507 
a3 - 0.002637 

JL~ = x; - ci>- 1 [Fx3(x;)]a~ 
12.21 -- f/>- 1(0.995)(5 '\[)7) 

- - I .961 

Using these new values of ~. a,, 1)(2, p.; and a;, successive iterations are 
carried out. Results are summarized in Table 8.4 . 

EXAMPLE 8.8 An under-reinforced concrete bt>am of breadth (b) 240 mm 
and effective depth (d) 480 mm is reinforced with steel bars (grade Fe 250) 
of area (A,) 1400 mm2• The grade of concrete used is M 15 (nominal mix). 
The beam is subjected to a moment M. Given: 
Variable Fy: Normal 

~ = 320 N/mm2 a = 32 N/mm2 
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1~ = 22 .67 N/mm~ 

Parameters: .f~u -~ 22.04 UJn/cu = 0.237 

·1- Type I extremal (largest):' ,. 

ft , . 72x 106 N mm a= 24 :-:106 N mrn 

P:r rarneters: II -,- 61.2 >< JOS ot ~, 0.534 ~< I 0-' 8 

Determine the reliahility of the beamat the limit state of collapse in fle)!:ure. 

Solution The ultimate strength of thb beam is given by 

R ,,_, AsFy d [ 1 - O.~L.~y~s ] 

The failure surface equation is given by 

g() = R - - !If 

-~ Ad"y d [ I -
0·~:u ~Y~•]- M 

l.et 

F.v 

(8.83) 

Using thr given value~ of As, b and d in Eq. (8.83), the fa,ilu.re surface 
equation becomes 

g(X)={IJXrX2 - · mXf - mX1X1 = 0 (8.84) 

where at ~· As d = 672000 

a2 = (m)(
0
·;

7
/ ·') = 6288 o3 = 1 

1 I I I 

Lelt.t2 and a2, and l-'3 and a3 be the va lues of the mean and standard devi· 
ation of the equivalent normals X~ and Xi at the design point. 
Normalizing the. variables Xt, Eq. (8.84) becomes 

, I I I ( 2 2 
.!,'J(Z) """ 0J(OJU2ZtZ2 + 0t!-'2Zt + 02/'!Zl) - 02 OtZI + 2aiZIP.t) 

-- m( a~a;Z2Z3 + tJ~P.;Z2 + u;JAolZ3) 
I 2 I I + 01!-'JJA-2 - 021-'1 - 03!-'2f-l3 

At the design point, z; = ot;{J .and gt(z) = 0. 
Using these, the above equation can be rewritten as 

{ ' 2 • • ) fJ = - \atJ.lrJ.lz - a2J11 - 03J.l2J.l3 
h, -b2 -h3 

(8.85) 

I I I 

where br = a1(ara2~Jrt.2fJ +· ar!-'2~1 + a2}AoJ«1) 

b2-= 02(oioci,B + 2uJOtJP.t) 
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The directional cosines are given by 

«1 = - ]: [aJ(uJu~iil/3 + au-';) - 2a2(u~«1/3 + O'JJ.tJ)] (8.86) 

ll2 = - ~ [OJ(O'JO'~otJ/3 + O'~J-'J) - 0)(0'~0'~(/.3/3 + O'~J-';)J (8.87) 

where K = [ 1: (ag1 )2] 112 
1-1 azl • 

Start with 

fJ=5 IXJ = - 0.5 ll2 = -0.5 IX) = 0,707 

1-'l = 1-'2 = 22.67 u2 = u2 = 5.44 · 

1-'~ = /-'3 = 72X 106 u) = O'J = 24 X 1 06 

Substituting these values in Eq. (8.85), we have 

f3 = 4.449 

Using Eqs. (8.86), (8.87) and (8.88), we get 

1 
IXJ =- K(l27.1 X J06) 

I 
IX2 =o- K(I07,3X J06) 

I 
«3 =- K(- 253.6X J06) 

Using «: + cxi + 1Xi :.-:: I, K = 303.3 X I 06 

the directional cosines are 

IXJ = -·0.4)9} ill = -0.3537 

The design point x2 and x; are given by 

x2 = p.2 + rx2fJa~ 

IX) = 0.8362 

= 22.67 + (-0.3537)(4.449)(5.44) = 14.11 

= 72 X )06 + 0.8362(4,449)(24 X 106) = 161.3 X 106 

It is given that £2 follows the lognormal distribution. Using Eqs. (8,76) lind 
(8. 77), new values of p.~ and u2 are calculated: 

o2 = 3.336 J-'2 = 20.4 
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X3 follows Type 1 extremal (largest) distribution. The PDF and CDF of X3 
tro [Eqs. (3.114) and (3.115)] 

fx.(x;) = ot exp [- oc(x; - u) - exp {- oc(x; - u)}] . (8.89) 

Fx.(x;) = exp [- exp {- ot(x; - u)}] (8.90) 

• Using the above equations, at the design point X3y 

F4x;) = 0.9953 fx.(x;) = 0.253 X I0-9 

Using Eqs. (8.67) and (8.69), the new values aj and p~ are 

a) = 1/l[~(~x,~;))] = 54.50 X 106 
Xa X3 

p~ = x; - tZ>-1[Fxix;)]ax, 

= 161.3 X 106 - <1H(0.9953)(54.50 X 106) 

= 19.89 X 106 

Using these new values of {J, IXJ, oc2, IXJ, p2, a2, p] and a3, the whole process 
is repeated and successive iterations carried out till the required convergence 
is achieved. Results are summarized in Table 8.5. 

TABLE8.S Computation of reliability-Example 8.8 

Iteration 
Variable Start 

2 3 4 

fJ 5.000 4.449 3.310 2.932 2.904 

0(1 - 0.500 -0.419 -0.261 -0.241 -0.259 

(t1 -0.500 -0.358 -0.0518 -0.084 -0.104 

oc a +0.707 +0.836 +0.964 +0.967 +0.960 . 
14. 11 19.83 20.77 20,52 .\'2 

a' 2 5.44 3.34 4.69 4.917 4.858 

1.1.~ 22.67 20.40 21.93 22.00 21.99 
• 161.3 x to• 193.7 x 10' 174.1 x to• 172.2x 1QG .\'3 

a~ 24 x to• 54.SO x 10' 63.88xiO' S8.34 x to• 57.78 X 10' 

1.1.) nx to• 19.89 x 10' -7.0x 108 -9.S x 10' -11.70x 101 

Result : Reliability index fJ = 2.904 
Design point : {J( -0.259, -0.104, 0.96) 

8.3.3 Determination of {J for Present Designs 

During the process of code calibration, the reliability analysis of structural 
components designed as per the present code are first carried out, and then 
the reliability levels of the present designs under different design situations are 
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established. Different design situations may mean different load combina­
tions, viz. D + LorD + WorD + L + W. Again, different ratios of 
load under each load combination may also be considered. The process of 
establishing the reli ability level is explained in the following section. 

Consider the case: the reliability study of RCC beams at the limit state of 
collapse in flexure. Let R be the ultimate strength of a RCC section in flexure. 
This is the true or actual strength based on the theoretical model to compute 
the ultimate strength. After identifying the basic variables in the theoretical 
model, the statistics of R are established using the Monte Carlo method, 
(explained in Chapter 7) taking into account the model error also. Let R, 
be the nominal strength of the member. 

When the nominal values of variables are used in the theoretical model, 
the strength obtained is called the nominal strength. When strength is calcu­
l:ucd substituting nominal va lues of variables in the equation given by the 
ct\tle it is called the design strength Rn. Let YR be the strength reduction 
far tor given by Rv/ R". If the loCid combinatir-11 D -:- L is considered, the code 
(8.3) specifies that member is tfl be designed for YDD"-+ YLLn, where Yv and 
YL are the partial snf~:t~ fact r. f r d~ad load and li,:c J nd rc pee­
lively, and D, and L. are tlllminnl val ues of·D and I. tc ~pcctively. As per 
IS Code I .3), 'Yo = 'Yt - 1.5. Hence the de ign streng th of the member is 

/?ll - 1.5(Dn -f- [ 11) (8 91) 

Since Rn 

R,. _ u( I + L") 
D, D" 

(8.92) 

Yn 

Let the failll'c surface equation under the D + L load cme·be 

R -- D -- L ~, 0 

Dividing by D", the above equation can be written as 

(.B..)(R") _ (.!2)(D") -· (J:..)(L" )-- o 
R. D, nil [),. Ln D II -

Using Eq. (8.92), 

(_B_ )[ 1.5( I + LiD,)] _ (.!!..) __ (!::. )(L"),.,... O 
Rn 'Yn D, Ln D11 

(8.93) 

For a kn9wn value of 'YR, the reliability analysis c.:u n be carried out and ~ 
computed fN Yarious ratios L./D". When the reliability is estimated nt the 
limit state of collapse (ultimate limit states), the statistics of the lifetime 
maximum live load is to he used. This i~ illu.'tr:tted in the following example. 

~,ExAMPLE 8.9 From the statistical study of the flexural strength of doubly 
· reinforced sections, with M 20 grade of concrete (nominal mix) and Fe 415 

grade of steel, it has been found that the mean value and standard devia­
tion of R/Rn are 1.222 and 0.149 respective!:;. 'YR = 0:844.lf L11/D,. = 0.5, 

-----
----------------------------------
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determine the reliability of the beam under the load combination D. + L. 
Olven: 
For 

~~,) :'p. =: 1.05 

/ (L) : P- = 0.62 

u = Q.IOS 

(] = 0.1755 

R and D are normal and L is Type 1 extremal (largest). 

Let 

X1 = R X2 = J2. XJ = .!:.. 
Rn Dn Ln 

al =1.5(1+ Ln /Dn) aJ = Ln 
YR Dn 

For "'R = 0.844 and Ln/Dn = 0.5, at = 2.666. The safety margin given by 
Eq. (8.93) becomes 

(8.94) 

In the present case, at = 2.666 and OJ = 0.5. 
Let p.) and u) be the mean 'and standard deviation of equivalent normal 
Xi at the design point. The failure surface equation, being a.linear equation, 

#LM = OJ#LI - fl-2 - {/Jf'~ 

Ullf = [aTuf + u~ t (aJu.l)2]1/2 

R fLM _ Ql/1.1 - 1''1.- (/JJ.Li 
1-' = - 2 2 '1. 

uM [a1 u1 + u2 + (a3a))2i'/2 (8.95) 

The above equation can be verified by normalizing the variables and follow­
ing the usual procedure in the previous examples. Start the procedure assum­
ing values for the unknown a~ and fL). 

Start with rr) = 113 = 0.1755 

J.I.J = f1.J = 0.62 

Using Eq. (8.95), 

~ 2.66(i( 1.222) - ( 1.05).-L 0.5(0.62) 
= l2.Cl662(0.1 49)2 + 0.1052 0.52(0.1755)2)1/2 

1. 898 -
= 0.4201 = 4.517 

(0.5)(0. 1755) = 0 2089 
0 .420 1 . 
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The design point x; is 

• , a ' 
X3 = /LJ -f- IXJ/-'173 

= 0.62 + (0.2089)(4.517)(0.1755) 

= 0.7856 

XJ follows the Type I extremal largest distribution. 
Following the procedure in Example 8.8, 

Fx3(xj) = 0.8458 .fxbn = 1.035 

Using Eqs. (8.67) and (8.69), new values of aj and ~~ are 

a:l = 0.2466 fLJ = 0.5327 

The whole process is repeated till {3 converges. Summarized results are given 
in Table 8.6. 

TABLE 8.6 Computation of reliability-Example 8.9 

Variable Start 

0.1755 

0.62 

4.517 

0.229 

0.552 

Result : Reliability index {3 = 4.525 · 
Probability of failure p1 = tll(-4.525) 

c.~ 2.465 X 10-e 

Iteration 

2 3 

4.529 4.526 

0.247 0.255 

0.533 0.522 

4 

4.525 

0.259 

0.517 

The same problem has been solved for various values of L,jD, and the 
variation of {3 with Ln/D, is shown in Fig. 8.7. It may be observed that the 
values of {3 range from 4.33 to 4.66, which are high. Normally, for compo-

6 ----------
Do'ubl y reinforct'd beam 

5 

3o - - ois- ·--0-.1.5-0--0--'7L....5---,,-':. oo:-:::---,..J2~5=----:-,'='5~0--' 

Ln/Dn 

FIG. 8. 7 Vmiation of fJ for doubly reinforced beam with L,!D,. 
-Ex~<np!e 8 ,9 
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:fitnt failure, a value of~ about 3(8. tO) is considered for code calibration. 
The high value obtained is due to the fact that for office buildings the value 
Jtf nominal live load specified by IS Code (8.11) is quite high . 
· The formulation for determining f3 for the load combination D + W is 
••me as for the L + D case. Lis to be replaced with Win all Equations 
l'rom (8.91) to (8.93). The failure surface equation i.s 

R-D - W=O 

or bt(:J- _Q_ - bJ ( w) = 0 
Dn Wn 

where b3 = w" 
D" 

bt = 1.5 (
1 + ~~~JD,) (8.96) 

The value 1.5 in the above equation is as per the present IS Code {8.3). If 
we consider the shear strength of the beam (limit state of collapse in shear), 
it has been found that the statistics of R/R" for a RCC beam (with M 15 
design mix and Fe 250 steel grade) are I" "'~ 1.355, a = 0.225, and 'YR = 
0.85 (8.12). The normal distribution has been fitted to the tail region. Usiqg 
the statistics of R/R", DfD, and Wm/ W,, given in Table 5.3 , the reliability 
analysis can be carried out for various ratios of Wn/Dn. The variation of f3 
with W"/D, for the case of a beam in shear under the load combination 
D + W case is shown iti Fig. 8.8 (Ref. 8.12). Values of fJ vary from 3 to 
3 .5. Instead of the steel grade Fe 250, if Fe 415 is used, the statistics 
of R/R, for the same case change to I"' = 1.277 and a = 0.2105. The results 
of the reliability analysis for beams in shear using Fe 415 grade is also 
shown in Fig. 8.8 . It can be observed that beams with stirrups of Fe 250 
grade have higher reliability than those with stirrups of Fe 415 grade. It is 
mainly becau~e the ratio of the mean value of the yield strength to its 
specified strength for the Fe 250 grade steel is much higher than the ratio 
for the Fe 415 grade steel (Table 4.3). 

.P 

~ r-----------------------------------~ 

4 

1. t.41S(design) +Fe- 250 

2. t.41S(design) +Fe 415 

0·5 1·0 1·5 
Wn/Dn 

2·0 

. I 

2 

2·5 

FIG. 8.8 Variation of fJ with W) D, for RCC beam in shear 
under load: D + Wm 
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The reliability analysis of members under load combination D + L + W 
can be formulated as follows. The failure surface equation is 

R-D-L-W=O 

Dividing each term by D,, the equation can be rewritten as 

(:,,)(~:) - (g)(~::) - (L)(t:)- (:;,,)(~::) = o 

As per the IS code (8.3), 

RD = 1.2(D, + L, + Wn) 

Dividing by [),, and using the relation R, = RD/'YR, 

R, ="' !. 2 ( I + L,/D, + W,/Dn ) 
{), "/R 

Hence the failure surface equation becomes, 

where C
1 

= ! .2 (I + L,JD, + I ,/DI') ,, }' 

C
.. w, 
4=­D, 

(8.97) 

(8.98) 

(8.99) 

(8.100) 

Now for different combinations ol' L,/D, and JV,/ D, ratios, the reliability 
analysis can be carried out. 

EXAMPLE 8.10 It is desired to determine the reliability of a column under 
a load combination of gravity plus wind loads, viz. D + L + W. From the 
statistical study of redangular RCC columns subjected to axial load and 
uniaxial bending, il has been found that (8. I 2) for compression failure, 

'YR = 0.725 

!J.R / RII =-= ).22 "R / Rn = 0.171 (S = 14% J 

1\:lean and standard deviation ol' D/D, and L/L, are 

For 
/) 

I 05 rJ = 0.105 (8 = 0.1) 0, I•· = 

rt>r " = U.Cl2 u = 0. 1755 (b = 0.28) 
I " 

I' 

hll' 
w 

= ll. 804 I) = 0.26!) (D = 0.334) w,. I' 

I? :1•1d fJ lt~lluw rwrm:tl. I :1r1d W l'o ll r1W Type I extremal (l.trgest). Deter­
rninc· {j il L,/U, = 0.5 <111d II',.'[),, = 1.0. 

------------------------------------------------- -
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. olulfon ·The failure ·surface is given by Bq. (8.100) Let ' 

Xr ..;.,Ji. X2 = 
I) 

Rn ·D, 

XJ 
L 

X4 
w .. 

-:c.Ln -Wn 

I h r ilure surface Eq. (8.100)- becomes 

M = CrXr ~ X2- C3X3 -C4¥4 = 0 

here 

I /.., 0 s or D = .. , 
/1 

( , _I 20 + Ln/Dn + Wn/Dn) 
I - ' )IR 

Ln C3 =­D, 

w, = 1.0 
D, 
' . ' c, = 4.138, qJ -~- Q.~. C4 = 1.0 

216 

(8.101) 

It i given that the live load and Wiri\i load follow the Type 1 extremal 
II tribu tion. Let /.l.J and aj be.Ahe tnean value and standard deviation of the 

c uivalenl 11:ormal XS -nt -the desi-gtr poii1t. Simihtrly, 1-'1 ahd b~ are for Xt 
'he fail~re. surface eq\tati<>n bejpg litre~r 

1w = c,·;,·- P.2---:- cw.!- C4P.4 

a,,t =- L(Cw;)2 +a~ + (CJu~)2 + (C4u4)2J''2 

{3 = ILM 
O'M 

The proce~ure ofcGmput~t.ioi' i~ s.imil~u to the one explained in the previous 
~~mple. Summarized results. al'e given in Table ~. 7. 

The variation of {3 with ·w,{D, and L,JD, for RCC columns under; the 
load combination D + Lm + Wm is shown in Fig. 8.9. 

8.3.4 Correlated Variables 

It; all the previous problems, we have assumed that all variables in tlie failure 
surface equation are statistically independent, and have computed reliability 
index based on.this assumption. In practice, we may have to deal with cases 
whe\1 all variables or some of the variables are correlated. The procedure of 
solving such· cases is explained below. 
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TABLE 8.7 Computation of reliability-Example 8.10 

ltera tion 
Variable Start 

fJ 3.755 

~3 0.1755 0.1955 

!J.j 0.6200 0.5795 

(J4 0.268 0.387 

1'4 0.804 0.657 

Result : Reliability index~ = 3.687 

C: Comprfssion fait ur ~ 
T: Tension failure 

2 3 

3.728 3.698 

0.185 0.182 

0.585 0.586 

0.455 0.495 

0.555 0.481 

1:ln/Dn::05 
2:Ln/On.,.1·0 

J: l n I 0 n = 1 · 5 

Duign mix 

4·0 ,_--e=:::::=:=--o---

J·O . 
._,._ -- -

4 

3.&89 

0.181 

0.587 

0.516 

0.438 

CJ 
C2 
T3 

.... ,C1 
..,.T 2 

--.T1 

2· 5~-----:;:-:-----::-';;-----:-'-::------:-l~ 
0 0-5 , 0 1·5 2·0 

Wnf Dn 

FIG. 8.9 Variation of fJ with W,ID, and L,ID, for RCC columns under 
load: D , L,, W,, 

5 

3.687 

O.lSl 

0.587 

0.527 

0.416 

Let Xt, X2, ... , X, be the set nf correlated variables appearing in the 
failure surface equation . let [CxJ he the covariance matrix of the correlated 
variables. That is 

.- Var (XtJ 

Cov <.r2,XJ) Var (Xz) 
!Cx] = 

Cov (X11, X1) Cov (X11, X2) 

Cov (X1, X,) 

Cov (X2, Xn) 

Var (X11l 
(8.1 02) 

l.d ,\1, ,\~, ... , A, be lh<! eigen values and [V] be the matrix having each 

__ .-;._ 
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c lumn represented by an eigen vector corresponding to each eigen value. 
Thnl is, if C;j is the eigen vector for Ah then the elements of matrix [ V] are 

e11 e12 .. ) Clj "" l Cll t'22 C!2j £12u 

lVI= (8.103) 

(',1) Cn2 e,/j t'mr J 
This matrix [ V] is an orthogonal transformation matrix. Then the required 
~t .of uncorrclatcd variables Y is given by (8.2) 

Y = LV]'X '(i!.l04) 

where Y = {Yt, Yz, ... , Y,}1 and X = {Xt, Xz, . . , X,}'. The . superscript 
t denotes the transpose. Since [V] is orthogonal, l V]- 1 = I V.l'. Hence, 

X , ,~ I. V.IY 

Tne expectt·d values or Y arc given by [Eq. (~ . I 04)1 

E(Y) = IV]'E(X) 

The variance matrix of Y, [Cy"l, is given by 

[Cr] = [V]'[Cx]LV] 

r At 

0, 
=[A}= 

0 

0 0 

0 

0 l 

. I 
A, J 

(X.I05) 

(8.106) 

(8.107) 

That is, the eigen values of tv] arc also the variances of respective variables 
Yt, Yz, . . . , Y,. Knowing the mean values and standard deviations of Y, 
the variates Y; can be nonnalized as usual, i.e. 

(8.108) 

and fJ can be determined following the procedure given in the previous 
sections. Hence the following steps are involved for correlaLed variables: 

(i) Determine the eigen values and the corresponding eigenvectors of the 
covariance matrix. That is, determine the matrix [V). 

(ii) Write the safety margin equation in terms of the uncorrelated 
variables using Eq. (8.1 OS). 

(iii) Determine the mean values of Y using Eq. (8.106) and the variances 
ofY using Eq. (8.107). 

(iv) Normalize the variables Y; using Eq. (8.108) and write the safety 
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margin equation in terms of the normalized variables Z;. Note that using 
Eqs. (8.105) and (8.1 08), we have 

X = [V][ far]Z + !J.y] 
= [ V][ ay ]Z -1- [ V]!J.y (8. 1 09) 

where 

[o1•l = 

(v) Determine {3. 

r IJy, 0 0 ... 0 l 
I 

l) ay, 0 0 I 
I 
I 

L o .. . .. . ... ... ay" J 
!J.y = (/1-Yu fLy,, • ., fL~·~~)I 

Z = (Z,, Z2, . . . , Z")l 

(8.110) 

With the orthogonal transformation of Eq. (8 .104), it can be shown (8.7) 
that the reliability index of Eq. (8.44) becomes 

-- z~G• 
{3 = (G '·[C]G:)I/2 (8.111) 

EXAMPLE 8.11 For the same problem in Example 8.9, assume that R and 
D are correlated. The correlation arises because both depend on the 
dimensions of the beam. Assuming Cov (R, D) = 0.0111, determine the 
reliability index. 

Solution The failure surface equation is [Eq. (8.94)J 

{/JX1 -- X2 - (/)X3 = 0 

where 

C/1 ~~ 2.666 OJ = 0.5 

The covariance matrix is ll-- [I L 

0.01 I I 0 --
[CxJ =o ~-01 J I 0.01 tO 0 

/ 

/ 

1oom 
. 0 o..-~ 0.03bB 

The corresponding determinant equation is 

J 

[ 

(0.0222 -- ,\) 

Det 0.0111 

0 

0.0111 0 J-, 

(0.0 l I - ,\) 0 = 0 

0 (0.0308 - ..\) 



l'he characteristic equation of [Cx] is 

(0.0222 - A)L(O.OI I - A)(0.030g- A)] - 0.0111[0.0111(0.0308 - A)] = 0 

,\3 - 0.064,\2 + 11.436 X 10-4,\ - 3.725 X r'o-6 = 0 

Thil'eigen values, given by the roots of the equation are 

At = 0.02903 A2 = 0.004167 t\3 = 0.0308 

The corresponding normalized eigcn vectors are 

[ 

0.8516 J 
et = _ 0.5~42 

Hence, the orthogonal t~ansfQrmation matrix is 

lVJ ~ ( 
0.8516 0.5242 

~ J 
0.5242 0.8516 

0 0 

Hence, using Eq. (8.104), 

Y = [VJ' X 
The expected values of variates y/arc lEq. (8.106)] 

I ~Y, l [ 0.8516 

I /A- Ya = ·-0.5242 

- f'Ya 0 

1.222 J 
1.050 

L.. 0.620 

0.5242 

0.8516 

0 

This yields 

fi.Yt = 1.591 , /kY~ = 0.2536 1-'Ya = 0.62 

\.. 

u}. = 0.0308 X.'\...~ 
The variances of Y, given by eigenvalues, are, 

2 2 1 
Uy1 = 0.02903 uy1 = 0.00416 

that is ~ ~ 
Uy1 = 0.1704 Q'y~ = 0.06456 uya = 0.17 

Using Eq. (8.109), it is obtained as 

Xt = 0.1451Zt - 0.0338Z2 + 1.222 (8.112) ..---
X2 = 0.0893Zt + O.OSSZ2 + 1.050 

_./~3 = 0.1755Z3 + ~ 
(8.113) 

(8.114) 

Substituting these in the failure surface equation, the equation in terms of 
the uncorrelated normalized variates becomes 

at(O.l451Zt - 0.0338Z2 + 1.222) - (0.0893Zt + 0.055Z2 + 1.05) 

-- a3(0.1755Z3 + 0;62) = o 
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Substituting the values of at = 2.666 and m = 0.5 in the above equation, 
we get 

0.2975zt - 0.J452Z2 - 0.0878ZJ + 1.898 = 0 

The above equation being linear, and since t.tzi = 0 (normalized variates), 

1.898 
f3 = [(0. 297 5 )2 + (0. 1452)2 + (0.0878)2 J l /2 

= 5.54 

The same problem can be solved straightway without using the trans­
formation matrix, since the failure surface equation is linear. The given 
equation is 

M = atXt - X2 - a1X1 = 0 

The reliability index is 

ftM = att.tx, - t-txa - U3t.tx. = 1.8978 

aM= [(atux.F + aL + (max.F- 2at Cov (Xt, X2)] 1i 2 

= [(2.666 X 0.149)2 -\- (0.1 05)2 + (0.5 .>< 0. 17 55)2 

-2 >< 2.666 >·: 0.0111]! 

= 0.342 

f3 = 1 .897~ = 5.54 
0.34_ 

EXAMPLE 8.12 Consider the same problem of the cantilever beam, given tn 
Example 8.6. The limit state failure equation is of the form 

If 

X1X2 - XJ ~-~ 0 

/.L.\, '~ 14 ;.; 102 

ftXa = 32 
/.LX3 o...; 20 /, 103 

Cov (X1, X2) "= 1.12 X 102 

Cov (X2, X3) = 45 X 104 

ax, = 0.7 ;< 102 

ax, = 3.2 

ax,--" 8:< 103 

Cov (X2, X1) = 8 :-: 1 Ql 

determine the reliability index if all, Xt, x~ and XJ follow tbe normal 
distribution. 

Solution The variance matrix is l 4900 
112 45 X 104 

J 
[Cxl = 112 10.24 8000 

45 ;; 104 8000 64 X 106 
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The eigen values are 

.\1 = 64 X 106 ,\2 = 1738 

The corresponding [ V J matrix given by Eq. (8.1 03) is 

. [ 0 .7031 X IQ-2 0.9995 - 0.03 224 ] 

fVl = o.J25 x 1 o-J o.03224 o.9995 

1.0 -0.7032xl0-2 0.1017XI0-3 

The uncorrelated variables Y are given by [Eq. (8.1 04)1 

Y = fVl'X 
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The expected values and standard deviations of Y; are [use Eqs. (8 .1 06) and 
(8.107)] 

/LY 1 = 20010 

ay1 ·= 8000 

ILl', -= 1260 

ay• = 41.69 

/LY; = - I 1.]1 

ay3 cc= 2.728 

Since all X; follow normal distributions and Y; is a linear combination of 
Xt, Y; also follows the normal distribution with the corresponding para­
meters JLY1 and ay1• The original failure equation is written in terms of the 
uncorre1ated variables using 

X= IV]Y 

as Xt = 0.7032 x J0··2Yt -1- 0.9995Y2 - 0.03224Y3 

X2 = 0.125 'C I0-3Yt + 0.03224Y2 + 0.9995YJ 

XJ = Yt --· 0.7032 x 10-2 Y2 + 0.1017xJ0- 3fJ 

Normalizing the variables Y;, 

x, can be written in terms of z,. 
X = [V][ay]Z + [V]JLy 

where 

[ 8000 
0 

[a1•J = 0 41.69 

0 0 

Py ~ [ 20010] 
1260 

- 11.11 

(8.1 05) 

(8.115) 
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Substitution of [V], [ay] and fLY in tbe above equation yields 

X1 = 58.48Z, + 41.6722 - 0.0879523 

X2 = Z1 + 1.34422 -1- 2.72723 

X3 = 8000Z1 - 0.29322 -{- 2.782 X I0-4z3 

The given failure surface equation is 

x,x2- x3 = o 

(8.II6) 

(8. I I 7) 

(8. I 18) 

Using Eqs. (8. 107) to (8.109), the failure surface equation in terms of the 
uncorrelated normalized variates becomes 

g,(z) = 56.2Szi + 56.0z~ - 0.24z~ + I 17.26ZIZ2 + I53.3z,z, 
--1-II3.5Z2Zl -- 4799zl + 32I7Z2 + 38I6zJ + 24850 

The procedure of determining f3 is the same as explained in Example 8.6. 
Results of iterations are summarized in Table 8.8. 

TABLE 8.8 C amputation of {J-Example 8.1:! 

Iteration 
Variable Start 

2 3 

p 5.000 -7.519 3.721 3.533 
0(1 -0.5 -0.624 -0.714 -0.699 
()(. -0.5 -0.457 -0.424 -0.437 

"a 0.707 +0.634 0.557 0.565 

From Table 8.8 
f3 = 3.533 

• * the design point: ::; = Ct.; f3 

(z;, ::i, zj) = (-2.47, -1.544, 1.994) 

xi = 58.48zt + 41.67z~- 0.08795z3 

= 208.7R 

x~ = zi + I .344z; .!_ 2.727z! 

= -4.544 

x~ = 8000zj - 0.293z; + 2.782 >~ J0-4zj 

= I9759.5 
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EXERCISE 

H. I For the problem in Example 8.6, what is the reliability of the beam if the coeffi­
cient of variation of the load is 20%.- All other data remain the same. 

(Ans. fJ = 3.558) 
8.2 For the problem in Example 8.8, what is the reliability of the beam if the mean 

value and standard deviation of the strength of concrete are 30.28 N /mm• and 
4.54 N/mm• respectively. All other data are the same. 

(AJtS. fJ = 3.293) 
R.3 For the same problem in Example 8.6, what is the reliability of the beam if P 

follows the Type I extremal largest distribution with mean, 100 kN and standard 
1lcviation, 30 kN. 

(Ans. fJ = 2.608) 
f!.·l For the sam.: problem in Example 8.6, whnt is the reliability of the beam if P 

follows the Type 2 extremal hll'gest distribution with parameters 11 -.~ 89 3 kmph and 
k · 6.42. The corresponding mean = IOOand standard deviation = 23 kmph. 

(Ans. fJ = 2.7) 
8.5 Forth(! same problem in Example 8.11, determine the reliability index if 

(i) the correlation coefficient between the variables X, and X 2 is 0 .5 
(Ans. fJ = 5.169) 

(ii) p between X, and X 2 is 0.5 and p between X 2 nnd X a is 0.8. 
(Atlf. {J~4.90Il 

8.6 (a) The shear sfrength. R. of a RCC beam is given by the following model 
cqur~tion 

R ~ B[ 1.1 Asvfy.!{_ + 1.8566hd (feu~ !!...)''8 ] 
s bd a 

where 11 is the model error, A,. is the area of stirrups, b is the breadth, d is 
the effective depth, sis the spacing of stirrups, A, is the area of tension steel 
and a is the shear span. 
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It is given: 

fy : JL = 469 N/mm• 

fe 11 : p. = 17.58 N/mm' 

b : p. = 310.3 mm 

d : !' = 556 .3 mm 

s: 11 = 150 mm 

B: p. = 1.2 

V D : I' = 73430 N 

VL:~.t=57830N 

a = 46.9 N/mm' 

a= 3.16 N/mm' 

a= 9.47 mm 

a= 3.79 mm 

rr=13.5mm 

(J ~ 0.13 

n = 7343 N 
a=- 16400 N 

where V D and VL are I he shear forces due to dead load and live load, respec­
tively, feu and VL follow the lognormal and Type 1 exlremal (largest) distribu­
tions, respectively. All other variables are normally di;;tributed. Determine 
the reliability indtx of the beam at the limit state of collapse in shear if 

Asv = 100.5 mm 2
, A/bd:'0.008 and a!d=4 

(Ans. fJ = 7.68) 
(ii) If the shear strength of the beam is predicted by the following model 

R = B[!. I !!___ -1- hd. ~--{vi+58 - I}] 
y

1 
Si' s · 6 V O.Bfcu 0 

what is I he reliabilily or the beum if 8 is 2.175 

§ (i) (Am. f3 = 4.45) 
The safety checking format ol' a steel column sttbjectcd to axial load P and 
bending moment M is as follows. 

where kiP is the plastic moment capacity of the column when thcte is no axial 
load and Puis the ultimate axiulload carrying capacity of tht: column under 
pure axial load case. 
Area of the cross-scclion is 6496 mm' and plastic section mouulus of the 
section is 678700 mm•. It is given: 

For fv : l-' 262.5 N, mm• 

PD: 11 ~-, 0.398·: 10' N 

l' L : II- 0 3 I 08 --: l 0° N 

flfv : JL - 0.1785 1 o• N nun 

M1.: JL "0.1394 :c to• N mm 

a -- 26.25 Njrnrn' 

a o,- 0.398x 10• N 

" ,- 0.870:< ro• N 

a-- 0.1785:.; 107 N llllll 

a ~ 0.3945 :< 107 N mrn 

where Pn and PL are axial loads due dead load and live loud respectively. 
MD and filL are moments due to dead load and live load respectively. 
Determine the reliability of the column. 

(Am. fl ~" 3.463) 
(ii) If ihc safdy checking format uses •1 nonlinear model giwn by the following 

equation 

(~) ·I (!.-)' ~ 
.\fp f'u 

what is the reliability of the column'! 
(Ans. fl = 4.22) 
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Reliability Based Design . 

9.1 INTRODUCTION 

In the last chapter, we studied the Level 2 (including advanced Level 2) 
methods in detail. Using the same methods, the evaluation of the reliability 
of structural elements was illustrated. Now the problem is reverse. One 
wants to produce a structural design which will ensure a certain level of 
reliability. That is to say, to provide a design for a specified level of risk/ 
reliability. This was demonstrated in Example 8.5 also, where the depth of 
the girder was calculated to be.safe against the limit state of collapse in 
shear, ensuring the required reliability level. 

Consider the fundamental case: a structural element/system with a 
resistance R subjected to an actionS. If R and S are independent normal 
variates, 

fl = /!R - JLS 

V a~+ al 
(9.1) 

Therefore, the mean resistance (representing the design) required to ensure 
the specified reliability or target reliability, flo, is 

(9.2) 

If one uses the other safety format, assuming R and S are independent 
lognormal variates, the median value of the required resistance of the 
design is 

(9. ~ }-

But in practice, R is represented in terms of several resistance variables a11d 
design constants, and S in terms of load variables and design constants. 
For safety, 

gR(X1,X2, .• . , Xm, C1, C2 ... ) ~ g8 (Xm, 1, .:\'"m,2, ... , 

X,, C;, Cj; I ... ) (9.4) 

where, X1, ... , Xm are the resisting variables, Xm+l, .. . , X, arc the loading 
variables, and C1, C2, ... , Ci . .. are design constants. gR and gs are 
resistance and load effect functions respectively. 

If x~ are the design values of variables, then the design equation is . . . . . 
gR(XJ, X2, •.. , Xm, CJ, c2 •.. ) ~ gs(Xm+l, Xml-2, •.• , cj, cjrl ... ) 
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The partial safety factor or the safety factor is defined with respect to a 
particular value of the variable. If it is defined with respect to the mean 
value, as given below, . 

X; 
'Yci = - (9.6) 

/Li 

It is called the central safety factor. J.L; is the mean value of X;. If the partial 
safety factor is specified with respect to the specified characteristic value, 
Xk; of X; (corresponding to five per cent fractile in the case of resistance 
vari3ble and 95 per cent fractiJe in the case of load variable), then . 

X; 
'Yki =­

Xki 
(9.7) 

The partial safety factor, 'Y;, defined with respect to the nominal value, x,.;, 
of the variable X; is given by . 

X; 
'Y; = 

Xni 
(9.8) 

Jn this text, whenever 'Y; is used, it refers to the partial safety factor with 
respect to the nominal value. Using these y;, the design equation (Eq. 9.5) 
becomes 

gR('Y1Xn1, 'Y2Xn2, ... , 'YkXnk, lt, C2, ... ) ?: 
" gs(Yk+l xn,k+t.Yk+l x,.,h2• ..... ,C1 ,CJ+I .... ) 

.~ ,. '~'Jv;w-., 

(9.9) 

Presently. the reliability based desigli means arriving at these values of 
pnrtial safety factors for a given target reliability for a particular failure 
criteria. Once safety factors are calculated, the design values are known 
and hence the design is proposed for the specified reliability. The computa­
tion of partial safety factors and the process of reliability based code 
calibrati0n arc de,11t with in this chapter. 

9.2 DETERMINATION OF PARTIAL SAFETY FACTORS 

The reliability based design criteria is developed using the first-order second­
moment approach. In the last chapter, the reliability analysis was introduced 
and illustrated using the Level 2 method. The probability of failure or 
reliahility (in terms of {3) was calculated for given safety factors for a given 
limit state. Now the process is reverse: partial safety factors are to be 
evaluated for the given target (3. The same Level 2 reliability method can 
he used. In the normalized coordinate system, for a given failure surface, 
the shortest distance from the origin 0 to the failure surface defines the 
safety of the design . Different levels of safety (i.e. ,8) will yield different 
failure surfaces, as shown in Fig. 9.1, amounting to different designs. 
Hence, in the reliability based design, the problem is to determine the 
de ign values of the variables that will result in designs having failure sur­
faces that comply with a required safety index {3. If x~ is the design value 
of the original variable X;, the failure surface equation is 

(9.1 0) 
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FIG. 9.1 Design corresponding to different reliability indices 

If the partial safety factors are attached to the nominal values of variables, 
the above equation becomes 

g(YIXnl, Y2Xn:: •... , YnXnn) = 0 (9.11) 

The design point should be the most probable failure point. Now the 
problem is to determine the most probable failure point. In the normalized 
coordinate system, tbe most probable failure point is given by [Sec . 8.3.1 : 
Eqs. (8.45) and (8.46)] 

where 

The original variates are given by 

• • 
Xi = p.; + o;z1 

= p.; + CJj':J.~~ 

This equation can also be written as 

X~ = p.;(l + 8;-x ~~) 

where 8; is the coefficient of variation of X;. 
Hence the partial safety factor required for the given {3 is 

)I;= X: = 1'/1 + 8,-x;{j) 
Xqt Xqt 

(9.12) 

(9.13) 

(9.14) 

(9.15) 

(9.16) 
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If the partial safety factors are specified with respect to the mean values, i.e. 

then 

XI 
'>'cl =­

l-'1 

'Yc; = 1 + 8; 11.~{3 (9.17) 

If the partial safety factors are referred to the specified characteristic values, 
then the nominal values are replaced with the characteristic values in 
Eq. (9.16). The procedure of computation of the partial safety factors is 
illustrated in the following examples. 

~AMPLE 9. 1 A simply supported steel beam (RSJ) of span 8 m is designed 
"· for the f !lowing data: 

Variable 
Mean Nominal 8 Distribution 

Nominal value 

X1: Yield strength 1.10 250 N/mm2 0.10 normal 
of steel 

Xz: Dead load 1.05 11.0 N/mm 0.10 normal 
XJ: Live load 0.70 12.0N/mm 0.40 normal 

Determine the partial safety factors for the design variables X; if the target 
reliability is 4.0. 

Solution The limit state equation in the original space, g(X) = 0, is 

X1Zp- X2 (':) - XJ ( ~) = 0 (9.18) 

where I is the span and Zr is the plastic section modulus of the section. 
Normalizing the variables by using the equation , 

X; - p.; 
Z;=---a, 

the limit state equation in the z space is 

Let 

Then 

J2 J2 
g,(z) = Zp(aiZJ + P.l) --g(a2Z2 + fl-2),- (aJZJ + /-'l)g = 0 

Zp 
A = 8-­[2 

g,(z) = A(aJZJ + p.J) - (a2z2 + P.2) - (aJZJ + P,J) = 0 

Using Eq. (8.46), 

(9. 19) 



where 

K = ( E ( ag,)z]r'z 
1-t az, • 

~~ = - i (utA) 

1 
.otz =-- (-uz) 

K 

1 
~3=-x(-u3) 
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Since the limit state equation is linear, and all variables follow the normal 
distribution, the reliabiJity index is given by 

Af'r - 1-12 - f'l 

fJ = [(Aut)2 + u~ + u~] 1 1 2 

ln this design problem, the value of fJ is already given as 4. Hence 

A14r - f'?. - f'J 
2 2 2 = fJ 

(A2ur + <72 + UJ)I/1 

(AP.t - 1'2 - 1'3)2 = (J?.(A2a~ + a~ + ui} 
The quadratic equation in A becomes 

b1A2 - h?.A + bJ = 0 

where 

bt = p.f - {J.2u~ 

h1 = 2p.t(l'2 + f'J) 

(9.20) 

b3 = I'~ + 14~ + 21421'3 - /J2( 0'~ + 0'~) 
Substituting the given values of ,.,, u; and {J, and solving the quadratic 
equation, we have 

bJ = 63525, 

A= 0.153 

b2 = 10972.5, bJ = 196 

Using the computed value of A, the di~ectional co'sines rx, can be calculated. 

1 
Ott=- K (27.53 X0.153) 

1.15 3.36 
. 0t2 = - -K OtJ = K 

Using l: rx7 = 1 and K = 5.507, we have 

rxt = ·- 0. 764, ocz = 0.21, 0t3 = 0.61 
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Design points in the original space are 

X~ = /LI + OCt {Ju1 

= 275- 0.764X4X27.5 = 190.96 

X; =; 11.55 + 0.21 X 4X 1.155 = 12.52 

x; = 8.4 + 0.6Ix4x3.36 = 16.6 

Hence, the partial safety factors with respect to the nominal values are 

"IJ 190.96 = 0.764 
'I = 250 

12.52 
Yz = -

1
-
1

- 1.138 

,..J = 
16·6 . = 1.383 
12 

Here ">'t is the partial safety factor (multiplying factor) for the yield strength 
of steel. (Note: In IS and British codes, !/">'1 is taken as the partial safety 
factor for ~materials. That is, 1/0.764 = 1.309). Hence the design equation 

[2 
0.764 JynZp ~ g (1.138 Do+ l.383Ln) 

will ensure a reliability level of f3 equal to atleast 4 for the given data. jy,. 
is the nominal value of jy. 

For example, if a beam is to be designed for a span of 6 m and for the 
same nominal loads, the section modulus required is given by the condition 

0.764X250 Zr ?-
36 ~ lOr• (1.138 X 11 + 1.383X !2) 

Zp required is 685930 mm 3• If this Z 11 is provided, the reliability analysis 
can be performed and it will be found that {3 = 4 for the same mean values 
and standard deviations of jy, D and L. 

EXAMPLE 9.2 For the same problem in Example 9.1, what are the values 
of the partial safety factors with respect to (i) the mean values and (ii) the 
characteristic values. 

Solution Case (i) 
From Example 9.1, the design points in the original space are 

X; = 190.96, x; = 12.52, • 
XJ = 16.6 

Hence, the partial safety factors with respect to the mean values are 

Y; = x;' 
f-1-i 

Y, = ~~~·:6 = 0.694 



Hence the dt>sign equation is 

12.52 
"

2 = l 1.55 

,3 = 16.60 
8.4 

= 1.084 

= 1.976 

12 
0.694 P-Jy2p ~ g ( 1.084 ftD + 1.976 P.L) 

to ensure a reliability level of~ = 4. 

Case (ii) 
The partial safety factors with respect to the characteristic values are 

• X; 
'Y; =­

Xk; 
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where Xk; is the characteristic value of xi. For the yield strength of steel, 
(5% fractile) 

Xkl = P.l - 1.64 17J 

= 275 - 1.64 X 27.5 = 229.9 

For dead load (95tYo fractile) 

Xk2 = !J-2 + I .64 172 

= 11.55 -J- 1.64 X 1.155 = 13.44 

For live load (95% fractile) 

Xk3 = !J-3 + 1.64 17J 

= 8:4 + 1.64 X 3.36 = 13.9 

Hence, the partial safety factors with resl-'ect to the characteristic values 
are 

'Ykl = 190.96 
=0.831 

229 .9 

Yk; = 12.52 
= 0.932 

' 13.44 

,k3 = 16.60 = 1.194 
13.90 

Hence the design equation for f1 = 4 is 

f2 
0.831 }~kZp ~ 8 (0.932 Dk + 1.194 Lk) 

where fyk, Dk and Lk are the characteristic values of jy, D and L respectively. 

EXAMPLE 9.3 For the same problem in Example 9.1, what is the value of 
the combined load factor ? 
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Solution From Example 9.1, the design equation is 

f2 
0.764 hoZp ~ g (1.138 Dn -\- 1.383 Ln) 

We want to propose the design equation 

12 I 0.764 fyn Zp ~ g [YT(Dn + Ln)l 

such that it will ensure~ equal to alteast 4. 'YT is the combined load factor 
on total load. This is computed as follows: 

1.138 Dn + 1.383 Ln = 'YT(Do + Ln) 

YT = 1.138 Dn +- 1.383 Ln 
Dn + Ln 

\.138 X 11 -\- 1.383 x 12 
II+ 12 

1.266 

Hence the design equation becomes 

0.764 fynZp ~ ~
2 

[1.266 Wn -1- / . .,)] 

In Example 9.1, no iteration is involved as the failure surface equation is 
a linear function of the normal variables. If the failure function is nonlinear 
and/or the variables are nonnormal, the problem is to be solved iteratively. 
This is illustrated in the following example. 

~MPLE 9.4 onsider the :.ame problem in Exa mple 9.1. Determine the 
Vp~·~~ial safet y factors for~ = 4, if the yield strength of steel (XJ) and live 

load (XJ) follow the lognormal and Type 1 extremal (largest) distribution 
respectively. 

Solution The failure surface equation is 
f2 

ZpXi -lfX2 

Let the design constant A he 

If x;, x; and xi arc the design points, then 

Ax; - x; - xi = 0 

(9.21) 

(9.22) 

Since Xi and XJ are nonnormal, the equivalent means and standard devia­
tions of nonnormal variables (Xi, X,) are to be used. 

Hence the failure surface equation in normalized variables hecomes 

rl(a;zl + f.L;) -- hz2 + f.L2) - (a.;.n + J.L;) = 0 



Using Eq. (8.46), the directional cosines are computed: 
I 

--(A or) 
IXt = ----. K 

oz 
0(2 =-

K 
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(9.23) 

(9.24) 

(9:25) 

The procedure of computation of the partial safety factors is as follows: 

(i) Start with any x;. x; and x;. . 
Using Eq . (8 .67) and (8.69), compute a; and 1-4; and a; and ~; of the 

non-normal variable Xr and X1 at the design point x•. 
(iii) Compute A u ing Eq. 9.:>.2). 
iv) Determine the dircct i nal cosines oc; usitig Eqs. (9.23) to (9.25.) 

(v) Determine the new design point 

X~=": +cr: CX. · A I r1 I I 1-' 

(vi) Go to step (ii) and repeat the procedure till the required convergcll<{• 
is achieved. 

For example, stop if 

and/or 

[
Xjl - X j- l,r] ~ 0.005 

Xjl 

where j stands for thejth iteralion. 

(916 

i = I, 2, 3 (9 17 

I I 

For calculating the equivalent a, and /li of X;, parameters a1nXI an 

Xt are computed using qs. (3.91) and (3.92): 

ara.\'1 = [In (8~ + 1)]1/2 = 0. J 

Xt = l-'1 exp (- T afnxt) = 273.6 

Using .Eqs. (3.115) and (3.116), the parameters of X1 following the Type 
extremal distribution are calculated: 

Start with 
• 

7T 
IX = ---- = 0.382 'V6 °3 

u = 8 4 -
0

•
57722 = 6 839 . 0.382 . 

XI = P.t = 275 
• 

X2 = l-42 = 11.55 • 
X3 = P.l::: 8.4 



i 

f 
I 

234 

At x; = 275, using Eqs. (8.76) and (8.77), 
I • 

GJ = Xt GJnXI = 27.43 

p.; = x~(l - In x; + In Xt) = 273.6 

At x; = 8.4 using Eqs. (3.113) and (3.114), 

F(x;) = exp [ --exp { -0.382(8.4 - 6.839)}] 

= 0.5704 

/(x;) = 0.382 exp [ -0.382(8.4 --- 6.389) 

-exp{-0.382(8.4- 6.839)}] 

= 0.1222 

Using Eqs. (8.67) and (8.69), 

, <fo[(/rl( .5704)1 
a 3 = ~--:0-. :-::12:-::-2-::-2 ~ 

= 3.213 

!-'; = 8.4 - a;{ci>-1(0.5704)} 

= 7.831 

Using Eq. (9.22) compute A: 

The directional cosines are 

A = (11.55 + 8.4)/275 

= 0.0725 

CXJ = -0.504 ()(2 = 0.292 

New design points in the original space are 

CXJ = 0.813 

X;= 273.6- 0.504 X27.43 X4 = 218.4 

x; = 11.55 + 0.292 X4X 1.155 = 12.9 

x3 = 7.831 + 0.813 >~ 4 x 3.213 = 18.28 

With these new values of x:, the whole process is repeated till the required 
convergence is achieved. The results are summarized in Table 9.1. 

At the end of the fourth iteration, 

A= 0.1812 

X~ = 235.1 x; = 30.57 

The partial safety factors with respect to the nominal values are 

235. 1 
Y1 = ,.,,y = _

50 
= o.94 



TARLE 9.1 

VArlllble Start 

• 275.0 A' t 

• 11.55 xl 
• 8.40 X ) 

A 0.0725 
I 

27.43 "• I 
273.6 ,., 

I 
3.21 aJ 

I 
7.!!3 I'J 

•• -0.504 

Ill 0.292 

l!ll 0.813 

Computation of partial safety factors-Example 9.4 

218.4 

12.9 

18.28 

0.1428 

21.76 

267.6 

6.79 

3.12 

-0.411 

0.153 

0.899 

Iteration 

2 

231.8 

12.26 

27.54 

0.1717 

23.1 J 

270.2 

9.50 

-4.47 

-0.383 

0.112 

0.917 

l ;i~g = 1.093 

3~:}7 = 2.548 

3 

234.8 

12.07 

30.38 

0.1807 

23.42 

270.7 

10.21 

-6.97 

-0.3!!1 

0.104 

0.919 

23!) 

4 

235.1 

12.03 

30.57 

0.1812 

'./ 

y\, 1'1 I Hence the design equation is 

J2 
0.94 Zpfy ~ g [1.093 D + 2.548 LJ .\ k J_ \,U' 

·'1 ---

k : ~-

MPLB 9.5 The ultimate strength of a RCC beam is given by ,,, r ;zlSure a reliability level of f3 = 4. - ~ 

[ 
r ] A 1 ... b Y1 ·\1 A., 

n = f>A,d l - o.z~fcuA. ~ ~ s (), b fu-. ----<9.28) 

Let the beam be subjected to a bending moment M due to the dead load 
and live load. Then the failure surface equation is 

R- M= 0 (9.29) 

The main basic variables in this case are jy, feu and M. However, if we 
compute the partial safety factors for Jy, /cu and M, we may end up with a 
value of Y for concrete > 1.0 and sometimes with high values more than 
1.5. This can be quite misleading. This happens because the compressive 
strength of concrete does not play a significant role in determining the 
flexural strength of the RCC beam. Hence what is done is, the partial safety 
factor for concrete is prefixed or selected to account for the various uncer· 
tainties . .The concrete strength may play a significant role in columns. 

Let the partial safety· factor for concrete strength be 0.667 (given in the 
present code as 1/Ymc = 1/1.5). Therefore, the design strength of M 15 
concrete is 10 N/mm2• 
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It is given: 
Variable _{y: (normal) 

Mean = 320 N/mm2 a = 32 N/mm2 

Nominal value = 250 N/mrn 2 

Variable M: (Normal) 

Mean = 0.82 / lOg N mm a c c.; 0.12 X 1 Or: N mm 

Nominal value= 0.8;< 108 N mm 

Compute the partial safety factors for steel strength and bending moment 
for a reliability index f3 = 4, b = 240 mm and d = 480 mm. 

Solution Let 

Xz = M 

Using Eqs. (9.28) and (9.29), the failure surface equation becomes 

10 As d Xt - (0 ·~7 ) A; XT -- 10 Xz = 0 

Start with 

• 
Xt :.c 320 X;~= 0.82 X J08 

(9.30) 

Substituting the above values, and given values of b and d in Eq. (9.30) 
and solving the same, we have 

As = 614.7 mm2 

The directional cosines are 

I [ ( I. 44 2 • ) 1 CXf = - - K 10As d- r· As Xt a, (9.31) 

(9.32) 

Using the calculated value of A$ = 614.7 and other data, the directional 
cosines can be evaluated. They are 

C(l =-= -0.502 

The hew values of design points, using 

otz = 0.865 

x: = IJ-i + cxi f3a1 
are given by 

X~ = 255.8 xi = 0. 124 x 1 09 

With these new values of x;, the whole process is repeated till the required 
convergence is achieved. Results of iterations are given in Table 9.2. 
The design points are 

X~ = 229.3 
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TABLE 9.2 Summary of calculations-Example 9.5 

Iteration 
Variable Sta rt 

2 3 4 

.\'~ 320.0 255.8 233.2 229.8 229.3 

,. 
• 2 8.2 X 107 12.4 X 107 !J.7xJO? 11.6 x 107 11.6 x t0• 

As 614.7 1291 1318.8 1319.6 1319.7 

Gil -0.502 -0.678 -0.705 -0.709 

(X2 0.865 0.735 0.709 0.706 

The partial safety factors are 

229.3 
'Y, = 'Yfy . = 250 = 0.917 

11.6X107 

')'2 = 'YM = 0.80 :.< 108 

= 1.45 VC.LE 9.6 The shear strength of a RCC beam is given by (9.1) 

d ( As d)l/l 
R = 1.1 Aavh s + 1.8566 bd /cu bda (9.33) 

where Aav is the area of the stirrups, s is the spacing of the stirrups, A. is th·e 
area of the tension steel and (a/d) is the shear span ratio. For the limit 
state of collapse in shear, the failure surface equation is · 

R- VD- VL = 0 

where VD and VL are the shear forces due to dead load and live load res­
pectively. 'It is given: 

b = 300 mm d = 580 mm s = I 00 mm 

!!. = 4 
d 

A a 
bd o= 0,008 

Variablefy: (Nominal value= 250 N/mm2) 

p. = 320 N/rnm2 a = 32 N/mm2 

Variable feu: (Nominal value = 20 N/mm2) 

p. = 26.8 N/rnm2 u = 4.02 N/mrn2 

Variable VD (Nominal value = 70.0 kN) 

p. = 73.5 kN a = 7.35 kN 

Variable VL: (Nominal value = 50 kN) 

p. = 41.35 kN a = 11.70 

Determine the partial safety factors for j,, /cu, VI) and VL for Po = 5, 
assuming all variables arc normally distributed. 
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So/ut ion Let 

al = 1 I !!__ = I I "' S&O 6 3 . s . A. 100 = ), 8 

(
As d)l/3 

02 = 1.8566 hd h;,-; 

= 1.8566X300x580 c·~O&r/J = 40701 

Then the failure surface equation can be written as 

a1 AsvXi + 02 X~ . .1 - XJ - X4 = 0 

Start with 

x; = 220 

x; = 8opoo x: = 70000 
I 

Using these values, and 01 and 02 in Eq. (9.34), 

Asv = 30.87 

The d irectiona I cosines are 

(9.34) 

Substituting the computed value'of Asv and other given 'data 111 the above 
equations, the computed directional cosines are 

Cl:i = -0.368 

IXJ = 0.429 

IX2 = -0.463 

~r.4 = 0.6Rl 

The new values of x; using 

X~ = f.ti -t- IX;{3a; 

are given by 

X~ == 261 • 
X2 = 17.5 

X~ = 89260 • 
X4 = 81300 

With these new values, the whole process is repeated till the required con­
vergence is achieved. At the end of the second iteration, the final values of 
x~ are (Table 9.3): 
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x: = 248.8 xi=--= 17.69 

xi = 88600 x4 .= 79610 

TABLE 9.3 Results of iterat,io11s-Examp/e 9.6 

Heration 
Vnriable Start 

2 

x; 220.0 261.0 248.8 
x• 

2 18.00 17.50 17.69 

.\'; 80000 89260 88600 
• 70000 81300 79610 x4 

Aav 30.87 38.96 39.16 

lXI -0.368 -0.445 -0.449 

IX2 -0.463 -0.453 -0.451 
IX] 0.429 0.411 0.413 
IX4 0.683 0.654 0.657 

The partial faCtors are 

248.8 . 
,.., = ,..,y =- 250 = 0.995 

,.. =,.. = 17.69 == 0 885 
2 fc 20 • 

. . 88600 
Y3 == 'Yv0 = 

70000 
= 1.266 

.. · . . 79760 
i'4 = YvL = 5 0000 = 1.595 

Note: R~aders' attention is drawn to the point that in. the text all Yt are 
multiplying factors. 

As stated in Example 9.1, in the IS and British codes, 1/Yt is taken as 
the partial safety factor for materials, and are collectively called as the 
material reduction factors. As per this, the parWii material reduction 
factors are 

I 
Yme = 0.995 = 1.005 

1 
i'mc = 0.885 = 1.131 

~FETY CHECKING FORMATS 

The safety checking format for a code is defined as the number of partial 
safety factors and the w.aY in which they are introduced into the design 
equations. For the safety of the structure, 

Factored resistance ;;;,. effect of factore~ loads 
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ln th e de velopment of probability based limit state design criteria, different 
national codes usc different format s. 

8 - ( Cauada) Format 
The ati onal Building Code of Canada (9 .2) uses the following probability 
factor format 

(9 .35) 

where gs refers to the functi on that converts the loads to load effects in 
brackets, and Yn, YL , . . . are the corresponding partial safety factors or 
load fact ors for the loads. lJI is a load combination probability factor 
depending on one, two, or three loads included in the brackets. The value of 
tp is less than or equal to I. This factor takes c_':lre of the reduced probabi­
lity or the ·imullaneous <:CUtTe n e or I ads. The value gi ven are 1.0, 0.7 , 
and 0.6, respectively fo r one or two or three I adings acting si mu llane-
0 11 ly. The terms Yo, YL . .. lake care or ariati ns in the load itself plus 
vuria tions in the load efrccts due to uncertai n ti e · in the load model and the 
structural analysis . 

The facto r Yu represents the overall res istance l'tclor, based on chara ter­
islic trcnglhs, ma terial properties, dimens io n, etc. This fa tor is intended 
to renec t the probability that the member a u wh It; is unden;Lrength . 

CEB Format 
CEB committee (9.3) recommends the following format 

(9 36) 

where gn nnd gs urc the resislanc · and load clfe L ru nctr ns wh ich convert 
the t ·rms iu the bracket t re i · t ~ n ce and It ad eJfec ts respectively. ji. and 
QA. arc th e chara tcr istic strength and J, ad · respectively. Y,, is the mater ial 
red uctio n !'actor. It is to be noted that 'Ym1 =-- I. 'YJt is the multipl ica tive 
factor on the I au. 

The material reduction factor Ym; is intended to take into account (9.3) 

(i) the material strengths occasionally falling below the specified charac­
teristic value 

(ii) the· possible difference between the strength' of the material in the 
structure obtained from control test specimens 

(iii) the possible weakness in the structural material or element structure 
resulting from the c n ·tru ·tion pr es · 

(iv) th e po iblc inaccura te a essment of the resistance of a structural 
clement result ing fr m modelling errors (say, models derived from the 
elementary strength of materials) 

(v) the effects of poor dimensional accuracy in the finished structure on 
the resistance of a section 

The partial factors for loads, 'Yr;, are iniroduced to account for the follow 
ing factors: 
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(I) ')'r1: for the possibility of loads occasionally exceeding their character­
t•tic values 

ti} ,r2: .multiplicative load combination factor for the reduced probability 
f' nil loads exceeding their characteristic values simultaneously 

ii) ')lrJ: multiplicative factor on load effects for possible errors in pre­
llctlng load etfects as a result of inaccurate structural analysis and as a 

. re ult of neglecting dimensional inaccuracies. 
In addition, either Ym or Y£ may be modified to take care of the nature 

or the structure and the seriousness of attaining the limit state. 
The European Concrete Committee Model Code (9.4) recommends the 

rnnowing equation: 

(9.37) 

. where Qtk represents the characteristic value of the main time varying load 
Q•, and Q2k . .. , Qnk are the characteristic values of other less dominant 
time varying loads Q2, ... , Qn. 'Po1 is considered as the ratio of the 
arbitrary point-in-time value of the jth load to the characteristic value of 
that load. Ya is the load factor on the combination of time v~rying loads. It 
consists of 'YJi'YfJ . While determining the maximum factored load effect for a 
cnsc involving several time varying loads, it may be necessary to consider 
11cveral combinations with each of the loads considered as the most domi­
nant load (i .e. QJk) in turn. Hence, in the above format, when a structure 
hns to resist a number of stochastically independent time varying loads, a 
number of load combinations are to be considered. For a situation with 
dead, live, wind and snow loading, the CEB format requires a checking of 
32 load combinations. If the NBC format [Eq. (9.35)] is selected for loads, 
viz. dead load, live load, wind load and snow load, a total of 14 load com­
binations are to be considered . 

However, the Load Resistance Factor Design (LRFD) checking format, 
discussed below, requires only four load combinations to be considered. 

LRFD Format 
The load and resistant factor design checking format, proposed by Ravindra 
Galambos, Ellingwood, et al. (9 .5, 9.6) recommends only four load combi­
nations to be considered . They are 

'Y R Rn ~ 'Y Df'D + 'Y Lf'Lm 

'YRRn ~ YnP.D + 'Yapt/LLapt + Ywp.wm 

'YRRn ;;?: 'Ynp.n + 'Yaptf'Lapt + Ysp.sm 

'YRR" ;;?: 'Ywp.wm - "'n/LD 

(9.3,8) 

(9.39) 

(9 .40) 

(9.41) 

where P.D is the load effect due to the mean dead load, 1-'Lm, p.wm and P.sm 
are the load effects due to means of the maximum lifetime live load, maxi­
mum lifetime wind load, and maximum lifetime snow load respectively. 
Here the term Yapt P.Lapt in Eq. (9.39) is equivalent to 
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gs('Yrt"'f3lJ'oJQJk = 'YalJ'oJQJk) in Eq. (9.37), the major difference being that 
the load is given as a multiple of the maximum load (lJ'oJQj!,) in Eq. (9.37) 
but as a separate loading case with its own load factors in Eq. (9.39). The 
load factors, in general, should be applied to the loads before performing 
the analysis which transforms loads to load effects. If the relation between 
load and load effect is linear, load factors can be applied directly to load 
effects. 

9.4 DEVELOPMENT OF RELIABILITY BASED DESIGN CRITERIA 

Before starting the procedure for the development of design criteria (evalu­
ation of partial safety factors), the precise scope of the work should be 
defined. That is, the types of structures for which it is applicable, the types 
of materials that will be used, and the range of parameters that will be 
covered. The proposed work should be compatible with the present code. 
It should also specify the range of application of the code and the different 
limit states (ultimate and serviceability) considered in the,work. 

One must specify the safety chec'king format selected. By format is meant 
the number of partial factors and the way in which they are introduced in 
the design equations (i.e. on loads, load effects, material strengths, resist­
ances, etc.). 

It must also specify the basis on which the loads have been developed. 
That is to say, whether the loads have been developed for a 50-year design 
period or a 25-year design period. It means specifying the selection of the 
period for a risk assessment for the class of structures being considered. 

The development of a reliability based design criteria involves the follow­
ing steps: 

(i) collection and statistical analysis of the data on basic variaoles. 
Defining of the probability distribution of each variable-at least in terms 
of mean values, standard deviations and probability distribution type 

(ii) statistical study of the strengths (resistances) of members and establi­
shing their statistics 

(iii) reliability analysis and determination of the reliability index f3 for the 
members designed as per the present code for each load combination 

(iv) selection of the target reliability index, f3o, (i.e. accepted or specified 
level of reliability) 

(v) determination of the partial safety factors for the desired uniform 
reliability f3o under all design situations within the scope of the work. 

For illustration, let us assume that the scope of our work is to determine 
the partial safety factors for RCC members (slabs, beams, columns) for 
Indian conditions. The limit states considered are the limit states of collapse 
in flexure, shear, combined axial load and bending moment in columns. 
The lifetime of structures is selected as 50 years. The safety checking format 
used is as per the LRFD method. 

An extensive data on the basic variaole::, viz. the mechanical properties 
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different grades of steel and concrete, structural dimensions of RCC 
mbcrs slabs, beams, and columns, including the position of steel for 

lndl n conditions, has been collected and statistically analysed, and the 
ulta of the same (9. 7-9 .I 0) are given in Chapter 4. The consolidated list of 

1 tl tic of the basic variables is given in Table 9.4. The statistical analysis 
the data on live loads on office buildings, and wind loads based on wind 

Mpeeds observed at various stations in India is given in Table 9.4 (9.11, 9.12, 
, 13). The statistics of the lifetime maximum live load Lm and the lifetime 

maximum wind load W m, given in Table 9.4, are based on the selected 
deeign period of 50 years. 

TABLE 9.4 Statistics of basic variables 

Variable X 

fou 
Nominal Mix M 15 

M 20 

Design Mix M 15 
M 20 
M 25 

Slabs 

Fe 250 
Fe 415 

t/ (mm) 

llcams 
b (mm) 

d (Jlllll) 

s (mm) 

Columns 

Loads 

b (mm) 
D(mm) 
Bar placement (mm) 

D 

1'-X{Xn 

1.51 
1.46 

1.17 
1.34 
1.21 

1.28 
1.13 

1.87* 

10.29* 
6.25* 
0 .00 

-0.25* 
0.113* 
0.640* 

1.05 
0 .620 

0. 1'9 

O.R04 

0.045 

0.24 
0.21 

O.IH 
0. 15 
0 . 15 

0.10 
0. 10 

4 . 17** 

9 ,47** 
3. 79** 

13 so·"* 

5.69** 
9.H9** 

IUJO** 

0. 10 
02H 

0.55 

0.334 

0. 743 

*Deviation from mean (mm) ; **Standard dev intion (mml 
-I EX1,1 denotes Type I cx lr~nw I (larges t). 

Statistical Study of Stre11gtfl of Memhl!l'.\' 

Probability 
distributi on 

Lognormal 
Norma I 

Lognormal 
Normal 
Normal 

Normal 
NlHillal 

Normal 

Normal 
Normal 
'\formal 

Normal 
Normal 
1\:ormal 

~01'111:1 1 

I:Xr ,t 

I,01gllOJ 111 <!1 

r.,-,_,-" 
rx,,, 

The concrete members, considered here, arc slabs, beams, and columm . The 
limit states considered are the limit states (lf (i) collapse due to flc :-. llll: <tnd 
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shear in beams, (ii) collapse due to flexure in slabs, and (iii) collapse of 
columns subjected to axial load and uniaxial bending. Hence, the partial 
factors presented apply to only these cases. 

The strength of RCC members vary from the calculated nominal strength 
due to variations in the material strengths and dimensions of members, as 
well as due to uncertainties inherent in the theoretical model chosen to 
compute the member strength. The Monte Carlo technique, dealt with in 
detail in Chapter 7, is used to establish the statistics of the strengths of 
members in flexure, shear, etc. The procedure involves the following steps: 
(i) Selection of a theoretical model to calculate the member strength for a 
particular limit state and the model error associated with the same. The 
model error, say for the flexural strength of beams, is to be obtained by 
collecting data on the experimental results of beams tested for the ultimate 
strength in flexure and comparing these values with values obtained by 
using the theoretical model equation for predicting the ultimate strength of 
beam . The collected data can be statistically analysed and the mean and 
standard deviation of the model error can be fixed. (ii) Choosing a series of 
representative cross sections or members (different sizes, different boundary 
conditions, different spans, different percentages of steel, different grades of 
concrete and steel, etc.), each defined by a set of nominal strengths and 
dimensions. (iii) Establishing the statistics of the resistance of each selected 
member is carried out as follows: For the selected member nominal resist­
ance, R", is computed based on the nominal material strengths and dimen­
sions substituted in the theoretical model with the resistance factor .ts unity. 
This value of R, corresponds to the failure mode expected when nominai 
strengths exist in the members. The design resi stance, Rn, is computed from 
the model equation given by the present code using nominal values with 
partial factors or material reduction factors (!'or concrete Ymc c~ 1.5, for 
~ tee! Ym, -- 1. 1 5). The resistance reduction factor Yn is evaluated using 
Yn -·- Rn/ Rn. A set of material strengths and dimensions is generated 
randomly from the statistical distributions of each variable and are used to 
calculate the theoretical resistance, R, along with the randomly generated 
value for the model error. Then strength ratio R/ Rn is determined. This 
procedure is repeated and a large number of samples of R!Rn is generated . 
A probability model is fitted to the generated data. A normal distribution 
is filled to the lower tail of the data and the statistics of R/ Rn are establish­
t:d . B) repeat1ng step~ (ii) and (iii), the statistics of the strength ratio of 
dilrcrent members arc established. The procedure of the Monte Carlo 
lltLlhod " ~" dealt with in detail in Chapter 7. A few typical v alue~ of the 
established resistance statistics a!ld the range of Yn values observed for 
RCC members are given in Table 9.5. 

Using the established statistics of resistance ratios and loads for Indian 
conditions, the reliabili ty analysis of RCC members designed according to 
tht: present code (9.1 4) procedures is carried out using Level 2 methods 
described in Chapter 8. The reliability levels of the present designs are 
found out using the Level 2 method for various load combinat i on~· 

I 
~· 
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TABLE 9.5 Typical resistance statistics of RCC members 

tUber 

l" 
'' way (SS) 

. 'l'wo way (SS) 
Hrr wuy ( ) 
I wny ( ) 

tl Ill\ (no ure) 
11111>' rein forced 

l>llubly reinforced 
tll!ams (shear) 

( 'uru prc~s ion 

I ens ion 

Steel 
grade 

Fe 250 
Fe 415 
Fe 415 
Fe 415 
Fe 415 

Fe 250 
Fe 415 
Fe 415 
Fe 415 
Fe 415 
Fe 415 

Fe 250 

Fe 415 

Fe 415 

Fe 415 

Fe 415 

Fe 415 

Concrete 
grade 

M 15 
M 15 
M 15 
M 15 
M 15 

M 15 
M 15 
M 20 
M 25 
M 15* 
M 15 

M 15 

M 15 

M 20 

M 20* 

M 20 

M 20* 

1.433 
I .275 
1.281 
1.263 
1.286 

1.288 
1.170 
1.179 
1.16'.1 
1.197 
1.151 

1.355 

l 277 

1.29 

1.38 

1.19 

1.22 

0.124 Range 
0.124 0.835 -0 .865 
0.124 Average 
0 .136 0.85 
0.12'.1 

0.104 
0 . 104 Range 
0.103 0.835- 0-845 
0.101 Average 
0.105 0 .84 
0. 103 

Range 
0.166 0.855- O. K65 

Avc n1g<.: 
0.165 0.86 

Range; 
0.152 ().(,~ 0. 7~ 

i\ vc ragc 
0.224 0. 725 

0. 13 

0.15 

Range 
O.fitHl .S9 
A vet age 
o.g 

ing N,t,•: SS ·= simply supported; C = continuous 
ted * = indicates nominal mix. 

to 
ted 
'his 
ed. 
1011 

sh­
. of 

rio 
the 
ror 

ran 
to 

xis 
are 

(I) D + Lm (ii) D + Wm, and (iii) D + Lm + Wm. A summary of the 
r~sults of the same is given in Table 9.6. Based on the above study, a proper 
lurget reliability is selected. For the selected target reliability, partial safety 
l'uctors are evaluated for different load combinations for each member/limit 
Htute. The evaluation of the partial safety factors is illustrated below. 

ExAMPLE 9.7 (Load Combination: D + Lon) Consider a RCC beam. After 
considering all the possible combinations of the grades of concrete and steel 
l!latistics of the flexural strength of RCC beams have been taken, as given 
helow, for the study ol' the partial safety factors at the limit state of col­
lnpse in flexure (9.12) . 

Grade of steel 

Fe 415 
Fe 250 

/1-R / RII 

1.17 
1.289 

a 

0.122 
0.1289 

Distribution 

Normal 
Normal 
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TABLE 9.6 Range of reliability indexes for RCC members 

Load 
Member 

Range of 
combination fl 

D -1- Lm 

Slabs 4.2 to 4.8 
Beams (fkxure) 4.3 to 5.5 
Beams (shear) 3.3 to 3.8 
Columns 3.3 to 4.6 

D + W111 

Beams (lkxu re) 3.5 to 5.1 
Beams (shear) 3.2 to 3.5 
Columns 3.2 to 4.2 

D + Lm + W,.., 
l:l<.:ams (flexure) 2.9 to 4.6 
Beams (shear) 2.9 to 3.4 
Columns 2.8 to 4.1 

Average 

fl 

4.5 
4.9 
3.6 
3.9 

4.3 

3.33 
3.50 

3. 75 
3.15 
3 5 

Remark 

Range of Ln/D0 

0.25 to 2.0 

Range of W11 /D 11 

0.25 (O 2.0 

Range of L 11 / D11 

0.5, 1.0, 1.5 

Rang~:_ of W,fD, 
0.25 to 2.0 

lhe load statistics (from Table 9.4) and resistance statistics of' the beam 
at the limit stale of collapse in flexure (for the steel grade Fe 415) arc 

Variable !~/ Ro: (Normal) 
/J. = 1.17 a ~= 0 122 

Variable D/ D.,: (Normal) 

,~ = 1.05 a=O.IOS 

Variable Ln,/Lu: Type I extremal (largest) 

0.62 a~- 0.1755 

Para meters u - lUIS 'l. I.S95 

1 f Fe 415 steel grade is used l'or reinforcing bars, d~:termine tl1e partial 
safety factors for the limit state of collapse in flexure under the load combi­
nation D -i- L if Ln/Dn "~ 1.0 and f3u =- 4.5. 

5:iulution The safety checking format (LRFDJ under dead load D and live 
load Lis 

The limit state equation is 

R- D - L ~" 0 

The equation can he rewritten ns 

(/)) 
Dn /Jn (!:.)L .. ·-· 0 

Ln 
(9.42) 

Let 

L, 
Do -- Cl.l 

---
Rll 



( 

X2= p 
Dn 

I h n q. (9.42) becomes 

X3= L 
Lo 

RnXa - XzDn - aJX3.Pn = 0 

c247 

II be remembered that for L, the statistics of Lm must be used for the 
n1Do uti male limit stale. The reliability index is given by 

WID. 
n 11 

eam 

{3 =I-'M 
aM 

_ Rni-J.t - J.t.lDn - aw.3Dn 
- [(l?not)2 + (azD,)2 + (aJ(T)D11 )2]l/l 

(9.43) 

\\ h r wl and a~ are the mean and standard deviation of the equivalent 
1111rmul X3 of the nonnormal variable X3 at the design point. Let the starting 
lr ·I n point be . . . 

Xt = /1-1 xz = /J.2 X3 = /1-3 

AI x; = /1-3 = 0.62, the parameters a:i and p.3 for the Type I extremal 
(I tr •e ·t) distribution are calculated as illustrated in Example 9.4. They are 

a3 :;: 0.1678 p.) = 0.5903 

Sll tituting the values of f3 = 4.5, m = I, o~, p.~, and othe~ as aml p., values 
n l.q. (9.43), we have 

4 
S 1.17 R, - 1.05Dn - 0. 5\> Dn 
. = [(0.122Rn)2 + (0 .105Dn)2 + (0 . 1680, )21''2 

lving the above quadratic equation in Rn, we get 

R,, =:= 3 .004bn 

I he directiohal cosines are 
trtial 1 
mbi- ·Y.t = K(Rnod 

I · I 
· live = - K(3.004 X 0.122) D,-= -y(0.366Dn) 

9.42) 

I I 
IX2 = K(o~~o) = K (O.l05Dn) 

OC3 = ~ (OJ03Dn) = 1 (0.1680,) 

U ing E oc} = I and K = 0.417D,;, we have 

, OCt = -0.878. IX~ = 0.252 

The new design point x; is given by 

x; = 11.a + ,,~~a3 

0':3 = 0.403 

= 0.5903 + -0.40JX4.5X0.168 = 0.'894 
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At this new design point, new values of a:J and 1-'J are calculated and the 
whole process is repeated till the required convergence is achieved. Results 
of subsequent iterations are given in Table 9.7. 

TABLE9.7 Summary of computations-Example 9. 7 

Iteration 
Variable Start 

2 3 4 . x, 1.17 0.687 0.730 0.772 0.~02 . 
1.05 1.169 x2 t.l52 t.l39 1.131 . 
0.62 0.!!94 1.177 l.t41 t.553 XJ 

cr' .l O.tli8 0.270 0.368 0.440 0...179 

li] 0.590 0.501 0.3t3 O.t26 0.0056 

R
11

'D 11 
3.004 3.193 3.304 3.348 3.359t 

o:, -0 87H -0.802 -0.725 -0 671 

CX:~ 0.252 0.216 O.t89 0.172 

o:, 0.403 0.556 0.662 0 722 

At the end of the sixth iteration 

Rn 3.361 
Dn = . 
\2 = 1.1.' XJ = 1.62 

The partial safety factors with respect to the nominal values at(' . 
Y, = ~ = x; 

X in 

'>incc the \'ariablcs X; have been initially normalised with re~pect to their 
corre'>ponding nominal values. Hence 

Y1 = YR = 0.82 
YJ = YL -= 1.62 

The dc~ign equation is 

YuRn ;;:: 'YvD, + Y1.L 11 

0.82Rn ~ 1.13/Jn + 1.62Ln 

The same problem has been solved for various \cdues of Ln/LJn equal to 
0.25, 0.:\ 1.0, 1.5 and 2.0, and the variation of the partial safety factors 
with Ln/Du is shown in Fig. 9.2. If the steel grade Fe 250 is used, f'R!Rn 

- 1.289, aR R, = 0.1 lll9. Fot this case also, the variations of "/X, Yv and i'L 

. with L,/Dn arc shown in the same: Fig. 9.2. It is observed that yu increases 
slightly with an increase in the L,f Dn ratio~. This is due to the usc of the 
higher \~lluc~ ofY1. at higher ln/Dn ratios. The de~1d load factor YD shows a 
slight f~1ll with an increase in the /.n/ {)" ratio; hut can b(' treated to be a 
fairly enn~t:1111 \'aluc. The variation in YJJ is very small because the vari:1tion 
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the In d ud l~itd is situdJ compared to other load vai·iable&-: 'YL iricreascs with 
suits uwr •a c in the Ln/ Dn ratio as its higher variability becomes incr'e~isingly 

!llll'c dominant in determining -the total load effect. 

4 

).802 

1.131 

.553 

).479 

).0056 

U591 

their 

utl to 
:~.ctors 

J.'R/fiB 

nd 'YL 

reases 
Jf the 
ows a 
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~ :,·5 
2·0 f~ ,,s 

.,; 1·5 
L 

To 
'(R 1·0 ---------------fo 

-----=--- YR 

0 ·5 

0 
0 05 1•0 1·5 2·0 2·5 

2·0 
~ ::4·5 

'f 1·5 L 

lo 
"fp 1·0 

r---------'fo 
YR 

0·5 

0 0 ·5 1•0 1·5 2·0 Z5 
Ln/Dn 

FIG. 9.2 Variation of pan ial safet y f<tctnrs for BCC be<Jm m 
flexure under load : D + Lm 

Load Comhinulion: D + Wrn 

he procedure f computation of the afety !'actors for the loau cmnbina­
Lion D + Wm is same as used for the load ca . e D + Lr,., expl11 incd a \HI 
illustrated in Example 9.7. The only difference is that the correspomling , 
·tatistics of Wm are to be used instead of lhose of Lm. Typical .:urve~ 

bowing variation f the wind load factor i'w, i'o, anti i'11 with respect t o 
the Wn/Dn ratio are shown in Fig. 9. 3. Here al. o, similnr observations arc 
made about 'YR, Yn, and rw as in lhe previous case D + l.m, i.e. Y11 increases 
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.shghtly with illL'ICasc in Wn.' Dn. YI> rcma1ns fairly ~:unstant, and 'Ywincrcascs 
a~ Wn/Dn iucrt:<I~C' 

2·5 r = 3·5 
Fe 415 

2·0 
'lw 

lo 
'fR 1·5 

,..____ 
1 0 ------------------- '0 

"fR 

o-5o!---...J.,.-----,-, J,.o---:,*=.s---:;2:";·0;:--'' 

_____ 'Yw 

, 0 

0·5ol__ __ o:S---', -=-o ---'"7,.~.:. s,------='2.-=o-' 
Wn/Dn 

FIG 9.3 Variation of partial safety factors for RCC 
beam in flexure under load: v~+ wn, 

fhe determination of f3 for the load combination D -1- Lapt + Wm is 
1 I illustrated below. 
I 
I ExAMPLE 9.8 (Load combination: D + Lapt + Wm) Consider the same 

problem in Example 9.7. The beam is subjected to wind load along with the 
graYity loads. From Table 9.4, the following load statistics are taken. 

Variable: D/Dn: (normal) 

f< = 1.05 a = 0. 105 a = 0.10 

Variable: LaptfLn: (lognormal) 

f< = 0.179 a= 0.098 a= o.ss 
Variable Wm/ Wn: (Type I extremal (largest)) 

JL = 0.804 a = 0.269 a = 0.334 



\SC 

, is 

tme 
the 

I h t'c I ·tnnce statistics are the same .a~ given in Exat\1ple 9.7. That is, the 
Itt 1111 nnu standard deviation of R/ Rn arc 1.17 and 0.122 respectively. 
U I rtninc the partial safety factors for ~o = 4. It is a:Jso given that 

~: = 1.0 
Jt'n 
Dn = 1.0 

\ ulution The failure surface equation is 

R -- D - Lapt -- Wm -' 0 

I ~ \ riting the equation, we have 

L•t 

( R ) ( D ) ( L"P') ( W m) Rn Rn ·- Dn Dn · Ln Ln - W~- Wn = 0 

R x, :.-:-
Rn 

Ln - = {/J 
Dn 

D 
X2 = -·­

Dn 

X 
1-Vm 

4= 
Wn 

Wn - · = (/4 
Dn 

l'hcn the failure surface equation becomes 

RnXt - X2Dn - XJaJDn · .. X4a4Du = 0 

l'he re l iabil~iW)ndex is giv~~ by 

W44l 

. (9.45) 
I 

(9.46) 

~ =- /.I..J R, --· P.2 Dn - /-'JUJlJn - 1'4a4Dn (9.47) 
[(o, Ra)2 + (o2D,)2 + {o.lmD,,)2 + (rJ~a~ /) 11 )2]1 /2 

rhc directional cosines ~re , ,,, 

I 
oq = -- K(atRnl 

0t3 -= ~( a~aJDn) 

Start with 

X~ = Jl.t == L17 xi=· /J-2 = L05 . : :. ,· . . .. , ·. . 

X~= /-'3 = 0.~79 X~= IJ-4 = 0.804 

The procedure of computation is the same as explained in Example 9.5. 
Summary of the results is given in Table 9Jt After the fifth iteration; 

• · xi = o;908 x2 = 1.1 

x; = 0.199 x: = 2.29 

The partial safety factors are 

'Yt = 'YR = 0.908 

,3 = 'h = 0.199 

'Y2 = 'YD = 1.1 

""..;,. Yw = 2.29 
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!'ABLE 9.11 .'>tllllllll/1'_1 ' of l'l'lllitr-L.IItlllflic Y X 

II era I i<>ll 
\ ariablr Star I 

2 .1 

I 1711 0 K~l II ·' -; ~ II ~'Jt1 

I~ I 11~11 I I~, i lit> 1.10.1 

II 17'1 0 24'! II 2 'I II 211'1 

II .~Il-l I -IK'J 2.1!1)11 ~.21) 

I I (I'}~ ,; : ~ ..... ll.l I •J o Ill' 

() l:il> II 1.14 0 I ~2 II 1·1'1 

t) ~ ..;;~ II 511~ 0 M>'l 0. 7:!8 

() 75'1 II 45- ll ,llhll -0,120 

I .73X 3.2'H ' - ~ 11
/ .1.935 

IJ.5K7 --1),1>0 I - 0, 51\1 -- () 543 

11.2'!1 () 157 Cl.l2~ 0. 11'1 

11 ,25-1 11.1'!1 11.143 0.121 

(J. l 0 71 I 0.760 II X05 (Ul23 

Hence the design equation is 

(l .901:>Rn ~ I.IDn !- 0.199Ln + 2.29W, 

Similarly, for various values of ~V,/ Dn, the values of 'YR, 'YD, and Yw can be 
determined. The variation of the partial safety factors for various values of 
Wo/Dn is shown in Fig. 9.4. It can be observed that Yo remains fairly con­
stant. '>'L decreases with increase in Wn/Dn up to Wn/ Dn "0 I, and for 
W.,/Dn ? I, YI. remains fairly constant. Yw increases with in·creasc in Wn/Dn, 
increase is more up to Wn/ Dn == 1.0. The region of interest in design is up 
to L./ Dn :( I and Wn/ Dn :( I. ln this region, the variation of load factors 
is observed to be high (Figs. 9.2, 9.3 and 9.4). The process of code calibra­
tion involves proposing one set of partial factors for Level I code, irrespec­
tive of the load ratios (e.g. Ln/ Dn or Wn/ Dn), and probably other design 
situations -different limit states, ensuring uniform reliability. For this, the 
simple optimisation technique proposed by Ellingwood, et al. (9.6) or the 
method used by Baker (9.15), can be used after assigning weighting factors 
to load occurrence. They are explained in the following section. 

9.5 OPTIMAL SAFETY FACTORS 

As seen in the previous section, the partial safety factors are not constant 
for a given safety checking format and a given target {3. For convenience, 
the partial safety factors in the code checking format are to be constant 
atleast over a large group of design situations. 

As said earlier, the aim of code calibration is to determine a set of safety 
factors which will ensure the . best approximate uniform reliability over 
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FIG. 9.4 Variation of partial safety factors for RCC beam in flexure 
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diiTerent design situations. If a constant set of factors are prescribed, the 
nssociated reliabilities will deviate from the target reliability f3o. To select 
une set (optimal set) of load factors, a function, S('Y;), which measures the 
"closeness" between the target reliability and reliability associated with the 
proposed partial factors set. ic; <iefined and this function is minimised to get 
the optimal safety factors. 

For a given set of partial factors with an associated f3o, there is some 
corresponding nominal resistance. Let it be called R~\ obtained using the 
Level 2 method. This is a function of the load ratio and load combination. 
Let the nominal resistance corresponding to a design equation, which pres­
cri bes a set of partial factor that are constant for all loa I ratios be R,~ 
which may differ from R~r · R~ corresponds to Level 1 code. The problem is 
therefore, to find "1;, minimizing the function, S, defined by (9.6) 

S("';) = .E (R~1 
- R~)2w; (9.48) 

I 

over a predefined set of combinations of dead, live and wind loads wherein 
Wt is the relative weight assigned to the ith load ratio. The function selected 
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is the square or thl: dlilcrcncc bci\\CCJl R,1,1 
311d N,\ sn th:ll the deviations 

!'rom f3n on either side c;~n be cqll;dly penalized. The determination of the 
optimal safd) f<tt:l<ll~ i\ illu~trated hclnw. 

EX\MPLF 9.9 Let the s:ti'ct) <.:hcding l'nrmal he 

f'nr the loud combitlalion /) : /.111. 
T:tking f), I. 

R~. ('Yu • 'Yt .n;) 

'Yu 

where o; -, (Ln/Dn);. The S function, given hy Eq. (9.4R), becomes 

[ 
11 Yn + a;YL ] 2 

S(Yn, Yn, Y1.l""" f R, - · ·-YR____ II'; 

(9.49) 

(9.50) 

(9.51) 

To find the minimum value of S, the partial derivatives of S with respect to 
YR. Yn, and YL arc taken and made equal to zero. This leads to the following 
two equations: 

I; IV;a;R~/YR -- J: W;a;'Yo -- I; 1\';af'YL =-= 0 (9.52) 
I 

I; I\';R~ 1 'YR - - I; W;'Yn - L~ w;a;YL = 0 (9.53) 
; ; I 

The equations corresponding to oSfoYR and oSjo'Yo are the same. 
The computed values of YR, Yo, and 'YL for various values of Lo/Do for 

RCC beam in flexure are given in Table 9.9. The weights to be assigned 
should be based on the likelihood of different load situations in practice. 
The assumed weighting factors w; in percentage (9.6) are also given in the 
same table. 

TABLE9.9 Values of partial safety factors for beam in flexure-Load 
combination D + Lm 

Ln 

Partial Dn 
Remark 

factor 0.25 0.5 1.0 1.5 2.0 

YR 0.802 0.860 0.937 0.964 0.977 Po= 3.5 

YD 1.200 1.154 1.105 1.087 1.078 JL Lmf Ln = 0.827 

Y/. 1.057 1.505 1.859 1.954 1.995 8L01 = 0.283 

L0 = 3 kNim' 

Weights For RCC 

10 45 30 10 5 beams 
WI 

(per cent) 
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h values of R~1 
for i = 1 to 5 are calculated using the expression 

(9.54) 

•.nnd the values of 'Y; given in Table 9.9. For example, for i = I, Ln/ Dn 
- 0.25. 

Rn _ L!_.20 + _!:957 X 0.!~) 
n - - 0.802 

= 1.82 

Using weighting factors given in Table 9.9, we get 

5 II 
E WJ(IiRnt = 2.6369 

j-J 

S II 
E w;Rn; = 2.8049 

i-1 

s 
E w;a, = 0.8 

1-1 

s . 
2' \Vi= 1.0 

i~l 

Using these values, Eqs. (9.52) and (9.53) become 

2.6369YR - 0.8yn - 0.844YL = 0 

2.8049YR - Yo - 0.800YL = 0 

(9.55) 

(9.56) 

From the study of the results (Table 9.9), it is observed that Yn remains fairly 
con~tant around 1.1. This has been observed for various load combinations 
an~ failure states {9. I 2). Since the value I. I is low and may not be accept­
ab!J by the profession, the value of Yn is fixed as 1.2. Using this value, 
Eqs. (9.55) and (9.56) become 

2.6369YR - 0.844YL = 0.96 

2.8049YR - 0.800i'L = 1.2 

Solving the above equations 

YR = 0.9495 

(9.57) 

(9.58) 

If it is desired that YR must be around 0.85, as existing in the present designs 
corresponding to the material reduction factors Ymc = 1.5, ,.ms = 1.15 and 
other material specifications, so that the partial safety factors for material 
strengths and other material specifications on the resistance side are not 
changed, then keeping the present value of YR = 0.85, and using the same 
in Eqs. (9.57) and (9.58), two values of YL are obtained. They are 1.52 and 
1.48. Taking the average, Y1. is fixed as 1.50. Hence, the optimal safety 
factors for this case in this example are 

YR = 0.85 

Similar studie~ can be done for other combinations of variables and other 
limit states. 
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The approach used was suggested by Ellingwood, et al. (9.6). The approach 
used by Baker (9.15) is given hclow. 

The function used ·ror Sis 

S =--~ E (log10pr - log10{'rc);ll '; (9.59) 
I 

where 

(f!r), = i' the failure probability for the case (say ith load ratio Ln! Dn) 
(pft), ,-= corresronding target failure probability 

To deter mine the partial factors for the new code checking format, trial 
values of partial factors are used in the new code format and~~ values and 
corresponding (pr); are computed. These values are substituted in Eq. (9.59) 
and the value of S is calculated. The process is repeated for different trial 
values of Y;. Finally, the set of partial factors corresponding to the mini­
mum value of Sis taken for the new code checking format. This method is 
illustrl" :eel below. 

EXAMPLE 9.10 For the same problem in Example 9.9, determine the opti­
mal partial safety factors using Baker's approach (9.1 5). ~o = 3.5. 
Solution As in the previous case, let us fix 

"/R = 0.85 Yo =co 1.2 

The problem is to find the optimal value of Yc 

First select a trial value for 'h. se~y 1.3. 
Using YR = 0.85, YD =-= 1.2, and YL = 1.3, determine ~ (as ex!)lained in 
Sec. 8.3.3 and Example 8.9) for ee~ch value of a;. Find the corresponding 
value of (pr); = !JJ( -{3),. Using Eq. (9.59), calculate S. A summary of the 
calculations for YL = 1.3 are shown in Table 9.10. Repeat the process for 
difrerent trial values of i'L and calculate the corresponding valt:'!S of S. YL 

corresponding to the lowest value of Sis the optimal value of i'L. The opti­
mum value can be obtained by plotting YL versus S. The optimum value of 
Sis 1.45. 

'IL = 1.3 
0.25 
0.50 
1.00 
1.50 
2.00 

For 

TABLE 9.10 Stiiii!IUII 'Y of calct•larions-E.ramp/e 9./0 

f'r X 10-1 (log Pr - log Pn)'ll'i Remark 

3.41 3.305 0.10 0.00233 Prt = <11( -3.5) 
3.42 3.133 0.45 0.00753 = 2.326 X I o-• 
3.19 7.094 0.30 0.07036 
3.04 11.665 0. 10 0.04904 
2.95 15.6j5 0.05 0.03429 

E , ' 1.00 So= L' = O.J6J5 

'IL ,,, 1.4 s = 0.0531 

'IL = 1.5 s = 0.0547 

'IL = 1.6 s '= 0.16108 
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he procedure of calculation of optimal safety factors for the load combi­
nation D + Lapt + Wm is same as explained in the previous load case: 
D + Lm. This is illustrated in the following example for the same member 
RCC beam in flexure. 

EXAMPLE 9. II Consider RCC beams in the limit state of collapse in flexure 
under load combination D + Lapt + Wm, as considered in Example 9.8. 

The safety checking format is 

Taking Do = I, 

La 
where a; = 

Do 

Rl = ('Yv + a; YL + a, Yw) 
n YR 

The function S defined by Eq. (9.48) becomes 

{[ 
11 'Yo + a; i'L + OJ Yw]2 

} 
S(Yn, 'Yo, 'YL, Yw) = f f . R" - 'Yn IV; WJ 

(9.60) 

(9.61) 

(9.62) 

The partial derivatives of S with respect to Yn, YD, YL, and Yw result in the 
following equations: 

~ 1: R11 w;lVJi'R -- 1: 2' ll'iW/Yn - .E 1: a;W;It'Ji'L - .E .E lV;WJOJYw = 0 
ij 

0 
lj i j " ij 

(9.63) 

.E .E R11w;w;a;Yn - E 1: W;IVJO;Yn --E .E OfWIWJ'YL - "''; 1: w;w;a1Yw = 0 
ij 

0 
lj ij ij 

(9 .64) 

E E Rllw;W;a;'Yn - 1: E w;WJOJYD - E E a;OJll'iW;YL - .E ~ w;~v;a2'Yw = 0 
I} 

0 
I} I} ij 1 

(9.65) 

It is to be noted that oSjoYn and oSjoyv will yield the same equation. 
Here four variables are to be determined with three equations. Hence, the 
value of one of the partial factor, generally Yv, is assigned or selected and 
the other three factors are evaluated. The procedure is similar to that of the 
gravity load case, D + L. 

The computed values of Y; for the various values of Wn/ Do and Ln/ Dn arc 
given in Table 9.11 for f3o = 3.5. The assumed weighting factors w; and II'J 

nre given in Table 9.12. 
Since Yv is fairly constant as can be seen in Table 9.11 , Yv can be fixed . 

The value of Yn is also fixed. Selecting Yv = 1.2 and Yn = 0.85, and using 
values given in Tables 9.11 and 9.12 in Eqs. (9 .63)-(9.65), the following 
three equations are obtained: 

0.725 'YL + 0.713 'Yw = 1.3748 
0.7125 'YL + 0.5218 Yw = 1.1356 
0.5218 'YL + 0.7127 Yw = 1.32 
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TABLE 9.11 Values of partial safety factors for RCC beams in flexure-Load 
combination: D + Lapt + Wm-Example 9.11 

L ~ 
wn 

n Particnl Dn 
Dn fnctor --- - -- --- Remark 

0.25 0.50 1.0 1.5 2.0 

0.5 '>'a 0.791 0.836 0 .94 0.984 1.006 fto = 3.5 

Yo 1.163 1.137 1.098 1.082 1.074 ~'Lopt/Ln 
~ 0.239 

'YJ. 0.3:!4 0.281 0 .240 0.229 0.224 L 0 ~ 3 kN/m' 

Yw 0 !)')(, 1.436 1.998 2.157 2.224 8I.aptfL 0 = 0.55 
10 YR O.R54 0 .827 0.900 0.954 0.984 

Yn I 123 1.121 1.077 1.0R2 1.074 

yl. 0.114 7 0.456 0.290 0.255 0.241 

Yw 0.884 1. 137 1.802 2.052 2.157 

I .5 YR 0.932 0.900 O.R7 0.927 0.962 

"n 1.095 1.097 1.095 1.082 1.074 

Y~_ 0.911 0.772 0.397 0.292 0 2113 

"w O.R2R 0.937 1.527 1.921 2.076 

TABLE 9. 12 Weighting factors in fi<'I'C('I/tage fo r loacl co111hination D + Lnp 1+ W111-

Example 9.11 

Weighting facl(lr Wn 
1., L D,; 

for~ 
Dn Dn 0 .25 0 .5 1.0 1.5 2.0 

(II'J) (w;) 

tl.5 0.55 10 45 30 10 5 
1.0 0.35 30 45 15 7 3 
1.5 0.10 45 30 15 7 3 

Using any two equations, three sets of y~_ and 'Yw can be obtained: 

(i)i'L = 0.712 
(ii)i'J. = 0.512 

(iii) 'YL = 0.267 

i'w ~= 1.2 
Yw = 1.477 
Yw = 1.656 

Any one set or taking the average of the three values, i'L = 0.496 a:1d 
Yw = 1.44 may be selected with i'R = 0.85 and i'D = 1.2. 

This exercise of establishing the optimal safety factors for the various 
values of target f3o can be done for various cases. A typical variation of the 
upiimal values of partial safety factors for RCC beams in flexure for 
\':lrious load combinations are shown in Figs. 9.5 , 9.6 and 9.7 (9.16). These 
are applicable to Indian conditions. There are three values of Ln given in 
the figures. The data used for live load is the one hased on the load survey 
of office buildings. The lndian Standard Code (9.17) suggests nominal live 
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FIG. 9.5 Optimal values of partial safety factors for RCC beams in 
flexure under load.: D + Lm 
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1 ad of 2.5 to 4 kN/m2 for office building depending on the separate 
torage facilities available. Office buildings are generally designed for a 

nominal live load of 4 kN/m2 assuming no separate storage facilities . The 
nnalysis of Jive load on office buildings indicates the mean value of Lm as 
2.48 kN/m2• However, the whole study has been carried out assuming 

!.her values of Ln equal to 3.0 and 2.5 kN/m2 (i.e. P.Lm fLa = 0.827 and 
1.00), with a view whether it is possible to reduce the design loads for 
office buildings in India. 
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9.6 SUMMARY OF RESULTS OF STUDY FOR INDIAN 
STANDARDS - RCC DESIGN (9.16) 

The development of reliability based design was illustrated for RCC beams 
for limit state of collapse in flexure. A similar study (9.12) for Indian con­
ditions has been made for RCC slabs, RCC beams for limit state of collapse 
in shear, and RCC columns for limit state of collapse under combined axial 
load and uniaxial bending moment. A summary of typical resistance 
statistics and results of reliability analyses of the RCC members mentioned 
above have been given in Tables 9.5 and 9.6. While proposing a set of 
partia l sa fe ly fac t rs ~ r Ind ian c nd iti ns, the same muterial facto rs given 
in the prese n~ code (9 .14) have been re ta ined, ond hence the corresponding 
re istance fac tor (yR), eva luo lcu by using nomina l va lues during the ta ti ti ­
cal study of RCC members, has been kept constant. The variation in Yn 
has been found to be small in all cases and can be considered almost con­
stant around 1.1. However, this va lue being very small a nd that the pro­
fession may not accept this, a value of 1.2 has been selected for 'Yn. The 
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se ptimum values of 'Yt and "w have been fixed based on the above con'di-
al tioos for all the cases for the target reliability /3o. A set of curves for slab's 
c:e nd beams in shear are given in Figs. BP·B5 (given in Appendix), connect-
!d ing optimal values of 'Yt. and Yw with /3o. table Bl is al so given in the 
of Appendix for the opthnal values of '>'L and Yw for columns. Some of the 
!n bservations and conclusions on safety factors for concrete design in Indian 
1g conditions are given below: 

(i) The yi~ld strength of steel has a significant effect on the statistics of 
the strength ratio R/ Rn. for all RCC members. 

Jn ~he ~~se of columns, the concrete grade also has a sig~ificant effect on 
the statistics of the strength ratio in the region of compression faihne. In 
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the case of slabs, the effective depth also has a significant effect on the 
statistics of the strength ratio. 

(ii) The members designed as per the present code (IS: 456-1978 limit 
state approach) have different safety levels under different design situations 
and vary widely. For slabs, ~ varies from 4.2 to 4.8, for beams in flexure 
from 3.2 to 4.7, for beams in shear from 3 to 3.8, and for columns from 
2.9 to 4.6 . The safety levels of slabs and beams in flexure are higher than 
that of beams in shear and columns. 

(iii) Results of reliability based designs for slabs and beams clearly 
indicate that the nominal live load of Ln = 4 kN/m2, used for the design 
of office buildings is high. With this value of nominal live load, the load 
factors obtained are low and may not be accepted by the profession. Hence, 
it is proposed to use Lo = 3 kN/m2 for the design of office buildings. 
Although in column design it is not neces~ary to take the lower value of 
Ln but, for the sake of uniformity, the value of Ln '= 3 kN/m2 is suggested 
for office buildings. 

(iv) In all the cases of the reliability study of members and for all load 
combinations, it is observed that the dead load factor, Yn, remains fairly 
constant around a value of 1.1. This value being very low and that the 
profession may not accept this , a value of Yv = 1.2 is suggested for all 
load combinations. 

(v) The values of resistance factor YR are taken as obtained by using the 
nominal values of basic variables with Ymc = 1.5 and Yms = 1.15. This is 
done so that the same material factors, suggested by the present code, can 
be used. 

(vi) A reliability level of 3.5 is suggested for the component failure. 
(vii) The reliability based design for the load combination D+ Lm + Wapt 

indicates that Yw has a very low value(< 0.1) and hence, this case tends to 
the load combination, D + Lm case. The load combination, D+ Lm+ Wart, 
is therefore not considered for the selection of partial safety factors for the 
gravity load plus wind load combination. 

(viii) For Yn = 1.2, the target reliability f3o = 3.5, and for the resistance 
factor YR corresponding to the material safety factors, 'Ymc = I .5 and 
'Yms == 1.15 of the present code, tbe values of the live load factor and the 
wind load factor to be used for different load combinations are given in 
Table 9.13. 

(ix) For slabs, beams in shear, and beams in flexure and columns, curves 
or tables are also presented in Appendix B to choose the load factors YL 
and Yw corresponding to the different reliability levels as desired by the 
designer. 

(x) In the case of columns, the quality of concrete (design mix or nominal 
mix) significantly affects the partial safety factors for live and wind loads. 

(xi) For columns, now-a-days at least M 20 concrete is used and the con­
crete is prepared based on the design mix proportions in major construc­
tions . Hence a partial safety factor for loads ranging from 1.4 to 1.8 for 
different load combinations, as given in Table 9. 13, is suggested. In the 

-· 
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'fABLE 9.13 Partial safety /actors /or dijfef'tttt components and load combinations 
at ultimate limit states~.= 3.5, Yo= 1.2 and L

11 
= j kN{m• 

S. No. Load combination Component YR YL Yw 

l. D + Lm Slab 0.85 1.4 

Beam in flexure 0.85 1.5 
Beam in shear 0.85 2.0 
Column 
Comp* failure/Design mix 0.725 1.4 
Tens+ failure/Design mix 0.80 1.!l 

2. D + Wm Beam in flexure 0.85 1.6 
Beam in shear 0.85 2.0 
Column 
Comp failure/Design mix 0.725 J.5 
Tens failure/Design mix 0.80 2.0 

3 D + Lat>t -i· wm Beam in flexure 0.85 0.45 1.4 
Beam in shear 0.85 0.90 1.5 
Column 
Comp failure/Design mix 0.725 0.27 1.5 
Tens failure/Design mix 0.8 0.24 1.8 

---- -- ----- - ----
.Vure: *Comp ~ Compression 

+Tens -- 'I ens ion 

case of minor works where nominal mix is used for columns, higher safety 
factors for live and wind load are to be used as suggested in Table B I in 
Appendix B. 

(xii n1e suggested values of' 'I L ami y w are fM the case when steel grade 
Fe 41 i used . If steel grade Fe 250 i uset.l , thee values of loud factors 
\ ill ensure a slightly higher reliability than that conceived ~ ith the u c of 
t .. el grade Fe 41 . If tbe • me reliability is to be achie cd, irrc pcctive of 
tee! grade, then lighlly I wer V<1lues of 'Y L an I 'Yo may be u cd when tee I 
radc Fe 250 is used. H wever, lhe uifferencc i · very mnrginal. Hence, the 
afety factors bnscd on steel gra.de Fe 415 arc finully s ugge~ ted to be on 

lh safer side. 
(xiii) The proposed partial safety factors for loads, given in Table 9.13, 

will lead to more economical designs compared to the present vHiues given 
in the code (9.14). 

(xiv) Even though the live load <latu on otlice buildings has been used in 
the study, the curve. or tables arc presen ted for va ri otiS ratio of /-1-Ln\ t Ln so 
that they could be used for any case of known f.LC.m t.n as ·uming the coeffi­
cient of variation of Ln does not change significantly. 

(xv) The Indian standard coder r RC Jc ign has not been yet calibrat­
ed by the Indian Standard lnslituLion . IL is expe ted that they may usc the 

•B checking J'( rmat as followed by th · Briti h Standards. The LRFD 
r rmat has been u. cd in arriving at the results given in Table 9.13. However 
it is felt that there ult will be (ln ly marginally atrectecl, and negligible, 
since, while arri,·ing at these values of Yv, 'YL, and Yw, the value of 'YR for 
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each case corresponding to the ·same material reduction factors and mate­
rial specifications as per present IS: 456-1978 (9.14) is used. Hence, the 
present code format with new optimal values of Yn, Y 1. and 'Yw may be 
used. 

The study has revealed many things for Indian conuitions. It has given 
insight into (i) the present level of reliability available in RCC members, 
(ii) how the safety factors vary with target {3, (iii) what is the reasonable 
value of f3o, and (iv) how optimum safety factors could be fixed and how 
these change for different failure criteria. 
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EXERCISE 

9.1 Determine the partial safety factors for the variables, the yield strength of steel, 
dead load, and live load for the given limit state equation ,, ,. 

fy Zr - D 8- - L M = 0 

where I is the span, fy is the yield strength of steel and ZP is the plastic section 

modulus. 
It is given: 

Variable fy: I£ = 275 N/mm' 

Variable D: I£ = 11.55 N/mm• 

Variable L: r.t ·•• 8.4 N/mm' 

cr ~ - 27.5 N(mm' 

a = 1.155 N/mm' 

a = 3.36 N/mm' 

The nominal values of fy. D, and L are 250 N/mm•, 11 N/mm', and 12 N/mm' 
respectively. 

(i) If the span is 8 m, determine the partial safety factors for flo = 3 assuming 
[y and D are normal and L is Type I extremal (largest) . 

(Ans: 0.955, 1.091, l.787) 
(ii) Determine the combined load factor. (Ans: 1.454) 
(iii) Determine the partial safety factors with respect to mean values. 

(Ans. 0.868, 1.039, 2.553) 
9.2 For the problt'm in Exercise 9.1, if the standard deviation of ZP is 60000 rnrn• 

and the mean deviation zero, determine the mean and partial safety factor for ZP 
and the combined resistance factor for flo~ 3. (All.\'. Yz = 0.968 

p 

Ycomb = 0.928, mean of Z P ~ 1.139;< 10' mm', 

Y[y = 0.956, YD = 1.091, YL = 1.75) 

9.3 The limit state equation for the shear strength of steel beam is taken as 

fyr.,d- VD- VL = 0 

It is given: 

Variable !y: I£ = 275 N/mm• 

Nominal = 250 Njmm• 

Variable V0 : r.t = 270.9 kN 

Nominal = 258 kN 

Variable VL: 1.1 = 224 kN 
Nominal = 361 kN 

o = 27 .5 N/mm• 

o = 27.09 kN 

cr = 63.4 kN 

tw = 8.9 mm. If the standard deviation of dis 20 mm and the mean deviation 0, 

determine tbc partial safety factors of /y• V 0 , V L• and d for 80 = 5. assuming 
/y, V0 , VL and d follow lognormal, normal, Type I extremal (largest) and normal 
respectively. What is Lhe combined resis tance factor? (lllls. j "( d = 0.973 

Yfy = 0.878, YD = l.lOS, YL = 2.229, Ycomb = 0.855) 

9.4 The shear strength of RCC beam is given by 

R =fA .!!_ t bd yO.IIf. {v J +58'- 1} 
y sv s 6 cu ,, 



266 

I he limit slate equation is 

R- In - I'L ·- 0 

where Vv and I'L a1e shears due to dead and live load. It is given: {J' = 2.9, 
b ~ 300 mm. d = 580 mm, s ·~- 100 111111. 

Variable J;.: 11- · 320 N/mm• 

Variablefeu: 1£ c 26.7 N/mm' 

Variable V D: [L "c 94.5 k N 
Variable VL : fJ. ~~ 75.0 kN 

a ~c32N'mm' 

a = 4.02 N/mm' 

a '~ 9.45 kN 
a ~- 21.~2 kN 

The nominal vall1cs of/y• feu• VD and VL arc 250 N mm', 20 N mm', 90 kN and 
90.69 kN respectively. 
Determine the partial safety factors of /y. feu · VD ami I'L for Po= 5 if all 

variable~ arc normally distributed. 
(ilns. Yfy = 0.898, Yfcu " 0.97, YvD = 1.202 and YvL •= 1.588) 

9.5 The ultimate strength of a RCC beam in shear is given by Eq. 9.32. Consider the 
problem in Example 9.6. 
(i) The statistics of shear force due to dead and live load a1e as follows: 

Variahle Vn: (Nominal value = 79.5 kN) 

:.t = 83.5 kN a = 8.35 kN 

Variable JIL: (Nominal value = 54.41 kN) 

1£ -~ 45.0 kN a = 12.73 kN 

The statistics of feu and/y, and all other data are the same as given in Example 
9.6. Determine the partial safdy factors for feu• fy· VD, and VL for {J0 = 5. 

(Ails. "IJy =- 0.9438; 'Yjcu = 0.9566; Yv "~ 1.269 and YL = 1.571) 

(ii) If the code committee fixes the material reduction factor for concrete as 1.5, 
determine the partial safety factors for /y, Vv, and VL for flo= 5. 

(Ails. Yjy = 0.859; "lv = 1.267; YL '= 1.563) 

(iii) If the code committee fixes the material reducation factor for steel as 1.15, 
determine the partial safety factors for feu• VD, and VL. 

(Ans. "lfcu = 0.817; Yv == 1.288 and YL ~" 1.673) 

9.6 A column is subjected to combined axial load and bending moment. Under this 
combined action, let the equivalent strength of column be R. The column is 
subjected to dead, live and wind load. It is given: 

Variable R/R0 : (normal) 

!' = 1.22 8 = 0.14 

Variable D/Dn: (normal) 

" = 1.05 8 = 0.1 
Variable Lap1/Ln: (lognormal) 

p. = 0.179 8 = 0.55 

Variable W ml W 0 : [Type 1 extremal (largest)] 

1£ = 0.804 8 = 0.334 

Study the variation of the partial safety factors for various values of W0 /D0 = 0.5 
0. 75, 1.0, 1.5 and 2 for flo = 3 and plot the same. Assume L 0 /D0 = 1.0. 

9. 7 The limit state equation of a structural component subjected to dead and wind 
load is given as 
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, The statistics of the variables arc given below. 

Vuriable R! Rn: 1.1 = 1.355 
Variable D/Dn: 1.1 = 1.05 
Variable W/Wn: 1.1 = 0.804 

tJ = 0.225 (normal) 
tJ = 0.105 (normal) 
tJ = 0.269 (Type 1 extremal (largest)] 
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l,lot the variation of..the ~artlal safety factors 'YR· '~'D· and Yw with W" nn ranging 

from 0.5, 0.75 . 1.0, I.S and 2 for IJo = 3.5 . .Determine the optimal values of '~'R• "'D 

and Yw using the method adopted by Baker (9.15) assuming suitable weighting 
factors for the occurrence of each Wn!Da ratio. 

1,1 , ~ The limit slate equation for an axially loaded short column is assumed as: 

0.67 feu Ac + fy A8 - D - L = 0 

The area of concrete, Ac• is 113000 mm•. It is given: 
Variablt;4u :(normal) 

" = 26.8 Ninim• 6 = 4;02 Ntmrni 
Variable/y: (normal) 

1.1 = 4.69 N iimi12 

.Dead load D: (Normal) 

I''"'" 420 kN 

Live load L: [Type I extremal (largest)] 

a = 46,9 N/mm• 

o = 42 kN 

1.1 = i66.8 kN tr = 47.2 kN 

If the nominal values of feu• !y• D, and L are 20 N/mm1, 415 N/mm•, 400 kN ancl 
269 kN respectively, determine the partial safety factors for variables for Po = .5 • 

(1111'. >'feu = 0.458; 'Yjy = 1.044; Yo = I. IS; >'L '~ 1.073) 
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10 
Reliability of Structural Systems 

10.1 GENERAL 

We have so far studied the reliability analysis and design of structural 
components. The code calibration based on component reliability was 
also introduced and illustrated in Chapter 9. But a structure or a structural 
system, viz. building, bridge, offshore platform, water tank, etc. is built 
up of many components (elements). The capacity of a structural system 
will depend on the capacities of its components. The behaviour of the 
system is probabilistic as it depends on the performance of its componenrs 
whose behaviour is random . Civil engineering structures are invariably 
a kind of system. Information is available only on the statistical per­
formance of components. With this information, the reliability of the 
structural system must be determined. A structural system may have 
several failure modes. These failure modes are to be identified, modelled, 
and combined to determi11e the system reliability. Hence, the reliability of 
structures/structural systems of multiple components and with multiple 
failure modes is to be considered from the system point of view. 

10.2 SYSTEM RELIABILITY 

One of the important applications of probability theory is the evaluation 
of the reliability of a system which is made up of components with known 
reliabilities. The reliability of a component is the probability of its satis­
factory performance against the purpose for which it has been designed. 
Block diagrams are used to demonstrate the computation of the reliability 
of a system. Systems are classified basically into three groups as given 
below: 

(i) series system 
(ii) parallel redundant system 
(iii) mixed system 

10.2.1 Series System 

The term, commonly used in the field of electrical engineering, is easily 
understood by everyone. In this system, even if one component fails to 
function satisfactorily, the whole system will fail. Therefore, a series system 
performs satisfactorily only when every component works satisfactorily, 



0 
tS 

ual 
.vas 
ual 
uilt 
:em 
the 
:nts 
.bly 
)er­
the 
ave 
led, 

of 
iple 

:ion 
)WO 

1tis· 
1ed. 
ility 
iven 

lSily 
; to 
item 
rily, 

269 

The block diagram for this system is as shown in Fig. 10.1 and the reliabi­
lity of the system is calculated as explained below: 
Let 

A1 = the event that component i works satisfactorily 
Pss = probability of survival of the system 
pr. = probability of failure of the system 

Pn = l - Prs 

2 --------8-
FIG. 10.1 Series system 

As every component should func;Jion satisfactorily for the system to be 
reliable, 

Pu = P(A1nA2n . . . nAn) 

If the events Ai are independent, the above equation simplifies to 

Pss = P(A1)P(A2) . .. P(An) 
II 

(I 0. I) 

II (l -- pr;) ( 10.2) 
i-1 

where Pfl = the probability of failure of the component i, and " = the 
number of components. 

The model is also called the "weakest link model". 
In the case of structural systems in civil engineering, the values of Pr1 are 

very small . If Pfi <( 1, Eq. (10.2) can be rewritten as 

and 

II 

Pu~l-Eprt 
1-l 

II 

pr. ~ E Prl 
1-1 

10.1.2 Parallel Redundant System 

(10.3) 

(10.4) 

In this case, the system survives even if one component has failed. The 
system fails to function satisfactorily only when every component of the 
system has failed to function satisfactorily. The block model diagram for 
the computation of reliability is shown in Fig. 10.2. The reliability of the 
system is given by 

Pu = 1 -Pta 

~ 1 - P(AfnAin .. . nA!) (10.5) 

where A~ = the event that component i docs not function satisfactorily. If 
events A~ are independent, Eq. (lO.S) simplifies to 

p.. = 1 - [P(Ai)P(Az) ••• P(A:)] 

- 1 -A /Iff no.6> , .. , 
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FIG. 10.2 Parallel redundant system 

In structural engineering, this system may be referred to as a parallel 
system with n perfectly ductile elements. 

10.2.3 Mixed System 

This is a combination of series and parallel redundant systems. The block 
model diagram for the computation of the reliability of a mixed system is 
shown in Fig. 10.3. This is visualised to consist of subsystems St and S2 as 
shown in Fig. 10.3. St is a series system and S2 a parallel redundant system, 
and subsystems St and S2 are connected in series. For this mixed system 
to survive, each subsystem should survive under the given conditions . Hence 
the reliability of the system is given by 

p,. --=- P(El n £2) 

r---

-+EJ I 
L _ _ _ ____ _ J 

FIG. 10.3 Mixed system 

where £1 = the event that subsystem I functions satisfactorily and £2 =the 
event that subsystem 2 functions satisfactorily. Knowing how to compute 
the system reliability of the series and parallel redundant systems, the 
probability of the survival ..>f this mixed system, shown in Fig. 10.3, is 
given by 

Pss = P(Et)P(E2) 

= (I - Pfat)(l - Pral) (1 0. 7) 
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where pr,; is the probability of failure of the 5ubsystem i. It has been 
assumed that events A; are statistically independent. 

• AMPLE 10.1 Calculate the reliabilities of the systems shown in Figs. I 0.3 
nnd I 0.4 assuming the performance of components is statistically indepen­
dent. Compare the results. Given: 

Pri = 0·1 

FIG. 10.4 Block model-Example 1 0 1 

(i) The reliability of the mixed sy tcm (Fig. 10.3): 
The reliability of the subsystem I, using Eq. (10.2), is 

P(E,) ""' (I ·- 0. 1)(1 - - 0.2) 

= 0.72 

Using Eq. (10.6), the reliability of the subsystem 2 is 

P(Ez) = I -- - PnPr4 

""~ [I - (0.3){0.2)] 

~-' 0.94 

lienee the reliability of the mixed system is (Eq. 10.7) 

p., = P(E,)P(E2) 

= (0.72)(0.94) = 0.6768 

(ii) The reliability of the series system, shown in Fig. 10.4, is 
p,. =(I - 0.1)(1 - 0.2)(1 - 0.3) 

= 0.504 

When the reliabilit-ies of the two systems are compared, it can be seen 
that at the cost or an additional redundant component 4, the mixed system 
is more reliable than the one shown in Fig. 10.4. 

~AMPUl 10.2 Con ider a nuclear power plant designed for a tevel of 
earthquake intensity. At this particular level of the earthquake intensity, 
the controlled shutdown of the reactor depends on the functioning of the 
control s stems; the cooling systems and the primary containment vessel. 
• here are two redundant control systems, two redundant cooling systems, 
and a single primary containment vessel with two components A and B in 
series. 

(a) Draw the block model for the computation of the reliability of the 
plant with respect to shutdown at the given earthquake level. 

(b) If it is assumed that there will be no major accident if either the 
shutdown is controlled or the reinforced COJlcrete secondary containment 
vessel C performs properly, model the total system with respect to the 
major accident reliability. 
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Solution Let 

pr; = probability of failure of the component i 

(a) The block model diagram for the computation of reliability is shown 
in Fig. l0.5(a). The reliability of the plant with respect to shutdown at the 
given earthquake level is 

Pss =(I - Pf1Pf2)(1 - PnPr4)[(1 - {JfA)(I -- pro)] 

Control system 

Cooling system 

R c c Vt'SSt'l 

c 

(b) 

Primary contaimeont 
Vf'SSf'l 

Pr~mary conlaimeont 
Vf'SSt'l 

r - - - - - - - - -, 

I 
L --------J 

FIG. 10.5 (a) Block model for case a and (b) block model for case b­
Example 10.2 

(b) In this case, there will be no major accident if either shutdown is 
controlled or the secondary concrete containment vessel C performs satis· 
factorily. The block diagram is shown in Fig. 10.5(b). The reliability of the 
system with respect to no major accident is 

Paa = 1 - [1 - {(I - prtpn)(l - prJPr4)(1 - PrA)(l - prs)}](prc) 
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MODELLING OF STRUCTURAL SYSTEMS 

hilt Ill can be considered as a system and can be modelled into any-one 
lh tllrec basic systems, depending on the physical behaviour for comput-

11 . reliability. The modelling of a few structural systems for the com-
1 t on of reliability is explained in the following sections. 

mply supported beam is subjected to a load as shown in Fig. 10.6, the 
of the beam occurs when the strength of the critical section (the 

1 111 subjected to the maximum moment) is less than the external load. 
I It beam can be considered as a system with one component (critical 

II n) only. It is similar to a case of a tension member subjected to a load 
hu\ n in Fig. 10.6(c). 

L 

A 

(al Beam (b) Model (c )Tension Member 

FIG. 10.6 Single member single load condition 

If the beam shown in Fig. l0.7(a) or the tension member, shown in 
I t~ I 0. 7(b) is subjected to several independent load conditions, L1, L~ . ... , Ln 
, 1 ndependent repetitions of a single load. the reliability model is a series 

t 111, since for the beam to be reliable, the critical section should survive 
, 1 be reliable under each load. The block model is shown in Fig. I 0. 7(c), 

h ·rc the Section A under each load is imagined as a component and is 
1l n ted as A;. 

'A 'IPLE 10.3 Consider a steel tension member, shown in Fig. !0.7(b), sub-
1 n ll to m independent repetitions of load L. It is given that the means 
111\ l standard deviations of the resistance of the msmher R and l. nrc 

/'II -· 50 kN 

/LL """" 25 kN 

m - = 5 

"R - .'i kN 

"'· ' , 12 k N 

( ' mpute the reliability of the member if Rand L are normally distributed. 

,\olution Consider the member as a system subjected to m independent 
r petitions of L. The block model for the system to comrute the reliahility 
will be a series system. The reliability of the system is 

p,. = I (I --· pr l I'" 
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Lm r· 
J 

Lt 

j Lz 

I L2 

j Lt 

A 
Lm 

lal Beam lbiTension Member 

-----&-{3- -{A~--------- -a-
lc l Block ModPI 

FIG. 10.7 Single member m load conditions 

where Pr is the probability of failure of the member under l.. The value of 
{Jr is comruted as given below: 

Pr = P[R < Ll 
= P[(R - L) < Ol 

Since R and r are normal, ming Eq. (6.16), we get 

pr ~~ 1'>( -- {3) 

---, 1'> ..... 2 2 
[ 

f4f. - -· /l-R ] 

(aR + aLJ1;2 

Suhstituting the given data, we have 

[ 
25 - 50 ] 

!'t = c/J (52+ J22)1/2 

= c/J(- I. 92) = 0.02743 

The probability of survival of the system under repetition of L foe five 
times is 

Pss = (J -· 0.02743)5 
=.-, 0.87 

It is to he noted that the reliability of the system decreases as m Increases. 
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structural system consists of girders, piers, and abutments, as 
in Fig. I 0.8(a). For the reliability of the system of piers, each pier 
function satisfactorily, Hence, the reliability model for the system of 

\ Ill be a series system. Similarly, for the reliability of the system of 
nts each abutment should be reliable under the given loading con­
Hence, the reliability model for the satisfactory performance of the 
of abutments is a series system. Likewise, for the reliability of the 

.;b•""'m of girders, each girder should be reliable under the given conditions. 
i~l oftiJn~;c the reliability model for the system of girders is a series system. 

(a) Bridge System 

G1rder system Pier system Abutment system 

r-- - - - - ---, 
I I 

I 

- --- -- --, 
I 
I r 

--------------l 
I 

f I I I 
I I I I L _ __ _ __ __ J L ___ _ _ _ j I -- - -- -- - -- _ ......) 

\ (b) Block Model 3 

FIG. 10.8 Modelling of a bridge system 

r the whole bridge system to survive under the given loading condi­
li n, each subsystem, i.e. system of girders, system of piers, and system of 

t)11tmen ts, should survive. Hence, all the three subsystems are to be con-
no ted in series to compute the reliability of the system. The block model 

five tl gr m is shown in Fig. 10.8(b). 

LSeS. 

AMPLE 10.4 Compute the reliability of the bridge system, shown in 
fig. 10.8(a), having four piers, five girders and two abutments. The probabi-
1 ty of failure of each pier, girder and abutment is I o-4, 10-s and I o--r, 
r pectively. Compute the reliability of the bridge system . 
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Solution The probability of failure of the pier system is (Eq. (10.4)] 
.. 

(pr)pier = lJ Prt = 4 X I0-4 ,_, 
The probability of failure of the girder system is [Eq. (1 0.4)] 

5 
(prkir~er = 1: Pri = 5 X JQ-S 

t~l 

The probability of failure of the abutment system is [Eq. (10.4)] 

2 
(pr)Abut = lJ Prt = 2 X J0-6 

t~t 

Hence the probability of failure of the bridge system is 

(pr)Bridge = (4XI0-4) + (5x J0-5) + (2X J0-6) 

= 4.52X J0-4 

The reliability or probability of survival of the system is 

{lss = J - 4.52 X I0-4 

10.3.4 Truss System 

Consider the truss shown in Fig. I 0. 9(a). It is subjected tu a load Las shown 
in the figure. This is adeterminate structurewhich is considered ~1s a system 
having six members (components). For the truss to perform satisfa<.:torily, 
i.e. to be reliable under the given load L, every member of the truss should 
perform satisfactorily, i.e. should carry its load safely. Hence, this truss 
can be modelled :1s a series system with Jive components, as shown in 
Fig. \0.9(b), to compute the reliability. 

JJL 
2 

Jh 

L 

(a) Truss System 

(b) Block Model 

FIG. 10.9 Modelling of a truss ~ystem 



hown 
rstem 
orily, 
lOU!d 

truss 
m in 

}--

117 

10.5 The truss shown in Fig. 10.9 is subjected to a random load 
parameters 

~L = 25 kN U£ = 12 kN 

pnrnmeters of resistances of members are given as 

~RI = 50 kN aRI = 5 kN i = 1, 2, ... ; 6 

/-LR1 = 60 kN aR1 = 6 kN 

te the reliability of the truss system assuming resistances of the 
are independent, and also that resistance and load are independent 

R t and L are normal. 
h block model for the computation of reliability is shown in Fig. 10.9(b). 
the given load, the forces developed in the members are given in 
I .9(a) . 

calculating the system reliability, the reliability of individual com­
nt · must be computed. Since members l, 3, 4 and 5 carry the same 

d and their resistances are the same, the probability of failure of these 
111'1mi:>Crs is the same: 

Pfl = rp [ ~L - ~R l ] 
(a L + <1Rt)l f l 

[ 
25 - 50 ] 

= rp (52 + 122)1 /2 

= 4>( -1.92) 

= 0.02743 

pn = PC4 = prs = Ptt = 0.02743 

he force in tqe members 2 and 6 is Lv'T/2. Hence, the mean value and 
lundurd deviation of the force in member 2 are (VT/2)11-L and (v3/2)aL 

peclively. Hence, · 

Simi larly , 

[ 
v'3 l --~L- ~Rl 

pn ~ pro ~ <P {('/3 )' '}"' 
-- C1L + C1R2 

2 

[ 
21.65 - 50 ] 

= cp {(I 0.392)2 + 52}1'2 

= <I>( -2.458) = 0.006986 
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= c <1J (~) = f/J( - 0 77 1 ) 21.63 ° -

= 0.224338 

Using Eq. ( 10.2), the probability of survival of the system is 
i 

flss = 11 (I -- [1r;) 
i=t 

= (I - 0.02743)(l -- 0.006986)(1 - 0.02743) X 

(I - 0.02743)(1 - 0.02743)(1 - 0.006986) X 

(I - 0.22438) J 

= 0.68625 

· nsider the tru e silO\ n in Figs. IO. lO(a) and lO. IO(b) in which the 
number of members arc 3 and II respectively. Reliability of these trusses 
can be computed as above and arc 0.948 and 0.148 respectively. Including 
the result for Lhe same type of trus · with sevl!n member~ . it can be observ­
ed that as the number f members increases, the reliability of the 
system de rca es when the performance f the members are statistically 
independent . 

(a) (b) 

FIG. 10.10 Trusses 

ln the ~t sc or tru s systems, for a given number of members, if the resis· 
t :~ncc!s of members are c rrelat ed, the reliab ility of the system increases 
willt the increase in the c rrelation c em ient between member performances 
resistanC!!S or memberS). 

10.3.5 Indeterminate Beam 

Consider a fixed steel beam shown in Fig. 10. I I. This is a redundant, per­
fectly ductile structure. In this case, the failure of the structure does not 
occur if one section yields; failure occurs only when a sufficient number of 
sections have yielded to form a collapse mechanism. In the case of the fixed 
beam shown in Fig. 10.11, the beam fail s only when the critical sections I, 
2 and 3 (positions of maximum moments) have yielded. Hence, the given 
beam can be consi lered as a parallel redundant system, the block model 
diagram of which is sh wn in Fig. IO.Il(b). 

In the case of redundaut structures, the reliability of the system increases 
as the number or redundant components increases if R; are statistically 

~--------------------------
_] 
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L 

I ! 21 

J, 
T 3 J 2 2 

~----- 1 

lbl Block Model 

FIG. 10.11 Modelling of a fixed beam 

I 1l p •ndent. It can be proved also that in the case of a redundant parallel 
I 111 , if the resistances of members are correlated, the reliability of the 
It Ill decreases with the increase in correlation. 

11.,\.6 J.'rame Structural Systems 

I 1 IIII C structures are highly redundant structures. In this case, the failure 
•I 11 single section (component) does not result in the failure of the frame 

I tem). Assuming a perfect ductile structure, the frame fails only when a 
ull t icnt number of plastic hinges are developed to cause a collapse 

111 hanism . Again, there may be a number of possible collapse mechanisms 
n u frame structure. These possible collapse mechanisms are to be synthe­
lml and the system failure probability is to be computed . 
A failure mode, i.e. a collapse mechanism is composed of component 

( '(• tion) failure events that are in parallel. For a failure moue to be formed, 
1 ry critical section in that mode must have failed. Hence, to compute the 

1 hubility of the frame under a particular failure mode, the critical sections 
In 1 hat mode are to be connected in parallel. For the frame to be reliable, 

~~~ hus to survive under all the possible failure modes. Hence, to compute 
· . the . system reliability, these parallel subsystems are to be combined as a 

-"rics system. The block model for the computation of the reliability of a 
frume structure is shown in Fig. I 0.12(e). It is clear that this is a mixed 
•yatem. The individual failure modes may be correlated because of common 
load and resistance variables. There may be correlations between single 
elements in the same failure mode. The system reliability depends on 
(I) topology, (ii) post failure behaviour of components, and (iii) correlation 
chural:lcristics of different variables and different failure modes . 

In the case of ideal plastic structures, each collapse mode, called collapse 
mc~.:hanism, (i.e. limit state) can be represented directly by an equation in 
lt:rms of the plastic moments of hinged sections in the mechanism and the 
length factors multiplied by loads (10.1), using the mechanism method of 
nnalysis ( 10.~). Hence, the safety margin equations for failure modes can be 
Llirc~· tly written and the reliability of a frame under each failurl! mode can 
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(c) Mode 2 (dl Mode 3 

Mode 1 Mode 2 Mode 3 

(elBiock Model 

FIG. 10.12 Modelling of a frame system 

be calculated. Then the structure is modelled as a series system with the 
failure mode as components, and the system reliability is determined. Tbis 
i illustrated in the following example. 

'·/~AMfllE 10.6 Consider the rigid steel frame shown in Fig. 10.13(a). It is 
gi ven th at 
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a). It is 

w 

Ia I Frdme (b) Mode 1 

., w L .s 
~ 

w 

(dl Mode 3 

lei Mode 4 

1-------10~-

Mode 1 Mode 2 Mode 3 Mode 4 

(f)Biock Model 

FIG. 10.13 Frame, failure modes and block model-Example 10.6 

P.Ml = P.Ml = P.M6 = P.M1 = 490 kN Ill 

U!lfl = CM2 = aM6 =~ U!1f7 = 73.5 kN m . 
{LMJ = #lM4 = fi-MS =653 kN Ill 

aM3 = aM4 = OMs = 97.95 kN m 

P.w = 446 kN aw = 69.9 kN 
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\1 ill'IC A/; is the plastic ll10111ent capacity or section i. Compute the system 
•cliability or the fr:1me assuming all M; arc independent, M; and W inde­
pendent and ;ill 1·ariablcs M; and W normally distributed. 

Be:::ause of •.he random behaviour or the resistances of \'arious critical 
sections and load, the frame may fall under failure modes having hinges at 
2, 4 and 6, or 3, 4 <IJH.l 5 or 3, 4 and 6, or 2, 4 and 5 which arc shown in 
Fi~s 10.13(b)-10.13(d. 

The virtual wm 1-: method of plastic analysis (10.2) is used to determine the 
n:,iqa!1cc or tlie r, am~. :u~d action at collapse for each mode. For the safety 
ol' the fr:1111e under failure mode I [Fig. 10.13(b)l: 

M2tJ + 21\148 + Mc.O > 3 JYO 

11 lll:rc 0 is the vi1tual rotation at section 2. Hence, the safety margin is 

Z = ilh + 2M 4 + M 6 - · 3 IV 

·1 he probability or survival of the frame under a mode is P• ~ P(Z ~ 0). 
/\s 7 is a line:11· function of the variables M; :tnd W, we have 

c.= 490 -: 2(653) + 490- (3)(446) = 948 kN 111 
~ 1 1 ~ 

az = l(lfa;ir2 -l- (2)2ai;r4 + (1)2aM6 + (3)2o .. iv]lll 

=- L73.5 2 + (4)(97.95)2 + 73.52 + (9)(69.9)2]1 12 

= 305.2 kN m 

/\s Z is a linear function of the independent, normally distributed variables, 
~is also a normal variable. The probability of failure of the frame under 
the mode I is 

( P.z) {Jfl = P(Z < 0) = f1> - az 

--- (/> ( - 948 ) 
-- 305.2 

== <!J(--3.106) = 9.35 x I0-4 

Similarly, for other failure modes shown in Figs. 10.13(c), IO.l3(d), and 
I 0.13(e), the probability of failure of the frame under each failure mode can 
be calculated; the calculations are shown in Table 10.1. To compute the 
probability of survival of the system under all failure modes, a block model 
is drawn connecting all modes in series as shown in Fig. l0.13(f). Assuming 
all failure modes are statistically independent (Note: this is not true as all 
Z are correlated as seen in Table 10.1) and using Eq. (I 0.2), we have 

4 

p,. = II (I - pr;) 
i-l 

= (I - 9.35 X I0-4)(1 - 3.97 X to-5) 

'~ (I - 1.85 :/ w-4)(1 J.85x w-4) 

"' 0.9986553 
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T:\llLE 10.1 Rc/iahility allal,l'.li.•· of tl:c portal /miii('-E.'.'olllplc 10.6 

P.ZI Gz; 

(kN m) (kN. m) 

(Fill. IO.IJ(bl] !If,- 2.11, -:- M,- jw 948 305 . .! 

I f'ig. I 0.13(cl] 11-!3 +2M, '- Ms- 3W 1274 318.7 

[rig. to.t3(d>l !lr,..!..2.H,-, Me- 3W II II 312.0 

[fig. IO.IJ(d] M, .!. 2/lf, -' M,- 3W ]]]] 312.0 

lllille hounds: 9.35xto-• ~Prs ~ 13.37;:Jo--• 

rh probability or failure of the structural system is 

cN.u: 
4 

flfs ~ :E Pr;) 
i=l 

pr, "--= I - 0.9986553 

1.3447 :< IO-J 

1ft • BOUNDS ON SYSTEM RELIABILITY 

IO,.C.l Introduction 

9.35 >: to ·• 
3'.17x to··• 

t.ssxto-• 
t.ss x to-• 
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p 

3.106 

3.997 

3.561 

3.561 

In the previous problem, it has been assumed that Z; are statistically 
tulopendent during the computation of the reliability of the system. It is 

nb i us when the equations of Z; are examined. (Table 10.1), that Z; are 
1 lll'related, ns the same random variables appear in the equations. For 

llllple, if z, and Z2 are considered. /114 a11d W appear in both the equa­
litn . Hence, Z1 and Z2 are correlated . 

I 

ml 

II 

Z; = l' a;X; 
i-1 

" 
Zk "'" 1: b;X, 

i-l 

(u1 and bk are constants) 
h • ~ovariance between Z; and Zk is given by 

• II 

Cov(Z;, Zk) = E a;b;aL 
i-1 

l'hc correlation coefficient bet\veen Z; and Zk is given by 

Pz; ~k = Cov(Z;, Zk) 
' a7.; az;: 

(I 0. 8) 

(10.9) 

{ 10.10) 

( 10.11 a) 

• rrelation coefficients can also bt: calculated using directional cosines r1., 

\ 
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uireclly obtained during the computation of rcli~tbility illdcx using Level 2 
method. The wrrdation roetricient between Z and Zk is given by 

" 
f'L;, zk = l-' IJ."'l.kt 

.J-1 
'II 

·:he abore equation and Eq. (IO.lla) arc same. This can be easily verified 
for linear Eqs. (10.8) and (10.9) for Z; and Zk. For nonlinear equations, 
directional cosines evaluated at the design point, Cl.~, on the failure surface 
arc used. That is, in gener:1l, 

n 

Pz;, Zk = 1;· 
t-1 

(10.11 b) 

The probability of survival of the system is given by Eq. (10.1). That is, 
p,. = P[All Z; > 0] 

= . . . lzl, z2, ... , z, (zt, z2, ... , z,) dzt, dz;;, ... , dz" f<h J"' 
0 () 

u~rotd 

Where /zp z2 , ••. , Zn (zr, Z2, ..• , Zn) is the n-dit!ICOSiona! joint probabi­
lity density function of Zt, Z2, ... , Z,. The joint probabilities are gene­
rally not known and the computation of n-fold integration is very difficult, 
and may not be possible. Therefore, the above equation is simplified by 
certain assumptions to derive bounds on the probabiiity of failure. It is 
generally not possible to compute the unique value of the reliability of the 
system and therefore, the reliability of the system is specified by its bounds. 

10.4.2 Simple Bounds 

Cornell (10.3) has established simple bounds on the reliability of structural 
systems subjected to n failure modes and m load conditions. The assump­
tion that all fatlure modes, i.e. Z;, are perfectly correlated yields the upper 
bound as 

fJss =I- maxP(Z; ~ 0) =I- maxpr; 
! i 

The assumption of all failure modes to be statistically independent yields 
the lower bound as 

n 

Pss = fl (I - Pfi) 

Hence, the reliability of the system is bounded by 
n 

11 (I - pc;) ~ Pos ~ I - max pr; 
;~t I 

(10.12) 

If pr; ~ I, the bounds on P•• become 

" I - }; pc; ~ pss ~ I - max pr. 
i•l i 

( 10.13) 

The bounds on the probability of failure of the system can be written as 
JJ 

max pr; ::::;; pr, ::::;;; }; pr; 
j i:oal 

(10.14) 
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II the system is subjected to several m load conditions, the bounds on p11 

1111 p(, are given by (10.3) 

n 11 

I - I: I: Pru ~ Pss ~ 1 - max Pfii 
i-1 ,_, lj 

( 10."15) 

"'" n m 
max PfiJ ~ pr. ~ I: I: pr;i 

I) ~ 1~1 J=l 
( 10.16) 

here PriJ is the probability of failure of the frame under mode i and load 
'tiiiJ IIion j. These bounds are very wide for practical pmposes. 

10.4. Narrow Bounds 

Th assumption of perfect correlation or, no correlation between failure 
m d s, is not proper. The modes are usually positively correlated. The 
·c rr lation coefficients between modes can be calculated using Eqs.- (To.-10) 
nd (I 0.11 a). Ditlevsen (I 0.4) has developed narrow bounds for the structural 

tem failure probability through indicator function algebra . The lower 
und on pr. is 

n 

prs ~ P(Zt < 0) + I: max {P(Z, < 0) 
l-2 

,_, 
- I: P[(Z; < 0) n (ZJ < 0)], 0} ,_, 

1 1 I the upper bound is 

Let 

n n 
Pr• ~ I: P(Z; < 0) - I: max P[(ZJ < 0) n (Z, < 0)1 

J~l 1-2, } <. 1 

E1 = (Z; < 0) 

E, = (ZJ < O) 

(10. 17) 

( 10.18) 

yields · Then the above Eqs. (I 0.17) and (10.18) become 

10.12) 

10.13) 

as 

10. 14) 

n 1-l 

Prs ~ prt + I: max [pfl - I: P(EI n EJ), 0] 
1~2 ,_, 

(10.19) 

and 

n " 
Pt• ~ I: PrJ - I: max P(Et n E1) 

1-1 1-2, )<I 
(10.10) 

The joint probability, P(E; n EJ), may be approximated as follows. For 
lower bound (Eq. 10.19) 

P(E1 n EJ) = P(A) + P(B) (10.21) 

upper bound (Eq. 10.20) 

P(E1nE1) -max [P(A), P(B)] (10.22) 
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where (10.23) 

( 10.24) 

where 

EXAMPt.r 10.7 For the same portal lrame in Example 10.(,, compute the 
simple ~md narrow bounds on the prob<tbility of failure of the frame. 

Simple bounds: 
For !he possible four failure modes, the probability of failure of each mode 
has already been calculated and given in Table 10.1. The bounds on the 
probability of failure of the system, using Eq. (I 0.14), are 

4 

Upper hound = Z pr; 
i=J 

= (9.35 ~< JQ-4) +· (3.17 X 10-5) +· (1.85 X JQ- 4) 

+ (1.85 ~< J0-4) 

13.37 >~ JQ-4 

Lower bound = max. pr; = pn 
i 

= 9J5 X IQ-4 

Hence, the bounds on [Jrs are 
9.35 X I0-4 ~ Pfs ~ 13.37 X J0-4 

Narrow bounds: 
The failure modes are first renumbered, or ordered, in the descending order 
of Pfi values. Hence, from Table to. I, 

Mode 1 : Z1 = Ah + 2M4 + AfG- 3W 

Mode 2 : Z2 = MJ + 2M4 + M6 - 3 W 

Mode 3: ZJ = M2 + 2M4 + Ms- 3 W 

Mode 4 : Z4 = MJ + 2M4 + Ms - 3 W 

~ = 3.106 

~ = 3.561 

~ = 3.56i 

{3 = 3.997 

The correlations among failure modes (that is safety margins Z; and Z1) are 
next computed. 

Using Eq. (10.10), 

Cov(ZJ, Z2) = (2)(2)oM~ + (l)(l)a,J6 + (-3)(-3)afy 

= 4 X 97.95 2 -j- 73.52 + 9 X 69.92 

= 87753 

Using Eq. (IO.lla), 

87753 ----- --- = 0 922 
305.2 X 312 ' 
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the ~.:orrcl~ltion bct,\ccn z, ami ZJ is 

flz z = ( l)(l)a.lt ~ + (2)(2)u.H~ + ( 3l{ - 3)r,f, . 
I ' 1 0"71 a/.J 

= ?3 .52 + 4 X 97.95~ -1- 9 '< 69.92 = O 9, 2 05 ._X3)2 . -

\ lmi larl y the correlation between other pairs of z,z; ~:a n be computed. They 
II.' 

Pz 1• z4 = 0.847 

P72, z4 = 0.925 

P72, z3 = 0.846 

Pz3• / 4 = 0. 925 

l·or the calculation of bounds, bounds on joint probabilities, P(E,Ej), are 
(1, be comruted first. 

Bounds o;J P(E,h): 
tJc;in~ Eq. ( 10.23), 

P(A) = cf>( -f3rl (h [ - - fl2. 
(I 

= f[J(-3 106) cf>[- 3.561- 0.922>~3.10() ] 
· c 1 - o:9222)''2 

= cf>(- 3. I 06) ([)( - J.R02) 

= 0.334 /~ w-4 

. '·' . . . [ [j , - P12f12] 
P( 8) = Cf.(-:-~2) ([), ·7"" (1-=. p~2) 172 

= ([)( _ 3 56 !) rt>[ _ 3. '106 - 0.922 X 3.56 1] 
. ( I --· 0. 9222) 112 

= f1l( - 3.561) f1l(0.458) 

= 1.25 X tQ-4 

\Lower bound on P(Et E2) = P(A) + P(B) 

= (0.334 + 1.25) >no-4 

= 1.584 X J0-4 

Upper bound on P(E1E2) = max [P(A); P(B~] 

= 1.25X 10"'4 

Since Pl2 = ~r and fh = fJ2, 

P(EtE3) = P(E1E2) 

Bounds on P(E1E4): 



\ ' 
I 

I 

288 

P(A) = t!>( __ 3 I06) tt>[- 3.997 - .847 X 3.106] 
. (I - 0.8472) 112 

= t!>(- 3. I 06) <P(- 2. 569) = 0.048 X I o-4 

P(B) = <P(-- 3 997) <P[- 3.106 - 0.847 X3.997)] 
. (I - 0.8472)1 '2 

= t!>(- 3.997) <P(0.5258) 

= 0.222 X JQ-4 

P(A) -t- P(B) = 0.27 X J0-4 

max [P(A); P(B)] = 0.222 >( JQ-4 

Joint probability: P(E2EJ) 

P(A) =·' t!>(-- ·3 561 ) <P[-3.561 - 0.846 X3.561] 
. . ( I - 0.8462)112 

= t!>(---3.561) <P(-1.029) = 0.281 >< I0-4 

P(B) = P(A) . .' /33 = f3z 
P(A) + P(B) = 0.562 X IQ-4 

max [P(A); P(B)l = 0.281 X I o-4 
Joint probability: P(Ez£4) 

P(A) = <P(- 3_56 1) tt>[- .997 - 0.925 .<3 .561] 
I - 0.9252) 1' 2 

= t!>(-3.561) t!>(-1.85) = 0.059 x JQ- 4 

P(B) = !J>(- 3.997) t1>(0.358) =' 0.203 X JQ-4 

P(A) + P(B) = 0.262 X I0-4 

max [P(A); P(B)l = 0.203 X J0-4 

Joint probability: P(EJ £4) 

P(A) = <P( _ 3 561 ) <P[- 3.997 - 0.925 x 3.561] 
. (I - 0.9252)1/2 

= 0.059 X I0-4 

P(B) = 0.203 X I0-4 

P(A) + P(B) = 0.262X IQ-4 

max [P(A); P(B)] = 0.203 X l.Q-4 

Bounds on the probability of failure of the system are calculated using 
Eqs. (10.19) and (10.20). 

Lower bound: 

ft 1- 1 
pr. ;;::: Prt + £ max [{pfl - E P(EtEj)}; 0) 

1-2 J-1 
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;;;:: Pfl + max [{pr2 - P(E2E1)}; O] 

+ max [{pr3 - P(E3EJ) - P(£3£2}}; 0) 

+ max [{pr4 - P(E4EJ) - P(E4E2) - P(£4£!)}; 0] 

;;;:: {9.35 + max [(1.85 - 1.584), 0] 

+ max [{1.85 - 1.584 - 0.562); 0) 
+max [(0.317- 0.27-0.262- 0.262); O}x I0-4 

;;;:: 9.616X J0-4 

lJ pper bounct. 

n 

E max [P(E1E1)] 
1-2,}<1 

, 
~ E Pfl - max[P(E2E1)] - max[P(E3EJ); P(£3£2)] 

i-1 . 

- max[P(E4EJ); P(E4E2); P(E4EJ)] 

~ [(9.35 + ·1.85 + 1.85 + 0.317) - 1.25 - max (1.25; 0.281) 

- max (0.22; 0.203; 0.203)] x J0-4 

~ 10.648 X 10-4 

•renee, bounds on Pr• of the system are 

9.616X I0-4 ~ Prs ~ 10.648X 10-4 

XAMPLB 10.8 An under-reinforced concrete beam of breadth (b) 240 mm 
nd effective depth (d) 480 mm is reinforced with steel bars of area (A.) 

lo400 mm2• The span of the beam (/) is 6 m. The beam is subjected to a 
I tat uniformly distributed load Q over the entire span and a torsional 
moment T at a distance of 1 m from one end. It is given: · 

Variablejy: p. = 320 N/mm2; a = 32 N/mm2 

(Pe 250) 

Variable /cu : . p. = 22.67 N/mm2; a = 5.44 N/mm2 

(Mix M 15) 

Variable Q : p. = 16 N/mm; a= 5 N/mm 

Variable T: p. = 5 x 106 N mm; a= 1.5 X 106 N mm ,. , 
The beam is reinforced with shear stirrups of area, Asv = 56.57 mm2. 
Spacing of stirrups, s = 300 mm. Three limit states of collapse (i) in flexure, 
(fi) in shear and (iii) in combined bending and shear are considered. Deter­
mine the probability of failure of the beam considering all the three failure 
mOdes. Assume all variables are normally distributed. 

Solution Collapse in flexure The ultimate resisting moment of the beam is 

R =fyAsd[ 1- 0.77 ,{yA.] 
. bd/cu 
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The failure surface equation is 

J2 
Z=R-Q-=0 

8 

Substituting the given data, and designating 

X1 = feu ; Xz = fy ; XJ = Q 
the failure surface equation becomes 

Z === 672000 X1X2 - 6288 Xi - 45 >< 105 X1X3 = 0 

Using Level 2 method (Sec. 8.3.1), the problem is solved and the following 
results are obtained. 

~ =-= 3.305 pr = 47.42 x J0- 4 

C<; == --- 0.9878; Y. ; = : 0.0325; ~; == 0.152 

Collapse in ~hear The shear strength of the beam is given by 

where 

; ---

R = fyA., ~: -i /~/ yO.~ fc,~ [ .Y___I_-f}-~:::-_!] 

(} = ~ 0 . ~ (c, 1: I 
6 l\9 p, 

I 00 A, 
hd 

0 is an emplrical~:oefficicnt depenuing on /~u and fi t- In this problem, (} 1s 
assumed deterministic constant. For /~u == 15, A, =: 1400, h = 240, d ~= 
480, 8 -==; 1.439. The failure surface is given by 

I 
Z '"" R Q 2 ''" 0 

ll~ing the giYen data, the above equation becomes, 

7 -= 22222 .v-:1
' : 90 .5 x~ -- 3ooo Q "" o 

l.' sing level 2 method explained inCh . 8, following results are obtained . 

f3 =-== 3.814 PI =--= fi.R47 10 4 

:z; =~ -0.8753; :x; -~= -0.0917; :z; =' 0.4749 

Collapse in combined shear and torsi oil For checking under combined shear 
and torsion, IS: 456- 1978 gives the following equation to calculate the 
equivalent shear (Ve). 

Ve = V + 1.6 r 
where Vis the shear at the section due to load Q. At the section (I m from 
end) where torsional moment is acting, 

Ve = Q (_!__ - 1000) +- I (i _I_ 
2 . 240 

= 2000 Q +- 0.00667 T 
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1 n the resistance part in the failure surface equation derived in the pre­
~ u failure case, the failure surface equation under combined shear and 
t rt on becomes 

Z = 22222 x?·' + 90.5 X:z - 2000 X3 - 0.00667 x .. 
here x .. = T. Using Level 2 method, following results are obtained for 

lhl failure case. 

fJ = 3.262; Pt = S5.3X Jo-4 

• 
~. = -0.8223; • atz = -0.1142 

IX; = 0.3942; at4 = 0.3942 

Considering the beam as a system under the three failure modes, simple 
h unds on Pr• of the beam [E.q. (1 0.14)], are 

55.3 X I0-4 ~ Pf• ~ (47.42 + 6.847 + 55.3)X J0-4 

5.53 X IO-l ~ Pra ~ 10.96 X JO-l 

urrow bounds The failure modes are numbered in the descending order 
t f their pr values. 

Mode 1 : z, = 22222 x~·' + 90.5 X2 - 2000 XJ -- 0.00667 X4 
8 is Mode 2: Z2 = 672000 X1X2- 6288 X~- 45 x 10' XtX3 

• d = Mode 3 : z3· = 22222 x?·' + 90.5 X2 - 3000 XJ 

d. 

shear 
;: the 

from 

rretation between model and mode 2: Using Eq. (IO.IIb), 
4 

Pz" z2 = :E IX;,~;, ,_, 
= ( -0.8223)( -0.9878) + ( -0.1142)(0.0325) 

+ (0.3942)(0.152) 

= 0.8685 

· !oint probability : P( £1 £2) 
Using Eqs. (10.23) and (10.24), 

P(A) = ~(- 3 . 262)~[ - 3,305- 0.8685 x 3.262] 
VI - 0.86852 

= 9.346>~ 10-4 

P(B) = ~(- 3 . 305 )~ [ - 3.262 - 0.8685 /. 3.305 ] 
VI - 0.~6852 

= I 0. I 84 ;.-: 10-4 

P( A) -1- P(B) = 19.53 >~ J0-4 

max[P(A); P(B)l = 10.184v JO-• 
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Correlation between mode 2 aDd mode 3: Using Eq. (lO.llb), 

Pz2, z3 = ( -0.9878)( -0.8753) + (0.0325)( -0.09168) 

+ (0. I 52)(0.4749) 

= 0 .9338 

Joint probability: P(E2 £3) 
Using Eqs. (10.23) and (10.24) 

P(A) = tl>(- 3.305)1P[- 3.814- 0.9338X3.305] 
v1 - o.93382 

= 1.004 x to--4 

P(B) = tl>(- 3.814) cp[_ 3.305 - 0.9338 X 3.8141 
'\/ r - 0.93382 

= 5.219 X I0- 4 

P(A) + P(B) = 6.223 X 1 o-4 
max [P(A); P(B)] = 5.2l9X 10-4 

Correlation between modes 3 and I: 

Pz
3

, 7 1 = ( -0.8753)( - 0.8223) + (- 0.09168)( -0.1142) 

+ (0.4749)(0.3942) + (0)(0.3942) 

= 0 .9174 

For failure modes 3 and I, we have 

= 4.958 X J0- 4 

P(B) = tl>(- 3.262) cp [- 3.8 14 - 0 .9 174 x 3.262] 
'\/ I - 0.91742 

= 1.073 >< JO• 4 

P(A) + P(B) = 6.031 X 10- 4 

max[P(A); P(B)] = 4.958 X 10-4 

Lower bound on pr. is (Eq. 10. I 9) 

Pr ~ 55.3 X J0-4 + max [{pr2 -- P(£1£2)}; 0] 

+ max[{pn - P(EJ£1) - P(£3£2)}; 0] 

;;:;-: 55.3 x w-4 +max [(47.42 - l9.53)x w-4; 0] 

+ max[(6.847 -- 6.031 - 6.223) x w-4; Ol 

~ (55.3 + 27.89 + OJx w-4 = 83 .19 x w-4 



pper boand on,. is [Eq. (10.20)] 

J 
pr lEt: E pr1 - max [.P(£2E1)] ,_, 

-max [P(EJEJ); P(E3E1>l 

~ [(55.3 + 47.42 + 6.847) 

-10.184- max (4.958; 5.2l9)]X lo--4 

~ 94.164 X lQ--4 

tl nee bou.nds on Pr• of the beam arc 

8.289 x to-3 ~ pr. ~ 9.416 x to-3 

0.5 AUTOMATIC GENERATION OF A MECHANISM 

he problem of the reliability analysis of a frame structure becomes formid­
blo if one uses sophisticated probability models for the basic random 

v riablcs and safety margins, as well as nonlinear analysis of structures. In 
order to obtain tractable analytical models, the methodology of the reliabi­
l ty analysis of plane frame structures is developed using the stiffness matrix 
nt thod, the linear elastic and piecewise linear elastic-plastic (PWLEP) 
lructural analysis, and the first-order second-moment method of reliability. 
I ng with the usual assumptions in the conventional plastic analysis of 

1 uctures, it is also assumed that (i) applied loads are concentrated forces, 
(l ) the PWLEP analysis is based on the mean values of basic random 

riables, (iii) plastic moment capacities of sections, M,, and applied loads, 
{h are the only random variables, and (iv) plastic moment capacities of 
ec tions are statistically independent of applied loads. 

JC) ,5.1 Failure Models 

At any &tage of the structural analysis, the failure of a section (member end) 
I assumed to take place when the plastic moment capacity of the section is 
reached. This failure is called the formation of the ~plastic hinge at the 
ection. . 

, In a redundant structure, a collapse mode forms only when a sufficient 
number of hinges have developed. The fa ilure mode of a structure i defined 
as the formation of a collapse mechanism. When the PWLEP analysis is 
carried out by moving from one hinge to another, the criter ion of determin­
ing the formation of a mechanism is given by the singularity of the sti ffness 
matrix, [K], i.e. I [K] I =0. I [K] I is read as the determinant of matrix [K ]. 
The finally formed hinge converts the structure into a collapse mechanism 
and the failure model of the finally hinged section corresponds to the 
collapse mechanism. 

10.5.2 Safety Margin Equation -

The results of PWLEP analysis enable one to write the safety margin equa-
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tions of a potential hinge section (the section selected for forming a hinge) 
at any stage of a failure path in terms of M; and Qj. The safety margin is 
the difference between the plastic moment capacity of the section and the 
bending moment at the section, just before forming the hinge due to applied 
loads and plastic moment capacity of earlier sections. For example, if the 
frame shown in Fig. 10.14 is considered and, if the sequence of hinges 
formed in a failure path are at member ends 2, and 4,. and at 6 (the poten­
tial hinge), the hinge is going to be formed, the safety margin, Z6, of the 
section 6 at this stage can be written as 

OJ 

[I] 

" 
Z6 = G62M2 + (/64M4 -1· G66M6- 1: b6jQ; 

j = l 

O.z 

0 0.1 
GJ 

6 8 

2 7 4 

5m 
Fy 

QJ 

1 
M 

J 
rn. 

I------ J rTI -+--Jm -.J 

[.!] I Fl E'prE'se n ts n1emb€'r numbiH 

-f I RP.presents member tond number 

FIG. 10.14 One-bay one storey frame-Example 1 0 9 

(10.25) 

F~ 

where /1[; is the plastic moment capacity of section i, (/6; is the moment at 
section 6 due to unit M;, b6j is the bending moment at section 6 due to unit 
load Qj, and 11 is the number of loads. It is to be noted that a66 is unity. 
P(Z6 < 0) gives the probability of failure of the section 6, given that 
sections 2 and 4 have already failed. As the analysis progresses, at every 
stage of the progressive failure tree the safety margin equation for the hinge 
to be formed can be written. As PWLEP analysis is carried out by moving 
from one hinge to another. when the ~tiffness matrix of the structure 
becomes ~ingular, the linall~ formed hinge convert;; the structure into a 
mechanism and the failure model of the finally hinged section corresponds 
to the coll:1psc mechanislll Th~ safet~ margin of the lin ally formed hinge 
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inge) ll!'l' llllcs the safe ty margi n cq uat i n of the mechanism. This sa ti~ ty margin 
;in is l'l l li:Hion c incides \\' ith the safe ty rll'lrgin quation obtained from the con-
I the ' ntional mechanism method of plastic analysis. When a mechanism is 
plied l o~rrucd. P(Z; < O) gi1·cs the probability of occurrence of the ·failure 
f the ITI Cld • i . 
. nges The sa:'ety margin, in general, for a potential hinge section i or, the safety 
>ten- Ill IPi n of a mechanism having the last hinge at section i, is expressed as 
f the 

Ill " 

Z; = 2.' OijMi - 1J b;kQk 
) = ! k~l 

(10.26) 

).25) whore m is the number of critical sections (member ends) in the given frame. 
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In u particular failure path, if there is no hinge at the member end j, the 
t'l)!l'esponding coefficient a;i = 0. For i = j, a,, = 1. 

If random variables M and Q are grouped in X, Eq. (10.26) can be 
' ' rtlcn in the generalized matrix form as 

Z; = [A]{X} 

'I he mean value and standard deviation of Z; are 

1-'z; = [A]{!-'x} 

al1 = [A][Cx][A]t 

(10.27) 

(l0.28) 

(10.29) 

\•here [A] is a row matrix of coefficients a;; and b;k for all variables X1, [A]' 
the transpose of matrix [A] , {J.Lx} is a column matrix of the means of all 

11111dom variable Xh and [Cx] is a covariance matrix of all random 
,, l'iablc XJ. The reliability index {J; for the safety margin Z1 is given by 

J.Lz; {J; =­
az; 

As Z; is a linear function of the number of variables XJ. the dist~ibution of 
z, tends to normal, [based on the central limit theorem (10.5)] irrespective 
of the individual distributions of the variables. Hence, assuming normal 
distribution for Z1, the probability of a structure under a collapse mechan­
Ism i can be computed. 

The methodology of the reliability analysis of ductile structural systems 
involves the following steps: 

(i) Data 

(a) structural data 
(b) probability description of the random variables 

X1 in terms of fL Xi' q Xi and P Xj,Xk 

(ii) Linear clastic analysis 

(a) determination of coefficients OiJ, b;k 

(iii) For any potential hinge location 

(a) writing the safety margin z, from Eq. (10.27) 
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(b) compulalil'll of !l·:t.i and a:t.i using Eqs. (10 .28) and (10.29) 
(c) computation of fi ; 

(iv) Selection of the next hinge location 
(v) Formation of the plastic hinge at the selected member end 
(vi) Modification of the member stiffness matri.\ having plastic hinges at 

the ends, as shown in Figs. I 0.15, I 0. I 6 and I 0.17 
(vii) Application of a plastic moment at the hinge in the form of equi-

,·alcnt forces, as shown in Figs. 10.15, 10.16 and 10.17. 
(viii) Determination of rhe structure stitrnes> matrix [K] 
(ix) Linear elastic-plastic anaiysis and determinat io n of coefficients a;j. 

(x) Repetition of steps (iii) to (ix) until the formation of a mechanism. 

The above procedure is illustrat.::d with an example . 

!a) He mber Loading lnd•Jced by H1 

I 
EA 

0 0 EA 
0 0 I I 

J E I 
0 

JEI J El -,-J- 0 -,-) -,2-

0 0 0 0 

5 Y M 
EA 

I 
0 0 

JEI J El 

7 - 7 

JEJ 

(b) Member Sttffness Matm: 

FIG. 10.15 Effect of hinge: left e•·d of member hinged 
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Ia I Member loading Induced by H2 

EA 0 0 EA 
0 0 

I I 

JEI JEI JEI 
0 7 7 

0 -7 
JEI 

0 
JEI 

-IT 0 

EA 
SY M -~- 0 0 

J E I 
0 7 

0 

(b) Member Stiffness Matrix 

FIG. 10.16 Effect of hinge : right end of member hinged 

EXAMPLE 10.9 A simple 011e-storey, one-bay porttd frame is .; ub~.:clcu w 
vertical and horizontal loads, is shown in Fig. 10.14. The data for the 
problem is given in Table 10.2. 

For this frame the degr~e of redundancy is three, anu the maximum num­
ber of hinges required for a mechanism is four. The stepwise procedure of 
generating a mechanism is illustrated below. 

(i) The linear elastic analysis of the structure is performed to compute the 
bending moments at the member ends, expressed in terms of the coefficients 
au and b;k. The structure at this stage is considered intact and this stage is 
called the first stage. The number of critical sections (potential hinge sec­
tions), m, is equal to eight. TJ1ey are marked in Fig. 10.14. The number of 
loads, n, is equa·l to three. - _ 

(ii) At this stage, for all ·critical sections the safety margin equations in 
terms of au, MJ, b;k and Q;k are generated and reliability indices, {1,, are 
com outed. 
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• Mz 

~·-
El 

- -1 -

l ( MJt~) 
~ 

Section or 
variable 

Seclion 
I, 2, 3, 4 
5, 6, 7, 8 
Variable 

(a J Member loading Induced by M1 and H 2 

EA 0 0 
EA 0 0 -,- . -,-

0 0 0 0 0 

0 0 0 0 

SVM 
EA -,- 0 0 

0 0 

0 

(b) Member Stiftnus Matrix 

FIG. 10.17 Effect of hinge: both ends of member hinged 

TABLE 10.2 Data for frame in Fig. 10.14-Examp/e 10.9 

EA 
(kN) 

0.367 X J0? 
o.%5x 107 

EJ 
(kN m2 ) 

0.92 X 101 

0.406X 10' 

M1, 1112 , M 3 , M, 
,'vf., M 8 

121.57 kN m 
135.04 
344.65 Me, M, 

Ql 
1Q. 

Q. 

105.0 kN 
36.0 

2.4 

Note: All variables are statistically independenL 

(J 

9.969 kN m 
12.424 
32.74 
10.5 kN 
14.4 

1.032 
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hen the external acting moml:nt, S, at the section due to loads is positive, 
U1 sufcty margin is written as 

II , is negative, 

Safety margin = resistance - action 

= R - - S = R - - (+S) 

Safety margin =-= R -1- S = R + ( -S) 

I I r example, if the po tential hinge section 7 is considered, the safely margin 
1111 section 7 at this stage I, using Eq. (10.26), is 

s ) 
Z1 = L' ll7jMj - L' b1kQk 

J= l k-1 

I r m the clastic analysis of the frame, 

"71 = -- 1.24 hn = - 1.24 lm ~ 0 

·1 he negative sign shows that the direction of the bending moment is clock­
wi c. The sign conventions for forc(.s are shown in Fig. 10. 14. Since this is 
Htgc I, there is no hinge at any member end j. All au coefficients are zero 
cept (177 = I. The capacity of the section is M1. The action .is - · (1.24 Q1 

I 1.24 Q2) . Hence, the safety margin equation for section 7 is 

Z1 = 1.0 M1 - 1.24 Q1 - 1.24 Q2 

·rh mean value and standard deviation of z, are 

I~Z7 = 344.65 - 1.24X 105- 1.24X 36 

= 169.81 kN m 

Oz7 = [(32.74)2 + (1,24 X 10.5)2 -t (J.24X }4,4)2]1 12 

= 39.4 kN m 

#7 = ~~~:!_!_ = 4.31 

Similarly, for all other potential hinge sections, safety margin equations 
~can be written and fl values found out at this stage. 
'· (iii) Let us now assume that the first hinge is formed at section 7. Now 
! ~he stiffness matrix of the member 4 having plastic hinge at the left end is 
modified as given in Fig. 10.15. 

(iv) A clockwise moment of 344.65 kN m, (i.e. negative moment), equal 
to the plastic moment capacity of section 7 is applied at the left end. 
Corresponding to this moment, a self-equilibriating force system, shown in 
Fig. 10.15, is considered as an additional load case for further analysis. 

(v) The structure stiffness matrix is assembled and the determinant I [K] ! 
is computed and found to be greater than zero. 

(vi) The linear elastic-plastic analysis at this stage 2 is carried out to 
determine au and b;k for all the potential hinge sections. Knowing a,, and 
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btk, safety margin equations for all potential hinge sections can be written . 
For example, if section 4 is considered, 

{/.17 = -- 1 .0 b41 = 1.5 b~z=I.S 

a44 = I .0 

The capacity of the section is M4. G44 = 1.0. Hence, the safety margin 
equation for section 4, given the hinge at section 7 has formed, is 

7~ == I .0 M4 - (- -1.0 M1 + 1.5 Q1 + 1.5 Q2 + 1.2 QJ) 

= M4 + M1 ·-- 1.5 Q, - I .5 Qz - 1.2 QJ 

Using the given data in Table 10.2, 

/LZ4 = 121.57 + 344.65- f.5-..; 105- J.5XJ6- 1.2X2.4 

=c.=. 251.84 

oz4 = l(9 .969) 2 + (32. 74)2 + ( 1.5 X 10.5)2 + ( 1.5 X 14.4)2 

+ ( 1.2 X 1.032)2]112 

= 43.44 

f34 = 25 1.84 "''"' 5. 79 
43.44 

Similarly, for all potential hinge sections (excluding section 7 where the 
hinge is already formeu) at this stage, the safety margin equations can be 
written and fJ found out given that the hinge at section 7 is already formed . 

(vii) Now another hinge (second hinge) location, say section 4, is selected 
and the hinge is formed at that section, and the whole process is repeated 
from steps (iii) to (v). Now the stiffness matrix of the member 2 having 
plastic hinge at the right hand side member end 4 is modified as given in 
Fig. I 0.16. At section 4 an anti-clockwise moment of 12 I .57 kN 111, equal to 
the plastic moment capacity of section 4, is applied. Corresponding to this 
moment, a self-equilibriating force system, shown in Fig. 10.16, is consider­
ed as an additional load case for further analysis . 

The stiffness matrix of the structure is assembled and I [K] I is round to 
be greater than zero. The linear elastic-plastic analysis is c~mied out at this 
stage 3 to determine the coefficients aij. If section 2 is considered, from 
analysis 

027 = 2.0 

b21 ~~ --3 

G22 == 

024 = 1.0 

b22 = - . 3.0 b23 = 0 

Hence, tbe safety margin equation for section 2, given hinges at sections 7 
and 4 have formed, is 

(I 0.30) 
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l l~lnJ:! mean values and stand ard deviat ions of M2, Af?, M~. Q1, and Q2, 

/L7.2 = 509.4 

/32 = 5.94 

II' \CCI ion 2 is selected for the next hinge location, a hinge is formed at the 
r tlon. A clockwise moment of 121.57 kN m, equal to the moment capa­
lly of section 2 is applied at the member end 2. The stiffness matrix of 

11 mb r I with a hinge at the right member end 2 is modified as shown in 
l lJ I 0.15. The stiffness matrix of the structure is now assembled and I [K II 

fou nd to be ~ zero. This shows that when hinges are formed at sections 
7, 4 nnd 2, a mechanism is formed. This is a beam mechanism. Using the 
IIIC('hanism method of plastic analysis (10.2), one can directly write the 
Jnfety margin equation for this failure mode: 

Z = M2 + 2/117 ' M4 - - Q1 . 3 -- Q2 . · J 

II can be observed that this equation, i.e. the safety margin equation for the 
mechanism, coincides with the safety margin equation (Eq. 10.30) for the 
r<Hential hinge section 2, written just before the hinge is formed there. 

It has been shown in the example how a mechanism can be generated, 
· unu how the safety margin equations are written at every stage of analysis 

11nd {3; values for potential hinge sections computed, and how the failure 
•urface equation or the failure m del of the fi nally hinged section corres­
ronds to the collapse mechani sm. {3; of the Jast hinged section becomes f3 
f)]' the mechanism . 

10.6 GENERATION OF DOMINANT MECHANISMS 

In the last example, only one mechanism was generated out of 15 possible 
failure mechanisms. A plane frame structure may fail in different collapse 
mechanisms, called failure modes. The reliability analysis of frames mainly 
involves identification, modelling and synthesis of all possible failure modes 
to estimate the system reliability. In the case of a frame structure of a high 
degree of indeterminancy, the number of possible collapse mechanisms is 
quite large. To illustrate, for a one-bay two-storey rectangular frame with 
fixed bases, the number of elementary mechanisms, Ne, is equal to 8. The 
number of possible collapse mechanisms is given by 2N' - 1 = 255. Due 
to uncertainties of load and resistance variables, it is likely that the structure 
may fail under any of the possible collapse mechanisms. Hence, the relia­
bility of frames of multiple components and with multiple failure modes is 
considered from the system point of view. Out of the innumerable possible 
collapse mechanisms, generally only a few mechanisms, having compara­
tively large failure probabilities, contribute significantly to the system 
failure probability, pr •• These collapse mechanisms are called stochastically 
dominant failure modes. The identification and combination of these domi· 
nant collapse mechanisms are necessary in the reliability analysis of a 
frame structure to estimate its system reliability. It is practicany difticult 
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and rather impossible to identify these dominant l'ailure modes. There is 
no mt>:hod which assures, and mathematically proves . that all stochastically 
domi1~ :111t modes arc genera ted . However, the methods, n;~ mcly ( i) exhaus­
tive enumeration, (ii) simulati on, and (iii) heuristic search, are generally 
used for this purpose. The earlier studies ( 10.6, 10.7) concentrated on the 
reliability analysis of knO\\ n failure modes. The f'o1 cmost essential step or 
the identification or dominant failure modes in a frame structure has been 
the subject of research during the past eight years. Ma anJ Ang (10.8) have 
suggested a method 0f dererm in i ng the most probable modes by using a 
mathematical programming technique, based on independent failure modes, 
obtained deterministically by Watwood's ( 10.9) method . Murotsu (10.10, 
10.11) has proposed a complex method, based on the joint probabilities of 
hinged sections, for the automatic generation of stochastically dominant 
failure modes. Moses (I 0.1 2) has proposed a strategy, using the incremental 
load approach, to identify and enumerate the significant failure modes of 
trusses. Tang and Melchers (I 0.13) have proposed a trurlt'rtted enumeration 
method to search for stochastically dortlinant failure modes . Ranganathan 
and Deshpande (10. 14) have proposed a hePristic search technique to 
generate dominant modes in frames. This is explained below. 

10.6.1 Heuristic Technique (1 0.14) 

The strategy developed for a sequential search of' plastic hinge locations 
leading to clominan L mechanisms is exrlaincd he low. 

Search fm· Plastic Hinge Locations 

It is quite logical to select the potential hinge section with the lowest 
reliability index, for the plastic hinge at any stage of the ann lysis, to get 
stochastically dominant mechanisms. However, it has heen observed that 
this logic fails in certain situations. Dominant failure paths of equal likeli­
hood of occurrence may intermix, resitlting in a nondominant mechanism. 
Therefore, the following strategy fnr the selection of plastic hinge locations 
is suggested. 

Selection of First Hinge and First Dominant Alechanism After performing 
the intact analysis and computing f3 for all potential hinge sections, the 
potential hinge section having the lowest value of f3 is selected as the 
location for the first plastic hinge. This f3 is called the first damage 
reliability index and denoted as f3o. The arithmetic mean of the reliability 
indices of all potential hinge sections at the initial stage is termed as the 
average reliability index ~av . The reliability of a mechanism is always higher 
than the reliability of its hinges at each stage, and the reliability index of a 
mechanism corresponds to f3 for the member end hinged at the stage of 
mechanism. Hence, after selecting the ii.rst hinge, it is logical to select the 
subsequent plastic hinge locations such that the reliability index of the sec­
tion is the lowest at that stage and is also greater than ~o. Following the 
above strategy, hinges are selected and the first probabilistically dominant 
mechanism is generated. 
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Partial Full 

Seocond mech mech 
First stage stage stage stage 

~-------+-

l coflaps~ collapsj 

rlo = 4 ='' 
~av z 7 28 

F'trst failurE!' 
tree 

Intact 
Structure 

5 94 

Q) 

4 ·31 5 79 5 94 n 
n 
n 
11 
n n 
n 

5 94 Reprt>sents reliability tndPx for section 2 

2 Reprl!'sPnls hmgt>d SPCt1on number 

Rpprest>nls •dent1fit>d mt>chanism number 

FIG. 10.18 Failure tree diagram for frame in Fig. 1 0.14-Example 10.10 

Branching Strategy After generating the first dominant mechanism, it is 
obvious that if this mechanism is branched at all stages .with alternative 
p tential hinge sections in succession, it may be possible to identify all the 
possible mechanisms. This procedure is computationai'Jy prohibitive as there 
oan be a "Very brge number of reanalyses to perform. Moreover, during this 
process the same mechanisms may be repeatedly generated and insignificant 
mechanisms identified, which are of no interest from the viewpoint of the 
system failure probability. In the light of this, primarily, dominant mecha· 
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nisms are branched only at the mechanism stage (primary branching) to 
develop the first failure tree and secondly, the first mechanism is branched 
at the initial stage with alternative potential hinge sections to develop other 
failure trees with the help of primary branching. This is secondary 
branching (Fig. 10.18). 

(i) Primary branching at the mechanism stage: A mechanism is branched 
at its final stage with the potential hinge sections having~ greater than f3o 
in succession. Two cases arise for this branching (Fig. I 0.18). 

(a) Partial collapse mode stage 
Partial collapse mode is the mechanism having a number of hinges less than 
(r + I), where r is the order of indeterminacy of the structure. For this 
case, the branching may result in a mechanism or the extension of the failure 
path (Fig. I 0.18). 

(b) Full collapse mode stage 
Full collapse mode is the one having (r -i · I) hinges. The branching at this 
stage results in a mechanism and this is the terminating stage (Fig. 10.18). 

(ii) Secondary branching at the initial stage: Secondary branching is 
nothing but an alternative selection of the first hinge. A mechanism is 
independent of the order of the hinges involved in it. Therefore, while 
making an alternative choice of the flrst hinge, all the hinges of the first 
mechanism except the last are discarded. Out of the remaining possible 
locations, it is again logical that there is no propriety to start with the 
hinges having f3 of a higher order. Hence, the first dominant mechanism is 
branched at the first stage by selecting the potential hinge sections having 
{3 < f3av in succession. ln the context of this heuristic technique based on 
the logical strategies to identify dominant mechanisms, the various termino­
logy used is indicated in Fig. 10.18. 

S)•stem Reliability After generating all the dominant mechanisms and cor­
responding Z;, the probability of failure of the frame under each mode, pp, 
is calculated. The correlation coefficients between pairs of the generated 
mechanisms arc computed. The failure modes are ordered as per the decreas­
ing values of PJ;, and simple bounds and Ditlevsen's narrow bounds (10.4) 
are established for the system failure probability. The method is illustrated 
with the following examples: 

ExAMPLE 10.10 The same frame, considered in Example 10.9 and shown in 
Fig. I 0.14, is taken here to illustrate the generation of dominant mechani­
sms. The data required for the reliability analysis of the frame is given in 
Table 10.2. For this frame, the degree of redundancy is 3, the maximum 
number of hinges required for a mechanism is 4, and the number of ele­
mentary mechanism~ is 4, whereas the number of possible mechanisms is 15. 
The stepwise procedure of generating dominant mechanisms, and reliability 
analysis, is explained below: 

(i) The linear elastic analysis of the strw.~ture is performed to compute the 
hending moments at the member ends, exp,·essed in terms of the coefficients 
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I) 'rhc signs of the bending moments are noted . The structure at this stage 
I considered as intact and this stage is called the first stage. 

( ) At this stage, for all potential hinge sections, the safety margin 
111 t1 ns in terms of Gij, MJ, b,k, and, Qk are generated and reliability indices 

, 1 computed (explained in Example 10.9) as given in Table 10.3. The 
1 t nt ial hinge sections are ordered with increasing reliability index. It is 
und that Po = 4.31 and f3av = 7.28. 
iii) From Table 10.3, it is noted that the sections 6 and 7 have the same 

~. Therefore, comparing the reliability indices at both ends ofthe members 
ond 4 (sections 5 and 8), section 7 with the lowest reliability index of 4.31 
lclected as the first hinge. 
(lv) The first plastic hinge is formed at section 7. The safety margin of 

I he structure at this stage, with the hinge at section 7, is given in Table 10.3. 
(v) The stiffness matrix of member 4 having a plastic hinge at the left end 
modified as given in Fig. 10.15. 
(vi) The moment of 344.65 kN m, equal to the plastic moment capacity 

1 f section 7 is applied at the member end, in the direction of the bending 
me ment developed at the member end in the elastic analysis. Correspond­
n to this moment, a self-equilibria ted force system, as shown in Fig. 10.15, 
I considered as an additional load case for further analysis. 

(vii) The structure stiffness matrix [K] is assembled and the determinant 
I [K] I is computed and found to be greater than zero. 

(viii) The linear elastic-plastic analysis at this stage is carried out to 
I terrnine au and b;k for the potential hinge sections. 

(ix) Steps (ii) to (viii) are repeated as explained below. At the second 
I age, the reliability indices for potential hinge sections are computed, which 
ro given in Table 10.3. The second plastic hinge, having the lowest reliabi­

lity index of 5.79 and greater than f3o, is formed at section 4, as shown in 
Fig. l 0.18. Corresponding to the first and second plastic hinges at sections 
7 and 4 respectively, the modified member stiffness matrices for members 4 
11nd 2, and additional load cases equivalent to plastic moment capacities of 
&ections 7 and 4, as shown in Figs. 10.15 and 10.16, are considered for 
further analysis. The safety margin of the structure having the second hinge 
at section 4 is given in Table 1 0.3. The determinant of the structure stiffness 
matrix is found to be greater than zero. 

At the third stage, according to the selection strategy explained earlier, 
the plastic hinge 1 formed at section 2, as shown in Fig. 10.18. As I [KJI 
~ 0, the first dominant mechanism is generated. 

(x) This mechanism consists of three hinges at 7, 4, and 2. It is therefore 
n partial collapse mechanism. The safety margin equation of this mechanism 
is same as the safety margin equation of the hinge at section 2 (Table I 0.3). 
This mechanism is the most dominant mechanism, having a reliability index 
5.94 and a probability of failure 0.145 X lo-s. 

(xi) As per the branching strategy, this mechanism is branched as shown 
in Fig. I 0.18. To do this, the last hinge of this mechanism at section 2 is 



Stages of 
analysis 1 2 

First 10.3 7.87 
Second 8.17 5.92 

Third 11.9 5.94 
(Mecha-
nism I) 
Third 11.9 5.94 
(Mecha-
nism 2) 
fhird 11.9 5.94 

Fourth 8.39 5.94 
(Mecha-
nism 3) 

----'-J.- .-? 

TABLE 10.3 Details of development of first failure tree in Fig /0.14-Exanzp/e 10.10 

Reliability index of sections 

3 4 5 6 7 8 
Safety margin equation 

9.67 7.35 7.43 4.31 4.31 7.01 Z 7 = l.OM7 - 1.24Q1 - 1.24Q0 

7.90 5.79 6.13 0.0 0.0 6 01 z, = I.OM, + I.OM7 - 1.5Q1 

-1.5Q2 - 1.20Q0 

6.71 0.0 6.07 0.0 0.0 00 Z, = I.OM2 + I.OM, + 2.0M7 

-3.0Q,- 3.0Q, 

6.71 0.0 6.07 0.0 0.0 0.0 Z 5 = l.OM, + l.OM5 + 2.0M7 

-3.0Q, - 3.0Q, 

6.71 0.0 6.07 0.0 0.0 0.0 Zs = I.OM3 + l.OM, + 1.5M7 

-2.25Q1 - 2.25Q, - 2.50Q, 
0.0 0.0 6.07 0.0 0.0 0.0 Z 1 = I.OM1 + I.OM3 + 2.0M, 

+ 2.0M7 - 3.0Q1 - 3.0Q, 
-5.0Q0 

Selected 

Hinge 
section 

p 

7 4.31 
4 5.79 

2 5.94 

5 6.07 

3 6.71 

1 8.39 

w 
0 
Gt 
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IIIWtrcssca and replaced by sections, in succession, except 7, 4 aDd 2 and 
having a reliability index at this stage greater than Po. 

i As shown in Fig. 10.18, the selection of section S with P as 6.07 
in a dominant mechanism. The failure path continues with the aelcc­

of the section 3 with f3 as 6. 71, as shown in Fig. 10.18. Again, accord· 
I the selection strategy, the next hinge, i.e. the fourth plastic hinge is 

mcd at section 1 having f3 as 8.39. Since I [K] I ~ 0, the full collapse 
mism is formed at this stage. The branching of this mechanism does 

result in any new mechanism. As this is the terminating stage, the 
~•IVCIIODtTleJlt of the first failure tree is completed. ' 

i i) To initiate other failure trees, according to the strategy of the selec· 
h n of alternative first hinges, only one alternative is possible in this case, 

h wn in Table 10.4. 

I 
2 
3 
'4 

5 
6 

7 

R 

TABLE 10.4 Selection of first hinge for failure trees other than the 
first in Fig. 10.!4-Examp/e 10.10 

fJ at Possibility of 
first selection of Remarks 
stage first hinge 

10.3 Not possible f3 > Pav 
7.87 Not possible .B > Pav 
9.67 Not possible fJ > fiav 
7.35 Not possible Involved in the 

first mechanism 

7.43 Not possible fJ > Pav 
4.31 Not possible Equinoda I to 7 

4.31 ~ot pos~ibk Involved in the 

first 111cchanism 

7.01 Possible B < 11.,. 

(xiv) The first hinge of the second failure tree is selected at section 8, and 
thi failure tree is developed using the procedure similar to the first tree. 
I he failure tree diagram for this example, including the dominant 
m chanisms generated, is shown in Fig. I 0.18. 

(xv) The identified mechanisms are arranged in the increasing order of the 
reliability index, as given in Table I 0.5. 

(xvi) The correlation coefficients of mechanisms, calculated using 
Eqs. (10.10) and (IO.IIa), are presented in Table 10.6. 

(xvii) Simple bounds are computed using Eq. (I 0.14), and narrO\\ hounds 
u ing Eqs. (10.19) and (10.20). They are also shown in Table 10.5. 

From the rusults it can be seen that for this example, the first dominant 
mechanism, having a probability of failure of 0. 145 >< IQ-8, is the most 
significant mechanism. Therefore, the lower t lUnd on the system collapse 
probability of 0.159 x w-s, is close to the failure probability of the first 
dominant mechanism. 
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TABLE IO.S Details of generated dominant mechanisms and results of reliability analysis of frame ill Fjz. /0./4-Example 10.10 

SI. 
No. 

-
I. 

2. 

3. 

4. 

5. 

6. 

Hinged 
sections 
-

2, 4, 7 

4, 5, 7 

2, 7, 8 

5, 7, 8 

], 3, 4, 7 

t, 3, 7, 8 

z 

l.OM, + l.OM, + 2.0M1 - 3.0Q1 - 3.0Q2 

1.0M, + l.OM5 + 2.0M7 - 3.0Q1 - 3.0Q1 

l.OM1 + 2.0M1 + l.OM8 - 3.0Q1 - 3.0Q1 

l.OM5 + 2.0M1 + l.OM1 - 3.0Q1 - 3.0Q2 

l.OM'1 + l.OM~ + 2.0M, + 2.0M7 - 3.0Q1 - 3.0Q2 - 5.0Q. 

l.OM1 + !.OM,+ 2.0M7 + 2.0M8 - 3.0Q1 - 3.0Q,- 5.0Q1 

System failure probability 

Simple bounds 0.145 x to-a ~ Prs ~ 0.302 x 10-• 

Narrow bounds 0.159x w-• ~ Prs ~ 0.214x to-• 

p Pr 

.:i.94 O.t45x to-• 

6.07 0.642xt~ 

6.07 0.642xlo-t 

6.20 0.282xJo-• 

8.39 0.239X to-11 

8.51 0.542 X I o-17 

i 

Fail me 
tree 

1 

2 
2 
I 

2 
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Correlations betwe~n geflerated mechanisms-Example 10.10 

Correlations Pu 

2 3 4 s 6 

1.0 0.982 0.982 0.965 0.972 0.932 
1.0 0.965 0.963 0.968 0.928 

1.0 0.983 0.942 0.969 
1.0 0.938 0.965 

1.0 0.935 
Symmetrical 1.0 

An unsymmetrical two-storey two-bay frame, carrying 
horizontal loads, is shown in Fig. 10.19. The data for the 

a2 

9 ..:> 11 12 
. 16 T 

GJ 
J·6m 

Gt 

5 6 7 8 
15 

17 20 
14 18 19 22 

J 6m 

21 _l 
f- --3Om -+-3-0m -4----J Om---~3 Om----j 

FIG. 10.19 Two-storey two-bay unsymmetrical frame-Example 10.11 

umple is given in Table 10.7. For this structure, the number of elementary 
me banisms is 10 and the number of possible mechanisms is 1023. The 
tlentified dominant mechanisms for this example are indicated in Fig. 10.20. 
he results of the identified dominant mechanisms and of the reliability 
nalysis are given in Table 10.8. The correlation coefficient matrix, repre­
cnting the correlation between pairs of mechanisms, is shown in Table 10.9. 
I' r this example, the dominant mechanisms are very close to each other. 
M st of the dominant mechanisms are identified in the· first tree only. 

The same problem has been solved by Ma and Ang (10.8) and Murotsu 
(10.10), and the 'results of the generation of dominant mechanisms are 

mpared with their results (Table 10.8). 
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TABLE 10.7 DaJa/Qr frame in Figure 10./9-Examp/e 10.11 

Section/Variable 
EA El 

ll 
(kN') (kN m•) v. p 

------
Section 

1, 2, 3, 4, 21, 22 0.105 X ]07 0.105xl01 

5, 6, 7, 8 0.132 x 107 0.277 X 101 

9, 10, 11.12 0.101 X 107 0.154xlQ6 
13, 14, 15, 16 0.101 X 101 0.758 X 101 

17, 18, 19,20 0.116x 101 0.207x 105 

Variable 

lvf" M2 • M,, } 95.0 kN m 0. 15 10\ Ma. M,., M 22 

M,, M,, J.fa, lv110 95.0 0.15 1.0 Other-
M 5 , Me, M 7 , h1s 204.0 0.15 1.0 wi se un-
!vf, , M 1o. M 11 , M., 122.0 0. I 5 1.0 correlated 
1\11?. M 1s. M 11 , M,0 163.0 0.15 I. OJ 

Q, 169.0 0.15 Loads arc 
Q. 89.0 0.25 independent 
Q, I 16.0 0.25 except 
Q, 62.0 0.25 PQ4.QS ~- I 
Q, 31 .0 0.25 

Di.WIS.I'ion and Concl11sion (L0.14) Tracing of the critical failure path is c: ru-
ia l. ll is ob erved in Fig. 10. 18 that wh ile tracing lhe critical path, if the 

reliability indices of the sequential hinges are monotonically increasing, th e 
failure path is efficient , and it lead to the most dominant failure m de and 
also that bran ' hing this path at the mechanism stage results in many of the 
dom inant mcchnnisms in the first failure tree. 

The number of branchings and the number of failure trees vary with the 
type of problem, depending on the structural topology, load distribution, 
etc. The more the parallel failure paths, the more the branching operations 
will be. If parallel paths get mixed, the randomness increases. In some 
circumstances, inadmissible mechanisms are generated . In certain situations 
there can be a very large number of cycles to perform. 

IIi. bserved that in Example 10.11, all the dominant modes generated 
by uth er rc ·ea rch w rkers have also been obt ined using the proposed 
meth d. Howe er, more modes, including a few insignificant mode are 
generated in the process. It is found from Tables I 0.5 and 10.8 that the 
most dominant fai lure mode i. btainetl in the lit t tree for both the prob­
blems. In Example 10.11 (Table 10.8), all the modes identified by Ma and 
Ang (1 0.8) and Mur tsu (10.10), except one have been generated in the f-ir l 
tree itself. 

It is observed that the accuracy of estimating prs may be improved margi­
nally by generating more failure trees, but is quite expensive. For all practi­
cal purposes, the generation of the first failure tree and the system failure 
probabilit y calculated based on that appears to be adequate. 

It is concluded that the proroseJ method used simple logical strategies 
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1l 21 

MECH 21(1:1· 9~ MECH J(fl=2 05) MECH 4(f}=2 06) 

9 11 

7 • ~ 7 • Fh 14 22 

n 21 
~ .... """ ~'T ~ 

MECH 6W =2·09) MECH 7((3:2 14) MECH B( (3=2 21) 

11 

4 
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16 

1 & 19 

I ? 
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L J.J3 1 _.,. 
... 91fl=2 21) MECH 101[1=2 23) ME.CH 111(L2 28) MECH 12(fl=2 JZ) 

I ~ n 1--~ 
1 an'',.." 't.! J ~-r--. 1, n l, _ _;_ 

II 

~~ f--,, 
1 I 

'J:.... .. ~' . ~~· : 

M CH 1Jirl=2 41) MECH 1t.(fl=2 t.t.) MECH 1Sii1=-f 48; rv'~(H 16([1 o7 /t.l 

10 .10.20 Location of hinges in identified dominant mechanisms-Example 10.11 

t · r the selection of hinges and the branching of failure paths to identify the 
J)f babilistically dominant mechanisms. It is simple, fairly efficient, and is 
ilpable of generating the dominant mechanisms for a practical complex 
tructure. However, being a heuristic technique, it is not possible to prove 

theoretica ll y whether all dominant mechanisms can be generated by using 
the proposed technique. For practical problems, it is felt that it is enough 
I the first failure tree is generated and the system failure probability calcu­

lated based on the generated mechanisms in the first failure tree . 
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TABLE 10.8 Details of generated dominant mechanisms and results of reliablity analysis of frame in Fig. /0.1?-Exaltlple JO .ll w ... 
N 

Sl . Hinged Failure Whether identified by 
No. sections z /3 Pr tree Ma and Ang (10.8) Murotsu 

Fi F2 (IO.IOJ 
-

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

I. 1,2,13,14 l.OM, + l.OM2 + 1.0M11 + !.OM,, + J.OM11 1.97 0.247x J0-1 I Yes Yes Yes 

21 , 22 + l.OM11 - 3.60Q, - 3.60Q, 
2. I , 7, 8, 11. J.OM, + 2.0M1 + I.OM8 + 2.0M11 + l.OM,. 1.99 0231 x iD- 1 I Yes Yes Yes 

13, 14, 15. + l.OMu + J.OM,, + 2.0M1e + I 0:\1, 
16, 21, 22 + l.OM22 - 3.0Q 1 - 3.0Q2 - 3.6Q, - 7.'2Q, 

3. •4,11,16 I.OM, + 2.0M11 + 1.0M18 - 3.0Q, 2.05 0.200X J0-1 1 Yes Yes Yes 

4. 17, 19,22 l.OM17 + 2.0M,. + l.OMn - 3.0Q, 2.06 0.198xJ0-1 3 Yes Yes Yes 

s. 1,7,8,11, O.SM1 + J.OM, + l.OM8 + I.OM11 -1- 0.5M,. 2.06 o.I97 x w-• I Yes No Yes 

13, 16, 18, + l.OM,. + l.OM11 + O.SM21 + l.OMu 
21,22 -1.5Q, - I .SQ. - 1.5Q. - 1.8Q, - 3.6Q, 

6. I, 3, 7, 8 I.OM, + l.OM3 + 2.0M, + I.OMo + 1.011113 2.09 0.183 X ]Q-1 I Yes No Yes 

13, 14, 21 I.OM" + I.OM11 + l.OM22 - 3.0Q1 

22 - 3.6Q, - 3.6Q, 

7. 5, 7, 8 J.OM, + 2.0M1 + l.OM8 - 3.0Q, 2.14 0.160 x 10-• I Yes Yes No 

8. 9, 11, 16 l.OM0 + 2.0M11 + I.OM,. - 3.0Q2 2.21 O.J34x Io-• 1 Yes No No 

9. 4, Jl, 12 l.OM, + 2.0M11 + l.OMu - 3.0Q2 2.21 0.134x J0- 1 4 No No No 

10. 9, 11, 12 l.OM, + 2.0M11 + l.OM,. - 3.0Q2 2.23 0.124x 10-1 4 No No No 

JJ. 1, 4, 7, 8, I.OM1 + l.OM, + 2.0M, + 2.0M1 + l.OMu 2.28 0.112 X IQ-l 3 No No No 

13, 16, 19, + l.OMu + 2.0M1o + l.OM,, + 2.0Mu 
21,22 - 3.0Q, - 3.0Q, - 3.6Q, - 7.2Q, 



12. 

13. 

14. 

u. 

16. 

13, 16, 19, 

21,22 

2, 7, I, II, 
15, 16 

1, 7, 8, 9, 
13, 16, 18, 
21,22 

2, 3, 7, 8 
3, 11, IS, 
16 

I, 7, 8, 11, 

13, 16, 17 

21,22 

System failure probability 

+ I.OMu + 2.0M1, + I.OM11 + 2.0M
1

t 

- 3.0Q1 - 3.0Q1 - 3.6Q, - 7 .2Q 1 

l .OM1 + l .OM, + lAM, + :Z.OMu + 1 ......... 

+ 2.0M11 - 3.0Q1 - 3.0Q1 - 3.6(1. 
J.OM1 + 2.0M1 + 2.0M, + I.OM, + J.OM11 

+ l.OM1, + 2.0M1, + 1.0M,. + 2.0M11 

-3.0Qa - 3.0Q, - 3.6Q, - 7.2Q& 

J.OM1 + J.OM1 + 2.0M1 + J.OM,- 3.0Q1 

t.OM, + 2.0M11 + I.OM,1 + 2.0M11 

- J.oo. - 3.6Q, 

I.OM1 + 2.0M, + 2.0M1 + 2.0M11 + l.OM10 

+2.0M11 + I.OM1, + I.OM11 + I.OM:s 

- 3.0Q, - 3.0Qt - 3.6Ql - 7.2Q. 

Simple bounds 0.247X J0-1 ~ Pr1 ~ 0.20S 
Nnrrow bounds 0.702 :-:10 1 < p 1i ~ 0.147 

2.41 o.mxro-s 3 No No No 

2.44 0.734x10"1 4 No No No 
2.48 0.664xl0"1 2 No No No 

2.74 0.307 ~' 1 o-• 1 No No No 

UPrs = 0.116 given by Ma and Ang ( IO.K) using Monte Curio simulation with sumplc ~izc SOOO and 0.74$ >{ to-1 < Pr1 ~ 0.907 ;, to-a given by 

Murotsu (10~ 10)] 

.. ... .. 
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TABLE 10.9 Corre!aticm> between generated mec hani.wt~-E.Hmtplc· 10. I 1 

Mecha- Corn.:1ations P;; 
nism 
No. l 2 3 4 5 6 7 8 9 JO 11 I~ 13 14 15 16 

1.0 0.65 o.o 0.09 0.551 0.672 0.0 0.0 0.0 0.0 0 58~ 0.197 0.584 0.084 0.197 0 .568 

2 1.0 0.435 0.045 0.894 0.905 0.595 0.407 0.407 0.363 0.814 0.866 0.818 0.660 0.577 0.973 

3 1.0 0.0 0.347 O.Q3l 0.0 0.965 0 .%5 0 .866 0.045 0.571 0.06 0.041 0.921 0.389 

4 1.0 0.453 0.054 0.0 1).0 00 \JO 0.479 0.012 0.48 0.015 0.0 0.109 

5 1.0 0.835 0.615 0.335 0.335 () 307 0.946 0.79() 0.953 0.651 0.454 0.921 

6 1.0 0.726 0.014 0 014 0.0 0.88:1 0.739 0.88 0.784 0. 195 0.9{}(; 
7 1.0 0.0 0.0 0 .0 0.65! 0.7lC 0.652 0.977 0.00 0 .690 

8 1.0 1.0 0.977 0 021 0.535 0.062 0.019 0.838 0.375 

9 1.0 0977 0.02! () 535 0.062 0.019 0.838 0.375 

10 Symmetrical 1.0 00 0.477 0.061 0.0 0.727 0.345 

11 1.0 0.66S 0.095 0.689 0.216 0.849 

12 1.0 0.672 0.823 0.602 0.886 

13 1.0 0 .683 0.210 0 .857 

14 1.0 0.068 0.722 

15 1.0 0 .509 

16 1.0 
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I• the safety margin for the potential hinge scl:tion i , let the C\' Cilt 

E; o·= P(Z; < ()) 
flustratcd method, when the hinges were selected at any stage along 

hi• O path before a mechanism is formed, the hinge location/~ (over the 
1 II eligible locations) with the greatest probability of failure (i.e . min . 

, elected. A better, or more rational logic may be to select the next 
1 cation such that the joint probability of occurrence of the hinge 

including the selected hinge location, is maximum. That i ~ . at the 
t ~e, select jth hinge location such that 

P(ErnEln . .. n£,) =max [P;(Ern£!() . . . nE}J] (HUll 
i 

the maximum is over the set of all possible hinge locations at that 
It II n stage, that is, all hi ngc locations other than the sections where 

have already formed All events t'; arc correlated because of the 
unmon load variables in all equations for Zt. The evaluation of the joint 

b bility is complicated and time consuming. In the proposed method. 
hi joint probability was never used. Murotsu ( 10.10) used these approxi­

ti n , given below, which might be the upper bounds f'or Ey . (10.31). 

P(E• n £2 . .. n 1:}) < max [Pll:j)J i ? (I 0.32) 
i 

II P(E• n £2 n ... n t}) ~ max I_P;(£; n EJ) I i? 2 ( 10.33) 

ll ng these, he proposed a branching and bounding ;dgorithm for the 
ilneration of dominant modes (I 0.1 0, I 0.11 ). 

10.7 RELIABILITY .ANALYSIS OF RCC FRAMES 

10.7.1 Introduction 

'fhe failure of a frame structure by the formation of a collapse mechanism 
requires a large rotational capacity of plastic hinges. Steel structures satisfy 
these requirements. Nonlinear and inelastic deformation characteristics of 
R C structures do not allow to use the available resistance of sections to 
maximize the structural reliability. Moment-rotation relationships and the 
limited rotation capacity of RCC sections pose difficulties and limitations 
in the reliability analysis of plane frame structures. 

The reliability analysis of RCC frame structures was initiated by Ticky 
and Vorlicek (10.15). They formulated the reliability of RCC structures 
ubjected to loads from one or several sources based on the ultima te load, 

and it was shown how the deformability (ductility) of critical sections could 
be taken into account in studying RCC frames. Webster (1 0.16) presented 
a probabilistic procedure to forecast the performance of RCC frames sub­
jected to an arbitrary number of sequential loads. Chou , Mcln to h and 
Corotis (10.17) had investigated the correlation between resistance and 
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reliability fo1 a simple RCC frame with known collapse mechanisms. 
Ranganathan and Deshpande (10.18) p1csented a method of the reliability 
an:llysis of RCC frames, considering the limited rotation capacity of con­
crete sections. A reliability model compatible with the collapse mechanism 
was proposed for the rotation failure mode and the method was illustrated 
with examples. The same thing is presented in this ~ection . 

In the case of RCC frames, any critical section, hinged earlier, may fail 
due to an insuflicient plastic rotation capacity before a collapse mechanism 
is formed This mode of failure will be called a rotation failure mode. 
Considering the limited plastic rotation capacity in RCC frames, a method 
is suggested lo verify and analyse the identified dominant mechanisms and 
to generate rotation failure modes, if necessary. A reliability model com­
patible with the collapse mechanism is proposed for a rotation failure mode 
on the basis of partial utilization of the plastic moment capacity of an 
incipient hinge section at the failure stage . The rotation failure modes are 
then combined with other possible mechanisms to assess the system 
reliability of a RCC frame. The method is illustrated with examples . 

10.7.2 Strength and Stiffnl'SS of RCC Sections in Flexure 

ldealisations 

The nonlinear stress-strain and moment-rotation relationships of RCC 
sections pose some difficulty in the assessment oftheir strength- stiffness 
properties, required to carry out a reliability analysis for RCC frames. 
Using the idealized stress-strain curves for concrete and steel, shown in 
Fig. 10.21, and the bilinear moment rotation diagram of RCC plastic 
hinges, shown in Fig. 10.22(a), computational methods are developed to 
determine the moment capacity, flexural rigidity, and rotational capacity of 
RCC plastic hinges. Furthermore, nonlinear behaviour is approximated as 
linear elastic and piecewise linear elastic-plastic (PWLEP) to simplify the 
structural analysis. Also, first-order second-moment (FOSM) method is used 
to formulate the reliability analysis. 

The limits It and h, shown in Fig. 10.22(a), are considered as idealised 
elastic and plastic limits respectively (I 0.19). The elastic limit II corresponds 
to either a maximum compressive strain in the concrete, eel, equal to 0.002 
[Fig. 10.2l(a),] or the yielding of steel by attaining the yield strain esy in 
mild steel bars as shown in Fig. 10.2l(b), or offset strain of 0.001 in high 
yield strength deformed bars as shown in Fig. 10.2l(c), according to which­
ever condition is attained first. The resisting moment of the section corres­
ponding to l1 in Fig. 10.22(a) is termed as the yield moment, My. The plastic 
limit h is attainecl when either the concrete or steel fails corresponding to 
the maximum strain fc2 (taken as 0.0035) for concrete as shown in 
Fig. l0.21(a), or strain ofO.Ol in steel as shown in Fig. 10.2l(b)or 10.2l(c). 
The resisting moment of the section at h is taken as the plastic moment, M. 
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Idealized stress-strain curves for (a) concrete (b) mild steel and (c) cold­
worked steel 

Re$isting Moment and Flexural Rigidity 

The resisting moment of a rectangular or tee section at limits It or 12 can 
be computed by satisfying force equilibrium and strain compatibility. 

Referring to the bilinear moment-rotation diagram, shown in Fig. 10.22(a), 
the flexural rigidity, El, of a RCC member is assumed to be constant in the 
range 0 to II. Also, EI is assumed constant between critical sections of the 
member. The value of a uniform EJ obtained from sh:ess and strain con­
ditions at limit It is given by (10.19) 

EI = Myct = My(d - Ct) (10.34) 
ect e,y 

where ct is the depth of neutral axis at limit It and d is the effective depth. 
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FIG . 10.22 (a) Moment rotation diagram for a RCC 
plastic hinge and (b) plastic rotation at a 
hinged section 

Plastic Rotation Capacity 

The rotation capacity ofa RCC plastic hinge, 8, shown in Fig. 10.22(a), is 
the angular rotation which the section can sustain under the constant 
plastic moment without the local failure of the section due to limiting strain 
conditions at the plastic limit h defined earlier. The plastic rotation capa­
city of a section depends on the (i) material properties, (ii) amount of rein­
forcement, (iii) confinement percentage, and (iv) axial load. The plastic 
rotation capacity can be derived (10.19) as a function of the (i) ultimate 
strain of concrete, (ii) strain variation in concrete from II to h, (iii) spread 
of the plastic zone, i.e., the length of the plastic hinge, and (iv) position of 
the neutral axis. 
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I tensive experimental investigations show large variations in the plastic 
'' tnlion capacity of RCC regions. Empirical formulae have been repurtcd 

v rious research workers. Baker and Amarakone (10.20) have proposed 
t of curves representing the permissible plastic rotation capacity, 811 , as 

function of the depth of the neutral axis at limit h for different percent­
r of confinement in the member. Hence, one can use these curves to get 

rrnissible rotation. 

10.7 .3 Statistics of Plastic Moment Capacity 

1rlations in geometric parameters of a section, generally being small, are 
n l(lected . Hence, for establishing statistics of M, the random variations of 
/,u nnd fy only are considered. Using the developed prediction equations 
h r M, and using a first order approximation, the mean value and standard 
d viation of Mare calculated from the known statistics of t:·u and (y. 

W.7.4 Reliability Analysis of RCC Frames (10.18) 

. lutamutic Generation of Dominant Mechanisms 

After c.,tahlishing the strength and stiffness properties of RCC members 
ltHI the statistics of M of various critical sections, stochastically dominant 
m· hanisms are generated using the stiffness method of linear clastic and 
I'W LEP analysis of the structure, and FOSM method of reliability analysis, 
11 uming. initially an unlimited rotational capacity available for all plastic 
hinges to form a collapse mechanism. To simplify the analysis, the axial 
1 idity. T:A, and flexural rigidity, £/, are assumed as deterministic. The 
~ •q ucntial selection o!' the most probable hinge locations, to determine the 
\'I of plastic hinges which converts the structure to a mecha11ism having a 
1 1rgc probability of failure, is the key consideration in the process of gene­
rul ing the dominant mechanisms. Methods suggested by Murotsu (10.10) 
nr Ma and Ang (10.8) or Tang and Melchers (10.13) can be used to gene­
rate stochastically dominant mechanisms; however, using the technique 
(10.14) explained and illustrated in the previous section. stochastically 
dominant mechanisms are generated. 

Checking of Plastic Rotations 

The technique for generating stochastically dominant mechanisms selects 
the plastic hinges on the basis of~ and determines the set of hinges which 
converts the structure into a mechanism without verifying the plastic rota­
tions of the hinged regions. It is observed that this set of hinges may consist 
of inactive hinges; moreover, the sequence of hinges may be random with 
respect to load factors. When the actual plastic rotation of plastic hinges is 
to be checked against the permissible plastic rotation, the physical process 
of the sequential occurrence of plastic hinges due to load increments has to 
be considered. Therefore, the sequential analysis of dominant mechanisms 
based on the load factor is employed to check the plastic rotation of hinges 
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at each stage of the 'c4ucntial an•li~ ~is, anu Lo fl,rmulate the failure prob­
ability if the rotation check fails. 

The plastic rotation is assumed Ill be concentrated at the critical section. 
Therefore, the relative slope at the node of the plastic hinge of the section 
is considered as the plastic· rnt:uion of the section, i.e. the angle of di:-.­
continuity as represented in Fig. 10.:22(h). The rotations of nodes. obtained 
from the analysis, correspond to the slopes at the intact ends of the 
members meeting at the node, and not to the hinged ends. The slope at the 
hinged end of a member is obtained by slope deflection equations of the 
corresponding member. Then the plastic hinge rotation, as shown in 
Fig. 10.2~(h), is given by the difTerence between the slope at the hinged end 
and the rotation ofthe corresponding node. 

An identified mechanism with known active hinge sections is regenerated 
sequentially for checking the rotations ofhingc ~ections on the basi~ of load 
factors. The load factor. 'I• for :1 potentirll hinge secti,,n 1 at ;1nv stage i<; 
given by 

1); (lfU5l 

At any stage, let the selected potential hinge section be i ha\'ing the 
lowest load factor ,,,_and the earlier hinged sections be i and k. The actual 
plastic rotation r1l j (or k), fl, i\ 

Ill 

0; -· l' O;,tvf, 
s-1 

" 
! __ l/i l ~- llj,Q,] flfU6) 

1-1 

where Af, is the plastic moment capacity Pi' the critical sections, Q1 is the 
lth applied load on the structure. e;, and O;t ;He the plastic rotations at the 
hinged section i due to the unit plastic moment M, and unit load Qt 

respectively. (Jj, corresponding to 1\f, of the nonhinged section is zero. It is 
possihle that (Jj and/or e, may exceed permissible plastic rotation capacities 
(Jpj and epA respecti\'ely. In such a cusc it is not possible for a hinge to be 
formed at section i as indicated in Fig. 10.23. If fl ; > Op;. then, considering 

~ . -, 
' f1 ' I I ' 
L -- J 

------_; _ _j 1 \ 

' I 

)'R Rotat•on 1atlurf' modf' 

AI 1"), ,e 1 >ep 1 afld /or 

eM> epk 

FIG . 10.23 Checking of plastic rotation of hinged sections during regeneration 
of a mechanism 



rob· 

tion, 
:tion 
di -

a ted 
I lld 
~e is 

.35) 

the 
tun I 

.36) 

the 
the 

j Q, 
t is 
ities 
• be 
ring 

n 

321 

rotation capacity, the loact factor >.j at which 01 = 0"1 is glvon b~ 

m 

[Opj- E 8;,M,l 
Aj = n •··I (10.37) 

[ E 8"Q,J 
t~l 

un ilarly, if 8k > 8pk, the expression for the load factor >..k, at which 
.., fJ,k, can also be obtained. Aj and >.k are now compared and the lowe.st 

I ted and denoted by >.R. At this value of >.R, the RCC frame is assumed 
111 fail under the rotation failure mode, prior to the formation of the 
111 ·hunism. As the rotation check fails, a full strength of section i is not 
Jlilized. Whereas a plastic hinge at section i forms at the load factor.>.R, 

lit coefficient a;;, instead of being unity, is modified as (I 0.18) 

a;; = [ j}' OijMj]- >.R[ E b;kQk] (Ml ) 
J-1 k=l ; 

(10.38) 

Ni 

, ub tituting this value of au in Eq. (10.26), the safety margin Z; of the 
1 1tation failure mode is formulated and the reliability index {3; ·and prob­
ubility of failure pu are calculated as usual. The process of regeneration of 
the mechanism is terminated at this stage. 

Likewise, all dominant mechanisms identified earlier, assuming full 
redistribution, are regenerated and analysed, in addition, a plastic rotation 
heck is performed for hinged sections at every stage. All failure modes are 
· mbined for establishing bounds on the system failure probability. Hence, 
the proposed formulation of the re!:ability analysis of RCC frames involves 
the following steps: (i) analysis of 'RCC cross se.ctions of beam& and coiumns 
nd establishing statistics of M;, (ii) generation of dominant mechanisms 

11 suming unlimited rotation capacity of scct.ions, and a reliability analysis, 
iii) regeneration of failure modes with checking of plastic rotations of 

hinged sections, and (iv) synthesis of all failure modes and assessment of 
pr.. A flowchart for the reliability analysis of RCC frames is given in 

ig. 10.24. The proposed method is illustrated in the following examples 
(10.18). 

EXAMPLE 10.12 The simple one-bay one-storey RCC frame, shown in 
"Fig. 10.25, has been designed as per ISS (10.21) with the following data: 

(i) Characteristic loads: 

Live load : 4 kN/m2 

Wind load : 1.5 kN/m2 

(ii) Load combinations with partial safety factors: 

(a) 1.S(D + L) 
(b) I.5(D + W) 
(c) 1.2(D + L + W) 
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FIG. 10.24 Flowchart for reliability analysis of RCC frames 

(iii) Char:1cteristic strength of materials: 

Concrete (M 20) : 20 N/mm 2 

Steel (Fe 415) : 415 N/mm 2 
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FIG. 10.25 One-bay one-storey RCC frame and detai Is of cross · 

sections-Example 1 0.12 

(iv) Partial safety factors for material strengths: 

Concrete : Ymc = 1.5 
Steel : Yms = 1.15 

(v) Young's modulus of elasticity: 

Concrete (M 20) : 25.5 kN/mm1 

Steel : 200 kN/mm2 

us 
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Using the strain compatibility ondition, and force and moment equili­
brium equations, expression for ultimate resisting moments of rectangular 
and tee beam RCC sections can be written in terms of design parameters 
and basic random variables . .fcu and jy ( 10.19). For the developed expression 
for M, using the Monte Carlo technique or first order approximation 
[Eqs. (3.82) and (3.84)], the mean value and standard deviation of M can be 
computed using statistics of /cu and /y. Let us assume that this has been 
done and the computed values of the mean and standard deviation (or 
coefficient of variation) of moment capacities of critical sections are known. 
They are given in Table 10.10 along with other data (including Bp) required 
for the reliahility analysis. The reliability analysis is carried out for two load 
combinations, viz. (i) D + Lrn + Wapi and (ii) D + Lapt + Wm . 

TARLE 10.10 Properties of cross sectio11s and statist in of l'ariables for 
RCC frame · Examp/e 10.12 

Section or 
variable 

Section 
1' 2, 3, 4 
5 , 8 
0, 7 
Variable 

feu 
f y 
,\/,, 1\1 2 , M,, ,'f , 
.·H,, /\I8 

1\f, , M , 

D 
l (L111 ) 

L(Lapo.l 

W(W
111

) 

IV(Wapt) 

EA 
(kN) 

0 .356 10' 
0.949 : 10' 
0.949/JO' 

El Ill, 
(kN m2 ) (radian) 

0.915 IO' 0 .017 
0.3 92 10' 0 .018 
0,392 . 105 0.019 

l Remark : All variables are statistically independent . 

Case (i) D + Lm .. !. Wapt 

I' 

26. 81 N/mm' 
469 
122 .34 kN 11 1 

1 Jo .37 
332 97 
Mcan/nominnl 
1.05 
0.55 8 
0.319 
0 6<) 3 
0.200 

0. 150 
0.100 
().()82 

0.093 
0 ,099 

0 . 100 
0.334 
0.397 
0.236 
0 420 

Assuming full rotation capacity at all critical sections for the formation of 
mechanisms, and using the method (10. 1 4) explained in Sec. I 0.6, stochasti­
cally dominant modes are llrst generated, as shown in Fig. 10.26, for the 
load combination D + Lm + Wnrt · The identified mechanisms are ordered 
and the system reliability is assessed from the synthesi s or theses mechanisms , 
which are represented by their hinges as shown in Fig. 10.27, and safety 
margins as given in Table 10.11. The correlations between dominant failure 
modes are computed (Table I 0.12). Details of the identilled mechanisms 
and results of the reliability analysis of the frame, assuming full redistri­
bution (i .e. without limiting the plastic rotations of hinges), are presented 
in Table 10.11. 
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FIG. 10.26 Failure tree diagram for RCC frame in Fig. 10.25 under 
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Each identified mechanism, indicated in Fig. 10.27, is regenerated, as 
shown in Fig. 10.28, according to the procedure outlined in the flowchart, 
given in Fig. 10.24, for checking the plastic rotations of hinged sections 
against their permissible plastic rotations, Bp. The final failure modes, 
corresponding to the possible mechanisms or rotation failures are generated 
as explained in Sec. 10.7.3, and are given in Table 10.13. Correlations 
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4 4 5 
2 7 

MECH 1( fl: 5·89) MECH 2(f"l=603) 

7 ~ 7 8 

[ l 
MECH J( fl = 6 OJ) MECH4(fJ=6·17) 

7 

r r 
MECH 5( (1 :B 47) MECH 6(["l: 8 66) 

FIG. 10.27 Location of hinges in dominant mechanisms of RCC 
frame in Fig. 1 0.25 under D ·I· Lm 1 W0p1-Example 
10.12 

TABLE 10.11 Identified Meclwnim1s and Re1111t.l oj Reliahility Analysi.1· of RCC 
Frame in Fig. 10.25, Assuming Fn/1 Redistril)(ltioll Undl.'r 
D + Lm ; Wap 1-Example 10.12 

Sl. Hinged 
No. sections 

Safety margin fJ 
Failure 

Pr tree 

I. 2, 4, 7 1.0M2 -1- !.OM• + 2.0M, - 3.0D - 3.0L 5.89 0.197 x JO-• I 
2. 4. 5, 7 1.0/114 + !.OM, + 2.0M7 - 3.0D - 3.0L 6 .03 0.821 x JO-" I 
3. 2, 7, 8 !.OM 2 + 2.0/lf, + I.OM, - 3.0D - 3.0L 6.03 0.821 /~ JO-D 2 
4. 5, 7, 8 1.0!1/5 + 2.0M, + I.OM. - 3.0D - 3.0L 6.17 o .338 · . ..: 1 o-• 2 
5. ' · 3. 4 , 7 I.OM, + 1.0,'\!f, + 2.0M 4 + 2.0M7 8.47 O.l24 x Jo- n 

- 3.0D - 3.0L - 4.0W 
li. I, 3, 7, 8 I.OM, + 1.0M, + 2.0/11, .:.. 2 .0M 8 8.66 0.239 :.-: 1 o-17 2 

- 3.0D - 3.0L - 4.0W 

Bounds on system probability of failure 
Simple 0. 197 ·• 10- • ~ f'rs ~ 0 )95 v 10-• 
Narrow 0 215 >~ 10- • .;;;; Prs ~ 0 .284 ; I o-s 
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Correlations betw~cif mechanisms given in Tllbi•IO.IJ- ' •mp/1 10.1~ 

Pq 
2 3 4 ' 6 

I 1.0 0.981 0.981 0.962 0.971 0.927 
2 1.0 0.962 0.981 0.966 0.923 
3 ;.0 0.981 &.938 0.968 
4 1.0 0.934 0.963 

Symmetrical 
1.0 0.929 

1.0 

I' OLE 10.13 Regenerated failure modes and results of reliability a11alysis of 
RCCframe in Fig. 10.25 under D + Lm + Wap1-Example 10.12 

Hinged 
Safety margin fl Pr Remarks 

sections 

2, 4, 7 l.OM2 + !.OM, + 2.0M7 - 3.0D 5.89 0.197 X IQ-B Mechanism 

- 3.0£ failure 

4, 5, 7 ! .OM, + 0.939M6 t 2.0M7 5.94 0.1 44 xto-s Rotation 

- 3.0D- 3.0L failure 

2, 7, 8 l.OM2 + 2.0M7 + t .OM8 6.03 0.821 X 10-o Mechanism 

3.0D- 3.0£ failure 

5, 7, 8 0.99JM5 + 2.0M7 + t.OM8 6.16 0.368x w-t Rotation 

- 3.0D- 3.0£ failure 

3, 4, 7 0.620M8 t l.OM, + J.SM. 6.02 o .861 '< 10- 9 Rotation 

- 0.22SD - 0.225£ - 2.0W failure 

3, 7, 8 0.636M I + l.SM. + l.OM, 6.23 0.235x w-o Rotation 

- 0.225D - 0.22SL- 2.0W failure 

Bounds on sys lem proba bility o f fa ilure: 
Si mpl e 0.197x 10- s ~ '' rs ~ 0.57 x 10-8 

Narrow 0.245 X 10-e ~ Pr, ~ 0.371 >: 10-a 

TABLE 10.14 Correlations between failure modes given in Table 10.13-Exampfe 10.12 

Failure Pu 
mode No. 2 3 4 5 6 

l. 1.0 0.982 0.962 0.986 0.981 0.959 
2. 1.0 0.981 0.983 0.983 0.956 
3. 1.0 0.959 0.981 0.982 
4. Symmetrical 1.0 0.963 0.967 
s. 1.0 0.986 
6. 1.0 

between failure modes are computed (Table 10.14) and the bounds on 
system failure are established. Results of the same are given in Table\!0.13. 
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MECH 1 

MECH 2 

MECH 3 
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FIG. 10.28 Regeneration of individual mechanisms in Fig. 1 0.2 7 for checking 
plastic rotations under load caseD + Lm + Wap1-Example 10.12 

Case (ii) D + Lapt + Wm 

The procedure is repeated for this example to assess the system reliability 
under the second load combination D + Lart --:· Wm. The genera ted domi· 
nant mechanisms, assuming full redistribution , and their safety margins and 
resulh or the reliability analysis h:tscd on these are given in Table 10.15 . 
The mechanisms arc rc:'generated as sbown i11 Fig. 10 29. Table 10.16 gives 
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RCC frame in Fig. 10.2j, assuming full redistribution under 
D + Lapt + Wm-Example 10./1 
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Hinged 
sections 

Safety margin Pr 
Failure 

tree 

2. 4, 7 

4, 5. 7 

2, 7, 8 

5, 7, 8 

I.OM, -i- 1.0.11 4 '- 2.0.\f, - 3.0/J 
- 3.0£ 
I.OM4 + 1.0,\/5 + 2.0:\f, - 3.0D 
- 3.0£ 
I.OM~ + 2.0,\-£7 1.0;\/, - 3.0/J 
- 3.0£ 
t.Ot\15 + 2.0M, + l.OM,- 3.0/J 
- 3.0£ 

I, J, 4, 7 I.OM1 -!· I.OM, :- 2.0,'\o/4 2.0M, 
3.0D - 3.0£ - 4.0W 

I, 3, 7, 8 I.O.M1 ~- 1.0.\/, -' 2.0.\1, 2.0M 8 

- 3.0/J - 3.0L - 4.0W 

Bounds on system probability of failure : 
Simple 0.5&7 x J0-11 ~ Prs ~ 0.105 :< 10-" 

Narrow 0.626 A to-n~ Prs,; 0. 812 :~ I0-11 

6.79 0.567 X I0-11 

6.93 o.2o6 >~ 1 o-u 

6.93 0.206 .< l O-'~ 2 

7.0H o. 736 ;; 1 o-•• 2 

9. 14 < IQ-18 

9.32 < Io-u ' 2 

OLE 10.16 Regenerated failure mode.f amlresulls vf reliability analysis of RCC 
frame in Fig. 10.25 under D + Lapr , IV m -Example 10.12 

Sl. Hinged 
Safety margin f3 Remarks 

4 

sections 

- - - ------ - --- -
2, 4, 7 

4, 5, 7 

2, 7, 8 

0.877M, -;- l.OM4 2.0M, 
-3.0/J - 3.0L 
I. OM I 0. 786M 5 - ' 2,0(1•/, 
-3.0/J- 3.0L 
0 .931 t1f, + 2.0.-H, -!- I. OM, 
-3.0/J- 3.0L 

5, 7, 8 0.835M. ' 2.0M, ! I. OM 8 

-3.0/J - 3.0£ 
3, 4, 7 0.729Al, + I.OM, · - l.5M7 

-2.25D - 2.25L - 2.0W 
3, 7, 8 0.749M1 !- 1.5M, + l.OM, 

-2.25D - 2.25£ - 2.0W 

6.61 

6.60 

6.83 

6.82 

6.93 

7.14 

Bounds on system probability of failure: 

Simple 0.211 ~< I0-10 ~ Prs ~ 0.518 :< IQ-10 

Narrow 0.289 x I0-10 ~ Prs ~ 0.378 ;.: 10-1o 

pr 

0.193 · t0- 10 Rotation failure 

0.211 ., I0-10 Rotation failure 

0.414 :· 10 · II Rotation failure 

0.457 ;< to- u Rotation failure 

0.218 ;.: to-u Rotation failure 

0.469 >: to -a Rotation failure 

the final failure modes obtained after checking the plastic rotations of the 
hinges. The correlations are computed. The estimated system reliability is 
given in the same Table 10.16. 

EXAMPLE 10.13 The two-bay two-storey RCC frame, shown in Fig. I 0.30, 
bas been designed as per the ISS (10.21) with the same data given in 
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FIG. 10.29 Regeneration of individual mechanisms in Table 10.15 for check· 
ing plastic rotations under load caseD + Lapt + W,-
Example 10.12 

Example I 0.12. Details of cross-sections of the frame are given in 
Fig. 10.30. Flexural rigidities, plastic moment capacities, and permissible 
plastic rotation capacities of sections are calculated and given in Table 10.17. 
The results of the reliability analysis for the two load combinations 
(i) D + Lm + Wapt and (ii) D + Lapt + Wm are given in Tables 10. I 8, 
10.19, 10.20, and 10.21. 
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FIG. 10.30 Two-bay two-storey RCC frame and details of cross-sections­
Example 1 0;23 
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TABLE 10.17 /'roperries of cross sec/ions unci statistics of 1•ariables for RCC frame­
E,ample 10./3 

Section or EA El 8p 
1L 8 

variable (kN) (kN m') (radian) 

Section 
1to4,13 to 16. 0 356 ~< 107 0. 786 ;< 101 0.014 
25 to 28 
5, 9. 20, 24 0.453 ~< I 0' 0.294 x to• 0.017 
8, 12, 17. 21 0.453 ~<I 0' 0.294x 105 0.013 
6, 7, 10. II. IH, I<J. 0.453 ·:I 07 o.294 >· to• 0.017 
22, 23 
Variable 
M;. (i , I to 4. 114.78 kN m 0.058 
13 to 16, 25 to 2HJ 
!vf;, (j c~ 5, 9, 20, 24) 178.49 0.092 
Mk, (k = 8, 12. 17, 21> 315.80 0.090 

M,, (I , 6, 7, 10, II. 274.11 0.098 
18, 19, 22, 23) 

Remarks: Statistics of variables feu• fy• D, Lapt• Lm, Wapt and Wm are the same as 
giwn in Table 10.10 
All variables are statistically independent. 

TABLE 10.18 Identified meclwnisms and results of reliability analysiJ of RCC frame 

ill Fig. 10.30 assuming full redistribution 1111der D t Lrn + w.P,-
Example 10.13 

Sl. Hinged 
Safety margin f3 

Failure 
No. sections Pr tree 

4, 11' 12 !.OM, + 2.0Mu -1- I.OM12 7.17 0.38 ;< JO-ll 

-3.002 - 3.0L, 
2 21,22,28 1.0Mu + 2.0Mn + I.OM2s 7.17 0.38 x to-u 2 

-3.001 - 3.0L, 
3 9, 11, 12 I.OM0 + 2.0Mu -1- I.OM11 7.85 0.216X JQ-U 

-3.001 - 3.0L, 
4 17, 18, 20 l.OM17 + 2.0/vlu + l.OM1o 7.85 0.216x JQ-u 

-3.003 - 3.0£3 
5 21, 22, 24 l.OM11 + 2.0Mu + !.OM .. 7.85 0.216X JQ-U 2 

-3.00, - 3.0L1 

6 5, 6, 8 !.OM. -1- 2.0M0 + J.OM0 7.85 0.216x w-a 
-3.001 - 3.0L, 

7 2, 3, 6, 8 l.OM1 + !.OM,+ 2.0M0 8.62 0.347 X to-n 2 
-1- I.OM8 - 3.001 - 3.0L1 

8 17, t8, 26,27 I.OM17 + 2.0Mu + I.OM,1 8.62 0.347 x to-n 
+ I.OM., - 3.001 - 3.0L1 

9 4, 10, 16,21 !.OM, + 2.0M10 + l.OM11 8.62 0.347 x to-n 2 
+ l.O!v/11 - 3.001 - 3.0L1 

Bounds: 
Simple 0.380x 10-11

.,;; Prs.,;; 0.769x J0-1• 

Narrow 0.765 ;..c to-•• ~ Prs .,;; o. 765 x to-u 
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Rcgenemud failure modes and results of rtllablllty Q/IQ/)1111 tf/ ltCC 
frame in Fig. /0.30 under D + Lm + Wap1- E .I'lii/I(JI1! 10.1.1 

Hinged Safety margin p Pr Rom arks sections 

4, II, 12 I. OM t -i- 2.0M11 + I.OMu 7.17 0.38 X JO-ll Mechanism 
- 3.0D2 - 3.01,• failure 

21,22,28 I.OMu + 2.0Ms• 7- J .OMu 7.17 0.38 x J0-11 Mechanism 
- 3.0D, - 3.0£, failure 

9, II, 12 0.671M, -1- 2.0Mu + t:&Mu 7.19 0.330 X JQ-12 Rotation 
- 3.0D1 - 3.0£2 failure 

17, 18,20 I.OM17 + 2.0Mu ·~- 1.0Mu 7.85 0.216x w-u Mechanism 
~3.0D1 - 3.0£3 failure 

21, 22,24 I.OM11 + 2.0M2 ~ -!- 0.714M1, 7.28 0.172 :~ I 0-1• Rotation 
-3.0D, - 3.0L, failure 

s, 6, 8 l.OM5 -1- 2.0Ms -!- I.OM8 7.85 0.216 x w-a Mechanism 
- 3.0D1 - 3.0£1 failure 

3, 6, 8 0.9SSM, + 0;967M0 8.27 0.605 ;< JO-ll Rotation 
-t-0.484Ms - 1.4SD, failure 
-0.32SW, 

17, 18, I .OMn + 2.0M11 + 0.792M2s 8.32 o.438 x to-•• Rotation 
26, 27 -t-I.OM27 - 3.0D1 - 3.0L1 failure 
4, 10, 16 l.OM, -1- 2.0M10 + 0.374M" 7.72 0.593x Jo-u Rotation 
21 + l.OMn - 3.0D1 - 3.0L1 failure 

II \IOd. : 
Simple 
Narrow 

0.380x I0-11 ~ Pr, ~ 0.127x to-11 

0.952 X 10-11 ~ Pr1 ~ 0.108 X 10-u 

BLE 10.20 Identified mechanisms and results of reliability a11alysis of RCC frame 
in Fig, 10.30 assuming full redistribution under D + Lapt + Wm­
Example 10.13 

Sl. Hinged 
Safety margin p Failure 

No. sections Pr tree 

4, I I, 12 I.OM1 + 2.0Mu + J.OM11 - 3.0D1 8.25 0.809 X J0-11 

-3.0L1 

2 21, 23,28 I.OM11 + 2.0M21 + l.OM .. - 3.0D, 8.25 0.809x J0-1.4 
~3.0L1 

3 17,18,20 l.OM17 -1- 2.0M" -1- l.OMso - 3.0D, 8.94 0.217 X J0-11 

-3.0L, 
4 5, 6, 8 O.SM. + l.OM, + O.SMs- I.SD1 8.94 0.217 X }()-'11 

-1.SL1 
.s 9, lJ, 12 l.OM1 + 2.0M11 + l.OM11 - 3.0D1 8.94 0.217 X 10-11 

-3.0L1 

6 17, 18, I.OM17 -1- 2.0M1a -1- l.OM~t -1- l.OM17 9.78 < ttr-11 

26,27 - 3.0D, - 3.0£1 

7 12, 16, l.OM11 -1- l.OMu -1- 2.0M11 -1- I.OM11 9.78 < IQ-11 

23,28 -J.OD, - 3.0£, 

Bounds on system probability of failure: 
Si111ple 0.809xJo-u ~P,, ~ 0.162xlo-11 

Narrow O.l62x w-u <Pta< 0.162x Jo-11 
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TABLE 10 21 R;·gen<'mtcd joilure modn 1111d l<'.lllft, of 1rliability Aualrsis of RCC 

fwnl<' in Fig. 10.30 under D -' Lart -1 Wm--Fwn1pl<' 10 13 

Sl. Hinged 
S<Lfety 111argin 8 Remarks 

No . sect ion l'r 

4. II , 12 0.952M 4 - ~ 01/11 I .tJ-1 f" X IS 0.143 10 ,. Rotation 
-3.0D,- J .OJ., failure 

2 21,2J.2R 1.0,11,. 1- ~ . 0 . \f, I.OM,8 X.25 O.R09 IO·IR Mechanism 
-- J 0/J, - .1.0L, failure 

3 17. 18, 20 I OM, . :!.OM" I 0,\ I ,0 ~.94 0.217 . 1()-18 Mechani-;m 
-- 3.0D, -- J.OL, failure 

4 5. 6, s O.R02M, :. 2 .0 If' 1.0 .1/~ 8 54 0.694 10'" Rotation 
-- 3.0D, -- J.OL 1 failure 

5 9. II. 12 o.n12"-'• :. 2.0!1fll I !.OM, R. l J 0.217 'J()-16 Rot<llion 
-3.0D,- 3 OJ., failure 

6 17, 18. 10.1117 2.Q,\JIA . I I O.lf,. 9.78 < JO-IR Mechanism 
21), 27 + I .0:11, - J.OD, - 3 OL, failure 

7 12, IIi . I.OM" 0 123.1/" 2 0.1/" ~.44 0.158 10 " Rotation 
23 28 -' 1.0 If, -- 3.0D4 -- 3.0L 4 failut c 

Hounds on syo;tem prob;~bility of failure: 
Simple 0.217 J0- 15 ~firs~ 0.468 10-" 
Narrow 0 379 .· JO-" ~ f'l\ ~ 0.416 10· " 

10.7.5 Discussion 

A simple and practical method of the reliability analysis of RCC frames, 
considering the limited rotation capacity of RCC sections, had been deve­
loped and illustrated. The probability of failure of a rotation failure mode, 
generated from the mechanism through a check for plastic hinge rotation , 
is found to be higher than that for mechanisms with unlimited rotational 
capacity, which is expected . This increase in pr is observed to be considerable 
in the case of the least dominant mechanism. 

A comparison of results for limited ductility and full redistribution shows 
that the bounds on {Irs are generally higher and wider for limited ductility. 
For the two case studies, it is noted that the probability of f<tilure of the 
frame under the load combination D + Lm + Wapt is more than that of 
under D + Lapt + Wm. The effect of limited rotational capacity on {Irs is 
found to be more critical under D + Lapt + Wm than under D + Lm + Wapt 

for these two case studies. 
For the two case studies of RCC frames (design according to ISS), the 

system failure probability is found to be of the order of w-9 for the one­
bay one-storey frame and 10- 12 for the two-bay two-storey frame. These 
values of failure probability are very small. This is due to high design loads 
and low material design strengths specified by the IS code. 

The checking of plastic rotations of hinges and remodelling of the failure 
modes improves the accuracy of the system reliability of RCC frames. How­
ever, the improvement in the present case studies, where the load combina­
tion D + Lm + Wapt is more dominant than D + Lapt + Wm, is not 
significant in the context of computer effort. 

1 
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Reliability analysis is a tool in the design process. It can be applied to any 
field. The importance of making reliability assessments, especially for the 
purpose of making comparative design judgements, has received recognition 
in the last decade. Even though the reliability analysis and design of steel 
and RCC building structures are mainly treated in tlie examples of this 
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book, methods can be applied to other types of strucures and other fields 
of engineering, as well, viz. aeronautical, mechanical and nuclear. The 
reliability theory has been used extensively in the analysis and design of 
bridges, buildings, transmission towers, etfshore structures, ship structures, 
nuclear power plants, and in the development of general purpose structural 
design codes. Jn this hook, mainly failure criteria based on strength have 
been considered. The reliability methods given can be applied to other 
criteria, such as serviceability limit states, viz. deflection, cracking, corrosion; 
etc. Fatigue and fracture behaviour is an important consideration in the 
design of hridges, offshore structures, aircraft structures, pressure-vessels, 
cranes, etc . Hence, reliability predictions against fatigue crack initiation, 
growth, and fracture is important. A considerable research has been done 
and is going on in developing analytical techniques for fatigue reliability. 
1 n the case of dynamically sensitive structures subjected to dynamic loads, 
the reliability analysis of such structures is more involved. This is so in the 
case of deep offshore platforms. Reliability analysis with respect to such a 
type of structure is briefly explained below. 

Off~hol'e Structures 

The safety of an offshore structure depends on predicting the environmental 
phenomena. such as wind, current, wave, seismic loading, accurate caku­
lation or the response of the structure to these loads, and determining the 
strength of the structure. Level 2 reliability methods have been used in the 
evaluation of component reliabilities in jacket structures. The various steps 
that are involved for such an analysis are (I 0.22): 

(i) defining the basic random variables for the structural resistance and 
loading, viz. extreme wind speed, drag coefficient, inertial coefficient, 
current speed, marine growth, deck load, yield strength of steeL tube 
thickness, leg diameter, damping coefficient, strength model uncertainty, 

etc. 
(ii) selecting the appropriate failure criterion and the associated model 

uncertainty for the component under consideration 
(iii) developing an appropriate idealisation of the structure for the 

purposes of evaluating combined wave and current forces 
(iv) developing an appropriate mathematical model relating the natural 

frequency of the structure in its dominant mode of vibration to the basic 
random variables which affect it, such as the soil and structure stiffness, 
superimposed deck loads, thickness of marine growth, and the coefficient 
of the added mass 

(v) developing an efficient algorithm to determine the stochastic response 
of the structure under dynamic loads 

(vi) obtaining the relationship between the displaced shape of the struc­
ture and the loads and moments in the individual components of the 
structure, by an appropriate structural analysis 

(vii) combining the mathematical mode:s given by steps (ii) to (vii) above 
to obtain the safety margin eauation and 
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determining ~ for the failure criteria. 
(10.22) has done the reliability analysis of jacket platforms in the 
Sea. The Level 2 r~'iability methods have been applied for taking 
s for the safety of offshore structures against fatigue (I 0.23). 
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EXERCISE 

10.1 Consider the structural system (5 member truss) shown in Fig. 10.31. It is given: 

A,= 4.5 cm 2 A, = A, = 1.67 em• 

A, = 1.2 em• A, = 4.5 em• 
Variable f1 : !J. = 276 kN/m1 a = 27.6 kN/m' 

Q, Q. : 14 = 30 kN a = 6 kN 

Qa: p. =50 kN a= 15 kN 

Assume all variables are independent and normal. 
(i) Compute simple bounds on the reliability of the system (pr

1
). 

(Ans . 0.0602 ~ Pro ~ 0.0896) 
(ii) Compute Ditlevsen 's narrow bounds on Prs· 

(Ans . 0.0732 ~ Pr, ~ 0.0773) 
10.2 For the same problem given above, determine the narrow bounds on Pr. i~ Q,. 

Q1 , and Q, follow the Type I extremal (largest) distri bu tion and fy follows the 
I gno rmal di~t ribu t io n . 

(Ans. 0.0223 .;; Pro ~ 0.0236) 
10.3 Consider the indeterminate truss shown in Fig. 10.32. II is given that for 

Variable : 

R1• Ru. Ru p. = 77.6 kN a= 7.76 kN 

R, !.L = 88.6 kN a= 8.86 kN 

R, p. =50 kN a= 5 kN 

R, p. = 67.6 kN a= 6.76kN 

R. 14 = 78 .6 kN a= 7 86 kN 

Ra p. = 40 kN a= 4kN 

R1 , R1 , R,, R10 p. = 75 kN a= 7.5 kN 

R1 (i = 11 to 14) p. =50 kN a= 5kN 

Q,, Q. p. = 50 kN a= 10kN 

Q. 14 = 20 kN a= 6kN 

Assuming all variables are normally distributed and statistically independent, 
determine simple bounds on the Prs of the system. 

(Am. 0.00866 ~ Prs ~ 0.019) 
10.4 ons ider the RCC frame, shown in Fig . 10.25, and given in Example 10.12. All 

da ta are the same as given in Table 10.10 except that for L0 " Mean/Nominal 
= 1.38 and B = 0.25. Generate dominant modes for the load combina tion 
D + Lm + Wapi and determine 

(i) The bounds on Pr
1 

assuming full redistribution. 
(Ans. 0.726x Jo-• ~ Pr1 ~ 0.978x J0-1) 

(ii) The bounds on Pr
1 

assuming limited ductility. 
(A11s. 0.724 x 1o-a ~· Pr, ~ 0.818 x J0-3J 
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JO~S , The steel frame shown in Fia. 10.33 is taken from Reference 10.8, The data for 
tho frame is aiven in Table -E 10.5. Generate dominant modes and determine 
Ditlevsen's narrow bounds on the probability or failure of the system. R.eeultt 
are available in Reference 10.14. 
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FIG. 10.& Two-storey one bay frame 

TABLE E 10.5 Dutafor frame in Fig. E 10.5 

a P 
Section/ EA El 
variable (kN) (kN m1) 

~tion 
1, 2. 3, 4, 9, 0.105xJ07 0.84 X 10' 
10, 11, 12 
s, 6, 7, 8, 13, O.i68XI07 

14, JS, 16 
Variable 
Ma. -M 1,M,,Mc 
M,,M11,Mu, 
Mn 
M 1 , M,,Jivt, 
Me,Mn,Mu. 
Mu. M,, 

Q, 
Q, 
Q, 
Qc 

o.336x 101 

110.0 kNm 

275.0 

180.0 kN 
90.0 
32.0 
16.0 

0.15 1 0 l 
I 

0.15 1.0 ~ 
J 

O.lS l 0.25 
>-0,25 

J 0.25 

Independent 

Loads are in-
dependent 
except 
PQa. Qc "" 1 
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Advanced Reliability Methods 

11.1 INTRODUCTION 

In Chapter 7, Level 2 reliability method has been explained and illustrated in 
detail. The method can be applied to linear or non-linear limit state functions of 
correlated or uncorrelated normal or nonnormal variables. In this method, the 
failure surface is linearized at the design point and reliability index is 
calculated. The method is also called as First Order Reliability Method 
(FORM). Here, probability offailure is taken as 

(11.1) 

given by Eq. 8.3 1. Only in the case of linear function of normal variables, the 
value of probability of failure estimated by the above equation gives the exact 
value. In other cases, it gives only approximate value called as notional value of 
probability of failure. In general, Ute probability of failure estimated by Eq. 11.1 
is sufficiently accurate and holds good for the majority of complex engineering 
problems wiUt number of variables as long as the probabilty of failure is not too 
small and the distributions of the variables do not deviate too far from the 
normal distribution. This estimate of probability of failure is enough and quite 
adequate for decision making problems in the field viz. fixing partial safety 
factors, calibrating codes, development of inspection strategy and maintenance 
schedule etc. The estimated Pr by Eq. 11.1 gives significant error when the 
failure surface has large curvature and highly nonlinear and the function is in 
terms of correlated nonnormal variables. In such cases, when one is interested 
in estimating more accurate value of pr , he may have to use Second Order 
Reliability Methods (SORM). Basic Monte Carlo technique explained in 
Chapter 7 gives true value of Pr ; however, it takes more time and large number 
of samples are to be generated to estimate Pr with a certain minimum 
confidence level in the estimated Pr· Better sampling methods, which are called 
here as advanced simulation methods, are available to estimate Pr without much 
statistical error. In this chapter, the principle behind second order reliability 
method is just introduced and advanced simulation methods are explained in 
detail and illustrated with examples. 

11.2 SECOND ORDER RELIABILITY METHOD 

The first order reliability methods are easy and simple to apply but 
approximation used to linearise the failure surface at design point does not 
always hold good. When the failure surface is very non-linear, the estimated 
reliability index shows an erroneous Pr value. The figure 11.1 brings out the 
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drawback of FORM. In Fig. 11.1 two failure surfaces arc shown. Surfice :8 :te 
more non-linear than the surface A. It can be easily seen that the probabtUt.y 

FIG.11.1 Drawback of FORM 

of tailure of B is less than that of the surface A. But using the Hasofer-Lind 
method, the values of reliability index p evaluated for both surfaces for 
linearization at design point D are the same. This shows that not only the 
distance of a design point D from the origin in the independent standardized 
co-ordinate system but also the nature of the failure surface affects the failure 
probability. Thus it becomes essential to take into account the nature of the 
failure surface while evaluating the probability of failure in problems involving 
non-linear surfaces. It is drawn to the attention of the readers that if the 
original distributions of the variables significantly deviate from the normal 

~.,.....,.nc 
a"rlaee 

FIG. 11.2 Parabolic approximation to failure domair. 
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distribuiton, original smooth surface ( even if the original equation is linear) 
can become distinctively curved in the normalized space. But it is particularly 
difticult to find the exact nature of the surface every time. The second order 
approach in the space of normalized variables will yield results close to the 
exact value. In the second order reliability method the failure surface in the 
standard normal space is approximated by a parabolic surface (Fig. 11.2) at the 
design point, the axis of the parabola being the direction of z* (the design point 
in the independent standard normal space) The corresponding probability 
content is determined by asymptotic formula and by approximate formulae 
(11.1 , 11.2). Tvedt (11 .3) has presented a method calculating from the full 
second order Taylor series expansion of the failure function at the design point 
z*. 

11.3 IMPORTANCE SAMPLING METHOD 

In Monte Carlo simulation, as probability of failure for any stmcture is 
generally very low, large number of samples will have to be generated to get 
sufficient number of points in the failure domain. This will require evaluation 
of stmctural response for large number of times which affects the efficiency of 
the method. This drawback is overcome by replacing the joint density function 
fx(x) by new sampling function hx(x) which ensures the sampling in the region 
which contribute most to the probability of failure. The probability of failure is 
given by, 

where 

II { g(x)SO} fx(x;) 
i=l lrx(xt) Pr = 

N, is the number of simulations and 
1 { } is an indicator function given by 

{ I { } = 1 for g(x)::;; 0 
0 otherwise 

(11.2) 

The main purpose of the new density function i.e. weighting function is to 
centre the simulation in the most important region i.e. around design point. It is 
possible theoretically that variance of the results from Eq. 11.2 can be reduced 
to as low as zero, if the values of the weighting function are equal to values of 
the actual probability density in the failure domain. This assumes that the 
information of the design point is exact along with the right choice of the 
weighting function. Because of the finite number of weighted simulation, there 
will be always some statistical uncertainty, apart from due to choice of 
weighting function. Applying statistical analysis, this uncertainty can be 
estimated. The variance (s2

) of the calculated probability of failure can be 
estimated as, 

j 
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(liJ) 

The so called standard error (or statistical error) in the estimate of Pr is given 
by, 

.[;2 
t;>r = - ­

P[ 
(11.4) 

From the above equation it is clear that statistical error is not only dependent 
upon the number of simulations bot also type of weighting function hx(x). 

Choice of weighting function 

It is obvious from Eq. 11.4 that, whole suecess of the importance sampling 
approach depends upon the choice of the weighting function hx(x). Several 
suggestions have been made for the choice of hx(x) in the importance sampling. 
Harbitz (11.4) suggested the weighting function as the same original joint 
density function but onJy shifted at the design point, which is calculated by 
Level 2 method. But tlte question comes, as once the design point by Level 2 is 
known, why to go for further artalysis, unless some improvement in accuracy is 
needed. Also original distribution may be complex when variables arc 
correlated, which causes difficulty in sampling process. 

Another choice for weighting function hx(x) is to use independent standard 
mnltinonnal density function centred at the design point and standard 
deviation equal to or greater than the original standard deviation (11.5, 11.6, 
11 .7). Design point can be calculated based on the assumption of uncorrelatcd 
Gaussian variables or uncorrelated with original distributions. Generally hx(x) 
is taken as independent n-dimensional multinormal density function, centred at 
the design point calculated on the assumption of oncorrelated Gaussian 
variables. Tlte standard deviation is taken as, one to three times of tbe original 
standard deviation. As this choice for hx(x) will produce the sample points 
unbiased with respect to all variables, it will cover the wide region around the 
design point. Due to this advantag exact form of limH state g(x) is not 
necessary while evaluating the probability of failure . Due to ~implicity of the 
hx-(x) generation of the sample points can be done very efficiently. As hx(x) is 
the independent multinorrnal density function, unless the failure surface is 
highly nonlinear, there will be 50 % probability that sample point falls in the 
failure domain . .Random deviates for the nonnal distribution are generated 
using Box and Muller technique explained in Chapter 7. 

Correlated nonno.,.m variables 

In Level 2 method explained in Chapter 8, the treatment of correlated 
nonnormal variables has been explained when the covariance matrix. [Cx] is 
known. If the conclation matrix. [Px) is given. the procedure is slightly 
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modified and is explained below. It can be easily proved that the correlation 
matrix of original variates becomes covariance matrix of reduced variates. Here 
reduced variate Z; means, 

X.-!J· Z=-'-' 
' U; 

(11.5) 

where 1-4 and cri are mean value and standard deviation of Xi. In the case of 
correlated non-normal variables, the original probability density fx(x) is found 
at the sample point in consideration by transforming them into equivalent 
independent Gaussian components. This is done by first transforming them 
(nonnormal variables) into equivalent normal at the sample point by using the 
procedure explained in Chapter 8. The Gaussian components obtained are then 
transformed into independent components by orthogonal transfonnation. For 
the correlation matrix lPx] the eigen values are evaluated from which eigen 
vectors are found out for each eigen value. Then the transformation matrix [T] 
will be the matrix with each column as eigenvector for respective eigenvalue. 
The independent standard normal variates Y1, Y 2, ...... Y n will be given by, 

Y = [T]t Z 

E[Y] = [T]t E[Z] 

[Cv] = [T]t [px] [T] 

(11.6) 

(11. 7) 

(11.8) 

That is eigen values of [px] are the variances of the respective variates Yi. 
Though this transformation is approximate, it can be applied very efficiently 
and gives results within good approximation. 

Following steps are involved in the computation of Pr using ISM when 
statistics of all variables, the correlation matrix and the limit state function are 
given: 

1. An eigen value analysis of the correlation matrix is carried out to find the 
transformation matrix [T] . Each column of the transformation matrix is an 
eigen vetor corresponding to the respective eigenvalue (Refer Chapter 7). 

2. Find the design point x* using Level 2 method. For simplicity, assuming all 
variables as uncorrelated normal variables, x* can be found out and this 
may be used as a sampling point. 

3. Two uniform random numbers v1 and v2 are generated between 0 and 1 for 
each variable. 

4. A standard normal variate u tor each variable is obtained as 
u = [2 ln(ll v1)]

112 cos(27tV2) 

5. Select a value for standard deviation multiplier, Sdm, from 1 to 3. A sample 
point xis obtained as 

X = X* + Sdm U 0' 

6. The value of limit state function g(x) is evaluated. 
7. If g(x) < 0 proceed; otherwise go to Step 3. 



8. The equivalent m.ean. and standard deviation at poiDI lound ouc •• 
explained in Chapter 8. They are given by Eqs. 8.67 IDd 1.69. 

P'x =-<i'x «»- 1 r~x (x,)]+x, 
I I J:l'. I ( 11. 9) 

(11.10) 

9. The equivalent normal variables Z are found at the point X as 

Z 
Xt-PX, 

I= ax, (11.11) 

10. The independent variables Y are found at point X as 

Y=[Ttz (11.12) 

11. The probability density and the sampling density at X are found out as 

lx = n-exp~ -~ I n I n ( I y;2) 
{Jtif I= I O'J'j i=l 2 c:r, 

(11.13) 

(11.14) 

Here hx is independent multinormal density function at X 

12. Calculate fx I hx. Go to Step 3. 
The whole process is repeated from Step 3 to Step 12 for number of 
required simulations N •. 

13. Compute prusing Eq. 11.2 and Cpr using Eq. 11.4. 
The procedure explained above is shown in the flow chart given in Fig. 11.3. 
The importance sampling method is illustrated with the following examples. 

EXAMPLE 11.1 The limit state function is given by 

Here the number of variables is 3. The statistics of the variables are given in 
Table 11.1. The correlation matrix is follows: 
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[p,J 
[

1.0 

0.5 

0.0 

0.5 

1.0 

0.0 

0.0] 
0.0 

1.0 

A•cul ~o. of varlobl••. their diatrlbwtlon 
and correlation mat.rix R•ad al•o the 
limit stat• function and no. of almulatlOfta 
to b• don• 

F'lnd th• d••lgn point by caesumpt.lo 
of uncorr•lated gaua-">n Yarlabl•• 

Oo 

G•n•rat• th• aompl• poi"t uel 
ind•pend•nt multlnormal d•nalty 
c•nt•red at d-lgn point 

FIG. 11.3 Flow Chart for importance sampling 

TABLE 11.1 Statistics of variables- Example 11.1 

Variable Mean Standard deviation Distribution 
5. 0 Type I extremal 

x2 5o.o 
x3 15oo.o 

2.5 
100.0 

Compute Pr by using ISM taking SDM equal to 1. 

(largest) 
Normal 

Lognormal 

Detailed stepwise calculation for the computation ofpr is given below. 
Step 1: For the given correlation matrix [px] the eigen value analysis is 

carried out. 
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The eigenvalues of the oo~tion matrix are A.1 = 1.5 ; ~ • 0.5 ; A., • 1.0. The 
transformation matrix is obtai.oed as 

[

0.707 - 0. 707 0.000] 
[T] = 0.707 0.707 0.000 

0.000 0.000 1.000 

Step 2: Using Level2 method, the design point x* and corresponding p are 

obtained. 

x* = 13:;~::} 
1623.47 

p = 2.0868 

Step 3: The two uniform random numbers VI and v2 generated for first 
variable, are 

VI = 0.8704 ; V2 = 0.3995 

Step 4: The normal variate is 

.. + m( :J]y, ~(2..,) 
=- 0.4254 

Step 5: The sample point XI is given by 

xi= xi• + S.n ui ox1 

= 33.029 + (1.0)(-0.4254) 5 
= 30.901 

Similarly random numbers are generated for random variables X2 and X3 and 
the values for the other two variables are evaluated as 

X2 = 49.6598; X3 = 1582.928 

Step 6: The value of the limit state function is 
g(X) = XI X2 - X3 

= (30.9018) (49.6598)- 1582.928 
=- 48.350 

Step 7: Check g(x). Since g(x) is negative, it is proceeded further. 

Step 8: The equivalent mean and standard deviation of variables at the sample 
point are calculated. The parameters a and u of XI following Type 1 extremal 
(largest) distribution, are determined as follows using Eqs. 3.115 and 3.116. 
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- I " 
- J65 .0 

0.5772 
u = J.lx ---

1 a 

= 0.2565 

= 40.0-
0

·
5772 = 37.75 

0.2565 

The probability density function of random variable X~, following Type I 
extremal (largest) distribution is given by Eq. 3.113 . 

/x
1 

= aexp(-a (x1-u)-exp{-a {x1-u)}] 

The value of fx at x = x1 is 
1 

fx = 0.2565 exp [-0.2565(30.9018-37.75)-exp{-0.2565(30.9018-37.75)}] 
1 

= 0.004532 
The cumulative distribution function ofX1 is given by Eq. 3.114. 

Fx
1 

= exp[-exp{-a (xt -u)}] 

The value of Fx1 at x = x1 is 

Fx
1 
= exp [-exp{-0.2565 (30.9018-37.75)}] 

= 0.00305 
Using Eqs. 11.9 and 11.10, mean and standard deviation of equivalent normal 
at x1 are obtained. They are calculated as 

= 2.0012 

J.l'x
1 
=-ax1<Il-1[Fx

1
0]+xJ 

= ( -2.0012) <1>"1 [0.00305 J + 30.9018 = 36.3942 

Similar procedure is followed to evaluate the equivalent mean and standard 
deviation of variables X2 and X3. They are given as 

J.l'x2 = 50.0 a'x
2 
= 2.5 

J.l'x
3 
= 1494.239 a'x

3 
= 105.412 

Step 9: The equivalent nonnal variables at the sample point in the nonnalised 
co-ordinate system are obtained using Eq. 11.11 
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z x, - JJx, 30.9018-36.3942 = -2.7445 1 = = cr' 2.0012 x, 
z X2- J.IX2 49.6598- 50.0 -0.1361 2 = = 

uxl 2.5 

z3 = xJ~ J.Ix~ = 1582.928-1494.239. 
0.8414 

uxl 105.412 

Step 10: Using the transfonnation matrix [T] the variables are converted into 
independent variables using Eq. 11.12. 

[ 

0.707 0.707 0.000]!- 2.7445]!-2.0369] 
y = - 0.707 0.707 0.000 - 0.1369 = 1.8444 

0.000 0.000 1.000 0.8414 0.8414 

Variance ofYi is given by eigenvalue A.i . Hence 

OlJ = Jl.5 = 1.225 O'y2 = .JD.S = 0.707 

O'fl = .Jt:O = 1.0 

Step 11: Using Eqs. 11.13 and 11.14 the probability density fx and the 
sampling density hx are computed as follows: 

1 1 h- X - (&1 (2.001xl .225) (2.5.t0.707) (t05.412xl) 

cxp{-I[( -~~;:·r ·c~s:)' ·(o~~·r] 
= 8.14 X 10"7 

1 1 
hx = (&r ~.o)(2.s) (wo.o) x 

e.J _1_[(30.901 - 33.029)
2 

+(49.6958 - 47.64)
2 

+(1582.928-1623.47)
2
]} ""1 2 5.0 2.5 100.0 

= 3.084 X 10"5 

The ratio of fx and hx is calculated and stored. The process is repeated for the 
specified number of simulations. The value of Pc is computed using Eq. 11.2 
and the statistical error using Eq. 11.4. The results obtained for different values 
of specified number of simulations are given below. 

Sl. No. 

1. 
2. 
3. 

N. 

500 
1000 
1.500 

Pr 

0.0291 
0.032 
0.0328 

epc(%) 

10.567 
7.178 
.5.950 
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The exact value ofpr, by Monte Carlo method is 0.032. It can be observed that 
as number of simulation increases, the accuracy of Pr also increases aud 
percentage error decreases. It should be noted that the set of random numbers 
obtained for different starting points will be different Hence for the same 
number of simulations, the value of Pr obtained will not be exactly same. 

f ~XAM PLE 11.4 The limit state function is given as 

g(X) = _ _!_ ~?+Xi+x:f)-x4 + 4.o 
8 

Variables X; arc normally distributed with mean and standard deviation of each 
variable are 0 and I respectively. That is, they arc standard nonnal variables 
The variables are uncorrelated. Determine the probability of failure by using 
ISM. 

The starting point is the design point obtained by Level 2 method. That is 

x* = ~~~!~~ 0.250 

3.997 

The procedure of computation of Pr is same as explained in the previous 
example. It is to be noted that since the given variables are uncorrelatcd 
standard normal variables, 

y=z=x 

where x is the sampling point obtained by generating random numbers and 
using standard deviation multiplier. All the intennediatc steps in the 
computation for SDM = 1 for tlte first simulation are given in Table 11 .2. The 
whole process is repeated for number of simulations and the values of Pr and Cpr 
are computed using Eqs. 11.2 and 1 J .4 respective! . 

TABLE 11.2 Results of the analysis in the first simulation using ISM-
Example 11.2 

Initial point Random X g(x) y=z=x Fx hx 
numbers 

['"] r5134} 

r""J r~"J 0.25 0.3206 0.1930 -0.6996 0.1930 0.431 X 0.1056 X 
X = 10-<i to-• 0.25 {0.6311} -0.80 12 -0.8012 

3.99? 0.2595 4.6012 4.6012 

r52?8} 
0.4401 

{0.?832} 
0.9289 
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The problem is solved for various values of number of simulations and SDM. 
The results are given in Table 11.3. It can be observed from the table, that the 
statistical error decreases for SDM equal to 2 at which the results are very 
consistent in successive runs. The corresponding value of Pr agrees with the 
exact value of 0.423 x 10"3 

TABLE 11.3 Results obtained by ISM- Example 11.4 

Number of simulations 
1000 1500 2000 

SDM Pr c;,r Pr Cpr Pr epr 

~% 2 ( % } {% } 
I.O · 0.326 X 10"3 23.77 0.315 X 10"3 17.54 0.303 X 10-3 14.76 
1.5 0.412 X 10·3 10.90 0.422 X 10"3 8.74 0.435 X 10"3 7.68 
2.0 0.423 x 10·3 9.59 0.417 X 10"3 7.87 0.409 x 10·3 6.97 

11.4 ADAPTIVE SAMPLING METHOD 

The main limitation to the importance sampling method is the difficulty in 
selecting a good sampling density. To choose such a density one needs to know 
which part of the failure domain has a relatively high probability density. This 
knowledge is not usually available priori and hence it is difficult to choose a 
good sampling density. Adaptive sampling method (ASM) can be used to 
overcome this difficulty. Th.is technique utilises the fact that even with a poor 
initial choice of importance sampling density, the knowledge about the failure 
domain increases with the sampling process. Hence after each sample the 
importance sari'lpting density can be modified for this increased knowledge and 
finally a good sampling density can be obtained. 

It is already said that the much prior knowledge about the important region or 
the region where probability density is relatively high is not available. This may 
result into the poor initial choice for the sampling density. If such a poor 
density is used, the sample points generated may lie in the region where 
probability density is relatively low. Thus the sample points are clustered 
around an unimportant region. However, while sampling with such a poor 
density some sampling points may have relatively more probability density than 
that of the chosen point. Thus while sampling, the knowledge about the 
important .region increases i.e. the region of relatively more probabiHty density 
is known. Adaptive sampling technique makes use of this knowledge to move 
towards the more useful density. For this, the sample point having more 
probability density is chosen as the new centre of the sampling density. Thus 
the sampling density is moved towards the more important region. Figures 11.4 
and 11.5 show the poor and improved choice of sampling density respectively. 
The steps involved in the procedure of computation of Pc using ASM are almost 
same as given for ISM except the following changes. 

In Step 2, any point x., can be chosen as the starting point for mean of 
sampling density. At this point, the original variables are converted into 





Step 13: Compute Prusing Eq. 11.2 and~cbyusing Eq. 11.4,' ~ 
The whole procedure is shown in the flowchart given fn Pi , ll . 
procedure of computation of Pr using ASM is illustrated · witfl · tho fOUOWilrt.l 
examples. · 

Rtod No. of variablu, their 
distributions and correlation 
limit state function, No. of 
simulations to bt done 

Find design point using FORM 
and take it as stllrting point lie 

Do for I = No of simulatlonr.INa) 

Generatt two random numbtrs 
for each vartablt and obtain a 
normal variatt for edch variable 

•tntra1t a sample point X ~King 
lndeptndtnt multlnormal density 
ctntrtd at point lie 

FIG. 11.6 Flow chart tor ASM 
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EXAMPLE 11.3 The same problem given in Example 11.1 is considered here. 

g(X) = x1 x2 -x3 
Statistics of the variables are same as given in Example 11.1. Detennine Pr 
usingASM. 

Step 1: 
For the given correlation matrix (Px], the transfonnation matrix is obtained. it 
is same as obtained in ISM. 

Step 2: 

[

0.707 -0.707 

[T] = 0.7u7 0.707 

0.000 0.000 

0.000] 
0.0000 

1.000 

Any starting point can be selected. However, here the design point obtained by 
FORM is taken as the starting point. 

!33.029) 
x., = x• = 47.64 

1623.47 

At this point, original correlated nonnorrnal variables are converted into 
independent nonnal variables. Mean and standard deviation of equivalent 
nonnal at ;;,* are 

p'x
1 
= 37.665 

a'x
1 
= 2.554 

P'x
2 

= so.o 
a'x

2 
= 2.50 

P'x
3 
= 1491.45 

u'x
3 
= 108.112 

The equivalent nonnal variables at the sample point in the nonnalized 
coordinate system are obtained as 

3.029 - 37.665 = -1.815 
2.554 

X2 - ;.lx1 = 47.64-50.0 = _
0

_
944 

a'x
1 

2.5 

XJ - PX, 1623.47 - 1491.45 1.2
2

! 

ax
3 

108.112 

Using the transfonnation matrix, the variables are converted into independent 
variables using Eq. 11.12. 



[ 

0.707 0.707 
y ::: - 0.707 0.707 

0.000 0.000 

{
-1.951) 

= 0.616 

1.221 

0.000] {-1.815) 0.000 -0.944 

1.000 1.221 

Standard deviation of Y are square roots of eigen values of (Px]. They are 

(7'11 = 1.225 or
2
= o.707 
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The probability density is comJ?uted at point x* as independent multinonnal 
density and is taken as 

1 I 
/max = (&f (2.554x1.225) (2.5.x0.707) (108.112xl.O) x 

ej_![(-1.951)
2 +(0.616)2 +(1.221)2

]} A1 2 1.225 0.707 1.0 
= 0.9698 X 10"5 

Step 3 to Step 11 are same as in the previous case solving by ISM in Example 
11.1. (They are not repeated here). 

At the end oftStep 11, 

fx = 8.146 xl0"7 
; hx"" 3.084 X 10"5 

The ratio of fx and hx is calculated and stored. Since fx is less than fmax , the 
starting point is not shifted and one simulation is over. The procedure is 
repeated from Step 3 for specified number of simulations. The probability of 
failure and percentage error are calculated using Eqs. 11.2 and 11.4. At the end 
of 500 simulations using standard deviation multiplier equal to one, Ute 
probability of failure is found to be O.IJ39 with t:pr =- J 1.4%. 

The problem is solved using different standard deviation multipliers. The 
simulation is carried out for 500, 1000 and 2000 number of simulations with 
different "SEED" i.e. different starting points for generating random numbers. 
(Note: In all available programmes for generating random numbers, starting 
point, called SEED, is to be given). The results ob.tained by ASM are given in 
Table 11.4. The exact probability of 
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TABLE 11.4 Results obtained by ASM- Example 11.3 

s s 
D E Nwnber of simulations 
M E 

D 
500 1000 2000 

Pr s. Pr s. Pr s. 
( %) ( %) ( %) 

0.0390 11.40 0.0355 7.59 0.0340 5.23 
1.0 2 0.0335 12.58 0.0330 7.76 0.0328 5.01 

3 0.0300 12.69 0.0320 7.88 0.0350 4.99 
1.0373 14.19 0.0345 9.30 0.0326 6.38 

1.25 2 0.0310 15.42 O.DJ16 9.72 0.0320 6.39 
3 0.0280 14.43 0.0312 9.15 0.0340 6.06 

Note: The exact probability of failure is 0.032 as per Monte Carlo Method 

failure is found to be 0.032. From Table 11.4, it is obse1ved that the statistical 
error is found to be decreasing with the increasing number of simulations. For 
2000 simulations the statistical error is very low and the results are very close 
to the exact value. 

EXAMPLE 11.4 Consider the same limit state function given below (11.4). 

(X) = X X X _ XsX} X1 X 
g 2 3 4 v \' I 

,, ll ' 7 

All the variables are normally distributed and uncorrclatcd. The statistics of the 
variables are given in Table 11.5. Compute Pr using ASM. 

TABLE 11.5 Statistics ofvnriab/es- Example 11.4 

Variable Mean Standard deviation Distribution 
XI 0.01 0.003 Normal 
x2 0.30 0.015 Normal 
XJ 360.0 36.0 Normal 
x4 2.26 x w-4 1.13 x w-5 Normal 
Xs 0.50 0.05 Normal 
x6 0.12 0.006 Normal 
x7 40.0 6.0 Normal 

The results obtained by using ASM for different starting points, different seeds, 
and for diiTerent number of simulations are given in Tables 11.6 and 11.7. 
From the tables, it can be seen that certain minimum number of simulations are 
required to get probability of failure close to the exact value. In general, as 
number of simulations increases, statistical error in estimated Pr decreases. It 
should be noted also, that the value of standard deviation multiplier plays a 
role. For this problem, it appears that percentage error is very less for SDM = 
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1.25. It can also be noted that the selection of st.a.rting point affects the result in 
this case. The choice of seed is not affecting the result significantly when 
large 

number of simulations is used. The probability of failure is found to be very 
close to the exact value 0.34 x 10'3 . 

TABLE 11.6 Results by ASM with starting point I -Example ll. 4 

s s Starting point 2: x.= (0.015, 0.25, 300.0, 2.26 X 104
, 0.5, 0.12, 40.0i 

D E Nwnber of simulations 
M E 

D 

500 1000 1500 2000 

Pr e,t Pr e,r Pr e,c Pr E,c 
X 10"' (%} x 10"' (%} x 10"' (%) xiO_. (%) 

1 3.92 41.84 4.27 25.75 3.74 21.06 3.60 17.00 

1.25 2 8.00 30.38 .5.21 23.81 4.58 18.35 4.10 1.5.57 

3 4.04 30.74 3.28 19.88 3.38 13.8.5 3.30 11.43 

1 2.35 38.16 4.13 27.18 3.91 20.21 3.37 16 . .59 

l.S 2 3.33 S7.08 2.50 23 . .53 3.35 20.65 3.31 16.72 

3 2.77 42.72 3.80 18.60 3.85 15.16 3.60 13.56 

1.9.S 78.76 1.44 34.08 2.66 31.63 2.70 26.83 

2.0 2 2.20 40.46 3.12 3.5.00 3.21 26.48 2.65 24.20 

3 \.30 39.73 2 . .56 28.73 2.57 25 . .53 2.60 23.45 

General points 
• The value of SDM is generally found to vary between 1 and 2. 
• While simulating using ASM or ISM, a suitable value of SDM is chosen by 

performing a few number of simulations wit11 different SDM values 
between 1 and 2 and the best one is to be selected and it is the one with the 
least statistical error. The same value is to be used for calculating Pr by 
conducting enough number of simulations. 

• Generally, while solving problems witJ1 ASM and ISM, it is suggested that 
the termination criterion to stop the simulation, may be where statistical 
error in computing Pr is less than 20 percent. 

• The starting point affects the convergence of Pr value. For a good starting 
point, the value of Pr converges to the exact value with less number of 
simulations and less statistical error, as compared to the poo.r starting 
point. The design point obtained by Level 2 method is a good starting 
point. 

• Generally ASM requires less number of simulations to evaluate Pr value by 
maintaining the same statistical error as tllat of the ISM. 

• For any arbitrary starting point, ASM is preferable as it is requires less 
number of simulations. 
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TABLEll.7 Results by ASM with starting point 2- Example 11.4 

s s Sla.rting point 2: x.:= (0.015, 0.25, 300.0, 2.26 x 10-4, 0.5, 
D E 0.12, 40.0)t 
M E Number of simulations 

D 
500 1000 1500 2000 

Pr t;,r Pr Cpr Pr Cpr Pr epl 

x w-4 { %2 X 10'4 . {%) x Jo-4 ( %} X 10-4 (%) 
1 3.86 20.53 3.91 14.28 3.82 11.06 3.75 9.11 

1.25 2 3.09 15.74 3.20 13.00 2.91 10.51 3.03 10.09 
3 2.27 18.46 2.54 12.27 2.80 10.53 3.02 10.S4 
I 2.42 47.61 1.23 24.13 3.55 17.44 3.47 16.95 

1.5 2 2.09 32.31 2.87 24.56 2.67 18.75 2.55 15.38 
3 1.36 26.84 2.90 24.22 3.45 17.77 3.29 14.84 
1 l.ll 58.96 1.85 26.23 l.SO 21.77 2.25 25 .46 

2.0 2 8.80 45.99 7.27 31.93 6.00 28.31 5.63 24.45 
3 4.40 67.06 3.75 43.08 4.18 35.20 3.96 29.49 

Jt.S RESPONSE SURFA ~METHOD 

Advan cd Monte arlo imulation methods arc exact and compul.ationall 
clTicicnl fr m probabilistic point of VIC\ • While ~ nluating the struc!ural 
rcliabili , the maximwn time is spent for evaluaung ·(ructuraJ response on! . 
Since simulation methods arc numerical c ·p rimcnls carried out randomly, 
they require the full analysis of th structural i>Tiem f, reach generated set of 
load, r sistancc and systen random ariablcs. This rna result in large 
computational efforts to an unacceptabl level. Hence it is desirable to simplify 
the whole mechanical proce s by a ne' 111echanical model for evaluatmg the 
structure/system response. While de clo h g the new model, it is important that 
it will allow an easy and efficient computation of failure function response 
under loading/ system condition but still preset es the es ·entia! features of tl1e 
structure/ system. This new mcchani al model representing U1e original limit 
stale function is called res onse surface. 

The representation of the li1rut state 'function by response surface should be 
independent of properties of the basic variables involved. However for 
improving effictency and accuracy of Ute method including subsequ nl 

reliability analysis, ome prior knowledge of the stochastic properties of the 
variables i to be used. In most of U1e cases, mean alue and standard deviation 
of variables are known. Use of such information wtll produce response surface 
suitable fo~ wlde range of stochastic properties of basic variables. 

The aim of Ute response surface is to replace Ute original fflilure function 
g(X) by an equivalent function R(X) oy which computational procedure can be 
simplified maintaining the accuracy. The limit state sorface can be repres!ilitoo 
in polynomial form (11.8). 
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n n 2 R(X) = a+ L b,X; + Lc;X; (11.15) 
i=l i=l 

where X1 , i == 1, 2, .... .. , n are basic variables and parameters a, b; , c; , i = I , 2, 
.... , n are constants to be detennined. Here Eq. 11.15 docs not contain mixed 
tenns XXi , h¢nce tlte function R(X) basically represents the original flmction 
g(X) along the coordinate axes X; only. As number of free parru,neters in Eq. 
11.15 are less i.e. 2n+ 1, only few numerical experiments are required to obtain 
unique R(X). However this implies that, in general. sample between the axes 
wiU not be covered sufficiently. Tllis is improved by using information on mean 
and standard deviation of basic variables while updating the R(X). 

Bucher and Bourgand (11.8) suggested the way of obtaining R(X) by 
interpolation using points along X;. The starting central point chosen is the 
mean vector. (see Fig. 11 .7). Around tltis starting point 2n points are generated 
as X; =J.I; +t0'1 , i : 1 2, . .. , n, in which tis tl1e arbitrary factor varying from I 

xl . 

~ --
it 

' 
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FIG. 11.7 Starting approximation for response surface 

to 3. Using function values of original surface at 2n+ I points, the parameters a, 
bit Ci are obtained by solving the set of 2n+ 1 linear simultaneous equations. 
Thus first approximation to RQ{) is obtained. 

In the next stage, function R(X) is used along with the infonnation on mean 
and standard deviations of basic variables to obtain the estimate of the desigu 
point. The estimate is based on tile assumption of uncorrelated Gaussian 
variables. This design point obtained b Level 2 me od Js used or 
inte1p0lation Le new centre J?-Qint on origi;ru failure .surface which is in 

-- of interest Le area from which maximum contribUtion to_ the 
pr~>ih of failure is made (see Fig. 11.8). So tile 'nQW centre point for 
i tion of R(X) can be obtained as, 
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X N = II + (x D -- Jl )----'1!.-'-'('--p "'-) -
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I 
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Fig.11.8 Upating the interpolation point for response surface 

(ll.lG) 

where XN is the new centre point and X0 is the design point obtained for first 
approximation to R(X). This interpolation guarantees that the new centre point 
is sufficiently close to the exact limit state g(X) = 0. The response surface is 
updated by evaluating the coetlicients a, b" ci, i = I, 2, .. .. , n at the new centre 
point XN. So the total number of evaluation of the original limit state equation 
required is 4n+3. 

The update of the polynomial ensures that the critical domain is sufficiently 
covered by the numerical experiments from the full mechanical model. Once 
the R(X) is found, the reliability analysis can be proceeded in any suitable way, 
preferably using advanced Monte Carlo technique - Importance sampling 
method or adaptive sampling method. R(X) need not produce the exact limit 
state surface in entire space but, only sign of original limit state near the design 
point (i.e. in the region which contributes most to the failure probability) is 
important (ll.8) . A simple computer program can be easily written combining 
response surface method with ISM or ASM. A flow chart for RSM is given in 
Fig. 11.9. 

In some problems, the response surface obtained by using Eq. 11 .15 may not 
give sufficiently accurate mechanical model. To improve the accuracy, mixed 
terms may be added to Eq. 11.15 as given below: 

n n 2 g(X) = a+ l,b;X; + l,c;X; + l. l,dijX;X 1 (11.17) 
i=I i=I i'liJ 

Various numerical and structural engineering problems solved using the 
response surface method with ISM are given below. Probability of failure is 
calculated using Level 2 and Importance sampling technique for both, original 
failure surface and response surface and results are compared. 
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Find tge desig, p~nt Xo for 
the res,lons• surface assuming 
uncorre1ated gawssion wsdobles. 

Evaluate 9x (X) at X o 

Generate 2n points around XN 
Evaluate 2n + 1 ·-t6efficrcnts at 
new cenhPr point and ,update 
response surface 

FIQ. 11.9 Flow chart for response surface method 
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EXAMPLE 1 I.5 Reliability analysis of the three bay five storey RC.C. frame 
shown in Fig. 11.10 is carried out in this example. The structure data and tho 
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FIG. 11.10 Three bay five storeyed portal frame Example 11.5 
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statistical data of the random variables involved are Jivcn in T11bl011 11.1 
11.9 ~ly. The limit state criterion is the displacement It( top or tht 
frame (i.e. at point A) should not exceed h/350, where his the total hoiaht of 
the structure. So limit state function can be written as, 

g(X) = 4.10- ~(A) (11.18) 

where ~(A) is the function of the loads acting on the structure and material 
and geometrical properties of the structure. Here all these param~ters i.e. loads, 
material properties and geometrical properties of the structw:e are random 
variables. ln addition to the horizontal and vertical random loads, each beam is 
carrying a .constant dead ioad of24.50 kg/em. 

TABLE 11.8 Structure data- Example 11.5 

Element No. 
I, 4, 5, 8, 24, 25, 26, 28, 31, 34 
2, 3, 6, 7, 10, 11, 14, 15, 18, 19 
9, 12, 13, 16, 17, 20, 21, 22, 23 
27,29,30 32 33,35 

Moment of inertia Cross section 

TABLE 11.9 Statistics of the random variables- Example 11.5 

Variable Mean Standard deviation Distribution 
PI (kg) 3000.0 1200.0 EX.. L • 
P2 (kg) 4284.0 1235.20 EXr,L 

E (kg/cm2 
) 0.225E+06 0.225E+05 Lognonnal 

At {cm2
) 1045.15 52.25 Nonnal 

A2 (cm2
) 2264.51 113.22 Nonnal 

A3 (cm2
) 870.96 43.55 Nonnal 

~ (cm2
) 1393.54 69.67 Nonnal 

lt(Cm4
) 0.182E+06 0.182E+05 Nonnal 

h(.cm4
) 0.986E+05 0.986E+04 Nonnal 

h(cm4
) 0.105E+06 0.105E+05 Nonnal 

14(cm4
) 0.43IE+06 0.431E+05 NonnaJ 

Correlation .coefficients are PA. A = Pt. A = Pt. r = 0.30 
• EX,. L denotes Type 1 extremal (largest) 

The response surface is generated and probability of failure is found out for the 
generated surface using Level 2 and importance sampling methods. The results 
are compared with that of the results obtained by Level 2 analysis using 
original failure surface. All the results are presented in Tab1e 11.10. It can be 
seen from the table that the relip.hility analysis using response surface is 
showing considerable computational advantage over that of the use of original 
failure surface. Also, results with response surface are very close to that using 
original surface: 
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TABLE 11.10 Results of the reliability analysis- Example 11.5 

Using Rx (X) Using g ... (X) 
1. Level 2 method 

Beta 3.255 3.274 
Pr 0.567E-03 0.528E-03 

Computer time (CP sec) 24.90 (For RS) 239.88 
0.65 (for Pr) 

2. Importance sampling 
Number of simulations 5000 

SDM 1.0 

Pr 0.520E-03 
epr ( %) 11.28 

Computer time (CP sec) 25.16 (for RS) 
14.18 (for pr) 

EXAMPLE 11.6 Reliability analysis for the 25 bar transmission tower shown 
in Fig. 11.11 is carried out. The tower is considered as a space truss. The 
structure data and the statistical data for the random variables involved are 
given in Table 11 .11. Failure criterion is the displacement at top (i.e. at point P 
in Fig. 11.11) should not exceed h/250, where h is the total height of the 
structure. For this, failure function is given by, 

g(X) = 0.02- ~(P) 

Here 8h(P) is the function of loads acting on the truss and geometrical and 
material properties of the structure which are random variables. Reliability 
analysis is carried out for the response surface, using Level 2 and importance 
sampling method. Results can been compared with Level 2 analysis using 
original failure surface. All the results are given in Table 11.12. 

TABLE 11.11 Statistics of the random variables- Example 11.6 

Element Variable Mean Standard Distribution 
No. deviation 

1 A1 (m
2

) 6.45E-05 9.675E-06 Normal 
2 to 3 A2 (m2) 2.43E-04 3.635E-05 Normal 
6 to 9 A3 (m2) 3.04E-04 4.560E-05 Nonnal 

10 to 13 ~(m2) 6.45E-05 1.290E-05 Normal 
14 to 21 As (m2

) 1.79E-04 2.680E-05 Normal 
22 to 25 ~(m2) 2.45E-04 3.678E-05 Normal 

E (K.N/m2) 2.04E+08 1.860E+07 Normal 
P, (K.N) 10.0 3.5 EXLL 
p 2 (K.N) 15.0 4.0 EXl.L 

Correlation coefficients are p Ai, Aj = 0.25 p Pl ,P2 = 0.5 
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Here also. reliability analysis using response surface is showing consider ahlt­
computational advantage over the use of original surface with reasonahk 
accuracy. In Level 2 with response surface analysis, it can be seen I h:rl 
maximum time is taken for the evaluation of response surface. while Level J 
analysis is taking negligible time. 

Response surface method is not to be used for the cases where explicit linrrl 
state functions are directly available. It is advocated only in those cases where 
repetition of structural analysis is to be carried out number of times to generate 
the limit state function at every time. 

TABLE 11.12 Results of the reliability analysis- lc.xample 11.6 

Pr 
Computer time (CP sec) 

2. Importance Sampling 
Number of simulations 

SD Multiplier 

Pr 
o/o Se 

Computer Time (CP sec) 

Using Rx (X) 

0.934E-05 
10.16 (For RS) 
0.42 (for Pr) 

5000 
1.3 

0.810E-05 
12.20 

10.38 (for RS) 
10.41 (forpr) 

11.6 ASM and ISM in SYSTEM RELIABILITY 

Using g. (X) 

0.621E-05 
84.21 

System reliability has been introduced in Chapter 10. If the system probability 
of failure is formulated as union of component failure events, i.e. 

Pr. = P [(Zt < 0) u (~ < 0) u ...... .... u (ln < 0)] (11.19) 

then the adaptive sampling method or importance sampling method can be 
applied to evaluate system probability of failure also. The method is so 
developed that it evaluates the probability of failure for each component and the 
system simultaneously. As a sampling density is used for a component, it is 
required to use the same sampling density for system also. The sampling 
density for a system is taken as the combination of all these component 
sampling densities with weights Wi attached to every component sampling 
density (11.6). This is shown in Fig. 11.12. The sampling density for a system 
is expressed as 

h.Y' = Wtht + w2h2 + ................. . + Wnh, (11.20) 

where w, + Wz + ...... ..... .. ........... . + Wn = 1 



0 
(0,0) 

FIG. 11.12 System sampling density 

Karamchandani (11.6) suggests equal weights i.e. 

W1 =w2 = ............... =wn 
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x, 

The procedure for evaluating the system probability of failure is very much 
similar to tlte procedure used for component except tltat the sample generated is 
checked for failure for not only the component (of which sampling density is 
used to generate a sample) but also for all other components. If the sample 
point is observed to be failed wit11 reference to one or more components, the 
sampling density for tltese components is updated if required. Also the 
sampling density for a system is updated. The probability of failure of the 
system is given by 

(I 1.21) 

The procedure of computation of probability of failure of a structural system 
using ASM is illustrated with the following examples. 

EXAMPLE 11.7 A structure can collapse under any one of the three limit 
states whose equations are given below. 

gt(X) = Zt =X,+ X2 + X. + Xs - 5 .0~ 
g2(X) = ~ =X, + 2.0X3 + 2.0X. + Xs - 5.0~ - 5.0X7 
~(X)=~= x2 + 2.ox3 + x.- s.ox1 

(11.22) 
(11.23) 
(11.24) 
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The individual variables are uncorrelmcd and lognormally dis!ributcd. Tho 
statistics of variables are given in Table 11.13. Compute sy tem failure 
probability using ASM. 

TABLE 11.13 Statistics of Variables- Example 11.7 

Variable Mean Standard deviation Distribution 
X1 to x~ 134.9 13.49 Lognormal 

Xt 50.0 15.0 Lognormal 
X: 40.0 12.0 Lognormal 

Here the variables are uncorrelated: hence the evaluation of transformation 
matrix is not required. For ASM, any point on the failure surface can be 
selected as startinP, point. However to get a good starting point, FORM is 
carried out and design point for each failure criterion is found out. They are as 
follows: 

I 1.281 \31.616 134.900 

131.281 134.90 129.878 

134.90 128.473 125.231 
• • . 

It = 131.281 12 = 128.473 IJ = 129.878 

131.281 131.616 134.900 

90.484 84.22 50.000 

40.0 59.528 81.053 

A sample point is found out from the first starting point x1' using the generated 
random numbers as explained in Example 11.3 . The sample point (for SDM = 
2) is given by 

130.0149 

109.3791 

156.8981 

x= 122.4430 

114.6321 

115.6861 

26.9407 

The values of limit state functions are calculated by substituting the value of 
sample poinlin Eqs. 11.22 - ll.24. They are as follows: 

gl () = -101.94 ;g2 () = 90.2152 ; g3 () = 410.9148 

Since only g1 < 0. the sample point fails under first failure criterion only. The 
equivalent mean and standard deviation of variables are calculated as explained 
in Example ll.l. They are as follows: 

J 
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134.1642 12.9711 

131.7732 10.9107 

132.4160 15.6508 

Jix = 133.6971 ax= 12.2138 

132.7642 11.4347 

13.6572 33.9608 

36.4279 7.9087 

The independent equivalent nonnals are calculated as explained in Example 
11.1. They are given as: 

-0.3183 

-2.0525 

1.5643 

Y, = -0.9214 

-1.5822 

3.0043 

-1.1996 

The probability density fx and sampling density hx which are multivariable 
normal densities are calculated as explained in Example 11.3; As there are 
three failure criteria, there are three different sampling densities namely hx1 , 

hXl and hXJ . Their values are given below: 

fx = 0.4092 X 10"12 

hx1 "' 0.23767 X 10"10 
; bXl = 0.20109 X 10"12 

; bXJ = 0.32618 X 10"10 

The prob~1bility density evaluated at x1• is taken as fmax . This is given as 

fmax = 0.69226 X 10"9 

Since the sample point Y1 fails under first failure criterion only, for evaluation 
of probability of failure under first fail11re criterion, the term fx/hx.

1 
is used in 

Eq. 11.2. 

Here the system is expressed as union of three failure criteria. Hence failure 
of any criterion causes the faHure of the system. Thus here the generated 
sample point which fails under first failure criterion causes the failure of the 
system. Fc.t valuation of system failure probability, the tenn fxji'Xsys is used 

in Eq. 11.21 where hx is given by Eq. 11 .20. Attaching equal weights i.e. W1 
>ys 

= w2 == W3 = l/3 , 

hxoy, 
I I 1 
-hx +-hx +-hx 3 I 3 2 3 3 

= o.I862 x w-to 
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As the probability density fx at sample point is less than fmax , the sampllna 
density is not improved and is kept the same. Tha means, the point x1 • is not 
shifted and remains same for the next simulation. Similarly using points ll• 

and x3 ·,sample points Y2 and Y3 are generated as explained earlier. The pro· 

cedure of calculation for h x for points Y 2 and Y 3 is as explained for Y 1. 
"1• 

All the intermediate values are given in Table 11.14. With this the thnlC 
simulations are completed. 

TABLE 11.14 Intermediate values in computing system probability of 
failure using ASM- Example 11.7 

Initial point Independent fx hx h,y, Next point 

Nonmd point x ro- 12 X JO· II X 10-10 

131.281 -0.3183 0.41 2.4 0.18 131.281 

131.281 - 2.0525 O.Q2 131.281 

134.90 1.5643 3.2 134.90 x,• = 
131.281 

X,*= 
131.281 y = -0.9214 I 

131.281 131.281 
-1.5822 

90.484 90.484 

40.0 
3.0043 40.0 

-1.1996 
Not improved 

131616! 
- "·"" "] 0.75 2.0 0.16 131.616 

134.90 I 6~01 0.018 134.90 

128.473 - 02101 2.7 128.473 
Xl* = X*= 2 128.473 128.4 73 

Y,- r i41JH 
IJ 1.616 131.616 

-·I JI)IJ7 
84.22 84.22 

.\ 21 'IX 
59.528 59.52!1 I 1.2blJI': 

Not improved 

134.90 I 
I J, )() 1:\ 24 2.9 0.21 134 90 

129 878 I 'J :;95(1 0.0\7 \29 .878 

125.231 J UT\<1\ 3.2 125 .231 
X)* = X/= 

]"''78 Y2'·' --IU(,Q.l 
129.878 

134.90 134.90 
I J.4 752 

50.0 50 0 

81.053 2.1::43 81 .053 
2.2274 

Not improved 
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The same procedlll'C is repeated for a number of simuhitions and the 
probability of failure under each failure criterion and the probablJity of rallurc 
of the system is evaluated using Eq. 11.21. After 500 simulations and usi rP 
standard deviation multiplier as 2.0, the probability of failure under the tlrrec 
failure criteria and the probability of failure of the system are found to be, 

p fi = 2.68 x 10~3 Pr
2 
= 2.98 x 10-3 Pr

3 
= 2.65 x 10"" 

and Pr = 5.05 x 10"3 
I 

where Pr
1 
is probability offailure mtder i111 criterion. 

In the above illustration, equal weight has been attached to each sampling 
density. One may try by attaching different weights to each sampling densities 
probably according to Pr: values. But it is found that this technique doesn't 

I 

give good results and also gives large statistical error. In general, attaching 
equal weight to each sampling density is found to give better results with less 
statistical error. 

The procedure for evaluating system probability of failure using ISM is very 
much similar to the procedure of ASM. In ISM starting point is found out 
using FORM and the simulation is carried out. The difference between ISM 
and ASM is that the sampling density in ISM once selected is. not improved 
during ft1rther simulations . That means once the starting point is taken it is 
not changed tluoughout the simulation process. The remaining procedure for 
ISM is similar to the ASM procedure. 

The method of computing system reliability using the method explained in 
Example 11.7 has been applied to roof trusses and frames (11.10). 

11.7 APPLICATION·OF ASM TO STRUCTURAL SYSTEMS 

Application of ASM to compute reliability of a steel truss is illustrated. 
Reliability analysis or a steel tn1ss, shown in Fig. ll.l3 is to be carried out and 
the system reliability is to be found out. The truss is located in Mumbai and the 
height of the building is assumed to be less than I Om. The ffi!ss has been 
designed as per Indian Standard specifications (11.12, 11.13). The loading 
cases consideJed for design are as follows: 

I. Dead load + Live load 
2. Dead load+ Wind load 

Formulation of safety margin equation 
The safety margin equation is basically formulated as 

M=R-S 
where R is a resistance and S is an action. The resistance and action are further 
modelled as explained below. 
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FIG. 11.13 Roof truss 

The action S here is developed force in member due to dead load, live load, 
wind load. Thus S is expressed as 

S B f(W,D,L) (11.24) 
where 

B Uncertainty due to assumption in analysis 
f(W, D L) = Force in member due to dead load live load, wind load 

The resistance R of a member is a resistance in tension or compression. R is 
expressed as 

where 
R = A Y" f(M, F, P) 

A = Cross sectional area of a member 
Yn =Nominal value ofyield strength 
M = Material variability 
F = Fabrication variability 
P = Professional Factor 

(11.25) 

Statistics of strength variables 
The length of each member is assumed to be statistically independent of 

each other. The yield strength of a member is expresses as 

Y = Yn M F P A (11.26) 

where A is assumed to be deterministic. The statistics of variables M, F, P are 
given in Table 11.15. For compression member buckling is considered by 
taking into account the effective slenderness ratio. 

where 

,,, __ KL I [f' "' (11.27) 
I ' T( E 

KL Effi . I d . - = ecllvc s en crness ratto 
r 

E = Modulus of elasticity 
Ctl = Slenderness constant 
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The critical strength in buckling, y ar is obtained from th.o followinl equations 
depending upon value of a>. 

Y ar = (I • 0.25 0>
2 ) Y if()) < 1.414 (11.28) 

y 
Yar= 2 ifm ~ 1.414 (11.29) 

Cl) 

Statistics of load varlabks 

i) Basic wind velocity 
The lruss is located in Mumbai for which the mean, standard deviation and 
coefficient of variation of SO year life time maximum wind speed are 

JJv = 32.239 m/s av = 3.417 m/s 6v = 0.106 

The model for wind load can be expressed as (Refer Eq. 5.49) 

W=ApKCEGV2 (11.30) 

where A = Projected surface area, p = Air density, K =. Uncertainty in 
modelling of load, C = Pressure coefficient depending on geometry of a 
structure, E = Exposure coefficient and G = Gust factor. The nominal design 
wind load is given by 

Wn =An Pn K,. C,. E., Gn Vn2 (11.31) 

The variable is considered as ratio of probabilistic wind load to the nominal 
l 

wind load and is following Type 1 extremal (largest) distribution. 

W ApKCEGV2 

-W-n = -A-n p- ,-'-, K-n-C-nE .... _n_G_n-Vn-=-2 
(11.32) 

(11 .33) 

(11.34) 

The combined mean of (K E C G) is taken as unity and the coefficient of 
variation of C, E and G are given as 

8c=0.12 8s=0.16 8a=O.ll 

The nominal wind speed for Mumbai is 40.04 m/s. Using the same in Eqs. 
11.33 and 11.34, • 

( . )2 ( )2 J.lV 32.239 
JJ{wfWn) = - :: -- = 0.648 

Vn 40.040 

8(w;wn) = ~0.12)2 +(0.16)2 +(0.11)2 +4(0.106)2 ~ = 0.312 

ii) Live load 
For 50 year life time maximum live load, the following data are taken. 
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JJL = 0.65 
4r 

Or. = 0.3 

The live load is following Type 1 extremal (largest) distribution 

iii) Dead load 
The mean and coefficient of variation for dead load D are given as follows. 

JJD = 1.05 8o = 0.1 
D, 

iv) Uncertainty due to assumption in analysis 
From analysis point of view, members of a structure are assumed to be 
connected by pin jointed frictionless hinges; but each joint has some rigidity 
which actually decreases the force in a member. The statistical data for the 
variable B is taken as 

I!B = 0.909 8a = 0.1 

The statistical data of all the variables are given in Table 11.15. In the table, 
Dn, Lru and Wn, are the nominal values ofD, Land W respectively. Failure of 
a member in direct tension or compression is called as a failure mode in a 
determinate roof truss. The analysis of truss is carried out and the forces in 
members under the load combination of (a) Dead load+ Live load (b) Dead 
load + Wind load are determined. The truss, being determinate, fails even if 
one member fails. After analysing the truss and knowing the force in each 
member, the safety margin equation for each member is written. Using the 

TABLE 11.15 Statistics ofvariab/es (Roof truss - Fig. 11.13) 

Variable Mean Standard deviation Distribution 
D/Dn 1.05 0.105 Normal 
L/Ln 0.65 0 .195 Gumbel 

W/Wn 0.648 0.312 Gumbel 
y 305.29 N/mm2 22.77N/mm2 Normal 
B 0.909 0.0909 Normal 

In tension 
M 1.0 0.0898 Normal 
F 1.0 0.05 Normal 
p 1.0 0.001 Normal 

In compression 
M 1.0 0.0925 Normal 
F 1.0 0.05 Normal 
p 1.0 0.016 Normal 

statislics of variables given in Table 11.1 5 and FORM, tlte reliability index is 
calculated for each mer11bcr. fl is fow1d that the value of p for members 9, 12, 
22 and 23 are very smalJ compared to tl1e values of ~ for the remaining 
members. Hence, tlle members 9, 12, 22, 23 will only contribute signillcanlly to 



375 

the system probability of failure. Safety margin equations arc given in Table 
11.16 only for these dominant members. Probability of failure of these membc.•· 
is evaluated using ASM. System reliability is calculated usi'ng ASM with values 
of standard deviation multiplier and number of simulations 1.0 and 1000 
respectively as explained in Example 11.2. The same problem is solved using 
ISM also and the system reliability is evaluated. Using FOPM, the value of ~ 
for each dominant member is delermined and using these results bounds on 
system probability of failure are established as explained in Chapter 10. These 
results are also given in Table 11.17. From the table it is seen that the 
probability of failure of the truss is about 0.006 and the corresponding value of 
pis 2.522. 

TABLE 11.16 Safety Margin Equations (Roof truss - Fig. 11.13) 

Failure 
Mode 

2 

3 

4 

Member Safety Margin Equation Failure in 
No. 

9 497.76 M F P Y+B{68276.25 D-131245W) Compression 

23 347.4 M F P Y+B(29261.25 D-74524.77W) Compression 

12 497.76 M F P Y+B(58522.5 D-106404.7W) Compression 

22 347.4 M F P Y+B{19507.5 D-49683.18Wl Com2ression 

TABLE 11.17 Results by Adaptive Sampling Method 
(Roof truss - Fig. 11.13) 

Failure Reliability 
mode Index (~) Probability of failure 

FORM Importance Adaptive 
Sampling Sampling 

R ~ & ~ ~ 
{%) (%) 

2.537 0.00562 0.00596 12.22 0.00584 11.34 

2 2.722 0.00325 0.00407 17.41 0.00412 15.36 

3 2.962 0.00154 0.00208 23.23 0.00188 19.96 

4 3.587 0.000168 0.000629 21.16 0.000618 19.54 
System failure probability bounds are 0.00578 < p6 < 0.00629 

System failure probability obtain~ by ISM Pr. = 0.00605 
System failure probability obtained by ASM p6 = 0.00594 

In this cbapter, advanced reliability methods bave been explained aad 
illustrated. It must be remembered that in general, when explicit functions for 
limit states are available, response surface .method is not to be used. For 
decision making problems, application of FORM is sufficient. Only in cases 
where more accurate values of probability of failure are to be estimated, SORM, 
ISM aDd ASM are to be used. 
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EXERCISE 

11.1 For the problem 8.6(a) under Exercise in Chapter 8, detemune the 
probability of failure of the RCC beam in shear using (a) ISM, (b) 
ASM and (c) response surface with ISM 

(Ans. Pr = 4.1 X 10'5) 



11.2 For the problem 8.7(ii) under Exercise given in Chapter 8, det tn J 

probability of failure of the steel colwnn under combined bendinM and 
axial load using (a) ISM. (b) ASM and (c) importance, swfacc WiUt 
ASM. 

(Ans. pr• 1.22 x to·') 
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Fatigue Reliability 

12.1 INTRODUCTION 

The word "fatigue" refers to the behaviour of materials under the action of 
repeated stresses or strains as distinguished from the behaviour under 
monotonic or static stresses. Fatigue is defined as follows (12.1) 

1<- "Fatigue is defined as the proce s of progre sivc localized pem1aucnt 
slructuraJ change occurring ln a maleriaJ su~jected to condition, 
which produce Ouctuating stresses and strains at some point or points 
and which may culminate in cracks or complete fracture after a 
sufficient number of fluctuations". 

This definition implies that fatigue process occurs over a period of time or 
usage and operates at local areas rather than throughout the entire component 
or structure. The ultimate cause of all fatigue failures is that a crack has grown 
to a point at which the remaining material can no longer resist the stresses or 
strains and sudden fracture (i.e. the separation of the component into two or 
more parts) occurs. 

The fatigue life of a structure is determined by the sum of the elapsed cycles 
required to (i) initiate a fatigue crack and (ii) to propagate the crack from sub­
critical dimensions to the critical size. The size of the crack at the transition 
from initiation to propagation is usually unknown and often depends on the 
point of view of the analyst and the size of the component being analyzed. For a 
research worker using microscope to measure crack size, it may be on the order 
of crystal imperfection or location of a 0.1 mrn crack while to the engineer on 
the field, it may be the smallest crack that can be detected with the available 
equipment for nondestructive tests. Depending on the nature of the structure 
and the service loads applied to it, either crack initiation or crack propagation 
or both phases may be important in assessing structural performance. 

The need to consider fatigue damage in the design of structural components 
arises when the service loading conditions involve cyclic or pulsating 
variations. Fatigue can be classified into two categories; low cycle fatigue and 
high cycle fatigue. For low cycle fatigue, plastic strain predominates and 
ductility controls performance. For high cycle fatigue, elastic strain dominates 
and strength controls perfonna:nce. The dividing line between low and high 
cycle fatigue depends on the material being considered; but usually falls 
between 10 and 1 o.s cycles. In the case of traJwniuion towers, oftlboro 



structures and bridges, their vibration amplitudes nrc within tht' 
range. They come under high cycle fatigue (their life span excess of Ill' :. 
For many components in high cycle fatigue, the fatigue life is dominated b)' 

Ill 

t .. 
= .. .. .. 
Ill 

Cy,ltS to toilurt, N 

FIG. 12.1 S-N Curve obtained from constant amplitude test results 

crack initiation. On the other hand, when stress fluctuations are high or cracks, 
notches and other stress risers are present, fatigue craok initiates quite early and 
a signifiqmt life portion of the setvicc life may be spent propagating the crack 
to critical size. 

The classical approach to fatigue has focussed on the S-N diagram (Fig.l2.1) 
which relates fatigue life (cycles to failure, N) to cyclic stress, S, which may be 
specified in terms of s~ amplitude or cyclic stress range. Common LemlS 
used with S-N diagram are fatigue life, fatigue strength and fatigue limit. The 

RDngt 

Sm 
Cyclt 

0~------------------~------~ 

FIG. 12.2 Nomencllture for constant amplitude loading 



380 

fat1guc life. N. is the number of cycles of stress or strain of a specified characlc1 
that a g1ven specimen sustains before fatlure occurs. There are four possible 
ba ·ic parameters. which can be used in the definition of stress cycle to which a 
fatigue test specuncn is su~Jected Refernng to Fig. 12 .2. they are 

(i) The minimum stress in the cycle Smin 
( i i) The maximum stress in the cycle S'""" 

(iii ) The mean stress : Sm = _!_ (Smin + Sma.J 
2 

( iv) The stress range : S, = Smax - Smin 

(12 . 1) 

(12.2) 

Graphical representntion of above is shown in Fig. 12.2. The cycle is fully 
defined when any two of these four quantities are known. Following definitions 
are also used when discussing mean and alternating stresses. 

Stress amplitudeS.= _!_(Smax- Smin) (12.3) 
2 

Stress ratio R (12.4) 

Amplitude ratio A = ~ (12.5) 
Sm 

Most design engineers find it convenient to think in terms of minimum stress 
and maximum stress in the cycle, which in many cases corresponding to dead 
load stress and dead load plus live load stress respecti ve! . . Some times the 
cycle is referred to by the stress ratio R which is defined as the algebraic ratio 
of minimum stress to the maximum stress. Tensile stress is being taken as 
positive and compressive stress as negative. Baseline fatigue data usually are 
obtained by cycli ng testing specimens at constant amplitude stress (or strain) 
until the specimen fails . Such tests are repeated several times at different stress 
levels to establish the S-N curve. Generally, in an S-N curve, both S and N are 
plotted on logarithmic scales and the resulting curve is a linear representing the 
mean of the data (Fig.l2.3). The results do not lie on a single line but are 
scattered on each side of it. Hence the line represents the mean of the data. This 
scatter is inherent reatnre of the fatigue tests. ht general, the degree of scancr 
tends to increa e as the applied stress is decreased and also tends to be greHter 
as the stress concentration effect decreases. Ccrtai11 materials have an 
endurance or fatigue limit which is a stress level below which the material has 
an infinite life. For engineering purposes, the infinite life is usually considered 
to be one million cycles. Knowing the endurance stress and the ultimate or 
yield stress of the material, available data may be converted into a Goodman 
diagram (12 .2) to account for the effect of mean stress. As value of me:m stress 
increases, life (in terms of number of cycles) of the specimen will decrease. The 
fatigue base line S-N data are from the case of polished smooth specimens 
loaded under fully reversed stress. The endurance limit Sen obtained from tlus 
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· test is to be modified for design taking into account effect of various facton 
:viz. size, type of loading, swface finish, surface treatment (notches, residual 

log N : log K • " tog S 

logS 

togN 

FIG. 12.3 S-N Curve on log-log plot 

(notches, residual stress) temperatute and environment. The effects of these 
factors are quantified experimentally through modification factors which are 

applied to S~n which is obtained from the baseline S-N data. 

(lU)) 

where K.m. is the modification factor for the size effect. The modification 
factors are supposed to be applied to determine endurance limit and the 
modification for the reminder 6f the S-N curve is not clearly defined. However 
a conservative approach is to use these modification factors on the entire S-N 
curve. 

The fatigue strength at any particular life is defined as the stress at which the 
S-N curve cuts the particular value ofN. Further the curve being a straight llne 
in log-log plot, a linear equation can be formulated to predict the value of S for 
any given value of N and vice versa. Fatigue is one of the principaL modes of 
failure in bridges, offshore structures pressure vessels etc. However, most of the 
civil engineers in India may not know how to check the safety and evaluate a 
given bridge under fatigue. Presently there is no Indian standard code for 
fatigue design and evaluation of a bridge. Even though considerable 
development has taken place in reliability analysis and design, most fatigue 
assessment procedures, currently used, do not take advantage of such 
developments. Instc~ad, typical fatigue assessment guidelines for structural 
elements require that engineers refer to stress range cycle Life curves (S-N 
c:Urves). Fatigue strength is determined from S-N curve drawn approximately 
setting at two standard deviations below mean curve obtained from laboratory 
testing. This approach does not consider the inherent variation in loading 
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models. The evaluation of safety also does not consider the interaction between 
resistance and action. Hence this way of checking does not provide consistent 
evaluation or safety of joints. This has been observed by Albrecht and Moses 
( 12.3, 12.4) while checking reliability of structural joints of steel bridges 
designed as per AASHfO (12.5) specifications. 

Performance of a structure in fatigue generally depends on number of cycles 
of load, stress-str~n history, operating environment, physical properties of 
materials, geometry at the crack initiation locations and other factors. In 
practice, informations on these input variables are never precise, certain and 
complete. Most of the parameters are subjected to significant random 
variations. The fatigue process is clouded with uncertainties arising from errors 
in idealization and incomplete information. Engineering decisions can be 
improved if efforts are made to identify the sources of uncertainty and quantify 
them. In view of these uncertainties, achievement of absolute prevention 
of some fatigue damage is impossible. Therefore, risk must be considered in 
stmctural design against fatigue and fracture. Since many of the parameters 
involved in fatigue analysis and design, as said earlier, are random in nature, 
the relevant measure of structural performance is the reliability which is taken 
as 

Reliability = 1 - Pr 

where Pr is the probability of failure. The application of structural reliability 
theory to design has several advantages (i) The use of reliability (or probability 
of failure) is the most meaningful index of structural performance (ii) It 
provides a systematic method of treatment of uncertainties (iii) Provides a tool 
for making rational decisions (iv) All components can be designed to a 
balanced reliability level thereby producing an efficient system (v) The 
technique permits the sensitive studies of uncertainties with the greatest impact 
on the solution to be evaluated (vi) It is a tool for establishing partial safety 
factors to result designs with uniform reliability under different design 
situations (vii) It is a tool for updating standards (viii) It is a tool to develop an 
inspection criteria or remedial measures on existing structures. 

Evaluation of fatigue reliability of joints in bridges appears to have started in 
1981 (12.1, 12.3). The problem has been initially formulated on S-N curve. In 
1982, the ASCE Committee on Fatigue and Fracture Reliability (12.1) 
presented a series of papers dealing with the state of art on fatigue reliability 
aspects and introducing fatigue reliability models for reliability analysis and 
development of criteria for assuring integrity against fatigue and fracture using 
principk::. of structural reliability. Afterwards, the attention of research workers 
was diverted to evaluation of fatigue reliability using system approach based on 
S-N curve. Fracture mechanics approach is essential for the development of 
inspection and maintenance strategy. Research was carried out in applying 
fracture mechanics approach for the evaluation of fatigue reliability of bridge 
structures. The formulation of fatigue reliability analysis and design based on 
S-N curve and fracture mechanics approaches are presented in this chapter. 
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11.l S-N CURVE APPROACH 

The most commonly used ~model for fatigue behaviour w1dcr co nc 
amplitude loading is of the form 

N sm = K (12.7) 

In which m and K are empirical constants denoting slope of S-N line and 
intercept on S axis respectively. N is number of cycles to failure and S is the 
applied stress range. When Eq. 12.7 is plotted on log-log · scale, the S-N 
relationship has a linear form (Fig. 12.3) as given below. 

log N = log K - m logS (12.8) 

12.2.1 Equivalent Stress Range ,/ 

In practice, the loading on structures does not take the form of a cyclic 
constant amplitude stress. Rather the loading is a sequence of variable 
amplitudes and frequencies, which do not repeat themselves. For variable· 
amplitude loading the concept of equivalent stress range based on Palmgren­
Miner's (P-M) cwnulative damage hypoth~ is generally used. It states that 

*failure occurs when the totill sffilin energy due to n cycles of variable 
amplitude loading is equal to the total strain energy from N cycles of constant 
amplitude loading. That is the cwnulative damage, D, is written as 

B B 
D = L Dj ='E DjiNj (12 .9) 

i i 
where D. is the damage incurred at stress t.·vel Sl , n; is the nwnber of stress 
cycles at stress range level S1 and N; is the number of cycles at constant stress 
range level S; (from S-N curve) to cause failure. B is t11e number of stress range 
blocks. D is generally taken as I at failure. Equivalent stress range is calculated 
as given below (12.6) 

If Nr is tile total number of cycles in the life of the structure, then nwnber of 
cycles, n;, in the stress range block i is given by (Fig. 12.4) 

" .... 
r::: .. 
~ 
" .... 

' 0 

0 I 
.... ' u I r::: 

" ' ::J I IT Ps(st) 
" I 
~ I 

I 

FIG. 12.4 Histogram and probability density function for induced stress range 
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ni = N[p8 (sj)L'>s]. (12 . 10) 

where p8(s; )is the probability density function for induced stress. Using Eq. 
12.10 in Eq. 12.9. 

From Eq. 12.7, 

N; = K/sm 
I 

Substituting the same in Eq. 12.11 

B 
D = I 

i=! 

(12.11) 

N E(Sm) (12.12) 
K 

E(Sm) is read as expected value of sm. For continuous random variable S, as 
L'>s--+ 0, Eq. 12.11 becomes 

D = J NSm Ps(s) ds 

o K 

(12.13) 

If Sc is the equivalent constant amplitude stress range for random variable 
amplitude, then 

N 
-:::-

K 

If D is assumed to be equal to one, 

S. = [E(Sm)]l/m 

(12.14) 

(12.15) 

If variable amplitude stress range history is available in the form of histogram, 
then 

B 
s. = [ I Pi sj 11m 

i=l 

Where Pi is the frequency of occurrence of the ith stress range. If 

si = '~-'i sn~ 

(12.16) 

(12.17) 
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where 'Pi is the ratio of the mean value of the stress range block ito the design 
stress range and S,d is the allowable design stress based on design load, then 

[ ]

lim 

s. = .r Pi '¥,m s,d 
1'=1 

(12.18) 

In 1983. Albrecht (12.3) presented a lognormal format method of calculating 
reliability of a structural detail of a highway bridge, p1aintaining the concept, 
the resistance is given by number of cycles to failure and the load by the 
applied stress range history. Load specya in t11e form of stress histograms is 
replaced by a lognormal distribution of equivalent stress ranges. The fa~gue 
properties of a detail are represented by an S-N curve. At any point S on the 
mean regression line, the fatigue life considered as resistance is found to be 
lognorrnally distributed about the point with mean ~R = log N and standard 
deviation aR = O"Jog N . This defines the resisrance. This is shown in Fig. 

12.5. 

FIG. 12.5 Transformation of resistance 

12.2.2 Load Curve 

Field measurements of actual stress ranges by the application of live load or 
actual load from loadometer surveys are generally available in the form of a 
histogram of stress range (o truck weight) versus frequency of occurrence. For 
development of load curve, stress range histograms recorded on several bridges 
are required. For each stress range histogram. s. is calculated. This replaces 
that histogram and provides a point for the load curve. Calculation of values of 
s. for all histograms and plotting them on a vertical line through Nd reSUlts the 
load curve. N4 is the total number of cycles estimated to occur in the design life 



3X6 

of the structure. Mean value of S, and coefficient of variation of s. arc 
computed. On S-N curve (Fig.l2.5) plotted on log-log scale, point d represents 
mean value of log s. along a vertical line through log Nd. For lognormally 
distributed s •. standard deviation of log s.. G'tog s, , is given by 

G'(og s. = [0.4343 log (1 + o}eJ112 (12.19) 

This is called as standard deviation of load, (action or load effect) G'Q. Hence 

Jse represents coefficient of variation of s .. The prime added to Q represents 

that it is measured along vertical line. 

12.2.3 Transformation of Resistance 

Calculation of reliability requires that load and resistance are expressed in 
tenns of the same basic quantities i.e. either cycles to failure or stress range. 
That is both load and resistance curves are to be plotted on the same ax is. 
Hence. in the present case, one of the ctuves is to be lransfonncd. Transforming 
t.he rcsi tance when di stribution of resista nce is plotted along the vertical line 
through point b (Fig . .12.5). the point with the same survival probability must 
li e on the ame line parall el to the mean resistance. From geometry it is clea r 
that 

• G'R G'tog N 
G'R=-=-­

m m 
(12.20) 

erR indicates the standard deviation of resistance measured along the vertical 

line. The prime added to any symbol indicates a quantity measured along a 

vertical line in Fig. 12.5 (Note : If load curve is transformed, G'Q = mG'Q) . The 

distance between the mean resistance and mean load, measured along the 
ert ica lline d-b, in Fig. 12.5, is given by 

(12.21) 

Reliability index is given by 

p 



= (log N -log Nd)/ ut ( 12.21) 

where 

(12.23) 

If one is interested in evaluating design life for specified reliability index Po, 
it can be calculated as follows. Using Eq. 12.22, 

log Nd = log N • Po Ut (12.24) 

Using Eq. 12.8, and substituting for log N, 

Log Nd = (log K - Po Ut) - m log F,.. (12.25) 

Here F,.. is the allowable equivalent stress range. The above equation can be 
rewritten as 

(12.26) 

For th~ known value of Nd from the actual field data, the value of F,.. can be 
calculated for a given Po. The method developed has been applied to designs 

meeting AASHTO specifications (12.3). Computation of p against fatigue 
failure criterion based on the· above method is illustrated in the following 
examples. 

EXAMPLE 12.1 For a particular joint or detail in a highway bridge, the 
value of K and m from test results are 

K = 0.37 x 1012 and m = 3.0 

The coefficient of variation of N is 0.24. From the field data, mean value and 
coefficient of variation of equivalent stress range s. calculated from 100 
histograms are 36.5 N/mm2 and 0.114 respectively. The actual nwnber of 
cycles for a 50 year design life is estimated to be 4.56 x 107 cycles. Determine 
the probability of failure of the joint against fatigue. 

The resistance mean S-N curve plotted on log-log scale is shown in Fig. 12.6. 
The position of the actual design point d and load curve are also shown in the 
same figure. Using Eq. 12.19, standard deviation of log s. is calculated. 
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FIG. 12.6 S-N curve for example 12.1 

2 1/2 O"(og s. = [0.4343 log (I+ 0.14 )] 

= 0.0494 

log N 

Here logs. is considered as load (action). Hence 

O"Q = O"(og s, = 0.0494 

Similarly, using Eq. 12.19, 

O"(og N =[0.4343 log (1 +0.242)]112 

= 0.1028 

Here log N is considered as resistance. Hence 

O"R =O"Jog N =0.1028 

Using Eq. 12.23, 

= ((3 X 0.0494)2 + (0.1028)2]112 = 0.1804 



At this given value of s. '= 36.5 N/nun2
, the actual nu 

joint can withstand is obtained using the resistance mean 
by, 

log N = log K - 3 log s. 
= log (0.37 x 1012

) - 3 log 36.5 
= 6.881 

N = 7.603 x 106 cycles . 
The reliability index p is obtained using Eq. 12.22 for given Nd = 4.56 x 107

• 

P·= log N -log Nd 
Ut 

6.881-6.676 0.205 
= = 

O't O't . 

The nwnerator of the above exp~on ~,qq~ tQ 2,: O'tog N . That is 

p = 0.205 = 20'Jog N 
· Q.l8<M OJ·.804 

= 1.136 

The fatigue specifications for bridges give the allowable stress range as a 
function of type of detail and nwuber of loading cycles Nd. They speci.JY 
allowable S-N line which is sel at two standard deviations, 2 uR , to the left of 

the resistance. The specifications do not make any allowance for load 
variability. . ,.,,:. -' · .. · o 1· . , · _, • 

EXAMPLE 12.2 Consider tbe same problem in Example 12.1. The allowable 
design S-N curve is given by (12.7), 

log N = 0.2306 x 1012 -3 log Sn~ 

The value of K for design S-N curve, ~ , can be obtained from the mean curve 
by using the following equation (12.7). 

~ = (K.)m-. lld 

where d = 2, when design curve is drawn al two standard deviations from l11e 
mean curve and L\ = 0.7893 

~· = (0.37 X 1012
) (0.7893)2 = 0.2306 X J012 

The mean S-N curve and allowable (design) S-N curve are shown in Fig. 12.7. 
lfthe detail is to be designed for 2 x 10 cycles the design stress is given by the 
pointe in Fig. 12.7. 

log Srd = .!. [log 0.2306 x 1012 
- log 2.0 x 106

) 
3 • 

Srd = 48.672 N/nun2 

This is the hypoilietical design point. To locate the actual design poinl, d, one 
must find equivalent stress range, So, and lhe actual number of loading cycles, 
Nd estimated from the data. Let us assume that the gross vehicle weigh! 
distribution based on !odometer survey yielded. 
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FIG. 12.7 Mean and design S-N curves on log-log-plot- Example 12.2 

p = L: Pi 'lfim = 0.35 

Then s. = (0.35) 113 S,d 
= o.7o5 s,d 
= (0.705) (48.672) = 36.5 N/mm2 

Corresponding value of Nd (from design S-N curve) is 

Log Nd = log 0.2306 x 1012 
- 3 log 36.5 

Nd = 4.56 x 106 cycles. 

Generally fatigue design specifications do not reflect the actual fatigue 
conditions that occur. High stress range is specified with low number of stress 
cycles to produce a reasonable design. But in actual field conditions, fatigue 
stresses are well below this value (equivalent stress is very much lower) ; but a 
much higher number of cycles. For the above value of Nd, point on the design 
curve is given by the point din Fig. 12.7. This is the actual design point. The 
actual number of cycles that the joint can withstand at s. = 36.5 N/mm2 is 
7.603 x 106 cycles (Refer Example 12.1). 

The reliability index fl is given by 

fl = log (7 .603 x 106 ) - log ( 4.744 x 106 ) 

at 

fi .88 I- 6.676 0.205 



If the coefficient of variation of load is ~f9\ i.e. D'Q • Q, or,ff. ~ ·.~~. not 
considered, 

then D't = D'tog N. Hence 

20'tog N 
P= = 2 

O'tog N 

The value of probability of failure corresponding to p = 2, is 

p = <I>"1(-2) = 0.0227 E: 2.3% 

In the conventional fatigue design. the uncertainty in load is not taken into 
account. Because of this, for different values of o0 = 5togSe the values of P 
will differ significantly. For example, 

For OtogSe = 0.114, 

O't = 0.1804. p = 1.136 

Similarly for 5tog se = 0.25, 

O't = 0.337. p = 0.2716 

Hen~ the conventional design will not give consistent level of safety in 
different design situations. 

In the regular design, one would have selected the value of design stress 
range 48.67 N/mm2 for the desired life 2 x I 06 cycles. Tllis is given by t11e point 
e in Fig. 12.7. The detail would have been designed for this stress. But the 
actual strength of joint is given by point e, for which the number of cycles that 
the joint can withstand is 3.207 x 106 cycles. The distance e-e1, is equal to d-d1 

and is equal to 2 u108 N . Value of p is equal to 2 when uncertainty in load is 

not taken in to account. 

EXAtvtPLE 12.3 The mean resistance S-N curve and the allowable resistance 
curve, shown in Fig.l2.8, for a detail are given by 

log N ,;, log(0.37 x W1 ~) - 3 logS 

log N = log(0.2306 x 1012
) - 3 logS 
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FIG. 12.8 Determination of allowable design stress range - Example 12.3 

From the load history, equivalenl conslanl amplitude stress range is equal to 
0.75 S,d a11d the number of loading cycles is 4 x I 06 cycles. It is given: 

oN = 0.2; ; ose = 0 .12 

Determine the allowable stress range for design based on equivalent truck 
weight and for design based on design load for the desired level /}0 = 2. 

Using Eq. 12.19, 

Using Eq. 12.23, 

CTJog se = [0.4343 log (1 + 0.127
)]

112 = 0.052 

CTJog N = (0.4343 log (1 + 0.22
)]

112 = 0.086 

cr1 = [(3 x 0.052)2 + (0 .086)2
]

112 = 0.178 

Reliability index is given by Eq. 12.22 

p = log N - log N d 

CTt 

For the desired reliability level f3 = /30 = 2, 

log N -log Nd = 2 x 0.178 = 0.356 

The design life Nd is 

log Nd = log N - f3 cr1 

Using the mean resistance S-N curve, 

log Nd = (log K- m log S.) - f3 cr1 

= log (0.37 x 1012
)- 3 log s.- 0.356 

= ll . 212-3log~. 
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Using the above equation, s. can be calculated for given Nc1 • 4 lt 10•. Heaoe, 

s. = .!. [11.212 - log (4 x 10~) 
3 

S. = 34.408 N/nun2 

This is the aliowable equivalent stress range for Po = 2. Knowing s. = 0.75 x 
S,d, the allowable stress based on design load 

S d = 34.408 = 45.88 N/mm2 
' 0.75 

For s. = 34.408 N/mm2
, the corresponding value ofN from resistance curve is 

log N = log (0.37 x 1012
)- 3 log 34.408 

= 11.568 - 4.61 = 6.958 

N = 9.078 x 106 cycles 

J 2.3 LRFD FORMAT 
In LRFD format( Refer Chapter 9) uncertainty in random loading can be taken 
care of ex'PliciUy. Adoption of the format makes the designer to detennine 
partial safety factors to resistance, 'YR and partial safety factor to Load 'Ys , for 
the desired reliability level. Smith and llirt (12.8) proposed a safety format 
similar to LRFD format for calibrating European convention for constructional 
steel works (ECCS) 1985 standards. For safety 

SRI 'YR ~ 'Ys S. (12.27) 

The fatigue strength SR is defined by the S-N curve corresponding to the 
detaiVjoint which is evaluated. The equivalent constant amplitude stress range 
s. is calcul~ted from U\e resulting stress ttistories due to Ute application of 
design load spectra and applying Ute reservoir or rain flow method of cycle 
counting. The safety fat.:h.)r 'YR reflects the uncertainty quantified by 

• variations in effects of fabrication, workn1anship, size, shape, local stress 
concentration and fatigue crack shapes 

• size of detail, residual stresses, metallurgical effects. 

Total uncertainty in fatigue strength is represented by b'R. 

The partial safety factor 'Ys reflects the uncertainty 

• in estimating the effects of stress analysis 

• due to errors in fatigue model and use of Miner's rule 

• in developing stress histories due to loads and detennining stress ranges 
and counting numbel of cycles using rain flow or reservoir method 

• in estimating the equivalent constant amplitude effects of the design 
spectrum. 
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Total uncertamty in load (action) is represented by 8se. In the lognonnal 

safet) format all variables are assumed to be lognormally distributed. When 
limit state equation is written in terms of stress ranges, Eq. 12.22 becomes 

fl= logSR-logSe 

[(a~)2 +(a~)2)\ / 2 

If the resistance curve is defined in terms of design S-N curve drawn at 
2 CTJog N from mean S-N curve, then the above equation becomes 

jJ = log S R + 2 a R - log S e 
(a 1 im) 

Taking loganthm on both sides of Eq. 12.27 

log SR = log S. + log Ys + log YR 

(12.28) 

Substituting the same in Eq. 12.29, reliability index expressed in tenns of 
partial safety factors becomes, 

jJ = log r s + log YR + 2 a~ 
(a11 m) 

(12.29) 

For given YR, Ys and m, one can compute f3 if JR and Jse are known from the 

field data . 

Since in fatigue design, design S-N curves are drawn at mean minus two 
standard deviations to take care of variation in R, YR is taken as one. 
Considering the same Smith and Hirt (12.8) have found that f3 varies from 2 to 

3.5 at the end of service life for fatigue designs of details designed as per 
ECCS. With the above format it is possible to establish partial safety factors YR 
and Ys directly for the specified reliability index Po. This approach has been 

used in updating fatigue provisions of Swiss code for steel 

design. This method of calculating f3 for given r s and r R and (ii) calculating 

YR and ys for desired /30 is illustrated below. 

EXAMPLE 12. For a given detail used in a bridge, it is found from the field 
data that the values of JR and Jse are 0.36 and 0.2 respectively. For the 

particular detail, m = 3, the code has specified YR = I and Ys = 1.8. 
Determine f3 . 

Using Eq. 12.19, standard deviation of log s. and log SR can be computed. 

O'logSe = [0.4343log(l +0.22)]112 = 0.086 

O'R =atogN =[0.4343 log(l +0.36 2 )]
112 =0.15 

crR = aR.!m 

= 0.15/3 = 0.05 



Using Eq. 12.23. 

u1 = [(3 X 0.086)2 + (0.0647)2
) 

= 0.298 

The value of p is calculated using Eq. 12.29. 

p = log 1.8 + log 1.0 + 2 x 0.05 
(0.298/3) 

= 3.3 

EXAMPLE 12.4 A detail is to be designed for a reliability level of flo = 2.5. 

Detem1ine Ys fixing YR = 1. It is given 

ose = 0.2 ; oR= 0.36 ; m = 3 

From the previous example; forlhe above values of 6 se and 6R . 

• dtog s ~ ''' o.OS6~ utogR ~O.l5;u1 · ::o:298 
I • 

Using the above values and given values of /Jo ·and min Eq. 12.29, 

2.5 = logrs +log(I.0}+2(0.15/3) 
(0.298/3) 

log rs ~ o:l48 :: 
. . . '"-. ~ ' . ; : . 

' ·, ; }• ~ Y:& · "" ~1'~97 ; .. \;; " 
Hence the partial safety factor for stress range is 1.487. Similarly for different 
valus of 6 se and ~, corresponding values of Ys can be calculated. Variations Ys 

with. 8 se and p are shown in Fig. 12. 9. [t can be noted that as Bs increases, 

Ys increases for given P. Again for given Bs. , as P increases Ys decreases. 

2·2 
OR=O·OS 

'2. 
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So far failure function has been formulated based on number of cycles or 
stress range. In general limit state function for evaluation of fatigue reliability 
can be of any one of these when S-N curve approach is used. 

i) Pr = P[ Tr < T,) 

ii) 

iii) 

iv) 

Pr = P(Dr < D, ) 

Pr = P(N <Nr) 

Pr = P( S. < SR ) 

(12.30) 

(12.31) 

(12.32) 

(12.33) 

Here Tr denotes actual time to fatigue failure and T, is the service life (desired 
life) of the structure with which is deterministic. T is a function of seveml 
random vari.ables. Dr is the cumulative damage at failure and D, is tlle specified 
damage. N is the actual number of cycles that the detaiUjoint can witb stand 
and N,. is the total number of cycles in time T, (desired number of cycles). 
Moses el al (12. 9), in 1985 have dealt with modelling of bridge loads and its 
application to fatigue design of bridges in accordance with AASHTO 
specifications using damage based failure criterion. 

12.4 APPLICATIONS IN BRIDGES 

Ravi and Ranganathan (12.10) started the formulation for fatigue reliability 
assessment from Eq. 12.30. For a particular bridge in service, general 
formulation of limit state equation for a bridge is explained below. 

Let the limit state equation under fatigue loading is defined by 

Z = Yc - Y. (12.34) 

Where Yris the life at failure andY, is the specified life. Both Yrand Y, are in 
tenus of years. Limit state is reached when Z is equal to zero. The damage 
accumulated per year, Dy, using Miner's law (Eq. 12.9) is written as 

J 
Dy = 1:n;IN; 

1•1 

where j is the number of distinct stress ranges. Alternatively, Dy can also be 
written as 

all s 1 
Dy = r --

,_~ N(Sj) 
(12.35) 

by taking each stress range into summation. Here, N(S;) is the number of cycles 
to failure at a constant amplitude stress range Si. From the S-N curve, 
n.:presented by Eq. 12.7, it can be wri~ as 

N = _£ (12.36) sm 
Substituting this value ofN in Eq. 12.35, 



D = y 
I 

K 

all S 
Is~ 
i=l I 
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(12.37) 

The true stress range for any truck crossing of a bridge depends on several 
variables and may be written as 

S; = Wi(l+lfi)(iei)(g)(h) (12.38) 
Zx 

Where W1 = i th truck crossing gross vehicle weight, 

ifi = impact factor 

g = lateral girder distribution (expressed as percentage of gross 
span moment or force carried by single member) 

h = factor to account for closely spaced or multilane presence of 
vehicles which amplify the load effect 

Zx = the actual section modulus or cross sectional area 

i, = the influence factor which converts the load to load effect. 

Influence factor is defined as 

ir = absolute m.aximwn load effect 
total load on span 

(12.39) 

Representing the volume in total number of equivalent stress cycles in a year by 
V, Dy is written as 

D = V [(l+ifi)(ili)(g)(h)]3 L wt (12.40) 
Y K Zx V 

The term within the sununation in the above equation can be represented by 
equivalent fatigue truck weight, W "'l• which is given by Eq. 12.16 

[ ]

1/ m 

Woo,= ~fi wi 
t=l 

(12.41) 

where 11t. is the number of load categori~. f1 is the relative frequency of the load 
category I and Wi is that part of the load acting on the structure corresponding 
to maximum load effect for category load i. Here, maximum load effect can be 
bending moment or shear force etc. Hence Eq. 12.40 can be written as 

_ v [Woq (1 + ifi) (iti) (g) (h)r 
D--

Y K Zx . 
The equivalent number of cycles per year, V, can be expressed as 

V = ( Nt )( Noq) 

(12.42) 

(12.43) 
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in which NT .is annual traffic (lmck traffic in vehicles per day x 65 or train 
traffic) and N .. , is equivalent number of Ires range cycles per passage of train 
or truck crossing. Thus Eq. 12.42 is rcwri tlen a 

D = Nr Neq [ Weq0+in)Citi ) (g)(h)]
3 

Y K Zx 
(12.44) 

Yc represents the life at failure when the cumulative damage of Miner's model 
is equal to one. However, this cumulative damage is seen to be a random 
variable, its value lying anywhere between 0.84 to 2.06 (12.1). Hence 
cumulative damage at failure, X, is treated as a random variable. Knowing the 
damage accumulated per year as Dy , Y r can be written as 

y _ X K Zx 

[ ]

3 

r- Nr Neq W cq (I +i n)(iu)(g)(h) 

Hence the limit state equation 12.34 becomes 

z = X K [ Z x ]

3 

_ y 
Nr Neq Wcq I +i n)(ill)(g){h) s 

The S - N curve intercept, K , is expressed as 

K = N. S3 

where N. is the desired life in cycles. It is calculated as 

N. = Nr Neq Y8 

where Nr and Ncq are the mean values ofNr and Noq. Hence 

Let A 

B 

Nr/Nr 

Neq 

Neq 

(12.45) 

(12.46) 

(12.47) 

(12.48) 

(12.49) 

(12.50) 

and Ill l+ifi (12.5 1) 

where A and B represent the volume ratio and equivalent cycle ratio 
respectively. 16 is the combined impact factor which takes care of live load and 
imp~ct effects. Hence Eq. 12.48 becomes 



Z = X Y8 [ Z x S ]
3 

_ Y 
A B W eq l fi i.u g h s 

(12 . .52) 

The above equation represents the limit state equation in tenus of actual values. 
This equation is nonnalized as follows. Defining 

p = ~ 
Zd 

in which z.t is the section modulus as per design. This is given by 

Wd(l+ird)i.td hd gd Zd = ___::...:..._-=.;;.....::..::~...:::.=.... 
Srd 

Using Eqs. 12.53 and 12.54, the expression iOr Z (Eq. 12.52) becomes 

Z= X Y,[PWd(l+ird)i.tdKdhdS ]
3 

-Ys 
AB Weq(l+ifi)i.tiSrdgh 

Let 

w = Woq/Wd 

}F 
1 +ifi 

l+ird 

IL = i.ti 

i.td 

G ...!. 
gd 

Sn = S/Sro 

H = hlh.. 
Using the same Eq. 12.55 becomes 

z _ X Y1 P Sn _ Y. [ r - AB W.lpiLGH I 

The failure surface equation becomes (ie Z = 0), 

z- ....!.._ PSn -1 [ r - AB W.lp IL GH 
= 0 

(12.53) 

(12.54) 

(12.55) 

(12.56) 

(12.57) 

(12.58) 

(12.59) 

(12.60) 

(12.61) 

(12.62) 

(12.63) 

The above equation represents the failure surface in normalized format. The 
random variables included in the above fatigue criterion contains material 
terms X, P and So. truck variables, W, A. B, IL and H and analysis uncertainties 
I, and G. Once the probability distribution and parameters of all random 
variables are knoW~\ probability of failure can be eval~ using any reliability 
method. This is demonstrated with examples. 
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EXAMPLE 12.5 The fatigue reliability of a riveted railway plate girder bridge 
of span (L) 32 m is to be evaluated. Here reliability for a joint in tension flange 
at mid span is computed. The joint detail comes under category class D as per 
British standards (12.7). Statistics of variables are given in Table 12.1. In the 
case of railway bridges, the factors G and Hare not considered in Eq. 12.63. 

TABLE 12.1 Statistics of variables- Example 12.5 

Sr. Variable Mean 
No 

0 Median 
aln 

1. X~ Model uncertainty 1.04 0.300 0.999971 0.293560 

2. 0.855 0.100 0.851055 0.099751 

P - Sec. Mod. ratio 

3. S- Stress range ratio 1.380 0.142 1.365799 0.141292 

4. A- Volume ratio 1.000 0.100 0.995037 0.099751 

5. B - Equivalent cycle ratio 1.000 0.011 0.999940 0.011000 

6. W- Weight ratio 0.536 0.100 0.532842 0.099751 

7. IF -Impact factor ratio 1.000 0.150 0.988936 0.149166 

8. h - Influence factor ratio 0.986 0.111 0.979981 0.110660 

The mean value of sectional modular ratio is first computed as follows. 

Assuming that the live load, given by IRS bridge rules (12.11), holds good 
for fatigue design also, the design value of section modulus is calculated from 
Eq. 12.54 deleting factors G and H. 

But 

Snt = (K/N)11
m 

From British standards (12.7), for designS- N cwve of class D detail, 

K = 1.52 x 1012 and m = 3.0 

For a desired life of 2 x 106 cycles, 

Sro =[t.52xtol2]113 = 91.258 N/mm2 
2xt06 

(12.64) 

For plate girder of span 32 m, design values of Wd and lilt obtained from IRS 
bridge rules (12.11) are, 

wd = 1.437 x 1o6 N; 



.F.or.single track spans, 

ird = 0.15 + {-
8
-} 

6 +L 

For L =32m, ifd = 0.361 

For simply supJ.oorted uniform distributed beam, 
. span 32 
•ed= - =- = 4m 

8 8 

Hence 

1.437xl06 (1+0.361)(4xl03 ) 
zd-------~----~--~ 

91.258 

= 8.569 x 107 mm3 

But the section modulus provided by Railways is 

z,. = 7:33 x 107 mm3 
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Mean value of z,. is taken as the proVided section modulus. Hence the mean 
value ofP is 

P= 7.330x l0
7 

8.569 X 107 

Considering Eq. 12.63, let 

'f 0.855 

R = X (P S)3 (12.65) 

and Q = A B (W lr Id (12.66) . ' . . 
in the problem all variables are logrtorrnally distributed. Their parameters are 
given in· blc 12.1. Using titem, parameters of lognormally distributed Rand 
Q can be calculated as follows. 

R: = x ci>s)3 (12.67) 

= ( 0. 999971) (0.851 X 1.366)3 = 1.57 

- · -----3 
Q = A B (W lr IL) (12.68) 

= 0.995 X 0.999.94 (0.533 X 0.989 X 0.98)3 = 0.137 

Using the given values of coefficie11ts of variations of variables, values of 
cren R and CT£n Q are calculated as follows. 

crfn R =in[(l+6i)(l+6~)9 (1+6,h9
] (12.69) 

= £n[(l+0.32
) (1+0.12

)
9+ (1+0.1422

)
9

] 

CTen R = 0.596 

cr2 =ln[(1+8 2 )(l+82)(l+62 )9(1+62 )9(1+62 )9] (12.70) 
in Q A B W Ir IL 

= en [(1+0.1 2
) (1 +0.0 11 2

) ( 1+0.1 2
)

9 (1 +0.152
)

9 (1+0.111 2
)

9
] 

CTin Q = 0.64 
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Since R and S are lognonnally distributed, (R/S) is also lognormally 
distributed. Hence reliability index is given by (Refer chapter 6). 

= 2.788 

This is the fatigue reliability index of the joint in the tension flange at mid span 
of the bri=dge. 

EXAMPLE 12.6 Fatigue reliability of the lower chord member ~ L3 of the 
riveted truss 'bridge of span 36m, shown in Fig. 12.10, is to be evaluated. The 
statistics of the variables are given in Table 12.2. 

The mean value of section area ratio is computed as follows. The design value 
of sectional area Z<J is 

TABLE 12.2 Statistics of variables- Example 12.6 

Sr. Variable Mean g Median (jln 
No. 

1. X - Model uncertainty 1.040 0.3000 0.999971 0.293560 

2. 0.985 0.1000 0.985 0.099751 

P- Cross sectional (Jrea 
ratio 

3. S - Stress range ratio 1.380 0.1420 1.366 0.141292 

4. A - Volume ratio 1.000 0.1000 0.995 0.099751 

5. B - Equivalent cycle ratio 1.000 0.0065 0.99994 o:oo647 

6. W - Weight ratio 0.513 0.1000 0.510 0.10 

7. /p- Impact factor ratio 1.000 0.1500 0.989 0.150 

8. h -Influence factor ratio 0.005 0.0990 0.990 0.099 

From British standards (12.7), for designS- N curve of class D detail, 

K = 1.52 x 1012 and m = 3.0 

For desired life of 2 x 106 cycles, 
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6• 6m PODtiJ 

(1) TNA bridge conftguatlon- SpM-38M. 

~I:, ~_r 
l 

\ .. j ; " . 

(b) tnnuence line for force In member ~L, 

Fig. 12.10 T-:ua bridge ':" Example 12.10 

[ 

12 ]l/3 . 
s, = 1.52 x LO = 91.258 N/mm2 

d 2x 106 

For truss bridge of 36 m, design values of W d and lfd are obtained using IRS 
bridge. rules (12.11 ). They-are 

wd = 1595~~ kN ; . . 
, · . '· . . .. 

ifd = 0.34 

The influence line diagram for force in member~~ is shown in Fig. 12.10. 
Using this 

Hence 

itd =(~ x L;d ) w~ L 

=0.643 

tS9's:s xto3 x(1 .34)(0.643) 
zd-

91.258 
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= 1.507 x 104 mm2 

But the area provided by Railways is 

Zx = 1.484 x 104 mm2 

Mean value of z, is taken as the provided sectional area. Hence the mean value 
ofP is 

p = 1.484 10
4 

1.507 X !04 
= 0.9848 

For the known or assumed 8p, median of P and standard deviation of f. n P 

can be calculated. They are given in Table 12.2. The procedure of further 
calculations is same as given in the previous example. The median values of R 
and Q are 

R = (0.999971) ( (0.985) (1.366)]3 

= 2.397 

Q = 0.995 X 0.99994 (0.51 X 0.989 X 0.990)3 

= 0.124 

Value of aln R is the same as calculated in the previous example i.e. 

O'tn R = 0.596 

Using Eq. 12.70, 
CTtn Q =t n[(l+<l.0997512

) (1+<1.006472
) (1+<1.12

)
9 (1+<1.152) 9 x 

(1 +{).0992
)
9
] 

CTtn Q = 0.623 

Hence the reliability index is 

l n 2.397) 

p = 0.124 = 3.435 

Jo.S962 + o.6232 

This is the value of fatigue reliability index for the member ~ L3 of the riveted 
railway truss bridge. 

12.5 APPLICATIONS IN OFFSHORE AND SHIP STRJ,JCTURES 
Lognormal format 

Wirsching (12.12) has formulated the fatigue reliability problem of welded 
joints in offshore structures and given a closed form expression to compute Pr 
assuming lognonnal format. If fo is defined as the average frequency of the 
cycle, that is 

NT 
T 

(12.71) 
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then cumulative damageD, using Eq. 12.13, can be written as 

D • (f~ T) E(Sj (12.72) 

where Nr is the total number of cycles in time T. If spectral approach is used 
for analysis of random process and if it is assumed that the process is 
stationary, Gaussian aad narrow band, then (12.13), 

f 0 E(Sm) = A.(m)(2./Z)"' (m + t)'1 G fj u."' (12. 73) 
2 i•J I 

where fi is the frequency of wave loading in i th sea-state and ui is the root 
mean Square (RMS) stress process in the i th sea-state. fi and ui can be 

calculated from Ule given spectral density function wi (f) for tlle fatigue stress 
range. ri is percent of time in the i th sea-state, and .t1 is a correction factor to 

be used for the narrow~ JlSSUIDPtion. It is computed by calculating Di from 
rain flow analysis and comparing it to the narrow band assumption. Wirsching 
(12.13) bas found that ;, (m) 1t1 0.86 form= 3 and A. (m) ~'~~ 0.76 form= 4.38. 

Instead of spectral approach, if Wcibull model is assumed for long tetm 
distribution of stress range S, then 

s :<!: 0 (12.74) 

where u arul k are parameters ofthe distribution. The weibull shape parameter 
k varies from O.S to 1.4 for offshore platforms and is equal to one for ship 
structures (12.12). lfNr is the total number of cycles in service life T, long tenn 
design stress range, Sro , is defined as 

P [ s > src1 1 = -
1
- (12.75) 

Ny 

This is the stress Sn1 that is exceeded, on the average, once every NT cycles. Sed 

is also called as "once in a life time ' stress .. Hence using Eq.l2. 74, 

(12.76) 

Using Eq. 12. 75, it can be written as 

·-exp [-(·~ r l=·- ~T 
Snt = u [ tn NT] Ilk 
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Or u = s,d( enNTr' ilc 

If S follows Type 3 extremal (smallest) distribution(Weibull). S"' also follow.~ 

the same distribution with mean, 

E( Srn) = um f ( ~ +I) 
Using Eq. 12.77 in the above equation, 

E(S 111
) = (S,d)"' [en NT r"Vk r (: +I J 

E(S"') = A(m) (S,d)'" [in NT rmik r(~ +I) 

(l2.7X) 

(12.79) 

Mu~er ' s mlc states that ht ilurc u11der vanable stress range occurs when D ~ I 
But random fatigue experimental results show that th critical value of the 
o,;umulattve damage at fai lure. Dr, is not <llways close to 1.0 ; but in fact vane 
vuJcl~ herefore, Dr is taken as a random variable which quantifies modelling 

error associated with Miner's rule. Failure can be defined as the event D >Dr. 

If T denotes time to fatigue failure and letting D = Dr , the basic damage 
expression Eq. 12.72 can be rewritten as 

Dr K T = (12.80) 
Bm fo E(Sm) 

where B is model error in estimated stress range. That is, if S is the estimated 
tres range, actual stress range = 8 S Since Dr , k and 8 are random 

variables, T is also a random variable. If T, is the service life of structure, 
fatigue failure of a joint occurs when T < T,. Then 

Pr = P (T < T,) (12.81) 

Failure function is 

g ( ) = T - T, (12.82) 

Here. T, is deterministic. If statistics of random variables Dr , K and 8 are 
known, ~ can be calculated using Level 2 reliability method. If De, K and 8 are 
1ognormally distributed, then 

P= (12.83) 
a ln T 

where 

0' ln T (12.84) 
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<12.H5) 

Usmg the above approach, Wirsching (12 .12) demonstrated the computation of 
fatigue reliability of welded joints in offshore structures. 

The model parameter B which is a random variable can be split into several 
factors, as given below. which contribute to the overall variation (uncertainty) 
in B Let 

(12.86) 

where 

BF = uncertainty due to fabrication and workmanship 

Bs = uncertainty due to sea state description 

Bw = uncertainty due to wave load prediction 

BN = uncertainty in predicting nominal loads 

BH :;: uncertainty in estimation of hot spot stress 

concentration factor 

The above factors are the sources which contribute to the overall uncertainty in 
the estimation of fatigue stress. Any other factor can be included. If the 
coeffocient of variation of each variable is known, the overall variation in B can 
be computed. 

(12.87) 

If the variables are assumed lognormal1y distributed, the parameters B and 
atn 8 of the lognorrnally distributed B can be found out as follows . 

B = Bp Bs Bw BN BH 

[ 
2 2 2 2 2 ] 1/ 2 

a ln B = a ln Bp + a ln B
8 

+ a ln Bw + a ln BN + a ln BH 

Or 

. (12.88) 

(12.89) 

(12.90) 

B i is the median of Bi . Wirsching (12.12) has suggested B about 0. 7 and 
6a about 0.5 in evaluating fatigue reliability of joints in offshore platfonn. 

Values of Dr and c5or equal to 1.0 and 0.3 respectively have been recommen­

ded. The procedure of computation of fatigue reliability of a joint in offshore 
structure is illustrated with an example. 

EXAMPLE 12.7 ~the reliability of a welded joint in an offshore 
platform using Wirsching's approach assuming all variables arc lognonnally 
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distributed. It is given that for a 20 year life, long tenn stress range is 3 Xl .l 
NITtmt2 (That is S,d = 383.3 N/nun2

) and long term stress range follows Wei bull 
distribution. Following data are also given. 

T, 20 yr k = 0.69 

m 3 fa = 0.25 hertz 

1.9365 X 1013 

1.0 

0.7 

0.86 

Mean value of sm is first calculated using Eq. 12.79 

E(Sm)= A(rn)(S,d)m [fnNTJ"mlk r(~+l) 

oK = 0.73 

r5nr = 0.30 

r5B = 0.50 

Substituting the given values, each tenn in the above equation, is calculated as 
follows. 

r(~+I) = r( 0 .~9 +I) 
= 41 

NT= fo Ts 

= 0.25 X 20 X 365 X 24 X 36()() 

= 1.575 x 108 cycles in 20 years 

[tnNr tmtk = ~n~.s?sxws)r'o69 
= 2.836 X 10-6 

(Std)m = (383.3)3 = 56314010 

Hence mean value of sm is 

E(Sm) = (0.86) (56314010) (2.836 X 10-6) X 41 

= 5629.3 

fo E(Sm) = 0.25 X 5629.3 = 1407.33 

Since all variables are lognonnal1y distributed, using Eq. 12.85, 

B1 i 
f- - ---''----

jjm fo E(Sm) 

= (1.0)(';9365xl0
13

) = 1291.39 )"' 

(0.7) 0407.33) 



Using Eq. 12.84 

a,,r +((1 + 6~f) ~ +6l) ~ + •§ )"' l]''' 
u tnT = ~n ~ + 0.3

2
) ~ + 0. 732) ~ + 0.5

2 
)
9 f 2 

= 1.588 

Using Eq. 12.83, the reliability index is calculated. 

= 2.62 
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Using the lognonnal fonnat explained above, it is also possible to detennine the 
allowable (design) stress range for required service life of the structure and 
target reliability level. This is illustrated in the following example. 

EXAMPLE 12.8 Detennine the minimum allowable stress range for 20 year 
life, for the design of a welded joint in an offshore platfonn for a reliability level 
of ~o = 3 against fatigue. All th~ variables are lognormally distributed. Long 
tenn stress range follows Weibull distribution. Following data are given. 

Ts = .20yr. 
m 3 
Fo = 0.25 hertz 
K = 1.9 X 1013 

Dt = 1.0 

B 0.7 

Using Eq. 12.83 

f = Ts exp Lno Utnd 

Using the same in Eq. 12.85 · 

k 

A.(m) 

~ 

0Dt 

Sa 

E~m) = DtK 
jjm Vo Ts )exp{po UtnT) 

= 0.69 

0.86 
0.7 

0.3 

0.5 

For long tenn stress range following Weibull distribution. Eq. 12.79 gives 
E(S"'). Using the same, the expression for design (allowable) stress mnge for 
given ~o becomes 
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= [ln(j
0

Ts) Jfk [ Dr K Ifm (12.91) 

VoTs)A.mB111 exp(po <7tnT )r(; +I) 
The various terms in the above equation are first calculated. The value of 
o- tnT , using Eq. 12.84, is _ 

<7 {nT = ~n {t + 0.32) ~ + 0.72) ~ + 0.52 )9 Jl2 

= 1.579 

r(m +l)=r(-3 +I)=4I 
k 0.69 

expl,B0 <7 tnT)= [(3) (1 .579)] =I 14.09 

fo T s = 0.25 X 20 X 365 X 24 X 3600 

= 1.575 X 108 

Substituting the above values and other given data in Eq. 12.91, 

s d'- ~n (I 575 x lOs) ]vo.69 [ Ixl.9xiOI3 ]1/3 
' - · ~ . 575x!08) (0.86}(0.7)3 (23.52)(41) 

(70.592) (4.437) 

= 3 13. 2 Nlrrun ~ 

This is the design stress range or allowable stress range for 20 year service 
period for the required reliability level 0o = 3. 

Weihull format 

Here N and long tem1 stress range are assumed to follow Weibull distribution. If 
N 1s a random variable denoting the number of cycles to failure in variable 
amplitude fatigue loading and if it is assumed that N rollows Weibull 
distribution (Type 3 extremal smallest distribution - refer Chapter 3) with 
parameters u and kN. tlten (12 .14) 

k;-J ::: (~)-I~ (12.92) 

Jl,v =ur(f+1) (.12.93) 

It is to be noted that Eq. 3.133 is approximated by Eq. 12.92 and Eq. 3.131 and 
Eq. 12 93 are same. Cumulative distribution ofN is given by Eq. 3.130. 

n 2 0 (12.94) 

If n = N1 • failure occurs when N < N1 . Hence 

Pr = P[N < NT] 

1 
I 



. 1-eop[-(~)'" l 
Ifpr < < 1, the al:ove equation can be approximated. For Pr « 1, 

(N:t:Pf 
Or u=~ 

t.PrJ''"'N 
Using the above equation in Eq. 12.9.3, ~mean value of N is given by 

Nr.r(-1- +1 
kN 

liN= f l/kN 

Assuming Minei"'inule is applicable and D = 1 at failure, for safety 

E(S)m s 1!K.. 
PN 

4.11 

(12.94) 

(12.95) 

where parameters K and N in S·N curve, are random variables with mean J.LK 
and J.LN respectively. Using Eq. 12.94 in Eq. 12.95 

(12.96) 

(12.97) 

Expression for E(Sm) is given by Eq. 12.79 assuming WcibuJI. distribution for S. 
Ln the aoove treatment, kN is a function of ~ . To compute ~ . let the fati!,>ue 
model be 

N = f(K s·m) (12.98) 

where the parameter f accounts for the scatter in the constant amplitude S-N 
data. Using Taylor's series expansion, approximate value for ~ is given by 

(12.99) 
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Uncertainties in workmanship and fabrication are also included in 8r . Once 
overall variation in N is detennined, probability of failure can be evaluated 
using Eq. 12.97. MlUlSe et al (12.15) analysed fatigue reliability of ship details 
using WeibuJJ format. 

Using Weibull format an expression for design stress range Snl can also be 
written. If Pr. which is equaJ to P [N < NT ], is specified, then Eq. 12.96 can be 
rewritten as. 

Nr E(Sm) r(I + -
1-) 

_ _ __ .....:..__k_N..;.. = (pf)ifkN 

J.lK 

Assuming long term stress range follows Weibull distribution, the expression for 
E(Sm) given by Eq. 12.79, can be used in the above equation. Hence 

Rewriting the same equation for S,d , 

(12.100) 

But from the mean S-N curve, 

J.lK 1-)m -=,s 
Nr 

(12.101) 

Here § is the value of stress obtained from the constant amplitude mean S-N 
curve (frQm the test results). Using A.(m) = 1, Eq. 12.100, can be rewritten as 
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Let 

(12.102) 

(12.103) 

Then 

(12.104) 

Munse (12.15) calls Rc as reliability factor and ~ as random load factor. Hence 
to get the design stress range, the stress range obtained from mean S-N curve is 
to be multiplied by Rr and ~ . Here, the idea is to reduce the equivalent stress 
range by reliability factor. The equivalent stress range is found by using the 
mean value of the fatigue life for calculating stress range from the S-N curve. 
The reliability factor contains the tenn B.~ <kN is related to B.~ ) which covers 
the uncertainty of all the factors in resistance and the tenn Pr wbicJt contains the 
desired level of ihe exceedance of design life. The random load factor connects 
the constant amplitude equivalent stress range for tlte loading to the once in a 
lifetime design stress. For ship structures, k is generally found to be l. If the 
same value is used, 

~ = (inNr )r{m +It 11m 

Using the same, White and Ayyub (12.67) have detennined the design stress 
rnnges for details of ship structures. 

EXAMPLE 12.9 The design stress rnnge is to be suggested for the fatigue 
design of a welded structural detail in a shlp. Determine the design stress range 
using Munse's approach based on Weibull format for the desired reliability level 
of 0. 999 for a design life, N.,. , of 108 cycles. It is given: 

~ = l.l37 m = 7.0 

K = 7.4 x 1021 (Mpa units) for mean S-N curve. 

Since design life is given as 108 cycles Nt = Nd = 108 in Eq. 12.103. 
Required reliability level = 0.999. Hence Pc = I- 0.999 = 0.001. It is known 

N sm = K 
Using the given values ofNt and K, 

s = 7.4 xto21 

[ ]

1/7 

108 

= 95.79 N/mm2 
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The value of kN is calculated using Eq. 12.92 

kN = c~ rl ~ 
_l_ = (1.137)1 OR= l.l487 
kN 

Using Eq. 12.102, the value of reliability factor is calculated. 

l i m 

= 

r 
(0.00 1)1 1487]

1 7 

= () 3187 

r(t + 1 --1~-87 ) 

(pf)l ! kN 

r(t + ks) 
Taking the value ofk as I in Eq. 12 103 , the random load factor is 

.; = f'n (NT )[r(m + t)j 1' m 

l'n (t o8 ) {r [(7) + 1] :- 1 ' 7 

= (18.42) (0.2959) = 5.45 

Hence the design stress range for reliability level of0 .999 for a life of lOx cycles 
is 

S,d = ~~j(Rr )(;') 
(95 .79) (0.3187) (5 .45) 
166 38 N/mrn2 

12.(i FRACTURE MECHANICS APPROACH 

Application of Fracture Mechanics for modehng fatigue crack growth' 
propagation is well established (12.2. 12.16, 12.17). Fracture mechanics 
provides the meU1ods by which techniques of applied mechanics can be apphed 
to stmctures in the presence of a crack. In majority of fatigue situations, the 
crack will occur under elastic conditions. Hence U1e size of the plastic zone at 
ilie crack tip would be small compared to the crack size, thus making way for 
using Linear Elastic Fracture Mechanics (LEFM) concept. Inherent assumptions 
are small displacements and general linearity between stresses and strains. The 
behaviour of a cracked component is characterized by stress, cmck size and 
stmctural dimensions. The effect of these parameters is modelled by defining 
Stress Intensity Factor (SIF), which is detennined as 

k = Y(a) S .;-;;-;; (12.105) 

in which a is the crack size. S is the stress acting on the component and Y(a) is 
a geometric function depending on the shape of the specimen and crack 
geometry. 
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There are. generally three models of loading which involve different crack. 
surface <lliplac,ements (12.2) in fracture mechanics study. They are 

• Mode I : Opening or tearing mode, 
• Mode II : Sliding or in-plane shear, and 
• Mode III : Tearing or out-of-plane shear. 

Mode I is the predominant loading mode in most of the structures (12.2). For an 
infinite plate subjected to unifonn tensile stress (Mode I), SIF is given by 

(12.106) 

At the moment of failure, the value of SIF reaches a critical value known as 
fracture toughness which is a material parameter. Fracture toughness represents 
the ultimate ability of a material to resist progressive crack extension. This 
property of a material has to be detennined experimentally. It is seen that 
fracture toughness decreases with increase in specimen thkk.ness upto a certain 
limit beyond which it almost becomes a constant. 

One of the important parameters required for application of fracture mechanics 
is the crack size which can be suitably assumed or obtained by field 
measurements. The parameters involved in fracture mechanics studies, like 
fracture toughness, stress range, crack size, cannot be quantified exactly. There 
is always a certain amount of uncertainty in U1ese parameters. Hence tile 
principles of structural reliability can be made use of for estimating the 
probability of failure of a structute. Here a method for finding fatigue Life is 
explained using principles of LEFM as applied to fatigue. 

It is well known that fracture mechanics gives a better picture of fatigue crack 
growth than empirical S-N curve approach. In FM ~pproaoh, Paris law (12.18) is 
used for modelling crack growth. The concept of equivalent stress range for 
representing tile variable amplitude stress history is used. 

Fatigue crack propagaUon is modelled using the concepts ofLEFM. The crack 
growth rate is a function of stress intensity factor range which is given by 

(12.107) 

where kmax is the maximum SIF and kmin is the minimum SIF. The rate of 
fatigue crack propagation follows Paris crack growth law (12.18) given by, 

(12.108) 

in which a is the crack size, N is the number of cycles, C and n are crack 
growth parclllleters. C and n have to be determin,ed experimentally. Figure 
12.11 represents the typical crack growtl1 rate curve. ~e curve has three distinct 
regions. Region I begins wiili a threshold value of Sl.F ra11ge. 1:!.. klh , below 
which crack does not propagate. Region n is the zone in which the plot is linear 
where Paris Law holds good. Region III has a steep slope and the curve 
approaches the maximum stress intensity factor range which is equal to the 
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fracture toughness of the material. The steep gradient indicates unstable crack 
extension. 

z ... 

~•-•__, ~ion 11 

b.Kth 

I 
I I 

I 
I 
I 

I 
~-.-Ill 

Str4'•• inl4'-\ly rangoo ,log b.K 

Fig. 12.11 Regions of fatigue crack growth 

The general expression for stress intensity factor range is 

1:1 k =Y(a)S~ (12.109) 

in which S is the far field stress range from applied load. In actual situations, the 
stress range is not of constant amplitude, but of variable amplitude and 
frequency. For such a case equivalent static stress range, s. is determined, and 
the same is used in Eq. 12.109. Hence stress intensity factor range, 1:1 k, becomes 

1:1 k=Y(a)S6~ (12.110) 

Y(a) depends on the dimensions of the component. For various shapes and crack 
configurations, equations for determination of SIF are available (12.2, 12.19, 
12.20). Once the expression for SIF is known, fatigue propagation life can be 
determined from Eq. 12.108 by separation of variables and adopting numerical 
integration. The fatigue life 

N (12.111) 
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where aria the initial crack size and It is tbc final crack size. N is the tnJmber of 
cyclea req~ for the crack to grow from a, to 8( . Using Eq. 12.109 in the 
above equation. 

(12.112) 

For constant stress rangeS, and Y(a) constant (that is Y(a) = Y) during crack' 
growth from Iii to ar over N cycles, the above equation simplifies to 

~-1 
(12.113) 

- aJ 

This correspond to an S-N curve N sm = K and suggests that the constant K 
can be expressed as a function of more basic quantities. Final crack size using 
the above equation becomes, 

(12.114) 

For stress cycles of varying amplitude, Eq. 12.113 may be used as S-N curve 
equation and .reliability analysis can be carried out as explained earlier lUlder S­
N curve approach. 

For reliability analysis two separate types of failure criteria can be used. 

i) Failure occurs when the crack developed exceeds the predetermined or 
specified critical size a., . The limit state function is written as 

Z=a.,-a (12.115) 

This criterion is based on the concept Lt-aat when the crack has developed to the 
size a., , it becomes unstabk and the component is assumed to fail. This comes 
under serviceability limit state. 

ii) Failure occurs when the stress intensity factor K at the leading edge of 
the crack exceeds the fracture toughness K., . -ryte limit state function is 

Z=K.,-K 

= K., - Y(a) S ~ (12.116) 
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The resistance is characterized by the material parameter K., . The criterion 
comes under ultimate timit state. If small variance approximation is used. 
reliability mdex is given by (12.1), 

fJ 

K en c 
0.637 S (rriiJ 12 

(12.117) 

Hence p can be calculated if statistics of K,. , S and a are known. Here K" 

means the sample mean value of K.: . 

For the development of inspection strategy and maintenance, it is necessary to 
know the number of cycles required to propagate the cr.tck from a to a crack 
size ac . The general expression for stress intensity factor range Me is given by 
Eq. 12.109. Y(a) depends on crack shape, size and other factors. Sometimes Ilk 
is generally written as 

(12.118) 

where ki are correction factors for crack shape, free surface effect, fmite width 
effecL stress gradient effect etc. Equations for stress intensity factors are 
available for a variety of problems (12.2. 12.19, 12.20). The expression for SIF 
being known, the fatigue propagation life can be determined from Eq. 12.108 by 
separation of variables and adopting numerical integration. Hence fatigue life, 
N, is given by 

a! 
N = f da 

a1 C(M)" 
(12.119) 

The final crack size is calculated using Eq. 12.110 

(12.120) 

where K, is the fracture toughness. Equation 12.120 is to be numerically solved 
since Y(a) is a function of a . Newton Raph.soo method can be used. The scheme 
of oomputation for ac is as follows. 

i) For the problem on hand, appropriate expess:ion for SIF is selected. 



419 

ii) Knowing the initial cracks size and the fracture touglmess, the final 
crack size is computed using Eq. 12.120. In the expression for SIF, a1 

is substituted for a. 

Monte Carlo Simulmion 

The variables involved iii the scheme of computation for N are random variables 
in nature. Hence the number of cycles to fatigue crack propagation will also be a 
random variable which brings the concept of probability of failure. Monte Carlo 
technique is generally used for computing probability of failure for various 
desired number of cycles. The scheme of computation is as follows: 

i) Knowing the distribution and parameters of random variables 
considered (say ai , m, K., , model parameter attached to the calculated 
stress range etc.), random values are generated for each of the 
variables. 

ii) The final crack size, ac , is computed using the generated values at the 
given stress range level and using Eq. 12.120. 

iii) Knowing a;, and ar, number of cycles elapsed for the crack propagating 
from a;, to ar is determined from Eq. 12.119. 

iv) The desired life in terms of cycles, N, , being given, the limit state 
function is 

Z = N -N. 

in which N is the number of cycles computed in step (iii). 

v) Steps (i) to (iv) are repeated for a number of times say, n. , to get an 
ensemble of realizations for Z. 

vi) The probability of failure is then calculated as 
nr 

Pr=-, 
n, 

(12.121) 

where 11c is the nwnber of times Z < 0 during simulation Reliability index is 
taken as 

P=-~-1 (pr) 

The number of simuJations, n. , is fixed on the Schooman's error criterion (Refer 
Eq. 7.37 in Chapter 7). 

Considerable wo.rk bas been done on the fatigue reliability evaluation of 
riveted railway steel bridges in India (12.23, 12.24), welded steel bridges in 
U.S.A (12.22) and marine structures (12.21, 12.25, 12.26) and application of 
fatigue reliability to offshore platform inspection (12.27, 12.28). 
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EXERCISE 

12.1 Determine the fatigue reliability of a detail tn a bridge designed as per 
LRFD fonnai. It is given: 
~ = 0.36 8s. = 0.15 m = 3 
YR = 1.0; Ys = 1.536 

( Ans. p = 3.5)2 

12.2 A detail is to be designed for a reliability level of Po= 3.5. Detennine 
Ys fixing YR = 1.0. It is given : 
8s. =0.25 ~ =0.36 m = 3 

( Ans.ys = 2.056) 

12.3 Determine the fatigue reliability of a welded joint in an offshore 
platform using Wirsching's approach for a 20 year life and long term 
~design stress range S,d = 383.3 N/mm2

• It is given: 
Ts 20 yr k 0.69 f..(m) = 0.79 
m 4.42 /o 0.25 hertz 
K 9.22 x10 15 8K 1.35 
B 0.7 8a 0.5 
-· 
Dr 1.0 r5D

1 
= 0.3 
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Long term stress range follows Woibull distribution and all other 
t~> variables arc lognonnally distributed. 

12.4 

( Ans. p = 2.09) 

Detmninc the design stress range of a welded detail in a ship using 
Munse's approach based on WeibtJll format for the d~ fatigue 
reliability level of0.999 and for a design life of 101 cycles. It is given: 
~ • 0.78 ; m • 3.71 
K - 2.53 X 1014 (Mpa units) 

(Au. 109,?Nimm') 



APPENDIX A 
Standard Normal Tables 

TABLE A I Cumulative probability of staudard normal variate = 'll(u) 

u ~(u) u 'll(u) II 'll(u) 

0 .50000 

-.01 .49601 -.37 .35569 -.73 .23270 
-.02 .49202 -.38 .35197 -.74 .22965 
- .03 .48803 - .39 .34827 -.75 .22663 
-.04 .48405 -.40 .34458 - .i6 .22363 
·-.05 .48006 -.41 .34090 -.77 .22065 
- .06 .47608 - .42 .33724 -.78 .21770 
- .07 .47210 -.43 .33360 - .79 .21476 
- .08 .46812 - .44 .32997 -.80 .21186 
-.09 .46414 -.45 .32636 -.81 .2089i 
-.10 .46017 - .46 .32276 -.82 .20611 
-.11 .45620 -.47 .31918 -.83 .20327 
- .12 .45224 - .48 .31561 -.84 .20045 
-.13 .44828 - .49 .31207 -.85 .19766 
-.14 .44433 ·-.50 .30854 -.86 .19489 
-.15 .44038 -.51 .30503 -.87 .19215 
- 16 .43644 - .52 .30153 - .88 .18943 
-.17 .43251 -.53 .29806 -.89 .18673 
·-.18 .42858 - .54 .29460 -.90 .18406 
- .19 .42465 - .55 .29116 - .91 . \8141 
-.20 .42074 - .56 .28774 -.92 .17879 
-.21 .41683 -.57 .28434 - .93 .17619 
- .22 .41294 -.58 .28096 - .94 .17361 
-.23 .40905 -.59 .27760 -.95 .17106 
-.24 .40517 -.60 .27425 -.96 .16853 
-.25 .40129 -.61 .27093 -.97 .16602 
-.26 .39743 -.62 .26763 -.98 .16354 
-.27 .39358 -.63 .26435 -.99 .16109 
-.28 .38974 -.64 .26109 -1.00 .15866 
- .29 .38591 -.65 .25785 -1.01 .15625 
-.30 .38209 -.66 .25463 -1.02 .15386 
-.31 .37828 - .67 .25143 -1 .03 .15151 
-.32 .37448 -.68 .24825 -1 .04 .14917 
-.33 .37070 -.69 .24510 -1.05 .14686 
-.34 .36693 -.70 .24196 -1.06 .14457 
-.35 .36317 -.71 .238.85 -1 .07 .14231 
-.36 .35942 -.72 .23576 -1.08 .14007 
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II •<u) u •(u) u fl(u) 

-1,09 .13786 -1.60 .. OS480 -2.11 .01743 
-1.10 .13!167 -1.61 .0Sl70 -2;12 .01700 
-1.11 .13350 -1.62 .05262 -2.13 .01659 
-hll .i ~l36 .-·1.63 .05155 --'2.f4 .01618 
--1.13 .12924 -1.64 .ososo_ -2.15 .01578 
-1.14 .12714 ;-'1.65 .04947,.- -2.16 .01539 
~1.15 .12S07 - 1.66 .04846 -'2.17 .01500 
-Ll6 .12302 - 1.67 .04746 -2.18 .01463 
-1.17 .12100 - 1.68 .04648 -2.19 .01426 
-l.l8 .11900 - 1.69 .04551 -2.l0 .01390 
-Ll9 .11702 - 1.70 .04451 -2;21 .oms 
-1.20 .11507 - 1.71 .04363 -2.22 \.01321 
-1.21 .11314 - 1.72 .04272 --,2.23 .01287 
-1.22 .11123 -1.73 .04182 -2.24 .01255 
-1.23 .10935 - 1.74 .04093 -2.25 .01222 
-1.24 .10749 -1.75 .04006 -2.26 .OJ191 
-1.25 .10565 - 1.76 .03920 -2.27 .01160 
-1.26 .10383, - .1.77 .03836 -2.28 .01J30 
-1.27 .10204 - 1.78 .03754 :-2.29 .01101 
-1.28 .10027,' - 1.79 .03673 -2.30 .01072 
-1.29 .09853 - 1.80 .03593. -2.31 .01044 
-1.30 .09680 - 1.81 . 03515 -2.32 .01017 . 
-1.31 .09510 - 1.82 .03438 

=i~ 
.00990 

-1.32 .09342 - 1.83 .03362 .00964 
-1.33 .09176 -1.84 .03288 -2:35 .00939 
. .,.,..J-.34 .()9012 -us .03216 -2.36 .00914 
-L35 .08851 -1.86 .03144 -2.37 .00889 
-1.3~ .08691 -1.87 .03074 -2.38 .00866 
-1.37 .08534 -US .03005 -2.39 .00842 
-1.38 .08379 "'"'1.89 .01938 -2.40 .00820 
. ..,.L39 .o8226 -L90 ,02872 -2.41 .00798 
-.1.40 .08076 -1.91 .02807 -2.42 .00776 
.,...J.41 .07927 -1.92 .02743 -2.43 .00755 
-L42 .07780 -1.93 .02680 -2.44 .00734 

. -1.43 .076:36 -1.94 .02619 -2.45 .00714 
-1.44 .07493 -1;95 .02559 -2.46 .00695 
-1.45 .07~53 -1.96 .02500 -2.47 .00676 
-1.46 .07215 -1.97 .02442 -2.48 .00657 
-1.47 .07078 -1.98 .02385 -2.49 .00639 
-1.48 .06944 -1.99 .02330 -2.50 .00621 
-1.49 .06811 -2.00 .02275 -2.51 .00604 
-l:SO .06681 -2.01 .02222 -2.52 .00587 
-1.51 .06552 -2.02 .02169 -2.53 .00570 
-1.52 .06426 -2.03 .02118 -2.54 .00554 
-1.53 .06301 -2.04 .02068 -'-2.55 .00!139 
-1.54 .06178 -2.05 .02018 -2.56 .00!123 
-1 55 .06057 -2.06 .01970 -2.57 .00508 
.,..J.56 .05938 -2.07 .01923 -2.58 .00494 
-1.57 .05821 -2.08 .01876 -2.59 .00480 
-1.58 .05705 -2.09 .ol831 -2.60 .00466 
-1.59 .05592 -2.10 .01786 -2.61 .00453 

(ConJd.) 
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TABLE A 1 (Co111d.) 

u t/l(u ) II t/l(u) II <ll(u) 

-2.62 .00440 -3.13 .87403£-03 -3.64 . 13632£--0.l 
-2.63 .00427 -3.14 .84474E-03 -3.65 . 131 12E-OJ 
-2.64 .00415 -3.15 .81635£-03 -3.66 . 12611E--OJ 
-2.65 .00402 -3.16 .78885£-03 -3.67 . 12128E--O.l 
-2.66 .00391 -3.17 . 76219£--- OJ -3.68 . I 16621::- OJ 
-2.67 .00379 -3.18 .73638£-03 -3.69 .I 12131:-0J 
-2.68 .00368 -3.19 .71136E- 03 -3.70 .10780E-- OJ 
-2.69 .00357 -3.20 .68714£-03 -3.71 .10363E--OJ 
-2.70 .00347 -3.21 .66367£-03 --3.72 . 99611 E - -04 
-2.71 .00336 -3.22 .64095£-03 -3.73 .95740£--()4 
-2 .72 .00326 -3.23 .61895E-03 -3 74 .920JOE-U4 
-2 .73 .00317 -3.24 .59765E-03 -3.75 .884171::-04 
-2.74 .00307 -3.25 .57703[-03 -3.76 .849571::-04 
-2.75 00298 -3.26 .55706E-03 -3 .77 .81624[--04 
-2.76 .00289 -3.27 .53774E-03 -3.78 .78414£-04 
-2.77 .00280 -- 3.2!l .51904£-03 -3.79 .75324E-04 
-2.78 .00272 -3.2'J .50094E-03 -3.80 .72348£-04 
-2.79 .00264 -3 .30 .48342£-03 -HI .69483E-04 
-vm .00256 -3.31 .46648£-03 -3.82 .66726£- 04 
-2.81 .00248 -3.32 .45009E-03 - 3.H3 .64072£- 04 
-2.82 .00240 -- 3.33 .43423£-03 --3.84 .61517E-04 
-2.83 .00233 -3.34 .418891::-03 -3.85 .59059£-()4 
-2.84 .00226 - 3.35 .40406£-03 --3.86 .56(:94£--{)4 
-2.85 .00219 -3.36 .3897JE-03 -3.87 .54418£-04 
-2.86 .00212 -3.37 .37584£-03 -3.88 .52228£-04 
-2.87 .00205 -3.38 .36243£-03 -H9 .50122£-04 
-2.88 .00199 -3.39 .34946E-03 -3.90 .48096£-04 
-2.89 .00193 -3 .40 .33693£-03 -3.91 .46148£--()4 
-2.90 .00187 -3.41 .32481£-03 -3 .92 .44274£-04 
--2.91 .00181 - -3.42 3131JE-03 -3.93 .42473£-{)4 
-2.92 .00175 - 3.43 .30179E-03 --3.94 .40741£-04 
-2.93 .00169 -3.44 .29086£-03 -3.95 .39076£-04 
-2.94 .00164 -3.45 .28029£-03 -3.96 .37475£- 04 
--2.95 .00159 - -3.46 .27009E-03 -3.97 .35936E-04 
-2.96 .00154 -3.47 .26023£-03 -3.98 .34458E-04 
-2.97 .00149 -3.4~ .25071E-03 -3.99 .33037E-04 
-2.98 .00144 -3.49 .24151£-03 -4.00 .31671E-04 
-2.99 .00139 -3 .50 .23263E-03 -4.01 .30359E-04 
-3.00 .00135 -3.51 .22405£-03 -4.02 .29099E-04 
-3.01 .13062E-02 -3.52 .21577E-03 -4.03 .27888E-04 
-3.02 .12639E-02 -3.53 .20778E-03 -4.04 .26726E-04 
-3.03 .12228E-02 -3.54 .20006E-03 -4.05 .25609£--()4 
-3.04 .11829E-02 -3.55 .19262E-Q3 -4.06 .24536E-D4 
-3.05 .11442E-Q2 -3.56 .18543£---{)3 -4.07 .23507E-D4 
-3.06 .11067E-02 -3.57 .17849£-03 -4.0ll .22518E-04 
-3.07 . 10703£-02 -3.51) .17180E-03 -4.09 .21569£-04 
-3.08 .10350E-Q2 -3 .59 .16534E-03 -4.10 .20658E-04 
-3.09 .10008E-02 -3.60 . 15911 E-03 -4. 11 .19783E-04 
-3.10 .96760[--03 - 3.61 .153JOE-03 -4.12 .18944[-04 
-3.11 .935441:::-03 -3.62 .14730E-03 -4.13 .18138[--04 
-3.12 .904261:::-03 -3.63 .14171E-03 -4.14 .17365E-04 
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u •<u> u tl>(u) u tl>(u) 

-4.1~ .16624E-o4 -4.82 .71779E-06 -5.84 .26100E-08 
-4.16 .159l2E-04 -4.84 .64920E-06 -5.86 .2314JE-o8 
-4.17 .15230E-o4 -4.86 . .58693E-06 -5.88 .205IJE-os 
-4.18 . l457.S~ -4.88 .53043E-06 -5.90 .18175E-o8 
-4.19 . l~948E-o4 -4.90 .47918E-06 -5.92 .t6097E-o8 
-4.20 . l~46E-04 -4.92 .43272E-06 -5.94 .14251E-08 
-4.21 :12769E-o4 -4.94 .39061E-06 -5.96 .J2612E-o8 
-4.22 .122l5E-o4 -4.96 .35247E-o6 -5.98 .tllS7E-os 
-4.23 .1168SE-o4 -4.98 .31792E-06 -6.00 .98659E-09 
-4.24 .11176E-o4 -5.00 .28665E-06 -6.02 .87209E-o9 
-4.25 .10689E-o4 -5.02 .25836E-06 -6.04 .77057E-09 
-4.26 .10221E-{)4 -5.04 .23277E-06 -6.06 .68061E-09 
-4.27 .97736E-o5 -5.06 .20963E-06 -6.08 .60091E-09 
-4.28 .93447E-oS -5.08 .18872E-06 -6.10 .53034E--Q9 
-4.29 .89337E-o5 -5.10 .16983E-o6 -6.12 .46788E-09 
-4.30 .85399E-{)5 -5.12 .15277E-06 -6.14 .41261£-09 
-4.31 .81627E-05 -5.14 .13737E-06 -6.16 .36372£--09 
-4.32 .78015E-05 -5.16 .12347E-o6 -6.18 .32051£-09 
-4.33 .74555£-{)5 -5.18 .11094E-06 -6.20 .28232E-09 
-4.34 .71241E-05 -5.20 .99644E-07 -6.22 .24858£-09 
-4.35 .68069£-05 -5.22 .89462E-07 -6.24 .21879E-09 
-4.36 .65031E--05 -5.24 .80288E-07 -6.26 .19249E-09 
-4.37 .62123E-05 -5.26 .72028E-07 -6.28 .16929£-09 
-4.38 .59340£-{)5 -5.28 .64592E-{)7 -7.30 .14882£--{)9 
-4.39 .56675E-05 -5.30 .57901E-o7 -6.32 .13078E-09 
-4.40 .54125E-{)5 -5.32 .51884E--07 -6.34 .11488E-09 
-4.41 .5168SE-05 -5.34 .46473E-07 -6.36 .10088E-09 
-4.42 .49350£--05 -5.36 .4161JE-07 -6.38 .88544E-IO 
-4.43 .47117E-05 -5.38 .37243E-07 -6.40 .77688E-IO 
-4.44 .44979E-05 -5.40 .33320E-07 -6.42 .68137£-10 
-4.4.5 .4293.5E--05 -5.42 .29800E-07 -6.44 .59737£-10 
-4.46 .40980E-05 -5.44 .26640E-07 -6.46 .52351E-10 
-4.47 .39JJOE-05 -5.46 .23807E-07 -6.48 .45861E-IO 
-4.48 .37322£--05 -5.48 .21266E-07 -6.50 .40160E-l0 
- 4.49 .35612E--05 -5.so .l8990E--07 -6.52 .35154E-10 
-4.50 .33977E-05 -5 . .52 .16950E-07 -6.54 .30759£-10 
-4.52 .30920£-05 -5.54 .15124E-07 -6.56 .26904E-IO 
-4.54 .28127£-05 -5.56 .13489E-07 -·6.58 .23522E-10 
-4.56 .25577E-05 -5 . .58 .12026E-07 -6.60 .20558E-IO 
-4.58 .23249E-0.5 -5.60 .l0718E-07 -6.62 .l7960E-IO 
-4.60 .21125E-o.5 -5.62 .95479E-08 -6.64 .15684E-IO 
-4.62 .t9187E-o5 -5.64 .85025E-o8 -6.66 .13691E-JO 
-4.64 .17420E-05 -5.66 .75686E-o8 -6.68 .ll947E-10 
-4.66 .15810E-{)5 -5.68 .67347E-08 -6.70 .l0421E-10 
-4.68 .14344E--05 -5.70 .59904E-08 -6.72 .90862E-ll 
-4.70 .13008E-o5 -5.72 .53262E-08 -6.74 .79193E-ll 
-4.72 .11792E-o5 -.5 .74 .47338E-08 -6.76 .68996E-Il 
-4.74 .l0686E-o5 -.5.76 .42057E-08 -6.78 .60088E-ll 
-4.76 .96796E-06 -5.78 .3735 OE--()8 -6.80 . .52310E-l I 
-4.78 .87648E-o6 -5.80 .33157E-08 -6.82 .45520E-11 
-4.80 .79333E-06 -5.82 .29424E-08 -6.84 .39597E-11 

(Contd) 
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TABLE A 1 (Corrtd) 

II 'IJ(u) II 'IJ(u) II •(u) 

-6.86 .34430E-11 -7.88 .16369E-14 -8.90 .27923£-18 
-6.88 .29926£- 11 -7.90 .13945£-14 -8.92 .23314E-J8 
-6.90 .26001£-ll -7.92 .11876£-14 -8.94 .19459£-18 
-6.92 .22582£-ll -7.94 .10109E-14 --8.96 .16234£-18 
-6.94 .19605E-Il -7.96 .86020E-15 -8.98 .13538E-18 
-6.96 .17014£-ll -7.98 .73167E-15 -9.00 .11286E-18 
-6.98 .14759E-11 -8.00 .62210£-15 -9.02 .94045£-19 
·-7.00 .12798E-11 -8.02 .52873£-15 -9.04 .78336£-19 
-7.02 .11093E-11 -8.04 .44919£-15 -9.06 .65225E-19 
-7.04 .96120E-12 -8.06 .38147E-15 -9.08 .54287E-19 
--7.06 .83251£-12 -8.08 .32383E-15 -9.10 .45166E-19 
-7.08 .72077E-12 -8.10 .27480E-15 -9.12 .37562E-19 
-7.10 .62378E-12 -8.12 .23309E-15 -9.14 .3J226E-19 
-7.12 .53964E-12 -8.14 .19764E-15 -9.16 .25949£-19 
-7.14 .46665E-12 -8.16 .16751E-15 -9.18 .21555E-19 
-7.16 .40339£-12 -8.18 .14192E-15 -9.20 .17897£-19 
-7.18 .34856E-12 -8.20 .12019£-15 -9.22 .14855E-19 
-7.20 .30106E-12 -8.22 . 10175E-15 -9.24 .12325E-19 
-7 .22 .25994E-12 -8.24 .86105£-16 -9.26 .J0222E-19 
-7.24 .22434[-12 -8 26 .72836E-16 -9.28 .84739E-20 
-7.26 .19355£-12 -8.28 .61588£-16 -9.30 .70223E-20 
-7.28 .16691£-12 -8.30 .52056£-16 -9.32 .58170E-20 
-7.30 .14388£-12 -8 .32 43982£-16 -9.34 .48J97E- 20 
-7.32 .12399[-12 -8.34 .37145E-16 -9.36 .39M68E-20 
-7 .34 .10680E-12 -8.36 .31359E-16 -9.38 .32986[-20 
-7.36 .91955E-J3 -8.38 .26464E- 16 -9.40 .27282E-20 
-7.38 .79145£--13 - ·8.40 .22324£-16 -9.42 .22554E--20 
-7.40 .68092E-13 -8.42 .18824£-16 -9.44 .1 8639E--20 
-7.42 .58560E-J 3 -8.44 .15867£-16 -9.46 .15397E--21J 
-7.44 .50343E-13 -8.46 .13369£-16 -9.48 .12714£-20 
-7.46 .43261E-13 --8 48 .11260£--16 -9.50 .10495[-20 
-7.48 .37161£-13 ---8.50 .94795£-17 --9.52 .86590£-- 2l 
-7.50 .31909E-13 -8.52 .79777E-17 -9.54 .71416E-21 
-7.52 .27388£-13 -8.54 .67LIIE-17 -9.56 .58878E-21 
-7.54 .23499£-13 - ·8.56 .56434E-17 -9.58 .48522E-21 
-7.56 .20153[-13 --8.58 .47437E-17 -9.60 .39972E-21 
-7.58 .17278E-·U -· 8.60 .39858£-17 -9.62 .32916E-21 
-7.60 .148071 --13 -8.62 .33477E-17 -9.64 .27094£-21 
-7.62 .12684E-13 -8.64 .28107£-17 -9.66 .22293£-21 
-7.64 .1086IE--13 -8.66 .23588E-!7 -9.M .18336E---21 
-7.66 .92967E-14 -8.68 .19788E-17 -9.70 .15075E-21 
-7 .68 .79544E-14 -8.70 .16594E-17 -9.72 .12389E-2.i 
-7.70 .68033E-14 -8.72 .13910E-17 -9.74 .IOliSP.-21 
-7;72 .58165E-14 -8.74 .11656E-17 -9.76 .83578E-22 
-7.74 .49708E-14 -8.76 .97625£-18 -9.78 .68605E-22 
-7.76 .42465E-14 ·-8.78 .81737£-18 -9.80 .56293E-22 
-7.78 .36262E-14 -8.80 .68408E-18 -9.82 .46!72E-22 
-7.80 .30954E-14 -8.82 .57230E-18 -9.84 .37855E-22 
-7.82 .26412£-14 -8.84 .47859E-18 -9.86 .31025E-22 
-7.84 .22527E--14 -8.86 .40U07E-18 -9.88 .25416E-22 
-7.86 ,19207E-14 -8.88 .33'130E-18 -9.90 .20814E-22 
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u fl(uJ u <l>(u} II fl(u) 

-9.92 .17038£- 22 ... 2.32 IQ-1 - 5.20 J0-7 
-9.94 .J3941E- 22 -3.09 JQ- • -5.61 to-• 
-9.96 .11403£- 22 -3.70 J0-4 - 6.00 to-• 
-9:98 .93233E-23 -4.26 I0-1 - 6.36 J0-10 

; 10.00 ' .76199E- 2) '. -4.75 JQ-• - 6.71 to-u 
~1.28 zo-• .. .• ;_ 
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APPENDIX B 
Partial Safety Factors for RCC 
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TABLE 81 Optimal partial safety factors for loads for columns 

YD = 1.2 For Comp. YR = 0.725 

For Tens. Yx = 0.80 

Load Combination D + Lm D -1- Wm D + Lapt + Wm 
Mix Failure Po YL Yw 'IL Yw 

Case (i) 
L 0 = 3 Design Comp. 3.0 1.2 1.2 0.30 1.1 
kN/m1 3.5 1.4 I.S 0.27 1.5 

4.0 1.9 2.0 0.24 2.0 
Tension 3.0 1.3 I.S 0.25 1.4 

3.5 1.8 2.0 0.24 1.8 
4.0 2.4 2 . .5 0.23 2.3 

Nominal Comp. 3.0 1.4 1.6 0.20 1.6 
3.5 2.5 2.6 0.17 2.6 
4.0 4.0 3.6 0.15 3.6 

Tension 3.0 1.4 1.5 0.22 l.S 
3.5 2.3 2.3 0.20 2.3 
4.0 3.5 3.2 0.18 3.2 

Case (ii) 
L 0 = 4 Design Comp. 3.0 0.8 1.2 0.20 I. I 
kN/rn1 3.5 1.1 I.S 0.1~ l.S 

4.0 1.5 2.0 0.1 2.0 
Tension 3.0 1.0 1.5 0.18 1.4 

3.5 1.4 2.0 0.17 l.S 
4.0 1.8 2.5 0.16 2 .. 3 

Nominal Comp. 3.0 1.1 1.6 0.15 1.6 
35 2.1 2.6 0, 13 2.5 
4.0 3.9 3.6 0.17 3.5 

Tension 3.0 1.0 1.S 0.17 1.3 
3.5 1.7 2.3 0.15 2.3 
4.0 2.7 3.2 0.12 3.2 
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genes:ations of 301, 309 
stochastically 302 

Eigenvalues 216-221 
Elastic 

analysis 3 
behaviour 2 

Equival~nonnal 211 
Erlang distribution 76 
Events 

certain 24 
collectively exhaustive 27,41 
complement of 24 
compound 23 
disjoint 26 
intez:section 26 
mutually exclusive 26, 29,41 
null 24 
random relationships among 26 
simple 23, 43 
Wlion 26 

Expectation 60 
algebra of 62 
conditional 62 
of a function 62 

Expected value 175, 193,217,221 
Exponential distribution 88, 130, 150, 

161 
Extremal distributions 79 

Rayleigh 88 
Type 1 (smallest) 81, 28, 87 
Type 1 (largest) 55, 80, 81, 87, 128, 

132,134,136,139,162,209,212-
216,246 

Type 2 (largest) 83, 84, 87, 88, 134, 
150,162,204,206 

Type 3 (smallest) 84, 85, 86, 162 

Factor of safety 1, 107, 108 (.feesafety 
factor) 

Failure 
filnction 144, 180, 191 
modes 172,293,301 
correlated 172 
probability, (see probability of failure) 
rate 145 
surface 180, 181, 183, 189 
path 294 
point 199 

Fatigue 378 

strength 381,393 
Fatigue reliability of details I joints in 

bridges 382, 396 
highway bridges 387 
offshore structuia 404 
railway bridges 400, 407 
ship structures 404, 413 

First order reliability method (FORM) 
340 

First order second-moment (FOSM) 
method 182, 188, 316 

Fracture mechanics 414 
Fracture toughness 418 
Frames 

reliability analysis of 337, 362 
Frechet distribution 134 
Frequency distnoution 

relative 14, 15,29 
cumulative 14, 16 

Gamma distribution 75-77, 87, 109, 125, 
128, 130, 159, 164 

Gamma filnction 
incomplete 75, 89 

Gaussian distribution, (see normal 
distribution) 

Goodness-of-fit tests 93 
Gumbel distribution 80, 134 

Hasofer Lind method 190 
Hazard filnction 144 
High yield strength 

defonned burs 98, 108 
Histogram 14 

Inelastic 2 
Importance sampling method (ISM) 342 
Influence area 122, 123, 125 
Influence surface 122 
Inverse transfOIIWltion technique 159, 

161 

Joint probability distribution 
cumulative distribution function 157 
probability density function 157 

Kolmogorov-Smirnov test 89, 93 
Kurtosis 

coefficient of 61 



Lagrange multiplier method 192 
Lifetime 118, 125 

design wind speed 137 
maximum live load 117 
maximum wind speed 139 

Limit state 
aerviceabilit ,. 4 
ultimate 4, 13? 

Limit state design 
probability based 240 

Live load 
~y 116,127,129,131 

Load 
arbitrary point in-time 113, 125, 127, 

132 
dead 1-3,111-114 
earthquake 2 
factored 4 
floor 10,112,132 

equivalent unifonnaly distributed 
117, 119, 123, 125, 129 
extraordinary 113-115, 132 

lifetime maximum 113,117,119, 
126,130,210,241,243 

live 1,2, 10,111-119,163,199 
modeling 

maximum total 114, 130 
susUdned 113-118,120,126,128 

service 2 
transient 129, 130 

lifetime maximum 130 
ultimate 2, 3 
~d 1-3, 132, 138 

Load factor 3, 111,241,319,321 
combined 232 

Lognonnal distribution 72, 87, 93, 109, 
125,127,139,149,163,203 
fonnat 394, 404 
variate 74 

LRFD (load and resistance factor design) 
223,241,242,246,263,264,393 

Material reduction factor 239, 240,244 
MaXimum likelihood 

method of 1 09 
Mean 

functions of variables 65 
of a random variable 60 
sample 17, 18 
value method 185 

Median 12 
Mode 

of a random variable 12 
Momarta 

mr:thods of 109 
of jointly distributed variables 64 
of nudom variables 60 

Monte Carlo 

437 

method 158, 164-167, 175 (HI also 
tedmique) 

sample aize 165-167 
aimulati'on 139 · 
~ 139; 158, 159, 167, 170, 

116, 244, 324 • 

NBC (Canada) format 240 
Normal diatribution 70, 87, 93, 109, 149, 

162,221 
equivalent 199,247 
standard 70 

Palmgrcn-Miner's cumulative daJna&e 
383 

Paris crack growth law 415 
Pearson Type 3 distribution 76 
Piecewise linear elastic plastic {Pwi.Ep) 

293,294i316 
Poisson distribution 88 
Poi990n p-ocess 125, 126 
Probability 

axioms 42, 43 
conditional 32, 38 
joint 35,46,287,288 
mass function 43 
notional 179, 
tree diagram 36, 37 

Probability density function 
conditional 51, 57 
joint 46, 47, 50 
~ 48,50,51 

Probability offallilre 7, 144, 146, 148, 
157,167,269,270 

conditiooaJ 157, 158 
ofmaterial lOS 

Probabili~y of lllllVjval 7, 143, 269 

Quality control 91, 93, 143 

Random number generation 159 
composition method 160 



438 

from beta distribution 163 
from exponential distribution 161 
from gamma distribution 164 
from lognonnal distribution I63 
from nonnal distribution 162 
from Type I extremal (largest) 

distribution 161, 162 
from Type I extremal (smallest) 

distribution I61 
from Type 2 extremal (largest) 

distribution I6I, I62 
from Type 3 extremal (smallest) 

distribution I61, 162 
from uniform distribution 161 
from Weibull distribution 16I 
inverse transformation tecbniquc 159 
pseudo random numbers 159 

Random process 22 
Random variable 43 

continuous 44,45,5I,60 
discrete 43,48 
functiollll of S 1 
independent 51 
jointly distributed 46, 49 

Range 13 
Rayleigh distribution 89 
Reliability 7, 143, I44, I48 

analysis I46, I77, 213,226,268 
analysis ofRCC frames 315, 3I9, 

322,334 
analysis of trusses 371 
based design 226, 242, 262 
factor 413 
index I49, 183 
targd 225,245,253,256,262 

Resistance factor 240 
Response surface method 358 
Retumperiod I33-135 
Risk 137, 138 
Rotation failure mode 316, 334 
Rule of multiplication 35 

Saferegion I81 
Safety checking format 224, 239, 246, 

256 
Safety checking methods 

Levell I79, 180, 2S3 
Levell 179, 180,225,226,244,2S3 
Levei3 I79 

Safety factor 

central 5, 226 
charac~stic 226,231 
partial 226, -229, 239, 245, 257-263 
optimal 252,254,257,258,259,260, 

346-349 
stress range 395 

Safety margin I48, I72, I75, I83, 189, 
2Q2,282 

Sample size 14, 165-167 
Sample space 23 

conditional 24 
continuous 24 
discrete 24 
reduced 33 
two dimensional 30 

Second order reliability method (SORM) 
340 

Series system 268-270 
Simulation 302 (.Jee also Monte Carlo 

simulation 
Skewness 

coeffiCient of I6, 61 
S-N cmve approach 382 
Standard bete variate n 
Standard deviation 13, 61 
Standard nonnal 

density function 70 
tables 340-345 
variable 70 

Standard normal variate 70 
Standard unifonn distribution 69 
S~cal independence 36 
Steel properties 

elasticity, modulus of 97, 99, 104 
statistics of 97 
ultimate strength 97 
yield strength 94-97, 104 
Yowtg's modulus 99 

Stochastic process 23 
· Stocllastic variable 23 

Stress 
. permissible I, 2 

ultimate I, 2 
intensity factor 

Stress range 379 
constant amplitude 383, 393 
equivalent constant amplitude 384 
design 385 
long term design 405 

S1ructural design 223, 225 
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