Alan Jeffrey

Matrix Operations
for Engineers
and Scientists

An Essential Guide in Linear Algebra

@ Springer



Matrix Operations for Engineers and Scientists






Alan Jeffrey

Matrix Operations for
Engineers and Scientists

An Essential Guide in Linear Algebra

@ Springer



Prof. Dr. Alan JeffreyT

16 Bruce Bldg.

University of Newcastle

NE1 7RU Newcastle upon Tyne
United Kingdom

ISBN 978-90-481-9273-1 e-ISBN 978-90-481-9274-8
DOI 10.1007/978-90-481-9274-8
Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2010932003

© Springer Science+Business Media B.V. 2010

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.
Cover design: eStudio Calamar S.L., Germany

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

This book is based on many courses given by the author to English and American
undergraduate students in engineering and the applied sciences. The book separates
naturally into two distinct parts, although these are not shown as parts one and two.
The first part, represented by Chapters 1-4 and a large part of Chapter 5, gives a
straightforward account of topics from the theory of matrices that form part of every
basic mathematics course given to undergraduate students in engineering and the
applied sciences. However, the presentation of the basic material given in this book
is in greater detail than is usually found in such courses. The only unusual topics
appearing in the first part of the book are in Chapter 3. These are the inclusion of the
technique of least-squares fitting of polynomials to experimental data, and the way
matrices enter into a finite difference approximation for the numerical solution of
the Laplace equation. The least-squares fitting of polynomials has been included
because it is useful and provides a simple application of matrices, while the finite
difference approximation for the Laplace equation shows how matrices play a vital
part in the numerical solution of this important partial differential equation. This
last application also demonstrates one of the ways in which very large matrix
equations can be generated when seeking the numerical solution of certain types
of problem.

The last part of Chapter 5 forms the start of the second part of the book, and
contains various important topics which, although belonging to the subject matter
of the chapter, are not discussed in courses as often as they deserve. Chapter 6
describes a matrix approach to the study of systems of ordinary differential equa-
tions and, although this approach is straightforward and found in courses for
mathematics majors, it is still a relatively new topic in courses for engineers and
applied scientists. In particular, the chapter shows how to use matrices when
solving the homogeneous and nonhomogeneous systems of linear constant coeffi-
cient differential equations that model so many physical situations. It makes full
use of the diagonalization of matrices when seeking solutions of systems of
differential equations, and it also shows how the Laplace transform can be applied
to matrix systems of differential equations. The chapter also provides motivation
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for the concept of the matrix exponential, which is then applied to differential
equations.

Chapter 7 uses matrices as a typical model when explaining the notion of vector
spaces that are the key to understanding many applications of mathematics. This
enables the basic ideas of vector spaces to be introduced at an early stage in an
undergraduate course. Chapter 8 develops the important and useful concept of a
linear transformation and provides motivation by using matrices when applying
linear transformations to the geometry of the plane. These applications illustrate the
general ideas of linear transformations in terms of simple and familiar geometrical
operations like stretching, rotating and reflecting shapes while, at the same time,
relating them directly to the study of matrices. Although these applications are
elementary, they are nevertheless useful, because while they can be combined to
make more complicated transformations, they also serve as a foundation for the
techniques used in applications as diverse as solid mechanics, crystallography and
computer graphics.

This book can be used as a text for a course, to supplement an existing course, for
private study, or to refresh and extend the reader’s knowledge of the theory of
matrices. All chapters are provided with clear and detailed illustrative examples as
each new idea is introduced, so, for example, attention is drawn to the fact that a
twice repeated eigenvalue does not necessarily have associated with it two linearly
independent eigenvectors, and it is then shown how this influences the nature of
solutions of systems of differential equations. Apart from Chapter 6 on differential
equations, no systematic attempt has been made to describe the numerous applica-
tions of matrices that are possible. Nevertheless, because of the intended readership
of the book, where appropriate a few relevant applications have been included.
Some of these applications have already been mentioned, but others illustrate the
way matrices can be used to solve linear second-order difference equations like the
one that generates the Fibonacci sequence and, because of the importance of two-
point boundary-value problems in applications of differential equations, it is shown
how matrices enter into the numerical solution of some of these problems.

Throughout the book, worked examples are numerous and they are supplemen-
ted by exercise sets at the end of each chapter. Solutions for all of the exercises are
given at the end of the book, always provided with adequate detail if a method of
solution is not completely obvious. Detailed explanations of new ideas have been
given throughout the book, because the author’s experience has shown that an
inadequate explanation when a topic is first encountered can cause unnecessary
difficulties for a student at later stages of study when matrix methods need to be
applied.

The ready availability of computer algebra software makes the manipulation of
matrices a simple matter and, in real life applications, such software should be used
whenever possible and, indeed, for complicated and large problems its use is
essential. However, the use of such software tools when learning about matrices,
before having first understood the underlying theory by working well-chosen
examples by hand with the help of a hand-held calculator, is likely to limit the
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reader’s ability to make full use of matrices when the time comes to apply matrix
methods to new problems.

The efficient ways software manipulates matrices when performing numerical
operations, like finding the rank of a matrix, its eigenvalues and eigenvectors, and
accelerating computations while maintaining high accuracy, depend for their suc-
cess on the use of sophisticated numerical techniques. Of necessity, the approach
used in such software will differ from the way the same operations are described in
this book, where only straightforward and direct methods are given, and the
necessary numerical calculations in examples and exercises have been reduced to
a minimum. For example, to simplify the numerical calculations involved when
working with eigenvalues and eigenvectors, the worked examples and exercise sets
dealing with this topic have been constructed in such a way that, whenever a
characteristic equation occurs, its roots can be found by inspection. This allows
the analysis to proceed without the interruption that would otherwise be caused if a
numerical root-finding technique for polynomials had first to be explained and then
used.

It is hoped readers will find the book helpful when working with matrices and
when applying linear algebra, and that it will encourage them to apply matrix
methods to the wide range of problems that are often solved less efficiently and
concisely by other means.

University of Newcastle Alan Jeffrey

Matrices and Linear Algebra for Engineering and Science
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Chapter 1
Matrices and Linear Systems of Equations

1.1 Systems of Algebraic Equations

The practical interest in matrices arose from the need to work with linear systems of
algebraic equations of the form

aixi +apxz + - - aypX, = by,
(X1 + apxy + - - - axpX, = by,
az1 Xy + asxy + - - azpXy, = b3a (1.1)

A1 X1 + Aup X2 + - - - A Xy = bma

involving the n unknowns x;, x5, . . . , X,,, m equations with constant coefficients
a;,i=1,2,...,m,j=1,2,...n, and m constants by, by, . . . , by, called
the nonhomogeneous terms, where the coefficients a; and the b; may be real or
complex numbers. A solution set for system (1.1) is a set of numbers {xi, x5, ... x,},
real or complex, that when substituted into (1.1), satisfy all m equations identically.
When m < n system (1.1) is said to be underdetermined, so as there are fewer linear
equations than unknowns a unique solution set cannot be expected.

The reason for this can be seen by considering the simple underdetermined
system

X1 +x+x3=1,
X1+ 2x + 3x3 = 2.

Rewriting the system as

Xp+x=1-—x;,
X1+ 2xp =2 — 3x3,
and for the moment regarding the expressions on the right of the equality sign as

known quantities, solving for x| and x, by elimination gives x; = x3 and x, = 1 — 2x3,

A. Jeffrey, Matrix Operations for Engineers and Scientists, 1
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2 1 Matrices and Linear Systems of Equations

where x; is unknown. Setting x; = k, where £ is a parameter (an arbitrary number), the
solution set {x1, X, x3} of this underdetermined system becomes {k, 1 — 2k, k}. As kis
arbitrary, the solution set of the system is not unique. It is not difficult to see that this
situation generalizes to larger underdetermined systems, though then the solution set
may depend on more than one unknown variable, each of which may be regarded as a
parameter.

When m > n system (1.1) is said to be overdetermined, so as n unknowns have to
satisfy m > n linear equations, in general no solution set will exist. That overdeter-
mined systems may or may not have a solution set can be seen by considering the
following three systems:

X1 +x+x3=2 X1+x+x3=1
X1+x=1
X1—|—2X2+3X3:0 X1+ZX2—|—3)C3=2
(a) X1 +2x =3 (b) C
Xy —2x +x3=—4 Xy +2x3 =1
X1+ 3x =0,
2x1 4+ 3xp +4x3 =2, 2xy + 3x3 +4x3 = 3.

System (a) can have no solution, because the left side of the third equation is the
sum of the left sides of the first two equations, but this relationship is not true for its
right side. Thus the last equation contradicts the first two equations, so the system is
said to be inconsistent. In system (b) the last equation is seen to be the sum of the
first two equations, so after discarding the last equation because it is redundant,
solving the remaining three equations by elimination gives x; = 2, x, = 2 and
X3 = —2. Thus the overdetermined system in (b) has a unique solution set {2, 2, —2}.
However, the situation in system (c) is different again, because the third equation is
simply the difference between the second and first equations, while the fourth
equation is the sum of the first two equations, so after discarding the last two
equations which are redundant, we are left with the first two equations that have
already been shown in (a) to have the nonunique solution set {x;, x,, x3}of the form
{k, 1 — 2k, k}, with k arbitrary (a parameter).

Finally, when m = n system (1.1) is said to be properly determined, so as n
unknowns have to satisfy n linear equations, unless one or more of the equations
contradicts the other equations, a unique solution set can be expected. This is the
case with the system

Xi+2x —x3 =6,
X1 — Xy +x3 = —4,

X1+ 2x —x3 =8,

which is easily seen to have the unique solution set {xi, x,, x3} given by {1, 2, —3}.
Notice that when, as above, the general solution set {x;, x,, x3} is equated to
{1, 2, —3}, this requires corresponding entries to be equal, so writing{xy, x,, X3} =
{1, 2, —3} means that x; = 1, x, = 2 and x3 = —3. This interpretation of
equality between similar arrangements (arrays) of quantities, which in this case
were numbers, will be seen to play an important role when matrices are introduced
and their equality is defined.
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1.2 Suffix and Matrix Notation

Later the solution of the system of Eq. (1.1) will be considered in detail, and it will
be shown how to determine if a unique solution set exists, if a solution set exists but
it is not unique, and in which case how many arbitrary parameters the solution set
must contain, and if no solution set exists.

The suffix notation for the coefficients and unknowns in system (1.1) is standard,
and its purpose is to show that a;; is the numerical multiplier of the jth unknown x; in
the ith equation, and b; is the corresponding nonhomogeneous term in the ith
equation. With this understanding, because the numbers a;; and b; each has a sign,
if the n unknowns x, x,, . . ., x,, are arranged in the same order in each equation, the
symbols x1, x5, . . . , X, may be omitted, and the system represented instead by the
array of numbers

apy ap apz -+ ap - by
ayi axp ay -+ ay . b

: . 1.2
azi ax a3 -+ azy, . bs (1.2)
aml Am2 A3 - App - bm

For reasons that will appear later, the nonhomogeneous terms b; have been
separated from the array of coefficients a;;, and for the time being the symbol
has been written in place of the equality sign. The double suffix ij serves as the “grid
reference” for the position of the number a;; in the array (1.2) showing that it occurs
in the ith row and the jth column, while for the nonhomogeneous term b;, the suffix i
shows the row in which b; occurs. For example, if a3, = —5, the numerical
multiplier of x; in the third equation in (1.1) is —35, so the element in the second
position of the third row in array (1.2) is —5. Similarly, if b3 = 4 the nonhomoge-
neous term in the third equation in (1.1) is 4, so the entry b3 in (1.2) is 4. Arrays of m
rows of n numbers are called matrices, and a concise notation is needed if instead of
algebra being performed on equations like (1.1), it is to be replaced by algebra
performed on matrices. The standard notation for a matrix denoted by A that
contains the entries a;;, and a matrix containing the entries b; in (1.2) is to write

ay ap a3 - diy by
a)  ayp ax - dy by
A= a1 an as - ay | p=|b3|, (1.3)

aml  Am2 AdAm3 " Amn b
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or more concisely still,

A=), i=1,2,...,m j=1,2,...,nandb=1[b), i=1,2,..., m.
(1.4)

A different but equivalent notation that is also in use replaces the square brackets
[.]by (.),in which case (1.4) become A = (a;;) and b = (b;).

Expression A in (1.3) is called an m X n matrix to show the number of rows m
and the number of columns 7 it contains, without specifying individual entries. The
notation m X n is often called the size or shape of a matrix, as it gives a qualitative
understanding of the number of rows and columns in the matrix, without specifying
the individual entries a@;;. A matrix in which the number of rows equals the number
of columns it is called a square matrix, so if it has n rows, it is an n X n matrix.
Matrix b in (1.3) is called an m element column vector, or if the number of entries
in b is unimportant, simply a column vector. A matrix with the n entries ¢y, ¢, . . .,
¢, of the form

c=ci, €2y C3y ..oy Cyl (1.5)

is called an n element row vector, or if the number of entries in ¢ is unimportant,
simply a row vector. In what follows we use the convention that row and column
vectors are denoted by bold lower case Roman characters, while other matrices are
denoted by bold upper case Roman characters. The entries in matrices and vectors
are called elements, so an m X n matrix contains mn elements, while the row vector
in (1.5) is an n element row vector. As a rule, the entries in a general matrix A are
denoted by the corresponding lower case italic letter a with a suitable double suffix,
while in a row or column vector d the elements are denoted by the corresponding
lower case italic letter d with a single suffix. The elements in each row of A in (1.3)
form an n element row vector, and the elements in each column form an m element
column vector. This interpretation of matrices as collections of row or column
vectors will be needed later when the operations of matrix transposition and
multiplication are defined.

1.3 Equality, Addition and Scaling of Matrices

Two matrices A and B are said to be equal, shown by writing A = B, if each matrix
has the same number of rows and columns, and elements in corresponding positions
in A and B are equal. For example, if

|1 p |1 3
A—[z _4] andB—[2 q}’
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equality is possible because each matrix has the same number of rows and columns,
so they each have the same shape, but A = B only if, in addition, p = 3 and ¢ = —4.

If every element in a matrix is zero, the matrix is written 0 and called the nul/ or
zero matrix. It is not usual to indicate the number of rows and columns in a null
matrix, because it will be assumed they are appropriate for whatever algebraic
operations are being performed. If, for example, in the linear system of algebraic
equations in (1.1) all of the nonhomogeneous terms by = b, = ... =b,, = 0, the
corresponding vector b in (1.3) becomes b = 0, where in this case 0 in an
m-dimensional column vector with every element zero. A column or row vector
in which every element is zero is called a null vector.

Given two similar systems of equations

anxy +apxy + - apx, = by anxi +apxy 4 - dipXx, =
ax Xy + apxy + - - axpX, = by A2 X1 + anXs + -+ - AapXy = by
az1Xy +anxy + - azX, = b3y and  azixg + asxo + - daeXy, = bs

5 S

A1 X1 + AppX2 + -+ - A Xy = by, A1 X1 + Ap X2 + * + * ApXy = by,

the result of adding corresponding equations, and writing the result in matrix form,
leads to the following definitions of the sum of the respective coefficient matrices
and of the vectors that contain the nonhomogeneous terms

ayy+an  ap+ap az+tai - atap
a1 +ax ax+tap ap+tas - ay+an
A+A=|an+tan an+axn axn+as - A3 +am landb+b

L dm1 + dml amy + dmZ a3 + dm3 R &mn

b1 + by

b +122

— | b3+ b3

_bm +bm

This shows that if matrix algebra is to represent ordinary algebraic addition, it
must be defined as follows. Matrices A and B will be said to be conformable for
addition, or summation, if each matrix has the same number of rows and columns.
Setting A = [a;;] , B = [b;j], the sum A + B of matrices A and B is defined as the
matrix
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It follows directly from (1.6) that
A+B=B+A, 1.7

so matrix addition is commutative. This means the order in which conformable
matrices are added (summed) is unimportant, as it does not affect the result. It
follows from (1.6) that the difference between matrices A and B, written A — B, is
defined as

A—B = [a; — by). (1.8)

The sum and difference of matrices A and B with different shapes is not defined.
If each equation in (1.1) is scaled (multiplied) by a constant k the matrices in
(1.3) become

kau kau ka13 te kal,, kbl
ka21 kdzz k(123 tee ka2,, kb2
ka31 ka32 ka33 te ka3n and kb3
kaml kamZ kamS e kanm kbm

This means that if matrix A = [a;] is scaled by a number k (real or complex),
then the result, written kA, is defined as kA = [ka;j]. So if A = [a;;] and B = [b;;] are
conformable for addition and k and K are any two numbers (real or complex), then

kA + KB = [ka;; + Kb;|. (1.9)

Examplel.].GivenA{;L . _32} B{_T : 2},ﬁndA+B,A B
and 2A + 3B.

Solution. The matrices are conformable for addition because each has two rows and
three columns (they have the same shape). Thus from (1.6), (1.7) and (1.8)

015 8§ -3 1 4 4 12
A+B—[6 5 4],A—B_[8 s _8] and 2A+3B_[11 5 14}

1.4 Some Special Matrices and the Transpose Operation

Some square matrices exhibit certain types of symmetry in the pattern of their
coefficients. Consider the n X n matrix
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app apz aiz - Al

azy dpy Az - Ay
A= |41 a4 a4y -0 d3p |

anl dp2  ap3 ctt dpn

then the diagonal drawn from top left to bottom right containing the elements a1,
ay, 33, - . . , Ay, 18 called the leading diagonal of the matrix.

A square matrix A is said to be symmetric if its numerical entries appear
symmetrically about the leading diagonal. That is, the elements of an n X n
symmetric matrix A are such that

a; = a;i,i,j = 1,2,...,n (condition for symmetry). (1.10)

Another way of defining a symmetric matrix is to say that if a new matrix B is
constructed such that row 1 of A is written as column 1 of B, row 2 of A is written as
column 2 of B, . . ., and row n of A is written as column 7z of B, then the matrices
A and B are identical if B = A. For example, if

1 4 3 1 57
A=|4 2 6| and B=|9 4 5|,
3 6 4 1 0 1

then A is seen to be a symmetric matrix, but B is not symmetric.

Belonging to the class of symmetric matrices are the n x n diagonal matrices,
all of whose elements are zero away from the leading diagonal. A diagonal matrix A
with entries 4, 45, . . ., 4, on its leading diagonal, some of which may be zero, is
often written A = diag{4;, 45, . . ., 4,}. An important special case of diagonal
matrices are the identity matrices, also called unit matrices, which are denoted
collectively by the symbol I. These are diagonal matrices in which each element on
the leading diagonal is 1 (and all remaining entries are zeros). When written out in
full, if A = diag{2, —3, 1}, and L is the 3 x 3 identity matrix, then

2 0 0 100
A =diag{2,-3,1}=|0 -3 0| and I=[0 1 0
0 0 1 00 1

As with the null matrix, it is not usual to specify the number of rows in an
identity matrix, because the number is assumed to be appropriate for whatever
algebraic operation is to be performed that involves I. If, for any reason, it is
necessary to show the precise shape of an identity matrix, it is sufficient to write I,
to show an n X n identity matrix is involved. In terms of this notation, the 3 x 3
identity matrix shown above becomes I;.
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A different form of symmetry occurs when the n X n matrix A = [a;] is skew
symmetric, in which case its entries a;; are such that

aj = —aj fori,j=1,2,...,n (condition for skew symmetry). (1.11)

Notice that elements on the leading diagonal of a skew symmetric matrix must
all be zero, because by definition a;; = —a;;, and this is only possible if a;; = 0 for
i=1,2,...,n.

A typical example of a skew symmetric matrix is

0 1 3 -2
-1 0 4 6
A=13 40 -1
2 -6 1 0

Other square matrices that are important are upper and lower triangular matri-
ces, denoted respectively by U and L. In U all elements below the leading diagonal
are zero, while in L all elements above the leading diagonal are zero. Typical
examples of upper and lower triangular matrices are

2 0 8 300
U=|0 1 6 (andL=| 5 1 0]
00 -3 -9 7 0

The need to construct matrices in which rows and columns have been inter-
changed (not necessarily square matrices) leads to the introduction of the transpose
operation. The transpose of an m x n matrix A, denoted by AT, is the n x m matrix
derived from A by writing row 1 of A as column 1 of A", row 2 of A as column 2 of
A", ..., and row m of A as column m of AT. Obviously, the transpose of a
transposed matrix is the original matrix, so (AT)T = A. Typical examples of
transposed matrices are

1 11"

T 2 1

1 =4 77 =|—4|,|=4|=p,=47 ana |7 ° 3] = |0 -
[ ’ 1 -1 4

7 7 5 4

Clearly, a square matrix A is symmetric if AT = A, and it is skew symmetric if
AT = —A. The matrix transpose operation has many uses, some of which will be
encountered later.

A useful property of the transpose operation when applied to the sum of two
m X n matrices A and B is that

[A+B]" = AT +B". (1.12)
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This proof of this result is almost immediate. If A = [a;] and B = [b;]], by
definition

ay1+bin ap+b - ap,+byy,

ay +by  an+byn - ay+by,
A+B= . . . .

Aaml + bml am + bm2 ot Amn + bmn

Taking the transpose of this result, and then using the rule for matrix addition,
we have

ayg +by axy +by o A+ by
ap+biy an+by - am+bp

[A+B]T: . . . " . " :AT+BT7
ain + bln aop + b2n o Apm + bnm

and the result is established.

An important use of matrices occurs in the study of properly determined systems
of n linear first order differential equations in the n» unknown differentiable func-
tions x(f), x2(f), . . . , x,(f) of the independent variable ¢:

dxclzr(f) =anxi(t) + apx2(t) + - -+ aix, (1),

dxét([ = ayx (t) + apxa(t) + - - - + azx, (1),

=

(1.13)

L2 = 101 (1) + @ o (1) + -+ + a0

In the next chapter matrix multiplication will be defined, and in anticipation of
this we define the coefficient matrix of system (1.13) as A = [a;], and the column
vectors x(7), and dx(7)/dt as

x (1) = [x1(2),x2(1), ..., x,(¢)]" and
dx(t)  [dxi(£) dxa(t) dx,()]" (1.14)

dt e’ dr 7 dt ’

where the transpose operation has been used to write a column vector as the
transpose of a row vector to save space on the printed page. System (1.13) can be
written more concisely as

= Ax(t), (1.15)
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where Ax(f) denotes the product of matrix A and vector x(¢), in this order, which
will be defined in Chapter 2. Notice how the use of the transpose operation in
Eq. (1.14) saves space on a printed page, because had it not been used, column
vectors like x(#) and dx(7)/dt when written out in full would have become

s i

xa(t dx(t il

x(f)=1| . | and % = ({’
X (1) d ()

dt

Exercises

1. Write down the coefficient matrix A and nonhomogeneous term matrix b for the
linear nonhomogeneous system of equations in the variables x1, x5, x3 and x4:

3x1 4+ 2xp — 4x3 + Sx4 =4,
3x1 4+ 2xp — x4 + 4x3 = 3,
4xy — 2x1 + X3 4+ S5x4 = 2,
6x3 + 3x; + 2xp = 1.

2.0 5 -1 2 3
2. A= ] 3 1}3_{_2 .y 6},ﬁndA+2Band3A—4B.

[13(1 1 2 =2

3.fA=|2 b —1|and B=|3 6 4 |, finda,bandcif A =BT
-2 ¢ 3 0 -1 3
2 4 4 1 -3
4. IfA=|6 1] and B:[ },ﬁnd3A—BTand2AT+4B.
2 -3 1
0 3
30 1 0 4 1
5. fA=1|1 4 3|and B=|2 5 1/, find A" +Band?2A +3(B"H".
5 1 2 3 -2 2

ain 4 -3 ap

ayy axn a3 axy

azy 6 azx 7
1 ap asiz asu

what conditions, if any, must be placed on the undefined coefficients a;; if (a)
matrix A is to be symmetric, and (b) matrix A is to be skew symmetric?



1.4 Some Special Matrices and the Transpose Operation 11

8. Prove that every n X n matrix A can be written as the sum of a symmetric
matrix M and a skew symmetric matrix S. Write down an arbitrary 4 x 4
matrix and use your result to find the matrices M and S.

9. Consider the underdetermined system

X1 +x+x3=1,
X1+ 2x + 3x3 =2,

solved in the text. Rewrite it as the two equivalent systems

X1+x3=1—x X +x3=1-—x
and (b)
X1+ 3x3=2—2x, 2xy +3x3 =2 — x3.

Find the solution set of system (a) in terms of an arbitrary parameter p = x,,
and the solution set of system (b) in terms of an arbitrary parameter g = x;. By
comparing solution sets, what can you deduce about the solution set found in
the text in terms of the arbitrary parameter k = x5, and the solution sets for
systems (a) and (b) found, respectively, in terms of the arbitrary parameters
p and q?

10. Consider the two overdetermined systems

X1 —2x+2x3 =6 2x1 4+ 3xp —x3 =2

X1 +x—x3=0 Xy —xp+2x3=1
(a) 1 2 3 and (b 1 2 3

X1 +3x —3x3 = —4 A1 +x+3x3 =4

X|+x+x3=3 X1 +4x —3x3=1.

In each case try to find a solution set, and comment on the result.






Chapter 2
Determinants, and Linear Independence

2.1 Introduction to Determinants and Systems of Equations

Determinants can be defined and studied independently of matrices, though when
square matrices occur they play a fundamental role in the study of linear systems of
algebraic equations, in the formal definition of an inverse matrix, and in the study of
the eigenvalues of a matrix. So, in anticipation of what is to follow in later chapters,
and before developing the properties of determinants in general, we will introduce
and motivate their study by examining the solution a very simple system of equations.

The theory of determinants predates the theory of matrices, their having
been introduced by Leibniz (1646—1716) independently of his work on the calculus,
and subsequently their theory was developed as part of algebra, until Cayley
(1821-1895) first introduced matrices and established the connection between
determinants and matrices. Determinants are associated with square matrices and
they arise in many contexts, with two of the most important being their connection
with systems of linear algebraic equations, and systems of linear differential
equations like those in (1.12).

To see how determinants arise from the study of linear systems of equations we
will consider the simplest linear nonhomogeneous system of algebraic equations

ay Xy + apx; = by,

2.1
ar1xy + apxy = bs. @D

These equations can be solved by elimination as follows. Multiply the first
equation by a,,, the second by a,, and subtract the results to obtain an equation
for x; from which the variable x, has been eliminated . Next, multiply the first
equation by a,, the second by a,, and subtract the results to obtain an equation for
X5, where this time the variable x; has been eliminated. The result is the solution set
{x1, x»} with its elements given by given by

biax — byan byay — biax
= = 2.2)
apaz — apdaz ajidazy — dppdz)
A. Jeffrey, Matrix Operations for Engineers and Scientists, 13
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For this solution set to exist it is necessary that the denominator a; a2, — aj2as;
in the expressions for x; and x, does not vanish. So setting A = ay1a25 — a;»d,;, the
condition for the existence of the solution set {x{, x,} becomes A = 0.

In terms of a square matrix of coefficients whose elements are the coefficients
associated with (2.1), namely

A— [an 012]’ 2.3)

the second-order determinant associated with A, written either as det A or as |A|, is
defined as the number

apn  diz

detA = |A| = W

= daj|az — dppdzy, 2.4)

so the denominator in (2.2) is A = det A.

Notice how the value of the determinant in (2.4) is obtained from the elements
of A. The expression on the right of (2.4), called the expansion of the determinant,
is the product of elements on the leading diagonal of A, from which is subtracted the
product of the elements on the cross-diagonal that runs from the bottom left to the
top right of the array A. The classification of the type of determinant involved is
described by specifying its order, which is the number of rows (equivalently
columns) in the square matrix A from which the determinant is derived. Thus the
determinant in (2.4) is a second-order determinant. Specifying the order of a
determinant gives some indication of the magnitude of the calculation involved
when expanding it, while giving no indication of the value of the determinant. If the
elements of A are numbers, det A is seen to be a number, but if the elements are
functions of a variable, say ¢, then det A becomes a function of 7. In general
determinants whose elements are functions, often of several variables, are called
functional determinants. Two important examples of these determinants called
Jacobian determinants, or simply Jacobians, will be found in Exercises 14 and
15 at the end of this chapter.

Notice that in the conventions used in this book, when a matrix is written out in
full, the elements of the matrix are enclosed within square brackets, thus [ ...],
whereas the notation for its determinant, which is only associated with a square
matrix, encloses its elements between vertical rules, thus |...|, and these notations
should not be confused

t t
Example 2.1. Given (a) A= [_14 2} and (b) B = |:C§St ant}, find
det A and det B.
Solution. By definition (a)detA = j4 2‘ =(1x6)—(3) x(—4)=18.

e e

(b) detB = .
cost sint

= (") x (sint) — (¢') x (cost) = €'(sint — cos?t).
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It is possible to express the solution set {x;, x, } in (2.2) entirely in terms of
determinants by defining the three second-order determinants

apy ap b1 an aiy b
A =detA = , = , Ay = , 2.5
ay an "Tlby an T |au b )
because then the solutions in (2.2) become
A AY)
— == 2.6
X1 A , X2 A ( )

Here A is the determinant of the coefficient matrix in system (2.1), while the
determinant A; in the numerator of the expression for x; is obtained from A by
replacing its first column by the nonhomogeneous terms b, and b, in the system, and
the determinant A, in the numerator of the expression for x; is obtained from A by
replacing its second column by the nonhomogeneous terms b; and b,. This is the
simplest form of a result known as Cramer’s rule for solving the two simultaneous
first-order algebraic equations in (2.1), in terms of determinants, and its generaliza-
tion to n nonhomogeneous equations in n unknowns will be given later, along with
its proof.

2.2 A First Look at Linear Dependence and Independence

Before developing the general properties of determinants, the simple system
(2.1) will be used introduce the important concepts of the linear dependence
and independence of equations. Suppose the second equation in (2.1) is propor-
tional to the first equation, then for some constant of proportionality 4 # 0 it
will follow that ay; = Aay;, asn = Aaj, and b, = Aby. If this happens the
equations are said to be linearly dependent, though when they are not propor-
tional, the equations are said to be linearly independent. Linear dependence and
independence between systems of linear algebraic equations is important, irre-
spective of the number of equations and unknowns that are involved. Later,
when the most important properties of determinants have been established, a
determinant test for the linear independence of n homogeneous linear equations
in n unknowns will be derived.

When the equations in system (2.1) are linearly dependent, the system only
contains one equation relating x; and x,, so one of the equations can be discarded,
say the second equation. This means that one of the variables, say x, can only be
determined in terms of the other variable x,, so in this sense the values of x; and
X, although related, become indeterminate because then x, is arbitrary. To
discover the effect this has on the solutions in (2.2), suppose the second equation
is A times the first equation, so that ay; = Aa;i, a2y = Aay, and by, = 1by.
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Substituting these results into (2.2), and canceling the nonzero scale factor A,
gives
biaiz — bian biay — biay
XN =— andxz =,

ajlaz — dapdp aplagy —dpdy
showing that both the numerators and the denominator in the expressions for x; and
X, vanish, confirming that x; and x, are indeterminate. A comparison of this result
with (2.6) shows that when two rows of a determinant are proportional, its value is
zero. This is, in fact, a result that is true for all determinants and not just for second-
order determinants.

The indeterminacy of the solution set is hardly surprising, because one of the
equations in system (2.1) is redundant, and assigning x, an arbitrary value x, = £,
say, will determine x; in terms of k as x; = (b; — a;»2k)/a,1, so the solution set {x,
X5} then takes the form {(b; — a,k)/a,;, k}, where k is a parameter. Thus, when the
two equations are linearly dependent, that is when A = 0, a solution set will exist
but it will not be unique, because the solution set will depends on the parameter £,
which may be assigned any nonzero value. If, however, A # 0 the equations will be
linearly independent, and the solution set in (2.2) will exist and be unique.

A different situation arises if the left sides of the equations in (2.1) are propor-
tional, but the constants on the right do not share the same proportionality constant,
because then the equations imply a contradiction, and no solution set exists. When
this happens the equations are said to be inconsistent. A final, very important result
follows from the solution set (2.6) when the system of Eq. (2.1) is homogeneous;
which occurs when b; = b, = 0. The consequence of this is most easily seen from
(2.2), which is equivalent to (2.6). When the equations are homogeneous, the
numerators in (2.2) both vanish because each term in the expansion of the determi-
nant contains a zero factor, so if A = det A # 0, it follows that the solution x; = x, =
0 is unique. This zero solution is called the null solution, or the trivial solution. Thus
the only solution of a linearly independent set of homogeneous equations in system
(2.1) is the null solution. However, if A = 0 the equations will be linearly dependent
(proportional), and then a solution will exist but, as has been shown, it will be such
that x; will depend on the variable x,, which may be assigned arbitrarily. These
results will be encountered again when general systems of equations are considered
that may be homogeneous or nonhomogeneous.

2.3 Properties of Determinants and the Laplace Expansion
Theorem

Having seen something of the way determinants enter into the solution of the
system of Eq. (2.1), it is time to return to the study of determinants. The definition
of det A in (2.4) can be used to establish the following general properties of second-
order determinants which, it turns out, are also properties common to determinants
of all orders, though determinants of order greater than two have still to be defined.
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Theorem 2.1 Properties of det A.

1. Multiplication of the elements of any one row (column) of det A by a constant k
changes the value of the determinant to k det A. Equivalently, multiplication of
det A by k can be replaced by multiplying the elements of any one row (column)
of det A by k.

2. If every element in a row (column) of det A is zero, then det A = 0.

If two rows (columns) of det A are the identical, or proportional, then det A = 0.

4. The value of a determinant is unchanged if a constant multiple of each element

in a row (column) is added the corresponding element in another row (column).

If two rows (columns) in det A are interchanged, the sign of det A is changed.

det A = det A".

7. If det A and det B are determinants of equal order, then det(AB) = det Adet B.

»

SANNG

Proof. Result 1 follows directly from definition (2.4), because each product in the
definition of det A is multiplied by k. Result 2 also follows directly from definition
(2.4), because then a coefficient in each of the products in the definition of det A is
zero. Result 3 is an extension of the result considered previously where a row was
proportional to another row. The result follows from the fact that if two rows
(columns) in det A are equal, or proportional, the two products in the definition
of det A cancel. To prove result 4 suppose, for example, that k times each element in
the first row of det A is added to the corresponding element in the second row, to
give det B where

ai ap
detB = .
k(lll + any kalz + ann

Expanding det B and canceling terms gives
detB = Clll(kalz + 6122) — alz(kan + a21) = aj1ax — apax = detA.

Similar reasoning establishes the equivalent results concerning the other row of the
determinant, and also its two columns. Result 5 follows because interchanging two
rows (or columns) in det A reverses the order of the products in the definition of det
A in (2.4), and so changes the sign of det A. The proof of result 6 is left as Exercise
2.3, and the proof of result 7 will be postponed until Chapter 3, where it is given in
Section 3.4 for second-order determinants, using an argument that extends directly
to determinates of any order.
¢
In this account of determinants the nth order determinant associated with an
n x n coefficient matrix A = [a;;] will be defined in terms of determinants of order
n — 1 and then, after stepping down recursively to still lower-order determinants, to
a definition in terms of a sum of second-order determinants. To proceed to a
definition of an nth order determinant, the definition is first extended to a third-
order determinant
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ayp dapz a3
detA=|a; axp axy|. 2.7
as;  dsx  dsz

The third-order determinant in (2.7) is defined in terms of second-order determi-
nants as

az; Az
asy  dasj

dzy  dz3
dazy  dsjz

az; dan
asg

detA = aq; as (2.8)

To remember this definition, notice how the terms are obtained. The first term is
the product of a;; times the second-order determinant obtained from A by omitting
the row and column containing a;;, the second term is (—1) X aj, times the
determinant obtained from A by omitting the row and column containing a;, and,
finally, the third term is a3 times the determinant obtained from A by omitting the
row and column containing a,s.

Reasoning as in the proof of Theorem 2.1 and using the fact that a third-order
determinant is expressible as a sum of multiples of second-order determinants, it is
a straightforward though slightly tedious matter to show that the properties of
second-order determinants listed in Theorem 2.1 also apply to third-order determi-
nants, though the proofs of these results are left as exercises.

Determinants of order greater than three will be defined after the cofactors
of a determinant have been defined. As already mentioned, the statements in
Theorem 2.1 are true for determinants of all orders, though their proof for higher-
order determinants will be omitted.

The three determinants

da axn
asy  das

az;  axs
as;  asz

az a3

)
dasy dsj

)

that occurred in (2.8) are called, respectively, the minors associated with the
elements a;, a;» and a3 in the first row of det A. These minors will be denoted
by My, My, and M3, using the same suffixes as the elements ay;, a;, and a;3 to
which they correspond, so that

az; ax
asy  das

day; azs
asy  dasjs

dyy a3

My =
asy dsj

, Mz = (2.9

)

Remember, that the elements of the minors M; for i = 1, 2 and 3, are obtained
from the elements of A by omitting the elements in row 1 and column i.

Corresponding to the minors M, M, and M3, are what are called the cofactors
Cq1, C12 and Cq5 associated with the elements a,, a1, and a3, and these are defined
in terms of the minors as

Ci=(=)"My, Co=(=1)"My, and Ci3 = (-1)'". (2.10)
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The effect of the factors (— 1)1 *ifori= 1, 2, 3 in the definitions of the cofactors
C11, C2 and Cq3 is to introduce an alternation of sign in the pattern of the minors.
Using (2.6) and (2.9) allows us to write det A = a M| — a;oM 5 + a;3M 3, so from
(2.10) this becomes

detA = a1Cy1 + a12C12 + a3Cy3. 2.11)

This result is called the expansion of det A in terms of the cofactors of the
elements of its first row.

There is a minor is associated with every element of a determinant, and not only
the elements of its first row. The minor associated with the general element a;;, for
i,j=1,2,3is denoted by M;;, and for a third-order determinant it is the numerical
value of the 2 x 2 determinant derived from det A by deleting the elements in its ith
row and jth column.

Example 2.2. Find the minors and cofactors of the elements of the first row of det A,
and also the value of det A, given that

-4 3 -1
A=1|-2 4 2
1 10 1
Solution. We have
4 2 -2 2 -2 4
Mn—’lo 1’——167 Mlz—‘l 1‘——4, /"113—‘1 10.——24,

so the corresponding cofactors are
Cii=(—1)""(=16)=—16, Ciy=(=1)"(—4)=4, Ci3=(—1)""(—24)=—24.

From (2.11), when the determinant is expanded in terms of the elements of the first
row,

detA = a1C; +a12C12 + a13C3
= (—4) X (—16) +3 x4+ (—1) x (—24) = 100.

¢

To extend the role of the cofactor associated with the minor of any element of det

A we start by expanding the expression for a third-order determinant in (2.8),
to obtain

detA =D =ay1axazz — anaxazn + apaxsas — andazass +aiaazn — aanas;.
2.12)
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Next, we define the cofactor C;; associated with the general element a;;in A to be
Ci = (-1)"M;, (2.13)

where for this third-order determinant M; is the 2 x 2 minor obtained from det A by
deleting the elements in its ith row and jth column. Using this definition of a general
cofactor, and rearranging the terms in (2.12) to give results similar to (2.8), but this
time with terms a;1, a;; and @;3 multiplying the determinants, it is easily shown that

detA = a;,Ciy + a;»Ci, + ai3Ci3, for i=1, 2 or 3. (2.14)

This result provides three different, but equivalent, ways of calculating det A, the
first of which was encountered in (2.11). Expressed in words, result (2.14) says that
det A is equal to the sum of the products of the elements and their respective
cofactors in any row of the determinant. The result is important, and it is called the
expansion of det A in terms of the elements and cofactors of the ith row of the
determinant. So (2.11) is seen to be the expansion of det A in terms of the elements
and cofactors of its first row.

A different rearrangement of the terms in (2.12) shows that

detA = aleU +a2jC2j + a3jC3j, for ] = 17 2 or 37 (215)

providing three more ways of expanding det A. When expressed in words, this
expansion says that det A can be calculated as the sum of the products of the
elements and their respective cofactors in any column of the determinant. Result
(2.15) is called the expansion of det A in terms of the elements and cofactors of the
Jjth column of the determinant.

It remains for us to determine the effect of forming the sum of the products of the
elements of a row, or column, with the corresponding cofactors of a different row,
or column. To resolve this, let § be the sum of the products of the elements of row i
with the cofactors of row s, so that 6 = Z,; a;;Cy; for s # j. Now 0 can be
interpreted as a third-order determinant with the elements a;; forming its ith row,
and the remaining elements taken to be the cofactors Cy;. As s # j, it follows that
each cofactor will contain elements from row i, so when the third-order determinant
is reconstructed, it will contain another row equal to the ith row except, possibly, for
a change of sign throughout the row. Thus the determinant ¢ will either have two
identical rows, or two rows which are identical apart from a change of sign. So by
an extension of the results of Theorem 2.1 (see Example 2.3), the determinant must
vanish. A similar argument shows that the sum of products formed by multiplying
the elements of a column with the corresponding cofactors of a different column is
also zero, so that 21‘3:1 a;jCi = 0 for k # j.

The extension of these expansions to include nth-order determinants follows
from (2.13) and (2.14) by defining the nth order determinant as either

detA = "a;C;j fori=12,..n (2.16)
j=1
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or as

n
detA = a;Cy for j=1,2,..,n. 2.17)

i=1

Notice that now the cofactors C;; are determinants of order n — 1. These
expressions provide equivalent recursive definitions for an nth-order determinant
in terms of second-order determinants, because any determinant of order n > 3 can
always be reduced to a sum of products involving second-order determinants. A
determinant det A is said to be singular if det A = 0, and nonsingular if det A # 0.
Chapter 3 will show it is necessary that det A # 0 when defining an important
matrix A~} called the inverse matrix associated with a square matrix A, or more
simply the inverse of A.

To avoid the tedious algebraic manipulations involved when extending the
results of Theorem 2.1 to determinants of order n, we again mention that the
properties listed in the theorem apply to determinants of all orders. However,
some of the properties in Theorem 2.1 are almost self-evident for determinants of
all orders, as for example the properties 1, 2 and 3.

The extension of the previous results to an nth-order determinant yields the
following fundamental expansion theorem due to Laplace.

Theorem 2.2 The Laplace Expansion of a Determinant.

Let A = [ajj] be an n x n matrix, and let the cofactor associated with a;; be Cj;.
Then, for any i,

detA = a;Ciy + ainCin + ... + a;Cip, (expansion by elements of the ith row),
and for any j,
detA = a,;Cyj + a2jCoj + - - - + a,Cyj (expansion by elements of the jth column)
while for any i with s # i
ai1Cs1 + ainCsp + -+ + ainCyy = 0 (expansion using different rows)
or for any j with k # j
a1;C + a2iCox + - - - + a,Cok = 0 (expansion using different columns).

¢

Example 2.3. (a) Expand the determinant in Example 2.2 in terms of elements and
cofactors of the third column. (b) Compute the sum of the products of the elements
in the first row and the corresponding cofactors of the second row, and hence
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confirm that the result is zero. (c) Reconstruct the determinant corresponding to the
calculation in (b), and hence show why the result is zero.
Solution.

(a) To expand the determinant using elements and cofactors of the third column it
is necessary to compute C;3, C»3 and C33. We have

-4 3 -1 -
A=|-2 4 2|, s0C3=(—)" | 10‘ = 24,
1 10 1
4 3 —4 3
Cy = (=) =43, Cy3 = (—)*" =—10.
23 ( ) 1 10 33 ( ) 2 4

Expanding det A in terms of the elements and cofactors of the third column
gives det A = (—1) x (—24) +2 x 43 + 1 x (—10) = 100, in agreement with
Example 2.2.

(b) To form the sum of the products of the elements of the first row with the
corresponding cofactors of the second row it is necessary to compute Cyy, Cap
and C,3. We have

3 -1 -4 —1
Co = (—1)*"! =13, Cp=(-1)"" =3,
2= (=07 2=
4 3
Coy = (—1)*3 =43,
S A T

So the required expansion in terms of elements of the first row and the
corresponding cofactors in the second row becomes

(—4) x (=13) +3 x (=3)+(-1) x43 =0,
confirming the third property in Theorem 2.2.

(c) To reconstruct the third-order determinant 6 corresponding to the sum of
products of the elements in the first row and the cofactors in the second row
used in (b) we first write 0 as

0= (_4) X C21 +3x C22 + (—1) X C23.

Substituting for the cofactors this becomes

0=4x +3 x + 1 x

3 -1
10 1

-4 -1
11
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To express this result as the appropriate expansion of a determinant it is necessary
restore the correct signs to the multipliers 4, 3 and 1 in the above expression to make
them equal to the elements in the first row of A, namely —4, 3 and —1. To do this we
use result 1 from Theorem 2.1 which shows that when a determinant is multiplied
by —1, this multiplier can be taken inside the determinant and used as a multiplier
for any one of its rows. To be consistent, we will change the signs of the terms in the
last rows of the determinants, so that 6 becomes

3 -1 -4 -1 -4 -3
10 1‘+(3)><'1 I‘Jr(—l)x‘l 1’}

Recognizing that these three determinants are now the cofactors of the elements
—4, 3 and —1 in the first row of the determinant that is to be reconstructed, allows
the result can be written

o= —{(—4) X

—4 3 -1
S=—|-4 3 —1|
1 —10 -1

This determinant has two identical rows, and so vanishes, showing why result (b)
yields the value zero.
L4
The equivalent definitions of an nth order determinant in Theorem 2.2 permit the
immediate evaluation of some important and frequently occurring types of deter-
minants. The first case to be considered occurs when det A is the nth-order diagonal
determinant

an 0 0 0
0 ann 0 0

detA=|0 0 as 0= ap1aas;3 - - App- (2.18)
0 0 0 - ay

This follows because expanding the determinant in terms of elements of the
first row, gives det A = a;,;C, where the cofactor Cy; is the determinant of order

n — 1 with the same diagonal structure as det A. Expanding C;; in terms of

the elements of its first row gives det A = a11a22C(111), where C<111> is now the

cofactor belonging to determinant C;; corresponding to the first element a,; in
its first row. Continuing this process n times gives the stated result det
A = a11a2a33 " - app.

Two other determinants whose values can be written down at sight are the
determinants det L and det U associated, respectively, with the upper and lower
triangular n X n matrices L and U. We have
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a; 0 0 0
any ann O 0

detL = @31 axn az 0| = ananas - am (2.19)
apl A2 apz - dpp

and

ajiy ap apz - di
0 an a3 - ay

detU=|0 0 a3 - @G| =g anas- - am. (2.20)
0 0 0 - a,

Result (2.18) is obtained in a manner similar to the derivation of (2.18), by
repeated expansion of det L in terms of the elements of its first row, while result
(2.20) follows by a similar repeated expansion of det U in terms of elements of its
first column.

The next example illustrates how the properties of Theorem 2.1 can sometimes
be used to evaluate a determinant without first expanding it with respect to either
the elements in its rows or the elements in its columns. The determinant involved
has a special form, and it is called an alternant, also known as a Vandermonde
determinant.

Example 2.4. Show without direct expansion that

1 1 1
a b c|=0B-a)c—a)(c-D).
L 2

Solution. Using property 4 of Theorem 2.1, which leaves the value of a determinant
unchanged, we subtract column 1 from columns 2 and 3 to obtain

1 1 1 1 0 0 1 0 0
a b c|=la (b-a) (c—a)|=|a (b—a) (c—a) .
a b* 2 a*> (b*—a*) (*—a?) a*> (b+a)(b—a) (c+a)(c—a)

Next we use property 1 of Theorem 2.1 to remove factors (b — @) and (¢ — a) from
the second and third columns to obtain

1 1 1 1 0 0
a b c|=0b-a)(c—a)|a 1 L.
a b a (b+a) (c+a)

Finally, subtracting column two from column three we find that
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1 1 1 1 0 0
a b cl=0B-a)c—a)|a 1 0 |
a b ot a> (b+a) (c—b)

The determinant is now of lower triangular form, so from (2.19) its value is (¢ — b).
So, as required, we have shown the value of this alternant to be

1 1
a b cl=0bB-a)(c—a)(c—Db)
a b 2

2.4 Gaussian Elimination and Determinants

The expansion of a determinant using Theorem 2.2 is mainly of theoretical interest,
because to evaluate a determinant of order n requires n! multiplications. So,
evaluating a determinant of order 8 requires 40,320 multiplications, while evaluat-
ing a determinant of order 15 requires approximately 1.31 x 10° multiplications. If,
for example, this method of evaluating a determinant were to be performed on a
computer where one multiplication takes 1/1,000 s, the evaluation of a determinant
of order 15 would take approximately 41.5 years. Clearly, when the order is large,
some other way must be found by which to evaluate determinants if this prohibitive
number of multiplications is to be avoided, not to mention the buildup of round-off
errors that would result. A better method is essential, because many applications of
mathematics lead to determinants with orders far larger than 15.

The way around this difficulty is found in property 4 of Theorem 2.1. Subtracting
ayi/ay; times the first row of the determinant from the second row reduces to zero
the element immediately below a;,. Similarly, subtracting a3,/a; times the first
row of the determinant from the third row reduces to zero the element in row
three below a;;, while neither of these operations changes the value of the
determinant. So, proceeding down the first column in this manner leads to a
new determinant in which the only nonzero entry in its first column is ay. If this
procedure is now applied to the second column of the modified determinant,
starting with the new coefficient a,, that is now in row 2 and column 2, it will
reduce to zero all entries below the element ay;. Proceeding in this way, column
by column, the determinant will eventually be replaced by an equivalent nth-
order determinant of upper triangular form, the value of which follows, as in
(2.20), by forming the product of all the elements in its leading diagonal. This
way of evaluating a determinant, called the Gaussian elimination method, or
sometimes the Gaussian reduction method, converts a determinant to upper
triangular form, whose value is simply the products of the elements on its leading
diagonal. This method requires significantly fewer multiplications than the direct
expansion used in the definition, and so is efficient when applied to determinants
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of large order. Software programs are based on a refinement of this method, and
even on a relatively slow PC the evaluation of a determinant of order 50 may take
only a few seconds.

It can happen that at the ith stage of this reduction process a zero element occurs
on the leading diagonal, thereby preventing further reduction of the determinant.
This difficulty is easily overcome by interchanging the ith row with a row below it in
which the ith element is not zero, after which the reduction continues as before.
However, after such an interchange of rows, the sign of the determinant must be
changed as required by property 5 of Theorem 2.1. If, on the other hand, at some
stage of the reduction process a complete row of zeros is produced, further simplifi-
cation is impossible, and this shows the value of the determinant is zero or, in other
words, that the determinant is singular. The following Example shows how such a
reduction proceeds in a typical case when a row interchange becomes necessary.

Remember that an interchange of rows changes the sign of a determinant, so if
p interchanges become necessary during the Gaussian elimination process used to
calculate the value of determinant, then the sign of the upper triangular determinant
that is obtained must be multiplied by (—1)” in order to arrive at the value of the
original determinant.

Example 2.5. Evaluate the following determinant by reducing it to upper triangular
form:

1 3 21

1 3 6 3
detA = 02 1 5/

0 2 1 1

Solution. Subtracting row 1 from row 2 gives
1 3 21 1 3 2 1
1 3 6 3 0 0 4 2
dtA=1o 2 1 570 2 1 5]

0 2 1 1 0 2 1 1

The second element in row 2 is zero, so subtracting multiples of row 2 from rows 3
and 4 cannot reduce to zero the elements in the column below this zero element. To
overcome this difficulty we interchange rows 2 and 3, because row 3 has a nonzero
element in its second position, and compensate for the row interchange by changing
the sign of the determinant, to obtain

detA =

SO O =
NN O W
—_—— N
— N —
SO o=
DO N W
— k=N
— N =
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Finally, subtracting the new row 2 from row 4 produces the required upper
triangular form

13 2 1 13 2 1
0215 021 5
detA==1g g 4 21=7lo 0 4 2|
02 1 1 000 -4

so from (2.20),
detA = —(1) x (2) x (4) x (—4) =32.

¢

Once the inverse matrix has been introduced, matrix algebra will be used to

prove the following generalization of Cramer’s rule to a nonhomogeneous system

of n linear equations in the n unknowns x, X, . . . , x,,. However, it will be useful to
state this generalization in advance of its proof.

Theorem 2.3 The Generalized Cramer’s Rule.
The system of n nonhomogeneous linear equations in the variables X;, X5, . . . , Xy

ayXxy +apx; + - +apx, = by,

ax Xy + apxy + -+ ayx, = by,

2.21)
A X1 + apXy + -+ AppXp = bn
has the solution set {X;, X3, . . ., X} given by
Ay Ay A,
X]=——, Xp=—", "+, Xy =—— (2.22
A ) A ) b n A b )
provided A # 0, where
a app - dip by ap - ay
a axp -+ ay by an - ay
A= 5 1= ) )
dnl apn o dpp hn apl ap2  App (223)
ayn app -+ b
a ap - b
A, =
dpl  dp2 e bn
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Notice that in (2.23) A = det A is the determinant of the coefficient matrix A, and
the determinant A; fori =1, 2, . . ., n is derived from A by replacing its ith column
by the column vector containing the nonhomogeneous terms by, by, . . ., b,.

2.5 Homogeneous Systems of Equations and a Test
for Linear Independence

Consider the system of n homogeneous linear equations in the n independent
variables xi, Xo, ..., X,

anxy +apxy + - +apx, =0,

ayxi + axpx; + - + aypx, =0,
21X1 20X 2nXn (2.24)

Ap1 X1 + ApXy + -+ + ApgpXy = 0.

Accepting the validity of this generalization of Cramer’s rule, it follows that if the
determinant of the coefficients det A # 0, the only possible solution of (2.24) is the
null solution x; = x, = --- = x,, = 0. This means that no equation in (2.24) can be
expressed as the sum of multiples of other equations belonging to the system, so the
equations in the system are linearly independent. Suppose, however, that one of the
equations is formed by the addition of multiples of some of the remaining equations,
making it linearly dependent on other equations in the system. Subtracting these
same multiples of equations from the linearly dependent equation will reduce it to an
equation of the form Ox; + Ox, + --- + Ox,, = 0, leading to a row of zeros in the
equivalent coefficient matrix. It then follows immediately that det A = 0, and the
same conclusion follows if more than one of the equations in (2.24) is linearly
dependent on the other equations. We have established the following useful result.

Theorem 2.4 Determinant Test for Linear Independence.

A necessary and sufficient condition that the n homogeneous equations in (2.24)
with the coefficient matrix A are linearly independent is that det A # 0. Conversely,
if det A = 0, the equations are linearly dependent.

¢
It follows from Theorem 2.4 that if m < n of the equations in (2.24) are linearly
independent, it is only possible to solve for m of the unknown variables xy, x,, . . . , X,
in terms of the of the remaining n — m variables that can then be regarded as arbitrary
parameters.
The next example shows how this situation arises when dealing with a system of
four equations, only two of which are linearly independent.

Example 2.6. Show only two of the following four linear homogeneous equations
are linearly independent, and find the solution set if two of the unknowns are
assigned arbitrary values.
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2x1 — 3xp +x3 + 2x4 =0,
3x1 4+ 2x; — 3x3 — x4 =0,
X1+ 5xp —4xz —3x4 =0,
Sx; —x3 —2x3 +x4 = 0.

Solution. Later a simple way will be found of determining which equations may be
taken to be linearly independent. However, for the moment, it will suffice to notice
that the third equation is obtained by subtracting the first equation from the second
equation, and the fourth equation is obtained by adding the first and second
equations. So we may take the first and second equations as being linearly indepen-
dent, and the last two equations as being redundant because of their linear depen-
dence on the first two equations. The linear dependence of this system of equations
is easily checked by using the determinant test in Theorem 2.4, because

2 3 1 2
302 -3 -1
detA=|7 5 T, _5|=0.
5 -1 -2 1

While the determinant test establishes the existence of linear dependence amongst
the equations in system (2.24), it does not show how many of the equations are
linearly independent.

As we know by inspection that the first two equations contain all of the
information in this system, the last two equations can be disregarded, and we can
work with the first two equations

2x1 — 3xp +x3 + 2x4 =0,
3x; +2x, —3x3 —x4 = 0.

If we set x3 = ky and x4 = kp, each of which is arbitrary, the system reduces to the
two equations for x; and x,,

2)(1 — 3X2 = —kl — 2k2,
3x1 4+ 2xp = 3k + k.

Solving these equations for x; and x, shows the solution set {x1, x,, x3, x4} for the
system has for its elements

7 1 9 8
xl:ﬁkl_ﬁkZa x2:§kl+ﬁk27 x3:kla -X4:k23

where the quantities k; and k, are to be regarded as arbitrary parameters.
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Corollary 2.5. Linear Dependence of the Columns of a Determinant.

If in system (2.24) det A = 0, then the columns of the determinant are linearly
dependent.

Proof. The result is almost immediate, and it follows from the fact that the rows of
det AT are the columns of det A. The vanishing of det A implies linear dependence
between the rows of det A, but det A = det AT, so the vanishing of det A implies
linear dependence between the columns of det A.

2.6 Determinants and Eigenvalues: A First Look

An important type of determinant associated with an n X n matrix A = [a;] has the
form det[A — AI], where A is a scalar parameter. To interpret the matrix expression
A — I we need to anticipate the definition of the multiplication of a matrix by a
scalar. This is accomplished by defining the matrix AI to be the matrix obtained from
the unit matrix I by multiplying each of its elements by 4, so if I is the 3 x 3 unit
matrix,

1 0 0 A 0 0
AlO 1 0[=1]0 4 O
0 0 1 0 0 2
Example 2.7. Given
1 2 0
A=12 -1 =21,
0o -2 1
find A — AI and write down det[A — AI.
Solution. We have
1 2 0 1 0 0 1 2 0 A 0 O
A-AI=1(2 -1 -2|-2{0 1 0|=1{(2 -1 —2|—-1]10 4 O],
0o -2 1 0 0 1 0o -2 1 0 0 2
from which it follows that
1-4 2 0 1-2 2 0
A-I=| 2 —-1—-4 -2 |,andsodetA—-D]=| 2 —-1-41 =2
0 -2 1-2 0 -2 1-2
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If A is an n x n matrix, when expanded det [A — AI] yields a polynomial p(4) of
degree n in A, where n is the order of det A. In Example 2.7 the polynomial p(2)
given by

p(A)=detA—=| 2 —-1-1 =2 |==2.4+)12+9.-09.

The roots of det [A —AI] = 0, that is the zeros of p(4), are called the eigenvalues
of the matrix A, so in Example 2.7 the polynomial p(1) = 0 becomes the cubic
equation 23— )2 -9,+9=0. This has the roots 1 = 1, . = —3 and 1 = 3, so these
are the eigenvalues of matrix A. The expression p(4) is called the characteristic
polynomial of matrix A, and p(4) = 0 is called the characteristic equation of matrix
A. As the eigenvalues of a square matrix A are the roots of a polynomial it is
possible for the eigenvalues of A to be complex numbers, even when all of the
elements of A are real. It is also important to recognize that only square matrices
have eigenvalues, because when A is an m X n matrix with m # n, det A has no
meaning.

Theorem 2.5 The eigenvalues of A and A”.

The matrix A and its transpose AT have the same characteristic polynomial, and the
same eigenvalues.

Proof. The results follow directly from Property 6 of Theorem 2.1, because A and
A™ have the same characteristic polynomial, and hence the same eigenvalues.

1 3 2 -1 1 ¢
Example 2.8. If A= | —1 2 4 |, then AT =3 2 0 |, and routine
1 0 -1 2 4 -1

calculations confirm that

p(2) = det[A — Ad]=det[AT — 1] = > — 2% — 3,

so the characteristic polynomials are identical. The eigenvalues determined by
p(A) =0 are
21 = 2.48558, 2y =0.24279 — 1.07145i and /3 = 4, = 0.24279 + 1.07145i,

so in this case one eigenvalue is real and the other two are complex conjugates.
L4
Exercises

1. Evaluate the determinants

7 3 4 1 -3 2 010
(a) detA=|1 2 1|,(b)detB={4 5 6|, (c)detC=|1 0 O
302 5 2 8 0 0 1



32

2 Determinants, and Linear Independence

Evaluate the determinants

sint  cost 1 e 'sint e 'cost 0
(a) detA=|—cost sint Of,(b)detB=|—e"cost e 'sint 1].
e 0 0 e 0 1

Construct a 3 x 3 matrix A of your own choice, and by expanding the
determinants det A and det AT show that det A = det A” . Prove that if A is
any n X n matrix, then it is always true that det A = det A”.

Evaluate the determinant

2 0 -1 3

1 4 9 0
detA = 1 3 1

4 0 3 2

. Show without expanding the determinant that

1+a a a
b 1+b b =(l4+a+2b).
b b 1+5b

Show without expanding the determinant that

¥+ 1 1
1 PB+1 1 [ =207 +3).
1 1 P41

. Evaluate the following determinant by reducing it to upper triangular form

0
4
1
1

[ONT (ST S
—_— W N =

Use Cramer’s rule to solve the system of equations

X1 +2x —x3=09,
2x1 — 3x3 + 5x3 = -2,
dxy — 2xp — 3x3=17.
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9. Are the equations in the following two systems linearly dependent?

10.

11.

12.

X1 —2x +4x3=0 3x—x+2x3=0
(a) 3x;+6x,+2x3=0 (b) x;1+4x+6x3=0
7X1—|—22X2—2X3=0, 3X1—X2+4)C3:0.

Are the equations in the following system linearly independent? Give a reason
for your answer.

X1+ 2x —x3 —x4 =0,

2x1 —xp +2x3 +2x4 = 0,
4x; — Txy + 8x3 + 8x4 =0,
3x1 —xp+3x3 —2x4 =0 .

Given that

0
A=|-1 1 11,
0 0 3

confirm by direct computation that if a constant k£ is subtracted from each
element on the leading diagonal of matrix A, the eigenvalues of the modified
matrix are the eigenvalues of matrix A from each of which is subtracted the
constant k. Could this result have been deduced without direct computation,
and if so how? Is this result only true for this matrix A, or is it a general property
of the eigenvalues of n X n matrices?

Construct a square matrix of your choice, and verify by direct expansion that
the characteristic polynomials of A and A" are identical.

The calculation of integrals over areas and volumes is often simplified by
changing the variables involved to ones that are more natural for the geometry
of the problem. When an integral is expressed in terms of the Cartesian
coordinates x, y and z, a change of the coordinates to u;, u, and us3 involves
making a transformation of the form

x:f(ula U, M3), y :g(uh Uz, M3)7 Z:h(ula Uz, M3),

and when this is done a scale factor J enters the transformed integrand to

compensate for the change of scales. The factor J is a functional determinant
I(x.y,2)

denoted by T nay) where
Oul 0u2 6u3
o Oyz) ey e oy
a(ul,uz,m) du.l du} 01473 ’

Z Z Z

Qu;  Ouy  uz




34 2 Determinants, and Linear Independence
and J is called the Jacobian of the transformation or, more simply, just the
Jacobian. If the Jacobian vanishes at any point P, the transformation fails to
establish a unique correspondence at that point between the point (xp, yp, zp)
and the transformed point

(Mm Uzp, M3P)~

In Exercises 13 and 14, find the Jacobian of the given transformation, and
determine when J = 0. Give a geometrical reason why the transformation fails
when J = 0.

13. Find the Jacobian for the cylindrical polar coordinates x = r cos ¢, y = r sin ¢,
z = z where the coordinate system is shown in Fig. 2.1.

ZA
Zo| TS~al
~__p
I
I
I
I
|
0/<< >
P A~~ l'///yp y
S~ 1/
Ay A ~v
Fig. 2.1 The cylindrical polar
X

coordinate system

14. Find the Jacobian for the spherical polar coordinates x = r sin 0 cos ¢, y =
rsin 0 sin ¢, z = r cos 0 where the coordinate system is shown in Fig. 2.2.

ZA
Zp~e
<P
r i
|
0 |
I
| >
0/<< I/
¢ AN I/ yp y
~< 1/
S~ i/
X fome X ~7

Fig. 2.2 The spherical polar
coordinate system



Chapter 3
Matrix Multiplication, the Inverse Matrix
and Partitioning

3.1 The Inner Product, Orthogonality and the Norm

Matrix multiplication is based on the product ab of an n element row vector a =
lay, a5, ..., a,] and an n element column vector b = [by, bs, ..., b,,]T. This product
of vectors written ab, and called the inner product or scalar product of the matrix
row vector a and the matrix column vector b, is defined as

ab = a\b; + ayby + - - - + a,b, :Zaib,- (3.1

i=1

The inner product is only defined if the vectors a and b each has the same number
of elements.

The name scalar product is used because although it is the product of a row vector
and a column vector, each with n elements, the result is a single scalar quantity
(a number when the elements of a and b are numbers). For example, the scalar
product of the two four element vectors a = [1, —2,4,3]and b =[2, 1, 0, 5]T is

ab = (1) x (2) + (=2) x (1) + (4) x (0) + (3) x (5) = 15.

If a is not a null vector, the scalar product of the matrix vectors a and a’ is such
that aa” =a? + a3+ - +a> =" ,a?>0,and the quantity denoted by |al|,
where ||a|| = vVaaT = (a}+a3+ -+ aﬁ)1 , is called the Euclidean norm of
vector a, also known as the Frobenius norm. The more familiar name Euclidean
norm is used here because of its use with space vectors. To understand why this is,
leta = a,i + a,j + ask be a vector in three-dimensional Euclidean space with i, j, k
unit vectors in the x, y and z directions. Then ||a|| = /a3 + a3 + a3 is the magni-
tude (length) of the space vector a, though in vector analysis the magnitude of a
vector is usually denoted by |a.

The use of the term vector for a row or column matrix is deliberate, because
Chapter 7 will show that matrices are an important example of what is called a

A. Jeffrey, Matrix Operations for Engineers and Scientists, 35
DOI 10.1007/978-90-481-9274-8 3, © Springer Science+Business Media B.V. 2010
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linear vector space. In a vector space composed of matrix row and column vectors
there are special vectors that play the part of the three-dimensional unit space
vectors i, j and k that are used in the calculus and vector analysis when constructing
general space vectors by scaling and vector addition. Two n element matrix vectors
a and b are said to be orthogonal if ab = 0, and to be orthonormal if in addition to
ab = 0 it is also true that |ja]| = 1 and ||b|| = 1. The last two conditions are
equivalent to requiring the matrix vectors a and b to be such that aa’ = 1 and
b"b = 1. Here the requirement that ||a| = 1 is a generalization to matrix vectors of
the concept of unit space vector like i, j or k, while ab is a generalization to matrix
vectors of the scalar product u.v of space vectors u and v which are orthogonal
(perpendicular) if their scalar product u.v = 0, while the vectors are orthonormal if
in addition to u.v = Q it is also true that u and v are both unit space vectors (each has
the Euclidean norm 1).

3.1.1 A Digression on Norms

The essential features of the norm of a matrix vector a are that:

(i) ||]al] > O when a # 0, and ||a|| =0 if and only if a = 0,
(i) |la+ bl < |la|| + ||b|| (the triangle inequality),
(iii) ||Aa|| = |4|||a]| when Z is any scalar multiplier.

Properties (i) to (iii) will be familiar from the study of three-dimensional space
vectors.

The norm of a vector serves many purposes, one of the most important examples
of which occurs when only a finite number of linearly independent matrix vectors
can be found. This will be seen to be the case when eigenvectors are introduced in
Chapter 5. If, say, these linearly independent matrix vectors are vy, vy, ... ,V,, then
their norms vy, Va,...,V, play the part of the unit vectors i, j and k in three space
dimensions when constructing more general vectors. Chapter 7 will show how by
using an inner product and normed vectors, a linear transformation described by a
matrix can project an n element matrix vector in a space S onto what is called a sub-
space S of S. This is analogous to projecting a three-dimensional space vector onto a
plane, which is a two-dimensional sub-space of three-dimensional space. Yet
another application of normed vectors occurs in numerical analysis when matrix
vectors are iterated, because working with vectors scaled according to their norm
prevents them from either growing without bound, or from becoming vanishingly
small, as the number of iterations increases. Although they will not be used here, we
mention that other norms are possible, like the infinity norm and the p-norms for
matrix vectors. If the elements of a vector a are denoted by ay, ay, ..., a,, these
norms are defined as:

(i) The infinity norm |||, = max{|ai|, [aal, ..., |an|}

and
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(ii) The p-norm |al|, = lla|, = [lai|" + |a2f” +--- + lan|p]'?, where p is a
positive integer.

It can be seen from (ii) that the Euclidean, or Frobenius norm, is the 2-norm

|la|l,. There are also norms for general matrices, one of the most useful being the

m n 2 1/2

Frobenius norm for an m x n matrix A defined as [|All; = [> 3 |ay] ,
i=1j=1

A simpler norm for an n X n matrix A that will be needed later when discussing
the matrix exponential e* is [|A||,, = max{|ay| :i,j =1, ... ,n}.

3.2 Matrix Multiplication

Let A be an m x n matrix and B be an n x r matrix, with a ; the ith row of A and b;
the jth column of B, so in abbreviated form A and B can be written

A=|"_|andB=[b; by --- b, (3.2)

where it will be shown later that the matrices a; and b; can be considered to be
special types of matrices called block matrices.

The two matrices A and B are said to be conformable for multiplication if the
number of columns in A is equal to the number of rows in B. The matrices A and B
above satisfy this condition, because A is an m X n matrix and B is an n X r matrix
so that A has n columns and B has n rows. The matrix product M = AB, with the
matrices arranged in this order, is an m X r matrix whose element m;; in the ith row
and jth column is defined as the inner (scalar) product a;b;. In terms of a;, b; and the
inner products a;b;, the matrix product AB can be written

albl albz s alb,.
32b1 azbz s azb,-

AB=| . . . . (3.3)
anbl aan e anbr

Remember that for the product of an m x n matrix A and a p X r matrix B to be
conformable for the product AB, it is necessary that n = p, when the result of the
product will be an m x r matrix. It is because of the way the sum of the products of
the elements of rows of A with the elements of columns of B is combined, that the
formation of the matrix product AB is most easily remembered as “the product of
the rows of A with the columns of B”. If the number of columns in A is not equal to
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the number of rows in B, the scalar product a;b; is not defined, and then the matrix
product AB will not exist. By convention, a matrix A = [a] containing a single
element a may be regarded either as the simplest possible matrix, thatisasa 1 x 1
matrix, or as the scalar quantity a, depending on the context in which it occurs.

It is clear from the definition of a matrix product that the order in which matrices
are multiplied is important. If the product AB is defined, it is not necessary that the
product BA exists, and even when it does exist, in general AB # BA. This situation
is described by saying that matrix multiplication is noncommutative, meaning that,
in general, when a matrix product is defined, the order in which the matrices appear
in the product cannot be changed. Before examining more complicated examples of
matrix multiplication, let us first apply result (3.3) to determine the following
simple matrix products.

Example 3.1. Form the matrix products AB and BA, given that

1 0
A{l ? ﬂ,B 2 1
11
Solution. Lo
w3 23]
11
[ Ix14+2x2+3x1 Ix0+2x1+3x1| |8 5
T2x14+1x2+1x1 2x0+1x1+1x1|" |5 2}
Similarly
1 0 1 23
BA21B?ﬂ157
1 1 3 3 4

So, although the products AB and BA are both defined, AB # BA.
¢
When performing matrix multiplication it is necessary to use some terminology
that makes clear the order in which matrices occur in a matrix product. In a matrix
product AB, this order is made clear by saying matrix B is pre-multiplied by
matrix A, or that matrix A is post-multiplied by matrix B. So to pre-multiply
means to “multiply from the left”, while to post-multiply means to “multiply from
the right”.
Another feature of matrix multiplication that differs from ordinary algebraic
multiplication is that, in general, the cancellation of matrix factors in a matrix
equation is not permissible. It is also the case that the matrix product AB = 0 does
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not necessarily imply either that A = 0 or that B = 0 nor, when the product exists,
does it necessarily imply that BA = 0. This can be illustrated by considering the
products AB and BA, where

2 2 -1 1
A:[S 3}andB:[1 _1}

Here, although A # 0, B # 0, the product AB:{

1 1
o[ 0]

Similarly, cancellation of the matrix factor A from the equation AB = AC is not
permissible, because this matrix equation does not necessarily imply that B = C.
This can be illustrated by considering the matrix equation AB = AC, with

2 2 1 0 2 0
IR S B
6 4
because AB = AC = {9 6} ,but B # C.
Example 3.2. Form the matrix products AB, BA, AC, Al and IA, and explain why
ACT does not exist, given that

0 0 .
0 0}, while

L 3 2 2 1 4
A= ,B=14 5|, C=| 1 |, andIisaconformable identity
0 4 1 1 2 3

(unit) matrix.

Solution. The matrix product AB is defined because A is a 2 x 3 matrix and B is a
3 X 2 matrix, so the product AB is a 2 x 2 matrix. Let a; be the ith row of A and b,
be the jth row of B, then a;b; = (1)x(2) + 3)x(4) + (—2)x(1) = 12, a;b, = (1)
x(1) + 3)x(5) + (—2)x(2) = 12, a,b; = (0)x(2) + 4)x(4) + (1)x(1) = 17, azb,
= (0)x(1) + (4)x(5) + (1)x(2) = 22. Thus the matrix product

AB — {12 12}

17 22

The matrix product BA is also defined, though it is a 3 x 3 matrix. The
calculation of BA proceeds as with the product AB, but this time the rows of B
contain only two elements, as do the columns of A, so BA is a (3 x 3) matrix.
The calculation is routine, so by way of example only the details of the calcula-
tion for the element in row one and column two of the product BA are given. The
calculation of this element involves the scalar product of the two element vectors
[2, 1] and [3, 4]", given by [2, 1] [3, 4]" = (2)x(3) + (1)x(4) = 10. Completing
the calculations gives
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2 10 -3
BA= |4 32 -3
1 11 0

As Ais a (2 x 3) matrix, and C is a (3 x 1) matrix, the matrix product AC is the
(2 x 1) matrix

As A is a 2 x 3 matrix, for compatibility the product AI will be defined if the
identity matrix I is taken to be a 3 x 3 matrix, in which case a simple calculation
confirms that AI = A. However, for the product IA to be conformable it is
necessary for I to be the 2 x 2 identity matrix, from which it then follows that
IA =A.

This illustrates the fact that in multiplications the identity matrix I acts like
the number 1 (unity) in ordinary multiplication. If the shape of the identity
matrices involved must be made clear, in the first of these calculations we could
write Al; = A, where I3 is a 3 x 3 identity matrix, while in the second calculation
we could write LA = A, where I, is a 2 x 2 identity matrix. However, the
identification of a unit matrix in this way is seldom necessary, since it is always
understood that the symbol I represents whatever identity matrix is appropriate for
the algebraic operation that is to be performed.

Finally, the matrix product ACT is not defined, because A is a 2 x 3 matrix, and
Clisal x 3 matrix.

¢

By definition, if a general matrix A is multiplied (scaled) by a constant k, then
each element of matrix A is multiplied by k. This definition of scaling a general
matrix by a constant k is in agreement with the definition of the meaning of AI
introduced at the end of Chapter 2 when considering det[A — AI]. So, for
example,

ayy ap - dai kayy  kayp - kap,
a ap - ay kayy  kay - kay,

4 R S e (3.4)
aml  dm2 o dpn kaml kamZ e kamn

To return to the study of linear systems of algebraic equations, we now examine
the relationship between nonhomogeneous first-order algebraic systems and matrix
multiplication, by considering the system
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anxy +apxy + -+ apx, = by,
Xy + apxy + -+ ayx, = by,

(3.5)
am X1 + aupxy + . ~+ apnXy = bp,.
Defining the matrices

an  an - an X1 by
A ay axp o ay Cx— X2 b= by | 3.6)

Ami Apo A Xn b

allows system (3.6) to be written in the concise form

Ax =b. 3.7

Division by a matrix is not defined, so the matrix Eq. (3.7) cannot be divided by
A to find x. However, if m = n, and det A # 0, it will be shown later that a new
matrix denoted by A~ 'can be defined with the property that A—'A = AA~'=1,
where the matrix A~ is called the inverse of matrix A.

Using this property, and pre-multiplying (3.7) by A", that is multiplying it from
the left by A~', it becomes A"'Ax = A~'b but A~'A = I, and Ix = x, so the
solution of (3.7) is seen to be given by x = A~'b, whenever A~' exists. This
reasoning raises the important question of how to find A~" for any given square
matrix A, though this matter will be postponed until later in this chapter. However,
if A is not a square matrix the inverse of A does not exist.

It is a consequence of the definition of matrix multiplication that when A, B and
C are conformable for the product ABC, pre-multiplying C by the product AB is the
same as post-multiplying A by the product BC, so that

(AB)C = A(BC). (3.8)

An immediate consequence of (3.8) is that for any integer n we may use
exponent notation and write

AA-- A =A" 3.9)

n times

where, for consistency we define A = I.

Example 3.3. Verify property (3.8) given that

1 4 2 6 32
S LR RN A i
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and show that ABC # CBA.
Solution.
-2 6

AB = { . 18}, (AB)C = [_42 168Hi ﬂ = {300 ég}
and

se= |15 B amo=[5 5[5 B)=[0 &)

A routine calculation shows that

58 52
CBA = [16 4]’

so in this case ABC # CBA.

3.3 Quadratic Forms

An important connection exists between n X n matrices with real elements, and
quadratic forms Q(xy, Xo, ..., X,,) in the n real variables xy, x5, ... , x,, where by
definition the quadratic form

O(x1,X2,. .., %) = Zaijxixj~ (3.10)
ij=1

The coefficients «;; can be represented in matrix form by defining an n X n
matrix

O o2 Oln

~ 01 Ot O2p

A= . 7 T, (3.11)
Ol On2 Olnn

which then enables (3.10) to be written

0(x) = x"Ax, (3.12)

where X = [x, X5, . . . ,x,l]T is an n element column vector, and x© =[xy, X2, ... ,xn]T

is its transpose (an n element row vector).
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Quadratic forms have many uses. They are introduced here because the process
of simplifying (3.10) to an equivalent sum involving only the squares of n new
variables, say yi, 2, . . . , Y., involves finding a linear change of the variables in x to
the variables in y that has the effect of reducing A to a diagonal matrix. Later we
will see how this same process, called the diagonalization of a matrix, plays an
important role when working with systems of linear differential equations.

A typical quadratic form involving the two real variables x and y is

O(x,y) = X + (012 + o1 )xy + oy (3.13)

This can be written in the matrix form

O(x,y) =[x HP““”HW,

o1 022 | |Y

because

o o
[X y] ! 2 = [OCH)C + 21y, d12X + C)(22_)]] )
Ola1 022

SO

x
O(x,y) = [o1x + 021y, 012X + 02y [y] ain = [O(llxz + (o2 + 021 )xy + 0622)’2],

and as the last quantity on the right is a matrix containing only a single element, it
can be written as a scalar quantity, so Q(x, y) becomes

O(x,y) = oy + (12 + o21)xy + 0622)’2-

It is always possible to express an arbitrary quadratic form in the n variables
X1, X2, ... , X, In terms of a symmetric matrix A, and an n element column vector
X =[x, X0, ..., x,,]T. To achieve this, when the quadratic form is expressed as in
(3.10), with a matrix A having the coefficients o;;, the required symmetric matrix
A = [a;;] with elements a;; defined in terms of the elements ;; is given by

Olijs l:J7
aj; = S 3.14
’ {%(O‘ij+iji)a i #]. G-19)

Once diagonalization has been discussed, it will be shown how any real qua-
dratic form can be reduced to its diagonal form

O(X) = X} + A3 + - + Aue (3.15)

n?
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with 4y > A, > --- > A, , where some of the n numbers A; may be negative, and
some may be zero.

Example 3 .4. Find the quadratic form defined by the matrix A.

i 7 4 4
A=|-8 1 12
-8 -4 1

Define the symmetric matrix A with coefficients a;; determined by (3.13), and
confirm that it generates the same quadratic form as matrix A.

Solution. Setting X = [x1, X3, x3]T we have

x'A = [7)(1 — 8xp — 8x3,4x1 + xp — 4x3,4x1 + 12x; +X3]7

so after evaluating the inner product of x"A and x, we find the required quadratic
form is

Ox) = XTAx = 7x,2 — 41y — 4x1x3 + X027 + 8x0x3 + 32

From (3.13) the coefficients a; of a symmetric matrix A are a; =7,
daijp = dn :%(4—8) = —2, a3 = daz :%(4—8) = —2, ay = 1, azs — d3p
:%(—44-12) :4, azz = 1.

So the required symmetric matrix A becomes

7 -2 =2
A=|-2 1 4
-2 4 1

Repeating the previous calculation, but this time with A in place of A, gives
XTA = [Tx) — 2x0 — 2x3, —2x) + X3 + 4x3, —2x1 + 4xy + x3),
so that

0(x) = XTAX = 7x1%2 — 4x1x5 — 4x1x3 + 27 + 803 + x32,

confirming that x"Ax = xTAx.
Before leaving this example we mention that the linear change of variable

X1 = J5V2 — 293, X2 = —JVi + 95V + Y3, X3 = JsVi + o + v
V3 V6 Ne V3 NG VZ V3 NG



3.4 The Inverse Matrix 45

reduces the quadratic form Q(x) in terms of X = [x, X, x3]" to the much simpler
form Q(y) = —3y% + 3y% + 9y% involving only a sum of squares of the elements of
¥y = [1, y», y3]". However, the way to find such a change of variable will be
described later once the diagonalization of a matrix has been discussed.

o

3.4 The Inverse Matrix

Previously, in connection with the system of Eq. (3.7), an n X n matrix A~ ! with the
property that A~' A = I was introduced in a purely formal calculation to show how,
when this matrix exists, the solution of the system of » nonhomogeneous algebraic
equations

Ax=b (3.16)

can be solved for x by pre-multiplying the equation by A~', because A~ 'Ax
=A"'b,but A”'A =L, and Ix = x, 50

x=A"'b. (3.17)

Consequently, given an n X n matrix A, it is necessary to discover when and how
an associated n x n matrix denoted by A~ can be found with the property that

AA'=A"TA=L (3.18)

As already stated, division by matrices is not defined, but when an n X n matrix
A~ ! associated with a matrix A can be found satisfying (3.18) it is called the matrix
inverse of A, or more simply the inverse of matrix A. As the inverse matrix A~
occurs in (3.18) both as a pre- and a post-multiplier of A it is, more properly
described as the multiplicative inverse of A, though for conciseness the term
multiplicative is almost always omitted.

To see how, if A is an n X n matrix, a formal definition of the inverse matrix Al
can be obtained, we consider the matrix product M = ACT, where CT is the
transpose of the matrix of cofactors associated with A. When written out formally
this becomes

ayy app -+ ap | |[Cu Cuy - Cu
ay ap -+ ay||[Cp Cxn -+ Cp

—_

(3.19)

danl ap2 - Qpp Cln C2n e Cnn
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Appeal to Theorem 2.2 (the Laplace expansion of a determinant) shows that each
element on the diagonal of M is simply det A, while every off-diagonal element is
zero, because each off-diagonal element is obtained as the sum of the products of
the elements of a row of A with the cofactors of a different row of A. This allows us
to write

dtA 0 - 0
0 detA -~ 0

M=| . A (3.20)
0 0 - detA

so from Property 1 of Theorem 2.1 with k = det A, because M = AC”, it follows
that

ACT = (det A)L. (3.21)
A similar argument using the product C*A leads to the result
CTA = (det A)I, (3.22)
S0
CTA = ACT = (det A)L. (3.23)

When det A # 0, a comparison of (3.23) and (3.18) leads to the definition

1
Al = CT 3.24
det A’ ( )

provided the scalar divisor det A # 0.

Because of its importance and frequent occurrence, the matrix C" defined as the
transpose of the matrix of cofactors C of A, is given a name and called the adjoint of
A, written adj A, so that

adj A = CT. (3.25)

Thus the formal definition of the inverse matrix A~' in terms of the adjoint
of Ais

1
Al = detAadj A, det A #0. (3.26)

Matrix A is said to be invertible, meaning its inverse exists, when A~ ! exists. This
in turn shows that for A~ to exist it is necessary for A to be nonsingular; so det A # 0.
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We have proved that AA~' = A~'A =I. Notice that the exponent notation adopted
in (3.9) applies equally well to (3.26) provided we use the definitions A' = A, and
A% =1 because then AA"' =A'AT' =AY "V =A"=1

When n is large the computation of det A and the elements of adj A is time
consuming, so this definition of the inverse matrix is mainly of theoretical impor-
tance, though it can be useful when 7 is small. If systems of algebraic equations like
(3.16) need to be solved, instead of computing A", a different and more efficient
approach must be used. In this method the equations in the system are reduced to an
upper triangular form, with suitable modifications to the nonhomogeneous terms,
after which the system is solved using a process called back substitution. In back
substitution, x, is found first, and then this value is used to find x,_;, after
which the value of x,, _ , is found from the values of x,, and x,,_;, and so on, until
finally x; is found in terms of x,,, x,_1,. . ., X2.

Example 3.5. Find A™" given that

3 1 2
A=1(2 -1 1
1 3 -1

Solution. A straightforward calculation shows the matrix C of cofactors is

-2 3 7 -2 7 3
C=|7 -5 —8|,s0adjA=C"=|3 -5 1 |, anddet A=I1,
3 1 =5 7 -8 -5

so from (3.26)

|
ja{[S)
|~

,_‘
_r
[~ =]

1
-1 _ 1 CT: 3 _5
det A 11 11 11
A 8 S
11

A routine calculation confirms that A~' has the required properties, because
AAT'=ATA=L
¢

Example 3.6. Use the result of Example 3.4 to solve the system

3x1 +xp + 2x3 =4,
2x; —x3 +x3 = =3,

X1+3X2*X3:5.
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Solution. The coefficient matrix in this case is matrix A in Example 3.4, so setting

X1 4
X= [X2], b=|-3 5
X3 5

the system becomes Ax = b, so that x = A~ 'b. Using the result of Example 3.4 we
find that x = A~'b becomes

_2 1 3 _ 14

1 1 11 11 4 1
— 3 _5 L _ — 32
=1 1 1 11 3= 1
7 8 5 27

X3 L -5 5]s 2

—_

11

Equating corresponding elements in the column vectors on the left and right
shows that the elements of the solution set {x;, x, x3} are given by

1
1

S
1)
)

1

~

X1 = — , X2 = , X3 =

—_
—_
—_
—_
—_

o
The two fundamental properties of the inverse matrix that follow can be deduced
very simply; the first being that

(A7) = A, (3.27)

while the second is that if the square matrices A and B are conformable for
multiplication, then

(AB)"' =B~'A"". (3.28)

When A" exists, (3.27) follows from (3.18), because A~'A = AA~' = I shows
that A is the inverse of A™", so (A71)71 = A. Result (3.28) follows by considering
the product B"'A™'AB, because A"'A =Tand B"'B=1,s0 B"'A"'AB =B 'IB
= B™'B = I. Thus the matrix product AB is the inverse of the matrix product
B 'A"', confirming that (AB) ' =B 'A"".

When A~ exists, it is always true that AB = 0 implies B = 0, and that AB = AC
implies B = C. Although cancellation of matrices is not permitted, in this case pre-
multiplication by A~! has a similar effect. These statements do not contradict the
results of the two examples following Eq. (3.3), because in those cases matrix A
was singular, so A~! did not exist.

Two useful results involving the multiplication of determinants can be deduced
from matrix multiplication. These are that if A and B are an n x n matrices, then

det(AB) = det A detB
detA™! =1/detA, detA #0. } (3.29)
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The second result follows from the first one by setting B = A~!, when AA ™' =1,
and det I =1, so it is only necessary to prove the first result. For simplicity, the proof
will only be given when A and B are 2 x 2 matrices, because although the proof
generalizes in an obvious way to include n X n matrices, the calculations become
tedious.

Let
ayn dapn bll b12
D, — 7 —
! a  an by by
and define D as
ap ap 0 0
p_ @1 ax 0 0

0 -1 by bn

Expanding D in terms of the elements of its last column, and then expanding the
two third-order determinants that arise in terms of elements of their last columns,
gives

app an a ap ay  an
D = —b2by; + bi1bxn = (b11bx — biabay) ,
a an a ann a an
a a b b
andsoD = |“! 127 2\ = DD, .
ax axn||by bn

It remains for us to show that DD, is the determinant formed from the matrix
product AB.

Determinant D will be unchanged if its first row is replaced by Row 1 + a;; Row
3 + a;; Row 4, and its second row is replaced by Row 2 + a,; Row 3 + a5, Row 4,
when it becomes

0 0 aubi+anby aubi+anby

_ 10 0 aybi +anby  axybix+anbn
b=DiD, = -1 0 b1y b1z
0 —1 bz] b22

Expanding this determinant by the elements in its first column to obtain two 3 x 3
determinants, and then expanding these by the elements in their first columns gives

bit b
by by

aytbiy + anby  anbi +apbxn
az1biy + axpby  axbip + anbxn

ar ais
azi2  ax

However, the determinant on the right is the determinant of the matrix product
BA, so the result is proved for the product of second-order determinants. As already
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mentioned, the equivalent result for the product of determinants of order n follows
in a similar fashion.

A useful result involving adjoint matrices follows from the first result of (3.29).

Replacing A by A~" in (3.26) and forming the matrix product AA~" gives

1
-1 _
det Adet (A1)

adj (A Dadj A,

but AA " '=T and det A det (A™YH =1, so it follows that
adj (A" adj A =1,

and repeating the argument, but this time using the product A~ 'A shows that
adj Aadj (A7) =1,

so we have proved that

adj (A™!) adj A = adj Aadj (A™") =L (3.30)

3.5 Orthogonal Matrices

At this point it is convenient to introduce the concept of an orthogonal matrix, and
to relate orthogonal matrices to their geometrical properties involving rotations in
space. A real nonsingular square matrix Q is said to be orthogonal if it is such that

Q'=qQ", (3.31)

so when Q is orthogonal, QQ" = I. A typical orthogonal matrix is

2 2 _1
3 3 3
L _1L
Q = \/i \/i )
1 1 4
W2 3V2 32

and this result is easily checked by showing that QQ" = L.

Orthogonal matrices are so named because they possess an important geometri-
cal property. This property is that they characterize coordinate transformations that
rotate coordinate axes about an origin, while preserving orthogonality between
perpendicular lines, and also preserving shapes and the lengths of vectors.
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In rectangular Cartesian coordinates the transformation

X'p =2xpcosO -+ ypsin0,
/P P . yp (3.32)
Y p = —xpsin0 + ypcos0,

illustrated in Fig. 3.1, describes how the coordinates (x,, y,) of a fixed point P
relative to the O(x, y)-axes, become the coordinates (x,, y)of the same point P
relative to the O(x/, y')-axes, when the O(x’, y')-axes are obtained by a counter-
clockwise rotation of the O(x, y)-axes through an angle 6.

It is obvious geometrically that this rotation preserves lengths from the origin
to arbitrary points P in the plane, but we will give an analytical proof of this fact.
To show the transformation preserves length, let /; be the length of the straight
line from the origin to the point P with the (x, y) coordinates (x,, y,), and I, be
the length of the straight line from the origin to the point P with the (X, ')
coordinates(xp, yp), then

(Xp)2 + (Vp)* = (xp cos 0 + yp sin0)* + (—xp sin 0 + yp cos 0)* = x2 + y3.
(3.33)
This shows that [, = [,%, so as lengths are essentially nonnegative, the length
[, (the norm) of the vector drawn to the point (x,, y,) is the same as the length

I, (the norm) of the vector drawn to the point (xp, ¥p).
As (3.32) applies to any point P, we will drop the suffix P and write (3.32) as

, .
x = Qx, with x = H X = HQ - {ﬂ ﬂ}, (3.34)
y —sin0 cos 0

it is easily seen that Q is an orthogonal matrix, because Q ' = Q™. Consequently,
X is given in terms of X’ by

T T cosf) —sin0
x = QX where Q' = {sin@ cos 0 } ) (3.35)
, YA
y
_________ P
Yo - /’I*\
- I\
L~ I\
— I \ ,
[ X
. Yo |
Fig. 3.1 The 0 X'p
counterclockwise rotation of |
the O(x, y)-axes about the |
.. 0
origin through an angle 6 to 0 ! >
become the O(x/, y')-axes Xp X
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Chapter 7 will show that Eq. (3.34) is a typical example of what is called a
linear transformation. Two-dimensional linear transformations like (3.34) relate
vectors in one plane, here the (x, y)-plane, to vectors in another plane, here
considered to be the (x, y')-plane. Equation (3.34) is said to map a point (x, y)
onto the point (x/, y'), when the point (x/, y’) is then called the image of point
(x, y).

Three important and useful properties of orthogonal matrices follow directly
from definition (3.31).

Theorem 3.1 Properties of Orthogonal Matrices

(1) If Q is an orthogonal matrix, then det Q = +1.
(i) The columns of an orthogonal matrix Q are orthonormal, meaning that if
q; and q; are any two columns of Q, then

T _ 7i7éj7
q"qf_fl,i:j.

(i) If Q; and Q, are two n X n orthogonal matrices, then Q;Q, is also an
orthogonal matrix.

Proof. Property (i) follows from the results det Q7 = det Q and det Q' = 1/det
Q, because when these results are combined they show that (det Q)2 =1, so det
Q = =£1. Property (ii) follows directly from the fact that QTQ =1, because if q; and
q; are any two columns of Q, then

0, i#)
T _ ) )
qqu_{l,i—j.

Finally, property (iii) follows from the fact that QQ;"=1and Q,Q," =1,
because

(Q1Q2)TQ1Q2 - QzTQlTQle - QzTQz =L

3.6 A Matrix Proof of Cramer’s Rule

As a simple application of the inverse matrix, we now give the promised proof of
the generalized Cramer’s rule for a set of n linear nonhomogeneous equations,
subject to the condition that det A # 0. When written in terms of the adjoint matrix,
the solution x = A~ 'b of the system of equations Ax = b becomes
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X Ciu Cu -+ Cu||b
X2 1 [Ci2 Cn -+ Cpl||b

TdeA| o] -39
Xn Cln C2n e Cnn bn

where C; is the cofactor of the element a;; in A. The jth element on the left is x;, and

the jth element on the right is the sum of the products of the elements in the jth row
of the matrix adj A on the right with the elements in column vector b, so that

Xj = (Cljbl + C2jb2 +---+ an)(l/det A) (337)

However, if in matrix A the jth column is replaced by the elements in b to form a
matrix A;, and if D; is the determinant of this modified matrix, when the result is
expanded in terms of elements of its jth column it becomes

D; = by (cofactor of b;) + b(cofactor of by) + - - - + b,(cofactor of b,).

Because of the construction of matrix A;, the cofactor of b; is simply the cofactor
C;; of the original element a;;, so

D;=Cyby +Cyiby+---+Cyforj=1,2,--- n.

Thus D; is the determinant A; obtained from A by replacing its jth column by the
elements of the nonhomogeneous vector b, and we have established the extension
of Cramer’s rule to a system of n equations showing that

A A A,
xl:X‘,xz:Kz,-~~,xn:K,w1thA:detA7é0. (3.38)
Example 3.7. Use Cramer’s rule to solve the system of equations

X1 +2X2 +x3 = 87 2X1 7)(24’2)63 :6, —X1 +3X2 73)(3 = —4.

Solution. Here the matrix A is

1 2 1
A=| 2 —1 2 | and A=detA=10.
-1 3 -3
8 2 1 1 8 1 1 2 8
Ai=det| 6 —1 2 [=10,Ay=det| 2 6 2 |=20,A3=|2 —1 6 | =30,
-4 3 -3 -1 —-4=3 -1 3 —4

SO X1=A1/A=1,X2:A2/A=2,X3 :A’;/A:3
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3.7 Partitioning of Matrices

In certain applications of matrices it is useful to divide a matrix into parts, by
drawing dashed horizontal lines between some of its rows and some of its columns,
as shown in the next example

Example 3.8. A typical partitioning of a 3 X 7 matrix A is

1 3 —4l0 1!3 2
A=[1 -1 211 13
40 112 273 3

%

In Example 3.8 the dashed the lines divide the matrix into the six sub-matrices

and if, for the moment, each sub-matrix is treated as a single entry, matrix A can be
written

A:{An A A13],

Ay Ay Ap

where
A 1 3 -4 Aur — 0 1 Ao — 3 2
e T R -l IR R E 31l

A21 :[4 0 1], A22:[2 72] andA23:[3 73}

Each of these sub-matrices is called a block matrix, and the process of sub-
dividing A into block matrices is called partitioning matrix A. The numbering of
the subscripts used to identify the block matrices is the same as that used to identify
individual elements in a matrix, because A, ; identifies the block matrix in the ith
row and the jth column of matrix A once it has been partitioned. Remember that, in
effect, block matrices were used in (3.2) when defining a matrix product in (3.3).

A typical practical example of the use of partitioned matrices occurs in applica-
tions where each block matrix governs the behavior of a specific part of a compli-
cated system described by linear first-order differential equations. In such cases
partitioning often makes it easier to identify the contribution to the overall perfor-
mance of the system that is made by a specific block matrix. A different use of
partitioning happens when seeking the numerical solution of partial differential
equations by finite difference or finite element methods, which usually produces
very large matrices within which many blocks contain only zeros. The effect of
partitioning then makes it possible to avoid performing unnecessary calculations on
blocks that only contain zeros, since these contribute nothing to the final solution.
Partitioning is also used when a matrix is extremely large, as may happen in some
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linear programming problems where an optimum solution is required involving
very many variables with complicated constraint conditions. In such cases, if the
calculation is properly organized, matrix operations can be performed more effi-
ciently block by block, instead of at all times working with the entire matrix.

It is evident from the definitions of the linearity, scaling and summation of
matrices, that if two m X n matrices A and B are partitioned in similar fashion, the
scaling of matrix A corresponds to the scaling of its block matrices, while A &= B,
corresponds to the sum or difference of the corresponding block matrices. For
example, if

1 24
[ kA1 kA2 12 4
A= ! = = =
_%___;%_1_ then kA [kAzl kAzz} , where A {0 3} , A [ 1 ] 3

A21 = [—2 2] and A22 = [1] =1.

Similarly, if

1 212
i B Bp 1 2 2
B=|0 3! 4 |- with By, = B, = By =1
T P R PR

ALB— [AniBll AIZZIZBI2].

Ay =By Apn By

Let the two matrices A and B by conformable for multiplication. Then, provided
the matrices are partitioned in a suitable fashion, the product of two blocks involves
ordinary matrix multiplication, and consequently the product AB in block matrix
form obeys the usual rule for matrix multiplication. These can be described simply
as the result of “the product of rows of block matrices with columns of block
matrices”, where now it is the block matrices that form the rows and columns of the
partitioned matrices A and B. The conditions to be satisfied if this result is to be true
are that the partitioning of the matrices A and B must be such that all the resulting
products of block matrices are defined, and the order in which the block matrices
are multiplied is preserved. This last condition is obvious because, in general,
matrix products are not commutative.

Example 3.9. Form the matrix product AB, given that A is the partitioned matrix

0 1
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used in Example 3.8, and B is the partitioned matrix

12
001
212

B=| 111
211
-172

L3 1]

Solution. Notice first that A is a3 x 7 matrix and B is a 7 x 2 matrix, so the matrix
Ay A Ap
Aoi Ay Az’

1 3 —4 01 3 2
where A11:|:1 1 2 :|, A12:|:1 1:|, A13:|:_3 1:|, and A21:[4 0 1],

Ay =[2 —2] and A3 =[3 —3], and let B be partitioned as

product AB will be a 3 x 2 matrix. Let A be partitioned as A =

1 2
B= B21 ,Wlth Bll — 0 1 , B21 = |:; }:| and B31 = |:31 ?:|
2 2

This partitioning permits the “product of rows with columns” to proceed in the
usual way, because the blocks are compatible for multiplication. The result is the
block matrix product

-2 6
AB = |:A11B11 +A;,B, +A By “l1a 2|
AyB +ALB, +ABy, RT3

The final result has been partitioned because it shows how the partitioning of
A and B leads to the partitioning of the final matrix product. To see this, notice that
the sum of the products in the top row produces a 2 x 2 matrix, while the sum of
the products in the bottom row produces a 1 X 2 matrix.

¢

A special case of the next example will be needed in Chapter 5 when partitioned
matrices are used to reduce a special type of 2 x 2 matrix with real elements to what
is called its Jordan normal form.
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Example 3.10. Let R and S be 2n x 2n matrices, each partitioned into the four n x n
block matrices

Find the form of the matrix product RS when P = A — oI, and Q = —fI,,, with
o and f real numbers and § > 0, where A is an n x n block matrices, and I, is the
n X n unit matrix. Comment on the relationship between the result of the product

RS and det M, when M = [OC ; 4 rx_—ﬁ p ] , with 4 a scalar parameter.

Solution.

P!-Q|[P Q] [PP+Q*! 0

Setting P = A — oI, and Q = fI,, we find that

P+ Q%= (A —al)’ + f1, = A> — 20A + (o2 + 7)1,
SO

A’ =20 A+(’+B, ! 0
RS = | = o |
0 §A2—2aA+(a2+B2)In

Expanding det M gives the quadratic expression

_ v—=4 =B _ 02 , 2 2
p(}»)—det[ 8 oc—i]_)“ 200 4o + .
So if / is replaced by A anda® + > by (fx2 + [32)[,,, the ordinary quadratic
polynomial p(1) becomes the matrix polynomial p(A) given by p(A) = A?
—20A + (oc2 +[32)I,,, which is seen to occur in each of the nonzero block
matrices in the product RS. As p(1) = det M is the characteristic polynomial
associated with M, the above result shows that matrix A satisfies the same
polynomial expression p(4) as the scalar parameter 4 in M.
o
Finding the inverse of a nonsingular partitioned n X n matrix A in terms of block
matrices is lengthy, but a simplification occurs when A can be partitioned such that
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the nonzero blocks themselves form an upper triangular block matrix. Let us
consider the case when A can be partitioned into nine blocks, as follows

(pxp) 1 A(pxq) | A (pxr)
All ! Alz ! A13

A= 0 AST AL (339)
i NG
0 {1 0 Ay
where Ag’:xﬂ Vis a p X p matrix, A(ZZX") is a g X g matrix, Ag’;r) is an r X r matrix,

and p + g + r = n. The superscript on each off-diagonal block matrix shows the
shape of the block so, for example (¢ X r) signifies a block matrix with ¢ rows and r
columns.

From this point onward, it will be assumed that matrix A, its inverse B = Afl,
and the n x n unit matrix I,, are all partitioned in this manner. To simplify what
follows, the superscripts will be omitted, and we will seek a partitioned matrix B
such that AB = I,,, which is equivalent to the block matrix equation

Ay A, Ay |B By B (100
0 1 An Ay|IBy By By =10 1,00 (3.40)
0:0 'A,||B, !B, B,| [0:0]

Here, I, is a p x p element unit matrix, while the unit matrices I, and I, are,
respectively, ¢ X ¢ and r X r unit matrices. This product is equivalent to the
following nine block matrix equations from which the sub-matrices B;; must be
determined:

AiBi +ApBy +AisBs =1,
A B +ApBy +A;sBn =0,
A Bz +ApBy +A;3B3; =0,
A»B) + AxpBs =0,

AnBy +AnBy =1, (3.41)
A»By + AxpBsz =0,

A33B;3 =0,

A33B3 =0,

A33B3; =1,.

Notice first that matrix A is assumed to be nonsingular, so the sub-matrices A1,
A,, and A3z must all have inverses. These equations can be solved recursively by
back substitution, starting with the last equation that shows B33 = A3_3], so because
A3_31 exists, the next two homogeneous equations show that B3, = B3; = 0.
Proceeding in this manner all of the sub-matrices B;; can be found, though as the
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B;; are matrices, it is necessary to preserve the order in which matrix products occur.
Determining all of these sub-matrices, and incorporating them into the matrix B =
A~ leads to the result

Al_ll : _A1_11A12A;; : Al_ll [A12A55A23A§§ _A13A;3l
B=A"'=| 0| A, | CALAAG : (3.42)

o e e e e e

0 ! 0 i A,

Example 3.11. Find A~" given that A is the partitioned matrix

2 210 %-1

0 3i-1'-2
A= 0 011 -2f

0 0 01

Solution. The sub-matrices are

an=|® A= 0] A= Ay =10 0], Ay = [1]
11 — 0 3 b 12 — _1 b 13 — _2 b 21 — b 22 — b

A23 = [—2], A31 = [O O], A32 = [O] and A33 = [1]

11
A routine calculation shows that A}, = [(2) 13}, and after substituting into

result (3.42) it is found that 3

|—
W=

Al =

S O Owi-
O Owi—

[55)
O =W
—_ N W

Routine matrix multiplication confirms this result, because AA' =L

3.8 Matrices and Least-Squares Curve Fitting

A record of experimental or statistical data it is usually in the form of » discrete
pairs of measurements [xi, yi], [x2, ¥2],..., [Xu, yn] that show how a quantity
y of interest depends on an argument x, where often both the x; and y; are subject
to experimental error. We will call these pairs of measurements data points.



60 3 Matrix Multiplication, the Inverse Matrix and Partitioning

When it is necessary to infer values of y for values of the argument x that lie
intermediate between the discrete values x;, x5, ..., x,, or when the set
of data points is to be approximated by a smooth curve, this is most easily
accomplished by approximating the discrete observations by a continuous curve
y = fx).

When representing experimental data points by a curve, it is usual to choose
a curve in the form of a polynomial of low degree, and to fit it by using the
method of /east squares. If the plot of data points can reasonably be represented
by a straight line, the equation y = ag + a;x can be fitted, but if a plot of
the data points appears to be parabolic in shape a quadratic equation of the form
Y = ao + aix + a»x> can be used. Polynomials of still higher degree can also be
fitted, though a cubic is usually the highest degree equation that is used. This is
because when a higher-degree polynomial is fitted, the coefficients of the
polynomial become very sensitive to the errors in the data points which can
lead to a poor approximation.

Because the measurements contain errors of observation, a curve cannot be
expected to pass through each data point, so some compromise becomes necessary.
The idea underlying the least-squares approximation involves choosing the coeffi-
cients in the equation to be fitted, like ap, @; and a, in a quadratic (parabolic)
approximation, in such a way that the sum of the squares S of the differences
between the points Y; on the curve Y; = ag + a1x; + agxf at the points x;, and the
actual measurements y; at the points x; is minimized. So the expression S that is to
be minimized is given by

n

n
S = Z Y, — y,~)2 = Z (a() +ax; + azxiz — y,-)z. (3.43)
=1 =1

The quantity S is simply the sum of the squares of the vertical distances between
Y; and the actual measurement y; at each of the n values x; is minimized. Here
S is defined as the sum of the squares of these distances, because the quantities
&, — y,»)2 take account of the magnitude of the differences between the Y; and
the y;, without regard to the signs of the differences.

If the equation ¥ = ap + a1x + ax* is to be fitted, the sum S of the squares
will be minimized when ao, a; and a, are chosen such that 9S/0ay =0,
0S/0a; = 0 and 0S/0a, = 0. After differentiation with respect to ao we find that

Z ap + aix; + Clzxi2 - yi)
i=1
0214—012% +01sz —Z)’z
n n
naop + a; in + a Zx,z - Z)’i
i=1 i=1

800
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Setting 3S/dap = 0, the first equation from which ay, a; and a, are to be found
becomes

n n n
2
nap + a; E X+ ax E Xp = E Vi.
i=1 i=1 i=1

Similar reasoning involving 9S/0a; and 0S/0da, yields two further equations,
and the system of equations from which ay, @, and a, are to be found by least
squares becomes

n n n
2
nag + ay E X+ ap E X, = E Vi,
i=1 i=1 i=1
n n n n
2 3
ao g X +a; E X +a E X = g XiVi, (3.44)
i=1 i=1 i=1 i=1
n n n n
2 3 4 2
aOE x,-—l—alg xi+a2§ X, = E X;Yi-
i=1 i=1 i=1 i=1

Instead of finding ay, @, and a, from these equations, we now show how a matrix
argument can generalize these results. This approach has the advantage that the
same form of matrix computation will enable a polynomial of any degree to be
fitted to a set of data points.

Let a quadratic be fitted to the 7 sets of data points [x1, yi1], [x2, 2], - - -, [Xn, Y4l
using the quadratic approximation

Y = ag + aix + apx’. (3.45)

Consider for the moment the over-determined system of equations

2

ap + aixy + axx] = y1,
2

ap + arx; + axx; = yo,

2
ap + apxz + axxz =ys,

2
ap +ayx, + arx, = ¥Yn,

which can be written in the matrix form

1 X1 X% Y1
1 x X3 o V2

Xa =y, where X = ,a=la|l,y=1|.]|. (3.46)
ap :

—_
= ...
[}

<

B)

Xn
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Clearly the equation Xa =y cannot be solved for a as it stands, but it can be
solved if it is pre-multiplied by a 3 x n matrix M, because then both MX and My
become 3 x 3 matrices, and for a suitable matrix M the matrix (MX)71 will exist,
leading to the result a = (MX)flMy7 though vector a will then depend on the
choice of M. To avoid introducing an arbitrary matrix M, let us try setting
M = X', when after pre-multiplication by X Eq. (3.46) becomes

X"Xa = XTy. (3.47)
We must now see if this result is in any way relevant to the least-squares curve

fitting of a quadratic, and to do this we need to consider the matrix product X'X,
which becomes

X'X=|Xxn X X (3.48)

The matrix product X" Xa is now seen to be the left side of Eq. (3.44), while X"y
becomes the right side of the equations. Thus the matrix equation

X"Xa = XTy (3.49)
is precisely the matrix form of the system of Eq. (3.44) that determine the least-

squares values of aq, a;, and a,. So, in terms of matrices, the coefficients aq, a; and
T
a, are the elements of a vector a = [ag, a1, az] where

a=(X"X)"'X"y. (3.50)

If, instead of a parabola a straight line Y = ag 4 a;x is to be fitted to the data
points by least squares, X simplifies to the n X 2 matrix

X1
1 x

X=|. 7|, witha= [“‘)} 3.51)
o a
1 x,

In statistics the fitting of a straight line to a data set by least squares is called
regression, and the straight line itself is called the regression line, and the coeffi-
cient a; that measures the slope of the regression line is called the regression
coefficient. In general, when a set of data points [x;, yi|, [x2, Y2, ., [Xn, Yu] is
involved, the regression line is described by saying it is the regression of y on x.
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If a cubic Y = ag + ayx + apx> + a3x® is to be fitted to data points by least
squares, the previous argument is easily generalized to show that X becomes the
n X 4 matrix

1 x 2

ao
1 x x% x% ) ai
X=1. . . |, witha= (3.52)
oo a
1 x, 2 X a3

n n

In all cases, the vector a is given by the matrix expression in (3.50)
a= (X"X)"'XTy,
and if a polynomial of degree m > 3 is to be fitted, it is only necessary to generalize

matrix X and vector a in an obvious manner.

Example 3.12. Use the method of least squares to fit the quadratic ¥ = ayp + a;x
+ ayx* to the set of data points [—2, 3.45], [-1, 1.71], [0, 0.03], [1,—0.29],
[2,-0.55], [3, 0.62].

Solution.
1 -2 4 3.45
1_01(1) 1 1 1111 (1)‘(7); ao
X = , XI=|—2 -1 012 3|,y=| ,a=|a
1 1 1 4 1 01409 —-0.29
1 2 4 ~0.55 @
1 3 9 0.62
6 3 19 ] 0.371  0.043 —0.071
X'X=|3 19 27|, (X'X) =] 0043 0084 —0.027],
19 27 115 —0.071 —0.027 0.027
SO
1 0.169
a=(X"X) X'"y=|-0.968
0.361

Thus the least-squares quadratic approximation becomes
Y = 0.169 — 0.968x + 0.361x%.

A plot of the least-squares quadratic approximation is shown in Fig. 3.2, to which
have been added the data points shown as large dots.

&
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Fig. 3.2 The solid line is the
least-squares quadratic
approximation, and the data
points are shown as dots

3.9 Matrices and the Laplace Equation

Many different types of problem can lead to the generation of very large augmented
matrices, and a typical example will be considered here. It will demonstrate how
such a matrix can be generated when seeking a numerical solution of a boundary-
value problem for the Laplace equation. The augmented matrix produced in this
example represents a set of nonhomogeneous simultaneous algebraic equations,
whose solution will give numerical approximations for the solution of the Laplace
equation at a network of discrete points throughout the region where the Laplace
equation is to be solved. However, the augmented matrix produced in this example
has been kept sufficiently small for the solution of the equations to be found by
elementary means, though the example will nevertheless make perfectly clear how
such a problem can give rise to very large augmented matrices that will need
sophisticated numerical techniques when seeking a solution.

The two-dimensional Laplace equation for a function u(x, y) is the linear second-
order partial differential equation

Ou  u B

PR i 0, (3.53)

and a boundary-value problem for this equation involves finding its solution in a
region of the (x, y)-plane when the value of u(x, y) is specified on the boundary of
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the region. This is called a Dirichlet boundary-value problem, and in physical
examples the solution could represent the steady-state temperature distribution in
a solid heat conducting material when the temperature is prescribed on its surface,
or the electric potential in a cavity when the potential is prescribed on the walls of
the cavity, though there are many other physical situations that give rise to this
equation. The equation is called an elliptic equation, though the term elliptic is
simply a means of classifying the type of partial differential equation to which the
Laplace equation belongs, and the name has no geometrical implication for the
actual solution.

Before proceeding further, the relationship between this two-dimensional prob-
lem and a solution in a three-dimensional world must be made clear. The region
in the (x, y)-plane plane where u(x, y) is to be determined should be thought of as
a cross-section of a long volume in space with its z-axis perpendicular to the
(x, y)-plane, where the cross-section of the volume is the same for all planes
z = constant. For convenience, u(x, y) is usually considered to be the solution of
the Laplace equation in the plane z = 0. The solution of a boundary-value problem
for the Laplace equation can be found analytically when the shape of the region and
the boundary conditions are simple, though in all other cases it must be found by
numerical methods. The numerical method to be outlined here, which is only one of
the ways of finding a numerical solution, is called a finite difference method, and it
determines the approximate solution at the points where two sets of parallel lines
intersect, that will be called a grid points. To construct the grid of points, one set
of lines will be drawn parallel to the x-axis, and the other parallel to the y-axis.
In general the separation of the x = constant lines is 4 and the separation of the
y = constant lines is k, but for the purpose of this example both separations will be
taken equal to 4. A typical part of a grid of points is shown in Fig. 3.3.

Let the coordinates of P be (x;, y;), where x; = ih and y; = jh, then the coordinates of
Q are (x;,1,y;) with x;,; = ({ + 1)h and y; = jh while the coordinates of S are (x;_1, y)),

R
Ur
h
S| us Up| P Yol Q
. . . h
Fig. 3.3 A typical grid of
five points with a central point
at P and four immediate ur
neighboring points at h T h
O,R,Sand T
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with x;_; = (i — 1)h and y; = jh. The truncated two variable Taylor series expansion
of u(x, y) about (x;, y;) in the x-direction can be written

U1 = i+ h(Ou/0x) ;) + (n*/2) (82u/8x2)(1.J> + aremainder term. (3.54)
Similarly,
wi1j = uij— h(Ou/ox); + (1 /2) (aZM/axz)(iJ) + a remainder term. (3.55)

Referring to the letters in Fig. 3.3, the result of adding (3.54) and (3.55) and
ignoring the remainder term enables the result to be given in the abbreviated form

2up — ug — us = (*/2) (0%u/0x%) . (3.56)

An application of the Taylor series expansion between the points R and T gives
the corresponding result

2up — Up — Uy = (h2/2) (a2u/ay2)P. (3.57)

The addition of (3.56) and (3.57), coupled with the fact that because of the
Laplace equation (0%u/0x* + 9%u/dy*), = 0, gives the finite difference approxi-
mation for the Laplace equation at point P

4up —ugp — ugp — us —ur = 0. (3.58)

Thus the sum of discrete solutions of the Laplace equation at the points Q, R, S
and T is seen to be four times the solution at P.

The weight to be attributed by result (3.58) to each point in Fig. 3.3 is shown
diagrammatically in Fig. 3.4.

Now consider the boundary-value problem illustrated in Fig. 3.5 for the Laplace
equation &u/0x* + *u/dy* =0 in the unit square 0 <x < land 0 <y <1,
with the condition u(x, 1) = 10x*(1 — x) on the top boundary y = 1,0 < x < 1 of
the square, and # = 0 on the other three sides.

Fig. 3.4 The weighting for
the discrete values of the
Laplace equation at the points

in Fig. 3.3 @
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y u=10 x3(1-x)
1
Qq Q,
o/3 Qg D A Q3
u=0 u=0
Q7 Q4
1/3 C B
Qs Qs
0 1/3  u=0 2/3 1

Fig. 3.5 The Dirichlet problem for the Laplace equation in a unit square

The grid points are equally spaced throughout the unit square with 7 = %, SO
there are four internal grid points and twelve grid points on the boundary of the
unit square at each of which the value of u(x, y) is determined by the boundary
conditions.

Apply the difference equation to each of the internal grid points leads to the four
equations

4us = ug, + ug, + up + up,
4MB = Uy + Ugy + Ugs + uc, (3 59)
duc = Up + Uup + Uge + Ugpq, '

dup = ug, +us + uc + ugq.

Notice that due to the weighting shown in Fig. 3.4, the values of the boundary
conditions at the corners of the square do not occur in the calculations. We are now
in a position to show how a symmetric matrix enters into the calculations, because
(3.59) can be written in the matrix form

4 —1 0 —1 Up up2 + ups
—1 4 -1 0 ug | | Uga + Ups
0 —1 4 -1 Ue o Upe + Ug7 ’ (560)

-1 0 —1 4 up Ugpi +qu
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Fig. 3.6 The exact solution
of the Laplace boundary-
value problem

Each element in the vector on the right is determined by the boundary condi-
tions, so substituting for their values, the system of equations becomes

4 -1 0 -1 up
-1 4 -1 0 ug

o oz =8

-1 0 -1 4 up

This system is simple enough to solve by elimination and the result is u, =
0.1543, up = 0.3086, uc = 0.0926 and up = 0.0617.

These approximate values of the solution should be compared with the exact
analytical values

UA (exact) = 016897 UB (exact) = 02705, uc(exacl) = 0.0749 and UD (exact) = 0.0624.

For the reference, a plot of the exact solution is shown in Fig. 3.6.

Considering the large value of 4 that was used, the agreement between the
approximate and exact solutions is surprisingly good. To obtain more accurate
approximations it will be necessary to use a much smaller value of £, with the result
that the number of equations will increase dramatically. If, for example, the value
h = 0.05 were to be used, the number of internal points would increase from
4 to 324, increasing the number of equations to be solved by a factor 81. A more
complicated boundary shape with boundary conditions that change rapidly along
each boundary would require an even smaller value of A, leading to an even larger
number of equations. When large numbers of equations are involved special
numerical techniques becomes necessary when solving them, like an optimized
computer form of Gaussian elimination, or an iterative method.

Exercises

1. Find xy and yx if x = [1, =2, 4, 3] and y = [2, 4, -3, 11".

1 -1 2 3
. . 1 2 3 0
2. FindxAifx=[2,3, -2,4] and A = 30 1 -1

4 -2 3 2



3.9 Matrices and the Laplace Equation 69

3. Find AB if
1 -1 2 3 1 -1 1
1 2 3 0 2 3 -1
A=l3 o 1 21| B=|s 21 4
4 -2 3 2 1 0 -1
4. Find AB if
7 -1
A:[j :; g] andB= |2 3 |,
6 —2

and verify that (AB)" = B"A™. R
5. A quadratic form Q(x) in the variables xy, x, x3, X, is defined as Q(x) = x"Ax,

where
2 4 3 0
_ T v _|-6 1 3 7
X = [x1,X2,X3,X%4] and A = 0 2 4 1
1 2 1 -1

Write down Q(x), and express it in the form Q(x) = x Ax, where A is a
symmetric matrix.
6. Use Definition (3.24) to find A~' if A = {a b], stating any condition
necessary for A~ to exist. c d

7. Find A~ ' if
2 -3 1
A=1|4 3 =2
1 2 -1

8. Find A~ if
1 4 2
A=1{2 3 2
1 0 —1

9. Find A~ 'if
1 4 =2
A= -1 3
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10.

11.
12.

13.

14.

15.

16.
17.
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Verify result (3.30) given that

1 3 -6
A=14 1 2
3 -2 1

Use the result (AB) '= B~'A™" to prove that (A~")" = (A"~

If A is a nonsingular matrix, show that (Afl)T = (AT)fl, and verify the result
using a 3 x 3 nonsingular matrix of your own choice.

Use the generalization of Cramer’s rule to solve

X1+ 2x —2x3+x4 = 1,
3x1 — 3x + x3 + 2x4 = 3,
X1 — X2 +x3+ x4 =4,

X1 —3x+2x3+4x4 =6 .

Use the generalization of Cramer’s rule to solve

4x; 4+ 2% —x3 + x4 = 5,
2x1 4+ 3xp —2x3 +4x4 =1,
—4x; +xp —5x3 +2x4 =17,
3x1+2x —x4 =6 .

Any matrix derived from an identity (unit) matrix by interchanging two or
more of its rows or columns is called a permutation matrix. Describe the effect
on the matrix A of forming the matrix products PA and AP if

SO = O O
- o O O

a
e
and A = ;
m

[Nl )
S~ <
S =0 o

SO O~
T O~ > X

Find matrix P if the first and last rows of A are to be interchanged by the
product PA, and find matrix P if the second and fourth columns of A are to be
interchanged by the product AP.

If P is any permutation matrix prove that PP* = P'P = 1.
Write the system

2x1 +x2 —x3 +4x4 =9,

X1 4 6x3 + 2x3 — 2x4 = =3,
Tx; — 3xp +4x3 + x4 = 2,
Sx1+2x +3x3 —5x4 =6
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18.

19.

20.

21.

22.

in the matrix form Ax = b. Find the form of the permutation matrix P such that
in the equivalent system PAx = Pb the coefficients of x; in the first column of
A are arranged in the decreasing order of magnitude 1, 2, 5, 7.

If Ais an n x n matrix and P is an n X n permutation matrix, how is det A
related to det (PA) and to det (AP)? If P is a permutation matrix, give a simple
explanation why P~ = P, and confirm this result by applying it to a permuta-
tion matrix of your own construction.

Find which of the following matrices is orthogonal:

cos —sinf 0 cos@ 0 —sinf cosf 0 —sinf
(a)| sin@ cos® 0] (b) 1 1 0 (c) 0 1 0
0 0 1 sinf 0 cosf sinf 0 cosf
Confirm that
1 2
G
V2 V3 Ve

is an orthogonal matrix. Permute any two rows or columns of Q to obtain
another matrix Q. Show that Q, is also orthogonal, and verify Property 3 of
orthogonal matrices stated above that QQ, is also orthogonal. Explain why
permuting rows or columns of an orthogonal matrix yields another orthogonal
matrix.

Solve the equations (a) using the inverse matrix, and (b) by Cramer’s rule.

X1+ 3x —x3 = =5,
2x; —xp+x3 =9,
—x1 +x +2x3 = 5.

Given that
1 2
w=l i)
find the eigenvalues A of A by solving det[A — AI] = O (see the end of Chapter 2).
For each eigenvalue A; of A, with i = 1, 2, find the column vector

x() = {xgi),xg )} that satisfies the matrix equation [A — AI]x"” = 0. The vectors

x? fori = 1, 2 are called, respectively, the eigenvectors of matrix A associated
with the eigenvalues 4,. (Hint: To find an eigenvector write out in full the system
of equations involved, and then solve them by elimination. Don’t be surprised to
discover that the scaling of the eigenvectors is arbitrary.)
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23. Given that

1 3 0
A=1|3 -1 of,
-2 -2 1

find the eigenvalues 1 of A by solving det[A — AI] = 0. For each eigenvalue /;
, o T
of A, with i = 1, 2, 3, find the column vector x) = {xﬁ') , xg) ; xg'q that satisfies

the matrix equation [A — iil]x@ = 0. As in Exercise 22, the vectors x*” for
i =1, 2,3 are called, respectively, the eigenvectors of matrix A associated with
the eigenvalues Z,. (Hint: Proceed as suggested in Exercise 22.)

24. In Example 3.7, make a different partitioning of the matrices A and B, and use
the result to verify that the product AB is still given by

-2 6
AB= |14 2
-8 13
25. Let the row block matrix A = [A1 : : A"] and the column block matrix
B]
B= each be partitioned into n blocks such that the product AB is defined.
B

n

What is the form of the block matrix products AB and BA?

26. If both A and B are 2 x 2 block matrices for which the product AB is defined,
show that(AB)T = BTA", where the superscript © denotes the block matrix
transpose operation.

27. Partition a nonsingular n X n matrix A of the form

into four blocks, where A, is a p X p matrix and Ay, is a ¢ X ¢ matrix, with
p + g = n. By following the reasoning in the text, show from first principles that
the block matrix form of A~ ! is

Al = él__ll__i:_A_l_llAleZ
0 | A

How could this result have been deduced from Eq. (3.41)?

Partition matrix A in Example 3.9 into four 2 x 2 block matrices, and use
the above expression for A~ to confirm the expression for A" found in the
example.
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28. Let A and B be two nonsingular n x n matrices of the form

Ay EAIZ B, iBlz
A:{O ?Azz and B= 0 1EBzz

that are partitioned in such a way that the product AB is defined. Show that

(AB)"' =B~'A7".

Al
29. Given a nonsingular n x n block matrix A of the form A = -(-)-- T_I}’ find a block

matrix expression for A~'. Apply the result to find A" givenl that

Check your result by using ordinary matrix multiplication to confirm that
AAT" =1

30. An n X n matrix A is said to be idempotent if A> = A. Obvious examples of
n X n idempotent matrices are the unit matrix I and the zero matrix 0, while a

nontrivial example of a 2 x 2 idempotent matrix is A = B :g’ :

(a) If A is idempotent, prove that A = A for all positive integers k > 2.

(b) If A is idempotent, what are the possible values of det A?

(c) What are the conditions on the elements of an n X n diagonal matrix
D = diag{/i, 42, ..., A} in order that it is idempotent?

(d) If A and B are idempotent, and AB = BA = 0 show A + B is idempotent.

(e) If A is idempotent, show that A — I is idempotent.

(f) If A is idempotent, show that either det A = 0 or det(A — I) = 0.

31. Let matrix A = [f Z] Find conditions on the elements a and d in terms of the

elements b and c, in order that A is idempotent. Use your result to construct a
numerical example and verify that it is idempotent. Does your result determine
all possible 2 x 2 idempotent matrices A, with the exception of the matrices
Iand 0.

32. The following inequality provides a useful overestimate of the magnitude of a
determinant in terms of the inner products of its columns.
The Hadamard overestimate for |det A|

Let A =|[aj,a,...,a,] be an arbitrary n X n matrix with columns

a,a,...,a,.
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Then
2 T T T
det AP < (alay)(ala) - - (aa,).

The equality sign holds only if A has an inverse (it is invertible) and the
columns of A are orthogonal.

1 2 -1 4

. 2 -1 0 2
Given A = 13 L

2 3 =2 -1

find det A and use the result to verify the Hadamard overestimate of det A.
Notice that the expression H;':l ajTaj is also used for the continued product
(aTa;)(aJay) -~ (ala,), so the Hadamard inequality can be written more con-

cisely as [det A|* < TI”_, aTa;.

In Exercises 33 and 34, use the method of least squares to fit a straight line to
the given data sets. In each case graph the straight line approximation and
superimpose the data points to show how the straight line has approximated the
spread of data points.

33. The data set is [0, —0.8], [1, 0.3], [2, 0.3], [3, 1.3], [4, 1.7].
34. The data setis [—2, 1.93], [-1, 1.63], [0, 0.75], [1, 0.71], [2, 0.47],[3,—0.27].



Chapter 4
Systems of Linear Algebraic Equations

4.1 The Augmented Matrix and Elementary Row Operations

The solution of a system of »n first-order linear algebraic equations with constant
coefficients requires knowledge of certain properties of an n x n coefficient matrix
and the nonhomogeneous matrix vector b belonging to the system. So the main
purpose of this chapter is to provide an introduction to the solution of systems of
m nonhomogeneous linear algebraic equations in the n unknown real variables
X1, X2, . . ., X,. Associated with this is the solution of a special type of homogeneous
algebraic problem involving n homogeneous linear algebraic equations in n
unknowns and a parameter A, that leads to the study of the eigenvalues and
eigenvectors of an n x n matrix. It will be recalled that an eigenvalue was
introduced briefly at the end of Chapter 2, and encountered again in Exercises 22
and 23 at the end of Chapter 3. The formal definition of the eigenvalues and the
associated eigenvectors of square matrices will be given in this chapter, though the
properties and use of eigenvectors will be studied in greater detail in Chapter 5.
Consider the system of linear algebraic equations

anxi +apxy + -+ apx, = by,

ay X1 + anx +"'+an-xnzba
2141 2242 2 2 (41)

am1X1 + QX2 + -+ + + + QunXm = bma

where the a;; and b; are real constants. It will be recalled from Chapter 1 that system
(4.1) is said to be underdetermined when m < n, properly determined when m = n,
and overdetermined when m > n. The method that will be used to find a solution set
for system (4.1) is called Gaussian elimination. As well as showing when a solution
exists, and enabling it to be found in a computationally efficient manner, the method
also shows when the equations are inconsistent, and so have no solution set.

A. Jeffrey, Matrix Operations for Engineers and Scientists, 75
DOI 10.1007/978-90-481-9274-8_4, © Springer Science+Business Media B.V. 2010
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To develop the Gaussian elimination method, it is convenient to represent
system (4.1) in terms of what is called the augmented matrix Alb, comprising the
coefficient matrix A = [a;;], to which is adjoined on the right the nonhomogeneous
vector b = [by, b, . . ., b,,]T, so that

ay ap a3z - ay b
ay axp axpx -+ dy b

Ab= |a@1 an ax - ay by 4.2)
am1 Am2  Am3 o Amn bm

This matrix contains all of the information in (4.1), because in the ith row of Alb,
fori=1,2, ..., m, the element a;; is associated with the variable x;, while b; is the
corresponding nonhomogeneous term on the right of (4.1). When Alb is interpre-
ted as the system of equations in (4.1), it implies the presence of the unknowns xi,
X2, . .., X, and an equality sign between the terms on the left represented by A, and
the nonhomogeneous terms on the right represented by b. So the augmented matrix
is a representation of Ax = b, without explicitly showing the variables x1, x,, . . ., X,,.

The idea underlying Gaussian elimination is simple, and it depends for its
success on the following obvious facts.

1. The order in which the equations appear in (4.1) can be changed without altering
the solution set.

2. Individual equations can be multiplied throughout by a constant without altering
the solution set.

3. Multiples of equations in (4.1) can be added to or subtracted from other
equations in (4.1) without altering the solution set.

When working with the augmented matrix Alb, which is equivalent to the
original set of Eq. (4.1), performing these operations on the original system of
equations in (4.1) corresponds to performing what are called elementary row
operations on the augmented matrix to produce a modified, but equivalent, aug-
mented matrix. The elementary row operations that can be performed on an
augmented matrix derived from Eq. (4.1) and operations 1-3 above are as follows.

Elementary row operations on a matrix

1. Interchanging rows.

2. Multiplying each element in a row by a constant k.

3. Adding a multiple of a row to another row, or subtracting a multiple of a row
from another row.

The effect of performing these elementary row operations on an augmented
matrix Alb is to produce a modified augmented matrix that is equivalent in all
respects to the original system of equations in (4.1).

The approach starts by assuming that in (4.2) the coefficient a;; # 0. This is no
limitation, because if this is not the case the order of the equations can be changed to
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bring into the first row of (4.1) an equation for which this condition is true. The
method then proceeds by subtracting multiples of row 1 of (4.2) from each of the
m — 1 rows below it in such a way that the coefficient of the variable x; is made
to vanish from each of the subsequent m — 1 equations. Thus a,/a;; times row 1 is
subtracted from row 2, as;/a;; times row 1 is subtracted from row 3 and so on, until
finally a,,/a;; times row 1 is subtracted from row m, leading to a modified
augmented matrix Alb‘" of the form

avodpoen %
0 g o v A T

Alb(l)Z 0 ay ay - a, by | (4.3)
0 afnlz) afnl; . aﬁ,}n) bﬁ,,l)

where the superscript (1) indicates an element that has been modified.

This same process is now re}()leated starting with row 2 of Alb‘". Now, row 2,
with its first nonzero element azz)’ is used to reduced to zero all elements in the
column below it, leading to a modification of Alb‘"”denoted by Alb®, that typically

is of the form

avoaroan A }H)
0 ay, a223 . azg b22
0 0 0 - 4% p?

where the superscript (2) indicates a modification of an entry with a superscript (1).

This process will lead to a simplification of the original system of equations,
though the pattern of zeros will depend on the values of m and n. This method is
illustrated below using examples involving different values of m and n. The
numbers a1, aglz), ag? , aﬁ), ... used to reduce to zero the entries in the columns
below them are called the pivots for the Gaussian elimination process. If it happens
that at some intermediate stage a pivot becomes zero, and so cannot be used to
reduce to zero all entries in the column below it, the difficulty is overcome by
interchanging the row with the zero pivot with a row below it in which the
corresponding entry is nonzero, after which the process continues as before. This
amounts to changing the order of the equations in system (4.1), and so does not
influence the solution set. The reduction terminates if at some stage a complete row
of zeros is produced, indicating that the corresponding equation is a linear combi-
nation of the ones above it.

The pattern of entries attained by Gaussian elimination in the final modification
of a matrix is said to be the echelon form of the matrix. The formal definition of an
echelon form is given below.
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4.2 The Echelon and Reduced Echelon Forms of a Matrix

A matrix A is said to be in echelon form, denoted by Ag, if

1. All rows of A containing nonzero elements lie above any rows that contain only
zero elements.

2. The first nonzero entry in a row of A, called the leading entry in the row, lies in a
column to the right of the leading entry in the row above.

Notice that condition 2 implies that all entries in the column below a leading
entry are zero.

A typical pattern of entries in the echelon form of a matrix A generated by the
application of Gaussian elimination to a 6 x 8 matrix is shown below, where the
symbol e represents a leading entry that is always nonzero, while and the symbol
O represents an entry that may, or may not, be nonzero.

cocoococoe
cocoocoel]
cococed
ococe [0
ce IO
cHOOoom
oo
cHOdnod

If this matrix represents the transformation of a nonhomogeneous system of six
equations in the seven variables x1, X, . . ., X7 to its echelon form (remember that the
eighth column represents the transformed nonhomogeneous terms), then the row of
zeros tells us that the sixth equation is linearly dependent on the five previous
equations, and so can be discarded (ignored). Furthermore, the fifth row represents
an equation relating xs, xg, X7 and the modification of the nonhomogeneous term bs,
so that x5 can only be found if x¢ and x; are assigned arbitrary values.

A matrix A is said to be in reduced echelon form, denoted by Agg, if the value of
every pivot in Agg is 1. This reduction is obtained if, after the echelon form Ag has
been obtained, each element in a row of Ag is divided by the value of the pivot that
belongs to the row. Clearly, when a nonsingular square matrix A is involved, its
reduced echelon form Agg will have 1s on its leading diagonal.

For example, if the echelon form Ag of a 3 X 4 matrix A is

31 0 2 1 % 0 %
Ag= |0 2 3 4] then its reduced echelon form Agg = {0 1 % 2
0 0 -1 5 0 01 -5

Specific examples of the echelon forms generated by Gaussian elimination applied
to systems of equations now follow, together with their associated solution sets.
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Example 4.1. Use Gaussian elimination, in the form of elementary row operations
applied to the augmented matrix, to solve the system of equations

X1 —2X2+4X3 + X4 = 47
2x1 + x2 + 2x3 + 4x4 = 0,
—X1 +4)C2 —|—2X3 +ZX4 = 1

Solution. In this case m = 3 and n = 4, so the system is underdetermined. The
application of elementary row operations transforms the augmented matrix as
follows:

-2 4 1
subtracting 2 X row 1 from row?2
Ab=| 2 1 2 4 .
and adding row 1 to row 3
-1 4 2 2
(1 -2 4 1 4
—ApY =10 5 -6 2 -8/,
10 6 3 5
1 -2 5 1 4
subtracting 2/5 x row 2 from row 3 — Alb 0 5 -6 2 -8,
00 2 4y

1 -2 4 1 4
5xrow3—AbY =0 5 —6 2 -8
0 0 42 11 41

The last operation involving the multiplication of row 3 by the factor 5 was not
strictly necessary, but it was included because the determination of xy, x,, x3 and x4
is simplified if fractions are cleared after performing an elementary row operation
on the augmented matrix.

The reduction can proceed no further, so Alb® is the echelon form of Alb. Setting
X4 = k, an arbitrary parameter the third row of AIb® is seen to be equivalent to 42x5
+ 11 k=41,s0x3 = ﬁ — = k The second row is equivalent to 5x, — 6x3 4+ 2k =
—8, so substituting for x3 glves Xp = —5 — k Finally, the first row 1s equivalent to x;
— 2x, + 4x3 + k =4, so substituting for X3 and X, givesx; = é? k .Thus we have
found a one parameter solution set {x 1, X, X3, x4} for the orlglnal set of equations with
its elements given by x; = - -3k, x, = Sk, xs=%—nk, xa=k,
with & an arbitrary parameter.
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The process of first finding x5, then using it to find x,, and finally using x5 and x, to
find x, is the back substitution procedure mentioned previously. Modifications of this
method designed to maintain the highest accuracy are made in computer routines that
use, the Gaussian elimination process to solve systems of linear algebraic equations.

¢

A typical modification of the Gaussian elimination process used in computer
routines involves changing the order of the equations at each stage of the process, so
the absolute value of the pivot to be used has the largest of the absolute values of the
coefficients in the column that contains it. This has the effect that at no stage is a
pivot with a small absolute value used to reduce to zero a coefficient below it with a
much larger absolute value, thereby reducing the buildup of round-off errors that
would otherwise accumulate as the computation proceeds.

4.3 The Row Rank of a Matrix

It is now necessary to introduce a new definition that describes an important
property of a matrix. The row rank of a matrix M is defined as the number of
linearly independent rows in the matrix, denoted by row rank(M). Thus, if matrix A
is the coefficient matrix of a homogeneous set of linear algebraic equations, row
rank(A) represents the number of linearly independent equations in the system. The
augmented matrix Alb represents a combination of two matrices, namely the matrix
of coefficients A and the matrix Alb which also describes the nonhomogeneous
system with vector b, and it is not necessarily the case that the row ranks of A and Alb
are equal. The implications of the row ranks of A and Alb will become clear from the
following examples.

In Example 4.1 it can be seen from the reduction to the echelon form Alb‘® that
row rank(A) = row rank(Alb) = 3, because both the matrix A represented by its first
three columns, and the matrix Alb®® itself, each have three nonzero rows. We have
seen that a solution set could be found for this example, but as there were only three
linearly independent equations and four unknowns, it was only possible for three of
the unknowns to be found in terms of the fourth unknown, the value of which was
assigned as an arbitrary parameter.

Example 4.2. Use Gaussian elimination, in the form of elementary row operations
applied to the augmented matrix, to solve the system of equations

2x1 +x3+2x4 =1,
x| +x3 =2,
—2x1+x —x3+2x4 =1,

X1 +2x —2x3—x4=1.
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Solution. In this nonhomogeneous system m = n = 4, so the system is properly
determined, and provided there is no linear dependence between equations a unique
solution can be expected. The augmented matrix is

1
1
—1
-2 -1

[\S RNl S

Alb =

—_
N - O O
_—— N =

After performing elementary row operations on the augmented matrix, where
now we use the symbol ~ in place of — to denote “is equivalent to”, the matrix is
reduced to the echelon form

2 01 2 1
020 8 4
001 -2 3
00 0 —-15 4

Inspection shows that row rank(A) = row rank(Alb) = 4, so the equations are
consistent and a unique solution exists. The last row of the echelon form corre-

sponds to the equation —15x4 = 4, so x4 = —14—5. Proceeding with back substitution

we arrive at the unique solution set {x;, x,, x3, x4} where the elements
[ — 46 -3 — _4

arex; = —13,%2 = 1543 = 1504 = —15 o

Example 4.3. Use Gaussian elimination, in the form of elementary row operations
applied to the augmented matrix, to solve the system of equations

Xy — X2 +x3+2x4 =1,

— X1+ 2x +x3 —x4 =0,
2x1 —2xp —x3 + 2x4 = 1,
—2x1 +4x) +2x3 —2x4 =0,
4x; — 4xy + x3 + 6x4 = 3.

Solution. In this nonhomogeneous system m = 5 and n = 4, so the system is
overdetermined. Consequently, as there are more equations (constraints on the
unknowns) than there are unknowns, no solution can exist unless there is linear
dependence between the equations. The augmented matrix is
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1 -1 1 2
-1 2 1 -1
Ab=|2 -2 -1 2
2 4 2 2
4 -4 1 6

WO = O -

1 -1 1 2 1
01 2 1 1
Ab~|0 0 -3 —2 -1
00 0 0 O
00 0 0 O

Inspection shows that row rank(A) = row rank(Alb) = 3, so here also the
equations are consistent so a solution is possible. However, as in Example 4.1,
there are only three linearly independent equations imposing constraints on the four
unknowns x1, X», X3 and x4. So if we allow x4, say, to be arbitrary and set x, = k, we
can solve for xy, x, and x3 in terms of x4 = k. Using back substitution the solution set
{x1, X2, x3, x4} is found have the elements x; =1—k, x,=1+1k,
X3 = % - % k, x4 = k, with k an arbitrary parameter. So, in this case, only three
of the five equations were linearly independent, with the solution set being deter-
mined in terms of the arbitrarily assigned parameter x, = k.

¢

Example 4.4. Use Gaussian elimination, in the form of elementary row operations
applied to the augmented matrix, to solve the system of equations

Xp—xp+x3+2x4 =1,
— X1+ 2x +x3 —x4 =0,
2x1 — 2xp — X3+ 2x4 = 1,
X1+ x+x3 — x4 =2,
dxy —4dxr +x3+6x4 =3 .

Solution. In this nonhomogeneous system m = 5 and n = 4, so the system is
overdetermined. Unless there is linear dependence between the equations, the
constraints imposed by the five equations on the four unknowns will make a
solution impossible. The augmented matrix is
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._.
_
o |
_
—_ —
)
_

Alb = 2 -1 2

A _
—_
—
|

W= O

After the use of elementary row operations this reduces to the echelon form

1 -1 1 2 1
0o 1 2 1 1
Ab~ |0 0 -3 —2 —I
o0 0 7 -1
00 0 0 O

Inspection shows that row rank(A) = row rank(Alb) = 4, so once again the
equations are consistent, and the final row of zeros indicates that the fifth equation is
expressible as a linear combination of the other four equations, and so may be
disregarded since it is redundant, though the nature of the linear dependence is
immaterial. Back substitution shows the system has the unique solution set {xy, x5,
X3, X4} with its elements given by x; = %, Xy = %, X3 = %, X4 = —% .

o

Example 4.5. Use Gaussian elimination, in the form of elementary row operations
applied to the augmented matrix, to solve the system of equations

x| — X2 +x3+2x4 =1,
—X1 +2x +x3 —x4 =0,
2x] —Xp — X3+ 2x4 =1,
1lx; +x +x3 — x4 = 2,
3x;+x +4x3+5x4 =2 .

Solution. In this nonhomogeneous system again m = 5 and n = 4, so the system is
overdetermined. So, unless there is linear dependence between the equations, the
constraints imposed by the five equations on four unknowns will make a solution
impossible. The augmented matrix is

Ab=|2 -1 -1 2

NN = O =
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After the use of elementary row operations, this reduces to the echelon form

1 -1 1 2 1
0 1 2 1 1
Ab~ |0 0 -5 -3 =2
0o 0 0 4 1
0 0 o0 0 131

In this case we see that row rank(A) = 4 while row rank(Alb) = 5, so row rank
(A) # row rank(Alb) showing that the equations are inconsistent. This is easily
seen to be so, because the fourth row implies 4x, = 1, while the fifth row implies
that O x x4 = 131, which is impossible.

¢

The implications of the row ranks of A and Alb illustrated by the previous

examples can be summarized as follows.

4.3.1 Row Rank of an Augmented Matrix and the Nature
of a Solution Set

Let the coefficient matrix A of equations in (4.1) be an m X n matrix, and let b be an m element
column vector.

1. A solution set exists if row rank(A) = row rank(Alb). The solution will be unique if row rank(A)
= row rank(Alb) = n, but if row rank(A) = row rank(Alb) = r < n, then r of the unknowns x,
X2, ..., X, can be expressed in terms of the remaining n — r unknowns when specified as
arbitrary parameters.

2. No solution set exists if row rank(A) < row rank(Alb).

The number of linearly independent rows in a matrix, called its row rank, has
been shown to be of fundamental importance when solving linear systems of
equations. Similarly, the number of linearly independent columns of a matrix, is
called its column rank. A key result to be proved in Chapter 7 is that row rank(A) =
column rank(A). So in future, and without ambiguity, we need only to refer to the
rank of a matrix.

Example 4.6. Verify the equivalence of the row and column ranks of

1 2 3 6
A= |2 1 0 4
0 -3 -6 -8

, so row rank(A) = 2.

O wloow(r

1 0
Solution. The echelon form of AisAg= |0 1 2
00
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Transposing A, finding the echelon form of A™, and then transposing again to
display the linearly independent columns of A, gives

O =
)
(=i e i)

0
0 |, showing, as expected, that column rank(A) = 2.
0

&

The definition of rank leads directly to the following test for linear independence.

4.3.2 Testing the Linear Independence of the Rows (Columns)
of an n X n Matrix A

The rows (columns) of an n x n matrix A will be linearly independent if, and only if, det A # 0.

4.4 Elementary Row Operations and the Inverse Matrix

Before considering an important general problem in the study of matrices, it is useful
to show how, when 7 is small, elementary row operations provide a way of finding
the inverse of an n X n matrix. Once again the idea is simple, and it starts by writing
side by side the square matrix A, and an identity matrix I of the same size, where the
juxtaposition of the matrices does not imply their multiplication. Operations are
performed row by row on matrix A on the left to reduce it to an identity matrix while,
simultaneously, and in the same order, the same row operations are performed row
by row on the identity matrix on the right. When A has been reduced to the identity
matrix, the original identity matrix I on the right will have been transformed into the
inverse matrix A~". If during this procedure a row of zeros is produced during the
modification of matrix A, the reduction process will terminate, indicating that A}
does not exist. This will occur if one or more rows of A are linearly dependent on its
other rows, causing matrix A to be singular, in which case det A = 0.

Example 4.7. Apply elementary row operations on matrix A to find A~", given that

Solution. We start with A and I side by side, and perform elementary row
operations on A to reduce it to the unit matrix I, while at the same time performing
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the same elementary row operations on the unit matrix I on the right, leading to the
results

-1 1 3 1 00 -1 13 1 00
add row 1 to row 2
1 -1 =210 10 0 01 1 10
and row 1 to row 3
1 0 -3([(0 01 0 10 1 01
-1 1 3 1 00
interchange rows2and3 — | 0 1 O |1 O 1
0 01 110
-1 00| (-3 -3 —1
subtract row 2 + 3 x row 3 fromrow 1 — 0 10 1 0 1
0 01 1 0

The required inverse matrix exists because the reduction of A to the identity
matrix has been successful, and A~ is given by the matrix on the right so that as

-1 1 3 3 3 1
A=|1 -1 —-2]|,thenA'=1]1 0 1
1 0 -3 1 10

The result is easily checked by confirming that AA™' =1

4.5 LU Factorization of a Matrix and Its Use When Solving
Linear Systems of Algebraic Equations

This section examines the possibility of expressing a nonsingular # X n matrix A as
the product A = LU of an n x n lower triangular matrix L with 1s along its leading
diagonal, and an n x n upper triangular matrix U. This factorization is particularly
useful when a system of equations Ax = b has to be solved repeatedly with the same
matrix A, but with different column vectors b. This is because for a given matrix A,
the matrices L and U are unique, so they can be used repeatedly to solve the system
of equations Ax = b for different vectors b. To see how this factorization works
when solving systems of algebraic equations, let the column vector y be defined as
the solution of the system of equations Ly = b, from which the required solution
vector X then follows by solving the system of equations y = Ux. Although at first
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sight this method of solution may appear to be unnecessarily complicated in fact,
the method which is based on Gaussian elimination actually offers several advan-
tages over ordinary Gaussian elimination.

The first advantage offered by this method is because triangular matrices are
involved. The elements y;, y», ... ,y, of the column vector y are obtained very
simply by forward substitution in the system Ay = b, after which the elements
X1, X2,...,X, of the solution vector x follow immediately by backward substitution
in the system Ux =y.

The second advantage offered by this method is that the LU factorization of a
matrix A need only be performed once, after which the matrices L and U can be
used repeatedly to find solution vectors x that correspond to various different
vectors b.

The determination of the upper triangular matrix U follows directly from the
Gaussian elimination process, after which the lower triangular matrix L, which is in
reduced echelon form (see Section 4.2), then follows from the elementary row
operations used to find U.

The method is best illustrated by applying it to a 4 x 4 matrix A for which no
row interchanges are necessary during the Gaussian elimination process when
finding the matrix U. The modification that is necessary if row interchanges are
needed during the Gaussian elimination process used to find U will be explained
later. We will presuppose that the first element on the leading diagonal of A does
not vanish. This is no restriction, because if it is not so, the order of the equations
can be changed by interchanging the first equation with one that satisfies this
condition. Let us take for our example the matrix

2 1 2 3
1 0 1 1
A= -2 1 =1 1)
2 1 -1 0
which is nonsingular because det A = —3.

The first stage in the Gaussian elimination process applied to column 1 subtracts
% of row 1 from row 2 to produce a zero as the first element of the modified row 2.
The second step adds row 1 to row 3 to produce a zero as the first element in row 3,
while subtracting row 1 from row 4 produces a zero as the first element of the
modified row 4. The result is

2 1 2 3
o -1 o -1

— 2 2

Al 0 2 1 4
0 0 -3 -3

These elementary row operations can be represented in the matrix form



88 4 Systems of Linear Algebraic Equations

1 00 O
110 0
— | 2

M, 1 01 0|
-1 0 0 1

because pre-multiplication of A by M, gives A; = M A, where the suffix 1 shows
that M is the first matrix multiplier of A used to modify the first column of A to
arrive at A ;.

The second stage in the Gaussian elimination process is applied to A; when four
times row 2 is added to row 3 to produce a zero as the second element in the
modified row 3. There is already a zero as the second element of row 4, so no further
modifications are necessary in this second stage of the Gaussian elimination
process. The result is

2 1 2 3
- 1 0 _1

— 2 2
A=l 0 1 2
0 0 -3 -3

The elementary row operations that produce this result are described by the
matrix

M,

|
coc o~
o~~~
o~ oo
—o oo

because A, = MbA; = MLoM;A.

The third and final stage of the Gaussian elimination process involves adding
three times row 3 to row 4 to produce a zero in the third element of the modified
row 4. The result is

2 1 2 3
o to
A=y 0 1 2
0 0 0 -3

The elementary row operations that produced this result are described by the
matrix
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M; =

—_ o O

)

0
0
0
1

SO O~
SO~ O

because A; = M3A;, = M3M,;M A. Consequently the upper triangular matrix
U = M;, so

2 1 2 3
ot
U_OOIZ

0O 0 0 -3

Next, as (MsMoM;) ™" = M;'M;'M;", it follows that A = M;'M; 'M;'U,
so the factorization will be completed if we can show that M ! M; ! M5 ! = U. This
follows from the special structure of the matrix row operations M;, and from the
definition of inverse matrices Mfl in terms of cofactors. Because the inverse of M;
follows immediately by reversing the signs of the elements in its ith column that lie
below the element 1.

Applying this result to the factors M, M, and M3 gives

1 00 0]t 0 0 0][t 0 0 0
L_|% vtooffo 1 0o0flo 1 00
|10 1 0[]0 —4 1 0[|0 =4 10
1 00 1][0 0 0 1][0 0 01
10 0 0

I I T O

1410

10 31

2 1 2 3 1 0 o2 1 2 3

1 o 1 1| _|4 1 0 Of|0 — 0 —

-2 1 -1 1 |-1 -4 1 0|]|0 0 1 2

2 1 -1 0 1 0 -3 1/|0 0 0 3
A L U

Example 4.8. Use LU factorization to solve the system Ax = b, given that A
is the matrix that has just been factorized and x = [x1, x; ,x3, X4]TWith

@@ b=[1,2,—1, 1]Tand ®b) b =[2,0, 1, 11",
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Solution. (a) Setting y = [y, y», vs» yal', the equation Ly = b with
b=]1, 2,—1, I]T becomes

yvi=Lwyi4+n=2-y—4n+ys=—1, yy—3y3+ys =1,

with the solution obtained by forward substitutiony, = 1, y, = %, y3 =6,ys = 18.
The equation Ux =y then gives the set of equations

2x1 +x3 +2x3 + 3x4 = 1,—%)(2 —%)C4 = %, X3 +2x4 =6, 3x4 =18,

with the solution obtained by backward substitution x| = 2, x, = —9, x3 = —6,
x4 = 6, so the solution set has been found.

(b) Using the same L and U, but this time with b = [2, 0, 1, I]T, the equation
Ly = b becomes

V=2, 4+n=0,—y—4p+ys=1, y—3y3+ys=1,

with the solution obtained by forward substitution y, = 2, y, = —1, y3 = —1,
ya = —4. The equation Ux =y then gives the set of equations

20+ X0+ 2x03 + 304 =2, —30 —dy = —1, X342 =—1, 3x =—4,

with the solution obtained by backward substitution x; = —3%, x; =12 x3 =3,
X4 = —%, so the new solution set has been found by using the same matrices
L and U.

¢

It may happen during the Gaussian elimination process leading to the derivation
of the matrix U that a zero occurs on the leading diagonal at, say, the ith position,
where a nonzero pivot is required. If this happens, it is necessary to interchange the
row concerned with one below it which has a nonzero element in its ith position to
allow the reduction process to continue. This is always possible, because matrix A is
nonsingular. In this case, when the reduction process is completed, the previous
result A = LU must be modified to A = PLU, where P is a permutation matrix (like a
matrix M) that describes the row interchanges that have been made (see Chapter 3,
Exercises 15 through 18).

As a simple example, consider a set of four equations that is to be solved by LU
factorization where the first element on the leading diagonal of A is zero, but the
element immediately below it is nonzero. Instead of interchanging the first two
equations by hand a permutation matrix P can be used. In this case the permutation
matrix P, can be used where
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oS o= O

P,

S oo~
o= O O
- o O O

because pre-multiplication by Py interchanges rows 1 and 2 to bring a nonzero pivot
into the position of the first element in the first row of A. If this happens when
solving a system of equations Ax = b, the calculation proceeds as before, except for
the fact that it then becomes necessary to set Ly = P;b instead of Ly = b, with the
introduction of other permutation matrices in the appropriate order if further
equation interchanges become necessary.

If the solution by LU factorization is programmed for a computer, provision
must be made for an interchange of equations at any stage of the calculations,
including an initial equation interchange like the one represented by the permuta-
tion matrix P;.

4.6 Eigenvalues and Eigenvectors

A problem of fundamental importance that occurs in many applications of matrices
can be formulated as follows. When system (4.1) is properly determined (m = n),
how can a solution be found in which the nonhomogeneous vector b = [by, b, . . .,
b,,]T is proportional to the unknown vector x = [xy, X5, . . ., xn]T? One reason for this
seemingly odd question will become clear in Chapter 6. Denoting the constant of
proportionality by A, the problem involves finding column vector x such that
b = Ax, in which case system (4.1) becomes the matrix equation AX = AX.
When written out in full, the system Ax = /X is seen to be

.
aj Xy +apXy + -+ aypXy = AXy,

ay x| + anxy; + -+ ayx, = Axa,
21X 20X2 2n 2 @.5)

R
ap1 X1 + apXy + - -+ + AppXy = AXp.

At first sight this appears to be a nonhomogeneous system. However, in each
equation the term on the right of the equality sign can be combined with a
corresponding term in the expression on the left, leading to the following homoge-
neous system of algebraic equations, in which 1 appears as a parameter

(ann — A)x1+apxy + -+ ax, =0,
arnx1 + (axn — A)xo + -+ + appx, =0,
2141 (22 )2 2ntn (46)

amXy +apx, + -+ (ann - j~)Xn =0.
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In matrix notation, after introducing the identity matrix I, system (4.5)
becomes

A —Ix=0. @.7)

This system is homogeneous, so there are two possible types of solution. The
first is the obvious trivial solution x = 0. The second type of solution is nontrivial
(one in which x # 0), though it can only be found if the determinant of the
coefficient matrix A — Al in (4.7) vanishes, in which case there is linear dependence
between the rows. So we see that the condition for the existence of nontrivial
solution vectors X is

det[A — 2I] = 0. (4.8)

In general the determinant of a coefficient matrix will not vanish. However, in
this case the parameter / occurs in each element of the leading diagonal of the
matrix

A — /1, so when det [A — AI] is expanded it will give rise to a polynomial p(1) in
/. of degree n. This polynomial in 4 is called the characteristic polynomial asso-
ciated with matrix A, and the characteristic polynomial will vanish when 4 is any
one of its n zeros. When expanded, (4.8) is called the characteristic equation
associated with A, and it is a polynomial equation p(4) = 0 in 4 of degree n, with
nroots Ay, Az, ..., A,. The roots /; are called the eigenvalues of A, and from (4.7)
it follows that to each eigenvalue J; of A there corresponds a column vector x*)
such that

A — 2Ix" = 0. (4.9)

Vector x'” is called the eigenvector of A corresponding to the eigenvalue A;, and
in general an n x n matrix A will have # different eigenvectors xV, x'?, ..., x.

We mention that older terms for eigenvalues and eigenvectors that are still in use
are characteristic values and characteristic vectors.

It can happen that a matrix has an eigenvalue /, that is repeated r times, in which
case (4 — 4)" is a factor of the characteristic equation. Such a repeated root of the
characteristic equation is said to be an eigenvalue with algebraic multiplicity r,
often abbreviated to multiplicity 7. Our main concern will be with the case when A
has n linearly independent eigenvectors (there is no proportionality between them),
even though some of the eigenvalues may be repeated. The more complicated
situation that arises when A has fewer than n distinct eigenvectors will be examined
later.

Expanding p(/) = det [A — /1], the eigenvalues 4; are seen to be the roots of the
polynomial of degree n in 4 given by

.oy
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ain —4  an S dip
asi ap —4 - ay
p()») = det[A — iI] = . . . . =0, 4.10)
Al ap Apn — )

so p(4) = det[A — AI] can be factored and written as
p(A)=det(A—A) = (A4 =) (A=) (A — 4), 4.11)

where the /; withi =1, 2, . . ., n are the n eigenvalues of A. Setting 4 = 0 in identity
(4.11) gives the useful result that the product of the eigenvalues is equal to det A, so

AMlg Ay = detA. “4.12)

The coefficient of A* ~ ! on the left of (4.11) can be seen to be
(=1)"(A1 + J2 + -+ 4,), and a little thought shows the coefficient of /* ~ ' on
the right is given by (—1)"(ay; + a2 + -+ + au), o equating these two expres-
sions we arrive at another useful result

;Ll+j~2+"'+/ln:all+a22+"'+ann~ (413)

Thus the sum of the eigenvalues of A is seen to be equal to the sum of the

elements on the leading diagonal of A. Because of its importance in the study of

eigenvalues, and elsewhere, the sum of the elements on the leading diagonal of a

square matrix A is given a name and called the frace of A, written trA, so we have
the definition

trA =ay +ax + -+ ay,. “4.14)

Apart from various other uses, result (4.12), and result (4.13) in the form
MtA+- 42, =tr A, (4.15)

are useful when checking the values of eigenvalues that have been computed, with
(4.15) being particularly simple to apply.

A result that is also useful when considering 2 x 2 matrices A = [a;;] is that the
eigenvalues of A are given by

de o %[trA +\Jaray - 4detA} . “.16)

This result follows directly by expanding the characteristic determinant
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ain—4  an

=0
anq azy — A ’

solving the resulting quadratic equation for A, and using the definitions trA = a;; + a»>
and det A = a1y — dppdsg.
The quantity

A = (trA)* — 4 det A, (4.17)

in terms of which (4.16) can be written
Ay = %[trA + \/Z} , (4.18)

is called the discriminant, because when the elements a;; are all real it shows that the

two eigenvalues A, will be real if A > 0, but they will be complex conjugates if A < 0.

Let us now return to consider matrix (4.9) that defines the eigenvectors of A, and

in terms of its elements this can be written x{) = [x(ll),xg), . ,x,(f)]T, fori =1, 2,

.., n. When written out in full, (4.9) shows the x are the solutions of the
homogeneous system of equations

an—4  an EE ain xg’:) 0
ay  an—4 o an P 0|
. . Li=1,2,...,n. (4.19)
anl an2 R xi,i) 0

The homogeneity of (4.19) means that the absolute values of the n quantities
xﬁ'),xg), el + cannot be determined, so instead, n — 1 of the elements must be
expressed in terms of the remaining element, say x,@, the value of which may be
assigned arbitrarily. So (4.19) only determines the ratios of the elements of x with
respect to x,” as a parameter. This means that once an eigenvector has been found, it
can be multiplied by an arbitrary constant k # 0 (scaled by k) and still remain an
eigenvector. This fact can be seen directly from (4.9), because replacing x' by kx”
with k£ # 0 an arbitrary number, cancellation of the multiplicative factor k leads
directly to (4.19).

Finding the characteristic polynomial p(1) of an n x n matrix is straightforward, but
unless the characteristic polynomial can be factored, finding its roots when n > 2 usually
requires the use of numerical methods. To simplify the calculations, in the examples
and exercises that follow, the 3 x 3 matrices A have been constructed so that once the
characteristic equation has been determined, at least one of its roots (eigenvalues), say
/., can be found by inspection. Then, removing the factor (1 — j) from the characteris-
tic equation by long division, the remaining two roots can be found by using the
quadratic formula.
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Example 4.9. Find the characteristic polynomial of A and its eigenvalues, given that

1 0 -1
A=|-2 -1 2
-1 2 1

Solution. The characteristic polynomial is found by expanding the determinant

1-2 0 —1
p(A)=detA—A]=| -2 —1-4 2 |=61+i1-)".
1 2 11—

The eigenvalues of A are the roots of the characteristic equation, that is the roots
of p(2) = det[A — AI] = 0, which is equivalent to finding the roots of 6 + 1> — 2* = 0.
The expression on the left has the obvious factor A = 0, so the characteristic
equation can be factored and written as A(A + 2)(3 — 1) = 0. Its roots are 0,
—2 and 3, so when for convenience they are arranged in numerical order, the
eigenvalues of A are seentobe 4y = -2, 1L, =0, 43=3.

These results can be checked using results (4.12) and (4.14). A simple calcula-
tion shows that det A = 0, and from (4.12) we have

idads = (=2)(0)(3) = 0 = det A.

Simpler still, from (4.14) we have

M+d+A=-2404+3=1=tr(A)=1-1+1=1.

4.7 The Companion Matrix and the Characteristic Polynomial

Given an n X n matrix A, the characteristic polynomial p(1) associated with A is
determined by p(4) = det|A — AI|. In this section we now reverse this process and
ask how, given a polynomial

p(A)=21"+ a4y A+ ay, (4.20)

can a matrix A be constructed with p(4) as its characteristic polynomial. There is no
unique answer to this question, but a standard approach to this problem, which is
useful in certain circumstances, is based on the matrix
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[0 0 0 0 —ay ]
100 0 —an
010 0 —a,,
A=10 0 1 0 —ays | 4.21)
000 - 1 —a |

called the companion matrix for p(1) = A" + a "V T b a A+ ay,
where the elements a; fori =1, 2, . . ., n in the last column are the coefficients of p(A).
The characteristic polynomial for matrix A is, by definition,

-2 0 0 0 —a,
1 -2 0 0 —a,
0 1 -2 -+ 0 —a,,
p(/l) = det|A — lI| =10 0 1 e 0 —a, ;3 4.22)
0 0 0O -~ 1 —A—a

To show that a polynomial p(1) of the required form follows by expanding this
determinant it is necessary to use the property of determinants that allows multiples
of a row to be added to another row without changing the value of the determinant.
The expansion of this determinant starts by multiplying the row # by A, and adding
the result to row (n — 1). Next, the modified row (n — 1) is multiplied by 4 and
added to row (n — 2), and thereafter this process is continued until the first row is
reached. The final result is

000 -+ 0 V=g '—ai"?— . —a,_)—a,
00 -0 -
010 -0 M2 g —a,,
p(4) =
000 -0 2 —a)—a
000 - 1 —l—a

The result follows by expanding this determinant in terms of element in the first
row, when it becomes

p(A)=21"+ "N T a1+ ay.
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Exercises

In Exercises 1 through 6 use Gaussian elimination, in the form of elementary row
operations applied to the augmented matrix, to find a solution set when it exists,
and comment on the values of rank(A) and rank(Alb).

1.
X1 +x—x34+2x=1,

2x1 + 2xp — x3 + 2x4 = 3,
— X1 +2X2 —|—X3—X4=—2.

X1 +x +3x3 + 2x4 = =2,
3x1 +xp + 2x4 = 3,

2x1 —Xp +2x3 +4x4 = 1,
X1+ 2x —x3 —2x4 = 1.

X1+ 4xy +2x3 =3,
2x1 4+ 3x, +x3 =1,
X1+ 3x + 2x3 =4,
3x1 +xp —x3 = 2.

X —Xp =2,
3x;1+x —x3 =4,
2x1 +x0 = 2,
4x; —x3 = 6,

5X1 7)(27)(3:8.

2x1 +x3 = 4,
2x1 + 4xy + 3x3 = 2,
X1+ 3x3 =1,
Sx1+4xy +Tx3=17.

X1+ 2x +x3 =5,
2x1 +xp = 2,
—x1+x+3x5 =1,
2x1 +x3 = 2,

X1 +x2+3x3=0.
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In Exercises 7 and 8 use elementary row operations applied to A and I to find A",
and check that AA™' = L.

7.
1 1 -1
A=1|1 2 0
2 2 1
8.
3 1 2
A= -1 2
1 -1

In Exercises 9 and 10 find the characteristic polynomial of matrix A, but do not
attempt to find the eigenvalues of A.

9.
1 -1 3
A=1|2 1 4
3 -1 1
10.
1 1 1
0 2 1 -1
A= 1 1 -1 2
1 -1 3 1

11. Find the condition on the real number o such that

1 2
a= o 3]
has (a) two real and distinct eigenvalues (b) two equal eigenvalues and

(c) complex conjugate eigenvalues.

12. Verify that row rank(A) = column rank(A) = 3, given that

ST RSN N
AON A~
—_

—_

R = = O

11 11

In Exercises 13 through 16 find the LU factorization of the given matrix A, and use
it to solve the system of equations Ax = b for the given column vectors b.
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13.

14.

15.

16.

17.

(1 2 3 -2 3
A=|2 -1 1 |,(a)withb= | 1 |and (b) withb= [0
|1 2 -1 -1 2
1
A= 1
| —2
I 1 1 2 1 1
1 1 0 2 . -1
A= 0 -1 1 , (@) with b = 5 and (b) with b = 3
-1 1 1 1 0 -2
[0 1 -1 1 2
2 -1 -1 -1 1
A= 1 2 0 1 » b= -1
111 -1 -1 3

Construct a polynomial of your choice of degree 5. By constructing the
corresponding determinant in (4.22), use the row modifications described in
Section 4.7 to simplify the determinant to the point where it is clear that it
reproduces your polynomial.






Chapter 5

Eigenvalues, Eigenvectors, Diagonalization,
Similarity, Jordan Normal Forms, and
Estimating Regions Containing Eigenvalues

5.1 Finding Eigenvectors

It was shown in Chapter 4 that the eigenvalues Ay, 25, ... , A, of an n X n matrix A
are the roots of the nth degree polynomial equation p(1) = 0 in 4, called the
characteristic equation of A, and given by

p(4) = det[A — AI] = 0. (5.1

The polynomial expression p(1) = det[A —AI] is called the characteristic
polynomial of matrix A. It may happen that some eigenvalues are repeated, though
there will always be n eigenvalues provided an eigenvalue repeated r times it is
counted as r eigenvalues. It is important to know that even when the elements of A
are all real, so the coefficients of the characteristic equation are all real, the
eigenvalues (the roots of p(4) = 0) may be real or complex, though when they
are complex they must occur in complex conjugate pairs.

The column vector X; associated with the eigenvalue /4, is called the eigenvector
of A belonging to the eigenvalue /;, and it is a solution of the matrix equation

[A — )V,‘I]Xl‘ =0. (52)

When the n eigenvalues are all distinct, there will always be n linearly indepen-
dent eigenvectors X;, X, ... , X,, that are solutions of Eq. (5.2) fori=1,2, ..., n.

However, when an eigenvalue 4,,, say, is repeated r times, it may or may not
have associated with it r linearly independent eigenvectors.

The following typical example shows how the eigenvectors of a matrix are found
once its eigenvalues are known.

Example 5.1. Find the eigenvalues and eigenvectors of the matrix

1 0o -1
A=|-2 -1 2
-1 2 1
A. Jeffrey, Matrix Operations for Engineers and Scientists, 101
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Solution. This is the matrix considered in Example 4.7 where the characteristic
equation p(4) = 0 was found to be

1-4 0 -1
p(A)=detA—A]=| =2 —1—1 2 |=6i+2-22=20+2)3-1).
-1 2 1-4
So the eigenvalues of A, that is the roots of p(4) = 0, are

/11 :72,/12:0 and /l3 =3.

To find the eigenvector x; corresponding to 4; we must solve (5.2) with ;= 4, = —2.
The matrix Eq. (5.2) then becomes

1-(-2) 0 —1 e 3 0 —17 [« 0
-2 —1—(-2) 2 Al=1-21 2|4 =0
—1 2 L= (=2)] | b -1 2 3 || 0

The superscript (1) attached to the unknowns x(]l), xg) and xgl) is used to show

these are the elements of the eigenvector x; corresponding to 4; = —2. When this
matrix equation is written out in full it leads to the three equations

3x§l) —xgl) =0, —2x§1) +x(21) + 2x§l) =0, —xgl) + 2ng) + 3ch1> =0.

As these three equations are homogeneous, and the determinant of their coeffi-
cient matrix is zero, any one of the equations must be linearly dependent on the
other two. Discarding one of these equations as redundant, and using the two that
remain, it is only possible for two of the three unknowns x(11>, xgl) and xgl) to be
found in terms of a third unknown, say xgl), which can be assigned an arbitrary
value. If in this case we take the third equation to be redundant, we are left with the
first two equations from which to determine the three unknowns x (D6 and x5,
It is easy to confirm that the first two equations are linearly independent, because
they are not proportional. To proceed further, let us find x,'" and x5 in terms x,”
by setting x,‘" = k,, where k; # 0 is arbitrary (it can be regarded as a parameter).
The first equation gives x3l = 3k, so using xll = k; and xgl) = 3k, in the second
equation we find that D= —4k;.

Of course, using x(lﬁ = ky,and ng> = 3k; in the third equation will again give
x<21> = —4k;, confirming it redundancy, since it is automatically compatible with the
first two equations.

We have shown the eigenvector x; can be taken to be x| = [k, —4k, 3k1]T,
where as usual, to save space on a printed page, the column eigenvector x; has been

written as the transpose of a row vector. As the scaling of an eigenvector is
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arbitrary, it is usual to set the scale factor k; equal to a convenient numerical value,
typically k; = 1, when the above eigenvector becomes x; = [1, —4, 3]".
To find the eigenvector X,, Eq. (5.2) must be solved with 4; = 1, = 0, when the

elements xgz), x(22> and x(32) of x, are seen to satisfy the matrix equation

1 - (0) 0 1 [ 10 —17 [+ 0
-2 —1-(0) 2 =12 -1 2 [|P|=]0
1 2 1=(0) ] | L2 ] 0

When written out in full, the components of x, are determined by the equations
x(12> — xgz) =0, —2x§2) — xg) + 2xg2> =0, —xﬁz) + 2x£2) +x§2> =0.

For convenience we will again take the third equation to be redundant, and set
xgz) = k; (an arbitrary parameter). Then, proceeding as before, we find that x(lz) = ky,
x(22> =0, xgz) = ky, so the eigenvector x, becomes x, = [k», 0, kz]T. Assigning k,
the arbitrary value k, = 1, the eigenvector x, corresponding to /4, = 0 can be taken
to be x, = [1, 0, 1]".

Finally, to find x3 we set 4; = 43 = 3 in (5.2), when the matrix equation becomes

(3)

1-(3) 0 —1 Xy 2 0 —1]|x 0
-2 —1-(3) 2 =12 -4 2| =]0],
1 2 1=0)] | & L2 2] |0 0

leading to the three scalar equations
2 — ) =0, 2 — a4 + 2 =0, 1 2 — 2 — 0.

As before, one of these equations must be redundant, so once again taking this to
be the third equation and setting x(13) = k3 (an arbitrary parameter), we find that

x<13> =k3, x<23> = —%k3, and xg3) = —2k;. So the eigenvector x3 becomes X3 =

[k3, —%lq, —2ks3 }T. Again setting k3 = 1, the eigenvector corresponding to A3 = 3

becomes x; = [1, — % —2]T.

In summary, the eigenvalues and the corresponding eigenvectors of A are

1 1 1
/11:_27 X = —4 ) /12:(); Xy = 0 ) ;“3:33 X3 = _%
3 1 -2

These three eigenvectors are nontrivial solutions of linear homogeneous alge-
braic equations, so they must be linearly independent. This is easily checked,
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because the determinant with these vectors as its columns must not vanish, and this
is so because

111
—4 0 3[=-15
301 =2

¢

As eigenvectors can be scaled arbitrarily, the essential feature of an eigenvector

is not the actual values of its elements, but the fact that the ratios between elements
is fixed. In calculations involving eigenvectors, the scaling of eigenvectors is often
used to advantage to adjust the relative sizes of the absolute values of the elements
of an eigenvector. Typically, an eigenvector of the form x = [a, b, ¢]" is normalized
by setting k = 1/va? + b> + ¢2, and taking as the normalized eigenvector X the
vector X = [ka, kb, kc]'. In Example 5.1, in terms of this scaling, the normalized

T
eigenvector X; becomes X; = [\/Lz_é, —/Lz_@ J%} )

The purpose of normalization is to adopt a convenient scale for the sizes of the
elements in an eigenvector that ensures the magnitude of its largest element does
not exceed one. This, in turn, helps limit the growth of round-off errors when an
eigenvector is used repeatedly in calculations.

Another example involving the determination of eigenvalues and eigenvectors
now follows. In this example two eigenvalues are repeated, though the system is
such that two linearly independent eigenvectors can still be found that correspond to
the single repeated eigenvalue.

Example 5.2. Find the eigenvalues and eigenvectors of

1 0 O
A=10 2 -1
0 0 1

Solution. The characteristic equation p(4) = det[A — AI] = 0 becomes

1—-4 0 0
p)=] 0 2—-4 -1 |=01-1*Q2-2)=0,
0 0 1-24

so the eigenvalues of A are ,; =1 , 1, = 1,23 = 2. In this case, the eigenvalue
A = 1 has multiplicity 2 (it is repeated twice). If possible, let us find two different
(linearly independent) eigenvectors corresponding to 4 = 1. To find these eigen-
vectors we must attempt to find two linearly independent solution vectors x of
[A — AIlx = 0 when 4 = 1. So setting 4 = 4; = 1 the matrix equation from which
the eigenvectors must be obtained becomes

(1)

00 07]|x 0
01 —1||d"]| =10
00 0 () 0

X3
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Only one scalar e(%uatlon is obtained when this matrix equauon is written out in full,
and it is x = 0, in which one of the variables, say x(3 ), can be assigned an
arbitrary value Notlce there is no equation involving xll , so this variable, like xg ) ,
can be assigned an arbitrary value.

Assigning the values x<11 =0and xél): 1, one of the eigenvectors corresponding
to A = A; = 1 must be proportional to the vector x; = [0, 1, 1]7. Next, assigning the
different values x(11>: 1 and x31>: 0, a second (linearly independent) eigenvector
corresponding to 4 = A; = 1 will be proportional to x, = [1, 0, 0]*. The third
eigenvector x3, corresponding to setting 4 = 43 = 2, follows by solving

1-2) 0 0 P 10 o 71[+W 0

0 2-@2 -1 |[[5P{=]0 0 -1 [|V|=]o0

0 0 1—(2) x?) 0 0 0-1 x§3) 0
When written out in full, this shows that x(l ) = x(; =0, but as there is no

equation involving xg) this may be taken to be arbitrary, so for simplicity we
set xz) 1. Thus the third eigenvector will be proportional to x; = [0, 1, 0]".
In summary, we have shown that the eigenvalues and eigenvectors of A are

0 1
11:1, X1 = 1 s 12:1, Xy = 0 s }v3:2, X3 = 1
1 0

)

The linear independence of these eigenvectors is easily confirmed, because the
value of the determinant with its columns equal to Xy, x; and X3 is 1, and so does not
vanish.

¢

Not every n X n matrix A has n linearly independent eigenvectors. For example,

the matrix

1 -3 1
A=|-1 -1 1
1 -2 0
has the three eigenvalues 4y =2, 4 = A3 = —1, which are the roots of the

characteristic equation p(1) = A* —31 —2 =0. The eigenvector corresponding
to the single eigenvalue A; = 2 is easily shown to be proportional to x; =[-8, 1,
—5]". However, corresponding to the repeated eigenvalue 2 = —1, when the
equation [A — AI]x = 0 is written out in full, it becomes the three equations
2P =3 2P =0, - 4 = 0and &P — 24P 12 =0
Discardmg the third equatlon as redundant, the first two equations can be solved
in terms of x\”) = k, an arbitrar @ — @) = i
s =k, y constant, when x;” =k, x,’ = k, showing that
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x; = [k, k, k]T. This is the only possible solution when 4 = —1 (twice), so setting
k = 1 we find the single eigenvector x, = x3 = [1, 1, 1]7 that corresponds to
the repeated eigenvalue 4 = —1. We will denote this single eigenvector by X 3

=[1,1, l]T, where the subscript 23) indicates that X, 3, corresponds to the repeated
eigenvalue. The eigenvalues and normalized eigenvectors are

8 1

_W ?

=2 %= sy | ad =4y =1, Xp3 = | 5
3 1

T3V10 7

To distinguish between two different situations involving eigenvalues and
eigenvectors, the number r of repeated eigenvalues is called the algebraic multi-
plicity of the eigenvalue, while the number m of linearly independent eigenvectors
corresponding to a repeated eigenvalue is called the geometric multiplicity of the
eigenvalue, and clearly m < r.

Even though a square matrix A with real elements leads to a characteristic
equation in the form of a polynomial equation with real coefficients, some of the
roots of the characteristic equation may be complex, as was seen in (4.17). We now
make use of the following elementary and easily proved result from complex
analysis, which we state as follows (see Exercise 34).

5.1.1 The Roots of Polynomials with Real Coefficients

The roots of a polynomial equation with real coefficients may be either real or complex, but if
any roots are complex they must occur in complex conjugate pairs. Thus if the degree of a
polynomial equation with real coefficients is odd, it must have at least one real root.

This result is useful when working with third-degree polynomials p(4) = 0 with
real coefficients, because in this case one root is always real.

If in simple cases the real root 4; can be found by trial and error, the quantity
(4 — 1) must be a factor of p(1). Dividing p(2) by the factor (1 — 1), and equating
the result to zero, will lead to a quadratic equation whose roots will be the other two
eigenvalues, and these can be found from the quadratic formula (they will either be
real or complex conjugates). By this method, all three roots of p(4) can be obtained.

If a real root of p(4) cannot be found by trial and error, or if the degree of p(4) is
greater than three, it becomes necessary to use numerical methods to find the
eigenvalues and eigenvectors. The numerical determination of eigenvalues and
their associated eigenvectors is a special topic in numerical analysis, and it will
not be discussed here.

The next example illustrates a simple case where a real root of the characteristic
equation (an eigenvalue) can be found by inspection, and the result then used to find
the two remaining roots (eigenvalues) that turn out to be complex conjugates.
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Example 5.3. Find the eigenvalues and eigenvectors of

1 0 1
A=1|1 1 0
0 1 1
Solution. The characteristic polynomial is
1—4 0 1
p(A)=detA—=| 1 1-1 0 |=2-31+312-7".
0 1 1-41

The eigenvalues of A are the roots of 2 — 31 + 322 — /3 = 0 which, for conve-
nience, we rewrite as 2> — 34> + 34 — 2 = 0. Trial and error shows 4, = 2 is an
eigenvalue, so (A — ;) = (4 — 2) is a factor of B —32435,-2. Long division
shows that (A* — 32* + 31 — 2) /(4 — 2) = 4> — Z + 1, so the remaining two eigen-
values are the roots of 1> — .+ 1 = 0. Applying the quadratic formula to this
equation shows its roots are the complex conjugates (1 + iv/3) and 1(1 — iv/3) .
Thus A has the one real and the two complex conjugate eigenvalues A; = 2,
Jo=1(1+iV3) and 23 =1(1 —iV3) . Proceeding as usual, and setting AV =1,
eigenvector X, is found to be proportional to x; = [1, 1, 1]

To determine the eigenvector x, corresponding to 7, = %( +i \/§) it is necessary
to set 4 = ( + l\/_) in (5.2), when we obtain

—1(1+iv3) 0 1 P 0
1 1=3(1+iv3) 0 =10
1 L—3(1+iv3) | | AP 0

Thus the elements of x, = [x<12>,x§2>,x$)] must satisfy the equations

%(1—1\/_))(] —|—x(2) 0, x] (l—l\/_)x2 = (1—1—1\/_))(3 =
Discarding one of these equations as redundant, say the last equation, and solving

. Lo 2 . 2
the remaining equations in terms of xg ), where for convenience we set x;” =1, we
find that

ng) — 1 X(2> _%(1 +l\/§), ng) = —%(1 — l\/g) .

Thus the complex eigenvector x, corresponding to A, = %(1 +i\/§) can be
taken to be

x = | —H(1+iV3)
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To find the eigenvector X it is not necessary to solve the equations with 4 = 43,
because /3 is the complex conjugate of A,, so the complex eigenvector x3 must be
the complex conjugate of x,. Thus the three eigenvalues and eigenvectors of A are

1 1
m=2x1=|1|,%4 %(I—H\/—) ,(1+i\/§) , and

1
i =4(1-iV3), x = | =3(1 - iV3)
(1 +iV3)

This has shown that, apart from working with complex numbers, the process of
finding a complex eigenvector corresponding to a complex eigenvalue is the same
as finding a real eigenvector that corresponds to a real eigenvalue.

¢

As an eigenvector can always be scaled by a real or complex number and still
remain an eigenvector, the result of scaling by different constants can make a
given eigenvector look very different. For example, if the eigenvector x, in
Example 5.3 is scaled by i, the result will still be an eigenvector associated with
Ay = %(1 + l\/g) , though the eigenvector will look very different, because it will
then become

i
X2 = _%(i - \/5)
—(i+V3)

Later, when matrices are used with systems of linear differential equations with
the independent variable ¢, it will be found that the failure to determine eigenvectors
up to a multiplicative numerical factor will make no difference to the solution of the
system of equations. It will also be seen that complex conjugate eigenvectors, like
x; and x; in Example 5.3, will lead to real solutions of differential equations
containing terms like ¢* sin fz and ¢* cos fit, which correspond to complex conju-
gate eigenvalues A = o + ifs.

Theorem 5.1 Eigenvalues and Eigenvectors of Symmetric Matrices

A real symmetric n X n matrix A always has n real eigenvalues and n linearly
independent eigenvectors that are mutually orthogonal.

Proof. The proof is based on the fact that if A is symmetric, then AT = A, and if x
and y are n element column vectors, the product y' Ax is a scalar quantity, so that
(y'Ax)" = xTAy It will also be necessary to use the result that an eigenvalue 1 will
be real if A = 4, where the overbar indicates a complex conjugate. This last result
follows from the fact that if = a + ib, then .. = a — ib, so /. = Jis only possible if
b = 0 (that is if 1 is purely real).

Suppose, if possible, that 4 is complex, and it has associated with it a complex
eigenvector x. Then, as the characteristic equation has real coefficients, A must have
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associated with it a complex conjugate eigenvalue J, and an associated complex
conjugate eigenvector X. Thus, 4, 4, x and x must satisfy the equations

Ax = x and Ax = Jx,

because A = A, since A is real. Pre-multiplying Ax = /x by X' gives X' Ax = AX'x,
and pre-multiplying AX = /X by x' gives x'AX = /x'X. Taking these results
together, and setting y = X in y' AX = x' Ay, which is true because A is symmetric,
shows that /X"x = JX'X, but X"x = x"X is real, so the previous equation is only
possible if 4 =/, and the result is proved.

To establish the mutual orthogonality of the eigenvectors it is necessary to show
that if x; and x; are eigenvectors of A, corresponding to the different eigenvalues
;i and Z;, then x'x; =0 if i # j. Assuming the eigenvalues are all distinct
(different), and using the defining equations Ax; = 4x; and Ax; = AX;, pre-
multiplication of these, respectively, by x;' and x;', gives x;"Ax; = 4x;' X; and
x,-Tij = /ljxiT x;. However, from y'Ax = x"Ay withx = x;and y = X;, we see that
x,—TAxJ- = ijAx,-, SO x,—ij = ijx,-. Subtracting ijAx,- = i,-ij x; from x,—Tij = ijxiT
X;j, and using this last result, we find that (/11 - ij)xiij = 0, but by hypothesis
i # A; for i # j, so it must follow that x]x; = 0 when i # j. Thus the mutual
orthogonality of the eigenvectors corresponding to different eigenvalues has been
proved. A similar proof, not given here, establishes the mutual orthogonality of
eigenvectors when an n X n real matrix A has eigenvalues with algebraic multi-
plicities greater than 1, though there are still n linearly independent eigenvectors.

¢
Corollary 5.1. Symmetric and Related Orthogonal Matrices Let the eigenvectors
X7, X2, - .. , Xy Of a symmetric n X n real matrix A be normalized so that XiTXi =1.

Then a matrix Q with its columns formed by the normalized eigenvectors of A,
arranged in any order, is an orthogonal matrix.

, A T

Proof. The result is almost immediate, because if x; = [ x(l’)7 X(zl)a c } ,
N2 N2 21172

normalizing X; by dividing its elements by [(x(ll)) + (x(zl) ) 4ot < ’(j)) ] ,

fori=1,2, ..., n, will produce the required normalization X; of x;, and the mutual
orthogonality of the vectors x; and x; implies the mutual orthogonality of the vectors
X; and X; with i # j. Furthermore, by constructing a matrix Q with its columns the
normalized eigenvectors X;, it follows that Q'Q=LsoQ"=Q! showing that Q
is an orthogonal matrix.

o

Example 5.4. Find the eigenvalues and eigenvectors of

1 -2
A=10
0

— N O

1
2

and use the results to construct an orthogonal matrix Q.
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Solution. The eigenvalues and eigenvectors of A are easily found to be

1 0 0
=1xV=10], =3 xP=|1], s=-1,xD=]-1],
0 i 1
so the normalized eigenvectors are
1 0] 0
- - 1 - L
X1 = 0 , X2 = V2|, X3 = V2
0 1 1
V2 | V2

Thus an orthogonal matrix with these as its column vectors is

1 0 O
1 1
Q=9 5 5
0o L L
2 V2

This is easily checked, because QQT =1, showing that QT = Q. Different
orthogonal matrices can be formed by changing the order of the columns in Q.

o

5.2 Diagonalization of Matrices

The diagonalization of general n X n (square) matrices is of fundamental impor-
tance in many applications, and especially when solving systems of linear constant
coefficient differential equations, as will be seen in Chapter 6. Let us now show
precisely how and when it is possible to transform a general n x n real matrix A into
an n X n diagonal matrix D.

We start by considering the matrix product AP, where P is the n X n matrix with
its columns the n different (linearly independent) eigenvectors x' of A satisfying
the n equations

Ax(® — iix(i),i =1,2,...,n, 5.3)

where the matrix Eq. (5.3) is simply result (5.1) written in a different way. Now

[a;y anp -+ ai x$1> x<12) x(ln)
... 1 Q) (n)
azy ax aon X X e X
AP — 2 2 2
: : : 5.4
L anl ap cc dpp XSIU X,<12) e -thn)
— [Ax), Ax® .. ,Ax<">] ,
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where the Ax? fori=1,2, ..., nare the n x 1 columns of AP. Using (5.3) allows
this to be rewritten as

AP — [,1<1>x<1>, Jox® ;v,1x<">} . (5.5)

Next, let D be the n x n diagonal matrix D = diag{4;, 45, ..., 4,} with the

elements 4y, Ao, ... , 4, arranged along its leading diagonal in the same order as that
of the eigenvectors x” forming the columns of P, so that

i 0 - 0
0 4 - 0
0o 0 -
Now form the product
S S SRR s o N o PR | B |
n 2 (n) 0O 4 --- 0
X X e X 2
D - | 2 2 2
qul) quz) X;(1n) 0 0 -
NG (n) (56)
lxy’ Aax cee Xy
(1 2 . (n)
_ Xy doxy nXs _ [llx(l)’ Jox® A x™
L2 a2
A comparison of (5.5) and (5.6) shows that
AP = PD. 5.7

By hypothesis, the columns of P are the » linearly independent eigenvectors of
A, so det P # 0, and hence the inverse matrix P~ will always exist. Pre-multiplying
(5.7) by P! establishes the fundamental result that

D = P 'AP or, equivalently, A = PDP ' (5.8a)

Two immediate consequences of the last result in (5.8a) are that

(a) A diagonalizable matrix A is fully determined by its eigenvectors which form
the columns of P, and by its eigenvalues which form the elements on the
diagonal of D.

There is also the useful result that
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(b) »
A" = PD"P!, (5.8b)

which follows from the result

A" = (PDP ')(PDP')...(PDP ') = PD"P ',

m times

where in the products of terms all products PP~! = I, leaving only the result
PD"P .

Matrix P is called the diagonalizing matrix for A, and the following important
theorem on diagonalization has been proved.

Theorem 5.2 Diagonalization Let an n X n real matrix A have n linearly
independent eigenvectors x(7 s x? e, x™ , with the associated eigenvalues
M,y Aoy oo, Ay, Some of which may be equal. Then A can always be diagonalized.
To accomplish the diagonalization, let P be an n X n matrix with columns formed by
the eigenvectors X", x?, ... x™ of A, and let D be an n x n diagonal matrix with
the element on its leading diagonal equal to the eigenvalues of A arranged in the
same order Ay, Ay, . .., Ay as the columns of P. Then,

D = P 'AP or, equivalently, A = PDP!.

The following conclusions follow directly from Theorems 5.1 and 5.2.

5.2.1 Properties of Diagonalized Matrices

1. Diagonalization of a real n x n matrix A is only possible if it has n linearly independent
eigenvectors.

2. The diagonalizing matrix P is not unique, because the columns of P, formed by the eigenvectors of
A, can be arranged in any order and, furthermore, the eigenvectors of A can be scaled arbitrarily.

3. The order in which the eigenvectors of A are used to construct the columns of P will be the order
in which the corresponding eigenvalues of A are arranged along the leading diagonal of D.

4. A real symmetric n X n matrix A can always be diagonalized, because it always has n linearly
independent eigenvectors.

Thus a real n x n matrix will be nondiagonalizable if it has fewer than n linearly
independent eigenvectors. So, if an eigenvalue 4; with algebraic multiplicity m has
associated with it only r linearly independent eigenvectors, with < m, the matrix
cannot be diagonalized. Such an eigenvalue /; is said to be deficient, and to have a
deficiency index equal to the number m — r of missing eigenvectors. The matrices
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in Examples 5.1 through 5.3 are examples of diagonalizable matrices, whereas a
matrix like

1 =31
A=|-1 -1 1
1 -2 0
is nondiagonalizable, because
-8
M=2,xy=1| 1|, while/h=Ah=—-1landx,=x3= 11|,
=5
so corresponding to the repeated eigenvalue 1, = A3 = —1 there is only a single
eigenvector. Consequently the eigenvalue 4 = —1 has a deficiency index 2 — 1 = 1.

Example 5.5. Find a diagonalizing matrix P for
1 0 -1
A=|-2 -1 2
-1 2 1

Solution. The eigenvalues and eigenvectors of A were found in Example 5.1 to be

1 1 1
;LI = —2, X1 = —4 y /12 = O, Xy = 0 s /13 = 3, X3 )
3 1

So a diagonalizing matrix P with columns x;, x, and x5 will be

11 1
P=|-4 0 3|,
301 =2

when the required diagonalization will be given by D = P~'AP.

To check this, notice that the eigenvalue entries along the diagonal of D will be
arranged in the same order as the eigenvectors forming the columns of P, so

-2 0 0
D=0 0 0
0 0 3
A simple calculation gives
1 _1 1
10 510
-1_ 1| s 1 1
Po=1%5 35 5|
4 _2 _4

—_
wn
—_
W
|
—_
w
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after which a routine matrix calculation confirms that

-% -1 & 1 0 -1 11 1 200
D=P'AP=| 3 L Ll 2 1 2||-40-3[=|000
4 _Al-1 2 1 31 =2 0 03

Had the eigenvectors of A been arranged in a different order when forming P,
say in the order x;, X3 and x,, then

1

L

1 1 1 -

10 5 10
— |4 3 -l_ | 4 _2 _4
P= 4 il Ofand P = 15 5 5 |
3 -2 1 5 1 1
6 3 6

in which case the order of the elements along the leading diagonal of D will now
become

-2 0 0
D=P'AP=[ 0 3 0
0 00

This same example can be used to demonstrate that scaling eigenvectors leaves
diagonalization unchanged. Suppose, for example, that when performing this
last diagonalization the eigenvector x; had been scaled by a factor 2 to become
x; = [2, =8, 6]T, then P becomes

2 1 1

1
20 0 20
P=|-8 -3 OlandP'=| & -2 4|,
6 -2 1 5 1 1
6 3 6
and once again
-2 0 0
D=P'AP=| 0 3 0
0 00

These results also show that the arbitrariness of the scaling of an eigenvector
when forming matrix P is removed when P! is used to form the matrix product
P !AP. &

5.3 Quadratic Forms and Diagonalization

Theorem 5.2, in conjunction with Corollary 5.1, now makes it possible to show how
a quadratic form Q(x) = xTAx, with x the column vector X = [x{, X, ... , X,]T, can
be reduced to a sum of squares. It was shown in Chapter 3 that when forming the
product xTAx, matrix A may always be taken to be a symmetric matrix, so the
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diagonalizing matrix P in Theorem 5.2 may be replaced by Q, which is an
orthogonal diagonalizing matrix derived from the normalized eigenvectors of A.
AsQ '=QT, the diagonalization result of Theorem 5.2 takes the form D = QTAQ,
so we can write A = QDQ". Using this expression for A, the quadratic form
becomes Q(x) = x QDQx. If we now set y= Q'x, with Y=D1Ys sV 1"
then as y' = x'Q, the quadratic form simplifies to Q(y) = y'Dy. Matrix D is a
diagonal matrix with the entries on its leading diagonal equal to the distinct
eigenvalues A1, A, ..., 4, of A, so Q(y) is a sum of squares of the variables y;
given by

s

O(y) =yt + Zay3 + -+ + Juyy (5.9)

Thus the general quadratic form in the variables in x;, x5, ..., X, has been
reduced to the sum of squares of the new variables y;, y», ... , y,. The connection
between the variables in X, in terms of the new variables in y, follows after pre-
multiplication of y = Q"x by Q to obtain x = Qy after using the fact that QT =Q ',
If, in the quadratic form (5.9), the variables y; are replaced by y; = y; / ||, for
i=1,2,...,n,the quadratic form reduces to its simplest form

O(y) = sign(41)3; + sign(/)y3 + - - + sign(4,)¥> , (5.10)

where sign(u) = 1 if u > 0 and sign(u) = —1 if u < 0. This result completely
characterizes the original quadratic form, and however the reduction is accom-
plished (remember Q is not unique), the reduction will always be the same.

This reduction is used to classify quadratic forms according to the pattern of
signs in (5.10), it being understood that when an eigenvalue Z, is zero, the term ¥ in
(5.10) must be omitted. In algebra, the preservation of the pattern of signs in (5.10),
irrespective of the way the reduction is achieved, is known as Sylvester’s law of
inertia. The following useful and important theorem has been proved.

Theorem 5.3 Reduction of a Quadratic Form. Let a quadratic form be Q(x,
X2, oo, Xy) = x'Ax, with X = [x1, X2, ..., X,]Y and A a real n x n symmetric
matrix so that it has distinct eigenvalues. Then the change of variable x = Qy, with
Q the orthogonal matrix in Corollary 5.1 and y = [y1, y2,.., Y ]T, will reduce it to
the sum of squares

O(y) = Ay} + Aays + - + A2,

where the M, withi =1, 2, ..., nare the n distinct eigenvalues of A. The change of
variable y; = yi/\/ || withi=1,2, ..., nwill reduce Q(y) to the quadratic form

O(¥) = sign(Z1); + sign(A2)y; + -+ + sign(4,)y; .

This method of reduction will fail if multiple eigenvalues occur, even though n
linearly independent eigenvectors exist.

o
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5.3.1 The Classification of Quadratic Forms

A quadratic form Q(xy, x2, ..., X,) = xTAx, with x = [x, xa, ..., x,]" and A a real symmetric
matrix is classified follows:
1. The quadratic form Q is said to be positive definite if Q(xy, X2, ... , x,) >0 for all x # 0 provided

all xq, x,, ..., X, are not zero.
2. The quadratic form Q is said to be negative definite if Q(xy, x,, ... , x,) < O for all x # 0.
3. If the quadratic form Q(xy, X, ... ,x,) > 0 for all x # 0, the quadratic form is said to be positive
semidefinite, while if Q(xy, x5, ..., x,) < 0 for all x # 0 it is said to be negative semidefinite.
4. If the quadratic form Q(xy, x5, ... , X,,) can be either positive or negative for x # 0, the quadratic

form is said to be indefinite.

For convenience, the names positive (negative) definite, positive (negative)
semidefinite and indefinite are also often used to describe the matrix A itself.

After consideration of (5.10), when expressed in words, Theorem 5.3: says that
the classification of a quadratic form associated with a real symmetric matrix A is
determined by the eigenvalues of A. If all the eigenvalues of A are positive, the
quadratic form will be positive definite, if they are all negative it will be negative
definite. The quadratic form will be positive (negative) semidefinite if some of the
eigenvalues of A are zero, and the remainder are positive (negative). The quadratic
form will be indefinite if A has both positive and negative eigenvalues.

Positive and negative definite quadratic forms have many applications, so it is
useful to derive the following simple test for positive or negative definiteness.

Theorem 5.4 Determinant Test for Positive Definiteness. The quadratic form
Q(Xl, X2, .X3) = XTAX

2 2 2
O(x1,x2,x3) = anxy + 2a12X1X2 + axx; + 2ax3xx3 + 2a13x1x3 + a33x3,

with the coefficient matrix A = [a;;] will be positive definite if

aiy ap a3

>0, |an axn axn|>0,
aiz a;  as

ap  ap

ai >0,
ap an

and negative definite if these inequality signs are reversed.

Proof. Using the fact that matrix A in a quadratic form may always be written as a
symmetric matrix, we start by considering a quadratic form in two variables and
write it as

2 2
a a
2 2 12 12 \.2
O(x1,x2) = anxy + 2apx1x2 + anx; = <X1 + aXz) + (6122 - >x2 .
11 11

Then if a;; # 0, the quadratic form Q(x1, x,) will be strictly positive for x = [x;, xz]T
#0ifa;;>0and a>, — a%2 /ai1>0, but these two conditions can be written
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a  ap
dapp  ax

a;;>0, >0. (5.11)

Next, consider the quadratic form in three variables,
2 2 2
Q(X17X2,X3) =anx] + 2a12X1x7 + anx, + 2a73xx3 + 2a13x1x3 + assx;z. (5.12)

Then some algebraic manipulation shows this can be written in the form

2 2

appXxy + azx; an\ o

Q(xl,X2,X3) _all(xl Jrai + 6122—7 X5
11 11

2

apndis aiz\ o

+ 2(023 — >X2X3 + ((133 - —|x3.
ari ari

Clearly, Q will be strictly positive for any x; # 0if x =x3 =0and a;; >0, so Q
will be positive definite if the last three terms involving x, and x3 are also positive
definite. Having considered the situation when x; % 0, we turn now to the case when
the term in x; (the first term) vanishes. Then for Q to be strictly positive we must
have a;; > 0, and the coefficient of x% will be positive if ax — a%z /ai1>0, so we
have again arrived at conditions (5.11). The condition that the last two terms are
strictly positive can be combined into a determinant, leading to the condition

2
_ % _ andi
ay an ans a{' >0
apa a
an — U s g

However, this last condition can be expressed as the third-order determinant

an ap a3
2
0 ap —aj, /an  axs —anpai/an |>0.
)
0 ap—apas/an ax—ay/an

Finally, adding suitable multiples of the first row to the second and third rows,
reduces this to the result

ayp dap as
ap ax» ax|>0.
apz dzz ass

Combining this with the results in (5.11) establishes the positive definite part of
the theorem, and a similar argument in which the inequality signs > are reversed
establishes the rest of the theorem.

¢

Theorem 5.4 extends to a quadratic form in n variables called the Routh—Hurwitz

test for a positive definite form, though the proof will not be given here.
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Theorem 5.5 The Routh—Hurwitz Test for Positive Definiteness. The quadratic form

n
O(x1, x2, ..., xy) = Y ayx;x; will be positive definite if

i,j=1
ayy app - ap
an an apn  dpiz ap ay ap -+ an
ay >0, an a >0, |ap axn axn|>0,...,] . } . . [>0.
o= aiz ay asx :
dapl an ot dpn

%

Theorem 5.4 has the following important implication when applied to Cartesian
coordinate geometry. If the quadratic form

2 2 2
O(x1,X2,X3) = anxy + 2ax1x2 + axnxs + 2a23xX3 + 2a13x1x3 + az3x;

is positive definite, the equation Q(x1, x,, x3) = const. describes an ellipsoid with its
origin O as the origin of a Cartesian coordinate system O{x, x,, x3} at its center,
and with its the axes oriented arbitrarily relative to the ellipsoid. Theorem 5.3 then
implies it is always possible to rotate the axes into a Cartesian coordinate system
O{X1, X5, X3} so that in terms of some new variables X;, X,, X3 the coefficients of
the product terms X;X; for i # j all vanish, in which case the equation of the ellipsoid
becomes

@11X7 + @nX; + azX; = constant.

The new axes X;, X,, X5 are symmetrical with respect to the ellipsoid, in the
sense that each plane through origin O containing two of the axes cuts the ellipsoid
in an ellipse, with one axis lying along its major axis and the other along its minor
axis. The axes O{X, X5, X3} are called the principal axes of the ellipsoid. In the
simpler case of two space dimensions the quadratic form describes an ellipse, and
the principal axes of the ellipse centered on the origin are its mutually perpendicular
major and minor axes. For obvious reasons, in geometry a theorem equivalent to
Theorem 5.4 is called the principal axes theorem, while in algebra and elsewhere it
is known as the orthogonal diagonalization theorem.

Theorem 5.4 also finds various applications in differential equations, ranging
from the study of coupled systems of linear differential equations describing
oscillatory behavior, through to the dynamics of rotating rigid bodies where it
describes the principal moments of inertia. A quite different application is found
in the classification and reduction to standard forms of partial differential equations.

A typical example of an application in mechanics involving the orthogonaliza-
tion of a positive definite matrix, and the significance of its associated positive
definite quadratic form, arises when considering the rotation of a rigid body about
an axis L passing through the origin O of an arbitrary orthogonal system of axes O
{x1, x2, x3} fixed in the body. The differential equations describing the time
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variation of the components of the angular velocity w of the body, called the Euler
equations, require the introduction of a 3 x 3 constant matrix Iy, called the inertia
matrix of the body relative to these axes. The three diagonal elements of Iy are the
moments of inertia of the body about the x, x, and x5 axes, respectively, and the six
off-diagonal elements are the products of inertia relative to these axes. The system
of nonlinear first-order differential equations for the components of w is compli-
cated and it involved Iy, but it simplifies considerably if the axes are rotated about
O to a new orthogonal system O{X;, X,, X3} where the inertia matrix only has non-
zero entries on its leading diagonal. The effect of this rotation can be understood by
considering the quadratic form associated with Iy.

The quadratic form Q(x;, x,, x3) associated with Iy is positive definite, and
the equation Q(xy, x5, x3) = ¢ with ¢ a constant defines an ellipsoid. With a suitable
choice for c it can be shown that the resulting ellipsoid has the property that the
length of a radius vector from its center to the surface of the ellipsoid is equal to
the reciprocal of the radius of gyration of the body about this radius vector. Here,
the radius of gyration R; of the body about a line L through O is given by
Ry = /I /M, where I is the moment of inertia of the body about the line L
through O, and M is the mass of the body. Thus, in the new coordinate system, the
axes X1, X,, X3 are principal axes of the ellipsoid.

Example 5.6. Reduce the quadratic form Q(x) = x" Ax to a sum of squares given that

7 -2 -2
A=|-2 1 4
—2 4 1

Solution. Routine calculations show the eigenvalues and eigenvectors of A are

0 1 -2
/11:—3,X1: —1 ,12:3,)(2: 1 ,A3=9,X3: 1
1

)

so the normalized eigenvectors are

0 L _2

| v Ve

X; = _175 X=17#mHX=] %
T 1 1

V2 V3 V6

Thus the orthogonal diagonalizing matrix is

0o L 2
Lo
V2 V3 Ve
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and the change of variable from x to y to reduce the quadratic form to
2 2 9.2 2 2 2
O(y) = A1yi + Aay; + A3y = =3y7 + 3y; + 93
is given by x = Qy, corresponding to

Xp = %yz —%ym Xy = _\/Liyl +\/L§Y2 —i—%y% X3 :%yl +¢L§y2 +\/L6Y3 .

This is the reduction that was stated without proof when quadratic forms were
introduced in Chapter 3, and the pattern of signs in Q(y) show this quadratic form to
be indefinite.

Although Theorem 5.5 does not show that this quadratic form is indefinite, it
does show it is neither positive nor negative definite, because the values of the three
determinants in the theorem are, respectively, 7, 6 and —19.

O

Example 5.7. Use two different methods to show the quadratic form associated with

100 0 —100
A= 0 150 0
—-100 O 250

is positive definite.

Solution. The hardest way to establish positive definiteness is to show the eigenva-
lues of A are all positive. The characteristic equation of A is

22 — 50042 + 67,5004 — 2,250,000 = 0,

and after trial and error calculations one root (eigenvalue) is found to be 50.
Removing the factor (4 — 50) from the characteristic equation to leave a quadratic
equation, the roots of which are the remaining roots (eigenvalues) 150 and 300. As
all of the eigenvalues are positive, the quadratic form associated with A, namely

xTAx = 100x7 — 200x;x3 + 150x3 + 25013,

must be positive definite. A far simpler way to establish the positive definiteness of the
quadratic form is to use Theorem 5.5 witha;; = 100,a,, = a>; =0, a;3 =as; = —100,
ar3 = azy =0, ayy = 150, and a33 = 250. Evaluating the determinants in the theorem
shows that

100 0 —100

‘>0 and| 0 150 0 |>0,
~100 0 250

100 O

100>o,‘ o 250

so as all three determinants are positive, the quadratic form is positive definite.

O
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5.4 The Characteristic Polynomial and the Cayley—Hamilton
Theorem

If A is an n X n matrix, the zeros 4, 4s, ... ,A,0f the characteristic polynomial

p(2) = det[A — AI] are the eigenvalues of A. The following Theorem records an

important property of the characteristic equation, and the result has many applications.
An almost trivial application of Theorem 5.6 will be found in Exercise 21.

Theorem 5.6 The Cayley—Hamilton Theorem. Let p(1.) be the characteristic poly-
nomial of any n x n matrix A. Then A satisfies its own matrix polynomial
characteristic equation p(A) = 0.

Proof. For simplicity the theorem will only be proved for matrices A that are
diagonalizable, though it is true for all n X n matrices with real or complex
elements.

Let the characteristic polynomial of A be
p(4) = (*1),,(/1" + o e A+ cn).

If A is diagonalizable A = PDP~!, where P is the matrix of n linearly indepen-
dent eigenvectors of A, and D is the diagonal matrix D = diag {41, 45, ... , 4,}.
Replacing / in the characteristic polynomial by A produces the matrix polynomial

p(A) = (=1)"{A" + ;A" "+ A+ )

However, A>= (PDP"!)(PDP~') =PD’P~', A®= (PD’P ' )PDP" ' =PD°P ',
and in general A" =PD'P~!, so substituting for A” into the characteristic polyno-
mial gives

p(A) = (=1)"{PD" + ;D" '+ + e D+ JJP '}

The ith row of the matrix expression in square brackets is A + ¢ A/ ' + -
+cp_14;i + ¢, , which is simply p(4;), and this must vanish because 4, is a zero of the
characteristic polynomial. This result is true for i = 1, 2, ..., n, so p(A) =
P x 0 x P~! = 0, and the theorem is proved.

&

Example 5.8. Verify the Cayley—Hamilton theorem using the matrix
1 3 -1

A=|2 0 1

-2 1 2
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Solution. The characteristic polynomial p(2) = 2* — 3% — 74 + 21, and

13 27 -7 9 2 0
A=|14 0 7|,A%2=|0 7 0
-26 -5 14 -4 -4 7
Hence
13 27 -7 9 2 0 1 3 -1 1 00
4 0 7 (=310 7 O0[-=7{2 0 1 |+21{0 1 0f=]0],
—-26 -5 14 -4 —4 7 -2 1 2 0 01
where [0] is the 3 x 3 null matrix.
¢

5.5 Eigenvalues and the Transpose Operation

The following theorem is often useful, and the result is easily proved. An illustra-
tion showing a typical application is to be found in Section 5.7.

Theorem 5.7 The Eigenvalues of A and A" An n x n matrix A and its transpose A"
have the same characteristic polynomial, and hence the same eigenvalues.

Proof. The eigenvalues of A are the roots 4 of the characteristic polynomial
detfA — AI] =0, so let us consider the matrix [A — AI]. Applying result
(1.13), which asserts that [P + Q]" = PT + QT, we find that [A — AI]" =
[AT — JI"]. However, I" = 1, so [A — AI]" = [AT — JI]. Using this last result with
Theorem 1.2 (7), which shows det[A — AI] = det[A — 2I]", it follows that
det[A — /1] = det[AT — /1], so A and A" have the same characteristic polynomial,
and hence the same eigenvalues, and the theorem is proved.

o

5.6 Similar Matrices

Many problems in engineering, applied mathematics and physics can be formulated
in terms of an n X n matrix A, and often their solution is determined by the
eigenvalues of A. It is natural to ask if it is possible to find an #n x n matrix C
that can transform matrix A into an n X n matrix B that has the same eigenvalues as
A, though in a much simpler form. A simpler problem is likely to be much easier to
solve, and once its solution has been found, the solution can be transformed back to
give the solution of the original problem.
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A typical example of this type will be considered in Chapter 6 where systems
of simultaneous linear first-order constant coefficient differential equations are
characterized by an n X n coefficient matrix A. It will be shown there that when
matrix A can be diagonalized to a matrix D, with the elements on its leading
diagonal the same as the eigenvalues of A, it becomes possible to de-couple all of
the equations so they can be solved individually, after which this simplified solution
can be transformed back to give the solution of the original much more complicated
system of ordinary differential equations. This is just one example where it is
helpful for an #n x n matrix A to be transformed into another n x n matrix, in that
case D, with the same eigenvalues as A which then enables the solution of a
complicated coupled system of differential equations to be found in terms of
the solution of a much simpler problem. Two matrices A and B with the property
that A can be transformed in a special way to B such that the eigenvalues of A and B
are the same are called similar matrices, the formal definition of which
now follows.

5.6.1 Similar Matrices

If A and B are n x n matrices, B is said to be similar to A if, and only if, a non-
singular n x n matrix C exists such that

B =C 'AC. (5.13)

The transformation from B back to A, where eigenvalues are again preserved is,
of course, given by A = CBC~!. An immediate consequence of (5.13) is that

det A = detB.

This follows from the first result in (3.29), because
det B = det(C"'AC) = (det C™')(det A )(det C) = (det C™")(det C )(det A ),

but det(C™') = 1/detC, so det B = det A.
The two fundamental properties of similar matrices that are useful in many
applications are stated in the following Theorem.

Theorem 5.8 Similarity and Eigenvalues.

(@) If the two n x n matrices A and B are similar, they each have the same
characteristic polynomial, and hence the same eigenvalues.

(b) If B is similar to A, and A = CBC™', then X is an eigenvector of A with the
corresponding eigenvalue A, only if C™'X is an eigenvector of B, that also
corresponds to the eigenvalue .
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Proof. (a) If B is similar to A, from (5.13) we have

det(B — A1) = det(C~'(A — ZI)C).
However, applying (3.29) to the expression on the right this result becomes
det[B — /1] = det(C~") det|A — 1] det C.

As det(C™") = 1/detC it follows that det[B — AI] = det[A — I], showing the
equivalence of the two characteristic polynomials, and hence that A and B have
identical eigenvalues.

(b) If x is an eigenvector of A corresponding to the eigenvalue 4, then Ax = /x.
However, as A is similar to B we may write A = CBC™!, so CBC 'x = /x,
which can also be written in the form B(C')x = A(C 'x). The result of the
theorem follows by setting C 'x =y, when the last result becomes
(B — I)y = 0, which is statement (b) in the Theorem, so the result is proved.

o

An example of similarity has already been encountered in Theorem 5.3, because
when an n X n matrix A can be transformed to a diagonal matrix D, it follows that A
and D have the same eigennvalues, and they are similar because a nonsingular
matrix P exists such that P"'AP =D.

5.7 Left and Right Eigenvectors

So far, the definition of an eigenvector x; associated with the eigenvalue /; is that it
is a solution of Ax; = ;x;, or equivalently, a solution of [A — 1I]x; = 0. Here, x;
occurs on the right of this last expression, so it is appropriate to call it the right
eigenvector associated with the eigenvalue /;. In certain applications it becomes
necessary to consider a different type of eigenvector called a left eigenvector
associated with the eigenvalue 4;. To distinguish between the right and left eigen-
vectors, when both may arise in a calculation, the right eigenvector associated with
the eigenvalue 4; will be denoted by r; and the left eigenvector by 1;. Let us now
show how I; can be defined, and its relationship to r;.

We start from the definition of the right eigenvector r; as a solution of Ar; = A;r;,
where A is an n X n matrix, and take the transpose of the definition

(Al’,‘)T = (}v,‘l'i)T.

Using the property of the matrix transpose operation, and the fact that the
eigenvalue /; is a scalar, the last result becomes

l‘,’TAT = /L'l','T.
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Because r; is an n element column vector, its transpose r;! is an n element row
vector. Setting r;T = 1;, the last result becomes

LAT = A1, or equivalently, I; [AT — Z,-I] =0.

Rejecting the trivial solution I; = 0, a non-trivial solution (I; # 0) can only exist if
the determinant of the expression vanishes. This is only possible if the numbers 4;
which are the eigenvalues of A are also the eivenvalues of AT. Theorem 5.7 shows
that this is indeed the case, so this last result can be replaced by

LA — 21] = 0.

The position of 1; on the left of the expression in square brackets is the reason
why |; is called a left eigenvector, but remember that I; is an 7 element row vector.

Let us now show the left and right eigenvectors corresponding to different
eigenvalues are mutually orthogonal, by which we mean that the product Ir; = 0
when i # j, while Lir; 0 fori = 1,2, ..., n. From the definitions of I; and r;, with
i # j, we have

Alirj = (LA)r; = Ailir;,
and so
(4 = Ai)lir; = 0.
However, by supposition, 4; # 4;, so
Iir; =0, fori#j.

When i = j, corresponding elements of I; and r; are proportional so l;r; cannot
vanish, and the orthogonality is proved.

5.8 Jordan Normal Forms

The discussion that follows will be prefaced by some brief remarks to provide
motivation for what at first sight might appear to be an unnecessary abstraction. Let
us turn our attention to coefficient matrices that describe pairs of simultaneous
linear first-order homogeneous differential equations that govern the behavior of
many physical phenomena. These range from mechanical systems, to systems in
electrical engineering and physics, to commercial situations involving competition
for resources, and also to environmental systems where competition exists between
different biological species. Because the solutions of such systems evolve with time
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they are often called dynamical systems, though in most cases the term dynamical is
used in the sense that it refers to a continuous change with respect to time, rather
than to the sense in which the term dynamics is used in mechanics.

Of particular interest is the question of whether a system has solutions that are
stable or unstable. Here, a stable system is one whose solution remains bounded for
all time, though the solution may or may not decay to zero as time increases, while
an unstable system is one in which the solution grows without bound as time
increases. The simplest examples of such systems are of the form

dx dy
E—ax—i—by and E—cx—&—dy7 (5.14)

where a, b, ¢ and d are constants, and x(f) and y(f) are physical quantities that
depend on the time . A typical mechanical example, that when linearized can be
reduced to a system like (5.14), is the nonlinear pendulum equation. This is the
equation that governs the oscillations of a pendulum of length / with angle of swing
from the vertical 0(t)at time ¢, and it takes the form d?0/dr* + (g/I)sin0 = 0,
where g is the acceleration due to gravity. Provided the angle of swing is small,
this equation can be linearized by replacing the nonlinear term sinf by 0,
to obtain d*0/dr* + (g/1)0 = 0. Then, by setting df/dr = x, this second-order
equation can be written as the pair of simultaneous first-order linear equations
dx/dt = —(g/1)0 and dO/dt = x which, apart from the notation, is in the form
given in (5.14).

A system like (5.14) is characterized by its real 2 x 2 constant coefficient matrix

d

Thus a solution will be stable and decay to zero without oscillations if both
eigenvalues are real and negative, it will be oscillatory and decay to zero if the
eigenvalues are complex conjugates with negative real parts, and it will be unstable
if the eigenvalues are complex conjugates with positive real parts, or if the
eigenvalues are real and at least one is positive. The case when the eigenvalues
are purely imaginary corresponds to purely oscillatory behavior that remains
bounded for all time.

Of particular interest is the way the solution of a system evolves with the passage
of time from some initial conditions x(zy) = xo and y(#g) = y at time ;. Because the
initial conditions describe the physical nature of the system, the quantities x(¢) and y
(1) in (5.14) describe what is referred to as the physical state of the system at time .
The (x, y)-plane is called the phase-plane of the system, and the path traced out in
the phase-plane by a point (x(¢), y(¢)) as the solution of the system evolves from its
initial conditions as the time ¢ increases is called a trajectory in the phase-plane.

A key question that arises is how to classify the nature of all possible systems
like (5.14) that are described by real 2 x 2 constant coefficient matrices A. As
already mentioned, the property that a solution is either stable or unstable as time
increases, is determined by the eigenvalues of the coefficient matrix A, so the
answer to this question must rest with the eigenvalues of A.

A= [f b} , and the nature of its solution is determined by the eigenvalues of A.
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It turns out that the behavior of a system characterized by a matrix A is
closely related to the behavior of a system in which A is replaced by what
is called its Jordan normal form which is defined below. Consequently, the
behavior of an entire class of systems can be explored by examining how a system
behaves when its coefficient matrix is replaced by the Jordan normal form to
which A is similar. This same form of analysis can be extended to examine
the local behavior of nonlinear systems, provided they can be linearized about a
state of the system that is of interest, as shown above when the nonlinear
pendulum equation was linearized. Thus the identification of the types of Jordan
normal form that can occur is of considerable importance. There are also many
other situations where more general types of Jordan normal forms occur with
n X n matrices, both in connection with physical problems and with problems in
algebra and numerical analysis, though here only real 2 x 2 matrices will be
considered.

Let us now consider similarity in the context of real 2 x 2 matrices A whose
characteristic polynomials p(1) are quadratic polynomials in 4, and whose zeros are
the two roots 4; and 4, that are the eigenvalues of A. An examination of all such
systems reduces to the examination of the behavior of systems with a Jordan normal
form as its coefficient matrix.

After some reflection, it can be seen that a 2 x 2 matrix A must belong to one of
the following categories:

(i) The eigenvalues 4.y and 4, of A are real and distinct, so that 1; # A,, in which
case A will have two real linearly independent eigenvectors x; and x;.
(i1) Matrix A is a diagonal matrix with a single repeated real eigenvalue /; but with
two real linearly independent eigenvectors x; and x,.
(iii) Matrix A has a repeated real eigenvalue 4; to which there corresponds only
one real eigenvector X;.
(iv) The eigenvalues of A are complex conjugates, in which case A has two linearly
independent complex conjugate eigenvectors X; and x,.

We now show all such real 2 x 2 matrices A must be similar to one of the
following four types of Jordan normal form, each of which is said to be a canonical
form for a 2 x 2 matrix.

Theorem 5.9 Jordan Normal Forms for 2 x 2 Matrices. Every real 2 X 2 matrix A
must be similar to just one of the following four Jordan normal forms:
(@) J; = {;61 /? ] , where A is a diagonal matrix with two real eigenvalues
2
M # Ao, to which there correspond two real linearly independent eigenvectors
X; and x,.
A 0 . . O .
M) J, = 0o .l where A is a diagonal matrix with identical elements on the
gl
leading diagonal, and a single repeated real eigenvalue \;, to which there
correspond two real linearly independent eigenvectors X; and x;.
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A1 . .
© J;= 0 il where A has a single repeated real eigenvalue \;, but only one
1
real eigenvector X;.

o

conjugate complex numbers Ly = o + if corresponding to which are two

_ocﬂ ] with >0, where the eigenvalues of A are the complex

(linearly independent) complex conjugate eigenvectors X; and x,, with
X2 = X1..

Proof. The similarity of A with respect to the diagonal matrices J; and J, in
(a) and (b) follows directly from the fact that in each case the matrices have
two linearly independent eigenvectors, and so are diagonalizable. Notice that in
case (b), because A is a diagonal matrix with identical elements on its leading
diagonal we may write A = 111, so if C is any real nonsingular 2 x 2 matrix,
it follows that C"'AC = C™'(,;I)C = 2, C"'C = 4,1, showing that A is similar
to itself.

To prove the similarity of A to the Jordan matrices J; and J4 in (c) and (d) takes
a little longer, and we will start with (c). Let x; be the single eigenvector
corresponding to the repeated real eigenvalue A;, and let v be any nonzero two
element column vector that is linearly independent of x; (it is not proportional to
x1). In the proof that follows only 2 x 2 matrices will be involved, so to make clear
how the columns of the matrices are modified as the proof proceeds, the concept of
partitioned matrices that was introduced in Chapter 3 will be used. In this notation,
a 2 x 2 matrix N will be written in the form N = [c I d|, where c is the first 2 x 1
column vector in matrix N, and d is the second 2 x 1 column vector.

Adopting this notation, let us use the column vectors x; and v to form the
2 x 2 matrix C = [X1 | v]. Then, because x; and v are linearly independent, C™'
exists. The product AC = [ Ax, : Av], but Ax; = 4,X;, so this last result becomes

AC:[,11Xl :Av] By defining the column vector e = [1, 0], we can write
x; = Ce, and using the result CC™'=1 the equation becomes
AC =[ﬂ1Ce I CCfIAVJ. Writing C a pre-multiplier, the expression on the right
becomes AC= C[Ae I C’IAV]. Pre-multiplying this result by C~' gives
C'AC=[Ze | C"'Av], showing that A is similar to [ 4e | C"Av]

The matrix [lle I CflAVJ is an upper triangular matrix with 4; the first element
on its leading diagonal. However, A and C~'AC must have the same eigenvalues,
so C"'AC must also have a reﬁeated eigenvalue 11, with the result that the upper

triangular matrix [/Le I C'Av | must also have /; as the second element on its
leading diagonal. Consequently, it follows that

1 o /l] C
C AC—[O M} (5.15)
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where the constant ¢ # 0. Result (5.15) is not yet in the standard form for J3, so to
make ¢ = 1 the matrix C must be scaled. The scaling is accomplished by defining
the new matrix

1 0
R:C{O 1/4’ (5.16)

when

a1
_p-1 _ 1
Ji=R AR[O M],

and the required similarity has been established.

It remains for us to consider case (d) where the complex conjugate eigenvalues
Ax = ot iff of J4 are seen to be the same as the eigenvalues of A, so the two
matrices are indeed similar. Now let us find the form taken by a matrix R such that

R AR = J,. To do this we partition matrix R by setting R = [rl ! rz], and require
that

AR:R“; _ﬂ (5.17)

because then R"'AR = J,. When this equation is expanded it becomes

[Ar, | Ar,|=[ox, + Br, | —pr, +ar, ],
which can be rewritten as

[(A-al)-fIr, | BIr, +(A—aDr,|=[0 | 0].

Using a partitioned matrix, this set of homogeneous matrix equations becomes

A-aol! -pI |1, 0
A TA-al||r |T|0f (5.18)
From Example 3.8 we have
A-aol! -pI |[A-al! pI p(A) 0
AU TA—al| —pL TA-al| | 0 | pA)| (5:19)

where p(A) = A> — 20¢A + («? + f*)I. However, from the Cayley-Hamilton
Theorem we know that p(A) = 0, so (5.19) becomes

A-ol! -pI |[A-al] pI 0
{"f}f""K_'&i}{'ZZ;'{TK_'&J{6}‘ (5.20)
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Recalling the form of matrix Eq. (5.18), we see that the columns of

A-al! pI
{_i_ﬁi“i—f&_—_&i} (5:21)

must be solutions of (5.18). Using the first column of (5.21) gives

_lan —« _ *ﬁ
rl{ . ]andrz[o},sothat

R = [““ Y _ﬁ], (5.22)

and we have found a matrix R such that

R 'AR = {; _Eﬂ (5.23)

Using the remaining columns in (5.21) will produce a different forms of R,
namely, Ry, R; and R3, though the application of each to form Ri_lARi withi =1,
2, 3 will produce the same reduction as the one in (5.23). For example, using the
second column of (5.21) gives

ap 0 -l o —p
R, = but R AR, = .
. [azz - ﬁ} , but once againR; | [ 5 o ]

Example 5.9. Find a matrix R that reduces the matrix

to its appropriate Jordan normal form.

Solution. Matrix A has a single repeated eigenvalue 1 = 3, to which there corre-
sponds the single eigenvector u; = [1, —1]7, so matrix A is of type (c). Construct a
nonsingular matrix C by taking u; to be its first column, and for its second column
the arbitrarily chosen vector u, = [1, —11%, which is linearly independent of u;.
Then

Lot _ 3 4
; 12} andClAC:{O 3]

(S]]
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To convert the element 4 to 1, as required in form (c), we see from (5.14) and
(5.15) that we must set ¢ = 4, when

el [

which is the required reduction.

_1
A,giving R 'AR = {3 1] ,

—-1_
}andR _[ 0 3

Bl—i—
DO o=

Example 5.10. Find the matrix that reduces

6 3
=5
to its appropriate Jordan normal form.

Solution. The eigenvalues are the complex conjugates A+ = 5 & 2+/2i, so matrix A
is of type (d) with o = 5 and § = 2v/2. Thus A is similar to the matrix

Ji= [2\55 _Zsﬁ} '

The matrix R that produces this reduction through the matrix product R™'AR

given by (5.22) is
_lan—o =P
D !

with ay; =5, a,, = =3, 2 =5and f =2v/2, s0

R = {_13 ‘20‘/5} .

To confirm this, notice that

0 -3 6 3 1 -2V2 5 —2V2
-1 _ 3 _ _

&

Example 5.11. Reduce matrix

to its appropriate Jordan normal form.
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Solution. Matrix A has a single repeated eigenvalue 4 = 3, to which there corre-
sponds only the single eigenvector v, = [1, 1]", so matrix A is of type (c). Construct
a nonsingular matrix C = [vy, v,], by taking v; to be its first column, and for its
second column the arbitrarily vector v, = [1, —1]7, since it is not proportional to v,

Then,
_ |1 -1 _
e[ Aler-]

The matrix on the right is not yet equal to J3, so to convert it to that form it is

necessary to set c = — % in (5.15), when R = CM = [1 ! ] [1 _Ol] , so that
2

R= L — andR—‘AR—31 LY
AP — 1o 3|

1

1 _ 3 -2
_2%} and C ‘AC:[O 3 }

B [—=b2|—

¢
Example 5.12. Reduce the matrix

to the appropriate Jordan normal form.

Solution. The eigenvectors of A are 1. = £2i, so the appropriate Jordan form is
J4. Taking the positive sign for f, the Jordan normal form to which A is similar is
found to be

Example 5.13. Reduce matrix

to its appropriate Jordan normal form.

Solution. The eigenvalues of A are the complex conjugates /. = 2 + i, so working
with the eigenvalue A, we must set o =2 and f = 1. From A we see that a;; = 3,
a»; = —2, so the general form for C in (d) is

_lan—a —p| |2 -1
[t 413
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showing that A is similar to the matrix.

2 -1
Jo= [ ) } '
Had we worked with the eigenvalue A_ = o — iff we would have found that A is
similar to
2 1
Ja= [ 1 2}

5.9 A Special Tridiagonal Matrix, Its Eigenvalues
and Eigenvectors

The n x n matrices with special structures that have been considered so far have
been diagonal matrices, symmetric, skew symmetric, upper triangular and lower
triangular matrices. We now introduce another class of n X n matrices called
banded matrices that occur in applications throughout engineering, physics,
chemistry and numerical analysis. These are matrices in which all elements that
do not lie on the leading diagonal, or on a few adjacent parallel diagonals, are zero.
Symbolically, a banded matrix A = [aij] is one where a;; = O forj # i —r,i,i +s,
with r and s are small integers, and the band width of the matrix is equal tor + s + 1
(the number of diagonals that contain nonzero entries). The type of banded matrix
to be considered now is a tridiagonal matrix with the property that
aj=0forj#i—1,i,i+1, so its band width equal to 3 is formed by the
leading diagonal and by the diagonals immediately above and below it. These
two parallel diagonals are called, respectively, the super-diagonal and the sub-
diagonal of the matrix. In applications a tridiagonal matrix can be very large, often
containing thousands of elements, most of which are zeros. For example, an n x n
tridiagonal matrix contains 7> elements, of which only 37 — 2 are nonzero. So if a
30 x 30 tridiagonal matrix is involved, which in many practical applications is
rather small, the number of elements in the matrix is 900, whereas the number of
nonzero elements is only 88.

The special n x n tridiagonal matrix T, (x) that will concern us here has the form

rx -1 0 O 0 0 07
-1 x -1 0 o 0 O
o -1 x -1 -+~ 0 0 O
T,(x) = 0 o -1 x - 0 0 01, (5.24)
O o0 o0 O -1 x -1
LoO 0 0 O 0 -1 x
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and its associated determinant D, (x) = det|T,(x)|.

Our objective will be to find the value of the determinant D,(x), and the
eigenvalues and eigenfunctions of matrix T,(x) in terms of n and x, though before
doing this it will be helpful to outline the steps that are involved. To achieve this
objective we will use the Laplace expansion theorem for a determinant to deduce a
recurrence (recursion) relation satisfied by D, (x) for any positive integer n. This
recurrence relation turns out to be a second-order linear difference equation, and
for any n this relates D,(x) to the values of D,_;(x) and D,_,(x), and its solution
will yield a general expression for D, (x). This will then be used to determine the
eigenvalues of T,(x) from which, after making use of the simple structure of
T, (x), the eigenvectors of T, (x) will be obtained.

To obtain the recurrence relation for D,,(x) we will expand D, (x) = det | T,(x)| in
terms of the elements of its last column, where

x -1 0 0 0 0 0
-1 x -1 0 0 0 O
0 -1 x -1 -~ 0 0 0

D,(x)={0 0 -1 x - 0 0 0} (5.25)
0 0 0 0 -1 x -1
0 0 0 0 0 -1 x

From the Laplace expansion theorem we have

Dn(x) = (_I)Cn—l,n +xcn,n7

where C,_;, and C,, are the cofactors of the elements — 1 and x in the last
column of D,(x). The cofactor C,_,= (—1)2"71M,,_17n, where M,,_; , is the
corresponding minor. This minor has — 1 as the only element in its last row, so
when C,_, is expanded it becomes C,_;, = (—1)(—1)2"_1D,l_2(x) =D, 1(x),
with the result that C,—; , = D,_»(x). When this is multiplied by the element
(—1) we find that (—1)C,—; , = —D,_2(x). The minor M, ,, = D,_(x), so C,, ,=
(—l)sz,,,l (x) giving xC,, , = xD,,—1(x), s0 D, (x) = (—1)Cp—1 4 + xC,, , becomes

Dy (x) = xDy—1(x) — Dpa(x), (5.26)
which is the required recurrence relation. This is an example of a second-order
linear difference equation, and solutions of such equations are known to be of the

form D, (x) = A", where A is a constant and f has to be determined by substituting
D, (x) into the difference equation. The result of this substitution is

AP —xp+1)=0. (5.27)
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Clearly A and f cannot be zero because then there is no solution, so f must be a
solution of the quadratic equation

B —xp+1=0, (5.28)

with the solution

x+vVat—4
p=—.

The case of greatest practical interest occurs when x* < 4, so to simplify the
subsequent analysis we will express x in terms of a parameter 0 by setting
x = 2cos 0, and substituting for x shows that f = cos +isin 0, or equivalently
B = e*?_ Thus the general solution of the difference equation is seen to be

D,(x) = Aje™ 4+ Aye ™0 (5.29)

where A, and A, are arbitrary complex constants. As ¢”’ and e~ are complex
conjugates, for D,(x) to be real, as it must be because the elements of T,(x)
are real, it is necessary for A; and A, to be complex conjugate constants,
so we will set Ay = A;, where the overbar signifies the complex conjugation
operation.

To find an explicit solution for D,,(x) it is necessary to impose initial conditions
on this expression for D,,(x), and to find these we compute D(x) and D,(x) directly
from D,(x) = det|T,(x)|, when we find that D;(x) =x and D;(x) = x> — 1.
Setting n = 2 in the difference equation gives D(x) = xD;(x) — Dy(x), and after
substituting for D;(x) and D,(x) we obtain x> — 1 = x> — Dy(x), showing that D(x)
= 1. Next, setting n = 1 in the difference equation gives D (x) = xDo(x) — D_;(x),
and after substituting D;(x) = x and Do(x) =1 we find that D_;(x) = 0. So two
suitable initial conditions are D_; = 0, Dy = 1. Equivalently, we could use Dy(x) =
1 and D(x) = x, but the first pair of initial conditions prove to be the most
convenient ones to use.

Setting n = —1 in D,(x) = A" + Arye ™ gives 0 = Aje 0 4 Aye®, from
which it follows that Ay = —A e~ Settingn =0in D, (x) = A;e™ + Are=™ gives
1=A; + Ay s01=A(1—-e¢ %), which leads to the result A; = ¢/ (2isin6).
As A, = A;we have A, = —e”v/(2i sin 0), so that

el L, e sin(n + 1)0
= e — =
2isin 0 2isin 0 sin 0

D,(x)

If D,(x) = det|T,(x)| is the determinant obtained from the tridiagonal matrix T,
given above, then D,(x) satisfies the recurrence relation (difference equation)
D, (x) = xDy_1(x) — Dy—p(x) with x = 2 cos 6, for n = 2, 3,... subject to the initial
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conditions D_;(x) = 0 and Dy(x) = 1. The explicit expression for D,(x) in terms
of n is given by

_sin(n + 1)0

D,(x) g forn=1,2, ... . (5.30)

The eigenvalues 4 of T,,(x) are the solutions of | T, (x) — AI| = 0, which are the n
solutions 4 of

x—4 -1 0 0 0 0 0
-1 x-1 -1 0 0 0 0
0 -1 x-1 -1 0 0 0
0 0 -1 x-1 0 0 0 |=o. (5.31)
0 0 0 o - -1 x=-2 -1
0 0 0 o -~ 0 -1 x—-1

The characteristic equation for T, (x) follows the previous reasoning by repla-
cing x =2cos by x — A = 2cos 6. So the expression for the characteristic equa-
tion becomes

sin(n +1)0

= . 2
sin 0 o (5-32)

with x — 2 =2cosf. Now sin(n+ 1)0 = 0 when 0 = mn/(n+ 1), with n =0,

+1, £2, ..., so 2cosf = 2cos(mn/(n+ 1)), from which it follows that the
n eigenvalues Ay, Z;,..., 4, are given by
)vm_x—2cos< mn) m=1,2, ..., n. (5.33)
n+1
The eigenvectors u;, uy, ..., u, are easily found from their defining equation

[T, (x) — AnI]u,, = 0 because of the simple structure of T,(x). Matrices of this type
occur in many applications so, by way of an example, we will find the eigenvalues
and eigenvectors of the tridiagonal matrix T, (x) when x = 2.

Let the eigenvector u,, = [ulm), u<2m), R unm)}T, and set x = 2 in T,,(x) in the
defining matrix equation [T,(2) — 4, IJu,, = 0. The first scalar equation obtained

from this matrix equation is
(2 - /lm)uém) - u(lm) =0.
The n — 2 equations that follow become

—u" + (2= )™ =) =0 fori=2,3, ..., n—1,
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while the last equation becomes

— ™+ (2 = J)ul™ = 0.

n—1

From the first two equations (2— A)ud™ —ul™ =0 and —ul™+

(2 - /lm)u(z'") - ugm) = 0 it follows that
1 2'_/Ahm (2—1,,7)2—1

(5.34)

Using the fact that 2 — 4,, = 2cos(mn/(n+ 1)), expanding and simplifying
denominators and dividing each of these expressions by sin(mn/(n — 1)), fol-
lowed by using elementary trigonometric identities like

2sin(mn/(n+ 1)) cos(mn/(n+ 1)) = sin(2m=n/(n + 1)),

the elements "™, 1" and u\" are found to be such that

u(lm) ugm) ugm)

: mmn i [ 2mm : 3mn '
Sin (n+l) Sin (n+ l) S (n+ l)

So the first three elements of the eigenvector wu, are proportional to
sin(2m/(n+ 1)), sin(mn/(n+ 1)), and sin(3m/(n + 1)). However, eigenvectors
can be scaled arbitrarily while remaining eigenvectors, so the scale constant
can be set equal to 1, when these three expressions can be taken to be the
first three elements of the eigenvector u,,. If the second and third scalar equations
in [T,(2) — iulJu, =0 are used, similar reasoning shows that u|" =
sin(4m/(n + 1)), and this suggests the eigenvectors u,, are given by

. mn . [ 2mm e AN
u, = {Sm(n——i—l) sm<n+ 1), ceey sm(’H_ 1)} , form=1,2,...,n. (5.35)

This intuitive result is correct, and it can be proved by mathematical induction,
though the details of this proof are left as an exercise.

5.10 The Power Method for Eigenvalues and Eigenvectors

So far eigenvalues and eigenvectors have been found using the classical algebraic
approach. This starts by finding the characteristic equation for a matrix A and
solving it to find the eigenvalues, and then the eigenvalues are used to solve the
systems of equations that determine the associated eigenvectors of A. This method
has been successful because the examples used specially constructed 3 x 3 matrices
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whose cubic characteristic equations could be solved by inspection. This usually
involved finding one eigenvalue 1, by inspection, typically a small integer, and then
factoring out the expression (1 — A1) from the characteristic equation to arrive at a
quadratic equation which was then solved for the two remaining eigenvalues using
the quadratic formula.

In general, the roots of a characteristic equation cannot be found by inspection,
so numerical methods must be used. This is true even when an equation as simple as
a cubic is involved if a root cannot be found by inspection. When characteristic
equations with degrees greater than three are involved numerical methods become a
necessity. Finding eigenvectors is more difficult than finding eigenvalues, particu-
larly when the eigenvectors correspond to eigenvalues that are complex, are
repeated, or some are close together. Software programs resolve these difficulties
by using a variety of special techniques to enable then to compute eigenvalues and
eigenvectors accurately for an arbitrary n x n matrix. It is neither possible nor
desirable to discuss these methods here, though it is appropriate to discuss a
numerical approach that uses matrix methods to accurately compute some eigen-
values and eigenvectors for a fairly wide class of matrices. The method to be
discussed is called the power method, and the computation leads to the determina-
tion of both an eigenvalue and its associated eigenvector.

The power method has its limitations, because it is only suitable for finding
some real eigenvalues and their associated eigenvectors when the eigenvalues are
well separated and the matrix is diagonalizable, though these properties are not
known in advance. The eigenvalue with the largest absolute value is called the
dominant eigenvalue, while the remaining eigenvalues are called the sub-dominant
eigenvalues. The power method is an iferative procedure that determines the
dominant eigenvalue and the elements of its associated eigenvector to a pre-
determined accuracy of m decimal places. This is achieved by terminating the
iterative procedure after say, N iterations, when the Nth and (N + 1)th iterations
show no change in the mth decimal place of the dominant eigenvalue and each of
the elements of its associated eigenvector.

The method is based on the fact that given an n x n diagonalizable matrix A, an
arbitrary n element matrix column vector v can always be expressed in the form

V=2C1V]+ V4 - 4 CpVy, (5.36)

where vy, v,, ... ,V, are the n eigenvectors of A, and the numbers ¢, ¢,, ... , ¢, are
suitable constants. It will be assumed that the eigenvalues are arranged in order of
their absolute values with |1;|>|A2| > |A3] > -+ > |44|, so 4; is the dominant
eigenvalue. Pre-multiplying v in (5.24) by A, and using the fact that the eigenvec-
tors v; and the eigenvalues 4; are related by Av; = A4;v; fori = 1,2, ..., n, gives

A A
AV = 1AV, + c,Av, + - - - +AVn =h (ClVl + 62/1_2"2 + - +Cn/,{—nV,,>.
1 1
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Iterating this result r times leads to the result

. ) A\" A\
AV =] {cwl + e (/1—2) Vo4 o4y (/1—> V,,}. (5.37)
1 1

The ordering of the magnitudes of the eigenvalues means that |4,/4;| <1 for
r=2,3, ... ,sothat when r becomes large, all terms on the right of (5.37), with the
exception of ¢yvy, will become vanishingly small, causing the expression on the
right to reduce to A}c vy, which is a multiple of the eigenvector v; corresponding to
the dominant eigenvalue A,. If |1;| > 1 the scale factor multiplying v; will grow
rapidly as r increases, while if |1;| <1 the scale factor will become vanishingly
small as r increases. To overcome these difficulties it is usual to normalize the
successive eigenvector approximations vﬁ” for v; at each stage of the iterative
procedure by scaling successive approximations in such a way that the first element
of the approximate vector is 1. As the eigenvector is unknown, the iterative process

must begin by using any convenient starting approximation, which is usually taken

to be the unit matrix column vector v(lo) =[,1, ..., I]T, though any other

vector can be used. Once the result Av(®)= ugl)

(l): [MEU’ M(l) (l)]T (1)

has been computed, where

u, 5 s «+ ., Uy ], the vector u;’is normalized by dividing each

of its elements by f;= uﬁl) to arrive at the next approximation
T

VEI):{I, uél)/uﬁl), ugl)/uﬁl), e ug)/ugl)} . The procedure is then repeated

by computing Ave(U: u<12>, where u(12> = [u<12>, uéz), o 1T, The matrix

column vector u,” is then normalized by dividing each of its elements
by [32:u§2), when the next approximation for v; becomes V(12)=

T
[1, Mgz) / u(lz), ug2> / u(lz), Cey uf) / ugz)} . As this iterative procedure is repeated,

so the sequence of numbers {f5;, f,, f3, ...} will converge to the dominant

eigenvalue A;, while the sequence of vectors {V(IO), V<11>7 V(lz), . } will converge

to the eigenvector v;.

If a result is required to be accurate to m decimal places, the iterative procedure
is terminated when, after N steps, the (N + 1)th step fails to change the mth decimal
place in either the approximation for 4;, or in the elements of the approximation for
the eigenvector v;.

Example 5.14. Use the power method to find the dominant eigenvalue and its

1 21
eigenvector giventhat A= (1 0 1
1 1 1

Solution. In order to check the accuracy of the iterative process, notice first that the
characteristic equation is A* —2/%* —312=0, or A(A+1)(A—3)=0, so the
eigenvalues are 3, 0 and —1, so the dominant eigenvalue A; = 3. A routine



140 5 Eigenvalues, Eigenvectors, Diagonalization, Similarity, Jordan Normal Forms

calculation shows the eigenvector v;, scaled so its first element is 1, is v; =

(1,3, 4" =11, 06, 0.8]".

Setting V<10> =11, 1, 1]", we find that
1

4
Avgo) = |2, so f, =4 giving V(ll) =105
3 0.75

Next, using v(ll), we find that

2.75 1
m _ _ o @ _
Avy’ = | 175, so B, =2.75giving v, = | 0.63636
2.25 0.81818

Proceeding to the next stage of the iteration, using V(lz), we find that

3.09091 1
AV = | 1.81818 |, s0 B, = 3.09091 giving v\” = | 0.58824
2.45465 0.79412

Continuing this procedure for ten iterations yields the f sequence f5; = {4,2.75,
3.09091, 2.97059, 3.00991, 3.00132, 2.99952, 3.00016, 2.99995, 3.000002}.
This is seen to be converging to the limiting value 3, in agreement with the
exact value of the dominant eigenvalue A; = 3 calculated at the outset.

Omitting the intermediate calculations, the approximation for vglo)was found to be

Vglo) =[1, 0.59999, 0.79999]T, which is seen to be converging to the exact result

for the eigenvector v; = [1, %, %}T.
o
The power method can be used to find another eigenvalue and eigenvector by
modifying matrix A. Consider a matrix B derived from matrix A by subtracting a
number k from each element on the leading diagonal of A. Then the defining
characteristic equation for matrix B becomes det [A — (1 — k)I] = 0, which is
simply the characteristic equation of matrix A with A replaced by (4 — k). Thus
the eigenvalues of matrix B are those of matrix A, from each of which has been
subtracted the number £ (see Exercise 2.12). However, the eigenvectors of B will
still be the eigenvectors of A that correspond to the eigenvalues 4. When applying
this transformation to matrix A, the dominant eigenvalue of B will become the one
closest to k.
To use this result with the power method, let A; be the dominant eigenvalue of
matrix A, then subtracting 4; from each element on the leading diagonal of A will
produce a new matrix B, with the property that its dominant eigenvalue will now be
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the one closest to 4;. Applying the power method to matrix B will generate an
eigenvalue A which is sub-dominant to 1; together with its eigenvector, and its
eigenvalue will be

J= I+ .

If this method is applied to matrix A in Example 5.14 with the dominant
eigenvalue A; = 3, so matrix B becomes

-2 2
B=|1 -3 1

An application of the power method to matrix B will be found to converge very
rapidly to the exact result A — 3 = —4, so 4 = —1, when the corresponding eigen-
vector will be found to be v, = [1, —1, O]T, though the details of the calculation are
left as an exercise.

The power method can be modified so it will generate the eigenvalue of A with
the smallest magnitude, together with its associated eigenvector. The modification
follows from the defining relation for eigenvectors Ax = Ax. When A is non-
singular, this result implies that

A 'x = 2x, (5.38)

so the eigenvectors of A are also the eigenvectors of A~!, while the eigenvalues of
A~! are the reciprocals of the eigenvalues of A. So an application of the power
method to A~! will generate the required eigenvector whose eigenvalue will then be
the reciprocal of the eigenvector that is required.

As the dominant eigenvalue of A is A, = 3, matrix B will be obtained from A by
subtracting 3 from each element on its leading diagonal. The power method can
then be used to find the dominant eigenvalue of B, say 4, when its eigenvector will
be the eigenvector of A corresponding, to the eigenvalue 2 = A + k.

For reference purposes, the values of the two sub-dominant eigenvalues of A and
their eigenvectors are

—1 -1

;Q = —1, V) = 1 and 13 :O, V3 = 0
0 1

5.11 Estimating Regions Containing Eigenvalues

The eigenvalues of an n X n matrix A may be real or complex, and in some
applications a qualitative knowledge of their location in the complex plane is
useful, while in others it may even make the determination of their actual values



142 5 Eigenvalues, Eigenvectors, Diagonalization, Similarity, Jordan Normal Forms

unnecessary. In what follows, the complex plane will be called the z-plane, where
z = x + Iy is the Cartesian representation of a complex number. The test to be
described is called the Gerschgorin circle theorem, and although the information it
provides does not identify the precise location of the eigenvalues of A, the test is
easy to apply and it does identify either a region or regions in the z-plane that
contain all of the eigenvalues. The theorem given here is a slight extension of the
usual theorem, since it provides a little more information than the original theorem
when the regions containing the eigenvalues are disjoint, in the sense that they do
not overlap or have points in common. The corollary to the theorem uses matrix A
and its transpose A* in a way that can give a better estimate of the region or regions
containing the eigenvalues of A.

Theorem 5.10 The Extended Gerschgorin Circle Theorem. Let Ala;] be an n X n
matrix. Using matrix A, define n disks with the circular boundaries C1,C,, ... ,C,
such that their respective centers are at the points a,y, a», . .. , dy,, on the real axis
of the z-plane, with the radius p, of the circle Cy with its center at z = ay given by

n
pr= Y |aw|=law | + laa] + - + a1 |+ ag | + - + lawl.
=1
=]
Notice that when calculating the radius p;, of circle Cy the term |ay| is omitted
from the summation.

(1) Then at least one eigenvalue of A will lie inside each circular disk, and the
region R in the z-plane comprising the area covered by all of the circular disks
will contain all of the eigenvalues of A.

(i) If k circular disks form one region R;, and n — k circular disks form another
region R,, and regions R; and R, do not overlap or have common points (they
are disjoint), then k eigenvalues lie in region R; and n — k eigenvalues lie in
region R;..

Proof (Optional). The proof of the theorem belongs to the study of complex
analysis, but as the proof of part (i) of the theorem is simple an outline proof will
be given here, though the proof of part (ii) which is a little more difficult will be
omitted.

The rth equation in Ax = Ax is
api Xy + -+ a1 Xe—1 + (arr - i)xr + Arr+1Xr+1 + -t apx = 0.

If this equation is solved for (g, — 1), taking the modulus of the result and making
repeated use of the triangle inequality |a + b| < |a| + |b|, leads to the inequality

n
|a,, — l\<z |a,;,'Hx_,<|/|x,A|7 for r=1,2,...,n
=

j#r
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Now let x, be the element of vector x with the largest modulus, so that

lxj| /Jx] <1 for r =1, 2, ..., n. Result (I) of the theorem follows from the
inequality for |a,, — A| when each term }xj| / |x,|is replaced by 1, after which this
replacement of terms is repeated forr =1, 2, ... , n.

&

On occasions the Corollary that follows can be used to give a better estimate of
the region or regions that contain all of the eigenvalues of A.

Corollary 5.9. Finding Another Estimate For the Region In Theorem 5.10. Using
A", the transpose of matrix A in Theorem 5.10, construct the n Gerschgorin disks
CT, €3, ..., CT for matrix A", as defined in Theorem 5.10. Then the eigenvalues
of A all lie in the region Rt covered by these discs, which may be disjoint. Part (ii)
of Theorem 5.10 is again applicable.

Proof. The proof is almost immediate, because it follows directly from Theorem 5.7
that the eigenvalues of A and A" are identical.

%

Notice that if one of the regions R and R defined in Theorem 5.10 and its
Corollary lies entirely within the other region then that region is optimum, in the
sense that it is the smaller of the two regions with the required property. It is, of
course, possible that neither of regions R and Rt contains the other region, in which
case neither region is optimal, while if matrix A is symmetrical regions R and Ry
coincide.

¢

Example 5.15. Use Theorem 5.10 and its Corollary to find, if possible, an optimum
the region or regions in the z-plane that contains all of the eigenvalues of the matrix

3 0 -3
A=|0 -2 0
1 2 -3

Plot regions R and R in the z-plane, mark the exact positions of the eigenvalues
in each region, and determine if there is an optimum region.

Solution. The Gerschgorin disks for matrix A are:

C, with its centre at z = 3 on the real axis and the radius p, = |-3| = 3;
C, with its centre at z = —2 on the real axis and the radius p, = 0;
C; with its centre at z = —3 on the real axis and the radius p; = |1| + 2| = 3.

The region R in the z-plane containing the eigenvalues of A is shown as
the shaded area in Fig. 5.1a, where disk C, has degenerated to the single point
where disks C; and C; meet at the origin. The characteristic equation is
)3 4+2)%2-64—12=0, with the roots (the eigenvalues) 2= —2and + \/6,
shown as solid dots on the real axis in Fig. 5.1a.
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a

Fig. 5.1 (a) The region R (b) The region Ry
The Gerschgorin disks for matrix AT are:

CT with its centre at z = 3 on the real axis and the radius p] = [1| = 1;
C7 with its centre at z = —2 on the real axis and the radius p, = 0;
C] with its centre at z = —3 on the real axis and the radius p; = |—3| = 3.

In this case, the region Rt in the z-plane containing the eigenvalues of A is
disjoint, and shown as the two shaded areas in Fig. 5.1b, where again the eigenva-
lues of A are shown as solid dots on the real axis. Here, again, disk Cg has
degenerated to a point at the origin on the boundary of disk C3, though disk CTis
now isolated. It follows from (ii) in Theorem 5.10 when applied to AT that the
Gerschgorin disk CT contains one eigenvalue of A, while Gerschgorin disk Cg
contains two eigenvalues of A. Disk CJ has a zero radius, but it is now part of disk
C7, so the theorem is correct when it attributes the remaining eigenvalues to the
union of disks C} and C]. A comparison of Figs. 5.1a and b shows region Rrlies
within region R, and so it is the optimum region, both in the sense that its
Gerschgorin disks occupy the lease space in the z-plane, and because a region
occupied by a single eigenvalue has been identified.

2
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5.12 The Fibonacci Sequence and Matrices

The Fibonacci sequence of numbers is 1, 1, 2, 3, 5, 8, 13, 21, 34, ... . After the first
two numbers, each subsequent number is generated by summing the two previous
numbers in the sequence, sothat 1 +2 =3,2+4+3=5,3 4+ 5 =8, and so on. The
origin of this sequence dates back to 1202 when the most influential Italian
algebraist of the time, Leonardo of Pisa known as Fibonacci, published a book on
algebra in which the following famous problem was first asked and then answered:

How many pairs of rabbits will be produced in a year, beginning with a single pair, if in
every month each pair bears a new pair which then become productive from the second
month on?

Fibonacci’s answer was based on the two step linear difference equation

Upiy = Uy + U, With n > 0anduy = up = 1,

which he used sequentially to find the number of rabbits produced in a year, though
he did not attempt to derive the general solution that would give the number of
rabbits after » months.

It is reasonable to ask why this ancient problem and its resulting sequence should
still be of interest. The answer is surprising, because sub-sequences of the Fibonacci
sequence are found throughout nature, as in the spirals of sunflower heads, in pine
cones, in the number of buds on the stems of different plants, in spirals found in fossils,
and in patterns of veins in leaves. In mathematics, the Fibonacci sequence enters in
a variety of ways, one of which occurs in the design of an optimum search algorithm
for the determination of the zeros of functions and, in particular, of polynomials.

The general solution of the difference equation

1

1+v5\" [(1-v5\"
u”_\/§ 2 )\ 2

can be found by the method used in Section 5.8, but the reason for considering the
problem here is because the solution can also be obtained using matrix methods
coupled with diagonalization.

The two-step difference equation can be transformed into a simple one-step

”n+1

matrix equation by setting U, { ] when the difference equation

n
Upio = Uyt1 + Uy, ,together with the additional relationship u,; = u,,,1s trans-

formed into the simple one-step matrix equation U,; = AU, with A = “ (1)]

so that U, = A"U,. To evaluate A" we make use of diagonalization with the
eigenvalues of A given by 4 =1(1—+/5)and /» =1(1++/5), and the
corresponding eigenvectors

o= [H0 V9] 10 9),
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Thus the orthogonalizing matrix P for matrix A is

[9))

1 1 '
1 1 L (V51

<

P 1099 2049 wwnepr [ S0

So setting A = PDP~! with D = diag{4;, 4,} we find that A" = P diag
{2,y
Using this result in U,,; = A"U,, and solving for u,, gives the general solution

(= (5]

It is a curious fact that lim,_,c (Upy1/un) = %(1 + \/5) ~ 1.618 is the golden
ratio used by ancient Greek architects, and also modern ones, to ensure buildings
have what is believed be the most esthetically pleasing proportions. For example
architects would use a rectangle, either as a plan or as the front projection of a
building, with the proportions 5:3, 8:5 or 13:8, all of which are close approxima-
tions to the golden ratio.

R
V5

u, =

5.13 A Two-Point Boundary-Value Problem and a
Tridiagonal Matrix

This section shows one of the ways in which a tridiagonal matrix of the type
considered in Section 5.8 can arise when using a numerical method to solve a
two-point boundary-value problem. A two-point boundary-value problem for
a second-order ordinary differential equation involves finding, when possible,
a solution u(x) of the equation over an interval a < x < b such that u(a) = k; and
u(b) = k. So, in a two-point boundary-value problem, instead of the solution
satisfying two initial conditions, the solution must satisfy one condition at x = a
at the lower boundary, and another condition at x = b which is the upper
boundary, of the interval a < x < bin which the solution is required. The
case considered here is a particularly simple one, because the equation is
d*u/dx* = —f(x) on the interval 0 < x < 1, subject to the homogeneous boundary
conditions u(0) = u(l) = 0. When f(x) is suitably simple, this equation can be
integrated analytically and the two arbitrary constants of integration chosen such
that both boundary conditions are satisfied. However, although the equation is
simple, when f{x) cannot be integrated analytically the solution can only be found
by a numerical approach.

The approach involves dividing the interval 0 < x < 1 into n uniform sub-
intervals of length 2 = 1/n, with the point at x = 0 numbered 0, and the point at
x = 1 numbered n + 1, with the points at the ends of the sub-intervals called grid
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points. The first three terms of the Taylor series expansions of u(x — h) and
u(x + h), approximate these functions by

u(x — h) = u(x) — hu(x) + hu"(x) + an error term

and

u(x 4 h) = u(x) + ' (x) + h*u" (x) + an error term.

Adding these results and neglecting error terms gives d’u / dx? ~
(1/0){u(x + h) — 2u(x) + u(x — h)}.

In terms of this result, the equation connecting the discrete values of u(x) at the
grid points j — 1, jand j + 1 becomes

— w1+ 2u — uj—y = W (jh).

Arranging all n equations in matrix form this becomes T,(2)u = f where

the nonhomogeneous vector f = [R*f(h), h*f(2h), . . ., hzf(nh)]T, so the approx-
imate solution is given by solving T,(2)u = f for u. This usually involves using
Gaussian elimination, though when » is small and T;1 is easily calculated, the
solution can be found from u = T;l (2)f, where T, (2) is matrix (5.24) with x = 2.

Setting f(x) = 1+ ¢* and n = 5 means there will be four internal grid points
each separated by & = 0.2, so the tridiagonal matrices involved will be T4(2), and
for later use T, ' (2), given by

> 10 0

SRR
T4(2) = and T;'(2) =

1 2 3 4

o 0 -1 2 5555

The matrix T;l (2) is given here because the problem is sufficiently simple that
the resulting equations can be solved with the aid of this inverse matrix, the
calculation of which is simplified by the symmetry of T4(2) (why?). The elements
of f are f(jh) = h*(1 + exp(j/5)) forj = 1,2, 3, 4.

The exact solution is u(x) = =1+ (— e)x+3x* + ¢, and the results that
follow compare the exact and approximate solutions at the grid points.
o = o v ol w = ul w ol
Exact —0.2023 —0.3155 —0.3289 —0.2286
Approx —-0.2018 —0.3148 —0.3282 —0.2286

Increasing the value of n will improve still further the approximate solutions at
the grid points at the cost of increasing to n the number of equations that need to be
solved. However, problems like this do not produce matrices the size of those
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encountered when solving the Laplace equation in Section 3.9, if the number of grid
points is increased considerably in both the x and y directions.

5.14 Matrices with Complex Elements

In certain applications, n X n matrices with complex elements occur, the most
important of which are Hermitian matrices, skew-Hermitian matrices, and unitary
matrices, all for which exhibit certain types of symmetry.

5.14.1 Hermitian Matrices

These are complex matrices that generalize the more familiar symmetric matrices.
An Hermitian matrix A is a matrix with the property that AT = A, where the
overbar indicates that each element of A is replaced by its complex conjugate
and, as usual, the superscript T indicates the matrix transpose operation. A simple
example of an Hermitian is

T 24
a=[t A

An immediate consequence of the definition of an Hermitian matrix is that the
elements on its leading diagonal are all real. This follows from the fact that the ith
element a;; on the leading diagonal is a;; = « ; + iff ;,, fori = 1,2, ..., n, but
a;j = a@;"', which is only possible if a; = « ;, showing that each element on the
leading diagonal must be real.

The matrix AT, that is the transpose of the matrix whose elements are the
complex conjugates of the corresponding elements in A, is called the Hermitian
transpose of A, and it is denoted by AH, so A" = AT, In terms of this notation, an
n x n matrix A will be Hermitian if

A = A, (5.39)
Notice that a symmetric matrix is a special case of an Hermitian matrix when all
of its elements are real.

It is left as an exercise to show that the Hermitian transpose operation has the
following properties similar to those of the ordinary transpose operation:

(A" = A, (5.40)

and if A and B are two Hermitian matrices that are conformable for the product AB,
then

(AB)" = BHAH, (5.41)
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The definition of the norm of a vector used so far was based on a vector with real
elements, and the norm is an essentially nonnegative quantity that provides a
measure of the “size” of the vector. However, if this property is to remain true for
vectors with complex elements it becomes necessary to modify the definition of the
inner product of two vectors. The modification is simple, and when the elements of

the n element row vector X = [xy, X5, ... , X,], and the n element column vector y =
1, Y2s -+ . » ya]" are complex, their complex inner product is defined as
Xy = (x19; + X9, + - +x9,) 2. (5.42)

It follows from this that the norm of a vector x with complex elements, written

|Ix||, defined as the inner product (XXT)I/ ?_is given by
Ix[ = (7)) = (0¥ + 028 + -+ x5 2 (5.43)

This has the property required of a norm that it is nonnegative, as can be seen
from the fact that each product x;X; is real and nonnegative. Notice that (5.43) is
compatible with the definition of the norm of a vector x with real elements, because
then (5.43) reduces to the ordinary norm ||x|| = (x] +x3 + - + x%)1

Hermitian matrices have certain properties similar to those of real symmetric

matrices, and the theorem that now follows gives two of their fundamental properties.
Theorem 5.11 Two Fundamental Properties of Hermitian Matrices. Let matrix A

be Hermitian. Then:

(i) The eigenvalues of A are all real.
(ii) Eigenvectors corresponding to distinct eigenvalues are orthogonal with
respect to the complex inner product.

Proof.

(i) Let 4 be any eigenvalue of the Hermitian matrix A, with x the corresponding
column eigenvector, then
Ax = Ix.

Then as the elements of A are complex, the eigenvalue 4 and the eigenvector x
may also be complex. Pre-multiplying the equation by X it becomes

x"Ax = Jx"x = A|x|%. (5.44)

Next, taking the complex conjugate of Ax = /x, and then taking the transpose of
each side of the equation, we have

XTA" = X"
After post-multiplication by x this becomes

XTAx = Jx"x = x|, (5.45)
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because A is Hermitian A’ = A" = A . Subtracting (b) from (a) gives
3 2
(2= 2)IIx]I" =0,

but ||x||* # 0, so 2 = A which is only possible if / is real. As X was any eigenvector
of A, it follows that every eigenvalue of an Hermitian matrix A must be real.

(i) Let x and y be eigenvectors of an Hermitian matrix A corresponding, respec-
tively, to the distinct real eigenvalues A and u. Then

Ax = Jx and Ay = puy.

Pre-multiplying the first equation by y* and the second equation by xT they become
v Ax =Jy'x (5.46)

and
xTAy = ux'y. (5.47)

Taking the complex conjugate of Eq. (5.46), followed by the transpose
operation, while remembering that A is real so that A = 4, (5.47) becomes

xTAy = ixTy, (5.48)
because A' = AH = A Finally, subtracting Eq. (5.47) from Eq. (5.48) gives

(2= wx'y =0,

but by hypothesis A # u, so x'y = 0, confirming that the eigenvectors x and y are
orthogonal with respect to the complex inner product. As x and y were any two
eigenvectors of the Hermitian matrix A corresponding to the distinct eigenvalues
A and p, property (ii) has been established.

¢

Example 5.14. Given the matrix

S 1
A{l—i 0}

(a) Verify that A is Hermitian, (b) find its eigenvalues, and (c) find its eigenvectors
and verify that they are orthogonal with respect to the complex inner product.

Solution.
(a) The matrix is Hermitian because the elements on its leading diagonal are real
and its off-diagonal elements are complex conjugates.
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(b) The eigenvalues are the solutions of the characteristic equation.
1—4 141
A=—land 4 =2.

P(2) =

= 0, corresponding to /% — /. — 2 = 0 with the roots

(c) Calculating the eigenvectors in the usual way shows that when A; = —1 the
eigenvector is proportional to

[1—1—1}
X) = ) 5

and when 4, = 2 the eigenvector is proportional to
N I+
2= BRE

The eigenvectors x; and x, are orthogonal with respect to the complex inner
product because (xl)Tiz =0.

O

5.14.2 Skew-Hermitian Matrices

A skew-Hermitian matrix is a generalization of an ordinary skew-symmetric matrix,
and it is defined as a matrix A with the property that

Al = —A, so the elements of A are such that a;; = —aj. (5.49)

Setting k = j in (5.49), and a;; =o + i, it follows that a;; = o — if5, so a;; = —a;;
is only possible if o = 0, so the elements on the leading diagonal of a skew-
Hermitian matrix must either be purely imaginary or zero.

A simple example of a skew-Hermitian matrix is

2 3—i
A= {31‘ 41'}

5.14.3 Unitary Matrices

A unitary matrix is a generalization of an orthogonal matrix, and U is a unitary
matrix if

=UL (5.50)
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A simple example of a unitary matrix is

i ]
/ |

U= .
2 %\/gl

Theorem 5.12 The Eigenvalues of skew-Hermitian and Unitary Matrices.

(1) The eigenvalues of a skew-Hermitian matrix are either purely imaginary, or zero.
(ii) The eigenvalues of a unitary matrix all have absolute value 1.

Proof.

(1) If matrix A is skew-Hermitian, it follows from its definition that /A is Hermi-
tian. The eigenvalues of A are the roots of the characteristic equation
|A — 21| = 0. Multiplying the matrix A — AI in the determinant by i will not
change this result, so [iA —iAl] = 0. As iA is Hermitian, Theorem 5.11(i)
asserts that the eigenvalues i4 are real, so the eigenvalues A of the skew-
Hermitian matrix A must be purely imaginary. An eigenvalue of an Hermitian
matrix may be zero, so it follows that an eigenvalue of a skew-Hermitian matrix
may also be zero, and the result is proved.

(i) The proof of this result is essentially the same as the proof of result (i) in
Theorem 3.1 concerning orthogonal matrices into which the complex conjugate
operation has been introduced, so the details will be left as an exercise.

¢

Exercises
In Exercises 1 through 8 find the characteristic equation p(1) = det[A —AI]1 =0,
and the eigenvalues and eigenvectors of the given matrix A.

1.
1 0 -1
A=|-1 1 0
10 1
2.
20 1
A=|1 2 1
01 1
3.
1 -1 0
A=|-1 -1 1
0o 1 1
4,
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5.
-3 1 -1
A=|1 0 1
-1 2 1
6.
2 10
A=(0 1 0
1 1 1
7. - -
-1 -2 2
A=|-3 -1 3
| -3 -2 4]
8. - -
1 0 0
A=|-1 -1 1
| -1 =2 2]
In Exercises 9 through 12 find a diagonalizing matrix P for the given matrix A.
9. _ -
-3 4 4
A=|1 -3 -1
-3 6 4 ]
10. - -
6 9 4
A=|-4 -7 -4
-1 -1 1 ]
11. _ -
-1 0 =2
A=|1 1 1
| -3 -6 2
12. _ -
5 11 7
A=|-2 -3 -2
| 2 1 0 |
In Exercises 13 and 14 find the eigenvalues and eigenvectors of matrix A and
determine if A is diagonalizable.
13.
-1 0 -1
A=|-1 0 -1

-1 2 0
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14.

15.

16.

17.

18.

19.

20.

21.
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-3 0 1
A=|1 01

-1 1 0
In Exercises 15 and 16 find an orthogonal diagonalizing matrix Q for the
symmetric matrix A.

10 -1
A= ~1

-1 0 1

(-3 -2 2]
A=|-—2 1 =2

2 2 1

In Exercises 17 through 20 use a suitable orthogonal diagonalizing matrix Q
with x = [xy, X3, Xx3] T to reduce the quadratic form Q(x) = xTAX to a sum of
squares Q(y) = y' Ay, with y = [y, y», y3]". Find the change of variable from
the x; to the y; to achieve the reduction, and write down and classify the
quadratic form.

(-1 2 -1
Ox)=x"AxwithA=| 2 -1 -1
-1 -1 0
(1 1 0
Ox)=x'AxwithA= |1 0 1
0 1 1
[—1 0 2]
0(x)=x"AxwithA=| 0 -1 0
2 0 2]
- 0
Ox)=x"AxwithA=|—-1 1 0
1 0 1]

Show how when A is nonsingular, multiplication of the Cayley—Hamilton
theorem by the inverse matrix A~' gives a matrix polynomial that determines
A~L. Use this method to find A™*, given that

1 0 3
A=1|2 1 1],
0 -1 1

and check your result by showing that AA~" = I. What happens if this method
is used to try to find the inverse of a singular matrix A?
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22.

23.

24.

25.

26.

27.

28.

29.

In Exercises 22 through 27 classify each of the matrices and find a matrix that
reduces it to the appropriate Jordan normal form.

N
7]
A::—Sz ?
A::—13 ?
St
=i

Compute the determinants D,, D3 and D, associated with matrix T, in
Section 5.7 with x arbitrary, and confirm that D4 = xD3 — D;.

The proof of the result in Exercise 29 that follows does not involve matrices,

but it is included for the sake of completeness because it can be useful when
finding the eigenvalues of a real n X n matrix.
Let { be a complex zero of the nth degree polynomial P,(z) = z" + a;z" '+
a2 + -+ + a,_1z + a,, where the coefficients a,, a,, . .., a, are real num-
bers. By using the elementary properties of the complex conjugate operation
show that { must also be a zero of P,(z). Hence show that any pair of complex
conjugate zeros of P,(z) correspond to a real quadratic factor of P,(z).

Another Hadamard Inequality for Matrices

The inequality that follows has been included because of its connection with
quadratic forms, and also for general interest, though the result will not be
proved here.

Hadamard’s Inequality for Positive Definite Matrices

A quadratic form Q(xy, x2, ..., X,) can always be written in the form
O(x1, X2, ..., X,) = XTAX, with x = [x1, x2, ... ,x,]" and A areal n X n
matrix. If A is positive definite (that is if the quadratic form Q is positive
definite) then
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ap aip -t din
ay axp - dy

detA = | . . . .| <anaxn..an,
dp1 Qp2 - dpp

where the equality holds if and only if A is a diagonal matrix with positive elements.
In Exercises 30 to 32 find the matrix A that corresponds to the given
quadratic form, and show it is positive definite by applying the Routh—Hurwitz
test. The test will require finding det A, and use the value of det A to verify the
Hadamard inequality.

30. QO(x1,x2,x3) = 4x% + 4x§ + x% — 2x1X.
31, O(x1,x2,x3) = %x% + x1x3 —|—x§ + %x%

32, Q(xy,x2,x3,x4) = 2x% 4 dxixy — 2x1x4 + 7x% 4 2xpx4+

3'_)(‘21 — 4XZ)C3 + 12)(% — 2X1.X3 - 8X3X4-

The Spectral Radius

Let A1, 42, ..., A, be the distinct eigenvalues of an n X n matrix A. Then the
spectral radius p(A) of matrix A is defined as the maximum value of the
modulus |4;| fori=1,2, ... ,n, and the set of eigenvalues is called the spectrum
of matrix A. The eigenvalue with the largest modulus is called the dominant
eigenvalue. When expressed formally,

p(A) = mlax{\}.1|, |42, -,

I}
As A may have complex eigenvalues, the interpretation of p(A) in the
complex plane is that p(A) is the radius of the smallest circle centered on the
origin that contains either in its interior or on its boundary all of the eigenvalues
of A. The spectral radius has various applications, one of which occurs when an
n X nmatrix A is raised successively to higher powers, generating a sequence of
matrices A, A%, A%,... The spectral radius is important in this case because when
p(A)<1 it can be shown that lim,_., A" = 0, while if p(A) =1 the limit
lim,_, A" is nonzero but bounded (the elements of A are all bounded). The
sequence diverges if p(A) > 1.
33. (a) Find the eigenvalues of matrix A and the spectral radius p(A) if

A=

S o OO
SO =N
O = = =

1
0
0
0
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34.

35.

36.

37.
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Confirm by calculation that lim,_,,, A" =0, in agreement with the value of
p(A). (b) Find the eigenvalues of matrix A and the spectral radius p(A) if

1 00
a0
0

Confirm by calculating A" for n = 1 to 5 that lim,_,,, A"tends to a bound,
and find rounded to four figures the bounds to which each of the elements of A"
converge.

Apply the power method to matrix A in Examples 5.1, and confirm that it yields
the dominant eigenvalue and its associated eigenvector.

Apply Theorem 5.9 to matrices A in Examples 5.1 and 5.3 and, where appro-
priate, determine an optimum region that contains the eigenvalues. Plot the
eigenvalues in your diagrams and check that they agree with the statement of
the theorem.

Using the approach of Section 5.11, show that the solution of the difference
equation i, o = U,y 1 + 2u, with ug =0 and u; = 1is u, = %(2” —(=1)").
Using the approach in Section 5.12, using & = 0.2, find the numerical solution
of the two-point boundary-value problem d?u/dx* = —10xcos(2nx) in the
interval 0 < x < 1, subject to the boundary conditions u(0) = u(1) = 0. Find
the analytical solution and compare the analytical and numerical results.

In Exercises 38 through 41, verify matrix A is Hermitian, find its eigenva-
lues and eigenvectors, and verify that the eigenvectors are orthogonal with
respect to the complex inner product.

38.

39.

40.

41.

4

1 3
A_{3i 1}
1 i

a=[5]
0o i 1
A=|—-i 0 —i
1 1 0

0 —i 0
A=1i 0 -1
0 -1 0

. Show that every n x n Hermitian matrix A can be written A = A + iA,, where
A, is a real symmetric n X n matrix, and A, is a real skew-symmetric n X n
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43.

44.

45.
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matrix. Give an example of this decomposition using a 3 x 3 Hermitian matrix
of your own construction.

Construct a 3 x 3 skew-Hermitian matrix A, and verify by direct calculation
that /A is Hermitian.

Construct a 2 x 2 unitary matrix U, and use it to verify that U= (UT)71 is an
equivalent definition of a unitary matrix. Give an analytical reason why this
result is true.

Because the modulus (absolute value) of each eigenvalue of a unitary matrix is
1, it follows that the eigenvalues must all lie on the unit circle centered on the
origin in the complex plane. Verify this by (a) showing matrix U is unitary,
where

+i) (1+i) 0
(i—-1) Y1-i) of,
0 0 1

=
B|—

(b) finding the characteristic equation of U, (c) finding the eigenvalues (roots)
of the characteristic equation, and (d) locating the position of each eigenvalue
on the unit circle.



Chapter 6
Systems of Linear Differential Equations

6.1 Differentiation and Integration of Matrices

Before discussing the solution of systems of linear first-order constant coefficient
ordinary differential equations it is necessary to develop the basic theory
concerning the differentiation and integration of matrices whose elements are
functions of a real variable. For the sake of completeness, the differentiation and
integration of quite general matrices will be considered first, though only the
simplest of these properties will be used when systems of ordinary constant coeffi-
cient differential equations are considered.

To solve linear systems of differential equations in matrix form requires differ-
entiating matrices that are functions of a single real variable, say t. Let the n x 1
column vector x(¢) = [x1(?), x2(?), ..., )c,,(t)]T have differentiable elements x;(r) for
i=1,2,...,n,and let the m x n matrix G(f) = [g;(#)] have differentiable elements
g, withi=1,2,...,mandj=1,2,...,n Then the derivatives of x() and G(r)
with respect to ¢ are defined, respectively, as

dx, /dt dgi/dt dga/dt --- dg,/dt
dx(r) | dv/dt|  aG() | denm/dt dgn/dt .- dga/di 6.)
dr : Todr : : : : '
dx, /dt dgm/dt dgmp/dt - dgm,/dt

An important special case of (6.1) occurs when A is a constant matrix, because
then dA/dt = 0 and so, in particular, dl/dt = 0.

Now consider the derivative of d[AG(t)]/dt, where A = [a;;] is a constant m X n
matrix, and G(?) = [g;(#)] is an n X r matrix with its elements functions of ¢, so that
AG(?) is an m X r matrix. Then the element o;;(¢) in row i and column j of the matrix
product AG(?) is

OC[j(f) :a“glj(t) +(1,'2g2j([) —+ .- +ai,,g,1j(t), 1= 1, 2, coo,m, ]: 1, 2, Lo T

A. Jeffrey, Matrix Operations for Engineers and Scientists, 159
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and so

dogi(t) _  dgy(7) v an dgo;(1)

a "V ar S

dgni(t)

o an

(6.2)

This is simply the derivative of the product a,g;(7) of the vector forming the ith
row a; of A and the vector forming the jth column g;(f) of G, so from definition (6.1)
and the definition of matrix multiplication, we see that

d[AG(1)] AdG(t) .

= 6.3
dt dt 6.3

When necessary, higher-order derivatives may be defined in the obvious manner:

2 2 3 n n+1
i(@) _4G i(ﬁ) S ﬁ(d G) _G 6

de \ dt der 7 dt \ df? as ’ dt \ dr den !

Example 6.1. Find d[AG(¢)]/dt and d°[AG(1)]/de* if

A= 1 -3 and G — sin ¢ Cf)Sl‘.
2 4 —cost sint

Solution. From (6.3)

d dG(z) 1 —3||{cost —sint

a[AG(I)] =A dr [2 4 } {Sint cos? }
| cost—=3sint —sint—3cost
" |2cost+4sint —2sint+4cost

while from (6.4)

d? d (d[AG(1)] d’G

—AGH)]| == (—F ) =A—

dr? [AG() dt ( dt > dr?
| —sint—3cost —cost+ 3sint
"~ | —2sint+4cost —2cost—4sint

¢
It follows directly from the definition of matrix addition and (6.1) that if G(f) and
H(¢) are conformable for addition, then

d
S1G() +H() = ©3)
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Furthermore, if G(¢) and H(¢) are conformable for the product G(¢)H(¢), then

d ~dG(r)

dH(z)
S GOH@)] =— :

dt

H(1) + G(1) (6.6)

To derive (6.6), consider the product gh;, where g; is the ith row of G(¢) and h; is
the jth column of H(f). Then the element in the ith row and jth column of G(r)H(?) is

2;j(1) = git (1)1 (1) + gia () oy (1) + - - + Gin (1) (1) ,
so differentiating once with respect to ¢ gives

dhj (1) dgin(t)
dt + + dt

dOC,'j(l) _ dg,'l (f)
dt dt

dhnj(l)
d

(1) + gir (1)

h’lj(t) + 8in (t)

from which (6.6) follows after the matrix d[G(¥)H(#)]/dt has been reconstructed as
the sum of two products.
A less obvious result is that if G(¢) is a nonsingular n X n matrix, then

dG~ (1)
dt

dG(r)
dt

=-G (1) G (1. (6.7)

This result is proved by differentiating the product d{G(r)G~'(r)}/dt. We start
from the results G())G (/) = I, and dl/dt = 0, so it follows from (6.6) that

d L1 dG(t) dG™'(r)
E[G(f)G (1] = o G +Gl)— —=0,
and so
G960 _ 60, 6.8)

dt dt

Result (6.7) follows after pre-multiplication of this equation by G~ '(¢).

Example 6.2. Find dG ™' (t)/dt if

cost  sint
G(t) = . .
() —sint cost

Solution. There are several ways of finding dG ™' (r)/dt, the most elementary and
in this case the simplest, being to compute G~ '(r), and then to differentiate it.
A routine calculation shows that

sint cost

Gfl(t) _ [cost —sint] ’
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so from (6.1)

a’G*l(t)_ —sint —cost
dt | cost —sint |’

A different way of finding dG~Y(1)/dr makes use of (6.7). We have

dG(t) [ —sint cost
dt | —cost —sint|’

so using the above expressions for G '(¢) and dG(p)/dr in (6.7) and simplifying the
result gives the expected result

aG (1) 1,1 dG(t) —sint  —cost
. —G7 0 dt G ()= cost —sint |’
¢
By definition, if A(f) = [a;(#)] is an m x n matrix, withi =1,2, ... ,mandj=1,
2, ..., n, then the indefinite integral of the element in the ith row and jth column of
A(t) is fal, t)dt, so the indefinite integral of A(7) is defined as U ay(t dt]
JA(z)dt = U aij(t)dt] , (6.9)

where, of course, an arbitrary constant matrix must be added after the integration
has been performed on each element a;(7). Similarly, the definite integral of A(r)
between the limits f =a and t = b is deﬁned as the m x n matrix with the element in
its ith row and jth column equal to f a;j(t)dt, so that

b b
J A(t)dt = U afj(t)a't] . (6.10)
a a
m/2 5 2sint  cost
Example 6.3. Find (a) [ A(r)dt and (b) | tydt, it A(r) = {_3 st sint}

Solution.

| —2cost+Cy sint + C,
(a) JA(t)dt_{—Z%sint—i—Cg —cost+C4]
Ci
C;

—2cost  sint

—3sint —cost} +C, where C = [

so [A(r)dr = [ gz} is an arbitrary
4

constant matrix.
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6.2 Systems of Homogeneous Constant Coefficient Differential
Equations

In what follows, some elementary knowledge concerning the integration of constant
coefficient ordinary differential equations will be assumed. The development of the
theory of systems of differential equations presented here will be confined to the
solution of systems of n linear first-order constant coefficient equations in n
unknowns. The most general first-order system of this kind involving the n

unknown functions x(f), x5(?), . .. , x,(¢) of the independent variable ¢ is

dx; dx, dx, o

b11E+ b12?+ N +b1nE =cnXi+ Xy + A+ CiaXy + (1),
d d dx,

b % + bzz% +-+ bZn% = (21X + X + 0+ CopXy + (1),

(6.11)

dx dx dx,

bnl d_l‘l + bn27t2 +---+ bnn? = CpiX1 + CppXp + -+ CupXy + hn(t),

where the coefficients b;; and c;; are constants, and the /,(?) are arbitrary functions
of ¢. Subsequently, it will be assumed that the n equations in (6.11) are linearly
independent, so no equation in (6.11) is a linear combination of the other equations.

By defining the n X n constant matrices B = [b;;], C = [c;;], the variable n x 1
column matrices X(7) = [x;(2), x2(D), . . . , x,(O]T, and h(?) = [h, (D), ho(D), . . . , h (D],
system (6.11) can be written more concisely as

B‘CZ[—’:: Cx + h(1). 6.12)

By hypothesis, the equations in system (6.11) are linearly independent, so the
coefficient matrix B has an inverse B, and after pre-multiplying (6.12) by B~ it
becomes

dx
— =B 'Cx+ B 'h(s.
7 X+ (1)

Defining the n X n constant matrix, A = B~!C, and the variable n x 1 column
matrix f(r) = B~ 'h(z), shows system (6.11) can always be reduced to the standard form

dx
— =Ax+f1(1). 1
= Ax () 6.13)

In what follows, only systems of this type will be considered. System (6.13),
equivalently system (6.11), is nonhomogeneous when the vector () # 0, otherwise
it is homogeneous.
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6.2.1 The Homogeneous System

In this section we will consider the homogeneous system

dx
i Ax, (6.14)
and establish a connection between its general solution, and the eigenvectors of A.
Our concern will be to find both the general solution of system (6.14), and then
the solution of an initial-value problem for the system. That is, finding a solution
of system (6.14) subject to a set of n initial conditions of the form x; (¢1) = k;, with
i=1,2,...,n, where the constants k; are the values the functions x;(f) are required
to satisfy initially when ¢ = ¢,.

Modeling our approach on the elementary one used when solving a single
constant coefficient linear differential equation, we will attempt to find solutions
of (6.14) of the form

x(1) = xe* (6.15)
where X is a constant n X 1 column vector. Substituting (6.15) into (6.14) gives
Je"'% = M AX, (6.16)

and after cancellation of the nonvanishing scalar factor e, followed by some
re-arrangement of terms, we find that A must be a solution of the system of matrix
equations

A — X% =0. (6.17)

This shows that the permissible values of 4 in (6.15) are the eigenvalues 41, 4,
..., 4, of A, while the associated constant column vectors Xi,X, . ..,X, are
the corresponding eigenvectors of A. When A has a full set of n linearly indepen-
dent eigenvectors, the linearly independent solutions of (6.14) are x;(f) = X;e,
fori=1,2,...,n. Ann x nmatrix ®(¢) = [x,(?), X»(?), . . . , X,,(t)], with its columns
the solution vectors Xx,(¢), is called a fundamental matrix for system (6.14).

The general solution x(#) of (6.14) will be an arbitrary linear combination of the

n linearly independent eigenvectors x(¢) of the form
X(t) = Clxl(t> + Cng(l‘) + -+ Cnxn<t)a (6]8)

where the C; are arbitrary constants. In terms of the fundamental matrix ®(z), the
general solution of (6.14) becomes

x(t) = ®(r)C, (6.19)

where C is the column matrix C = [Cy, Ca, ..., C,] .
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A fundamental matrix is not unique, because the eigenvectors forming its
columns can be arranged in different orders, and each eigenvector can be multiplied
by a constant factor and still remain an eigenvector. This nonuniqueness of the
fundamental matrix can cause the arbitrary constants in general solutions to appear
differently, depending on how the fundamental matrix has been constructed. How-
ever, these different forms of the general solution of (6.14) are unimportant,
because the solution of a corresponding initial-value problem is unique, so when
the arbitrary constants are chosen to make the x;() satisfy the » initial conditions, all
forms of general solution in which arbitrary constants may appear differently will
give rise to the same unique solution of the initial value problem.

Example 6.4. Find the general solution of the system of equations

dx1 dX2
— =X =
dt 2

Solution. In matrix form the system becomes dx/dt = Ax, where x = [x, xz]T and

0 1
a= ] o)
The eigenvalues and eigenvectors of A are

21:1, X1_|:i:|, /lz:—l, X2_|:_11:|

As the vectors e %’x;, with i = 1, 2 are solutions of the system, we may take the
fundamental matrix to be

Setting C = [Cy, CQ]T, with C and C, arbitrary constants, the general solution of
the system x(f) = ®@(#)C becomes

x(f) = e —e | |Ci| | Cie—Cre™!
et et || Gyl T | Cret+Chet |
In scalar form the solution is

xi(f) =Cre' — Cre™  and xp(f) = Cre' + Cre™.

O

The next example shows how to deal with the case of complex eigenvalues
and eigenvectors. It also illustrates how, unlike the case of the single scalar equation
dx/dt = ax with only the exponential solution x(f) = Ce®, a linear first-order system
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of differential equations can have trigonometric functions occurring in its general
solution, as well as exponential functions.

Example 6.5. Find the general solution of the system of equations

Xm n de
— — X ]
dt P g

= X2 —X1.

Use the result to solve the initial-value problem x,(n/2) =1, x5(n/2) = 2.

Solution. In matrix form the system becomes dx/dt =Ax, with x = [x, xz]T, where

1 1
=[]
The eigenvalues and eigenvectors of A are
, . —i . i
M=1+1i, Xl:[l]’ izzl—l7x2:[l].

So, as the vectors e %x; with i = 1, 2 are linearly independent solutions, a
fundamental matrix is

i (14D, (1=i)t
N e e
(D(t) - |: e(1+i)z e(li)r:| :

As the elements of the fundamental matrix are complex, the arbitrary constants in
the matrix C must also be complex. Thus the general solution x(r) = ®(r)C
becomes

B _icle(lﬂ')t + l'Cze(l—i)t

_ie(lJri)t l'e(l—i)t C
- Cle(lJri)t 4 Cze(lfi)t ’

X(t) = { Lt - | | oy
where C; and C, are complex constants.

For the solution x(#) to be real, the two terms in each row of the solution vector
on the right must be complex conjugates to allow their imaginary parts to cancel
and, furthermore, the general solution of the original first-order system can only
contain fwo real arbitrary constants The exponential factors ()" and e(!=)" are
already complex conjugates, as are the factors — i and i, so to make the terms real it
is necessary that the complex constants C; and C, are also complex conjugates, so
letus set C; = a + ib and C, = a — ib, then after simplification the general solution
becomes

2ae' sint + 2be’ cost

x(1) =

2ae’ cost — 2be’ sint



6.2 Systems of Homogeneous Constant Coefficient Differential Equations 167
Both a and b are arbitrary constants, so to simplify this result we set k; = 2a and &,
= 2b, when the general solution becomes

x1(t) = €' (kysint + kycost) and x, () = €' (kjcost — kpsint).

To satisfy the initial conditions x{(7/2) = 1, x,(n/2) = 0 we set ¢ = n/2 in the general
solution and then impose the initial conditions to obtain: (initial condition x;(7/2) =

1: 1 = €™ k; (initial condition x;(n/2) = 2): 2 = —e™%k,, showing
ki = e ™2 and ky = —2¢ 2. Thus the solution of the initial-value problem is
found to be

x1 (1) = e (sint — 2cos 1), x,(t) = "™ (cost+ 2sint), t > 1/2.

¢

This method of finding a general solution for a system of homogeneous linear

first-order constant coefficient equations extends to the solution of a single higher-

order equation, and to systems of higher-order equations. In this case, all that is

necessary is to introduce higher-order derivatives as new unknowns when, for

example, a single nth-order equation can be replaced by an equivalent set of n
first-order equations. This approach is most easily illustrated by example.

Example 6.6. Find the general solution of the following third-order differential
equation by converting it to a first-order system:

The third-order equation can now be replaced by the equivalent first-order system

dy dzy dzy
_— = —_— = _— = 0 .
- a2 ar tataty

When written in matrix form, this system becomes

. (1) 0 1
zzAz withz=|z(#r)|, A= 0 0 1
! 2(1) 1 -1 -1
The eigenvalues and eigenvectors of A are
1 -1 —1
/11:71,x1: —1 ,)uz:i,Xzi —i ,;L3:7i,X3: I
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—Ait

As the vectors e %'x; with i = 1, 2, 3 are solutions, a fundamental matrix is

e —et —e
O(t) = | —et —ie" e |,
e—t elt e—lt
when the general solution becomes
y et _eir —e it Cl
z1| = | —et —ie" eV C |,
Z 371 elt 87” C,;

where for the solution to be real, the arbitrary constants C;, C, and C3 must be
complex numbers.

As the solution y(#) of the original third-order differential equation is needed, it is
only necessary to extract this solution from the first row of this matrix equation,
from which we find that

y(t) = Cre™" + Cre" + Cze™".

A real solution is required, so reasoning as in Example 6.5, we see that the arbitrary
constants C, and C; must be complex conjugates, so setting C, =a + iband C3 =a
— ib, with a and b arbitrary real constants, leads to the result

y(t) = Cie™" + 2acost — 2bsin .

For convenience, writing C, in place of 2a and Cj3 in place of — 2b (not the original
C, and C3) we arrive at the general solution

y(t) = Cie™" + Cycost + Cssint.

Solving for z; and z, will give dy/dr and d*y/df*, though these solutions are not
required. If needed, the simplest way to determine dy/dt and d*y/df” is by differen-
tiation of y(¢).
¢
The approach used in Example 6.6 extends immediately to the homogeneous
nth-order constant coefficient equation

dny dnfly dn72y
" + an-1 e +a,—2

dy
W-F"'—FCZ]E—F(ZQ)/:O.
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This can be replaced by the equivalent n X n first-order matrix system

y 0 1 0 e 0
7] 0 0 1 S 0

dz . . . . . .

E = AZ Wlth 7 —= z2 s A = : : : : : s (620)
: 0 0 0 1

Zn—1 —dp —ap —day -+ —dp-|
where
dy d*y _dzp dzy A1z, 5 _

7, 73, . .., =z, 1. (6.21)

e A " a7 Tar i1

This matrix system can now be solved as in the previous examples.

We mention here that an nth-order system can be reduced to a set of n first-order
equations in more than one way, though the method of reduction used here is
usually the simplest. For an example of a different way of reducing a higher-order
equation to a system see the remarks at the end of the next section.

The matrix approach to be adopted when solving the nonhomogeneous system
(6.13) cannot make direct use of the fundamental matrix associated with a homo-
geneous system. This is because solutions of nonhomogeneous systems do not
possess the linear superposition property of the homogeneous systems of equations
used in (6.18).

6.3 An Application of Diagonalization

Before discussing the solution of nonhomogeneous systems we first describe a
different approach to the solution of homogeneous systems that extends easily to
the nonhomogeneous case, and to do this we first examine the specially simple
homogeneous system

dx
—=D 6.22
r X, (6.22)
where the coefficient matrix D is the diagonal matrix D = diag{o;, o», ..., o,}.
When written out in full (6.22) becomes
dxy /dt « 0 0 O X1
d)Q/dl‘ 0 o 0 0 X2
. =1 . . . . . (6.23)

dx, /dt 0 0 - o] |x
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This is just a set of n separate (not simultaneous) first-order linear differential
equations dx;/dt = o,x;, each with the general solution x,(f) = C;exp(«;t) fori =1, 2,
..., n, where the C; are arbitrary constants. In matrix form the general solution of
(6.23) becomes

X(Z) = [Cledltvczedﬁa cee 7Cned”qT~ (624)
This suggests a different approach when solving a general homogeneous system

dx
o Ax, (6.25)
when A is a general n x n matrix. The idea is to try to find how to change the
dependent variable column vector x(f) to a new dependent variable column vector
Z(t) in such a way that A is replaced by a diagonal matrix D. If this can be done, the
general solution for z(¢) follows at once as in (6.24). Changing back from z(¢) to x(#)
will then give the required general solution x(¢) of (6.25).

To obtain such a simplification we will make use of the diagonalization process
described in Chapter 5. There the diagonalization of an n X n matrix A was found to
be possible subject to the condition that A has a full set of n linearly independent
eigenvectors. It was shown that if the » linearly independent eigenvectors of A are
X1, X, - - . , X,,, corresponding to the n eigenvalues Ay, 4, . . ., 4, the diagonal matrix
D =diag{4, 22, . .., 4,} can be written in the form D = P~ 'AP, where the columns
of P are the eigenvectors x;, and the eigenvectors in P are arranged in the same order
as the eigenvalues /; in D. Pre-multiplying D = P~'AP by P, and post-multiplying
the result by P, gives A = PDP ",

Substituting this expression for A in (6.25) it becomes

dx
— =pPppP! 6.26
7 X, (6.26)

after which pre-multiplication by P~! we then find that
— =DP 'x. (6.27)

As P is a constant matrix it follows that, P~ '(dx/df) = d(P~'x)/dt,
so (6.27) simplifies to

d
—(P'x) =DP 'x. (6.28)
dt

The required reduction is now almost complete, because defining the new
column vector z = P~ 'x, transforms (6.28) into

dz.

D 6.29
7~ D (6.29)
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which is precisely the form given in (6.23). Hence the general solution for each new
variable z,(¢), z5(t), - - . , z,(t) in (6.29) is zi(t) = Ciexp(4;t), fori = 1,2, ..., n, with
Cy, Cs, ..., C, arbitrary constants. The required solution vector x(¢) is recovered
from the vector z(r) = P~ 'x(r) with elements z,(r) by pre-multiplication of z by P, to
give x(f) = Pz(z).

Example 6.7. Use diagonalization to find the general solution of

x1 () 1 0 -1
dx
= Ax where x(f) = | x(t) |,A=|-2 -1 2
! (1) -1 2 1
Solution. It was shown in Example 5.5 that the eigenvalues of A are 4; = =2, A, =

0, A3 = —3, and the diagonalizing matrix P in A = PDP™ ' is

111 2 0 0
P=|-4 0 3|, withD=|0 0 0
301 -2 0 0 3

Setting z(t) = [z1(?), z2(0), z3(0]", it follows from the diagonalized system dz/dt =
Dz, corresponding to (6.23), that dz,/dt = —2z,, dz,/dt = 0 and dz3/dt = 3z3, so z,(¢)
= Cie ", 2,(t) = C, and z3(f) = C3¢”", with C;, C, and Cj arbitrary constants. The
solution vector x(#) obtained from x(¢#) = Pz(¢) then becomes

x1 (1) 11 1 Cie™ Cie ¥ + Cy + Cse
XQ(Z) =1-4 0 —% C2 = —4C1€72t — %C3€3t s
X3 (l) 3 1 =2 C3€3[ 3C1€_2[ +Cy — 2C3€3t

so in scalar form

X1 (Z‘) = C1€_2[ +C, + C3€3t, )Cg(f) = —4C1€_21 — %C3€3t, X3(l)
=3Ce ¥ + C; — 2C3¢.

o

The last example in this section shows how diagonalization can be used to solve
an initial-value problem for a special system of linear homogeneous second-order
equations.

Example 6.8. Use diagonalization to solve the system of linear second-order
2

equations d*u/df* = Au, where A:[ 1 _21} and u= [Zl}, subject to the
2

initial conditions

u1(0) =1, u;(0) = 1, up(0) = 0 and u5(0) = 1.
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Solution. The eigenvalues and eigenvectors of A ared; =1,x; = {” , o= [_11} ,

so as there are two linearly independent eigenvectors A can be diagonalized by

11
P= b1 . Thus A = PDP™', where D= 1o and P~'=1{? 2|, so the
1 -1 0 3. 3 =3

matrix differential equation becomes d?u/dr>=PDP~'u. Pre-multiplying this
equation by P! it becomes P~'d*u/d> =DP'u, but P! is a constant matrix so
it can be taken under the differentiation sign when the equation reduces to
d*(P~'u)/d* =DP'u. Setting v = P~ 'u the equation becomes d’v/dt*=Dv,
where now the elements of v={vy, vz]T have been separated, because the equation
splits into the two scalar equations

d*v, d*v,
W =V and W = 3V2.

The general solutions of these two equations are easily shown to be
vy =Bje" +Bye™ and vy = Cle‘\/g)C + Czei\/gx.

To determine the arbitrary constants B, B,, C; and C, it is necessary to have initial
conditions for v; and v,, but the initial conditions have been given for u; and u,. To
find the initial conditions for v use must be made of v = P~'u, so v(0) = P~'u(0),
and v/(0) =P~ 'u/(0). Substituting the initial conditions for u shows
v1(0) =3,v{(0) = 1,v,(0) =% and v, (0) = 0. When these conditions are used
with v, and v, the following solutions are obtained

3 1 _, 1 +1

vi=-¢" —-e " and vy =-¢

3
4 4 4 4 '

e

Finally, to find u; and u,, we must use the result u = Pv. Substituting for P and
v =[v, vz]T, and combining terms, gives

uy = 1" — Isinh(x) + Lcosh(v/3x),  up = le* — Lsinh(x) — 1 cosh(v/3x).

6.4 The Nonhomogeneous Case

When matrix A can be diagonalized, only a small additional step is required to solve
the nonhomogeneous system

dx
— = Ax +f(1). .
I x + f(?) (6.30)
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Recalling from (6.13) that f(¢) is a column vector f(¢) = [f1(¢), £(?), ..., fn(t)]T,
and setting A = PDP ™" in (6.30), where P diagonalizes A, the system becomes

dx
Z=PDP x +1 (o).
dt X+ ()

Pre-multiplication by the constant matrix P~' reduces the system to

d(P~'x)
dt

=DP 'x + P 'f (1),

so setting z(f) = P~ 'x() this becomes

d
2 DzrP it (). (6.31)
dt

Writing g(f) = Pflf(t), with g(7) = [g1(1), g2(0), . . ., ga(H)]", where the functions
g:(?) are known in terms of the elements of the nonhomogeneous vector f(7), result
(6.31) becomes

dz
i Dz + g (7). (6.32)

The solution of (6.32) now simplifies to the solution of the n separate nonhomo-
geneous equations dz;/dt = A;z; + g{t) for i = 1, 2, ..., n, whereas before the
elements of the diagonal matrix D = diag{44, 4,, ..., 4,} are the eigenvalues of A
corresponding to it eigenvectors X;, X, ... , X, occurring in the diagonalizing
matrix P. Once the vector z(f) has been found, the solution of the nonhomogeneous
system (6.30) follows from the result x(z) = Pz(?).

When no initial conditions are specified, each element of x(#) will be the sum of
the general solution of the corresponding equation in the homogeneous system, to
which is added a particular integral produced by the nonhomogeneous term f(#).

To solve an initial-value problem it is first necessary to find the general solution
for x(#), and then to match the arbitrary constants involved to the initial conditions.

Example 6.9. Use diagonalization to find the solution of the nonhomogeneous
system

dxi - 1 2 B X1 o 1+t
EfoJrf(t) when A = {2 1]7 X = L‘?] and f(r) = {cost]’

given that x;(0) = 1 and x,(0) = 2.

Solution. The eigenvalues and eigenvectors of A are

}4:—1, Xl_|:_11:|7 /12:37 X2_|:}:|7
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so the diagonalizing matrix is

B[—=o—
[ —

-1 1 . -1 0 1 —%
P_[l 1} w1thD—{O 3],andP —{%

Using these results, Eq. (6.31) becomes

28)- (3 Sl 2

The variables z,(f) are now separated, and from this last result we find that

d d
%:—zl +4(cost — 1 —1) and %:322+%(cost+l+t).

For convenience in what follows, the method of solution of a general linear first-
order differential equation by means of an integrating factor is reviewed in Appen-
dix 1 at the end of this chapter. Solving these linear first-order equations gives

t

z1(f) = cost+§sint — 114 Cie™" and

_ 3 Tang 2 1 3
2(t) = —55c08t +58int — 5 — ¢ t + Cae

Using these as the elements of z(¢) = [z;(¢), 2,()]" in x(¢) = Pz(f) shows the required
general solution to be

x1(t) = 5cost— smt—|— t———Cle "4 Cret
x(t) = 1cost—|— smt——t—2—|—Cle + Cre

In each of these general solutions, the first four terms on the right represent the
particular integral, while the last two terms containing the arbitrary constants C,
and C; are the solution of the homogeneous form of the equation, usually called the
complementary function. Using the initial conditions x;(0) =1 and x,(0) = 2, some
simple calculations show that Cy =}, C, = 33, so the solution of the initial-value
problem becomes

xi(t) = —Zcost—Lsinr+1r -2 Lot 4 3310
xo(f) = fgcost+Fsint —2r -3+ 1e ' +3Te 3
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6.5 Matrix Methods and the Laplace Transform

This section shows how the solution of an initial-value problem for a nonhomoge-
neous linear system of differential equations with initial conditions specified at
t = 0 can be found by using the Laplace transform in conjunction with a matrix
approach. It will, however, be seen that finding the inverse transform requires some
algebraic manipulation, though when the system is complicated the effort required
to find the inverse transform is not very different from the effort required when
making a direct application of the Laplace transform.

We have seen how the general solution of both homogeneous and nonhomoge-
neous linear constant coefficient first-order systems of equations can be found when
the coefficient matrix can be diagonalized. In particular, because the methods
described lead to general solutions, it allows initial-value problems to be imposed
for any value ¢ = t; of the independent variable. It is, however, a familiar fact that
the Laplace transform method can only be used to solve initial-value problems for
linear differential equations when initial conditions are imposed at t = 0. So, unlike
the previous methods, the Laplace transform approach only solves initial-value
problems, and does not lead to general solutions. However, because of the impor-
tance and wide use of the Laplace transform, mention must be made of its use with
matrix systems of linear differential equations.

In first accounts of differential equations, the Laplace transform method is
usually only applied to scalar equations, though the approach is easily extended
to solve initial-value problems for first-order systems of constant coefficient matrix
differential equations. As the Laplace transform method does not depend on the
eigenvalues and eigenvectors of the coefficient matrix A, it has the advantage that it
does not require knowledge of the eigenvalues of matrix A nor, as the eigenvectors
of A are not used, is it necessary for the coefficient matrix A to have a complete set
of eigenvectors.

Before proceeding further, we recall that the Laplace transform X(s) of x(¢),
denoted by writing X(s) =L{x(r)}, is defined as

X(s) = L{x(1)} = /0oc e x(r)dt, (6.33)

where s is the Laplace transform variable, and the functions x(#) are restricted to
those for which the improper integral on the right of (6.33) exists. The inversion
process, that is finding x(¢) from its Laplace transform X(s), will be denoted by
x(t) = Eil{X(s)}, and in all straightforward cases it is performed using tables
of Laplace transform pairs coupled with the use of some simple rules. An outline of
the essential details of the Laplace transform is given in Appendix 2 at the end of
this chapter, where a a short table of transform pairs is also given.

A Laplace transform pair is a function x(¢) and its associated Laplace transform
X(s). Then, given x(¢), its Laplace transform X(s) can be found from the table and,
conversely, given X(s), the inverse Laplace transform x(¢) = L7 {X(s)} can be
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found by using the table in reverse, usually with the help of some simple rules that
extend the table of transform pairs. For example, if x(f) = cos at, then L{cos at} =
s/(s* + a*), so that cos at and s/(s* + a?) is a typical Laplace transform pair. Then,
given cos at, its Laplace transform s/(s*> + ) follows from a table of Laplace
transform pairs and, conversely, when the transform s/(s2 + az) is obtained in a
calculation, using the table of Laplace transform pairs in reverse it follows that the
inverse Laplace transform of s/(s2 + az) is cos at.

The adaptation of the Laplace transform approach to the solution of systems of
linear differential equations is illustrated by the following examples that show how
the approach also extends in a natural way to higher-order systems. However, to
limit the length of the examples, it will be assumed that the reader is familiar with
the elements of Laplace transform theory. In particular, familiarity will be assumed
with the technique of partial fraction expansion used to simplify the transformed
solution, and also with the standard results needed to interpret the partial fractions
as functions of ¢.

Consider the initial-value problem for the system of # linear first-order constant
coefficient equations

X~ Ax10), (6.34)
where
xi(1) an ap - a fi(t)
(1) = Xz.(f) A= 0.21 61122 Cl-2n )= le(f) 7
x,lkt) anl Ay v dpp fnit)
subject to the initial conditions x(0) = [ky, ko, ..., kn]T, with ky, k>, ..., k, the

arbitrary initial values.

Using the familiar property of the Laplace transform of a derivative, that
L{dxt)/dt} = sX(s) — x;(0), so that L{dx;,(t)/dt} = sX(s) — k;, fori=1,2, ...,
n, the result of taking the Laplace transform of system (6.34) is the matrix system

involving the transformed variables X;(s) = L{x(®)}, fori=1,2,...,n
SX](S) — kl Xl(S) F1(5>
SX2 (S) — kz XQ(S) FQ(S)
. =A ) + . ) (6.35)
sX,(s) — ky X, () F,(s)

where L{fi(t)} = F(s). After rearrangement, this becomes

[s1 — AJZ(s) = x(0) + F(s), (6.36)
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where Z(s) = [L{x;(D}, L{x D)}, ..., L{x,D)1". Pre-multiplication by [sI — Al
then gives

Z(s) = [sT — A] "' [x(0) + F(s)], (6.37)

and so
x(f) = £ { [sT — A7 [x(0) + F(s)]}. (6.38)

The advantage this approach has over the ones in previous sections is that it does
not require the determination of the eigenvalues or the eigenvectors of A, so the
method is applicable irrespective of whether or not A has a full set of eigenvectors.
It also has the advantage that it avoids dealing with any complex eigenvalues
and eigenvectors that might arise. The disadvantage of the method is that it only
solves initial-value problems for x(¢), and in addition the algebraic complexity of
the computation required when finding and then inverting the transform

Z(s) = [sI — A]"'[x(0) + F(s)] can be tiresome.

Example 6.10. Solve the initial-value problem

d d
ile—xz—i-Zf, -

a EZX2_4X1+1’ X](O)ZI,XZ(O):O.

Solution. Using the notation introduced previously,

1 -1 s—1 1 1
A—{_4 1],sosI—A—[ 4 s_lyandx(O)—[O]
L£{2t} =2/s*, and £L{1} = 1/s, so F(s) = [2/5*, l/s]T.
Routine calculations then give

[SI—A}IZ;[S_I ! ]aF(S)Z [1/@_3)}, and x(0) = [O

(2—25-3)| —4 s—1 —2/s? 0]’
SO
2) = | ) | = 6= Al )+ R = o [

As Z,(s) = L{x1(1)} and Z>(s) = L{x»(?)}, we see that

3_ 2 2
N R e o ) 35 —5-8
N =L {sz(s2 —2s—3)} and x2(1) = £ {sz(s2 —-2s—-3))°
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Simplifying these transformed solutions by means of partial fractions, and then
using tables of Laplace transform pairs to express the result in terms of ¢z gives

xi(t) = ngr% t+§ e”Jr% ¢ and x, (1) = 719—3+§ t+§ e’ f% e,
The details of the partial fraction expansion and the use of a table of Laplace
transform pairs to arrive at x;(f) and x,(¢) are left as an exercise. Having reached the
stage of finding Z;(s) and Z,(s), the work required to invert the transforms of the
solutions is precisely the same as would have been involved had the Laplace
transform been applied directly, without the use of matrices.

Although the eigenvalues and eigenvectors of A were not used in these calcula-
tions, we mention that they are

=3, X1—|:;:| and /12——2,xz—[13].

This shows that in this case, because A has a full set of eigenvectors, this same
solution could have been obtained by diagonalizing A to find the general solution,
and then imposing the initial conditions to determine the values of the constants of
integration.

¢
Example 6.11. Solve the initial-value problem
dx dx .
7;:2)61 +4x; —2x3+ 1, d—:: —Xy — X3 + sint,
d .
% = X7 + X3, x1(0) = 1,)(72(0) =0, )C3(0) =0.
Solution.
x1 (1) 2 4 2 1 1
x(t)=| 200 |, A=]0 -1 —1|, f(t)= |sint|, and x(0) = 0
X3(l‘) 0 1 1 0 0
Thus
s—2 -4 2
[I-Al=] 0 s+1 1 ,
0 -1 s—1
1/(s—2) (45—6)/{s*(s—2)} —(2s+6)/{s*(s—2)}
[ST—A]"' = 0 (s—1)/s> —1/s? :
0 1/s? (s+1)/s
1/s
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Combining terms and substituting into (6.37) gives

sSSP+ 4+55-6
s2(s —2)(s2+ 1)
s—1
s2(s2+1)
1

Z(s) = [s1 - A]"'[x(0) + F(s)] =

s2(s2+1)

Using partial fractions to simplify the expressions in s, writing Z(s) = [Z,(s), Z5(s),
Z5(s)]", and taking the inverse Laplace transform shows the solution of the initial-
value problem is given by

xi(t) = L7HZi(s)} = —1 +3t+2cost — 18 smt—i—gez’
x(t) = L7HZy ()} =1 —t — cost +sint,
x1(t) = L7Z5(s)} = t —sint. fort > 0.

Once again the eigenvalues and eigenvectors of A were not used in these calcula-
tions, though in this case they were
3

M=A=0, xip=| 1|, 3=2,%=
1 0

O -

Notice that here A only has two linearly independent eigenvectors, so in this case
diagonalization of A could not have been used to construct a general solution.

¢
Example 6.12. Solve the initial-value problem
d d
%zle Yx %:—xl F2u 43, x0(0)=2, x(0)=—1.

Solution. For this system

x(f) = B;Eg] A= {_21 ﬂ £(1) = M , and x (0) = {_21}

Here

s—2 -1 _1 1 s—2 1
sI— A= , 80 [sT — A] = ,
1 s—2 §= — 4 —

CRI is( " >// |
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Substituting into (6.37) gives

253 — 557 +4s -2
s2(s2 —4s +5)
(s =35>+ 65+ 1)

s2(s2 —4s+5)

Z(s) = [s1 - A]"'[x(0) +F(s)] =

Using partial fractions to simplify the expressions in s, writing Z(s) = [Z;(s),
Z>()]", and taking the inverse Laplace transform, the solution is found to be

xi(t) = L7YZi(s)} = e (9sint +38cost) + 12— 2,
0(t) = L7HZ (1)} = Le*(9cost —38sins) =32 —Lr 1>0.

As before, the eigenvalues and eigenvectors of A were not used when finding x,(#)
and x,(#), though in this case they were complex with

M=241i,x = |:_ll:| ,A=2—10, X = |:i:|

Diagonalization of A could have been used to solve this system, though it would
have involved working with complex eigenvalues and eigenvectors.
¢
Finally, we show by example how the above method can be extended to solve
an initial-value problem for a linear second-order system of matrix differential
equations.

Example 6.13. Solve the initial-value problem

d*x d*x,
= —4x + xp + cos 2t pr

xl(O) =1 s X’](O) =0 5 Xz(O) = 0, Xlz(()) =0.

- —4X2 +.X] )

Solution. The argument proceeds as before, but this time making use of the Laplace
transform of a second derivative £{d 2)cl-(t)/dtz} =X () — sx;(0) — x/(0) fori =1,
2, involving the initial conditions for both the x;(0) and for the derivativex;’(0) for i
= 1, 2. Consequently, after taking the Laplace transform of each equation, and
using the initial conditions, the equations become

) S
X —s=—-4X X —-—
X(5) =5 = ~4Xa(s) + Xalo) + 5y
and

5?Xa(s) = —4X,(s) + X, (s) = 0.
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When expressed in matrix form these can be written as

with
R | (P +58)/(s* +4) [ Xi(s)
A(s) = [ 1 244l B(s) = 0 and Z(s) = Xo(s) |
After computing A(s)"' it is found that
s>+ 4 1 3
-1 s*4+8s24+15 s* 4852415 $ s
Z(s) = A(s)'B(s) = 1 2ra Pl
s+ 82+ 15 s*+8s2+15
5
s2+3
S 5
s2+3 244

Again using partial fractions to simplify the expressions in s, and then taking the
inverse transformation, shows the solution of the initial-value problem to be

=L{s/(s* +3)} = cos V3t,
o)=L Ys/(s*+3) —s/(s+4)} =x2() = L7 {s/(s* +3) —s/(s* +4)}

= cos V3t — cos 2t, t>0.

¢
It is important to understand that although a high-order equation in the depen-
dent variable y(¢) can be reduced to a set of first-order equations by introducing
derivatives of y(f) as new dependent variables, such a reduction is not unique.
Nevertheless, in whatever way a linear change of variables is used in a single linear
higher-order equation for y(¢) to reduce it to a linear first-order system of equations,
the solution of an initial-value problem for y(¢) will remain the same.
Suppose, for example, it is required to solve the third-order initial-value problem

subject to the homogeneous initial conditions y(0) = 0, y '(0) = 0, y ”(0) = 0. By
introducing the new functions u(f) = dy/dt, and v(t) = du/dt, so that v(t) = dzy/dt2
and dv/dt = d’y/dr’, the third-order equation for y(¢) is replaced by the equivalent
first-order system

dv du dy

d—+2v—u—2y—1+tj—vandd u,
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with the initial conditions y(0) = 0, u(0) = 0, v(0) = 0. The solution of this system
will give y(r), u(f) = dy/dt and v(r) = d*y/dr* as functions of . Consequently, if the
Laplace transform method is used to solve the system in matrix form, and only y(#)
is required, it would only be necessary for the Laplace transform Y(s) = LY y()}
to be inverted.

The solution of this system is easily found to be y(f) = = — 31 +1e™ — e %,
though its derivation is left as an exercise. To show that although the reduction of the
equation to a system is not unique, the solution is unchanged, we could introduced
the different variables u(f) = dy/dt and v(f) = 2du/dt, when the system would have
become

dv du
1 _ _1 _
EE"‘V_”_Zy_ 1+t,E—§v and E—u,

with the homogeneous initial conditions #(0) = 0, v(0) = 0, y(0) = 0. The functions
u(t) and v(¢) will now differ from the ones found previously, though the solution y(7)
11 1,2

will remain unchanged at y(r) = —; — 11+ 4e™ — 57 . Here again, the details

of this solution are left as an exercise.

¢

6.6 The Matrix Exponential and Differential Equations

This section provides a brief introduction to the matrix exponential ¢”®, where A
is an n X n constant coefficient matrix and ¢ is a scalar variable. The matrix
exponential generalizes in a natural way the solution of the scalar differential
equation dx/dt = ax to the solution of the homogeneous first-order system
dx/dtr = Ax, which in turn leads to the solution of the nonhomogeneous matrix
differential equation dx/dt = Ax + f(¢).

There are many different ways of finding e™, though only the simplest will be
described here once the matrix exponential has been defined in the classical
algebraic manner. Some of the ways in which ™ can be computed will then be
described, and the results will be applied to both homogeneous and nonhomo-
geneous linear systems of matrix differential equations.

The idea of a matrix exponential originates from the definition of the ordinary
exponential function defined as the infinite series

a at @ &P o att
e _l+ﬂ+7+?+.“_207’ (6.39)

which is absolutely convergent for all real ar. This suggests that if Aisann X n
constant matrix, and the convention A’ =1is adopted, it is natural to try to define
the matrix exponential ¢™ as

a Lo 133
e 7Z;EA =T+ A+ 5 PAY £ PA (6.40)
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The expression on the right is an infinite sum of n X n matrices, so for this to
make sense it must be interpreted as summing corresponding elements of matrices,
in which case each element of ¢”* will become an infinite series in the variable 7.
Furthermore, if the result is to be applied to a differential equation, these series must
be absolutely convergent and capable of being differentiated term by term with
respect to t.

We will start by proving that the infinite series forming the elements of ¢"* are
absolutely convergent, and to do this we will make use of the norm ||A]|,, intro-
duced in Section 3.1. If each of the powers of 7A occurring in (6.40) is replaced by
its norm the result will be the ordinary power series in ¢

1 1
=1+t Ally + 5 I+ 5 AL+

The power series on the right is simply e'lAln, which is absolutely convergent
for all . The absolute convergence of this series involving the norm ||A|],, implies
the absolute convergent of all of the power series that form the elements of ¢*, so
the absolute convergence of the expression on the right of (6.40) has been estab-
lished. We mention in passing that any norm of matrix A could have been used in
the above argument, but the norm ||A||,, is the simplest.

The next step is to discover how, when given a matrix A, the matrix exponential
e can be computed. We begin by considering a special type of matrix A, and
although it is a very special case it is still a useful one. Some n x n matrices A have
the property that integral powers of A up to n — 1 all yield nonzero matrices,
whereas A" = 0 is the null matrix, and thereafter all higher powers of A are null
matrices. A matrix with this property is called a nilpotent matrix, and the number n
is called the nilpotent index of matrix A.

When a matrix like this is substituted into (6.40), only the terms up to A” ~ ' will
be retained, causing the infinite series in ¢ in each of the elements of the matrix to
degenerate into finite polynomials in ¢ of order less than or equal to n — 1. A typical
case now follows.

A

Example 6.14. Show that matrix A is nilpotent, find its nilpotent index, and find

e if
0 2 1 1
0 0 1 2
A_0003
0 0 0O
Solution.
0 0 2 1 0 0 0 6 0 0 0 O
2 [0 0 0 1 3 (0 0 0 O 4_ |0 0 0 O
A70000’A70000’A70000
0 0 0 O 0 0 0 O 0O 0 0 O
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This shows A is nilpotent, with nilpotent index 4.
Substituting these powers of A into (6.40) and combining terms we find that

1 2t 2=t t4+457 47
aw_ |0 1 1 2t 437
0 0 1 3t
0 0 0 1
o
Before finding ™ for more general matrices A, let us first find ¢"* when A is the
diagonal matrix A = diag{4y, 4o, ..., 4,}. We have tA = diag{4t, /ot ..., Aut},

after which a simple calculation shows that

20 -0

_ 0 A - 0
(tA)" = , .

0 0 At

Substituting this result into (6.40) gives

1 0 0 At 0 0
0 1 0 1 0 It 0
A _ L
¢ = +1! :
0 0 1 0 0 Jnt
0 0
1o a2 0
+§ : + s
0 0 222

and summing the matrices on the right we find that

L+ At + 4582 + - 0 0
o 0 Lt Aot + 40582+ oo 0
0 0 R . A ol SRR

In the limit, as the number of terms tends to infinity, so the ith entry on the
leading diagonal of ¢"* becomes ¢’. This has established the important result that
will be needed later that when A = diag {4, 4, ..., 4,}, the matrix exponential
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et 0 0
0 e ... 0

N e (6.41)
0 0 .- Mt

The matrices A in the first two examples that follow have structures that are
sufficiently simple for powers of A to be calculated in a straightforward manner. In
each case the matrix exponential e”* is found by direct substitution into (6.40),
followed by recognizing that the Maclaurin series in ¢ that form the elements of "
are series expansions of familiar functions. Unfortunately, this method cannot be
used with more general matrices A, because then the series comprising the elements
of the matrix become too complicated to be recognized as series expansions of
familiar functions.

Example 6.15. Find ™ given that A = { 0 a] , where a is real.

—a 0

Solution. In this case substitution into (6.40) is simplified because (fA)" takes on
one of two different forms, depending whether 7 is even or odd. Routine calculation
shows that

tA:[ 0 at} (1A)2:[a2t2 0 } <’A)3:[a§)ﬁ a3t3}»

—at 0 0 —a*f? 0
a‘tt 0 0 ar

A = . (tA)® = [ },

' = |y ] =] N

after which this pattern is repeated, so that

0 1

(tA)° =1, (tA)' = m[_l 0

}, (tA)? = —a*F1,
(tA)’ = —a*F {_01 H,
(tA)* = a*r1,

Substituting these results into (6.40) and collecting terms gives

cosat sinat

) 2n ] 2n+1
Z (_l) % Z (_1) Eg:,)ﬂ)! [ }

A n=0 n=1
B = n (@& n (ar)” —sinat cosat
“X G X"y

Notice this same form of argument generalizes and shows that if
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0 a 0 O cosat sinat 0 0
_|=a 0 0 O A _ | —sinat cosat 0 0
A=l o0 o p|otene™=1 0  cosht sinbt

0O 0 -b O 0 0 —sinbt cos bt

This result extends immediately in an obvious way when A is a larger diagonal
block matrix of similar form.

o
Example 6.16. Find ¢"* given that A = {g Z} where a and b are real numbers.
Solution.
ta th , [Pa* 2tab s [Pd 3PaD
tA = y tA)” = 5 tA)” = )
{O tb} (rA) {0 tzaz} (A) [0 t3a3]
Aat 4883h
O
0 trat
and in general
N 'a ntnflanflb
A) = .
o = N
Substitution into (6.40) gives
S (@) /n! 'S (ar)" /!
etAi ’;)(d)/l’l ’;)(a)/n B |:eat tbeat:|
- o0 - at .
0 S (at)" /! 0 e
n=0

Each series that forms an element of ¢ defines an exponential function, so when
required these functions can be differentiated with respect to ¢ as many times as
required.
o
So far the matrix exponential ¢"* has been computed for matrices A which have a
convenient structure. This may, for example, be when matrices are nilpotent, leading
to exponential matrices with polynomial elements, or when the matrices have a
structure that allows the elements generated by (6.40) as Maclaurin series to be
sufficiently simple for them to be identified as exponential or trigonometric func-
tions. This leaves open the question of how ¢™ can be computed for a matrix like

1 -2
a=[! 7]
In this case, when A is substituted into (6.40), the series that are generated to
form the elements of ™ are not recognizable elementary functions (try it). This
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problem can be solved if A is diagonalizable, though to show how diagonalization
can be used it is first necessary to establish the following useful result concerning
exponential matrices.

Let M and D be a nonsingular n X n matrices, and let us find the matrix
exponential MM by substituting M(D)M~" into (6.40). The result of the
substitution is

: 1 !
MOM! M(ID)M ™ + — (M(rD)Mfl)2 +5 (M(fD)M71)3 T

2! 3!
[e%s) 1 "
= ZJ(MOD)M*I) :
n=0""

The general term in this series is (M(tD)M_l)" /n!, so expanding it we have

—M@E@DM )" == |(M@DM ") (MED)M")(M(D)M')... (M(D)M ')

ntimes
Removing the brackets, and using the fact that M~'M = I, reduces this result to

1 BN -
a(M(rD)M N :EM(tD) M

M(D)M~

causing the expression e ' to simplify to the useful result

MM _ DML (6.42)

Now consider an n x n diagonalizable matrix tA = [ta,ﬂ. Its eigenvalues A
withi =1, 2, ..., n are the roots of the characteristic determinant

[tA — 71| =0,
where the eigenvectors x; are the solutions of the n equations
[IA — il‘l‘I]X,‘ =0.

The initial assumption that A is diagonalizable ensures there are n linearly
independent eigenvectors Xy, X, ... , X,. The variable ¢ enters linearly into each
element of matrix A — 4,71, so each eigenvector x; will be scaled by . We have
seen that when an eigenvector is scaled, it always remains an eigenvector, so the
scale factor can be chosen arbitrarily. Consequently, for convenience when consid-
ering the eigenvectors of A we can set ¢ = 1, and then for the eigenvectors of tA we
can use the eigenvectors x; of A.
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We are now ready to use the above results to find e® for a matrix A
that is diagonalizable. If the eigenvectors of fA are A, and the corresponding
eigenvectors of tA are x;, we know that if P is the matrix of eigenvectors of fA,
arranged say in the order x;, X», ..., X,, and D is the diagonal matrix
D = diag{ A1, Jat, ..., A,t} with its elements A; arranged in the same order as
the eigenvalues in P, then

tA =P(D)P .

Using (6.42) we then find that

LR _ p,Dp-1 (6.43)

but /D = diag{ /1, Aat, ..., Aut}, sofrom (6.41) we arrive at the important result
et - 0

oA rawt _p| O g Pl (6.44)

0 0 0 e

Example 6.17. Find ", given that A = “ _42}

Solution. Matrix A is diagonalizable, because its eigenvalues and corresponding
eigenvectors are, respectively,

J1 =2 withx; = [-2, 1], and 2, = 3 with x, = [-1, 1]".

Thus

-2 -1 4| -1 -1 12 0
e=[2 e[ S aen-[2 9]
Substituting into (6.44) we find that
oA =2 —1][e* o ][-1 —1] [2e%—e¥ —2e% 2%
1 1 0 |1 2] | =¥ 2426 |
Although direct substitution of 7A into (6.40) would produce Maclaurin series as the
elements in ™, it is unlikely these series would be recognized as the functions that

occur in the elements of the matrix on the right — hence the need for the approach
that has just been described.

O
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Example 6.18. Find ¢, given that A = [ i _12} )

Solution. Matrix A is diagonalizable, because its eigenvalues and corresponding
eigenvectors are, respectively,

J1=14iV2 with x; = [i(v2, 1]", and /, = 1 — V2 with x, = [—-iv2, 1]".

Thus

p[F ] e

SIS SIES

et 0
] and /D = [ 0 e’b’]’

Thus

—i(ei" _ eizz) %(e}"’ 4 eizt)

%(e}"’ + eizt) %i(e)"’ _ e/lgr)]
)
22

A —
A =P(D)P ! = [ '

and after simplification this becomes

A _ e'cos(tv/2)  —+/2¢'sin(ty/2)
¢ = \/%e’sin(t\/i) e'cos(tv2) |

When a and b are real numbers we have the familiar result

(a+b)t

atehr —¢ ,

e
so it is necessary to discover if this property of exponential functions remains true
when the numbers @ and b are replaced by real n x n matrices A and B. The first step
when answering this question involves examining the relationship between e* and
¢® where A and B are diagonal matrices.

Example 6.19. Find e* and ¢® for the matrices

1 0 0 20 0
A=1|0 -2 0|andB=|0 3 o0 [,
0 0 4 00 -1

and examine the relationship between e, ¢® and ¢**®.

Solution. Notice first that two diagonal matrices that are compatible for multiplica-
tion always commute, so AB = BA, where here

2 0 0 300
AB=BA=|0 -6 0 |andA+B=|0 1 O
0O 0 -4 0 0 3
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so using (6.41) we see that

e 0 0 e 0 0 e 00
eIA =10 €72t 0 ’ etB _ 0 €3t 0 , etA+tB _ 0 o 0 ’
0 0 ¥ 0 0 e 0 0 ¢

e 0 0
6,rAetB — 0 o 0 _ etA+tB.
0 0 €%

¢

The result of Example 6.18 would seem to suggest that when A and B are general

n X n matrices, the rule for a product of ordinary exponential functions extends to

the product of matrix exponentials, allowing us to write e*e™ = ¢"“*®)_In fact this

assumption is not true, and e”*e™ = ¢"*®) if and only if, A and B commute, which

was the case in Example 6.19, because the product of two n X n diagonal matrices is
always commutative.

Theorem 6.1 The condition that e*e® = e**®. Let A and B be n n matrices. Then
the results e*e® = eA*® and ee™® = " P are true if, and only if, the product of
the matrices A and B is commutative.

Proof. Let > oRand > %) S; be two absolutely convergent series, with the
respective sums R and S. Expanding the product RS = (Ro+R; +Ry+-+-)
x(So + S1 + S2 + - - ) and arranging the result as follows gives

RoSo + RoS1 + RoS2 + RoS3 + - - -
RiSo+RiS1 +RiS» + -+
RS0 + RS + - -+

R3S+ -+

RS = (6.45)

Summing the columns of (6.45) and grouping the results we find that

(RoSo) + (RoS1 + R1S0) + (RS2 + R1S1 + R2S0) + (RoS3 + R152
+ R,S; +R3S()) =+ .-

Proceeding in this way we arrive at the result

RS = zoo: <§:R,IS,,,_”>. (6.46)

m=0 \ n=0

This formal manipulation of infinite series is justified, because it is shown in
calculus texts that (6.46) is true for the product of two absolutely convergent series.
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To relate this result to the product e*e®, let ¢* and e® be absolutely convergent
series, and set R ,, = A" /m!and S, = B”/n!, then (6.46) becomes

o0 m Aan—l‘l
w3 ()

m=0 \ n=0 n

Provided matrices A and B commute, the ordinary binomial expansion can be used
to determine (A + B)”, because then A”"B” = B"A"™", in which case

o0 1 o0 1 m m'
(A+B) _ o m _ L o npm—n
e Zm'(A+B) Zm!@_;n!( n)AB )

m=0"" m=0
s (Z’": A"B"" ”)'> A,
m=

and the proof of the first result is complete, because eAB) — B o oA B —

BoA. The proof of the second statement follows by replacing A by A and B by 7B.

o

When required, the matrix exponential e ~'* follows from the expression for ¢

by reversing the sign of . As A commutes with itself, an important consequence of
Theorem 6.1 is obtained by considering the product e*¢™"*, which becomes

ehe™ = =1, (6.47)

—tA

because from (6.40) it follows that ¢’ = I. This confirms that e~ is the inverse

of e’A, S0 it is permissible to write

(€)= e, (6.48)

while a similar argument shows that e "¢ = 1.

Because A commutes with itself, it follows at once that
DA — oA (6.49)

The series produced by (6.40) as the elements of ¢"* are all absolutely conver-
gent and have infinite radii of convergence, so the series of matrices in (6.40) may
be differentiated term by term, to give

de'd  d S, 1 1
¢ == A :A+tA2+52A3+§t3A4+--~, (6.50)
— r! ! !
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showing that

derA
—— = At 6.51
a e (6.51)
Removing the matrix factor A, first from the left, and then from the right, in
(6.50), shows that Ae™ = ¢ A, and we have established the fundamental result that

‘A
de” _ A = ¢AA. (6.52)
dt

This result demonstrates that e® is a solution of the homogeneous differential
equation dx/dt = Ax, so any linear combination of the columns of ¢ must be a
solution vector of the homogeneous linear matrix differential equation dx/dr = Ax.
Consequently ™ is a fundamental solution matrix for the differential equation
dx/dr = Ax, and setting ¢ = [Cy, Cy, ..., CH]T, with the C; arbitrary constants,
allows the general solution of the differential equation to be written

x(f) = ee. (6.53)

This result forms the statement of the following Theorem.

Theorem 6.2 The General Solution of a Linear Homogeneous System. Let A be a
diagonalizable n x n constant matrix. Then e"® is a fundamental solution matrix for
the homogeneous matrix differential equation

dx
— = Ax

dr ’

and if an initial condition X(ty) = ¢ is imposed at time t = to the unique solution of
this initial value problem is X(t) = e'c fort > t.

Proof. This main part of this theorem has already been proved, leaving only the
justification of the assertion that the solution of the initial-value problem is unique.
Uniqueness is easily established by assuming, if possible, that the initial-value problem
has two different solutions x and y that satisfy the same initial condition, then

dx d
5= Ax and Z)t, = Ay, where x(#) = y(to).

Subtracting the second equation from the first one and setting x —y =u we
find that

d
?l; = Au, subject to the initial condition u(zy) = x(to) — y(#) = 0.



6.6 The Matrix Exponential and Differential Equations 193

The only solution of this initial-value problem given by the main result of the
theorem is u(#) = 0 for ¢ > 1, so x(¢) = y(¢) for ¢ > ¢y, and the uniqueness is proved.

O

Example 6.20. Use the matrix exponential to solve the initial-value problem

X1 =3x1 +x —x3, X2 =3x; +x —3x3, Xx=2x; —2xp,

subject to the initial conditions x;(0) = 1, x,(0) =0, x3(0) = —1.

Solution. The matrix of coefficients A, the solution vector X, the eigenvalues and
eigenvectors of A are, respectively,

31 -1 X1 1
A=|3 1 3|, x=|x|, h=2,x1= 0], Ah=-2,
2 =2 0 X3 1
0 1
xx=|1|, 3=4, x3=|1
1 0

The matrix of eigenvectors P, its inverse P~', the matrix /D = diag{e*, ¢~, ¢*}
and the initial condition vector ¢ are

101 I 33 e 0 0 [ 1
P=|011|,P'=|-12 1 1/ D=|0 e 0, c=|0
110 5 3 3 0 0 e -1
So, from (6.44) we find that
%(eZt + e4t) %(—62' 4 e4t) %(621 _ e4z)
et =PDP ' = | Y2 4 M) L2 eM) LM — o)
%(62[ e—2t) %(_leZt +e—2t) %(621 +e—2t)

From Theorem 6.1 the solution vector x = ¢"*¢ becomes

— T
X = [€4t,—€ 21+e4t7_e 21} ,

and so

xi(t) =" x(t) = —e 2+, x3(t) = —e 2

¢
It is a straightforward matter to generalize the result of Theorem 6.1 to non
homogeneous systems of the form
dx
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where f(¢) is the column vector f(r) = [fi (1), £(t), ..., f.(1)]" whose elements
are integrable functions of .

The approach used will be the analogue of the way nonhomogeneous linear first-
order scalar equations are solved by means of an integrating factor, though here the
analog of the integrating factor will be e ™. A review of the use of an integrating
factor when solving a linear first-order differential equation will be found in
Appendix 1 at the end of this chapter. Rearranging the terms in (6.54) and pre-
multiplying the result by e~ gives

e "A(dx/dt — AX) = e "M (). (6.55)

To simplify this result notice that

d d
= (e—tAX) — —Ae x4 e_tAj’:’
but Ae™™A = ¢7"AA | s0
—Ae Ax e ™ ax _ —e AAx e d—x,
dt dt

allowing (6.55) to be written

d A —A
—(e7x) = f(r).
dt( ) e @)

Integrating this result with respect to ¢ and pre-multiplying the result by ¢
shows the solution vector to be

x(1) = e"*c + ™ / e "M (r)dt. (6.56)

where c is an arbitrary n element column vector that contains the arbitrary integra-
tion constants.

On occasions it is convenient to take ¢’ under the integral sign in (6.56). Then,
to avoid confusion with the variable ¢, the variable of integration must be changed
from 7 to 7, when (6.56) becomes

x(f) = e+ / e(tff)Af(‘E)d’E. (6.57)

The solution of an initial-value problem at time ¢ = ¢, follows from either (6.56)
or (6.57) by matching the arbitrary constants in ¢ to suit the initial conditions x(#).
The following theorem has been proved.
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Theorem 6.3 The Solution of Nonhomogeneous Linear First-Order Equations. The
general solution of the matrix differential equation

dx

—=A f(t

dt X+ 1)

X(f) = e 4 o' / A (1)

or equivalently

x(f) = e c + / e IAf (1)dr.

Example 6.21. Use the matrix exponential to solve the initial-value problem
X1 =20 +20+t X=x+3x—1, x(0)=2, »(0)=-1.

Solution. In this solution, because the intermediate calculations are straightforward,
only the key result will be given. We are required to solve the nonhomogeneous
differential equation dx/dt = Ax + f (), where

2 2 X1 -2 1
|:1 3:|7X |:x2:|7 1 , X1 |: 1 :|a 2 , X2 |:1:|7

x(0) = [_21] £(r) = [_’J

A routine calculation shows that

-2 1] [ % e 0
P_{l 1],P _{% %,ID— 0 | 5O

2t 1 4 2 0 2 4t

ot R
Y

—§€ +§€ §€ +§€

from which e~ follows by changing the sign of 7. Routine integration gives

24—t At L4 T 4
/eirAf(t)df: [ 13te—r 23e—t 112te—4z +748 6—4; ]
§te +§€ —Ete +R€
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Once the result x() = e'*c + ¢ [ ¢~"Af(¢)dt has been evaluated, and the arbitrary
constants C; and C, in the vector ¢ = [C}, Cz]T have been matched to the initial

conditions x;(0) = 2 and x,(0) = —1, the solution vector x(7) is found to be
19 _ 3,410 7 4

fl) | s Jr? B fore>0

(1) TER VR Y a2l 2 0,

2 o T4l =3¢ ~ 13
$0

4 4
xi(f)=—R—-2t+0e — Ze¥ and xo(r) = 2+ 11— 3¢ — ke fort > 0.

&

It has been shown how ¢ can be computed when an n X n matrix A is
diagonalizable, but not how it can be computed when this is not the case.

Various methods exist for finding e”* when A is an arbitrary n X n matrix, but the
method described here depends for its success on using the Laplace transform to
interpret the meaning of e*. Although, in principle, this method is applicable for
any n X n matrix, because of the algebraic manipulation involved it is really only
practical when n < 4.

Consider the homogeneous constant coefficient differential equation

dx . s .
i Ax subject to the initial condition x(0) = ¢ when ¢ = 0, (6.58)
where A is a constant n X n matrix and ¢ = [cy, ¢2, ..., cn]T is a constant n element

column vector. Defining the Laplace transform V(s) of a vector
v(t) = [vi(0), v2(0), ..., va(0)]" as
V(s) = L{v(1)} = [L{vi(0), L{n (1), ..., L{va(0)]", (6.59)
taking the Laplace transform of (6.58) using L{dv;/dt} = sV;(s) —v;(0), and

setting £{x()} = X(s) gives sX(s) — ¢ = AX(s), and so [sI — A]X(s) = c. After
pre-multiplying this result by the inverse of [sI — A] it becomes

X(s) = [sT— A] e (6.60)

Taking the inverse Laplace transform gives the solution of the initial-value
problem as

x (1) = L7Y[sT— A] '}e, (6.61)

where if H(s) = [h;(s)], then L {H (s)} = [£~ " {h;(s)}].
A comparison of (6.53) and (6.61) establishes the following representation of e
in terms of an inverse Laplace transform.
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6.6.1 Finding the Matrix Exponential Using the Laplace
Transform

A =LY [s1—A] ') (6.62)

Example 6.22. Find the matrix exponential (the fundamental solution matrix) for
the system of equations

X1 =x1 +x2, X2 =X,
and hence find its general solution.

Solution. Writing this homogeneous system of equations in the form dx/dr = Ax,
we see the matrices A and x, and the eigenvalues and eigenvector, are

A= bl , X = 1 , A =1 (twice), and the single eigenvector x; = ! .
0 1 X2 1

Consequently matrix A cannot be diagonalized. Because of this, the matrix expo-
nential ¢ will be found from (6.62). We have

TR e T RN R VI CE VIR WACE S VN
N =

Taking the inverse Laplace transform gives
t

ot =L [T- A"} = [i) Ieﬂ

so denoting the constant arbitrary integration vector by ¢ = [C}, C,]", the general

solution vector
- [ 7))

so the general solution is
X1 (l) = Cle’ + Czl‘et and Xg(l‘) = Czet.

o

a Z], and show by example

0
the result is the same as the one found in Example 6.15 by direct substitution of A
into (6.40).

Example 6.23. Use (6.62) to find ¢ when A = [
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Solution. From (6.62) we have

ST—A = [56“ S_ba}, s [sT—A]"" = {1/(30_ @) bl//(&__‘;);

Using the table of Laplace transform pairs in Appendix 2 we find that

ﬁ_l{[SI—Arl} _ {eg’ btsfat}

e

which is precisely the result found in Example 6.15. In this case the result was
found more simply by using (6.62) than by the direct method used in the example.

O

Appendix 1: The Solution of a Linear First-Order Differential
Equation

The most general linear first-order differential equation has the form

D pay = ().

The integrating factor for this equation is

p(x) = exp (/p(X)dX>,

where no arbitrary constant is to be added when [ p(x)dx is evaluated. The general
solution of the general linear first-order equation is then given by

) =i e s [atmua.

where C is the arbitrary integration constant introduced when [ g(x)u(x)dx is
evaluated.

When p(x) = a (a constant), as is the case with linear constant coefficient first-
order differential equations, the integrating factor simplifies to u(x) = exp(ax), and
then the general solution becomes



A Summary of the Laplace Transform and a Short Table of Laplace Transform Pairs 199
y(x) = exp(—ax) {C + / exp(ax)q(x)dx} .

y(x) = exp(—ax) {c+ / eXp(ax)q(x)dx}

Appendix 2: A Summary of the Laplace Transform and a Short
Table of Laplace Transform Pairs

The Laplace transform L£{y(z)} = Y(s) of the function y(¢), is defined as

for those functions y(#) such that the improper integral on the right exists.

Linearity of the Laplace transform
If a and b are constants and f(¢) and g(¢) have the respective Laplace transforms
F(s) and G(s), then

L{af (t) + bg(t)} = aF(s) + bG(s).

The Laplace transform of derivatives

L{dy/di} = sY(s) +(0),

L{d*y/dr'} = $Y(s) — sy(0) — ¥/ (0),
L{d"y/di"} = 5"Y (s) = 5"~'9(0) = 5"/ (0) = "7y (0) —--- —y""V(0).
The first shift theorem
L{ef(t)} = F(s + a).

The second shift theorem

L{H(1 — a)f (t — a)} = e “F(s),

0, t <a
1,t>a
The Laplace convolution theorem

where H(t — a) = is the Heaviside unit step function

of [ et vn} =rs1609

0

where L{f(¥)} = F(s) and L{g(?)} = G(s)
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Table of useful Laplace transform pairs

10 F(s)
k k/s
t 1/s?
" (n a positive integer) n!/s’”rl
e 1/(s—a)
"e™ (n a positive integer) !l / (s — a)"!
sin at a/(52 + a2)
cos at S/(52 + az)
t sin at 2as/ (s + )’
t cos at (2 —a)/(2+a?)
ar -
e“ sin bt b/[(sfa)erbz]
at
¢* cos bt (s = a)/[(s = ) +?]
sinh at a/(s* —a*)
cosh at /(s> —a*)
H(t—a) (a>0) e~ /s (the Heaviside unit step function)
o(t—a)(a>0) e~ (the Dirac delta function)
Exercises

1.

Construct any two matrices F(f) and G(#) conformable for multiplication. Com-
pute d[G(HH(r)]/dt directly, and by adding the matrix products 4Gl (¥)

i
and G(¢) dljh([) , verify that

dH(t)
dt

—[G(OH(1)] = H (1) + G()

Construct a 3 x 3 matrix G(¢) of your own choice. Find G~ '(¢) and differentiate
it to find del(t)/dt. Use the result to verify that

dG'(¢)
dt

dG (1)

=-G"() dt

G ().

. If G(¢) and H(?) are any two nonsingular n X n matrices, find an expression for

Construct a nonsingular 2 x 2 constant matrix A and a nonsingular 2 x 2 matrix F
(f) with differentiable elements of your own choice. Setting G(¢#) = AF(?), find
dG~'(1)/dt by differentiation of AG~'(r), and also by using result (6.7).
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5. Set

2 —4 sint  cost
A= {1 3 }7 H(r) = [_Cost Sim] and G(r) = AH(?) .

Find dG~'(t)/dt directly, and also by using the result G '(r) = H ' ()A~".

6. If matrices A(?) = [a;(#)] and B(?) = [b;(?)] are conformable for addition, prove
that [ (aA(t) + fB(1))dt = o [ A(t)dt + f [ B(¢)dt, for any scalars « and f.

7. Prove that if A(¢) and B(#) are conformable for multiplication, and each matrix is
differentiable, then the matrix analogue of integration by parts is

/A —dt = AB — /—Bdl

In Exercises 8 through 13 find the general solution vector x(f) with elements
x;(f) of the homogeneous equation dx/dt = Ax using the given matrix A, and
hence find the solution that satisfies the given initial conditions.

0 -1
A=|1 —2 1], x(0)=2, x0)=2, x0) = 1.
10
9
1 0 0
A=]2 —1 2|, x(0)=2, u0)=1, x(0)=—1
-4 0 3
10.
A= _‘1‘] 1(0) =0, x(0) =1
11.
A= 2 4 0 ==2, n0) =1
-1 2
12.
0 0 —2
A= -1 -1 -1 ) .X](O):l, XQ(O):—I, x;(0)=2
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13.
2 -3 3

A=|-1 2 -1 5 )CI(O)ZI7 XQ(O):—I, X3(0)=0
-1 3 =2

In Exercises 14 through 19 find the general solution x(¢) with elements x;(¢) of the
nonhomogeneous equation dx/dt = Ax + f(¢) using the given matrices A and f(?),
and hence find the solution satisfying the stated initial conditions.

14.

15.
a= 3] =] o =-1 e =0
16.
a-[7 S o0=1] wso-—2 01
() x(1) =1, (1) =0
17.
o[ 2] 0= [52] 0m1 0
18.
1 1 0 —2t
A=lo 1 1], (=] =3 |, x0)=0, y0)=—2.
0 1 1 3sin 3¢
z(0) = —1
19.
1 -1 0 2
A=|0 1 1|, f(r)=| —sinz |, x(0)=1, y(0)=2,
0 -1 1 1+e 2
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In Exercises 20 and 21, transform the system into the standard form dx/dt =
Ax + f(#). Find the general solution, and the solution subject to the given initial
conditions.

20.
dX1 dX2 dx1 dXQ
—+2—=7 —5+44t, 2—+—=8x1 —xa — 1 +2¢;
ar g TR T AL S gy Tt T LA
X](O) =-2 y XQ(O) =1.
21.
dx; dx, 5 dxp  dxp 2
——2—=-2 2-6t, ——+—=x1—x2 — 243t
dt dt e T A TR T ET
x(0) =2, y(0) = -1
In Exercises 22 through 32, use the Laplace transform with matrix methods to
solve the given initial-value problem.
22.
dx; x4+ e b%) 14 0)=0 (0) 2
— = —X X e — =X — X X = X = —<.
dt 1 2 ) dt 1 2 ) 1 5 A2
23.
d. d.
%:2x1+xzfsint, §:2x1+xz+2005t,
x1(0) =1, x(0)=-1.
24.
W vcost, P2 43, w0 =1, v(0)=0
— =Xy +cost, —=x X =1,x =0.
i~ Todr : n e
25.
dx1 —t dXz
bl —==6x —2t 0)=0 0)=0.
i Xpt+x+e a0l X1 , x1(0) , X2(0)
26.
d. d. d.
%:&4—2, %:)@,%:xl—{—Zcosh x1(0) =0,

XQ(O) =1 y X3<0) =-—1.
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217.

28.

29.

30.

31.

32.

6 Systems of Linear Differential Equations

@— +x3 + 3cost dﬁ— +1 dﬁ— sin ¢
dt = X1 X3 ) dt - X3 ) dt = X2 )
x1(0) =1, x(0)=0, x3(0)=0.
dx, dx, dx3
— =2 2 3, —=2 1, —==2x, —t
T X1 +2x3+ 3, ar x3+1, a0t Xy — 1,

Xl(O) =1 s xz(O) :07 X3(O) =—1.

=3 = x, —sint, x1(0) =0,

dx dx;
1:x1—X3—|—2t,—2:—X3+t, 0 =

dr dt
.sz(O) =1 s )C3(0) =0.

d? d’
??:x2+t, F);z:lersint, x1(0) =1, x'(0)=0,
XQ(O) :O, XQ/(O) =—1.

d*x dx; dx
—+3—+7 =3, —==5x+1 0)=1
g 3y tte=3, —F=5+1,00)=1,

xl'(O) =0 y )Q(O) =2.

The initial-value problem

Ly dy dy
—=+2————-2y=1+sint, y(0) =0,y (0)=0,y"(0)=0
d[3 dl‘2 dl‘ y =+ sin 5 y() ay() , Yy ()

y(t)=te " +1e' —Le — 14 L(cost — 2sint) fort > 0.

Find this solution y(#) by converting the equation into a system: (a) as in the
text using the higher-order derivatives as the new dependent variables, and (b)
by introducing the new dependent variables y(¢), u(¢), v(t) with u(t) = 2dy/dt,
and v(t) = 4 du/dt. The fact that the solutions will be identical will confirm that
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a linear change of variables used when reducing the third-order differential
equation to a system of first-order equations will not alter the solution y(?).

33. Show matrix A is nilpotent and find its nilpotent index given that

(e \STRUS I )

1
1
0
0

S O OO
SO O W

Use the fact that A is nilpotent to find e
34. Given that

1 0 0 0 10 0 0
0 -2 00 02 0 0
A=1l0o o0 1 o] ™B=1y 0 1 o
0 0 0 2 00 0 1

find eA, ¢® and show that in this case e * B = ¢”¢B. Why is this so?

35. Find " from (6.40), given that A = [2 g} _

36. Find ¢, given that A = B ﬂ )

37. Find ™, given that A = [ } _14} )

38. Use the matrix exponential to solve the initial-value problem for the system
dxy (l)/dl :)(72(1‘)7 dXQ(l‘)/dl‘ = —Xl(l‘) if x; (O) =1 and XZ(O) =—1.
39. Use the matrix exponential to solve the initial-value problem for the system

dx (t)/dt = x2(t) + ¢, dxa(t)/dt = x,(¢) + 1 if x1(0) = —1 and x,(0) = 1.

40. Use the Laplace transform method to find (a) ¢”* given that A = {_11 ” ,
and (b) " given that A = [2 ! } :

1 2
1 10
41. Find ¢, giventhat A= | —1 1 1
0 2 1 1 20
42. Use the Laplace transform method to find ¢ giventhat A= |2 1 0
1 00

Hence find the general solution of the system dx/dt = Ax if x =[x, x», x3]T.






Chapter 7
An Introduction to Vector Spaces

7.1 A Generalization of Vectors

The theory of matrices developed in Chapters 1-6, and the algebra of vectors in
three dimensions used throughout calculus and physics, hereafter called space
vectors, both belong to the part of mathematics called linear algebra. Each is a
particular example of a linear algebra, with matrices being the more general of the
two. At first sight the algebra of matrices and of space vectors appear be very
different, but this is due to the use of different notations when describing vectors
themselves, and the operations of vector addition and the scaling of vectors by a real
number A. General space vectors r = ai + bj + ck are constructed by the scaling and
addition of the unit vectors i, j and k that are parallel to the orthogonal x, y and
z-axes, and thereafter the algebra of space vectors is developed in terms of these
unit vectors. However, vector r with its components a, b and ¢ can equally well be
defined as a three element row or column matrix, after which the linear operations
of the scaling and addition of matrix vectors can be developed using the rules of
matrix algebra.

The purpose of this chapter is to show how the algebra of space vectors can be
regarded as a special case of matrix algebra. Then, by using the properties of matrix
algebra as a model, the formal definition of a linear vector space will be developed.

Although this approach may appear to be somewhat abstract, it is this very
abstraction that enables the notion of a linear vector space to find wide-ranging
applications throughout mathematics, engineering and physics.

Some of the most familiar examples of space vectors occur in engineering and
physics, where a vector is considered to be an entity with a magnitude, a line of
action and a direction along that line in which the vector acts. Typical examples of
such vectors are a force, a velocity, a momentum, an angular velocity, a magnetic
field and a heat flow vector, all of which are represented by directed line segments.
However, the quantities to be introduced in this chapter, also called vectors,
generalize the familiar idea of the space vectors in three-dimensional space.

A. Jeffrey, Matrix Operations for Engineers and Scientists, 207
DOI 10.1007/978-90-481-9274-8 7, © Springer Science+Business Media B.V. 2010
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In elementary calculus the vectors u and v are added using an algebraic opera-
tion denoted by the symbol + to produce a unique vector sum written u + v, which
is again a vector. Also, a vector u can be multiplied by a real number A (scaled) to
produce a unique vector Zu, which is again another vector, where the juxtaposition
of 4 and u indicates the scaling of vector u by / to yield the vector Au.

When more general vectors are involved, the algebraic operations of vector
addition and scaling usually needs to be defined in ways that differ from those used
with space vectors. The two algebraic operations of addition and scaling are used
with all vectors, and they are called binary operations. The term binary operation is
used to describe these operations because the addition of fwo vectors u and v
produces a sum w = u + Vv that is also a vector, while the two quantities comprising
anumber / and a vector u can be combined to produce a scaled quantity Zu which is
again a vector. In the case of space vectors, scaling a vector by the scale factor 4
means changing the “length” of the line segment that represents a vector by a factor
/., where the sense in which the vector acts is reversed when the scale factor /1 is
negative. The set of all real numbers A used to scale vectors is usually denoted by
the symbol R, where R is said to describe the field over which the numbers A are
defined. This field contains the sum, difference, product and quotient of any two real
numbers, where only division by zero is excluded. We preface what is to follow by
summarizing some of the familiar ideas that will be generalized.

The set of all real numbers R can be displayed as points on a straight line, where
each point represents a unique real number. This straight line forms a one-dimen-
sional space that will denoted by R', or simply by R, where the superscript 1
indicates that the line represents a one-dimensional space, and such a line will be
called an axis. On an axis a real number x is identified with a point at a distance
proportional to x from a point on the axis called the origin O, which in turn
corresponds to the number 0. By convention, a point x on R' will be taken to lie
on one side of the origin when x is positive, and on the other side when x is negative.
In the Euclidean geometry of three-dimensional space R*, where the superscript 3
indicates the number of dimensions, it is convenient to work with three mutually
orthogonal (perpendicular) axes that all pass through a common origin O. In this
space a vector is represented by a straight line segment drawn from its base, located
at the origin O of the system of axes, to its #ip located at a given point P in space.
The line segment from the base to the tip of a vector is the vector’s line of action,
and the magnitude of the vector is proportional to the length of this line segment.
The sense of the vector is taken to be the direction along the line segment. In R? the
line segment representing a vector usually has an arrowhead added to it to indicate
the sense of the vector.

For convenience, the three axes in R> are taken to be orthogonal, and they are
then called the x, y and z-axes. It is a standard convention when working with
orthogonal axes in three space dimensions to orient the axes in such a way that they
form a right-handed set. Here, a right-handed set of axes is one in which, given the x
and y-axes, the positive sense along the z-axis is the direction in which a right-
handed screw aligned with the z-axis will advance when rotated around the z-axis
from the x-axis to the y-axis. In terms of these axes, a space vector with its base at
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the origin and its tip at the point P with coordinates (x;, y;, z;) can also be
represented in matrix form as an ordered number triple [xi, yi, z;], when matrix
row notation has been used to identify the tip of the vector. The numbers xi, y,
and z;, called the components of the vector, represent the points on the respective
axes formed by the perpendicular projections of the tip P of the vector onto the
corresponding x, y and z-axes, as shown in Fig. 7.1. The ordering of the components
in the number triple is important, because the first component is the x-coordinate,
the second is the y-coordinate and the third is the z-coordinate of the tip of the
vector. So changing the order of the elements in a number triple changes the vector
that is represented.

Unlike the notation used in vector analysis, in the notation used here a vector r in
R? will be written as the matrix row vector r = [x1, ¥1, z1]. The length of the line
segment representing a vector, measured from its base to its tip determines the
“strength” of the vector, and it is a nonnegative scalar quantity called the magni-
tude of the vector. When working with space vectors in R*, the magnitude of vector
r, that is the length of its line segment, is usually denoted by |r|. However when
these ideas are generalized to an n-dimensional space, hereafter denoted by R”, it is
customary to use a different notation, and to represent the magnitude of a vector r
by ||r||, and to call it the norm of vector r. From now on, for consistency with the
notation of vector spaces to be introduced later, the symbol |r| will be dropped, and
in its place ||r|| will be used to signify the norm all vectors r, including the space
vectors in R”.

When the axes in R® are mutually orthogonal, the norm of a vector in R’ is
determined by successive applications of Pythagoras’ theorem, as can be seen from
Fig. 7.1. We have

1/2
Irl| = (0Q* +0P) "7, (7.1)
ZA
Z>~
o IP(Xw Y1 Z4)
I
I
Il |
l
I
l
0/ >
\\\\ | // _y, y
~o_ L
\\\\ I//
Fig. 7.1 A space vector r in a Xifmmmmmm e \—JO

right-handed orthogonal
system of axes in R? X
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but QP = z;, and 0Q? = x? + y3, so this becomes

1/2
el = (2 +y2 +22)"7, (7.2)

where the positive square root is taken because, by convention, the norm of a vector
is a nonnegative quantity.

When space vectors in R> are confined to a plane they become two-dimensional
vectors, and then they are said to belong to the space R*. We will see later that
because the space R? is a special case of the space R*, and it has strictly analogous
algebraic properties, it is called a subspace of R>.

When generalizing the concept of a vector to n dimensions, the notation
O{x, y, z} used for axes in three dimensions cannot be extended alphabetically,
so instead the n axes will be denoted respectively by xy, x,, . .., X,,, when the system
of axes will become O{x, x5, ..., X,}.

The equality of two space vectors u and v, written u = v, is only possible if u and
v have the same number of components, and corresponding components are equal.
Soin R, ifu= [uy, us, us] and v = [vy, v,, v3], writing u = v means that u; = vy,
uy = v, and uz = v3. It is also necessary to define the vector 0 called the null vector,
also known as the zero vector, as a vector in which each component is zero, so in R3
the null vector 0 = [0, 0, 0]. The null vector has neither magnitude nor direction.

The sum w of the space vectors u and v has for its respective components the
sum of the corresponding components of vectors u = [uy, u, usz] and v = [vy, v,, v3],
so using the matrix row vector notation

w=u+v=[u+vy, up+ vy uz+vs. (7.3)

In geometrical terms, the addition of space vectors is performed by translating
(sliding) vector v parallel to itself, without change of scale, until its base coincides
with the tip of vector u, when vector w = u + v is the vector with the base of u as its
origin, and its tip at the tip of the repositioned vector v. From the geometry in
Fig. 7.2 it is it is clear that the same result follows by translating vector u until its

Fig. 7.2 (a) The triangle rule w = u + v (b) The triangle rule w = v + u (c¢) The parallelogram rule
W=u+v=v+u
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base coincides with the tip of vector v, with the result that w = v 4 u, which also
follows directly from (7.3). So the addition of vectors is commutative because u + v
= v + u. The geometrical description of the addition of space vectors u and v to
form the third side w of the triangles in Figs. 7.2a and b is called the triangle rule
for vector addition, while the diagonal of the parallelogram in Fig. 7.2c to form
w =1u + v =v + uis called the parallelogram rule for vector addition.

When a vector u is scaled by the real number A, with the result written Au, each
component of u is multiplied by 4, so in matrix row vector notation

Au = Mbtl, /lLtz, ;J/t3]. (74)

Geometrically, the scaling of vector u by a real number 4 amounts to leaving the
line of action of the vector unchanged, multiplying the norm ||lu|| of vector u by |4
and keeping the sense of the vector unchanged if A > 0 but reversing it if A < 0.

The abstract mathematical concept of a vector is far more general than that of a
space vector in R>. For example, a vector may be taken to be any one of a set of n
element column or row matrices with real elements, or any one of a set of m x n
matrices with real elements on which the usual operations of matrix addition and
scaling may be performed. More generally still, other quite different mathematical
objects may also be regarded as vectors as, for example, a member of a set of
functions on which the mathematical operations defined as addition and scaling
may be performed.

Despite the many different forms that may be taken by vectors, for the applica-
tions to space vectors in R? that are to follow, attention will be confined to matrix
row and column vectors with real elements, when the operation of addition denoted
by + will be the operation of the addition of matrices, while scaling by a real number
A will be interpreted as the scaling of matrices by the number 4. When two or three
element row or column matrix vectors arise they may be interpreted, respectively,
as representing the coordinates of geometrical vectors in R* and R>. More generally
still, n element row or column matrix vectors will be interpreted as vectors in an
n-dimensional Euclidean space R” in which n mutually orthogonal ( to be defined
later) axes are defined. There, by analogy with (7.2), the norm ||r|| of the vector
r = [o,%,...,q, is defined by the expression

[l

el = (2 + a2+ +02)"%, (1.5)

and called the Euclidean norm of the vector (see the digression on norms in
Section 3.1).

7.2 Vector Spaces and a Basis for a Vector Space

We now use the familiar properties of space vectors to formulate the axioms that
define a general vector space.
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Definition 7.1. The Axioms for a Real Vector Space

A set of objects V with typical elements u, v and w is said to form a real vector
space, with u, v and w called vectors in the space, if they satisfy the following set of
axioms, where \ and |\ are arbitrary real numbers in the field R, and the operations
of the addition of vectors, and multiplication of a vector by a scalar are defined in
an appropriate manner.

1. If u and v belong to V, then u + v also belongs to V (closure of vectors in V
under addition).

2. u+ v =V + u (addition of vectors in V is commutative).

3. u+(v+w)=(u+v)+ w(addition of vectors in V is distributive).

4. For every u in V there exists a unique vector 0 in 'V such that 0 + u = u +
0 (there exists a unique zero element in V, denoted here by 0).

5. Associated with each vector u in V there exists a vector —u, also in 'V, such that
u + (—u) = (—u) + u = 0 (associated with each vector u in V there is a
negative vector —u in 'V, also called the additive inverse of u ).

6. If vector u belongs to V, so also does the vector M\, for any real scalar A

(scaling of a vector w in V by A produces another vector A also in V).

Z(u+v) = Au + Av (scalar multiplication is distributive over vector addition).

(A4 u)u = Au + pu (scalar multiplication of a vector is distributive).

A(pu) = (Ap)u (scalar multiplication is homogeneous).

lu = u for each vector u in V (scalar multiplication of any vector u by unity

leaves u unchanged).

© 0o o

It is left as a routine exercise to show space vectors in the Euclidean spaces R>
and R* form vector spaces.

The concept of a real vector space is far-reaching, and there are many quite
different types of vector spaces, of which some are given in the example that
follows, while the subsequent example shows that not every set of vectors forms
a vector space.

Example 7.1. The following are examples of vector spaces.

(a) The set V comprising all m x n matrices with real entries subject to the usual
rules for matrix addition and multiplication by a scalar form a vector space.
This is so because, clearly, the rules of matrix algebra satisfy the axioms of
Definition 7.1.

(b) The set V of real-valued functions f = f(x) and g = g(x) defined for —x < x <
o, with their sum and multiplication by a scalar defined in the usual way, form
a vector space. To show these functions form a real vector space we start from
the two obvious results (f + g)(x) = f(x) + g(x) and (Af)(x) = Af(x), and then
proceed to check that the axioms of Definition 7.1.1 are satisfied, while using
the fact that 0, the zero vector, is considered to be the function of x that is
identically zero for all x. The details are left as an exercise.

(c) The set V of all real differentiable functions form a vector space. This follows
because the sum of two differentiable functions is a differentiable function
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and a differentiable function scaled by a real number 4 is also a differentiable
function, after which the other axioms of Definition 7.1.1 are easily seen to be
satisfied.

&

Example 7.2. To see that not every set of vectors forms a vector space, it is only
necessary to consider the set of all points inside a unit sphere V centred on the origin
in R?, subject to the usual rules for vector addition and multiplication by a scalar.
Let vector u be any vector drawn from the origin with its tip at the point (x, y, z)
inside the unit sphere V. Then vector u can be written u = [x, y, z] , and if u is to lie
inside the unit sphere it is necessary that x> 4+ y* + z* < 1. Then, although the vector
u= [%,0,0} lies inside V , the vector 3u = 3 X [%,0,0] = [%, 0,0] lies outside V,
showing that axiom 6 of Definition 7.1 is not satisfied, so the vectors u in V do not
form a vector space. This is sufficient to establish that V is not a vector space,
though this conclusion also follows by considering the vectors u = [%, 0, 0] and
v =3, 0, 0], both of which lie inside V, though their sum u+ v = [2, 0, 0] lies
outside V, showing that axiom 1 of Definition 7.1 is also not satisfied. Notice that to
prove a set of vectors does not form a vector space it is only necessary to show that
any one of the axioms defining a vector space is not satisfied, and thereafter it is
unnecessary to check which, if any, of the other axioms also fail to be satisfied.

o

Following from Definition 7.1, we now formulate the definition of a subspace of
a real vector space V.

Definition 7.2. The Subspace of a Real Vector Space V

Let V be a real vector space on which are defined the operations of vector
addition and the scaling of a vector by a real number. Then a subset W of vectors V,
that itself forms a vector space with the same operations of vector addition and
scaling as the ones in 'V, is called a subspace of V.

For example, if V is the set of all geometrical vectors in the three-dimensional
Euclidean space R>, a subspace W of V comprises the set of all geometrical vectors
in a plane in R%. Let V be the set of all m x n matrices with real entries subject to the
rules for matrix addition and multiplication by a scalar. Then a subspace W of V is
the set of all m x n matrices with real entries in which each of the m elements in
their first columns is equal to 0. To see why this set of vectors forms a subspace,
notice that when the vectors are added or scaled by a real number 4, the result will
again be a matrix of the same form in which each element in the first column is
equal to zero. Conversely, consider the case where W is the set of all m X n matrices
with real elements, in which each of the m elements in their first columns is equal to
1. Then, although every matrix in W belongs to V, the set of matrices in W does not
form subspace of V, because when such matrices are added, their first columns no
longer contain elements equal to 1.
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A simple but important consequence of the definition of a subspace is that every
vector space V has at least two subspaces, comprising the space V, which is a
subspace of itself, and the null or zero subspace comprising the single vector 0.

Of fundamental importance in vector spaces is the concept of a linear combina-
tion of vectors. A vector w is said to be a linear combination of the m vectors

Vi, Vo, ..., V,, belonging to a vector space V if it can be written
W = cvi+cava+ -+ CuVim, (7.6)
where ¢y, ¢,, ..., ¢y are real numbers (scalars), not all of which are zero.
Let a set of vectors Q = {vy, v,, ..., V,,} belong to a vector space V, and consider

the vector equation
civitevo+ -+ ¢ v= 0. 71.7)
The set of vectors Q will be said to be linearly independent if (7.7) is only true when
cor=c=--=¢,=0. (7.8)

If, however, (7.7) is true when not all of the numbers ¢, ¢,, ..., ¢,, vanish, then
the set of vectors in Q will be said to be linearly dependent.

For example the vectors u = [1, 2, 3], v= [0, 1, 2] and w = [1, 3, 5] are linearly
dependent, because u + v — w = 0, showing that in the notation of (7.7) it follows
that c; =1, ¢c; = 1 and c3 = —1. However, the vectors u = [2, 0, 0], v=10, 3, 0] and
w = [0, 0, 5] are linearly independent, because ciju + c,v + c3w = 0 if and only if
Cl =Cp=0C3 = 0.

Let O = {vy, va, ..., V,} be a set of m vectors belonging to a vector space V . If
there are vectors in V that cannot be expressed in the form the linear combination of
vectors in Q given by (7.6), these vectors must belong to a subspace W of V. When
this occurs the set of vectors Q = {vy, V5, ..., V,,} is said to span the subspace W.

If, instead, every vector in V can be expressed as a linear combination of the m
linearly independent vectors in (7.6), the set of vectors Q is said to span the finite-
dimensional vector space V, which then has the dimension m. It is convenient to
denote the dimension of V by dim(V) so, for example, dim(R3) =3.

When vectors vy, v,, ..., v, in (7.6) belonging to a vector space V are linearly
independent and span the vector space V, this set of m vectors is said to form a basis
for vector space V', which is then called an m-dimensional vector space. Clearly
although a basis for a vector space V spans V, a basis is not unique. This follows
because any other set of linearly independent vectors wy, w», . .. , W,,, each of which
is formed by linear combinations of the linearly independent vectors vy, v, ..., V,
forming a basis for V, will itself form a different though equivalent basis for V.
This simple result is often used to advantage when choosing a basis that is
computationally convenient in a given situation.

A vector space V whose dimension is a finite number is called a finite-dimen-
sional vector space, and only such spaces will be considered here. There are also
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infinite-dimensional vector spaces, a familiar example of which involves the Four-
ier series expansion of a function f{x) over some interval a < x < b. In such an
expansion, each of the Fourier coefficients can be regarded as a coordinate of the
function f{(x) in an infinite-dimensional vector space, where the vectors in the space
are the sine and cosine functions of multiple angles, while the Fourier coefficients
are the coordinates. The analysis of an infinite-dimensional vector space is more
complicated than that of a finite dimensional vector space, so this topic will only be
mentioned here.

A familiar example of a basis for a finite-dimensional vector space is provided
by the three unit vectors i, j and k used with elementary space vectors in the
calculus. These can represent every vector r in the space R® by writing r = ¢;i +
¢5 j + cs3k. Here, the numbers ¢, ¢, and c5 are the components of vector r, while (c;,
5, ¢3) specifies the coordinates of the tip of vector r with its base at the origin, so in
the vector notation used here r = [cy, ¢5, c3]. This is, of course, not the only basis for
R? that can be used, because any set of three noncoplanar vectors will serve equally
well, though such a basis may not always be as convenient to use as the orthogonal
system i, j and k.

By way of example, let us consider the real n-dimensional Euclidean vector space
R" represented by all n element vectors w with real elements that can be written

W = C1V{+CoVat - + €V, (7.9
where the vectors vy, v, ..., v, are linearly independent. A simple and convenient
basis for this space is provided by the set of n vectors Q = {e;, e,, ..., e,}, where
the n element vectors e, with r = 1, 2, ..., n have the form

e; =[1,0,0,...,0],e,=[0,1,0,...,0],...,e,=10,0,0,...,1], (7.10)

in which e, is the vector in which all elements are zero, with the exception of the rth
element which is 1.

The vectors ey, e,, . . ., €,, in this order, are said to form a standard ordered basis
for R". Clearly these vectors satisfy the linear independence condition (7.7) and
(7.8) with m = n, because only when ¢; = ¢, = -+ = ¢, = 0 will the linear

combination cie; + c,e; + --- + c,e, = 0. This linear independence also follows
from the determinant test for linear independence given in Theorem 2.3, because if
A is a matrix with vectors ey, e,, ..., €, as its rows (columns), we see that A =1,
and det A =1 # 0.

A different, but equivalent, basis for R" is provided by the set of n vectors S =

{vi, v2, ..., V,}, each with n components, where
vi=][1,0,0,...,0,v, =1, 1,0, ... , O],v3=11, 1, 1,..., 0],...,
v, =[1,1,1,...,1], (7.11)
where in vector v,, with r =1, 2, ..., n, the first 7 elements are 1, and the remainder

are zeros.
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The linear independence of these vectors follows from the determinant test given
in Theorem 2.3, because a matrix A with these vectors as its rows is a lower
triangular matrix with 1’s on its leading diagonal, so det A = 1 #£ 0.

7.3 Changing Basis Vectors

On occasions it is necessary to represent a vector expressed in terms of one set of
basis vectors in terms of a different set of basis vectors, and the way this can be done
is illustrated in the next example.

Example 7.3. In terms of the standard ordered basis Q = {ey, e,, ..., e,}, a vector
r =[1, 3, 4, 2]. Find the form of this vector in terms of the basis S = {vy, v,, V3, V4},
where the vectors v; fori = 1,2, 3,4 in R* are given in (7.11) for n = 4.

Solution. Some notation is necessary, so let ro = r = [1, 3, 4, 2] be vector r
expressed in terms of the standard ordered basis Q = {e, e,, €3, €4} associated with
(7.10), and let ry be the vector r expressed in terms of the new basis involving the
vectors v,. Then to find the new representation we must set

[153545 Z]Q =avy + ﬁVZ + V3 + 5V4
=«[1,0,0,0] + B[1,1,0,0] +[1,1,1,0] + 6[1, 1,1, 1],
and find the constants o, f, y, J, to obtain the representation r, = [o, 5,7, 6. In

applications, both r, and r, may be considered to be either matrix row or column
vectors.

Equating corresponding components on each side of this equation gives
l=a+f+y+0, 3=p+y+9,4=9+9, 2=,
with the solution set « = =2, f = -1,y =2, =2 sor,=-2vi—V, +

2V3 +2V4 = [—2,—1, 2, 2]8

7.4 Row and Column Rank

It was stated without proof in Chapter 4, that if A is an arbitrary m X n matrix with
real elements, then row rank(A) = column rank(A). This result is sufficiently
important for it to be formulated as a theorem, and then proved.

Theorem 7.1. The Equivalence of Row and Column Ranks

If A is an m X n matrix, then

row rank (A) = column rank (A).
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Proof. The proof of this result involves straightforward use of the basis vectors for a
space. Consider an arbitrary m X n matrix A with real elements a; withi =1,2, ...,
mand j = 1, 2, ..., n. Then each of its m rows forms an n element row vector
belonging to R", while each of its n columns forms an m element column vector
belonging to R"™.

If A is the zero matrix 0, its rows and columns all contain the zeros, in which
case the result is certainly true, because then row rank(A) = column rank(A) = 0.
Now let us suppose row rank (A) = r with 0 < r < m. It follows from this that r

matrix row vectors b; = [bjy, bjp, ..., b;,], withj = 1,2, ..., m, can be found that
form a basis for the row space of A, namely the space to which all of the row vectors
in A belong. Then each row a; = [a;1, a;2 , - .. , a;,] of A can be expressed as the

following linear combination of the basis vectors
a; = Apby + Apby + -+ ;b i=1,2,... m,

where the A;; are constants.
Equality of vectors occurs when their corresponding elements are equal, so the
expression for a; implies that
ay = Zithj + Jioboj + - - - + Aivhyy,
for

1<i<m 1<j<n

Consequently, the jth column vector of matrix A can be written in the form

aij bijin byjlin byjlar
az; bija bojdn byjlar
_ ' + ) + ...
amj b lj/lml ij/ImZ bljj)~mr
Denoting the jth column vector of A by ¢; = [a;, ay), . . . , amj]T, and defining the
column vector Iy = [Ay5, Agg, -+ - lms]T, fors =1,2,...,r, allows the last result to

be written in the simpler form
¢ = bljll + b2j12+ s +b,jl,~, fOI'j = 1, 27 ceaun.

This shows that each of the n column vectors of A can be expressed as a linear
combination of the » column vectors 1;, b,, ... ,l,, that form a basis for the column
space of A, namely the space to which all columns of A belong. So the dimension of
the column space of A, although unknown at present, cannot exceed r. However,
dim(row space of A) = r, so we have established that

dim(column space of A) < dim (row space of A) =r. D)
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If matrix A is now transposed, the result becomes an n X m matrix, in which the
rows of A become the columns of AT, while the columns of A become the rows of
AT, An application of the previous argument to A" then shows that

dim(column space of A") < dim(row space of A"),

but the row space of AT = the column space of A, and the column space of AT = the
row space of A, so this last result implies that

r = dim(row space of A) < dim(column space of A). I

The two inequalities (I) and (II) concerning the dimensions of spaces can only be
true if

dim(row space of A) = dim(column space of A) = r,

from which it then follows that row rank(A) = column rank(A) = r, and the proof is
complete.

7.5 The Inner Product

The magnitude of a vector in R" has already been defined in (7.5), but now the
distance between the tips of two vectors in the Euclidean space R" must be defined,
and both quantities related to the concept of an inner product of vectors.

Definition 7.3. (The axioms of an inner product)

Letu, v and w be any three vectors in a finite-dimensional vector space V, and let k
be an arbitrary real number. Then the inner product of vectors w and v in the space
V, written (u,v), is defined as a real number that satisfies the following axioms:

Pl. (u,v) = (v,u) (the inner product is symmetric with respect to u and v)

P2. (u+ v,w) = (u,w) + (v, w) (the inner productive is additive)

P3. (ku,v) = k(u, v) (the inner product is homogeneous)

P4. (u,u)>0 with (u,u) = 0if, and only if,u = 0 (the inner product of u with itself
is positive, and vanishes only when u = 0)

O
In the n-dimensional Euclidean space R" an inner product of the vectors

u = (uy,up,...,u,) and v = (vy,vy,...,v,) is defined as the real scalar quantity
(u,v) = uyvy + ugvy + -« - + Uy, (7.12)

where (u, v) may be positive, negative, or zero.
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Notice that if u and v are treated as matrix row vectors, the operation of matrix
multiplication combined with the matrix transpose operation allows the inner
product (u, v) to be written

(w,v) = [uy,uz, ..., up) [Vi,v2,... ,v,,]T. (7.13)

It is left as a routine exercise to show the definition of an inner product of matrix
vectors u and v satisfies the axioms of Definition 7.3.

In terms of the inner product, two vectors u and v, neither of which is a zero
vector, are said to be orthogonal (a generalization of the mutual perpendicularity of
vectors in R3) if

(u,v) =0, (7.14)

where the justification for the term orthogonal will be given later.

In engineering and physics, when working with space vectors in R* and R?, the
inner product (u,v) is called the dot product and denoted either by u-v, or
sometimes by (u,v). For example, setting u = u;i +u,j + usk and v = vii + v,j
+ v3k, where i, j and k are the usual mutually orthogonal unit vectors in the
Euclidean space R’, and using the familiar results from unit space vectors that

i-i=j-j=k-k=1i-j=j-i=0,i-k=k-i=0,j-k=k-j=0,
it follows that
u-V=1uvy + Uvy + uUzvs,
which should be compared with (7.12).

A set of basis vectors vy, v,, ... , v, for the vector space R" will be said to form
an orthogonal set of vectors if

0 for i # j,
(uj,u;) = {ki £0fori—] (7.15)
for some set of positive numbers k;, with i = 1, 2, ..., n. Furthermore, the set of

basis vectors will be said to form an orthonormal set of vectors if every number k; in
(7.15) is equal to unity. When expressed more concisely, a set of vectors uy, uy, . . .,
u,, will form an orthonormal set if

<u[,uj> =0y fori,j=1,2,...,n, (7.16)

where ¢;; is the Kronecker delta symbol defined as

)=
5,1_{07 it (7.17)



220 7 An Introduction to Vector Spaces

It follows directly from (7.16) that the vectors ey, e,, . . ., €, in the standard basis
for R" given in (7.10) form an orthonormal set, as do the unit space vectors i, j and k.

To define the /ength of a vector represented by an n element matrix row or
column vector u with real elements in the space R", and the distance between the
tips of two n element matrix row vectors u and v, also with real elements, we
proceed as follows.

As already seen in (7.5), the norm (magnitude) of the vector u = [uy, uy, . . . , uy)
in the n-dimensional Euclidean space R" is obtained by generalizing the magnitude
of a three-dimensional Euclidean vector, by setting

| = @2+ 2+ +12) >0 (7.18)
It follows directly that

1/2
() = = (@2 +i2+ - +22)"

>0, (7.19)
where the norm of vector u is zero only when u = 0.

An orthogonal set of vectors u; u,, ..., u, can be converted to an orthonormal
set by dividing each vector u; by its norm ||u;||, because then the set of vectors

vi=u/|w] fori=1,2,...,n (7.20)

satisfies condition (7.16).

The concept of distance plays an essential role in the geometry of R", as does
orthogonality, so we now generalize this concept to the space R". Let vector
u = [y, up, ...,u,| and vector v=[vy, v, ...,v,]. Then, by analogy with
(7.2), the distance d(u, v) between the tips of the vectors u and v, that is the
distance between the points represented by of the vectors u = [uy, uy, ..., u,]
and v = [v{, vo, ..., v,] in the space R", is defined as the nonnegative number

d(u,v) = ((Vl —w)?+ (=)’ (v — Mn)z)l/z (7.21)

When n = 2 or 3 result (7.21) reduces to the familiar expressions for the
Euclidean distance between points in two or three space dimensions. A distance
function like (7.21) in a vector space is called a metric for the space, so (7.21) is a
metric for the space R". A vector space in which a metric is defined is called
a metric space, so the Euclidean space R" with the metric (7.21) is an example of a
metric space. A metric for a vector space may take many different forms, though
all metrics must satisfy the following conditions that are based on the familiar
properties of distance in the two and three-dimensional Euclidean spaces R” and R”.

Definition 7.4 Properties of Length and of a Metric. Let u and v be vectors in a
space U, and let k be an arbitrary real number. Then the norm (length or magni-
tude) of a vector must satisfy the following conditions:
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NI1. ||u||=0 (@ norm is a nonnegative scalar).

N2. ||u|| = 0 if, and only if, u = 0 (a vector has a zero norm only if the vector is 0).

N3. ||ku|| = |k||ju|| (when a vector u is scaled by a number k the norm of ku is
scaled by the number |k|).

N4. |ju+ v||<|[u]| + ||| (the triangle inequality for norms).

The distance d(u, v) between the vectors w = [uy, uy, ..., U, and v = [vi,va, ..., V)
must satisfy the following conditions:

DI1. d(u, v) 0 (the distance between two points must be nonnegative).

D2. d(u, v) = 0 if and only if u = v (the distance between two points is zero only
when the points are coincident).

D3. d(u, v) = d(v, u) (The distance from a point P to a point Q equals the distance
from point Q to point P).

D4. d(u, v) d(u, w) + d(w, v) (the triangle inequality for distances).

O

The name triangle inequality used in N4 and D4 is derived from the familiar
Euclidean result that the length of the hypotenuse of a triangle is less than or equal
to the sum of the lengths of the other two sides of the triangle (see Fig. 7.2b). In R*
and R?, equality in D4 is only possible when the triangle degenerates in such a way
that all three of its vertices A, B and C lie on a straight line, with vertex B between
vertices A and C.

When u and v are vectors in R”, the verification of conditions N1 to N3 and D1 to
D3 is straightforward, so these results will be omitted. However, showing that
conditions N4 and D4 are satisfied by vectors in a vector space is a little harder.

We prove only condition D4, because the proof of condition N4 proceeds along
similar lines. The starting point involves proving the Cauchy—Schwarz inequality
for the real n element matrix row vectors u = [uy, U, . .., U ] and v =[vy, vo, ..., v,

Theorem 7.2 The Cauchy-Schwarz Inequality. Ifu = [uy, us, ..., u,] and v = [vy, v,,
..., v,] are real vectors, then

[{u, v [ < Ju[f|v]].

Proof. The proof of this inequality starts from the fact that a sum of the squares of
real numbers is nonnegative, so as the elements of u and v are real,

S Gt + 1420,

k=1

for all real. Expanding the expression on the left and grouping terms gives

AN 4+ 2Bi+ C>0,
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where

n n n
A= E ul, B= E upvy and C = g Vi,
k=1 k=1 k=1

If A> 0, setting = B/A reduces the original inequality to B> AC, where
B2 = (u,v)>, A= ||ju|* and C = ||v||>. As (u,v) may be negative, we will first
replace (u,v) by |[(u,v)| in the inequality, which is permissible because
(u,v)> = |(u,v)|>. The positive square root of each side of the inequality can be
taken, yielding the Cauchy—Schwarz inequality. If A =0, then u; =u, = - - - = u,, and
the result is trivial. The Cauchy—Schwarz inequality shows the inequality sign can
only be replaced by an equality sign when u is proportional to v, in which case u =
kv for some real k, so the Cauchy—Schwarz inequality is proved for all u and v.

To establish result N4 for the Euclidean metric in R” we begin with the result

||u+v||2: (u+v,u+v)
= Jlul* +2(u,v) + ||v|]*.

The inner product (u, v) may be negative, so (u,v) < |(u,v)|, and after using
the Cauchy—Schwarz inequality we find that

2 2 2 2
[l V{7 < Jlaf|* + 2{laf[[]v{] + [Ivll™ = (Jafl + [Iv[])*

Taking the positive square root of each side of this inequality then gives the
triangle inequality, and the result is established.

7.6 The Angle Between Vectors and Orthogonal Projections

When working with geometrical vectors in the Euclidean spaces R and R’, it is a
standard result that the angle 0 between vectors u and v is given in terms of the
scalar (dot) product,

cosl = | H | ,for0 <0< m. (7.22)

From the Cauchy—Schwarz inequality, because (u, v) may be positive or nega-
tive, it follows that in R" the analogue of result (7.23) is

(< (u,v)

< <1, (7.23)
vl
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where equality only occurs when u = kv, with £ real. So, by analogy with the spaces
R? and R’, in the Euclidean space R" an angle 0 between vectors u and v can be
defined by using the result

cosf =0V fro<o<n (7.24)

)
[ul[{]v]]
This result provides the justification for saying that vectors u and v in R" are
orthogonal when (u - v) = 0, because this occurs when cos 6 = 0, so that 0 = %T[.

Example 7.4. Find the angle between u = [1,—1, 2, 3] and v = 2, 0,1, 1].

Solution.

(u,v) =3, |lul| = V15, ||v| = V6,
hence
cos 0 = 3/(vV15v6) = 0.3162, so 0 = 71.56°.
¢

It is useful to relate (7.24) to the concept of the orthogonal projection of a vector
u in the direction of a vector v. This is best understood by first considering the two-
dimensional case involving geometrical vectors, because the concept generalizes
immediately to the space R". Figure 7.3 shows two arbitrary vectors u and v, each
with its base at the origin O, where the tip of vector u is at P, the line PQ is
perpendicular to vector v, and 0 is the included angle between the vectors u and v.
Then the length OQ is the orthogonal projection of u in the direction of vector v,
which will be denoted by proj, u is OQ = OP cosf. When working with space
vectors and using the vector dot product notation, we can write

u-v

u-v
|ul|v] '

proj,u = cos fJu| = V]
v

[u| = (7.25)
Generalizing this notation to the space R", using inner product notation, this

becomes

(u, v)

IviF

proj,u = (7.26)

It is important to understand that, in general, proj, u # proj, v.

Fig. 7.3 The orthogonal
projection of u in the >~
direction of v o Q v
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Denoting the vector in the direction of OQ by w, we see that

. \
w = (proj,u) M = 7<V7 v v, (7.27)

where use has been made of the fact that v /||v|| is a vector of unit length in the
direction of v and (v,v) = ||v|*.

The ease with which space vectors can be manipulated when expressed in
component form using the triad of orthogonal unit vectors i, j and k, is shared by
vectors in the Euclidean space R"” when they are expressed in terms of an orthonor-
mal set of basis vectors. This raises the question of how, given an arbitrary set of
n basis vectors in the vector space R”, the set can be replaced by an equivalent
orthonormal set of basis vectors.

7.7 Gram-Schmidt Orthogonalization

The method of construction we now describe is called the Gram—Schmidt orthogo-
nalization process, and for simplicity the method will first be developed using
vectors in the space R>, before being generalized to vectors in the space R".

Letting u;, u, and us be any three linearly independent vectors in the space R,
we now show how they may be used to construct an equivalent set of orthogonal
basis vectors vy, v, and v3. Once this has been done, if required, an equivalent
orthonormal set of vectors wy, w, and w3 follows directly by dividing each vector
by its norm, leading to the results

wi = vi/||vi]l, wa = v2/||v2|| and w3 = v3/||v3]|. (7.28)

7.7.1 The Gram-Schmidt Orthogonalization Process in R’

The purpose of this process is to take any three linearly independent vectors uy, u,
and us that form a basis for R*, and to use them to construct an equivalent set of
three orthogonal basis vectors vy, v, and v in R

The method of construction is straightforward, and it starts by making an
arbitrary choice for v, by setting it equal to one of the vectors u, u, and ujs,
when it then becomes the first of the three orthogonal linearly independent vectors
V1, Vo and vs. The vectors v, and vj are then constructed as linear combinations of
vectors uj, U, and uj in such a way that vy, v, and v; are mutually orthogonal.
Step 1. Make the (arbitrary) assignment

Vi = uj. (7.29)



7.7 Gram—Schmidt Orthogonalization 225

Step 2. Set v, = k15v; + uy, and form the inner product of v; and v, to obtain
(v1,v2) = kia(v1,v1) + (vi,uz). However, if v; and v, are to be orthogonal we
must have (vy,v;) =0, so kjz = —(vi,up)/(vy,v;), from which it follows that

Vo =Up — MVL (730)

(Vi,v1)

Step 3. Set v3 = ky3V; + ko3, + u3 and form the inner product of v; with v;. The
orthogonality of vy, v, and v3 means that (v, v,) = 0 and (v, v3) = 0, from which
we see that ki3 = — (v, u3) /{vi, vi).

Similarly, forming the inner product of v; with v, shows that k3 = —(v,,u3)/
(va, v2). Finally, substituting for k3 and k3 in the expression for v3 we find that

(v, u3) (v2,u3)
=uz — — . 7.31
VBTN T ) 73D

The set of vectors vy, v, and v3 in (7.29), (7.30) and (7.31), constructed from the
arbitrary set of linearly independent vectors uy, u, and us, then form an orthogonal
set of vectors. If an orthonormal set of vectors wy, w, and wj3 is required, these
follow by using (7.28).

Notice that the orthogonal vectors vy, v, and v; found in this way will depend on
the choice of vector used to form u;. Also, as any three linearly independent vectors
formed by linear combinations of u;, u, and us also forms a basis for the space R, it
follows directly that there is no unique set of orthogonal basis vectors for R?.

7.7.2 The Extension of the Gram—Schmidt Orthogonalization
Process to R"

An examination of the pattern of results (7.29) to (7.31) shows how this method of
construction can be extended to the case where an orthogonal basis of n vectors vy,

Vs, ..., V, is to be constructed from an arbitrary set of n linearly independent
vectors uy, Uy, ..., W, Setting v; = uy, and
vV, = kl,i'Vl + k2,rV2 4+ krfl.,rvrfl + l,l,~7f01'i‘ = 27 37 sy 1 (732)

using the orthogonality of vector v, with respect to the vectors v;, and forming the
appropriate inner products, it is easily shown that the coefficients k; , are given by

<Vf’ ll,~>
(vi, vi)

ki = — fori=1,2,...,r—1. (7.33)

It is instructive to examine the geometrical interpretation of v, and v; in (7.30)
and (7.31). Recalling the definition of the angle between two vectors given in
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(7.24), it can be seen from (7.30) that v, is obtained from u, by subtracting from u,
a vector in the direction of v; of magnitude equal to proj, u,, with a corresponding
interpretation for v in (7.31). “

If when using this construction only m < n of the n vectors u;, u, , ..., u, are
linearly independent, the m vectors will span a subspace R™ of R” of dimension m,
with the result that the Gram—Schmidt orthogonalization process will only yield m
orthogonal vectors that will together form a basis for the subspace R™. (See
Exercise 20 in Exercise Set 7.)

Example 7.5. Show the vectors u; =[1,—1,—1], u =[1,—1,1] and u3 =
[1,1, —1] are linearly independent. Use the Gram—Schmidt orthogonalization pro-
cess with these vectors to construct an orthogonal system, and hence an equivalent
orthonormal system.

Solution. The vectors u; to ujz are linearly independent because when they are
arranged to form the first three rows of a third-order determinant

1 -1 -1
detA=|1 -1 1
1 1 -1

we find that detA = 2 0. Remember that the vectors will be linearly dependent if
detA = 0.
From Step 1 we have

vi=u =[l,—1,—1].
Omitting the details of the calculations involved, from Step 2 it turns out that

vo=[1,-1,1]-41,-1,-1] = [3,-%4],

while Step 3 shows that

V3 = [la L, _1} - (_%)[17_1a_1] - (_%) [%7 _%’%] = [la 1,0}.

Thus the three orthogonal vectors obtained from the Gram—Schmidt orthogonal-
ization process are

Vi = [13_17_1}7"2 = [%, _%a%:l and V3 = [1,1,0]

When these vectors are normalized using (7.20), the equivalent orthonormal
system is found to be

w = [t e = o] naws =[]
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Example 7.6. Use the orthonormal vectors w;, w, and w3 in Example 7.1.5 to find
the vector in R> represented by z = —\/§W1 + \/ng + \/§W3. What is the angle
between w; and z?

Solution. Scaling the vectors and adding corresponding components gives
z=[-1,1,1]+[1,-1,2]+[1,1,0] = 1,1, 3].

From (7.23)

(wy,z) _ <(\/L§7 _\/Lg, _%)7 (1, 1»3)> _ (_\/5)
[[wlll]l [[w[]|]l VIT

As the numerator is negative, must lie in the second quadrant, so 121.5°.

cosf =

&

7.8 Projections

Now the Gram-Schmidt orthogonalization procedure is available, we are in a
position to use it when developing the final topic in this chapter, which is how to
project a vector in the space R" onto a subspace. To understand the significance of
such a projection, and why it is useful, it is only necessary to consider a practical
application involving the architectural plans of a building, all of which are two-
dimensional representations of a three-dimensional object. The plans all show the
outline of the building when projected onto a plane perpendicular to the line of
sight, corresponding to the building being viewed from different directions. Each of
these diagrams (a projection) simplifies the task of understanding the detailed
design of a building that exists in R®, by considering those of its details that are
shown when the building in R? is projected onto different planes in R?, all of which
are subspaces of R*. This form of approach is also useful when applied to general
mathematical results in R”, whose meaning can be better understood by considering
projections of the results in R” onto different subspaces.

Consider the very simple situation in Fig. 7.4, where the perpendicular projec-
tion of the line OP in R* onto the (x1, x2)-plane is the line OQ that lies in a subspace
R? of R. In this diagram the (xq, x,, x3)-axes are the standard ordered orthogonal
right-handed reference system with the associated unit vectors e;, e, and e;
introduced in (7.10). In terms of this reference system, let OP to be the vector
p = la, b, c]. Then vector a = OR = [a, 0, 0] = ae, is a vector in the direction e,
with magnitude equal to the perpendicular projection of line OP in the direction e,
while s = OS = be, = [0, b, 0] is the vector in the direction e, with magnitude equal
to the perpendicular projection of line OP in the direction e,. Vector addition now
shows that vector q in the direction of the perpendicular projection OQ of OP with
magnitude OQ is givenby q = OR + OS = a + s =ae, + be, =[a, 0, 0] + [0, b, 0]
= [a, b, 0].
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Now let us generalize the notation of a projection and its associated vector to
take account of projections and their associated vectors from a space U onto a
subspace W. To achieve this, we will use the notation

(p,u)
[l

Projy ) (P) = (7.34)

to represent the projection of a vector p in a vector space V onto a subspace W in the
direction of a vector u in W. Naturally, as W is a subspace of V, it follows that vector
u must also belong to V. By analogy, the vector q in W in the direction u with
magnitude projy_yy(y)(r) is

: u _ (pu
q= PFOJVHW(u)(P) HTH =

u. (7.35)

Let V be an n-dimensional vector space, and let the subspace W be m-dimensional,
with an orthonormal basis for V provided by the set of vectors V ={v, v, ..., V,,
Wi, Wa, ..., W}, where the vectors wy, w,, ..., w,_,, form an orthonormal basis
for the subspace W. Then, by analogy with the situation considered previously in
R2, if q is the vector in the direction of the projection of p onto W, we can write

q = Projy_ww,) (P)W1 + Projy_yw,) (P)W2 + - - - + Projy_yw, ) (P)Wa—m;

and so
q = (P, W1)W1 + (P, W2)W2 + - + (P, W) Wy (7.36)
Example 7.7. Find the vector q when p = [3, 1, 3] is projected onto the subspace

W with the basis W = {by, b,), where b; = [1,1,0] and b, = [1, 0, 1], and hence
find ||q]|.
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Solution. The two vectors in W form a suitable basis for W because they are linearly
independent, though they are not orthonormal. In general, the required projected
vector q can be found by applying result (7.35) to each of the basis vectors b, and
b,, and then forming the vector sum of the results. However, inspection of vectors
p and b, shows that (p,b,) = 0, so p is orthogonal to b,. Consequently, direct use
cannot be made of the basis vector b, in the projection process because it makes no
contribution. This difficulty is easily overcome by using the Gram—Schmidt ortho-
gonalization procedure to obtain two orthonormal vectors that are equivalent to the
basis vectors. Starting with v; = by, the procedure yields the equivalent orthonormal

basis vectors w; = [%, —%, 0} and w, = {%, \L@ —\/%-J for the subspace W, neither
of which is orthogonal to p. Using these vectors with p = [3, 1, 3] shows that
(p,w1) = V2 and (p,ws) = —2/+/6. Thus q = (p, w;)W; + (p, W2)W» becomes

1= V250 + (k) ot~
or
a=[1-10+ [h 43 = B -43)

Hence the required norm of the projected vector is ||q|| = ((%) g (—%) Py (%) 2) v
= 4/8/3.

The final example illustrates the use of the projection operation to determine the
projection of a finite section of a space curve onto a plane.

Example 7.8. In terms of the standard ordered basis for R>, the position vector on a
space curve C has the parametric representation p = [cos?, sint, 7] for 0 ¢ 2. Find
(a) the parametric representation of the position vector of the projection of curve C
onto the (x, xp)-plane, and hence determine its shape, and (b) find the parametric
representation of the position vector of the projection of curve C onto the (x; , x3)-
plane, and hence determine its shape.

Solution. The purpose of this example is to illustrate the use of the projection
operation when applied to a simple space curve though, as will be seen later, in this
particular case the results can be found more simply by using purely geometrical
arguments. Examination of the form of the position vector p, coupled with some
elementary coordinate geometry, shows the space curve C, expressed here in
parametric form, is a uniform helix about the x3-axis. The tip of the position vector
p on the helix is always at a unit perpendicular distance from the x3-axis, and the
helix starts at the point (1, 0, 0) and finishes at the point (1, 0, 2), having advanced
uniformly in the x; direction through a distance after making one complete
revolution around the xz-axis.

Elementary geometrical reasoning shows that in case (a) the projection of helix
C onto the (x, x,)-plane must be a unit circle centred on the origin. In case (b),
geometrical reasoning suggests that the projection of helix C onto the (x,, x3)-plane
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must be a plane curve with period 2 that oscillates in the plane between x, = 1,
while advancing uniformly in the x5 direction. Intuition suggests this projection of
the helix onto the (x,, x3)-plane may be a sinusoid.

Let us now give an analytical justification for these geometrical deductions.
(a) Reasoning as in (7.35), let space V be the space R* to which p belongs, and let
the subspace W be the (x;, x»)-plane in R?. Set p = [cost, sint, 7], and let u; be a
unit vector in the direction of the x;-axis, so u; = [1, 0, 0]. Then from (7.35) the
vector q in the direction of u; with its magnitude equal to the projection of p in the
direction u, is given by

q; = Projy_w,)(P) = (<up17,l:111>> u = <[C?[Sli’os,ig]t: [t]1,7 [(i’(())]’;)b [1,0,0] = [cost,0,0].

Similarly, let u, be a unit vector in the direction of the x,-axis, so u, = [0, 1, 0].
Then from (7.35) the vector q, in the direction of u, with its magnitude equal to the
projection of p in the direction of u, is given by

: <p7u2> <[COS 1, sint, t}7[07170]> :
= = = 0,1,0 =10 0].
Q2 = Projy_u,)(P) g, 1) up {0, 1,01, [0, 1,0]) [0,1,0] = [0,sint,0]

So the parametric representation of the position vector q of a point on the
projection of the helix onto the (x;, x;)-plane is

q=q; +q, = [cost, sint, 0],
for
0<r<2m.

This is, of course, the parametric representation of a unit circle in the (xy, x;)-
plane centred on the origin, as already deduced from purely geometrical considera-
tions. This same result follows more simply by observing that in terms of the
parametric representation of the helix, the (x|, x,)-plane corresponds to ¢ = 0, so
that p = [cos ¢, sin ¢, 0].

(b) The unit vectors along the x, and x3-axes are, respectively, v, =[0,1, 0], and v3 =
[0, 0, 1], and as before we take space V to be R3, but this time the subspace W to be
the (x,, x3)-plane. Then

. (p,va) {[cost,sint, 1], [0,1,0]) )
= = = = t
Q2 = Projy_w(v,) (P) V2, v2) V2 70, 1,01, 0, 1,0]) [0,sinz, 0]

and

. ) ,sint, 7], (0,0, 1
q; = prOJVHW(Vg)(p) = <<Vp%‘;33>> V3 = <[C?[Sol; Osfi]t’ E‘(])’ [0’ ID ]> = [07 07 t]’
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Hence the parametric representation of the position vector q of a point on the
projection of the helix onto the (x,, x3)-plane is

q= q2 +q3 = [07 Sint? ﬂa
for
0<t<2m.

As already conjectured from geometrical considerations, this curve is a sinusoid
in the (x,, x3)-plane, though expressed here in parametric form. In fact this result
also follows more simply from the definition of p, because ignoring the x; coordi-
nate by setting it equal to zero, we see that p = [0, sin ¢, 7].

¢

The geometrical consequence of each of the projections in Example 7.8 was easy to
deduce intuitively because of the simplicity of the space curve involved, and also
because in each case the projection was onto a plane on which one of the coordinate
variables was constant. For example, the plane x3 = 0 corresponds to the (x1, x,)-plane.

The purely geometrical approach used there to arrive at the form of a projection
would not have been so successful had the space curve C been projected onto a
general plane I1 passing through the origin. This would happen, for example, when
a plane IT through the origin is oriented relative to the usual x;, x, and x3-axes, so
that mutually orthogonal axes x| and x} in the plane are directed, respectively, along
the unit vectors u; = [1/v/3,—1/v/3,—1/3/3] and u, = [2/1/6, 1/1/6, 1/1/6].
Such a projection would be difficult to visualize intuitively, because the helix
would be projected onto a skew plane. Nevertheless, in such a case the approach
used in Example 7.8 would proceed exactly as before, and would give the result
automatically, and without difficulty.

Suffice it to say that projections from R’ onto R’ or onto R” are often needed in
many practical situations. This happens, for example, when using a PC monitor to
make three-dimensional plots of the surface of mathematical functions, which are best
understood by viewing from different directions, and also by rotating the image on the
monitor screen. In practice this is accomplished by using various different forms of
readily available specialist software that is based on the projection operation.

Clearly, the analytical approach illustrated above will work in the case of the
much more general situation when a projection is from R" to R, with n > m, though
this more general situation will not be considered here.

7.9 Some Comments on Infinite-Dimensional Vector Spaces

Although the main concern of this chapter is with finite-dimensional vector spaces,
before closing the chapter, and because of their importance in applications, something
should be said about the way an inner product is defined in an infinite-dimensional



232 7 An Introduction to Vector Spaces

vector space. Suppose, for example, that a space V is a class of bounded real-valued
functions defined over an interval a < x < b like a special set of real polynomials, or
the set of trigonometric functions {sin x, sin 2x, ..., 1, cos x, cos 24, ...,}, defined for
—7 < x < 7. In cases such as these each function can be considered to be a vector,
when defining an appropriate inner product it is necessary to do so in terms of an
integral. If u;(x) and u,(x) are any two vectors (functions) belonging to an infinite set of
functions {uix)},7 =1, 2, ..., defined in a vector space V, an inner product defined
over V takes the form

b
<m#»:/1m@m@W@MLLjZLL“w (737)

where p(x) is a nonnegative function called a weight function, whose form depends
on the nature of the functions in V, while p(x) > 0 must be such that the integral
(7.37) exists. In some cases the weight function p(x) = 1, but in the exercises at the
end of this chapter other forms of weight function occur like p(x) = 1/(1 — x%)"/?
when integral (7.37) is taken over the interval —1 < x < 1.

Just as vectors in finite-dimensional vector spaces are orthogonal if their inner
product vanishes, so also are vectors in infinite-dimensional vector spaces. The
vectors u,(x) and u;(x) with i 7 j from a set {u,(x)}, are said to be orthogonal over
the interval a < x < b with respect to the weight function p(x) > 0 if

b
(uj,u;) = / p () (x)u;(x)dx = 0. (7.38)

The norm ||u;(x)|| of a vector u,(x) in an infinite-dimensional vector space V is
defined as

b
mW:/mmmm%n:Lm”. (7.39)

If the set of vectors {u;(x)} forms an orthogonal set, the normalized vectors
{ti;(x)}, defined as

ﬁl(‘x) = ui(x)/”ui”?i = 1727 B (740)

are said to form an orthonormal set, because then

_J O, i#),
(uj,u;) = { Ll (7.41)

To show the definition in (7.37) satisfies the conditions required of an inner
product it is necessary to demonstrate that it satisfies conditions P1 to P4. We
have:
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() ( f o(x x)dx = f p(x)v(x)u(x)dx = (v,u), so condition PI is
satlsﬁed
(i) (w+v,w) = [ p(x)(u(x)+ v(x))w( dxffbp (x)w( dx+fhp (x)
w(x)dx = (u,w) + (v,w), where w is any Vector in V, so condition P2 is
satisfied.
(iii) (Au,v) = f: Jp(xX)u(x)v(x)dx = /lf: p(x)u(x)v(x)dx = A{u,v), where 1 is any
real number, so condition P3 is satlsﬁed
(iv) As p(x) is nonnegative, f p(x dx >0 if u(x) # 0, and
(u,u) = 0 if, and only if, u(x) = O showmg that condition P4 is satisfied.

*

The exercise set at the end of this section contains examples of inner products

associated with sets of orthogonal functions that arise in various applications,
perhaps most frequently when solving partial differential equations.

S

Exercises

1. Verify that geometrical vectors in R” satisfy the axioms of a vector space.

2. Let V be the set of all 3 x 3 matrices with real elements. Does the subset W of
all such matrices with zeros on their leading diagonal form a subspace of V?
Give reasons for your answer.

3. Let V be the set of all 4 x 4 matrices with real elements. Does the subset W of
all such matrices in which the first element in the leading diagonal is 1, while
all other elements on the leading diagonal are zero, form a subspace of V' ? Give
reasons for your answer.

4. Does the set of all m x n matrices with complex entries form a (complex)
vector space if the scalars 4 and u in the axioms in Definition 7.1.1 are complex
numbers ? Give reasons for your answer.

5. Show that the set of all cubic polynomials ay + a;x + a>x* + a3y’ forms a
vector space denoted by Ps.

6. Consider the vector space P5 of cubic polynomials ag + ax + a2x2 + a3x3 in
Exercise 5. Give two examples of classes of cubic polynomials that belong to
subspaces of P3, and one example of a class of cubic polynomials that does not
belong to a subspace of P3, and explain why this is so.

7. Let V be the set of all real-valued continuous functions of a real variable x
defined over the interval a < x < b, where addition and scaling are defined in
the usual way. Show that V' is a real vector space.

8. Let W be the set of all differentiable real-valued functions of a real variable x
defined over the interval ¢ < x < b, with addition and scaling defined in the
usual way. Is W a subspace of the vector space P53 in Exercise 5? Give reasons
for your answer.

9. Using the ordinary definitions of addition and scaling, show the set of vectors V
formed by all real and continuous functions of a real variable x such that their
integral over the interval a < x < b exists is a real vector space.

10. In Exercise 7 let the set of functions in V be replaced by the set of all real-
valued discontinuous functions defined over the interval a < x < b. What
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11.

12.

13.

14.

15.

16.

17.
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restriction, if any, must be imposed on the functions in V if their integrals over a
< x < b are to form a vector space ?

A function f{x) defined over an interval a < x < b is said to be convex over that
interval if, for any two points P and Q on the graph of the function y = f(x), all
points on the chord between P and Q lie above the graph. Is the space V of all
convex functions over the interval @ < x < b a vector space under the ordinary
algebraic operations of addition and scaling? Give reasons for your answer.
Show, subject to the usual rules for multiplication and scaling, that the set of all
functions of the form f(x) = a + bsin 2x + ccos 2x, with @, b and c arbitrary real
numbers and 0 < x < 7, form a vector space V. Does the set W of all the
derivatives f'(x) of the functions f{x) form a subspace of V ? Give reasons for
your answer.

From amongst the set of vectors

vi=[1,-2,1,3, v>=[1,0,-1], vs=15, 0, 1, 1],
ve=[1,-1,1,-1], vs =[1, 0, 2, 1],

find a set that forms a basis for R*. Is your choice of four of the vectors in this
set the only ones that form a basis? If not, find a different set from amongst
the vectors v, to vs that will also serve as a basis for R*.

In the standard ordered basis for R* a vector v = [3, 1, 2, 0]. Find the form of v
in terms of the basis vectors{vy, v,, v3, v4}, giventhat v = [1, —1, 1, —1], v, =
[1,1,0,0],v3=1[0,1,0,1], v4 =[1, —1, —1, 1].

In the standard ordered basis for R® a vector v = [1, 3, —2, 1, 2]. Find the form
of v in terms of the basis vectors{vy, v,, V3, V4, V5}, given that vi = [1, 0, 0, 0,
11,v»=[1,1,0,0,1],v3=1[0,1,1,0,1],v,=[1,0,1,0,1],vs=[0,1,0, 1, 1].
Two other norms are often used when working with vectors in R, called the

1-norm denoted by ||.||, and the infinity norm denoted by ||.|| ., where the dot is
a placeholder for the vector quantity whose norm is required. These norms are
defined for a vector u = [uy, u,, ..., u,] by

l[ully = fur| + Jua] + - - 4 fun

and

||uH:>o = maX{M17u27 Ty Mn}'

Show these definitions satisfy N1 to N4 in Definition 7.1.4.

Use the axioms of Definition 7.1.3 to prove the following properties of an inner
product:

€y <0v v) = <V’ 0) =0,

(i) (u,v+w) = (u,v) + (u,w),

(i) (u,kv) = k(u,v).



7.9 Some Comments on Infinite-Dimensional Vector Spaces 235

18.

19.

20.

21.

22.

23.

24.

25.

26.

Let u and v be two arbitrary vectors in the vector space R". Give a mathematical
justification of the fact that, in general, proj,u # proj,v, and illustrate this
situation graphically when u and v are vectors in R*. For what relationship
between u and v, if any, can the inequality sign between the two projections be
replaced by an equality sign? Verify that proj,u # proj,v whenu = [1, 2, 3] and
v =[1, 2, 1], and find the angle between these vectors.

The vectors u; = [1, —1,1], u, = [1, —1, —1] and w3 = [1, 1, —1] are the
vectors used in Example 7.1.1 arranged in a different order. Find an equivalent
orthonormal set of vectors, and hence show these vectors are not those found in
the example.

Check that the vectors u; = [1, =2, 1], u, =[1, 1, 1],u3 =[—1, 0 1] are linearly
independent, and find an equivalent orthonormal set of vectors.

Check that the vectorsu; =[1,1,1,1],u, =[1,0,1,1],us=[1, —1, —1, 0] and
uy = [0, 1, 1, 0] are linearly independent and find an equivalent orthonormal set
of vectors.

Let u; and u, be any two linearly independent three element vectors, and us be
such that u3 = au; + fuy, where o and f are arbitrary real numbers, not both of
which are zero. Use the Gram-Schmidt orthogonalization process together
with the definition of an orthogonal projection of a vector in the direction of
another vector to show the process will generate two orthogonal vectors v; and
v,, and a third null vector v3 = 0. For the case n = 3 this justifies the result
stated previously, that if only two of the three vectors u;, u, and us are linearly
independent, the Gram—Schmidt orthogonalization process will only gener-
ate two orthogonal vectors that span the same subspace as the one spanned by
the vectors u; and u,. The result extends immediately if, for n > 3, only m < n
of the vectors uy, uy, ..., u, are linearly independent, because then only m
linearly independent vectors will be generated.

Find the vector q with magnitude and direction equal to the vector projection of
p = [2, 1, 4] onto the two-dimensional subspace W with basis W = {[1,-2, 1],
[1, —1, 1]}, and hence find ||q]|.

Find the vector q with magnitude and direction equal to the vector projection
of p=[1,—1,—1, 2] onto the three-dimensional subspace W with basis W =
{[1,0,1,—1], [0, 1,0, 1], [1, 0, —1, 0]}, and hence find ||q]|.

The position vector p on an ellipse in the (x, x;)-plane, centred on the origin,
with its axis of length a along the x;-axis and its other axis of length b along the
Xp-axis, has the parametric representation p = [a cos ¢, b sin ¢, 0], with 0 < ¢ <
2n. Find the parametric representation of the projection of this ellipse onto a
plane IT that contains the x;-axis and is rotated about it until it is inclined to the
(x1, xp)-plane at an angle o, with —m/2 < « < m/2. Name the shape of the
projected curve.

The parametric form of the position vector on a space curve C in R® is p =
[a cos t, bsin t, t2], for 0 < ¢ < 2n. Find the parametric form of the equations
describing the projection of C onto (a) the (x;, x;)-plane and (b) the (x, x3)-
plane.
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28.

29.

30.
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Solve Example 7.7 using the geometrical unit vectors i, j and k together with

geometrical reasoning. Compare the effort and geometrical insight that is

required with the routine approach used in Example 7.7.
The differential equation y” + n?y = 0 has for its solutions the infinite set of
functions sin x, sin 2x, sin 3x, . .., 1, cos x, cos 2x, cos 3x, . . ., corresponding to
different values of n. These form an orthogonal set of functions with respect to
the weight function p(x) = 1 over the interval —t < x < m, with the inner
product <u,~, uj> = ffn u;(x)u;(x)dx, where vectors u; (x) and u,(x) are any two
vectors (functions) belonging to the set. Prove the orthogonality of these
functions with respect to the weight function p(x) = 1 by showing that

s T
. . . 0, m#n
sinmxcosnx = 0, for all m,n sin mx sin nxdx = , m#
—-n —r T, m=n
and
- 0, m#n
/ cosmxcosnxdx =< m,m=n#0
- 2n, m=n=0.

Find the norms ||sin 72x|| and ||cos nx||, and hence an equivalent orthonormal
set of functions. This system of orthogonal functions is used in the development
of Fourier series.

The differential equation

(1 =) —xy +n’y =0,

with n =0, 1, 2, ..., is called the Chebyshev equation of order n. For each
value of n the equation has a polynomial solution of degree n that is defined
over the interval —1 < x < 1, and these form an orthogonal system with respect
to the weight function p(x) = 1/v1 — x2. Corresponding to n = 0, 1, 2, 3, the
first four of these polynomial solutions, called Chebyshev polynomials, are

To(x) =1, Ti(x) =x, Ta(x)=2x*—1, and T3(x) = 4x> — 3x.
Use the inner product (w;,w;) = 1 u;(x)u;(x)/v1 — x2dx to prove the

orthogonality of the polynomials T;(x) with respect to their weight function
when they are considered as vectors ug(x), uy(x), u(x) and uz(x).

The differential equation

(1 =22y —2xy' + n(n+1)y =0,
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withn =0, 1,2,...,is called the Legendre equation of order n. For each value
of n the equation has a polynomial solution of degree n defined over
the interval —1 < x < 1, with respect to the weight function p(x) = 1. As the
equation is homogeneous, each of these solutions can be scaled arbitrarily.
Corresponding to n = 0, 1, 2, 3, these polynomial solutions can be taken to be
up(x) = 1, uy (%) = x, up(x) = 3x> — 1, and us(x) = 5x°> — 3x.

Prove that when these functions are considered as vectors ug(x), uy(x), ux(x)
and us(x) with inner product (u;,u;) = fil u;(x)u;(x)dx, the vectors are mutu-
ally orthogonal with respect to the weight function p(x) = 1. These functions
are scaled by a factor p,, to form the functions P,(x) = p,u,(x), called
Legendre polynomials of degree m, where the scale factors p,, are chosen
such that

2
2
mYm = 7”1207172737-"

Find the form of the Legendre polynomials Py(x) to P5(x).






Chapter 8
Linear Transformations and the Geometry
of the Plane

8.1 Rotation of Coordinate Axes

This chapter provides an introduction to the concept of a linear transformation, with
initial motivation in this section provided by considering the rotation of orthogonal
coordinate systems in two and three space dimensions. A more systematic study of
linear transformations will be given in Section 8.3 though there, for simplicity, the
discussion will be confined to linear transformations that are of importance when
studying the geometry of the Euclidean plane. Even the simple transformations
considered in this chapter are useful, because their geometrical interpretations find
applications in topics as diverse as elasticity, crystallography and computer graphics.

A typical geometrical example of a linear transformation in the plane is the
transformation encountered in connection with Fig. 3.1 of Chapter 3. There the
effect on the coordinates of a point in the plane was considered when the (x, y)-axes
were subjected to a counterclockwise rotation about the origin through an angle 6.

Such a rotation was shown to transform a general point P in the (x, y)-plane
into a the corresponding point in the-(x’, y') plane by means of the coordinate
transformation

X =xcosO+ysin0, y = —xsin0+ ycos0. 8.1

In terms of matrices, this transformation becomes

x = Ax, (8.2)
where
cosf  sinf X Y
A= {sin@ cos@}7 X= {y}’ X = {y/} (8.3)

The coordinates in the rotated configuration are seen to be determined by the
four elements in matrix A, so it is appropriate to call A a two-dimensional rotation

A. Jeffrey, Matrix Operations for Engineers and Scientists, 239
DOI 10.1007/978-90-481-9274-8_8, © Springer Science+Business Media B.V. 2010
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matrix. For later use, notice that sin0 = cos(3n — 0) and — sin 0 = cos(3n + 0),
so all of the coefficients of A can be interpreted as cosines of angles between the
respective primed and unprimed axes, with the result that A can also be written

B cos 0 cos(3m — 0)
cos(3m + 0) cos 0 84)
In component form, the coordinate transformation X' = Ax then becomes
X =ayx+any, y = anx+ any, (8.5)

where aj; = cos0, a;, = cos(%n —0), ay = cos(%n +0) and ay = cosf. The
geometry of the situation in terms of the angles 6, %n — 0 and 37 + 0 is shown in
Fig. 8.1.

Notice that when 8 = 0, corresponding to there being no planar rotation of
axes about the origin, matrix A reduces to the 2 x 2 identity matrix I. Consequently,
the effect of this transformation is to leave the original configuration of axes
unchanged. So when A =1, it is appropriate to call the transformation x’ = Ix an
identity transformation. The effect of a clockwise rotation about the origin is
obtained by reversing the sign of 6.

An examination of (8.4) shows that matrix A describes the nature of the
transformation, while the equations in (8.5) show how the transformation relates
the primed and unprimed coordinate systems.

In the context of the vector space R* where this transformation takes place, the
point (x,, y,) can be considered to be the tip P of a space vector r in the (x, y)-plane
with its base at the origin, so the result of the transformation is to keep the norm of
r unchanged (see Section 3.1) while rotating the coordinate system through an
angle 0. Geometrical reasoning shows that if the coordinate system (x, y) is
subjected to the successive rotations 0, and 0,, the result will be the same as a
single rotation through the combined angle 6, + 6,. The same geometrical
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reasoning asserts that the effect of a rotation through the angle A0, with A any
number, will be the same as the effect of performing a rotation through the angle 0,
and then scaling the angle of the resulting rotation by /.

To make this argument more formal, let T(0) represent the effect on the
coordinate system produced by its counterclockwise rotation about the origin
through an angle 0. Now consider the two successive rotations about the origin in
the plane described in matrix form by the transformations

x' = Ax and X = Bx’ (8.6)
and when these rotations are performed in succession they are equivalent to
X = BAx, 8.7

where

[ cosf; sin6, ] [ cost sinb, } {x]
A= . , B= . , X = )
—sinf; cosb; —sinf, cos0, y

<[] x-[3]

Evaluating the matrix product BA, and using elementary trigonometric identi-
ties, it is easily shown that

(8.8)

cos(; + 6,) sin(0y + 6,)

—sin(6; + 62) cos(6) +62) | 8.9)

BA - |

Recalling the interpretation of the rotation matrix in (8.4), and using the notation
T(0) to indicate a counterclockwise rotation about the origin through an angle
0, this last result shows that the rotation operation T is linear, because it is
equivalent to

T(01 + 0>) = T(01) + T(0>). (8.10)

From the geometrical interpretation of T(0), it follows directly that T(A6)
represents a counterclockwise rotation of the coordinate system about the origin
through an angle A0, so in terms of this notation we have

T(i0) = AT(0), (8.11)

which is another linear property of the rotation operation T. The matrix product BA
in (8.9) describes the nature of the successive transformations, while (8.7) describes
the effect the transformation has on the respective primed and unprimed coordinate
systems.
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The two important properties just exhibited in (8.10) and (8.11) are not particular
to this example, because it will be seen later that they are the two properties used to
define a general linear transformation.

It will be useful to generalize the situation in Fig. 3.1 (equivalently Fig. 8.1) to
a rotational transformation about the origin of an orthogonal system of axes in
the three-dimensional Euclidean space R, corresponding to a transformation from
R’ to R’. However before doing this, to permit generalization to the space R”, we
will switch to the more convenient notation used previously, where the coordinates
X, y and z are replaced by xq, x, and xs.

A vector r is shown in Fig. 8.2 with its tip P at the point (1, 7, 73), relative to an
orthogonal set of axes O{xy, x5, x3}, with the unit basis vectors e;, e, and e; along
the respective axes. The axes are then rotated about the origin to a new position,
where they become the system O{ x|, x5, x5}, with corresponding unit basis vectors
¢'1, €, and €' along the respective rotated coordinate axes. The position of the
new coordinate system relative to the old one is determined by specifying the angles
o1, 0o and o33 between the corresponding primed and unprimed axes. These
angles are shown in Fig. 8.2, together with some other angles that show how the
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Fig. 8.2 The rotation of an orthogonal three-dimensional coordinate system O{ x1,x,.x3} about
the origin to form the system O{ x|, x5, x}}
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notation a,,, is used to signify the angle between the mth primed axis and the nth
unprimed axis.

The general position vector r of a point in the first reference frame in terms of a
matrix column vector becomes r = [ry, 7, r3]T, or r = rye; + rpe; + rzesz in terms
of the original geometrical unit vectors ey, e, and e;. In the new reference frame it
becomes r’ = [r], 1}, rg]T, orr' = rie'| + 1€, + r3e'3 in terms of the unit vectors
¢', ¢, and €'3 in the new reference frame. Setting a,,, = cos a,,,, an examination
of the Cartesian geometry involved shows, as in the two-dimensional case (8.5),
that the transformation of coordinates in terms of cosines can again be described in
terms of the angles o, through the coefficients a,,, as

!
X1 = apX) + apx; + apxs,
/
X' = ax x| + apx; + ayxs, (8.12)

/
X3 = az x| + anx; + azxs.

In terms of matrices Eq. (8.12) become

x = Ax, (8.13)
with
/
ain  dip adis X1 X1
!/ /
A= daz; dy Ay , X=|XxX2|, X =1|X2]. (814)
/
asy  dsz  dadss X3 X3

This shows that in the three-dimensional case the coordinates of r in the new
configuration are determined by the nine coefficients (elements) a,,, in matrix A, so
A will be called a three-dimensional rotation matrix. It is instructive to discover the
relationship between matrix A in (8.14), and matrix A in the two-dimensional case
in (8.4). To simplify matters, let us consider a rotation that only takes place around
the x3-axis (that is around the old z-axis). Then, because each of the angles o3, %3,
o3 and o3, between the primed and unprimed axes is equal to m/2, the terms a3,
a3, az; and as, all vanish, while az; = 1 because o33 = 0. These results reduce the
transformation matrix A in (8.14) to

an ap 0
A= azr dax 0] . (815)
0 0 1

The presence of the element 1 in (8.15) means that x; = x3 (that is / = z), so
all points in any plane x3 = const. behave in exactly the same way as points in
the (x;, xp)-plane when x3 = 0, which is the (x, y)-plane in (8.4). So the three-
dimensional case behaves like a rigid body rotation about its x3-axis.
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Fig. 8.3 The angles «,,, in A
terms of o X'3=Xg
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The meaning of matrix A in (8.15) can be clarified by considering Fig. 8.3,
which shows the appropriate angles a,,, expressed in terms of the single rotation
angle o about the x3-axis.

An examination of Fig. 8.3 shows that a;; = cosay, app = cos(%n — ),
ay) = cos(%n + ayy) and ax = cosoyy, so the three-dimensional rotation matrix
takes the form

cos o cos(%n —oap) O
A= cos(%n + oq1) COS o1 0|, when x' = Ax. (8.16)
0 0 1

Recalling that in (8.4) the angle 0 = o, the rotation matrix A in (8.16) is seen
to describe a rigid body rotation about the x3-axis represented by the top 2 x 2 block
of terms, together with an identity transformation with respect to the x;-axis,
represented by the single element 1.

By virtue of its construction, matrix A in (8.16), like matrix A in (8.4), is an
orthogonal matrix, so A~" always exists and is given by A~' = A™. Consequently,
x = A~!'x' = ATX'is the inverse transformation that always exists and reverses the
effect of the rotation just described. Combining the original and inverse matrix
transformations gives x = A~ 'Ax = Ix = x, as would be expected. So the effect
produced by the rotation matrix A is reversed by an application of the inverse
rotation matrix A", leading to a rotation matrix I that corresponds to the identity
transformation, where the system is left unchanged after the successive transforma-
tions have been performed.

Similar reasoning shows that when the rotation represented by matrix A in (8.13)
is about only the x-axis, or about the x,-axis, the same linearity properties found in
(8.10) and (8.11) again apply. For example, to show what happens when successive
rotations occur about the xs-axis, irrespective of the order in which they are
performed, it will suffice for us to establish result (8.9) in terms of two rotations
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about the x3-axis, one through an angle «;, and another through an angle &;;. The
corresponding rotation matrices are

COS 01 cos(3m —ay) 0
A = | cos(3m + o) Cos 01 0
0 0 1]
and
[ cosay cos(in —ay1) 0]
B = |cos(in+ay) Cos ;| 0
o 0 1]

Forming the matrix products BA and AB, and simplifying the result, gives

cos(ory +a11)  cos(3m— oy —dyy) O
BA = AB = COS(%R+O€11+5€11) COS(0611+5C11) 0 ,
0 0 1

confirming that property (8.10) holds with respect to these rotations about the
x3-axis independently of the order in which they occur. As would be expected,
displacements along the x;-axis are not affected by these rigid body rotations.
Notice that property (8.11) is also true for the three-dimensional case for the
same reason it is true for the two-dimensional case.

8.2 Linear Transformations

It is now necessary to give a formal definition of a linear transformation, though
before doing so attention must be drawn to the fact that linear transformations do
not necessarily have simple geometrical interpretations, because they are often
between very general vector spaces.

Definition 8.1. A Linear Transformation

Let x;, x, and x be any vectors in a vector space X, and let \ be a scalar in the field
of real numbers R. Then a linear transformation T is a transformation between a
vector space X and a vector space Y such that to each vector x in X there
corresponds a unique vector'y = T(X) in Y and, in addition, the transformation T
has the following fundamental properties

T(x; +x2) = T(x)) + T(x2) (linearity permits additivity)
and

T(Ax) = AT(x). (linearity permits scaling).
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Notice from this definition that a general linear transformation, denoted here by
T, is a transformation between two vector spaces X and Y that do not necessarily
have the same dimension.

When examining the properties of coordinate rotations in Section 8.1, it was
established that each possessed the additivity and scaling properties required of a
linear transformation. Consequently, as both two and three-dimensional coordinate
rotations satisfy the conditions of Definition 8.1, each is an example of a linear
transformation.

Before considering an example of a general linear transformation with no
particular geometrical significance, we will first make a direct application of
Definition 8.1 to the projection operation defined in Chapter 7.

Example 8.1. Show that the projection operation defined in (7.35) of Chapter 7 is a
linear transformation.

Solution. The projection operation involving the projection of a vector p in a vector
space V onto a vector u in a subspace W of V was defined in (7.35) as

u

—~
Re¥

u _p,u
luf  (u,u

Projy_wu) (P) u. (8.17)

=

Denoting the projection operation in (8.17) by T(p), and setting p = p; + p,, it
follows directly from the properties of the inner product (p,u) in T(p) that

T(p, +p2) = T(p;) + T(py), (8.18)

while replacing p by Ap, with 4 a scalar, it also follows that
T(Ap) = AT(p). (8.19)

Results (8.18) and (8.19) show the projection operation satisfies the two key
properties of linearity required by Definition 8.1, so the projection operation is
another example of a linear transformation.

The next Example of a linear transformation is of a more general nature, without
the geometrical interpretation that was possible in the case of coordinate rotations
and the projection operation.

o

Example 8.2. The transformation T between a two-dimensional vector space X,
containing vector X = [xy, xz]T, and a three-dimensional vector space Y, containing
the vector y corresponding to X, is given by y = T(x) = [x;, 2x; — x2, x| + 2x,]".
Show how T transforms the vectors x; = [1, —1]", x, = [4, 3], and x; = 0 =
[0, O]T in R* into vectors in R*, and prove that T is a linear transformation.
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Solution. First it is necessary to explain the notation that is used. It means
that column vector T(x) = [x;, 2x; — x2, X1 + 2x2]T, with the three elements
X1, 2x; — X and x; + 2xp, is to be interpreted as a column vector in R? obtained
by combining the two elements x; and x, of the vector X = [x;, x,]" in R?. The first
element of T(x) =y is the element x; of x, the second element, namely 2x; — x»,
is formed from the two elements x; and x, of x, while the third element of, namely
X1 + 2x», is also formed from the two elements of x.

We now show how T transforms the vectors x; = [1, fl]T, x, = [4, 3]T, and
x3 =0=0, O]T in R? into vectors T(x) =y in R®. The substitutions x; = 1 and
x, = —1, show that y, = T(x;) = [1, 3,—1]", while the substitutions x, = 4
and x, = 3 show that y, = T(x;) = [4, 5, 10]T. Similarly, the substitutions x; = 0
and x, = 0 show that y; = T(x3) = T(0) = [0, 0, 0]", illustrating the fact that the
zero vector 0 in R? is transformed into the zero vector 0 in R>.

To prove that T is a linear transformation, we must show it possesses the two key
properties of additivity and scaling in Definition 8.1. Let x; = [&;, &1 and x, =
(71, nz]T, then x; + x, = [&; + 11, & + nz]T, so the first component of x; + x; is
&1 + ny, while the second component is &, 4 1,. Forming T(x; + x,), separating out
terms corresponding to T(x;) and T(x,), and using the property of vector addition,
we find that

T(xi +%0) = [& + 10,28, + 20 — & —mp, & +my + 28 + ]

X [E1,28) — &, & 28] + [0y, 2n, — mp,my + 2m,
= T(X]) +T(X2)

]T

Next, let x; = [}, &]" be an arbitrary vector, then Ax; = [2&, AE I]T. Forming
T(/x;), and using the scaling property of vectors, we find that T(1x;) = AT(x;).
Thus T possesses the properties of additivity and scaling, so T it is a linear
transformation.

o

A linear transformation is a special and very important example of a mapping
between two vector spaces. Such mappings, or transformations, establish a proce-
dure that assigns to every vector X in space X a vector y in space Y called the image
of x. To clarify the relationship between x and y, when referring back to the space
X from space Y, the vector X is called the pre-image of vector y. The space X is
called the domain of the mapping T, and the space of vector images in Y
corresponding to the mapping y =T(x) of vectors x in X is called the range of the
mapping T, denoted by R(T). The range R(T) of T need not necessarily contain
every vector in space Y, and this general situation is represented symbolically in
Fig. 8.4a, where T maps space X onto only a part of space Y. However, when
the mapping T is such that R(T) and Y coincide, T is said to map X onfo Y and this
situation is represented symbolically in Fig. 8.4b.

It is usual to adopt the standard notation when referring to transformations
between vector spaces, and to do this the transformation of vector x in R” to a
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Fig. 8.4 (a) Mapping by T of
vectors in space X onto the
range R(T) that lies strictly
within space Y. (b) Mapping
by T of vectors in space X
onto the range R(T), when
R(T) and space Y are
identical

vector y in R™ is denoted by writing T(x): R" — R™. Tt is useful to display this
transformation more clearly by writing it as

X1 Y1
X2 Y2
Tx)=T| | = |77. (8.20)
Xn Ym
n elements m elements

The effect of transformation T on the components of the vectors x and y depends
on both T and the choice of the bases X and ); so it must be remembered that
neither of these bases need necessarily be the standard ordered bases used above.
Should it become necessary to emphasize this dependence on different bases this
can be shown by writing T yy. However, in the basic geometrical applications
that are to follow, the transformations T will all be particularly simple, because
they will be from R 1o Rz, and the bases X and ) used will each be the standard
ordered basis for R So in this case the bases X =) = {e, e} of the spaces
X and Y coincide. Because of this simplification, the notation Tyy can be
abbreviated to T.

When developing the linear transformations that describe coordinate rotations,
matrices entered in a natural way. We now show that the use of matrices is not
restricted to these examples, because a general linear transformations T from R " to
R ™ can always be interpreted as the product of a suitable m x n matrix and an n x I
matrix column vector.
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As usual, in what follows a vector x in R” will be written as the n element matrix
column vector X = [x,xz,. .. ,x,,}T, while a vector y in R " will be written as the
m element matrix column vector y = [y;,ys, . .. ,ym]T, where for simplicity in what
follows the basis for R” will be the usual standard ordered basis

1 0 0
1 .
e =|.[,e=|.],....,e,=|. all with n elements, (8.21)
0 0 1

though this basis could be replaced by any equivalent basis. Similarly, for the basis
Y of the space R™ to which y belongs, for simplicity we will again take the set of
m element column matrices ) = {e’1,€'5,...,€,} that form the standard ordered
basis for R™, though this could also be replaced by any equivalent basis.

Any column vector y in R ™ can be represented as a linear combination of the
vectors

1 0 0
/ O / 1 / .
er=|.|.e2=|.|,..,€n=|. all with m elements, (8.22)
0 0 1
so the matrix column vector y = [y, ya, ..., ¥»]" can be written
y=yi€ |+ €+ yue, (8.23)

An application of the linear transformation T to (8.21), will lead to the introduc-
tion of the transformed basis vectors T(e;), T(e,)...., T(e,), each with m elements.
These transformed basis vectors in (8.21) will be written

[ap ] ap
any an
T(e:) = , T(ex) = s
L dmi1 - am (824)
dain
da
T(e,) = | . all with m elements.
_amn_

For each i, the m components of the vector T(e;) are obtained by setting x = e;
in T(x), where for the standard ordered basis this corresponds to setting x; = 0,
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X=0,...,%5-1=0,x, = L,xiz:1 =0,...,x,-1 =0, x, =0 in T(x). As a result,
y can be written in terms of the m X n matrix

A =[T(ey), T(es), ..., T(e,)], (8.25)

with its columns the m element column vectors T(e;). As a result, the m element
column vector y is given by the matrix product

y = Ax. (8.26)

Matrix A provides a unique representation of T(x), because the coefficients a;; in
A are uniquely determined once the basis for R " has been chosen, and the nature of
the linear transformation T has been specified. So we have succeeded in showing
that a linear transformation from R" to R™ can be represented as the product of an
m X n matrix and an n element matrix column vector. The matrix A, based on the
use of the standard ordered basis in (8.21), is called the standard matrix represen-
tation of the linear transformation T.

The advantage of matrix representations of linear transformations is that they
allow linear transformations to be combined in a simple manner. For example, if
y = Ax and x = Bz are general linear transformations, and not necessarily coordi-
nate rotations, the linear transformation from y to z is given by y = ABz, without
the necessity of first finding the transformation from x and y, and then the effect of
the transformation from y to z, This process of successively combining transforma-
tions is called the composition of transformations.

Result (8.26) represents the fundamental way in which linear transformations
between the spaces R” and R can be represented, so this fundamental result will be
stated as the following theorem.

Theorem 8.1 Matrix representation of the transformation T(x): R" — R™

All transformations T(x): R" — R™, where T(x) =y, can be represented in the form
of a matrix transformation T(x) = AX =y, where A is an m X n matrix, Xisann X 1
matrix column vector and 'y is an m x 1 matrix column vector. If, instead of the
standard ordered basis for R", an arbitrary ordered basis B is used, where the basis
B ={by, by, ..., b,}, thenthe ith column of A becomes T(by), withi=1,2, ... ,n.
2
Of special interest are transformations from a vector space U onto a vector space
V with the property that each vector x in U is mapped onto a unique vector y in V
and, conversely, each vector y is the image of only one vector x. These are called
one-one transformations, or mappings, and this property is often shown by saying a
transformation is 1:1 or one-to-one.

Definition 8.2. One-One Transformations

A linear transformation T(X): U — V is said to be one-one if for any two vectors X
andy in U, x #y implies T(x) # T(y) or, equivalently, the linear transformation is
one-one if T(x) = T(y) implies that x =y.

O
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In what follows, interest will be confined to the case when the vector spaces U
and V in Definition 8.2 are both the space R", so the transformation is of the form
T(x): R" — R". In this case the transformation converts a vector X in the space
R" into a vector y also in R". Theorem 8.1 allows such a transformation to be
represented by the matrix equation Ax = y, where A is an n X n matrix, with x
and y n X 1 column vectors. A unique vector x in R” will determine a unique vector
y that is also in R”, but for such a transformation to be one-one it is necessary that the
pre-image of any vector y must determine a unique vector X. Matrix A will determine
a unique vector y through the matrix equation Ax =y, and provided A is nonsingular
the transformation will have a unique inverse A", in which case vector y will have
a unique pre-image X given X = A~ 'y. So, in this case, the condition for the
transformation to be one-one is simply that the n X n matrix A is nonsingular.

Two examples of this type that have already been encountered arose when two
and three-dimensional rotation matrices were introduced. Each rotation matrix was
an orthogonal matrix, but when A is orthogonal AT = A™!, 5o that both of these
transformations are one-one. In summary, if Ax =y, the inverse transformation is
given by x = A~ 'y, provided detA # 0.

When a transformation is between spaces of different dimensions it is harder to
decide if the transformation is one-one. However, when the spaces are each of low
dimension, a direct approach is all that is necessary to establish the explicit
relationships between the vector x, its image y and, when it exists, the unique
pre-image of y.

Example 8.3. Determine the nature of the transformation Ax = y from R> to
Rz, where

2 -1 2
=154

when x = [x}, x5, x3]" and y = [y, y21".

Solution. As A is a 2 X 3 matrix it has no inverse, so the transformation cannot be
one-one. To examine the situation more closely, notice that any vector x in R* will
always determine a vector y in R?, but to determine when an arbitrary vector y =
[y1, y-]" in R? has a pre-image in R>, and if that pre-image is unique, requires a
careful examination of the transformation, which when expanded becomes

2x; —x2 +2x3 =y, and x; —x2 —3x3 = ys.

Only two equations for the three variables x; to x3 are involved, so solving for
x1 and x, in terms of x3, y; and y, as parameters gives

X1 ==5x3+y1—y2, XxX2=—8x3+y — 2.
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This shows that for any fixed vector y, the components x; and x, of vector x also
depend on x3, which is arbitrary. So, as vector X is not determined uniquely in terms
of the vector y, the transformation is not one-one.

%

Example 8 4. A transformation from R> to R* is represented by the matrix equation
Ax =y, where

1 2 1 i
1 -1 1 y
A= ,wherex = | x; | andy = 2
1 1 -3 N Y3
2 0 -1 3 V4

Show that not every vector y in R* is the image of a vector x in R*, and determine

the relationship between the components of y in order that it is the image of a vector
x in R?.
Solution. An arbitrary vector X = [xy, x», x3]" in R® will always give rise to a vector
Y = [y1, Y2, ¥3, y4]" in R*, but the system Ax = y represents four equations in the
three unknowns x;, x, and x3, and so is overdetermined. Thus, in general, an
arbitrary vector y in R* will not be the image of a vector X in R>.

It will be recalled that when examining system of equations of the form Ax = b
in Chapter 4, it was found that for a solution to exist it is necessary that
rank(A) = rank(A|b), where A|b is the augmented matrix. Thus for a solution y
to exist for the given A it is necessary that rank(Aly) = rank(A). A simple
calculation shows the reduced echelon form Ag of A is

0
Ag =

S O o
oS o= O

0
11’
0

showing that rank(A) = 3. Consequently the necessary condition for y to be the
image of a vector x in R* is that rank(A|y) = 3. To proceed further we write out in
full the matrix equation Ax =y,

X1+ 2x +x3 = y1,
x| — X2+ 2x3 =y,
X1 +x —3x3 =3,

2x1 — x3 = ys.

The reduced echelon form of A shows the fourth row of A is linearly dependent
on the first three rows, and it also tells us how to construct vectors y in order that
each such vector is the image of a vector x. It can be seen from the structure of Ag
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that while the first three components y;, y, and y3 can be assigned arbitrarily, the
fourth component y, must be compatible with fourth equation in the system of
equations AX =y, so it is necessary that y4 = 2x; — x3.

Solving the first three equations for x; to x5 gives

xi = (y1 +7y2 +5y3)/13, x2 = (Sy1 — 4y, — y3)/13,
x3 = (2y1 +y2 — 3y3)/13,

from which it follows that for y, to be compatible we must set y; = y, + y3
corresponding to y; = (7y; — 3y, — 4y3)/13.

So the way to construct a vector y that is the image of a vector X is seen to require
two steps. The first involves assigning y; to y; arbitrarily, and then using these
values to solve the first three equations for x; to x5. The second step, having found x;
to x3, is to use the fourth equation to find y, from the result y4, = y, + ys.

%

Example 8.5. Let T(x): R?> — R* be a linear transformation, with T(x) defined
as T(x1,x2) = [x1 + x2,X1 — x2,3x] + x2,%,]. Find the matrix representation of
T using the standard ordered basis ¢ = {[0, 1]T, [1, O]T} for R2, and hence find
how the vector x = [2, 3]T is transformed.

Solution. Setting x; = 1, x, = 0, we find that T(1, 0) =[1, 1, 3, O]T, while setting x;
=0, x, = 1, we find that T(0, 1) =[1, —1, 1, l]T, so in terms of the chosen basis
vectors the matrix representation of T determined by Theorem 8.1 becomes

11
1 -1

301

0 1

Substituting x = [2, 3]" in y =T(x) = Ax", shows thaty = Ax' =[5, —1, 9, 3]".
%

Example 8.6. Using the standard ordered basis, find the standard matrix representa-
tion for the linear transformation T(x): R* — R*, given that

T(X17x25x3) = [-xl + 2}(3,)(1 —X2,X2 +x37x3]-

Solution. Proceeding as in Example 8.5, and using the standard basis for R*, we
have

O O ==
— |
—_—

—_—— O N
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1 0 2 X1+ 2x3
1 -1 0] X1 — X
This is easily checked, because Ax= X !
0 1 1 N X2 + X3
0 0 1]t X3
= [x1 4 2x3,%1 —x2,00 +x3,33] " =T(x). %

The matrix representation of a linear transformation makes the following basic
properties of a linear transformations T(x): R” — R™ almost self-evident:

(i)T(0) =0, (8.27)
(ii) T(—x) = —T(x) for every vectorxinR", (8.28)
(iii) T(x —y) = T(x) — T(y ) for all vectorsxandyinR". (8.29)

It is left as an exercise to show these properties can be established directly from
the definition of a linear transformation, without appealing to the equivalent matrix
representation of the transformation.

Example 8.7. Let T be a linear transformation from R? to R, with e; to e3 the
standard ordered basis vectors for R®. Find the matrix representation for this
transformation if

2 1 1
T(261 + 62) =131, T(e1 — 62) = (0], T(ez -‘1-63) =11
0 3

Solution. As the standard matrix A = [T(e;), T(e,), T(e3)], to reconstruct it from the
given information it is necessary to find T(e;), T(e,) and T(e3). The linearity of the
transformation means that T(2e; + ;) =2T(e;) + T(e,), T(e; — e5) =T(e;) — T(e,)
and T(e, + e3) = T(e,) + T(e;). Adding the first two of these rewritten equations
gives

2 1 3 1
3T(e))= |3+ 0| =|3], soT(e)) = |1
0 3 3 1

Using this result in the second equation T(e;) — T(e;) =T (e;) — T(e,) gives

1 0
Te)=|1|-|0l=]1],
3 -2
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while from the third equation T(e, + e3) = T(e;) + T(e3). we have

1 1
T(e3) = 11— 1 =10
2 -2 4
Thus the matrix representation of T is
0 1
A= 1 0
-2 4

¢

It should be mentioned that any linear transformation T(x): U — V with the
property that T(x) = 0 for every vector x in U is called the zero transformation.

8.3 The Null Space of a Linear Transformation and Its Range

We now make a brief mention of some definitions and their consequences that are
of importance to all linear transformations, and in particular when the general
structure of linear transformations is studied. However, in this introductory account
it would be inappropriate to discuss some of the ways in which these results are
used, because this information belongs more properly to a more advanced account
of linear algebra.

Definition 8.3. The Null Space of a Linear Transformation and Its Range

Let T(x): U — V be a linear transformation of the space U in R" containing the
n x 1 vector x and the space V in R", where the transformation T is determined by
the multiplication of X by an m x n matrix A. Then the set of vectors X in the vector
space U that are mapped by A into the zero vector 0 in V is called the nullspace of
A, or the kemel of A, and denoted either by N'(A) or by ker(A). The dimension vy
of the nullspace is called the nullity of A. The range of the linear transformation
T determined by A, denoted by R(A), is the set of all vectors in 'V that correspond
to the image of at least one vector in U, so that R(A) = the column space of A.
O
Two properties of a linear transformation T determined by A that follow almost
immediately from Definition 8.3 are:

(a) The nullspace N (A) of Ais a subspace of U. (8.30)

(b) The range R(A) of Ais a subspace of V. (8.31)
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That A/(A) belongs to U is obvious, but to show it is a subspace of U it is
necessary to show N (A) satisfies the conditions for a linear transformation given in
Definition 8.1. This follows because the linearity of the transformation means that
for any two vectors x; and x, in U, A(X; + x,) = AX; + AX,, but if X; and x, belong
to A(A) we have Ax; = Ax, = 0, s0 A(X + x) = 0. Similarly, if & is an arbitrary
real number, A(kx;) = kAx,, but as x; belongs to A'(A) we have Ax; = 0, so A(kx,)
= 0, and result (a) is established. The proof of result (b) is left as an exercise.

When T(x): R" — R™ is represented by a matrix A, the range R(A) must
coincide with the column space of A, but the row and column ranks of A are the
same, with each denoted by rank(A), so we arrive at the result

rank(T) = rank(A). (8.32)

As N(T) = the dimension of the null space of A, which is equal to N'(A), it
also follows that

N(T) = N(A). (8.33)

We are now in a position to establish an important connection between the rank
of a transformation represented by a matrix A, and its nullity vo. Let Abe anm X n
matrix. Then if rank(A) = r, precisely r rows of A are linearly independent.
Consequently, the remaining rows of A that are solutions of Ax = 0 must belong
to the nullspace A/ (A) of A with dimension equal to the nullity v,. However, the
sum rank(A) + v4 must equal the number of vectors in the basis for the space,
which in turn must equal the dimension of the space R", so we have proved the
following important relationship.

Theorem 8.2 The Rank Nullity Theorem

Let A be an arbitrary real m X n matrix, then
rank(A) + va = n.

*

Example 8.8. A linear transformation A(x): R* — R? of a vector x in R* to a vector y
in R? is described by the matrix equation Ax =y, where

-1 2 -1 -2 i‘ i
A=|0 2 2 1], x= xz andy = |y
2 1 0 3 3 3

X4

(i) Find the nullspace N (A) of A, and hence the nullity v of A.

(ii) Verify Theorem 8.2.

(iii) Given that x = [a, b, c, d]T, for what values of a, b, ¢ and d, if any, will the
vectors y; = [1,2,3]", y, =[0,2,4]" and y; = [~ 1, 2, —5]" belong to R(A).



8.4 Linear Transformations and the Geometry of the Plane 257

Solution. (i) The four component column vectors x will be in N'(A) if Ax = 0,

QAU o T

so  setting x|:} we must solve the matrix equation

-1 2 -1 2]y 0 . )
0 2 2 1 | =|o]| for a, b, ¢ and d. This reduces to solving
21 0 3 ; 0

the algebraic system of equations

—1+42b—c—2d=0,
2b+2c+d=0,
2a+b+3d =0.

The solution of these homogeneous equations in terms of ¢ as an arbitrary
parameter is a = 3¢, b = 0, ¢ = ¢ (arbitrary) and d = —2c, so the vector in N/ (A)
must be of the form x = [3¢ 0 ¢ —2¢]". The vector x is the solution of a
homogeneous set of equations and so can be scaled arbitrarily, so setting c = 1 we
find the only vector in the nullspace N'(A) isx = [3 0 1 —2]". Consequently
the dimension of the nullspace N'(A) is vq = 1.

(ii)) We have n = 4, and a check shows that rank(A) = 3, so as v4 = 1 the result of
Theorem 8.2 is confirmed, because rank(A) +vy =3+ 1 =4 =n.

(iii) The image y = [p, ¢, r]" in R? of an arbitrary column vector X = [a, b, ¢, d]" in
R* is determined by the matrix equation Ax =y, so that

—1+2b—c—2d=p,
2b+2c+d=gq,
2a+b+3d=r.

As there are three equations connecting four unknowns, this system may always
be solved for any p, ¢ and r, in terms of ¢ as an arbitrary parameter. So y;, y, and y3
must all belong to R(A). It follows directly that all vectors y belong to R(A).

o

8.4 Linear Transformations and the Geometry of the Plane

In this final section, linear transformations described by matrices will be used to
establish some simple results concerning the geometry of the plane. The linear
transformation T(x): X — Y from R” to R will be in the form y = Ax, where A is
ap  ap
ax  axn
vector space X, and vector y = [yy, y,] * belongs to the vector space Y. Specifically,

the matrix A = [ } with real elements, vector X = [x{, X] © belongs to the
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the transformation will map vectors x = [%}, JZZ]T in space X, that is points in the
(21, x)-plane, into vectors y = [ ,iz]T in space Y containing points in the (y, y;)-
plane. The elements of x will represent the Cartesian coordinates (xi, x,) of a point
in the space X, while the elements of y will represent the Cartesian coordinates
(v1, ¥») of a corresponding image point in space Y. When displayed explicitly, the
linear transformation becomes

{YI] _ [011 012} |:Xl:|, (8.34)
y2 az an||x2
or in scalar form

Y1 = apixi + appxa, (8.35)
Y2 = az1X1 + axnx;.

Theorem 8.3 Geometrical Properties of Transformation (8.34)

1. Provided det A # 0, the origin in the (x, x»)-plane (the space X) is mapped into
the origin in the (yy, y2)-plane (the space Y).

2. When det A # 0, the transformation maps arbitrary straight lines in the (xy, x»)-
plane into straight lines in the (yi, y»)-plane.

3. When det A # 0, the transformation maps parallel straight lines in the (xy, x)-
plane into parallel straight lines in the (y,, y,)-plane.

4. Whendet A # 0, straight lines in the (xy, x,)-plane that pass through the origin are
mapped into straight lines in the (yi, y»)-plane that also pass through the origin.

Proof.

1. The proof is trivial, because 0 = [0, 0]", so AlO, O]T = [0, O]T, showing the origin
in X space is mapped to the origin in Y space.

2. Let the straight line pass through the arbitrary point (o, ) in the (x;, x,)-plane,
then o and ff must be such that § = ma + ¢. From (8.35), the image of this point in
the (y1, y2)-plane, say the point (o, '), is determined by the equations

o = (a1 + appm)o + arzc,

B’ = (ax1 + anm)a + axnc.
Eliminating o between these two equations gives

(a1 +mapn)B = (ay + maxn)d — (anan — ana)c.
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However aj1a;; — ajpaz; = det A # 0 (by hypothesis), so this becomes
(a11 +ma)B = (az + may)o’ — (detA)c.

The point (e, ) in the (x1,x;)-plane was arbitrary, with (¢/, ') its image in the
(y1, y2)-plane. So replacing o/ by y; and f by y,, the image of the line x, = mx; +
c is seen to be described by the equation

(a11 + man)y, = (az1 + max)y; — (detA)c.

This is the equation of a straight line in the (y;, y,)-plane, so we have shown that
if det A # 0, any straight line in the (x{, x,)-plane that is not parallel to the x,-axis
maps to a straight line in the (y;, y,)-plane. This conclusion forms the main part of
result 2. There remains the question of how a straight line parallel to the x,-axis is
mapped by (8.35).

Setting x; = K in Eq. (8.35), where K is arbitrary, and eliminating x,, shows that
ainys = any; — (det A)K, which is again the equation of a straight line. So we have
proved all of the assertions in 2; namely that if det A # 0, then arbitrary straight
lines in the (x, x,)-plane, including those parallel to the x,-axis, map to straight
lines in the (y;, y,)-plane.

1. The proof of result 3 follows directly from the result
(ay1 +map)B = (ax; + maxn)o — (det A)c.

in 1, because parallel straight lines in the (x1, x)-plane all have the same slope m,
so they will map to straight lines in the (y,, y,)-plane corresponding to different
values of ¢, and hence the image lines must also be parallel.

2. Result 4 follows from the fact that straight lines in the (x;, x,)-plane will only
pass through the origin if c= 0, where from the result in 1 we see their images
must also pass through the origin.

*

Apart from requiring det A # O for the general properties 1 through 4 in Theorem
8.3 to be true, the value of det A in transformation (8.34) has two other important
consequences that are described in the following theorem.

In preparation for the theorem it is necessary to introduce the term orientation
in relation to the way a point moves around the boundary of an area in the plane.
By convention, when a point moves around the boundary of an area in the
counterclockwise sense the orientation of the trajectory described by the point
is considered to be positive, whereas if it moves around the boundary in the
clockwise sense, the orientation of the trajectory is considered to be negative.
Thus movement around the boundary of the unit square in Fig. 8.5a is positively
oriented if it follows the path OABC, while it is negatively oriented if it follows
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a b c
X2 4 it v
D’ c c’ D’
D <t C
Y A
A B X, A B Y. B A Yo

Fig. 8.5 (a) A positive orientation OABC of the unit square in the (x, x,)-plane. (b) A positively
oriented image of the unit square in the (y, y»)-plane. (¢) A negatively oriented image of the unit
square in the (y, y,)-plane

the path OCBA. Figure 8.5b shows a positively oriented image of the unit square
in Fig. 8.5a under the transformation y = Ax, while Fig. 8.5¢ shows an image of
the unit square that is negatively oriented. By Theorem 8.3(3) both of the images
must be a parallelogram.

It will be seen from Theorem 8.4 that the positive orientation in Fig. 8.5b follows
when det A > 0 in the transformation Ax = y, while the negative orientation in
Fig. 8.5¢ follows when det A < 0.

Theorem 8.4 Area Magnification and the Orientation of an Image

1. Let a triangle or parallelogram in the (xi, x,)-plane have area S, and let det A #
0. Then if AX =y, the area S of the image of the corresponding triangle or
parallelogram in the (yy, y»)-plane is S = |det A|s. So the absolute value of det A
is the area magnification factor when the shape is transformed from the (xy, x;)-
plane to the (yy, y,)-plane.

2. Let the boundaries of a triangle or parallelogram in the (x|, x»)-plane be
positively oriented. Then if det A > 0 the boundary of the corresponding
image triangle or parallelogram in the (y,, y,)-plane will be positively oriented,
while if det A < 0 the boundary of the corresponding image triangle or
parallelogram will be negatively oriented.

Proof.

1. To determine the magnification factor, transformation (8.34) will be applied to
the unit square OABC with unit area shown in Fig. 8.5a. The square is seen to be
located in the first quadrant of the (x;, x,)-plane with a corner located at the
origin and its sides parallel to the axes. Properties 1 and 2 show the transforma-
tion will change the square into a parallelogram O’A’B'C’ with area S, as in
Fig. 8.5b, with its corner O’ located at the origin of the (y;, y,)-plane, because O’
is the image of O. From (8.35), the respective coordinates of O'A’B'C’ are (0, 0),
(ai1, az1), (@r1+ain, azi+az) and (aq2, asy). The linearity of the transformation
ensures that the magnification factor will remain the same between any triangle
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or parallelogram in the (x;, x,)-plane and its image in the (y;, y,)-plane, while the
square of the area S is given by

§? = (0'C")*(0'A")%sin0,

but sin’0 = 1 — cos20, and so

§2 = (0'C'Y*(0'A")*(1 — cos?0). (8.36)
However,
2
2 <ll, V)
=——, (8.37)
][l v]?

so from (8.36) and (8.37) we find that
$* = JJul?|v]*sin®0 = [[u]*||v]*(1 — cos*0) = [[u]*||v]]* — (u,v)*.

As u = [ajs, ax] and v = [ay;, a,], substituting for these vectors in the above
expression for § 2, and simplifying, gives

S2 = (61116122 — 012021) = (dCtA)z, (8.38)

showing that area S = |det A|.

Thus matrix A has been shown to determine the scaling when triangles and
parallelograms are mapped from the (x;, x,)-plane to the (y1, y)-plane, with |det A|
as the magnification factor, so result 1 of the theorem has been established.

To prove result 2, associate the positive sign of det A with a positive orientation
around the parallelogram image of the unit square. Now suppose the rows of A are
interchanged. Then an examination of Fig. 8.5b shows this corresponds to an
interchange of the points A" and C’, which has the effect of reversing the orientation
around the parallelogram.. However, if the rows of A are interchanged the sign of
det A is reversed, and as a point moves with a positive orientation around a
boundary of the square in the (x;, x,)-plane, so the image point will move with a
negative orientation around its image in the (y;, y,)-plane. Consequently the
orientation of the parallelogram that forms the image of the unit square is positive
when det A > 0, and negative when det A < 0, and result 2 of the theorem has been
established, so the proof is complete.

*

Having established some important general properties of linear transforma-
tions, this section will close with a discussion of some specific transformations
that form a basis for further study of linear algebra applied to the geometry of the
plane.
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8.4.1 Rotation About the Origin

The linear transformation y = Ax, with

A:[cosﬁ sin@},xz{)ﬂ}’y:{yl} (8.39)

—sinf cos0 X )

describes a counterclockwise rotation about the origin of a vector x through an
angle 0 to form vector y in the same plane, where A is the rotation matrix.

This transformation has already been considered in Section 8.1, and the
reasoning that gave rise to it can be used to determine some related transformations,
as we now show.

8.4.2 A Reflection in a Line L Through the Origin

A point P is said to be reflected in a line L to form an image P’ if the line PP’ is
perpendicular to L, with P and P’ equidistant from L. Consider Fig. 8.6 in which the
line L about which reflection is to take place is inclined to the x;-axis at an angle a.
Point A located at the tip of the unit vector along the x;-axis has the coordinates
(1, 0) while point B located at the tip of the unit vector along the x,-axis has the
coordinates (0, 1). Point A’ is the reflected image of point A, and it is seen to have
the coordinates (cos2a, sin2a), and as the angle BOA is equal to %n — 20, the
coordinates of A’ are (cos(im — 20), — sin(3 — 2x)) = (sin2x, — cos 2a). The
reflection matrix describing reflection in line L is

cos2o  sin2a

A=|. . 8.40
sin20¢  —cos2u ( )
X L
2 P
Xpo| T 'T\\
N
|
| N
I \
\\ P’
]
pal T
| |
Fig. 8.6 Reflection of a point o | |
P in a line L through the ! '
origin 0 Xp1 Yp1 X1
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Thus the transformation from vector x = [xpy, XP2]Tthat defines a point P, to
vector y = [yp/;, yp] which defines its reflection in line L, becomes

[}’P”l] _ [cos2oc sin 2o } {XP1:|. (8.41)

Ypr sin20  —cos2a | | xpa

This result has been obtained from Fig. 8.6 assuming o to be an acute angle,
though the result remains true when o is obtuse. The justification for this assertion is
left as an exercise.

8.4.3 The Orthogonal Projection of a Point P Onto a Line L
Through the Origin

This situation is illustrated in Fig. 8.7, where the coordinates of P in the (xy, x,)-
plane are (xp;, xp2). Point P’ with coordinates (yp;, yp2) is the orthogonal projec-
tion of P onto the line L, and the line L is inclined to the x;-axis at an angle .

The unit vector along the x;-axis has its tip at point A with coordinates (1, 0), so
if point B is the orthogonal projection of the tip of this unit vector onto L, the length
OB is cos o, so its component along the x;-axis is OB cos o = cos?x, while its
component along the x,-axis is OB sino = cos osina. So after scaling these com-
ponents by x; and x,, respectively, the horizontal coordinate yp; of P’ is seen to be
ypy = Xp1cos2a + xpy cos o sin o. After projecting D onto L, where the unit vector
along the x,-axis with its tip at D has coordinates (0, 1), similar reasoning shows
that the vector normal to L has an x;-component equal to cos o sin o, and an x,-
component equal to sin’x. So after scaling these components by xp; and xps, the
vertical y, coordinate of P’ is found to be ypr» = xp| cos asin o + xp, sin’o Thus the
transformation matrix describing this procedure is seen to be

2 .
cos™ o COS o S1n o
COS o S1n o Sm-o
X2
Xpg f——————————— oF L
A
L
Yoo 77T T PP
]
(.
Lo
Fig.. 8.7 The ortvhogonal o : :
projection of point P onto a 0
line L through the origin Xp1 Ypr1 X1
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with the coordinates (ypi1, yp2) of point P’, the perpendicular projection of P onto
the line L inclined at an angle o to the x,-axis, given by the projection matrix

2 .
[)’m] _ [ cos™a cos'ocgmoc} {Xm} (8.43)
yp2 COS o SIn o sin“o P2

As a check, setting o = 0 causes line L, and so also point P, to lie on the x;-axis
with yp; = xp; and yp, = 0, and this is indeed the case, because (8.32) reduces to

yrr| _ |10 {Xm]
yp2 0 O] [xp]’

confirming that yp; = xp; and ypn = 0.

8.4.4 Scaling in the X; and X, Directions

The rule for matrix multiplication shows that scaling in the x;-direction with scale
factor my, and scaling in the x,-direction with scale factor m,, is represented by the
scaling matrix

_|m 0
A= [ 0 mz} (8.44)

In this case y = Ax takes the form

yil _|m 0 ||x
MR @45

and after expansion this becomes
y1 = mx; and y, = mpx;. (8.46)

A special case occurs when m; = m, = m, because then the scaling is the same
in both the x; and x,-directions. When m > 1 this situation corresponds to a
uniform magnification, and when 0 < m < 1 it corresponds to a uniform shrinkage.
Clearly, when m = 1, the transformation reduces to the identity transformation
because then A = 1. If m; > 1 and m, = 1 the effect of the transformation is to
produce a stretch in the x;-direction, while if 0 < m; < 1 and m, = 1 the effect of
the transformation is to produce a shrinkage in the x,-direction, with
corresponding effects when m; = 1 and m, # 1. Some typical examples that
show the effect of scaling a unit square are given in Figs. 8.8a—c, where Fig. 8.8a
shows the unit square before scaling.
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a b (o

my=1,m,=2
my=z,mpy=1

0 1 0 2 0 1

Fig. 8.8 Some typical examples of the scaling transformation

X2
Y2
1 1=
0 1 Xy 0 1 Y1

Fig. 8.9 The effect on a unit square of a shear parallel to the x;-axis

8.4.5 A Shear

The geometrical effect of a shear is easily understood if it is applied to a unit square,
the base of which is fixed, while the shear takes place parallel to the base line. To be
more specific, let the unit square have one corner located at the origin and, before
the shear is applied, let two of its sides coincide with the x; and x,-axes. Then the
geometrical effect of a shear applied in the x;-direction is to cause each line x, = &
that pass through the square to be displaced to the right by an amount proportional
to k. This is illustrated in Fig. 8.9, where the undistorted unit square is shown in the
diagram at the left, while the effect of the shear is shown in the diagram at the right.
Because the amount of shear is proportional to the perpendicular distance of the
shear line from the x;-axis, and so is it is proportional to &, the effect of the shear is
to transform the unit square into a parallelogram.

It is easy to see that shear in the positive x;-direction with the side x; = 0 clamped
is described by the shear matrix

A

1 «o .
{0 1],w1th >0, (8.47)
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while shear in the positive x,-direction with the side x, clamped is described by the
transformation matrix

A= [/13 ﬂ,withﬂ>0, (8.48)

so the displacement of vector x to vector y is then described by the matrix equation
y = Ax. (8.49)

Reversing the signs of o and f simply reverses the directions of the shear.

8.4.6 Composite Transformations

Transformations may be applied successively to form composite transformations,
as was shown in the case of successive rotations in (8.8) and (8.9). For a different
example, let A be the matrix representing a reflection in the line L, that passes
through the origin and is inclined to the x;-axis at an angle o, and let this be
followed by a matrix B that describes a counterclockwise rotation about the origin
through an angle f8. This is described by the matrix product

(8.50)

cos2a  sin2o and B — | €°8 0 —sin0
sin20¢  — cos 2 " |sinf cosO |°

Then a point represented by a vector x is mapped by A into a point y, where y = Ax.
The point represented by vector y is then mapped by B into a point z, where z = By.
Combining these results to form a composite transformation then gives z = BAx.
Notice that A precedes B, because it is the first operator to act on x, after which B
acts on the vector Ax. Thus the effect of this composite transformation on a vector x
to produce a vector y is given by

{yl] _ [cos@ —sin@} [cos2oc sin 2o ] [xl] . 8.51)

N sinf  cos0 sin2o  —cos2a | |x2

As would be expected, the geometrical effect of applying these transformations
in the reverse order will be different, and this is reflected by the fact that in general
matrix products are not commutative.

To illustrate this last remark consider the case when the reflection is about the
line L inclined to the x;-axis at an angle /8, after which a counterclockwise rotation
about the origin is made through an angle n/4, so o = n/8 and § = n/4. The
transformation matrices in (8.51) become
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e[ 81l -1328 )

whereas, if the transformations are performed in the reverse order, the product AB
of the transformation matrices becomes

- [t 0 0)- 104 45

8.4.7 The Transformation of Curves

The transformation y = Ax will be one-one when det A # 0, because then A"
exists and x = Afly. So in this case, if a curve C in the (x;, x)-plane is
continuous, it will be mapped by this linear transformation onto a unique con-
tinuous image curve C’ in the (y;, y,)-plane. Conversely, a continuous curve C’
in the (¥, y2)-plane will have as its pre-image a unique continuous curve C in
the (xi, xp)-plane. In general, the effect of such a transformation will be to distort
the image curve C' relative to curve C, and a typical result of a mapping y = Ax,

with
1 2
s[5 2]

is shown in Fig. 8.10, where the unit circle centered on the origin in Fig. 8.10a is

seen to be mapped into the ellipse in Fig. 8.10b.
Exercises
1. Is matrix A = [COS 0 sind

. orthogonal? Give a reason for your answer.
sin@ —cos0

2. Using the matrices A and B in (8.8), verify the form of the matrix product
BA in (8.9).
3. Identify the nature of the two-dimensional rotations produced by the matrices:

1 V3 11 1 V3 1 1
2 2 V2 V2 2 T2 V2 V2
o8] wl3 8] o3 B ft 3

2 2

4. Given that x = [xy, x,, x3], show from first principles that the transformation
T(x) = [2x1, x1 + 3x3, 2x; —x3] is linear.
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a b (y1, Y2)-plane
37
(x4,Xp)-plane

1

Fig. 8.10 (a) A unit circle. (b) The elliptical image of the unit circle

5. Given that X = [x, X5, X3, X4], show from first principles that the transformation
T(x) = [3x1, X2 + X3, Xo — 2X3, X1 + X4] is linear.
6. Write down the matrix representations of the linear transformations

1 X1 =X 353 il X Xi‘; 3fx_f4x
@ T|x|=| 2+x—x3 | ®T xz = ! x2 +x3 4
3 3+ X4
3 X=X+ 203 X4 X1 — 2xp + 3x3 + 2x4

An integral transformation, also called an integral transform, used in the
solution of ordinary and partial differential equations, is a correspondence
between two functions f(#) and F(s) determined by an integral of the form

F(s) = /jc K(s, 0)f (1)dt.

The function F(s) is called the transform of f(t), the variable s is called the
transform variable, and the function K(s, 7) is called the kernel of the transfor-
mation. The interval — oo < ¢ < oo in which the function f{(¢) is defined is
called the domain of the space to which f{(¢) belongs, and the transform F(s) is
then said to be defined in a domain called the image space, which is usually in
the complex plane. In general, the variable 7 is real, but the transform variable is
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10.

11.

complex with s = o + iw. The Laplace transform is a particular case of an
integral transform in which the kernel

0, <0,
ki ={ 25

where the integral is taken over the interval 0 < ¢ < oo to which f{(¥) belongs.
As in Chapter 6, the Laplace transform of F(s) is indicated by writing

F(s) = L{f (1)}

. When the improper integral defining an integral transformation given above is

defined, show that the integral transform is a linear transformation.

Three integral transforms that are used when solving ordinary and partial

differential equations are:

(a) The Mellin transform M{f (1)} = [°# )dt

(b) The Fourier transform F{f(r)} = [~ ”“”f

(c) The Hankel transform of order v is H‘, {fO} = fo tJ,(at)f (t)dt, where
Jy(at) is the Bessel function of the first kind of order v.

Why are these linear transformations, what is the space to which f{(¢) belongs,
and, what are the kernels of the transforms?

Given that T is a linear transformation from R® — R3, and e; to e; are the
normal ordered basis vectors for R3, find the matrix representation A of T if

1 -2
T(2e1 + 63) =|-11, T(—ez + 93) = 1, T(ez + 63) =11
0 1 1

Given that T is a linear transformation from R* — R>, and e; to e, are the
normal ordered basis vectors for R*, find the matrix representation A of T if

-2 2
T(e;—e3)=|0]|, T(es+es)=| 1 |, T(ex—eq)=|—-2],
0 1 0
[ 2
T(ex+eq)=|—4|.
2

Which, if any, of the following matrices A makes the matrix representation of a
linear transformation Ax = y one-to-one? If this is not the case, what must be
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12.

13.

14.

15.

16.

17.

18.

19.

20.
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the relationship between the components of the matrix vector y in order that y is
a unique image of a vector x?

2 1 3 1 4 3 } ? i
(@AA=|-1 1 2 |A=|2 1 1A=, 0 1
-6 -6 —16 1 -1 2 L 2 1

In Exercises 12 through 15, given the matrix A, find rank(A), the nullspace
N (A) of A, and the nullity v4 of A. Verify the result of Theorem 8.2.

2 -1 2
A=|1 1 -1
6 0 2
1 1 3
A=|0 -1 2
2 —1 4

(1 2 0 1]

1 1 1 3

A= 4 6 2 8

[0 -1 1 2]

(1 1 1 0]

1 -1 0 1

A=l 1 1

4 -1 2 2]

In Exercises 16 through 19 identify the geometrical effect of the transformation
involved.

(1 3 1 _V3
_ 2 2 — 2 2
@A= |2 2 |®A=]%
L 2 2 2 2
_ [0 1 _[3 3
(@A__IONMA_{%%.
M1 1
=5 > -1 0
@A=| Y2 ¥ @A:[O J.
L V2 V2
rro 1 -1 _L
wa=|2 Floa-| _4
L™2 2 2 2

Write down the matrix A that describes the reflection in a line L through
the origin inclined at an angle § = —=n/3. to the x;= axis. The corners of a
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21.

22.

23.

24.

25.

26.

27.

28.

rectangle in the (x{, x;)-plane lie at the points A (1, 1), B (1, 3), C (0, 3) and D
(0,1). Sketch to scale this rectangle and its reflection in line L, where the images
of the corners A, B, C, D occur at the points A’, B/, C’, D'. Use matrix A to find
the coordinates of the corners of the image rectangle, and check that these agree
with the location of the corners of the sketch of the image.

Find the coordinates of the orthogonal projection of the point (3, 5) in the
(x1, x2)-plane onto the line L through the origin inclined to the x,-axis at an
angle 0 = /4. Check the result with a sketch drawn to scale.

Find the coordinates of the orthogonal projection of the point (2, 6) in the
(x1, x2)-plane onto the line L through the origin inclined to the x;-axis at an
angle 0 = n/6. Check the result with a sketch drawn to scale.

Prove that when a two-dimensional geometrical shape is reflected in a straight
line L through the origin, and the image is then again reflected through the same
line L, the original shape is reproduced.

Let a two-dimensional geometrical shape be reflected in the x,-axis, and then
let the resulting image be reflected in the x;-axis. Prove that this final image can
also be obtained by first reflecting the shape in a line inclined to the x;-axis at
an angle « = 7/4, and then reflecting this image in a line inclined at an angle
o = —1/4 to the xj-axis.

Prove that a reflection in a line L; through the origin inclined to the x;-axis at
an angle o, followed by a reflection in a line L, through the origin inclined at
an angle f to the x;-axis, is equivalent to a rotation about the origin through an
angle 2(f — ). Taking « = /12 and = /6, find how the point x = [, 1]"
is mapped by this composite transformation, and sketch the result to scale.
Does the result satisfy the rotation condition through an angle 2(f — ), and if
this appears not to be the case what is wrong with your interpretation of the
rotation condition?

Write down the composite transformation matrix that describes first a uniform
magnification by a factor 2, followed by a counterclockwise rotation about
the origin through an angle 6 = /6 measured from the x;-axis, and finally a
shear in the positive xi-direction with parameter « = 1. Using geometrical
arguments, sketch the effect of this transformation on the rectangle A, B, C,
D with its corners at the respective points (1.5, 0), (1.5, 1), (0, 1) and (0, 0),
where these map to the corresponding image points A’, B’, C" and D'. Apply the
composite transformation to find the coordinates of the respective image points
A’, B', C' and D' and check them against the sketch drawn to scale.

Construct a rectangle R in the (x;, x»)-plane of your own choice by specify-
ing the coordinates of its corners. Use the transformation Ax = y, with

A= [l ﬂ, to find the images in the (y;, y,)-plane of the corners of rectangle

R. Verify that R maps to a rectangle R in the (v1, ¥2)-plane, and confirm that the
area of R is |det A| times the area of R.

Construct a rectangle R of your choice in the (x, x;)-plane by specifying the
coordinates of its corners, and a matrix A that will produce a counterclockwise
rotation about the origin through an angle én. By applying the transformation
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29.

30.

31.

32.

33.
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Ax =y to R, find how the corners of rectangle R map to the corners of the
image R of R in the (y;, y,)-plane. Hence confirm that the transformation has
had the desired effect, and that the areas of R and R are identical. How should
matrix A be modified if the area of R is to be three times that of R ?
Construct a triangle R of your choice in the (xi, x,)-plane by specifying the
coordinates of its vertices. Construct a matrix A that will reflect the triangle
R about a line L through the origin into an image R, where line L is inclined
to the x;-axis at an angle of your choice. Verify that the transformation has the
desired effect, and give a mathematical reason why the areas R and R are
identical.

Write down (a) a matrix A that will stretch a rectangle or triangle of your
choice in the (x;, x,)-plane in the x;- and x,-directions by the respective
amounts a and b. (b) Write down a matrix B that will produce a shear in the
xp-direction by an amount k. Describe the geometrical effect on a rectangle or
triangle if it is mapped (i) by the transformation ABx = y, and (ii) by the
transformation BAx = y.

Matrix A is said to be a singular transformation if det A = 0. Describe the
effect of a singular transformation Ax = y when it maps points in the (x;, x,)-
plane onto the (yy, y,)-plane.

Explain why changing the sign in an element of a matrix A that produces a
stretch of a rectangle or triangle in the (x;, x,)-plane, causes a reflection of a
stretched image rectangle or triangle in the direction of one of the axes.
Explain the geometrical effect on a transformation Ax = y that maps a
rectangle or triangle in the (x;, x,)-plane onto a corresponding rectangle or

triangle in the (y;, y»)-plane if A is replaced by PA where P = {? (1)}



Solutions for All Exercises

Solutions 1

1.

bt

It is necessary to arrange entries in each equation in the same order before
writing down the coefficient matrix A. Taking the order to be xy, x;, x3 and x4
gives

3 2 -4 5 4
3 2 4 3
A=l2 4 1 5 |MB=))
3 2 6 0 1
0 4 11 10 -8 3
A+2B_{—3 11 13]’3A_4B_{11 7 —21]'
a=0,b=6,c=4
210
3A-BT=[17 6 ,2AT+4B:[2O 16 _12]
16 —10 10
3 8
356 6 12 5
AT+B=|2 9 2|, 2A+3BN)" =2A+3B=|8 23 9
41 4 19 —4 10

The result follows directly from the definitions of matrix addition and trans-
position. A + B = [a;] + [b;] = [a; + b;j] and so (A + B)" = [a;; + b;]" =
laj + bil = A" + B".

(a) A is symmetric if the a;; for i = 1, 2, 3, 4 are arbitrary, but a4 =1, a; =4,

az; = —3, ay3 = 6, Apg = Ayp = U (arbitrary), ayz = 7.
(b) Aisskew symmetricifa; =0fori=1,2,3,4,a14=—1,a,; =—4,a3;, =3,
asz3 = —0, ayy = — ag With axy = o (arbitrary), agz=—"17.

273
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8.

10.

Solutions for All Exercises

Denote the symmetric matrix by M = [m;;] and the skew symmetric matrix by
S = [s;]. Then if A = [a;] is to be decomposed into the sum A = M + S, we
must have a;; = m;; + s;; and a; = m;; — s;;. Solving these equations gives m;
and s;;, and hence M and S. A more sophisticated approach uses the following
argument: A =1(A+AT)+(A—AT), but JA+AT) =}AT+A) =
HA+AT), so M =LA +A"). A similar argument shows (A — AT)" =
—1(A—AT), and so S=L(A — A"). For example, if

8 1 3 8 3/2 3)2
A=|2 2 1|, then M= |3/2 2 1 |,
0 1 2 32 1 2

0 —1/2 3)2
S=|12 o0 0
|-3/2 0 0

The solution set for system (a) with x, = p arbitrary is {%(1 —D),p, %(1 -t
while the solution set for system (b) with x; = ¢ arbitrary is {¢g, | —2¢, ¢}. The
solution set in the text with x3 = k arbitrary was {k, 1 — 2k, k}. Replacing ¢ by k
shows that the solution set for (b) is the same as the solution set found in the
text. Setting k = (1 — p) in the solution set for (a) it becomes {k, 1 — 2k, k},
which is again the solution set found in the text. Thus all three solution sets are
equivalent. This demonstrates, as would be expected, that it is immaterial
which variable is chosen as the arbitrary parameter.

System (a) has no solution. This can be shown in more than one way. The most
elementary way being to solve the first three equations for x;, x, and x3, and
then to substitute these values into the last equation to show that they do not
satisfy it. Thus the last equation contradicts the other three, so there can be no
solution set.

In system (b) the third equation is the sum of the first equation and twice the
second equation, while the fourth equation is the difference between the first
and second equations. Thus the last two equations are redundant. Setting x3 = k
in the first two equations with & arbitrary parameter, and solving for x; and x,
by elimination, gives x; = 1 — k and x3 = k, so a nonunique solution set exists
given by {1 — k, k, k}.

Solutions 2

1.
2.
3.

(a)det A=7,(b)ydet A =0, (c)det A = —1.

(a) det A = —¢'sin 7, (b) det A = e~ + cost.

The proof for an nth-order determinant is by induction. First, direct expansion
shows that for a second-order determinant det A = det AT, showing that this
result is true for n = 2. Now suppose the result is true for n = k +1, then as the
cofactor of a;; in A is simply the cofactor of a;; in A", expanding A in terms of
elements of its first row is the same as expanding A” in terms of elements of its
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first column, so det A = det AT when n = k +1. However the result is true for
k =2, so0itis also true for n = 2, 3, . . ., and the result is proved. In fact the
result is true forn =1, 2, . . ., because the result is trivial when n = 1 since then
det A is simply the single element a;;.

4. Subtract row 1 from row 2 and remove a factor (cos x — sin x). Add column 2 to
column 3, and then subtract column 3 from column 1. Finally, subtract (1 — @)
times column 3 from column 2 to obtain

e —cosx —sinx cosx —a(cosx+sinx) cosx+ sinx
detA = (cosx — sinx) 0 1 0
0 0 1

= (cosx — sinx)(e* — cosx — sinx).

5. Add rows 2 and 3 to row 1 and then subtract column 1 from columns 2 and 3 to

obtain
1+a a a l1+a+2b 0 O
b 1+b b | = b I 0|=(l4+a+2b).
b b 1+b b 0 1

6. Subtract row 3 from row 1 and row 3 from row 2. Remove factors x° from rows
1 and 2. Subtract row 1 from row 3 and then row 2 from the new row 3 to obtain

10
B0 1 -1 =207 +3).
00 (F¥+3)

7. Subtract 3/2 times row 1 from row 2 and % times row 1 from row 3 to obtain

21 0 1 2 1 0 1
1 1
A= ? ; 411 g = 8 3 411 %|. Subtract 3 times row 2 from row 3
2 2
0 3 1 1 0 3 1 1 3 } 2 }
and 6 times row 2 from row 4 to obtain A= 0 3 1 P
2 2
g i 2 } 0 3 1 1
=0 (2) 11 % . Finally subtract 23/11 times row 3 from row 4 to obtain
0 0 -23 -2
21 0 1 21 0 1
o 1 4 1 o 1L 4 1
= 2 2 | = 2 2 — 1 _ 45
A=100 —11 1|=lo 0 —11 1 |=2x@xEmx (=)
0 0 -23 -2 0 0 _45
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*®

10.
11.

12.
13.

14.

Solutions for All Exercises

A=063, Ay =204, A, =183, A3 =3 . Thus x; = 68/21, x, = 61/21, x3 =1/21.
(a) det A =0, so the equations are linearly dependent

(b) det A = 26, so the equations are linearly independent.

No, because det A = 0, so the equations are linearly dependent.

det[A — AI] = 0 becomes (4 — 1)(1 —2)(4 —3) =0, so the eigenvalues of A are
/=1, 2, 3. The new matrix is B = A + kI, so det B = det[A — (A1 —k)I| =0
and when expanded this becomes (1 — 1+ k&)(A —2+k)(A—3+k) =0, so the
eigenvalues of B are A=1—k, A =2 —kand 2 =3 — k, confirming the state-
ment in the exercise. The result could have been deduced directly from the
form of the modified matrix B, because the eigenvalues of B are solutions of
det|A — (1 — k)I| = 0 showing the eigenvalues of B are simply the eigenvalues
of matrix A from each of which has been subtracted the constant k. The result is
true for all square matrices, because in each case the modified matrix has the
same property as the 3 X 3 matrix in the exercise.

Self checking

J = r. The Jacobian vanishes if » = 0, and the transformation fails because then
the angle 6 has no meaning.

J = r?sin 0. The Jacobian fails if 7 = 0 or @ = 0. When r = 0 the angles = 0
0 and ¢ have no meaning, and when 6 = 0 the angle ¢ has no meaning.

Solutions 3

1.

2.
3.

2 -4 8 6
4 -8 16 12
-3 6 -12 -9
1 -2 4 3

Xy = —15,yx =

xA = [15, —4, 23, 16] .

2 -6 7
20 2 11
AB=17 4 %
17 —13 16
T_praT_ | 56 54
(AB)" = BTA _[_18 ol

0(x) = 2x% — 2X1X0 + X1X4 + x% + 5x0x3 + 9xox4 + 3x7x3 + 4x§ + 2x3%4 — xﬁ.

3 1

2 -1 5 3

5 9

Ao |7 L5 3

305 4
2 2

by
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6.

AT 1 [ d —b} _ { d/(ad —bc) —b/(ad — bc)
ad —bc | —c a —c/(ad — bc) a/(ad —bc) |’
ad —bc #£0.

7.
1 -1 3
Al'=12 -3 8
5 =7 18
8.
3 4 2
7 7 7
Al |4 32
7 7 7
3 4 5
7 7 7
o 13 2 10
121 11 11
1 2 1
11 0 11
0 o117
11 11 121
10.
1 3 _6
5 9 1 747 717 277
adj(A)=| 2 19 —26|, adja™H=|—- — = |,
3.2 1
77 77 77
adj(A)adj(A™") =1
11. Let Ay, As, ..., A, be n nonsingular m X m matrices, the repeated application
of the result (AB) '=B 'A ' gives (A|A,...A,) '=A, A, _ L AL
The result then follows by setting A; = A, =---=A,,.

12. Setting B = A" we have det I = 1 = det A det A_l, from which the required
result follows immediately.

- R S N O
1 77 2_77 3_77 4_7~
14 l 28 23
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15. PA interchanges rows two and three, while AP interchanges columns two and
three. If PA is to interchange the first and last rows of A, then P is obtained
from I by interchanging its first and last rows. If, however, AP is to interchange
the second and fourth columns of A, then P is obtained from I by interchanging
its second and fourth columns.

16. If P is any permutation matrix, it interchanges rows in a certain order. The
effect of PT, where rows are transposed, is to reverse the effect of P by
changing back the altered rows to their original order, so PPT = P"P = 1.

17. Equations one and two must be interchanged, and equations three and four
must be interchanged, so

01 00
1 0 00
P_0001
0010

18. Interchanging rows of I to form P will cause det P to equal —1 if an odd number
of row interchanges have been made, and to equal 1 if an even number of row
interchanges have been made. So from the result det (AB) = det A det B in
Exercise 12 it follows that det AP = det A x (sign of det P). Pre-multiplication
of a conformable matrix A by P to form PA interchanges its rows in a particular
way, so P?A returns them to their original positions, consequently P?A = A,
showing that P> = I. Thus P> = P~!'P = PP"!, confirming that P~! = P.

19. (a) Orthogonal (b) not orthogonal (c) orthogonal.

20. Q is orthogonal because QQ" = I. To prove the last property notice first that
if q; and q; are columns of Q, then q/ and q; are orthogonal. Next, permuting
the columns of Q to produce Q; results in a corresponding permutation of the
rows of QT, so it remains true that QlTQ1 =1.

21. _
1 3 -1 -5 X1
A=|12 -1 1|, b=]9 ]|, x=|x and
| -1 1 2 5 X3
[ 3 7 _2
19 19 19
Al = i 21 i
19 19 19
1 4 7
19 19 19
SO asx:Aflb,xl =2,x=—1and x5 = 4.
22. det[A — ] = ' ! ; 4 | E il= 42 =24 —3.Sothe eigenvalues of A are the

roots of 22 —2) — 3 =0; namely 4; = —1 and 1, = 3.
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23.

24.
25.

26.

27.

28.

T
To find the eigenvector xP = {x<11>, xg)} wemustset A =4, in [A — 1, Ix =0.

(1)
The matrix equation becomes [ ) ﬂ i%l) = 0, so this reduces to solving
2

the single equation x(11> + ng) = 0. Setting x,'® = k; (arbitrary) we find that
x1""Y = —k,. Thus the eigenvector xP corresponding to 4 = A; = —1 is seen
to be x1) = k;[—1,1]", where k; is arbitrary. A similar argument with 2 =
J> shows that the eigenvector x® corresponding to 1 = A, = 3 is
x® = ky[1, 17, where k; is arbitrary.

det[A — AI] = 0 becomes 1> + 12 — 104 + 8 = 0, so its roots (the eigenvalues
of A)are ; = 1, 1, =2 and /5 = —4. The eigenvector x'" = [x;V, x,V, ;1T
is the solution of [A — Xll]x(l) = (. Writing out this system in full, as det[A —
AIl = 0, the system must be linearly dependent. Solving by elimination shows
that the third equation is redundant, and setting x3(1) = k3 (arbitrary) it turns out
that the eigenvector x'" corresponding to 4 = 4, = 1 is x" = k[0, 0, 1]".
Similar reasoning shows that the eigenvector x'* corresponding to A = /., = 2 has
the form x® = ko[1, 1, —4]T, where k, is arbitrary, while the eigenvector x®

corresponding to 4 = A3 = —4 has the form x® = k-1, 1, O]T, where k3 is
arbitrary.
Self-checking.
BIAI : BIAZ : : BlAn
BA, BA, - BA,
AB = [AIB] +A,B, +---+AnB”], BA = BT i o el B
N R AN L
BnAl -i BnAZ -:l E_BnAn
2 ! 2 ) | 2
;AMBH ! ;AMB,Z ZAHB” i Z:AZIBI1
AB=| - T so (AB) =|5----- e =B'A"
;Azszl i ;AlzBiz ZAanz i ZAiszz
i=1 | =l
The argument proceeds in the same way as in the text, but partitioning A and

B = A~ into 2 x 2 block matrices. Solving the four matrix equations for the
B;; then gives

AT T -ATA LA
A 1:{‘1‘1‘.*“‘1{‘(—‘112“2‘2 '
| 22

This result follows from the resulting the text by taking for A~ !the results in the
first 2 x 2 block matrix, because the entries outside this block do not influence
the block.

AIIB]] I A11B12 +A12B22 .
AB=|—F~——t-—"-7-—~——- — |, so from the result of Exercise 27,
0 : A22B22
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(Azszz )71

The products A;B;; and Ay;B,; are ordinary matrix products, so (A;By; )T =
B! AT, qrnd (ApBy)" = B1,AL,. Inserting these results irTlto the expression
for (AB)"and examining the product B'A" shows that (AB)' = BTAT.
B'|-B"
29. The result in Exercise 4 shows A~ ={—6—w:‘--1-- - For the given matrix
I
0 -1 -2
1 3 -1
0o 1 0
0 0 1

Al =

S oo~

30. (a) A is idempotent, so A% = A. The proof is by induction. Assuming A" = A,
multiplying by A gives A= A? = A, so the result for k + 1 follows from
the result for k. However, the result is true for k = 2, so it is true for k > 2.

(b) A% = A, so det Adet A = det A, so either det A = 0 or det A = 1.

(c) If D is idempotent, then D> = D, but D* = {/1%2, /15, el /Ii }.SoD*=D
if and only if 4; = 21.2 fori=1,2,...,n which is only possible if the 4;
are O or 1.

(d) (A +B)>=A?+AB +BA +B> If AB = BA =0, then (A + B)* = A + B*
= A + B establishing that A + B is idempotent.

e I—AP =T1-2A+A% but A=A, so (I—A)’ =1-A.

(f) A2 = A, so A(I — A) = 0. Hence, detAdet(I — A) = 0. As both factors
cannot vanish, either det A = 0 or det(A —I) = 0.

31. a=d,b=d(d—1)/c, ¢ = ¢, d =d, with ¢ and d arbitrary. Four other cases
are possible that cannot be deduced from these results. The first two are the
trivial results A = I and A = 0, while the othersare a = 1, b = b, ¢ = 0 and
d=0,anda=0,b=b,c=0andd = 1.

32. det A = 106 and the Hadamard overestimate of |det A| is 174.24.

33.

10

bl L1111 5 10
_ T Ty _
X—lz’X_[01234}’XX_[10 30]’

13

| 4

1L
5 10

y=1[-08,03,03,13, 17", a= (XTx)’IXTy = {_0'64}

0.6
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1.5+

y 0.54

281

0 — T
1
—0.5

Fig. $3.33

The least-squares straight-line approximationis n = —0.64 4+ 0.6x, 0 < x < 4.

34.

1 -2
1 -1
110 T 111
X=1 1’X_{—2—10
1 2
1 3

y = [1.93, 1.63, 0.75, 0.71, 0.47,-0.27]", a= (XTX)_lXTy = [

~ [6 3
| xx=3 5]

1.077
—0.415|°

The least-squares straight-line approximation is n = 1.077 — 0.415x, —2 < x < 3.

[ )
[ )
151
1
9
0.5 A °
-2 1 0 2 \g

Fig. $3.34
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Solutions 4
1 1 -1 2 1
I.Ab~ |0 3 0 1 —1]. rank A = rank Alb = 3, so the solutions

00 3 -6 3
will involve a single parameter k. Back substitution gives the solution set:

X1 :%—I—%k, xzz—%—%k, x3 =142k, x4 = k, with k arbitrary.

11 3 2 =2
2. Ab ~ 8 _02 __199 __142 197 .rank A = rank Alb = 4, so a unique
0 0 0 12 2
solution” exists. Back substitution gives the unique solution set x; =1,
Xy = —%, X3 = —1, X4 :%
(1 4 2 3
3. Ab ~ 0 =5 =3 =5 .rank A = 3, rank Alb =4, so no solution exists.
0 0 -3 -10 ’ ’
|0 0 0 -16
(1 -1 0 2
0o 4 -1 =2
4. Alb~ |0 O 3 -2 .rank A = rank Alb = 3, and there are only 3
o 0 0 O
0 0 0 O
linearly independent solutions, so back substitution gives the unique solution
set x :%, Xy = —%, X3 = —%.
2 0 1 4
5. Alb ~ 08 4 - .rank A = rank Alb = 3, and there are only 3 linearly
0 0 20 -8 ’
00 0 O

independent solutions, so back substitution gives the unique solution set

L2 1 5] =% ou=du=t
0o -3 -2 -8
6. Abb|0 0 —6 6 [.rank A =3, rank Alb = 4, s0 no solution exists.
0O O 0o -2
0 O 0 0
7. % . %
A7 = | — !

|
L[N [ —
O =
|

W=
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8.
FEEA
A= 3 =2 -1
b
9. .
det(A — T) = —20 + 32 — 2*.
10.

det(A — 1) =6 +294 — 11J% = 3> + %,

11. @a>00b)a=—-12(C)a < —1/2
12. Self-checking

13.
1 0 O 1 2 3
L=1[2 1 o|l, u=|0 -5 —s5],
1 01 0o 0 —4
(a)xlziv-xzz_Z))Q__%; (b)xlz%v-XZ:%ax:i_%
14.
1 0 O 1 -1 2
L= 1 1 5 U=10 3 -3 5 X]Z%, X2 —%, X3
2 31 0 0 -2
15.
1 0 00 2 1 1 2
1
L_|s ool oy
I =110} 00 —1 —1|’
-1 3 01 00 0 5
(a) X1 :%7 Xy = _%? X3 :%) X4 = _%a (b)xl :%7 X2 = _%7 X3 = _ga X4 :%

16. This exercise requires a row interchange between rows 1 and 2, so P, L and

U are
01 0 0 1000 2 -1 -1 -1
P=lo 0t ol L=[t i1 0] U=l o 3 A
00 0 1, 131 0 0 0 -3
x; = —1, xz—%, x3——%, x4 = —1

17. Self checking.
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Solutions 5

Remember that eigenvectors are indeterminate up to an arbitrary scale factor,
and they can be arranged in any order when constructing a diagonalizing matrix or
an orthogonal diagonalizing matrix.

1.

1 1
B=32420=0; 4 =2, x;=|—-1]|, =0 x=|1],
—1 1

0

;L3:17 X3 = 1

0

2.

—1 1
BS54 -3=0 h=h=1,x1=%=| 0 |, 3=3,x3= 2
1 1

There are three eigenvalues, but only two linearly independent eigenvectors. The
algebraic multiplicity of the eigenvalue 4 = 1 is 2, but its geometric multiplicity is 1.

B l+1=0, 4=-1,
-1 -1
X] = -2 ,12:)»3:1,)(2:)(3: 0
1 1

There are three eigenvalues, but only two linearly independent eigenvectors. The
algebraic multiplicity of the eigenvalue 4 = 1 is 2, but its geometric multiplicity is 1.

4.
1
P=32=0; h=V3 xi=|1+V3|, h=-V3
243
1 —1
Xy = 1—\/§, /lg,:O, X3 = —1
2—-3 1
5.
1
B2 —7-2=0, W =2, x1=|-4|, lh=-2+3
-9
V3-1 -1-3
Xy = 1 . J3=-2-V3, x3= 1

—1 —1
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6.
1 -1
B =445, -2=0; 4 =2, x;=|0|, =1 xo=|1 [,
1
0
13 = 1, X3 = 0
1
Three linearly independent eigenvectors. The repeated eigenvalue 2 = 1 has
the algebraic multiplicity = geometric multiplicity = 2.
7.
)»3—2/12—/1—‘1-2:0; ).]:—1, X = 1 s 12:2, Xy = 1 s
1
/13 = 1, X3 = 0
1
8.
1
P=2240=0; =0, xi= 1|, h=1 x=|0], =1,
1
1
X3 = 1
0
Three linearly independent eigenvectors. The repeated eigenvalue 1 = 1 has
the algebraic multiplicity = geometric multiplicity = 2.
9.
0 1 2
B2 —-1-2=0;, P=|-1 0 1
1 10
-1 1 0
10. 2 +222—-21-2=0; P=|1 0 1. Notice that Exercise 9 has the
1 1 1
same characteristic equation as here, but the matrices A and P are different.
11.
2 -2 1
P22 —-2-2=0, P=|-1 1 0
1 0 -1
12.
1 -1 2

B —22-5,+6=0;, P=|0 1 -1
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13.
PHi2+i=0 =0, xq=| 1|, db=-41+iV3),
-2
1
Xy = 1 s
41— iv3)
1
Ja=-31-iV3), x3= 1 Diagonalizable.
l .
—5(1 + l\/g)
14.
1 1
M=1,x1=|(5]|,4=743=-2,x,=x3 = | —1 |.Non — diagonalizable.
4 1
There are three eigenvalues but only two linearly independent eigenvectors.
The algebraic multiplicity of the eigenvalue 4 = —2 is 2, but its geometric
multiplicity is 1.
15. | |
- MR
A=A =21=0, Q=1|1 0 O
1 1
0 7% 7
16.
1 2
A+ —-17A+15=0, Q= ? —1% ?
Vi V2o
In Exercises 17 through 20 remember that matrix Q is not unique, because
the order in which the eigenvectors are used to form its columns is arbitrary.
However, the final reduction will always be the same whatever the ordering of
the columns of Q.
17. 111
o
N S U . O __1 1 1
Q=1 Vioe | Y= =7 T 5t s
0 -5 %

Xy = ﬁ)ﬁ +%yz +ﬁy37 X3 = —%yz +%gy2-
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18.

19.

20.

21.

Eigenvalues are — 3, 2,—1. Q(y) = —3y? +2y5 — y3, so the quadratic
form is indefinite. The classification is obvious from the values of the eigen-
values without further calculation.

1 1 1
T
Q=5 % 0 [, xlz\i@m—k%yz—%ym XzZ%yl—%yz,
1 1 1
Vi V6 V2

X3 = \/%yl +%y2 +%y3.

Eigenvalues are 2, —1, 1. Q(y) = 2y} — y3 + y%, so the quadratic form is
indefinite. The classification is obvious from the values of the eigenvalues
without further calculation.

2 1
% | 2 1 1 2

Q= (1) (2) L, Y= T2 X2 =3 X3 =0t ).
w0

Eigenvalues are —2,3, —1. Q(y ) = —y? — 2y3 + 3y§, so the quadratic form
is indefinite. The classification is obvious from the values of the eigenvalues
without further calculation.

2 _1L 9
e P
Q=% B Bl = %yl _%YL Xy = —%M —\/%h +\/L§)’3,
1 1 1
V6 V3 V2

X3 = ﬁyl —|—%y2 + \/iiy_g. Eigenvalues are 3, 0, 1. Q (y) = 3y +y3, so the
quadratic form is positive definite. The classification is obvious from the values
of the eigenvalues without further calculation.

If the characteristic equation is A" + ¢ A" '+ 4 ¢,_id4+¢, =0, the
Cayley—Hamilton equation becomes A" + ;A" ! + ;A" 2 4+ .- + ¢, | A+
¢, =0. When det A # 0 matrix A~ exists, and pre-multiplication of the
Cayley—Hamilton equation by A~' followed by a rearrangement of terms
gives A~! = (1/c,) (An*1 + AT ci-1A), s0 A~! is expressed in
terms of powers of A. If A is singular, A~! does not exist, and the matrix
form of the characteristic equation will not contain a multiple of the unit
matrix L. So the formal result of the pre-multiplication such a matrix charac-
teristic equation by A" will not yield an expression for A™", so the inverse
matrix cannot be found. In addition, the characteristic equation will have a
root =0, and when it inserted in |A — AI| =0, it will give |A| =0,
showing that A is singular. The purpose of the Cayley—Hamillton equation
in this exercise is to provide a simple application of this general result, and
also to help develop experience combining matrices. When this method is
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22.

23.

24.

25.

26.

Solutions for All Exercises

used with the given matrix A to find A™', to ensure the result is correct it
is necessary check that AA~' =1I. The matrix A in this exercise is not
singular, because detA = —2, so A~' exists. The characteristic equation is
23 =32 +4)+ 4 = 0,50 using the above method, but omitting the details of
the calculations, gives

o1
2 2 2
SL U D B Tt
A - 2 2
o1 1
2 2

Matrix A has the repeated eigenvalue A =2 and the single eigenvector

T 10 1 4|11 _1 12 2
[0,1].SetC—[l 1}whenC —{1 O:|,SOC AC—[0 L

—_

M= (1) , 50 Q=CM = 0 ?| and Q= B , giving Q'AQ
0 5 1 5 2 0
2 1 . L.
=lo 2 , showing that A is similar to Js.

Matrix A has the eigenvalues A; =1 and 4, =5, with the eigenvectors
[1,—1]" and [1, 1]". The matrix is diagonalizable by the matrix
Q= {_11 ” when Q 'AQ = (l) g , so the matrix is similar to J,.

Matrix A has a repeated eigenvalue A =3, and the single eigenvector
[—1, 1]".

Set C = [_1 1} when C~! =

1 0

1 0
0 —

0 1 _1 |3 =2
1 , s0 C AC_[0 3}

P S 4 o 1
:|,SOQ—CM—_1 O}andQ —[_2 _2},

M:|: 1
2

giving Q 'AQ = [(3) ;} , showing that A is similar to J.

Matrix A has the complex conjugate eigenvalues A4+ = 1 +iv/6, so it is similar

to J, withoe = 1, f = /6, so it is similar to [\}6 _;/6]

Matrix A has a repeated eigenvalue 1 = 4, and the single eigenvector [1, O]T.
_ 1 1 -1 _ 1 -1 —1 o 4 -2
SetC{O 1] when C [0 1],50(3 AC{O 4].
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27.

28.
29.

30.

31.

32.

33.

1 0 -1 -
M:{O _%} soQ:CM:{O

B[—=0|—

4|1 -1
.. . 4 1 . L
giving Q7 'AQ = 0 4 , showing that A is similar to Js.

Matrix A has the complex conjugate eigenvalues /. = —1 + 2i, so it is similar

to J4 with oo = —1, f =2, so it is similar to [_21 :ﬂ
Self checking.

Let { be a zero of the nth degree polynomial P,(z) = z" + a;z" ' + - - + ay,
then (" +a, ("' +--- + a, = 0. Taking the complex conjugate of this equa-
tion in which the coefficients ay, a», . . . , a, are real numbers, so a, = a,, and
using the fact that " = ", shows that a,{" = a,{" = a,{", so (" +a; " '+
.-+ 4 a, = 0,and hence { must also be a zero of P,(z). So if there are complex
zeros they must occur in complex conjugate pairs. Thus (z — {) and (z — Z) are
both factors of P,,(z). Setting { = o + iff the product of the two factors

z=0E-0=GC—-a—if)(z—oa+if) =22 —2uz+ o + .

Thus the complex conjugate zeros are seen to produce a real quadratic factor of
P, (2). Consequently, if the degree of P,(z) is odd, either all of its zeros are real
or, if some are complex conjugate pairs, there must be at least one real zero
of P,(2).
4 -1 0
Qispositive definiteand A = | —1 4
0 0 1

(e

. |det A| = 15 and the Hadamard
inequality gives 16.

Q is positive definite and A = . |detA| = 6 and the Hadamard

NI— Ol
S = O
Rl O PI—

. . . 2 _
inequality gives 75 =6.25.

2 2 -1 -1
2 7 =2 1

-1 -2 12 0

-1 1 0 3

Hadamard inequality gives 504. Poor though this estimate is, it is better than
the estimate provided by the inequality in Exercise 32, of Chapter 3, which
gives 974.997. One reason for this is that the result in Exercise 32, of Chapter 3,
applies to an arbitrary determinant, whereas the result in this case is restricted
to the class of determinants associated with positive definite matrices, so this
constraint leads to a better estimate.

(@) p(A) =0so lim A =0, and in fact At =0.

Q is positive definite and A = . |det A| = 192 and the
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(b) |A — 2I| = 0 gives the characteristic equation (2 — 1) (1> — 32+ L) =0,
so the eigenvalues of A (the spectrum of A) areA = 1 (twice) and 4 = ﬁ

Thus p(A) = 1 so L = lim A" is bounded, and rounded to four figures

n—oo

1 0 0
L=1|0 02727 0.7273
0 0.2727 0.7273

34. Self checking.
35. Self checking.

36. Use Uy, = AU, with U, = {“"“ } and A = {

1 2 . .
] . Reason as in Section
n

1 0

5.1 with Ay = —1, x| = {_11} =2, % = ﬁ]

37. Exact solution u(x) = (5)(—5sin(27mx) + Smxcos(27x) — 5mx).

23
X 0.2 0.4 0.6 0.8
Exact —0.1158 —0.2563 —0.2673 —0.0842
38 Approx —-0.1117 —0.2307 -0.2275 —0.0633
/11__2a X1:|: :|7 /12:47 X2:|:11:|
39.
) —i , 1
/leoa Xl|:1:|7 /L2:2a X2|: :|
40.
—1 —i 1
M=l=—1(twice), x;=| 0 |, xo=| 1|, I3=2, x3= | —i
1 0 1
41.
1 1

/11:— 2, X = —l'\/i,/lzz\/i,XQZ i\/i,/l?,:o,

i —i
1
x3= 1|0
i

42. By definition, the purely real parts of each element form a real symmetric
matrix A, while the purely imaginary parts of each entry form a real skew-
symmetric matrix A,, so A = A + iA,.
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43.

44.

45.

The reasoni_njg follows that in the text for an Hermitian matrix except that
now when A occurs it must be replaced by —A. This leads to the conclusion
that J+4 = 0, which is only possible if A is purely imaginary.

Take the transpose of UT = U~ !and use the fact that the transpose operation
and the inverse of a matrix commute.

The characteristic equation is A* —2)?+21—1=0, and inspection
shows one eigenvalue is 1. After removing the factor (4 — 1) from the
characteristic equation and finding the roots of the remaining quadratic
equation the other two eigenvalues are seen to be %(1 + i\/g), and all three
have modulus 1.

Solutions 6

Self checking.
Self checking.
d d
H ' =H'G! so LiGH™ = L H'G™!
GH] G so L [GH] ! = ZHIG)
dH™! dG™'
= |—|G'+H"' :
e ]

Hence 4[G(NH(r)] ' = -H'HH'G' ~H'G'4G!.

Self checking.

_1 _ 3 1 _ 24
dt [5CO8t — {5sint  zcost—ssins

dG1(7) _ l—llosint—i—focost Lsint+ gcost]
The result is almost immediate from the definition of the sum of two matrices
and the fact that o and f are scalar constants.

The result follows in the same way as the usual formula for integration by parts
by differentiating AB, rearranging terms, and then integrating the result. We

have % =4B + A% 5o integrating this gives AB= [9ABdr + [ A< dr,
from which the result follows after rearranging terms.
1 -1 0
;Ll:_l,XIZ 2 ,;»2217X2: 0 71.3:—2,X3: 1
1 1 0

x1 (1) :%C1(€r+€7t)+%C3(€7t—e’), X (t)=(C1+C3)e " +(C2—C, —C3)€72’,
x3(1) =3C1(e7" =€) +3C3(e" + 7).

xi(f)=le"+3, n()=e"+e ¥, x(f) =L -2
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9.
1 0 0
11:—1, X = 0 s /12——1, Xy = 1 s /1323, X3 = 1
1 0 2
x1(t) = Cze™", xa(f) = Cre™" + Cre¥, z(t) = Cze™" +2C,e%.
xi(t) =2¢", x(t) =3 =3, x3(t) =2 3.
10.
. 1 . 1
/11 —1+21, X = 1: | )v2:—1—2l, X = 1: |-
2! 2t
11.

M =242 x= [lll}’ Ao =2 —2i, x:{ ! ]
2

x1(t) = ¥ (Cy cos 2t + 2C, sin2t), x,(f) = Le*(2C; cos 2t — Cy sin 2¢).
x1(£) = 2¢*(sin 2t — cos 2t), x,(t) = e (sin 2t + cos 2¢).

12.
4 -1 0
;LIZI,X]: 1 s /1222, Xy = 0 5 }~3=—17 X3 = 1
2 1 0
x1(t)=C, (26’ —ezf) +2C; (e’ —62’), x(1) :%CI(e_’ —e')+Cre™’
+1C3(e" —¢"),
)C3(t) =C (6‘2, — et) + C;3 (262’ — e[) .
x1(f) = 6e' — 5%, xa(t) = le ' =3¢, x3(1) = 5¢% — 3¢
13.
0 1 -1
/11:1, X; = 1 y /12:—1, Xy = 0 y 23:2, X3 = 1
1 -1 1

x(t) = Cie® + G, (ef' — ez’) +C; (62’ — e’), x(t) = C; (e' - 62’)
+C2€2I+C3(€t _ eZt)7

x3(1) = Cy (e — ez’) + C2(62’ —e)+Ci(e + e — ez’).
xi(t) =27 — ¥, xo(t) = ¥ — 2", x3(t) = ¥ —2e' e

14. Ay =i, x1 = [1 i i]’ Ao =—I, Xp = [1 1_ ’l . General solution:
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x1(t) = Cy(cost —sint) + Casint — 2 +2+2t — e,
x2(t) = —2C, sint + Ca(cos ¢ + sint) — 2 + 4.
(@) x1(t) =2 —S5sint — £ +2t— e, x(f) =4 —5cost — Ssint — 2¢>.
(b) x1(f) = —2cos(t — 1) + 4sin(t — 1) — 2¢ 'sin(r — 1) — 2% + 4,
xa(t) = sin(t — 1) — 3cos(t — 1) + e ' (cos(t — 1) — sin(t — 1))
+242—F —e".

15. 41 =-2, x; = [_11], =2, X = [;] General solution:

xi (1) = %Cl (36_2l + ez’) + %C2 (ez’ — e_2f) + %t — % + %sin t,
() =3C (¥ — ) +1Co(3¢* + %) — %t + L(cos t + sint).
x(t) = L2 262’—1—3t—§—i-lsint
Solution of IVP: 1 )27 iy 80 1, 09 14 4 5_ 7

x(t) = + 55¢ it +35(cost 4 sint).

2

16. 21:1, X1:|:1

], =0, x, = [i] General solution:

xi(f) = Ci(2e' — 1) +2C,(1 — €') — 8t + 1 — 10,
0(f)=Cile = 1)+ C2(2—¢') =59t +1r.

Solution of IVP:

@) Al 12 o1 12
xi(t) =4e' —6 =8t +5t°, xp(t) =2¢" —1—9t+5¢".

xi(f) = 10e" "+ — 8t + 17 — 10, xy(r) =5¢ '+ —5-9r+1F.

1

2t

xi(t) = 1€ (e +e” ’) lC ( 4
0(f) =1C (¥ — ) + 10, (¥ + e’4’
x () = 'é)g'e_‘” + e — %e_” —3tcost+1 ﬁsmt

11,2t 101 ,—4t 3,—2t 14
() =g —we T3¢ g

__ 4
85 cost —|— 85 smt

17. 21 =2, x= {1}, Jo=—4, X, = [ 1} General solution:
) 372r

85 dcost + 35 2 sin 1.

Solution of IVP:
cost + 2= sm t.
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1 1 1
18. 1i=1, xy; =10, 4,=0, xp=|—-1|, A43=2, x3= [1]. General
0 1 1

solution:

xi(f) = Cle’—i—%Cz(ez’ - 1) —|—C3(l 2 —e’—i—l) +zt+ﬂ+1;—ocos3t+%sin3t,

(1) =10, (1 + ) +1Cs(e* — 1) +Z—3t+13cos3t 2sin 3¢,
x3(t) =10 (¥ — 1) +1Cs (¥ +1) +3 - Hcos3r — Zsin3r + 31,
Solution of IVP: x| () = —13¢ — Pe* + L + It 4+ L5 cos 3t + 35 sin 3¢,
xz(t) = —Be* — 1+ Zcos3r — Lsin3r —
=L + ———cos3t—ﬁs1n3t+3t
1 1
19. 11 =144, x; = Jo=1—i, xo=1|i|, 23=1, x3=1{0
General solution: 1 0
x1(t) = Cre' — Cae'sint + Cye'(cost — 1) + e > +Lsinr — 3+ Zcost,
X2(f) = Cae' cost + Cse' sint + %sint + %cost—l— 3+ %e’%,
x3(f) = —Cae'sint + Cye' cost + 2cost + Lsint — 1 — 3™
Solution of IVP:
xi(r) =3¢ — Se'sint — 3¢’ cos 1 + e > + Lsint — 3+ Zcost,
x2(1) =8¢ cost — ' sint + 2sins + Lcost 4§ + 15~ t,
x3(t) = =S¢’ sint — 3¢’ cos 1 + %cost—&— Lsing —1— 372 | o]
20. The system is in the form Bdx/dt = A;x = fi(¢), with B= {2 1l
_[7 1 _[-5+4 -4 2
A= [8 _1}, fi(r) = {_1 iy ] Pre-multiplication by B~ 1%

;
3
bIlIlgS 1t to the fOIm dX/dt - AX + l(l) with A =

The eigenvalues and eigenvectors of A are

%(Hi)} =2
1 ) )

Xzz[%“")],sop:[%(”") %(11’)]
1

1 1

;Ll:2+i, X1:|:

and

D= 2+ 0 . | . General solution:
0 2—1
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xi(t) = Cie* cost + (Cy — Co)e* sint + £ — %,

x(t) = 2C1e* sint + Cre*(cost — sint) + 2L — S,

Solution of IVP:

_ 2 36,2 2 2
x1(f) = —3ze” cost — 53¢ sint 4 5 — zt,

— 88,2 g — 16,2 416
Xa(t) = —5se”' sint — 52e” cos t 4 55 — 2t.

21. The system is in the form Bdx/dt = A;x = f,(¢), with

1 -2 1 -2 2-6 N
B_[—l 1], Al—|:_1 1}fl(t)—{_2+3t2}.Pre-multlphcanonby

B":[_l _2] brings it to the form dx/dt = Ax + f(r) with

] , f(r) = { 332] . The eigenvalues and eigenvectors of A are

D= {_01 ﬂ . General solution:

xi(f) =1Ci(e" +e7) +1Ca(e" —e7") — 6 — 37,
0(t)=1Ci(e' —e )+ 4 +e) —2—6r.

Solution of IVP: x;(t) =Ze™ +3¢' —6 — 3>, xa(t) =3%¢' —Ze' =2 —6t.
22.

xi(f) =3 —e' =342, x()=1—-3eH —te +2t, 1>0.
> xi(f) =L+ Le¥ + 1 — 2si
1(f) =3+ {5¢” +5(cost — 2sint) , x(1)
:%93’—%+%(2sint—cost), t>0.
24.
xi(f) = =3t =3¢+ 3" +1sint, x(f) = -3+3 +3 " —Lcost, t>0.
25. (t)__i+lt_172t+ﬁ3t+lft
M) =71y T3l —1¢¢ i80¢ T3¢
3 -2 -
0() =k —tt+&e + e =3, 1>0.
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26.
xi (1) =15¢' — e —3cost, xp(f) =1 =2t + e — e —%cos2s,
x3() = =24 e’ + e —l—%sinZt, >0.
27 xi(f) = =14+l —3cost+sint + 3(sint + cost)
1 - 4 4 ’
x(t) = 4(3sint — rcost), x3(f) = 1 —cost — 3rsint, £ > 0.
28.
x1(t) = —5— He + 1 + e ), () = b+ He ¥ — ),
x(f)=—Lt=3H+e ), t>0.
2. ,
xi(f) = —1 —t+3¢' — {(rsint + tcost + cos1),
x(t) = 14 X(sint — tcost) , x3(t) =t —gtsint, 1 > 0.
30. ‘
xi (1) =3¢ +4e " +3(cost —sint) + Jrcost,
x(t) = 7t+%e’+§e "—1lcost—itcost, 1>0.
31.

xi(t) = Je'(5cos2t +2sin2r — 1), xo(1)
=3+1e7(5+8sin2r—9cos2t), 1>0.

32. u = 2dyldt, v = 4duldt, so v = 8d /dr’ and the equation is replaced by the
system §%+—v——u—2y—1+s1nt %—l LZ :
The initial conditions for the system are
y(0) =0, u(0) = 0, v(0) = 0. The solution y(¢) is
y(t) =t +1lef — Le7* — L4 L(cost — 2sinf) — 1, 0.
Although not required, for reference purposes:

u(f) =te' —Le™' +2e* —Zcost — Lsint,

v(r) =2 — L 4+ 2¢' —tcost + Esint.
33. Nilpotent index x = 5.

V.

1 3t 3 +r P+5Y2 4+
JsA_ |01 t £+ 3¢

0 0 1 2t

0 0 0 1
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34.

(e ! 0O 0 O

W |0 200

““lo 0 e o)
L 0 0 ¢
fe O 0 O 1 0 0 O

OB — 0 ¢ and o/(A+B) — 0100
0 0 et 0O 0 1 O
L0 0 0 e 00 0 &

The result is true because the product of two upper diagonal 4 x 4 matrices is
always commutative.

35.
A cosht sinht
et =
sinht cosht |’
36. |
=3 x=1 1" h=-1,x=[-11,P= { X ]
-
-1 _
P = L 1y
2 2
3t Lig=t 4 3) L3 _ ot
=% O] s—pmp'=|? ) )
0 e %(eg’—e*f) %(e*’—i—ey)
37.

21 1( Jat S At Lhat
D = [e t 9zt:| ) et = P(ID)P_I = [ 21(.6 v j_ ‘ ))z i(ell t ei r)
0 ¢ (e - o) Yo o)

so after simplification

le'sin(2r) e’ cos(21)

oA {e’ cos(2f) —2e sin(2t)}

38.

oA cost —sint
sint cost

], x1(t) = cost —sint, xp(t) = —cost — sint.
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39.

40.
41.

« _ | cosht sinht oy e
¢ = Linht coshz |’ 1) =e =2 nf) =t
(@) oA = e'cost e'sint (b) et — e¥ cost e
—e'sint e'cost |’ —e?sint e cost

h=2x=[1,1,2" 24=0x=[1,-1,2" s=1xs=[1,0, 1"

111 -1 1 1 260 0
P=|1 -1 of,P'=|-1 1 T m=|0 0 0],
2 2 1 2 0 -1 0 0 ¢

1,2t N B W B t 1

—ze + 2e -3 ie ) —e +§
A -1 _ 1,2 1 1,2t ;1 1,2t 1
£t =P(MDP " = 3¢ +5 e +3 e —3
1

—e¥ 42— 1 ¥ — e —e +1

42.

v deoe) 0
A ey ey o

_1,—t 1,3t 1 131 1,—t__ 2
¢t t3 +3¢ 3 1

)

x1(t) = Cre™ 4 Cae™, x5(t) = —Cre™" + Cre®, x3(t) = —Cre" 4 Cae™ + Cs.

Solutions 7

. The result is straightforward, because the axioms of a vector space are taken

directly from the rules governing the manipulation of geometrical vectors.
Yes, because when vectors are added or multiplied by a scalar the zeros on the
leading diagonal remain unchanged so this set of matrices forms a vector space.
No, because when vectors are added or multiplied by a scalar the first entry in
the leading diagonal is altered so that the resulting vector does not belong to V.
Thus this set of vectors does not form a vector space.

Yes. It is easily verified that the axioms of a vector space are satisfied when the
matrices contain complex elements and the scalars 4 and u in Definition 7.1.1
are complex numbers. Thus this set of complex matrices forms a complex
vector space.

Yes, When a vector is any member of the set of all cubic polynomials denoted
by P3, performing all of the operations in Definition 7.1.1 will produce another
cubic polynomial. Thus the set of all cubic polynomials P3; form a vector space.
The set of all quadratic polynomials forms a subspace of the vector space Ps.
The set of all cubic polynomials in which @; = 0 form a subspace of the vector
space Pj3. The set of all cubic polynomials in which @y = 1 does not form a
subspace of P3, because when polynomials are added or scaled the coefficient
ay is altered so the resulting polynomial is no longer of the required type.
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7.

10.

11.

12.

13.

14.
15.
16.

17.

The result follows because the sum of continuous functions is a continuous
function and scaling a continuous function yields another continuous function.
All of the other requirements of Definition 7.1.1 are satisfied.

. Yes, because the vectors in the vector space P3 of cubic polynomials are all

differentiable functions.

. The result follows from the fact that the addition and scaling of real continuous

integrable functions defined over a < x < bis continuous and integrable, and
the other properties of Definition 7.1.1 are all satisfied.

The discontinuities must be bounded and finite in number so the functions are
integrable. If improper integrals are included, the integrals must be such that
their Cauchy principal value is defined.

No. Multiplication of a convex function f(x) by a negative scalar causes the
points on the chord PQ that were above the graph of y = f(x) to lie below it. Thus
the resulting function is not convex, and in fact it is called a concave function.
It is a routine matter to show that f(x) satisfies all the requirements of
Definition 7.1.1 and so forms a vector space we can call V. The functions
f'(x) = 2bcosx — 2csinx, but b and ¢ are arbitrary constants so f’(x) has the
same form as f(x), though without the arbitrary additive constant. The functions
f(x) also satisfy all of the requirements of Definition 7.1.1 and so form a vector
space W. The vector space W is a subspace of the vector space V because the
functions f'(x) have the same form as f(x), but without the arbitrary additive
constant.

The determinant test in Chapter 4 should be used to test for linear indepen-
dence. One set of basis vectors is { vy, V3, V4, V5}. This set of basis vectors is not
unique, because another set of basis vectors is { vy, V,, V4, Vs}. In fact v; = v +
2v,, so yet another choice could be {vy, v3, V4, Vs}.

[2,1,2,0].

[1,2,0, =2,1].

The 1-norm. Clearly N1 and N2 are satisfied. N3 is satisfied because
[Au|| = [Aur] + |Aua| + - - - + |Aun| = |2 || + |ua| + - - - |un|}. N4 is satisfied
because

lu+ vl = [ur +vi| + |z +va| + -+ |uy + vy
<un| + [vi] + fua] + [vaf + - A [wa] + Vil

The infinity norm. Clearly N1 and N2 are satisfied. N3 is satisfied because

||| = max{iui, Aus, ..., Au,} = Amax{ wui,us,...,u,}. N4 is satisfied
because
lu+ vl = max{u; +vi,us+ v, ..., u, + vy}
< max{u, u, ..., up} +max{vi,va,...,v,} = [[ul + [|v|lo-

(i) Write axiom P2 as (a+b,c) = (a,c) + (b,c), and seta = 0, b = u and
c=v.
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18.

19.

20.

21.

22.
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Then (0 +u,v) = (0,v) + (u,v), but 0 + u = u, so{u,v) = (0,v)+
(u,v) . Hence (0,v) =0, but (0,v) = (v,0), so (v,0) =0.
(ii) From axiom P1 (u,v 4+ w) = (v+ w,u) = (v,u) + (w,u). However from
axiom P1 (v,u)=(u,v) and (w,u) = (u, w), so the result is proved.
(iii) From axioms P1 and P3(u,kv) = (kv,u) = k(v,u). An application of
axiom P1 shows that k(v,u) = k(u, v), and the result is proved.
Examination of the definition of a projection shows that in proj,v the roles of
u and v are reversed with respect to those in proj,u, so in general the results
will be different, because although (u,v) = (v,u), the two denominators will
be different. However, the two projections will be the same if |ul| = ||v|| .
We have (u,v) = (v,u) = 8,|lu/| =14 and ||v|| = V6, so by definition
projyu = 8/\/6 and proj,v = 8/\/ﬁ, showing that proj,u # proj,v, while
cosl = ﬁ = 0.5097, corresponding to 0 = 29.2°.

= (5%0) wm= (5 -F5h) v (k)

The vectors are linearly independent because the determinant with their entries
as its rows equals 6, and so is not zero.

_ (1 1 1 _ (1 2 1 _ 1 1
W = (ﬁvﬁa%)a Wy = <ﬁ7 776;%)7 W3 = (7757073)'

The vectors are linearly independent because the determinant with their entries
as its rows equals —1, and so is not zero.

111 = (L 3 L _L = (L. o —L
727272)7 WZ_( AVATE 127\/5)7 W3 = (\/ana \/570)7

=

wi = (

— 1 1 2
Wy = (76) 07 %a _%) .

Steps 1 and 2 of the Gram—Schmidt orthogonalization process do not involve
us, so they proceed as before and generate the orthogonal vectors v; and v,
Step 3 tells us that

Vs = U5 — <V1,U3>V1 _ <V2,U3>V2
(vi,v1) (v2,v2)

so substituting for us this becomes

V3 = auy + ﬁllz - <V170ﬂl1 + ﬂu2> Vi — <V27Oﬂl1 + ﬂl.l2> V.
(vi,v1) (V2,v2)

Now u; = vy, so
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23.

24.

25.

V3:av1+ﬁu2—oc<vl’v1>v1—ﬁ<v1’u2>—a<vz’vl>vz— (v2,u2)
(vi,vi) (vivi)  (v2,v2) (v2,v2)

The first and third terms on the right cancel, while the fourth term on the right
vanishes because of the orthogonality of v, and v,. Consequently the result
reduces to

(vi,up) — (Va, )
viovi) T v va)

v =fup —f

The last two terms on the rightare — {(proj, uz)v; + (proj,, u)vo } = —pu,
showing that vz = 0.

The vectors proposed for a basis for the subspace W are suitable because they
are linearly independent (they are not proportional). An application of the

Gram—-Schmidt orthogonalization procedure to these vectors yields the two
; — (L 2 1 - (L L L

orthonormal basis vectors for W w; = ( NGNS \/g> and wp = ( NN ﬂ)'

As p = (2, 1, 4) it follows that (p,w;) = 4/1/6 and (p,w,) = 7/+/3. Thus

adding the two vector contributions gives q:\/ig T _\/igvﬁ +

\/ii(%? \/Lg, %), and so

q=(3, 1, 3) and ||q|| = V19.

The vectors proposed for a basis for the subspace W are suitable because they
are linearly independent. This can be seen from the fact that when they are
arranged as the rows of a matrix, its rank is found to be 3. An application of the
Gram—Schmidt orthogonalization procedure applied to these vectors shows that

an orthonormal basis for W is w; = (\%, 0, %, —%) , Wy = (\/%, \/%, \/%_57 J%_s)

and w3 = (\/LE,O, f%, O).

Thus (p,w;) = —2/v/3, (p,w2) = 1/v/15 and (p,ws3) = /2, and adding the
three vector contributions gives
4= —ZWi + W + V2w = (3, 15, -5 9, and [[p]| = \/17/5.
Let the x;-axis in the (x|, x;)-plane be the axis about which the plane is rotated
through an angle o, with — /2 < o < 7/2, to form the plane II. When
rotated, let the x,-axis become the x/z-axis in the plane II, so the included
angle between these two axes is o.. Unit vectors along the x; and x}-axis are u,
=[1,0,0], and u; = [0, cosa, sina].

The vector q, in the x;-direction with magnitude equal to the component of
p in that direction is

(p,uy) ([acost, bsint, 0],[1, 0, 0])

unu) ' ([, 0, 0,1, 0, 0]y [1,0,0] = [acost, 0, O].

1=
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26.
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The vector q, along the plane II in the u, direction with magnitude equal to
the component of p in that direction is

_ (p,w)  ([acost, bsint, 0], [0, cosa, sina])
©= (uz, uz) 2T ([0, cosa, sina], [0, cosa, sinal)

[0, cos o, sin ]
= [0, beos®osint, bcos o sinosin|.

The position vector q of a point on the projection of the ellipse onto the plane
IT is thus

q=q, +q, = [acost, bcos*usint, bcosasinasini].

This is an equation of an ellipse on plane I1, with a semi-axis of length a along
the x,-axis, but with its other semi-axis no longer equal to b. To find the length
of the second semi-axis in the plane II, we use the fact that the tip of the axis
occurs when ¢ = /2, so as one end of the semi-axis lies at the origin, the other
end will lie at the point (0, bcos?x, bcosasina). An application of Pytha-
goras’ theorem shows the length of this semi-axis to be

2 1/2

b[cos*a + cos’asin®e] ' =bcosa, —m/2 <o < m/2.

So the projection of the ellipse in the (x;, x,)-plane onto plane IT is an ellipse
with semi-axes a and b cos a. The algebraic equation of this ellipse relative to
the x; and x}-axes is thus

2 /
Xy X2

a?  b%cos?a

This result could, of course, have been derived directly, and much more simply,
by using purely geometrical arguments.

Proceeding as in Example 7.8, vector q;, the vector in the direction of unit
vector u; in the x; direction with magnitude equal to the projection of p in that
direction, is

_ (p,u)  (lacost, bsint, ], [1, 0, 0]) B
q; = <U1,u1>u1 = (1, 0, 01,1, 0, 0] [1, 0, 0] = [acost, O, 0O].

The corresponding vectors (, and q3 in the direction of the unit vectors u,
and u; with magnitudes equal to the projection of p in these directions are

_(pw) (lacost, bsint,£],[0, 1, 0]) B _
L <U2,1122> L= oL 1, o) L 0I=1[0, bsing, 0]
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27.

28.
29.
30.

—_—

and

_ (puz) (lacost, bsint,2],[0, 0, 1]) B
S ay™ T 0,0, L0, 0,y 0 H=00 ).

(a) The position vector of a point on the projection of p onto the (x;, x,)-plane
is q =q; +q, = [acost, bsint, 0], which is the parametric equation of
an ellipse in the (xq, x;)-plane with semi-axes @ and b.

(b) The position vector of a point on the projection of p onto the (x,, x3)-plane
isq=q, +q; = [0, bsint, ], with 0 < ¢ < 2x. This is the parametric
equation of a sinusoid stretched unevenly along the x;-axis in the (x,, x3)-

plane.
In terms of the unit vectors i, j and k, vectors by =i—j, b, =i — Kk,
p=3i+;+3k.
A vector n normal to the plane defined by vectors b; and b, isn =b; x by so
i k
n =b; xb,=|1 —1 0 |=i+j+k. The unit vectors n and /ﬁ in the
1 0 -1

directions n and p areh = (1/V3)(i+j+k) and p= (1/v19)(3i + j+
3k). So if 6 is the angle between ﬁandf), taking the scalar product of
nandp gives cos0=7/(v/3v/19) = 0.927173, so 0 = 0.384002 rad. The
length of vector p is v/19. So, if q is the vector projection of p on the plane
defined by vectors by and b,, and the length of q is /, then the geometry of the
problem shows that [ = V19 sin 0 = 1.632993 = \/8_/‘3 This confirms the
result in Example 7.7 which was obtained automatically, without the need
for the geometrical intuition required by the elementary vector analysis
approach used here. The only intermediate calculations that were necessary
involved using the Gramm-Schmidt method to find an orthogonal set of basis
vectors.

Orthonorme.ll system: #sinx, \/Lgsin 2x, ..., \/;2_717 ﬁcosx, Jiﬁcos 2x, ...
Self-Checking.
Po(x) = 1, Py(x) = x, Po(x) = 3(3x% = 1), P3(x) = 3(5x° = 3x).

Solutions 8

Yes, because AAT = 1.

Self-checking.

(a) Rotation with 0 =3z (b) Rotation with 0 =31 (c) Rotation with 0 =
—2n (d) Rotation with 6 = —1r.

Proceed as in Example 8.7.

Proceed as in Example 8.7.
S R I

(| 2 I -1 (b)
1 -1 2 0 0 1 1
1 -2 3 2
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7. The linearity of the definite integral ensures that conditions (i) and (ii), suffi-
cient and necessary for a linear transformation, are satisfied, because

®

| kot +smar=| " xarwars | &Gng
(ii) ~ -
J JK (s, 0 (0t = zJ K(s, 0f (1)d.

8. Each satisfies the definition of a linear integral transformation that precedes
Exercise 7.
: . 0, <0 )

(a) The kernel of the Mellin transform is K(p,7) =< »- 0 with f(¢)
defined for 0 < ¢ < oo. £, 20

(b) The kernel of the Fourier transform is K (w, ) = e, with f(¢) defined for
— 00< <00,

(c) The kernel of the Hankel transform of order v is K,(o,t) =

0, 1<0 .
{Uv(ff»f), >0, with f(r) defined for 0 < ¢ < oo.
9.
1 1 i
T(ey)=|—-1]|, T(es)=|0|, T(es)=| 1 | and so
2 0 1
1 1 -1
A=|-1 0 1
-1 0 1
10. o
Te)=| 4 |, T(e)=|-3|, T(es)=| 4 |,
L 0 _ 1 0
0] -4 2 -4 0
T(es)=|—1| andsoA=| 4 -3 4 -1
L 1 . O 1 O 1

11. (a) det A =0, so there is linear dependence between the rows of A. Inspection
(or Gaussian elimination) shows the first two rows are linearly inde-
pendent so rank(A) = 2. When written out in full, the equation Ax =y
becomes

2x1 + x + 3x3 =1,
—x1 + X2 + 2x3 = y2,
—6x; — 6xy — 16x3 = y3,



Solutions for All Exercises 305

12.

13.

14.

but as rank(A) = 2, for consistency y; must be determined in terms of y; and y,
from the first two equations. Solving the first two equations for x; to x5 gives

x1 =k, xp="Tk—2y1, x3=-3k+y1,

where k is arbitrary. Substituting these results into the third equation

shows that y; = —4y;. So the vector y = [y1, y», — 4y,]" is the image of all

vectors x of the form x = [k, 7k — 2y, —3k + y;]", for arbitrary k. Thus a

vector y of the given form is the image of arbitrarily many vectors

x = [k, Tk —2y;, -3k + yl]T, where k is arbitrary. Any vector y that is not of

the form y = [y;, y». — 4y1]T will not be the image of a vector x.

(b) det A # 0, so A 'exists and is unique. So from A"'Ax = A"y, we have
x = Ay, showing the transformation to be one-to-one.

(c) Gaussian elimination shows rank (A) = 3, so writing out in full the first
three equations gives

Xp — X2 + X3 = Y1,
X1+ X2 + X3 = y2,

X1 — X3 = Y3,

and solving these for x; to x3 gives x; = 4(y1 + y2 +2y3), x> = 3(—y1 + »2),
X3 = i(yl + y2 — 2y3). For the fourth equation x; — 2x; + x3 = y4 to be com-
patible with the first three equations, y, must be found by substituting these
values into the fourth equation, when we find ys = 1(3y; — y2). Thus for any
given yy, y2, y3, the vector y = [yi, y2, y3, 2By — y2)]" will be the image of
the unique vector x = [}(y1 +y2 + 2y3), 3(—y1 +¥2), 21 +y2 — 2y3]". Any
other vector y for which the fourth component is not y; = %(3)21 — y2) will not
be the image of a vector x.

Writing out the scalar form of Ax = 0 and solving for x; , x, and x3 gives x; =k,
X, = —4k and x3 = —3k, where £ is arbitrary. Thus the vector x is proportional
to k, so setting k = 1 we find that the vector in the nullspace is x = [1, —4, —3]T,
and so vy = 1. As A is a 3 x 3 matrix n = 3, but the form of x shows that rank
(A) =2, sorank(A) + vo=2 + 1 = 3 = n, confirming the result of Theorem 8.2.
det A # 0, so Al exists, and so AT Ax =Ix =x = 0, showing there is no
vector in the nullspace of A, with the result that v4 = 0. As A'is a 3 x 3 matrix
n = 3, so as rank(A) = 3 we have rank (A) + va= 3 + 0 = 3, confirming the
result of Theorem 8.2.

Writing out the scalar form of Ax = 0 and solving for x;, x,, x3 and x4 gives
x;1 = —=20—5B, x, =a+2f, x3=0,x4 = ff, where « and § are arbitrary,
showing that rank(A) = 2, because from the four variables x; to x4, two may
be expressed in terms of the remaining two. Making the arbitrary assignment

o =1, f =0 shows one vector in the null space to be x = [-2, 1, 1, O]T,
while making the assignment o = 0, f = 1 shows another vector in the null
spacetobex = [-53, 2, 0, I]T, so that vy = 2. Different choices for o and f will

give different vectors x in the nullspace, though any pair will span the nullspace.
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15.

16.

17.

18.

19.

20.
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Inspection of A shows that n = 4, so that rank (A) + vp =2+2 =4 =n,

confirming the result of Theorem 8.2.

Writing out the scalar form of Ax = 0 and solving for the four variables x,

X, X3 and x4 gives x; = —a, x, = 0, x3 = «, x4 = o, where « is arbitrary, and

n = 4. As the three variables x; to x3 are expressible in terms of x, shows that

rank(A) = 3. Making the assignment « = 1 shows a vector in the nullspace to

be x =[-1, 0, 0, l]T, and so vq4 = 1. Thus rank(A) + vp =3+ 1 =4 = n,

confirming the result of Theorem 8.2.

(a) A reflection in a line L through the origin inclined at an angle 6 = /6 to
the x-axis.

(b) A counterclockwise rotation about the origin through an angle 6 = /3.

(a) A reflection in a line L through the origin inclined at an angle 0 = /4
to the x;-axis.

(b) A projection onto a line L inclined at an angle 8 = 7/4 to the x;-axis.

(a) A clockwise rotation about the origin through an angle 0 = —7 /4.

(b) A reflection in a line L through the origin inclined at an angle 0 = —n/2
to the x;-axis.

(a) A projection onto a line L inclined at an angle § = —n/4 to the x;-axis.

(b) A counterclockwise rotation about the origin through an angle 6 = 37 /4.

A’ (—1.366,—0.366), B' (—3.098, 0.634), C' (—2.598, 1.5), D' (—0.866, 0.500).

21.

22.

23.

1

1
The projection matrix A = [% %] . If P is the point (3, 5), the coordinates of
2 2 11
its orthogonal projection P’'onto line L are given by B 1} = [% %} [2} =
2 2 2

{ﬂ , so P’ is at the point (4, 4).

303

The projection matrix A = % ‘1‘ . If P is the point (2, 6), the coordinates
ER

of its orthogonal projection P'onto line L are given by [y ! } =

Y2

3%1T12]  [4.098

4 4 = | P’ is at the point (4.098, 2.366).
\/§ { ] [ : } ' SO p ’

[T 1 1 6 2.366

This involves a composite transformation, because repeated reflection is

described by the matrix product A %. We have

A2 = cos20  sin2o 12
[ sin2a  —cos2x

cos220 + sin®2u 0 B [1 0}
0 cos?20 + sin*2a o 1]

SoAZ= I, which is the identity transformation, showing that whatever the
original geometrical shape, it is reconstructed after two repeated reflections.
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24.

25.

26.

The first part of this exercise involves a reflection first in the x,- axis and

. . . . . -1 0
then in the x;-axis. The two reflection matrices involved are { 0 1]
1

0
-1 0|1 o _|-1 O
0 1|0 —1] |0 -1}

The second part of this exercise involves a reflection first in a line inclined

to the x;-axis at an angle o = /4, and then a reflection in a line inclined
to the x;-axis at an angle o = —n/4. The two reflection matrices involved are

and[ _01] so the composite effect is given by the product

1 0 —1

0 1 0O -1 _ (-1 0
1 of|-1 O] | O -1}
As the composite transformation is identical in each case, each set of reflections

produces the same result.
This is a composite transformation with the first reflection described by the

[O ! ] and [ 0 _01 } so the composite effect is given by the product

cos2o  sin2a

matrix A = | .
[ sin20¢  —cos2o

], while the second reflection is described by

cos2f  sin2f
sin2ff  —cos2f

cos2(ff —a) —sin2(ff —a)
sin2(ff —a)  cos2(ff —a)
tion through the angle 2(f — o).

When o = 7/6 and f = /3, a point P at (1, 1) in the (x;, xp)-plane is
mapped to the point Q at (—0.366, 1.336). To interpret correctly the rotation
through the angle 2(f — «), it should be remembered that the first reflection of
the point P about the line L inclined at an angle 7/6 to the x;-axis, is in
the clockwise direction, so & = —n/6, whereas the second reflection is in the
counterclockwise direction, so = n/3, with the result that 2(f — o) = n/3.
This is in agreement with the result that after two reflections the point (1, 1) at
P is mapped to the point Q at (—0.366, 1.336). Because if the origin is O, the
vector OP to the original point P is expanded and rotated counterclockwise
through an angle 7/3 to become the vector OQ. Check this on a sketch drawn
to scale.

The composite transformation comprising a uniform magnification, a rotation
and then a shear, in this order, takes the form

R Al R

the matrix B = { } . After simplification, it is found that the

product BA = [ } , which corresponds to a rota-

—

V3
V3 +
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27.
28.

29.
30.

Solutions for All Exercises

A(1.5, 0) — A’(2.598,1.5), B(1.5, 1) — B'(3.330, 4.232)
C(0, 1) — C'(0,732, 2.732), D(0, 0) — D'(0, 0).

The matrix representing a uniform magnification is symmetric, so it may
appear in any position in the composite transformation without altering the
matrix product. However, the matrices representing the rotation and shear are
not symmetric, so interchanging their order in the composite transformation
will change the matrix product, and so change the effect of the composite
transformation.

Self-checking. Magnification factor is |[det A| = 4.

To produce a magnification factor of 3 the elements in A must be multiplied
by a factor V3.

The matrix A is such that |detA| = 1.

If

0 b 0 0 b 0 b

A:[“ 0}, andB:[l ﬂ,thenAB:{“ k“} andBA:[a kb].

31.

32.

33.

Thus the first effect of AB is to produce a shear, after which the result is scaled
differently in the x; and x, directions. The product BA reverses the order in
which these effects are produced.

IfA = [CCI Z} ,then A will be singular if ad — bc = 0. In the trivial case when
A = 0 the entire (x|, x»)-plane will be mapped to the origin. Suppose,

. a b
instead, that @ # 0. Then d = bc/a, so A = [c bc/a

with the result that
axy + bx,

(¢/a)(ax; + bxz)

mapped onto the line y, = (¢/a)y; in the ( y;, y,)-plane.

If A produces a stretch, changing the sign of an element in A simply reverses

the direction of stretch about the appropriate axis, resulting in a reflection about

that axis.

Pre-multiplication by P interchanges the rows of A , so it leaves a rectangle or

triangle in the (x;, x;)-plane unchanged, but it reverses the sense around the

rectangle or triangle.

Ax = { } . This shows that every point in the (x;, x,)-plane is
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A

Algebraic equations, linear system, 1-2

Algebraic multiplicity, 92-93, 106. See also
Geometric multiplicity

Alternant determinant, 24. See also
Determinants

Augmented matrix, 75-77

B

Back substitution, 47, 80
Banded matrices, 133

Binary operations, 208

Block matrices, 37, 54, 56, 58

C
Cartesian coordinates, 51, 258
Cauchy—Schwarz inequality, 221-222
Cayley, 13
Cayley—Hamilton theorem, 121-122
Characteristic polynomial

companion matrix, 95-96

matrix, 31, 92, 101

polynomial expression, 57

Column vector, 4, 9, 87,92, 101, 128, 170, 250.

See also Row vector
Companion matrix, 95-96
Complex eigenvalues and eigenvector,
166-167
Complex elements, matrices
Hermitian matrices, 148—151
skew-Hermitian matrix, 151
unitary matrix, 151-152
Composite transformations, 266267
Convolution theorem, Laplace transform, 199
Coordinate axes rotation
coordinate transformation, 239

3D rotation matrix, 243-244
geometrical reasoning, 240-241
linear property, rotation operation,
241-242
planar rotation, angles, 240
vector r, 242-243
X3-axis, 244-245
Coordinate transformation, 239, 240
Cramer’s rule, 15, 52-53

D
Determinants
eigenvalues
characteristic polynomial, 31
matrix multiplication, 30
polynomial, 31
Gaussian elimination
determinant evaluation, 25-26
vs. direct expansion, 25-26
generalized Cramer’s rule, 27-28
matrix algebra, 27
rows interchange, 26
upper triangular form, 26-27
Laplace expansion theorem
alternant determinant, 24
cofactors and minors, 18—-19
det A properties, 17
expansion, det A, 19-25
inverse matrix, 21
nth order determinant, 17-18
third-order determinant, 18
linear independence test, 28-30
positive definiteness test, 116-117
systems of equations
Cramer’s rule, 15
functional determinants, 14
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Jacobians, 14
linear nonhomogeneous system, 13—14
second-order determinants, 14—15
square matrices, 13
Diagonalization of matrices
application, 169-172
general square matrix, 110-112
properties, 112-114
quadratic forms (see also Quadratic forms)
classification, 116
determinant test, 116—-117
orthogonal diagonalizing matrix, 115
reduction, 115, 119-120
Routh—Hurwitz test, 118—119
sum of squares, 115
Dirichlet boundary-value problem, 64—65
Dominant and sub-dominant eigenvalues,
138-141
Dot product, 219, 223

E
Echelon form, 78—-80. See also Reduced
echelon form
Eigenvalues
and determinants, 30-31
and eigenvectors, 91-95, 108-109
and transpose operation, 122
power method, 138, 139
region estimation, 141-144
similar matrices, 123-124
skew-Hermitian matrix, 152
symmetric matrices, 108—109
tridiagonal matrix, 136
unitary matrix, 152
Eigenvectors
algebraic and geometric multiplicity, 106
and eigenvalues, 101-106
characteristic equation, 101
left and right, 124-125
power method, 138-139
roots of polynomials, real coefficients,
106-110
symmetric matrices, 108-109
tridiagonal matrix, 136—137
Elementary row operations, 85-86
Elliptic equation, 65
Euclidean norm, 35, 211
Euler equations, 119

F

Fibonacci sequence, 145-146

Finite and infinite dimensional vector space,
214215

Index

Finite difference method, 54, 65
Frobenius norm. See Euclidean norm

G
Gaussian elimination, 25-28, 75-76
General space vectors, 207
Geometric multiplicity, 106. See also
Algebraic multiplicity
Geometry of the plane, linear transformations
area magnification and image orientation,
260-261
Cartesian coordinates, 258
composite transformations, 266267
geometrical properties, 258-260
orthogonal projection (P onto L), origin,
263-264
reflection in line, origin, 262-263
rotation, origin, 262
scaling, x; and x, directions, 264-265
shear, 265-266
transformation of curves, 267
Gerschgorin circle theorem, 142—-143
Golden ratio, 146
Gram-Schmidt orthogonalization, 224-227
Grid points, 65, 67, 146, 147

H

Hermitian matrices, 148-151

Homogeneous boundary conditions, 146

Homogeneous linear differential equations
complex eigenvalues and eigenvector,

166-167

fundamental matrix, 164—165
initial-value problem, 164
nonhomogeneous system, 169
nth-order to first-order equation, 167—169

I
Identity matrix, 7
Identity transformation, 240, 244, 264
Infinite-dimensional vector spaces, 215,
231-233
Infinity norm, 36
Inner product, vector
axioms, 218-220
Cauchy—Schwarz inequality, 221-222
definition, 35
length and metric properties, 220-221
Inverse matrix
elementary row operations, 85-86
expanding, determinant, 49-50
invertible matrix, 46-47
Laplace expansion, determinant, 46
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multiplicative inverse, 45
properties of, 48—49
Inverse transformation, 244, 251
Invertible matrix, 46—47
Iterative method. See Gaussian elimination

J

Jacobian determinants, 14

Jordan normal forms
2x2 matrix reduction, 56, 130-133
dynamical systems, 126
nonlinear pendulum equation, 126
phase-plane and trajectory, 126
types, 127-130

L
Laplace equation
augmented matrix, 64
Dirichlet boundary-value problem, 64—65
elliptic equation, 65
finite difference method, 65
Gaussian elimination, 68
grid points, 65
symmetric matrix, 67
Taylor series expansion, 66
weighting, discrete values, 66, 67
Laplace expansion theorem
alternant determinant, 24
cofactors and minors, 18—19
det A properties, 17
expansion, det A, 19-25
nth order determinant, 17—18
recurrence relation, 134
third-order determinant, 18
Laplace transform
and matrix methods
initial-value problems, 176-182
inversion process, 175
Laplace transform pair, 175
convolution theorem, 199
Laplace transform pairs table, 200
linearity, 199
matrix exponential, 197-198
of vector, 196
Least-squares curve fitting
arbitrary matrix, 62
data points, 59-61
polynomial, 60
quadratic approximation, 61
regression coefficient, 62
solid line, 63, 64
Left and right eigenvectors, 124—125. See also
Eigenvectors
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Leibniz, 13
Leonardo of Pisa, 145
Linear algebraic equations
augmented matrix
elementary row operations, 76—77
Gaussian elimination, 75-76
pivots, 77
underdetermined system, 75
companion matrix and characteristic
polynomial, 95-96
echelon and reduced echelon forms, 78—80
eigenvalues and eigenvectors
algebraic multiplicity, 92-93
characteristic vector, 92
discriminant, 94
nontrivial solution vectors, 92
trace, 93-94
elementary row operations and inverse
matrix, 85-86
LU factorization
column vector, 86—87
Gaussian elimination process, 87—88
inverse matrices, 89-90
permutation matrix, 90-91
triangular matrices, 87
row rank of matrix
arbitrary parameter, 80
augmented matrix and solution, 84—85
definition, 80
linear independence, testing, 85
overdetermined system, 81-82
properly determined system, 81
unique solution set, 83
Linear combination vectors, 214, 217, 249
Linear first-order differential equations, 9—10,
198-199
Linear homogeneous system equation,
192-194
Linear independence
homogeneous systems of equations
determinant columns, linear
dependence, 30
determinant test, 28—-29
equivalent coefficient matrix, 28
and linear dependence, 15-16
Linear nonhomogeneous system, 13
Linear transformations
and geometry of the plane
area magnification and image
orientation, 260-261
Cartesian coordinates, 258
composite transformations, 266267
geometrical properties, 258-260
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orthogonal projection (P onto L), origin,
263-264
reflection in line, origin, 262-263
rotation, origin, 262
scaling, x; and x, directions,
264-265
shear, 265-266
transformation of curves, 267
definition, 245-246
mapping, vector spaces, 247, 248
matrix representation, 250
null space and range
definition, 255-256
rank nullity theorem, 256-257
one-one transformations, 250-251
projection operation, 246
rotation of coordinate axes
coordinate transformation, 239
3D rotation matrix, 243-244
geometrical reasoning, 240-241
linear property, rotation operation,
241-242
planar rotation, angles, 240
vector r, 242-243
X3-axis, 244-245
standard matrix representation, 250
vector transformation, 248-249
Linearly dependent equation, 15-16
Linearly dependent vectors, 214
Linearly independent equation, 15-16
LU factorization
column vector, 86—87
Gaussian elimination process, 87-88
inverse matrices, 89-90
permutation matrix, 90-91
triangular matrices, 87

M
Magnitude and strength, in vector, 209
Matrices and linear systems of equations
algebraic equations, 1-2
equality, addition and scaling of matrices
commutative, 6
conformable for addition/summation
matrix, 5-6
null/zero matrix, 5
special matrices and transpose operation
identity matrix, 7
linear first order differential equations,
9-10
skew symmetry matrix, 8
square matrix, 610
symmetric matrix, 7-8

Index

transpose operation, 8—9
upper and lower triangular matrices, 8
suffix and matrix notation, 3—4
Matrices, diagonalization
general square matrix, 110-112
linear differential equations, 169-172
properties, 112—-114
quadratic forms (see also Quadratic forms)
classification, 116
determinant test, 116—117
orthogonal diagonalizing matrix, 115
reduction, 115, 119-120
Routh—Hurwitz test, 118—-119
sum of squares, 115
Matrix multiplication
block matrices, 37
conformable for, 37-38
digression on norms, 3637
Euclidean norm, 35
identity matrix, 40
inner product/scalar product, 35
linear vector space, 35-36
matrix products, 38—40
noncommutative, 38
nonhomogeneous first-order algebraic
systems, 40
orthogonal and orthonormal vectors, 36

N

Nilpotent index, 183—185

Nilpotent matrix, 183

Nonhomogeneous linear first-order differential
equations, 195-196

Nonhomogeneous linear differential equations,
172-174

Nonlinear pendulum equation, 126, 127

Null vector. See Zero vector

(0]
One-one transformations, 250-251
Ordinary exponential function, 182, 190
Orthogonal diagonalization theorem. See
Principal axes theorem
Orthogonal diagonalizing matrix, 115, 119
Orthogonal matrices
counter-clockwise rotation, 51
geometrical properties, 50-52
linear transformation, 52
rectangular Cartesian coordinates, 51
Orthonormal vector set, 219-220
Overdetermined systems, algebraic
equations, 2
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P
p-norm, 37
Parallelogram rule, vector addition, 210, 211
Partitioned matrices
finite difference/finite element method,
54-55
inverse of, 57-59
Jordan normal form, 56
linear first-order differential equations, 54
linearity, scaling and summation, 55-56
matrix polynomial, 57
Power method
characteristic equation, 138
dominant eigenvalue, 139-141
eigenvalues, 138, 139
eigenvectors, 138—139
sub-dominant eigenvalue, 141
Principal axes theorem, 116-117
Projection matrix, 264
Properly determined systems, algebraic
equations, 2

Q

Quadratic forms

definition, 42

diagonalization
classification, 116
determinant test, 116117
orthogonal diagonalizing matrix, 115
reduction, 115, 119-120
Routh—Hurwitz test, 118—-119
sum of squares, 115

matrix diagonalization, 43

symmetric matrix, 43-44

R
Rank nullity theorem, 256-257
Real vector space, 212-216
Reduced echelon form, 78-80. See also
Echelon form
Reflection matrix, 262
Regression coefficient, 62
Regression line, 62
Rotation matrix, 240, 244, 262
Routh—Hurwitz test, 118119
Row and column rank, 216218
Row rank of matrix
arbitrary parameter, 80
augmented matrix and solution, 84—85
definition, 80
linear independence, testing, 85
overdetermined system, 81-82
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properly determined system, 81
unique solution set, 83
Row vector, 4, 49, 210, 217. See also Column
vector

S
Scaling matrix, 264
Second-order determinant, 14, 18
Second-order linear difference equation, 134
Shear, 265-266
Similar matrices, 122—-124
Skew symmetry matrix, 8
Skew-Hermitian matrix, 151, 152
Square matrix, 4, 13, 31, 110
Standard matrix representation, 250
Standard ordered basis, 215
Suffix notation, 3—4
Sylvester’s law of inertia, 115
Symmetric matrix, 7-8, 44
Systems of linear differential equations
diagonalization, 169-172
differentiation and integration, 159—162
first order system, 163
homogeneous system
complex eigenvalues and eigenvector,
166-167
fundamental matrix, 164—165
initial-value problem, 164
nonhomogeneous system, 169
nth-order to first-order equation,
167-169
Laplace transform (see Laplace transform)
Laplace transform pairs table, 200
linear first-order differential equation,
198-199
matrix exponential and differential
equations
¢* and ¢® values, 189-192
¢ values, 185-189
Laplace transform, 197-198
linear homogeneous system,
192-194
nilpotent index, 183-185
nilpotent matrix, 183
nonhomogeneous linear first-order
equations, 195-196
ordinary exponential function, 182
matrix methods and Laplace transform
initial-value problems, 176-182
inversion process, 175
Laplace transform pair, 175
nxn constant matrix, 163
nonhomogeneous system, 172—174



314

T
Three-dimensional rotation matrix, 243, 244
Transpose operation
eigenvalues, 122
identity matrix, 7
matrix multiplication, 9-10
skew symmetric matrix, 8
sum of matrices, 8—9
symmetric matrix, 7
Triangle rule, vector addition, 210, 211
Tridiagonal matrix
banded matrices, 133
determinant value, 135-136
eigenvalues, 136
eigenvectors, 136—137
recurrence relation, 134
super-diagonal and sub-diagonal, 133
Trivial/null solution, 16
Two-point boundary-value problem,

146-148

U

Underdetermined system, algebraic equations,
1-2

Unit matrix. See Identity matrix
Unitary matrix, 151-152
Upper and lower triangular matrices, 8

A\
Vandermonde determinant. See Alternant
determinant
Vector norm, 36-37, 149, 209-211, 220, 224
Vector spaces
angle between vectors, 222-223

Index

axioms, 212
basis vectors, 216
examples, 212-213
Gram—Schmidt orthogonalization,
224-227
infinite-dimensional vector spaces,
231-233
inner product
axioms, 218-220
Cauchy—Schwarz Inequality, 221-222
length and metric properties, 220-221
orthogonal projection, vector direction,
223-224
projections, 227-231
row and column rank, 216-218
subspace, 213-216
vector generalization
binary operations, 208
Euclidean norm, 211
general space vector, 207
line of action, 208
linear algebra, 207
norm, Pythagoras’ theorem, 209
null vector, 210
vector translation, 210-211
Vector’s line of action, 207, 208, 211

w
Weight function, 232

VA

Zero solution. See Trivial/null solution
Zero transformation, 255

Zero vector, 5, 210
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