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Preface

This book is based on many courses given by the author to English and American

undergraduate students in engineering and the applied sciences. The book separates

naturally into two distinct parts, although these are not shown as parts one and two.

The first part, represented by Chapters 1–4 and a large part of Chapter 5, gives a

straightforward account of topics from the theory of matrices that form part of every

basic mathematics course given to undergraduate students in engineering and the

applied sciences. However, the presentation of the basic material given in this book

is in greater detail than is usually found in such courses. The only unusual topics

appearing in the first part of the book are in Chapter 3. These are the inclusion of the

technique of least-squares fitting of polynomials to experimental data, and the way

matrices enter into a finite difference approximation for the numerical solution of

the Laplace equation. The least-squares fitting of polynomials has been included

because it is useful and provides a simple application of matrices, while the finite

difference approximation for the Laplace equation shows how matrices play a vital

part in the numerical solution of this important partial differential equation. This

last application also demonstrates one of the ways in which very large matrix

equations can be generated when seeking the numerical solution of certain types

of problem.

The last part of Chapter 5 forms the start of the second part of the book, and

contains various important topics which, although belonging to the subject matter

of the chapter, are not discussed in courses as often as they deserve. Chapter 6

describes a matrix approach to the study of systems of ordinary differential equa-

tions and, although this approach is straightforward and found in courses for

mathematics majors, it is still a relatively new topic in courses for engineers and

applied scientists. In particular, the chapter shows how to use matrices when

solving the homogeneous and nonhomogeneous systems of linear constant coeffi-

cient differential equations that model so many physical situations. It makes full

use of the diagonalization of matrices when seeking solutions of systems of

differential equations, and it also shows how the Laplace transform can be applied

to matrix systems of differential equations. The chapter also provides motivation
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for the concept of the matrix exponential, which is then applied to differential

equations.

Chapter 7 uses matrices as a typical model when explaining the notion of vector

spaces that are the key to understanding many applications of mathematics. This

enables the basic ideas of vector spaces to be introduced at an early stage in an

undergraduate course. Chapter 8 develops the important and useful concept of a

linear transformation and provides motivation by using matrices when applying

linear transformations to the geometry of the plane. These applications illustrate the

general ideas of linear transformations in terms of simple and familiar geometrical

operations like stretching, rotating and reflecting shapes while, at the same time,

relating them directly to the study of matrices. Although these applications are

elementary, they are nevertheless useful, because while they can be combined to

make more complicated transformations, they also serve as a foundation for the

techniques used in applications as diverse as solid mechanics, crystallography and

computer graphics.

This book can be used as a text for a course, to supplement an existing course, for

private study, or to refresh and extend the reader’s knowledge of the theory of

matrices. All chapters are provided with clear and detailed illustrative examples as

each new idea is introduced, so, for example, attention is drawn to the fact that a

twice repeated eigenvalue does not necessarily have associated with it two linearly

independent eigenvectors, and it is then shown how this influences the nature of

solutions of systems of differential equations. Apart from Chapter 6 on differential

equations, no systematic attempt has been made to describe the numerous applica-

tions of matrices that are possible. Nevertheless, because of the intended readership

of the book, where appropriate a few relevant applications have been included.

Some of these applications have already been mentioned, but others illustrate the

way matrices can be used to solve linear second-order difference equations like the

one that generates the Fibonacci sequence and, because of the importance of two-

point boundary-value problems in applications of differential equations, it is shown

how matrices enter into the numerical solution of some of these problems.

Throughout the book, worked examples are numerous and they are supplemen-

ted by exercise sets at the end of each chapter. Solutions for all of the exercises are

given at the end of the book, always provided with adequate detail if a method of

solution is not completely obvious. Detailed explanations of new ideas have been

given throughout the book, because the author’s experience has shown that an

inadequate explanation when a topic is first encountered can cause unnecessary

difficulties for a student at later stages of study when matrix methods need to be

applied.

The ready availability of computer algebra software makes the manipulation of

matrices a simple matter and, in real life applications, such software should be used

whenever possible and, indeed, for complicated and large problems its use is

essential. However, the use of such software tools when learning about matrices,

before having first understood the underlying theory by working well-chosen

examples by hand with the help of a hand-held calculator, is likely to limit the
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reader’s ability to make full use of matrices when the time comes to apply matrix

methods to new problems.

The efficient ways software manipulates matrices when performing numerical

operations, like finding the rank of a matrix, its eigenvalues and eigenvectors, and

accelerating computations while maintaining high accuracy, depend for their suc-

cess on the use of sophisticated numerical techniques. Of necessity, the approach

used in such software will differ from the way the same operations are described in

this book, where only straightforward and direct methods are given, and the

necessary numerical calculations in examples and exercises have been reduced to

a minimum. For example, to simplify the numerical calculations involved when

working with eigenvalues and eigenvectors, the worked examples and exercise sets

dealing with this topic have been constructed in such a way that, whenever a

characteristic equation occurs, its roots can be found by inspection. This allows

the analysis to proceed without the interruption that would otherwise be caused if a

numerical root-finding technique for polynomials had first to be explained and then

used.

It is hoped readers will find the book helpful when working with matrices and

when applying linear algebra, and that it will encourage them to apply matrix

methods to the wide range of problems that are often solved less efficiently and

concisely by other means.

University of Newcastle Alan Jeffrey

Matrices and Linear Algebra for Engineering and Science
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Chapter 1

Matrices and Linear Systems of Equations

1.1 Systems of Algebraic Equations

The practical interest in matrices arose from the need to work with linear systems of

algebraic equations of the form

a11x1 þ a12x2 þ � � � a1nxn ¼ b1;
a21x1 þ a22x2 þ � � � a2nxn ¼ b2;
a31x1 þ a32x2 þ � � � a3nxn ¼ b3;

..

.

am1x1 þ am2x2 þ � � � amnxn ¼ bm;

(1.1)

involving the n unknowns x1, x2, . . . , xn, m equations with constant coefficients

aij, i ¼ 1, 2, . . . , m, j ¼ 1, 2, . . . n, and m constants b1, b2, . . . , bmn called

the nonhomogeneous terms, where the coefficients aij and the bi may be real or

complex numbers. A solution set for system (1.1) is a set of numbers {x1, x2, . . . xn},
real or complex, that when substituted into (1.1), satisfy all m equations identically.

When m< n system (1.1) is said to be underdetermined, so as there are fewer linear
equations than unknowns a unique solution set cannot be expected.

The reason for this can be seen by considering the simple underdetermined

system

x1 þ x2 þ x3 ¼ 1;

x1 þ 2x2 þ 3x3 ¼ 2:

Rewriting the system as

x1 þ x2 ¼ 1� x3;

x1 þ 2x2 ¼ 2� 3x3;

and for the moment regarding the expressions on the right of the equality sign as

known quantities, solving for x1 and x2 by elimination gives x1¼ x3 and x2¼ 1� 2x3,

A. Jeffrey, Matrix Operations for Engineers and Scientists,
DOI 10.1007/978-90-481-9274-8_1, # Springer ScienceþBusiness Media B.V. 2010
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where x3 is unknown. Setting x3¼ k, where k is a parameter (an arbitrary number), the

solution set {x1, x2, x3} of this underdetermined system becomes {k, 1� 2k, k}. As k is
arbitrary, the solution set of the system is not unique. It is not difficult to see that this

situation generalizes to larger underdetermined systems, though then the solution set

may depend on more than one unknown variable, each of which may be regarded as a

parameter.

When m > n system (1.1) is said to be overdetermined, so as n unknowns have to
satisfy m > n linear equations, in general no solution set will exist. That overdeter-

mined systems may or may not have a solution set can be seen by considering the

following three systems:

að Þ
x1 þ x2 ¼ 1

x1 þ 2x2 ¼ 3

x1 þ 3x2 ¼ 0;

bð Þ

x1 þ x2 þ x3 ¼ 2

x1 þ 2x2 þ 3x3 ¼ 0

x1 � 2x2 þ x3 ¼�4

2x1 þ 3x2 þ 4x3 ¼ 2;

cð Þ

x1 þ x2 þ x3 ¼ 1

x1 þ 2x2 þ 3x3 ¼ 2

x2 þ 2x3 ¼ 1

2x2 þ 3x3 þ 4x3 ¼ 3:

System (a) can have no solution, because the left side of the third equation is the

sum of the left sides of the first two equations, but this relationship is not true for its
right side. Thus the last equation contradicts the first two equations, so the system is

said to be inconsistent. In system (b) the last equation is seen to be the sum of the

first two equations, so after discarding the last equation because it is redundant,

solving the remaining three equations by elimination gives x1 ¼ 2, x2 ¼ 2 and

x3 ¼�2. Thus the overdetermined system in (b) has a unique solution set {2, 2,�2}.

However, the situation in system (c) is different again, because the third equation is

simply the difference between the second and first equations, while the fourth

equation is the sum of the first two equations, so after discarding the last two

equations which are redundant, we are left with the first two equations that have

already been shown in (a) to have the nonunique solution set {x1, x2, x3}of the form
{k, 1 � 2k, k}, with k arbitrary (a parameter).

Finally, when m ¼ n system (1.1) is said to be properly determined, so as n
unknowns have to satisfy n linear equations, unless one or more of the equations

contradicts the other equations, a unique solution set can be expected. This is the

case with the system

x1 þ x2 � x3 ¼ 6;

x1 � x2 þ x3 ¼ �4;

x1 þ 2x2 � x3 ¼ 8;

which is easily seen to have the unique solution set {x1, x2, x3} given by {1, 2,�3}.

Notice that when, as above, the general solution set {x1, x2, x3} is equated to

{1, 2, �3}, this requires corresponding entries to be equal, so writing{x1, x2, x3} ¼
{1, 2, �3} means that x1 ¼ 1, x2 ¼ 2 and x3 ¼ �3. This interpretation of

equality between similar arrangements (arrays) of quantities, which in this case

were numbers, will be seen to play an important role when matrices are introduced

and their equality is defined.

2 1 Matrices and Linear Systems of Equations



1.2 Suffix and Matrix Notation

Later the solution of the system of Eq. (1.1) will be considered in detail, and it will

be shown how to determine if a unique solution set exists, if a solution set exists but

it is not unique, and in which case how many arbitrary parameters the solution set

must contain, and if no solution set exists.

The suffix notation for the coefficients and unknowns in system (1.1) is standard,

and its purpose is to show that aij is the numerical multiplier of the jth unknown xj in
the ith equation, and bi is the corresponding nonhomogeneous term in the ith
equation. With this understanding, because the numbers aij and bj each has a sign,

if the n unknowns x1, x2, . . . , xn are arranged in the same order in each equation, the

symbols x1, x2, . . . , xn may be omitted, and the system represented instead by the

array of numbers

a11 a12 a13 � � � a1n
..
.
b1

a21 a22 a23 � � � a2n
..
.
b2

a31 a32 a33 � � � a3n
..
.
b3

..

.

am1 am2 am3 � � � amn
..
.
bm

: (1.2)

For reasons that will appear later, the nonhomogeneous terms bi have been

separated from the array of coefficients aij, and for the time being the symbol ..
.

has been written in place of the equality sign. The double suffix ij serves as the “grid
reference” for the position of the number aij in the array (1.2) showing that it occurs
in the ith row and the jth column, while for the nonhomogeneous term bi, the suffix i
shows the row in which bi occurs. For example, if a32 ¼ �5, the numerical

multiplier of x2 in the third equation in (1.1) is �5, so the element in the second

position of the third row in array (1.2) is �5. Similarly, if b3 ¼ 4 the nonhomoge-

neous term in the third equation in (1.1) is 4, so the entry b3 in (1.2) is 4. Arrays ofm
rows of n numbers are called matrices, and a concise notation is needed if instead of
algebra being performed on equations like (1.1), it is to be replaced by algebra

performed on matrices. The standard notation for a matrix denoted by A that

contains the entries aij, and a matrix containing the entries bi in (1.2) is to write

A ¼

a11 a12 a13 � � � a1n
a21 a22 a23 � � � a2n
a31 a32 a33 � � � a3n
..
. ..

. ..
. ..

. ..
.

am1 am2 am3 � � � amn

2
666664

3
777775
; b ¼

b1
b2
b3
..
.

bm

2
666664

3
777775
; (1.3)
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or more concisely still,

A ¼ ½aij�; i ¼ 1; 2; : : : ; m; j ¼ 1; 2; : : : ; n and b ¼ ½bi�; i ¼ 1; 2; : : : ; m:

(1.4)

A different but equivalent notation that is also in use replaces the square brackets

[ . ] by ( . ), in which case (1.4) become A ¼ (aij) and b ¼ (bi).
Expression A in (1.3) is called an m � n matrix to show the number of rows m

and the number of columns n it contains, without specifying individual entries. The
notation m � n is often called the size or shape of a matrix, as it gives a qualitative

understanding of the number of rows and columns in the matrix, without specifying

the individual entries aij. A matrix in which the number of rows equals the number

of columns it is called a square matrix, so if it has n rows, it is an n � n matrix.

Matrix b in (1.3) is called an m element column vector, or if the number of entries

in b is unimportant, simply a column vector. A matrix with the n entries c1, c2, . . . ,
cn of the form

c ¼ ½c1; c2; c3; : : : ; cn� (1.5)

is called an n element row vector, or if the number of entries in c is unimportant,

simply a row vector. In what follows we use the convention that row and column

vectors are denoted by bold lower case Roman characters, while other matrices are

denoted by bold upper case Roman characters. The entries in matrices and vectors

are called elements, so an m � nmatrix contains mn elements, while the row vector

in (1.5) is an n element row vector. As a rule, the entries in a general matrix A are

denoted by the corresponding lower case italic letter a with a suitable double suffix,
while in a row or column vector d the elements are denoted by the corresponding

lower case italic letter d with a single suffix. The elements in each row of A in (1.3)

form an n element row vector, and the elements in each column form an m element

column vector. This interpretation of matrices as collections of row or column

vectors will be needed later when the operations of matrix transposition and

multiplication are defined.

1.3 Equality, Addition and Scaling of Matrices

Two matrices A and B are said to be equal, shown by writing A ¼ B, if each matrix

has the same number of rows and columns, and elements in corresponding positions

in A and B are equal. For example, if

A ¼ 1 p
2 �4

� �
and B ¼ 1 3

2 q

� �
;
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equality is possible because each matrix has the same number of rows and columns,

so they each have the same shape, but A¼ B only if, in addition, p¼ 3 and q¼�4.

If every element in a matrix is zero, the matrix is written 0 and called the null or
zero matrix. It is not usual to indicate the number of rows and columns in a null

matrix, because it will be assumed they are appropriate for whatever algebraic

operations are being performed. If, for example, in the linear system of algebraic

equations in (1.1) all of the nonhomogeneous terms b1 ¼ b2 ¼ . . . ¼ bm ¼ 0, the

corresponding vector b in (1.3) becomes b ¼ 0, where in this case 0 in an

m-dimensional column vector with every element zero. A column or row vector

in which every element is zero is called a null vector.
Given two similar systems of equations

a11x1 þ a12x2 þ � � � a1nxn ¼ b1
a21x1 þ a22x2 þ � � � a2nxn ¼ b2
a31x1 þ a32x2 þ � � � a3nxn ¼ b3

..

.

am1x1 þ am2x2 þ � � � amnxn ¼ bm

and

~a11x1 þ ~a12x2 þ � � � ~a1nxn ¼ ~b1
~a21x1 þ ~a22x2 þ � � � ~a2nxn ¼ ~b2
~a31x1 þ ~a32x2 þ � � � ~a3nxn ¼ ~b3

..

.

~am1x1 þ ~am2x2 þ � � � ~amnxn ¼ ~bm;

the result of adding corresponding equations, and writing the result in matrix form,

leads to the following definitions of the sum of the respective coefficient matrices

and of the vectors that contain the nonhomogeneous terms

Aþ ~A ¼

a11 þ ~a11 a12 þ ~a12 a13 þ ~a13 � � � a1n þ ~a1n
a21 þ ~a21 a22 þ ~a22 a23 þ ~a23 � � � a2n þ ~a2n
a31 þ ~a31 a32 þ ~a32 a33 þ ~a33 � � � a3n þ ~a3n

..

. ..
. ..

. ..
. ..

.

am1 þ ~am1 am2 þ ~am2 am3 þ ~am3 � � � amn þ ~amn

2
666664

3
777775
and bþ ~b

¼

b1 þ ~b1
b2 þ ~b2
b3 þ ~b3

..

.

bm þ ~bm

2
666664

3
777775
:

This shows that if matrix algebra is to represent ordinary algebraic addition, it

must be defined as follows. Matrices A and B will be said to be conformable for
addition, or summation, if each matrix has the same number of rows and columns.

Setting A ¼ [aij] , B ¼ [bij], the sum A + B of matrices A and B is defined as the

matrix

Aþ B ¼ aij þ bij
� �

: (1.6)
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It follows directly from (1.6) that

Aþ B ¼ Bþ A; (1.7)

so matrix addition is commutative. This means the order in which conformable

matrices are added (summed) is unimportant, as it does not affect the result. It

follows from (1.6) that the difference between matrices A and B, written A � B, is

defined as

A� B ¼ ½aij � bij�: (1.8)

The sum and difference of matrices A and B with different shapes is not defined.
If each equation in (1.1) is scaled (multiplied) by a constant k the matrices in

(1.3) become

ka11 ka12 ka13 � � � ka1n
ka21 ka22 ka23 � � � ka2n
ka31 ka32 ka33 � � � ka3n
..
. ..

. ..
. ..

. ..
.

kam1 kam2 kam3 � � � kamn

2
666664

3
777775

and

kb1
kb2
kb3
..
.

kbm

2
666664

3
777775
:

This means that if matrix A ¼ [aij] is scaled by a number k (real or complex),

then the result, written kA, is defined as kA¼ [kaij]. So if A¼ [aij] and B¼ [bij] are
conformable for addition and k and K are any two numbers (real or complex), then

kAþ KB ¼ kaij þ Kbij
� �

: (1.9)

Example 1.1. Given A ¼ 4 �1 3

7 0 �2

� �
; B ¼ �4 2 2

�1 5 6

� �
, find A þ B, A B

and 2A þ 3B.

Solution. The matrices are conformable for addition because each has two rows and

three columns (they have the same shape). Thus from (1.6), (1.7) and (1.8)

Aþ B ¼ 0 1 5

6 5 4

� �
; A� B ¼ 8 �3 1

8 �5 �8

� �
and 2Aþ 3B ¼ �4 4 12

11 15 14

� �
:

1.4 Some Special Matrices and the Transpose Operation

Some square matrices exhibit certain types of symmetry in the pattern of their

coefficients. Consider the n � n matrix
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A ¼

a11 a12 a13 � � � a1n
a21 a22 a23 � � � a2n
a31 a32 a33 � � � a3n
..
. ..

. ..
. ..

. ..
.

an1 an2 an3 � � � ann

2
666664

3
777775
;

then the diagonal drawn from top left to bottom right containing the elements a11,
a22, a33, . . . , ann is called the leading diagonal of the matrix.

A square matrix A is said to be symmetric if its numerical entries appear

symmetrically about the leading diagonal. That is, the elements of an n � n
symmetric matrix A are such that

aij ¼ aji; i; j ¼ 1; 2; :::; n condition for symmetryð Þ: (1.10)

Another way of defining a symmetric matrix is to say that if a new matrix B is

constructed such that row 1 ofA is written as column 1 of B, row 2 ofA is written as

column 2 of B, . . . , and row n of A is written as column n of B, then the matrices

A and B are identical if B ¼ A. For example, if

A ¼
1 4 3

4 2 6

3 6 4

2
4

3
5 and B ¼

1 5 7

9 4 5

1 0 1

2
4

3
5;

then A is seen to be a symmetric matrix, but B is not symmetric.

Belonging to the class of symmetric matrices are the n � n diagonal matrices,

all of whose elements are zero away from the leading diagonal. A diagonal matrixA

with entries l1, l2, . . . , ln on its leading diagonal, some of which may be zero, is

often written A ¼ diag{l1, l2, . . . , ln}. An important special case of diagonal

matrices are the identity matrices, also called unit matrices, which are denoted

collectively by the symbol I. These are diagonal matrices in which each element on

the leading diagonal is 1 (and all remaining entries are zeros). When written out in

full, if A ¼ diag{2, �3, 1}, and I is the 3 � 3 identity matrix, then

A ¼ diagf2;�3; 1g ¼
2 0 0

0 �3 0

0 0 1

2
4

3
5 and I ¼

1 0 0

0 1 0

0 0 1

2
4

3
5 :

As with the null matrix, it is not usual to specify the number of rows in an

identity matrix, because the number is assumed to be appropriate for whatever

algebraic operation is to be performed that involves I. If, for any reason, it is

necessary to show the precise shape of an identity matrix, it is sufficient to write In
to show an n � n identity matrix is involved. In terms of this notation, the 3 � 3

identity matrix shown above becomes I3.
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A different form of symmetry occurs when the n � n matrix A ¼ [aij] is skew
symmetric, in which case its entries aij are such that

aij ¼ �aji for i; j ¼ 1; 2; : : : ; n condition for skew symmetryð Þ: (1.11)

Notice that elements on the leading diagonal of a skew symmetric matrix must

all be zero, because by definition aii ¼ �aii, and this is only possible if aii ¼ 0 for

i ¼ 1, 2, . . . , n.
A typical example of a skew symmetric matrix is

A ¼
0 1 3 �2

�1 0 4 6

�3 �4 0 �1

2 �6 1 0

2
664

3
775 :

Other square matrices that are important are upper and lower triangular matri-
ces, denoted respectively by U and L. In U all elements below the leading diagonal

are zero, while in L all elements above the leading diagonal are zero. Typical

examples of upper and lower triangular matrices are

U ¼
2 0 8

0 1 6

0 0 �3

2
4

3
5 and L ¼

3 0 0

5 1 0

�9 7 0

2
4

3
5:

The need to construct matrices in which rows and columns have been inter-

changed (not necessarily square matrices) leads to the introduction of the transpose
operation. The transpose of an m � nmatrix A, denoted by AT, is the n� mmatrix

derived from A by writing row 1 of A as column 1 of AT, row 2 of A as column 2 of

AT, . . . , and row m of A as column m of AT. Obviously, the transpose of a

transposed matrix is the original matrix, so (AT)T ¼ A. Typical examples of

transposed matrices are

1 �4 7½ �T ¼
1

�4

7

2
4

3
5;

1

�4

7

2
4

3
5
T

¼ 1;�4; 7½ � and
2 0 5

1 �1 4

� �T
¼

2 1

0 �1

5 4

2
4

3
5:

Clearly, a square matrix A is symmetric if AT ¼ A, and it is skew symmetric if

AT ¼ �A. The matrix transpose operation has many uses, some of which will be

encountered later.

A useful property of the transpose operation when applied to the sum of two

m � n matrices A and B is that

½Aþ B�T ¼ AT þ BT: (1.12)
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This proof of this result is almost immediate. If A ¼ [aij] and B ¼ [bij], by
definition

Aþ B ¼
a11 þ b11 a12 þ b12 � � � a1n þ b1n
a21 þ b21 a22 þ b22 � � � a2n þ b2n

..

. ..
. ..

. ..
.

am1 þ bm1 am2 þ bm2 � � � amn þ bmn

2
6664

3
7775:

Taking the transpose of this result, and then using the rule for matrix addition,

we have

½Aþ B�T ¼
a11 þ b11 a21 þ b21 � � � am1 þ bm1
a12 þ b12 a22 þ b22 � � � am2 þ bm2

..

. ..
. ..

. ..
.

a1n þ b1n a2n þ b2n � � � anm þ bnm

2
6664

3
7775 ¼ AT þ BT;

and the result is established.

An important use of matrices occurs in the study of properly determined systems

of n linear first order differential equations in the n unknown differentiable func-

tions x1(t), x2(t), . . . , xn(t) of the independent variable t:

dx1ðtÞ
dt ¼ a11x1ðtÞ þ a12x2ðtÞ þ � � � þ a1nxnðtÞ;

dx2ðtÞ
dt ¼ a21x1ðtÞ þ a22x2ðtÞ þ � � � þ a2nxnðtÞ;

..

.

dxnðtÞ
dt ¼ an1x1ðtÞ þ an2x2ðtÞ þ � � � þ annxnðtÞ:

(1.13)

In the next chapter matrix multiplication will be defined, and in anticipation of

this we define the coefficient matrix of system (1.13) as A ¼ [aij], and the column

vectors x(t), and dx(t)/dt as

x ðtÞ ¼ x1ðtÞ; x2ðtÞ; . . . ; xnðtÞ½ �T and

dxðtÞ
dt

¼ dx1ðtÞ
dt

;
dx2ðtÞ
dt

; . . . ;
dxnðtÞ
dt

� �T
;

(1.14)

where the transpose operation has been used to write a column vector as the

transpose of a row vector to save space on the printed page. System (1.13) can be

written more concisely as

dxðtÞ
dt

¼ AxðtÞ; (1.15)
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where Ax(t) denotes the product of matrix A and vector x(t), in this order, which

will be defined in Chapter 2. Notice how the use of the transpose operation in

Eq. (1.14) saves space on a printed page, because had it not been used, column

vectors like x(t) and dx(t)/dt when written out in full would have become

xðtÞ ¼
x1ðtÞ
x2ðtÞ
..
.

xnðtÞ

2
6664

3
7775 and

dxðtÞ
dt

¼

dx1ðtÞ
dt

dx2ðtÞ
dt

..

.

dxnðtÞ
dt

2
66664

3
77775:

Exercises

1. Write down the coefficient matrixA and nonhomogeneous termmatrix b for the

linear nonhomogeneous system of equations in the variables x1, x2, x3 and x4:

3x1 þ 2x2 � 4x3 þ 5x4 ¼ 4;

3x1 þ 2x2 � x4 þ 4x3 ¼ 3;

4x2 � 2x1 þ x3 þ 5x4 ¼ 2;

6x3 þ 3x1 þ 2x2 ¼ 1:

2. If A ¼ 2 0 5

1 3 1

� �
; B ¼ �1 2 3

�2 4 6

� �
; find A þ 2B and 3A � 4B.

3. If A ¼
1 3 a
2 b �1

�2 c 3

2
4

3
5 and B ¼

1 2 �2

3 6 4

0 �1 3

2
4

3
5, find a, b and c if A ¼ BT.

4. If A ¼
2 4

6 1

0 3

2
4

3
5 and B ¼ 4 1 �3

2 �3 1

� �
, find 3A � BT and 2AT þ 4B.

5. If A ¼
3 0 1

1 4 3

5 1 2

2
4

3
5 and B ¼

0 4 1

2 5 1

3 �2 2

2
4

3
5; find AT þ B and 2A þ 3(BT)T.

6. If matrices A and B are conformable for addition, prove that (A þ B)T ¼ AT þ
BT.

7. Given

A ¼
a11 4 �3 a14
a21 a22 a23 a24
a31 6 a33 7

1 a42 a43 a44

2
664

3
775;

what conditions, if any, must be placed on the undefined coefficients aij if (a)
matrix A is to be symmetric, and (b) matrix A is to be skew symmetric?
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8. Prove that every n � n matrix A can be written as the sum of a symmetric

matrix M and a skew symmetric matrix S. Write down an arbitrary 4 � 4

matrix and use your result to find the matrices M and S.

9. Consider the underdetermined system

x1 þ x2 þ x3 ¼ 1;

x1 þ 2x2 þ 3x3 ¼ 2;

solved in the text. Rewrite it as the two equivalent systems

að Þ x1 þ x3 ¼ 1� x2

x1 þ 3x3 ¼ 2� 2x2
and bð Þ x2 þ x3 ¼ 1� x1

2x2 þ 3x3 ¼ 2� x1:

Find the solution set of system (a) in terms of an arbitrary parameter p ¼ x2,
and the solution set of system (b) in terms of an arbitrary parameter q ¼ x1. By
comparing solution sets, what can you deduce about the solution set found in

the text in terms of the arbitrary parameter k ¼ x3, and the solution sets for

systems (a) and (b) found, respectively, in terms of the arbitrary parameters

p and q?
10. Consider the two overdetermined systems

að Þ

x1 � 2x2 þ 2x3 ¼ 6

x1 þ x2 � x3 ¼ 0

x1 þ 3x2 � 3x3 ¼ �4

x1 þ x2 þ x3 ¼ 3

and bð Þ

2x1 þ 3x2 � x3 ¼ 2

x1 � x2 þ 2x3 ¼ 1

4x1 þ x2 þ 3x3 ¼ 4

x1 þ 4x2 � 3x3 ¼ 1:

In each case try to find a solution set, and comment on the result.
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Chapter 2

Determinants, and Linear Independence

2.1 Introduction to Determinants and Systems of Equations

Determinants can be defined and studied independently of matrices, though when

square matrices occur they play a fundamental role in the study of linear systems of

algebraic equations, in the formal definition of an inverse matrix, and in the study of

the eigenvalues of a matrix. So, in anticipation of what is to follow in later chapters,

and before developing the properties of determinants in general, we will introduce

andmotivate their study by examining the solution a very simple system of equations.

The theory of determinants predates the theory of matrices, their having

been introduced by Leibniz (1646–1716) independently of his work on the calculus,

and subsequently their theory was developed as part of algebra, until Cayley

(1821–1895) first introduced matrices and established the connection between

determinants and matrices. Determinants are associated with square matrices and

they arise in many contexts, with two of the most important being their connection

with systems of linear algebraic equations, and systems of linear differential

equations like those in (1.12).

To see how determinants arise from the study of linear systems of equations we

will consider the simplest linear nonhomogeneous system of algebraic equations

a11x1 þ a12x2 ¼ b1;
a21x1 þ a22x2 ¼ b2:

(2.1)

These equations can be solved by elimination as follows. Multiply the first

equation by a22, the second by a12, and subtract the results to obtain an equation

for x1 from which the variable x2 has been eliminated . Next, multiply the first

equation by a21, the second by a11, and subtract the results to obtain an equation for
x2, where this time the variable x1 has been eliminated. The result is the solution set
{x1, x2} with its elements given by given by

x1 ¼ b1a22 � b2a12
a11a22 � a12a21

; x2 ¼ b2a11 � b1a21
a11a22 � a12a21

: (2.2)
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For this solution set to exist it is necessary that the denominator a11a22 � a12a21
in the expressions for x1 and x2 does not vanish. So setting D ¼ a11a22 � a12a21, the
condition for the existence of the solution set {x1, x2} becomes D 6¼ 0.

In terms of a square matrix of coefficients whose elements are the coefficients
associated with (2.1), namely

A ¼ a11 a12
a21 a22

� �
; (2.3)

the second-order determinant associated with A, written either as det A or as Aj j, is
defined as the number

detA ¼ jAj ¼ a11 a12
a21 a22

����
���� ¼ a11a22 � a12a21; (2.4)

so the denominator in (2.2) is D ¼ det A.

Notice how the value of the determinant in (2.4) is obtained from the elements

of A. The expression on the right of (2.4), called the expansion of the determinant,

is the product of elements on the leading diagonal ofA, from which is subtracted the

product of the elements on the cross-diagonal that runs from the bottom left to the

top right of the array A. The classification of the type of determinant involved is

described by specifying its order, which is the number of rows (equivalently

columns) in the square matrix A from which the determinant is derived. Thus the

determinant in (2.4) is a second-order determinant. Specifying the order of a

determinant gives some indication of the magnitude of the calculation involved

when expanding it, while giving no indication of the value of the determinant. If the

elements of A are numbers, det A is seen to be a number, but if the elements are

functions of a variable, say t, then det A becomes a function of t. In general

determinants whose elements are functions, often of several variables, are called

functional determinants. Two important examples of these determinants called

Jacobian determinants, or simply Jacobians, will be found in Exercises 14 and

15 at the end of this chapter.

Notice that in the conventions used in this book, when a matrix is written out in

full, the elements of the matrix are enclosed within square brackets, thus [ . . .],
whereas the notation for its determinant, which is only associated with a square

matrix, encloses its elements between vertical rules, thus :::jj ; and these notations

should not be confused

Example 2.1. Given að Þ A ¼ 1 3

�4 6

� �
and bð Þ B ¼ et et

cos t sin t

� �
; find

det A and det B.

Solution. By definition að ÞdetA ¼ 1 3

�4 6

����
���� ¼ 1� 6ð Þ � ð3Þ � �4ð Þ ¼ 18:

bð Þ detB ¼ et et

cos t sin t

����
���� ¼ etð Þ � sin tð Þ � etð Þ � cos tð Þ ¼ etðsin t� cos tÞ:
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It is possible to express the solution set {x1, x2 } in (2.2) entirely in terms of

determinants by defining the three second-order determinants

D ¼ detA ¼ a11 a12
a21 a22

����
����; D1 ¼ b1 a12

b2 a22

����
����; D2 ¼ a11 b1

a21 b2

����
����; (2.5)

because then the solutions in (2.2) become

x1 ¼ D1

D
; x2 ¼ D2

D
: (2.6)

Here D is the determinant of the coefficient matrix in system (2.1), while the

determinant D1 in the numerator of the expression for x1 is obtained from D by

replacing its first column by the nonhomogeneous terms b1 and b2 in the system, and

the determinant D2 in the numerator of the expression for x2 is obtained from D by

replacing its second column by the nonhomogeneous terms b1 and b2. This is the
simplest form of a result known as Cramer’s rule for solving the two simultaneous

first-order algebraic equations in (2.1), in terms of determinants, and its generaliza-

tion to n nonhomogeneous equations in n unknowns will be given later, along with

its proof.

2.2 A First Look at Linear Dependence and Independence

Before developing the general properties of determinants, the simple system

(2.1) will be used introduce the important concepts of the linear dependence
and independence of equations. Suppose the second equation in (2.1) is propor-

tional to the first equation, then for some constant of proportionality l 6¼ 0 it

will follow that a21 ¼ la11, a22 ¼ la12 and b2 ¼ lb1. If this happens the

equations are said to be linearly dependent, though when they are not propor-

tional, the equations are said to be linearly independent. Linear dependence and

independence between systems of linear algebraic equations is important, irre-

spective of the number of equations and unknowns that are involved. Later,

when the most important properties of determinants have been established, a

determinant test for the linear independence of n homogeneous linear equations

in n unknowns will be derived.

When the equations in system (2.1) are linearly dependent, the system only

contains one equation relating x1 and x2, so one of the equations can be discarded,
say the second equation. This means that one of the variables, say x1, can only be

determined in terms of the other variable x2, so in this sense the values of x1 and
x2, although related, become indeterminate because then x2 is arbitrary. To

discover the effect this has on the solutions in (2.2), suppose the second equation

is l times the first equation, so that a21 ¼ la11, a22 ¼ la12 and b2 ¼ lb1.
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Substituting these results into (2.2), and canceling the nonzero scale factor l,
gives

x1 ¼ b1a12 � b1a12
a11a12 � a12a11

and x2 ¼ b1a11 � b1a11
a11a12 � a12a11

;

showing that both the numerators and the denominator in the expressions for x1 and
x2 vanish, confirming that x1 and x2 are indeterminate. A comparison of this result

with (2.6) shows that when two rows of a determinant are proportional, its value is

zero. This is, in fact, a result that is true for all determinants and not just for second-

order determinants.

The indeterminacy of the solution set is hardly surprising, because one of the

equations in system (2.1) is redundant, and assigning x2 an arbitrary value x2 ¼ k,
say, will determine x1 in terms of k as x1 ¼ (b1 � a12k)/a11, so the solution set {x1,
x2} then takes the form {(b1 � a12k)/a11, k}, where k is a parameter. Thus, when the

two equations are linearly dependent, that is when D ¼ 0, a solution set will exist

but it will not be unique, because the solution set will depends on the parameter k,
which may be assigned any nonzero value. If, however, D 6¼ 0 the equations will be

linearly independent, and the solution set in (2.2) will exist and be unique.

A different situation arises if the left sides of the equations in (2.1) are propor-

tional, but the constants on the right do not share the same proportionality constant,

because then the equations imply a contradiction, and no solution set exists. When

this happens the equations are said to be inconsistent. A final, very important result

follows from the solution set (2.6) when the system of Eq. (2.1) is homogeneous;
which occurs when b1 ¼ b2 ¼ 0. The consequence of this is most easily seen from

(2.2), which is equivalent to (2.6). When the equations are homogeneous, the

numerators in (2.2) both vanish because each term in the expansion of the determi-

nant contains a zero factor, so if D¼ detA 6¼ 0, it follows that the solution x1¼ x2¼
0 is unique. This zero solution is called the null solution, or the trivial solution. Thus
the only solution of a linearly independent set of homogeneous equations in system

(2.1) is the null solution. However, if D¼ 0 the equations will be linearly dependent
(proportional), and then a solution will exist but, as has been shown, it will be such

that x1 will depend on the variable x2, which may be assigned arbitrarily. These

results will be encountered again when general systems of equations are considered

that may be homogeneous or nonhomogeneous.

2.3 Properties of Determinants and the Laplace Expansion

Theorem

Having seen something of the way determinants enter into the solution of the

system of Eq. (2.1), it is time to return to the study of determinants. The definition

of det A in (2.4) can be used to establish the following general properties of second-

order determinants which, it turns out, are also properties common to determinants

of all orders, though determinants of order greater than two have still to be defined.
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Theorem 2.1 Properties of det A.

1. Multiplication of the elements of any one row (column) of det A by a constant k
changes the value of the determinant to k det A. Equivalently, multiplication of
det A by k can be replaced by multiplying the elements of any one row (column)
of det A by k.

2. If every element in a row (column) of det A is zero, then det A ¼ 0.
3. If two rows (columns) of det A are the identical, or proportional, then det A¼ 0.
4. The value of a determinant is unchanged if a constant multiple of each element

in a row (column) is added the corresponding element in another row (column).
5. If two rows (columns) in det A are interchanged, the sign of det A is changed.
6. det A ¼ det AT.
7. If det A and det B are determinants of equal order, then det(AB) ¼ det Adet B.

Proof. Result 1 follows directly from definition (2.4), because each product in the

definition of det A is multiplied by k. Result 2 also follows directly from definition

(2.4), because then a coefficient in each of the products in the definition of det A is

zero. Result 3 is an extension of the result considered previously where a row was

proportional to another row. The result follows from the fact that if two rows

(columns) in det A are equal, or proportional, the two products in the definition

of detA cancel. To prove result 4 suppose, for example, that k times each element in

the first row of det A is added to the corresponding element in the second row, to

give det B where

detB ¼ a11 a12
ka11 þ a21 ka12 þ a22

����
����:

Expanding det B and canceling terms gives

detB ¼ a11 ka12 þ a22ð Þ � a12 ka11 þ a21ð Þ ¼ a11a22 � a12a21 ¼ detA:

Similar reasoning establishes the equivalent results concerning the other row of the

determinant, and also its two columns. Result 5 follows because interchanging two

rows (or columns) in det A reverses the order of the products in the definition of det

A in (2.4), and so changes the sign of det A. The proof of result 6 is left as Exercise

2.3, and the proof of result 7 will be postponed until Chapter 3, where it is given in

Section 3.4 for second-order determinants, using an argument that extends directly

to determinates of any order.

¤
In this account of determinants the nth order determinant associated with an

n � n coefficient matrix A ¼ [aij] will be defined in terms of determinants of order

n� 1 and then, after stepping down recursively to still lower-order determinants, to

a definition in terms of a sum of second-order determinants. To proceed to a

definition of an nth order determinant, the definition is first extended to a third-

order determinant

2.3 Properties of Determinants and the Laplace Expansion Theorem 17

http://3.4


detA ¼
a11 a12 a13
a1 a22 a23
a31 a32 a33

������
������: (2.7)

The third-order determinant in (2.7) is defined in terms of second-order determi-

nants as

detA ¼ a11
a22 a23
a32 a33

����
����� a12

a21 a23
a31 a33

����
����þ a13

a21 a22
a31 a32

����
����: (2.8)

To remember this definition, notice how the terms are obtained. The first term is

the product of a11 times the second-order determinant obtained from A by omitting

the row and column containing a11, the second term is (�1) � a12 times the

determinant obtained from A by omitting the row and column containing a12 and,
finally, the third term is a13 times the determinant obtained from A by omitting the

row and column containing a13.
Reasoning as in the proof of Theorem 2.1 and using the fact that a third-order

determinant is expressible as a sum of multiples of second-order determinants, it is

a straightforward though slightly tedious matter to show that the properties of

second-order determinants listed in Theorem 2.1 also apply to third-order determi-

nants, though the proofs of these results are left as exercises.

Determinants of order greater than three will be defined after the cofactors

of a determinant have been defined. As already mentioned, the statements in

Theorem 2.1 are true for determinants of all orders, though their proof for higher-

order determinants will be omitted.

The three determinants

a22 a23
a32 a33

����
���� ; a21 a23

a31 a33

����
����; a21 a22

a31 a32

����
����

that occurred in (2.8) are called, respectively, the minors associated with the

elements a11, a12 and a13 in the first row of det A. These minors will be denoted

by M11, M12 and M13, using the same suffixes as the elements a11, a12 and a13 to
which they correspond, so that

M11 ¼ a22 a23
a32 a33

����
���� ; M12 ¼ a21 a23

a31 a33

����
����; M13 ¼ a21 a22

a31 a32

����
����: (2.9)

Remember, that the elements of the minors M1i for i ¼ 1, 2 and 3, are obtained

from the elements of A by omitting the elements in row 1 and column i.
Corresponding to the minorsM11,M12 andM13, are what are called the cofactors

C11, C12 and C13 associated with the elements a11, a12 and a13, and these are defined
in terms of the minors as

C11 ¼ ð�Þ1þ1M11; C12 ¼ ð�1Þ1þ2M12 and C13 ¼ ð�1Þ1þ3: (2.10)
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The effect of the factors (�1)1 + i for i¼ 1, 2, 3 in the definitions of the cofactors

C11, C12 and C13 is to introduce an alternation of sign in the pattern of the minors.

Using (2.6) and (2.9) allows us to write detA¼ a11M11� a12M12 + a13M13, so from

(2.10) this becomes

detA ¼ a11C11 þ a12C12 þ a13C13: (2.11)

This result is called the expansion of det A in terms of the cofactors of the

elements of its first row.

There is a minor is associated with every element of a determinant, and not only

the elements of its first row. The minor associated with the general element aij, for
i, j ¼ 1, 2, 3 is denoted by Mij, and for a third-order determinant it is the numerical

value of the 2� 2 determinant derived from det A by deleting the elements in its ith
row and jth column.

Example 2.2. Find the minors and cofactors of the elements of the first row of detA,

and also the value of det A, given that

A ¼
�4 3 �1

�2 4 2

1 10 1

2
4

3
5:

Solution. We have

M11 ¼ 4 2

10 1

����
���� ¼ �16; M12 ¼ �2 2

1 1

����
���� ¼ �4; M13 ¼ �2 4

1 10

����
���� ¼ �24;

so the corresponding cofactors are

C11¼ð�1Þ1þ1ð�16Þ¼�16; C12¼ð�1Þ1þ2ð�4Þ¼4; C13¼ð�1Þ1þ3ð�24Þ¼�24:

From (2.11), when the determinant is expanded in terms of the elements of the first

row,

detA ¼ a11C11 þ a12C12 þ a13C13

¼ ð�4Þ � ð�16Þ þ 3� 4þ ð�1Þ � ð�24Þ ¼ 100:

¤
To extend the role of the cofactor associated with the minor of any element of det

A we start by expanding the expression for a third-order determinant in (2.8),

to obtain

detA¼D¼ a11a22a33�a11a23a32þa12a23a31�a12a21a33þa13a21a32�a13a22a31:

(2.12)
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Next, we define the cofactor Cij associated with the general element aij inA to be

Cij ¼ ð�1ÞiþjMij; (2.13)

where for this third-order determinantMij is the 2� 2 minor obtained from det A by

deleting the elements in its ith row and jth column. Using this definition of a general

cofactor, and rearranging the terms in (2.12) to give results similar to (2.8), but this

time with terms ai1, ai2 and ai3 multiplying the determinants, it is easily shown that

detA ¼ ai1Ci1 þ ai2Ci2 þ ai3Ci3; for i ¼ 1; 2 or 3: (2.14)

This result provides three different, but equivalent, ways of calculating detA, the

first of which was encountered in (2.11). Expressed in words, result (2.14) says that

det A is equal to the sum of the products of the elements and their respective

cofactors in any row of the determinant. The result is important, and it is called the

expansion of det A in terms of the elements and cofactors of the ith row of the

determinant. So (2.11) is seen to be the expansion of det A in terms of the elements

and cofactors of its first row.

A different rearrangement of the terms in (2.12) shows that

detA ¼ a1jC1j þ a2jC2j þ a3jC3j; for j ¼ 1; 2 or 3; (2.15)

providing three more ways of expanding det A. When expressed in words, this

expansion says that det A can be calculated as the sum of the products of the

elements and their respective cofactors in any column of the determinant. Result

(2.15) is called the expansion of det A in terms of the elements and cofactors of the

jth column of the determinant.

It remains for us to determine the effect of forming the sum of the products of the

elements of a row, or column, with the corresponding cofactors of a different row,

or column. To resolve this, let d be the sum of the products of the elements of row i
with the cofactors of row s, so that d ¼ P3

j¼1 aijCsj for s 6¼ j. Now d can be

interpreted as a third-order determinant with the elements aij forming its ith row,

and the remaining elements taken to be the cofactors Csj. As s 6¼ j, it follows that
each cofactor will contain elements from row i, so when the third-order determinant

is reconstructed, it will contain another row equal to the ith row except, possibly, for

a change of sign throughout the row. Thus the determinant d will either have two

identical rows, or two rows which are identical apart from a change of sign. So by

an extension of the results of Theorem 2.1 (see Example 2.3), the determinant must

vanish. A similar argument shows that the sum of products formed by multiplying

the elements of a column with the corresponding cofactors of a different column is

also zero, so that
P3

i¼1 aijCik ¼ 0 for k 6¼ j.
The extension of these expansions to include nth-order determinants follows

from (2.13) and (2.14) by defining the nth order determinant as either

detA ¼
Xn
j¼1

aijCij for i ¼ 1; 2; :::; n (2.16)
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or as

detA ¼
Xn
i¼1

aijCij for j ¼ 1; 2; :::; n: (2.17)

Notice that now the cofactors Cij are determinants of order n � 1. These

expressions provide equivalent recursive definitions for an nth-order determinant

in terms of second-order determinants, because any determinant of order n � 3 can

always be reduced to a sum of products involving second-order determinants. A

determinant det A is said to be singular if det A ¼ 0, and nonsingular if det A 6¼ 0.

Chapter 3 will show it is necessary that det A 6¼ 0 when defining an important

matrix A�1 called the inverse matrix associated with a square matrix A, or more

simply the inverse of A.

To avoid the tedious algebraic manipulations involved when extending the

results of Theorem 2.1 to determinants of order n, we again mention that the

properties listed in the theorem apply to determinants of all orders. However,

some of the properties in Theorem 2.1 are almost self-evident for determinants of

all orders, as for example the properties 1, 2 and 3.

The extension of the previous results to an nth-order determinant yields the

following fundamental expansion theorem due to Laplace.

Theorem 2.2 The Laplace Expansion of a Determinant.
Let A ¼ [aij] be an n � n matrix, and let the cofactor associated with aij be Cij.
Then, for any i,

detA ¼ ai1Ci1 þ ai2Ci2 þ . . .þ ainCin expansion by elements of the ith rowð Þ;

and for any j,

detA ¼ a1jC1j þ a2jC2j þ � � � þ anjCnj expansion by elements of the jth columnð Þ

while for any i with s 6¼ i

ai1Cs1 þ ai2Cs2 þ � � � þ ainCsn ¼ 0 expansion using different rowsð Þ

or for any j with k 6¼ j

a1jC1k þ a2jC2k þ � � � þ anjCnk ¼ 0 expansion using different columnsð Þ:

¤

Example 2.3. (a) Expand the determinant in Example 2.2 in terms of elements and

cofactors of the third column. (b) Compute the sum of the products of the elements

in the first row and the corresponding cofactors of the second row, and hence
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confirm that the result is zero. (c) Reconstruct the determinant corresponding to the

calculation in (b), and hence show why the result is zero.

Solution.

(a) To expand the determinant using elements and cofactors of the third column it

is necessary to compute C13, C23 and C33. We have

A ¼
�4 3 �1

�2 4 2

1 10 1

2
64

3
75; so C13 ¼ ð�Þ1þ3 �2 4

1 10

����
���� ¼ �24;

C23 ¼ ð�Þ2þ3 �4 3

1 10

����
���� ¼ 43; C33 ¼ ð�Þ3þ3 �4 3

�2 4

����
���� ¼ �10:

Expanding det A in terms of the elements and cofactors of the third column

gives det A ¼ (�1) � (�24) + 2 � 43 + 1 � (�10) ¼ 100, in agreement with

Example 2.2.

(b) To form the sum of the products of the elements of the first row with the

corresponding cofactors of the second row it is necessary to compute C21, C22

and C23. We have

C21 ¼ ð�1Þ2þ1 3 �1

10 1

����
���� ¼ �13 ; C22 ¼ ð�1Þ2þ2 �4 �1

1 1

����
���� ¼ �3 ;

C23 ¼ ð�1Þ2þ3 �4 3

1 10

����
���� ¼ 43 :

So the required expansion in terms of elements of the first row and the

corresponding cofactors in the second row becomes

ð�4Þ � ð�13Þ þ 3� ð�3Þ þ ð�1Þ � 43 ¼ 0 ;

confirming the third property in Theorem 2.2.

(c) To reconstruct the third-order determinant d corresponding to the sum of

products of the elements in the first row and the cofactors in the second row

used in (b) we first write d as

d ¼ ð�4Þ � C21 þ 3� C22 þ ð�1Þ � C23:

Substituting for the cofactors this becomes

d ¼ 4� 3 �1

10 1

����
����þ 3� �4 �1

1 1

����
����þ 1� �4 3

1 10

����
���� :
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To express this result as the appropriate expansion of a determinant it is necessary

restore the correct signs to the multipliers 4, 3 and 1 in the above expression to make

them equal to the elements in the first row ofA, namely�4, 3 and�1. To do this we

use result 1 from Theorem 2.1 which shows that when a determinant is multiplied

by �1, this multiplier can be taken inside the determinant and used as a multiplier

for any one of its rows. To be consistent, we will change the signs of the terms in the

last rows of the determinants, so that d becomes

d ¼ � ð�4Þ � 3 �1

�10 �1

����
����þ ð3Þ � �4 �1

�1 �1

����
����þ ð�1Þ � �4 �3

�1 �1

����
����

� �
:

Recognizing that these three determinants are now the cofactors of the elements

�4, 3 and �1 in the first row of the determinant that is to be reconstructed, allows

the result can be written

d ¼ �
�4 3 �1

�4 3 �1

�1 �10 �1

������
������:

This determinant has two identical rows, and so vanishes, showing why result (b)

yields the value zero.

¤
The equivalent definitions of an nth order determinant in Theorem 2.2 permit the

immediate evaluation of some important and frequently occurring types of deter-

minants. The first case to be considered occurs when det A is the nth-order diagonal
determinant

detA ¼

a11 0 0 � � � 0

0 a22 0 � � � 0

0 0 a33 � � � 0

..

. ..
. ..

. ..
. ..

.

0 0 0 � � � ann

����������

����������
¼ a11a22a33 � � � ann: (2.18)

This follows because expanding the determinant in terms of elements of the

first row, gives det A ¼ a11C11, where the cofactor C11 is the determinant of order

n � 1 with the same diagonal structure as det A. Expanding C11 in terms of

the elements of its first row gives det A ¼ a11a22C
ð1Þ
11 , where C

ð1Þ
11 is now the

cofactor belonging to determinant C11 corresponding to the first element a22 in
its first row. Continuing this process n times gives the stated result det

A ¼ a11a22a33 � � � ann.
Two other determinants whose values can be written down at sight are the

determinants det L and det U associated, respectively, with the upper and lower

triangular n � n matrices L and U. We have
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detL ¼

a11 0 0 � � � 0

a21 a22 0 � � � 0

a31 a32 a33 � � � 0

..

. ..
. ..

. ..
. ..

.

an1 an2 an3 � � � ann

����������

����������
¼ a11a22a33 � � � ann (2.19)

and

detU ¼

a11 a12 a13 � � � a1n
0 a22 a23 � � � a2n
0 0 a33 � � � a3n
..
. ..

. ..
. ..

. ..
.

0 0 0 � � � ann

����������

����������
¼ a11a22a33 � � � ann: (2.20)

Result (2.18) is obtained in a manner similar to the derivation of (2.18), by

repeated expansion of det L in terms of the elements of its first row, while result

(2.20) follows by a similar repeated expansion of det U in terms of elements of its

first column.

The next example illustrates how the properties of Theorem 2.1 can sometimes

be used to evaluate a determinant without first expanding it with respect to either

the elements in its rows or the elements in its columns. The determinant involved

has a special form, and it is called an alternant, also known as a Vandermonde

determinant.

Example 2.4. Show without direct expansion that

1 1 1

a b c
a2 b2 c2

������
������ ¼ ðb� aÞðc� aÞðc� bÞ :

Solution. Using property 4 of Theorem 2.1, which leaves the value of a determinant

unchanged, we subtract column 1 from columns 2 and 3 to obtain

1 1 1

a b c
a2 b2 c2

������
������¼

1 0 0

a ðb� aÞ ðc� aÞ
a2 ðb2 � a2Þ ðc2 � a2Þ

������
������¼

1 0 0

a ðb� aÞ ðc� aÞ
a2 ðbþ aÞðb� aÞ ðcþ aÞðc� aÞ

������
������:

Next we use property 1 of Theorem 2.1 to remove factors (b � a) and (c � a) from
the second and third columns to obtain

1 1 1

a b c
a2 b2 c2

������
������ ¼ ðb� aÞðc� aÞ

1 0 0

a 1 1

a2 ðbþ aÞ ðcþ aÞ

������
������:

Finally, subtracting column two from column three we find that
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1 1 1

a b c
a2 b2 c2

������
������ ¼ ðb� aÞðc� aÞ

1 0 0

a 1 0

a2 ðbþ aÞ ðc� bÞ

������
������:

The determinant is now of lower triangular form, so from (2.19) its value is (c� b).
So, as required, we have shown the value of this alternant to be

1 1 1

a b c
a2 b2 c2

������
������ ¼ ðb� aÞðc� aÞðc� bÞ :

¤

2.4 Gaussian Elimination and Determinants

The expansion of a determinant using Theorem 2.2 is mainly of theoretical interest,

because to evaluate a determinant of order n requires n! multiplications. So,

evaluating a determinant of order 8 requires 40,320 multiplications, while evaluat-

ing a determinant of order 15 requires approximately 1.31� 109 multiplications. If,

for example, this method of evaluating a determinant were to be performed on a

computer where one multiplication takes 1/1,000 s, the evaluation of a determinant

of order 15 would take approximately 41.5 years. Clearly, when the order is large,

some other way must be found by which to evaluate determinants if this prohibitive

number of multiplications is to be avoided, not to mention the buildup of round-off

errors that would result. A better method is essential, because many applications of

mathematics lead to determinants with orders far larger than 15.

The way around this difficulty is found in property 4 of Theorem 2.1. Subtracting

a21/a11 times the first row of the determinant from the second row reduces to zero

the element immediately below a11. Similarly, subtracting a31/a11 times the first

row of the determinant from the third row reduces to zero the element in row

three below a11, while neither of these operations changes the value of the

determinant. So, proceeding down the first column in this manner leads to a

new determinant in which the only nonzero entry in its first column is a11. If this
procedure is now applied to the second column of the modified determinant,

starting with the new coefficient ~a22 that is now in row 2 and column 2, it will

reduce to zero all entries below the element ~a22. Proceeding in this way, column

by column, the determinant will eventually be replaced by an equivalent nth-
order determinant of upper triangular form, the value of which follows, as in

(2.20), by forming the product of all the elements in its leading diagonal. This

way of evaluating a determinant, called the Gaussian elimination method, or

sometimes the Gaussian reduction method, converts a determinant to upper

triangular form, whose value is simply the products of the elements on its leading

diagonal. This method requires significantly fewer multiplications than the direct

expansion used in the definition, and so is efficient when applied to determinants
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of large order. Software programs are based on a refinement of this method, and

even on a relatively slow PC the evaluation of a determinant of order 50 may take

only a few seconds.

It can happen that at the ith stage of this reduction process a zero element occurs

on the leading diagonal, thereby preventing further reduction of the determinant.

This difficulty is easily overcome by interchanging the ith row with a row below it in

which the ith element is not zero, after which the reduction continues as before.

However, after such an interchange of rows, the sign of the determinant must be

changed as required by property 5 of Theorem 2.1. If, on the other hand, at some

stage of the reduction process a complete row of zeros is produced, further simplifi-

cation is impossible, and this shows the value of the determinant is zero or, in other

words, that the determinant is singular. The following Example shows how such a

reduction proceeds in a typical case when a row interchange becomes necessary.

Remember that an interchange of rows changes the sign of a determinant, so if

p interchanges become necessary during the Gaussian elimination process used to

calculate the value of determinant, then the sign of the upper triangular determinant

that is obtained must be multiplied by (�1)p in order to arrive at the value of the

original determinant.

Example 2.5. Evaluate the following determinant by reducing it to upper triangular

form:

detA ¼
1 3 2 1

1 3 6 3

0 2 1 5

0 2 1 1

��������

��������
:

Solution. Subtracting row 1 from row 2 gives

detA ¼
1 3 2 1

1 3 6 3

0 2 1 5

0 2 1 1

��������

��������
¼

1 3 2 1

0 0 4 2

0 2 1 5

0 2 1 1

��������

��������
:

The second element in row 2 is zero, so subtracting multiples of row 2 from rows 3

and 4 cannot reduce to zero the elements in the column below this zero element. To

overcome this difficulty we interchange rows 2 and 3, because row 3 has a nonzero

element in its second position, and compensate for the row interchange by changing

the sign of the determinant, to obtain

detA ¼
1 3 2 1

0 0 4 2

0 2 1 5

0 2 1 1

��������

��������
¼ �

1 3 2 1

0 2 1 5

0 0 4 2

0 2 1 1

��������

��������
:
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Finally, subtracting the new row 2 from row 4 produces the required upper

triangular form

detA ¼ �
1 3 2 1

0 2 1 5

0 0 4 2

0 2 1 1

��������

��������
¼ �

1 3 2 1

0 2 1 5

0 0 4 2

0 0 0 �4

��������

��������
;

so from (2.20),

detA ¼ �ð1Þ � ð2Þ � ð4Þ � ð�4Þ ¼ 32 :

¤
Once the inverse matrix has been introduced, matrix algebra will be used to

prove the following generalization of Cramer’s rule to a nonhomogeneous system

of n linear equations in the n unknowns x1, x2, . . . , xn. However, it will be useful to
state this generalization in advance of its proof.

Theorem 2.3 The Generalized Cramer’s Rule.
The system of n nonhomogeneous linear equations in the variables x1, x2, . . . , xn

a11x1 þ a12x2 þ � � � þ a1nxn ¼ b1;

a21x1 þ a22x2 þ � � � þ a2nxn ¼ b2;

� � �
an1x1 þ an2x2 þ � � � þ annxb ¼ bn

(2.21)

has the solution set {x1, x2, . . . , xn } given by

x1 ¼ D1

D
; x2 ¼ D2

D
; � � � ; xn ¼ Dn

D
; (2.22)

provided D 6¼ 0, where

D ¼

a11 a12 � � � a1n

a21 a22 � � � a2n

..

. ..
. ..

. ..
.

an1 an2 � � � ann

����������

����������
; D1 ¼

b1 a12 � � � a1n

b2 a22 � � � a2n

..

. ..
. ..

. ..
.

bn an1 an2 ann

����������

����������
; � � � ;

Dn ¼

a11 a12 � � � b1

a21 a22 � � � b2

..

. ..
. ..

. ..
.

an1 an2 � � � bn

����������

����������
:

(2.23)

¤
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Notice that in (2.23) D¼ detA is the determinant of the coefficient matrixA, and

the determinant Di for i ¼ 1, 2, . . . , n is derived from D by replacing its ith column

by the column vector containing the nonhomogeneous terms b1, b2, . . . , bn.

2.5 Homogeneous Systems of Equations and a Test

for Linear Independence

Consider the system of n homogeneous linear equations in the n independent

variables x1, x2, . . . , xn:

a11x1 þ a12x2 þ � � � þ a1nxn ¼ 0;

a21x1 þ a22x2 þ � � � þ a2nxn ¼ 0;

::::::::::::

an1x1 þ an2x2 þ � � � þ annxn ¼ 0:

(2.24)

Accepting the validity of this generalization of Cramer’s rule, it follows that if the

determinant of the coefficients det A 6¼ 0, the only possible solution of (2.24) is the

null solution x1 ¼ x2 ¼ � � � ¼ xn ¼ 0. This means that no equation in (2.24) can be

expressed as the sum of multiples of other equations belonging to the system, so the

equations in the system are linearly independent. Suppose, however, that one of the

equations is formed by the addition of multiples of some of the remaining equations,

making it linearly dependent on other equations in the system. Subtracting these

samemultiples of equations from the linearly dependent equation will reduce it to an

equation of the form 0x1 + 0x2 + � � � + 0xn ¼ 0, leading to a row of zeros in the

equivalent coefficient matrix. It then follows immediately that det A ¼ 0, and the

same conclusion follows if more than one of the equations in (2.24) is linearly

dependent on the other equations. We have established the following useful result.

Theorem 2.4 Determinant Test for Linear Independence.
A necessary and sufficient condition that the n homogeneous equations in (2.24)
with the coefficient matrixA are linearly independent is that det A 6¼ 0. Conversely,
if det A ¼ 0, the equations are linearly dependent.

¤
It follows from Theorem 2.4 that if m < n of the equations in (2.24) are linearly

independent, it is only possible to solve for m of the unknown variables x1, x2, . . . , xn
in terms of the of the remaining n� m variables that can then be regarded as arbitrary

parameters.

The next example shows how this situation arises when dealing with a system of

four equations, only two of which are linearly independent.

Example 2.6. Show only two of the following four linear homogeneous equations

are linearly independent, and find the solution set if two of the unknowns are

assigned arbitrary values.
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2x1 � 3x2 þ x3 þ 2x4 ¼ 0;

3x1 þ 2x2 � 3x3 � x4 ¼ 0;

x1 þ 5x2 � 4x3 � 3x4 ¼ 0;

5x1 � x2 � 2x3 þ x4 ¼ 0:

Solution. Later a simple way will be found of determining which equations may be

taken to be linearly independent. However, for the moment, it will suffice to notice

that the third equation is obtained by subtracting the first equation from the second

equation, and the fourth equation is obtained by adding the first and second

equations. So we may take the first and second equations as being linearly indepen-

dent, and the last two equations as being redundant because of their linear depen-

dence on the first two equations. The linear dependence of this system of equations

is easily checked by using the determinant test in Theorem 2.4, because

detA ¼
2 �3 1 2

3 2 �3 �1

1 5 �4 �3

5 �1 �2 1

��������

��������
¼ 0 :

While the determinant test establishes the existence of linear dependence amongst

the equations in system (2.24), it does not show how many of the equations are

linearly independent.

As we know by inspection that the first two equations contain all of the

information in this system, the last two equations can be disregarded, and we can

work with the first two equations

2x1 � 3x2 þ x3 þ 2x4 ¼ 0;

3x1 þ 2x2 � 3x3 � x4 ¼ 0:

If we set x3 ¼ k1 and x4 ¼ k2, each of which is arbitrary, the system reduces to the

two equations for x1 and x2,

2x1 � 3x2 ¼ �k1 � 2k2;

3x1 þ 2x2 ¼ 3k1 þ k2:

Solving these equations for x1 and x2 shows the solution set {x1, x2, x3, x4} for the

system has for its elements

x1 ¼ 7
13
k1 � 1

13
k2 ; x2 ¼ 9

13
k1 þ 8

13
k2 ; x3 ¼ k1 ; x4 ¼ k2 ;

where the quantities k1 and k2 are to be regarded as arbitrary parameters.

¤

2.5 Homogeneous Systems of Equations and a Test for Linear Independence 29



Corollary 2.5. Linear Dependence of the Columns of a Determinant.
If in system (2.24) det A ¼ 0, then the columns of the determinant are linearly
dependent.
Proof. The result is almost immediate, and it follows from the fact that the rows of

det AT are the columns of det A. The vanishing of det A implies linear dependence

between the rows of det A, but det A ¼ det AT, so the vanishing of det A implies

linear dependence between the columns of det A.

¤

2.6 Determinants and Eigenvalues: A First Look

An important type of determinant associated with an n � n matrix A ¼ [aij] has the
form det[A � lI], where l is a scalar parameter. To interpret the matrix expression

A � lI we need to anticipate the definition of the multiplication of a matrix by a

scalar. This is accomplished by defining the matrix lI to be the matrix obtained from

the unit matrix I by multiplying each of its elements by l, so if I is the 3 � 3 unit

matrix,

l
1 0 0

0 1 0

0 0 1

2
4

3
5 ¼

l 0 0

0 l 0

0 0 l

2
4

3
5:

Example 2.7. Given

A ¼
1 2 0

2 �1 �2

0 �2 1

2
4

3
5;

find A � lI and write down det[A � lI].

Solution. We have

A� lI ¼
1 2 0

2 �1 �2

0 �2 1

2
4

3
5� l

1 0 0

0 1 0

0 0 1

2
4

3
5 ¼

1 2 0

2 �1 �2

0 �2 1

2
4

3
5�

l 0 0

0 l 0

0 0 l

2
4

3
5;

from which it follows that

A� lI¼
1� l 2 0

2 �1� l �2

0 �2 1� l

2
4

3
5; and so det½A� lI� ¼

1� l 2 0

2 �1� l �2

0 �2 1� l

������
������ :

¤
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If A is an n � nmatrix, when expanded det [A � lI] yields a polynomial p(l) of
degree n in l, where n is the order of det A. In Example 2.7 the polynomial p(l)
given by

pðlÞ ¼ det½A� lI� ¼
1� l 2 0

2 �1� l �2

0 �2 1� l

������
������ ¼ �l3 :þ l2 þ 9l� 9:

The roots of det [A �lI] ¼ 0, that is the zeros of p(l), are called the eigenvalues
of the matrix A, so in Example 2.7 the polynomial p(l) ¼ 0 becomes the cubic

equation l3 � l2 � 9l + 9¼ 0. This has the roots l¼ 1, l¼�3 and l¼ 3, so these

are the eigenvalues of matrix A. The expression p(l) is called the characteristic

polynomial of matrix A, and p(l) ¼ 0 is called the characteristic equation of matrix

A. As the eigenvalues of a square matrix A are the roots of a polynomial it is

possible for the eigenvalues of A to be complex numbers, even when all of the

elements of A are real. It is also important to recognize that only square matrices

have eigenvalues, because when A is an m � n matrix with m 6¼ n, det A has no

meaning.

Theorem 2.5 The eigenvalues of A and AT.
The matrixA and its transposeAT have the same characteristic polynomial, and the
same eigenvalues.
Proof. The results follow directly from Property 6 of Theorem 2.1, because A and

AT have the same characteristic polynomial, and hence the same eigenvalues.

¤

Example 2.8. If A ¼
1 3 2

�1 2 4

1 0 �1

2
4

3
5, then AT ¼

1 �1 1

3 2 0

2 4 �1

2
4

3
5, and routine

calculations confirm that

pðlÞ ¼ det½A� lI�¼ det½AT � lI� ¼ l3 � 2l2 � 3;

so the characteristic polynomials are identical. The eigenvalues determined by

p(l) ¼ 0 are

l1 ¼ 2:48558; l2 ¼ 0:24279� 1:07145i and l3 ¼ �l2 ¼ 0:24279þ 1:07145i;

so in this case one eigenvalue is real and the other two are complex conjugates.

¤
Exercises

1. Evaluate the determinants

að Þ detA ¼
7 3 4

1 2 1

3 0 2

������
������; bð Þ detB ¼

1 �3 2

4 5 6

5 2 8

������
������; cð Þ detC ¼

0 1 0

1 0 0

0 0 1

������
������ :
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2. Evaluate the determinants

að Þ detA ¼
sin t cos t 1

� cos t sin t 0

et 0 0

������
������; bð Þ detB ¼

e�t sin t e�t cos t 0

�e�t cos t e�t sin t 1

et 0 1

������
������:

3. Construct a 3 � 3 matrix A of your own choice, and by expanding the

determinants det A and det AT show that det A ¼ det AT . Prove that if A is

any n � n matrix, then it is always true that det A ¼ det AT.

4. Evaluate the determinant

detA ¼
2 0 �1 3

1 4 9 0

�2 1 3 �1

4 0 3 2

��������

��������
:

5. Show without expanding the determinant that

1þ a a a
b 1þ b b
b b 1þ b

������
������ ¼ ð1þ aþ 2bÞ :

6. Show without expanding the determinant that

x3 þ 1 1 1

1 x3 þ 1 1

1 1 x3 þ 1

������
������ ¼ x6ðx3 þ 3Þ :

7. Evaluate the following determinant by reducing it to upper triangular form

D ¼
2 1 0 1

3 2 4 2

1 2 1 3

0 3 1 1

��������

��������
:

8. Use Cramer’s rule to solve the system of equations

x1 þ 2x2 � x3 ¼ 9;

2x1 � 3x2 þ 5x3 ¼ �2;

4x1 � 2x2 � 3x3 ¼ 7 :
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9. Are the equations in the following two systems linearly dependent?

að Þ
x1 � 2x2 þ 4x3 ¼ 0

3x1 þ 6x2 þ 2x3 ¼ 0

7x1 þ 22x2 � 2x3 ¼ 0;

bð Þ
3x1 � x2 þ 2x3 ¼ 0

x1 þ 4x2 þ 6x3 ¼ 0

3x1 � x2 þ 4x3 ¼ 0 :

10. Are the equations in the following system linearly independent? Give a reason

for your answer.

x1 þ 2x2 � x3 � x4 ¼ 0;

2x1 � x2 þ 2x3 þ 2x4 ¼ 0;

4x1 � 7x2 þ 8x3 þ 8x4 ¼ 0;

3x1 � x2 þ 3x3 � 2x4 ¼ 0 :

11. Given that

A ¼
2 0 �1

�1 1 1

0 0 3

2
4

3
5;

confirm by direct computation that if a constant k is subtracted from each

element on the leading diagonal of matrix A, the eigenvalues of the modified

matrix are the eigenvalues of matrix A from each of which is subtracted the

constant k. Could this result have been deduced without direct computation,

and if so how? Is this result only true for this matrixA, or is it a general property

of the eigenvalues of n � n matrices?

12. Construct a square matrix of your choice, and verify by direct expansion that

the characteristic polynomials of A and AT are identical.

The calculation of integrals over areas and volumes is often simplified by

changing the variables involved to ones that are more natural for the geometry

of the problem. When an integral is expressed in terms of the Cartesian

coordinates x, y and z, a change of the coordinates to u1, u2 and u3 involves
making a transformation of the form

x ¼ f ðu1; u2; u3Þ; y ¼ gðu1; u2; u3Þ; z ¼ hðu1; u2; u3Þ;
and when this is done a scale factor J enters the transformed integrand to

compensate for the change of scales. The factor J is a functional determinant

denoted by
@ðx;y;zÞ

@ðu1;u2;u3Þ , where

J ¼ @ðx; y; zÞ
@ðu1; u2; u3Þ ¼

@x
@u1

@x
@u2

@x
@u3

@y
@u1

@y
@u2

@y
@u3

@z
@u1

@z
@u2

@z
@u3

�������

�������
;
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and J is called the Jacobian of the transformation or, more simply, just the

Jacobian. If the Jacobian vanishes at any point P, the transformation fails to

establish a unique correspondence at that point between the point (xP, yP, zP)
and the transformed point

u1P; u2P; u3Pð Þ:

In Exercises 13 and 14, find the Jacobian of the given transformation, and

determine when J ¼ 0. Give a geometrical reason why the transformation fails

when J ¼ 0.

13. Find the Jacobian for the cylindrical polar coordinates x ¼ r cos f, y ¼ r sin f,
z ¼ z where the coordinate system is shown in Fig. 2.1.

14. Find the Jacobian for the spherical polar coordinates x ¼ r sin y cos f, y ¼
r sin y sin f, z ¼ r cos y where the coordinate system is shown in Fig. 2.2.

z

x

y

zp

P

0 yp

xp

f

Fig. 2.1 The cylindrical polar

coordinate system

z

x

r

y

zp

P

0
yp

xp

f

q

Fig. 2.2 The spherical polar

coordinate system
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Chapter 3

Matrix Multiplication, the Inverse Matrix

and Partitioning

3.1 The Inner Product, Orthogonality and the Norm

Matrix multiplication is based on the product ab of an n element row vector a ¼
[a1, a2, . . . , an] and an n element column vector b ¼ [b1, b2, . . . , bn]

T. This product

of vectors written ab, and called the inner product or scalar product of the matrix

row vector a and the matrix column vector b, is defined as

ab ¼ a1b1 þ a2b2 þ � � � þ anbn ¼
Xn
i¼1

aibi (3.1)

The inner product is only defined if the vectors a and b each has the same number

of elements.

The name scalar product is used because although it is the product of a row vector

and a column vector, each with n elements, the result is a single scalar quantity

(a number when the elements of a and b are numbers). For example, the scalar

product of the two four element vectors a ¼ [1, �2, 4, 3] and b ¼ [2, 1, 0, 5]T is

ab ¼ 1ð Þ � 2ð Þ þ ð�2Þ � 1ð Þ þ 4ð Þ � ð0Þ þ 3ð Þ � 5ð Þ ¼ 15:

If a is not a null vector, the scalar product of the matrix vectors a and aT is such

that aaT ¼ a21 þ a22 þ � � � þ a2n ¼
Pn

i¼1 a
2
i > 0; and the quantity denoted by ak k,

where ak k ¼
ffiffiffiffiffiffiffiffi
aaT

p
¼ a21 þ a22 þ � � � þ a2n
� �1=2

, is called the Euclidean norm of

vector a, also known as the Frobenius norm. The more familiar name Euclidean
norm is used here because of its use with space vectors. To understand why this is,

let a¼ a1iþ a2jþ a3k be a vector in three-dimensional Euclidean space with i, j, k

unit vectors in the x, y and z directions. Then ak k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ a22 þ a23

p
is the magni-

tude (length) of the space vector a, though in vector analysis the magnitude of a

vector is usually denoted by aj j:
The use of the term vector for a row or column matrix is deliberate, because

Chapter 7 will show that matrices are an important example of what is called a

A. Jeffrey, Matrix Operations for Engineers and Scientists,
DOI 10.1007/978-90-481-9274-8_3, # Springer ScienceþBusiness Media B.V. 2010
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linear vector space. In a vector space composed of matrix row and column vectors

there are special vectors that play the part of the three-dimensional unit space

vectors i, j and k that are used in the calculus and vector analysis when constructing

general space vectors by scaling and vector addition. Two n element matrix vectors

a and b are said to be orthogonal if ab ¼ 0, and to be orthonormal if in addition to

ab ¼ 0 it is also true that ak k ¼ 1 and bk k ¼ 1: The last two conditions are

equivalent to requiring the matrix vectors a and b to be such that aaT ¼ 1 and

bTb ¼ 1. Here the requirement that ak k ¼ 1 is a generalization to matrix vectors of

the concept of unit space vector like i, j or k, while ab is a generalization to matrix

vectors of the scalar product u.v of space vectors u and v which are orthogonal

(perpendicular) if their scalar product u.v ¼ 0, while the vectors are orthonormal if

in addition to u.v¼ 0 it is also true that u and v are both unit space vectors (each has
the Euclidean norm 1).

3.1.1 A Digression on Norms

The essential features of the norm of a matrix vector a are that:

(i) ak k > 0 when a 6¼ 0, and ak k ¼ 0 if and only if a ¼ 0,

(ii) aþ bk k � ak k þ bk k (the triangle inequality),
(iii) lak k ¼ lj j ak k when l is any scalar multiplier.

Properties (i) to (iii) will be familiar from the study of three-dimensional space

vectors.

The norm of a vector serves many purposes, one of the most important examples

of which occurs when only a finite number of linearly independent matrix vectors

can be found. This will be seen to be the case when eigenvectors are introduced in

Chapter 5. If, say, these linearly independent matrix vectors are v1, v2, . . . ,vn, then
their norms v̂1; v̂2; . . . ; v̂n play the part of the unit vectors i, j and k in three space

dimensions when constructing more general vectors. Chapter 7 will show how by

using an inner product and normed vectors, a linear transformation described by a

matrix can project an n element matrix vector in a space S onto what is called a sub-
space S of S. This is analogous to projecting a three-dimensional space vector onto a

plane, which is a two-dimensional sub-space of three-dimensional space. Yet

another application of normed vectors occurs in numerical analysis when matrix

vectors are iterated, because working with vectors scaled according to their norm

prevents them from either growing without bound, or from becoming vanishingly

small, as the number of iterations increases. Although they will not be used here, we

mention that other norms are possible, like the infinity norm and the p-norms for

matrix vectors. If the elements of a vector a are denoted by a1, a2, . . . , an, these
norms are defined as:

(i) The infinity norm ak k1 ¼ max a1j j; a2j j; . . . ; anj jf g
and
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(ii) The p-norm ak kp ¼ ak kp ¼ a1j jp þ a2j jp þ � � � þ anj jp½ �1=p; where p is a

positive integer.

It can be seen from (ii) that the Euclidean, or Frobenius norm, is the 2-norm

ak k2: There are also norms for general matrices, one of the most useful being the

Frobenius norm for an m � n matrix A defined as Ak kF ¼ Pm
i¼1

Pn
j¼1

aij
�� ��2

" #1=2
,

A simpler norm for an n � n matrix A that will be needed later when discussing

the matrix exponential eA is Ak kM ¼ max aij
�� �� : i; j ¼ 1; : : : ; n
� �

:

3.2 Matrix Multiplication

Let A be an m � n matrix and B be an n � r matrix, with a i the ith row of A and bj
the jth column of B, so in abbreviated form A and B can be written

A ¼
a1
a2

..

.

am

2
6664

3
7775and B ¼ b1 b2 � � � br½ �; (3.2)

where it will be shown later that the matrices ai and bj can be considered to be

special types of matrices called block matrices.
The two matrices A and B are said to be conformable for multiplication if the

number of columns in A is equal to the number of rows in B. The matrices A and B

above satisfy this condition, because A is an m � n matrix and B is an n � r matrix

so that A has n columns and B has n rows. The matrix product M ¼ AB, with the

matrices arranged in this order, is an m � r matrix whose element mij in the ith row
and jth column is defined as the inner (scalar) product aibj. In terms of ai, bj and the

inner products aibj, the matrix product AB can be written

AB ¼
a1b1 a1b2 � � � a1br
a2b1 a2b2 � � � a2br

..

. ..
. ..

. ..
.

anb1 anb2 � � � anbr

2
6664

3
7775: (3.3)

Remember that for the product of an m � n matrix A and a p � r matrix B to be

conformable for the product AB, it is necessary that n ¼ p, when the result of the

product will be an m � r matrix. It is because of the way the sum of the products of

the elements of rows of A with the elements of columns of B is combined, that the

formation of the matrix product AB is most easily remembered as “the product of

the rows of A with the columns of B”. If the number of columns in A is not equal to
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the number of rows in B, the scalar product aibj is not defined, and then the matrix

product AB will not exist. By convention, a matrix A ¼ [a] containing a single

element a may be regarded either as the simplest possible matrix, that is as a 1 � 1

matrix, or as the scalar quantity a, depending on the context in which it occurs.

It is clear from the definition of a matrix product that the order in which matrices

are multiplied is important. If the product AB is defined, it is not necessary that the

product BA exists, and even when it does exist, in general AB 6¼ BA. This situation

is described by saying that matrix multiplication is noncommutative, meaning that,

in general, when a matrix product is defined, the order in which the matrices appear

in the product cannot be changed. Before examining more complicated examples of

matrix multiplication, let us first apply result (3.3) to determine the following

simple matrix products.

Example 3.1. Form the matrix products AB and BA, given that

A ¼ 1 2 3

2 1 1

� 	
; B ¼

1 0

2 1

1 1

2
4

3
5:

Solution.

AB ¼ 1 2 3

2 1 1

� 	 1 0

2 1

1 1

2
4

3
5

¼ 1� 1þ 2� 2þ 3� 1 1� 0þ 2� 1þ 3� 1

2� 1þ 1� 2þ 1� 1 2� 0þ 1� 1þ 1� 1

� 	
¼ 8 5

5 2

� 	
:

Similarly

BA ¼
1 0

2 1

1 1

2
4

3
5 1 2 3

2 1 1

� 	
¼

1 2 3

1 5 7

3 3 4

2
4

3
5 :

So, although the products AB and BA are both defined, AB 6¼ BA.

}
When performing matrix multiplication it is necessary to use some terminology

that makes clear the order in which matrices occur in a matrix product. In a matrix

product AB, this order is made clear by saying matrix B is pre-multiplied by

matrix A, or that matrix A is post-multiplied by matrix B. So to pre-multiply
means to “multiply from the left”, while to post-multiply means to “multiply from

the right”.

Another feature of matrix multiplication that differs from ordinary algebraic

multiplication is that, in general, the cancellation of matrix factors in a matrix

equation is not permissible. It is also the case that the matrix product AB ¼ 0 does
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not necessarily imply either that A ¼ 0 or that B ¼ 0 nor, when the product exists,

does it necessarily imply that BA ¼ 0. This can be illustrated by considering the

products AB and BA, where

A ¼ 2 2

3 3

� 	
and B ¼ �1 1

1 �1

� 	
:

Here, although A 6¼ 0, B 6¼ 0, the product AB ¼ 0 0

0 0

� 	
; while

BA ¼ 1 1

�1 �1

� 	
:

Similarly, cancellation of the matrix factor A from the equation AB ¼ AC is not
permissible, because this matrix equation does not necessarily imply that B ¼ C.

This can be illustrated by considering the matrix equation AB ¼ AC, with

A ¼ 2 2

3 3

� 	
; B ¼ 1 0

2 2

� 	
; C ¼ 2 0

1 2

� 	
;

because AB ¼ AC ¼ 6 4

9 6

� 	
, but B 6¼ C.

Example 3.2. Form the matrix products AB, BA, AC, AI and IA, and explain why

ACT does not exist, given that

A ¼ 1 3 �2

0 4 1

� 	
; B ¼

2 1

4 5

1 2

2
4

3
5 ; C ¼

4

1

�3

2
4

3
5; and I is a conformable identity

(unit) matrix.

Solution. The matrix product AB is defined because A is a 2 � 3 matrix and B is a

3 � 2 matrix, so the product AB is a 2 � 2 matrix. Let ai be the ith row of A and bj
be the jth row of B, then a1b1 ¼ (1)�(2) + (3)�(4) + (�2)�(1) ¼ 12, a1b2 ¼ (1)

�(1) + (3)�(5) + (�2)�(2) ¼ 12, a2b1 ¼ (0)�(2) + (4)�(4) + (1)�(1) ¼ 17, a2b2
¼ (0)�(1) + (4)�(5) + (1)�(2) ¼ 22. Thus the matrix product

AB ¼ 12 12

17 22

� 	
:

The matrix product BA is also defined, though it is a 3 � 3 matrix. The

calculation of BA proceeds as with the product AB, but this time the rows of B

contain only two elements, as do the columns of A, so BA is a (3 � 3) matrix.

The calculation is routine, so by way of example only the details of the calcula-

tion for the element in row one and column two of the product BA are given. The

calculation of this element involves the scalar product of the two element vectors

[2, 1] and [3, 4]T, given by [2, 1] [3, 4]T ¼ (2)�(3) + (1)�(4) ¼ 10. Completing

the calculations gives
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BA ¼
2 10 �3

4 32 �3

1 11 0

2
4

3
5 :

As A is a (2 � 3) matrix, and C is a (3 � 1) matrix, the matrix product AC is the

(2 � 1) matrix

AC ¼ 1 3 �2

0 4 1

� 	 4

1

�3

2
4

3
5 ¼ ð1Þ � ð4Þ þ ð3Þ � ð1Þ þ ð�2Þ � ð�3Þ

ð0Þ � ð4Þ þ ð4Þ � ð1Þ þ ð1Þ � ð�3Þ
� 	

¼ 13

1

� 	
:

As A is a 2 � 3 matrix, for compatibility the product AI will be defined if the

identity matrix I is taken to be a 3 � 3 matrix, in which case a simple calculation

confirms that AI ¼ A. However, for the product IA to be conformable it is

necessary for I to be the 2 � 2 identity matrix, from which it then follows that

IA ¼ A.

This illustrates the fact that in multiplications the identity matrix I acts like

the number 1 (unity) in ordinary multiplication. If the shape of the identity

matrices involved must be made clear, in the first of these calculations we could

write AI3 ¼ A, where I3 is a 3 � 3 identity matrix, while in the second calculation

we could write I2A ¼ A, where I2 is a 2 � 2 identity matrix. However, the

identification of a unit matrix in this way is seldom necessary, since it is always

understood that the symbol I represents whatever identity matrix is appropriate for

the algebraic operation that is to be performed.

Finally, the matrix product ACT is not defined, because A is a 2 � 3 matrix, and

CT is a 1 � 3 matrix.

}
By definition, if a general matrix A is multiplied (scaled) by a constant k, then

each element of matrix A is multiplied by k. This definition of scaling a general

matrix by a constant k is in agreement with the definition of the meaning of lI
introduced at the end of Chapter 2 when considering det[A � lI]. So, for

example,

k

a11 a12 � � � a1n
a21 a22 � � � a2n
..
. ..

. ..
. ..

.

am1 am2 � � � amn

2
6664

3
7775 ¼

ka11 ka12 � � � ka1n
ka21 ka22 � � � ka2n
..
. ..

. ..
. ..

.

kam1 kam2 � � � kamn

2
6664

3
7775: (3.4)

To return to the study of linear systems of algebraic equations, we now examine

the relationship between nonhomogeneous first-order algebraic systems and matrix

multiplication, by considering the system

40 3 Matrix Multiplication, the Inverse Matrix and Partitioning



a11x1 þ a12x2 þ � � � þ a1nxn ¼ b1;
a21x1 þ a22x2 þ � � � þ a2nxn ¼ b2;

..

.

am1x1 þ am2x2 þ � � � þ amnxn ¼ bm:

(3.5)

Defining the matrices

A ¼
a11 a12 � � � a1n
a21 a22 � � � a2n
..
. ..

. ..
. ..

.

am1 am2 � � � amn

2
6664

3
7775; x ¼

x1
x2
..
.

xn

2
6664

3
7775; b ¼

b1
b2
..
.

bm

2
6664

3
7775; (3.6)

allows system (3.6) to be written in the concise form

Ax ¼ b: (3.7)

Division by a matrix is not defined, so the matrix Eq. (3.7) cannot be divided by

A to find x. However, if m ¼ n, and det A 6¼ 0, it will be shown later that a new

matrix denoted by A�1can be defined with the property that A�1A ¼ AA�1¼ I,

where the matrix A�1 is called the inverse of matrix A.

Using this property, and pre-multiplying (3.7) by A�1, that is multiplying it from

the left by A�1, it becomes A�1Ax ¼ A�1b but A�1A ¼ I, and Ix ¼ x, so the

solution of (3.7) is seen to be given by x ¼ A�1b, whenever A�1 exists. This

reasoning raises the important question of how to find A�1 for any given square

matrix A, though this matter will be postponed until later in this chapter. However,

if A is not a square matrix the inverse of A does not exist.
It is a consequence of the definition of matrix multiplication that when A, B and

C are conformable for the productABC, pre-multiplyingC by the productAB is the

same as post-multiplying A by the product BC, so that

ABð ÞC ¼ A BCð Þ: (3.8)

An immediate consequence of (3.8) is that for any integer n we may use

exponent notation and write

AA � � �A|fflfflfflfflffl{zfflfflfflfflffl}
n times

¼ An; (3.9)

where, for consistency we define A0 ¼ I.

Example 3.3. Verify property (3.8) given that

A ¼ 1 4

3 2

� 	
; B ¼ 2 6

�1 0

� 	
; C ¼ 3 2

1 4

� 	
;
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and show that ABC 6¼ CBA.

Solution.

AB ¼ �2 6

4 18

� 	
; ðABÞC ¼ �2 6

4 18

� 	
3 2

1 4

� 	
¼ 0 20

30 80

� 	

and

BC ¼ 12 28

�3 �2

� 	
; AðBCÞ ¼ 1 4

3 2

� 	
12 28

�3 �2

� 	
¼ 0 20

30 80

� 	
:

A routine calculation shows that

CBA ¼ 58 52

16 4

� 	
;

so in this case ABC 6¼ CBA.

}

3.3 Quadratic Forms

An important connection exists between n � n matrices with real elements, and

quadratic forms Q(x1, x2, . . . , xn) in the n real variables x1, x2, . . . , xn, where by

definition the quadratic form

Q x1; x2; . . . ; xnð Þ ¼
Xn
i;j¼1

aijxixj: (3.10)

The coefficients aij can be represented in matrix form by defining an n � n
matrix

~A ¼
a11 a12 � � � a1n
a21 a22 � � � a2n
..
. ..

. ..
. ..

.

an1 an2 � � � ann

2
6664

3
7775; (3.11)

which then enables (3.10) to be written

Q xð Þ ¼ xT ~Ax; (3.12)

where x¼ [x1, x2, . . . , xn]
T is an n element column vector, and xT¼[x1, x2, . . . , xn]

T

is its transpose (an n element row vector).
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Quadratic forms have many uses. They are introduced here because the process

of simplifying (3.10) to an equivalent sum involving only the squares of n new

variables, say y1, y2, . . . , yn, involves finding a linear change of the variables in x to
the variables in y that has the effect of reducing ~A to a diagonal matrix. Later we

will see how this same process, called the diagonalization of a matrix, plays an

important role when working with systems of linear differential equations.

A typical quadratic form involving the two real variables x and y is

Q x; yð Þ ¼ a11x2 þ ða12 þ a21Þxyþ a22y2: (3.13)

This can be written in the matrix form

Qðx; yÞ ¼ x y½ � a11 a12
a21 a22

� 	
x
y

� 	
;

because

x y½ � a11 a12
a21 a22

� 	
¼ a11xþ a21y; a12xþ a22y½ � ;

so

Qðx; yÞ ¼ a11xþ a21y; a12xþ a22y½ � x
y

� 	
a11 ¼ a11x2 þ a12 þ a21ð Þxyþ a22y2

� �
;

and as the last quantity on the right is a matrix containing only a single element, it

can be written as a scalar quantity, so Q(x, y) becomes

Q x; yð Þ ¼ a11x2 þ a12 þ a21ð Þxyþ a22y2:

It is always possible to express an arbitrary quadratic form in the n variables

x1, x2, . . . , xn in terms of a symmetric matrix A, and an n element column vector

x ¼ [x1, x2, . . . , xn]
T. To achieve this, when the quadratic form is expressed as in

(3.10), with a matrix ~A having the coefficients aij, the required symmetric matrix

A ¼ [aij] with elements aij defined in terms of the elements aij is given by

aij ¼ aij; i ¼ j;
1
2
ðaij þ ajiÞ ; i 6¼ j:



(3.14)

Once diagonalization has been discussed, it will be shown how any real qua-

dratic form can be reduced to its diagonal form

QðxÞ ¼ l1x21 þ l2x22 þ � � � þ lnx2n ; (3.15)
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with l1 � l2 � � � � � ln , where some of the n numbers li may be negative, and

some may be zero.

Example 3.4. Find the quadratic form defined by the matrix ~A.

~A ¼
7 4 4

�8 1 12

�8 �4 1

2
4

3
5 :

Define the symmetric matrix A with coefficients aij determined by (3.13), and

confirm that it generates the same quadratic form as matrix ~A.

Solution. Setting x ¼ [x1, x2, x3]
T we have

xT ~A ¼ ½7x1 � 8x2 � 8x3; 4x1 þ x2 � 4x3; 4x1 þ 12x2 þ x3�;

so after evaluating the inner product of xT ~A and x, we find the required quadratic

form is

QðxÞ ¼ xT ~Ax ¼ 7x1
2 � 4x1x2 � 4x1x3 þ x2

2 þ 8x2x3 þ x3
2:

From (3.13) the coefficients aij of a symmetric matrix A are a11 ¼ 7 ;

a12 ¼ a21 ¼ 1
2
4� 8ð Þ ¼ �2 ; a13 ¼ a32 ¼ 1

2
4� 8ð Þ ¼ �2 ; a22 ¼ 1; a23 ¼ a32

¼ 1
2
�4þ 12ð Þ ¼ 4 ; a33 ¼ 1 :

So the required symmetric matrix A becomes

A ¼
7 �2 �2

�2 1 4

�2 4 1

2
4

3
5 :

Repeating the previous calculation, but this time with A in place of ~A, gives

xTA ¼ 7x1 � 2x2 � 2x3 ;�2x1 þ x2 þ 4x3 ;�2x1 þ 4x2 þ x3½ �;

so that

Q xð Þ ¼ xTAx ¼ 7x1
2 � 4x1x2 � 4x1x3 þ x2

2 þ 8x2x3 þ x3
2;

confirming that xT ~Ax ¼ xTAx.

Before leaving this example we mention that the linear change of variable

x1 ¼ 1ffiffi
3

p y2 � 2ffiffi
6

p y3; x2 ¼ � 1ffiffi
2

p y1 þ 1ffiffi
3

p y2 þ 1ffiffi
6

p y3; x3 ¼ 1ffiffi
2

p y1 þ 1ffiffi
3

p y2 þ 1ffiffi
6

p y3
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reduces the quadratic form Q(x) in terms of x ¼ [x1, x2, x3]
T to the much simpler

form Q yð Þ ¼ �3y21 þ 3y22 þ 9y23 involving only a sum of squares of the elements of

y ¼ [y1, y2, y3]
T. However, the way to find such a change of variable will be

described later once the diagonalization of a matrix has been discussed.

}

3.4 The Inverse Matrix

Previously, in connection with the system of Eq. (3.7), an n� nmatrix A�1 with the

property that A�1A¼ Iwas introduced in a purely formal calculation to show how,

when this matrix exists, the solution of the system of n nonhomogeneous algebraic

equations

Ax ¼ b (3.16)

can be solved for x by pre-multiplying the equation by A�1, because A�1Ax

¼ A�1b, but A�1A ¼ I, and Ix ¼ x, so

x ¼ A�1b: (3.17)

Consequently, given an n� nmatrixA, it is necessary to discover when and how

an associated n � n matrix denoted by A�1 can be found with the property that

AA�1 ¼ A�1A ¼ I: (3.18)

As already stated, division by matrices is not defined, but when an n � n matrix

A�1 associated with a matrix A can be found satisfying (3.18) it is called the matrix

inverse of A, or more simply the inverse of matrix A. As the inverse matrix A�1

occurs in (3.18) both as a pre- and a post-multiplier of A it is, more properly

described as the multiplicative inverse of A, though for conciseness the term

multiplicative is almost always omitted.

To see how, if A is an n� nmatrix, a formal definition of the inverse matrix A�1

can be obtained, we consider the matrix product M ¼ ACT, where CT is the

transpose of the matrix of cofactors associated with A. When written out formally

this becomes

M ¼
a11 a12 � � � a1n
a21 a22 � � � a2n
..
. ..

. ..
. ..

.

an1 an2 � � � ann

2
6664

3
7775

C11 C21 � � � Cn1

C12 C22 � � � Cn2

..

. ..
. ..

. ..
.

C1n C2n � � � Cnn

2
6664

3
7775 : (3.19)
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Appeal to Theorem 2.2 (the Laplace expansion of a determinant) shows that each

element on the diagonal of M is simply det A, while every off-diagonal element is

zero, because each off-diagonal element is obtained as the sum of the products of

the elements of a row of A with the cofactors of a different row of A. This allows us

to write

M ¼
detA 0 � � � 0

0 detA � � � 0

..

. ..
. ..

. ..
.

0 0 � � � detA

2
664

3
775 ; (3.20)

so from Property 1 of Theorem 2.1 with k ¼ det A, because M ¼ ACT, it follows

that

ACT ¼ det Að ÞI: (3.21)

A similar argument using the product CTA leads to the result

CTA ¼ det Að ÞI; (3.22)

so

CTA ¼ ACT ¼ det Að ÞI: (3.23)

When det A 6¼ 0, a comparison of (3.23) and (3.18) leads to the definition

A�1 ¼ 1

det A
CT; (3.24)

provided the scalar divisor det A 6¼ 0.

Because of its importance and frequent occurrence, the matrix CT defined as the

transpose of the matrix of cofactorsC ofA, is given a name and called the adjoint of
A, written adj A, so that

adj A ¼ CT: (3.25)

Thus the formal definition of the inverse matrix A�1 in terms of the adjoint

of A is

A�1 ¼ 1

detA
adj A ; det A 6¼ 0: (3.26)

MatrixA is said to be invertible, meaning its inverse exists, whenA�1 exists. This

in turn shows that forA�1 to exist it is necessary forA to be nonsingular; so detA 6¼ 0.
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Wehave proved thatAA�1¼A�1A¼ I. Notice that the exponent notation adopted

in (3.9) applies equally well to (3.26) provided we use the definitions A1 ¼ A, and

A0 ¼ I, because then AA�1 ¼ A1A�1 ¼ A(1 � 1) ¼ A0 ¼ I.

When n is large the computation of det A and the elements of adj A is time

consuming, so this definition of the inverse matrix is mainly of theoretical impor-

tance, though it can be useful when n is small. If systems of algebraic equations like

(3.16) need to be solved, instead of computing A�1, a different and more efficient

approach must be used. In this method the equations in the system are reduced to an

upper triangular form, with suitable modifications to the nonhomogeneous terms,

after which the system is solved using a process called back substitution. In back

substitution, xn is found first, and then this value is used to find xn�1, after

which the value of xn � 2 is found from the values of xn and xn�1, and so on, until

finally x1 is found in terms of xn, xn�1,. . ., x2.

Example 3.5. Find A�1 given that

A ¼
3 1 2

2 �1 1

1 3 �1

2
4

3
5 :

Solution. A straightforward calculation shows the matrix C of cofactors is

C ¼
�2 3 7

7 �5 �8

3 1 �5

2
4

3
5; so adj A¼CT ¼

�2 7 3

3 �5 1

7 �8 �5

2
4

3
5; and det A¼11;

so from (3.26)

A�1 ¼ 1

det A
CT ¼

� 2
11

7
11

3
11

3
11

� 5
11

1
11

7
11

� 8
11

� 5
11

2
64

3
75 :

A routine calculation confirms that A�1 has the required properties, because

AA
�1 ¼ A

�1
A ¼ I.

}
Example 3.6. Use the result of Example 3.4 to solve the system

3x1 þ x2 þ 2x3 ¼ 4;

2x1 � x2 þ x3 ¼ �3;

x1 þ 3x2 � x3 ¼ 5:
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Solution. The coefficient matrix in this case is matrix A in Example 3.4, so setting

x ¼
x1
x2
x3

2
4

3
5; b ¼

4

�3

5

2
4

3
5;

the system becomes Ax ¼ b, so that x ¼ A�1b. Using the result of Example 3.4 we

find that x ¼ A�1b becomes

x1

x2

x3

2
64

3
75 ¼

� 2
11

7
11

3
11

3
11

� 5
11

1
11

7
11

� 8
11

� 5
11

2
64

3
75

4

�3

5

2
64

3
75 ¼

�14
11

32
11
27
11

2
64

3
75:

Equating corresponding elements in the column vectors on the left and right

shows that the elements of the solution set {x1, x2, x3} are given by

x1 ¼ �14
11
; x2 ¼ 32

11
; x3 ¼ 17

11
:

}
The two fundamental properties of the inverse matrix that follow can be deduced

very simply; the first being that

A�1
� ��1 ¼ A; (3.27)

while the second is that if the square matrices A and B are conformable for

multiplication, then

ABð Þ�1 ¼ B�1A�1: (3.28)

When A�1 exists, (3.27) follows from (3.18), because A�1A ¼ AA�1 ¼ I shows

that A is the inverse of A�1, so (A�1)�1 ¼ A. Result (3.28) follows by considering

the product B�1A�1AB, because A�1A¼ I and B�1B¼ I, so B�1A�1AB¼ B�1IB

¼ B�1B ¼ I. Thus the matrix product AB is the inverse of the matrix product

B�1A�1, confirming that (AB)�1 ¼ B�1A�1.

When A�1 exists, it is always true that AB¼ 0 implies B¼ 0, and thatAB¼AC

implies B ¼ C. Although cancellation of matrices is not permitted, in this case pre-

multiplication by A�1 has a similar effect. These statements do not contradict the

results of the two examples following Eq. (3.3), because in those cases matrix A

was singular, so A�1 did not exist.

Two useful results involving the multiplication of determinants can be deduced

from matrix multiplication. These are that if A and B are an n � n matrices, then

detðABÞ ¼ detA detB

detA�1 ¼ 1= detA; detA 6¼ 0:

�
(3.29)
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The second result follows from the first one by setting B¼A�1, whenAA�1¼ I,

and det I¼1, so it is only necessary to prove the first result. For simplicity, the proof

will only be given when A and B are 2 � 2 matrices, because although the proof

generalizes in an obvious way to include n � n matrices, the calculations become

tedious.

Let

D1 ¼ a11 a12
a21 a22

����
����; D2 ¼ b11 b12

b21 b22

����
����

and define D as

D ¼
a11 a12 0 0

a21 a22 0 0

�1 0 b11 b12
0 �1 b21 b22

��������

��������
:

Expanding D in terms of the elements of its last column, and then expanding the

two third-order determinants that arise in terms of elements of their last columns,

gives

D ¼ �b12b21
a11 a12
a21 a22

����
����þ b11b22

a11 a12
a21 a22

����
���� ¼ a11 a12

a21 a22

����
���� b11b22 � b12b21ð Þ ;

and so D ¼ a11 a12
a21 a22

����
���� b11 b12
b21 b22

����
���� ¼ D1D2 :

It remains for us to show that D1D2 is the determinant formed from the matrix

product AB.

DeterminantDwill be unchanged if its first row is replaced by Row 1þ a11 Row
3þ a12 Row 4, and its second row is replaced by Row 2 þ a21 Row 3þ a22 Row 4,

when it becomes

D ¼ D1D2 ¼
0 0 a11b11 þ a12b21 a11b12 þ a12b22
0 0 a21b11 þ a22b21 a21b12 þ a22b22
�1 0 b11 b12
0 �1 b21 b22

��������

��������
:

Expanding this determinant by the elements in its first column to obtain two 3� 3

determinants, and then expanding these by the elements in their first columns gives

a11 a12
a212 a22

����
���� b11 b12
b21 b22

����
���� ¼ a11b11 þ a12b21 a11b12 þ a12b22

a21b11 þ a22b21 a21b12 þ a22b22

����
����:

However, the determinant on the right is the determinant of the matrix product

BA, so the result is proved for the product of second-order determinants. As already
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mentioned, the equivalent result for the product of determinants of order n follows

in a similar fashion.

A useful result involving adjoint matrices follows from the first result of (3.29).

Replacing A by A�1 in (3.26) and forming the matrix product AA�1 gives

AA�1 ¼ 1

detA det ðA�1Þ adj ðA
�1Þadj A ;

but AA�1¼ I and det A det (A�1) ¼ 1, so it follows that

adj ðA�1Þ adj A ¼ I;

and repeating the argument, but this time using the product A�1A shows that

adj A adj ðA�1Þ ¼ I;

so we have proved that

adj ðA�1Þ adj A ¼ adj A adj ðA�1Þ ¼ I: (3.30)

3.5 Orthogonal Matrices

At this point it is convenient to introduce the concept of an orthogonal matrix, and

to relate orthogonal matrices to their geometrical properties involving rotations in

space. A real nonsingular square matrix Q is said to be orthogonal if it is such that

Q�1 ¼ QT; (3.31)

so when Q is orthogonal, QQT ¼ I. A typical orthogonal matrix is

Q ¼
2
3

2
3

�1
3

1ffiffi
2

p � 1ffiffi
2

p 0

1

3
ffiffi
2

p 1

3
ffiffi
2

p 4

3
ffiffi
2

p

2
664

3
775;

and this result is easily checked by showing that QQ
T ¼ I.

Orthogonal matrices are so named because they possess an important geometri-

cal property. This property is that they characterize coordinate transformations that

rotate coordinate axes about an origin, while preserving orthogonality between

perpendicular lines, and also preserving shapes and the lengths of vectors.
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In rectangular Cartesian coordinates the transformation

x0P ¼ xP cos yþ yP sin y;

y0P ¼ �xP sin yþ yP cos y;
(3.32)

illustrated in Fig. 3.1, describes how the coordinates (xp, yp) of a fixed point P
relative to the O(x, y)-axes, become the coordinates ðx0P; y0PÞof the same point P
relative to the O(x0, y0)-axes, when the O(x0, y0)-axes are obtained by a counter-
clockwise rotation of the O(x, y)-axes through an angle y.

It is obvious geometrically that this rotation preserves lengths from the origin

to arbitrary points P in the plane, but we will give an analytical proof of this fact.

To show the transformation preserves length, let l1 be the length of the straight

line from the origin to the point P with the (x, y) coordinates (xp, yp), and l2 be

the length of the straight line from the origin to the point P with the (x0, y0)
coordinatesðx0P; y0PÞ, then

ðx0PÞ2 þ ðy0PÞ2 ¼ ðxP cos yþ yP sin yÞ2 þ ð�xP sin yþ yP cos yÞ2 ¼ x2P þ y2P:

(3.33)

This shows that l1
2 ¼ l2

2, so as lengths are essentially nonnegative, the length

l1 (the norm) of the vector drawn to the point (xp, yp) is the same as the length

l2 (the norm) of the vector drawn to the point ðx0P; y0PÞ.
As (3.32) applies to any point P, we will drop the suffix P and write (3.32) as

x0 ¼ Qx;with x ¼ x

y

" #
; x0 ¼ x0

y0

� 	
;Q ¼ cos y

� sin y
sin y
cos y

� 	
; (3.34)

it is easily seen that Q is an orthogonal matrix, because Q�1 ¼ QT. Consequently,

x is given in terms of x0 by

x ¼ QTx0;whereQT ¼ cos y � sin y
sin y cos y

� 	
: (3.35)

y
y′

x′

x

x′p

xp

yp′

P

0

yp

q

q

Fig. 3.1 The

counterclockwise rotation of

the O(x, y)-axes about the
origin through an angle y to

become the O(x0, y0)-axes
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Chapter 7 will show that Eq. (3.34) is a typical example of what is called a

linear transformation. Two-dimensional linear transformations like (3.34) relate

vectors in one plane, here the (x, y)-plane, to vectors in another plane, here

considered to be the (x0, y0)-plane. Equation (3.34) is said to map a point (x, y)
onto the point (x0, y0), when the point (x0, y0) is then called the image of point

(x, y).
Three important and useful properties of orthogonal matrices follow directly

from definition (3.31).

Theorem 3.1 Properties of Orthogonal Matrices

(i) If Q is an orthogonal matrix, then det Q ¼ �1.

(ii) The columns of an orthogonal matrix Q are orthonormal, meaning that if

qi and qj are any two columns of Q, then

qTi qj ¼
0 ; i 6¼ j;
1 ; i ¼ j:




(iii) If Q1 and Q2 are two n � n orthogonal matrices, then Q1Q2 is also an

orthogonal matrix.

Proof. Property (i) follows from the results det QT ¼ det Q and det Q�1 ¼ 1/det

Q, because when these results are combined they show that (det Q)2 ¼ 1, so det

Q¼�1. Property (ii) follows directly from the fact thatQTQ¼ I, because if qi and

qj are any two columns of Q, then

qTi qj ¼
0 ; i 6¼ j;
1 ; i ¼ j:




Finally, property (iii) follows from the fact that Q1Q1
T ¼ 1 and Q2Q2

T ¼ 1,

because

Q1Q2ð ÞTQ1Q2 ¼ Q2
TQ1

TQ1Q2 ¼ Q2
TQ2 ¼ I:

}

3.6 A Matrix Proof of Cramer’s Rule

As a simple application of the inverse matrix, we now give the promised proof of

the generalized Cramer’s rule for a set of n linear nonhomogeneous equations,

subject to the condition that detA 6¼ 0:When written in terms of the adjoint matrix,

the solution x ¼ A�1b of the system of equations Ax ¼ b becomes
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x1
x2
..
.

xn

2
6664

3
7775 ¼ 1

detA

C11 C21 � � � Cn1

C12 C22 � � � Cn2

..

. ..
. ..

. ..
.

C1n C2n � � � Cnn

2
6664

3
7775

b1
b2
..
.

bn

2
6664

3
7775; (3.36)

where Cij is the cofactor of the element aij in A. The jth element on the left is xj, and
the jth element on the right is the sum of the products of the elements in the jth row
of the matrix adj A on the right with the elements in column vector b, so that

xj ¼ C1jb1 þ C2jb2 þ � � � þ Cnj

� �
1=det Að Þ: (3.37)

However, if in matrix A the jth column is replaced by the elements in b to form a

matrix Aj, and if Dj is the determinant of this modified matrix, when the result is

expanded in terms of elements of its jth column it becomes

Dj ¼ b1 cofactor of b1ð Þ þ b2 cofactor of b2ð Þ þ � � � þ bn cofactor of bnð Þ:
Because of the construction of matrix Aj, the cofactor of bi is simply the cofactor

Cij of the original element aij, so

Dj ¼ C1jb1 þ C2jb2 þ � � � þ Cnj for j ¼ 1; 2; � � � ; n:
Thus Dj is the determinant Dj obtained from A by replacing its jth column by the

elements of the nonhomogeneous vector b, and we have established the extension

of Cramer’s rule to a system of n equations showing that

x1 ¼ D1

D
; x2 ¼ D2

D
; � � � ; xn ¼ Dn

D
;with D ¼ det A 6¼ 0: (3.38)

Example 3.7. Use Cramer’s rule to solve the system of equations

x1 þ 2x2 þ x3 ¼ 8; 2x1 � x2 þ 2x3 ¼ 6;�x1 þ 3x2 � 3x3 ¼ �4:

Solution. Here the matrix A is

A¼
1 2 1

2 �1 2

�1 3 �3

2
4

3
5 and D¼detA¼10:

D1¼det

8 2 1

6 �1 2

�4 3 �3

2
4

3
5¼10; D2¼det

1 8 1

2 6 2

�1 �4 ¼3

2
4

3
5¼20; D3¼

1 2 8

2 �1 6

�1 3 �4

2
4

3
5¼30;

so x1¼D1=D¼1; x2¼D2=D¼2; x3¼D3=D¼3:

}
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3.7 Partitioning of Matrices

In certain applications of matrices it is useful to divide a matrix into parts, by

drawing dashed horizontal lines between some of its rows and some of its columns,

as shown in the next example

Example 3.8. A typical partitioning of a 3 � 7 matrix A is

1 3 0 1 3 2

1 2 1 1 .
4 0 1 2 3

é -4
ê

= -1 -3ê
ê -2 -3ë

ù
ú
ú
ú
û

A

}
In Example 3.8 the dashed the lines divide the matrix into the six sub-matrices

and if, for the moment, each sub-matrix is treated as a single entry, matrix A can be

written

A ¼ A11 A12 A13

A21 A22 A23

� 	
;

where

A11 ¼
1 3 �4

1 �1 2

� 	
; A12 ¼

0 1

1 1

� 	
; A13 ¼

3 2

�3 1

� 	
;

A21 ¼ 4 0 1½ �; A22 ¼ 2 �2½ � and A23 ¼ 3 �3½ �:

Each of these sub-matrices is called a block matrix, and the process of sub-

dividing A into block matrices is called partitioning matrix A. The numbering of

the subscripts used to identify the block matrices is the same as that used to identify

individual elements in a matrix, because Ai j identifies the block matrix in the ith
row and the jth column of matrix A once it has been partitioned. Remember that, in

effect, block matrices were used in (3.2) when defining a matrix product in (3.3).

A typical practical example of the use of partitioned matrices occurs in applica-

tions where each block matrix governs the behavior of a specific part of a compli-

cated system described by linear first-order differential equations. In such cases

partitioning often makes it easier to identify the contribution to the overall perfor-

mance of the system that is made by a specific block matrix. A different use of

partitioning happens when seeking the numerical solution of partial differential

equations by finite difference or finite element methods, which usually produces

very large matrices within which many blocks contain only zeros. The effect of

partitioning then makes it possible to avoid performing unnecessary calculations on

blocks that only contain zeros, since these contribute nothing to the final solution.

Partitioning is also used when a matrix is extremely large, as may happen in some
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linear programming problems where an optimum solution is required involving

very many variables with complicated constraint conditions. In such cases, if the

calculation is properly organized, matrix operations can be performed more effi-

ciently block by block, instead of at all times working with the entire matrix.

It is evident from the definitions of the linearity, scaling and summation of

matrices, that if two m � n matrices A and B are partitioned in similar fashion, the

scaling of matrix A corresponds to the scaling of its block matrices, while A � B,

corresponds to the sum or difference of the corresponding block matrices. For

example, if

1 2 4

0 3 1

2 1

é ù
ê ú

= ê ú
ê ú-2ë û

A then kA ¼ kA11 kA12

kA21 kA22

� 	
, where A11 ¼ 1 2

0 3

� 	
; A12 ¼ 4

1

� 	
;

A21 ¼ �2 2½ � and A22 ¼ 1½ � ¼ 1:

Similarly, if

1 2
0 3 4
1 0 2

é ù-2
ê ú é ù

= =ê ú ê ú
ë ûê ú

ë û

B11
B21 B22

B12B , with B11 ¼ 1 2

0 3

� 	
; B12 ¼ �2

4

� 	
; B21 ¼ 1 0½ �

and B22 ¼ 2½ � ¼ 2; it follows that

A� B ¼ A11 � B11 A12 � B12

A21 � B21 A22 � B22

� 	
:

Let the two matrices A and B by conformable for multiplication. Then, provided

the matrices are partitioned in a suitable fashion, the product of two blocks involves

ordinary matrix multiplication, and consequently the product AB in block matrix

form obeys the usual rule for matrix multiplication. These can be described simply

as the result of “the product of rows of block matrices with columns of block

matrices”, where now it is the block matrices that form the rows and columns of the

partitioned matricesA and B. The conditions to be satisfied if this result is to be true

are that the partitioning of the matrices A and B must be such that all the resulting

products of block matrices are defined, and the order in which the block matrices

are multiplied is preserved. This last condition is obvious because, in general,

matrix products are not commutative.

Example 3.9. Form the matrix product AB, given that A is the partitioned matrix

1 3 0 1 3 2

1 2 1 1 1

4 0 1 2 3

é ù-4
ê ú

= -1 -3ê ú
ê ú-2 -3ë û

A
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used in Example 3.8, and B is the partitioned matrix

1 2

0 1

2 2

.1 1

2 1

2

3 1

é
ê
ê
ê
ê= ê
ê
ê
-1ê

êë

ù
ú
ú
ú
ú
ú
ú
ú
ú
úû

B

Solution. Notice first that A is a 3 � 7 matrix and B is a 7 � 2 matrix, so the matrix

product AB will be a 3 � 2 matrix. Let A be partitioned as A¼ A11 A12 A13

A21 A22 A23

� 	
;

where A11 ¼ 1 3 �4

1 �1 2

� 	
; A12 ¼ 0 1

1 1

� 	
; A13 ¼ 3 2

�3 1

� 	
; and A21 ¼ 4 0 1½ �;

A22 ¼ 2 �2½ � andA23 ¼ 3 �3½ �; and let B be partitioned as

11

21

31

é ù
ê ú

= ê ú
ê ú
ë û

B

B B

B
, with B11 ¼

1 2

0 1

2 2

2
4

3
5; B21 ¼ 1 1

2 1

� 	
and B31 ¼ �1 2

3 1

� 	
:

This partitioning permits the “product of rows with columns” to proceed in the

usual way, because the blocks are compatible for multiplication. The result is the

block matrix product

11 11 12 21 13 31

21 11 22 21 23 31

2 6

14 2 .

8 13

é ù-
+ + ê úé ù

= = ê úê ú+ +ë û ê ú-ë û

A B A B A B
AB

A B A B A B

The final result has been partitioned because it shows how the partitioning of

A and B leads to the partitioning of the final matrix product. To see this, notice that

the sum of the products in the top row produces a 2 � 2 matrix, while the sum of

the products in the bottom row produces a 1 � 2 matrix.

}
A special case of the next example will be needed in Chapter 5 when partitioned

matrices are used to reduce a special type of 2� 2 matrix with real elements to what

is called its Jordan normal form.
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Example 3.10. Let R and S be 2n� 2nmatrices, each partitioned into the four n� n
block matrices

and .
-é ù é ù

= =ê ú ê ú-ë û ë û

P Q P Q
R S

Q P Q P

Find the form of the matrix productRSwhen P ¼ A� aIn; and Q ¼ �bIn;with
a and b real numbers and b > 0, where A is an n � n block matrices, and In is the

n � n unit matrix. Comment on the relationship between the result of the product

RS and det M, when M ¼ a� l �b
b a� l

� 	
; with l a scalar parameter.

Solution.

2 2

2 2 .
- é ù+é ù é ù

= = ê úê ú ê ú- +ê úë û ë û ë û

P Q P Q P Q 0
RS

Q P Q P 0 P Q

Setting P ¼ A� aIn and Q ¼ bIn we find that

P2 þQ2 ¼ A� aIð Þ2 þ b2In ¼ A2 � 2aAþ a2 þ b2
� �

In;

so

( )
( )

2 2 2

2 2 2

2
.

2

n

n

α α β

α α β

é ù- + +
ê ú=
ê ú- + +
ë û

A A I 0
RS

0 A A I

Expanding det M gives the quadratic expression

pðlÞ ¼ det
a� l �b
b a� l

� 	
¼ l2 � 2alþ a2 þ b2:

So if l is replaced by A anda2 þ b2 by a2 þ b2
� �

In; the ordinary quadratic

polynomial p(l) becomes the matrix polynomial p(A) given by p Að Þ ¼ A2

�2aAþ a2 þ b2
� �

In, which is seen to occur in each of the nonzero block

matrices in the product RS. As p(l) ¼ det M is the characteristic polynomial
associated with M, the above result shows that matrix A satisfies the same

polynomial expression p(l) as the scalar parameter l in M.

}
Finding the inverse of a nonsingular partitioned n� nmatrix A in terms of block

matrices is lengthy, but a simplification occurs when A can be partitioned such that
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the nonzero blocks themselves form an upper triangular block matrix. Let us

consider the case when A can be partitioned into nine blocks, as follows

( ) ( ) ( )
11 12 13

( ) ( )
22 23

( )
33

,

p p p q p r

q q q r

r r

´ ´ ´

´ ´

´

é ù
ê ú

= ê ú
ê ú
ë û

A A A

A 0 A A

0 0 A
ð3:39Þ

where A
ðp�pÞ
11 is a p� pmatrix, A

ðq�qÞ
22 is a q� qmatrix, A

ðr�rÞ
33 is an r � r matrix,

and p þ q þ r ¼ n. The superscript on each off-diagonal block matrix shows the

shape of the block so, for example (q� r) signifies a block matrix with q rows and r
columns.

From this point onward, it will be assumed that matrix A, its inverse B ¼ A�1,

and the n � n unit matrix In are all partitioned in this manner. To simplify what

follows, the superscripts will be omitted, and we will seek a partitioned matrix B

such that AB ¼ In, which is equivalent to the block matrix equation

11 12 13 11 12 13

22 23 21 22 23

33 31 32 33

.
p

q

r

é ù é ù é ù
ê ú ê ú ê ú

=ê ú ê ú ê ú
ê ú ê ú ê ú
ë û ë û ë û

A A A B B B I 0 0

0 A A B B B 0 I 0

0 0 A B B B 0 0 I
ð3:40Þ

Here, Ip is a p � p element unit matrix, while the unit matrices Iq and Ir are,

respectively, q � q and r � r unit matrices. This product is equivalent to the

following nine block matrix equations from which the sub-matrices Bij must be

determined:

A11B11 þ A12B21 þ A13B31 ¼ Ip;

A11B12 þ A12B22 þ A13B32 ¼ 0;

A11B13 þ A12B23 þ A13B33 ¼ 0;

A22B21 þ A23B31 ¼ 0;

A22B22 þ A23B32 ¼ Ip;

A22B23 þ A23B33 ¼ 0;

A33B31 ¼ 0;

A33B32 ¼ 0;

A33B33 ¼ Ir:

(3.41)

Notice first that matrix A is assumed to be nonsingular, so the sub-matrices A11,

A22 and A33 must all have inverses. These equations can be solved recursively by

back substitution, starting with the last equation that shows B33 ¼ A�1
33 , so because

A�1
33 exists, the next two homogeneous equations show that B32 ¼ B31 ¼ 0.

Proceeding in this manner all of the sub-matrices Bij can be found, though as the
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Bij are matrices, it is necessary to preserve the order in which matrix products occur.

Determining all of these sub-matrices, and incorporating them into the matrix B ¼
A�1 leads to the result

1 1 1 1 1 1 1
11 11 12 22 11 12 22 23 33 13 33

1 1 1 1
22 22 23 33

1
33

.

- - - - - - -

- - - -

-

é ùé ù- -ë ûê ú
= = -ê ú

ê ú
ê úë û

A A A A A A A A A A A

B A 0 A A A A

0 0 A
ð3:42Þ

Example 3.11. Find A�1 given that A is the partitioned matrix

2 2 0 1

0 3 1 2
.

0 0 1 2

0 0 0 1

-é ù
ê ú- -ê ú= ê ú-
ê ú
ê úë û

A

Solution. The sub-matrices are

A11 ¼
2 2

0 3

� 	
; A12 ¼

0

�1

� 	
; A13 ¼

�1

�2

� 	
; A21 ¼ 0 0½ �; A22 ¼ 1½ �;

A23 ¼ �2½ �; A31 ¼ 0 0½ �; A32 ¼ 0½ � and A33 ¼ 1½ �:

A routine calculation shows that A�1
11 ¼

1
2

�1
3

0 1
3

� 	
, and after substituting into

result (3.42) it is found that

A�1 ¼
1
2

�1
3

�1
3

�5
6

0 1
3

1
3

4
3

0 0 1 2

0 0 0 1

2
664

3
775:

Routine matrix multiplication confirms this result, because AA�1 ¼ I.

}

3.8 Matrices and Least-Squares Curve Fitting

A record of experimental or statistical data it is usually in the form of n discrete

pairs of measurements ½x1; y1�; ½x2; y2�; . . . ; ½xn; yn� that show how a quantity

y of interest depends on an argument x, where often both the xi and yi are subject
to experimental error. We will call these pairs of measurements data points.
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When it is necessary to infer values of y for values of the argument x that lie

intermediate between the discrete values x1, x2, . . . , xn, or when the set

of data points is to be approximated by a smooth curve, this is most easily

accomplished by approximating the discrete observations by a continuous curve

y ¼ f(x).
When representing experimental data points by a curve, it is usual to choose

a curve in the form of a polynomial of low degree, and to fit it by using the

method of least squares. If the plot of data points can reasonably be represented

by a straight line, the equation y ¼ a0 þ a1x can be fitted, but if a plot of

the data points appears to be parabolic in shape a quadratic equation of the form

Y ¼ a0 þ a1x þ a2x
2 can be used. Polynomials of still higher degree can also be

fitted, though a cubic is usually the highest degree equation that is used. This is

because when a higher-degree polynomial is fitted, the coefficients of the

polynomial become very sensitive to the errors in the data points which can

lead to a poor approximation.

Because the measurements contain errors of observation, a curve cannot be

expected to pass through each data point, so some compromise becomes necessary.

The idea underlying the least-squares approximation involves choosing the coeffi-

cients in the equation to be fitted, like a0, a1 and a2 in a quadratic (parabolic)

approximation, in such a way that the sum of the squares S of the differences

between the points Yi on the curve Yi ¼ a0 þ a1xi þ a2x
2
i at the points xi, and the

actual measurements yi at the points xi is minimized. So the expression S that is to

be minimized is given by

S ¼
Xn
i¼1

Yi � yið Þ2 ¼
Xn
i¼1

a0 þ a1xi þ a2x
2
i � yi

� �2
: (3.43)

The quantity S is simply the sum of the squares of the vertical distances between

Yi and the actual measurement yi at each of the n values xi is minimized. Here

S is defined as the sum of the squares of these distances, because the quantities

(Yi � yi)
2 take account of the magnitude of the differences between the Yi and

the yi, without regard to the signs of the differences.

If the equation Y ¼ a0 þ a1xþ a2x
2 is to be fitted, the sum S of the squares

will be minimized when a0, a1 and a2 are chosen such that @S=@a0 ¼ 0;
@S=@a1 ¼ 0 and @S=@a2 ¼ 0: After differentiation with respect to a0 we find that

@S

@a0
¼ 2

Xn
i¼1

a0 þ a1xi þ a2x
2
i � yi

� �

¼ 2 a0
Xn
i¼1

1þ a1
Xn
i¼1

xi þ a2
Xn
i¼1

x2i �
Xn
i¼1

yi

 !

¼ 2 na0 þ a1
Xn
i¼1

xi þ a2
Xn
i¼1

x2i �
Xn
i¼1

yi

( )
:
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Setting @S=@a0 ¼ 0, the first equation from which a0, a1 and a2 are to be found

becomes

na0 þ a1
Xn
i¼1

xi þ a2
Xn
i¼1

x2i ¼
Xn
i¼1

yi:

Similar reasoning involving @S=@a1 and @S=@a2 yields two further equations,

and the system of equations from which a0, a1 and a2 are to be found by least

squares becomes

na0 þ a1
Xn
i¼1

xi þ a2
Xn
i¼1

x2i ¼
Xn
i¼1

yi;

a0
Xn
i¼1

xi þ a1
Xn
i¼1

x2i þ a2
Xn
i¼1

x3i ¼
Xn
i¼1

xiyi;

a0
Xn
i¼1

x2i þ a1
Xn
i¼1

x3i þ a2
Xn
i¼1

x4i ¼
Xn
i¼1

x2i yi:

(3.44)

Instead of finding a0, a1 and a2 from these equations, we now show how a matrix

argument can generalize these results. This approach has the advantage that the

same form of matrix computation will enable a polynomial of any degree to be

fitted to a set of data points.

Let a quadratic be fitted to the n sets of data points ½x1; y1�; ½x2; y2�; : : : ; ½xn; yn�
using the quadratic approximation

Y ¼ a0 þ a1xþ a2x
2: (3.45)

Consider for the moment the over-determined system of equations

a0 þ a1x1 þ a2x
2
1 ¼ y1;

a0 þ a1x2 þ a2x
2
2 ¼ y2;

a0 þ a1x3 þ a2x
2
3 ¼ y3;

..

. ..
. ..

. ..
.

a0 þ a1xn þ a2x
2
n ¼ yn;

which can be written in the matrix form

Xa ¼ y;where X ¼
1 x1 x21
1 x2 x22
..
. ..

. ..
.

1 xn x2n

2
6664

3
7775; a ¼

a0
a1
a2

2
4

3
5; y ¼

y1
y2

..

.

yn

2
6664

3
7775: (3.46)
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Clearly the equation Xa ¼ y cannot be solved for a as it stands, but it can be

solved if it is pre-multiplied by a 3 � n matrix M, because then both MX and My

become 3 � 3 matrices, and for a suitable matrix M the matrix MXð Þ�1
will exist,

leading to the result a ¼ MXð Þ�1
My; though vector a will then depend on the

choice of M. To avoid introducing an arbitrary matrix M, let us try setting

M ¼ XT; when after pre-multiplication by XT Eq. (3.46) becomes

XTXa ¼ XTy : (3.47)

We must now see if this result is in any way relevant to the least-squares curve

fitting of a quadratic, and to do this we need to consider the matrix product XTX;
which becomes

XTX ¼

n
Pn
i¼1

xi
Pn
i¼1

x2i

Pn
i¼1

xi
Pn
i¼1

x2i
Pn
i¼1

x3i

Pn
i¼1

x2i
Pn
i¼1

x3i
Pn
i¼1

x4i

2
6666664

3
7777775
: (3.48)

The matrix productXTXa is now seen to be the left side of Eq. (3.44), while XTy

becomes the right side of the equations. Thus the matrix equation

XTXa ¼ XTy (3.49)

is precisely the matrix form of the system of Eq. (3.44) that determine the least-

squares values of a0, a1, and a2. So, in terms of matrices, the coefficients a0, a1 and
a2 are the elements of a vector a ¼ ½a0; a1; a2�T where

a ¼ XTX
� ��1

XTy : (3.50)

If, instead of a parabola a straight line Y ¼ a0 þ a1x is to be fitted to the data

points by least squares, X simplifies to the n � 2 matrix

X ¼
1 x1
1 x2
..
. ..

.

1 xn

2
6664

3
7775; with a ¼ a0

a1

� 	
: (3.51)

In statistics the fitting of a straight line to a data set by least squares is called

regression, and the straight line itself is called the regression line, and the coeffi-

cient a1 that measures the slope of the regression line is called the regression
coefficient. In general, when a set of data points ½x1; y1�; ½x2; y2�; . . . ; ½xn; yn� is
involved, the regression line is described by saying it is the regression of y on x.
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If a cubic Y ¼ a0 þ a1xþ a2x
2 þ a3x

3 is to be fitted to data points by least

squares, the previous argument is easily generalized to show that X becomes the

n � 4 matrix

X ¼
1 x1 x21 x31
1 x2 x22 x32
..
. ..

. ..
. ..

.

1 xn x2n x3n

2
6664

3
7775; with a ¼

a0
a1
a2
a3

2
664

3
775: (3.52)

In all cases, the vector a is given by the matrix expression in (3.50)

a ¼ XTX
� ��1

XTy;

and if a polynomial of degree m> 3 is to be fitted, it is only necessary to generalize

matrix X and vector a in an obvious manner.

Example 3.12. Use the method of least squares to fit the quadratic Y ¼ a0 þ a1x

þ a2x
2 to the set of data points ½�2; 3:45�; ½�1; 1:71�; ½0; 0:03�; ½1;�0:29�;

½2;�0:55�; ½3; 0:62�:

Solution.

X ¼

1 �2 4

1 �1 1

1 0 0

1 1 1

1 2 4

1 3 9

2
6666664

3
7777775
; XT ¼

1 1 1 1 1 1

�2 �1 0 1 2 3

4 1 0 1 4 9

2
4

3
5; y ¼

3:45
1:71
0:03
�0:29
�0:55
0:62

2
6666664

3
7777775
; a ¼

a0
a1
a2

2
4

3
5:

XTX ¼
6 3 19

3 19 27

19 27 115

2
4

3
5; XTX

� ��1 ¼
0:371 0:043 �0:071
0:043 0:084 �0:027
�0:071 �0:027 0:027

2
4

3
5;

so

a ¼ XTX
� ��1

XTy ¼
0:169
�0:968
0:361

2
4

3
5:

Thus the least-squares quadratic approximation becomes

Y ¼ 0:169� 0:968xþ 0:361x2:

A plot of the least-squares quadratic approximation is shown in Fig. 3.2, to which

have been added the data points shown as large dots.

}

3.8 Matrices and Least-Squares Curve Fitting 63



3.9 Matrices and the Laplace Equation

Many different types of problem can lead to the generation of very large augmented

matrices, and a typical example will be considered here. It will demonstrate how

such a matrix can be generated when seeking a numerical solution of a boundary-

value problem for the Laplace equation. The augmented matrix produced in this

example represents a set of nonhomogeneous simultaneous algebraic equations,

whose solution will give numerical approximations for the solution of the Laplace

equation at a network of discrete points throughout the region where the Laplace

equation is to be solved. However, the augmented matrix produced in this example

has been kept sufficiently small for the solution of the equations to be found by

elementary means, though the example will nevertheless make perfectly clear how

such a problem can give rise to very large augmented matrices that will need

sophisticated numerical techniques when seeking a solution.

The two-dimensional Laplace equation for a function u(x, y) is the linear second-
order partial differential equation

@2u

@x2
þ @2u

@y2
¼ 0; (3.53)

and a boundary-value problem for this equation involves finding its solution in a

region of the (x, y)-plane when the value of u(x, y) is specified on the boundary of

2

x

31–1–2

1

2
y

3

Fig. 3.2 The solid line is the

least-squares quadratic

approximation, and the data

points are shown as dots
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the region. This is called a Dirichlet boundary-value problem, and in physical

examples the solution could represent the steady-state temperature distribution in

a solid heat conducting material when the temperature is prescribed on its surface,

or the electric potential in a cavity when the potential is prescribed on the walls of

the cavity, though there are many other physical situations that give rise to this

equation. The equation is called an elliptic equation, though the term elliptic is

simply a means of classifying the type of partial differential equation to which the

Laplace equation belongs, and the name has no geometrical implication for the

actual solution.

Before proceeding further, the relationship between this two-dimensional prob-

lem and a solution in a three-dimensional world must be made clear. The region

in the (x, y)-plane plane where u(x, y) is to be determined should be thought of as

a cross-section of a long volume in space with its z-axis perpendicular to the

(x, y)-plane, where the cross-section of the volume is the same for all planes

z ¼ constant. For convenience, u(x, y) is usually considered to be the solution of

the Laplace equation in the plane z ¼ 0. The solution of a boundary-value problem

for the Laplace equation can be found analytically when the shape of the region and

the boundary conditions are simple, though in all other cases it must be found by

numerical methods. The numerical method to be outlined here, which is only one of

the ways of finding a numerical solution, is called a finite difference method, and it

determines the approximate solution at the points where two sets of parallel lines

intersect, that will be called a grid points. To construct the grid of points, one set

of lines will be drawn parallel to the x-axis, and the other parallel to the y-axis.
In general the separation of the x ¼ constant lines is h and the separation of the

y ¼ constant lines is k, but for the purpose of this example both separations will be

taken equal to h. A typical part of a grid of points is shown in Fig. 3.3.

Let the coordinates ofP be (xi, yj), where xi¼ ih and yj¼ jh, then the coordinates of
Q are (xi+1, yj) with xi+1¼ (iþ 1)h and yj¼ jhwhile the coordinates of S are (xi�1, yj),

h

h

h

hT

uT

us up

uR

uQ

R

QPS

Fig. 3.3 A typical grid of

five points with a central point

at P and four immediate

neighboring points at

Q, R, S and T
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with xi�1 ¼ (i� 1)h and yj ¼ jh. The truncated two variable Taylor series expansion
of u(x, y) about (xi, yj) in the x-direction can be written

uiþ1;j ¼ ui;j þ h @u=@xð Þði;jÞ þ h2
�
2

� �
@2u
�
@x2

� �
ði;jÞ þ a remainder term: (3.54)

Similarly,

ui�1;j ¼ ui;j � h @u=@xð Þði;jÞ þ h2
�
2

� �
@2u
�
@x2

� �
ði;jÞ þ a remainder term: (3.55)

Referring to the letters in Fig. 3.3, the result of adding (3.54) and (3.55) and

ignoring the remainder term enables the result to be given in the abbreviated form

2uP � uQ � uS ¼ h2
�
2

� �
@2u
�
@x2

� �
P
: (3.56)

An application of the Taylor series expansion between the points R and T gives

the corresponding result

2uP � uR � us ¼ h2
�
2

� �
@2u
�
@y2

� �
P
: (3.57)

The addition of (3.56) and (3.57), coupled with the fact that because of the

Laplace equation @2u
�
@x2 þ @2u

�
@y2

� �
P
¼ 0, gives the finite difference approxi-

mation for the Laplace equation at point P

4uP � uQ � uR � us � uT ¼ 0: (3.58)

Thus the sum of discrete solutions of the Laplace equation at the points Q, R, S
and T is seen to be four times the solution at P.

The weight to be attributed by result (3.58) to each point in Fig. 3.3 is shown

diagrammatically in Fig. 3.4.

Now consider the boundary-value problem illustrated in Fig. 3.5 for the Laplace

equation @2u
�
@x2 þ @2u

�
@y2 ¼ 0 in the unit square 0 � x � 1 and 0 � y � 1;

with the condition uðx; 1Þ ¼ 10x3ð1� xÞ on the top boundary y ¼ 1, 0 � x � 1 of

the square, and u ¼ 0 on the other three sides.

4

1

1

11

Fig. 3.4 The weighting for

the discrete values of the

Laplace equation at the points

in Fig. 3.3
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The grid points are equally spaced throughout the unit square with h ¼ 1
3
, so

there are four internal grid points and twelve grid points on the boundary of the

unit square at each of which the value of u(x, y) is determined by the boundary

conditions.

Apply the difference equation to each of the internal grid points leads to the four

equations

4uA ¼ uQ2 þ uQ3 þ uB þ uD;

4uB ¼ uA þ uQ4 þ uQ5 þ uC;

4uC ¼ uD þ uB þ uQ6 þ uQ7;

4uD ¼ uQ1 þ uA þ uC þ uQ8:

(3.59)

Notice that due to the weighting shown in Fig. 3.4, the values of the boundary

conditions at the corners of the square do not occur in the calculations. We are now

in a position to show how a symmetric matrix enters into the calculations, because

(3.59) can be written in the matrix form

4 �1 0 �1

�1 4 �1 0

0 �1 4 �1

�1 0 �1 4

2
664

3
775

uA
uB
u6
uD

2
664

3
775 ¼

uQ2 þ uQ3
uQ4 þ uQ5
uQ6 þ uQ7
uQ1 þ uQ8

2
664

3
775: (5.60)

Q1

D A

C B

Q8

Q7

Q6

Q2

Q3

Q4

u = 0

u = 0

u = 0

u = 10 x 3 (1 – x)

2/3 1

2/3

y

1

1/3

1/3

0

Q5

Fig. 3.5 The Dirichlet problem for the Laplace equation in a unit square
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Each element in the vector on the right is determined by the boundary condi-

tions, so substituting for their values, the system of equations becomes

4 �1 0 �1

�1 4 �1 0

0 �1 4 �1

�1 0 �1 4

2
6664

3
7775

uA

uB

u6

uD

2
6664

3
7775 ¼

20
81

80
81

0

0

2
66664

3
77775:

This system is simple enough to solve by elimination and the result is uA ¼
0.1543, uB ¼ 0.3086, uC ¼ 0.0926 and uD ¼ 0.0617.

These approximate values of the solution should be compared with the exact

analytical values

uA exactð Þ ¼ 0:1689; uB exactð Þ ¼ 0:2705; uCðexactÞ ¼ 0:0749 and uD exactð Þ ¼ 0:0624:

For the reference, a plot of the exact solution is shown in Fig. 3.6.

Considering the large value of h that was used, the agreement between the

approximate and exact solutions is surprisingly good. To obtain more accurate

approximations it will be necessary to use a much smaller value of h, with the result
that the number of equations will increase dramatically. If, for example, the value

h ¼ 0.05 were to be used, the number of internal points would increase from

4 to 324, increasing the number of equations to be solved by a factor 81. A more

complicated boundary shape with boundary conditions that change rapidly along

each boundary would require an even smaller value of h, leading to an even larger

number of equations. When large numbers of equations are involved special

numerical techniques becomes necessary when solving them, like an optimized

computer form of Gaussian elimination, or an iterative method.

Exercises

1. Find xy and yx if x ¼ [1, �2, 4, 3] and y ¼ [2, 4, �3, 1]T.

2. Find xA if x ¼ [2, 3, �2, 4] and A ¼
1 �1 2 3

1 2 3 0

3 0 1 �1

4 �2 3 2

2
664

3
775 :

1

0.8

0.6

0.4

0.2

0
0 0.2

0.4
0.6

y 0.8 1 1
0.8

0.6
0.4

x

0.2
0

Fig. 3.6 The exact solution

of the Laplace boundary-

value problem
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3. Find AB if

A ¼
1 �1 2 3

1 2 3 0

3 0 1 �1

4 �2 3 2

2
664

3
775; B ¼

1 �1 1

2 3 �1

5 �1 4

1 0 �1

2
664

3
775 :

4. Find AB if

A ¼ 6 �2 3

4 �2 5

� 	
and B ¼

7 �1

2 3

6 �2

2
4

3
5;

and verify that (AB)T ¼ B
T
A
T.

5. A quadratic form Q(x) in the variables x1, x2, x3, x4 is defined as Q xð Þ ¼ xT ~Ax,
where

x ¼ ½x1; x2; x3; x4�T and ~A ¼
2 4 3 0

�6 1 3 7

0 2 4 1

1 2 1 �1

2
664

3
775 :

Write down Q(x), and express it in the form Q(x) ¼ x
T
Ax, where A is a

symmetric matrix.

6. Use Definition (3.24) to find A�1 if A ¼ a b
c d

� 	
; stating any condition

necessary for A�1 to exist.

7. Find A�1 if

A ¼
2 �3 1

4 3 �2

1 2 �1

2
4

3
5 :

8. Find A�1 if

A ¼
1 4 2

2 3 2

1 0 �1

2
4

3
5:

9. Find A�1 if

A ¼
1 4 �2

4 �1 3

�2 3 4

2
4

3
5 :
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10. Verify result (3.30) given that

A ¼
1 3 �6

4 1 2

3 �2 1

2
4

3
5 :

11. Use the result (AB)�1¼ B�1A�1 to prove that (A�1)n ¼ (An)�1.

12. If A is a nonsingular matrix, show that (A�1)T ¼ (AT)�1, and verify the result

using a 3 � 3 nonsingular matrix of your own choice.

13. Use the generalization of Cramer’s rule to solve

x1 þ 2x2 � 2x3 þ x4 ¼ 1;

3x1 � 3x2 þ x3 þ 2x4 ¼ 3;

x1 � x2 þ x3 þ x4 ¼ 4;

x1 � 3x2 þ 2x3 þ 4x4 ¼ 6 :

14. Use the generalization of Cramer’s rule to solve

4x1 þ 2x2 � x3 þ x4 ¼ 5;

2x1 þ 3x2 � 2x3 þ 4x4 ¼ 1;

� 4x1 þ x2 � 5x3 þ 2x4 ¼ 7;

3x1 þ 2x2 � x4 ¼ 6 :

15. Any matrix derived from an identity (unit) matrix by interchanging two or

more of its rows or columns is called a permutation matrix. Describe the effect
on the matrix A of forming the matrix products PA and AP if

P ¼
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

2
664

3
775 and A ¼

a b c d
e f g h
i j k l
m n o p

2
664

3
775 :

Find matrix P if the first and last rows of A are to be interchanged by the

product PA, and find matrix P if the second and fourth columns of A are to be

interchanged by the product AP.

16. If P is any permutation matrix prove that PPT ¼ PTP ¼ I.

17. Write the system

2x1 þ x2 � x3 þ 4x4 ¼ 9;

x1 þ 6x2 þ 2x3 � 2x4 ¼ �3;

7x1 � 3x2 þ 4x3 þ x4 ¼ 2;

5x1 þ 2x2 þ 3x3 � 5x4 ¼ 6
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in the matrix form Ax¼ b. Find the form of the permutation matrix P such that

in the equivalent system PAx ¼ Pb the coefficients of x1 in the first column of

A are arranged in the decreasing order of magnitude 1, 2, 5, 7.

18. If A is an n � n matrix and P is an n � n permutation matrix, how is det A

related to det (PA) and to det (AP)? If P is a permutation matrix, give a simple

explanation why P�1 ¼ P, and confirm this result by applying it to a permuta-

tion matrix of your own construction.

19. Find which of the following matrices is orthogonal:

að Þ
cosy � siny 0

siny cosy 0

0 0 1

2
4

3
5 ðbÞ

cosy 0 � siny
1 1 0

siny 0 cosy

2
4

3
5 ðcÞ

cosy 0 � siny
0 1 0

siny 0 cosy

2
4

3
5:

20. Confirm that

Q ¼
0 1ffiffi

3
p � 2ffiffi

6
p

� 1ffiffi
2

p 1ffiffi
3

p 1ffiffi
6

p
1ffiffi
2

p 1ffiffi
3

p 1ffiffi
6

p

2
64

3
75

is an orthogonal matrix. Permute any two rows or columns of Q to obtain

another matrix Q1. Show that Q1 is also orthogonal, and verify Property 3 of

orthogonal matrices stated above that QQ1 is also orthogonal. Explain why

permuting rows or columns of an orthogonal matrix yields another orthogonal

matrix.

21. Solve the equations (a) using the inverse matrix, and (b) by Cramer’s rule.

x1 þ 3x2 � x3 ¼ �5;

2x1 � x2 þ x3 ¼ 9;

�x1 þ x2 þ 2x3 ¼ 5:

22. Given that

A ¼ 1 2

2 1

� 	
;

find the eigenvalues l ofA by solving det[A� lI]¼ 0 (see the end of Chapter 2).

For each eigenvalue li of A, with i ¼ 1, 2, find the column vector

xðiÞ ¼ x
ðiÞ
1 ; x

ðiÞ
2

h i
that satisfies the matrix equation [A � liI]x

(i) ¼ 0. The vectors

x(i) for i ¼ 1, 2 are called, respectively, the eigenvectors of matrix A associated

with the eigenvalues li. (Hint: To find an eigenvector write out in full the system
of equations involved, and then solve them by elimination. Don’t be surprised to

discover that the scaling of the eigenvectors is arbitrary.)
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23. Given that

A ¼
1 3 0

3 �1 0

�2 �2 1

2
4

3
5;

find the eigenvalues l of A by solving det[A � lI] ¼ 0. For each eigenvalue li

ofA, with i¼ 1, 2, 3, find the column vector xðiÞ ¼ x
ðiÞ
1 ; x

ðiÞ
2 ; x

ðiÞ
3

h iT
that satisfies

the matrix equation [A � liI]x
(i) ¼ 0. As in Exercise 22, the vectors x(i) for

i¼ 1, 2, 3 are called, respectively, the eigenvectors of matrix A associated with

the eigenvalues li. (Hint: Proceed as suggested in Exercise 22.)

24. In Example 3.7, make a different partitioning of the matrices A and B, and use

the result to verify that the product AB is still given by

AB ¼
�2 6

14 2

�8 13

2
4

3
5:

25. Let the row block matrix [ ]1 n=A A A and the column block matrix

1

n

é ù
ê ú

= ê ú
ê ú
ë û

B

B

B

each be partitioned into n blocks such that the product AB is defined.

What is the form of the block matrix products AB and BA?

26. If both A and B are 2 � 2 block matrices for which the product AB is defined,

show that ABð ÞT ¼ BTAT; where the superscript T denotes the block matrix

transpose operation.

27. Partition a nonsingular n � n matrix A of the form

11 12

22

é ù
= ê ú

ë û

A A
A

0 A

into four blocks, where A11 is a p � p matrix and A22 is a q � q matrix, with

p þ q ¼ n. By following the reasoning in the text, show from first principles that

the block matrix form of A�1 is

1 1 1
11 11 12 221

1
22

.
- - -

-
-

é ù-
= ê ú

ê úë û

A A A A
A

0 A

How could this result have been deduced from Eq. (3.41)?

Partition matrix A in Example 3.9 into four 2 � 2 block matrices, and use

the above expression for A�1 to confirm the expression for A�1 found in the

example.
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28. Let A and B be two nonsingular n � n matrices of the form

11 12 11 12

22 22

and
é ù é ù

= =ê ú ê ú
ë û ë û

A A B B
A B

0 A 0 B

that are partitioned in such a way that the product AB is defined. Show that

ABð Þ�1 ¼ B�1A�1:

29. Given a nonsingular n� n block matrix A of the form
é ù

= ê ú
ë û

A I
A

0 I , find a block

matrix expression for A�1. Apply the result to find A
�1 given that

1 0 1 2

0 1 3 1
.

0 0 1 0

0 0 0 1

é ù
ê ú-ê ú= ê ú
ê ú
ê úë û

A

Check your result by using ordinary matrix multiplication to confirm that

AA�1 ¼ I:

30. An n � n matrix A is said to be idempotent if A2 ¼ A. Obvious examples of

n � n idempotent matrices are the unit matrix I and the zero matrix 0, while a

nontrivial example of a 2 � 2 idempotent matrix is A ¼ 4 �6

2 �3

� 	
:

(a) If A is idempotent, prove that Ak ¼ A for all positive integers k � 2.

(b) If A is idempotent, what are the possible values of det A?

(c) What are the conditions on the elements of an n � n diagonal matrix

D ¼ diagfl1; l2; . . . ; lng in order that it is idempotent?

(d) If A and B are idempotent, and AB ¼ BA ¼ 0 show A + B is idempotent.

(e) If A is idempotent, show that A � I is idempotent.

(f) If A is idempotent, show that either det A ¼ 0 or det(A � I) ¼ 0.

31. Let matrix A ¼ a b
c d

� 	
. Find conditions on the elements a and d in terms of the

elements b and c, in order that A is idempotent. Use your result to construct a

numerical example and verify that it is idempotent. Does your result determine

all possible 2 � 2 idempotent matrices A, with the exception of the matrices

I and 0.

32. The following inequality provides a useful overestimate of the magnitude of a

determinant in terms of the inner products of its columns.

The Hadamard overestimate for detAj j
Let A ¼ ½a1; a2; . . . ; an� be an arbitrary n � n matrix with columns

a1; a2; . . . ; an:
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Then

detAj j2 � ðaT1a1ÞðaT2a2Þ � � � ðaTnanÞ:

The equality sign holds only if A has an inverse (it is invertible) and the

columns of A are orthogonal.

GivenA ¼
1 2 �1 4

2 �1 0 2

1 3 1 �1

2 3 �2 �1

2
664

3
775;

find det A and use the result to verify the Hadamard overestimate of det A.

Notice that the expression Pn
j¼1 a

T
j aj is also used for the continued product

ðaT1a1ÞðaT2a2Þ � � � ðaTnanÞ; so the Hadamard inequality can be written more con-

cisely as detAj j2 � Pn
j¼1 a

T
j aj :

In Exercises 33 and 34, use the method of least squares to fit a straight line to

the given data sets. In each case graph the straight line approximation and

superimpose the data points to show how the straight line has approximated the

spread of data points.

33. The data set is ½0;�0:8�; ½1; 0:3�; ½2; 0:3�; ½3; 1:3�; ½4; 1:7�:
34. The data set is ½�2; 1:93�; ½�1; 1:63�; ½0; 0:75�; ½1; 0:71�; ½2; 0:47�; ½3;�0:27�:
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Chapter 4

Systems of Linear Algebraic Equations

4.1 The Augmented Matrix and Elementary Row Operations

The solution of a system of n first-order linear algebraic equations with constant

coefficients requires knowledge of certain properties of an n � n coefficient matrix

and the nonhomogeneous matrix vector b belonging to the system. So the main

purpose of this chapter is to provide an introduction to the solution of systems of

m nonhomogeneous linear algebraic equations in the n unknown real variables

x1, x2, . . . , xn. Associated with this is the solution of a special type of homogeneous

algebraic problem involving n homogeneous linear algebraic equations in n
unknowns and a parameter l, that leads to the study of the eigenvalues and

eigenvectors of an n � n matrix. It will be recalled that an eigenvalue was

introduced briefly at the end of Chapter 2, and encountered again in Exercises 22

and 23 at the end of Chapter 3. The formal definition of the eigenvalues and the

associated eigenvectors of square matrices will be given in this chapter, though the

properties and use of eigenvectors will be studied in greater detail in Chapter 5.

Consider the system of linear algebraic equations

a11x1 þ a12x2 þ � � � þ a1nxn ¼ b1;

a21x1 þ a22x2 þ � � � þ a2nxn ¼ b2;

� � � � � � � � �
am1x1 þ am2x2 þ � � � þ amnxm ¼ bm;

(4.1)

where the aij and bi are real constants. It will be recalled from Chapter 1 that system

(4.1) is said to be underdetermined when m < n, properly determined when m ¼ n,
and overdetermined when m > n. The method that will be used to find a solution set

for system (4.1) is called Gaussian elimination. As well as showing when a solution
exists, and enabling it to be found in a computationally efficient manner, the method

also shows when the equations are inconsistent, and so have no solution set.

A. Jeffrey, Matrix Operations for Engineers and Scientists,
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To develop the Gaussian elimination method, it is convenient to represent

system (4.1) in terms of what is called the augmented matrix A|b, comprising the

coefficient matrix A ¼ [aij], to which is adjoined on the right the nonhomogeneous

vector b ¼ [b1, b2, . . . , bn]
T, so that

A bj ¼

a11 a12 a13 � � � a1n b1
a21 a22 a23 � � � a2n b2
a31 a32 a33 � � � a3n b3
..
. ..

. ..
. ..

. ..
. ..

.

am1 am2 am3 � � � amn bm

2
666664

3
777775
: (4.2)

This matrix contains all of the information in (4.1), because in the ith row ofA|b,

for i ¼ 1, 2, . . ., m, the element aij is associated with the variable xj, while bi is the
corresponding nonhomogeneous term on the right of (4.1). When A|b is interpre-

ted as the system of equations in (4.1), it implies the presence of the unknowns x1,
x2, . . ., xn, and an equality sign between the terms on the left represented by A, and

the nonhomogeneous terms on the right represented by b. So the augmented matrix

is a representation ofAx¼ b, without explicitly showing the variables x1, x2, . . ., xn.
The idea underlying Gaussian elimination is simple, and it depends for its

success on the following obvious facts.

1. The order in which the equations appear in (4.1) can be changed without altering

the solution set.

2. Individual equations can be multiplied throughout by a constant without altering

the solution set.

3. Multiples of equations in (4.1) can be added to or subtracted from other

equations in (4.1) without altering the solution set.

When working with the augmented matrix A|b, which is equivalent to the

original set of Eq. (4.1), performing these operations on the original system of

equations in (4.1) corresponds to performing what are called elementary row
operations on the augmented matrix to produce a modified, but equivalent, aug-

mented matrix. The elementary row operations that can be performed on an

augmented matrix derived from Eq. (4.1) and operations 1–3 above are as follows.

Elementary row operations on a matrix

1. Interchanging rows.

2. Multiplying each element in a row by a constant k.
3. Adding a multiple of a row to another row, or subtracting a multiple of a row

from another row.

The effect of performing these elementary row operations on an augmented

matrix A|b is to produce a modified augmented matrix that is equivalent in all

respects to the original system of equations in (4.1).

The approach starts by assuming that in (4.2) the coefficient a11 6¼ 0. This is no

limitation, because if this is not the case the order of the equations can be changed to
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bring into the first row of (4.1) an equation for which this condition is true. The

method then proceeds by subtracting multiples of row 1 of (4.2) from each of the

m � 1 rows below it in such a way that the coefficient of the variable x1 is made

to vanish from each of the subsequent m � 1 equations. Thus a21/a11 times row 1 is

subtracted from row 2, a31/a11 times row 1 is subtracted from row 3 and so on, until

finally am1/a11 times row 1 is subtracted from row m, leading to a modified

augmented matrix A|b(1) of the form

A bj ð1Þ ¼

a11 a12 a13 � � � a1n b1
0 a

ð1Þ
22 a

ð1Þ
23 � � � a

ð1Þ
2n b

ð1Þ
2

0 a
ð1Þ
32 a

ð1Þ
33 � � � a

ð1Þ
3n b

ð1Þ
3

..

. ..
. ..

. ..
. ..

. ..
.

0 a
ð1Þ
m2 a

ð1Þ
m3 � � � a

ð1Þ
mn b

ð1Þ
m

2
666664

3
777775
; (4.3)

where the superscript (1) indicates an element that has been modified.

This same process is now repeated starting with row 2 of A|b(1). Now, row 2,

with its first nonzero element a
ð1Þ
22 , is used to reduced to zero all elements in the

column below it, leading to a modification of A|b(1)denoted by A|b(2), that typically

is of the form

A bj ð2Þ ¼

a11 a12 a13 � � � a1n b1
0 a

ð1Þ
22 a

ð1Þ
23 � � � a

ð1Þ
2n b

ð1Þ
2

0 0 a
ð2Þ
33 � � � a

ð2Þ
3n b

ð2Þ
3

..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 � � � a
ð2Þ
mn b

ð2Þ
m

2
666664

3
777775
; (4.4)

where the superscript (2) indicates a modification of an entry with a superscript (1).

This process will lead to a simplification of the original system of equations,

though the pattern of zeros will depend on the values of m and n. This method is

illustrated below using examples involving different values of m and n. The

numbers a11, a
ð1Þ
22 , a

ð2Þ
33 ; a

ð3Þ
44 , . . . used to reduce to zero the entries in the columns

below them are called the pivots for the Gaussian elimination process. If it happens

that at some intermediate stage a pivot becomes zero, and so cannot be used to

reduce to zero all entries in the column below it, the difficulty is overcome by

interchanging the row with the zero pivot with a row below it in which the

corresponding entry is nonzero, after which the process continues as before. This

amounts to changing the order of the equations in system (4.1), and so does not

influence the solution set. The reduction terminates if at some stage a complete row

of zeros is produced, indicating that the corresponding equation is a linear combi-

nation of the ones above it.

The pattern of entries attained by Gaussian elimination in the final modification

of a matrix is said to be the echelon form of the matrix. The formal definition of an

echelon form is given below.
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4.2 The Echelon and Reduced Echelon Forms of a Matrix

A matrix A is said to be in echelon form, denoted by AE, if

1. All rows of A containing nonzero elements lie above any rows that contain only

zero elements.

2. The first nonzero entry in a row ofA, called the leading entry in the row, lies in a
column to the right of the leading entry in the row above.

Notice that condition 2 implies that all entries in the column below a leading

entry are zero.

A typical pattern of entries in the echelon form of a matrix A generated by the

application of Gaussian elimination to a 6 � 8 matrix is shown below, where the

symbol � represents a leading entry that is always nonzero, while and the symbol

□ represents an entry that may, or may not, be nonzero.

AE ¼

� & & & & & & &
0 � & & & & & &
0 0 � & & & & &
0 0 0 � & & & &
0 0 0 0 � & & &
0 0 0 0 0 0 0 0

2
6666664

3
7777775
:

If this matrix represents the transformation of a nonhomogeneous system of six

equations in the seven variables x1, x2, . . ., x7 to its echelon form (remember that the

eighth column represents the transformed nonhomogeneous terms), then the row of

zeros tells us that the sixth equation is linearly dependent on the five previous

equations, and so can be discarded (ignored). Furthermore, the fifth row represents

an equation relating x5, x6, x7 and the modification of the nonhomogeneous term b5,
so that x5 can only be found if x6 and x7 are assigned arbitrary values.

A matrix A is said to be in reduced echelon form, denoted by AER, if the value of

every pivot in AER is 1. This reduction is obtained if, after the echelon form AE has

been obtained, each element in a row of AE is divided by the value of the pivot that

belongs to the row. Clearly, when a nonsingular square matrix A is involved, its

reduced echelon form AER will have 1s on its leading diagonal.

For example, if the echelon form AE of a 3 � 4 matrix A is

AE ¼
3 1 0 2

0 2 3 4

0 0 �1 5

2
4

3
5 then its reduced echelon form AER ¼

1 1
3

0 2
3

0 1 3
2

2

0 0 1 �5

2
4

3
5:

Specific examples of the echelon forms generated by Gaussian elimination applied

to systems of equations now follow, together with their associated solution sets.
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Example 4.1. Use Gaussian elimination, in the form of elementary row operations

applied to the augmented matrix, to solve the system of equations

x1 � 2x2 þ 4x3 þ x4 ¼ 4;

2x1 þ x2 þ 2x3 þ 4x4 ¼ 0;

�x1 þ 4x2 þ 2x3 þ 2x4 ¼ 1:

Solution. In this case m = 3 and n = 4, so the system is underdetermined. The
application of elementary row operations transforms the augmented matrix as

follows:

Ajb ¼
1 �2 4 1 4

2 1 2 4 0

�1 4 2 2 1

2
64

3
75 subtracting 2� row 1 from row2

and adding row 1 to row 3

! Ajb 1ð Þ ¼
1 �2 4 1 4

0 5 �6 2 �8

0 2 6 3 5

2
64

3
75;

subtracting 2=5� row 2 from row 3 ! Ajb 2ð Þ ¼
1 �2 5 1 4

0 5 �6 2 �8

0 0 42
5

11
5

41
5

2
4

3
5;

5� row 3 ! Ajb 3ð Þ ¼
1 �2 4 1 4

0 5 �6 2 �8

0 0 42 11 41

2
4

3
5 :

The last operation involving the multiplication of row 3 by the factor 5 was not

strictly necessary, but it was included because the determination of x1, x2, x3 and x4
is simplified if fractions are cleared after performing an elementary row operation

on the augmented matrix.

The reduction can proceed no further, soA|b(3) is the echelon form ofA|b. Setting

x4¼ k, an arbitrary parameter, the third row of A|b(3) is seen to be equivalent to 42x3
þ 11 k ¼ 41, so x3 ¼ 41

42
� 11

42
k : The second row is equivalent to 5x2 � 6x3 þ 2k ¼

�8, so substituting for x3 gives x2 ¼ �3
7
� 5

7
k : Finally, the first row is equivalent to x1

� 2x2þ 4x3þ k¼ 4, so substituting for x3 and x2 gives x1 ¼ �16
21
� 29

21
k :Thus we have

found a one parameter solution set {x1, x2, x3, x4} for the original set of equations with
its elements given by x1 ¼ �16

21
� 29

21
k ; x2 ¼ �3

7
� 5

7
k ; x3 ¼ 41

42
� 11

42
k ; x4 ¼ k,

with k an arbitrary parameter.
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The process of first finding x3, then using it to find x2, and finally using x3 and x2 to
find x1 is the back substitution procedure mentioned previously. Modifications of this

method designed to maintain the highest accuracy are made in computer routines that

use, the Gaussian elimination process to solve systems of linear algebraic equations.

}
A typical modification of the Gaussian elimination process used in computer

routines involves changing the order of the equations at each stage of the process, so

the absolute value of the pivot to be used has the largest of the absolute values of the

coefficients in the column that contains it. This has the effect that at no stage is a

pivot with a small absolute value used to reduce to zero a coefficient below it with a

much larger absolute value, thereby reducing the buildup of round-off errors that

would otherwise accumulate as the computation proceeds.

4.3 The Row Rank of a Matrix

It is now necessary to introduce a new definition that describes an important

property of a matrix. The row rank of a matrix M is defined as the number of

linearly independent rows in the matrix, denoted by row rank(M). Thus, if matrix A

is the coefficient matrix of a homogeneous set of linear algebraic equations, row

rank(A) represents the number of linearly independent equations in the system. The

augmented matrix A|b represents a combination of two matrices, namely the matrix

of coefficients A and the matrix A|b which also describes the nonhomogeneous

systemwith vector b, and it is not necessarily the case that the row ranks ofA andA|b

are equal. The implications of the row ranks ofA andA|bwill become clear from the

following examples.

In Example 4.1 it can be seen from the reduction to the echelon form A|b(3) that

row rank(A)¼ row rank(A|b)¼ 3, because both the matrixA represented by its first

three columns, and the matrix A|b(3) itself, each have three nonzero rows. We have

seen that a solution set could be found for this example, but as there were only three

linearly independent equations and four unknowns, it was only possible for three of

the unknowns to be found in terms of the fourth unknown, the value of which was

assigned as an arbitrary parameter.

Example 4.2. Use Gaussian elimination, in the form of elementary row operations

applied to the augmented matrix, to solve the system of equations

2x1 þ x3 þ 2x4 ¼ 1;

x1 þ x3 ¼ 2;

�2x1 þ x2 � x3 þ 2x4 ¼ 1;

x1 þ 2x2 � 2x3 � x4 ¼ 1 :
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Solution. In this nonhomogeneous system m ¼ n ¼ 4, so the system is properly
determined, and provided there is no linear dependence between equations a unique
solution can be expected. The augmented matrix is

Ajb ¼
2 0 1 2 1

1 0 1 0 2

�2 1 �1 2 1

1 2 �2 �1 1

2
664

3
775 :

After performing elementary row operations on the augmented matrix, where

now we use the symbol � in place of ! to denote “is equivalent to”, the matrix is

reduced to the echelon form

2 0 1 2 1

0 2 0 8 4

0 0 1 �2 3

0 0 0 �15 4

2
664

3
775 :

Inspection shows that row rank(A) ¼ row rank(A|b) ¼ 4, so the equations are

consistent and a unique solution exists. The last row of the echelon form corre-

sponds to the equation �15x4 ¼ 4, so x4 ¼ � 4
15
: Proceeding with back substitution

we arrive at the unique solution set {x1, x2, x3, x4} where the elements

are x1 ¼ � 7
15

; x2 ¼ 46
15
; x3 ¼ 37

15
; x4 ¼ � 4

15
:

}

Example 4.3. Use Gaussian elimination, in the form of elementary row operations

applied to the augmented matrix, to solve the system of equations

x1 � x2 þ x3 þ 2x4 ¼ 1;

� x1 þ 2x2 þ x3 � x4 ¼ 0;

2x1 � 2x2 � x3 þ 2x4 ¼ 1;

� 2x1 þ 4x2 þ 2x3 � 2x4 ¼ 0;

4x1 � 4x2 þ x3 þ 6x4 ¼ 3:

Solution. In this nonhomogeneous system m ¼ 5 and n ¼ 4, so the system is

overdetermined. Consequently, as there are more equations (constraints on the

unknowns) than there are unknowns, no solution can exist unless there is linear

dependence between the equations. The augmented matrix is
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Ajb ¼

1 �1 1 2 1

�1 2 1 �1 0

2 �2 �1 2 1

�2 4 2 �2 0

4 �4 1 6 3

2
66664

3
77775 :

After the use of elementary row operations this reduces to the echelon form

Ajb �

1 �1 1 2 1

0 1 2 1 1

0 0 �3 �2 �1

0 0 0 0 0

0 0 0 0 0

2
66664

3
77775 :

Inspection shows that row rank(A) ¼ row rank(A|b) ¼ 3, so here also the

equations are consistent so a solution is possible. However, as in Example 4.1,

there are only three linearly independent equations imposing constraints on the four

unknowns x1, x2, x3 and x4. So if we allow x4, say, to be arbitrary and set x4 ¼ k, we
can solve for x1, x2 and x3 in terms of x4¼ k. Using back substitution the solution set
{x1, x2, x3, x4} is found have the elements x1 ¼ 1� k ; x2 ¼ 1

3
þ 1

3
k ;

x3 ¼ 1
3
� 2

3
k ; x4 ¼ k, with k an arbitrary parameter. So, in this case, only three

of the five equations were linearly independent, with the solution set being deter-

mined in terms of the arbitrarily assigned parameter x4 ¼ k.
}

Example 4.4. Use Gaussian elimination, in the form of elementary row operations

applied to the augmented matrix, to solve the system of equations

x1 � x2 þ x3 þ 2x4 ¼ 1;

� x1 þ 2x2 þ x3 � x4 ¼ 0;

2x1 � 2x2 � x3 þ 2x4 ¼ 1;

x1 þ x2 þ x3 � x4 ¼ 2;

4x1 � 4x2 þ x3 þ 6x4 ¼ 3 :

Solution. In this nonhomogeneous system m ¼ 5 and n ¼ 4, so the system is

overdetermined. Unless there is linear dependence between the equations, the

constraints imposed by the five equations on the four unknowns will make a

solution impossible. The augmented matrix is
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Ajb ¼

1 �1 1 2 1

�1 2 1 �1 0

2 �2 �1 2 1

1 1 1 �1 2

4 �4 1 6 3

2
66664

3
77775 :

After the use of elementary row operations this reduces to the echelon form

Ajb �

1 �1 1 2 1

0 1 2 1 1

0 0 �3 �2 �1

0 0 0 7 �1

0 0 0 0 0

2
66664

3
77775 :

Inspection shows that row rank(A) ¼ row rank(A|b) ¼ 4, so once again the

equations are consistent, and the final row of zeros indicates that the fifth equation is

expressible as a linear combination of the other four equations, and so may be

disregarded since it is redundant, though the nature of the linear dependence is

immaterial. Back substitution shows the system has the unique solution set {x1, x2,
x3, x4} with its elements given by x1 ¼ 4

7
; x2 ¼ 2

7
; x3 ¼ 3

7
; x4 ¼ �1

7
:

}
Example 4.5. Use Gaussian elimination, in the form of elementary row operations

applied to the augmented matrix, to solve the system of equations

x1 � x2 þ x3 þ 2x4 ¼ 1;

�x1 þ 2x2 þ x3 � x4 ¼ 0;

2x1 � x2 � x3 þ 2x4 ¼ 1;

11x1 þ x2 þ x3 � x4 ¼ 2;

3x1 þ x2 þ 4x3 þ 5x4 ¼ 2 :

Solution. In this nonhomogeneous system again m ¼ 5 and n ¼ 4, so the system is

overdetermined. So, unless there is linear dependence between the equations, the

constraints imposed by the five equations on four unknowns will make a solution

impossible. The augmented matrix is

Ajb ¼

1 �1 1 2 1

�1 2 1 �1 0

2 �1 �1 2 1

11 1 1 �1 2

3 1 4 5 2

2
66664

3
77775 :
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After the use of elementary row operations, this reduces to the echelon form

Ajb �

1 �1 1 2 1

0 1 2 1 1

0 0 �5 �3 �2

0 0 0 4 1

0 0 0 0 131

2
66664

3
77775 :

In this case we see that row rank(A) ¼ 4 while row rank(A|b) ¼ 5, so row rank

(A) 6¼ row rank(A|b) showing that the equations are inconsistent. This is easily

seen to be so, because the fourth row implies 4x4 ¼ 1, while the fifth row implies

that 0 � x4 ¼ 131, which is impossible.

}
The implications of the row ranks of A and A|b illustrated by the previous

examples can be summarized as follows.

4.3.1 Row Rank of an Augmented Matrix and the Nature
of a Solution Set

Let the coefficient matrix A of equations in (4.1) be an m � n matrix, and let b be an m element

column vector.

1. A solution set exists if row rank(A)¼ row rank(A|b). The solution will be unique if row rank(A)

¼ row rank(A|b) ¼ n, but if row rank(A) ¼ row rank(A|b) ¼ r < n, then r of the unknowns x1,
x2, . . ., xn can be expressed in terms of the remaining n � r unknowns when specified as

arbitrary parameters.

2. No solution set exists if row rank(A) < row rank(A|b).

The number of linearly independent rows in a matrix, called its row rank, has
been shown to be of fundamental importance when solving linear systems of

equations. Similarly, the number of linearly independent columns of a matrix, is

called its column rank. A key result to be proved in Chapter 7 is that row rank(A)¼
column rank(A). So in future, and without ambiguity, we need only to refer to the

rank of a matrix.

Example 4.6. Verify the equivalence of the row and column ranks of

A ¼
1 2 3 6

2 1 0 4

0 �3 �6 �8

2
4

3
5:

Solution. The echelon form of A is AE ¼
1 0 �1 2

3

0 1 2 8
3

0 0 0 0

2
4

3
5; so row rank(A) ¼ 2.
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Transposing A, finding the echelon form of AT, and then transposing again to

display the linearly independent columns of A, gives

1 0 0 0

0 1 0 0

�2 1 0 0

2
4

3
5; showing, as expected, that column rank(A) ¼ 2.

}
The definition of rank leads directly to the following test for linear independence.

4.3.2 Testing the Linear Independence of the Rows (Columns)
of an n � n Matrix A

The rows (columns) of an n � n matrix A will be linearly independent if, and only if, det A 6¼ 0.

4.4 Elementary Row Operations and the Inverse Matrix

Before considering an important general problem in the study of matrices, it is useful

to show how, when n is small, elementary row operations provide a way of finding

the inverse of an n� nmatrix. Once again the idea is simple, and it starts by writing

side by side the square matrixA, and an identity matrix I of the same size, where the

juxtaposition of the matrices does not imply their multiplication. Operations are

performed row by row onmatrixA on the left to reduce it to an identity matrix while,

simultaneously, and in the same order, the same row operations are performed row

by row on the identity matrix on the right. When A has been reduced to the identity

matrix, the original identity matrix I on the right will have been transformed into the

inverse matrix A�1. If during this procedure a row of zeros is produced during the

modification of matrix A, the reduction process will terminate, indicating that A�1

does not exist. This will occur if one or more rows ofA are linearly dependent on its

other rows, causing matrix A to be singular, in which case det A ¼ 0.

Example 4.7. Apply elementary row operations on matrix A to find A�1, given that

A ¼
�1 1 3

1 �1 �2

1 0 �3

2
4

3
5 :

Solution. We start with A and I side by side, and perform elementary row

operations on A to reduce it to the unit matrix I, while at the same time performing
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the same elementary row operations on the unit matrix I on the right, leading to the

results

�1 1 3

1 �1 �2

1 0 �3

2
64

3
75

1 0 0

0 1 0

0 0 1

2
64

3
75 add row 1 to row 2

and row 1 to row 3
!

�1 1 3

0 0 1

0 1 0

2
64

3
75

1 0 0

1 1 0

1 0 1

2
64

3
75

interchange rows 2 and 3 !
�1 1 3

0 1 0

0 0 1

2
64

3
75

1 0 0

1 0 1

1 1 0

2
64

3
75

subtract row 2þ 3� row 3 from row 1 !
�1 0 0

0 1 0

0 0 1

2
64

3
75

�3 �3 �1

1 0 1

1 1 0

2
64

3
75

change the sign of row 1 !
1 0 0

0 1 0

0 0 1

2
64

3
75

3 3 1

1 0 1

1 1 0

2
64

3
75 :

The required inverse matrix exists because the reduction of A to the identity

matrix has been successful, and A�1 is given by the matrix on the right so that as

A ¼
�1 1 3

1 �1 �2

1 0 �3

2
4

3
5 , then A�1 ¼

3 3 1

1 0 1

1 1 0

2
4

3
5 :

The result is easily checked by confirming that AA�1 ¼ I

}

4.5 LU Factorization of a Matrix and Its Use When Solving

Linear Systems of Algebraic Equations

This section examines the possibility of expressing a nonsingular n� nmatrix A as

the product A ¼ LU of an n � n lower triangular matrix L with 1s along its leading

diagonal, and an n � n upper triangular matrix U. This factorization is particularly

useful when a system of equationsAx¼ b has to be solved repeatedly with the same

matrix A, but with different column vectors b. This is because for a given matrix A,

the matrices L and U are unique, so they can be used repeatedly to solve the system

of equations Ax ¼ b for different vectors b. To see how this factorization works

when solving systems of algebraic equations, let the column vector y be defined as

the solution of the system of equations Ly ¼ b, from which the required solution

vector x then follows by solving the system of equations y ¼ Ux. Although at first
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sight this method of solution may appear to be unnecessarily complicated in fact,

the method which is based on Gaussian elimination actually offers several advan-

tages over ordinary Gaussian elimination.

The first advantage offered by this method is because triangular matrices are

involved. The elements y1; y2; . . . ; yn of the column vector y are obtained very

simply by forward substitution in the system Ay ¼ b, after which the elements

x1; x2; . . . ; xn of the solution vector x follow immediately by backward substitution
in the system Ux ¼ y.

The second advantage offered by this method is that the LU factorization of a

matrix A need only be performed once, after which the matrices L and U can be

used repeatedly to find solution vectors x that correspond to various different
vectors b.

The determination of the upper triangular matrix U follows directly from the

Gaussian elimination process, after which the lower triangular matrix L, which is in

reduced echelon form (see Section 4.2), then follows from the elementary row

operations used to find U.

The method is best illustrated by applying it to a 4 � 4 matrix A for which no
row interchanges are necessary during the Gaussian elimination process when

finding the matrix U. The modification that is necessary if row interchanges are

needed during the Gaussian elimination process used to find U will be explained

later. We will presuppose that the first element on the leading diagonal of A does

not vanish. This is no restriction, because if it is not so, the order of the equations

can be changed by interchanging the first equation with one that satisfies this

condition. Let us take for our example the matrix

A ¼
2 1 2 3

1 0 1 1

�2 1 �1 1

2 1 �1 0

2
664

3
775;

which is nonsingular because det A ¼ �3.

The first stage in the Gaussian elimination process applied to column 1 subtracts
1
2
of row 1 from row 2 to produce a zero as the first element of the modified row 2.

The second step adds row 1 to row 3 to produce a zero as the first element in row 3,

while subtracting row 1 from row 4 produces a zero as the first element of the

modified row 4. The result is

A1 ¼
2 1 2 3

0 �1
2

0 �1
2

0 2 1 4

0 0 �3 �3

2
664

3
775:

These elementary row operations can be represented in the matrix form

4.5 LU Factorization of a Matrix and Its Use When Solving Linear Systems 87



M1 ¼
1 0 0 0

�1
2

1 0 0

1 0 1 0

�1 0 0 1

2
664

3
775;

because pre-multiplication of A by M1 gives A1 ¼ M1A, where the suffix 1 shows

that M1 is the first matrix multiplier of A used to modify the first column of A to

arrive at A1.

The second stage in the Gaussian elimination process is applied to A1 when four

times row 2 is added to row 3 to produce a zero as the second element in the

modified row 3. There is already a zero as the second element of row 4, so no further

modifications are necessary in this second stage of the Gaussian elimination

process. The result is

A2 ¼
2 1 2 3

� �1
2

0 �1
2

0 0 1 2

0 0 �3 �3

2
664

3
775:

The elementary row operations that produce this result are described by the

matrix

M2 ¼
1 0 0 0

0 1 0 0

0 4 1 0

0 0 0 1

2
664

3
775;

because A2 ¼ M2A1 ¼ M2M1A.

The third and final stage of the Gaussian elimination process involves adding

three times row 3 to row 4 to produce a zero in the third element of the modified

row 4. The result is

A3 ¼
2 1 2 3

0 �1
2

0 �1
2

0 0 1 2

0 0 0 �3

2
664

3
775:

The elementary row operations that produced this result are described by the

matrix
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M3 ¼
1 0 0 0

0 1 0 0

0 0 1 0

0 0 �3 1

2
664

3
775;

because A3 ¼ M3A2 ¼ M3M2M1A. Consequently the upper triangular matrix

U ¼ M3, so

U ¼
2 1 2 3

0 �1
2

0 �1
2

0 0 1 2

0 0 0 �3

2
664

3
775:

Next, as M3M2M1ð Þ�1 ¼ M�1
1 M�1

2 M�1
3 ; it follows that A ¼ M�1

1 M�1
2 M�1

3 U;
so the factorization will be completed if we can show thatM�1

1 M�1
2 M�1

3 ¼ U : This
follows from the special structure of the matrix row operations Mi, and from the

definition of inverse matricesM�1
i in terms of cofactors. Because the inverse ofMi

follows immediately by reversing the signs of the elements in its ith column that lie

below the element 1.

Applying this result to the factors M1, M2 and M3 gives

L ¼
1 0 0 0
1
2

1 0 0

�1 0 1 0

1 0 0 1

2
664

3
775

1 0 0 0

0 1 0 0

0 �4 1 0

0 0 0 1

2
664

3
775

1 0 0 0

0 1 0 0

0 �4 1 0

0 0 0 1

2
664

3
775

¼
1 0 0 0
1
2

1 0 0

�1 �4 1 0

1 0 �3 1

2
664

3
775:

Thus the factorization has been achieved, and we have A ¼ LU in the form

2 1 2 3

1 0 1 1

�2 1 �1 1

2 1 �1 0

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

¼
1 0 0 0
1
2

1 0 0

�1 �4 1 0

1 0 �3 1

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
L

2 1 2 3

0 �1
2

0 �1
2

0 0 1 2

0 0 0 3

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
U

:

Example 4.8. Use LU factorization to solve the system Ax ¼ b, given that A

is the matrix that has just been factorized and x ¼ ½x1; x2 ; x3; x4�Twith
(a) b¼½1; 2;�1; 1�Tand (b) b ¼ [2, 0, 1, 1]T.
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Solution. (a) Setting y ¼ [y1, y2, y3, y4]
T, the equation Ly ¼ b with

b ¼ ½1; 2;�1; 1�T becomes

y1 ¼ 1; 1
2
y1 þ y2 ¼ 2;�y1 � 4y2 þ y3 ¼ �1; y1 � 3y3 þ y4 ¼ 1;

with the solution obtained by forward substitution y1 ¼ 1; y2 ¼ 3
2
; y3 ¼ 6; y4 ¼ 18:

The equation Ux ¼ y then gives the set of equations

2x1 þ x2 þ 2x3 þ 3x4 ¼ 1;�1
2
x2 � 1

2
x4 ¼ 3

2
; x3 þ 2x4 ¼ 6; 3x4 ¼ 18;

with the solution obtained by backward substitution x1 ¼ 2; x2 ¼ �9; x3 ¼ �6;
x4 ¼ 6; so the solution set has been found.

(b) Using the same L and U, but this time with b ¼ [2, 0, 1, 1]T, the equation

Ly ¼ b becomes

y1 ¼ 2; 1
2
y1 þ y2 ¼ 0;�y1 � 4y2 þ y3 ¼ 1; y1 � 3y3 þ y4 ¼ 1;

with the solution obtained by forward substitution y1 ¼ 2, y2 ¼ �1; y3 ¼ �1;
y4 ¼ �4: The equation Ux ¼ y then gives the set of equations

2x1 þ x2 þ 2x3 þ 3x4 ¼ 2;�1
2
x2 � 1

2
x4 ¼ �1; x3 þ 2x4 ¼ �1; 3x4 ¼ �4;

with the solution obtained by backward substitution x1 ¼ �1
3
; x2 ¼ 10

3
; x3 ¼ 5

3
;

x4 ¼ �4
3
; so the new solution set has been found by using the same matrices

L and U.

}
It may happen during the Gaussian elimination process leading to the derivation

of the matrix U that a zero occurs on the leading diagonal at, say, the ith position,

where a nonzero pivot is required. If this happens, it is necessary to interchange the

row concerned with one below it which has a nonzero element in its ith position to

allow the reduction process to continue. This is always possible, because matrixA is

nonsingular. In this case, when the reduction process is completed, the previous

resultA¼LUmust bemodified toA¼PLU, whereP is a permutationmatrix (like a

matrix M) that describes the row interchanges that have been made (see Chapter 3,

Exercises 15 through 18).

As a simple example, consider a set of four equations that is to be solved by LU
factorization where the first element on the leading diagonal of A is zero, but the

element immediately below it is nonzero. Instead of interchanging the first two

equations by hand a permutation matrix P can be used. In this case the permutation

matrix P1 can be used where
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P1 ¼
0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

2
664

3
775;

because pre-multiplication by P1 interchanges rows 1 and 2 to bring a nonzero pivot

into the position of the first element in the first row of A. If this happens when

solving a system of equationsAx¼ b, the calculation proceeds as before, except for

the fact that it then becomes necessary to set Ly ¼ P1b instead of Ly ¼ b, with the

introduction of other permutation matrices in the appropriate order if further

equation interchanges become necessary.

If the solution by LU factorization is programmed for a computer, provision

must be made for an interchange of equations at any stage of the calculations,

including an initial equation interchange like the one represented by the permuta-

tion matrix P1.

4.6 Eigenvalues and Eigenvectors

A problem of fundamental importance that occurs in many applications of matrices

can be formulated as follows. When system (4.1) is properly determined (m ¼ n),
how can a solution be found in which the nonhomogeneous vector b ¼ [b1, b2, . . . ,
bn]

T is proportional to the unknown vector x¼ [x1, x2, . . ., xn]
T? One reason for this

seemingly odd question will become clear in Chapter 6. Denoting the constant of

proportionality by l, the problem involves finding column vector x such that

b ¼ lx, in which case system (4.1) becomes the matrix equation Ax ¼ lx.
When written out in full, the system Ax ¼ lx is seen to be

a11 x1 þ a12x2 þ � � � þ a1nxn ¼ lx1;

a21x1 þ a22x2 þ � � � þ a2nxn ¼ lx2;

� � � � � � � � � � � �
an1x1 þ an2x2 þ � � � þ annxn ¼ lxn:

(4.5)

At first sight this appears to be a nonhomogeneous system. However, in each

equation the term on the right of the equality sign can be combined with a

corresponding term in the expression on the left, leading to the following homoge-

neous system of algebraic equations, in which l appears as a parameter

ða11 � lÞx1 þ a12x2 þ � � � þ a1nxn ¼ 0;

a21x1 þ ða22 � lÞx2 þ � � � þ a2nxn ¼ 0;

� � � � � � � � � � � �
an1x1 þ an2x2 þ � � � þ ðann � lÞxn ¼ 0:

(4.6)
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In matrix notation, after introducing the identity matrix I, system (4.5)

becomes

½A� lI�x ¼ 0: (4.7)

This system is homogeneous, so there are two possible types of solution. The

first is the obvious trivial solution x ¼ 0. The second type of solution is nontrivial

(one in which x 6¼ 0), though it can only be found if the determinant of the

coefficient matrix A� lI in (4.7) vanishes, in which case there is linear dependence
between the rows. So we see that the condition for the existence of nontrivial

solution vectors x is

det½A� lI� ¼ 0: (4.8)

In general the determinant of a coefficient matrix will not vanish. However, in

this case the parameter l occurs in each element of the leading diagonal of the

matrix

A� lI, so when det [A� lI] is expanded it will give rise to a polynomial p(l) in
l of degree n. This polynomial in l is called the characteristic polynomial asso-
ciated with matrix A, and the characteristic polynomial will vanish when l is any

one of its n zeros. When expanded, (4.8) is called the characteristic equation
associated with A, and it is a polynomial equation p(l) ¼ 0 in l of degree n, with
n roots l1; l2; : : : ; ln. The roots li are called the eigenvalues of A, and from (4.7)

it follows that to each eigenvalue li of A there corresponds a column vector x(i)

such that

½A� liI�xðiÞ ¼ 0: (4.9)

Vector x(i) is called the eigenvector of A corresponding to the eigenvalue li, and
in general an n � n matrix A will have n different eigenvectors x(1), x(2), . . ., x(n).

We mention that older terms for eigenvalues and eigenvectors that are still in use
are characteristic values and characteristic vectors.

It can happen that a matrix has an eigenvalue lj that is repeated r times, in which

case (l � lj)
r is a factor of the characteristic equation. Such a repeated root of the

characteristic equation is said to be an eigenvalue with algebraic multiplicity r,
often abbreviated tomultiplicity r. Our main concern will be with the case when A

has n linearly independent eigenvectors (there is no proportionality between them),

even though some of the eigenvalues may be repeated. The more complicated

situation that arises when A has fewer than n distinct eigenvectors will be examined

later.

Expanding p(l) ¼ det [A � lI], the eigenvalues li are seen to be the roots of the
polynomial of degree n in l given by
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pðlÞ ¼ det[A� lI� ¼

a11 � l a12 � � � a1n
a21 a22 � l � � � a2n
..
. ..

. ..
. ..

.

an1 an2
..
.

ann � l

���������

���������
¼ 0 ; (4.10)

so p(l) ¼ det[A � lI] can be factored and written as

pðlÞ ¼ detðA� lIÞ ¼ ðl1 � lÞðl2 � lÞ � � � ðln � lÞ ; (4.11)

where the li with i¼ 1, 2, . . ., n are the n eigenvalues of A. Setting l¼ 0 in identity

(4.11) gives the useful result that the product of the eigenvalues is equal to det A, so

l1l2 � � � ln ¼ detA : (4.12)

The coefficient of ln � 1 on the left of (4.11) can be seen to be

ð�1Þnðl1 þ l2 þ � � � þ lnÞ, and a little thought shows the coefficient of ln � 1 on

the right is given by ð�1Þnða11 þ a12 þ � � � þ annÞ ; so equating these two expres-

sions we arrive at another useful result

l1 þ l2 þ � � � þ ln ¼ a11 þ a22 þ � � � þ ann: (4.13)

Thus the sum of the eigenvalues of A is seen to be equal to the sum of the

elements on the leading diagonal of A. Because of its importance in the study of

eigenvalues, and elsewhere, the sum of the elements on the leading diagonal of a

square matrix A is given a name and called the trace of A, written trA, so we have

the definition

trA ¼ a11 þ a22 þ � � � þ ann: (4.14)

Apart from various other uses, result (4.12), and result (4.13) in the form

l1 þ l2 þ � � � þ ln ¼ tr A; (4.15)

are useful when checking the values of eigenvalues that have been computed, with

(4.15) being particularly simple to apply.

A result that is also useful when considering 2 � 2 matrices A ¼ [aij] is that the
eigenvalues of A are given by

l� ¼ 1
2
trA�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(trAÞ2 � 4detA

q� �
: (4.16)

This result follows directly by expanding the characteristic determinant
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a11 � l a12
a21 a22 � l

����
���� ¼ 0;

solving the resulting quadratic equation for l, and using the definitions trA¼ a11þ a22
and det A ¼ a11a22 � a12a21.

The quantity

D ¼ ðtrAÞ2 � 4 detA; (4.17)

in terms of which (4.16) can be written

l� ¼ 1
2
trA�

ffiffiffiffi
D

ph i
; (4.18)

is called the discriminant, because when the elements aij are all real it shows that the
two eigenvalues l�will be real ifD	 0, but theywill be complex conjugates ifD< 0.

Let us now return to consider matrix (4.9) that defines the eigenvectors of A, and

in terms of its elements this can be written xðiÞ ¼ ½xðiÞ1 ; x
ðiÞ
2 ; � � � ; xðiÞn �T, for i ¼ 1, 2,

. . ., n. When written out in full, (4.9) shows the x(i) are the solutions of the

homogeneous system of equations

a11 � li a12 � � � a1n
a21 a22 � li � � � a2n
..
. ..

. ..
. ..

.

an1 an2 � � � ann � li

2
6664

3
7775

x
ðiÞ
1

x
ðiÞ
2

..

.

x
ðiÞ
n

2
66664

3
77775 ¼

0

0

..

.

0

2
664

3
775; i ¼ 1; 2; . . . ; n: (4.19)

The homogeneity of (4.19) means that the absolute values of the n quantities

x
ðiÞ
1 ; x

ðiÞ
2 ; : : : ; x

ðiÞ
n cannot be determined, so instead, n � 1 of the elements must be

expressed in terms of the remaining element, say x
ðiÞ
r , the value of which may be

assigned arbitrarily. So (4.19) only determines the ratios of the elements of x(i) with

respect to x
ðiÞ
r as a parameter. This means that once an eigenvector has been found, it

can be multiplied by an arbitrary constant k 6¼ 0 (scaled by k) and still remain an

eigenvector. This fact can be seen directly from (4.9), because replacing x(i) by kx(i)

with k 6¼ 0 an arbitrary number, cancellation of the multiplicative factor k leads

directly to (4.19).

Finding the characteristic polynomial p(l) of an n� nmatrix is straightforward, but

unless the characteristic polynomial can be factored, finding its rootswhenn>2usually
requires the use of numerical methods. To simplify the calculations, in the examples

and exercises that follow, the 3� 3 matricesA have been constructed so that once the

characteristic equation has been determined, at least one of its roots (eigenvalues), say
~l, can be found by inspection. Then, removing the factor ðl� ~lÞ from the characteris-

tic equation by long division, the remaining two roots can be found by using the

quadratic formula.
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Example 4.9. Find the characteristic polynomial ofA and its eigenvalues, given that

A ¼
1 0 �1

�2 �1 2

�1 2 1

2
4

3
5 :

Solution. The characteristic polynomial is found by expanding the determinant

pðlÞ ¼ det½A� lI� ¼
1� l 0 �1

�2 �1� l 2

1 2 1� l

������
������ ¼ 6lþ l2 � l3 :

The eigenvalues of A are the roots of the characteristic equation, that is the roots

of p(l)¼ det[A� lI]¼ 0, which is equivalent to finding the roots of 6l + l2� l3¼ 0.

The expression on the left has the obvious factor l ¼ 0, so the characteristic

equation can be factored and written as l(l + 2)(3 � l) ¼ 0. Its roots are 0,

�2 and 3, so when for convenience they are arranged in numerical order, the

eigenvalues of A are seen to be l1 ¼ �2 ; l2 ¼ 0 ; l3 ¼ 3 :
These results can be checked using results (4.12) and (4.14). A simple calcula-

tion shows that det A ¼ 0, and from (4.12) we have

l1l2l3 ¼ ð�2Þð0Þ 3ð Þ ¼ 0 ¼ detA:

Simpler still, from (4.14) we have

l1 þ l2 þ l3 ¼ �2þ 0þ 3 ¼ 1 ¼ tr Að Þ ¼ 1� 1þ 1 ¼ 1:

}

4.7 The Companion Matrix and the Characteristic Polynomial

Given an n � n matrix A, the characteristic polynomial p(l) associated with A is

determined by pðlÞ ¼ det A� lIj j. In this section we now reverse this process and

ask how, given a polynomial

pðlÞ ¼ ln þ a1l
n�1 þ a2l

n�2 þ � � � þ an�1lþ an; (4.20)

can a matrix A be constructed with p(l) as its characteristic polynomial. There is no

unique answer to this question, but a standard approach to this problem, which is

useful in certain circumstances, is based on the matrix
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A ¼

0 0 0 � � � 0 �an
1 0 0 � � � 0 �an�1

0 1 0 � � � 0 �an�2

0 0 1 � � � 0 �an�3

..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 � � � 1 �a1

2
66666664

3
77777775
; (4.21)

called the companion matrix for pðlÞ ¼ ln þ a1l
n�1 þ a2l

n�2 þ � � � þ an�1lþ an;
where the elements ai for i¼ 1, 2, . . ., n in the last column are the coefficients of p(l).
The characteristic polynomial for matrix A is, by definition,

pðlÞ ¼ det A� lIj j ¼

�l 0 0 � � � 0 �an
1 �l 0 � � � 0 �an�1

0 1 �l � � � 0 �an�2

0 0 1 � � � 0 �an�3

..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 � � � 1 �l� a1

������������

������������
: (4.22)

To show that a polynomial p(l) of the required form follows by expanding this

determinant it is necessary to use the property of determinants that allows multiples

of a row to be added to another row without changing the value of the determinant.

The expansion of this determinant starts by multiplying the row n by l, and adding

the result to row (n � 1). Next, the modified row (n � 1) is multiplied by l and

added to row (n � 2), and thereafter this process is continued until the first row is

reached. The final result is

pðlÞ ¼

0 0 0 � � � 0 �ln � a1l
n�1 � a2l

n�2 � � � � � an�1l� an

1 0 0 � � � 0 �ln�1 � a1l
n�2 � � � � � an�1

0 1 0 � � � 0 ln�2 � a1l
n�3 � � � � � an�2

..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 � � � 0 �l2 � a1l� a2

0 0 0 � � � 1 �l� a1

���������������

���������������

:

The result follows by expanding this determinant in terms of element in the first

row, when it becomes

pðlÞ ¼ ln þ a1l
n�1 þ a2l

n�2 þ � � � þ an�1lþ an:

}
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Exercises

In Exercises 1 through 6 use Gaussian elimination, in the form of elementary row

operations applied to the augmented matrix, to find a solution set when it exists,

and comment on the values of rank(A) and rank(A|b).

1.
x1 þ x2 � x3 þ 2x4 ¼ 1;

2x1 þ 2x2 � x3 þ 2x4 ¼ 3;

� x1 þ 2x2 þ x3 � x4 ¼ �2:

2.
x1 þ x2 þ 3x3 þ 2x4 ¼ �2;

3x1 þ x2 þ 2x4 ¼ 3;

2x1 � x2 þ 2x3 þ 4x4 ¼ 1;

x1 þ 2x2 � x3 � 2x4 ¼ 1:

3.
x1 þ 4x2 þ 2x3 ¼ 3;

2x1 þ 3x2 þ x3 ¼ 1;

x1 þ 3x2 þ 2x3 ¼ 4;

3x1 þ x2 � x3 ¼ 2:

4.
x1 � x2 ¼ 2;

3x1 þ x2 � x3 ¼ 4;

2x1 þ x2 ¼ 2;

4x1 � x3 ¼ 6;

5x1 � x2 � x3 ¼ 8:

5.
2x1 þ x3 ¼ 4;

2x1 þ 4x2 þ 3x3 ¼ 2;

x1 þ 3x3 ¼ 1;

5x1 þ 4x2 þ 7x3 ¼ 7:

6.
x1 þ 2x2 þ x3 ¼ 5;

2x1 þ x2 ¼ 2;

� x1 þ x2 þ 3x3 ¼ 1;

2x1 þ x3 ¼ 2;

x1 þ x2 þ 3x3 ¼ 0:
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In Exercises 7 and 8 use elementary row operations applied to A and I to find A�1,

and check that AA�1 ¼ I.

7.

A ¼
1 1 �1

1 2 0

2 2 1

2
4

3
5 :

8.

A ¼
3 1 2

1 �1 2

1 1 �1

2
4

3
5 :

In Exercises 9 and 10 find the characteristic polynomial of matrix A, but do not

attempt to find the eigenvalues of A.

9.

A ¼
1 �1 3

2 1 4

3 �1 1

2
4

3
5 :

10.

A ¼
1 1 3 1

0 2 1 �1

1 1 �1 2

1 �1 3 1

2
664

3
775 :

11. Find the condition on the real number a such that

A ¼ 1 2

a 3

� �

has (a) two real and distinct eigenvalues (b) two equal eigenvalues and

(c) complex conjugate eigenvalues.

12. Verify that row rank(A) ¼ column rank(A) ¼ 3, given that

A ¼
2 1 4 3 0

1 2 1 1 1

2 0 2 4 1

7 4 11 11 2

2
664

3
775:

In Exercises 13 through 16 find the LU factorization of the given matrix A, and use

it to solve the system of equations Ax ¼ b for the given column vectors b.
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13. A ¼
1 2 3

2 �1 1

1 2 �1

2
4

3
5, að Þ with b ¼

�2

1

�1

2
4

3
5and bð Þ with b ¼

3

0

2

2
4

3
5:

14. A ¼
1 �1 2

1 2 �1

�2 �3 �1

2
4

3
5; b ¼

3

1

�1

2
4

3
5:

15. A ¼
2 1 1 2

1 1 1 0

1 0 �1 1

�1 1 1 1

2
664

3
775; (a) with b ¼

1

2

�2

0

2
664

3
775 and (b) with b ¼

1

�1

3

�2

2
664

3
775:

16. A ¼
0 1 �1 1

2 �1 �1 �1

1 2 0 1

1 1 �1 �1

2
664

3
775; b ¼

2

1

�1

3

2
664

3
775:

17. Construct a polynomial of your choice of degree 5. By constructing the

corresponding determinant in (4.22), use the row modifications described in

Section 4.7 to simplify the determinant to the point where it is clear that it

reproduces your polynomial.
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Chapter 5

Eigenvalues, Eigenvectors, Diagonalization,

Similarity, Jordan Normal Forms, and

Estimating Regions Containing Eigenvalues

5.1 Finding Eigenvectors

It was shown in Chapter 4 that the eigenvalues l1, l2, . . . , ln of an n � n matrix A

are the roots of the nth degree polynomial equation p(l) ¼ 0 in l, called the

characteristic equation of A, and given by

pðlÞ ¼ det½A� lI� ¼ 0: (5.1)

The polynomial expression p(l) ¼ det[A �lI] is called the characteristic
polynomial of matrix A. It may happen that some eigenvalues are repeated, though

there will always be n eigenvalues provided an eigenvalue repeated r times it is

counted as r eigenvalues. It is important to know that even when the elements of A

are all real, so the coefficients of the characteristic equation are all real, the

eigenvalues (the roots of p(l) ¼ 0) may be real or complex, though when they

are complex they must occur in complex conjugate pairs.

The column vector xi associated with the eigenvalue li is called the eigenvector
of A belonging to the eigenvalue li, and it is a solution of the matrix equation

A� liI½ �xi ¼ 0 : (5.2)

When the n eigenvalues are all distinct, there will always be n linearly indepen-

dent eigenvectors x1, x2, . . . , xn that are solutions of Eq. (5.2) for i ¼ 1, 2, . . . , n.
However, when an eigenvalue lm, say, is repeated r times, it may or may not

have associated with it r linearly independent eigenvectors.

The following typical example shows how the eigenvectors of a matrix are found

once its eigenvalues are known.

Example 5.1. Find the eigenvalues and eigenvectors of the matrix

A ¼
1 0 �1

�2 �1 2

�1 2 1

2
4

3
5:

A. Jeffrey, Matrix Operations for Engineers and Scientists,
DOI 10.1007/978-90-481-9274-8_5, # Springer ScienceþBusiness Media B.V. 2010
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Solution. This is the matrix considered in Example 4.7 where the characteristic

equation p(l) ¼ 0 was found to be

pðlÞ ¼ det½A� lI� ¼
1� l 0 �1

�2 �1� l 2

�1 2 1� l

������
������¼ 6lþ l2 � l3 ¼ lðlþ 2Þð3� lÞ :

So the eigenvalues of A, that is the roots of p(l) ¼ 0, are

l1 ¼ �2; l2 ¼ 0 and l3 ¼ 3:

Tofind theeigenvectorx1corresponding tol1wemustsolve (5.2)withli¼l1¼�2.

The matrix Eq. (5.2) then becomes

1� ð�2Þ 0 �1

�2 �1� ð�2Þ 2

�1 2 1� ð�2Þ

2
4

3
5 x

ð1Þ
1

x
ð1Þ
2

x
ð1Þ
3

2
64

3
75 ¼

3 0 �1

�2 1 2

�1 2 3

2
4

3
5 x

ð1Þ
1

x
ð1Þ
2

x
ð1Þ
3

2
64

3
75 ¼

0

0

0

2
4
3
5:

The superscript (1) attached to the unknowns x
ð1Þ
1 ; x

ð1Þ
2 and x

ð1Þ
3 is used to show

these are the elements of the eigenvector x1 corresponding to l1 ¼ �2. When this

matrix equation is written out in full it leads to the three equations

3x
ð1Þ
1 � x

ð1Þ
3 ¼ 0;�2x

ð1Þ
1 þ x

ð1Þ
2 þ 2 x

ð1Þ
3 ¼ 0;�x

ð1Þ
1 þ 2x

ð1Þ
2 þ 3x

ð1Þ
3 ¼ 0 :

As these three equations are homogeneous, and the determinant of their coeffi-

cient matrix is zero, any one of the equations must be linearly dependent on the

other two. Discarding one of these equations as redundant, and using the two that

remain, it is only possible for two of the three unknowns x
ð1Þ
1 ; x

ð1Þ
2 and x

ð1Þ
3 to be

found in terms of a third unknown, say x
ð1Þ
1 ; which can be assigned an arbitrary

value. If in this case we take the third equation to be redundant, we are left with the

first two equations from which to determine the three unknowns x1
(1), x2

(1) and x3
(1).

It is easy to confirm that the first two equations are linearly independent, because

they are not proportional. To proceed further, let us find x2
(1) and x3

(1) in terms x1
(1)

by setting x1
(1) ¼ k1, where k1 6¼ 0 is arbitrary (it can be regarded as a parameter).

The first equation gives x
ð1Þ
3 ¼ 3k1, so using x

ð1Þ
1 ¼ k1 and x

ð1Þ
3 ¼ 3k1 in the second

equation we find that x
ð1Þ
2 ¼ �4k1:

Of course, using x
ð1Þ
1 ¼ k1; and x

ð1Þ
3 ¼ 3k1 in the third equation will again give

x
ð1Þ
2 ¼ �4k1; confirming it redundancy, since it is automatically compatible with the

first two equations.

We have shown the eigenvector x1 can be taken to be x1 ¼ k1;�4k1; 3k1½ �T;
where as usual, to save space on a printed page, the column eigenvector x1 has been

written as the transpose of a row vector. As the scaling of an eigenvector is
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arbitrary, it is usual to set the scale factor k1 equal to a convenient numerical value,

typically k1 ¼ 1, when the above eigenvector becomes x1 ¼ [1, �4, 3]T.

To find the eigenvector x2, Eq. (5.2) must be solved with li ¼ l2 ¼ 0, when the

elements x
ð2Þ
1 ; x

ð2Þ
2 and x

ð2Þ
3 of x2 are seen to satisfy the matrix equation

1� ð0Þ 0 �1

�2 �1� ð0Þ 2

1 2 1� ð0Þ

2
4

3
5 x

ð2Þ
1

x
ð2Þ
2

x
ð2Þ
3

2
64

3
75 ¼

1 0 �1

�2 �1 2

1 2 1

2
4

3
5 x

ð2Þ
1

x
ð2Þ
2

x
ð2Þ
3

2
64

3
75 ¼

0

0

0

2
4
3
5 :

When written out in full, the components of x2 are determined by the equations

x
ð2Þ
1 � x

ð2Þ
3 ¼ 0 ;�2x

ð2Þ
1 � x

ð2Þ
2 þ 2x

ð2Þ
3 ¼ 0;�x

ð2Þ
1 þ 2x

ð2Þ
2 þ x

ð2Þ
3 ¼ 0 :

For convenience we will again take the third equation to be redundant, and set

x
ð2Þ
1 ¼ k2 (an arbitrary parameter). Then, proceeding as before, we find that x

ð2Þ
1 ¼ k2;

x
ð2Þ
2 ¼ 0 ; x

ð2Þ
3 ¼ k2 ; so the eigenvector x2 becomes x2 ¼ [k2, 0, k2]

T. Assigning k2
the arbitrary value k2 ¼ 1, the eigenvector x2 corresponding to l2 ¼ 0 can be taken

to be x2 ¼ [1, 0, 1]T.

Finally, to find x3 we set li ¼ l3 ¼ 3 in (5.2), when the matrix equation becomes

1� ð3Þ 0 �1

�2 �1� ð3Þ 2

1 2 1� ð3Þ

2
4

3
5 x

ð3Þ
1

x
ð3Þ
2

x
ð3Þ
3

2
64

3
75 ¼

2 0 �1

�2 �4 2

1 2 �2

2
4

3
5 x

ð3Þ
1

x
ð3Þ
2

x
ð3Þ
3

2
64

3
75 ¼

0

0

0

2
4
3
5;

leading to the three scalar equations

2x
ð3Þ
1 � x

ð3Þ
3 ¼ 0 ;�2x

ð3Þ
1 � 4x

ð3Þ
2 þ 2x

ð3Þ
3 ¼ 0; x

ð3Þ
1 þ 2x

ð3Þ
2 � 2x

ð3Þ
3 ¼ 0:

As before, one of these equations must be redundant, so once again taking this to

be the third equation and setting x
ð3Þ
1 ¼ k3 (an arbitrary parameter), we find that

x
ð3Þ
1 ¼ k3 ; x

ð3Þ
2 ¼ �3

2
k3 ; and x

ð3Þ
3 ¼ �2k3. So the eigenvector x3 becomes x3 ¼

½k3;�3
2
k3;�2k3 �T. Again setting k3 ¼ 1, the eigenvector corresponding to l3 ¼ 3

becomes x3 ¼ [1, � 3
2
, �2]T.

In summary, the eigenvalues and the corresponding eigenvectors of A are

l1 ¼ �2 ; x1 ¼
1

�4

3

2
4

3
5; l2 ¼ 0; x2 ¼

1

0

1

2
4
3
5; l3 ¼ 3; x3 ¼

1

�3
2�2

2
4

3
5:

These three eigenvectors are nontrivial solutions of linear homogeneous alge-

braic equations, so they must be linearly independent. This is easily checked,
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because the determinant with these vectors as its columns must not vanish, and this

is so because

1 1 1

�4 0 �3
2

3 1 �2

������
������ ¼ �15 :

}
As eigenvectors can be scaled arbitrarily, the essential feature of an eigenvector

is not the actual values of its elements, but the fact that the ratios between elements

is fixed. In calculations involving eigenvectors, the scaling of eigenvectors is often

used to advantage to adjust the relative sizes of the absolute values of the elements

of an eigenvector. Typically, an eigenvector of the form x¼ [a, b, c]T is normalized
by setting k ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ c2

p
, and taking as the normalized eigenvector ~x the

vector ~x ¼ ½ka; kb; kc�T: In Example 5.1, in terms of this scaling, the normalized

eigenvector x1 becomes ~x1 ¼ 1ffiffiffiffi
26

p ;� 4ffiffiffiffi
26

p ; 3ffiffiffiffi
26

p
h iT

:

The purpose of normalization is to adopt a convenient scale for the sizes of the

elements in an eigenvector that ensures the magnitude of its largest element does

not exceed one. This, in turn, helps limit the growth of round-off errors when an

eigenvector is used repeatedly in calculations.

Another example involving the determination of eigenvalues and eigenvectors

now follows. In this example two eigenvalues are repeated, though the system is

such that two linearly independent eigenvectors can still be found that correspond to

the single repeated eigenvalue.

Example 5.2. Find the eigenvalues and eigenvectors of

A ¼
1 0 0

0 2 �1

0 0 1

2
4

3
5:

Solution. The characteristic equation p(l) ¼ det[A � lI] ¼ 0 becomes

pðlÞ ¼
1� l 0 0

0 2� l �1

0 0 1� l

������
������ ¼ ð1� lÞ2ð2� lÞ ¼ 0 ;

so the eigenvalues of A are l1 ¼ 1 ; l2 ¼ 1 ; l3 ¼ 2 : In this case, the eigenvalue

l ¼ 1 has multiplicity 2 (it is repeated twice). If possible, let us find two different
(linearly independent) eigenvectors corresponding to l ¼ 1. To find these eigen-

vectors we must attempt to find two linearly independent solution vectors x of

[A � lI]x ¼ 0 when l ¼ 1. So setting l ¼ l1 ¼ 1 the matrix equation from which

the eigenvectors must be obtained becomes

0 0 0

0 1 �1

0 0 0

2
4

3
5 x

ð1Þ
1

x
ð1Þ
2

x
ð1Þ
3

2
64

3
75 ¼

0

0

0

2
4
3
5 :
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Only one scalar equation is obtained when this matrix equation is written out in full,

and it is x
ð1Þ
2 � x

ð1Þ
3 ¼ 0 ; in which one of the variables, say x

ð1Þ
3 , can be assigned an

arbitrary value. Notice there is no equation involving x
ð1Þ
1 , so this variable, like x

ð1Þ
3 ,

can be assigned an arbitrary value.

Assigning the values x
ð1Þ
1 ¼ 0 and x

ð1Þ
3 ¼ 1, one of the eigenvectors corresponding

to l ¼ l1 ¼ 1 must be proportional to the vector x1 ¼ [0, 1, 1]T. Next, assigning the

different values x
ð1Þ
1 ¼ 1 and x

ð1Þ
3 ¼ 0, a second (linearly independent) eigenvector

corresponding to l ¼ l1 ¼ 1 will be proportional to x2 ¼ [1, 0, 0]T. The third

eigenvector x3, corresponding to setting l ¼ l3 ¼ 2, follows by solving

1� ð2Þ 0 0

0 2� ð2Þ �1

0 0 1� ð2Þ

2
4

3
5 x

ð3Þ
1

x
ð3Þ
2

x
ð3Þ
3

2
64

3
75 ¼

�1 0 0

0 0 �1

0 0 0� 1

2
4

3
5 x

ð3Þ
1

x
ð3Þ
2

x
ð3Þ
3

2
64

3
75 ¼

0

0

0

2
4
3
5 :

When written out in full, this shows that x
ð3Þ
1 ¼ x

ð3Þ
3 ¼ 0, but as there is no

equation involving x
ð3Þ
2 this may be taken to be arbitrary, so for simplicity we

set x
ð3Þ
2 ¼ 1. Thus the third eigenvector will be proportional to x3 ¼ [0, 1, 0]T.

In summary, we have shown that the eigenvalues and eigenvectors of A are

l1 ¼ 1; x1 ¼
0

1

1

2
4
3
5; l2 ¼ 1; x2 ¼

1

0

0

2
4
3
5; l3 ¼ 2; x3 ¼

0

1

0

2
4
3
5:

The linear independence of these eigenvectors is easily confirmed, because the

value of the determinant with its columns equal to x1, x2 and x3 is 1, and so does not
vanish.

}
Not every n � nmatrix A has n linearly independent eigenvectors. For example,

the matrix

A ¼
1 �3 1

�1 �1 1

1 �2 0

2
4

3
5

has the three eigenvalues l1 ¼ 2 ; l2 ¼ l3 ¼ �1, which are the roots of the

characteristic equation pðlÞ ¼ l3 � 3l� 2 ¼ 0: The eigenvector corresponding

to the single eigenvalue l1 ¼ 2 is easily shown to be proportional to x1 ¼ [�8, 1,

�5]T. However, corresponding to the repeated eigenvalue l ¼ �1, when the

equation A� lI½ �x ¼ 0 is written out in full, it becomes the three equations

2x
ð2Þ
1 � 3x

ð2Þ
2 þ x

ð2Þ
3 ¼ 0;�x

ð2Þ
1 þ x

ð2Þ
3 ¼ 0 and x

ð2Þ
1 � 2x

ð2Þ
2 þ x

ð2Þ
3 ¼ 0:

Discarding the third equation as redundant, the first two equations can be solved

in terms of x
ð2Þ
3 ¼ k, an arbitrary constant, when x

ð2Þ
1 ¼ k; x

ð2Þ
2 ¼ k, showing that
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x2 ¼ k; k; k½ �T: This is the only possible solution when l ¼ �1 (twice), so setting

k ¼ 1 we find the single eigenvector x2 ¼ x3 ¼ [1, 1, 1]T that corresponds to

the repeated eigenvalue l ¼ �1. We will denote this single eigenvector by x(2,3)
¼ [1, 1, 1]T, where the subscript ð2;3Þ indicates that x(2,3) corresponds to the repeated
eigenvalue. The eigenvalues and normalized eigenvectors are

l1 ¼ 2; ~x1 ¼
� 8

3
ffiffiffiffi
10

p
1

3
ffiffiffiffi
10

p

� 5

3
ffiffiffiffi
10

p

2
64

3
75 and l2 ¼ l3 ¼ �1; ~xð2;3Þ ¼

1ffiffi
3

p
1ffiffi
3

p
1ffiffi
3

p

2
64

3
75:

To distinguish between two different situations involving eigenvalues and

eigenvectors, the number r of repeated eigenvalues is called the algebraic multi-
plicity of the eigenvalue, while the number m of linearly independent eigenvectors

corresponding to a repeated eigenvalue is called the geometric multiplicity of the

eigenvalue, and clearly m � r.
Even though a square matrix A with real elements leads to a characteristic

equation in the form of a polynomial equation with real coefficients, some of the

roots of the characteristic equation may be complex, as was seen in (4.17). We now

make use of the following elementary and easily proved result from complex

analysis, which we state as follows (see Exercise 34).

5.1.1 The Roots of Polynomials with Real Coefficients

The roots of a polynomial equation with real coefficients may be either real or complex, but if

any roots are complex they must occur in complex conjugate pairs. Thus if the degree of a
polynomial equation with real coefficients is odd, it must have at least one real root.

This result is useful when working with third-degree polynomials p(l) ¼ 0 with

real coefficients, because in this case one root is always real.

If in simple cases the real root l1 can be found by trial and error, the quantity

(l � l1) must be a factor of p(l). Dividing p(l) by the factor (l � l1), and equating
the result to zero, will lead to a quadratic equation whose roots will be the other two

eigenvalues, and these can be found from the quadratic formula (they will either be

real or complex conjugates). By this method, all three roots of p(l) can be obtained.
If a real root of p(l) cannot be found by trial and error, or if the degree of p(l) is

greater than three, it becomes necessary to use numerical methods to find the

eigenvalues and eigenvectors. The numerical determination of eigenvalues and

their associated eigenvectors is a special topic in numerical analysis, and it will

not be discussed here.

The next example illustrates a simple case where a real root of the characteristic

equation (an eigenvalue) can be found by inspection, and the result then used to find

the two remaining roots (eigenvalues) that turn out to be complex conjugates.
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Example 5.3. Find the eigenvalues and eigenvectors of

A ¼
1 0 1

1 1 0

0 1 1

2
4

3
5 :

Solution. The characteristic polynomial is

pðlÞ ¼ det½A� lI� ¼
1� l 0 1

1 1� l 0

0 1 1� l

������
������ ¼ 2� 3lþ 3l2 � l3 :

The eigenvalues of A are the roots of 2� 3lþ 3l2 � l3 ¼ 0 which, for conve-

nience, we rewrite as l3 � 3l2 þ 3l� 2 ¼ 0 : Trial and error shows l1 ¼ 2 is an

eigenvalue, so (l � l1) ¼ (l � 2) is a factor of l3 � 3l2 þ 3l� 2. Long division

shows that ðl3 � 3l2 þ 3l� 2Þ=ðl� 2Þ ¼ l2 � lþ 1, so the remaining two eigen-

values are the roots of l2 � lþ 1 ¼ 0. Applying the quadratic formula to this

equation shows its roots are the complex conjugates 1
2
1þ i

ffiffiffi
3

p� �
and 1

2
1� i

ffiffiffi
3

p� �
:

Thus A has the one real and the two complex conjugate eigenvalues l1 ¼ 2;

l2 ¼ 1
2
1þ i

ffiffiffi
3

p� �
and l3 ¼ 1

2
1� i

ffiffiffi
3

p� �
: Proceeding as usual, and setting x

ð1Þ
1 ¼ 1;

eigenvector x1 is found to be proportional to x1 ¼ [1, 1, 1]T.

To determine the eigenvector x2 corresponding to l2 ¼ 1
2
1þ i

ffiffiffi
3

p� �
it is necessary

to set l ¼ 1
2
1þ i

ffiffiffi
3

p� �
in (5.2), when we obtain

1� 1
2
1þ i

ffiffiffi
3

p� �
0 1

1 1� 1
2
1þ i

ffiffiffi
3

p� �
0

0 1 1� 1
2
1þ i

ffiffiffi
3

p� �
2
64

3
75

x
ð2Þ
1

x
ð2Þ
2

x
ð2Þ
3

2
64

3
75 ¼

0

0

0

2
4
3
5 :

Thus the elements of x2 ¼ ½xð2Þ1 ; x
ð2Þ
2 ; x

ð3Þ
3 �T must satisfy the equations

1
2
1� i

ffiffiffi
3

p� �
x
ð2Þ
1 þ x

ð2Þ
3 ¼ 0; x

ð2Þ
1 þ 1

2
1� i

ffiffiffi
3

p� �
x
ð2Þ
2 ¼ 0; x

ð2Þ
2 þ 1

2
1þ i

ffiffiffi
3

p� �
x
ð2Þ
3 ¼ 0 :

Discarding one of these equations as redundant, say the last equation, and solving

the remaining equations in terms of x
ð2Þ
1 , where for convenience we set x

ð2Þ
1 ¼ 1, we

find that

x
ð2Þ
1 ¼ 1; x

ð2Þ
2 ¼ �1

2
1þ i

ffiffiffi
3

p� �
; x

ð2Þ
3 ¼ �1

2
1� i

ffiffiffi
3

p� �
:

Thus the complex eigenvector x2 corresponding to l2 ¼ 1
2
1þ i

ffiffiffi
3

p� �
can be

taken to be

x2 ¼
1

�1
2
1þ i

ffiffiffi
3

p� �
�1

2
1� i

ffiffiffi
3

p� �
2
4

3
5 :
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To find the eigenvector x3 it is not necessary to solve the equations with l ¼ l3,
because l3 is the complex conjugate of l2, so the complex eigenvector x3 must be

the complex conjugate of x2. Thus the three eigenvalues and eigenvectors of A are

l1 ¼ 2; x1 ¼
1

1

1

2
64
3
75; l2 ¼ 1

2
1þ i

ffiffiffi
3

p� �
; x2 ¼

1

�1
2
1þ i

ffiffiffi
3

p� �
�1

2
1� i

ffiffiffi
3

p� �

2
64

3
75; and

l3 ¼ 1
2
1� i

ffiffiffi
3

p� �
; x3 ¼

1

�1
2
1� i

ffiffiffi
3

p� �
�1

2
1þ i

ffiffiffi
3

p� �

2
64

3
75:

This has shown that, apart from working with complex numbers, the process of

finding a complex eigenvector corresponding to a complex eigenvalue is the same

as finding a real eigenvector that corresponds to a real eigenvalue.

}
As an eigenvector can always be scaled by a real or complex number and still

remain an eigenvector, the result of scaling by different constants can make a

given eigenvector look very different. For example, if the eigenvector x2 in

Example 5.3 is scaled by i, the result will still be an eigenvector associated with

l2 ¼ 1
2
1þ i

ffiffiffi
3

p� �
, though the eigenvector will look very different, because it will

then become

x2 ¼
i

�1
2
i� ffiffiffi

3
p� �

�1
2
iþ ffiffiffi

3
p� �

2
4

3
5:

Later, when matrices are used with systems of linear differential equations with

the independent variable t, it will be found that the failure to determine eigenvectors

up to a multiplicative numerical factor will make no difference to the solution of the

system of equations. It will also be seen that complex conjugate eigenvectors, like

x2 and x3 in Example 5.3, will lead to real solutions of differential equations

containing terms like eat sin bt and eat cos bt, which correspond to complex conju-

gate eigenvalues l ¼ a� ib:

Theorem 5.1 Eigenvalues and Eigenvectors of Symmetric Matrices

A real symmetric n � n matrix A always has n real eigenvalues and n linearly
independent eigenvectors that are mutually orthogonal.

Proof. The proof is based on the fact that if A is symmetric, then AT ¼ A, and if x

and y are n element column vectors, the product yTAx is a scalar quantity, so that

(yTAx)T ¼ xTAy. It will also be necessary to use the result that an eigenvalue l will
be real if l ¼ �l ; where the overbar indicates a complex conjugate. This last result

follows from the fact that if l¼ aþ ib, then �l ¼ a� ib, so l ¼ �l is only possible if
b ¼ 0 (that is if l is purely real).

Suppose, if possible, that l is complex, and it has associated with it a complex

eigenvector x. Then, as the characteristic equation has real coefficients, lmust have
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associated with it a complex conjugate eigenvalue �l, and an associated complex

conjugate eigenvector x. Thus, l; �l ; x and x must satisfy the equations

Ax ¼ lx andAx ¼ �lx;

because A ¼ �A; since A is real. Pre-multiplying Ax¼ lx by �xTgives �xTAx ¼ l�xTx,
and pre-multiplying A�x ¼ �l�x by xT gives xTA�x ¼ �lxT�x. Taking these results

together, and setting y ¼ �x in yTAx ¼ xTAy, which is true because A is symmetric,

shows that l�xTx ¼ �lxT�x, but �xTx ¼ xT�x is real, so the previous equation is only

possible if l ¼ �l ; and the result is proved.

To establish the mutual orthogonality of the eigenvectors it is necessary to show

that if xi and xj are eigenvectors of A, corresponding to the different eigenvalues

li and lj ; then xTi xj ¼ 0 if i 6¼ j. Assuming the eigenvalues are all distinct

(different), and using the defining equations Axi ¼ lixi and Axj ¼ ljxj, pre-
multiplication of these, respectively, by xi

T and xj
T, gives xj

TAxi ¼ lixj
T xi and

xi
TAxj ¼ ljxi

T xj. However, from yTAx ¼ xTAy with x ¼ xi and y ¼ xj, we see that

xi
TAxj ¼ xj

TAxi, so xi
Txj ¼ xj

Txi. Subtracting xj
TAxi ¼ lixj

T xi from xi
TAxj ¼ ljxi

T

xj, and using this last result, we find that li � lj
� �

xTi xj ¼ 0, but by hypothesis

li 6¼ lj for i 6¼ j, so it must follow that xTi xj ¼ 0 when i 6¼ j. Thus the mutual

orthogonality of the eigenvectors corresponding to different eigenvalues has been

proved. A similar proof, not given here, establishes the mutual orthogonality of

eigenvectors when an n � n real matrix A has eigenvalues with algebraic multi-

plicities greater than 1, though there are still n linearly independent eigenvectors.

}
Corollary 5.1. Symmetric and Related Orthogonal Matrices Let the eigenvectors
x1, x2, . . . , xn of a symmetric n � n real matrix A be normalized so that xi

Txi ¼ 1.
Then a matrix Q with its columns formed by the normalized eigenvectors of A,
arranged in any order, is an orthogonal matrix.

Proof. The result is almost immediate, because if xi ¼ x
ðiÞ
1 ; x

ðiÞ
2 ; � � � ; x

ðiÞ
n

h iT
,

normalizing xi by dividing its elements by x
ðiÞ
1

� �2
þ x

ðiÞ
2

� �2
þ � � � þ x

ðiÞ
n

� �2� 	1=2
,

for i¼ 1, 2, . . . , n, will produce the required normalization ~xi of xi, and the mutual

orthogonality of the vectors xi and xj implies the mutual orthogonality of the vectors

~xi and ~xj with i 6¼ j. Furthermore, by constructing a matrix Q with its columns the

normalized eigenvectors ~xi, it follows that Q
TQ ¼ I, so QT ¼ Q�1 showing that Q

is an orthogonal matrix.

}
Example 5.4. Find the eigenvalues and eigenvectors of

A ¼
1 �2 0

0 1 2

0 2 1

2
4

3
5;

and use the results to construct an orthogonal matrix Q.
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Solution. The eigenvalues and eigenvectors of A are easily found to be

l1 ¼ 1; xð1Þ ¼
1

0

0

2
4
3
5; l2 ¼ 3; xð2Þ ¼

0

1

1

2
4
3
5; l3 ¼ �1; xð3Þ ¼

0

�1

1

2
4

3
5;

so the normalized eigenvectors are

~x1 ¼
1

0

0

2
4
3
5 ; ~x2 ¼

0
1ffiffi
2

p
1ffiffi
2

p

2
64

3
75; ~x3 ¼

0

� 1ffiffi
2

p
1ffiffi
2

p

2
64

3
75:

Thus an orthogonal matrix with these as its column vectors is

Q ¼
1 0 0

0 1ffiffi
2

p � 1ffiffi
2

p

0 1ffiffi
2

p 1ffiffi
2

p

2
64

3
75 :

This is easily checked, because QQT ¼ I, showing that QT ¼ Q�1. Different

orthogonal matrices can be formed by changing the order of the columns in Q.

}

5.2 Diagonalization of Matrices

The diagonalization of general n � n (square) matrices is of fundamental impor-

tance in many applications, and especially when solving systems of linear constant

coefficient differential equations, as will be seen in Chapter 6. Let us now show

precisely how and when it is possible to transform a general n� n real matrixA into

an n � n diagonal matrix D.

We start by considering the matrix product AP, where P is the n� nmatrix with

its columns the n different (linearly independent) eigenvectors x(i) of A satisfying

the n equations

AxðiÞ ¼ lixðiÞ; i ¼ 1; 2; . . . ; n; (5.3)

where the matrix Eq. (5.3) is simply result (5.1) written in a different way. Now

AP ¼

a11 a12 � � � a1n

a21 a22 � � � a2n

..

. ..
. ..

. ..
.

an1 an2 � � � ann

2
66664

3
77775

x
ð1Þ
1 x

ð2Þ
1 � � � x

ðnÞ
1

x
ð1Þ
2 x

ð2Þ
2 � � � x

ðnÞ
2

..

. ..
. ..

. ..
.

x
ð1Þ
n x

ð2Þ
n � � � x

ðnÞ
n

2
666664

3
777775

¼ Axð1Þ; Axð2Þ; : : : ;AxðnÞ
h i

;

(5.4)
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where the Ax(i) for i¼ 1, 2, . . . , n are the n � 1 columns of AP. Using (5.3) allows

this to be rewritten as

AP ¼ lð1Þxð1Þ; l2xð2Þ ; : : : ; lnxðnÞ
h i

: (5.5)

Next, let D be the n � n diagonal matrix D ¼ diag{l1, l2, . . . , ln} with the

elements l1, l2, . . . , ln arranged along its leading diagonal in the same order as that
of the eigenvectors x(i) forming the columns of P, so that

D ¼
l1 0 � � � 0

0 l2 � � � 0

..

. ..
. ..

. ..
.

0 0 � � � ln

2
6664

3
7775:

Now form the product

PD ¼

x
ð1Þ
1 x

ð2Þ
1 � � � x

ðnÞ
1

x
ð1Þ
2 x

ð2Þ
2 � � � x

ðnÞ
2

..

. ..
. ..

. ..
.

x
ð1Þ
n x

ð2Þ
n � � � x

ðnÞ
n

2
666664

3
777775

l1 0 � � � 0

0 l2 � � � 0

..

. ..
. ..

. ..
.

0 0 � � � ln

2
66664

3
77775

¼

l1x
ð1Þ
1 l2x

ð2Þ
1 � � � lnx

ðnÞ
1

l1x
ð1Þ
2 l2x

ð2Þ
2 � � � lnx

ðnÞ
2

..

. ..
. ..

. ..
.

l1x
ð1Þ
n l2x

ð2Þ
n � � � lnx

ðnÞ
n

2
666664

3
777775
¼ l1xð1Þ; l2xð2Þ; : : : ; lnxðnÞ
h i

:

(5.6)

A comparison of (5.5) and (5.6) shows that

AP ¼ PD: (5.7)

By hypothesis, the columns of P are the n linearly independent eigenvectors of

A, so det P 6¼ 0, and hence the inverse matrix P�1 will always exist. Pre-multiplying

(5.7) by P�1 establishes the fundamental result that

D ¼ P�1AP or; equivalently;A ¼ PDP�1: (5.8a)

Two immediate consequences of the last result in (5.8a) are that

(a) A diagonalizable matrix A is fully determined by its eigenvectors which form

the columns of P, and by its eigenvalues which form the elements on the

diagonal of D.

There is also the useful result that
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(b)
Am ¼ PDmP�1; (5.8b)

which follows from the result

Am ¼ ðPDP�1ÞðPDP�1Þ . . . ðPDP�1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
m times

¼ PDmP�1;

where in the products of terms all products PP�1 ¼ I, leaving only the result

PDmP�1‘:

Matrix P is called the diagonalizing matrix for A, and the following important

theorem on diagonalization has been proved.

Theorem 5.2 Diagonalization Let an n � n real matrix A have n linearly
independent eigenvectors x(1), x(2), . . . , x(n), with the associated eigenvalues
l1 ; l2 ; : : : ; ln, some of which may be equal. ThenA can always be diagonalized.
To accomplish the diagonalization, let P be an n� n matrix with columns formed by
the eigenvectors x(1), x(2), . . . , x(n) ofA, and let D be an n� n diagonal matrix with
the element on its leading diagonal equal to the eigenvalues of A arranged in the
same order l1 ; l2 ; : : : ; ln as the columns of P. Then,

D ¼ P�1AP or; equivalently; A ¼ PDP�1:

}
The following conclusions follow directly from Theorems 5.1 and 5.2.

5.2.1 Properties of Diagonalized Matrices

1. Diagonalization of a real n � n matrix A is only possible if it has n linearly independent

eigenvectors.

2. The diagonalizing matrix P is not unique, because the columns ofP, formed by the eigenvectors of

A, can be arranged in any order and, furthermore, the eigenvectors ofA can be scaled arbitrarily.

3. The order in which the eigenvectors ofA are used to construct the columns of Pwill be the order

in which the corresponding eigenvalues of A are arranged along the leading diagonal of D.

4. A real symmetric n � n matrix A can always be diagonalized, because it always has n linearly

independent eigenvectors.

Thus a real n� nmatrix will be nondiagonalizable if it has fewer than n linearly
independent eigenvectors. So, if an eigenvalue li with algebraic multiplicity m has

associated with it only r linearly independent eigenvectors, with r < m, the matrix

cannot be diagonalized. Such an eigenvalue li is said to be deficient, and to have a

deficiency index equal to the number m � r of missing eigenvectors. The matrices
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in Examples 5.1 through 5.3 are examples of diagonalizable matrices, whereas a

matrix like

A ¼
1 �3 1

�1 �1 1

1 �2 0

2
4

3
5

is nondiagonalizable, because

l1 ¼ 2; x1 ¼
�8

1

�5

2
4

3
5; while l2 ¼ l3 ¼ �1 and x2 ¼ x3 ¼

1

1

1

2
4
3
5;

so corresponding to the repeated eigenvalue l2 ¼ l3 ¼ �1 there is only a single

eigenvector. Consequently the eigenvalue l¼�1 has a deficiency index 2� 1¼ 1.

Example 5.5. Find a diagonalizing matrix P for

A ¼
1 0 �1

�2 �1 2

�1 2 1

2
4

3
5:

Solution. The eigenvalues and eigenvectors of A were found in Example 5.1 to be

l1 ¼ �2; x1 ¼
1

�4

3

2
4

3
5; l2 ¼ 0 ; x2 ¼

1

0

1

2
4
3
5; l3 ¼ 3; x3 ¼

1

�3
2�2

2
4

3
5:

So a diagonalizing matrix P with columns x1, x2 and x3 will be

P ¼
1 1 1

�4 0 �3
2

3 1 �2

2
4

3
5 ;

when the required diagonalization will be given by D ¼ P�1AP.

To check this, notice that the eigenvalue entries along the diagonal of D will be

arranged in the same order as the eigenvectors forming the columns of P, so

D ¼
�2 0 0

0 0 0

0 0 3

2
4

3
5:

A simple calculation gives

P�1 ¼
� 1

10
�1

5
1
10

5
6

1
3

1
6

4
15

� 2
15

� 4
15

2
64

3
75;
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after which a routine matrix calculation confirms that

D¼ P�1AP¼
� 1

10
�1

5
1
10

5
6

1
3

1
6

4
15

� 2
15

� 4
15

2
64

3
75

1 0 �1

�2 �1 2

�1 2 1

2
4

3
5 1 1 1

�4 0 �3
2

3 1 �2

2
4

3
5¼

�2 0 0

0 0 0

0 0 3

2
4

3
5 :

Had the eigenvectors of A been arranged in a different order when forming P,

say in the order x1, x3 and x2, then

P ¼
1 1 1

�4 �3
2

0

3 �2 1

2
4

3
5 and P�1 ¼

� 1
10

�1
5

1
10

4
15

� 2
15

� 4
15

5
6

1
3

1
6

2
64

3
75;

in which case the order of the elements along the leading diagonal of D will now

become

D ¼ P�1AP ¼
�2 0 0

0 3 0

0 0 0

2
4

3
5 :

This same example can be used to demonstrate that scaling eigenvectors leaves

diagonalization unchanged. Suppose, for example, that when performing this

last diagonalization the eigenvector x1 had been scaled by a factor 2 to become

x1 ¼ [2, �8, 6]T, then P becomes

P ¼
2 1 1

�8 �3
2

0

6 �2 1

2
4

3
5and P�1 ¼

� 1
20

� 1
10

1
20

4
15

� 2
15

� 4
15

5
6

1
3

1
6

2
64

3
75;

and once again

D ¼ P�1AP ¼
�2 0 0

0 3 0

0 0 0

2
4

3
5 :

These results also show that the arbitrariness of the scaling of an eigenvector

when forming matrix P is removed when P�1 is used to form the matrix product

P�1AP: }

5.3 Quadratic Forms and Diagonalization

Theorem 5.2, in conjunction with Corollary 5.1, now makes it possible to show how

a quadratic form Q(x) ¼ xTAx, with x the column vector x ¼ [x1, x2, . . . , xn]
T, can

be reduced to a sum of squares. It was shown in Chapter 3 that when forming the

product xTAx, matrix A may always be taken to be a symmetric matrix, so the
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diagonalizing matrix P in Theorem 5.2 may be replaced by Q, which is an

orthogonal diagonalizing matrix derived from the normalized eigenvectors of A.

AsQ�1¼QT, the diagonalization result of Theorem 5.2 takes the formD¼QTAQ,

so we can write A ¼ QDQT. Using this expression for A, the quadratic form

becomes Q(x) ¼ xTQDQTx. If we now set y ¼ QTx, with y ¼ [y1, y2, . . . , yn ]
T,

then as yT ¼ xTQ, the quadratic form simplifies to Q(y) ¼ yTDy. Matrix D is a

diagonal matrix with the entries on its leading diagonal equal to the distinct

eigenvalues l1; l2; . . . ; ln of A, so Q(y) is a sum of squares of the variables yi
given by

QðyÞ ¼ l1y21 þ l2y22 þ � � � þ lny2n (5.9)

Thus the general quadratic form in the variables in x1, x2, . . . , xn has been

reduced to the sum of squares of the new variables y1, y2, . . . , yn. The connection
between the variables in x, in terms of the new variables in y, follows after pre-

multiplication of y¼Q
T
x byQ to obtain x¼Qy after using the fact thatQT¼Q

�1.

If, in the quadratic form (5.9), the variables yi are replaced by ~yi ¼ yi
� ffiffiffiffiffiffiffi

lij jp
, for

i ¼ 1, 2, . . . , n, the quadratic form reduces to its simplest form

Qð~yÞ ¼ signðl1Þ~y21 þ signðl2Þ~y22 þ � � � þ signðlnÞ~y2n ; (5.10)

where sign(u) ¼ 1 if u > 0 and sign(u) ¼ �1 if u < 0. This result completely

characterizes the original quadratic form, and however the reduction is accom-

plished (remember Q is not unique), the reduction will always be the same.

This reduction is used to classify quadratic forms according to the pattern of

signs in (5.10), it being understood that when an eigenvalue lr is zero, the term ~y2r in
(5.10) must be omitted. In algebra, the preservation of the pattern of signs in (5.10),

irrespective of the way the reduction is achieved, is known as Sylvester’s law of
inertia. The following useful and important theorem has been proved.

Theorem 5.3 Reduction of a Quadratic Form. Let a quadratic form be Q(x1,
x2, . . . , xn) ¼ xTAx, with x ¼ [x1, x2, . . . , xn]

T and A a real n � n symmetric
matrix so that it has distinct eigenvalues. Then the change of variable x ¼ Qy, with
Q the orthogonal matrix in Corollary 5.1 and y ¼ [y1, y2,.., yn ]

T, will reduce it to
the sum of squares

QðyÞ ¼ l1y21 þ l2y22 þ � � � þ lny2n;

where the li with i ¼ 1, 2, . . . , n are the n distinct eigenvalues of A. The change of
variable ~yi ¼ yi

� ffiffiffiffiffiffiffi
lij jp

with i ¼ 1, 2, . . . , n will reduce Q(y) to the quadratic form

Qð~yÞ ¼ signðl1Þ~y21 þ signðl2Þ~y22 þ � � � þ signðlnÞ~y2n :

This method of reduction will fail if multiple eigenvalues occur, even though n
linearly independent eigenvectors exist.

}
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5.3.1 The Classification of Quadratic Forms

A quadratic form Q(x1, x2, . . . , xn) ¼ xTAx, with x ¼ [x1, x2, . . . , xn]
T and A a real symmetric

matrix is classified follows:

1. The quadratic formQ is said to be positive definite if Q(x1, x2, . . . , xn) > 0 for all x 6¼ 0 provided

all x1, x2, . . . , xn are not zero.
2. The quadratic form Q is said to be negative definite if Q(x1, x2, . . . , xn) < 0 for all x 6¼ 0.

3. If the quadratic form Q(x1, x2, . . . , xn)� 0 for all x 6¼ 0, the quadratic form is said to be positive
semidefinite, while if Q(x1, x2, . . . , xn) � 0 for all x 6¼ 0 it is said to be negative semidefinite.

4. If the quadratic form Q(x1, x2, . . . , xn) can be either positive or negative for x 6¼ 0, the quadratic

form is said to be indefinite.

For convenience, the names positive (negative) definite, positive (negative)
semidefinite and indefinite are also often used to describe the matrix A itself.

After consideration of (5.10), when expressed in words, Theorem 5.3: says that

the classification of a quadratic form associated with a real symmetric matrix A is

determined by the eigenvalues of A. If all the eigenvalues of A are positive, the

quadratic form will be positive definite, if they are all negative it will be negative

definite. The quadratic form will be positive (negative) semidefinite if some of the

eigenvalues of A are zero, and the remainder are positive (negative). The quadratic

form will be indefinite if A has both positive and negative eigenvalues.

Positive and negative definite quadratic forms have many applications, so it is

useful to derive the following simple test for positive or negative definiteness.

Theorem 5.4 Determinant Test for Positive Definiteness. The quadratic form
Q(x1, x2, x3) ¼ xTAx

Qðx1; x2; x3Þ ¼ a11x
2
1 þ 2a12x1x2 þ a22x

2
2 þ 2a23x2x3 þ 2a13x1x3 þ a33x

2
3 ;

with the coefficient matrix A ¼ [aij] will be positive definite if

a11 > 0;
a11 a12
a12 a22

����
����> 0 ;

a11 a12 a13
a12 a22 a23
a13 a23 a33

������
������> 0;

and negative definite if these inequality signs are reversed.

Proof. Using the fact that matrix A in a quadratic form may always be written as a

symmetric matrix, we start by considering a quadratic form in two variables and

write it as

Qðx1; x2Þ ¼ a11x
2
1 þ 2a12x1x2 þ a22x

2
2 ¼ x1 þ a12

a11
x2

� 
2

þ a22 � a212
a11

� 

x22 :

Then if a11 6¼ 0, the quadratic formQ(x1, x2) will be strictly positive for x¼ [x1, x2]
T

6¼ 0 if a11 > 0 and a22 � a212=a11>0, but these two conditions can be written
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a11>0;
a11 a12
a12 a22

����
����>0: (5.11)

Next, consider the quadratic form in three variables,

Qðx1; x2; x3Þ ¼ a11x
2
1 þ 2a12x1x2 þ a22x

2
2 þ 2a23x2x3 þ 2a13x1x3 þ a33x

2
3: (5.12)

Then some algebraic manipulation shows this can be written in the form

Qðx1; x2; x3Þ ¼ a11 x1 þ a12x2 þ a13x3
a11

� 
2

þ a22 � a212
a11

� 

x22

þ 2 a23 � a12a13
a11

� 

x2x3 þ a33 � a213

a11

� 

x23:

Clearly, Q will be strictly positive for any x1 6¼ 0 if x2 ¼ x3 ¼ 0 and a11 > 0, so Q
will be positive definite if the last three terms involving x2 and x3 are also positive

definite. Having considered the situation when x1 6¼ 0, we turn now to the case when

the term in x1 (the first term) vanishes. Then for Q to be strictly positive we must

have a11 > 0, and the coefficient of x22 will be positive if a22 � a212=a11>0, so we

have again arrived at conditions (5.11). The condition that the last two terms are

strictly positive can be combined into a determinant, leading to the condition

a22 � a2
12

a11
a23 � a12a13

a11

a23 � a12a13
a11

a33 � a2
13

a11

������
������> 0:

However, this last condition can be expressed as the third-order determinant

a11 a12 a13
0 a22 � a212 = a11 a23 � a12a13 = a11
0 a23 � a12a13 = a11 a33 � a213 = a11

������
������> 0:

Finally, adding suitable multiples of the first row to the second and third rows,

reduces this to the result

a11 a12 a13
a12 a22 a23
a13 a23 a33

������
������> 0:

Combining this with the results in (5.11) establishes the positive definite part of

the theorem, and a similar argument in which the inequality signs > are reversed

establishes the rest of the theorem.

}
Theorem 5.4 extends to a quadratic form in n variables called the Routh–Hurwitz

test for a positive definite form, though the proof will not be given here.
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Theorem 5.5 The Routh–Hurwitz Test for Positive Definiteness. The quadratic form

Qðx1; x2; . . . ; xnÞ ¼
Pn
i; j¼1

aijxixj will be positive definite if

a11 > 0;
a11 a12
a12 a22

����
����> 0 ;

a11 a12 a13
a12 a22 a23
a13 a23 a33

������
������> 0; . . . ;

a11 a12 � � � a1n
a21 a22 � � � a2n
..
. ..

. ..
. ..

.

an1 an2 � � � ann

��������

��������
> 0:

}
Theorem 5.4 has the following important implication when applied to Cartesian

coordinate geometry. If the quadratic form

Qðx1; x2; x3Þ ¼ a11x
2
1 þ 2a12x1x2 þ a22x

2
2 þ 2a23x2x3 þ 2a13x1x3 þ a33x

2
3

is positive definite, the equation Q(x1, x2, x3)¼ const. describes an ellipsoid with its

origin O as the origin of a Cartesian coordinate system O{x1, x2, x3} at its center,

and with its the axes oriented arbitrarily relative to the ellipsoid. Theorem 5.3 then

implies it is always possible to rotate the axes into a Cartesian coordinate system

O{X1, X2, X3} so that in terms of some new variables X1, X2, X3 the coefficients of

the product terms XiXj for i 6¼ j all vanish, in which case the equation of the ellipsoid
becomes

~a11X
2
1 þ ~a22X

2
2 þ ~a33X

2
3 ¼ constant:

The new axes X1, X2, X3 are symmetrical with respect to the ellipsoid, in the

sense that each plane through origin O containing two of the axes cuts the ellipsoid

in an ellipse, with one axis lying along its major axis and the other along its minor

axis. The axes O{X1, X2, X3} are called the principal axes of the ellipsoid. In the

simpler case of two space dimensions the quadratic form describes an ellipse, and

the principal axes of the ellipse centered on the origin are its mutually perpendicular

major and minor axes. For obvious reasons, in geometry a theorem equivalent to

Theorem 5.4 is called the principal axes theorem, while in algebra and elsewhere it
is known as the orthogonal diagonalization theorem.

Theorem 5.4 also finds various applications in differential equations, ranging

from the study of coupled systems of linear differential equations describing

oscillatory behavior, through to the dynamics of rotating rigid bodies where it

describes the principal moments of inertia. A quite different application is found

in the classification and reduction to standard forms of partial differential equations.

A typical example of an application in mechanics involving the orthogonaliza-

tion of a positive definite matrix, and the significance of its associated positive

definite quadratic form, arises when considering the rotation of a rigid body about

an axis L passing through the origin O of an arbitrary orthogonal system of axes O

{x1, x2, x3} fixed in the body. The differential equations describing the time
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variation of the components of the angular velocity o of the body, called the Euler
equations, require the introduction of a 3 � 3 constant matrix IN, called the inertia
matrix of the body relative to these axes. The three diagonal elements of IN are the

moments of inertia of the body about the x1, x2 and x3 axes, respectively, and the six
off-diagonal elements are the products of inertia relative to these axes. The system

of nonlinear first-order differential equations for the components of o is compli-

cated and it involved IN, but it simplifies considerably if the axes are rotated about

O to a new orthogonal system O{X1, X2, X3} where the inertia matrix only has non-

zero entries on its leading diagonal. The effect of this rotation can be understood by

considering the quadratic form associated with IN.

The quadratic form Q(x1, x2, x3) associated with IN is positive definite, and

the equation Q(x1, x2, x3) ¼ c with c a constant defines an ellipsoid. With a suitable

choice for c it can be shown that the resulting ellipsoid has the property that the

length of a radius vector from its center to the surface of the ellipsoid is equal to

the reciprocal of the radius of gyration of the body about this radius vector. Here,

the radius of gyration RL of the body about a line L through O is given by

RL ¼ ffiffiffiffiffiffiffiffiffiffiffi
IL=M

p
, where IL is the moment of inertia of the body about the line L

through O, and M is the mass of the body. Thus, in the new coordinate system, the

axes X1, X2, X3 are principal axes of the ellipsoid.

Example 5.6. Reduce the quadratic form Q(x)¼ xTAx to a sum of squares given that

A ¼
7 �2 �2

�2 1 4

�2 4 1

2
4

3
5 :

Solution. Routine calculations show the eigenvalues and eigenvectors of A are

l1 ¼ �3; x1 ¼
0

�1

1

2
4

3
5; l2 ¼ 3; x2 ¼

1

1

1

2
4
3
5; l3 ¼ 9; x3 ¼

�2

1

1

2
4

3
5 ;

so the normalized eigenvectors are

~x1 ¼
0

� 1ffiffi
2

p
1ffiffi
2

p

2
64

3
75; ~x2 ¼

1ffiffi
3

p
1ffiffi
3

p
1ffiffi
3

p

2
64

3
75; ~x3 ¼

� 2ffiffi
6

p
1ffiffi
6

p
1ffiffi
6

p

2
64

3
75 :

Thus the orthogonal diagonalizing matrix is

Q ¼
0 1ffiffi

3
p � 2ffiffi

6
p

� 1ffiffi
2

p 1ffiffi
3

p 1ffiffi
6

p
1ffiffi
2

p 1ffiffi
3

p 1ffiffi
6

p

2
64

3
75;

5.3 Quadratic Forms and Diagonalization 119



and the change of variable from x to y to reduce the quadratic form to

QðyÞ ¼ l1y21 þ l2y22 þ l3y23 ¼ �3y21 þ 3y22 þ 9y23

is given by x ¼ Qy, corresponding to

x1 ¼ 1ffiffi
3

p y2 � 2ffiffi
6

p y3; x2 ¼ � 1ffiffi
2

p y1 þ 1ffiffi
3

p y2 þ 1ffiffi
6

p y3; x3 ¼ 1ffiffi
2

p y1 þ 1ffiffi
3

p y2 þ 1ffiffi
6

p y3 :

This is the reduction that was stated without proof when quadratic forms were

introduced in Chapter 3, and the pattern of signs in Q(y) show this quadratic form to

be indefinite.
Although Theorem 5.5 does not show that this quadratic form is indefinite, it

does show it is neither positive nor negative definite, because the values of the three

determinants in the theorem are, respectively, 7, 6 and –19.

}
Example 5.7. Use two different methods to show the quadratic form associated with

A ¼
100 0 �100

0 150 0

�100 0 250

2
4

3
5

is positive definite.

Solution. The hardest way to establish positive definiteness is to show the eigenva-

lues of A are all positive. The characteristic equation of A is

l3 � 500l2 þ 67; 500l� 2; 250; 000 ¼ 0;

and after trial and error calculations one root (eigenvalue) is found to be 50.

Removing the factor (l � 50) from the characteristic equation to leave a quadratic

equation, the roots of which are the remaining roots (eigenvalues) 150 and 300. As

all of the eigenvalues are positive, the quadratic form associated with A, namely

xTAx ¼ 100x21 � 200x1x3 þ 150x22 þ 250x23;

must be positive definite. A far simpler way to establish the positive definiteness of the

quadratic form is to use Theorem5.5with a11¼ 100, a12¼ a21¼ 0, a13¼ a31¼�100,

a23¼ a32¼ 0, a22¼ 150, and a33¼ 250. Evaluating the determinants in the theorem

shows that

100> 0;
100 0

0 250

����
����> 0 and

100 0 �100

0 150 0

�100 0 250

������
������> 0;

so as all three determinants are positive, the quadratic form is positive definite.

}
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5.4 The Characteristic Polynomial and the Cayley–Hamilton

Theorem

If A is an n � n matrix, the zeros l1; l2; . . . ; lnof the characteristic polynomial

pðlÞ ¼ det½A� lI� are the eigenvalues of A. The following Theorem records an

important property of the characteristic equation, and the result hasmany applications.

An almost trivial application of Theorem 5.6 will be found in Exercise 21.

Theorem 5.6 The Cayley–Hamilton Theorem. Let p(l) be the characteristic poly-
nomial of any n � n matrix A. Then A satisfies its own matrix polynomial
characteristic equation p(A) ¼ 0.

Proof. For simplicity the theorem will only be proved for matrices A that are

diagonalizable, though it is true for all n � n matrices with real or complex

elements.

Let the characteristic polynomial of A be

pðlÞ ¼ �1ð Þn ln þ c1l
n�1 þ � � � þ cn�1lþ cn

� �
:

If A is diagonalizable A ¼ PDP�1; where P is the matrix of n linearly indepen-

dent eigenvectors of A, and D is the diagonal matrix D ¼ diag fl1 ; l2; . . . ; lng.
Replacing l in the characteristic polynomial by A produces the matrix polynomial

p Að Þ ¼ �1ð ÞnfAn þ c1A
n�1 þ � � � þ cn�1Aþ cnIg:

However, A2 ¼ PDP�1
� �

PDP�1
� �¼ PD2P�1 ; A3 ¼ PD2P�1

� �
PDP�1 ¼ PD3P�1,

and in general Ar ¼ PDrP�1; so substituting for Ar into the characteristic polyno-

mial gives

pðAÞ ¼ �1ð ÞnfP½Dn þ c1D
n�1 þ � � � þ cn�1Dþ cnI�P�1g:

The ith row of the matrix expression in square brackets is lni þ c1l
n�1
i þ � � �

þcn�1li þ cn ; which is simply p(li), and this must vanish because li is a zero of the
characteristic polynomial. This result is true for i ¼ 1, 2, . . . , n, so p(A) ¼
P� 0� P�1 ¼ 0 ; and the theorem is proved.

}
Example 5.8. Verify the Cayley–Hamilton theorem using the matrix

A ¼
1 3 �1

2 0 1

�2 1 2

2
4

3
5:
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Solution. The characteristic polynomial pðlÞ ¼ l3 � 3l2 � 7lþ 21, and

A3 ¼
13 27 �7

14 0 7

�26 �5 14

2
4

3
5; A2 ¼

9 2 0

0 7 0

�4 �4 7

2
4

3
5:

Hence

13 27 �7

14 0 7

�26 �5 14

2
4

3
5� 3

9 2 0

0 7 0

�4 �4 7

2
4

3
5� 7

1 3 �1

2 0 1

�2 1 2

2
4

3
5þ 21

1 0 0

0 1 0

0 0 1

2
4

3
5 ¼ ½0�;

where [0] is the 3 � 3 null matrix.

}

5.5 Eigenvalues and the Transpose Operation

The following theorem is often useful, and the result is easily proved. An illustra-

tion showing a typical application is to be found in Section 5.7.

Theorem 5.7 The Eigenvalues of A and AT An n � n matrix A and its transpose AT

have the same characteristic polynomial, and hence the same eigenvalues.

Proof. The eigenvalues of A are the roots l of the characteristic polynomial

det½A� lI� ¼ 0; so let us consider the matrix ½A� lI�. Applying result

(1.13), which asserts that [P + Q]T ¼ PT + QT, we find that ½A� lI�T ¼
½AT � lIT�. However, IT ¼ I, so ½A� lI�T ¼ ½AT � lI�. Using this last result with

Theorem 1.2 (7), which shows det½A� lI� ¼ det ½A� lI�T, it follows that

det½A� lI� ¼ det½AT � lI�; so A and AT have the same characteristic polynomial,

and hence the same eigenvalues, and the theorem is proved.

}

5.6 Similar Matrices

Many problems in engineering, applied mathematics and physics can be formulated

in terms of an n � n matrix A, and often their solution is determined by the

eigenvalues of A. It is natural to ask if it is possible to find an n � n matrix C

that can transform matrix A into an n� nmatrix B that has the same eigenvalues as
A, though in a much simpler form. A simpler problem is likely to be much easier to

solve, and once its solution has been found, the solution can be transformed back to

give the solution of the original problem.
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A typical example of this type will be considered in Chapter 6 where systems

of simultaneous linear first-order constant coefficient differential equations are

characterized by an n � n coefficient matrix A. It will be shown there that when

matrix A can be diagonalized to a matrix D, with the elements on its leading

diagonal the same as the eigenvalues of A, it becomes possible to de-couple all of

the equations so they can be solved individually, after which this simplified solution

can be transformed back to give the solution of the original much more complicated

system of ordinary differential equations. This is just one example where it is

helpful for an n � n matrix A to be transformed into another n � n matrix, in that

case D, with the same eigenvalues as A which then enables the solution of a

complicated coupled system of differential equations to be found in terms of

the solution of a much simpler problem. Two matrices A and B with the property

thatA can be transformed in a special way to B such that the eigenvalues ofA and B

are the same are called similar matrices, the formal definition of which

now follows.

5.6.1 Similar Matrices

If A and B are n � n matrices, B is said to be similar to A if, and only if, a non-

singular n � n matrix C exists such that

B ¼ C�1AC: (5.13)

The transformation from B back to A, where eigenvalues are again preserved is,

of course, given by A ¼ CBC�1: An immediate consequence of (5.13) is that

detA ¼ detB:

This follows from the first result in (3.29), because

detB ¼ detðC�1AC Þ ¼ ðdetC�1ÞðdetA ÞðdetCÞ ¼ ðdetC�1ÞðdetC ÞðdetA Þ;

but detðC�1Þ ¼ 1= detC; so det B ¼ det A.

The two fundamental properties of similar matrices that are useful in many

applications are stated in the following Theorem.

Theorem 5.8 Similarity and Eigenvalues.

(a) If the two n � n matrices A and B are similar, they each have the same
characteristic polynomial, and hence the same eigenvalues.

(b) If B is similar to A, and A ¼ CBC�1; then x is an eigenvector of A with the
corresponding eigenvalue l, only if C�1x is an eigenvector of B, that also
corresponds to the eigenvalue l.
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Proof. (a) If B is similar to A, from (5.13) we have

detðB� lIÞ ¼ detðC�1ðA� lIÞCÞ:

However, applying (3.29) to the expression on the right this result becomes

det½B� lI� ¼ detðC�1Þ det½A� lI� detC:

As detðC�1Þ ¼ 1= detC it follows that det½B� lI� ¼ det½A� lI�; showing the

equivalence of the two characteristic polynomials, and hence that A and B have

identical eigenvalues.

(b) If x is an eigenvector of A corresponding to the eigenvalue l; then Ax ¼ lx:
However, as A is similar to B we may write A ¼ CBC�1; so CBC�1x ¼ lx;
which can also be written in the form BðC�1Þx ¼ lðC�1x Þ: The result of the

theorem follows by setting C�1x ¼ y; when the last result becomes

ðB� lIÞy ¼ 0;which is statement (b) in the Theorem, so the result is proved.

}
An example of similarity has already been encountered in Theorem 5.3, because

when an n� nmatrix A can be transformed to a diagonal matrix D, it follows thatA

and D have the same eigennvalues, and they are similar because a nonsingular

matrix P exists such that P�1AP ¼ D :

5.7 Left and Right Eigenvectors

So far, the definition of an eigenvector xi associated with the eigenvalue li is that it
is a solution of Axi ¼ lixi; or equivalently, a solution of A� liI½ �xi ¼ 0: Here, xi
occurs on the right of this last expression, so it is appropriate to call it the right
eigenvector associated with the eigenvalue li: In certain applications it becomes

necessary to consider a different type of eigenvector called a left eigenvector
associated with the eigenvalue li: To distinguish between the right and left eigen-

vectors, when both may arise in a calculation, the right eigenvector associated with

the eigenvalue li will be denoted by ri and the left eigenvector by li. Let us now

show how li can be defined, and its relationship to ri.

We start from the definition of the right eigenvector ri as a solution ofAri ¼ liri,
where A is an n � n matrix, and take the transpose of the definition

Arið ÞT ¼ lirið ÞT:

Using the property of the matrix transpose operation, and the fact that the

eigenvalue li is a scalar, the last result becomes

ri
TAT ¼ liriT:
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Because ri is an n element column vector, its transpose ri
T is an n element row

vector. Setting ri
T ¼ li, the last result becomes

liA
T ¼ lili; or equivalently; li AT � liI

� � ¼ 0:

Rejecting the trivial solution li¼ 0, a non-trivial solution (li 6¼ 0) can only exist if

the determinant of the expression vanishes. This is only possible if the numbers li
which are the eigenvalues of A are also the eivenvalues of AT. Theorem 5.7 shows

that this is indeed the case, so this last result can be replaced by

li A� liI½ � ¼ 0:

The position of li on the left of the expression in square brackets is the reason

why li is called a left eigenvector, but remember that li is an n element row vector.

Let us now show the left and right eigenvectors corresponding to different
eigenvalues are mutually orthogonal, by which we mean that the product lirj ¼ 0

when i 6¼ j; while liri 6¼ 0 for i ¼ 1, 2, . . . , n. From the definitions of li and rj, with

i 6¼ j; we have

ljlirj ¼ liAð Þrj ¼ lilirj;

and so

lj � li
� �

lirj ¼ 0:

However, by supposition, li 6¼ lj; so

lirj ¼ 0; for i 6¼ j :

When i ¼ j, corresponding elements of li and ri are proportional so liri cannot

vanish, and the orthogonality is proved.

5.8 Jordan Normal Forms

The discussion that follows will be prefaced by some brief remarks to provide

motivation for what at first sight might appear to be an unnecessary abstraction. Let

us turn our attention to coefficient matrices that describe pairs of simultaneous

linear first-order homogeneous differential equations that govern the behavior of

many physical phenomena. These range from mechanical systems, to systems in

electrical engineering and physics, to commercial situations involving competition

for resources, and also to environmental systems where competition exists between

different biological species. Because the solutions of such systems evolve with time
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they are often called dynamical systems, though in most cases the term dynamical is
used in the sense that it refers to a continuous change with respect to time, rather

than to the sense in which the term dynamics is used in mechanics.

Of particular interest is the question of whether a system has solutions that are

stable or unstable. Here, a stable system is one whose solution remains bounded for

all time, though the solution may or may not decay to zero as time increases, while

an unstable system is one in which the solution grows without bound as time

increases. The simplest examples of such systems are of the form

dx

dt
¼ axþ by and

dy

dt
¼ cxþ dy; (5.14)

where a, b, c and d are constants, and x(t) and y(t) are physical quantities that

depend on the time t. A typical mechanical example, that when linearized can be

reduced to a system like (5.14), is the nonlinear pendulum equation. This is the

equation that governs the oscillations of a pendulum of length l with angle of swing
from the vertical yðtÞat time t, and it takes the form d2y

�
dt2 þ g=lð Þ sin y ¼ 0;

where g is the acceleration due to gravity. Provided the angle of swing is small,

this equation can be linearized by replacing the nonlinear term sin y by y;
to obtain d2y

�
dt2 þ g=lð Þy ¼ 0: Then, by setting dy=dt ¼ x; this second-order

equation can be written as the pair of simultaneous first-order linear equations

dx=dt ¼ � g=lð Þy and dy=dt ¼ x which, apart from the notation, is in the form

given in (5.14).

A system like (5.14) is characterized by its real 2� 2 constant coefficient matrix

A ¼ a b
c d

� 	
, and the nature of its solution is determined by the eigenvalues of A.

Thus a solution will be stable and decay to zero without oscillations if both

eigenvalues are real and negative, it will be oscillatory and decay to zero if the

eigenvalues are complex conjugates with negative real parts, and it will be unstable

if the eigenvalues are complex conjugates with positive real parts, or if the

eigenvalues are real and at least one is positive. The case when the eigenvalues

are purely imaginary corresponds to purely oscillatory behavior that remains

bounded for all time.

Of particular interest is the way the solution of a system evolves with the passage

of time from some initial conditions x(t0)¼ x0 and y(t0)¼ y0 at time t0. Because the
initial conditions describe the physical nature of the system, the quantities x(t) and y
(t) in (5.14) describe what is referred to as the physical state of the system at time t.
The (x, y)-plane is called the phase-plane of the system, and the path traced out in

the phase-plane by a point (x(t), y(t)) as the solution of the system evolves from its

initial conditions as the time t increases is called a trajectory in the phase-plane.

A key question that arises is how to classify the nature of all possible systems

like (5.14) that are described by real 2 � 2 constant coefficient matrices A. As

already mentioned, the property that a solution is either stable or unstable as time

increases, is determined by the eigenvalues of the coefficient matrix A, so the

answer to this question must rest with the eigenvalues of A.
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It turns out that the behavior of a system characterized by a matrix A is

closely related to the behavior of a system in which A is replaced by what

is called its Jordan normal form which is defined below. Consequently, the

behavior of an entire class of systems can be explored by examining how a system

behaves when its coefficient matrix is replaced by the Jordan normal form to

which A is similar. This same form of analysis can be extended to examine

the local behavior of nonlinear systems, provided they can be linearized about a

state of the system that is of interest, as shown above when the nonlinear

pendulum equation was linearized. Thus the identification of the types of Jordan

normal form that can occur is of considerable importance. There are also many

other situations where more general types of Jordan normal forms occur with

n � n matrices, both in connection with physical problems and with problems in

algebra and numerical analysis, though here only real 2 � 2 matrices will be

considered.

Let us now consider similarity in the context of real 2 � 2 matrices A whose

characteristic polynomials pðlÞ are quadratic polynomials in l, and whose zeros are
the two roots l1 and l2 that are the eigenvalues of A. An examination of all such

systems reduces to the examination of the behavior of systems with a Jordan normal

form as its coefficient matrix.

After some reflection, it can be seen that a 2 � 2 matrix A must belong to one of

the following categories:

(i) The eigenvalues l‘1 and l2 of A are real and distinct, so that l1 6¼ l2, in which

case A will have two real linearly independent eigenvectors x1 and x2.
(ii) Matrix A is a diagonal matrix with a single repeated real eigenvalue l1 but with

two real linearly independent eigenvectors x1 and x2.
(iii) Matrix A has a repeated real eigenvalue l1 to which there corresponds only

one real eigenvector x1.
(iv) The eigenvalues ofA are complex conjugates, in which caseA has two linearly

independent complex conjugate eigenvectors x1 and x2.

We now show all such real 2 � 2 matrices A must be similar to one of the

following four types of Jordan normal form, each of which is said to be a canonical
form for a 2 � 2 matrix.

Theorem 5.9 Jordan Normal Forms for 2 � 2 Matrices. Every real 2 � 2 matrix A
must be similar to just one of the following four Jordan normal forms:

(a) J1 ¼ l1 0

0 l2

� 	
, where A is a diagonal matrix with two real eigenvalues

l1 6¼ l2, to which there correspond two real linearly independent eigenvectors
x1 and x2.

(b) J2 ¼ l1 0

0 l1

� 	
, where A is a diagonal matrix with identical elements on the

leading diagonal, and a single repeated real eigenvalue l1, to which there
correspond two real linearly independent eigenvectors x1 and x2.
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(c) J3 ¼ l1 1

0 l1

� 	
, where A has a single repeated real eigenvalue l1, but only one

real eigenvector x1.

(d) J4 ¼ a �b
b a

� 	
with b> 0, where the eigenvalues of A are the complex

conjugate complex numbers l� ¼ a � ib corresponding to which are two

(linearly independent) complex conjugate eigenvectors x1 and x2, with

x2 ¼ x1:.

Proof. The similarity of A with respect to the diagonal matrices J1 and J2 in

(a) and (b) follows directly from the fact that in each case the matrices have

two linearly independent eigenvectors, and so are diagonalizable. Notice that in

case (b), because A is a diagonal matrix with identical elements on its leading

diagonal we may write A ¼ l1I, so if C is any real nonsingular 2 � 2 matrix,

it follows that C�1AC ¼ C�1ðl1IÞC ¼ l1C�1C ¼ l1I; showing that A is similar

to itself.

To prove the similarity of A to the Jordan matrices J3 and J4 in (c) and (d) takes

a little longer, and we will start with (c). Let x1 be the single eigenvector

corresponding to the repeated real eigenvalue l1, and let v be any nonzero two

element column vector that is linearly independent of x1 (it is not proportional to

x1). In the proof that follows only 2 � 2 matrices will be involved, so to make clear

how the columns of the matrices are modified as the proof proceeds, the concept of

partitioned matrices that was introduced in Chapter 3 will be used. In this notation,

a 2 � 2 matrix N will be written in the form [ ]=N c d , where c is the first 2 � 1

column vector in matrix N, and d is the second 2 � 1 column vector.

Adopting this notation, let us use the column vectors x1 and v to form the

2 � 2 matrix [ ]1=C x v . Then, because x1 and v are linearly independent, C�1

exists. The product [ ]1=AC Ax Av , but Ax1 ¼ l1x1, so this last result becomes

[ ]1 1l=AC x Av By defining the column vector e ¼ [1, 0]T, we can write

x1 ¼ Ce, and using the result CC�1 ¼ I the equation becomes
1

1l -é ù= ë ûAC Ce CC Av . Writing C a pre-multiplier, the expression on the right

becomes
1

1l -é ù= ë ûAC C e C Av . Pre-multiplying this result by C�1 gives
1 1

1 ,l- -é ù= ë ûC AC e C Av showing that A is similar to
1

1l -é ùë ûe C Av .

The matrix
1

1l -é ùë ûe C Av is an upper triangular matrix with l1 the first element

on its leading diagonal. However, A and C�1AC must have the same eigenvalues,

so C�1AC must also have a repeated eigenvalue l1, with the result that the upper

triangular matrix
1

1l -é ùë ûe C Av must also have l1 as the second element on its

leading diagonal. Consequently, it follows that

C�1AC ¼ l1 c
0 l1

� 	
; (5.15)
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where the constant c 6¼ 0: Result (5.15) is not yet in the standard form for J3, so to

make c ¼ 1 the matrix C must be scaled. The scaling is accomplished by defining

the new matrix

R ¼ C
1 0

0 1=c

� 	
; (5.16)

when

J3 ¼ R�1AR ¼ l1 1

0 l1

� 	
;

and the required similarity has been established.

It remains for us to consider case (d) where the complex conjugate eigenvalues

l� ¼ a� ib of J4 are seen to be the same as the eigenvalues of A, so the two

matrices are indeed similar. Now let us find the form taken by a matrix R such that

R�1AR ¼ J4. To do this we partition matrix R by setting [ ]1 2 ,=R r r and require

that

AR ¼ R
a �b
b a

� 	
; (5.17)

because then R�1AR ¼ J4: When this equation is expanded it becomes

[ ] [ ]1 2 1 2 1 2 ,a b b a= + - +Ar Ar r r r r

which can be rewritten as

[ ] [ ]2 1 2( ) ( ) .a b b a- - + - =A I Ir Ir A I r 0 0

Using a partitioned matrix, this set of homogeneous matrix equations becomes

1

2

.
a b

b a
- -é ù é ù é ù

=ê ú ê ú ê ú-ë û ë û ë û

A I I r 0

I A I r 0 ð5:18Þ

From Example 3.8 we have

( )
,

( )

p

p

a b a b
b a b a
- - -é ù é ù é ù

=ê ú ê ú ê ú- - -ë û ë û ë û

A I I A I I A 0

I A I I A I 0 A ð5:19Þ

where pðAÞ ¼ A2 � 2aAþ a2 þ b2
� �

I: However, from the Cayley–Hamilton

Theorem we know that p(A) ¼ 0, so (5.19) becomes

.
a b a b

b a b a
- - -é ù é ù é ù

=ê ú ê ú ê ú- - -ë û ë û ë û

A I I A I I 0

I A I I A I 0 ð5:20Þ
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Recalling the form of matrix Eq. (5.18), we see that the columns of

a b
b a
-é ù

ê ú- -ë û

A I I

I A I ð5:21Þ

must be solutions of (5.18). Using the first column of (5.21) gives

r1 ¼ a11 � a
a21

� 	
and r2 ¼ �b

0

� 	
; so that

R ¼ a11 � a �b
b 0

� 	
; (5.22)

and we have found a matrix R such that

R�1AR ¼ a �b
b a

� 	
: (5.23)

Using the remaining columns in (5.21) will produce a different forms of R,

namely, R1, R2 and R3, though the application of each to form R�1
i ARi with i ¼ 1,

2, 3 will produce the same reduction as the one in (5.23). For example, using the

second column of (5.21) gives

R1 ¼ a12 0

a22 �b

� 	
; but once againR�1

1 AR1 ¼ a �b
b a

� 	
:

}
Example 5.9. Find a matrix R that reduces the matrix

A ¼ 5 2

�2 1

� 	

to its appropriate Jordan normal form.

Solution. Matrix A has a single repeated eigenvalue l ¼ 3, to which there corre-

sponds the single eigenvector u1 ¼ [1, �1]T, so matrix A is of type (c). Construct a

nonsingular matrix C by taking u1 to be its first column, and for its second column

the arbitrarily chosen vector u2 ¼ [1, �1]T, which is linearly independent of u1.

Then

C ¼ 1 1

�1 1

� 	
;C�1 ¼

1
2

�1
2

1
2

1
2

� 	
and C�1AC ¼ 3 4

0 3

� 	
:
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To convert the element 4 to 1, as required in form (c), we see from (5.14) and

(5.15) that we must set c ¼ 4, when

R ¼ C
1 0

0 1
4

� 	
¼ 1 1

4�1 1
4

� 	
and R�1¼

1
2

�1
2

2 2

� 	
; giving R�1AR ¼ 3 1

0 3

� 	
;

which is the required reduction.

}
Example 5.10. Find the matrix that reduces

A ¼ 6 3

�3 4

� 	

to its appropriate Jordan normal form.

Solution. The eigenvalues are the complex conjugates l� ¼ 5� 2
ffiffiffi
2

p
i; so matrix A

is of type (d) with a ¼ 5 and b ¼ 2
ffiffiffi
2

p
: Thus A is similar to the matrix

J4 ¼ 5 �2
ffiffiffi
2

p
2
ffiffiffi
2

p
5

� 	
:

The matrix R that produces this reduction through the matrix product R�1AR

given by (5.22) is

R ¼ a11 � a �b
a21 0

� 	
;

with a11 ¼ 5, a21 ¼ �3, a ¼ 5 and b ¼ 2
ffiffiffi
2

p
, so

R ¼ 1 �2
ffiffiffi
2

p
�3 0

� 	
:

To confirm this, notice that

R�1AR ¼ 0 �1
3

�
ffiffi
2

p
4

�
ffiffi
2

p
12

" #
6 3

�3 4

� 	
1 �2

ffiffiffi
2

p
�3 0

� 	
¼ 5 �2

ffiffiffi
2

p
2
ffiffiffi
2

p
5

� 	
¼ J4:

}
Example 5.11. Reduce matrix

A ¼ 2 1

�1 4

� 	

to its appropriate Jordan normal form.
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Solution. Matrix A has a single repeated eigenvalue l ¼ 3, to which there corre-

sponds only the single eigenvector v1¼ [1, 1]T, so matrix A is of type (c). Construct

a nonsingular matrix C ¼ [v1, v2], by taking v1 to be its first column, and for its

second column the arbitrarily vector v2 ¼ [1,�1]T, since it is not proportional to v1
Then,

C ¼ 1 1

1 �1

� 	
;C�1 ¼

1
2

1
2

1
2

�1
2

� 	
and C�1AC ¼ 3 �2

0 3

� 	
:

The matrix on the right is not yet equal to J3, so to convert it to that form it is

necessary to set c ¼ � 1
2
in (5.15), when R ¼ CM ¼ 1 1

1 �1

� 	
1 0

0 �1
2

� 	
; so that

R ¼ 1 �1
2

1 1
2

� 	
; and R�1AR ¼ 3 1

0 3

� 	
:

}
Example 5.12. Reduce the matrix

A ¼ 0 4

�1 0

� 	

to the appropriate Jordan normal form.

Solution. The eigenvectors of A are l� ¼ �2i ; so the appropriate Jordan form is

J4. Taking the positive sign for b, the Jordan normal form to which A is similar is

found to be

J4 ¼ 0 �2

2 0

� 	
:

}
Example 5.13. Reduce matrix

A ¼ 3 1

�2 1

� 	

to its appropriate Jordan normal form.

Solution. The eigenvalues of A are the complex conjugates l� ¼ 2� i; so working
with the eigenvalue lþ; we must set a ¼ 2 and b ¼ 1. From A we see that a11 ¼ 3,

a21 ¼ �2, so the general form for C in (d) is

C ¼ a11 � a �b
a21 0

� 	
¼ 2 �1

1 2

� 	
;
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showing that A is similar to the matrix.

J4 ¼ 2 �1

1 2

� 	
:

Had we worked with the eigenvalue l� ¼ a� ib we would have found that A is

similar to

J4 ¼ 2 1

�1 2

� 	
:

}

5.9 A Special Tridiagonal Matrix, Its Eigenvalues

and Eigenvectors

The n � n matrices with special structures that have been considered so far have

been diagonal matrices, symmetric, skew symmetric, upper triangular and lower

triangular matrices. We now introduce another class of n � n matrices called

banded matrices that occur in applications throughout engineering, physics,

chemistry and numerical analysis. These are matrices in which all elements that

do not lie on the leading diagonal, or on a few adjacent parallel diagonals, are zero.

Symbolically, a banded matrix A ¼ aij
� �

is one where aij ¼ 0 for j 6¼ i� r; i; iþ s,
with r and s are small integers, and the band width of the matrix is equal to r + s + 1

(the number of diagonals that contain nonzero entries). The type of banded matrix

to be considered now is a tridiagonal matrix with the property that

aij ¼ 0 for j 6¼ i� 1 ; i ; iþ 1; so its band width equal to 3 is formed by the

leading diagonal and by the diagonals immediately above and below it. These

two parallel diagonals are called, respectively, the super-diagonal and the sub-
diagonal of the matrix. In applications a tridiagonal matrix can be very large, often

containing thousands of elements, most of which are zeros. For example, an n � n
tridiagonal matrix contains n2 elements, of which only 3n� 2 are nonzero. So if a

30 � 30 tridiagonal matrix is involved, which in many practical applications is

rather small, the number of elements in the matrix is 900, whereas the number of

nonzero elements is only 88.

The special n� n tridiagonal matrix Tn(x) that will concern us here has the form

TnðxÞ ¼

x �1 0 0 � � � 0 0 0

�1 x �1 0 � � � 0 0 0

0 �1 x �1 � � � 0 0 0

0 0 �1 x � � � 0 0 0

..

. ..
. ..

. ..
. � � � ..

. ..
. ..

.

0 0 0 0 � � � �1 x �1

0 0 0 0 � � � 0 �1 x

2
666666664

3
777777775
; (5.24)
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and its associated determinant DnðxÞ ¼ det TnðxÞj j:
Our objective will be to find the value of the determinant Dn(x), and the

eigenvalues and eigenfunctions of matrix Tn(x) in terms of n and x, though before

doing this it will be helpful to outline the steps that are involved. To achieve this

objective we will use the Laplace expansion theorem for a determinant to deduce a

recurrence (recursion) relation satisfied by Dn(x) for any positive integer n. This
recurrence relation turns out to be a second-order linear difference equation, and
for any n this relates Dn(x) to the values of Dn�1(x) and Dn�2ðxÞ, and its solution

will yield a general expression for Dn(x). This will then be used to determine the

eigenvalues of Tn(x) from which, after making use of the simple structure of

Tn (x), the eigenvectors of Tn(x) will be obtained.
To obtain the recurrence relation for Dn(x) we will expand Dn(x)¼ det TnðxÞj j in

terms of the elements of its last column, where

DnðxÞ ¼

x �1 0 0 � � � 0 0 0

�1 x �1 0 � � � 0 0 0

0 �1 x �1 � � � 0 0 0

0 0 �1 x � � � 0 0 0

..

. ..
. ..

. ..
. � � � ..

. ..
. ..

.

0 0 0 0 � � � �1 x �1

0 0 0 0 � � � 0 �1 x

��������������

��������������

: (5.25)

From the Laplace expansion theorem we have

DnðxÞ ¼ ð�1ÞCn�1;n þ xCn;n;

where Cn�1;n and Cnn are the cofactors of the elements � 1 and x in the last

column of Dn(x). The cofactor Cn�1;n¼ ð�1Þ2n�1Mn�1;n, where Mn�1;n is the

corresponding minor. This minor has � 1 as the only element in its last row, so

when Cn�1;n is expanded it becomes Cn�1;n ¼ ð�1Þð�1Þ2n�1Dn�2ðxÞ ¼ Dn�2ðxÞ,
with the result that Cn�1;n ¼ Dn�2(x). When this is multiplied by the element

ð�1Þ we find that ð�1ÞCn�1;n ¼ �Dn�2ðxÞ: The minor Mn,n ¼ Dn�1ðxÞ, so Cn,n¼
ð�1Þ2mDn�1ðxÞ giving xCn;n ¼ xDn�1ðxÞ, so DnðxÞ ¼ ð�1ÞCn�1;n þ xCn;n becomes

DnðxÞ ¼ xDn�1ðxÞ � Dn�2ðxÞ; (5.26)

which is the required recurrence relation. This is an example of a second-order

linear difference equation, and solutions of such equations are known to be of the

form DnðxÞ ¼ Abn, where A is a constant and b has to be determined by substituting

Dn(x) into the difference equation. The result of this substitution is

Abn�2ðb2 � xbþ 1Þ ¼ 0: (5.27)
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Clearly A and b cannot be zero because then there is no solution, so b must be a

solution of the quadratic equation

b2 � xbþ 1 ¼ 0; (5.28)

with the solution

b ¼ x�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 4

p

2
:

The case of greatest practical interest occurs when x2 < 4, so to simplify the

subsequent analysis we will express x in terms of a parameter y by setting

x ¼ 2 cos y, and substituting for x shows that b ¼ cos y� i sin y; or equivalently

b ¼ e�iy: Thus the general solution of the difference equation is seen to be

DnðxÞ ¼ A1e
iny þ A2e

�iny; (5.29)

where A1 and A2 are arbitrary complex constants. As einy and e�in# are complex

conjugates, for Dn(x) to be real, as it must be because the elements of Tn(x)
are real, it is necessary for A1 and A2 to be complex conjugate constants,

so we will set �A2 ¼ A1; where the overbar signifies the complex conjugation

operation.

To find an explicit solution for Dn(x) it is necessary to impose initial conditions

on this expression for Dn(x), and to find these we compute D1(x) and D2(x) directly
from DnðxÞ ¼ det TnðxÞj j, when we find that D1ðxÞ ¼ x and D2ðxÞ ¼ x2 � 1:
Setting n ¼ 2 in the difference equation gives D2ðxÞ ¼ xD1ðxÞ � D0ðxÞ, and after

substituting forD1(x) andD2(x) we obtain x
2 � 1 ¼ x2 � D0ðxÞ; showing thatD0(x)

¼ 1. Next, setting n¼ 1 in the difference equation gives D1ðxÞ ¼ xD0ðxÞ � D�1ðxÞ,
and after substituting D1(x) ¼ x and D0(x) ¼1 we find that D�1ðxÞ ¼ 0: So two

suitable initial conditions areD�1 ¼ 0;D0 ¼ 1: Equivalently, we could use D0(x)¼
1 and D1(x) ¼ x, but the first pair of initial conditions prove to be the most

convenient ones to use.

Setting n ¼ �1 in DnðxÞ ¼ A1e
iny þ A2e

�iny gives 0 ¼ A1e
�iy þ A2e

iy; from

which it follows thatA2 ¼ �A1e
�2iy. Setting n¼ 0 inDnðxÞ ¼ A1e

iny þ A2e
�iny gives

1 ¼ A1 þ A2, so 1 ¼ A1ð1� e�2iyÞ; which leads to the result A1 ¼ eiy
� ð2i sin yÞ:

As A2 ¼ �A1we have A2 ¼ �e�iy
�ð2i sin yÞ; so that

DnðxÞ ¼ eiy

2i sin y
einy � e�iy

2i sin y
¼ sinðnþ 1Þy

sin y
:

If Dn(x) ¼ det TnðxÞj j is the determinant obtained from the tridiagonal matrix Tn

given above, then Dn(x) satisfies the recurrence relation (difference equation)

DnðxÞ ¼ xDn�1ðxÞ � Dn�2ðxÞ with x ¼ 2 cos y, for n ¼ 2, 3,... subject to the initial
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conditions D�1ðxÞ ¼ 0 and D0ðxÞ ¼ 1. The explicit expression for Dn(x) in terms

of n is given by

DnðxÞ ¼ sinðnþ 1Þy
sin y

; for n ¼ 1; 2; : : : : (5.30)

The eigenvalues l of Tn(x) are the solutions of TnðxÞ � lIj j ¼ 0; which are the n
solutions l of

x� l �1 0 0 � � � 0 0 0

�1 x� l �1 0 � � � 0 0 0

0 �1 x� l �1 � � � 0 0 0

0 0 �1 x� l � � � 0 0 0

..

. ..
. ..

. ..
. � � � ..

. ..
. ..

.

0 0 0 0 � � � �1 x� l �1

0 0 0 0 � � � 0 �1 x� l

��������������

��������������

¼ 0: (5.31)

The characteristic equation for Tn(x) follows the previous reasoning by repla-

cing x ¼ 2 cos y by x� l ¼ 2 cos y. So the expression for the characteristic equa-

tion becomes

sinðnþ 1Þy
sin y

¼ 0; (5.32)

with x� l ¼ 2 cos y: Now sinðnþ 1Þy ¼ 0 when y ¼ mp=ðnþ 1Þ; with n ¼ 0;
�1; �2; . . . ; so 2 cos y ¼ 2 cos mp=ðnþ 1Þð Þ, from which it follows that the

n eigenvalues l1; l2; . . . ; ln are given by

lm ¼ x� 2 cos
mp
nþ 1

� 

; m ¼ 1; 2; : : : ; n: (5.33)

The eigenvectors u1; u2; : : : ; un are easily found from their defining equation

TnðxÞ � lmI½ �um ¼ 0 because of the simple structure of Tn(x). Matrices of this type

occur in many applications so, by way of an example, we will find the eigenvalues

and eigenvectors of the tridiagonal matrix Tn(x) when x ¼ 2.

Let the eigenvector um ¼ ½uðmÞ1 ; u
ðmÞ
2 ; : : : ; u

ðmÞ
n �T; and set x ¼ 2 in Tn(x) in the

defining matrix equation Tnð2Þ � lmI½ �um ¼ 0: The first scalar equation obtained

from this matrix equation is

ð2� lmÞuðmÞ2 � u
ðmÞ
1 ¼ 0:

The n� 2 equations that follow become

� u
ðmÞ
i�1 þ ð2� lmÞuðmÞi � u

ðmÞ
iþ1 ¼ 0 for i ¼ 2; 3; : : : ; n� 1;
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while the last equation becomes

� u
ðmÞ
n�1 þ ð2� lmÞuðmÞn ¼ 0:

From the first two equations ð2� lmÞuðmÞ2 � u
ðmÞ
1 ¼ 0 and � u

ðmÞ
1 þ

ð2� lmÞuðmÞ2 � u
ðmÞ
3 ¼ 0 it follows that

u
ðmÞ
1

1
¼ u

ðmÞ
2

2� lm
¼ u

ðmÞ
3

ð2� lmÞ2 � 1
: (5.34)

Using the fact that 2� lm ¼ 2 cos mp=ðnþ 1Þð Þ; expanding and simplifying

denominators and dividing each of these expressions by sin mp=ðn� 1Þð Þ; fol-

lowed by using elementary trigonometric identities like

2 sin mp=ðnþ 1Þð Þ cos mp=ðnþ 1Þð Þ ¼ sin 2mp=ðnþ 1Þð Þ;

the elements u
ðmÞ
1 ; u

ðmÞ
2 and u

ðmÞ
3 are found to be such that

u
ðmÞ
1

sin mp
nþ1

� � ¼ u
ðmÞ
2

sin 2mp
nþ1

� � ¼ u
ðmÞ
3

sin 3mp
nþ1

� � :

So the first three elements of the eigenvector um are proportional to

sin 2m=ðnþ 1Þð Þ; sin mp=ðnþ 1Þð Þ; and sin 3m=ðnþ 1Þð Þ: However, eigenvectors
can be scaled arbitrarily while remaining eigenvectors, so the scale constant

can be set equal to 1, when these three expressions can be taken to be the

first three elements of the eigenvector um. If the second and third scalar equations

in Tnð2Þ � lmI½ �um ¼ 0 are used, similar reasoning shows that u
ðmÞ
4 ¼

sin 4m=ðnþ 1Þð Þ, and this suggests the eigenvectors um are given by

um ¼ sin
mp
nþ 1

� 

; sin

2mp
nþ 1

� 

; : : : ; sin

nmp
nþ 1

� 
� 	T
; form ¼ 1; 2; :::; n: (5.35)

This intuitive result is correct, and it can be proved by mathematical induction,

though the details of this proof are left as an exercise.

5.10 The Power Method for Eigenvalues and Eigenvectors

So far eigenvalues and eigenvectors have been found using the classical algebraic

approach. This starts by finding the characteristic equation for a matrix A and

solving it to find the eigenvalues, and then the eigenvalues are used to solve the

systems of equations that determine the associated eigenvectors of A. This method

has been successful because the examples used specially constructed 3� 3 matrices
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whose cubic characteristic equations could be solved by inspection. This usually

involved finding one eigenvalue l1 by inspection, typically a small integer, and then

factoring out the expression ðl� l1Þ from the characteristic equation to arrive at a

quadratic equation which was then solved for the two remaining eigenvalues using

the quadratic formula.

In general, the roots of a characteristic equation cannot be found by inspection,

so numerical methods must be used. This is true even when an equation as simple as

a cubic is involved if a root cannot be found by inspection. When characteristic

equations with degrees greater than three are involved numerical methods become a

necessity. Finding eigenvectors is more difficult than finding eigenvalues, particu-

larly when the eigenvectors correspond to eigenvalues that are complex, are

repeated, or some are close together. Software programs resolve these difficulties

by using a variety of special techniques to enable then to compute eigenvalues and

eigenvectors accurately for an arbitrary n � n matrix. It is neither possible nor

desirable to discuss these methods here, though it is appropriate to discuss a

numerical approach that uses matrix methods to accurately compute some eigen-

values and eigenvectors for a fairly wide class of matrices. The method to be

discussed is called the power method, and the computation leads to the determina-

tion of both an eigenvalue and its associated eigenvector.

The power method has its limitations, because it is only suitable for finding

some real eigenvalues and their associated eigenvectors when the eigenvalues are

well separated and the matrix is diagonalizable, though these properties are not

known in advance. The eigenvalue with the largest absolute value is called the

dominant eigenvalue, while the remaining eigenvalues are called the sub-dominant
eigenvalues. The power method is an iterative procedure that determines the

dominant eigenvalue and the elements of its associated eigenvector to a pre-

determined accuracy of m decimal places. This is achieved by terminating the

iterative procedure after say, N iterations, when the Nth and (N þ 1)th iterations

show no change in the mth decimal place of the dominant eigenvalue and each of

the elements of its associated eigenvector.

The method is based on the fact that given an n � n diagonalizable matrix A, an

arbitrary n element matrix column vector v can always be expressed in the form

v ¼ c1v1 þ c2v2 þ � � � þ cnvn; (5.36)

where v1, v2, . . . , vn are the n eigenvectors ofA, and the numbers c1, c2, . . . , cn are
suitable constants. It will be assumed that the eigenvalues are arranged in order of

their absolute values with l1j j> l2j j � l3j j � � � � � lnj j, so l1 is the dominant

eigenvalue. Pre-multiplying v in (5.24) by A, and using the fact that the eigenvec-

tors vi and the eigenvalues li are related by Avi ¼ livi for i ¼ 1, 2, . . . , n, gives

Av ¼ c1Av1 þ c2Av2 þ � � � þ Av
n
¼ l1 c1v1 þ c2

l2
l1

v2 þ � � � þ cn
ln
l1

vn

� 

:
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Iterating this result r times leads to the result

Avr ¼ lr1 c1v1 þ c2
l2
l1

� 
r

v2 þ � � � þ cn
ln
l1

� 
r

vn

� �
: (5.37)

The ordering of the magnitudes of the eigenvalues means that lr=l1j j< 1 for

r¼ 2, 3, . . . , so that when r becomes large, all terms on the right of (5.37), with the

exception of c1v1, will become vanishingly small, causing the expression on the

right to reduce to lr1c1v1, which is a multiple of the eigenvector v1 corresponding to

the dominant eigenvalue l1. If l1j j> 1 the scale factor multiplying v1 will grow

rapidly as r increases, while if l1j j< 1 the scale factor will become vanishingly

small as r increases. To overcome these difficulties it is usual to normalize the

successive eigenvector approximations v
ðrÞ
1 for v1 at each stage of the iterative

procedure by scaling successive approximations in such a way that the first element

of the approximate vector is 1. As the eigenvector is unknown, the iterative process

must begin by using any convenient starting approximation, which is usually taken

to be the unit matrix column vector v
ð0Þ
1 ¼ ½1; 1; : : : ; 1�T, though any other

vector can be used. Once the result Avð0Þ¼ u
ð1Þ
1 has been computed, where

u
ð1Þ
1 ¼ [u

ð1Þ
1 , u

ð1Þ
2 ; : : : ; u

ð1Þ
n ]T, the vector u

ð1Þ
1 is normalized by dividing each

of its elements by b1 ¼ u
ð1Þ
1 to arrive at the next approximation

v
ð1Þ
1 ¼ 1; u

ð1Þ
2

.
u
ð1Þ
1 ; u

ð1Þ
3

.
u
ð1Þ
1 ; : : : ; u

ð1Þ
n

.
u
ð1Þ
1

h iT
. The procedure is then repeated

by computing Av
ð1Þ
1 ¼ u

ð2Þ
1 , where u

ð2Þ
1 ¼ [u

ð2Þ
1 , u

ð2Þ
2 ; : : : ; u

ð2Þ
n ]T. The matrix

column vector u
ð2Þ
1 is then normalized by dividing each of its elements

by b2 ¼ u
ð2Þ
1 ; when the next approximation for v1 becomes v

ð2Þ
1 ¼

1; u
ð2Þ
2

.
u
ð2Þ
1 ; u

ð2Þ
3

.
u
ð2Þ
1 ; : : : ; u

ð2Þ
n

.
u
ð2Þ
1

h iT
. As this iterative procedure is repeated,

so the sequence of numbers b1; b2; b3; : : :f g will converge to the dominant

eigenvalue l1, while the sequence of vectors v
ð0Þ
1 ; v

ð1Þ
1 ; v

ð2Þ
1 ; : : :

n o
will converge

to the eigenvector v1.

If a result is required to be accurate to m decimal places, the iterative procedure

is terminated when, after N steps, the (Nþ 1)th step fails to change the mth decimal

place in either the approximation for l1; or in the elements of the approximation for

the eigenvector v1.

Example 5.14. Use the power method to find the dominant eigenvalue and its

eigenvector given that A ¼
1 2 1

1 0 1

1 1 1

2
4

3
5:

Solution. In order to check the accuracy of the iterative process, notice first that the
characteristic equation is l3 � 2l2 � 3l ¼ 0; or lðlþ 1Þðl� 3Þ ¼ 0; so the

eigenvalues are 3, 0 and �1, so the dominant eigenvalue l1 ¼ 3: A routine
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calculation shows the eigenvector v1, scaled so its first element is 1, is v1 ¼
1; 3

5
; 4

5

� �T ¼ 1; 0:6; 0:8½ �T:
Setting v

ð0Þ
1 ¼ ½1; 1; 1�T, we find that

Av
ð0Þ
1 ¼

4

2

3

2
4
3
5; so b1 ¼ 4 giving v

ð1Þ
1 ¼

1

0:5
0:75

2
4

3
5:

Next, using v
ð1Þ
1 , we find that

Av
ð1Þ
1 ¼

2:75
1:75
2:25

2
4

3
5; so b2 ¼ 2:75 giving v

ð2Þ
1 ¼

1

0:63636
0:81818

2
4

3
5:

Proceeding to the next stage of the iteration, using v
ð2Þ
1 , we find that

Av
ð2Þ
1 ¼

3:09091
1:81818
2:45465

2
4

3
5; so b1 ¼ 3:09091 giving v

ð3Þ
1 ¼

1

0:58824
0:79412

2
4

3
5:

Continuing this procedure for ten iterations yields the b sequence bi ¼ {4,2.75,

3.09091, 2.97059, 3.00991, 3.00132, 2.99952, 3.00016, 2.99995, 3.000002}.

This is seen to be converging to the limiting value 3, in agreement with the

exact value of the dominant eigenvalue l1 ¼ 3 calculated at the outset.

Omitting the intermediate calculations, the approximation for v
ð10Þ
1 was found to be

v
ð10Þ
1 ¼ 1; 0:59999; 0:79999½ �T, which is seen to be converging to the exact result

for the eigenvector v1 ¼ 1; 3
5
; 4

5

� �T
:

}
The power method can be used to find another eigenvalue and eigenvector by

modifying matrix A. Consider a matrix B derived from matrix A by subtracting a

number k from each element on the leading diagonal of A. Then the defining

characteristic equation for matrix B becomes det A� ðl� kÞI½ � ¼ 0, which is

simply the characteristic equation of matrix A with l replaced by ðl� kÞ. Thus
the eigenvalues of matrix B are those of matrix A, from each of which has been

subtracted the number k (see Exercise 2.12). However, the eigenvectors of B will

still be the eigenvectors of A that correspond to the eigenvalues l: When applying

this transformation to matrix A, the dominant eigenvalue of B will become the one

closest to k.
To use this result with the power method, let l1 be the dominant eigenvalue of

matrix A, then subtracting l1 from each element on the leading diagonal of A will

produce a new matrix B, with the property that its dominant eigenvalue will now be
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the one closest to l1: Applying the power method to matrix B will generate an

eigenvalue ~l which is sub-dominant to l1 together with its eigenvector, and its

eigenvalue will be

l ¼ ~lþ l1:

If this method is applied to matrix A in Example 5.14 with the dominant

eigenvalue l1 ¼ 3, so matrix B becomes

B ¼
�2 2 1

1 �3 1

1 1 �2

2
4

3
5:

An application of the power method to matrix B will be found to converge very

rapidly to the exact result l� 3 ¼ �4; so l ¼ �1; when the corresponding eigen-
vector will be found to be v2 ¼ ½1;�1; 0�T, though the details of the calculation are
left as an exercise.

The power method can be modified so it will generate the eigenvalue of A with

the smallest magnitude, together with its associated eigenvector. The modification

follows from the defining relation for eigenvectors Ax ¼ lx. When A is non-

singular, this result implies that

A�1x ¼ 1

l
x; (5.38)

so the eigenvectors of A are also the eigenvectors of A�1; while the eigenvalues of

A�1 are the reciprocals of the eigenvalues of A. So an application of the power

method toA�1 will generate the required eigenvector whose eigenvalue will then be

the reciprocal of the eigenvector that is required.

As the dominant eigenvalue of A is l1 ¼ 3;matrix B will be obtained from A by

subtracting 3 from each element on its leading diagonal. The power method can

then be used to find the dominant eigenvalue of B, say ~l, when its eigenvector will

be the eigenvector of A corresponding, to the eigenvalue l ¼ ~lþ k:
For reference purposes, the values of the two sub-dominant eigenvalues ofA and

their eigenvectors are

l2 ¼ �1; v2 ¼
�1

1

0

2
4

3
5 and l3 ¼ 0; v3 ¼

�1

0

1

2
4

3
5:

}
5.11 Estimating Regions Containing Eigenvalues

The eigenvalues of an n � n matrix A may be real or complex, and in some

applications a qualitative knowledge of their location in the complex plane is

useful, while in others it may even make the determination of their actual values
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unnecessary. In what follows, the complex plane will be called the z-plane, where
z ¼ x + iy is the Cartesian representation of a complex number. The test to be

described is called the Gerschgorin circle theorem, and although the information it

provides does not identify the precise location of the eigenvalues of A, the test is

easy to apply and it does identify either a region or regions in the z-plane that

contain all of the eigenvalues. The theorem given here is a slight extension of the

usual theorem, since it provides a little more information than the original theorem

when the regions containing the eigenvalues are disjoint, in the sense that they do

not overlap or have points in common. The corollary to the theorem uses matrix A

and its transpose AT in a way that can give a better estimate of the region or regions

containing the eigenvalues of A.

Theorem 5.10 The Extended Gerschgorin Circle Theorem. Let A½aij� be an n� n
matrix. Using matrix A, define n disks with the circular boundaries C1, C2, . . . , Cn

such that their respective centers are at the points a11, a22, . . . , ann on the real axis
of the z-plane, with the radius rk of the circle Ck with its center at z¼ akk given by

rk ¼
Xn
j¼1
j 6¼k

akj
�� ��¼ ak1j j þ ak2j j þ � � � þ ak;j�1

�� ��þ ak;jþ1

�� ��þ � � � þ aknj j:

Notice that when calculating the radius rk of circle Ck the term akkj j is omitted
from the summation.

(i) Then at least one eigenvalue of A will lie inside each circular disk, and the
region R in the z-plane comprising the area covered by all of the circular disks
will contain all of the eigenvalues of A.

(ii) If k circular disks form one region R1, and n� k circular disks form another
region R2, and regions R1 and R2 do not overlap or have common points (they
are disjoint), then k eigenvalues lie in region R1 and n� k eigenvalues lie in
region R2..

Proof (Optional). The proof of the theorem belongs to the study of complex

analysis, but as the proof of part (i) of the theorem is simple an outline proof will

be given here, though the proof of part (ii) which is a little more difficult will be

omitted.

The rth equation in Ax ¼ lx is

ar1x1 þ � � � þ ar;r�1xr�1 þ ðarr � lÞxr þ ar;rþ1xrþ1 þ � � � þ arrxr ¼ 0:

If this equation is solved for ðarr � lÞ, taking the modulus of the result and making

repeated use of the triangle inequality aþ bj j � aj j þ bj j; leads to the inequality

arr � lj j<
Xn
j¼1
j6¼r

arj
�� �� xj�� ��� xrj j; for r ¼ 1; 2; : : : ; n:
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Now let xr be the element of vector x with the largest modulus, so that

xj
�� ��� xrj j � 1 for r ¼ 1, 2, . . . , n. Result (I) of the theorem follows from the

inequality for arr � lj j when each term xj
�� ��� xrj jis replaced by 1, after which this

replacement of terms is repeated for r ¼ 1, 2, . . . , n.
}

On occasions the Corollary that follows can be used to give a better estimate of

the region or regions that contain all of the eigenvalues of A.

Corollary 5.9. Finding Another Estimate For the Region In Theorem 5.10. Using
AT, the transpose of matrix A in Theorem 5.10, construct the n Gerschgorin disks

CT
1 ; C

T
2 ; : : : ; C

T
n for matrix AT, as defined in Theorem 5.10. Then the eigenvalues

of A all lie in the region RT covered by these discs, which may be disjoint. Part (ii)
of Theorem 5.10 is again applicable.

Proof. The proof is almost immediate, because it follows directly from Theorem 5.7

that the eigenvalues of A and AT are identical.

}
Notice that if one of the regions R and RT defined in Theorem 5.10 and its

Corollary lies entirely within the other region then that region is optimum, in the

sense that it is the smaller of the two regions with the required property. It is, of

course, possible that neither of regions R and RT contains the other region, in which

case neither region is optimal, while if matrix A is symmetrical regions R and RT

coincide.

}
Example 5.15. Use Theorem 5.10 and its Corollary to find, if possible, an optimum

the region or regions in the z-plane that contains all of the eigenvalues of the matrix

A ¼
3 0 �3

0 �2 0

1 2 �3

2
4

3
5:

Plot regions R and RT in the z-plane, mark the exact positions of the eigenvalues

in each region, and determine if there is an optimum region.

Solution. The Gerschgorin disks for matrix A are:

C1 with its centre at z ¼ 3 on the real axis and the radius r1 ¼ �3j j ¼ 3;
C2 with its centre at z ¼ �2 on the real axis and the radius r2 ¼ 0;
C3 with its centre at z ¼ �3 on the real axis and the radius r3 ¼ 1j j þ 2j j ¼ 3:

The region R in the z-plane containing the eigenvalues of A is shown as

the shaded area in Fig. 5.1a, where disk C2 has degenerated to the single point

where disks C1 and C3 meet at the origin. The characteristic equation is

l3 þ 2l2 � 6l� 12 ¼ 0, with the roots (the eigenvalues) l ¼ �2 and � ffiffiffi
6

p
;

shown as solid dots on the real axis in Fig. 5.1a.
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The Gerschgorin disks for matrix AT are:

CT
1 with its centre at z ¼ 3 on the real axis and the radius rT1 ¼ 1j j ¼ 1;

CT
2 with its centre at z ¼ �2 on the real axis and the radius r2 ¼ 0;

CT
3 with its centre at z ¼ �3 on the real axis and the radius r3 ¼ �3j j ¼ 3:

In this case, the region RT in the z-plane containing the eigenvalues of A is

disjoint, and shown as the two shaded areas in Fig. 5.1b, where again the eigenva-

lues of A are shown as solid dots on the real axis. Here, again, disk CT
2 has

degenerated to a point at the origin on the boundary of disk CT
3 , though disk CT

1 is

now isolated. It follows from (ii) in Theorem 5.10 when applied to AT that the

Gerschgorin disk CT
1 contains one eigenvalue of A, while Gerschgorin disk CT

3

contains two eigenvalues of A. Disk CT
2 has a zero radius, but it is now part of disk

CT
3 , so the theorem is correct when it attributes the remaining eigenvalues to the

union of disks CT
2 and CT

3 . A comparison of Figs. 5.1a and b shows region RTlies

within region R, and so it is the optimum region, both in the sense that its

Gerschgorin disks occupy the lease space in the z-plane, and because a region

occupied by a single eigenvalue has been identified.

}

z-Plane

a

b

y Region R

x

C3 C1

–3–6 3 60

z-Plane
y Region RT

x

C3
T

C1
T

–3–6 30

Fig. 5.1 (a) The region R (b) The region RT
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5.12 The Fibonacci Sequence and Matrices

The Fibonacci sequence of numbers is 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . . After the first
two numbers, each subsequent number is generated by summing the two previous

numbers in the sequence, so that 1 þ 2 ¼ 3, 2 þ 3 ¼ 5, 3 þ 5 ¼ 8, and so on. The

origin of this sequence dates back to 1202 when the most influential Italian

algebraist of the time, Leonardo of Pisa known as Fibonacci, published a book on

algebra in which the following famous problem was first asked and then answered:

How many pairs of rabbits will be produced in a year, beginning with a single pair, if in

every month each pair bears a new pair which then become productive from the second

month on?

Fibonacci’s answer was based on the two step linear difference equation

unþ2 ¼ unþ1 þ un with n � 0 and u1 ¼ u0 ¼ 1;

which he used sequentially to find the number of rabbits produced in a year, though

he did not attempt to derive the general solution that would give the number of

rabbits after n months.

It is reasonable to ask why this ancient problem and its resulting sequence should

still be of interest. The answer is surprising, because sub-sequences of the Fibonacci

sequence are found throughout nature, as in the spirals of sunflower heads, in pine

cones, in the number of buds on the stems of different plants, in spirals found in fossils,

and in patterns of veins in leaves. In mathematics, the Fibonacci sequence enters in

a variety of ways, one of which occurs in the design of an optimum search algorithm

for the determination of the zeros of functions and, in particular, of polynomials.

The general solution of the difference equation

un ¼ 1ffiffiffi
5

p 1þ ffiffiffi
5

p

2

 !n

� 1� ffiffiffi
5

p

2

 !n" #

can be found by the method used in Section 5.8, but the reason for considering the

problem here is because the solution can also be obtained using matrix methods

coupled with diagonalization.

The two-step difference equation can be transformed into a simple one-step

matrix equation by setting Un ¼ unþ1

un

� 	
, when the difference equation

unþ2 ¼ unþ1 þ un ; together with the additional relationship unþ1 ¼ unþ1; is trans-

formed into the simple one-step matrix equation Unþ1 ¼ AUn, with A ¼ 1 1

1 0

� 	

so that Un: ¼ AnU0: To evaluate An we make use of diagonalization with the

eigenvalues of A given by l1 ¼ 1
2
1� ffiffiffi

5
p� �

and l2 ¼ 1
2
1þ ffiffiffi

5
p� �

; and the

corresponding eigenvectors

x1 ¼
1
2
1� ffiffiffi

5
p� �

1

� 	
; x2 ¼

1
2
1þ ffiffiffi

5
p� �

1

� 	
:
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Thus the orthogonalizing matrix P for matrix A is

P ¼
1
2
1� ffiffiffi

5
p� �

1
2
1þ ffiffiffi

5
p� �

1 1

� 	
; while P�1 ¼ � 1ffiffi

5
p 1

2
ffiffi
5

p ð ffiffiffi
5

p þ 1Þ
1ffiffi
5

p 1

2
ffiffi
5

p
ffiffiffi
5

p � 1
� �

" #
:

So setting A ¼ PDP�1;with D ¼ diag l1; l2f g we find that An ¼ P diag

ln1; l
n
2

� �
P�1 :

Using this result in Unþ1 ¼ AnUn, and solving for un, gives the general solution

un ¼ 1ffiffiffi
5

p 1þ ffiffiffi
5

p

2

 !n

� 1� ffiffiffi
5

p

2

 !n" #
:

It is a curious fact that limn!1 unþ1=unð Þ ¼ 1
2
1þ ffiffiffi

5
p� � 	 1:618 is the golden

ratio used by ancient Greek architects, and also modern ones, to ensure buildings

have what is believed be the most esthetically pleasing proportions. For example

architects would use a rectangle, either as a plan or as the front projection of a

building, with the proportions 5:3, 8:5 or 13:8, all of which are close approxima-

tions to the golden ratio.

5.13 A Two-Point Boundary-Value Problem and a

Tridiagonal Matrix

This section shows one of the ways in which a tridiagonal matrix of the type

considered in Section 5.8 can arise when using a numerical method to solve a

two-point boundary-value problem. A two-point boundary-value problem for

a second-order ordinary differential equation involves finding, when possible,

a solution u(x) of the equation over an interval a � x � b such that u(a) ¼ k1 and
u(b) ¼ k2. So, in a two-point boundary-value problem, instead of the solution

satisfying two initial conditions, the solution must satisfy one condition at x ¼ a
at the lower boundary, and another condition at x ¼ b which is the upper
boundary, of the interval a � x � bin which the solution is required. The

case considered here is a particularly simple one, because the equation is

d2u=dx2 ¼ �f ðxÞ on the interval 0 � x � 1; subject to the homogeneous boundary
conditions u(0) ¼ u(1) ¼ 0. When f(x) is suitably simple, this equation can be

integrated analytically and the two arbitrary constants of integration chosen such

that both boundary conditions are satisfied. However, although the equation is

simple, when f(x) cannot be integrated analytically the solution can only be found

by a numerical approach.

The approach involves dividing the interval 0 � x � 1 into n uniform sub-

intervals of length h ¼ 1/n, with the point at x ¼ 0 numbered 0, and the point at

x ¼ 1 numbered n þ 1, with the points at the ends of the sub-intervals called grid
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points. The first three terms of the Taylor series expansions of uðx� hÞ and

uðxþ hÞ, approximate these functions by

uðx� hÞ ¼ uðxÞ � huðxÞ þ hu00ðxÞ þ an error term

and

uðxþ hÞ ¼ uðxÞ þ u0ðxÞ þ h2u00ðxÞ þ an error term:

Adding these results and neglecting error terms gives d2u
�
dx2 	

1
�
h2

� �
uðxþ hÞ � 2uðxÞ þ uðx� hÞf g:

In terms of this result, the equation connecting the discrete values of u(x) at the
grid points j� 1; j and jþ 1 becomes

� ujþ1 þ 2uj � uj�1 ¼ h2f ð jhÞ:

Arranging all n equations in matrix form this becomes Tn(2)u ¼ f where

the nonhomogeneous vector f ¼ h2f ðhÞ; h2f ð2hÞ; : : : ; h2f ðnhÞ½ �T, so the approx-
imate solution is given by solving Tn(2)u ¼ f for u. This usually involves using

Gaussian elimination, though when n is small and T�1
n is easily calculated, the

solution can be found from u ¼ T�1
n ð2Þf; where Tn(2) is matrix (5.24) with x ¼ 2.

Setting f ðxÞ ¼ 1þ ex and n ¼ 5 means there will be four internal grid points

each separated by h ¼ 0.2, so the tridiagonal matrices involved will be T4ð2Þ, and
for later use T�1

4 ð2Þ, given by

T4ð2Þ ¼

2 �1 0 0

�1 2 �1 0

0 �1 2 �1

0 0 �1 2

2
66664

3
77775 and T�1

4 ð2Þ ¼

4
5

3
5

2
5

1
5

3
5

6
5

4
5

2
5

2
5

4
5

6
5

3
5

1
5

2
5

3
5

4
5

2
66664

3
77775:

The matrix T�1
4 ð2Þ is given here because the problem is sufficiently simple that

the resulting equations can be solved with the aid of this inverse matrix, the

calculation of which is simplified by the symmetry of T4ð2Þ (why?). The elements

of f are f(jh) ¼ h2(1 þ expðj=5Þ) for j ¼ 1, 2, 3, 4.

The exact solution is uðxÞ ¼ �1þ 1
2
� e

� �
xþ 1

2
x2 þ ex; and the results that

follow compare the exact and approximate solutions at the grid points.

u1 ¼ u 1
5

� �
u2 ¼ u 2

5

� �
u3 ¼ u 3

5

� �
u4 ¼ u 4

5

� �
Exact �0.2023 �0.3155 �0.3289 �0.2286

Approx �0.2018 �0.3148 �0.3282 �0.2286

Increasing the value of n will improve still further the approximate solutions at

the grid points at the cost of increasing to n the number of equations that need to be

solved. However, problems like this do not produce matrices the size of those
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encountered when solving the Laplace equation in Section 3.9, if the number of grid

points is increased considerably in both the x and y directions.

5.14 Matrices with Complex Elements

In certain applications, n � n matrices with complex elements occur, the most

important of which are Hermitian matrices, skew-Hermitian matrices, and unitary
matrices, all for which exhibit certain types of symmetry.

5.14.1 Hermitian Matrices

These are complex matrices that generalize the more familiar symmetric matrices.

An Hermitian matrix A is a matrix with the property that AT ¼ A, where the

overbar indicates that each element of A is replaced by its complex conjugate

and, as usual, the superscript T indicates the matrix transpose operation. A simple

example of an Hermitian is

A ¼ 1 2þ i
2� i 3

� 	
:

An immediate consequence of the definition of an Hermitian matrix is that the

elements on its leading diagonal are all real. This follows from the fact that the ith
element aii on the leading diagonal is aii ¼ a i þ ib i, for i ¼ 1, 2, . . . , n, but

aii ¼ �aii
T; which is only possible if aii ¼ a i, showing that each element on the

leading diagonal must be real.
The matrix AT, that is the transpose of the matrix whose elements are the

complex conjugates of the corresponding elements in A, is called the Hermitian
transpose of A, and it is denoted by AH, so AH ¼ �AT. In terms of this notation, an

n � n matrix A will be Hermitian if

AH ¼ A: (5.39)

Notice that a symmetric matrix is a special case of an Hermitian matrix when all

of its elements are real.

It is left as an exercise to show that the Hermitian transpose operation has the

following properties similar to those of the ordinary transpose operation:

AH
� �H ¼ A; (5.40)

and if A and B are two Hermitian matrices that are conformable for the product AB,

then

ABð ÞH ¼ BHAH: (5.41)
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The definition of the norm of a vector used so far was based on a vector with real

elements, and the norm is an essentially nonnegative quantity that provides a

measure of the “size” of the vector. However, if this property is to remain true for

vectors with complex elements it becomes necessary to modify the definition of the

inner product of two vectors. The modification is simple, and when the elements of

the n element row vector x¼ [x1, x2, . . . , xn], and the n element column vector y¼
[y1, y2, . . . , yn]

T are complex, their complex inner product is defined as

xy ¼ x1�y1 þ x2�y2 þ � � � þ xn�ynð Þ1=2 : (5.42)

It follows from this that the norm of a vector x with complex elements, written

xk k, defined as the inner product xxTð Þ1=2; is given by

xk k ¼ x�xT
� �1=2 ¼ x1�x1 þ x2�x2 þ � � � þ xn�xnð Þ1=2 : (5.43)

This has the property required of a norm that it is nonnegative, as can be seen

from the fact that each product xi�xi is real and nonnegative. Notice that (5.43) is

compatible with the definition of the norm of a vector x with real elements, because

then (5.43) reduces to the ordinary norm xk k ¼ x21 þ x22 þ � � � þ x2n
� �1=2

.

Hermitian matrices have certain properties similar to those of real symmetric

matrices, and the theorem that now follows gives two of their fundamental properties.

Theorem 5.11 Two Fundamental Properties of Hermitian Matrices. Let matrix A
be Hermitian. Then:

(i) The eigenvalues of A are all real.
(ii) Eigenvectors corresponding to distinct eigenvalues are orthogonal with

respect to the complex inner product.

Proof.

(i) Let l be any eigenvalue of the Hermitian matrix A, with x the corresponding

column eigenvector, then

Ax ¼ lx:

Then as the elements of A are complex, the eigenvalue l and the eigenvector x

may also be complex. Pre-multiplying the equation by �xT it becomes

�xT �Ax ¼ l�xTx ¼ l xk k2: (5.44)

Next, taking the complex conjugate of Ax¼ lx, and then taking the transpose of
each side of the equation, we have

�xT �A
T ¼ �l�xT:

After post-multiplication by x this becomes

�xTAx ¼ �l�xTx ¼ �l xk k2; (5.45)
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because A is Hermitian �A
T ¼ AH ¼ A : Subtracting (b) from (a) gives

l� �l
� �

xk k2 ¼ 0;

but xk k2 6¼ 0; so l ¼ �l which is only possible if l is real. As x was any eigenvector
of A, it follows that every eigenvalue of an Hermitian matrix A must be real.

(ii) Let x and y be eigenvectors of an Hermitian matrix A corresponding, respec-

tively, to the distinct real eigenvalues l and m. Then

Ax ¼ lx and Ay ¼ my:

Pre-multiplying the first equation by yT and the second equation by xT they become

�yTAx ¼ l�yTx (5.46)

and

�xTAy ¼ m�xTy: (5.47)

Taking the complex conjugate of Eq. (5.46), followed by the transpose

operation, while remembering that l is real so that �l ¼ l, (5.47) becomes

�xTAy ¼ l�xTy; (5.48)

because �A
T ¼ AH ¼ A : Finally, subtracting Eq. (5.47) from Eq. (5.48) gives

l� mð Þ�xTy ¼ 0;

but by hypothesis l 6¼ m, so xTy ¼ 0, confirming that the eigenvectors x and y are

orthogonal with respect to the complex inner product. As x and y were any two

eigenvectors of the Hermitian matrix A corresponding to the distinct eigenvalues

l and m, property (ii) has been established.

}
Example 5.14. Given the matrix

A ¼ 1 1þ i
1� i 0

� 	
:

(a) Verify that A is Hermitian, (b) find its eigenvalues, and (c) find its eigenvectors

and verify that they are orthogonal with respect to the complex inner product.

Solution.
(a) The matrix is Hermitian because the elements on its leading diagonal are real

and its off-diagonal elements are complex conjugates.
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(b) The eigenvalues are the solutions of the characteristic equation.

PðlÞ ¼ 1� l 1þ i

1� i �l

����
���� ¼ 0; corresponding to l2 � l� 2 ¼ 0with the roots

l ¼ �1 and l ¼ 2:

(c) Calculating the eigenvectors in the usual way shows that when l1 ¼ �1 the

eigenvector is proportional to

x1 ¼ 1þ i
�2

� 	
;

and when l2 ¼ 2 the eigenvector is proportional to

x 2 ¼ 1þ i
1

� 	
:

The eigenvectors x1 and x2 are orthogonal with respect to the complex inner

product because x1ð ÞT�x2 ¼ 0:
}

5.14.2 Skew-Hermitian Matrices

A skew-Hermitianmatrix is a generalization of an ordinary skew-symmetric matrix,

and it is defined as a matrix A with the property that

�A
T ¼ �A; so the elements of A are such that �akj ¼ �ajk: (5.49)

Setting k ¼ j in (5.49), and ajj ¼aþ ib, it follows that �ajj ¼ a� ib, so �ajj ¼ �ajj
is only possible if a ¼ 0, so the elements on the leading diagonal of a skew-

Hermitian matrix must either be purely imaginary or zero.

A simple example of a skew-Hermitian matrix is

A ¼ 2i 3� i
�3� i �4i

� 	
:

5.14.3 Unitary Matrices

A unitary matrix is a generalization of an orthogonal matrix, and U is a unitary

matrix if

�U
T ¼ U�1: (5.50)
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A simple example of a unitary matrix is

U ¼
1
2

ffiffiffi
3

p
i 1

2
1
2

1
2

ffiffiffi
3

p
i

" #
:

Theorem 5.12 The Eigenvalues of skew-Hermitian and Unitary Matrices.

(i) The eigenvalues of a skew-Hermitian matrix are either purely imaginary, or zero.
(ii) The eigenvalues of a unitary matrix all have absolute value 1.

Proof.

(i) If matrix A is skew-Hermitian, it follows from its definition that iA is Hermi-

tian. The eigenvalues of A are the roots of the characteristic equation

A� lIj j ¼ 0: Multiplying the matrix A� lI in the determinant by i will not
change this result, so iA� ilIj j ¼ 0: As iA is Hermitian, Theorem 5.11(i)

asserts that the eigenvalues il are real, so the eigenvalues l of the skew-

Hermitian matrix A must be purely imaginary. An eigenvalue of an Hermitian

matrix may be zero, so it follows that an eigenvalue of a skew-Hermitian matrix

may also be zero, and the result is proved.

(ii) The proof of this result is essentially the same as the proof of result (i) in

Theorem 3.1 concerning orthogonal matrices into which the complex conjugate

operation has been introduced, so the details will be left as an exercise.

}
Exercises

In Exercises 1 through 8 find the characteristic equation pðlÞ ¼ det[A�lI]¼ 0,

and the eigenvalues and eigenvectors of the given matrix A.

1.

A ¼
1 0 �1

�1 1 0

�1 0 1

2
4

3
5 :

2.

A ¼
2 0 1

1 2 1

0 1 1

2
4

3
5 :

3.

A ¼
1 �1 0

�1 �1 1

0 1 1

2
4

3
5 :

4.

A ¼
�1 1 0

1 0 1

0 1 1

2
4

3
5 :

152 5 Eigenvalues, Eigenvectors, Diagonalization, Similarity, Jordan Normal Forms



5.

A ¼
�3 1 �1

1 0 1

�1 2 1

2
4

3
5 :

6.

A ¼
2 1 0

0 1 0

1 1 1

2
4

3
5 :

7.

A ¼
�1 �2 2

�3 �1 3

�3 �2 4

2
4

3
5 :

8.

A ¼
1 0 0

�1 �1 1

�1 �2 2

2
4

3
5 :

In Exercises 9 through 12 find a diagonalizing matrix P for the given matrix A.

9.

A ¼
�3 4 4

1 �3 �1

�3 6 4

2
4

3
5 :

10.

A ¼
6 9 4

�4 �7 �4

�1 �1 1

2
4

3
5 :

11.

A ¼
�1 0 �2

1 1 1

�3 �6 �2

2
4

3
5 :

12.

A ¼
5 11 7

�2 �3 �2

2 1 0

2
4

3
5 :

In Exercises 13 and 14 find the eigenvalues and eigenvectors of matrix A and

determine if A is diagonalizable.

13.

A ¼
�1 0 �1

�1 0 �1

�1 2 0

2
4

3
5 :
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14.

A ¼
�3 0 1

1 0 1

�1 1 0

2
4

3
5 :

In Exercises 15 and 16 find an orthogonal diagonalizing matrix Q for the

symmetric matrix A.

15.

A ¼
1 0 �1

0 �1 0

�1 0 1

2
4

3
5 :

16.

A ¼
�3 �2 �2

�2 1 �2

�2 �2 1

2
4

3
5 :

In Exercises 17 through 20 use a suitable orthogonal diagonalizing matrix Q

with x ¼ [x1, x2, x3]
T to reduce the quadratic form Q(x) ¼ xTAx to a sum of

squares Q(y) ¼ yTAy, with y ¼ [y1, y2, y3]
T. Find the change of variable from

the xi to the yi to achieve the reduction, and write down and classify the

quadratic form.

17. Q(x) ¼ xTAx with A ¼
�1 2 �1

2 �1 �1

�1 �1 0

2
4

3
5 :

18. Q(x) ¼ xTAx with A ¼
1 1 0

1 0 1

0 1 1

2
4

3
5 :

19. Q(x) ¼ xTAx with A ¼
�1 0 2

0 �1 0

2 0 2

2
4

3
5 :

20. Q(x) ¼ xTAx with A ¼
2 �1 1

�1 1 0

1 0 1

2
4

3
5 :

21. Show how when A is nonsingular, multiplication of the Cayley–Hamilton

theorem by the inverse matrix A�1 gives a matrix polynomial that determines

A�1. Use this method to find A�1, given that

A ¼
1 0 3

2 1 1

0 �1 1

2
4

3
5 ;

and check your result by showing that AA�1 ¼ I. What happens if this method

is used to try to find the inverse of a singular matrix A?
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In Exercises 22 through 27 classify each of the matrices and find a matrix that

reduces it to the appropriate Jordan normal form.

22.

A ¼ 2 0

2 2

� 	
:

23.

A ¼ 3 2

2 3

� 	
:

24.

A ¼ 5 2

�2 1

� 	
:

25.

A ¼ 1 2

�3 1

� 	
:

26.

A ¼ 4 �2

0 4

� 	
:

27.

A ¼ �1 2

�2 �1

� 	
:

28. Compute the determinants D2, D3 and D4 associated with matrix Tn in

Section 5.7 with x arbitrary, and confirm that D4 ¼ xD3 � D2:
The proof of the result in Exercise 29 that follows does not involve matrices,

but it is included for the sake of completeness because it can be useful when

finding the eigenvalues of a real n � n matrix.

29. Let z be a complex zero of the nth degree polynomial PnðzÞ ¼ zn þ a1z
n�1þ

a2z
n�2 þ � � � þ an�1zþ an;where the coefficients a1, a2, . . . , an are real num-

bers. By using the elementary properties of the complex conjugate operation

show that �z must also be a zero of Pn(z). Hence show that any pair of complex

conjugate zeros of Pn(z) correspond to a real quadratic factor of Pn(z).

Another Hadamard Inequality for Matrices

The inequality that follows has been included because of its connection with

quadratic forms, and also for general interest, though the result will not be

proved here.

Hadamard’s Inequality for Positive Definite Matrices

A quadratic form Qðx1; x2; : : : ; xnÞ can always be written in the form

Qðx1; x2; : : : ; xnÞ ¼ xTAx; with x ¼ ½x1; x2; : : : ; xn�T and A a real n � n
matrix. If A is positive definite (that is if the quadratic form Q is positive

definite) then
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detA ¼
a11 a12 � � � a1n
a21 a22 � � � a2n
..
. ..

. ..
. ..

.

an1 an2 � � � ann

��������

��������
� a11a22 . . . ann ;

where the equality holds if and only ifA is a diagonalmatrixwith positive elements.

In Exercises 30 to 32 find the matrix A that corresponds to the given

quadratic form, and show it is positive definite by applying the Routh–Hurwitz

test. The test will require finding det A, and use the value of det A to verify the

Hadamard inequality.

30: Qðx1; x2; x3Þ ¼ 4x21 þ 4x22 þ x23 � 2x1x2:

31: Qðx1; x2; x3Þ ¼ 5
2
x21 þ x1x3 þ x22 þ 5

2
x23:

32: Qðx1; x2; x3; x4Þ ¼ 2x21 þ 4x1x2 � 2x1x4 þ 7x22 þ 2x2x4þ
3x24 � 4x2x3 þ 12x23 � 2x1x3 � 8x3x4:

The Spectral Radius

Let l1; l2; : : : ; ln be the distinct eigenvalues of an n � nmatrix A. Then the

spectral radius rðAÞ of matrix A is defined as the maximum value of the

modulus lij j for i¼ 1, 2, . . . , n, and the set of eigenvalues is called the spectrum
of matrix A. The eigenvalue with the largest modulus is called the dominant
eigenvalue. When expressed formally,

rðAÞ ¼ max
i

l1j j; l2j j; : : ; lnj jf g:

As A may have complex eigenvalues, the interpretation of rðAÞ in the

complex plane is that rðAÞ is the radius of the smallest circle centered on the

origin that contains either in its interior or on its boundary all of the eigenvalues

ofA. The spectral radius has various applications, one of which occurs when an

n� nmatrixA is raised successively to higher powers, generating a sequence of

matricesA,A2,A3,. . .The spectral radius is important in this case because when

rðAÞ<1 it can be shown that limn!1 An = 0; while if r(A) = 1 the limit
limn!1 An is nonzero but bounded (the elements of A are all bounded). The

sequence diverges if rðAÞ > 1:
33. (a) Find the eigenvalues of matrix A and the spectral radius rðAÞ if

A ¼
0 1 2 1

0 0 1 1

0 0 0 1

0 0 0 0

2
664

3
775:
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Confirm by calculation that limn!1 An = 0; in agreement with the value of

rðAÞ: (b) Find the eigenvalues of matrix A and the spectral radius rðAÞ if

A ¼
1 0 0

0 1
3

2
3

0 1
4

3
4

2
64

3
75:

Confirm by calculating An for n ¼ 1 to 5 that limn!1 Antends to a bound,

and find rounded to four figures the bounds to which each of the elements of An

converge.

34. Apply the power method to matrixA in Examples 5.1, and confirm that it yields

the dominant eigenvalue and its associated eigenvector.

35. Apply Theorem 5.9 to matrices A in Examples 5.1 and 5.3 and, where appro-

priate, determine an optimum region that contains the eigenvalues. Plot the

eigenvalues in your diagrams and check that they agree with the statement of

the theorem.

36. Using the approach of Section 5.11, show that the solution of the difference

equation unþ2 ¼ unþ1 þ 2un with u0 ¼ 0 and u1 ¼ 1 is un ¼ 1
3
2n � ð�1Þnð Þ:

37. Using the approach in Section 5.12, using h ¼ 0.2, find the numerical solution

of the two-point boundary-value problem d2u=dx2 ¼ �10x cosð2pxÞ in the

interval 0 � x � 1, subject to the boundary conditions u(0) ¼ u(1) ¼ 0. Find

the analytical solution and compare the analytical and numerical results.

In Exercises 38 through 41, verify matrix A is Hermitian, find its eigenva-

lues and eigenvectors, and verify that the eigenvectors are orthogonal with

respect to the complex inner product.

38.

A ¼ 1 �3i
3i 1

� 	
:

39.

A ¼ 1 i
�i 1

� 	
:

40.

A ¼
0 i 1

�i 0 �i
1 i 0

2
4

3
5:

41.

A ¼
0 �i 0

i 0 �1

0 �1 0

2
4

3
5:

42. Show that every n� n Hermitian matrix A can be written A¼ A1þ iA2, where

A1 is a real symmetric n � n matrix, and A2 is a real skew-symmetric n � n
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matrix. Give an example of this decomposition using a 3 � 3 Hermitian matrix

of your own construction.

43. Construct a 3 � 3 skew-Hermitian matrix A, and verify by direct calculation

that iA is Hermitian.

44. Construct a 2 � 2 unitary matrix U, and use it to verify that U= UT
� ��1

is an

equivalent definition of a unitary matrix. Give an analytical reason why this

result is true.

45. Because the modulus (absolute value) of each eigenvalue of a unitary matrix is

1, it follows that the eigenvalues must all lie on the unit circle centered on the

origin in the complex plane. Verify this by (a) showing matrix U is unitary,

where

U ¼

1
2
ð1þ iÞ 1

2
ð1þ iÞ 0

1
2
ði� 1Þ 1

2
ð1� iÞ 0

0 0 1

2
664

3
775;

(b) finding the characteristic equation of U, (c) finding the eigenvalues (roots)

of the characteristic equation, and (d) locating the position of each eigenvalue

on the unit circle.
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Chapter 6

Systems of Linear Differential Equations

6.1 Differentiation and Integration of Matrices

Before discussing the solution of systems of linear first-order constant coefficient

ordinary differential equations it is necessary to develop the basic theory

concerning the differentiation and integration of matrices whose elements are

functions of a real variable. For the sake of completeness, the differentiation and

integration of quite general matrices will be considered first, though only the

simplest of these properties will be used when systems of ordinary constant coeffi-

cient differential equations are considered.

To solve linear systems of differential equations in matrix form requires differ-

entiating matrices that are functions of a single real variable, say t. Let the n � 1

column vector x(t) ¼ [x1(t), x2(t), . . . , xn(t)]
T have differentiable elements xi(t) for

i¼ 1, 2, . . . , n, and let the m � nmatrixG(t)¼ [gij(t)] have differentiable elements

gij(t), with i¼ 1, 2, . . . , m and j ¼ 1, 2, . . . , n. Then the derivatives of x(t) and G(t)
with respect to t are defined, respectively, as

dxðtÞ
dt

¼
dx1=dt
dx2=dt

..

.

dxn=dt

2
6664

3
7775;

dGðtÞ
dt

¼
dg11=dt dg2=dt � � � dg1n=dt
dg21=dt dg22=dt � � � dg2n=dt

..

. ..
. ..

. ..
.

dgm1=dt dgm2=dt � � � dgmn=dt

2
6664

3
7775 : (6.1)

An important special case of (6.1) occurs when A is a constant matrix, because

then dA/dt ¼ 0 and so, in particular¸ dI/dt ¼ 0.

Now consider the derivative of d½AGðtÞ�=dt, where A ¼ [aij] is a constant m � n
matrix, and G(t)¼ [gij(t)] is an n � r matrix with its elements functions of t, so that
AG(t) is anm� rmatrix. Then the element aij(t) in row i and column j of the matrix

product AG(t) is

aijðtÞ ¼ ai1g1jðtÞ þ ai2g2jðtÞ þ � � � þ aingnjðtÞ; i¼ 1; 2; . . . ; m; j¼ 1; 2; . . . ; r;

A. Jeffrey, Matrix Operations for Engineers and Scientists,
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and so

daijðtÞ
dt

¼ ai1
dg1jðtÞ
dt

þ ai2
dg2jðtÞ
dt

þ � � � þ ain
dgnjðtÞ
dt

: (6.2)

This is simply the derivative of the product aigj(t) of the vector forming the ith
row ai ofA and the vector forming the jth column gj(t) ofG, so from definition (6.1)

and the definition of matrix multiplication, we see that

d½AGðtÞ�
dt

¼ A
dGðtÞ
dt

: (6.3)

When necessary, higher-order derivatives may be defined in the obvious manner:

d

dt

dG

dt

� �
¼ d2G

dt2
;
d

dt

d2G

dt2

� �
¼ d3G

dt3
; and

d

dt

dnG

dtn

� �
¼ dnþ1G

dtnþ1
: (6.4)

Example 6.1. Find d[AG(t)]/dt and d2[AG(t)]/dt2 if

A ¼ 1 �3

2 4

� �
and G ¼ sin t cos t

� cos t sin t

� �
:

Solution. From (6.3)

d

dt
½AGðtÞ� ¼ A

dGðtÞ
dt

¼ 1 �3

2 4

� �
cos t � sin t
sin t cos t

� �

¼ cos t� 3 sin t � sin t� 3 cos t
2 cos tþ 4 sin t �2 sin tþ 4 cos t

� �
;

while from (6.4)

d2

dt2
½AGðtÞ� ¼ d

dt

d½AGðtÞ�
dt

� �
¼ A

d2G

dt2

¼ � sin t� 3 cos t � cos tþ 3 sin t
�2 sin tþ 4 cos t �2 cos t� 4 sin t

� �
:

}
It follows directly from the definition of matrix addition and (6.1) that ifG(t) and

H(t) are conformable for addition, then

d

dt
½GðtÞ þHðtÞ� ¼ dGðtÞ

dt
þ dHðtÞ

dt
: (6.5)
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Furthermore, if G(t) and H(t) are conformable for the product G(t)H(t), then

d

dt
½GðtÞHðtÞ� ¼ dGðtÞ

dt
HðtÞ þGðtÞ dHðtÞ

dt
: (6.6)

To derive (6.6), consider the product gihj, where gi is the ith row ofG(t) and hj is
the jth column ofH(t). Then the element in the ith row and jth column ofG(t)H(t) is

aijðtÞ ¼ gi1ðtÞh1jðtÞ þ gi2ðtÞh2jðtÞ þ � � � þ ginðtÞhnjðtÞ ;

so differentiating once with respect to t gives

daijðtÞ
dt

¼ dgi1ðtÞ
dt

h1jðtÞ þ gi1ðtÞ dhj1ðtÞ
dt

þ � � � þ dginðtÞ
dt

hnjðtÞ þ ginðtÞ dhnjðtÞ
dt

;

from which (6.6) follows after the matrix d[G(t)H(t)]/dt has been reconstructed as

the sum of two products.

A less obvious result is that if G(t) is a nonsingular n � n matrix, then

dG�1ðtÞ
dt

¼ �G�1ðtÞ dGðtÞ
dt

G�1ðtÞ: (6.7)

This result is proved by differentiating the product d{G(t)G�1(t)}/dt. We start

from the results G(t)G�1(t) ¼ I, and dI/dt ¼ 0, so it follows from (6.6) that

d

dt
GðtÞG�1ðtÞ� � ¼ dGðtÞ

dt
G�1ðtÞ þGðtÞ dG

�1ðtÞ
dt

¼ 0 ;

and so

GðtÞ dG
�1ðtÞ
dt

¼ � dGðtÞ
dt

G�1ðtÞ: (6.8)

Result (6.7) follows after pre-multiplication of this equation by G�1(t).

Example 6.2. Find dG�1(t)/dt if

GðtÞ ¼ cos t sin t
� sin t cos t

� �
:

Solution. There are several ways of finding dG�1(t)/dt, the most elementary and

in this case the simplest, being to compute G�1(t), and then to differentiate it.

A routine calculation shows that

G�1ðtÞ ¼ cos t � sin t
sin t cos t

� �
;
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so from (6.1)

dG�1ðtÞ
dt

¼ � sin t � cos t
cos t � sin t

� �
:

A different way of finding dG�1(t)/dt makes use of (6.7). We have

dGðtÞ
dt

¼ � sin t cos t
� cos t � sin t

� �
;

so using the above expressions for G�1(t) and dG(t)/dt in (6.7) and simplifying the

result gives the expected result

dG�1ðtÞ
dt

¼ �G�1ðtÞ dGðtÞ
dt

G�1ðtÞ ¼ � sin t � cos t
cos t � sin t

� �
:

}
By definition, if A(t)¼ [aij(t)] is an m� nmatrix, with i¼1, 2, . . . , m and j¼ 1,

2, . . . , n, then the indefinite integral of the element in the ith row and jth column of

A(t) is
Ð
aijðtÞdt, so the indefinite integral of A(t) is defined as

Ð
aijðtÞdt

� �
, so

ð
AðtÞdt ¼

ð
aijðtÞdt

� �
; (6.9)

where, of course, an arbitrary constant matrix must be added after the integration

has been performed on each element aij(t). Similarly, the definite integral of A(t)
between the limits t¼ a and t¼ b is defined as the m� nmatrix with the element in

its ith row and jth column equal to
R b
a aijðtÞdt; so that

ðb
a

AðtÞdt ¼
ðb
a

aijðtÞdt
� �

: (6.10)

Example 6.3. Find (a)
Ð
AðtÞdt and (b)

Ð p=2
0

AðtÞdt, if AðtÞ ¼ 2 sin t cos t
�3 cos t sin t

� �
:

Solution.

að Þ
ð
AðtÞdt ¼ �2 cos tþ C1 sin tþ C2

�3 sin tþ C3 � cos tþ C4

� �
;

so
Ð
AðtÞdt ¼ �2 cos t sin t

�3 sin t � cos t

� �
þ C ; where C ¼ C1 C2

C3 C4

� �
is an arbitrary

constant matrix.

bð Þ
ðp=2
0

AðtÞdt ¼ 2 1

�3 2

� �
:

}
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6.2 Systems of Homogeneous Constant Coefficient Differential

Equations

In what follows, some elementary knowledge concerning the integration of constant

coefficient ordinary differential equations will be assumed. The development of the

theory of systems of differential equations presented here will be confined to the

solution of systems of n linear first-order constant coefficient equations in n
unknowns. The most general first-order system of this kind involving the n
unknown functions x1(t), x2(t), . . . , xn(t) of the independent variable t is

b11
dx1
dt

þ b12
dx2
dt

þ � � � þ b1n
dxn
dt

¼ c11x1 þ c12x2 þ � � � þ c1nxn þ h1ðtÞ;

b21
dx1
dt

þ b22
dx2
dt

þ � � � þ b2n
dxn
dt

¼ c21x1 þ c22x2 þ � � � þ c2nxn þ h2ðtÞ;
: : : : : : : : : : : : : : (6.11)

bn1
dx1
dt

þ bn2
dx2
dt

þ � � � þ bnn
dxn
dt

¼ cn1x1 þ cn2x2 þ � � � þ cnnxn þ hnðtÞ;

where the coefficients bij and cij are constants, and the hi(t) are arbitrary functions

of t. Subsequently, it will be assumed that the n equations in (6.11) are linearly

independent, so no equation in (6.11) is a linear combination of the other equations.

By defining the n � n constant matrices B ¼ [bij], C ¼ [cij], the variable n � 1

column matrices x(t)¼ [x1(t), x2(t), . . . , xn(t)]
T, and h(t)¼ [h1(t), h2(t), . . . , hn(t)]

T,

system (6.11) can be written more concisely as

B
dx

dt
¼ Cxþ hðtÞ: (6.12)

By hypothesis, the equations in system (6.11) are linearly independent, so the

coefficient matrix B has an inverse B�1, and after pre-multiplying (6.12) by B�1 it

becomes

dx

dt
¼ B�1Cxþ B�1hðtÞ:

Defining the n � n constant matrix, A ¼ B�1C, and the variable n � 1 column

matrix f(t)¼B�1h(t), shows system (6.11) can always be reduced to the standard form

dx

dt
¼ Axþ fðtÞ : (6.13)

In what follows, only systems of this type will be considered. System (6.13),

equivalently system (6.11), is nonhomogeneous when the vector f(t) 6¼ 0, otherwise

it is homogeneous.
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6.2.1 The Homogeneous System

In this section we will consider the homogeneous system

dx

dt
¼ Ax; (6.14)

and establish a connection between its general solution, and the eigenvectors of A.

Our concern will be to find both the general solution of system (6.14), and then

the solution of an initial-value problem for the system. That is, finding a solution

of system (6.14) subject to a set of n initial conditions of the form xi (t1) ¼ ki, with
i ¼ 1, 2, . . . , n, where the constants ki are the values the functions xi(t) are required
to satisfy initially when t ¼ t1.

Modeling our approach on the elementary one used when solving a single

constant coefficient linear differential equation, we will attempt to find solutions

of (6.14) of the form

xðtÞ ¼ ~xelt ; (6.15)

where ~x is a constant n � 1 column vector. Substituting (6.15) into (6.14) gives

lelt~x ¼ eltA~x; (6.16)

and after cancellation of the nonvanishing scalar factor elt, followed by some

re-arrangement of terms, we find that l must be a solution of the system of matrix

equations

A� lI½ �~x ¼ 0: (6.17)

This shows that the permissible values of l in (6.15) are the eigenvalues l1, l2,
. . . , ln of A¸ while the associated constant column vectors ~x1; ~x2; : : : ; ~xn are

the corresponding eigenvectors of A. When A has a full set of n linearly indepen-

dent eigenvectors, the linearly independent solutions of (6.14) are xiðtÞ ¼ ~xie
li t,

for i¼ 1, 2, . . . , n. An n� nmatrixF(t)¼ [x1(t), x2(t), . . . , xn(t)], with its columns

the solution vectors xi(t), is called a fundamental matrix for system (6.14).

The general solution x(t) of (6.14) will be an arbitrary linear combination of the

n linearly independent eigenvectors xi(t) of the form

xðtÞ ¼ C1x1ðtÞ þ C2x2ðtÞ þ . . .þ CnxnðtÞ; (6.18)

where the Ci are arbitrary constants. In terms of the fundamental matrix F(t), the
general solution of (6.14) becomes

xðtÞ ¼ FðtÞC; (6.19)

where C is the column matrix C ¼ [C1, C2, . . . , Cn]
T.
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A fundamental matrix is not unique, because the eigenvectors forming its

columns can be arranged in different orders, and each eigenvector can be multiplied

by a constant factor and still remain an eigenvector. This nonuniqueness of the

fundamental matrix can cause the arbitrary constants in general solutions to appear

differently, depending on how the fundamental matrix has been constructed. How-

ever, these different forms of the general solution of (6.14) are unimportant,

because the solution of a corresponding initial-value problem is unique, so when

the arbitrary constants are chosen to make the xi(t) satisfy the n initial conditions, all
forms of general solution in which arbitrary constants may appear differently will

give rise to the same unique solution of the initial value problem.

Example 6.4. Find the general solution of the system of equations

dx1
dt

¼ x2;
dx2
dt

¼ x1 :

Solution. In matrix form the system becomes dx/dt ¼ Ax, where x ¼ [x1, x2]
T and

A ¼ 0 1

1 0

� �
:

The eigenvalues and eigenvectors of A are

l1 ¼ 1 ; x1 ¼ 1

1

� �
; l2 ¼ �1; x2 ¼ �1

1

� �
:

As the vectors e�li txi, with i ¼ 1, 2 are solutions of the system, we may take the

fundamental matrix to be

FðtÞ ¼ et �e�t

et e�t

� �
:

Setting C ¼ [C1, C2]
T, with C1 and C2 arbitrary constants, the general solution of

the system x(t) ¼ F(t)C becomes

xðtÞ ¼ et �e�t

et e�t

� �
C1

C2

� �
¼ C1e

t � C2e
�t

C1e
t þ C2e

�t

� �
:

In scalar form the solution is

x1ðtÞ ¼ C1e
t � C2e

�t and x2ðtÞ ¼ C1e
t þ C2e

�t:

}
The next example shows how to deal with the case of complex eigenvalues

and eigenvectors. It also illustrates how, unlike the case of the single scalar equation

dx/dt ¼ ax with only the exponential solution x(t)¼ Ceat, a linear first-order system
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of differential equations can have trigonometric functions occurring in its general

solution, as well as exponential functions.

Example 6.5. Find the general solution of the system of equations

dx1
dt

¼ x1 þ x2;
dx2
dt

¼ x2 � x1 :

Use the result to solve the initial-value problem x1(p/2) ¼1, x2(p/2) ¼ 2.

Solution. In matrix form the system becomes dx/dt ¼Ax, with x ¼ [x1, x2]
T, where

A ¼ 1 1

�1 1

� �
:

The eigenvalues and eigenvectors of A are

l1 ¼ 1þ i ; x1 ¼ �i
1

� �
; l2 ¼ 1� i ; x2 ¼ i

1

� �
:

So, as the vectors e�litxi with i ¼ 1, 2 are linearly independent solutions, a

fundamental matrix is

FðtÞ ¼ �ieð1þiÞt ieð1�iÞt

eð1þiÞt eð1�iÞt

� �
:

As the elements of the fundamental matrix are complex, the arbitrary constants in

the matrix C must also be complex. Thus the general solution x(t) ¼ F(t)C
becomes

xðtÞ ¼ �ieð1þiÞt ieð1�iÞt

eð1þiÞt eð1�iÞt

� �
C1

C2

� �
¼ �iC1e

ð1þiÞt þ iC2e
ð1�iÞt

C1e
ð1þiÞt þ C2e

ð1�iÞt

� �
;

where C1 and C2 are complex constants.
For the solution x(t) to be real, the two terms in each row of the solution vector

on the right must be complex conjugates to allow their imaginary parts to cancel

and, furthermore, the general solution of the original first-order system can only

contain two real arbitrary constants The exponential factors eð1þiÞt and eð1�iÞt are
already complex conjugates, as are the factors � i and i, so to make the terms real it

is necessary that the complex constants C1 and C2 are also complex conjugates, so

let us set C1 ¼ aþ ib and C2 ¼ a� ib, then after simplification the general solution

becomes

xðtÞ ¼ 2aet sin tþ 2bet cos t

2aet cos t� 2bet sin t

" #
:
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Both a and b are arbitrary constants, so to simplify this result we set k1 ¼ 2a and k2
¼ 2b, when the general solution becomes

x1ðtÞ ¼ et k1sintþ k2costð Þ and x2ðtÞ ¼ etðk1cost� k2sintÞ:
To satisfy the initial conditions x1(p/2)¼ 1, x2(p/2)¼ 0 we set t¼ p/2 in the general
solution and then impose the initial conditions to obtain: (initial condition x1(p/2)¼
1): 1 ¼ ep/2 k1 (initial condition x1(p/2) ¼ 2): 2 ¼ �ep/2k2, showing

k1 ¼ e�p=2 and k2 ¼ �2e�p=2: Thus the solution of the initial-value problem is

found to be

x1ðtÞ ¼ eðt�p=2Þðsin t� 2 cos tÞ; x2ðtÞ ¼ eðt�p=2Þðcos tþ 2 sin tÞ; t � p=2:

}
This method of finding a general solution for a system of homogeneous linear

first-order constant coefficient equations extends to the solution of a single higher-

order equation, and to systems of higher-order equations. In this case, all that is

necessary is to introduce higher-order derivatives as new unknowns when, for

example, a single nth-order equation can be replaced by an equivalent set of n
first-order equations. This approach is most easily illustrated by example.

Example 6.6. Find the general solution of the following third-order differential

equation by converting it to a first-order system:

d3y

dt3
þ d2y

dt2
þ dy

dt
þ y ¼ 0 :

Solution. Introduce the two new dependent variables z1 and z2 by setting

dy

dt
¼ z1 and

d2y

dt2
¼ dz1

dt
¼ z2 :

The third-order equation can now be replaced by the equivalent first-order system

dy

dt
¼ z1;

dz1
dt

¼ z2
dz2
dt

þ z2 þ z1 þ y ¼ 0 :

When written in matrix form, this system becomes

dz

dt
¼ Az with z ¼

yðtÞ
z1ðtÞ
z2ðtÞ

2
4

3
5; A ¼

0 1 0

0 0 1

�1 �1 �1

2
4

3
5 :

The eigenvalues and eigenvectors of A are

l1 ¼ �1 ; x1 ¼
1

�1

1

2
4

3
5; l2 ¼ i ; x2 ¼

�1

�i
1

2
4

3
5; l3 ¼ �i ; x3 ¼

�1

i
1

2
4

3
5 :
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As the vectors e�litxi with i ¼ 1, 2, 3 are solutions, a fundamental matrix is

FðtÞ ¼
e�t �eit �e�it

�e�t �ieit ie�it

e�t eit e�it

2
4

3
5 ;

when the general solution becomes

y
z1
z2

2
4

3
5 ¼

e�t �eit �e�it

�e�t �ieit ie�it

e�t eit e�it

2
4

3
5 C1

C2

C3

2
4

3
5 ;

where for the solution to be real, the arbitrary constants C1, C2 and C3 must be

complex numbers.

As the solution y(t) of the original third-order differential equation is needed, it is
only necessary to extract this solution from the first row of this matrix equation,

from which we find that

yðtÞ ¼ C1e
�t þ C2e

it þ C3e
�it:

A real solution is required, so reasoning as in Example 6.5, we see that the arbitrary

constants C2 and C3 must be complex conjugates, so setting C2¼ aþ ib and C3¼ a
� ib, with a and b arbitrary real constants, leads to the result

yðtÞ ¼ C1e
�t þ 2acos t� 2bsin t:

For convenience, writing C2 in place of 2a and C3 in place of � 2b (not the original
C2 and C3) we arrive at the general solution

yðtÞ ¼ C1e
�t þ C2cos tþ C3sin t:

Solving for z1 and z2 will give dy/dt and d2y/dt2, though these solutions are not

required. If needed, the simplest way to determine dy/dt and d2y/dt2 is by differen-

tiation of y(t).
}

The approach used in Example 6.6 extends immediately to the homogeneous

nth-order constant coefficient equation

dny

dtn
þ an�1

dn�1y

dtn�1
þ an�2

dn�2y

dtn�2
þ � � � þ a1

dy

dt
þ a0y ¼ 0:
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This can be replaced by the equivalent n � n first-order matrix system

dz

dt
¼ Az with z ¼

y
z1
z2
..
.

zn�1

2
666664

3
777775
; A ¼

0 1 0 � � � 0

0 0 1 � � � 0

..

. ..
. ..

. ..
. ..

.

0 0 0 � � � 1

�a0 �a1 �a2 � � � �an�1

2
66664

3
77775; (6.20)

where

dy

dt
¼ z1 ;

d2y

dt2
¼ dz1

dt
¼ z2 ;

dz2
dt

¼ z3 ; : : : ;
dn�1zn�2

dtn�1
¼ zn�1: (6.21)

This matrix system can now be solved as in the previous examples.

We mention here that an nth-order system can be reduced to a set of n first-order
equations in more than one way, though the method of reduction used here is

usually the simplest. For an example of a different way of reducing a higher-order

equation to a system see the remarks at the end of the next section.

The matrix approach to be adopted when solving the nonhomogeneous system
(6.13) cannot make direct use of the fundamental matrix associated with a homo-

geneous system. This is because solutions of nonhomogeneous systems do not
possess the linear superposition property of the homogeneous systems of equations

used in (6.18).

6.3 An Application of Diagonalization

Before discussing the solution of nonhomogeneous systems we first describe a

different approach to the solution of homogeneous systems that extends easily to

the nonhomogeneous case, and to do this we first examine the specially simple

homogeneous system

dx

dt
¼ Dx; (6.22)

where the coefficient matrix D is the diagonal matrix D ¼ diag{a1, a2, . . . , an}.
When written out in full (6.22) becomes

dx1=dt
dx2=dt

..

.

dxn=dt

2
6664

3
7775 ¼

a1 0 0 0

0 a2 0 0

..

. ..
. ..

. ..
.

0 0 � � � an

2
6664

3
7775

x1
x2
..
.

xn

2
6664

3
7775: (6.23)
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This is just a set of n separate (not simultaneous) first-order linear differential

equations dxi/dt ¼ aixi, each with the general solution xi(t)¼ Ciexp(ait) for i¼ 1, 2,

. . . , n, where the Ci are arbitrary constants. In matrix form the general solution of

(6.23) becomes

xðtÞ ¼ ½C1e
d1t;C2e

d2t; : : : ;Cne
dnt�T: (6.24)

This suggests a different approach when solving a general homogeneous system

dx

dt
¼ Ax; (6.25)

when A is a general n � n matrix. The idea is to try to find how to change the

dependent variable column vector x(t) to a new dependent variable column vector

z(t) in such a way that A is replaced by a diagonal matrix D. If this can be done, the

general solution for z(t) follows at once as in (6.24). Changing back from z(t) to x(t)
will then give the required general solution x(t) of (6.25).

To obtain such a simplification we will make use of the diagonalization process

described in Chapter 5. There the diagonalization of an n� nmatrix Awas found to

be possible subject to the condition that A has a full set of n linearly independent

eigenvectors. It was shown that if the n linearly independent eigenvectors of A are

x1, x2, . . . , xn, corresponding to the n eigenvalues l1, l2, . . . , ln, the diagonal matrix

D¼ diag{l1, l2, . . . , ln} can be written in the formD¼ P�1AP, where the columns

of P are the eigenvectors xi, and the eigenvectors in P are arranged in the same order

as the eigenvalues li in D. Pre-multiplying D ¼ P�1AP by P, and post-multiplying

the result by P
�1, gives A ¼ PDP

�1.

Substituting this expression for A in (6.25) it becomes

dx

dt
¼ PDP�1x; (6.26)

after which pre-multiplication by P�1 we then find that

P�1 dx

dt
¼ DP�1x : (6.27)

As P is a constant matrix it follows that, P�1(dx/dt) ¼ d(P�1x)/dt,
so (6.27) simplifies to

d

dt
P�1x
� 	 ¼ DP�1x : (6.28)

The required reduction is now almost complete, because defining the new

column vector z ¼ P�1x, transforms (6.28) into

dz

dt
¼ Dz; (6.29)
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which is precisely the form given in (6.23). Hence the general solution for each new

variable z1(t), z2(t), . . . , zn(t) in (6.29) is zi(t) ¼ Ciexp(lit), for i ¼ 1, 2, . . . , n, with
C1, C2, . . . , Cn arbitrary constants. The required solution vector x(t) is recovered
from the vector z(t)¼ P�1x(t) with elements zi(t) by pre-multiplication of z by P, to

give x(t) ¼ Pz(t).

Example 6.7. Use diagonalization to find the general solution of

dx

dt
¼ Ax where xðtÞ ¼

x1ðtÞ
x2ðtÞ
x3ðtÞ

2
4

3
5; A ¼

1 0 �1

�2 �1 2

�1 2 1

2
4

3
5 :

Solution. It was shown in Example 5.5 that the eigenvalues of A are l1 ¼ �2, l2 ¼
0, l3 ¼ �3, and the diagonalizing matrix P in A ¼ PDP�1 is

P ¼
1 1 1

�4 0 �3
2

3 1 �2

2
4

3
5; with D ¼

�2 0 0

0 0 0

0 0 3

2
4

3
5 :

Setting z(t) ¼ [z1(t), z2(t), z3(t)]
T, it follows from the diagonalized system dz/dt ¼

Dz, corresponding to (6.23), that dz1/dt¼�2z1, dz2/dt¼ 0 and dz3/dt¼ 3z3, so z1(t)
¼ C1e

�2t, z2(t) ¼ C2 and z3(t) ¼ C3e
3t, with C1, C2 and C3 arbitrary constants. The

solution vector x(t) obtained from x(t) ¼ Pz(t) then becomes

x1ðtÞ
x2ðtÞ
x3ðtÞ

2
4

3
5 ¼

1 1 1

�4 0 �3
2

3 1 �2

2
4

3
5 C1e

�2t

C2

C3e
3t

2
4

3
5 ¼

C1e
�2t þ C2 þ C3e

3t

�4C1e
�2t � 3

2
C3e

3t

3C1e
�2t þ C2 � 2C3e

3t

2
4

3
5;

so in scalar form

x1ðtÞ ¼ C1e
�2t þ C2 þ C3e

3t; x2ðtÞ ¼ �4C1e
�2t � 3

2
C3e

3t; x3ðtÞ
¼ 3C1e

�2t þ C2 � 2C3e
3t:

}
The last example in this section shows how diagonalization can be used to solve

an initial-value problem for a special system of linear homogeneous second-order

equations.

Example 6.8. Use diagonalization to solve the system of linear second-order

equations d2u=dt2 ¼ Au; where A¼ 2 �1

�1 2

� �
and u¼ u1

u2

� �
; subject to the

initial conditions

u1ð0Þ ¼ 1; u01ð0Þ ¼ 1; u2ð0Þ ¼ 0 and u02ð0Þ ¼ 1:

6.3 An Application of Diagonalization 171



Solution. The eigenvalues and eigenvectors of A arel1¼1; x1¼ 1

1

� �
; l2¼ 1

�1

� �
;

so as there are two linearly independent eigenvectors A can be diagonalized by

P¼ 1 1

1 �1

� �
: Thus A ¼ PDP�1, where D¼ 1 0

0 3:

� �
and P�1¼

1
2

1
2

1
2
�1

2

� �
; so the

matrix differential equation becomes d2u=dt2¼PDP�1u: Pre-multiplying this

equation by P�1 it becomes P�1d2u=dt2¼DP�1u, but P�1 is a constant matrix so

it can be taken under the differentiation sign when the equation reduces to

d2ðP�1uÞ=dt2¼DP�1u: Setting v ¼ P�1u the equation becomes d2v=dt2¼Dv;
where now the elements of v¼ v1; v2½ �T have been separated, because the equation

splits into the two scalar equations

d2v1
dt2

¼ v1 and
d2v2
dt2

¼ 3v2:

The general solutions of these two equations are easily shown to be

v1 ¼ B1e
x þ B2e

�x and v2 ¼ C1e
ffiffi
3

p
x þ C2e

� ffiffi
3

p
x:

To determine the arbitrary constants B1, B2, C1 and C2 it is necessary to have initial

conditions for v1 and v2, but the initial conditions have been given for u1 and u2. To
find the initial conditions for v use must be made of v ¼ P�1u; so vð0Þ ¼ P�1uð0Þ;
and v0ð0Þ ¼ P�1u0ð0Þ: Substituting the initial conditions for u shows

v1ð0Þ ¼ 1
2
; v01ð0Þ ¼ 1; v2ð0Þ ¼ 1

2
and v02ð0Þ ¼ 0: When these conditions are used

with v1 and v2 the following solutions are obtained

v1 ¼ 3

4
ex � 1

4
e�x and v2 ¼ 1

4
e
ffiffi
3

p
x þ 1

4
e�

ffiffi
3

p
x:

Finally, to find u1 and u2, we must use the result u ¼ Pv. Substituting for P and

v ¼ v1; v2½ �T; and combining terms, gives

u1 ¼ 1
2
ex � 1

2
sinhðxÞ þ 1

2
coshð

ffiffiffi
3

p
xÞ; u2 ¼ 1

2
ex � 1

2
sinhðxÞ � 1

2
coshð

ffiffiffi
3

p
xÞ:

}

6.4 The Nonhomogeneous Case

When matrixA can be diagonalized, only a small additional step is required to solve

the nonhomogeneous system

dx

dt
¼ Axþ fðtÞ: (6.30)
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Recalling from (6.13) that f(t) is a column vector f(t) ¼ [ f1(t), f2(t), . . . , fn(t)]
T,

and setting A ¼ PDP�1 in (6.30), where P diagonalizes A, the system becomes

dx

dt
¼ PDP�1xþ f ðtÞ:

Pre-multiplication by the constant matrix P�1 reduces the system to

dðP�1xÞ
dt

¼ DP�1xþ P�1f ðtÞ;

so setting z(t) ¼ P�1x(t) this becomes

dz

dt
¼ Dzþ P�1f ðtÞ: (6.31)

Writing g(t) ¼ P�1f(t)¸ with g(t) ¼ [g1(t), g2(t), . . . , gn(t)]
T, where the functions

gi(t) are known in terms of the elements of the nonhomogeneous vector f(t), result
(6.31) becomes

dz

dt
¼ Dzþ g ðtÞ: (6.32)

The solution of (6.32) now simplifies to the solution of the n separate nonhomo-

geneous equations dzi/dt ¼ lizi + gi(t) for i ¼ 1, 2, . . . , n, whereas before the

elements of the diagonal matrix D ¼ diag{l1, l2, . . . , ln} are the eigenvalues of A
corresponding to it eigenvectors x1, x2, . . . , xn occurring in the diagonalizing

matrix P. Once the vector z(t) has been found, the solution of the nonhomogeneous

system (6.30) follows from the result x(t) ¼ Pz(t).
When no initial conditions are specified, each element of x(t) will be the sum of

the general solution of the corresponding equation in the homogeneous system, to

which is added a particular integral produced by the nonhomogeneous term f(t).
To solve an initial-value problem it is first necessary to find the general solution

for x(t), and then to match the arbitrary constants involved to the initial conditions.

Example 6.9. Use diagonalization to find the solution of the nonhomogeneous

system

dx

dt
¼ Axþ fðtÞ when A ¼ 1 2

2 1

� �
; x ¼ x1

x2

� �
and fðtÞ ¼ 1þ t

cos t

� �
;

given that x1(0) ¼ 1 and x2(0) ¼ 2.

Solution. The eigenvalues and eigenvectors of A are

l1 ¼ �1 ; x1 ¼ �1

1

� �
; l2 ¼ 3 ; x2 ¼ 1

1

� �
;
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so the diagonalizing matrix is

P ¼ �1 1

1 1

� �
with D ¼ �1 0

0 3

� �
; and P�1 ¼ �1

2
1
2

1
2

1
2

� �

Using these results, Eq. (6.31) becomes

dz1=dt
dz2=dt

� �
¼ �1 0

0 3

� �
z1
z2

� �
þ �1

2
1
2

1
2

1
2

� �
1þ t
cos t

� �
:

The variables zi(t) are now separated, and from this last result we find that

dz1
dt

¼ �z1 þ 1
2
cos t� 1� tð Þ and

dz2
dt

¼ 3z2 þ 1
2
cos tþ 1þ tð Þ :

For convenience in what follows, the method of solution of a general linear first-

order differential equation by means of an integrating factor is reviewed in Appen-

dix 1 at the end of this chapter. Solving these linear first-order equations gives

z1ðtÞ ¼ 1
4
cos tþ 1

4
sin t� 1

2
tþ C1e

�t and

z2ðtÞ ¼ � 3
20
cos tþ 1

20
sin t� 2

9
� 1

6
tþ C2e

3t :

Using these as the elements of z(t)¼ [z1(t), z2(t)]
T in x(t)¼ Pz(t) shows the required

general solution to be

x1ðtÞ ¼ �2
5
cos t� 1

5
sin tþ 1

3
t� 2

9
� C1e

�t þ C2e
3t ;

x2ðtÞ ¼ 1
10
cos tþ 3

10
sin t� 2

3
t� 2

9
þ C1e

�t þ C2e
3t :

In each of these general solutions, the first four terms on the right represent the

particular integral, while the last two terms containing the arbitrary constants C1

and C2 are the solution of the homogeneous form of the equation, usually called the

complementary function. Using the initial conditions x1(0) ¼1 and x2(0) ¼ 2, some

simple calculations show that C1 ¼ 1
4
, C2 ¼ 337

180
, so the solution of the initial-value

problem becomes

x1ðtÞ ¼ �2
5
cos t� 1

5
sin tþ 1

3
t� 2

9
� 1

4
e�t þ 337

180
e3t;

x2ðtÞ ¼ 1
10
cos tþ 3

10
sin t� 2

3
t� 2

9
þ 1

4
e�t þ 337

180
e3t :

}
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6.5 Matrix Methods and the Laplace Transform

This section shows how the solution of an initial-value problem for a nonhomoge-

neous linear system of differential equations with initial conditions specified at

t ¼ 0 can be found by using the Laplace transform in conjunction with a matrix

approach. It will, however, be seen that finding the inverse transform requires some

algebraic manipulation, though when the system is complicated the effort required

to find the inverse transform is not very different from the effort required when

making a direct application of the Laplace transform.

We have seen how the general solution of both homogeneous and nonhomoge-

neous linear constant coefficient first-order systems of equations can be found when

the coefficient matrix can be diagonalized. In particular, because the methods

described lead to general solutions, it allows initial-value problems to be imposed

for any value t ¼ t0 of the independent variable. It is, however, a familiar fact that

the Laplace transform method can only be used to solve initial-value problems for

linear differential equations when initial conditions are imposed at t¼ 0. So, unlike

the previous methods, the Laplace transform approach only solves initial-value

problems, and does not lead to general solutions. However, because of the impor-

tance and wide use of the Laplace transform, mention must be made of its use with

matrix systems of linear differential equations.

In first accounts of differential equations, the Laplace transform method is

usually only applied to scalar equations, though the approach is easily extended

to solve initial-value problems for first-order systems of constant coefficient matrix

differential equations. As the Laplace transform method does not depend on the

eigenvalues and eigenvectors of the coefficient matrix A, it has the advantage that it

does not require knowledge of the eigenvalues of matrix A nor, as the eigenvectors

of A are not used, is it necessary for the coefficient matrix A to have a complete set

of eigenvectors.

Before proceeding further, we recall that the Laplace transform X(s) of x(t),
denoted by writing X(s) ¼L{x(t)}, is defined as

XðsÞ ¼ L xðtÞf g ¼
Z 1

0

e�stxðtÞdt; (6.33)

where s is the Laplace transform variable, and the functions x(t) are restricted to

those for which the improper integral on the right of (6.33) exists. The inversion
process, that is finding x(t) from its Laplace transform X(s), will be denoted by

x(t) ¼ L�1{X(s)}, and in all straightforward cases it is performed using tables

of Laplace transform pairs coupled with the use of some simple rules. An outline of

the essential details of the Laplace transform is given in Appendix 2 at the end of

this chapter, where a a short table of transform pairs is also given.

A Laplace transform pair is a function x(t) and its associated Laplace transform

X(s). Then, given x(t), its Laplace transform X(s) can be found from the table and,

conversely, given X(s), the inverse Laplace transform x(t) ¼ L�1{X(s)} can be
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found by using the table in reverse, usually with the help of some simple rules that

extend the table of transform pairs. For example, if x(t) ¼ cos at, then L{cos at} ¼
s/(s2 þ a2), so that cos at and s/(s2 þ a2) is a typical Laplace transform pair. Then,

given cos at, its Laplace transform s/(s2 þ a2) follows from a table of Laplace

transform pairs and, conversely, when the transform s/(s2 þ a2) is obtained in a

calculation, using the table of Laplace transform pairs in reverse it follows that the

inverse Laplace transform of s/(s2 þ a2) is cos at.
The adaptation of the Laplace transform approach to the solution of systems of

linear differential equations is illustrated by the following examples that show how

the approach also extends in a natural way to higher-order systems. However, to

limit the length of the examples, it will be assumed that the reader is familiar with

the elements of Laplace transform theory. In particular, familiarity will be assumed

with the technique of partial fraction expansion used to simplify the transformed

solution, and also with the standard results needed to interpret the partial fractions

as functions of t.
Consider the initial-value problem for the system of n linear first-order constant

coefficient equations

dx

dt
¼ Axþ fðtÞ ; (6.34)

where

xðtÞ ¼
x1ðtÞ
x2ðtÞ
..
.

xnðtÞ

2
6664

3
7775; A ¼

a11 a12 � � � a1n
a21 a22 � � � a2n
..
. ..

. ..
. ..

.

an1 an2 � � � ann

2
6664

3
7775; fðtÞ ¼

f1ðtÞ
f2ðtÞ
..
.

fnðtÞ

2
6664

3
7775;

subject to the initial conditions x(0) ¼ [k1, k2, . . . , kn]
T, with k1, k2, . . . , kn the

arbitrary initial values.
Using the familiar property of the Laplace transform of a derivative, that

L{dxi(t)/dt} ¼ sXi(s) � xi(0), so that L{dxi(t)/dt} ¼ sXi(s) � ki, for i ¼ 1, 2, . . . ,
n, the result of taking the Laplace transform of system (6.34) is the matrix system

involving the transformed variables Xi(s) ¼ L{xi(t)}, for i ¼ 1, 2, . . . , n

sX1ðsÞ � k1
sX2ðsÞ � k2

..

.

sXnðsÞ � kn

2
6664

3
7775 ¼ A

X1ðsÞ
X2ðsÞ
..
.

XnðsÞ

2
6664

3
7775þ

F1ðsÞ
F2ðsÞ
..
.

FnðsÞ

2
6664

3
7775; (6.35)

where L{fi(t)} ¼ Fi(s). After rearrangement, this becomes

½sI� A�ZðsÞ ¼ xð0Þ þ FðsÞ; (6.36)
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where Z(s)¼ [L{x1(t)}, L{x 2(t)}, . . . , L{xn(t)}]T. Pre-multiplication by [sI� A]�1

then gives

ZðsÞ ¼ sI� A½ ��1
xð0Þ þ FðsÞ½ �; (6.37)

and so

xðtÞ ¼ L�1 sI� A½ ��1
xð0Þ þ FðsÞ½ �

n o
: (6.38)

The advantage this approach has over the ones in previous sections is that it does

not require the determination of the eigenvalues or the eigenvectors of A, so the

method is applicable irrespective of whether or not A has a full set of eigenvectors.

It also has the advantage that it avoids dealing with any complex eigenvalues

and eigenvectors that might arise. The disadvantage of the method is that it only

solves initial-value problems for x(t), and in addition the algebraic complexity of

the computation required when finding and then inverting the transform

ZðsÞ ¼ sI� A½ ��1
xð0Þ þ FðsÞ½ � can be tiresome.

Example 6.10. Solve the initial-value problem

dx1
dt

¼ x1 � x2 þ 2t ;
dx2
dt

¼ x2 � 4x1 þ 1 ; x1ð0Þ ¼ 1; x2ð0Þ ¼ 0:

Solution. Using the notation introduced previously,

A ¼ 1 �1

�4 1

� �
; so sI� A ¼ s� 1 1

4 s� 1

� �
; and xð0Þ ¼ 1

0

� �
:

L 2tf g ¼ 2
�
s2; and L 1f g ¼ 1=s; so FðsÞ ¼ 2

�
s2; 1=s

� �T
:

Routine calculations then give

sI�A½ ��1 ¼ 1

s2 � 2s� 3ð Þ
s� 1 �1

�4 s� 1

� �
; FðsÞ ¼ 1=ðs� 3Þ

�2=s2

� �
; and xð0Þ ¼ 0

0

� �
;

so

ZðsÞ ¼ Z1ðsÞ
Z2ðsÞ
� �

¼ sI� A½ ��1
xð0Þ þ FðsÞ½ � ¼ 1

s2 s2 � 2s� 3ð Þ
s3 � s2 þ s� 2

�3s2 � s� 8

� �
:

As Z1(s) ¼ L{x1(t)} and Z2(s) ¼ L{x2(t)}, we see that

x1ðtÞ ¼ L�1 s3 � s2 þ s� 2

s2ðs2 � 2s� 3Þ
� 


and x2ðtÞ ¼ L�1 �3s2 � s� 8

s2ðs2 � 2s� 3Þ
� 


:
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Simplifying these transformed solutions by means of partial fractions, and then

using tables of Laplace transform pairs to express the result in terms of t gives

x1ðtÞ ¼ � 7

9
þ 2

3
tþ 5

4
e�t þ 19

36
e3t and x2ðtÞ ¼ � 13

9
þ 8

3
tþ 5

2
e�t � 19

18
e3t:

The details of the partial fraction expansion and the use of a table of Laplace

transform pairs to arrive at x1(t) and x2(t) are left as an exercise. Having reached the
stage of finding Z1(s) and Z2(s), the work required to invert the transforms of the

solutions is precisely the same as would have been involved had the Laplace

transform been applied directly, without the use of matrices.

Although the eigenvalues and eigenvectors of A were not used in these calcula-

tions, we mention that they are

l1 ¼ 3 ; x1 ¼ 1

2

� �
and l2 ¼ �2 ; x2 ¼ 1

�3

� �
:

This shows that in this case, because A has a full set of eigenvectors, this same

solution could have been obtained by diagonalizing A to find the general solution,

and then imposing the initial conditions to determine the values of the constants of

integration.

}
Example 6.11. Solve the initial-value problem

dx1
dt

¼ 2x1 þ 4x2 � 2x3 þ 1 ;
dx2
dt

¼ �x2 � x3 þ sin t;

dx3
dt

¼ x2 þ x3; x1ð0Þ ¼ 1; x2ð0Þ ¼ 0 ; x3ð0Þ ¼ 0:

:

Solution.

xðtÞ ¼
x1ðtÞ
x2ðtÞ
x3ðtÞ

2
4

3
5; A ¼

2 4 �2

0 �1 �1

0 1 1

2
4

3
5; fðtÞ ¼

1

sin t
0

2
4

3
5; and x ð0Þ ¼

1
0

0

2
4

3
5:

Thus

½sI� A� ¼
s� 2 �4 2

0 sþ 1 1

0 �1 s� 1

2
64

3
75 ;

½sI� A��1 ¼
1=ðs� 2Þ ð4s� 6Þ=fs2ðs� 2Þg �ð2sþ 6Þ=fs2ðs� 2Þg

0 ðs� 1Þ=s2 �1=s2

0 1=s2 ðsþ 1Þ=s2

2
64

3
75;

and FðsÞ ¼
1=s

1
�ðs2 þ 1Þ

0

2
64

3
75 :
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Combining terms and substituting into (6.37) gives

ZðsÞ ¼ sI� A½ ��1
xð0Þ þ FðsÞ½ � ¼

s4 þ s3 þ s2 þ 5s� 6

s2ðs� 2Þðs2 þ 1Þ
s� 1

s2ðs2 þ 1Þ
1

s2ðs2 þ 1Þ

2
6666664

3
7777775
:

Using partial fractions to simplify the expressions in s, writing Z(s) ¼ [Z1(s), Z2(s),
Z3(s)]

T, and taking the inverse Laplace transform shows the solution of the initial-

value problem is given by

x1ðtÞ ¼ L�1 Z1ðsÞf g ¼ �1þ 3tþ 2
5
cos t� 16

5
sin tþ 8

5
e2t;

x2ðtÞ ¼ L�1 Z2ðtÞf g ¼ 1� t� cos tþ sin t ;

x1ðtÞ ¼ L�1 Z3ðsÞf g ¼ t� sin t: for t � 0:

Once again the eigenvalues and eigenvectors of A were not used in these calcula-

tions, though in this case they were

l1 ¼ l2 ¼ 0 ; x1;2 ¼
3

�1

1

2
64

3
75; l3 ¼ 2 ; x2 ¼

1
0

0

2
4

3
5:

Notice that here A only has two linearly independent eigenvectors, so in this case

diagonalization of A could not have been used to construct a general solution.

}
Example 6.12. Solve the initial-value problem

dx1
dt

¼ 2x1 þ x2 þ t ;
dx2
dt

¼ �x1 þ 2x2 þ 3 ; x1ð0Þ ¼ 2 ; x2ð0Þ ¼ �1 :

Solution. For this system

xðtÞ ¼ x1ðtÞ
x2ðtÞ
� �

; A ¼ 2 1

�1 2

� �
; fðtÞ ¼ t

3

� �
; and x ð0Þ ¼ 2

�1

� �
:

Here

sI� A ¼ s� 2 �1

1 s� 2

� �
; so sI� A½ ��1 ¼ 1

ðs2 � 4sþ 5Þ
s� 2 1

�1 s� 2

� �
;

FðsÞ ¼ ð2s2 þ 1Þ�s2
�ðs� 3Þ=s

� �
:
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Substituting into (6.37) gives

ZðsÞ ¼ sI� A½ ��1
xð0Þ þ FðsÞ½ � ¼

2s3 � 5s2 þ 4s� 2

s2ðs2 � 4sþ 5Þ
� ðs3 � 3s2 þ 6sþ 1Þ

s2ðs2 � 4sþ 5Þ

2
664

3
775 :

Using partial fractions to simplify the expressions in s, writing Z(s) ¼ [Z1(s),
Z2(s)]

T, and taking the inverse Laplace transform, the solution is found to be

x1ðtÞ ¼ L�1 Z1ðsÞf g ¼ 1
25
e2tð9 sin tþ 38 cos tÞ þ 12

25
� 2

5
t ;

x2ðtÞ ¼ L�1 Z2ðtÞf g ¼ 1
25
e2tð9 cos t� 38 sin tÞ � 34

25
� 1

5
t ; t � 0 :

As before, the eigenvalues and eigenvectors of A were not used when finding x1(t)
and x2(t), though in this case they were complex with

l1 ¼ 2þ i ; x1 ¼ �i
1

� �
; l2 ¼ 2� i ; x2 ¼ i

1

� �
:

Diagonalization of A could have been used to solve this system, though it would

have involved working with complex eigenvalues and eigenvectors.

}
Finally, we show by example how the above method can be extended to solve

an initial-value problem for a linear second-order system of matrix differential

equations.

Example 6.13. Solve the initial-value problem

d2x1
dt2

¼ �4x1 þ x2 þ cos 2t ;
d2x2
dt2

¼ �4x2 þ x1 ;

x1ð0Þ ¼ 1 ; x01ð0Þ ¼ 0 ; x2ð0Þ ¼ 0 ; x02ð0Þ ¼ 0:

Solution. The argument proceeds as before, but this time making use of the Laplace

transform of a second derivative L{d 2xi(t)/dt
2}¼ s2Xi(s)� sxi(0)� xi

0(0) for i¼ 1,

2, involving the initial conditions for both the xi(0) and for the derivativexi
0ð0Þ for i

¼ 1, 2. Consequently, after taking the Laplace transform of each equation, and

using the initial conditions, the equations become

s2X1ðsÞ � s ¼ �4X1ðsÞ þ X2ðsÞ þ s

s2 þ 4

and

s2X2ðsÞ ¼ �4X2ðsÞ þ X1ðsÞ ¼ 0:
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When expressed in matrix form these can be written as

AðsÞZðsÞ ¼ BðsÞ;
with

AðsÞ ¼ s2 þ 4 �1

�1 s2 þ 4

� �
; BðsÞ ¼ ðs3 þ 5sÞ=ðs2 þ 4Þ

0

� �
and ZðsÞ ¼ X1ðsÞ

X2ðsÞ
� �

:

After computing A(s)�1 it is found that

ZðsÞ ¼ AðsÞ�1
BðsÞ ¼

s2 þ 4

s4 þ 8s2 þ 15

1

s4 þ 8s2 þ 15
1

s4 þ 8s2 þ 15

s2 þ 4

s4 þ 8s2 þ 15

2
664

3
775

s3 þ 5s

s4 þ 4
0

2
4

3
5

¼
s

s2 þ 3
s

s2 þ 3
� s

s2 þ 4

2
64

3
75 :

Again using partial fractions to simplify the expressions in s, and then taking the

inverse transformation, shows the solution of the initial-value problem to be

x1ðtÞ ¼ L�1 s= s2 þ 3
� 	� � ¼ cos

ffiffiffi
3

p
t ;

x2ðtÞ ¼ L�1fs= s2 þ 3
� 	� s= s2 þ 4

� 	g ¼ x2ðtÞ ¼ L�1fs= s2 þ 3
� 	� s= s2 þ 4

� 	g
¼ cos

ffiffiffi
3

p
t� cos 2t; t � 0:

}
It is important to understand that although a high-order equation in the depen-

dent variable y(t) can be reduced to a set of first-order equations by introducing

derivatives of y(t) as new dependent variables, such a reduction is not unique.
Nevertheless, in whatever way a linear change of variables is used in a single linear

higher-order equation for y(t) to reduce it to a linear first-order system of equations,

the solution of an initial-value problem for y(t) will remain the same.

Suppose, for example, it is required to solve the third-order initial-value problem

d3y

dt3
þ 2

d2y

dt2
� dy

dt
� 2y ¼ 1þ t :

subject to the homogeneous initial conditions y(0) ¼ 0, y 0(0) ¼ 0, y 00(0) ¼ 0. By

introducing the new functions u(t) ¼ dy/dt, and v(t) ¼ du/dt, so that v(t) ¼ d2y/dt2

and dv/dt ¼ d3y/dt3, the third-order equation for y(t) is replaced by the equivalent

first-order system

dv

dt
þ 2v� u� 2y ¼ 1þ t;

du

dt
¼ v and

dy

dt
¼ u ;

6.5 Matrix Methods and the Laplace Transform 181



with the initial conditions y(0) ¼ 0, u(0) ¼ 0, v(0) ¼ 0. The solution of this system

will give y(t), u(t) ¼ dy/dt and v(t) ¼ d2y/dt2 as functions of t. Consequently, if the
Laplace transform method is used to solve the system in matrix form, and only y(t)
is required, it would only be necessary for the Laplace transform Y(s) ¼ L�1{y(t)}
to be inverted.

The solution of this system is easily found to be yðtÞ ¼ �1
4
� 1

2
tþ 1

3
e�t � 1

12
e�2t,

though its derivation is left as an exercise. To show that although the reduction of the

equation to a system is not unique, the solution is unchanged, we could introduced

the different variables u(t) ¼ dy/dt and v(t) ¼ 2du/dt, when the system would have

become

1
2

dv

dt
þ v� u� 2y ¼ 1þ t ;

du

dt
¼ 1

2
v and

dy

dt
¼ u ;

with the homogeneous initial conditions u(0)¼ 0, v(0)¼ 0, y(0)¼ 0. The functions

u(t) and v(t) will now differ from the ones found previously, though the solution y(t)
will remain unchanged at yðtÞ ¼ �1

4
� 1

2
tþ 1

3
e�t � 1

12
e�2t . Here again, the details

of this solution are left as an exercise.

}

6.6 The Matrix Exponential and Differential Equations

This section provides a brief introduction to the matrix exponential etA, where A

is an n � n constant coefficient matrix and t is a scalar variable. The matrix

exponential generalizes in a natural way the solution of the scalar differential

equation dx=dt ¼ ax to the solution of the homogeneous first-order system

dx=dt ¼ Ax; which in turn leads to the solution of the nonhomogeneous matrix

differential equation dx=dt ¼ Axþ fðtÞ:
There are many different ways of finding etA, though only the simplest will be

described here once the matrix exponential has been defined in the classical

algebraic manner. Some of the ways in which etA can be computed will then be

described, and the results will be applied to both homogeneous and nonhomo-

geneous linear systems of matrix differential equations.

The idea of a matrix exponential originates from the definition of the ordinary

exponential function defined as the infinite series

eat ¼ 1þ at

1!
þ a2t2

2!
þ a3t3

3!
þ � � � ¼

X1
n¼0

antn

n!
; (6.39)

which is absolutely convergent for all real at. This suggests that if A is an n � n
constant matrix, and the convention A0 ¼ I is adopted, it is natural to try to define

the matrix exponential etA as

etA ¼
X1
n¼0

tn

n!
Ar ¼ Iþ tAþ 1

2!
t2A2 þ 1

3!
t3A3 þ � � � : (6.40)
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The expression on the right is an infinite sum of n � n matrices, so for this to

make sense it must be interpreted as summing corresponding elements of matrices,

in which case each element of etA will become an infinite series in the variable t.
Furthermore, if the result is to be applied to a differential equation, these series must

be absolutely convergent and capable of being differentiated term by term with

respect to t.
We will start by proving that the infinite series forming the elements of etA are

absolutely convergent, and to do this we will make use of the norm Ak kM intro-

duced in Section 3.1. If each of the powers of tA occurring in (6.40) is replaced by

its norm the result will be the ordinary power series in t

etA ¼ 1þ t Ak kM þ 1

2!
t2 Ak k2Mþ

1

3!
t3 Ak k3Mþ � � � :

The power series on the right is simply et Ak kM ; which is absolutely convergent

for all t. The absolute convergence of this series involving the norm Ak kM implies

the absolute convergent of all of the power series that form the elements of etA, so
the absolute convergence of the expression on the right of (6.40) has been estab-

lished. We mention in passing that any norm of matrix A could have been used in

the above argument, but the norm Ak kM is the simplest.

The next step is to discover how, when given a matrix A, the matrix exponential

etA can be computed. We begin by considering a special type of matrix A, and

although it is a very special case it is still a useful one. Some n� nmatrices A have

the property that integral powers of A up to n � 1 all yield nonzero matrices,

whereas An ¼ 0 is the null matrix, and thereafter all higher powers of A are null

matrices. A matrix with this property is called a nilpotent matrix, and the number n
is called the nilpotent index of matrix A.

When a matrix like this is substituted into (6.40), only the terms up to An � 1 will

be retained, causing the infinite series in t in each of the elements of the matrix to

degenerate into finite polynomials in t of order less than or equal to n� 1. A typical

case now follows.

Example 6.14. Show that matrix A is nilpotent, find its nilpotent index, and find

etA if

A ¼
0 2 1 1

0 0 1 2

0 0 0 3

0 0 0 0

2
664

3
775:

Solution.

A2 ¼
0 0 2 1

0 0 0 1

0 0 0 0

0 0 0 0

2
664

3
775; A3 ¼

0 0 0 6

0 0 0 0

0 0 0 0

0 0 0 0

2
664

3
775; A4 ¼

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2
664

3
775:
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This shows A is nilpotent, with nilpotent index 4.

Substituting these powers of A into (6.40) and combining terms we find that

etA ¼
1 2t t2 � t tþ 1

2
t2 þ t3

0 1 t 2tþ 3
2
t2

0 0 1 3t
0 0 0 1

2
664

3
775:

}
Before finding etA for more general matrices A, let us first find etA when A is the

diagonal matrix A¼ diag{l1, l2, . . . , ln}. We have tA ¼ diagfl1t; l2t; . . . ; lntg;
after which a simple calculation shows that

ðtAÞr ¼
lr1t

r 0 � � � 0

0 lr2t
r � � � 0

..

. ..
. ..

. ..
.

0 0 � � � l
r

nt
r

2
6664

3
7775:

Substituting this result into (6.40) gives

etA ¼

1 0 � � � 0

0 1 � � � 0

..

. ..
. ..

. ..
.

0 0 � � � 1

2
66664

3
77775þ 1

1!

l1t 0 � � � 0

0 l2t � � � 0

..

. ..
. ..

. ..
.

0 0 � � � lnt

2
66664

3
77775

þ 1

2!

l21t
2 0 � � � 0

0 l22t
2 � � � 0

..

. ..
. ..

. ..
.

0 0 � � � l2nt
2

2
666664

3
777775
þ � � � ;

and summing the matrices on the right we find that

etA ¼

1þ l1tþ 1
2!l

2
1t
2 þ � � � 0 � � � 0

0 1þ l2tþ 1
2!l

2
2t
2 þ � � � � � � 0

..

. ..
. ..

. ..
.

0 0 � � � 1þ lntþ 1
2!l

2
nt
2 þ � � �

2
66664

3
77775:

In the limit, as the number of terms tends to infinity, so the ith entry on the

leading diagonal of etA becomes eli t: This has established the important result that

will be needed later that when A ¼ diag {l1, l2, . . . , ln}, the matrix exponential
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etA ¼
el1t 0 � � � 0

0 el2t � � � 0

..

. ..
. ..

. ..
.

0 0 � � � elnt

2
664

3
775: (6.41)

The matrices A in the first two examples that follow have structures that are

sufficiently simple for powers of A to be calculated in a straightforward manner. In

each case the matrix exponential etA is found by direct substitution into (6.40),

followed by recognizing that the Maclaurin series in t that form the elements of etA

are series expansions of familiar functions. Unfortunately, this method cannot be

used with more general matricesA, because then the series comprising the elements

of the matrix become too complicated to be recognized as series expansions of

familiar functions.

Example 6.15. Find etA given that A ¼ 0 a
�a 0

� �
, where a is real.

Solution. In this case substitution into (6.40) is simplified because (tA)n takes on
one of two different forms, depending whether n is even or odd. Routine calculation
shows that

tA ¼ 0 at

�at 0

� �
; ðtA Þ2 ¼ �a2t2 0

0 �a2t2

� �
; ðtA Þ3 ¼ 0 �a3t3

a3t3 0

� �
;

ðtAÞ4 ¼ a4t4 0

0 a4t4

� �
; ðtAÞ5 ¼ 0 a5t5

�a5t5 0

� �
;

after which this pattern is repeated, so that

ðtAÞ0 ¼ I; ðtAÞ1 ¼ ta
0 1

�1 0

� �
; ðtAÞ2 ¼ �a2t2I;

ðtAÞ3 ¼ �a3t3
0 1

�1 0

� �
;

ðtAÞ4 ¼ a4t4I; . . . :

Substituting these results into (6.40) and collecting terms gives

etA ¼
P1
n¼0

ð�1Þn ðatÞ2n
ð2nÞ!

P1
n¼1

ð�1Þn ðatÞ2nþ1

ð2nþ1Þ!

�P1
n¼1

ð�1Þn ðatÞ2nþ1

ð2nþ1Þ!
P1
n¼0

ð�1Þn ðatÞ2n
ð2nÞ!

2
664

3
775 ¼ cos at sin at

� sin at cos at

� �
:

Notice this same form of argument generalizes and shows that if
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A ¼
0 a 0 0

�a 0 0 0

0 0 0 b
0 0 �b 0

2
664

3
775; then etA ¼

cos at sin at 0 0

� sin at cos at 0 0

0 0 cos bt sin bt
0 0 � sin bt cos bt

2
664

3
775:

This result extends immediately in an obvious way when A is a larger diagonal

block matrix of similar form.

}
Example 6.16. Find etA given that A ¼ a b

0 a

� �
where a and b are real numbers.

Solution.

tA ¼ ta tb

0 tb

� �
; ðtAÞ2 ¼ t2a2 2tab

0 t2a2

� �
; ðtAÞ3 ¼ t3a3 3t2a2b

0 t3a3

� �
;

ðtAÞ4 ¼ t4a4 4t3a3b

0 t4a4

� �
;

and in general

ðtAÞn ¼ tnan ntn�1an�1b
0 tnan

� �
:

Substitution into (6.40) gives

etA ¼
P1
n¼0

ðatÞn=n! tb
P1
n¼0

ðatÞn=n!

0
P1
n¼0

ðatÞn=n!

2
664

3
775 ¼ eat tbeat

0 eat

� �
:

Each series that forms an element of etA defines an exponential function, so when

required these functions can be differentiated with respect to t as many times as

required.

}
So far the matrix exponential etA has been computed for matricesA which have a

convenient structure. This may, for example, be when matrices are nilpotent, leading

to exponential matrices with polynomial elements, or when the matrices have a

structure that allows the elements generated by (6.40) as Maclaurin series to be

sufficiently simple for them to be identified as exponential or trigonometric func-

tions. This leaves open the question of how etA can be computed for a matrix like

A ¼ 1 �2

1 4

� �
:

In this case, when A is substituted into (6.40), the series that are generated to

form the elements of etA are not recognizable elementary functions (try it). This
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problem can be solved if A is diagonalizable, though to show how diagonalization

can be used it is first necessary to establish the following useful result concerning

exponential matrices.

Let M and D be a nonsingular n � n matrices, and let us find the matrix

exponential eMðtDÞM�1

by substituting MðtDÞM�1 into (6.40). The result of the

substitution is

eMðtDÞM�1 ¼ IþMðtDÞM�1 þ 1

2!
MðtDÞM�1
� 	2 þ 1

3!
MðtDÞM�1
� 	3 þ � � �

¼
X1
n¼0

1

n!
MðtDÞM�1
� 	n

:

The general term in this series is MðtDÞM�1
� 	n�

n!, so expanding it we have

1

n!
MðtDÞM�1
� 	n ¼ 1

n!
MðtDÞM�1
� 	

MðtDÞM�1
� 	

MðtDÞM�1
� 	

: : : MðtDÞM�1
� 	

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n times

2
64

3
75:

Removing the brackets, and using the fact thatM�1M ¼ I; reduces this result to

1

n!
MðtDÞM�1
� 	n ¼ 1

n!
MðtDÞnM�1;

causing the expression eMðtDÞM�1

to simplify to the useful result

eMðtDÞM�1 ¼ MetDM�1: (6.42)

Now consider an n � n diagonalizable matrix tA ¼ taij
� �

. Its eigenvalues lit
with i ¼ 1, 2, . . . , n are the roots of the characteristic determinant

tA� lIj j ¼ 0;

where the eigenvectors xi are the solutions of the n equations

tA� litI½ �xi ¼ 0:

The initial assumption that A is diagonalizable ensures there are n linearly

independent eigenvectors x1, x2, . . . , xn. The variable t enters linearly into each

element of matrix tA� litI, so each eigenvector xi will be scaled by t. We have

seen that when an eigenvector is scaled, it always remains an eigenvector, so the

scale factor can be chosen arbitrarily. Consequently, for convenience when consid-

ering the eigenvectors of tAwe can set t¼ 1, and then for the eigenvectors of tA we

can use the eigenvectors xi of A.
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We are now ready to use the above results to find etA for a matrix A

that is diagonalizable. If the eigenvectors of tA are lit, and the corresponding

eigenvectors of tA are xi, we know that if P is the matrix of eigenvectors of tA,
arranged say in the order x1; x2; : : : ; xn; and D is the diagonal matrix

tD ¼ diag l1t; l2t; . . . ; lntf g with its elements lit arranged in the same order as

the eigenvalues in P, then

tA ¼ PðtDÞP�1:

Using (6.42) we then find that

ePðtDÞP
�1 ¼ PetDP�1; (6.43)

but tD ¼ diag l1t; l2t; : : : ; lntf g; so from (6.41) we arrive at the important result

etA ¼ ePðtDÞP
�1 ¼ P

el1t 0 � � � 0

0 el2t � � � 0

..

. ..
. � � � 0

0 0 0 elnt

2
664

3
775P�1: (6.44)

Example 6.17. Find etA, given that A ¼ 1 �2

1 4

� �
:

Solution. Matrix A is diagonalizable, because its eigenvalues and corresponding

eigenvectors are, respectively,

l1 ¼ 2 with x1 ¼ ½�2; 1�T, and l2 ¼ 3 with x2 ¼ ½�1; 1�T:

Thus

P ¼ �2 �1

1 1

� �
; P�1 ¼ �1 �1

1 2

� �
and D ¼ 2 0

0 3

� �
:

Substituting into (6.44) we find that

etA ¼ �2 �1

1 1

� �
e2t 0

0 e3t

� � �1 �1

1 2

� �
¼ 2e2t � e�3t �2e3t þ 2e2t

e3t � e2t �e2t þ 2e3t

� �
:

Although direct substitution of tA into (6.40) would produce Maclaurin series as the

elements in etA, it is unlikely these series would be recognized as the functions that

occur in the elements of the matrix on the right – hence the need for the approach

that has just been described.

}
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Example 6.18. Find etA, given that A ¼ 1 �2

1 1

� �
:

Solution. Matrix A is diagonalizable, because its eigenvalues and corresponding

eigenvectors are, respectively,

l1 ¼ 1þ i
ffiffiffi
2

p
with x1 ¼ ½i

ffiffiffi
2

p
; 1�T; and l2 ¼ 1� i

ffiffiffi
2

p
with x2 ¼ ½�i

ffiffiffi
2

p
; 1�T:

Thus

P ¼ i
ffiffiffi
2

p �i
ffiffiffi
2

p
1 1

� �
; P�1 ¼ �1

4
i
ffiffiffi
2

p
1
2

1
4
i
ffiffiffi
2

p
1
2

" #
and tD ¼ el1t 0

0 el2t

� �
;

Thus

etA ¼ PðtDÞP�1 ¼
1
2
ðel1t þ el2tÞ 1ffiffi

2
p iðel1t � el2tÞ

� 1

2
ffiffi
2

p iðel1t � el2tÞ 1
2
ðel1t þ el2tÞ

" #
;

and after simplification this becomes

etA ¼ et cosðt ffiffiffi
2

p Þ � ffiffiffi
2

p
et sinðt ffiffiffi

2
p Þ

1ffiffi
2

p et sinðt ffiffiffi
2

p Þ et cosðt ffiffiffi
2

p Þ

" #
:

}
When a and b are real numbers we have the familiar result

eatebt ¼ eðaþbÞt;

so it is necessary to discover if this property of exponential functions remains true

when the numbers a and b are replaced by real n� nmatricesA and B. The first step

when answering this question involves examining the relationship between eA and

eB where A and B are diagonal matrices.

Example 6.19. Find eA and eB for the matrices

A ¼
1 0 0

0 �2 0

0 0 4

2
4

3
5 and B ¼

2 0 0

0 3 0

0 0 �1

2
4

3
5;

and examine the relationship between eA, eB and eA+B.

Solution. Notice first that two diagonal matrices that are compatible for multiplica-

tion always commute, so AB ¼ BA, where here

AB ¼ BA ¼
2 0 0

0 �6 0

0 0 �4

2
4

3
5 and AþB ¼

3 0 0

0 1 0

0 0 3

2
4

3
5:
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so using (6.41) we see that

etA ¼
e 0 0

0 e�2t 0

0 0 e4t

2
4

3
5; etB ¼

e2t 0 0

0 e3t 0

0 0 e�t

2
4

3
5; etAþtB ¼

e3t 0 0

0 et 0

0 0 e3t

2
4

3
5;

after which matrix multiplication confirms that

etAetB ¼
e3t 0 0

0 et 0

0 0 e3t

2
4

3
5 ¼ etAþtB:

}
The result of Example 6.18 would seem to suggest that whenA and B are general

n � n matrices, the rule for a product of ordinary exponential functions extends to

the product of matrix exponentials, allowing us to write etAetB ¼ et(A+B). In fact this
assumption is not true, and etAetB ¼ et(A+B) if, and only if, A and B commute, which
was the case in Example 6.19, because the product of two n� n diagonal matrices is

always commutative.

Theorem 6.1 The condition that eAeB = eA+B. Let A and B be n n matrices. Then
the results eAeB = eA+B and etAetB = et(A+B) are true if, and only if, the product of
the matrices A and B is commutative.

Proof. Let
P1

i¼0 Riand
P1

i¼0 Si be two absolutely convergent series, with the

respective sums R and S. Expanding the product RS ¼ R0 þ R1 þ R2 þ � � �ð Þ
� S0 þ S1 þ S2 þ � � �ð Þ and arranging the result as follows gives

RS ¼

R0S0 þ R0S1 þ R0S2 þ R0S3 þ � � �
R1S0 þ R1S1 þ R1S2 þ � � �
R2S0 þ R2S1 þ � � �

R3S0 þ � � �
..
.

:

8>>>>><
>>>>>:

(6.45)

Summing the columns of (6.45) and grouping the results we find that

R0S0ð Þ þ R0S1 þ R1S0ð Þ þ R0S2 þ R1S1 þ R2S0ð Þ þ R0S3 þ R1S2ð
þ R2S1 þ R3S0Þ þ � � � :

Proceeding in this way we arrive at the result

RS ¼
X1
m¼0

Xm
n¼0

RnSm�n

 !
: (6.46)

This formal manipulation of infinite series is justified, because it is shown in

calculus texts that (6.46) is true for the product of two absolutely convergent series.
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To relate this result to the product eAeB, let eA and eB be absolutely convergent

series, and set R m ¼ Am=m! and Sn ¼ Bn=n!, then (6.46) becomes

eAeB ¼
X1
m¼0

Xm
n¼0

AnBm�n

n!ðm� nÞ!

 !
:

Provided matrices A and B commute, the ordinary binomial expansion can be used

to determine (A þ B)n, because then An�rBr ¼ BrAn�r; in which case

eðAþBÞ ¼
X1
m¼0

1

m!
ðAþ BÞm ¼

X1
m¼0

1

m!

Xm
n¼0

m!

n!ðm� nÞ!A
nBm�n

 !

¼
X1
m¼0

Xm
n¼0

AnBm�n

n!ðm� nÞ!

 !
¼ eAeB;

and the proof of the first result is complete, because e(A+B) ¼ e(B+A) so eA eB ¼
eBeA. The proof of the second statement follows by replacing A by tA and B by tB.

}
When required, the matrix exponential e�tA follows from the expression for etA

by reversing the sign of t. As A commutes with itself, an important consequence of

Theorem 6.1 is obtained by considering the product etAe�tA, which becomes

etAe�tA ¼ et0 ¼ I ; (6.47)

because from (6.40) it follows that et0 ¼ I. This confirms that e�tA is the inverse

of etA, so it is permissible to write

etA
� 	�1 ¼ e�tA ; (6.48)

while a similar argument shows that e�tAetA ¼ I.

Because A commutes with itself, it follows at once that

eðtþtÞA ¼ etAetA; (6.49)

The series produced by (6.40) as the elements of etA are all absolutely conver-

gent and have infinite radii of convergence, so the series of matrices in (6.40) may

be differentiated term by term, to give

detA

dt
¼ d

dt

X1
r¼0

tr

r!
Ar ¼ Aþ tA2 þ 1

2!
t2A3 þ 1

3!
t3A4 þ � � � ; (6.50)
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showing that

detA

dt
¼ AetA: (6.51)

Removing the matrix factor A, first from the left, and then from the right, in

(6.50), shows that AetA¼ etAA, and we have established the fundamental result that

detA

dt
¼ AetA ¼ etAA: (6.52)

This result demonstrates that etA is a solution of the homogeneous differential

equation dx=dt ¼ Ax; so any linear combination of the columns of etA must be a

solution vector of the homogeneous linear matrix differential equation dx=dt ¼ Ax:
Consequently etA is a fundamental solution matrix for the differential equation

dx=dt ¼ Ax; and setting c ¼ [C1, C2, . . . , Cn]
T, with the Ci arbitrary constants,

allows the general solution of the differential equation to be written

xðtÞ ¼ et
A
c: (6.53)

This result forms the statement of the following Theorem.

Theorem 6.2 The General Solution of a Linear Homogeneous System. Let A be a
diagonalizable n� n constant matrix. Then etA is a fundamental solution matrix for
the homogeneous matrix differential equation

dx

dt
¼ Ax;

and if an initial condition x(t0) ¼ c is imposed at time t ¼ t0 the unique solution of
this initial value problem is x(t) ¼ etAc for t � t0.

Proof. This main part of this theorem has already been proved, leaving only the

justification of the assertion that the solution of the initial-value problem is unique.

Uniqueness is easily established by assuming, if possible, that the initial-value problem

has two different solutions x and y that satisfy the same initial condition, then

dx

dt
¼ Ax and

dy

dt
¼ Ay; where x t0ð Þ ¼ y t0ð Þ:

Subtracting the second equation from the first one and setting x� y ¼ u we

find that

du

dt
¼ Au, subject to the initial condition uðt0Þ ¼ xðt0Þ � yðt0Þ ¼ 0:
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The only solution of this initial-value problem given by the main result of the

theorem is u(t) � 0 for t > t0, so x(t) � y(t) for t > t0, and the uniqueness is proved.

}
Example 6.20. Use the matrix exponential to solve the initial-value problem

_x1 ¼ 3x1 þ x2 � x3; _x2 ¼ 3x1 þ x2 � 3x3; _x ¼ 2x1 � 2x2;

subject to the initial conditions x1ð0Þ ¼ 1; x2ð0Þ ¼ 0; x3ð0Þ ¼ �1:

Solution. The matrix of coefficients A, the solution vector x, the eigenvalues and

eigenvectors of A are, respectively,

A ¼
3 1 �1

3 1 �3

2 �2 0

2
64

3
75; x ¼

x1

x2

x3

2
64

3
75; l1 ¼ 2; x1 ¼

1

0

1

2
64
3
75; l2 ¼ �2;

x2 ¼
0

1

1

2
64
3
75; l3 ¼ 4; x3 ¼

1

1

0

2
64
3
75:

The matrix of eigenvectors P, its inverse P�1, the matrix tD ¼ diagfe2t; e�2t; e4tg
and the initial condition vector c are

P¼
1 0 1

0 1 1

1 1 0

2
4

3
5; P�1 ¼

1
2

�1
2

1
2�1

2
1
2

1
2

1
2

1
2

�1
2

2
4

3
5; D¼

e2t 0 0

0 e�2t 0

0 0 e4t

2
4

3
5; c¼

1

0

�1

2
4

3
5:

So, from (6.44) we find that

etA ¼ PDP�1 ¼
1
2
ðe2t þ e4tÞ 1

2
ð�e2t þ e4tÞ 1

2
ðe2t � e4tÞ

1
2
ð�e�2t þ e4tÞ 1

2
ðe�2t þ e4tÞ 1

2
ðe�2t � e4tÞ

1
2
ðe2t � e�2tÞ 1

2
ð�1

2
e2t þ e�2tÞ 1

2
ðe2t þ e�2tÞ

2
4

3
5:

From Theorem 6.1 the solution vector x ¼ etAc becomes

x ¼ e4t;�e�2t þ e4t;�e�2t
� �T

;

and so

x1ðtÞ ¼ e4t; x2ðtÞ ¼ �e�2t þ e4t; x3ðtÞ ¼ �e�2t:

}
It is a straightforward matter to generalize the result of Theorem 6.1 to non

homogeneous systems of the form

dx

dt
¼ Axþ fðtÞ; (6.54)

6.6 The Matrix Exponential and Differential Equations 193



where f(t) is the column vector fðtÞ ¼ ½ f1ðtÞ; f2ðtÞ; : : : ; fnðtÞ�T whose elements

are integrable functions of t.
The approach used will be the analogue of the way nonhomogeneous linear first-

order scalar equations are solved by means of an integrating factor, though here the

analog of the integrating factor will be e�tA. A review of the use of an integrating

factor when solving a linear first-order differential equation will be found in

Appendix 1 at the end of this chapter. Rearranging the terms in (6.54) and pre-

multiplying the result by e�tA gives

e�tA dx=dt� Axð Þ ¼ e�tAfðtÞ: (6.55)

To simplify this result notice that

d

dt
e�tAx
� 	 ¼ �Ae�tAxþ e�tA dx

dt
;

but Ae�tA ¼ e�tAA ; so

� Ae�tAxþ e�tA dx

dt
¼ �e�tAAxþ e�tA dx

dt
;

allowing (6.55) to be written

d

dt
e�tAx
� 	 ¼ e�tAfðtÞ:

Integrating this result with respect to t and pre-multiplying the result by etA

shows the solution vector to be

xðtÞ ¼ etAcþ etA
Z

e�tAfðtÞdt: (6.56)

where c is an arbitrary n element column vector that contains the arbitrary integra-

tion constants.

On occasions it is convenient to take etA under the integral sign in (6.56). Then,

to avoid confusion with the variable t, the variable of integration must be changed

from t to t, when (6.56) becomes

xðtÞ ¼ etAcþ
Z

e ðt�tÞAfðtÞdt: (6.57)

The solution of an initial-value problem at time t ¼ t0 follows from either (6.56)

or (6.57) by matching the arbitrary constants in c to suit the initial conditions x(t0).
The following theorem has been proved.
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Theorem 6.3 The Solution of Nonhomogeneous Linear First-Order Equations. The
general solution of the matrix differential equation

dx

dt
¼ Axþ fðtÞ

is

xðtÞ ¼ etAcþ etA
Z

e�tAfðtÞdt

or equivalently

xðtÞ ¼ etAcþ
Z

e ðt�tÞAfðtÞdt:

}
Example 6.21. Use the matrix exponential to solve the initial-value problem

_x1 ¼ 2x1 þ 2x2 þ t; _x2 ¼ x1 þ 3x2 � 1; x1ð0Þ ¼ 2; x2ð0Þ ¼ �1:

Solution. In this solution, because the intermediate calculations are straightforward,

only the key result will be given. We are required to solve the nonhomogeneous

differential equation dx=dt ¼ Axþ f ðtÞ; where

A ¼ 2 2

1 3

� �
; x ¼ x1

x2

� �
; l1 ¼ 1; x1 ¼

�2

1

� �
; l2 ¼ 4; x2 ¼

1

1

� �
;

xð0Þ ¼ 2

�1

� �
; fðtÞ ¼ t

�1

� �
:

A routine calculation shows that

P ¼ �2 1

1 1

� �
; P�1 ¼ �1

3
1
3

1
3

2
3

� �
; tD ¼ et 0

0 e4t

� �
; so

etA ¼ PðtDÞP�1 ¼
2
3
et þ 1

3
e4t �2

3
et þ 2

3
e4t

�1
3
et þ 1

3
e4t 1

3
et þ 2

3
e4t

� �
;

from which e�tA follows by changing the sign of t. Routine integration gives

Z
e�tAfðtÞdt ¼ �2

3
t e�t � 4

3
e�t � 1

12
t e�4t þ 7

48
e�4t

1
3
te�t þ 2

3
e�t � 1

12
te�4t þ 7

48
e�4t

� �
:
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Once the result xðtÞ ¼ etAcþ etA
R
e�tAfðtÞdt has been evaluated, and the arbitrary

constants C1 and C2 in the vector c ¼ [C1, C2]
T have been matched to the initial

conditions x1ð0Þ ¼ 2 and x2ð0Þ ¼ �1, the solution vector x(t) is found to be

x1ðtÞ
x2ðtÞ
� �

¼ �19
16
� 3

4
tþ 10

3
et � 7

48
e4t

13
16
þ 1

4
t� 5

3
et � 7

48
e4t

� �
for t � 0;

so

x1ðtÞ ¼ �19
16
� 3

4
tþ 10

3
et � 7

48
e4t and x2ðtÞ ¼ 13

16
þ 1

4
t� 5

3
et � 7

48
e4t for t � 0:

}
It has been shown how etA can be computed when an n � n matrix A is

diagonalizable, but not how it can be computed when this is not the case.

Various methods exist for finding etAwhenA is an arbitrary n� nmatrix, but the

method described here depends for its success on using the Laplace transform to

interpret the meaning of etA. Although, in principle, this method is applicable for

any n � n matrix, because of the algebraic manipulation involved it is really only

practical when n � 4.

Consider the homogeneous constant coefficient differential equation

dx

dt
¼ Ax subject to the initial condition xð0Þ ¼ c when t ¼ 0; (6.58)

whereA is a constant n� nmatrix and c ¼ c1; c2; : : : ; cn½ �T is a constant n element

column vector. Defining the Laplace transform V(s) of a vector

vðtÞ ¼ v1ðtÞ; v2ðtÞ; : : : ; vnðtÞ½ �T as

VðsÞ ¼ L vðtÞf g ¼ ½Lfv1ðtÞ;Lfv2ðtÞ; . . . ;LfvnðtÞ�T; (6.59)

taking the Laplace transform of (6.58) using Lfdvi=dtg ¼ sViðsÞ � við0Þ; and

setting L{x(t)} ¼ X(s) gives sX(s) � c ¼ AX(s), and so sI� A½ �XðsÞ ¼ c. After

pre-multiplying this result by the inverse of sI� A½ � it becomes

XðsÞ ¼ sI� A½ ��1
c: (6.60)

Taking the inverse Laplace transform gives the solution of the initial-value

problem as

x ðtÞ ¼ L�1f sI� A½ ��1gc; (6.61)

where if H(s) ¼ [hij(s)], then L�1fH ðsÞg ¼ ½L�1fhijðsÞg�:
A comparison of (6.53) and (6.61) establishes the following representation of etA

in terms of an inverse Laplace transform.
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6.6.1 Finding the Matrix Exponential Using the Laplace
Transform

etA ¼ L�1f½sI� A��1g: (6.62)

Example 6.22. Find the matrix exponential (the fundamental solution matrix) for

the system of equations

_x1 ¼ x1 þ x2; _x2 ¼ x2;

and hence find its general solution.

Solution. Writing this homogeneous system of equations in the form dx=dt ¼ Ax,

we see the matrices A and x, and the eigenvalues and eigenvector, are

A ¼ 1 1

0 1

� �
; x ¼ x1

x2

� �
; l ¼ 1 (twice), and the single eigenvector x1 ¼ 1

1

� �
:

Consequently matrix A cannot be diagonalized. Because of this, the matrix expo-

nential etA will be found from (6.62). We have

sI� A½ � ¼ s� 1 �1

0 s� 1

� �
; so sI� A½ ��1 ¼ 1=ðs� 1Þ 1

.
ðs� 1Þ2

0 1=ðs� 1Þ

" #
:

Taking the inverse Laplace transform gives

etA ¼ L�1 sI� A½ ��1
n o

¼ et tet

0 et

� �
;

so denoting the constant arbitrary integration vector by c ¼ [C1, C2]
T, the general

solution vector

x ðtÞ ¼ x1ðtÞ
x2ðtÞ
� �

¼ et tet

0 et

� �
C1

C2

� �
;

so the general solution is

x1ðtÞ ¼ C1e
t þ C2te

t and x2ðtÞ ¼ C2e
t:

}
Example 6.23. Use (6.62) to find etA when A ¼ a b

0 a

� �
, and show by example

the result is the same as the one found in Example 6.15 by direct substitution of A

into (6.40).
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Solution. From (6.62) we have

sI� A ¼ s� a �b
0 s� a

� �
; so sI� A½ ��1 ¼ 1=ðs� aÞ b=ðs� aÞ2

0 1=ðs� aÞ
� �

:

Using the table of Laplace transform pairs in Appendix 2 we find that

L�1 sI� A½ ��1
n o

¼ eat bteat

0 eat

� �
;

which is precisely the result found in Example 6.15. In this case the result was

found more simply by using (6.62) than by the direct method used in the example.

}

Appendix 1: The Solution of a Linear First-Order Differential

Equation

The most general linear first-order differential equation has the form

dy

dx
þ pðxÞy ¼ qðxÞ:

The integrating factor for this equation is

mðxÞ ¼ exp

Z
pðxÞdx

� �
;

where no arbitrary constant is to be added when
R
pðxÞdx is evaluated. The general

solution of the general linear first-order equation is then given by

yðxÞ ¼ 1

mðxÞ Cþ
Z

qðxÞmðxÞdx
� �

;

where C is the arbitrary integration constant introduced when
R
qðxÞmðxÞdx is

evaluated.

When p(x) ¼ a (a constant), as is the case with linear constant coefficient first-

order differential equations, the integrating factor simplifies to mðxÞ ¼ expðaxÞ, and
then the general solution becomes
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yðxÞ ¼ expð�axÞ Cþ
Z

expðaxÞqðxÞdx
� �

:

yðxÞ ¼ expð�axÞ Cþ
Z

expðaxÞqðxÞdx
� �

:

Appendix 2: A Summary of the Laplace Transform and a Short

Table of Laplace Transform Pairs

The Laplace transform L{y(t)} ¼ Y(s) of the function y(t), is defined as

YðsÞ ¼
Z 1

0

e�styðtÞdt;

for those functions y(t) such that the improper integral on the right exists.

Linearity of the Laplace transform

If a and b are constants and f(t) and g(t) have the respective Laplace transforms

F(s) and G(s), then

L af ðtÞ þ bgðtÞf g ¼ aFðsÞ þ bGðsÞ:
The Laplace transform of derivatives

L dy=dtf g ¼ sYðsÞ þ yð0Þ;

L d2y=dt2
� � ¼ s2YðsÞ � syð0Þ � y0ð0Þ;

L dny=dtnf g ¼ snYðsÞ � sn�1yð0Þ � sn�2y0ð0Þ � sn�3y00ð0Þ � � � � � yðn�1Þð0Þ:
The first shift theorem

L e�atf ðtÞf g ¼ Fðsþ aÞ:
The second shift theorem

L Hðt� aÞf ðt� aÞf g ¼ e�asFðsÞ;

where Hðt� aÞ ¼ 0; t <a
1; t � a

�
is the Heaviside unit step function

The Laplace convolution theorem

L
ðt
0

f ðtÞgðt� tÞdt
� 


¼ FðsÞGðsÞ;

where L{f(t)} ¼ F(s) and L{g(t)} ¼ G(s)
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Table of useful Laplace transform pairs

f(t) F(s)
k k=s
t 1

�
s2

tn (n a positive integer) n!
�
snþ1

eat 1=ðs� aÞ
tneat (n a positive integer) n!

.
ðs� aÞnþ1

sin at a
�ðs2 þ a2Þ

cos at s
�ðs2 þ a2Þ

t sin at 2as=ðs2 þ a2Þ2
t cos at ðs2 � a2Þ=ðs2 þ a2Þ2
eat sin bt b= ðs� aÞ2 þ b2

h i
eat cos bt ðs� aÞ= ðs� aÞ2 þ b2

h i
sinh at a

�ðs2 � a2Þ
cosh at s

�ðs2 � a2 Þ
Hðt� aÞ (a � 0) e�as=s (the Heaviside unit step function)

dðt� aÞ (a � 0) e�as (the Dirac delta function)

Exercises

1. Construct any two matrices F(t) and G(t) conformable for multiplication. Com-

pute d[G(t)H(t)]/dt directly, and by adding the matrix products
dGðtÞ
dt H ðtÞ

and GðtÞ dHðtÞ
dt ; verify that

d

dt
½GðtÞHðtÞ� ¼ dGðtÞ

dt
H ðtÞ þGðtÞ dHðtÞ

dt
:

2. Construct a 3 � 3 matrix G(t) of your own choice. Find G�1(t) and differentiate
it to find dG�1(t)/dt. Use the result to verify that

dG�1ðtÞ
dt

¼ �G�1ðtÞ dGðtÞ
dt

G�1ðtÞ:

3. If G(t) and H(t) are any two nonsingular n � n matrices, find an expression for

d

dt
GðtÞHðtÞ�½ ��1:

4. Construct a nonsingular 2� 2 constant matrixA and a nonsingular 2� 2matrixF

(t) with differentiable elements of your own choice. Setting G(t) ¼ AF(t), find
dG�1(t)/dt by differentiation of AG�1(t), and also by using result (6.7).
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5. Set

A ¼ 2 �4

1 3

� �
; HðtÞ ¼ sin t cos t

� cos t sin t

� �
and GðtÞ ¼ AHðtÞ :

Find dG�1(t)/dt directly, and also by using the result G�1ðtÞ ¼ H�1ðtÞA�1.

6. If matrices A(t) ¼ [aij(t)] and B(t) ¼ [bij(t)] are conformable for addition, prove

that
R

aAðtÞ þ bBðtÞð Þdt ¼ a
R
AðtÞdtþ b

R
BðtÞdt; for any scalars a and b.

7. Prove that if A(t) and B(t) are conformable for multiplication, and each matrix is

differentiable, then the matrix analogue of integration by parts is

Z
A
dB

dt
dt ¼ AB�

Z
dA

dt
Bdt :

In Exercises 8 through 13 find the general solution vector x(t) with elements

xi(t) of the homogeneous equation dx/dt ¼ Ax using the given matrix A, and

hence find the solution that satisfies the given initial conditions.

8.

A ¼
0 0 �1

1 �2 1

�1 0 0

2
4

3
5; x1ð0Þ ¼ 2 ; x2ð0Þ ¼ 2 ; x3ð0Þ ¼ �1 :

9.

A ¼
�1 0 0

2 �1 2

�4 0 3

2
4

3
5; x1ð0Þ ¼ 2 ; x2ð0Þ ¼ 1 ; x3ð0Þ ¼ �1 :

10.

A ¼ �1 �4

1 �1

� �
; x1ð0Þ ¼ 0 ; x2ð0Þ ¼ 1 :

11.

A ¼ 2 4

�1 2

� �
; x1ð0Þ ¼ �2 ; x2ð0Þ ¼ 1 :

12.

A ¼
0 0 �2

�1 �1 �1

1 0 3

2
4

3
5; x1ð0Þ ¼ 1 ; x2ð0Þ ¼ �1 ; x3ð0Þ ¼ 2 :
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13.

A ¼
2 �3 3

�1 2 �1

�1 3 �2

2
4

3
5; x1ð0Þ ¼ 1 ; x2ð0Þ ¼ �1 ; x3ð0Þ ¼ 0 :

In Exercises 14 through 19 find the general solution x(t) with elements xi(t) of the
nonhomogeneous equation dx/dt ¼ Ax þ f(t) using the given matrices A and f(t),
and hence find the solution satisfying the stated initial conditions.

14.

A ¼ �1 1

�2 1

� �
; fðtÞ ¼ t2

�2e�t

� �
; ðaÞ xð0Þ ¼ 1; yð0Þ ¼ �1;

ðbÞ xð1Þ ¼ 0; yð1Þ ¼ 0 :

15.

A ¼ �1 1

3 1

� �
; fðtÞ ¼ 3t

� sin t

� �
; xð0Þ ¼ �1 ; yð0Þ ¼ 0 :

16.

A ¼ 2 �2

1 �1

� �
; fðtÞ ¼ 2� t

�4

� �
; ðaÞ xð0Þ ¼ �2 ; yð0Þ ¼ 1 ;

ðbÞ xð1Þ ¼ 1 ; yð1Þ ¼ 0 :

17.

A ¼ �1 3

3 �1

� �
; fðtÞ ¼ �e�2t

2 cos t

� �
; xð0Þ ¼ 1 ; yð0Þ ¼ �1 :

18.

A ¼
1 1 0

0 1 1

0 1 1

2
64

3
75 ; fðtÞ ¼

�2t

�3

3 sin 3t

2
64

3
75 ; xð0Þ ¼ 0 ; yð0Þ ¼ �2 ;

zð0Þ ¼ �1 :

19.

A ¼
1 �1 0

0 1 1

0 �1 1

2
64

3
75 ; fðtÞ ¼

2

� sin t

1þ e�2t

2
64

3
75 ; xð0Þ ¼ 1 ; yð0Þ ¼ 2 ;

zð0Þ ¼ �1 :
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In Exercises 20 and 21, transform the system into the standard form dx/dt ¼
Ax þ f(t). Find the general solution, and the solution subject to the given initial

conditions.

20.

dx1
dt

þ 2
dx2
dt

¼ 7x1 þ x2 � 5þ 4t ; 2
dx1
dt

þ dx2
dt

¼ 8x1 � x2 � 1þ 2t ;

x1ð0Þ ¼ �2 ; x2ð0Þ ¼ 1 :

21.

dx1
dt

� 2
dx2
dt

¼ �2x1 þ x2 þ 2� 6t2;� dx1
dt

þ dx2
dt

¼ x1 � x2 � 2þ 3t2 ;

xð0Þ ¼ 2; yð0Þ ¼ �1:

In Exercises 22 through 32, use the Laplace transform with matrix methods to

solve the given initial-value problem.

22.

dx1
dt

¼ �x1 þ x2 þ te�t ;
dx2
dt

¼ x1 � x2 þ 4 ; x1ð0Þ ¼ 0 ; x2ð0Þ ¼ �2 :

23.

dx1
dt

¼ 2x1 þ x2 � sin t ;
dx2
dt

¼ 2x1 þ x2 þ 2 cos t ;

x1ð0Þ ¼ 1 ; x2ð0Þ ¼ �1 :

24.

dx1
dt

¼ x2 þ cos t ;
dx2
dt

¼ x1 þ 3t ; x1ð0Þ ¼ 1 ; x2ð0Þ ¼ 0 :

25.

dx1
dt

¼ x1 þ x2 þ e�t ;
dx2
dt

¼ 6x1 � 2t ; x1ð0Þ ¼ 0 ; x2ð0Þ ¼ 0 :

26.

dx1
dt

¼ x3 þ 2 ;
dx2
dt

¼ x3 ;
dx3
dt

¼ x1 þ 2 cos 2t x1ð0Þ ¼ 0 ;

x2ð0Þ ¼ 1 ; x3ð0Þ ¼ �1 :
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27.

dx1
dt

¼ x1 þ x3 þ 3 cos t ;
dx2
dt

¼ �x3 þ 1 ;
dx3
dt

¼ x2 � sin t;

x1ð0Þ ¼ 1 ; x2ð0Þ ¼ 0 ; x3ð0Þ ¼ 0 :

28.

dx1
dt

¼ 2x1 þ 2x3 þ 3 ;
dx2
dt

¼ 2x3 þ 1 ;
dx3
dt

¼ 2x2 � t;

x1ð0Þ ¼ 1 ; x2ð0Þ ¼ 0 ; x3ð0Þ ¼ �1 :

29.

dx1
dt

¼ x1 � x3 þ 2t ;
dx2
dt

¼ �x3 þ t ;
dx3
dt

¼ x2 � sin t; x1ð0Þ ¼ 0 ;

x2ð0Þ ¼ 1 ; x3ð0Þ ¼ 0 :

30.

d2x1
dt2

¼ x2 þ t ;
d2x2
dt2

¼ x1 þ sin t ; x1ð0Þ ¼ 1 ; x1
0ð0Þ ¼ 0 ;

x2ð0Þ ¼ 0 ; x2
0ð0Þ ¼ �1 :

31.

d2x1
dt2

þ 3
dx1
dt

þ 7x1 þ x2 ¼ 3 ;
dx2
dt

¼ 5x1 þ 1 ; x1ð0Þ ¼ 1 ;

x1
0ð0Þ ¼ 0 ; x2ð0Þ ¼ 2 :

32. The initial-value problem

d3y

dt3
þ 2

d2y

dt2
� dy

dt
� 2y ¼ 1þ sin t; yð0Þ ¼ 0; y0ð0Þ ¼ 0; y00ð0Þ ¼ 0

has the solution

yðtÞ ¼ 1
4
e�t þ 1

4
et � 1

10
e�2t � 1

2
þ 1

10
cos t� 2 sin tð Þ for t � 0:

Find this solution y(t) by converting the equation into a system: (a) as in the

text using the higher-order derivatives as the new dependent variables, and (b)

by introducing the new dependent variables y(t), u(t), v(t) with u(t) ¼ 2dy/dt,
and v(t) ¼ 4 du/dt. The fact that the solutions will be identical will confirm that
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a linear change of variables used when reducing the third-order differential

equation to a system of first-order equations will not alter the solution y(t).

33. Show matrix A is nilpotent and find its nilpotent index given that

A ¼
0 3 1 2

0 0 1 3

0 0 0 2

0 0 0 0

2
664

3
775:

Use the fact that A is nilpotent to find etA.

34. Given that

A ¼
�1 0 0 0

0 �2 0 0

0 0 1 0

0 0 0 2

2
664

3
775 and B ¼

1 0 0 0

0 2 0 0

0 0 �1 0

0 0 0 1

2
664

3
775

find eA, eB and show that in this case eA + B ¼ eAeB. Why is this so?

35. Find etA from (6.40), given that A ¼ 0 a
a 0

� �
:

36. Find etA, given that A ¼ 1 2

2 1

� �
:

37. Find etA, given that A ¼ 1 �4

1 1

� �
:

38. Use the matrix exponential to solve the initial-value problem for the system

dx1ðtÞ=dt ¼x2ðtÞ; dx2ðtÞ=dt ¼ �x1ðtÞ if x1ð0Þ ¼ 1 and x2ð0Þ ¼ �1:
39. Use the matrix exponential to solve the initial-value problem for the system

dx1ðtÞ=dt ¼ x2ðtÞ þ t; dx2ðtÞ=dt ¼ x1ðtÞ þ 1 if x1ð0Þ ¼ �1 and x2ð0Þ ¼ 1:

40. Use the Laplace transform method to find (a) etA given that A ¼ 1 1

�1 1

� �
;

and (b) etA given that A ¼ 2 1

1 2

� �
:

41. Find etA, given that A ¼
1 1 0

�1 1 1

0 2 1

2
4

3
5:

42. Use the Laplace transform method to find etA given that A ¼
1 2 0

2 1 0

1 0 0

2
4

3
5:

Hence find the general solution of the system dx=dt ¼ Ax if x ¼ [x1, x2, x3]
T.
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Chapter 7

An Introduction to Vector Spaces

7.1 A Generalization of Vectors

The theory of matrices developed in Chapters 1–6, and the algebra of vectors in

three dimensions used throughout calculus and physics, hereafter called space
vectors, both belong to the part of mathematics called linear algebra. Each is a

particular example of a linear algebra, with matrices being the more general of the

two. At first sight the algebra of matrices and of space vectors appear be very

different, but this is due to the use of different notations when describing vectors

themselves, and the operations of vector addition and the scaling of vectors by a real

number l. General space vectors r¼ ai + bj + ck are constructed by the scaling and

addition of the unit vectors i, j and k that are parallel to the orthogonal x, y and

z-axes, and thereafter the algebra of space vectors is developed in terms of these

unit vectors. However, vector r with its components a, b and c can equally well be

defined as a three element row or column matrix, after which the linear operations

of the scaling and addition of matrix vectors can be developed using the rules of

matrix algebra.

The purpose of this chapter is to show how the algebra of space vectors can be

regarded as a special case of matrix algebra. Then, by using the properties of matrix

algebra as a model, the formal definition of a linear vector space will be developed.

Although this approach may appear to be somewhat abstract, it is this very

abstraction that enables the notion of a linear vector space to find wide-ranging

applications throughout mathematics, engineering and physics.

Some of the most familiar examples of space vectors occur in engineering and

physics, where a vector is considered to be an entity with a magnitude, a line of

action and a direction along that line in which the vector acts. Typical examples of

such vectors are a force, a velocity, a momentum, an angular velocity, a magnetic

field and a heat flow vector, all of which are represented by directed line segments.

However, the quantities to be introduced in this chapter, also called vectors,
generalize the familiar idea of the space vectors in three-dimensional space.
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In elementary calculus the vectors u and v are added using an algebraic opera-

tion denoted by the symbol þ to produce a unique vector sum written u þ v, which

is again a vector. Also, a vector u can be multiplied by a real number l (scaled) to

produce a unique vector lu, which is again another vector, where the juxtaposition

of l and u indicates the scaling of vector u by l to yield the vector lu.
When more general vectors are involved, the algebraic operations of vector

addition and scaling usually needs to be defined in ways that differ from those used

with space vectors. The two algebraic operations of addition and scaling are used

with all vectors, and they are called binary operations. The term binary operation is
used to describe these operations because the addition of two vectors u and v

produces a sum w¼ uþ v that is also a vector, while the two quantities comprising

a number l and a vector u can be combined to produce a scaled quantity luwhich is

again a vector. In the case of space vectors, scaling a vector by the scale factor l
means changing the “length” of the line segment that represents a vector by a factor

l, where the sense in which the vector acts is reversed when the scale factor l is

negative. The set of all real numbers l used to scale vectors is usually denoted by

the symbol R, where R is said to describe the field over which the numbers l are

defined. This field contains the sum, difference, product and quotient of any two real

numbers, where only division by zero is excluded. We preface what is to follow by

summarizing some of the familiar ideas that will be generalized.

The set of all real numbers R can be displayed as points on a straight line, where

each point represents a unique real number. This straight line forms a one-dimen-

sional space that will denoted by R1, or simply by R, where the superscript 1

indicates that the line represents a one-dimensional space, and such a line will be

called an axis. On an axis a real number x is identified with a point at a distance

proportional to x from a point on the axis called the origin O, which in turn

corresponds to the number 0. By convention, a point x on R1 will be taken to lie

on one side of the origin when x is positive, and on the other side when x is negative.
In the Euclidean geometry of three-dimensional space R3, where the superscript 3

indicates the number of dimensions, it is convenient to work with three mutually

orthogonal (perpendicular) axes that all pass through a common origin O. In this

space a vector is represented by a straight line segment drawn from its base, located
at the origin O of the system of axes, to its tip located at a given point P in space.

The line segment from the base to the tip of a vector is the vector’s line of action,
and the magnitude of the vector is proportional to the length of this line segment.

The sense of the vector is taken to be the direction along the line segment. In R3 the

line segment representing a vector usually has an arrowhead added to it to indicate

the sense of the vector.

For convenience, the three axes in R3 are taken to be orthogonal, and they are

then called the x, y and z-axes. It is a standard convention when working with

orthogonal axes in three space dimensions to orient the axes in such a way that they

form a right-handed set. Here, a right-handed set of axes is one in which, given the x
and y-axes, the positive sense along the z-axis is the direction in which a right-

handed screw aligned with the z-axis will advance when rotated around the z-axis
from the x-axis to the y-axis. In terms of these axes, a space vector with its base at
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the origin and its tip at the point P with coordinates (x1, y1, z1) can also be

represented in matrix form as an ordered number triple [x1, y1, z1], when matrix

row notation has been used to identify the tip of the vector. The numbers x1, y1
and z1, called the components of the vector, represent the points on the respective

axes formed by the perpendicular projections of the tip P of the vector onto the

corresponding x, y and z-axes, as shown in Fig. 7.1. The ordering of the components

in the number triple is important, because the first component is the x-coordinate,
the second is the y-coordinate and the third is the z-coordinate of the tip of the

vector. So changing the order of the elements in a number triple changes the vector

that is represented.

Unlike the notation used in vector analysis, in the notation used here a vector r in

R3 will be written as the matrix row vector r ¼ [x1, y1, z1]. The length of the line

segment representing a vector, measured from its base to its tip determines the

“strength” of the vector, and it is a nonnegative scalar quantity called the magni-
tude of the vector. When working with space vectors in R3, the magnitude of vector

r, that is the length of its line segment, is usually denoted by rj j: However when
these ideas are generalized to an n-dimensional space, hereafter denoted by Rn, it is

customary to use a different notation, and to represent the magnitude of a vector r

by rk k; and to call it the norm of vector r. From now on, for consistency with the

notation of vector spaces to be introduced later, the symbol rj j will be dropped, and
in its place rk k will be used to signify the norm all vectors r, including the space

vectors in R3.

When the axes in R3 are mutually orthogonal, the norm of a vector in R3 is

determined by successive applications of Pythagoras’ theorem, as can be seen from

Fig. 7.1. We have

rk k ¼ OQ2 þ QP2
� �1=2

; (7.1)

Q

0

r

x1

z1

y1 y

z

P (x1, y1, z1)

x

Fig. 7.1 A space vector r in a

right-handed orthogonal

system of axes in R3
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but QP ¼ z1, and OQ2 ¼ x21 þ y21, so this becomes

rk k ¼ x21 þ y21 þ z21
� �1=2

; (7.2)

where the positive square root is taken because, by convention, the norm of a vector

is a nonnegative quantity.

When space vectors in R3 are confined to a plane they become two-dimensional

vectors, and then they are said to belong to the space R2. We will see later that

because the space R2 is a special case of the space R3, and it has strictly analogous

algebraic properties, it is called a subspace of R3.

When generalizing the concept of a vector to n dimensions, the notation

O{x, y, z} used for axes in three dimensions cannot be extended alphabetically,

so instead the n axes will be denoted respectively by x1, x2, . . . , xn, when the system
of axes will become O{x1, x2, . . . , xn}.

The equality of two space vectors u and v, written u¼ v, is only possible if u and

v have the same number of components, and corresponding components are equal.

So in R3, if u ¼ [u1, u2, u3] and v ¼ [v1, v2, v3], writing u ¼ v means that u1 ¼ v1,
u2 ¼ v2 and u3 ¼ v3. It is also necessary to define the vector 0 called the null vector,
also known as the zero vector, as a vector in which each component is zero, so in R3

the null vector 0 ¼ [0, 0, 0]. The null vector has neither magnitude nor direction.

The sum w of the space vectors u and v has for its respective components the

sum of the corresponding components of vectors u¼ [u1, u2, u3] and v¼ [v1, v2, v3],
so using the matrix row vector notation

w = uþ v ¼ ½u1 þ v1; u2 þ v2; u3 þ v3�: (7.3)

In geometrical terms, the addition of space vectors is performed by translating

(sliding) vector v parallel to itself, without change of scale, until its base coincides

with the tip of vector u, when vectorw¼ uþ v is the vector with the base of u as its

origin, and its tip at the tip of the repositioned vector v. From the geometry in

Fig. 7.2 it is it is clear that the same result follows by translating vector u until its

a b c
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v

u
u 

+ 
v
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u +
 v
 = v 

+ u

u
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v
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Fig. 7.2 (a) The triangle rule w¼ u + v (b) The triangle rule w¼ v + u (c) The parallelogram rule

w ¼ u + v ¼ v + u
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base coincides with the tip of vector v, with the result that w ¼ v þ u, which also

follows directly from (7.3). So the addition of vectors is commutative because uþ v

¼ v þ u. The geometrical description of the addition of space vectors u and v to

form the third side w of the triangles in Figs. 7.2a and b is called the triangle rule
for vector addition, while the diagonal of the parallelogram in Fig. 7.2c to form

w ¼ u þ v ¼ v þ u is called the parallelogram rule for vector addition.
When a vector u is scaled by the real number l, with the result written lu, each

component of u is multiplied by l, so in matrix row vector notation

lu ¼ ½lu1; lu2; lu3�: (7.4)

Geometrically, the scaling of vector u by a real number l amounts to leaving the

line of action of the vector unchanged, multiplying the norm uk k of vector u by lj j,
and keeping the sense of the vector unchanged if l > 0 but reversing it if l < 0.

The abstract mathematical concept of a vector is far more general than that of a

space vector in R3. For example, a vector may be taken to be any one of a set of n
element column or row matrices with real elements, or any one of a set of m � n
matrices with real elements on which the usual operations of matrix addition and

scaling may be performed. More generally still, other quite different mathematical

objects may also be regarded as vectors as, for example, a member of a set of

functions on which the mathematical operations defined as addition and scaling

may be performed.

Despite the many different forms that may be taken by vectors, for the applica-

tions to space vectors in R3 that are to follow, attention will be confined to matrix

row and column vectors with real elements, when the operation of addition denoted

by + will be the operation of the addition of matrices, while scaling by a real number

l will be interpreted as the scaling of matrices by the number l. When two or three

element row or column matrix vectors arise they may be interpreted, respectively,

as representing the coordinates of geometrical vectors in R2 and R3. More generally

still, n element row or column matrix vectors will be interpreted as vectors in an

n-dimensional Euclidean space Rn in which n mutually orthogonal ( to be defined

later) axes are defined. There, by analogy with (7.2), the norm rk k of the vector

r ¼ ½a1; a2; . . . ; an� is defined by the expression

rk k ¼ a21 þ a22 þ � � � þ a2n
� �1=2

; (7.5)

and called the Euclidean norm of the vector (see the digression on norms in

Section 3.1).

7.2 Vector Spaces and a Basis for a Vector Space

We now use the familiar properties of space vectors to formulate the axioms that
define a general vector space.
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Definition 7.1. The Axioms for a Real Vector Space

A set of objects V with typical elements u, v and w is said to form a real vector

space, with u, v and w called vectors in the space, if they satisfy the following set of
axioms, where l and m are arbitrary real numbers in the field R, and the operations
of the addition of vectors, and multiplication of a vector by a scalar are defined in
an appropriate manner.

1. If u and v belong to V, then u þ v also belongs to V (closure of vectors in V

under addition).
2. u þ v ¼ v þ u (addition of vectors in V is commutative).
3. u þ (v þ w) ¼ (u þ v) þ w (addition of vectors in V is distributive).
4. For every u in V there exists a unique vector 0 in V such that 0 þ u ¼ u þ

0 (there exists a unique zero element in V, denoted here by 0).
5. Associated with each vector u in V there exists a vector�u, also in V, such that

u þ (�u) ¼ (�u) þ u ¼ 0 (associated with each vector u in V there is a
negative vector �u in V, also called the additive inverse of u ).

6. If vector u belongs to V, so also does the vector lu, for any real scalar l
(scaling of a vector u in V by l produces another vector lu also in V).

7. lðuþ vÞ ¼ luþ lv (scalar multiplication is distributive over vector addition).
8. ðlþ mÞu ¼ luþ mu (scalar multiplication of a vector is distributive).
9. lðmuÞ ¼ ðlmÞu (scalar multiplication is homogeneous).

10. 1u ¼ u for each vector u in V (scalar multiplication of any vector u by unity
leaves u unchanged).

It is left as a routine exercise to show space vectors in the Euclidean spaces R2

and R3 form vector spaces.

The concept of a real vector space is far-reaching, and there are many quite

different types of vector spaces, of which some are given in the example that

follows, while the subsequent example shows that not every set of vectors forms

a vector space.

Example 7.1. The following are examples of vector spaces.

(a) The set V comprising all m � n matrices with real entries subject to the usual

rules for matrix addition and multiplication by a scalar form a vector space.

This is so because, clearly, the rules of matrix algebra satisfy the axioms of

Definition 7.1.

(b) The set V of real-valued functions f ¼ f(x) and g ¼ g(x) defined for �/ < x <
/, with their sum and multiplication by a scalar defined in the usual way, form

a vector space. To show these functions form a real vector space we start from

the two obvious results (f + g)(x) ¼ f(x) + g(x) and (lf)(x) ¼ lf(x), and then

proceed to check that the axioms of Definition 7.1.1 are satisfied, while using

the fact that 0, the zero vector, is considered to be the function of x that is

identically zero for all x. The details are left as an exercise.

(c) The set V of all real differentiable functions form a vector space. This follows

because the sum of two differentiable functions is a differentiable function
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and a differentiable function scaled by a real number l is also a differentiable

function, after which the other axioms of Definition 7.1.1 are easily seen to be

satisfied.

}

Example 7.2. To see that not every set of vectors forms a vector space, it is only

necessary to consider the set of all points inside a unit sphere V centred on the origin

in R3, subject to the usual rules for vector addition and multiplication by a scalar.

Let vector u be any vector drawn from the origin with its tip at the point (x, y, z)
inside the unit sphere V. Then vector u can be written u ¼ [x, y, z] , and if u is to lie

inside the unit sphere it is necessary that x2þ y2þ z2< 1. Then, although the vector

u ¼ 1
2
; 0; 0

� �
lies inside V , the vector 3u ¼ 3� ½1

2
; 0; 0� ¼ ½3

2
; 0; 0� lies outside V,

showing that axiom 6 of Definition 7.1 is not satisfied, so the vectors u in V do not

form a vector space. This is sufficient to establish that V is not a vector space,

though this conclusion also follows by considering the vectors u ¼ ½1
2
; 0; 0� and

v ¼ ½3
2
; 0; 0�, both of which lie inside V, though their sum uþ v ¼ ½2; 0; 0� lies

outside V, showing that axiom 1 of Definition 7.1 is also not satisfied. Notice that to
prove a set of vectors does not form a vector space it is only necessary to show that

any one of the axioms defining a vector space is not satisfied, and thereafter it is

unnecessary to check which, if any, of the other axioms also fail to be satisfied.

}
Following from Definition 7.1, we now formulate the definition of a subspace of

a real vector space V.

Definition 7.2. The Subspace of a Real Vector Space V

Let V be a real vector space on which are defined the operations of vector
addition and the scaling of a vector by a real number. Then a subset W of vectors V,
that itself forms a vector space with the same operations of vector addition and
scaling as the ones in V, is called a subspace of V.

For example, if V is the set of all geometrical vectors in the three-dimensional

Euclidean space R3, a subspace W of V comprises the set of all geometrical vectors

in a plane in R2. Let V be the set of all m� nmatrices with real entries subject to the

rules for matrix addition and multiplication by a scalar. Then a subspace W of V is

the set of all m � n matrices with real entries in which each of the m elements in

their first columns is equal to 0. To see why this set of vectors forms a subspace,

notice that when the vectors are added or scaled by a real number l, the result will
again be a matrix of the same form in which each element in the first column is

equal to zero. Conversely, consider the case whereW is the set of allm� nmatrices

with real elements, in which each of the m elements in their first columns is equal to

1. Then, although every matrix inW belongs to V, the set of matrices inW does not
form subspace of V, because when such matrices are added, their first columns no

longer contain elements equal to 1.
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A simple but important consequence of the definition of a subspace is that every

vector space V has at least two subspaces, comprising the space V, which is a

subspace of itself, and the null or zero subspace comprising the single vector 0.

Of fundamental importance in vector spaces is the concept of a linear combina-
tion of vectors. A vector w is said to be a linear combination of the m vectors

v1, v2, . . . , vm belonging to a vector space V if it can be written

w ¼ c1v1þc2v2þ � � � þ cmvm; (7.6)

where c1, c2, . . . , ck are real numbers (scalars), not all of which are zero.

Let a set of vectorsQ¼ {v1, v2, . . . , vm} belong to a vector space V, and consider
the vector equation

c1v1þc2v2þ � � � þ cmvm¼ 0: (7.7)

The set of vectorsQwill be said to be linearly independent if (7.7) is only true when

c1 ¼ c2 ¼ � � � ¼ cm ¼ 0: (7.8)

If, however, (7.7) is true when not all of the numbers c1, c2, . . . , cm vanish, then

the set of vectors in Q will be said to be linearly dependent.
For example the vectors u ¼ [1, 2, 3], v ¼ [0, 1, 2] and w ¼ [1, 3, 5] are linearly

dependent, because u + v � w ¼ 0, showing that in the notation of (7.7) it follows

that c1¼ 1, c2¼ 1 and c3¼�1. However, the vectors u¼ [2, 0, 0], v¼ [0, 3, 0] and

w ¼ [0, 0, 5] are linearly independent, because c1u + c2v + c3w ¼ 0 if and only if

c1 ¼ c2 ¼ c3 ¼ 0.

Let Q ¼ {v1, v2, . . . , vm} be a set of m vectors belonging to a vector space V . If

there are vectors in V that cannot be expressed in the form the linear combination of

vectors in Q given by (7.6), these vectors must belong to a subspace W of V. When

this occurs the set of vectors Q ¼ {v1, v2, . . . , vm} is said to span the subspace W.

If, instead, every vector in V can be expressed as a linear combination of the m
linearly independent vectors in (7.6), the set of vectors Q is said to span the finite-

dimensional vector space V, which then has the dimension m. It is convenient to
denote the dimension of V by dim(V) so, for example, dim(R3) ¼ 3.

When vectors v1, v2, . . . , vm in (7.6) belonging to a vector space V are linearly

independent and span the vector space V, this set of m vectors is said to form a basis
for vector space V , which is then called an m-dimensional vector space. Clearly

although a basis for a vector space V spans V, a basis is not unique. This follows

because any other set of linearly independent vectorsw1,w2, . . . ,wn, each of which

is formed by linear combinations of the linearly independent vectors v1, v2, . . . , vn
forming a basis for V, will itself form a different though equivalent basis for V.
This simple result is often used to advantage when choosing a basis that is

computationally convenient in a given situation.

A vector space V whose dimension is a finite number is called a finite-dimen-
sional vector space, and only such spaces will be considered here. There are also
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infinite-dimensional vector spaces, a familiar example of which involves the Four-

ier series expansion of a function f(x) over some interval a � x � b. In such an

expansion, each of the Fourier coefficients can be regarded as a coordinate of the

function f(x) in an infinite-dimensional vector space, where the vectors in the space

are the sine and cosine functions of multiple angles, while the Fourier coefficients

are the coordinates. The analysis of an infinite-dimensional vector space is more

complicated than that of a finite dimensional vector space, so this topic will only be

mentioned here.

A familiar example of a basis for a finite-dimensional vector space is provided

by the three unit vectors i, j and k used with elementary space vectors in the

calculus. These can represent every vector r in the space R3 by writing r ¼ c1i +
c2 jþ c3k. Here, the numbers c1, c2 and c3 are the components of vector r, while (c1,
c2, c3) specifies the coordinates of the tip of vector r with its base at the origin, so in
the vector notation used here r¼ [c1, c2, c3]. This is, of course, not the only basis for
R3 that can be used, because any set of three noncoplanar vectors will serve equally

well, though such a basis may not always be as convenient to use as the orthogonal

system i, j and k.

By way of example, let us consider the real n-dimensional Euclidean vector space

Rn represented by all n element vectors w with real elements that can be written

w ¼ c1v1þc2v2þ � � � þ cnvn; (7.9)

where the vectors v1, v2, . . . , vn are linearly independent. A simple and convenient

basis for this space is provided by the set of n vectors Q ¼ {e1, e2, . . . , en}, where
the n element vectors er with r ¼ 1, 2, . . . , n have the form

e1 ¼ ½1; 0; 0; : : : ; 0�; e2 ¼ ½0; 1; 0; : : : ; 0�; : : : ; en ¼ ½0; 0; 0; : : : ; 1�; (7.10)

in which er is the vector in which all elements are zero, with the exception of the rth
element which is 1.

The vectors e1, e2, . . . , en, in this order, are said to form a standard ordered basis
for Rn. Clearly these vectors satisfy the linear independence condition (7.7) and

(7.8) with m ¼ n, because only when c1 ¼ c2 ¼ � � � ¼ cn ¼ 0 will the linear

combination c1e1 + c2e2 + � � � + cnen ¼ 0. This linear independence also follows

from the determinant test for linear independence given in Theorem 2.3, because if

A is a matrix with vectors e1, e2, . . . , en as its rows (columns), we see that A ¼ I,

and det A ¼ 1 6¼ 0.

A different, but equivalent, basis for Rn is provided by the set of n vectors S ¼
{v1, v2, . . . , vn}, each with n components, where

v1 ¼ 1; 0; 0; . . . ; 0½ �; v2 ¼ 1; 1; 0; . . . ; 0½ �; v3 ¼ 1; 1; 1; . . . ; 0½ �; . . . ;

vn ¼ ½1; 1; 1; . . . ; 1�; (7.11)

where in vector vr, with r¼ 1, 2, . . . , n, the first r elements are 1, and the remainder

are zeros.
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The linear independence of these vectors follows from the determinant test given

in Theorem 2.3, because a matrix A with these vectors as its rows is a lower

triangular matrix with 1’s on its leading diagonal, so det A ¼ 1 6¼ 0.

7.3 Changing Basis Vectors

On occasions it is necessary to represent a vector expressed in terms of one set of

basis vectors in terms of a different set of basis vectors, and the way this can be done

is illustrated in the next example.

Example 7.3. In terms of the standard ordered basis Q ¼ {e1, e2, . . . , en}, a vector
r¼ [1, 3, 4, 2]. Find the form of this vector in terms of the basis S¼ {v1, v2, v3, v4},

where the vectors vi for i ¼ 1, 2, 3, 4 in R4 are given in (7.11) for n ¼ 4.

Solution. Some notation is necessary, so let re ¼ r ¼ [1, 3, 4, 2] be vector r

expressed in terms of the standard ordered basis Q¼ {e1, e2, e3, e4} associated with

(7.10), and let rv be the vector r expressed in terms of the new basis involving the

vectors vi. Then to find the new representation we must set

½1; 3; 4; 2�Q ¼ av1 þ bv2 þ gv3 þ dv4

¼ a½1; 0; 0; 0� þ b½1; 1; 0; 0� þ g½1; 1; 1; 0� þ d½1; 1; 1; 1�;

and find the constants a, b, g, d, to obtain the representation rv ¼ ½a; b; g; d�S. In
applications, both re and rv may be considered to be either matrix row or column

vectors.

Equating corresponding components on each side of this equation gives

1 ¼ aþ bþ gþ d; 3 ¼ bþ gþ d; 4 ¼ gþ d; 2 ¼ d;

with the solution set a ¼ �2, b ¼ �1, g ¼ 2, d ¼ 2 so rv ¼ �2v1 � v2 þ
2v3 þ 2v4 ¼ ½�2;�1; 2; 2�S:

7.4 Row and Column Rank

It was stated without proof in Chapter 4, that if A is an arbitrary m � n matrix with

real elements, then row rank(A) ¼ column rank(A). This result is sufficiently

important for it to be formulated as a theorem, and then proved.

Theorem 7.1. The Equivalence of Row and Column Ranks

If A is an m � n matrix, then

row rank ðAÞ ¼ column rank ðAÞ:
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Proof. The proof of this result involves straightforward use of the basis vectors for a
space. Consider an arbitrary m � nmatrix A with real elements aij with i ¼1, 2, . . . ,
m and j ¼ 1, 2, . . . , n. Then each of its m rows forms an n element row vector

belonging to Rn, while each of its n columns forms an m element column vector

belonging to Rm.

If A is the zero matrix 0, its rows and columns all contain the zeros, in which

case the result is certainly true, because then row rank(A) ¼ column rank(A) ¼ 0.

Now let us suppose row rank (A) ¼ r with 0 < r � m. It follows from this that r
matrix row vectors bj ¼ [bj1, bj2, . . . , bjn], with j ¼ 1, 2, . . . , m, can be found that

form a basis for the row space ofA, namely the space to which all of the row vectors

in A belong. Then each row ai ¼ [ai1, ai2 , . . . , ain] of A can be expressed as the

following linear combination of the basis vectors

ai ¼ li1b1 þ li2b2 þ � � � þ lirbr i¼ 1; 2; . . . ;m;

where the lij are constants.
Equality of vectors occurs when their corresponding elements are equal, so the

expression for ai implies that

aik ¼ li1b1j þ li2b2j þ � � � þ lirbrj;

for

1 � i � m; 1 � j � n:

Consequently, the jth column vector of matrix A can be written in the form

a1j
a2j

..

.

amj

2
6664

3
7775 ¼

b1jl11
b1jl21

..

.

b1jlm1

2
6664

3
7775þ

b2jl12
b2jl22

..

.

b2jlm2

2
6664

3
7775þ � � � þ

brjl1r
brjl2r
..
.

brjlmr

2
6664

3
7775:

Denoting the jth column vector of A by cj ¼ [a1j, a2j, . . . , amj]
T, and defining the

column vector ls ¼ ½l1s; l2s; � � � ; lms�T, for s ¼ 1, 2, . . . , r, allows the last result to
be written in the simpler form

cj ¼ b1jl1 þ b2jl2þ � � �þbrjlr, for j ¼ 1; 2; . . . ;n:

This shows that each of the n column vectors of A can be expressed as a linear

combination of the r column vectors l1, l2, . . . ,lr, that form a basis for the column
space of A, namely the space to which all columns ofA belong. So the dimension of

the column space of A, although unknown at present, cannot exceed r. However,
dim(row space of A) ¼ r, so we have established that

dim(column space of A) � dim (row space of A) ¼ r: (I)
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If matrix A is now transposed, the result becomes an n � m matrix, in which the

rows of A become the columns of AT, while the columns of A become the rows of

AT. An application of the previous argument to AT then shows that

dim column space of AT
� � � dim row space of AT

� �
;

but the row space ofAT¼ the column space ofA, and the column space ofAT¼ the

row space of A, so this last result implies that

r ¼ dim row space of Að Þ � dim column space of Að Þ: (II)

The two inequalities (I) and (II) concerning the dimensions of spaces can only be

true if

dim row space of Að Þ ¼ dim column space of Að Þ ¼ r;

from which it then follows that row rank(A)¼ column rank(A)¼ r, and the proof is
complete.

7.5 The Inner Product

The magnitude of a vector in Rn has already been defined in (7.5), but now the

distance between the tips of two vectors in the Euclidean space Rn must be defined,

and both quantities related to the concept of an inner product of vectors.

Definition 7.3. (The axioms of an inner product)

Let u, v and w be any three vectors in a finite-dimensional vector space V, and let k
be an arbitrary real number. Then the inner product of vectors u and v in the space
V, written u; vih , is defined as a real number that satisfies the following axioms:

P1. u; vih ¼ v; uih (the inner product is symmetric with respect to u and v)
P2. uþ v;wih ¼ u;wih þ v;wih (the inner productive is additive)
P3. ku; vih ¼ k u; vih (the inner product is homogeneous)
P4. u; uih r0 with u; uih ¼ 0 if, and only if, u = 0 (the inner product of u with itself

is positive, and vanishes only when u = 0)

□
In the n-dimensional Euclidean space Rn an inner product of the vectors

u ¼ ðu1; u2; . . . ; unÞ and v ¼ ðv1; v2; . . . ; vnÞ is defined as the real scalar quantity

hu; vi ¼ u1v1 þ u2v2 þ � � � þ unvn; (7.12)

where u; vh i may be positive, negative, or zero.
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Notice that if u and v are treated as matrix row vectors, the operation of matrix

multiplication combined with the matrix transpose operation allows the inner

product u; vh i to be written

u; vih ¼ u1; u2; . . . ; un½ � v1; v2; . . . ; vn½ �T: (7.13)

It is left as a routine exercise to show the definition of an inner product of matrix

vectors u and v satisfies the axioms of Definition 7.3.

In terms of the inner product, two vectors u and v, neither of which is a zero

vector, are said to be orthogonal (a generalization of the mutual perpendicularity of

vectors in R3) if

u; vh i ¼ 0; (7.14)

where the justification for the term orthogonal will be given later.

In engineering and physics, when working with space vectors in R2 and R3, the

inner product u; vih is called the dot product and denoted either by u � v; or

sometimes by (u,v). For example, setting u ¼ u1i þu2j þ u3k and v ¼ v1i þ v2j
þ v3k, where i, j and k are the usual mutually orthogonal unit vectors in the

Euclidean space R3, and using the familiar results from unit space vectors that

i � i ¼ j � j ¼ k � k ¼ 1; i � j ¼ j � i ¼ 0; i � k ¼ k � i ¼ 0; j � k ¼ k � j ¼ 0;

it follows that

u � v ¼ u1v1 þ u2v2 þ u3v3;

which should be compared with (7.12).

A set of basis vectors v1, v2, . . . , vn for the vector space R
n will be said to form

an orthogonal set of vectors if

ui; uj
� � ¼ 0 for i 6¼ j;

ki 6¼ 0 for i ¼ j;

�
(7.15)

for some set of positive numbers ki, with i ¼ 1, 2, . . . , n. Furthermore, the set of

basis vectors will be said to form an orthonormal set of vectors if every number ki in
(7.15) is equal to unity. When expressed more concisely, a set of vectors u1, u2, . . . ,
un will form an orthonormal set if

ui; uj
� � ¼ dij for i; j ¼ 1; 2; . . . ; n; (7.16)

where dij is the Kronecker delta symbol defined as

dij ¼ 1; i ¼ j
0; i 6¼ j:

�
(7.17)
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It follows directly from (7.16) that the vectors e1, e2, . . . , en in the standard basis
for Rn given in (7.10) form an orthonormal set, as do the unit space vectors i, j and k.

To define the length of a vector represented by an n element matrix row or

column vector u with real elements in the space Rn, and the distance between the

tips of two n element matrix row vectors u and v, also with real elements, we

proceed as follows.

As already seen in (7.5), the norm (magnitude) of the vector u ¼ ½u1; u2; . . . ; un�
in the n-dimensional Euclidean space Rn is obtained by generalizing the magnitude

of a three-dimensional Euclidean vector, by setting

uk k ¼ u21 þ u22 þ � � � þ u2n
� �1=2 � 0: (7.18)

It follows directly that

u; uh i1=2 ¼ uk k ¼ u21 þ u22 þ � � � þ u2n
� �1=2 � 0; (7.19)

where the norm of vector u is zero only when u ¼ 0.

An orthogonal set of vectors u1, u2, . . . , un can be converted to an orthonormal
set by dividing each vector ui by its norm uik k; because then the set of vectors

vi ¼ ui= uik k for i ¼ 1; 2; . . . ; n (7.20)

satisfies condition (7.16).

The concept of distance plays an essential role in the geometry of Rn, as does

orthogonality, so we now generalize this concept to the space Rn. Let vector

u ¼ ½u1; u2; : : : ; un� and vector v ¼ ½v1; v2; : : : ; vn�: Then, by analogy with

(7.2), the distance d(u, v) between the tips of the vectors u and v, that is the

distance between the points represented by of the vectors u ¼ [u1, u2, . . . , un]
and v ¼ [v1, v2, . . . , vn] in the space Rn, is defined as the nonnegative number

dðu; vÞ ¼ ðv1 � u1Þ2 þ ðv2 � u2Þ2 þ � � � þ ðvn � unÞ2
	 
1=2

(7.21)

When n ¼ 2 or 3 result (7.21) reduces to the familiar expressions for the

Euclidean distance between points in two or three space dimensions. A distance

function like (7.21) in a vector space is called a metric for the space, so (7.21) is a

metric for the space Rn. A vector space in which a metric is defined is called

a metric space, so the Euclidean space Rn with the metric (7.21) is an example of a

metric space. A metric for a vector space may take many different forms, though

all metrics must satisfy the following conditions that are based on the familiar

properties of distance in the two and three-dimensional Euclidean spaces R2 and R3.

Definition 7.4 Properties of Length and of a Metric. Let u and v be vectors in a
space U, and let k be an arbitrary real number. Then the norm (length or magni-

tude) of a vector must satisfy the following conditions:
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N1. uk kr0 (a norm is a nonnegative scalar).
N2. uk k ¼ 0 if, and only if, u = 0 (a vector has a zero norm only if the vector is 0).
N3. kuk k ¼ kj j uk k (when a vector u is scaled by a number k the norm of ku is

scaled by the number kj j).
N4. uþ vk kb uk k þ vk k (the triangle inequality for norms).

The distance d(u, v) between the vectors u = [u1, u2, … , un] and v ¼ ½v1;v2; . . . ; vn�
must satisfy the following conditions:

D1. d(u, v) 0 (the distance between two points must be nonnegative).
D2. d(u, v) = 0 if and only if u = v (the distance between two points is zero only

when the points are coincident).
D3. d(u, v) = d(v, u) (The distance from a point P to a point Q equals the distance

from point Q to point P).
D4. d(u, v) d(u, w) þ d(w, v) (the triangle inequality for distances).

□
The name triangle inequality used in N4 and D4 is derived from the familiar

Euclidean result that the length of the hypotenuse of a triangle is less than or equal

to the sum of the lengths of the other two sides of the triangle (see Fig. 7.2b). In R2

and R3, equality in D4 is only possible when the triangle degenerates in such a way

that all three of its vertices A, B and C lie on a straight line, with vertex B between

vertices A and C.
When u and v are vectors in Rn, the verification of conditions N1 to N3 and D1 to

D3 is straightforward, so these results will be omitted. However, showing that

conditions N4 and D4 are satisfied by vectors in a vector space is a little harder.

We prove only condition D4, because the proof of condition N4 proceeds along

similar lines. The starting point involves proving the Cauchy–Schwarz inequality
for the real n element matrix row vectors u¼ [u1, u2, . . . , un] and v¼ [v1, v2, . . . , vn]
.

Theorem 7.2 The Cauchy–Schwarz Inequality. If u= [u1, u2, … , un] and v= [v1, v2,
… , vn] are real vectors, then

u; vh ij jb uk k vk k:

Proof. The proof of this inequality starts from the fact that a sum of the squares of

real numbers is nonnegative, so as the elements of u and v are real,

Xn
k¼1

luk þ vkð Þ2r0;

for all real. Expanding the expression on the left and grouping terms gives

Al2 þ 2Blþ Cr0;
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where

A ¼
Xn
k¼1

u2k ; B ¼
Xn
k¼1

ukvk and C ¼
Xn
k¼1

v2k :

If A > 0, setting = B/A reduces the original inequality to B2 AC, where

B2 ¼ u; vh i2; A ¼ uk k2 and C ¼ vk k2. As u; vh i may be negative, we will first

replace u; vh i by u;vh ij j in the inequality, which is permissible because

u; vh i2 ¼ u; vh ij j2. The positive square root of each side of the inequality can be

taken, yielding the Cauchy–Schwarz inequality. If A = 0, then u1 = u2 = � � � = un and
the result is trivial. The Cauchy–Schwarz inequality shows the inequality sign can

only be replaced by an equality sign when u is proportional to v, in which case u =

kv for some real k, so the Cauchy–Schwarz inequality is proved for all u and v.

To establish result N4 for the Euclidean metric in Rn we begin with the result

uþ vk k2 ¼ uþ v; uþ vh i
¼ uk k2 þ 2 u; vh i þ vk k2:

The inner product u; vh i may be negative, so u; vh i � u; vh ij j; and after using

the Cauchy–Schwarz inequality we find that

uþ vk k2 � uk k2 þ 2 uk k vk k þ vk k2 ¼ uk k þ vk kð Þ2:

Taking the positive square root of each side of this inequality then gives the

triangle inequality, and the result is established.

7.6 The Angle Between Vectors and Orthogonal Projections

When working with geometrical vectors in the Euclidean spaces R2 and R3, it is a

standard result that the angle y between vectors u and v is given in terms of the

scalar (dot) product,

cos y ¼ u � v
uj j vj j ; for 0 � y � p: (7.22)

From the Cauchy–Schwarz inequality, because u; vh i may be positive or nega-

tive, it follows that in Rn the analogue of result (7.23) is

� 1 � u; vh i
uk k vk k < 1; (7.23)
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where equality only occurs when u¼ kv, with k real. So, by analogy with the spaces
R2 and R3, in the Euclidean space Rn an angle y between vectors u and v can be

defined by using the result

cos y ¼ u; vh i
uk k vk k ; for 0 � y � p: (7.24)

This result provides the justification for saying that vectors u and v in Rn are

orthogonal when u � vh i ¼ 0; because this occurs when cos y ¼ 0; so that y ¼ 1
2
p:

Example 7.4. Find the angle between u ¼ ½1;�1; 2; 3� and v ¼ ½2; 0;�1; 1�:

Solution.
u; vh i ¼ 3; uk k ¼

ffiffiffiffiffi
15

p
; vk k ¼

ffiffiffi
6

p
;

hence

cos y ¼ 3=ð
ffiffiffiffiffi
15

p ffiffiffi
6

p
Þ ¼ 0:3162; so y ¼ 71:56o:

}
It is useful to relate (7.24) to the concept of the orthogonal projection of a vector

u in the direction of a vector v. This is best understood by first considering the two-

dimensional case involving geometrical vectors, because the concept generalizes

immediately to the space Rn. Figure 7.3 shows two arbitrary vectors u and v, each

with its base at the origin O, where the tip of vector u is at P, the line PQ is

perpendicular to vector v, and y is the included angle between the vectors u and v.

Then the length OQ is the orthogonal projection of u in the direction of vector v,

which will be denoted by projv u is OQ ¼ OP cosy. When working with space

vectors and using the vector dot product notation, we can write

projvu ¼ cos y uj j ¼ u � v
uj j vj j uj j ¼ u � v

vj j : (7.25)

Generalizing this notation to the space Rn, using inner product notation, this

becomes

projvu ¼ u; vh i
vk k : (7.26)

It is important to understand that, in general, projv u 6¼ proju v.

u

vO Q

P

qFig. 7.3 The orthogonal

projection of u in the

direction of v
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Denoting the vector in the direction of OQ by w, we see that

w ¼ (projvuÞ
v

vk k ¼ u; vh i
v; vh i v; (7.27)

where use has been made of the fact that v = vk k is a vector of unit length in the

direction of v and v; vh i ¼ vk k2:
The ease with which space vectors can be manipulated when expressed in

component form using the triad of orthogonal unit vectors i, j and k, is shared by

vectors in the Euclidean space Rn when they are expressed in terms of an orthonor-

mal set of basis vectors. This raises the question of how, given an arbitrary set of

n basis vectors in the vector space Rn, the set can be replaced by an equivalent

orthonormal set of basis vectors.

7.7 Gram–Schmidt Orthogonalization

The method of construction we now describe is called the Gram–Schmidt orthogo-
nalization process, and for simplicity the method will first be developed using

vectors in the space R3, before being generalized to vectors in the space Rn.

Letting u1, u2 and u3 be any three linearly independent vectors in the space R3,

we now show how they may be used to construct an equivalent set of orthogonal

basis vectors v1, v2 and v3. Once this has been done, if required, an equivalent

orthonormal set of vectors w1, w2 and w3 follows directly by dividing each vector

by its norm, leading to the results

w1 ¼ v1= v1k k; w2 ¼ v2= v2k k and w3 ¼ v3= v3k k: (7.28)

7.7.1 The Gram–Schmidt Orthogonalization Process in R3

The purpose of this process is to take any three linearly independent vectors u1, u2
and u3 that form a basis for R3, and to use them to construct an equivalent set of

three orthogonal basis vectors v1, v2 and v3 in R3.

The method of construction is straightforward, and it starts by making an

arbitrary choice for v1 by setting it equal to one of the vectors u1, u2 and u3,

when it then becomes the first of the three orthogonal linearly independent vectors

v1, v2 and v3. The vectors v2 and v3 are then constructed as linear combinations of

vectors u1, u2 and u3 in such a way that v1, v2 and v3 are mutually orthogonal.

Step 1. Make the (arbitrary) assignment

v1 ¼ u1: (7.29)
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Step 2. Set v2 ¼ k12v1 þ u2, and form the inner product of v1 and v2 to obtain

v1; v2h i ¼ k12 v1; v1h i þ v1; u2h i: However, if v1 and v2 are to be orthogonal we

must have v1; v2h i ¼ 0, so k12 ¼ � v1; u2h i= v1; v1h i; from which it follows that

v2 ¼ u2 � v1; u2h i
v1; v1h i v1: (7.30)

Step 3. Set v3 ¼ k13v1 þ k23v2 + u3 and form the inner product of v3 with v1. The

orthogonality of v1, v2 and v3 means that v1; v2h i ¼ 0 and v1; v3h i ¼ 0, from which

we see that k13 ¼ � v1; u3h i= v1; v1h i:
Similarly, forming the inner product of v3 with v2 shows that k23 ¼ � v2;u3h i=

v2; v2h i: Finally, substituting for k13 and k23 in the expression for v3 we find that

v3 ¼ u3 � v1; u3h i
v1; v1h i v1 �

v2; u3h i
v2; v2h i v2: (7.31)

The set of vectors v1, v2 and v3 in (7.29), (7.30) and (7.31), constructed from the

arbitrary set of linearly independent vectors u1, u2 and u3, then form an orthogonal

set of vectors. If an orthonormal set of vectors w1, w2 and w3 is required, these

follow by using (7.28).

Notice that the orthogonal vectors v1, v2 and v3 found in this way will depend on

the choice of vector used to form u1. Also, as any three linearly independent vectors

formed by linear combinations of u1, u2 and u3 also forms a basis for the space R3, it

follows directly that there is no unique set of orthogonal basis vectors for R3.

7.7.2 The Extension of the Gram–Schmidt Orthogonalization
Process to Rn

An examination of the pattern of results (7.29) to (7.31) shows how this method of

construction can be extended to the case where an orthogonal basis of n vectors v1,

v2, . . . , vn is to be constructed from an arbitrary set of n linearly independent

vectors u1, u2, . . . , un. Setting v1 ¼ u1, and

vr ¼ k1;rv1 þ k2;rv2 þ � � � þ kr�1;rvr�1 þ ur; for r ¼ 2; 3; . . . ; n; (7.32)

using the orthogonality of vector vr with respect to the vectors vi, and forming the

appropriate inner products, it is easily shown that the coefficients ki,r are given by

ki;r ¼ � vi; urh i
vi; vih i for i ¼ 1; 2; . . . ; r � 1: (7.33)

It is instructive to examine the geometrical interpretation of v2 and v3 in (7.30)

and (7.31). Recalling the definition of the angle between two vectors given in
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(7.24), it can be seen from (7.30) that v2 is obtained from u2 by subtracting from u2
a vector in the direction of v1 of magnitude equal to projv2u2, with a corresponding

interpretation for v3 in (7.31).

If when using this construction only m < n of the n vectors u1, u2 , . . . , un are
linearly independent, the m vectors will span a subspace Rm of Rn of dimension m,
with the result that the Gram–Schmidt orthogonalization process will only yield m
orthogonal vectors that will together form a basis for the subspace Rm. (See

Exercise 20 in Exercise Set 7.)

Example 7.5. Show the vectors u1 ¼ ½1;�1;�1�; u2 ¼ ½1;�1; 1� and u3 ¼
½1; 1;�1� are linearly independent. Use the Gram–Schmidt orthogonalization pro-

cess with these vectors to construct an orthogonal system, and hence an equivalent

orthonormal system.

Solution. The vectors u1 to u3 are linearly independent because when they are

arranged to form the first three rows of a third-order determinant

detA ¼
1 �1 �1

1 �1 1

1 1 �1

������
������

we find that detA ¼ 2 0. Remember that the vectors will be linearly dependent if

detA ¼ 0.

From Step 1 we have

v1 ¼ u1 ¼ ½1;�1;�1�:
Omitting the details of the calculations involved, from Step 2 it turns out that

v2 ¼ ½1;�1; 1� � 1
3
½1;�1;�1� ¼ 2

3
;�2

3
; 4
3

� �
;

while Step 3 shows that

v3 ¼ ½1; 1;�1� � ð�1
3
Þ½1;�1;�1� � ð�1

2
Þ 2

3
;�2

3
; 4
3

� � ¼ ½1; 1; 0�:

Thus the three orthogonal vectors obtained from the Gram–Schmidt orthogonal-

ization process are

v1 ¼ ½1;�1;�1�; v2 ¼ 2
3
;�2

3
; 4
3

� �
and v3 ¼ 1; 1; 0½ �:

When these vectors are normalized using (7.20), the equivalent orthonormal

system is found to be

w1 ¼ 1ffiffi
3

p ;� 1ffiffi
3

p ;� 1ffiffi
3

p
h i

; w2 ¼ 1ffiffi
6

p ;� 1ffiffi
6

p ; 2ffiffi
6

p
h i

and w3 ¼ 1ffiffi
2

p ; 1ffiffi
2

p ; 0
h i

:

}
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Example 7.6. Use the orthonormal vectors w1, w2 and w3 in Example 7.1.5 to find

the vector in R3 represented by z ¼ � ffiffiffi
3

p
w1 þ

ffiffiffi
6

p
w2 þ

ffiffiffi
2

p
w3: What is the angle

between w1 and z?

Solution. Scaling the vectors and adding corresponding components gives

z ¼ ½�1; 1; 1� þ ½1;�1; 2� þ ½1; 1; 0� ¼ ½1; 1; 3�:
From (7.23)

cos y ¼ w1; zh i
w1k k zk k ¼

ð 1ffiffi
3

p ;� 1ffiffi
3

p ;� 1ffiffi
3

p Þ; ð1; 1; 3Þ
D E

w1k k zk k ¼ ð� ffiffiffi
3

p Þffiffiffiffiffi
11

p :

As the numerator is negative, must lie in the second quadrant, so 121.5˚.

}

7.8 Projections

Now the Gram–Schmidt orthogonalization procedure is available, we are in a

position to use it when developing the final topic in this chapter, which is how to

project a vector in the space Rn onto a subspace. To understand the significance of

such a projection, and why it is useful, it is only necessary to consider a practical

application involving the architectural plans of a building, all of which are two-

dimensional representations of a three-dimensional object. The plans all show the

outline of the building when projected onto a plane perpendicular to the line of

sight, corresponding to the building being viewed from different directions. Each of

these diagrams (a projection) simplifies the task of understanding the detailed

design of a building that exists in R3, by considering those of its details that are

shown when the building in R3 is projected onto different planes in R2, all of which

are subspaces of R3. This form of approach is also useful when applied to general

mathematical results in Rn, whose meaning can be better understood by considering

projections of the results in Rn onto different subspaces.

Consider the very simple situation in Fig. 7.4, where the perpendicular projec-

tion of the line OP in R3 onto the (x1, x2)-plane is the line OQ that lies in a subspace

R2 of R3. In this diagram the (x1, x2, x3)-axes are the standard ordered orthogonal

right-handed reference system with the associated unit vectors e1, e2 and e3
introduced in (7.10). In terms of this reference system, let OP to be the vector

p ¼ [a, b, c]. Then vector a ¼ OR ¼ [a, 0, 0] ¼ ae1 is a vector in the direction e1
with magnitude equal to the perpendicular projection of line OP in the direction e1,

while s¼ OS¼ be2¼ [0, b, 0] is the vector in the direction e2 with magnitude equal

to the perpendicular projection of line OP in the direction e2. Vector addition now

shows that vector q in the direction of the perpendicular projection OQ of OP with

magnitude OQ is given by q¼ ORþ OS¼ aþ s¼ ae1 þ be2 ¼ [a, 0, 0]þ [0, b, 0]
¼ [a, b, 0].
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Now let us generalize the notation of a projection and its associated vector to

take account of projections and their associated vectors from a space U onto a

subspace W. To achieve this, we will use the notation

projV!WðuÞðpÞ ¼
p; uh i
uk k (7.34)

to represent the projection of a vector p in a vector space V onto a subspaceW in the

direction of a vector u inW. Naturally, asW is a subspace of V, it follows that vector
u must also belong to V. By analogy, the vector q in W in the direction u with

magnitude projV!WðuÞðrÞ is

q ¼ projV!WðuÞðpÞ
u

uk k ¼ p; uh i
u; uh i u: (7.35)

Let V be an n-dimensional vector space, and let the subspaceW bem-dimensional,

with an orthonormal basis for V provided by the set of vectors V ¼{v1, v2, . . . , vm,
w1, w2, . . . , wn-m}, where the vectors w1, w2, . . . , wn–m form an orthonormal basis

for the subspace W. Then, by analogy with the situation considered previously in

R2, if q is the vector in the direction of the projection of p onto W, we can write

q ¼ projV!Wðw1ÞðpÞw1 þ projV!Wðw2ÞðpÞw2 þ � � � þ projV!Wðwn�mÞðpÞwn�m;

and so

q ¼ p;w1h iw1 þ p;w2h iw2 þ � � � þ p;wn�mh iwn�m: (7.36)

Example 7.7. Find the vector q when p = [3, 1, 3] is projected onto the subspace

W with the basis W = {b1, b2), where b1 = [1,1,0] and b2 = [1, 0, 1], and hence

find qk k:

x

Q

O
y

P

zFig. 7.4 The perpendicular

projection of OP in R3 onto a

subspace R2 to form OQ
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Solution. The two vectors inW form a suitable basis forW because they are linearly

independent, though they are not orthonormal. In general, the required projected

vector q can be found by applying result (7.35) to each of the basis vectors b1 and

b2, and then forming the vector sum of the results. However, inspection of vectors

p and b2 shows that p; b2h i ¼ 0, so p is orthogonal to b2. Consequently, direct use

cannot be made of the basis vector b2 in the projection process because it makes no

contribution. This difficulty is easily overcome by using the Gram–Schmidt ortho-

gonalization procedure to obtain two orthonormal vectors that are equivalent to the

basis vectors. Starting with v1 = b1, the procedure yields the equivalent orthonormal

basis vectors w1 ¼ 1ffiffi
2

p ;� 1ffiffi
2

p ; 0
h i

and w2 ¼ 1ffiffi
6

p ; 1ffiffi
6

p ;� 2ffiffi
6

p
h i

for the subspaceW, neither

of which is orthogonal to p. Using these vectors with p ¼ ½3; 1; 3� shows that
p;w1h i ¼ ffiffiffi

2
p

and p;w2h i ¼ �2=
ffiffiffi
6

p
: Thus q ¼ p;w1h iw1 þ p;w2h iw2 becomes

q ¼
ffiffiffi
2

p
1ffiffi
2

p ;� 1ffiffi
2

p ; 0
h i

þ � 2ffiffi
6

p
	 


1ffiffi
6

p ; 1ffiffi
6

p ;� 2ffiffi
6

p
h i

or

q ¼ 1;�1; 0½ � þ �1
3
;�1

3
; 2
3

� � ¼ 2
3
;�4

3
; 2
3

� �
:

Hence the required norm of the projected vector is qk k ¼ 2
3

� �2 þ �4
3

� �2 þ 2
3

� �2	 
1=2

¼ ffiffiffiffiffiffiffiffi
8=3

p
:

The final example illustrates the use of the projection operation to determine the

projection of a finite section of a space curve onto a plane.

Example 7.8. In terms of the standard ordered basis for R3, the position vector on a

space curve C has the parametric representation p ¼ ½cos t; sin t; t� for 0 t 2. Find

(a) the parametric representation of the position vector of the projection of curve C
onto the (x1, x2)-plane, and hence determine its shape, and (b) find the parametric

representation of the position vector of the projection of curve C onto the (x2 , x3)-
plane, and hence determine its shape.

Solution. The purpose of this example is to illustrate the use of the projection

operation when applied to a simple space curve though, as will be seen later, in this

particular case the results can be found more simply by using purely geometrical

arguments. Examination of the form of the position vector p, coupled with some

elementary coordinate geometry, shows the space curve C, expressed here in

parametric form, is a uniform helix about the x3-axis. The tip of the position vector

p on the helix is always at a unit perpendicular distance from the x3-axis, and the

helix starts at the point (1, 0, 0) and finishes at the point (1, 0, 2), having advanced

uniformly in the x3 direction through a distance after making one complete

revolution around the x3-axis.

Elementary geometrical reasoning shows that in case (a) the projection of helix

C onto the (x1, x2)-plane must be a unit circle centred on the origin. In case (b),

geometrical reasoning suggests that the projection of helix C onto the (x2, x3)-plane
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must be a plane curve with period 2 that oscillates in the plane between x2 = ±1,

while advancing uniformly in the x3 direction. Intuition suggests this projection of

the helix onto the (x2, x3)-plane may be a sinusoid.

Let us now give an analytical justification for these geometrical deductions.

(a) Reasoning as in (7.35), let space V be the space R3 to which p belongs, and let

the subspace W be the (x1, x2)-plane in R2. Set p ¼ ½cos t; sin t; t�, and let u1 be a

unit vector in the direction of the x1-axis, so u1 = [1, 0, 0]. Then from (7.35) the

vector q1 in the direction of u1 with its magnitude equal to the projection of p in the

direction u1 is given by

q1 ¼ projV!Wðu1ÞðpÞ ¼
p;u1h i
u1;u1h iu1 ¼

½cos t; sin t; t�; ½1; 0; 0�h i
½1; 0; 0�; ½1; 0; 0�h i ½1; 0; 0� ¼ ½cos t; 0; 0�:

Similarly, let u2 be a unit vector in the direction of the x2-axis, so u2 = [0, 1, 0].

Then from (7.35) the vector q2 in the direction of u2 with its magnitude equal to the

projection of p in the direction of u2 is given by

q2 ¼ projV!Wðu2ÞðpÞ ¼
p; u2h i
u2;u2h i u2 ¼

½cos t; sin t; t�; ½0; 1; 0�h i
½0; 1; 0�; ½0; 1; 0�h i ½0; 1; 0� ¼ ½0; sin t; 0�:

So the parametric representation of the position vector q of a point on the

projection of the helix onto the (x1, x2)-plane is

q ¼ q1 þ q2 ¼ ½cos t; sin t; 0�;
for

0btb2p:

This is, of course, the parametric representation of a unit circle in the (x1, x2)-
plane centred on the origin, as already deduced from purely geometrical considera-

tions. This same result follows more simply by observing that in terms of the

parametric representation of the helix, the (x1, x2)-plane corresponds to t = 0, so

that p = [cos t, sin t, 0].
(b) The unit vectors along the x2 and x3-axes are, respectively, v2 = [0,1, 0], and v3 =

[0, 0, 1], and as before we take space V to be R3, but this time the subspace W to be

the (x2, x3)-plane. Then

q2 ¼ projV!Wðv2ÞðpÞ ¼
p; v2h i
v2; v2h i v2 ¼

½cos t; sin t; t�; ½0; 1; 0�h i
½0; 1; 0�; ½0; 1; 0�h i ¼ ½0; sin t; 0�

and

q3 ¼ projV!Wðv3ÞðpÞ ¼
p; v3h i
v3; v3h i v3 ¼

½cos t; sin t; t�; ½0; 0; 1�h i
½0; 0; 1�; ½0; 0; 1�h i ¼ ½0; 0; t�:
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Hence the parametric representation of the position vector q of a point on the

projection of the helix onto the (x2, x3)-plane is

q ¼ q2 þ q3 ¼ ½0; sin t; t�;

for

0btb2p:

As already conjectured from geometrical considerations, this curve is a sinusoid

in the (x2, x3)-plane, though expressed here in parametric form. In fact this result

also follows more simply from the definition of p, because ignoring the x1 coordi-
nate by setting it equal to zero, we see that p = [0, sin t, t].

}
The geometrical consequence of each of the projections in Example 7.8 was easy to

deduce intuitively because of the simplicity of the space curve involved, and also

because in each case the projection was onto a plane on which one of the coordinate

variables was constant. For example, the plane x3¼ 0 corresponds to the (x1, x2)-plane.
The purely geometrical approach used there to arrive at the form of a projection

would not have been so successful had the space curve C been projected onto a

general planeP passing through the origin. This would happen, for example, when

a plane P through the origin is oriented relative to the usual x1, x2 and x3-axes, so
that mutually orthogonal axes x01 and x02 in the plane are directed, respectively, along
the unit vectors u1 ¼ ½1= ffiffiffi

3
p

;�1=
ffiffiffi
3

p
;�1=

ffiffiffi
3

p � and u2 ¼ ½2= ffiffiffi
6

p
; 1=

ffiffiffi
6

p
; 1=

ffiffiffi
6

p �.
Such a projection would be difficult to visualize intuitively, because the helix

would be projected onto a skew plane. Nevertheless, in such a case the approach

used in Example 7.8 would proceed exactly as before, and would give the result

automatically, and without difficulty.

Suffice it to say that projections from R3 onto R3 or onto R2 are often needed in

many practical situations. This happens, for example, when using a PC monitor to

make three-dimensional plots of the surface of mathematical functions, which are best

understood by viewing from different directions, and also by rotating the image on the

monitor screen. In practice this is accomplished by using various different forms of

readily available specialist software that is based on the projection operation.

Clearly, the analytical approach illustrated above will work in the case of the

much more general situation when a projection is from Rn to Rm, with n�m, though
this more general situation will not be considered here.

7.9 Some Comments on Infinite-Dimensional Vector Spaces

Although the main concern of this chapter is with finite-dimensional vector spaces,

before closing the chapter, and because of their importance in applications, something

should be said about the way an inner product is defined in an infinite-dimensional
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vector space. Suppose, for example, that a space V is a class of bounded real-valued

functions defined over an interval a � x � b like a special set of real polynomials, or

the set of trigonometric functions {sin x, sin 2x, . . . , 1, cos x, cos 2x, ...,}, defined for
�p � x � p. In cases such as these each function can be considered to be a vector,

when defining an appropriate inner product it is necessary to do so in terms of an

integral. Ifui(x) and uj(x) are any two vectors (functions) belonging to an infinite set of
functions {ui(x)}, i ¼ 1, 2, . . . , defined in a vector space V, an inner product defined
over V takes the form

ui; uj
� � ¼

Z b

a

rðxÞuiðxÞujðxÞdx; i; j ¼ 1; 2; . . . ; (7.37)

where r(x) is a nonnegative function called a weight function, whose form depends

on the nature of the functions in V, while r(x) � 0 must be such that the integral

(7.37) exists. In some cases the weight function r(x) � 1, but in the exercises at the

end of this chapter other forms of weight function occur like rðxÞ ¼ 1=ð1� x2Þ1=2
when integral (7.37) is taken over the interval �1 � x � 1.

Just as vectors in finite-dimensional vector spaces are orthogonal if their inner

product vanishes, so also are vectors in infinite-dimensional vector spaces. The

vectors ui(x) and uj(x) with i 6¼ j from a set {ui(x)}, are said to be orthogonal over
the interval a � x � b with respect to the weight function r(x) � 0 if

ui; uj
� � ¼

Z b

a

rðxÞuiðxÞujðxÞdx ¼ 0: (7.38)

The norm uiðxÞk k of a vector ui(x) in an infinite-dimensional vector space V is

defined as

uik k2 ¼
Z b

a

rðxÞ½uiðxÞ�2dx; i ¼ 1; 2; . . . : (7.39)

If the set of vectors {ui(x)} forms an orthogonal set, the normalized vectors

{~uiðxÞ}, defined as

~u1ðxÞ ¼ uiðxÞ= uik k; i ¼ 1; 2; . . . ; (7.40)

are said to form an orthonormal set, because then

ui; uj
� � ¼ 0; i 6¼ j;

1; i ¼ j:

�
(7.41)

To show the definition in (7.37) satisfies the conditions required of an inner

product it is necessary to demonstrate that it satisfies conditions P1 to P4. We

have:
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(i) u; vh i ¼ R b
a rðxÞuðxÞvðxÞdx ¼

R b
a rðxÞvðxÞuðxÞdx ¼ v; uh i; so condition P1 is

satisfied.

(ii) uþ v;wh i ¼ R b
a rðxÞðuðxÞ þ vðxÞÞwðxÞdx ¼ R b

a rðxÞuðxÞwðxÞdxþ
R b
a rðxÞvðxÞ

wðxÞdx ¼ u;wh i þ v;wh i; where w is any vector in V, so condition P2 is

satisfied.

(iii) lu;vh i ¼ R b
a lrðxÞuðxÞvðxÞdx¼ l

R b
a rðxÞuðxÞvðxÞdx¼ l u;vh i; where l is any

real number, so condition P3 is satisfied.

(iv) As r(x) is nonnegative, u; uh i ¼ R b
a rðxÞ½uðxÞ�2dx> 0 if u(x) 6¼ 0, and

u; uh i ¼ 0 if, and only if, u(x) � 0 showing that condition P4 is satisfied.

♦
The exercise set at the end of this section contains examples of inner products

associated with sets of orthogonal functions that arise in various applications,

perhaps most frequently when solving partial differential equations.

Exercises

1. Verify that geometrical vectors in R3 satisfy the axioms of a vector space.

2. Let V be the set of all 3 � 3 matrices with real elements. Does the subset W of

all such matrices with zeros on their leading diagonal form a subspace of V?
Give reasons for your answer.

3. Let V be the set of all 4 � 4 matrices with real elements. Does the subset W of

all such matrices in which the first element in the leading diagonal is 1, while

all other elements on the leading diagonal are zero, form a subspace of V ? Give

reasons for your answer.

4. Does the set of all m � n matrices with complex entries form a (complex)

vector space if the scalars l and m in the axioms in Definition 7.1.1 are complex

numbers ? Give reasons for your answer.

5. Show that the set of all cubic polynomials a0 þ a1x þ a2x
2 þ a3x

3 forms a

vector space denoted by P3.

6. Consider the vector space P3 of cubic polynomials a0 þ a1x þ a2x
2 þ a3x

3 in

Exercise 5. Give two examples of classes of cubic polynomials that belong to

subspaces of P3, and one example of a class of cubic polynomials that does not

belong to a subspace of P3, and explain why this is so.

7. Let V be the set of all real-valued continuous functions of a real variable x
defined over the interval a � x � b, where addition and scaling are defined in

the usual way. Show that V is a real vector space.

8. Let W be the set of all differentiable real-valued functions of a real variable x
defined over the interval a � x � b, with addition and scaling defined in the

usual way. Is W a subspace of the vector space P3 in Exercise 5? Give reasons

for your answer.

9. Using the ordinary definitions of addition and scaling, show the set of vectors V
formed by all real and continuous functions of a real variable x such that their

integral over the interval a � x � b exists is a real vector space.

10. In Exercise 7 let the set of functions in V be replaced by the set of all real-

valued discontinuous functions defined over the interval a � x � b. What
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restriction, if any, must be imposed on the functions in V if their integrals over a
� x � b are to form a vector space ?

11. A function f(x) defined over an interval a � x � b is said to be convex over that
interval if, for any two points P and Q on the graph of the function y ¼ f(x), all
points on the chord between P and Q lie above the graph. Is the space V of all

convex functions over the interval a � x � b a vector space under the ordinary
algebraic operations of addition and scaling? Give reasons for your answer.

12. Show, subject to the usual rules for multiplication and scaling, that the set of all

functions of the form f(x) ¼ a + bsin 2x + ccos 2x, with a, b and c arbitrary real
numbers and 0 � x � p , form a vector space V. Does the set W of all the

derivatives f0(x) of the functions f(x) form a subspace of V ? Give reasons for

your answer.

13. From amongst the set of vectors

v1 ¼ ½1;�2; 1; 3�; v2 ¼ ½2; 1; 0;�1�; v3 ¼ ½5; 0; 1; 1�;
v4 ¼ ½1;�1; 1;�1�; v5 ¼ ½1; 0; 2; 1�;

find a set that forms a basis for R4. Is your choice of four of the vectors in this

set the only ones that form a basis? If not, find a different set from amongst

the vectors v1 to v5 that will also serve as a basis for R4.

14. In the standard ordered basis for R4 a vector v ¼ [3, 1, 2, 0]. Find the form of v

in terms of the basis vectors{v1, v2, v3, v4}, given that v1¼ [1,�1, 1,�1], v2¼
[1, 1, 0, 0], v3 ¼ [0, 1, 0, 1], v4 ¼ [1, �1, �1, 1].

15. In the standard ordered basis for R5 a vector v ¼ [1, 3, �2, 1, 2]. Find the form

of v in terms of the basis vectors{v1, v2, v3, v4, v5}, given that v1 ¼ [1, 0, 0, 0,

1], v2¼ [1, 1, 0, 0, 1], v3 ¼ [0, 1, 1, 0, 1], v4 ¼ [1, 0, 1, 0, 1], v5¼ [0, 1, 0, 1, 1].

16. Two other norms are often used when working with vectors in Rn, called the

1-norm denoted by :k k1 and the infinity norm denoted by :k k1, where the dot is

a placeholder for the vector quantity whose norm is required. These norms are

defined for a vector u ¼ [u1, u2, . . . , un] by

uk k1 ¼ u1j j þ u2j j þ � � � þ unj j

and

uk k1 ¼ maxfu1; u2; � � � ; ung:

Show these definitions satisfy N1 to N4 in Definition 7.1.4.

17. Use the axioms of Definition 7.1.3 to prove the following properties of an inner

product:

(i) 0; vh i ¼ v; 0h i ¼ 0;
(ii) u; vþ wh i ¼ u; vh i þ u;wh i;
(iii) u; kvh i ¼ k u; vh i:
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18. Let u and v be two arbitrary vectors in the vector space Rn. Give a mathematical

justification of the fact that, in general, projvu 6¼ projuv, and illustrate this

situation graphically when u and v are vectors in R2. For what relationship

between u and v, if any, can the inequality sign between the two projections be

replaced by an equality sign? Verify that projvu 6¼ projuvwhen u¼ [1, 2, 3] and

v ¼ [1, 2, 1], and find the angle between these vectors.

19. The vectors u1 ¼ [1, �1,1], u2 ¼ [1, �1, �1] and u3 ¼ [1, 1, �1] are the

vectors used in Example 7.1.1 arranged in a different order. Find an equivalent

orthonormal set of vectors, and hence show these vectors are not those found in

the example.

20. Check that the vectors u1¼ [1,�2, 1], u2¼ [1, 1, 1], u3¼ [�1, 0 1] are linearly

independent, and find an equivalent orthonormal set of vectors.

21. Check that the vectors u1¼ [1, 1, 1, 1], u2¼ [1, 0, 1, 1], u3¼ [1,�1,�1, 0] and

u4¼ [0, 1, 1, 0] are linearly independent and find an equivalent orthonormal set

of vectors.

22. Let u1 and u2 be any two linearly independent three element vectors, and u3 be

such that u3 ¼ au1 þ bu2, where a and b are arbitrary real numbers, not both of

which are zero. Use the Gram–Schmidt orthogonalization process together

with the definition of an orthogonal projection of a vector in the direction of

another vector to show the process will generate two orthogonal vectors v1 and

v2, and a third null vector v3 ¼ 0. For the case n ¼ 3 this justifies the result

stated previously, that if only two of the three vectors u1, u2 and u3 are linearly

independent, the Gram–Schmidt orthogonalization process will only gener-

ate two orthogonal vectors that span the same subspace as the one spanned by

the vectors u1 and u2. The result extends immediately if, for n > 3, only m < n
of the vectors u1, u2, . . . , un are linearly independent, because then only m
linearly independent vectors will be generated.

23. Find the vector qwith magnitude and direction equal to the vector projection of

p ¼ ½2; 1; 4� onto the two-dimensional subspaceWwith basisW¼ {[1,�2, 1],

[1, �1, 1]}, and hence find qk k:
24. Find the vector q with magnitude and direction equal to the vector projection

of p ¼ ½1;�1;�1; 2� onto the three-dimensional subspace W with basis W ¼
{[1, 0, 1,�1], [0, 1, 0, 1], [1, 0, �1, 0]}, and hence find qk k:

25. The position vector p on an ellipse in the (x1, x2)-plane, centred on the origin,

with its axis of length a along the x1-axis and its other axis of length b along the
x2-axis, has the parametric representation p ¼ [a cos t, b sin t, 0], with 0 � t �
2p. Find the parametric representation of the projection of this ellipse onto a

planeP that contains the x1-axis and is rotated about it until it is inclined to the
(x1, x2)-plane at an angle a, with �p/2 � a � p/2. Name the shape of the

projected curve.

26. The parametric form of the position vector on a space curve C in R3 is p ¼
[a cos t, b sin t, t2], for 0 � t � 2p. Find the parametric form of the equations

describing the projection of C onto (a) the (x1, x2)-plane and (b) the (x2, x3)-
plane.
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27. Solve Example 7.7 using the geometrical unit vectors i, j and k together with

geometrical reasoning. Compare the effort and geometrical insight that is

required with the routine approach used in Example 7.7.

28. The differential equation y00 þ n2y ¼ 0 has for its solutions the infinite set of

functions sin x, sin 2x, sin 3x, . . . , 1, cos x, cos 2x, cos 3x, . . . , corresponding to
different values of n. These form an orthogonal set of functions with respect to

the weight function r(x) � 1 over the interval �p � x � p, with the inner

product ui; uj
� � ¼ R p

�p uiðxÞujðxÞdx, where vectors ui (x) and uj(x) are any two

vectors (functions) belonging to the set. Prove the orthogonality of these

functions with respect to the weight function r(x) � 1 by showing that

Z p

�p
sinmx cos nx ¼ 0; for all m; n

Z p

�p
sinmx sin nxdx ¼ 0; m 6¼ n

p; m ¼ n

�

and Z p

�p
cosmx cos nxdx ¼

0; m 6¼ n
p; m ¼ n 6¼ 0

2p; m ¼ n ¼ 0:

8<
:

Find the norms sin nxk k and cos nxk k; and hence an equivalent orthonormal

set of functions. This system of orthogonal functions is used in the development

of Fourier series.

29. The differential equation

ð1� x2Þy00 � xy0 þ n2y ¼ 0;

with n ¼ 0, 1, 2, . . . , is called the Chebyshev equation of order n. For each
value of n the equation has a polynomial solution of degree n that is defined

over the interval�1� x� 1, and these form an orthogonal system with respect

to the weight function rðxÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
. Corresponding to n ¼ 0, 1, 2, 3, the

first four of these polynomial solutions, called Chebyshev polynomials, are

T0ðxÞ ¼ 1; T1ðxÞ ¼ x; T2ðxÞ ¼ 2x2 � 1; and T3ðxÞ ¼ 4x3 � 3x:

Use the inner product ui; uj
� � ¼ R 1

�1
uiðxÞujðxÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
dx to prove the

orthogonality of the polynomials Ti(x) with respect to their weight function

when they are considered as vectors u0(x), u1(x), u2(x) and u3(x).

30. The differential equation

ð1� x2Þy00 � 2xy0 þ nðnþ 1Þy ¼ 0;
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with n¼ 0, 1, 2, . . . , is called the Legendre equation of order n. For each value
of n the equation has a polynomial solution of degree n defined over

the interval �1 � x � 1, with respect to the weight function r(x) � 1. As the

equation is homogeneous, each of these solutions can be scaled arbitrarily.

Corresponding to n ¼ 0, 1, 2, 3, these polynomial solutions can be taken to be

u0(x) ¼ 1, u1(x) ¼ x, u2(x) ¼ 3x2 � 1, and u3(x) ¼ 5x3 � 3x.
Prove that when these functions are considered as vectors u0(x), u1(x), u2(x)

and u3(x) with inner product ui; uj
� � ¼ R 1

�1
uiðxÞujðxÞdx; the vectors are mutu-

ally orthogonal with respect to the weight function r(x) � 1. These functions

are scaled by a factor pm to form the functions Pm(x) ¼ pmum(x), called
Legendre polynomials of degree m, where the scale factors pm are chosen

such that

pmumk k2 ¼ 2

2mþ 1
; m ¼ 0; 1; 2; 3 ; : : : :

Find the form of the Legendre polynomials P0(x) to P3(x).
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Chapter 8

Linear Transformations and the Geometry

of the Plane

8.1 Rotation of Coordinate Axes

This chapter provides an introduction to the concept of a linear transformation, with

initial motivation in this section provided by considering the rotation of orthogonal

coordinate systems in two and three space dimensions. A more systematic study of

linear transformations will be given in Section 8.3 though there, for simplicity, the

discussion will be confined to linear transformations that are of importance when

studying the geometry of the Euclidean plane. Even the simple transformations

considered in this chapter are useful, because their geometrical interpretations find

applications in topics as diverse as elasticity, crystallography and computer graphics.

A typical geometrical example of a linear transformation in the plane is the

transformation encountered in connection with Fig. 3.1 of Chapter 3. There the

effect on the coordinates of a point in the plane was considered when the (x, y)-axes
were subjected to a counterclockwise rotation about the origin through an angle y.

Such a rotation was shown to transform a general point P in the (x, y)-plane
into a the corresponding point in the-(x0, y0) plane by means of the coordinate

transformation

x0 ¼ x cos yþ y sin y; y0 ¼ �x sin yþ y cos y: (8.1)

In terms of matrices, this transformation becomes

x0 ¼ Ax; (8.2)

where

A ¼ cos y sin y
� sin y cos y

� �
; x ¼ x

y

� �
; x0 ¼ x0

y0

� �
: (8.3)

The coordinates in the rotated configuration are seen to be determined by the

four elements in matrix A, so it is appropriate to call A a two-dimensional rotation

A. Jeffrey, Matrix Operations for Engineers and Scientists,
DOI 10.1007/978-90-481-9274-8_8, # Springer ScienceþBusiness Media B.V. 2010
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matrix. For later use, notice that sin y ¼ cosð1
2
p� yÞ and � sin y ¼ cosð1

2
pþ yÞ;

so all of the coefficients of A can be interpreted as cosines of angles between the

respective primed and unprimed axes, with the result that A can also be written

A ¼ cos y cosð1
2
p� yÞ

cosð1
2
pþ yÞ cos y

� �
: (8.4)

In component form, the coordinate transformation x0 ¼ Ax then becomes

x0 ¼ a11xþ a12y; y0 ¼ a21xþ a22y; (8.5)

where a11 ¼ cos y; a12 ¼ cosð1
2
p� yÞ; a21 ¼ cosð1

2
pþ yÞ and a22 ¼ cos y: The

geometry of the situation in terms of the angles y; 1
2
p� y and 1

2
pþ y is shown in

Fig. 8.1.

Notice that when y ¼ 0, corresponding to there being no planar rotation of

axes about the origin, matrixA reduces to the 2� 2 identity matrix I. Consequently,

the effect of this transformation is to leave the original configuration of axes

unchanged. So when A ¼ I, it is appropriate to call the transformation x0 ¼ Ix an

identity transformation. The effect of a clockwise rotation about the origin is

obtained by reversing the sign of y.
An examination of (8.4) shows that matrix A describes the nature of the

transformation, while the equations in (8.5) show how the transformation relates

the primed and unprimed coordinate systems.

In the context of the vector space R2 where this transformation takes place, the

point (xp, yp) can be considered to be the tip P of a space vector r in the (x, y)-plane
with its base at the origin, so the result of the transformation is to keep the norm of

r unchanged (see Section 3.1) while rotating the coordinate system through an

angle y. Geometrical reasoning shows that if the coordinate system (x, y) is

subjected to the successive rotations y1 and y2, the result will be the same as a

single rotation through the combined angle y1 þ y2. The same geometrical

0

q

q
xp x

yp

y

y ′

y ′p

π/2 – q
π/2 – q

x ′p

x ′

P

r

Fig. 8.1 The angles in a

planar rotation of coordinates

about the origin
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reasoning asserts that the effect of a rotation through the angle ly, with l any

number, will be the same as the effect of performing a rotation through the angle y,
and then scaling the angle of the resulting rotation by l.

To make this argument more formal, let T(y) represent the effect on the

coordinate system produced by its counterclockwise rotation about the origin

through an angle y. Now consider the two successive rotations about the origin in

the plane described in matrix form by the transformations

x0 ¼ Ax and X ¼ Bx0 (8.6)

and when these rotations are performed in succession they are equivalent to

X ¼ BAx; (8.7)

where

A ¼ cos y1 sin y1
� sin y1 cos y1

� �
; B ¼ cos y2 sin y2

� sin y2 cos y2

� �
; x ¼ x

y

� �
;

x0 ¼ x0

y0

� �
; X ¼ X

Y

� �
:

(8.8)

Evaluating the matrix product BA, and using elementary trigonometric identi-

ties, it is easily shown that

BA ¼ cosðy1 þ y2Þ sinðy1 þ y2Þ
� sinðy1 þ y2Þ cosðy1 þ y2Þ

� �
: (8.9)

Recalling the interpretation of the rotation matrix in (8.4), and using the notation

T(y) to indicate a counterclockwise rotation about the origin through an angle

y, this last result shows that the rotation operation T is linear, because it is

equivalent to

Tðy1 þ y2Þ ¼ Tðy1Þ þ Tðy2Þ: (8.10)

From the geometrical interpretation of T(y), it follows directly that T(ly)
represents a counterclockwise rotation of the coordinate system about the origin

through an angle ly, so in terms of this notation we have

TðlyÞ ¼ lTðyÞ; (8.11)

which is another linear property of the rotation operation T. The matrix product BA

in (8.9) describes the nature of the successive transformations, while (8.7) describes

the effect the transformation has on the respective primed and unprimed coordinate

systems.
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The two important properties just exhibited in (8.10) and (8.11) are not particular

to this example, because it will be seen later that they are the two properties used to

define a general linear transformation.

It will be useful to generalize the situation in Fig. 3.1 (equivalently Fig. 8.1) to

a rotational transformation about the origin of an orthogonal system of axes in

the three-dimensional Euclidean space R3, corresponding to a transformation from

R3 to R3. However before doing this, to permit generalization to the space Rn, we

will switch to the more convenient notation used previously, where the coordinates

x, y and z are replaced by x1, x2 and x3.
A vector r is shown in Fig. 8.2 with its tip P at the point (r1, r2, r3), relative to an

orthogonal set of axes O{x1, x2, x3}, with the unit basis vectors e1, e2 and e3 along

the respective axes. The axes are then rotated about the origin to a new position,

where they become the systemOf x01; x
0
2; x

0
3g; with corresponding unit basis vectors

e01; e02 and e03 along the respective rotated coordinate axes. The position of the

new coordinate system relative to the old one is determined by specifying the angles

a11, a22 and a33 between the corresponding primed and unprimed axes. These

angles are shown in Fig. 8.2, together with some other angles that show how the

x3

r3e3

r2e2

r1e1

0

a12

a11

a32

a22

a33

x ′3

x ′1

x ′2

x 1

x 2

P(r1, r2, r3)

r

e ′2

e ′1

e ′3

Fig. 8.2 The rotation of an orthogonal three-dimensional coordinate system Of x1; x2;x3g about

the origin to form the system Of x01; x
0
2; x

0
3g

242 8 Linear Transformations and the Geometry of the Plane



notation amn is used to signify the angle between the mth primed axis and the nth
unprimed axis.

The general position vector r of a point in the first reference frame in terms of a

matrix column vector becomes r ¼ r1; r2; r3½ �T, or r ¼ r1e1 þ r2e2 þ r3e3 in terms

of the original geometrical unit vectors e1, e2 and e3. In the new reference frame it

becomes r0 ¼ ½r01; r02; r03�T, or r0 ¼ r1e
0
1 þ r2e

0
2 þ r3e

0
3 in terms of the unit vectors

e01; e02 and e03 in the new reference frame. Setting amn ¼ cos amn, an examination

of the Cartesian geometry involved shows, as in the two-dimensional case (8.5),

that the transformation of coordinates in terms of cosines can again be described in

terms of the angles amn through the coefficients amn as

x01 ¼ a11x1 þ a12x2 þ a13x3;

x02 ¼ a21x1 þ a22x2 þ a23x3;

x03 ¼ a31x1 þ a32x2 þ a33x3:

(8.12)

In terms of matrices Eq. (8.12) become

x0 ¼ Ax; (8.13)

with

A ¼
a11 a12 a13
a21 a22 a23
a31 a32 a33

2
4

3
5 ; x ¼

x1
x2
x3

2
4

3
5 ; x0 ¼

x01
x02
x03

2
4

3
5: (8.14)

This shows that in the three-dimensional case the coordinates of r in the new

configuration are determined by the nine coefficients (elements) amn in matrix A, so

A will be called a three-dimensional rotation matrix. It is instructive to discover the
relationship between matrix A in (8.14), and matrix A in the two-dimensional case

in (8.4). To simplify matters, let us consider a rotation that only takes place around

the x3-axis (that is around the old z-axis). Then, because each of the angles a13, a23,
a31 and a32 between the primed and unprimed axes is equal to p/2, the terms a13,
a23, a31 and a32 all vanish, while a33 ¼ 1 because a33 ¼ 0. These results reduce the

transformation matrix A in (8.14) to

A ¼
a11 a12 0

a21 a22 0

0 0 1

2
4

3
5 : (8.15)

The presence of the element 1 in (8.15) means that x03 ¼ x3 (that is z0 ¼ zÞ; so

all points in any plane x3 ¼ const. behave in exactly the same way as points in

the (x1, x2)-plane when x3 ¼ 0, which is the (x, y)-plane in (8.4). So the three-

dimensional case behaves like a rigid body rotation about its x3-axis.
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The meaning of matrix A in (8.15) can be clarified by considering Fig. 8.3,

which shows the appropriate angles amn expressed in terms of the single rotation

angle a11 about the x3-axis.
An examination of Fig. 8.3 shows that a11 ¼ cos a11; a12 ¼ cosð1

2
p� a11Þ;

a21 ¼ cosð1
2
pþ a11Þ and a22 ¼ cos a11; so the three-dimensional rotation matrix

takes the form

A ¼
cos a11 cosð1

2
p� a11Þ 0

cosð1
2
pþ a11Þ cos a11 0

0 0 1

2
4

3
5; when x0 ¼ Ax: (8.16)

Recalling that in (8.4) the angle y ¼ a11, the rotation matrix A in (8.16) is seen

to describe a rigid body rotation about the x3-axis represented by the top 2� 2 block

of terms, together with an identity transformation with respect to the x3-axis,
represented by the single element 1.

By virtue of its construction, matrix A in (8.16), like matrix A in (8.4), is an

orthogonal matrix, so A�1 always exists and is given by A�1 ¼ AT. Consequently,

x ¼ A�1x0 ¼ ATx0 is the inverse transformation that always exists and reverses the

effect of the rotation just described. Combining the original and inverse matrix

transformations gives x ¼ A�1Ax ¼ Ix ¼ x, as would be expected. So the effect

produced by the rotation matrix A is reversed by an application of the inverse

rotation matrix A�1, leading to a rotation matrix I that corresponds to the identity
transformation, where the system is left unchanged after the successive transforma-

tions have been performed.

Similar reasoning shows that when the rotation represented by matrixA in (8.13)

is about only the x1-axis, or about the x2-axis, the same linearity properties found in

(8.10) and (8.11) again apply. For example, to show what happens when successive

rotations occur about the x3-axis, irrespective of the order in which they are

performed, it will suffice for us to establish result (8.9) in terms of two rotations

x1

x2

x ¢1

x ¢2

x ¢3= x3

a11

0

a22 = a11

p/2 + a11

p/2 – a11

Fig. 8.3 The angles amn in
terms of a11
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about the x3-axis, one through an angle a11, and another through an angle ~a11: The
corresponding rotation matrices are

A ¼
cos a11 cosð1

2
p� a11Þ 0

cosð1
2
pþ a11Þ cos a11 0

0 0 1

2
64

3
75

and

B ¼
cos ~a11 cosð1

2
p� ~a11Þ 0

cosð1
2
pþ ~a11Þ cos ~a11 0

0 0 1

2
64

3
75:

Forming the matrix products BA and AB, and simplifying the result, gives

BA ¼ AB ¼
cosða11 þ ~a11Þ cosð1

2
p� a11 � ~a11Þ 0

cosð1
2
pþ a11 þ ~a11Þ cosða11 þ ~a11Þ 0

0 0 1

2
4

3
5;

confirming that property (8.10) holds with respect to these rotations about the

x3-axis independently of the order in which they occur. As would be expected,

displacements along the x3-axis are not affected by these rigid body rotations.

Notice that property (8.11) is also true for the three-dimensional case for the

same reason it is true for the two-dimensional case.

8.2 Linear Transformations

It is now necessary to give a formal definition of a linear transformation, though

before doing so attention must be drawn to the fact that linear transformations do

not necessarily have simple geometrical interpretations, because they are often

between very general vector spaces.

Definition 8.1. A Linear Transformation

Let x1, x2 and x be any vectors in a vector space X, and let l be a scalar in the field
of real numbers R. Then a linear transformation T is a transformation between a
vector space X and a vector space Y such that to each vector x in X there
corresponds a unique vector y ¼ T(x) in Y and, in addition, the transformation T

has the following fundamental properties

T x1 þ x2ð Þ ¼ T x1ð Þ þ T x2ð Þ linearity permits additivityð Þ
and

TðlxÞ ¼ lTðxÞ: linearity permits scalingð Þ:
}
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Notice from this definition that a general linear transformation, denoted here by
T, is a transformation between two vector spaces X and Y that do not necessarily

have the same dimension.

When examining the properties of coordinate rotations in Section 8.1, it was

established that each possessed the additivity and scaling properties required of a

linear transformation. Consequently, as both two and three-dimensional coordinate

rotations satisfy the conditions of Definition 8.1, each is an example of a linear

transformation.

Before considering an example of a general linear transformation with no

particular geometrical significance, we will first make a direct application of

Definition 8.1 to the projection operation defined in Chapter 7.

Example 8.1. Show that the projection operation defined in (7.35) of Chapter 7 is a

linear transformation.

Solution. The projection operation involving the projection of a vector p in a vector

space V onto a vector u in a subspace W of V was defined in (7.35) as

projV!WðuÞðpÞ
u

uk k ¼ p; uh i
u; uh i u: (8.17)

Denoting the projection operation in (8.17) by T(p), and setting p ¼ p1 + p2, it

follows directly from the properties of the inner product p; uh i in T(p) that

T p1 þ p2ð Þ ¼ T p1ð Þ þ T p2ð Þ; (8.18)

while replacing p by lp, with l a scalar, it also follows that

TðlpÞ ¼ lTðp Þ: (8.19)

Results (8.18) and (8.19) show the projection operation satisfies the two key

properties of linearity required by Definition 8.1, so the projection operation is

another example of a linear transformation.

The next Example of a linear transformation is of a more general nature, without

the geometrical interpretation that was possible in the case of coordinate rotations

and the projection operation.

}
Example 8.2. The transformation T between a two-dimensional vector space X,
containing vector x ¼ [x1, x2]

T, and a three-dimensional vector space Y, containing
the vector y corresponding to x, is given by y ¼ T xð Þ ¼ ½x1; 2x1 � x2; x1 þ 2x2�T:
Show how T transforms the vectors x1 ¼ ½1;�1�T; x2 ¼ ½4; 3�T; and x3 ¼ 0 ¼
½0; 0�T in R2 into vectors in R3, and prove that T is a linear transformation.
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Solution. First it is necessary to explain the notation that is used. It means

that column vector T xð Þ ¼ ½x1; 2x1 � x2; x1 þ 2x2�T, with the three elements

x1; 2x1 � x2 and x1 þ 2x2; is to be interpreted as a column vector in R3 obtained

by combining the two elements x1 and x2 of the vector x ¼ [x1, x2]
T in R2. The first

element of T(x) ¼ y is the element x1 of x, the second element, namely 2x1 � x2,
is formed from the two elements x1 and x2 of x, while the third element of, namely

x1 + 2x2, is also formed from the two elements of x.

We now show how T transforms the vectors x1 ¼ ½1;�1�T, x2 ¼ [4, 3]T, and

x3 ¼ 0 ¼ ½0; 0�T in R2 into vectors T(x) ¼ y in R3. The substitutions x1 ¼ 1 and

x2 ¼ �1, show that y1 ¼ Tðx1Þ ¼ ½1; 3;�1�T;while the substitutions x1 ¼ 4

and x2 ¼ 3 show that y2 ¼ T(x2) ¼ [4, 5, 10]T. Similarly, the substitutions x1 ¼ 0

and x2 ¼ 0 show that y3 ¼ Tðx3Þ ¼ Tð0Þ ¼ ½0; 0; 0�T, illustrating the fact that the

zero vector 0 in R2 is transformed into the zero vector 0 in R3.

To prove that T is a linear transformation, we must show it possesses the two key

properties of additivity and scaling in Definition 8.1. Let x1 ¼ [x1, x2]
T and x2 ¼

[�1, �2]
T, then x1 þ x2 ¼ [x1 þ �1, x2 þ �2]

T, so the first component of x1 þ x2 is
x1þ �1, while the second component is x2þ �2. Forming T(x1þ x2), separating out
terms corresponding to T(x1) and T(x2), and using the property of vector addition,

we find that

T x1 þ x2ð Þ ¼ ½x1 þ �1; 2x1 þ 2�1 � x2 � �2; x1 þ �1 þ 2x2 þ �2�T

� x1; 2x1 � x2; x1 þ 2x2½ �T þ �1; 2�1 � �2; �1 þ 2�2½ �T
¼ T x1ð Þ þ T x2ð Þ:

Next, let x1 ¼ [x1, x2]
T be an arbitrary vector, then lx1 ¼ ½lx1; lx1�T. Forming

T(lx1), and using the scaling property of vectors, we find that T(lx1) ¼ lT(x1).
Thus T possesses the properties of additivity and scaling, so T it is a linear

transformation.

}
A linear transformation is a special and very important example of a mapping

between two vector spaces. Such mappings, or transformations, establish a proce-

dure that assigns to every vector x in space X a vector y in space Y called the image
of x. To clarify the relationship between x and y, when referring back to the space

X from space Y, the vector x is called the pre-image of vector y. The space X is

called the domain of the mapping T, and the space of vector images in Y
corresponding to the mapping y ¼T(x) of vectors x in X is called the range of the
mapping T, denoted by R Tð Þ. The range R Tð Þ of T need not necessarily contain

every vector in space Y, and this general situation is represented symbolically in

Fig. 8.4a, where T maps space X onto only a part of space Y. However, when
the mapping T is such thatR Tð Þ and Y coincide, T is said to map X onto Y and this

situation is represented symbolically in Fig. 8.4b.

It is usual to adopt the standard notation when referring to transformations

between vector spaces, and to do this the transformation of vector x in Rn to a
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vector y in Rm is denoted by writing TðxÞ: Rn ! Rm. It is useful to display this

transformation more clearly by writing it as

TðxÞ ¼ T

x1
x2
..
.

xn

2
6664

3
7775

|fflffl{zfflffl}
n elements

0
BBBBBBB@

1
CCCCCCCA

¼
y1
y2

..

.

ym

2
6664

3
7775

|fflfflffl{zfflfflffl}
m elements

: (8.20)

The effect of transformation T on the components of the vectors x and y depends

on both T and the choice of the bases X and Y; so it must be remembered that

neither of these bases need necessarily be the standard ordered bases used above.

Should it become necessary to emphasize this dependence on different bases this

can be shown by writing TXY . However, in the basic geometrical applications

that are to follow, the transformations T will all be particularly simple, because

they will be from R2 to R2, and the bases X and YY used will each be the standard

ordered basis for R2. So in this case the bases X ¼ Y ¼ e1; e2f g of the spaces

X and Y coincide. Because of this simplification, the notation TXX can be

abbreviated to T.

When developing the linear transformations that describe coordinate rotations,

matrices entered in a natural way. We now show that the use of matrices is not

restricted to these examples, because a general linear transformations T from R n to

R m can always be interpreted as the product of a suitable m� nmatrix and an n� 1
matrix column vector.

X

a

b

Y

R(x)

X R(x) = Y

T(x) = y

T(x) = y

Fig. 8.4 (a) Mapping by T of

vectors in space X onto the

range R Tð Þ that lies strictly
within space Y. (b) Mapping

by T of vectors in space X
onto the range R Tð Þ, when
R Tð Þ and space Y are

identical
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As usual, in what follows a vector x in Rn will be written as the n element matrix

column vector x ¼ ½x1; x2; . . . ; xn�T, while a vector y in R m will be written as the

m element matrix column vector y ¼ ½y1; y2; . . . ; ym�T;where for simplicity in what

follows the basis for Rn will be the usual standard ordered basis

e1 ¼
1

0

..

.

0

2
664

3
775; e2 ¼

0

1

..

.

0

2
664

3
775; . . . ; en ¼

0

0

..

.

1

2
664

3
775

9>>=
>>;

all with n elements; (8.21)

though this basis could be replaced by any equivalent basis. Similarly, for the basis

Y of the space Rm to which y belongs, for simplicity we will again take the set of

m element column matrices Y ¼ fe01; e02; . . . ; e0mg that form the standard ordered

basis for Rm, though this could also be replaced by any equivalent basis.

Any column vector y in R m can be represented as a linear combination of the

vectors

e01 ¼
1

0

..

.

0

2
664

3
775; e02 ¼

0

1

..

.

0

2
664

3
775; . . . ; e0m ¼

0

0

..

.

1

2
664

3
775

9>>=
>>;

all with m elements; (8.22)

so the matrix column vector y ¼ [y1, y2, . . . , ym]
T can be written

y ¼ y1e
0
1 þ y2e

0
2 þ � � � þ yme

0
m: (8.23)

An application of the linear transformation T to (8.21), will lead to the introduc-

tion of the transformed basis vectors T(e1), T(e2),..., T(en), each with m elements.

These transformed basis vectors in (8.21) will be written

Tðe1Þ ¼

a11

a21

..

.

am1

2
66664

3
77775; Tðe2Þ ¼

a12

a22

..

.

am2

2
66664

3
77775; . . . ;

TðenÞ ¼

a1n

a2n

..

.

amn

2
66664

3
77775

9>>>=
>>>;

all with m elements:

(8.24)

For each i, the m components of the vector T(ei) are obtained by setting x ¼ ei
in T(x), where for the standard ordered basis this corresponds to setting x1 ¼ 0;
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x2 ¼ 0; . . . ; xi�1 ¼ 0; xi ¼ 1; xiþ1 ¼ 0; . . . ; xn�1 ¼ 0; xn ¼ 0 in T(x). As a result,

y can be written in terms of the m � n matrix

A ¼ Tðe1Þ; Tðe2Þ; . . . ; TðenÞ½ �; (8.25)

with its columns the m element column vectors T(ei). As a result, the m element

column vector y is given by the matrix product

y ¼ Ax: (8.26)

Matrix A provides a unique representation of T(x), because the coefficients aij in
A are uniquely determined once the basis for R n has been chosen, and the nature of

the linear transformation T has been specified. So we have succeeded in showing

that a linear transformation from Rn to Rm can be represented as the product of an

m � n matrix and an n element matrix column vector. The matrix A, based on the

use of the standard ordered basis in (8.21), is called the standard matrix represen-
tation of the linear transformation T.

The advantage of matrix representations of linear transformations is that they

allow linear transformations to be combined in a simple manner. For example, if

y ¼ Ax and x ¼ Bz are general linear transformations, and not necessarily coordi-

nate rotations, the linear transformation from y to z is given by y ¼ ABz, without

the necessity of first finding the transformation from x and y, and then the effect of

the transformation from y to z, This process of successively combining transforma-

tions is called the composition of transformations.

Result (8.26) represents the fundamental way in which linear transformations

between the spaces Rn and Rm can be represented, so this fundamental result will be

stated as the following theorem.

Theorem 8.1 Matrix representation of the transformation T(x): Rn ! Rm

All transformations T(x): Rn ! Rm, where T(x) ¼ y, can be represented in the form
of a matrix transformation T(x)¼ Ax¼ y, where A is an m� n matrix, x is an n� 1

matrix column vector and y is an m � 1 matrix column vector. If, instead of the
standard ordered basis for Rn, an arbitrary ordered basis B is used, where the basis
B ¼ fb1; b2; : : : ; bng, then the ith column ofA becomes T(bi), with i¼ 1, 2, . . . , n.

♦
Of special interest are transformations from a vector space U onto a vector space

V with the property that each vector x in U is mapped onto a unique vector y in V
and, conversely, each vector y is the image of only one vector x. These are called

one-one transformations, or mappings, and this property is often shown by saying a
transformation is 1:1 or one-to-one.

Definition 8.2. One-One Transformations

A linear transformation TðxÞ: U ! V is said to be one-one if for any two vectors x
and y in U, x 6¼ y implies T(x) 6¼ T(y) or, equivalently, the linear transformation is
one-one if T(x) ¼ T(y) implies that x ¼ y.

□
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In what follows, interest will be confined to the case when the vector spaces U
and V in Definition 8.2 are both the space Rn, so the transformation is of the form

TðxÞ: Rn ! Rn. In this case the transformation converts a vector x in the space

Rn into a vector y also in Rn. Theorem 8.1 allows such a transformation to be

represented by the matrix equation Ax ¼ y, where A is an n � n matrix, with x

and y n � 1 column vectors. A unique vector x in Rn will determine a unique vector

y that is also in Rn, but for such a transformation to be one-one it is necessary that the

pre-image of any vector ymust determine a unique vector x. MatrixAwill determine

a unique vector y through the matrix equationAx¼ y, and providedA is nonsingular

the transformation will have a unique inverse A�1, in which case vector y will have

a unique pre-image x given x ¼ A�1y. So, in this case, the condition for the

transformation to be one-one is simply that the n � n matrix A is nonsingular.

Two examples of this type that have already been encountered arose when two

and three-dimensional rotation matrices were introduced. Each rotation matrix was

an orthogonal matrix, but when A is orthogonal AT ¼ A�1, so that both of these

transformations are one-one. In summary, if Ax ¼ y, the inverse transformation is

given by x ¼ A�1y, provided detA 6¼ 0.

When a transformation is between spaces of different dimensions it is harder to

decide if the transformation is one-one. However, when the spaces are each of low

dimension, a direct approach is all that is necessary to establish the explicit

relationships between the vector x, its image y and, when it exists, the unique

pre-image of y.

Example 8.3. Determine the nature of the transformation Ax ¼ y from R3 to

R2, where

A ¼ 2 �1 2

1 �2 �3

� �
;

when x ¼ [x1, x2, x3]
T and y ¼ [y1, y2]

T.

Solution. As A is a 2 � 3 matrix it has no inverse, so the transformation cannot be

one-one. To examine the situation more closely, notice that any vector x in R3 will

always determine a vector y in R2, but to determine when an arbitrary vector y ¼
[y1, y2]

T in R2 has a pre-image in R3, and if that pre-image is unique, requires a

careful examination of the transformation, which when expanded becomes

2x1 � x2 þ 2x3 ¼ y1; and x1 � x2 � 3x3 ¼ y2:

Only two equations for the three variables x1 to x3 are involved, so solving for

x1 and x2 in terms of x3, y1 and y2 as parameters gives

x1 ¼ �5x3 þ y1 � y2; x2 ¼ �8x3 þ y1 � 2y2:
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This shows that for any fixed vector y, the components x1 and x2 of vector x also
depend on x3, which is arbitrary. So, as vector x is not determined uniquely in terms

of the vector y, the transformation is not one-one.
}

Example 8.4. A transformation from R3 to R4 is represented by the matrix equation

Ax ¼ y, where

A ¼
1 2 1

1 �1 2

1 1 �3

2 0 �1

2
664

3
775, where x ¼

x1
x2
x3

2
4

3
5 and y ¼

y1
y2
y3
y4

2
664

3
775:

Show that not every vector y in R4 is the image of a vector x in R3, and determine

the relationship between the components of y in order that it is the image of a vector

x in R3.

Solution. An arbitrary vector x ¼ [x1, x2, x3]
T in R3 will always give rise to a vector

y ¼ [y1, y2, y3, y4]
T in R4, but the system Ax ¼ y represents four equations in the

three unknowns x1, x2 and x3, and so is overdetermined. Thus, in general, an

arbitrary vector y in R4 will not be the image of a vector x in R3.

It will be recalled that when examining system of equations of the form Ax ¼ b

in Chapter 4, it was found that for a solution to exist it is necessary that

rank Að Þ ¼ rank A bjð Þ, where A bj is the augmented matrix. Thus for a solution y

to exist for the given A it is necessary that rank A yjð Þ ¼ rank Að Þ. A simple

calculation shows the reduced echelon form AE of A is

AE ¼
1 0 0

0 1 0

0 0 1

0 0 0

2
664

3
775;

showing that rank(A) ¼ 3. Consequently the necessary condition for y to be the

image of a vector x in R3 is that rank A yjð Þ ¼ 3. To proceed further we write out in

full the matrix equation Ax ¼ y,

x1 þ 2x2 þ x3 ¼ y1;

x1 � x2 þ 2x3 ¼ y2;

x1 þ x2 � 3x3 ¼ y3;

2x1 � x3 ¼ y4:

The reduced echelon form of A shows the fourth row of A is linearly dependent

on the first three rows, and it also tells us how to construct vectors y in order that

each such vector is the image of a vector x. It can be seen from the structure of AE
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that while the first three components y1, y2 and y3 can be assigned arbitrarily, the

fourth component y4 must be compatible with fourth equation in the system of

equations Ax ¼ y, so it is necessary that y4 ¼ 2x1 � x3:
Solving the first three equations for x1 to x3 gives

x1 ¼ y1 þ 7y2 þ 5y3ð Þ=13; x2 ¼ 5y1 � 4y2 � y3ð Þ=13;
x3 ¼ 2y1 þ y2 � 3y3ð Þ=13;

from which it follows that for y4 to be compatible we must set y4 ¼ y2 + y3
corresponding to y4 ¼ ð7y1 � 3y2 � 4y3Þ=13:

So the way to construct a vector y that is the image of a vector x is seen to require

two steps. The first involves assigning y1 to y3 arbitrarily, and then using these

values to solve the first three equations for x1 to x3. The second step, having found x1
to x3, is to use the fourth equation to find y4 from the result y4 ¼ y2 + y3.

}
Example 8.5. Let T(x): R2 ! R4 be a linear transformation, with T(x) defined

as Tðx1; x2Þ ¼ ½x1 þ x2; x1 � x2; 3x1 þ x2; x2�. Find the matrix representation of

T using the standard ordered basis w ¼ {[0, 1]T, [1, 0]T} for R2, and hence find

how the vector x ¼ [2, 3]T is transformed.

Solution. Setting x1 ¼ 1, x2 ¼ 0, we find that T(1, 0) ¼ [1, 1, 3, 0]T, while setting x1
¼ 0, x2 ¼ 1, we find that T(0, 1) ¼ [1, �1, 1, 1]T, so in terms of the chosen basis

vectors the matrix representation of T determined by Theorem 8.1 becomes

A ¼
1 1

1 �1

3 1

0 1

2
664

3
775:

Substituting x ¼ [2, 3]T in y ¼T(x) ¼ AxT, shows that y ¼ AxT¼ [5, �1, 9, 3]T.

}
Example 8.6. Using the standard ordered basis, find the standard matrix representa-

tion for the linear transformation TðxÞ: R3 ! R4, given that

Tðx1; x2; x3Þ ¼ x1 þ 2x3; x1 � x2; x2 þ x3; x3½ �:

Solution. Proceeding as in Example 8.5, and using the standard basis for R3, we

have

A ¼
1 0 2

1 �1 0

0 1 1

0 0 1

2
664

3
775:
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This is easily checked, because Ax¼
1 0 2

1 �1 0

0 1 1

0 0 1

2
664

3
775

x1
x2
x3

2
4

3
5¼

x1þ 2x3
x1� x2
x2þ x3
x3

2
664

3
775

¼ x1þ 2x3;x1� x2;x2þ x3;x3½ �T ¼TðxÞ: }
The matrix representation of a linear transformation makes the following basic

properties of a linear transformations T xð Þ: Rn ! Rm almost self-evident:

ið ÞT 0ð Þ ¼ 0; (8.27)

iið ÞTð�xÞ ¼ �TðxÞ for every vector x inRm; (8.28)

iiið ÞTðx� yÞ ¼ TðxÞ � Tðy Þ for all vectors x and y inRm: (8.29)

It is left as an exercise to show these properties can be established directly from

the definition of a linear transformation, without appealing to the equivalent matrix

representation of the transformation.

Example 8.7. Let T be a linear transformation from R3 to R3, with e1 to e3 the

standard ordered basis vectors for R3. Find the matrix representation for this

transformation if

Tð2e1 þ e2Þ ¼
2

3

0

2
4

3
5; Tðe1 � e2Þ ¼

1

0

3

2
4

3
5; Tðe2 þ e3Þ ¼

1

1

2

2
4

3
5:

Solution. As the standard matrix A¼ [T(e1), T(e2), T(e3)], to reconstruct it from the

given information it is necessary to find T(e1), T(e2) and T(e3). The linearity of the

transformation means that T(2e1 + e2)¼ 2T(e1) + T(e2), T(e1� e2)¼ T(e1)� T(e2)

and T(e2 + e3) ¼ T(e2) + T(e3). Adding the first two of these rewritten equations

gives

3Tðe1Þ ¼
2

3

0

2
4

3
5þ

1

0

3

2
4

3
5 ¼

3

3

3

2
4

3
5; so Tðe1Þ ¼

1

1

1

2
4

3
5:

Using this result in the second equation Tðe1Þ � Tðe2Þ ¼ T ðe1Þ � Tðe2Þ gives

Tðe2Þ ¼
1

1

1

2
4

3
5�

1

0

3

2
4

3
5 ¼

0

1

�2

2
4

3
5;
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while from the third equation T(e2 + e3) ¼ T(e2) + T(e3). we have

Tðe3Þ ¼
1

1

2

2
4

3
5�

0

1

�2

2
4

3
5 ¼

1

0

4

2
4

3
5:

Thus the matrix representation of T is

A ¼
1 0 1

1 1 0

1 �2 4

2
4

3
5:

}
It should be mentioned that any linear transformation T xð Þ: U ! V with the

property that T(x) ¼ 0 for every vector x in U is called the zero transformation.

8.3 The Null Space of a Linear Transformation and Its Range

We now make a brief mention of some definitions and their consequences that are

of importance to all linear transformations, and in particular when the general

structure of linear transformations is studied. However, in this introductory account

it would be inappropriate to discuss some of the ways in which these results are

used, because this information belongs more properly to a more advanced account

of linear algebra.

Definition 8.3. The Null Space of a Linear Transformation and Its Range

Let T xð Þ: U ! V be a linear transformation of the space U in Rn containing the
n � 1 vector x and the space V in Rm, where the transformation T is determined by
the multiplication of x by an m � n matrix A. Then the set of vectors x in the vector
space U that are mapped by A into the zero vector 0 in V is called the nullspace of
A, or the kernel of A, and denoted either by N Að Þ or by ker(A). The dimension nA
of the nullspace is called the nullity of A. The range of the linear transformation
T determined by A, denoted by R Að Þ, is the set of all vectors in V that correspond
to the image of at least one vector in U, so that R Að Þ ¼ the column space of A.

□
Two properties of a linear transformation T determined by A that follow almost

immediately from Definition 8.3 are:

(a) The nullspace N Að Þ of A is a subspace of U: (8.30)

(b) The range R Að Þ of A is a subspace of V: (8.31)
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That N Að Þ belongs to U is obvious, but to show it is a subspace of U it is

necessary to showN Að Þ satisfies the conditions for a linear transformation given in

Definition 8.1. This follows because the linearity of the transformation means that

for any two vectors x1 and x2 in U, A(x1 + x2) ¼ Ax1 + Ax2, but if x1 and x2 belong
to N Að Þ we have Ax1 ¼ Ax2 ¼ 0, so A(x1 + x2) ¼ 0. Similarly, if k is an arbitrary

real number,A(kx1)¼ kAx1, but as x1 belongs toN Að Þwe have Ax1¼ 0, soA(kx1)
¼ 0, and result (a) is established. The proof of result (b) is left as an exercise.

When T(x): Rn ! Rm is represented by a matrix A, the range R Að Þ must

coincide with the column space of A, but the row and column ranks of A are the

same, with each denoted by rank(A), so we arrive at the result

rank Tð Þ ¼ rank Að Þ: (8.32)

As N Tð Þ ¼ the dimension of the null space ofA, which is equal to N Að Þ, it
also follows that

N Tð Þ ¼ N Að Þ: (8.33)

We are now in a position to establish an important connection between the rank

of a transformation represented by a matrix A, and its nullity nA. Let A be an m � n
matrix. Then if rank(A) ¼ r, precisely r rows of A are linearly independent.

Consequently, the remaining rows of A that are solutions of Ax ¼ 0 must belong

to the nullspace N Að Þ of A with dimension equal to the nullity nA. However, the
sum rank Að Þ þ nA must equal the number of vectors in the basis for the space,

which in turn must equal the dimension of the space Rn, so we have proved the

following important relationship.

Theorem 8.2 The Rank Nullity Theorem

Let A be an arbitrary real m � n matrix, then

rank Að Þ þ nA ¼ n:

♦

Example 8.8. A linear transformation A(x): R4! R3 of a vector x in R4 to a vector y

in R3 is described by the matrix equation Ax ¼ y, where

A ¼
�1 2 �1 �2

0 2 2 1

2 1 0 3

2
4

3
5; x ¼

x1
x2
x3
x4

2
664

3
775 and y ¼

y1
y2
y3

2
4

3
5:

(i) Find the nullspace N Að Þ of A, and hence the nullity nA of A.

(ii) Verify Theorem 8.2.

(iii) Given that x ¼ [a, b, c, d]T, for what values of a, b, c and d, if any, will the
vectors y1 ¼ [1, 2, 3]T, y2 ¼ [0, 2, 4]T and y3 ¼ ½�1; 2;�5�T belong toR Að Þ.
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Solution. (i) The four component column vectors x will be in N Að Þ if Ax ¼ 0,

so setting x ¼
a
b
c
d

2
664

3
775 we must solve the matrix equation

�1 2 �1 �2

0 2 2 1

2 1 0 3

2
4

3
5

a
b
c
d

2
664

3
775 ¼

0

0

0

2
4

3
5 for a, b, c and d. This reduces to solving

the algebraic system of equations

� 1þ 2b� c� 2d ¼ 0;

2bþ 2cþ d ¼ 0;

2aþ bþ 3d ¼ 0:

The solution of these homogeneous equations in terms of c as an arbitrary

parameter is a ¼ 3c, b ¼ 0, c ¼ c (arbitrary) and d ¼ �2c, so the vector in N Að Þ
must be of the form x ¼ 3c 0 c �2c½ �T. The vector x is the solution of a

homogeneous set of equations and so can be scaled arbitrarily, so setting c ¼ 1 we

find the only vector in the nullspace N Að Þ isx ¼ 3 0 1 �2½ �T: Consequently
the dimension of the nullspace N Að Þ is nA ¼ 1.

(ii) We have n ¼ 4, and a check shows that rank(A) ¼ 3, so as nA ¼ 1 the result of

Theorem 8.2 is confirmed, because rank Að Þ þ nA ¼ 3þ 1 ¼ 4 ¼ n.
(iii) The image y¼ [p, q, r]T in R3 of an arbitrary column vector x¼ [a, b, c, d]T in

R4 is determined by the matrix equation Ax ¼ y, so that

� 1þ 2b� c� 2d ¼ p;

2bþ 2cþ d ¼ q;

2aþ bþ 3d ¼ r:

As there are three equations connecting four unknowns, this system may always

be solved for any p, q and r, in terms of c as an arbitrary parameter. So y1, y2 and y3
must all belong to R Að Þ. It follows directly that all vectors y belong to R Að Þ.

}

8.4 Linear Transformations and the Geometry of the Plane

In this final section, linear transformations described by matrices will be used to

establish some simple results concerning the geometry of the plane. The linear

transformation TðxÞ: X ! Y from R2 to R2 will be in the form y ¼ Ax, where A is

the matrix A ¼ a11 a12
a21 a22

� �
with real elements, vector x ¼ [x1, x2]

T belongs to the

vector space X, and vector y ¼ [y1, y2]
T belongs to the vector space Y. Specifically,
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the transformation will map vectors x ¼ ½~x1; ~x2�T in space X, that is points in the

(x1, x2)-plane, into vectors y ¼ ½~y1; ~y2�T in space Y containing points in the (y1, y2)-
plane. The elements of x will represent the Cartesian coordinates (x1, x2) of a point
in the space X, while the elements of y will represent the Cartesian coordinates

(y1, y2) of a corresponding image point in space Y. When displayed explicitly, the

linear transformation becomes

y1
y2

� �
¼ a11 a12

a21 a22

� �
x1
x2

� �
; (8.34)

or in scalar form

y1 ¼ a11x1 þ a12x2;

y2 ¼ a21x1 þ a22x2:
(8.35)

Theorem 8.3 Geometrical Properties of Transformation (8.34)

1. Provided det A 6¼ 0, the origin in the (x1, x2)-plane (the space X) is mapped into
the origin in the (y1, y2)-plane (the space Y).

2. When det A 6¼ 0, the transformation maps arbitrary straight lines in the (x1, x2)-
plane into straight lines in the (y1, y2)-plane.

3. When det A 6¼ 0, the transformation maps parallel straight lines in the (x1, x2)-
plane into parallel straight lines in the (y1, y2)-plane.

4. When detA 6¼ 0, straight lines in the (x1, x2)-plane that pass through the origin are
mapped into straight lines in the (y1, y2)-plane that also pass through the origin.

Proof.

1. The proof is trivial, because 0¼ [0, 0]T, soA 0; 0½ �T ¼ 0; 0½ �T, showing the origin
in X space is mapped to the origin in Y space.

2. Let the straight line pass through the arbitrary point (a, b) in the (x1, x2)-plane,
then a and bmust be such that b¼ma + c. From (8.35), the image of this point in

the (y1, y2)-plane, say the point (a0, b0), is determined by the equations

a0 ¼ ða11 þ a12mÞaþ a12c;

b0 ¼ ða21 þ a22mÞaþ a22c:

Eliminating a between these two equations gives

ða11 þ ma12Þb0 ¼ ða21 þ ma22Þa0 � ða11a22 � a12a21Þc:

258 8 Linear Transformations and the Geometry of the Plane



However a11a22 � a12a21 ¼ detA 6¼ 0 (by hypothesis), so this becomes

ða11 þ ma12Þb0 ¼ ða21 þ ma22Þa0 � ðdetAÞc:

The point ða; bÞ in the ðx1; x2Þ-plane was arbitrary, with (a0, b0) its image in the

(y1, y2)-plane. So replacing a0 by y1 and b0 by y2; the image of the line x2 ¼ mx1 +
c is seen to be described by the equation

ða11 þ ma12Þy2 ¼ ða21 þ ma22Þy1 � ðdetAÞc:

This is the equation of a straight line in the (y1, y2)-plane, so we have shown that
if det A 6¼ 0, any straight line in the (x1, x2)-plane that is not parallel to the x2-axis
maps to a straight line in the (y1, y2)-plane. This conclusion forms the main part of

result 2. There remains the question of how a straight line parallel to the x2-axis is
mapped by (8.35).

Setting x1 ¼ K in Eq. (8.35), where K is arbitrary, and eliminating x2, shows that
a12y2 ¼ a22y1 � ðdetAÞK, which is again the equation of a straight line. So we have
proved all of the assertions in 2; namely that if det A 6¼ 0, then arbitrary straight

lines in the (x1, x2)-plane, including those parallel to the x2-axis, map to straight

lines in the (y1, y2)-plane.

1. The proof of result 3 follows directly from the result

ða11 þ ma12Þb0 ¼ ða21 þ ma22Þa� ðdetAÞc:

in 1, because parallel straight lines in the (x1, x2)-plane all have the same slopem,
so they will map to straight lines in the (y1, y2)-plane corresponding to different

values of c, and hence the image lines must also be parallel.

2. Result 4 follows from the fact that straight lines in the (x1, x2)-plane will only

pass through the origin if c¼ 0, where from the result in 1 we see their images

must also pass through the origin.

♦
Apart from requiring detA 6¼ 0 for the general properties 1 through 4 in Theorem

8.3 to be true, the value of det A in transformation (8.34) has two other important

consequences that are described in the following theorem.

In preparation for the theorem it is necessary to introduce the term orientation
in relation to the way a point moves around the boundary of an area in the plane.

By convention, when a point moves around the boundary of an area in the

counterclockwise sense the orientation of the trajectory described by the point

is considered to be positive, whereas if it moves around the boundary in the

clockwise sense, the orientation of the trajectory is considered to be negative.
Thus movement around the boundary of the unit square in Fig. 8.5a is positively
oriented if it follows the path OABC, while it is negatively oriented if it follows
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the path OCBA. Figure 8.5b shows a positively oriented image of the unit square

in Fig. 8.5a under the transformation y ¼ Ax, while Fig. 8.5c shows an image of

the unit square that is negatively oriented. By Theorem 8.3(3) both of the images

must be a parallelogram.

It will be seen from Theorem 8.4 that the positive orientation in Fig. 8.5b follows

when det A > 0 in the transformation Ax ¼ y, while the negative orientation in

Fig. 8.5c follows when det A < 0.

Theorem 8.4 Area Magnification and the Orientation of an Image

1. Let a triangle or parallelogram in the (x1, x2)-plane have area S, and let det A 6¼
0. Then if Ax ¼ y, the area S of the image of the corresponding triangle or
parallelogram in the (y1, y2)-plane is S ¼ detAj js. So the absolute value of detA
is the area magnification factor when the shape is transformed from the (x1, x2)-
plane to the (y1, y2)-plane.

2. Let the boundaries of a triangle or parallelogram in the (x1, x2)-plane be
positively oriented. Then if det A > 0 the boundary of the corresponding
image triangle or parallelogram in the (y1, y2)-plane will be positively oriented,
while if det A < 0 the boundary of the corresponding image triangle or
parallelogram will be negatively oriented.

Proof.

1. To determine the magnification factor, transformation (8.34) will be applied to

the unit square OABC with unit area shown in Fig. 8.5a. The square is seen to be

located in the first quadrant of the (x1, x2)-plane with a corner located at the

origin and its sides parallel to the axes. Properties 1 and 2 show the transforma-

tion will change the square into a parallelogram O0A0B0C0 with area S, as in

Fig. 8.5b, with its corner O0 located at the origin of the (y1, y2)-plane, because O0

is the image of O. From (8.35), the respective coordinates of O0A0B0C0 are (0, 0),
(a11, a21), (a11+a12, a21+a22) and (a12, a22). The linearity of the transformation

ensures that the magnification factor will remain the same between any triangle

A

D C

a b c

B x1

x2

A′

D ′ C ′

B ′

y1

y2 B ′

D ′C ′

A′

y1

y2

Fig. 8.5 (a) A positive orientation OABC of the unit square in the (x1, x2)-plane. (b) A positively
oriented image of the unit square in the (y1, y2)-plane. (c) A negatively oriented image of the unit

square in the (y1, y2)-plane
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or parallelogram in the (x1, x2)-plane and its image in the (y1, y2)-plane, while the
square of the area S is given by

S2 ¼ ðO0C0Þ2ðO0A0Þ2sin2y;

but sin2y ¼ 1� cos2y; and so

S2 ¼ ðO0C0Þ2ðO0A0Þ2ð1� cos2yÞ: (8.36)

However,

cos2y ¼ u; vh i2
uk k2 vk k2 ; (8.37)

so from (8.36) and (8.37) we find that

S2 ¼ uk k2 vk k2sin2y ¼ uk k2 vk k2ð1� cos2yÞ ¼ uk k2 vk k2 � u; vh i2:

As u ¼ [a12, a22] and v ¼ [a11, a21], substituting for these vectors in the above

expression for S 2, and simplifying, gives

S2 ¼ ða11a22 � a12a21Þ ¼ detAð Þ2; (8.38)

showing that area S ¼ detAj j.
Thus matrix A has been shown to determine the scaling when triangles and

parallelograms are mapped from the (x1, x2)-plane to the (y1, y2)-plane, with detAj j
as the magnification factor, so result 1 of the theorem has been established.

To prove result 2, associate the positive sign of det A with a positive orientation

around the parallelogram image of the unit square. Now suppose the rows of A are

interchanged. Then an examination of Fig. 8.5b shows this corresponds to an

interchange of the points A0 and C0, which has the effect of reversing the orientation
around the parallelogram.. However, if the rows of A are interchanged the sign of

det A is reversed, and as a point moves with a positive orientation around a

boundary of the square in the (x1, x2)-plane, so the image point will move with a

negative orientation around its image in the (y1, y2)-plane. Consequently the

orientation of the parallelogram that forms the image of the unit square is positive

when det A > 0, and negative when det A < 0, and result 2 of the theorem has been

established, so the proof is complete.

♦
Having established some important general properties of linear transforma-

tions, this section will close with a discussion of some specific transformations

that form a basis for further study of linear algebra applied to the geometry of the

plane.
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8.4.1 Rotation About the Origin

The linear transformation y ¼ Ax, with

A ¼ cos y sin y
� sin y cos y

� �
; x ¼ x1

x2

� �
; y ¼ y1

y2

� �
; (8.39)

describes a counterclockwise rotation about the origin of a vector x through an

angle y to form vector y in the same plane, where A is the rotation matrix.
This transformation has already been considered in Section 8.1, and the

reasoning that gave rise to it can be used to determine some related transformations,

as we now show.

8.4.2 A Reflection in a Line L Through the Origin

A point P is said to be reflected in a line L to form an image P0 if the line PP0 is
perpendicular to L, with P and P0 equidistant from L. Consider Fig. 8.6 in which the
line L about which reflection is to take place is inclined to the x1-axis at an angle a.
Point A located at the tip of the unit vector along the x1-axis has the coordinates

(1, 0) while point B located at the tip of the unit vector along the x2-axis has the
coordinates (0, 1). Point A0 is the reflected image of point A, and it is seen to have

the coordinates cos 2a; sin 2að Þ, and as the angle BOA is equal to 1
2
p� 2a; the

coordinates of A0 are cosð1
2
p� 2aÞ;� sinð1

2
p� 2aÞ� � ¼ ðsin 2a;� cos 2aÞ: The

reflection matrix describing reflection in line L is

A ¼ cos 2a sin 2a
sin 2a � cos 2a

� �
: (8.40)

0

α

xp1

xp2

x2

x1yp¢1

yp¢2
P¢

P
L

Fig. 8.6 Reflection of a point

P in a line L through the

origin
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Thus the transformation from vector x ¼ ½xP1; xP2�Tthat defines a point P, to
vector y ¼ ½yP01; yP02� which defines its reflection in line L, becomes

yP001
yP02

� �
¼ cos 2a sin 2a

sin 2a � cos 2a

� �
xP1
xP2

� �
: (8.41)

This result has been obtained from Fig. 8.6 assuming a to be an acute angle,

though the result remains true when a is obtuse. The justification for this assertion is
left as an exercise.

8.4.3 The Orthogonal Projection of a Point P Onto a Line L
Through the Origin

This situation is illustrated in Fig. 8.7, where the coordinates of P in the (x1, x2)-
plane are ðxP1; xP2Þ. Point P0 with coordinates ðyP1; yP2Þ is the orthogonal projec-
tion of P onto the line L, and the line L is inclined to the x1-axis at an angle a.

The unit vector along the x1-axis has its tip at point A with coordinates (1, 0), so

if point B is the orthogonal projection of the tip of this unit vector onto L, the length
OB is cos a, so its component along the x1-axis is OB cos a ¼ cos2a; while its

component along the x2-axis is OB sin a ¼ cos a sin a: So after scaling these com-

ponents by x1 and x2, respectively, the horizontal coordinate yP01 of P
0 is seen to be

yP01 ¼ xP1cos
2aþ xP2 cos a sin a. After projecting D onto L, where the unit vector

along the x2-axis with its tip at D has coordinates (0, 1), similar reasoning shows

that the vector normal to L has an x1-component equal to cos a sin a, and an x2-
component equal to sin2a. So after scaling these components by xP1 and xP2, the
vertical y2 coordinate of P

0 is found to be yP02 ¼ xP1 cos a sin aþ xP2 sin2a Thus the
transformation matrix describing this procedure is seen to be

A ¼ cos2a cos a sin a
cos a sin a sin2a

� �
; (8.42)

P

0
α

xp1

xp2

x2

x1yp¢1

yp¢2 P¢

L

Fig. 8.7 The orthogonal

projection of point P onto a

line L through the origin
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with the coordinates ðyP01; yP02Þ of point P0, the perpendicular projection of P onto

the line L inclined at an angle a to the x1-axis, given by the projection matrix

yP01
yP02

� �
¼ cos2a cos a sin a

cos a sin a sin2a

� �
xP1
xP2

� �
: (8.43)

As a check, setting a ¼ 0 causes line L, and so also point P0, to lie on the x1-axis
with yP01 ¼ xP1 and yP02 ¼ 0, and this is indeed the case, because (8.32) reduces to

yP01
yP02

� �
¼ 1 0

0 0

� �
xP1
xP2

� �
;

confirming that yP01 ¼ xP1 and yP02 ¼ 0.

8.4.4 Scaling in the x1 and x2 Directions

The rule for matrix multiplication shows that scaling in the x1-direction with scale

factor m1, and scaling in the x2-direction with scale factor m2, is represented by the

scaling matrix

A ¼ m1 0

0 m2

� �
: (8.44)

In this case y ¼ Ax takes the form

y1
y2

� �
¼ m1 0

0 m2

� �
x1
x2

� �
; (8.45)

and after expansion this becomes

y1 ¼ m1x1 and y2 ¼ m2x2: (8.46)

A special case occurs when m1 ¼ m2 ¼ m, because then the scaling is the same

in both the x1 and x2-directions. When m > 1 this situation corresponds to a

uniform magnification, and when 0<m< 1 it corresponds to a uniform shrinkage.
Clearly, when m ¼ 1, the transformation reduces to the identity transformation

because then A ¼ I. If m1 > 1 and m2 ¼ 1 the effect of the transformation is to

produce a stretch in the x1-direction, while if 0 < m1 < 1 and m2 ¼ 1 the effect of

the transformation is to produce a shrinkage in the x1-direction, with

corresponding effects when m1 ¼ 1 and m2 6¼ 1. Some typical examples that

show the effect of scaling a unit square are given in Figs. 8.8a–c, where Fig. 8.8a

shows the unit square before scaling.
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8.4.5 A Shear

The geometrical effect of a shear is easily understood if it is applied to a unit square,
the base of which is fixed, while the shear takes place parallel to the base line. To be

more specific, let the unit square have one corner located at the origin and, before

the shear is applied, let two of its sides coincide with the x1 and x2-axes. Then the

geometrical effect of a shear applied in the x1-direction is to cause each line x2 ¼ k
that pass through the square to be displaced to the right by an amount proportional

to k. This is illustrated in Fig. 8.9, where the undistorted unit square is shown in the
diagram at the left, while the effect of the shear is shown in the diagram at the right.

Because the amount of shear is proportional to the perpendicular distance of the

shear line from the x1-axis, and so is it is proportional to k, the effect of the shear is
to transform the unit square into a parallelogram.

It is easy to see that shear in the positive x1-direction with the side x1¼ 0 clamped

is described by the shear matrix

A ¼ 1 a
0 1

� �
;with a> 0; (8.47)

1

a b c

0 1

1

0 0

m1 = z, m2 = 1
m 1= 1, m 2= 2

2 1

2

Fig. 8.8 Some typical examples of the scaling transformation

1 1

1 1

0 0

x2

x1 y1

y2

Fig. 8.9 The effect on a unit square of a shear parallel to the x1-axis
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while shear in the positive x2-direction with the side x2 clamped is described by the

transformation matrix

A ¼ 1 0

b 1

� �
;with b> 0; (8.48)

so the displacement of vector x to vector y is then described by the matrix equation

y ¼ Ax: (8.49)

Reversing the signs of a and b simply reverses the directions of the shear.

8.4.6 Composite Transformations

Transformations may be applied successively to form composite transformations,

as was shown in the case of successive rotations in (8.8) and (8.9). For a different

example, let A be the matrix representing a reflection in the line L1 that passes

through the origin and is inclined to the x1-axis at an angle a, and let this be

followed by a matrix B that describes a counterclockwise rotation about the origin

through an angle b. This is described by the matrix product

A ¼ cos 2a sin 2a
sin 2a � cos 2a

� �
and B ¼ cos y � sin y

sin y cos y

� �
: (8.50)

Then a point represented by a vector x is mapped byA into a point y, where y¼Ax.

The point represented by vector y is then mapped by B into a point z, where z¼ By.

Combining these results to form a composite transformation then gives z ¼ BAx.

Notice that A precedes B, because it is the first operator to act on x, after which B

acts on the vector Ax. Thus the effect of this composite transformation on a vector x

to produce a vector y is given by

y1
y2

� �
¼ cos y � sin y

sin y cos y

� �
cos 2a sin 2a
sin 2a � cos 2a

� �
x1
x2

� �
: (8.51)

As would be expected, the geometrical effect of applying these transformations

in the reverse order will be different, and this is reflected by the fact that in general

matrix products are not commutative.

To illustrate this last remark consider the case when the reflection is about the

line L inclined to the x1-axis at an angle p/8, after which a counterclockwise rotation
about the origin is made through an angle p=4, so a ¼ p=8 and b ¼ p=4: The
transformation matrices in (8.51) become
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BA ¼ 1=
ffiffiffi
2

p �1=
ffiffiffi
2

p
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
� �

0 1

1 0

� �
¼ �1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
� �

;

whereas, if the transformations are performed in the reverse order, the product AB

of the transformation matrices becomes

AB ¼ 0 1

1 0

� �
1=

ffiffiffi
2

p �1=
ffiffiffi
2

p
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
� �

¼ 1=
ffiffiffi
2

p
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p �1=
ffiffiffi
2

p
� �

:

8.4.7 The Transformation of Curves

The transformation y ¼ Ax will be one-one when det A 6¼ 0, because then A�1

exists and x ¼ A�1y. So in this case, if a curve C in the (x1, x2)-plane is

continuous, it will be mapped by this linear transformation onto a unique con-

tinuous image curve C0 in the (y1, y2)-plane. Conversely, a continuous curve C0

in the (y1, y2)-plane will have as its pre-image a unique continuous curve C in

the (x1, x2)-plane. In general, the effect of such a transformation will be to distort

the image curve C0 relative to curve C, and a typical result of a mapping y ¼ Ax,

with

A ¼ 1 2

3 �1

� �

is shown in Fig. 8.10, where the unit circle centered on the origin in Fig. 8.10a is

seen to be mapped into the ellipse in Fig. 8.10b.

Exercises

1. Is matrix A ¼ cos y sin y
sin y � cos y

� �
orthogonal? Give a reason for your answer.

2. Using the matrices A and B in (8.8), verify the form of the matrix product

BA in (8.9).

3. Identify the nature of the two-dimensional rotations produced by the matrices:

(a)
�1

2

ffiffi
3

p
2

�
ffiffi
3

p
2

�1
2

" #
(b)

� 1ffiffi
2

p 1ffiffi
2

p

� 1ffiffi
2

p � 1ffiffi
2

p

" #
(c)

�1
2

�
ffiffi
3

p
2ffiffi

3
p
2

�1
2

" #
ðd)

1ffiffi
2

p � 1ffiffi
2

p

1ffiffi
2

p 1ffiffi
2

p

" #
:

4. Given that x ¼ [x1, x2, x3], show from first principles that the transformation

T(x) ¼ [2x1, x1 + 3x3, 2x1 �x3] is linear.
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5. Given that x¼ [x1, x2, x3, x4], show from first principles that the transformation

T(x) ¼ [3x1, x2 + x3, x2 � 2x3, x1 + x4] is linear.
6. Write down the matrix representations of the linear transformations

að Þ T
x1
x2
x3

2
4

3
5 ¼

x1 � x2 þ 3x3
2x1 þ x2 � x3
�x1 � x2 þ 2x3

2
4

3
5 (b) T

x1
x2
x3
x4

2
664

3
775 ¼

x2 þ 3x3 � x4
x1 � x2 þ x3 � x4

x3 þ x4
x1 � 2x2 þ 3x3 þ 2x4

2
664

3
775:

An integral transformation, also called an integral transform, used in the

solution of ordinary and partial differential equations, is a correspondence

between two functions f(t) and F(s) determined by an integral of the form

FðsÞ ¼
Z 1

�1
Kðs; tÞf ðtÞdt:

The function F(s) is called the transform of f(t), the variable s is called the

transform variable, and the function K(s, t) is called the kernel of the transfor-
mation. The interval �1 � t � 1 in which the function f(t) is defined is

called the domain of the space to which f(t) belongs, and the transform F(s) is
then said to be defined in a domain called the image space, which is usually in

the complex plane. In general, the variable t is real, but the transform variable is

1

1
1

1 2

2

3

2

3

x1

x2

y1

y2
=

⇒

–1

–1 0

–1

–2

–2

–3

1

(y1, y2)-plane

(x1,x2)-plane

a b

–1

–1

Fig. 8.10 (a) A unit circle. (b) The elliptical image of the unit circle
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complex with s ¼ sþ io: The Laplace transform is a particular case of an

integral transform in which the kernel

Kðs; tÞ ¼ 0; t<0;
e�st; t>0;

�

where the integral is taken over the interval 0 � t < 1 to which f(t) belongs.
As in Chapter 6, the Laplace transform of F(s) is indicated by writing

FðsÞ ¼ L f ðtÞf g.
7. When the improper integral defining an integral transformation given above is

defined, show that the integral transform is a linear transformation.

8. Three integral transforms that are used when solving ordinary and partial

differential equations are:

(a) The Mellin transform M f ðtÞf g ¼ R1
0

tp�1f ðtÞdt;
(b) The Fourier transform F f ðtÞf g ¼ R1

�1 e�iotf ðtÞdt;
(c) The Hankel transform of order n is Hn f ðtÞf g ¼ R1

0
tJnðstÞf ðtÞdt, where

JnðstÞ is the Bessel function of the first kind of order n:

Why are these linear transformations, what is the space to which f(t) belongs,
and, what are the kernels of the transforms?

9. Given that T is a linear transformation from R3 ! R3, and e1 to e3 are the

normal ordered basis vectors for R3, find the matrix representation A of T if

Tð2e1 þ e3Þ ¼
1

�1

0

2
4

3
5; Tð�e2 þ e3Þ ¼

�2

1

1

2
4

3
5; Tðe2 þ e3Þ ¼

0

1

1

2
4

3
5:

10. Given that T is a linear transformation from R4 ! R3, and e1 to e4 are the

normal ordered basis vectors for R4, find the matrix representation A of T if

Tðe1�e3Þ¼
1

0

0

2
64

3
75; Tðe2þe3Þ¼

�2

1

1

2
64

3
75; Tðe2�e4Þ¼

2

�2

0

2
64

3
75;

Tðe2þe4Þ¼
2

�4

2

2
64

3
75:

11. Which, if any, of the following matricesAmakes the matrix representation of a

linear transformation Ax ¼ y one-to-one? If this is not the case, what must be
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the relationship between the components of the matrix vector y in order that y is

a unique image of a vector x?

ða) A ¼
2 1 3

�1 1 2

�6 �6 �16

2
4

3
5 (b) A ¼

1 4 3

2 1 1

1 �1 2

2
4

3
5 A ¼

1 �1 1

1 1 1

1 0 �1

1 �2 1

2
664

3
775:

In Exercises 12 through 15, given the matrix A, find rank(A), the nullspace

N Að Þ of A, and the nullity nA of A. Verify the result of Theorem 8.2.

12.

A ¼
2 �1 2

1 1 �1

6 0 2

2
4

3
5

13.

A ¼
1 1 3

0 �1 2

2 �1 4

2
4

3
5

14.

A ¼
1 2 0 1

1 1 1 3

4 6 2 8

0 �1 1 2

2
664

3
775

15.

A ¼
1 1 1 0

1 �1 0 1

2 �1 1 1

4 �1 2 2

2
664

3
775

In Exercises 16 through 19 identify the geometrical effect of the transformation

involved.

16. (a) A ¼
1
2

ffiffi
3

p
2ffiffi

3
p
2

�1
2

" #
(b) A ¼

1
2

�
ffiffi
3

p
2ffiffi

3
p
2

1
2

" #
:

17. (a) A ¼ 0 1

1 0

� �
(b) A ¼

1
2

1
2

1
2

1
2

� �
:

18. (a) A ¼
1ffiffi
2

p 1ffiffi
2

p

� 1ffiffi
2

p 1ffiffi
2

p

" #
(b) A ¼ �1 0

0 1

� �
:

19. (a) A ¼
1
2

�1
2�1

2
1
2

� �
(b) A ¼ � 1ffiffi

2
p � 1ffiffi

2
p

1ffiffi
2

p � 1ffiffi
2

p

" #
:

20. Write down the matrix A that describes the reflection in a line L through

the origin inclined at an angle y ¼ �p=3: to the x1¼ axis. The corners of a
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rectangle in the (x1, x2)-plane lie at the points A (1, 1), B (1, 3), C (0, 3) and D
(0,1). Sketch to scale this rectangle and its reflection in line L, where the images

of the corners A, B, C, D occur at the points A0, B0, C0, D0. Use matrix A to find

the coordinates of the corners of the image rectangle, and check that these agree

with the location of the corners of the sketch of the image.

21. Find the coordinates of the orthogonal projection of the point (3, 5) in the

(x1, x2)-plane onto the line L through the origin inclined to the x1-axis at an
angle y ¼ p=4: Check the result with a sketch drawn to scale.

22. Find the coordinates of the orthogonal projection of the point (2, 6) in the

(x1, x2)-plane onto the line L through the origin inclined to the x1-axis at an
angle y ¼ p=6: Check the result with a sketch drawn to scale.

23. Prove that when a two-dimensional geometrical shape is reflected in a straight

line L through the origin, and the image is then again reflected through the same

line L, the original shape is reproduced.
24. Let a two-dimensional geometrical shape be reflected in the x2-axis, and then

let the resulting image be reflected in the x1-axis. Prove that this final image can

also be obtained by first reflecting the shape in a line inclined to the x1-axis at
an angle a ¼ p=4; and then reflecting this image in a line inclined at an angle

a ¼ �p=4 to the x1-axis.
25. Prove that a reflection in a line L1 through the origin inclined to the x1-axis at

an angle a, followed by a reflection in a line L2 through the origin inclined at

an angle b to the x1-axis, is equivalent to a rotation about the origin through an

angle 2ðb� aÞ: Taking a ¼ p=12 and b ¼ p=6; find how the point x ¼ 1; 1½ �T
is mapped by this composite transformation, and sketch the result to scale.

Does the result satisfy the rotation condition through an angle 2ðb� aÞ; and if
this appears not to be the case what is wrong with your interpretation of the

rotation condition?

26. Write down the composite transformation matrix that describes first a uniform

magnification by a factor 2, followed by a counterclockwise rotation about

the origin through an angle y ¼ p=6 measured from the x1-axis, and finally a

shear in the positive x1-direction with parameter a ¼ 1. Using geometrical

arguments, sketch the effect of this transformation on the rectangle A, B, C,
D with its corners at the respective points (1.5, 0), (1.5, 1), (0, 1) and (0, 0),

where these map to the corresponding image points A0, B0, C0 and D0. Apply the
composite transformation to find the coordinates of the respective image points

A0, B0, C0 and D0 and check them against the sketch drawn to scale.

27. Construct a rectangle R in the (x1, x2)-plane of your own choice by specify-

ing the coordinates of its corners. Use the transformation Ax ¼ y, with

A ¼ 1 2

3 2

� �
, to find the images in the (y1, y2)-plane of the corners of rectangle

R. Verify that Rmaps to a rectangle R
_

in the (y1, y2)-plane, and confirm that the

area of ~R is detAj j times the area of R.
28. Construct a rectangle R of your choice in the (x1, x2)-plane by specifying the

coordinates of its corners, and a matrix A that will produce a counterclockwise

rotation about the origin through an angle 1
6
p: By applying the transformation
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Ax ¼ y to R, find how the corners of rectangle R map to the corners of the

image ~R of R in the (y1, y2)-plane. Hence confirm that the transformation has

had the desired effect, and that the areas of R and ~R are identical. How should

matrix A be modified if the area of ~R is to be three times that of R ?

29. Construct a triangle R of your choice in the (x1, x2)-plane by specifying the

coordinates of its vertices. Construct a matrix A that will reflect the triangle

R about a line L through the origin into an image ~R, where line L is inclined

to the x1-axis at an angle of your choice. Verify that the transformation has the

desired effect, and give a mathematical reason why the areas R and ~R are

identical.

30. Write down (a) a matrix A that will stretch a rectangle or triangle of your

choice in the (x1, x2)-plane in the x1- and x2-directions by the respective

amounts a and b. (b) Write down a matrix B that will produce a shear in the

x1-direction by an amount k. Describe the geometrical effect on a rectangle or

triangle if it is mapped (i) by the transformation ABx ¼ y, and (ii) by the

transformation BAx ¼ y.

31. Matrix A is said to be a singular transformation if det A ¼ 0. Describe the

effect of a singular transformation Ax ¼ y when it maps points in the (x1, x2)-
plane onto the (y1, y2)-plane.

32. Explain why changing the sign in an element of a matrix A that produces a

stretch of a rectangle or triangle in the (x1, x2)-plane, causes a reflection of a

stretched image rectangle or triangle in the direction of one of the axes.

33. Explain the geometrical effect on a transformation Ax ¼ y that maps a

rectangle or triangle in the (x1, x2)-plane onto a corresponding rectangle or

triangle in the (y1, y2)-plane if A is replaced by PA where P ¼ 0 1

1 0

� �
:

272 8 Linear Transformations and the Geometry of the Plane



Solutions for All Exercises

Solutions 1

1. It is necessary to arrange entries in each equation in the same order before

writing down the coefficient matrix A. Taking the order to be x1, x2, x3 and x4
gives

A ¼
3 2 �4 5

3 2 4 �1

�2 4 1 5

3 2 6 0

2
664

3
775 and B ¼

4

3

2

1

2
664

3
775 :

2.

Aþ 2B ¼ 0 4 11

�3 11 13

� �
; 3A� 4B ¼ 10 �8 3

11 �7 �21

� �
:

3. a ¼ 0, b ¼ 6, c ¼ 4.

4.

3A� BT ¼
2 10

17 6

3 8

2
4

3
5 ; 2AT þ 4B ¼ 20 16 �12

16 �10 10

� �
:

5.

AT þ B ¼
3 5 6

2 9 2

4 1 4

2
4

3
5 ; 2Aþ 3ðBTÞT ¼ 2Aþ 3B ¼

6 12 5

8 23 9

19 �4 10

2
4

3
5 :

6. The result follows directly from the definitions of matrix addition and trans-

position. A þ B ¼ [aij] + [bij] ¼ [aij + bij] and so (A þ B)T ¼ [aij + bij]
T ¼

[aji þ bji] ¼ A
T þ B

T .

7. (a) A is symmetric if the aii for i ¼ 1, 2, 3, 4 are arbitrary, but a14 ¼1, a21 ¼ 4,

a31 ¼ �3, a23 ¼ 6, a24 ¼ a42 ¼ a (arbitrary), a43 ¼ 7.

(b) A is skew symmetric if aii¼ 0 for i¼ 1, 2, 3, 4, a14¼�1, a21¼�4, a31¼ 3,

a23 ¼ �6, a24 ¼ � a42 with a24 ¼ a (arbitrary), a43 ¼ � 7.
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8. Denote the symmetric matrix by M ¼ [mij] and the skew symmetric matrix by

S ¼ [sij]. Then if A ¼ [aij] is to be decomposed into the sum A ¼ M + S, we

must have aij ¼ mij þ sij and aji ¼ mij � sij. Solving these equations gives mij

and sij, and hence M and S. A more sophisticated approach uses the following

argument: A ¼ 1
2
ðAþ ATÞ þ ðA� ATÞ ; but 1

2
ðAþ ATÞT ¼ 1

2
ðAT þ AÞ ¼

1
2
ðAþ A TÞ; so M ¼1

2
ðAþ ATÞ: A similar argument shows 1

2
ðA� ATÞT ¼

�1
2
ðA� A TÞ; and so S¼1

2
ðA� ATÞ: For example, if

A ¼
8 1 3

2 2 1

0 1 2

2
64

3
75; then M ¼

8 3=2 3=2

3=2 2 1

3=2 1 2

2
64

3
75;

S ¼
0 �1=2 3=2

1=2 0 0

�3=2 0 0

2
64

3
75 :

9. The solution set for system (a) with x2 ¼ p arbitrary is f1
2
ð1� pÞ; p; 1

2
ð1� pÞg;

while the solution set for system (b) with x1 ¼ q arbitrary is fq; 1� 2q; qg: The
solution set in the text with x3¼ k arbitrary was fk; 1� 2k; kg: Replacing q by k
shows that the solution set for (b) is the same as the solution set found in the

text. Setting k ¼ 1
2
ð1� pÞ in the solution set for (a) it becomes fk; 1� 2k; kg,

which is again the solution set found in the text. Thus all three solution sets are

equivalent. This demonstrates, as would be expected, that it is immaterial

which variable is chosen as the arbitrary parameter.

10. System (a) has no solution. This can be shown in more than one way. The most

elementary way being to solve the first three equations for x1, x2 and x3, and
then to substitute these values into the last equation to show that they do not
satisfy it. Thus the last equation contradicts the other three, so there can be no

solution set.

In system (b) the third equation is the sum of the first equation and twice the

second equation, while the fourth equation is the difference between the first

and second equations. Thus the last two equations are redundant. Setting x3¼ k
in the first two equations with k arbitrary parameter, and solving for x1 and x2
by elimination, gives x1 ¼ 1 � k and x3 ¼ k, so a nonunique solution set exists

given by {1 � k, k , k}.

Solutions 2

1. (a) det A ¼ 7, (b) det A ¼ 0, (c) det A ¼ �1.

2. (a) det A ¼ �etsin t , (b) det A ¼ e�2t þ cos t :
3. The proof for an nth-order determinant is by induction. First, direct expansion

shows that for a second-order determinant det A ¼ det AT, showing that this

result is true for n ¼ 2. Now suppose the result is true for n ¼ k þ1, then as the

cofactor of a1j in A is simply the cofactor of aj1 in A
T, expanding A in terms of

elements of its first row is the same as expanding AT in terms of elements of its
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first column, so det A ¼ det AT when n ¼ k þ1. However the result is true for

k ¼ 2, so it is also true for n ¼ 2, 3, . . . , and the result is proved. In fact the

result is true for n¼ 1, 2, . . . , because the result is trivial when n¼ 1 since then

det A is simply the single element a11.
4. Subtract row 1 from row 2 and remove a factor (cos x� sin x). Add column 2 to

column 3, and then subtract column 3 from column 1. Finally, subtract (1 � a)
times column 3 from column 2 to obtain

detA¼ cosx� sinxð Þ
ex � cosx� sinx cosx� a cosxþ sinxð Þ cosxþ sinx

0 1 0

0 0 1

�������

�������
¼ cosx� sinxð Þ ex � cosx� sinxð Þ :

5. Add rows 2 and 3 to row 1 and then subtract column 1 from columns 2 and 3 to

obtain

1þ a a a
b 1þ b b
b b 1þ b

������
������ ¼

1þ aþ 2b 0 0

b 1 0

b 0 1

������
������ ¼ ð1þ aþ 2bÞ :

6. Subtract row 3 from row 1 and row 3 from row 2. Remove factors x3 from rows

1 and 2. Subtract row 1 from row 3 and then row 2 from the new row 3 to obtain

x6
1 0 �1

0 1 �1

0 0 ðx3 þ 3Þ

������
������ ¼ x6 x3 þ 3

� �
:

7. Subtract 3/2 times row 1 from row 2 and ½ times row 1 from row 3 to obtain

D ¼
2 1 0 1

3 2 4 2

1 2 1 3

0 3 1 1

��������

��������
¼

2 1 0 1

0 1
2

4 1
2

0 3
2

1 5
2

0 3 1 1

��������

��������
: Subtract 3 times row 2 from row 3

and 6 times row 2 from row 4 to obtain D ¼
2 1 0 1

0 1
2

4 1
2

0 3
2

1 5
2

0 3 1 1

��������

��������
¼

2 1 0 1

0 1
2

4 1
2

0 0 �11 1

0 0 �23 �2

��������

��������
: Finally subtract 23/11 times row 3 from row 4 to obtain

D ¼
2 1 0 1

0 1
2

4 1
2

0 0 �11 1

0 0 �23 �2

��������

��������
¼

2 1 0 1

0 1
2

4 1
2

0 0 �11 1

0 0 0 �45
11

��������

��������
¼ 2� ð1

2
Þ � ð�11Þ � ð�45

11
Þ

¼ 45 :
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8. D¼ 63; D1 ¼ 204; D2 ¼ 183; D3 ¼ 3 : Thus x1 ¼ 68/21, x2 ¼ 61/21, x3 ¼1/21.

9. (a) det A ¼ 0, so the equations are linearly dependent

(b) det A ¼ 26, so the equations are linearly independent.

10. No, because det A ¼ 0, so the equations are linearly dependent.

11. det A� lI½ � ¼ 0 becomes ðl� 1Þðl� 2Þðl� 3Þ ¼ 0, so the eigenvalues ofA are

l¼ 1; 2; 3: The new matrix is B ¼ A þ kI, so det B ¼ det A�ðl� kÞI½ � ¼ 0

and when expanded this becomes ðl� 1þ kÞðl� 2þ kÞðl� 3þ kÞ ¼ 0; so the
eigenvalues of B are l¼ 1� k; l¼ 2� k and l¼ 3� k; confirming the state-

ment in the exercise. The result could have been deduced directly from the

form of the modified matrix B, because the eigenvalues of B are solutions of

det A�ðl� kÞIj j ¼ 0 showing the eigenvalues of B are simply the eigenvalues

of matrix A from each of which has been subtracted the constant k. The result is
true for all square matrices, because in each case the modified matrix has the

same property as the 3 � 3 matrix in the exercise.

12. Self checking

13. J¼ r. The Jacobian vanishes if r¼ 0, and the transformation fails because then

the angle y has no meaning.

14. J ¼ r2 sin y: The Jacobian fails if r ¼ 0 or y ¼ 0. When r ¼ 0 the angles ¼ 0

y and f have no meaning, and when y ¼ 0 the angle f has no meaning.

Solutions 3

1.

xy ¼ �15; yx ¼
2 �4 8 6

4 �8 16 12

�3 6 �12 �9

1 �2 4 3

2
664

3
775 :

2. xA ¼ [15, �4, 23, 16] .

3.

AB ¼
2 �6 7

20 2 11

7 �4 8

17 �13 16

2
664

3
775 :

4.

ABð ÞT ¼ BTAT ¼ 56 54

�18 �20

� �
:

5.
QðxÞ ¼ 2x21 � 2x1x2 þ x1x4 þ x22 þ 5x2x3 þ 9x2x4 þ 3x1x3 þ 4x23 þ 2x3x4 � x24 :

A ¼
2 �1 3

2
1
2

�1 1 5
2

9
2

3
2

5
2

4 1
1
2

9
2

1 �1

2
6664

3
7775 :
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6.

A�1 ¼ 1

ad � bc

d �b

�c a

� �
¼ d=ðad � bcÞ �b=ðad � bcÞ

�c=ðad � bcÞ a=ðad � bcÞ

� �
;

ad � bc 6¼ 0 :

7.

A�1 ¼
1 �1 3

2 �3 8

5 �7 18

2
4

3
5 :

8.

A�1 ¼
� 3

7

4

7

2

7
4

7
� 3

7

2

7

� 3

7

4

7
� 5

7

2
666664

3
777775
:

9.

A�1 ¼

13

121

2

11
� 10

11

2

11
0

1

11

� 10

11

1

11

17

121

2
6666664

3
7777775
:

10.

adj(AÞ ¼
5 9 12

2 19 �26

�11 11 �11

2
4

3
5; adjðA�1Þ ¼

1

77

3

77
� 6

77

4

77

1

77

2

77

3

77
� 2

77

1

77

2
6666664

3
7777775
;

adjðAÞadjðA�1Þ ¼ I

11. Let A1, A2, . . . , An be n nonsingular m � m matrices, the repeated application

of the result (AB)�1¼ B�1A�1 gives (A1A2 . . .An)
�1¼An

�1An � 1
�1. . .A1

�1.

The result then follows by setting A1 ¼ A2 ¼ � � � ¼ An .

12. Setting B ¼ A�1 we have det I ¼ 1 ¼ det A det A�1, from which the required

result follows immediately.

13.

x1 ¼ 12

7
; x2 ¼ 20

7
; x3 ¼ 27

7
; x4 ¼ 9

7
:

14.

x1 ¼ 7

11
; x2 ¼ 1; x3 ¼ � 28

11
; x4 ¼ � 23

11
:

Solutions for All Exercises 277



15. PA interchanges rows two and three, while AP interchanges columns two and

three. If PA is to interchange the first and last rows of A, then P is obtained

from I by interchanging its first and last rows. If, however, AP is to interchange

the second and fourth columns of A, then P is obtained from I by interchanging

its second and fourth columns.

16. If P is any permutation matrix, it interchanges rows in a certain order. The

effect of PT, where rows are transposed, is to reverse the effect of P by

changing back the altered rows to their original order, so PPT ¼ PTP ¼ I.

17. Equations one and two must be interchanged, and equations three and four

must be interchanged, so

P ¼
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

2
664

3
775 :

18. Interchanging rows of I to form Pwill cause det P to equal�1 if an odd number

of row interchanges have been made, and to equal 1 if an even number of row

interchanges have been made. So from the result det (AB) ¼ det A det B in

Exercise 12 it follows that det AP¼ det A� (sign of det P). Pre-multiplication

of a conformable matrixA by P to form PA interchanges its rows in a particular

way, so P
2A returns them to their original positions, consequently P2A ¼ A,

showing that P2 ¼ I. Thus P2 ¼ P�1P ¼ PP�1, confirming that P�1 ¼ P:
19. (a) Orthogonal (b) not orthogonal (c) orthogonal.

20. Q is orthogonal because QQ
T ¼ I. To prove the last property notice first that

if qi and qj are columns of Q, then qTi and qj are orthogonal. Next, permuting

the columns of Q to produce Q1 results in a corresponding permutation of the

rows of QT
1 , so it remains true that QT

1Q1 ¼ I :
21.

A ¼
1 3 �1

2 �1 1

�1 1 2

2
64

3
75; b ¼

�5

9

5

2
64

3
75; x ¼

x1

x2

x3

2
64

3
75 and

A�1 ¼

3

19

7

19
� 2

19
5

19
� 1

19

3

19

� 1

19

4

19

7

19

2
6666664

3
7777775

so as x ¼ A�1b, x1 ¼ 2, x2 ¼ �1 and x3 ¼ 4.

22. det[A � lI] ¼ 1� l 2

2 1� l

����
���� ¼ l2 � 2l� 3: So the eigenvalues of A are the

roots of l2 � 2l � 3 ¼ 0; namely l1 ¼ �1 and l2 ¼ 3.
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Tofind the eigenvector x(1)¼ x
ð1Þ
1 ; x

ð1Þ
2

h iT
wemust set l¼ l1 in [A� l1I]x

(1)¼ 0.

The matrix equation becomes
2 2

2 2

� �
x
ð1Þ
1

x
ð1Þ
2

" #
¼ 0, so this reduces to solving

the single equation x
ð1Þ
1 þ x

ð2Þ
1 ¼ 0: Setting x1

(2) ¼ k1 (arbitrary) we find that

x1
(1) ¼ �k1. Thus the eigenvector x(1) corresponding to l ¼ l1 ¼ �1 is seen

to be xð1Þ ¼ k1 �1; 1½ �T, where k1 is arbitrary. A similar argument with l ¼
l2 shows that the eigenvector x(2) corresponding to l ¼ l2 ¼ 3 is

xð2Þ ¼ k2 1; 1½ �T, where k2 is arbitrary.
23. det[A � lI] ¼ 0 becomes l3 þ l2 � 10l þ 8 ¼ 0, so its roots (the eigenvalues

of A) are l1¼ 1, l2¼ 2 and l3¼�4. The eigenvector x(1)¼ [x1
(1), x2

(1), x3
(1)]T

is the solution of [A � l1I]x
(1) ¼ 0. Writing out this system in full, as det[A �

lI] ¼ 0, the system must be linearly dependent. Solving by elimination shows

that the third equation is redundant, and setting x3
(1)¼ k3 (arbitrary) it turns out

that the eigenvector x(1) corresponding to l ¼ l1 ¼ 1 is x(1) ¼ k1[0, 0, 1]
T.

Similar reasoning shows that the eigenvector x(2) corresponding to l¼ l2¼ 2 has

the form x(2) ¼ k2[1, 1, �4]T, where k2 is arbitrary, while the eigenvector x(3)

corresponding to l ¼ l3 ¼ �4 has the form x
(3) ¼ k3[�1, 1, 0]T, where k3 is

arbitrary.

24. Self-checking.

25.

[ ]

1 1 1 2 1

2 1 2 2 2

1 1 2 2

1 2

, .

n

n

n n

n n n n

é ù
ê ú
ê ú= + + + = ê ú
ê ú
ê úë û

B A B A B A

B A B A B A
AB A B A B A B BA

B A B A B A

26.

2 2

1 1 1 2
1 1

2 2

2 1 2 2
1 1

i i i i
i i

i i i i
i i

= =

= =

é ù
ê ú
ê ú=
ê ú
ê ú
ë û

å å

å å

A B A B

AB
A B A B

( )T =ABso

2 2

1 1 2 1
1 1 T T
2 2

1 2 2 2
1 1

.
i i i i

i i

i i i i
i i

= =

= =

é ù
ê ú
ê ú =
ê ú
ê ú
ë û

å å

å å

A B A B

B A
A B A B

27. The argument proceeds in the same way as in the text, but partitioning A and

B ¼ A�1 into 2 � 2 block matrices. Solving the four matrix equations for the

Bij then gives

1 1 1
11 11 12 221

1
22

.
- - -

-
-

-
=
A A A A

A
0 A

This result follows from the resulting the text by taking forA�1the results in the

first 2 � 2 block matrix, because the entries outside this block do not influence

the block.

28.
11 11 11 12 12 22

22 22

+é ù
= ê ú

ë û

A B A B A B
AB

0 A B , so from the result of Exercise 27,
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( )
( ) ( ) [ ]( )

( )

1 1 1

11 11 11 11 11 12 12 22 22 221

1

22 22

.

- - -
-

-

é ù- +
ê ú=
ê úë û

A B A B A B A B A B
AB

0 A B

The products A11B11 and A22B22 are ordinary matrix products, so A11B11ð ÞT ¼
BT
11A

T
11 and A22B22ð ÞT ¼ BT

22A
T
22. Inserting these results into the expression

for ABð ÞTand examining the product BTAT shows that ABð ÞT ¼ BTAT :

29. The result in Exercise 4 shows

1 1
1 .

- -
-

é ù-
= ê ú

ê úë û

B B
A

0 I
For the given matrix

A�1 ¼
1 0 �1 �2

0 1 3 �1

0 0 1 0

0 0 0 1

2
664

3
775:

30. (a) A is idempotent, so A2 ¼ A. The proof is by induction. Assuming Ak ¼ A,

multiplying by A gives Akþ1¼ A2 ¼ A, so the result for k þ 1 follows from

the result for k. However, the result is true for k ¼ 2, so it is true for k � 2.

(b) A2 ¼ A, so det Adet A ¼ det A, so either det A ¼ 0 or det A ¼ 1.

(c) If D is idempotent, then D2 ¼ D, but D2 ¼ {l212; l
2
2; . . . ; l

2
n}. So D2 ¼ D

if and only if li ¼ l2i for i ¼ 1, 2, . . . , n which is only possible if the li
are 0 or 1.

(d) (AþB)2¼A2þABþ BAþB2. IfAB¼ BA¼ 0, then (Aþ B)2¼A2 + B2

¼ A + B establishing that A + B is idempotent.

(e) ðI� AÞ2 ¼ I� 2Aþ A2; but A2 ¼ A ; so ðI� AÞ2 ¼ I� A:
(f) A2 ¼ A, so AðI� AÞ ¼ 0: Hence, detA detðI� AÞ ¼ 0: As both factors

cannot vanish, either det A ¼ 0 or detðA� IÞ ¼ 0:
31. a ¼ d; b ¼ dðd � 1Þ=c; c ¼ c; d ¼ d; with c and d arbitrary. Four other cases

are possible that cannot be deduced from these results. The first two are the

trivial results A ¼ I and A ¼ 0, while the others are a ¼ 1, b ¼ b, c ¼ 0 and

d ¼ 0, and a ¼ 0, b ¼ b, c ¼ 0 and d ¼ 1.

32. det A ¼ 106 and the Hadamard overestimate of detAj j is 174.24.
33.

X ¼

1 0

1 1

1 2

1 3

1 4

2
66664

3
77775; XT ¼ 1 1 1 1 1

0 1 2 3 4

� �
; XTX ¼ 5 10

10 30

� �
;

XTX
� ��1 ¼

3
5

�1
5

�1
5

1
10

" #

y ¼ �0:8; 0:3; 0:3; 1:3; 1:7½ �T; a ¼ XTX
� ��1

XTy ¼ �0:64
0:6

� �
:
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The least-squares straight-line approximation is � ¼ �0:64þ 0:6x; 0 � x � 4:

34.

X ¼

1 �2

1 �1

1 0

1 1

1 2

1 3

2
6666664

3
7777775
; XT ¼ 1 1 1 1 1 1

�2 �1 0 1 2 3

� �
; XTX ¼ 6 3

3 19

� �
;

XTX
� ��1 ¼

19
105

� 1
35

� 1
35

2
35

" #
:

y ¼ 1:93; 1:63; 0:75; 0:71; 0:47;�0:27½ �T; a ¼ XTX
� ��1

XTy ¼ 1:077
�0:415

� �
:

The least-squares straight-line approximation is � ¼ 1:077� 0:415x;�2 � x � 3:

2
X

1

1.5

1

0.5y

0

–0.5

3 4

Fig. S3.33

0

0.5

1.5

1

1
X

2 3–1–2

Fig. S3.34
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Solutions 4

1. A bj �
1 1 �1 2 1

0 3 0 1 �1

0 0 3 �6 3

2
4

3
5. rank A ¼ rank A|b ¼ 3, so the solutions

will involve a single parameter k. Back substitution gives the solution set:

x1 ¼ 7
3
þ 1

3
k ; x2 ¼ �1

3
� 1

3
k ; x3 ¼ 1þ 2k ; x4 ¼ k ; with k arbitrary.

2. Ajb �
1 1 3 2 �2

0 �2 �9 �4 9

0 0 �19 �12 17

0 0 0 12 2

2
664

3
775. rank A ¼ rank A|b ¼ 4, so a unique

solution exists. Back substitution gives the unique solution set x1 ¼ 1;

x2 ¼ �1
3
; x3 ¼ �1; x4 ¼ 1

6
:

3. Ajb �
1 4 2 3

0 �5 �3 �5

0 0 �3 �10

0 0 0 �16

2
664

3
775. rankA¼ 3, rankA|b¼ 4, so no solution exists.

4. Ajb �

1 �1 0 2

0 4 �1 �2

0 0 3 �2

0 0 0 0

0 0 0 0

2
66664

3
77775 . rank A ¼ rank A|b ¼ 3, and there are only 3

linearly independent solutions, so back substitution gives the unique solution

set x1 ¼ 4
3
; x2 ¼ �2

3
; x3 ¼ �2

3
:

5. Ajb �
2 0 1 4

0 8 4 �4

0 0 20 �8

0 0 0 0

2
664

3
775 : rankA¼ rankA|b¼ 3, and there are only 3 linearly

independent solutions, so back substitution gives the unique solution set

x1 ¼ 11
5
; x2 ¼ � 3

10
; x3 ¼ �2

5
:

6. Ajb

1 2 1 5

0 �3 �2 �8

0 0 �6 6

0 0 0 �2

0 0 0 0

2
66664

3
77775 : rank A ¼ 3, rank A|b ¼ 4, so no solution exists.

7.

A�1 ¼
2
3

�1 2
3�1

3
1 �1

3�2
3

0 1
3

2
4

3
5 :
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8.

A�1 ¼
�1

4
3
4

1
3
4

�5
4

�1
1
2

�1
2

�1

2
4

3
5 :

9.
detðA� lIÞ ¼ �20þ 3l2 � l3 :

10.
detðA� lIÞ ¼ 6þ 29l� 11l2 � 3l3 þ l4 :

11. (a) a > 0 (b) a ¼ �1/2 (c) a < �1/2

12. Self-checking

13.

L ¼
1 0 0

2 1 0

1 0 1

2
64

3
75; U ¼

1 2 3

0 �5 �5

0 0 �4

2
64

3
75;

(a) x1 ¼ 1
4
; x2 ¼ �3

4
; x3 ¼ �1

4
; (b) x1 ¼ 7

20
; x2 ¼ 19

20
; x3 ¼ 1

4
:

14.

L ¼
1 0 0

1 1 0

�2 �5
2

1

2
4

3
5; U ¼

1 �1 2

0 3 �3

0 0 �2

2
4

3
5; x1 ¼ 19

6
; x2 ¼ �3

2
; x3:

15.

L ¼

1 0 0 0
1
2

1 0 0
1
2

�1 1 0

�1
2

3 0 1

2
6664

3
7775; U ¼

2 1 1 2

0 1
2

1
2

�1

0 0 �1 �1

0 0 0 5

2
6664

3
7775;

(a) x1 ¼ 3
5
; x2 ¼ �2

5
; x3 ¼ 9

5
; x4 ¼ �4

5
; (b) x1 ¼ 4

5
; x2 ¼ �1

5
; x3 ¼ �8

5
; x4 ¼ 3

5
:

16. This exercise requires a row interchange between rows 1 and 2, so P, L and

U are

P ¼
0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1;

2
664

3
775; L ¼

1 0 0 0

0 1 0 0
1
2

5
2

1 0
1
2

3
2

1
3

1

2
664

3
775; U ¼

2 �1 �1 �1

0 1 �1 1

0 0 3 �1

0 0 0 �5
3

2
664

3
775;

x1 ¼ �1; x2 ¼ 1
2
; x3 ¼ �5

2
; x4 ¼ �1:

17. Self checking.

Solutions for All Exercises 283



Solutions 5
Remember that eigenvectors are indeterminate up to an arbitrary scale factor,

and they can be arranged in any order when constructing a diagonalizing matrix or

an orthogonal diagonalizing matrix.

1.

l3 � 3l2 þ 2l ¼ 0; l1 ¼ 2; x1 ¼
1

�1

�1

2
4

3
5; l2 ¼ 0; x2 ¼

1

1

1

2
4

3
5;

l3 ¼ 1; x3 ¼
0

1

0

2
4

3
5:

2.

l3 � 5l2 þ 7l� 3 ¼ 0; l1 ¼ l2 ¼ 1; x1 ¼ x2 ¼
�1

0

1

2
4

3
5; l3 ¼ 3; x3 ¼

1

2

1

2
4

3
5:

There are three eigenvalues, but only two linearly independent eigenvectors. The

algebraicmultiplicity of the eigenvaluel¼ 1 is 2, but its geometricmultiplicity is 1.

3.
l3 � l2 � lþ 1 ¼ 0; l1 ¼ �1;

x1 ¼
�1

�2

1

2
4

3
5; l2 ¼ l3 ¼ 1; x2 ¼ x3 ¼

�1

0

1

2
4

3
5:

There are three eigenvalues, but only two linearly independent eigenvectors. The

algebraicmultiplicity of the eigenvaluel¼ 1 is 2, but its geometricmultiplicity is 1.

4.

l3 � 3l ¼ 0; l1 ¼
ffiffiffi
3

p
; x1 ¼

1

1þ ffiffiffi
3

p
2þ ffiffiffi

3
p

2
4

3
5; l2 ¼ �

ffiffiffi
3

p
;

x2 ¼
1

1� ffiffiffi
3

p
2� ffiffiffi

3
p

2
4

3
5; l3 ¼ 0; x3 ¼

�1

�1

1

2
4

3
5:

5.

l3 þ 2l2 � 7l� 2 ¼ 0; l1 ¼ 2; x1 ¼
1

�4

�9

2
4

3
5; l2 ¼ �2þ

ffiffiffi
3

p
;

x2 ¼
ffiffiffi
3

p � 1

1

�1

2
4

3
5; l3 ¼ �2�

ffiffiffi
3

p
; x3 ¼

�1� ffiffiffi
3

p
1

�1

2
4

3
5:
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6.

l3 � 4l2 þ 5l� 2 ¼ 0; l1 ¼ 2; x1 ¼
1

0

1

2
4

3
5; l2 ¼ 1; x2 ¼

�1

1

0

2
4

3
5;

l3 ¼ 1; x3 ¼
0

0

1

2
4

3
5:

Three linearly independent eigenvectors. The repeated eigenvalue l ¼ 1 has

the algebraic multiplicity ¼ geometric multiplicity ¼ 2.

7.

l3 � 2l2 � lþ 2 ¼ 0; l1 ¼ �1; x1 ¼
1

1

1

2
4

3
5; l2 ¼ 2; x2 ¼

0

1

1

2
4

3
5;

l3 ¼ 1; x3 ¼
1

0

1

2
4

3
5:

8.

l3 � 2l2 þ l ¼ 0; l1 ¼ 0; x1 ¼
0

1

2

2
4

3
5; l2 ¼ 1; x2 ¼

1

0

1

2
4

3
5; l3 ¼ 1;

x3 ¼
1

1

0

2
4

3
5:

Three linearly independent eigenvectors. The repeated eigenvalue l ¼ 1 has

the algebraic multiplicity ¼ geometric multiplicity ¼ 2.

9.

l3 þ 2l2 � l� 2 ¼ 0; P ¼
0 1 2

�1 0 1

1 1 0

2
4

3
5:

10. l3 þ 2l2 � l� 2 ¼ 0; P ¼
�1 1 0

1 0 1

1 1 1

2
4

3
5: Notice that Exercise 9 has the

same characteristic equation as here, but the matrices A and P are different.

11.

l3 þ 2l2 � l� 2 ¼ 0; P ¼
2 �2 1

�1 1 0

1 0 �1

2
4

3
5:

12.

l3 � 2l2 � 5lþ 6 ¼ 0; P ¼
1 �1 2

0 1 �1

�1 �1 1

2
4

3
5:
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13.

l3 þ l2 þ l ¼ 0; l1 ¼ 0; x1 ¼
2

1

�2

2
4

3
5; l2 ¼ �1

2
ð1þ i

ffiffiffi
3

p
Þ;

x2 ¼
1

1

�1
2
ð1� i

ffiffiffi
3

p Þ

2
4

3
5;

l3 ¼ �1
2
ð1� i

ffiffiffi
3

p
Þ; x3 ¼

1

1

�1
2
ð1þ i

ffiffiffi
3

p Þ

2
4

3
5: Diagonalizable:

14.

l1 ¼ 1; x1 ¼
1

5

4

2
4

3
5; l2 ¼ l3 ¼ �2; x2 ¼ x3 ¼

1

�1

1

2
4

3
5:Non� diagonalizable:

There are three eigenvalues but only two linearly independent eigenvectors.

The algebraic multiplicity of the eigenvalue l ¼ �2 is 2, but its geometric

multiplicity is 1.

15.

l3 � l2 � 2l ¼ 0; Q ¼
0 1ffiffi

2
p � 1ffiffi

2
p

1 0 0

0 1ffiffi
2

p 1ffiffi
2

p

2
64

3
75:

16.

l3 þ l2 � 17lþ 15 ¼ 0; Q ¼
� 1ffiffi

3
p 0 2ffiffi

6
p

1ffiffi
3

p � 1ffiffi
2

p 1ffiffi
6

p
1ffiffi
3

p 1ffiffi
2

p 1ffiffi
6

p

2
64

3
75:

In Exercises 17 through 20 remember that matrix Q is not unique, because

the order in which the eigenvectors are used to form its columns is arbitrary.

However, the final reduction will always be the same whatever the ordering of

the columns of Q.

17.

Q ¼
� 1ffiffi

2
p 1ffiffi

3
p 1ffiffi

6
p

1ffiffi
2

p 1ffiffi
3

p 1ffiffi
6

p

0 � 1ffiffi
3

p 2ffiffi
6

p

2
64

3
75; x1 ¼ � 1ffiffi

2
p y1 þ 1ffiffi

3
p y2 þ 1ffiffi

6
p y3;

x2 ¼ 1ffiffi
2

p y1 þ 1ffiffi
3

p y2 þ 1ffiffi
6

p y3; x3 ¼ � 1ffiffi
3

p y2 þ 2ffiffi
6

p y2:
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Eigenvalues are � 3; 2;�1: Q ðyÞ ¼ �3y21 þ 2y22 � y23; so the quadratic

form is indefinite. The classification is obvious from the values of the eigen-

values without further calculation.

18.

Q ¼
1ffiffi
3

p 1ffiffi
6

p � 1ffiffi
2

p
1ffiffi
3

p � 2ffiffi
6

p 0
1ffiffi
3

p 1ffiffi
6

p 1ffiffi
2

p

2
64

3
75; x1 ¼ 1ffiffi

3
p y1 þ 1ffiffi

6
p y2 � 1ffiffi

2
p y3; x2 ¼ 1ffiffi

3
p y1 � 2ffiffi

6
p y2;

x3 ¼ 1ffiffi
3

p y1 þ 1ffiffi
6

p y2 þ 1ffiffi
2

p y3:

Eigenvalues are 2, �1, 1. Qðy Þ ¼ 2y21 � y22 þ y23; so the quadratic form is

indefinite. The classification is obvious from the values of the eigenvalues

without further calculation.

19.

Q ¼
� 2ffiffi

5
p 1ffiffi

5
p 0

0 0 1
1ffiffi
5

p 2ffiffi
5

p 0

2
64

3
75; x1 ¼ � 2ffiffi

5
p y1 þ 1ffiffi

5
p y2; x2 ¼ y3; x3 ¼ 1ffiffi

5
p y1 þ 2ffiffi

5
p y2:

Eigenvalues are �2, 3, �1. Qðy Þ ¼ �y21 � 2y22 þ 3y23, so the quadratic form
is indefinite. The classification is obvious from the values of the eigenvalues

without further calculation.

20.

Q ¼
2ffiffi
6

p � 1ffiffi
3

p 0

� 1ffiffi
6

p � 1ffiffi
3

p 1ffiffi
2

p
1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

2
64

3
75; x1 ¼ 2ffiffi

6
p y1 � 1ffiffi

3
p y2; x2 ¼ � 1ffiffi

6
p y1 � 1ffiffi

3
p y2 þ 1ffiffi

2
p y3;

x3 ¼ 1ffiffi
6

p y1 þ 1ffiffi
3

p y2 þ 1ffiffi
2

p y3 : Eigenvalues are 3, 0, 1. Q ðy Þ ¼ 3y21 þ y23, so the

quadratic form is positive definite. The classification is obvious from the values

of the eigenvalues without further calculation.

21. If the characteristic equation is ln þ c1l
n�1 þ � � � þ cn�1lþ cn ¼ 0; the

Cayley–Hamilton equation becomes An þ c1A
n�1 þ c2A

n�2 þ � � � þ cn�1Aþ
cnI ¼ 0: When det A 6¼ 0 matrix A�1 exists, and pre-multiplication of the

Cayley–Hamilton equation by A�1 followed by a rearrangement of terms

gives A�1 ¼ 1=cnð Þ An�1 þ c1A
n�2 þ � � � þ cn�1A

� �
; so A�1 is expressed in

terms of powers of A. If A is singular, A�1 does not exist, and the matrix

form of the characteristic equation will not contain a multiple of the unit

matrix I. So the formal result of the pre-multiplication such a matrix charac-

teristic equation by A�1 will not yield an expression for A�1, so the inverse

matrix cannot be found. In addition, the characteristic equation will have a

root l ¼ 0; and when it inserted in A� lIj j ¼ 0, it will give Aj j ¼ 0;
showing that A is singular. The purpose of the Cayley–Hamillton equation

in this exercise is to provide a simple application of this general result, and

also to help develop experience combining matrices. When this method is
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used with the given matrix A to find A�1, to ensure the result is correct it

is necessary check that AA�1 ¼ I : The matrix A in this exercise is not

singular, because detA ¼ �2; so A�1 exists. The characteristic equation is

l3 � 3l2 þ 4lþ 4 ¼ 0; so using the above method, but omitting the details of

the calculations, gives

A�1 ¼
1
2

�1
2

1
2

�1
2

1
2

1
2

1
2

1
2

�1
2

2
64

3
75:

22. Matrix A has the repeated eigenvalue l ¼ 2 and the single eigenvector

[0, 1]T. Set C ¼ 0 1

1 1

� �
when C�1 ¼ �1 1

1 0

� �
; so C�1AC ¼ 2 2

0 2

� �
:

M ¼ 1 0

0 1
2

� �
; so Q¼CM ¼ 0 1

2

1 1
2

� �
and Q�1 ¼ �1 1

2 0

� �
; giving Q�1AQ

¼ 2 1

0 2

� �
; showing that A is similar to J3:

23. Matrix A has the eigenvalues l1 ¼ 1 and l2 ¼ 5; with the eigenvectors

½1;�1�T and [1, 1�T: The matrix is diagonalizable by the matrix

Q ¼ 1 1

�1 1

� �
when Q�1AQ ¼ 1 0

0 5

� �
; so the matrix is similar to J1.

24. Matrix A has a repeated eigenvalue l ¼ 3; and the single eigenvector

½�1; 1�T:

Set C ¼ �1 1

1 0

� �
when C�1 ¼ 0 1

1 1

� �
; so C�1AC ¼ 3 �2

0 3

� �
:

M ¼ 1 0

0 �1
2

� �
; so Q¼CM ¼ �1 �1

2

1 0

� �
and Q�1 ¼ 0 1

�2 �2

� �
;

giving Q�1AQ ¼ 3 1

0 3

� �
; showing that A is similar to J3.

25. MatrixA has the complex conjugate eigenvalues l	 ¼ 1	 i
ffiffiffi
6

p
; so it is similar

to J4 with a ¼ 1; b ¼ ffiffiffi
6

p
; so it is similar to

1 � ffiffiffi
6

p
ffiffiffi
6

p
1

� �
:

26. Matrix A has a repeated eigenvalue l ¼ 4; and the single eigenvector ½1; 0�T:
Set C ¼ 1 1

0 1

� �
when C�1 ¼ 1 �1

0 1

� �
; so C�1AC ¼ 4 �2

0 4

� �
:
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M ¼ 1 0

0 �1
2

� �
; so Q¼CM ¼ �1 �1

2

0 �1
2

� �
and Q�1 ¼ 1 �1

0 �2

� �
;

giving Q�1AQ ¼ 4 1

0 4

� �
; showing that A is similar to J3:

27. MatrixA has the complex conjugate eigenvalues l	 ¼ �1	 2i; so it is similar

to J4 with a ¼ �1; b ¼ 2 ; so it is similar to
�1 �2

2 �1

� �
:

28. Self checking.

29. Let z be a zero of the nth degree polynomial PnðzÞ ¼ zn þ a1z
n�1 þ � � � þ an,

then zn þ a1z
n�1 þ � � � þ an ¼ 0: Taking the complex conjugate of this equa-

tion in which the coefficients a1, a2, . . . , an are real numbers, so �ar ¼ ar; and
using the fact that zr ¼ �zr, shows that arz

r ¼ arz
r ¼ ar�z

r, so �zn þ a1�z
n�1þ

� � � þ an ¼ 0; and hence �z must also be a zero of Pn(z). So if there are complex

zeros they must occur in complex conjugate pairs. Thus ðz� zÞ and ðz� �zÞ are
both factors of Pn(z). Setting z ¼ aþ ib the product of the two factors

ðz� zÞðz� �zÞ ¼ ðz� a� ibÞðz� aþ ibÞ ¼ z2 � 2azþ a2 þ b2:

Thus the complex conjugate zeros are seen to produce a real quadratic factor of

Pn(z). Consequently, if the degree of Pn(z) is odd, either all of its zeros are real
or, if some are complex conjugate pairs, there must be at least one real zero

of Pn(z).

30. Q is positive definite andA ¼
4 �1 0

�1 4 0

0 0 1

2
4

3
5: detAj j ¼ 15 and the Hadamard

inequality gives 16.

31. Q is positive definite and A ¼
5
2

0 1
2

0 1 0
1
2

0 5
2

2
4

3
5: detAj j ¼ 6 and the Hadamard

inequality gives 25
4
¼ 6:25:

32. Q is positive definite and A ¼
2 2 �1 �1

2 7 �2 1

�1 �2 12 0

�1 1 0 3

2
664

3
775: detAj j ¼ 192 and the

Hadamard inequality gives 504. Poor though this estimate is, it is better than

the estimate provided by the inequality in Exercise 32, of Chapter 3, which

gives 974.997. One reason for this is that the result in Exercise 32, of Chapter 3,

applies to an arbitrary determinant, whereas the result in this case is restricted

to the class of determinants associated with positive definite matrices, so this

constraint leads to a better estimate.

33. (a) rðAÞ ¼ 0 so lim
n!1A ¼ 0, and in fact A4 ¼ 0.
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(b) A� lIj j ¼ 0 gives the characteristic equation l� 1ð Þ l2 � 13
12
lþ 1

12

� � ¼ 0;
so the eigenvalues of A (the spectrum of A) arel ¼ 1 (twice) and l ¼ 1

12
:

Thus rðAÞ ¼ 1 so L ¼ lim
n!1An is bounded, and rounded to four figures

L ¼
1 0 0

0 0:2727 0:7273
0 0:2727 0:7273

2
4

3
5:

34. Self checking.

35. Self checking.

36. Use Unþ1 ¼ AUn with Un ¼ unþ1

un

� �
and A ¼ 1 2

1 0

� �
. Reason as in Section

5.11 with l1 ¼ �1; x1 ¼ 1

�1

� �
; l2 ¼ 2; x2 ¼ 2

1

� �
:

37. Exact solution uðxÞ ¼ 1
2p3
� � �5 sinð2pxÞ þ 5px cosð2pxÞ � 5pxð Þ:

x 0.2 0.4 0.6 0.8

Exact �0.1158 �0.2563 �0.2673 �0.0842

Approx �0.1117 �0.2307 �0.2275 �0.0633
38.

l1 ¼ �2; x1 ¼ 1

�i

� �
; l2 ¼ 4; x2 ¼ �i

1

� �
:

39.

l1 ¼ 0; x1 ¼ �i
1

� �
; l2 ¼ 2; x2 ¼ 1

�i

� �
:

40.

l1 ¼ l2 ¼ �1 ðtwice); x1 ¼
�1

0

1

2
4

3
5; x2 ¼

�i
1

0

2
4

3
5; l3 ¼ 2; x3 ¼

1

�i
1

2
4

3
5:

41.

l1 ¼ �
ffiffiffi
2

p
; x1 ¼

1

�i
ffiffiffi
2

p

�i

2
64

3
75; l2 ¼

ffiffiffi
2

p
; x2 ¼

1

i
ffiffiffi
2

p

�i

2
64

3
75; l3 ¼ 0;

x3 ¼
1

0

i

2
64

3
75:

42. By definition, the purely real parts of each element form a real symmetric

matrix A1, while the purely imaginary parts of each entry form a real skew-

symmetric matrix A2, so A ¼ A1 þ iA2.
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43. The reasoning follows that in the text for an Hermitian matrix except that

now when �A
T
occurs it must be replaced by �A. This leads to the conclusion

that l+�l ¼ 0; which is only possible if l is purely imaginary.

44. Take the transpose of UT ¼ U�1and use the fact that the transpose operation

and the inverse of a matrix commute.

45. The characteristic equation is l3 � 2l2+2l� 1 ¼ 0; and inspection

shows one eigenvalue is 1. After removing the factor ðl� 1Þ from the

characteristic equation and finding the roots of the remaining quadratic

equation the other two eigenvalues are seen to be 1
2
1	 i

ffiffiffi
3

p� �
; and all three

have modulus 1.

Solutions 6

1. Self checking.

2. Self checking.

3.

GH½ ��1 ¼ H�1G�1 so
d

dt
½GH��1 ¼ d

dt
½H�1G�1�

¼ dH�1

dt

� �
G�1 þH�1 dG�1

dt

� �
:

Hence d
dt ½GðtÞHðtÞ��1 ¼ �H�1 dH

dt H
�1G�1 �H�1G�1 dG

dt G
�1 :

4. Self checking.

5.
dG�1ðtÞ

dt
¼ � 1

10
sin tþ 3

10
cos t 1

5
sin tþ 2

5
cos t

� 1
10
cos t� 3

10
sin t 1

5
cos t� 2

5
sin t

" #
:

6. The result is almost immediate from the definition of the sum of two matrices

and the fact that a and b are scalar constants.

7. The result follows in the same way as the usual formula for integration by parts

by differentiating AB, rearranging terms, and then integrating the result. We

have
d½AB�
dt ¼ dA

dt Bþ A dB
dt ; so integrating this gives AB¼ R

dA
dtBdtþ

R
A dB

dt dt;

from which the result follows after rearranging terms.

8.

l1¼�1; x1¼
1

2

1

2
64

3
75; l2¼1; x2¼

�1

0

1

2
64

3
75; l3¼�2; x3¼

0

1

0

2
64

3
75:

x1ðtÞ¼ 1
2
C1 etþe�tð Þþ1

2
C3 e�t�etð Þ; x2ðtÞ¼ C1þC3ð Þe�tþ C2�C1�C3ð Þe�2t;

x3ðtÞ ¼ 1
2
C1 e�t � etð Þ þ 1

2
C3 et þ e�tð Þ :

x1ðtÞ ¼ 1
2
e�t þ 3

2
et; x2ðtÞ ¼ e�t þ e�2t; x3ðtÞ ¼ 1

2
e�t � 3

2
et:
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9.

l1 ¼ �1; x1 ¼
1

0

1

2
64

3
75; l2 ¼ �1; x2 ¼

0

1

0

2
64

3
75; l3 ¼ 3; x3 ¼

0

1

2

2
64

3
75:

x1ðtÞ ¼ C3e
�t; x2ðtÞ ¼ C2e

�t þ C1e
3t; zðtÞ ¼ C3e

�t þ 2C1e
3t:

x1ðtÞ ¼ 2e�t ; x2ðtÞ ¼ 5
2
e�t � 3

2
e3t ; x3ðtÞ ¼ 2e�t � 3e3t :

10.

l1 ¼ �1þ 2i; x ¼ 1

�1
2
i

� �
; l2 ¼ �1� 2i; x ¼ 1

1
2
i

� �
:

11.

l1 ¼ 2þ 2i; x ¼ 1
1
2
i

� �
; l2 ¼ 2� 2i; x ¼ 1

�1
2
i

� �
:

x1ðtÞ ¼ e2t C1 cos 2tþ 2C2 sin 2tð Þ; x2ðtÞ ¼ 1
2
e2t 2C2 cos 2t� C1 sin 2tð Þ:

x1ðtÞ ¼ 2e2t sin 2t� cos 2tð Þ; x2ðtÞ ¼ e2t sin 2tþ cos 2tð Þ:

12.

l1 ¼ 1; x1 ¼
�4

1

2

2
64

3
75; l2 ¼ 2; x2 ¼

�1

0

1

2
64

3
75; l3 ¼�1; x3 ¼

0

1

0

2
64

3
75:

x1ðtÞ¼C1 2et� e2t
� �þ2C3 et� e2t

� �
; x2ðtÞ¼ 1

2
C1 e�t� etð ÞþC2e

�t

þ 1
2
C3 e�t� etð Þ;

x3ðtÞ ¼ C1 e2t � et
� �þ C3 2e2t � et

� �
:

x1ðtÞ ¼ 6et � 5e2t; x2ðtÞ ¼ 1
2
e�t � 3

2
et; x3ðtÞ ¼ 5e2t � 3et:

13.

l1 ¼ 1; x1 ¼
0

1

1

2
64

3
75; l2 ¼ �1; x2 ¼

1

0

�1

2
64

3
75; l3 ¼ 2; x3 ¼

�1

1

1

2
64

3
75:

x1ðtÞ ¼ C1e
2t þ C2 e�t � e2t

� �þ C3 e2t � et
� �

; x2ðtÞ ¼ C1 et � e2t
� �

þ C2e
2t þ C3 et � e2t

� �
;

x3ðtÞ ¼ C1 et � e2t
� �þ C2 e2t � et

� �þ C3 e�t þ et � e2t
� �

:

x1ðtÞ ¼ 2e�t � e2t; x2ðtÞ ¼ e2t � 2et; x3ðtÞ ¼ e2t � 2et þ e�t:

14. l1 ¼ i; x1 ¼ 1

1þ i

� �
; l2 ¼ �i; x2 ¼ 1

1� i

� �
: General solution:
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x1ðtÞ ¼ C1 cos t� sin tð Þ þ C2 sin t� t2 þ 2þ 2t� e�t;

x2ðtÞ ¼ �2C1 sin tþ C2 cos tþ sin tð Þ � 2t2 þ 4:

(a) x1ðtÞ ¼ 2� 5 sin t� t2 þ 2t� e�t; x2ðtÞ ¼ 4� 5 cos t� 5 sin t� 2t2:

(b) x1ðtÞ ¼ �2 cosðt� 1Þ þ 4 sinðt� 1Þ � 2e�1 sinðt� 1Þ � 2t2 þ 4;

x2ðtÞ ¼ sinðt� 1Þ � 3 cosðt� 1Þ þ e�1 cosðt� 1Þ � sinðt� 1Þð Þ
þ 2þ 2t� t2 � e�t:

15. l1 ¼ �2; x1 ¼ �1

1

� �
; l2 ¼ 2; x2 ¼ 1

3

� �
: General solution:

x1ðtÞ ¼ 1
4
C1 3e�2t þ e2t

� �þ 1
4
C2 e2t � e�2t

� �þ 3
4
t� 3

4
þ 1

5
sin t;

x2ðtÞ ¼ 3
4
C1 e2t � e�2t

� �þ 1
4
C2 3e2t þ e�2t

� �� 9
4
tþ 1

5
cos tþ sin tð Þ:

Solution of IVP:
x1ðtÞ ¼ �11

80
e�2t � 9

80
e2t þ 3

4
t� 3

4
þ 1

5
sin t;

x2ðtÞ ¼ �27
80
e2t þ 11

80
e�2t � 9

4
tþ 1

5
cos tþ sin tð Þ:

16. l1 ¼ 1; x1 ¼ 2

1

� �
; l2 ¼ 0; x2 ¼ 1

1

� �
: General solution:

x1ðtÞ ¼ C1 2et � 1ð Þ þ 2C2 1� etð Þ � 8tþ 1
2
t2 � 10;

x2ðtÞ ¼ C1 et � 1ð Þ þ C2 2� etð Þ � 5� 9tþ 1
2
t2:

Solution of IVP:

(a)
x1ðtÞ ¼ 4et � 6� 8tþ 1

2
t2; x2ðtÞ ¼ 2et � 1� 9tþ 1

2
t2:

(b)
x1ðtÞ ¼ 10et�1 þ 17

2
� 8tþ 1

2
t2 � 10; x2ðtÞ ¼ 5et�1 þ 17

2
� 5� 9tþ 1

2
t2:

17. l1 ¼ 2; x ¼ 1

1

� �
; l2 ¼ �4; x2 ¼ �1

1

� �
: General solution:

x1ðtÞ ¼ 1
2
C1 e2t þ e�4t

� �þ 1
2
C2 e2t � e�4t

� �� 1
8
e�2t � 54

85
cos tþ 12

85
sin t;

x2ðtÞ ¼ 1
2
C1 e2t � e�4t

� �þ 1
2
C2 e2t þ e�4t

� �þ 3
8
e�2t � 14

85
cos tþ 22

85
sin t:

Solution of IVP:
x1ðtÞ ¼ 101

68
e�4t þ 11

40
e2t � 1

8
e�2t � 54

85
cos tþ 12

85
sin t;

x2ðtÞ ¼ 11
40
e2t � 101

68
e�4t þ 3

8
e�2t � 14

85
cos tþ 22

85
sin t:
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18. l1 ¼ 1; x1 ¼
1

0

0

2
4

3
5; l2 ¼ 0; x2 ¼

1

�1

1

2
4

3
5; l3 ¼ 2; x3 ¼

1

1

1

2
4

3
5: General

solution:

x1ðtÞ ¼ C1e
t þ 1

2
C2 e2t � 1

� �þ C3
1
2
e2t � et þ 1

2

� �þ 7
2
tþ 11

4
þ 7

130
cos 3tþ 9

130
sin 3t;

x2ðtÞ ¼ 1
2
C2 1þ e2t

� �þ 1
2
C3 e2t � 1

� �þ 3
4
� 3

2
tþ 2

13
cos 3t� 3

13
sin 3t;

x3ðtÞ ¼ 1
2
C2 e2t � 1

� �þ 1
2
C3 e2t þ 1

� �þ 3
4
� 11

13
cos 3t� 3

13
sin 3tþ 3

2
t:

Solution of IVP: x1ðtÞ ¼ �19
10
et � 99

22
e2t þ 15

4
þ 7

2
tþ 7

130
cos 3tþ 9

130
sin 3t;

x2ðtÞ ¼ �99
52
e2t � 1

4
þ 2

13
cos 3t� 3

13
sin 3t� 3

2
t;

x3ðtÞ ¼ �99
52
e2t þ 7

4
� 11

13
cos 3t� 3

13
sin 3tþ 3

2
t:

19. l1 ¼ 1þ i; x1 ¼
1

�i
1

2
4

3
5; l2 ¼ 1� i; x2 ¼

1

i
1

2
4

3
5; l3 ¼ 1; x3 ¼

1

0

0

2
4

3
5:

General solution:

x1ðtÞ ¼ C1e
t � C2e

t sin tþ C3e
t cos t� 1ð Þ þ 1

30
e�2t þ 1

5
sin t� 3

2
þ 2

5
cos t;

x2ðtÞ ¼ C2e
t cos tþ C3e

t sin tþ 3
5
sin tþ 1

5
cos tþ 1

2
þ 1

10
e�2t;

x3ðtÞ ¼ �C2e
t sin tþ C3e

t cos tþ 2
5
cos tþ 1

5
sin t� 1

2
� 3

10
e�2t:

Solution of IVP:

x1ðtÞ ¼ 8
5
et � 6

5
et sin t� 3

5
et cos tþ 1

30
e�2t þ 1

5
sin t� 3

2
þ 2

5
cos t;

x2ðtÞ ¼ 6
5
et cos t� 3

5
et sin tþ 3

5
sin tþ 1

5
cos tþ 1

2
þ 1

10
e�2t;

x3ðtÞ ¼ �6
5
et sin t� 3

5
et cos tþ 2

5
cos tþ 1

5
sin t� 1

2
� 3

10
e�2t:

20. The system is in the form Bdx/dt ¼ A1x ¼ f1(t), with B¼ 1 2

2 1

� �
;

A1 ¼ 7 1

8 �1

� �
; f1ðtÞ ¼ �5þ 4t

�1þ 2t

� �
: Pre-multiplication by B�1 ¼ �1

3
2
3

2
3

11
3

� �

brings it to the form dx/dt ¼ Ax + f(t) with A¼ 3 �1

2 1

� �
; fðtÞ ¼ 1

2t� 3

� �
:

The eigenvalues and eigenvectors of A are

l1 ¼ 2þ i; x1 ¼
1
2
ð1þ iÞ
1

� �
; l2 ¼ 2� i;

x2 ¼
1
2
ð1� iÞ
1

� �
; so P ¼

1
2
ð1þ iÞ 1

2
ð1� iÞ

1 1

� �

and

D ¼ 2þ i 0

0 2� i

� �
: General solution:
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x1ðtÞ ¼ C1e
2t cos tþ C1 � C2ð Þe2t sin tþ 2

25
� 2

5
t;

x2ðtÞ ¼ 2C1e
2t sin tþ C2e

2t cos t� sin tð Þ þ 41
25
� 6

5
t:

Solution of IVP:

x1ðtÞ ¼ �52
25
e2t cos t� 36

25
e2t sin tþ 2

25
� 2

5
t;

x2ðtÞ ¼ �88
25
e2t sin t� 16

25
e2t cos tþ 41

25
� 6

5
t:

21. The system is in the form Bdx/dt ¼ A1x ¼ f1(t), with

B¼ 1 �2

�1 1

� �
; A1¼ 1 �2

�1 1

� �
; f1ðtÞ¼ 2�6t2

�2þ3t2

� �
: Pre-multiplication by

B�1¼ �1 �2

�1 �1

� �
brings it to the form dx/dt ¼ Ax + f(t) with

A¼ 0 1

1 0

� �
; fðtÞ¼ 2

3t2

� �
: The eigenvalues and eigenvectors of A are

l1 ¼ �1; x1 ¼ 1

�1

� �
; l2 ¼; x2 ¼ 1

1

� �
; so P ¼ 1 1

�1 1

� �

D ¼ �1 0

0 1

� �
: General solution:

x1ðtÞ ¼ 1
2
C1 et þ e�tð Þ þ 1

2
C2 et � e�tð Þ � 6� 3t2 ;

x2ðtÞ ¼ 1
2
C1 et � e�tð Þ þ 1

2
et þ e�tð Þ � 2� 6t :

Solution of IVP: x1ðtÞ ¼ 7
2
e�t þ 9

2
et � 6� 3t2 ; x2ðtÞ ¼ 9

2
et � 7

2
e�t � 2� 6t :

22.
x1ðtÞ ¼ 5

2
e�2t � e�t � 3

2
þ 2t ; x2ðtÞ ¼ 1

2
� 5

2
e�2t � te�t þ 2t ; tr0 :

23.
x1ðtÞ ¼ 1

3
þ 7

15
e3t þ 1

5
ðcos t� 2 sin tÞ ; x2ðtÞ

¼ 7
15
e3t � 2

3
þ 4

5
ð2 sin t� cos tÞ ; t � 0 :

24.
x1ðtÞ ¼ �3t� 5

4
e�t þ 9

4
et þ 1

2
sin t ; x2ðtÞ ¼ �3þ 9

4
et þ 5

4
e�t � 1

2
cos t ; t � 0 :

25.
x1ðtÞ ¼ � 1

18
þ 1

3
t� 3

10
e�2t þ 19

180
e3t þ 1

4
e�t ;

x2ðtÞ ¼ 7
18
� 1

3
tþ 19

90
e3t þ 9

10
e�2t � 3

2
e�t ; t � 0 :
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26.
x1ðtÞ ¼ 7

10
et � 3

10
e�t � 2

5
cos t ; x2ðtÞ ¼ 1� 2tþ 7

10
et � 3

10
e�t � 2

5
cos 2t ;

x3ðtÞ ¼ �2þ 7
10
et þ 3

10
e�t þ 4

5
sin 2t ; t � 0 :

27.
x1ðtÞ ¼ �1þ 11

4
et � 3

4
cos tþ sin tþ 1

4
tðsin tþ cos tÞ ;

x2ðtÞ ¼ 1
2
ð3 sin t� t cos tÞ ; x3ðtÞ ¼ 1� cos t� 1

2
t sin t ; t � 0 :

28.
x1ðtÞ ¼ �5

4
� 3

4
te2t þ 3

16
ð11e2t þ e�2tÞ ; x2ðtÞ ¼ 1

2
tþ 3

8
ðe�2t � e2tÞ;

x3ðtÞ ¼ �1
4
� 3

8
ðe2t þ e�2tÞ ; t � 0:

29.
x1ðtÞ ¼ �1� tþ 5

4
et � 1

4
ðt sin tþ t cos tþ cos tÞ;

x2ðtÞ ¼ 1þ 1
2
ðsin t� t cos tÞ ; x3ðtÞ ¼ t� 1

2
t sin t ; t � 0 :

30.
x1ðtÞ ¼ 3

8
et þ 1

8
e�t þ 1

2
ðcos t� sin tÞ þ 1

4
t cos t ;

x2ðtÞ ¼ �tþ 3
8
et þ 1

8
e�t � 1

2
cos t� 1

4
t cos t ; t � 0 :

31.
x1ðtÞ ¼ 1

4
e�tð5 cos 2tþ 2 sin 2t� 1Þ ; x2ðtÞ

¼ 3þ 1
4
e�tð5þ 8 sin 2t� 9 cos 2tÞ ; t � 0 :

32. u ¼ 2dy/dt, v ¼ 4du/dt, so v ¼ 8d 2y/dt2 and the equation is replaced by the

system 1
8

dv

dt
þ 1

4
v� 1

2
u� 2y ¼ 1þ sin t;

dy

dt
¼ 1

2
u ;

du

dt
¼ 1

4
v:

The initial conditions for the system are

yð0Þ ¼ 0; uð0Þ ¼ 0; vð0Þ ¼ 0: The solution yðtÞ is
yðtÞ ¼ 1

4
e�t þ 1

4
et � 1

10
e�2t � 1

2
þ 1

10
ðcos t� 2 sin tÞ � 1

2
; tr0:

Although not required, for reference purposes:

uðtÞ ¼ 1
2
et � 1

2
e�t þ 2

5
e�2t � 2

5
cos t� 1

5
sin t;

vðtÞ ¼ 2e�t � 16
5
e�2t þ 2et � 4

5
cos tþ 8

5
sin t:

33. Nilpotent index x ¼ 5.

etA ¼
1 3t 3

2
t2 þ t t3 þ 11

2
t2 þ 2t

0 1 t t2 þ 3t
0 0 1 2t
0 0 0 1

2
664

3
775:
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34.

etA ¼

e�1 0 0 0

0 e�2 0 0

0 0 e 0

0 0 0 e2

2
6664

3
7775;

etB ¼

e 0 0 0

0 e2 0 0

0 0 e�1 0

0 0 0 e

2
6664

3
7775 and etðAþBÞ ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e3

2
6664

3
7775:

The result is true because the product of two upper diagonal 4 � 4 matrices is

always commutative.

35.

etA ¼ cosh t sinh t
sinh t cosh t

� �
:

36.

l1 ¼ 3; x1 ¼ ½1; 1�T; l2 ¼ �1; x2 ¼ ½�1; 1�; P ¼ 1 �1

1 1

� �
;

P�1 ¼
1
2

1
2

�1
2

1
2

" #
;

tD ¼ e3t 0

0 e�t

� �
; etA ¼ PðtDÞP�1 ¼

1
2
e�t þ e3tð Þ 1

2
e3t � e�tð Þ

1
2
e3t � e�tð Þ 1

2
e�t þ e3tð Þ

" #
:

37.

l1 ¼ 1þ 2i; x1 ¼ ½2i; 1�T; l2 ¼ �2i; x2 ¼ ½�2i; 1�T; P ¼ 2i �2i

1 1

� �
;

P�1 ¼ �1
4
i 1

2
1
4
i 1

2

" #
;

tD ¼ el1t 0

0 el2t

� �
; etA ¼ PðtDÞP�1 ¼

1
2
el1t þ el2t
� �

i el1t � el2t
� �

�1
4
i el1t � el2t
� �

1
2
el1t þ el2t
� �

" #

so after simplification

etA ¼ et cosð2tÞ �2et sinð2tÞ
1
2
et sinð2tÞ et cosð2tÞ

� �
:

38.

etA ¼ cos t � sin t
sin t cos t

� �
; x1ðtÞ ¼ cos t� sin t; x2ðtÞ ¼ � cos t� sin t:
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39.

etA ¼ cosh t sinh t
sinh t cosh t

� �
; x1ðtÞ ¼ et � 2; x2ðtÞ ¼ et � t:

40. (a) etA ¼ et cos t et sin t
�et sin t et cos t

� �
; (b) etA ¼ e2t cos t e2t

�e2t sin t e2t cos t

� �
:

41.
l1 ¼ 2; x1 ¼ ½1; 1; 2�T; l2 ¼ 0; x2 ¼ ½1;�1; 2�T; l3 ¼ 1; x3 ¼ ½1; 0; 1�T

P ¼
1 1 1

1 �1 0

2 2 1

2
4

3
5; P�1 ¼

�1
2

1
2

1
2�1

2
�1

2
1
2

2 0 �1

2
4

3
5; tD ¼

2t 0 0

0 0 0

0 0 t

2
4

3
5;

etA ¼ PðtDÞP�1 ¼
�1

2
e2t þ 2et � 1

2
1
2
e2t � 1

2
1
2
e2t � et þ 1

2

�1
2
e2t þ 1

2
1
2
e2t þ 1

2
1
2
e2t � 1

2

�e2t þ 2et � 1 e2t � 1 e2t � et þ 1

2
64

3
75:

42.

etA ¼
1
2
ðe3t þ e�tÞ 1

2
ðe3t � e�tÞ 0

1
2
ðe3t � e�tÞ 1

2
ðe3t þ e�tÞ 0

�1
2
e�t þ 1

6
e3t þ 1

3
1
6
e3t þ 1

2
e�t � 2

3
1

2
64

3
75;

x1ðtÞ ¼ C1e
�t þ C2e

3t; x2ðtÞ ¼ �C1e
�t þ C2e

3t; x3ðtÞ ¼ �C1e
�t þ C2e

3t þ C3:

Solutions 7

1. The result is straightforward, because the axioms of a vector space are taken

directly from the rules governing the manipulation of geometrical vectors.

2. Yes, because when vectors are added or multiplied by a scalar the zeros on the

leading diagonal remain unchanged so this set of matrices forms a vector space.

3. No, because when vectors are added or multiplied by a scalar the first entry in

the leading diagonal is altered so that the resulting vector does not belong to V.
Thus this set of vectors does not form a vector space.

4. Yes. It is easily verified that the axioms of a vector space are satisfied when the

matrices contain complex elements and the scalars l and m in Definition 7.1.1

are complex numbers. Thus this set of complex matrices forms a complex

vector space.

5. Yes, When a vector is any member of the set of all cubic polynomials denoted

by P3, performing all of the operations in Definition 7.1.1 will produce another

cubic polynomial. Thus the set of all cubic polynomials P3 form a vector space.

6. The set of all quadratic polynomials forms a subspace of the vector space P3.

The set of all cubic polynomials in which a1 ¼ 0 form a subspace of the vector

space P3. The set of all cubic polynomials in which a0 ¼ 1 does not form a

subspace of P3, because when polynomials are added or scaled the coefficient

a0 is altered so the resulting polynomial is no longer of the required type.
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7. The result follows because the sum of continuous functions is a continuous

function and scaling a continuous function yields another continuous function.

All of the other requirements of Definition 7.1.1 are satisfied.

8. Yes, because the vectors in the vector space P3 of cubic polynomials are all

differentiable functions.

9. The result follows from the fact that the addition and scaling of real continuous

integrable functions defined over a � x � bis continuous and integrable, and

the other properties of Definition 7.1.1 are all satisfied.

10. The discontinuities must be bounded and finite in number so the functions are

integrable. If improper integrals are included, the integrals must be such that

their Cauchy principal value is defined.

11. No. Multiplication of a convex function f(x) by a negative scalar causes the

points on the chord PQ that were above the graph of y¼ f(x) to lie below it. Thus

the resulting function is not convex, and in fact it is called a concave function.
12. It is a routine matter to show that f(x) satisfies all the requirements of

Definition 7.1.1 and so forms a vector space we can call V. The functions

f 0ðxÞ ¼ 2b cos x� 2c sin x; but b and c are arbitrary constants so f 0(x) has the
same form as f(x), though without the arbitrary additive constant. The functions
f 0(x) also satisfy all of the requirements of Definition 7.1.1 and so form a vector

space W. The vector space W is a subspace of the vector space V because the

functions f 0(x) have the same form as f(x), but without the arbitrary additive

constant.

13. The determinant test in Chapter 4 should be used to test for linear indepen-

dence. One set of basis vectors is {v1, v3, v4, v5}. This set of basis vectors is not

unique, because another set of basis vectors is {v1, v2, v4, v5}. In fact v3 ¼ v1þ
2v2, so yet another choice could be {v2, v3, v4, v5}.

14. [2, 1, 2, 0].

15. [1, 2, 0, �2,1].

16. The 1-norm. Clearly N1 and N2 are satisfied. N3 is satisfied because

luk k ¼ lu1j j þ lu2j j þ � � � þ lunj j ¼ lj jf u1j j þ u2j j þ � � � unj jg:N4 is satisfied
because

uþ vk k1 ¼ u1 þ v1j j þ u2 þ v2j j þ � � � þ un þ vnj j
� u1j j þ v1j j þ u2j j þ v2j j þ � � � þ unj j þ vnj j:

The infinity norm. Clearly N1 and N2 are satisfied. N3 is satisfied because

luk k1 ¼ maxflu1; lu2; . . . ; lung ¼ lmaxf u1; u2; . . . ; ung: N4 is satisfied

because

uþ vk k1 ¼ maxfu1 þ v1; u2 þ v2; . . . ; un þ vng
� maxfu1; u2; . . . ; ung þmaxfv1; v2; . . . ; vng ¼ uk k1 þ vk k1:

17. (i) Write axiom P2 as aþ b; ch i ¼ a; ch i þ b; ch i; and set a ¼ 0, b ¼ u and

c ¼ v.
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Then 0þ u; vh i ¼ 0; vh i þ u; vh i, but 0 + u ¼ u, so u; vh i ¼ 0; vh iþ
u; vh i . Hence 0; vh i ¼ 0; but 0; vh i ¼ v; 0h i; so v;0h i ¼ 0:

(ii) From axiom P1 u; vþ wh i ¼ vþ w; uh i ¼ v; uh i þ w; uh i: However from
axiom P1 v; uh i¼ u;vh i and w; uh i ¼ u;wh i, so the result is proved.

(iii) From axioms P1 and P3 u; kvh i ¼ kv; uh i ¼ k v; uh i: An application of

axiom P1 shows that k v; uh i ¼ k u; vh i; and the result is proved.

18. Examination of the definition of a projection shows that in projuv the roles of

u and v are reversed with respect to those in projvu, so in general the results

will be different, because although u; vh i ¼ v; uh i, the two denominators will

be different. However, the two projections will be the same if uk k ¼ vk k .

We have u; vh i ¼ v; uh i ¼ 8, uk k ¼ ffiffiffiffiffi
14

p
and vk k ¼ ffiffiffi

6
p

, so by definition

projvu ¼ 8=
ffiffiffi
6

p
and projuv ¼ 8=

ffiffiffiffiffi
14

p
, showing that projvu 6¼ projuv; while

cos y ¼ 8ffiffiffiffi
14

p ffiffi
6

p ¼ 0:5097, corresponding to y ¼ 29:2
.
19.

w1 ¼ 1ffiffi
2

p ; 1ffiffi
2

p ; 0
� 	

; w2 ¼ 1ffiffi
3

p ;� 1ffiffi
3

p ; 1ffiffi
3

p
� 	

; w3 ¼ 1ffiffi
6

p ;� 1ffiffi
6

p ;� 2ffiffi
6

p
� 	

:

20. The vectors are linearly independent because the determinant with their entries

as its rows equals 6, and so is not zero.

w1 ¼ 1ffiffi
3

p ; 1ffiffi
3

p ; 1ffiffi
3

p
� 	

; w2 ¼ 1ffiffi
6

p ;� 2ffiffi
6

p ; 1ffiffi
6

p
� 	

; w3 ¼ � 1ffiffi
2

p ; 0; 1ffiffi
2

p
� 	

:

21. The vectors are linearly independent because the determinant with their entries

as its rows equals �1, and so is not zero.

w1 ¼ 1
2
; 1
2
; 1
2
; 1
2

� �
; w2 ¼ 1ffiffiffiffi

12
p ;� 3ffiffiffiffi

12
p ; 1ffiffiffiffi

12
p ; 1ffiffiffiffi

12
p

� 	
; w3 ¼ 1ffiffi

2
p ; 0;� 1ffiffi

2
p ; 0

� 	
;

w4 ¼ 1ffiffi
6

p ; 0; 1ffiffi
6

p ;� 2ffiffi
6

p
� 	

:

22. Steps 1 and 2 of the Gram–Schmidt orthogonalization process do not involve

u3, so they proceed as before and generate the orthogonal vectors v1 and v2.
Step 3 tells us that

v3 ¼ u3 � v1; u3h i
v1; v1h i v1 �

v2; u3h i
v2; v2h i v2;

so substituting for u3 this becomes

v3 ¼ au1 þ bu2 � v1; au1 þ bu2h i
v1; v1h i v1 � v2; au1 þ bu2h i

v2; v2h i v2:

Now u1 ¼ v1, so
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v3¼av1þbu2�a
v1;v1h i
v1;v1h iv1�b

v1;u2h i
v1;v1h i�a

v2;v1h i
v2;v2h iv2�b

v2;u2h i
v2;v2h iv2:

The first and third terms on the right cancel, while the fourth term on the right

vanishes because of the orthogonality of v1 and v2. Consequently the result

reduces to

v3 ¼ bu2 � b
v1; u2h i
v1; v1h i v1 � b

v2; u2h i
v2; v2h i v2:

The last two terms on the right are � b ðprojv1u2Þv1 þ ðprojv2u2Þv2

 � ¼ �bu2 ;

showing that v3 ¼ 0.

23. The vectors proposed for a basis for the subspace W are suitable because they

are linearly independent (they are not proportional). An application of the

Gram–Schmidt orthogonalization procedure to these vectors yields the two

orthonormal basis vectors for W w1 ¼ 1ffiffi
6

p ;� 2ffiffi
6

p ; 1ffiffi
6

p
� 	

and w2 ¼ 1ffiffi
3

p ; 1ffiffi
3

p ; 1ffiffi
3

p
� 	

:

As p ¼ (2, 1, 4) it follows that p;w1h i ¼ 4=
ffiffiffi
6

p
and p;w2h i ¼ 7=

ffiffiffi
3

p
: Thus

adding the two vector contributions gives q ¼ 4ffiffi
6

p 1ffiffi
6

p ;� 2ffiffi
6

p ; 1ffiffi
6

p
� 	

þ
7ffiffi
3

p 1ffiffi
3

p ; 1ffiffi
3

p ; 1ffiffi
3

p
� 	

, and so

q ¼ ð3; 1; 3Þ and qk k ¼
ffiffiffiffiffi
19

p
:

24. The vectors proposed for a basis for the subspace W are suitable because they

are linearly independent. This can be seen from the fact that when they are

arranged as the rows of a matrix, its rank is found to be 3. An application of the

Gram–Schmidt orthogonalization procedure applied to these vectors shows that

an orthonormal basis for W is w1 ¼ 1ffiffi
3

p ; 0; 1ffiffi
3

p ;� 1ffiffi
3

p
� 	

, w2 ¼ 1ffiffiffiffi
15

p ; 1ffiffiffiffi
15

p ; 1ffiffiffiffi
15

p ; 2ffiffiffiffi
15

p
� 	

and w3 ¼ 1ffiffi
2

p ; 0;� 1ffiffi
2

p ; 0
� 	

:

Thus p;w1h i ¼ �2=
ffiffiffi
3

p
; p;w2h i ¼ 1=

ffiffiffiffiffi
15

p
and p;w3h i ¼ ffiffiffi

2
p

, and adding the

three vector contributions gives

q ¼ � 2ffiffi
3

p w1 þ 1ffiffiffiffi
15

p w2 þ
ffiffiffi
2

p
w3 ¼ ð2

5
; 3

15
;�8

5
; 4

5
Þ, and pk k ¼ ffiffiffiffiffiffiffiffiffiffi

17=5
p

:

25. Let the x1-axis in the (x1, x2)-plane be the axis about which the plane is rotated

through an angle a; with � p=2 � a � p=2, to form the plane P. When

rotated, let the x2-axis become the x02-axis in the plane P, so the included

angle between these two axes is a. Unit vectors along the x1 and x02-axis are u1
¼ [1, 0, 0], and u2 ¼ ½0; cos a; sin a�:

The vector q1 in the x1-direction with magnitude equal to the component of

p in that direction is

q1 ¼
p; u1h i
u1;u1h i u1 ¼

½a cos t; b sin t; 0�; ½1; 0; 0�h i
½1; 0; 0�; ½1; 0; 0�h i ½1; 0; 0� ¼ ½a cos t; 0; 0�:
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The vector q2 along the plane P in the u2 direction with magnitude equal to

the component of p in that direction is

q2 ¼
p; u2h i
u2; u2h i u2 ¼

½a cos t; b sin t; 0�; ½0; cos a; sin a�h i
½0; cos a; sin a�; ½0; cos a; sin a�h i ½0; cos a; sin a�

¼ ½0; bcos2a sin t; b cos a sin a sin t�:

The position vector q of a point on the projection of the ellipse onto the plane

P is thus

q ¼ q1 þ q2 ¼ ½a cos t; b cos2a sin t; b cos a sin a sin t�:

This is an equation of an ellipse on planeP, with a semi-axis of length a along
the x1-axis, but with its other semi-axis no longer equal to b. To find the length
of the second semi-axis in the plane P, we use the fact that the tip of the axis

occurs when t ¼ p=2, so as one end of the semi-axis lies at the origin, the other

end will lie at the point ð0; b cos2a; b cos a sin aÞ. An application of Pytha-

goras’ theorem shows the length of this semi-axis to be

b cos4aþ cos2a sin2a
� 
1=2 ¼ b cos a; �p=2 � a � p=2:

So the projection of the ellipse in the (x1, x2)-plane onto plane P is an ellipse

with semi-axes a and b cos a: The algebraic equation of this ellipse relative to

the x1 and x02-axes is thus

x21
a2

þ x022
b2cos2a

¼ 1:

This result could, of course, have been derived directly, and much more simply,

by using purely geometrical arguments.

26. Proceeding as in Example 7.8, vector q1, the vector in the direction of unit

vector u1 in the x1 direction with magnitude equal to the projection of p in that

direction, is

q1 ¼
p; u1h i
u1; u1h i u1 ¼

½a cos t; b sin t; t2�; ½1; 0; 0�� �
½1; 0; 0�; ½1; 0; 0�h i ½1; 0; 0� ¼ ½a cos t; 0; 0�:

The corresponding vectors q2 and q3 in the direction of the unit vectors u2
and u3 with magnitudes equal to the projection of p in these directions are

q2 ¼
p; u2h i
u2; u2h i u2 ¼

½a cos t; b sin t; t2�; ½0; 1; 0�� �
½0; 1; 0�; ½0; 1; 0�h i ½0; 1; 0� ¼ ½0; b sin t; 0�;
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and

q3 ¼
p; u3h i
u3; u3h i u1 ¼

½a cos t; b sin t; t2�; ½0; 0; 1�� �
½0; 0; 1�; ½0; 0; 1�h i ½0; 0; 1� ¼ ½0; 0; t2�:

(a) The position vector of a point on the projection of p onto the (x1, x2)-plane
is q ¼ q1 þ q2 ¼ ½a cos t; b sin t; 0�, which is the parametric equation of

an ellipse in the (x1, x2)-plane with semi-axes a and b.
(b) The position vector of a point on the projection of p onto the (x2, x3)-plane

is q ¼ q2 þ q3 ¼ ½0; b sin t; t2�; with 0 � t � 2p. This is the parametric

equation of a sinusoid stretched unevenly along the x3-axis in the (x2, x3)-
plane.

27. In terms of the unit vectors i, j and k, vectors b1 ¼ i� j ; b2 ¼ i� k;
p ¼ 3iþ jþ 3k :
A vector n normal to the plane defined by vectors b1 and b2 is n ¼ b1 � b2 ; so

n ¼b1 � b2 ¼
i j k

1 �1 0

1 0 �1

������
������ ¼ iþ jþ k: The unit vectors n̂ and p̂ in the

directions n and p are n̂ ¼ 1
� ffiffiffi

3
p� �

iþ jþ kð Þ and p̂ ¼ 1
� ffiffiffiffiffi

19
p� �ð3iþ jþ

3kÞ: So if y is the angle between n̂ and p̂, taking the scalar product of

n̂ and p̂ gives cos y ¼ 7
� ffiffiffi

3
p ffiffiffiffiffi

19
p� � ¼ 0:927173; so y ¼ 0:384002 rad. The

length of vector p is
ffiffiffiffiffi
19

p
. So, if q is the vector projection of p on the plane

defined by vectors b1 and b2, and the length of q is l, then the geometry of the

problem shows that l ¼ ffiffiffiffiffi
19

p
sin y ¼ 1:632993 ¼ ffiffiffiffiffiffiffiffi

8=3
p

: This confirms the

result in Example 7.7 which was obtained automatically, without the need

for the geometrical intuition required by the elementary vector analysis

approach used here. The only intermediate calculations that were necessary

involved using the Gramm–Schmidt method to find an orthogonal set of basis

vectors.

28. Orthonormal system: 1ffiffi
p

p sin x; 1ffiffi
p

p sin 2x; . . . ; 1ffiffiffiffi
2p

p ; 1ffiffi
p

p cos x ; 1ffiffi
p

p cos 2x; : : : :
29. Self-Checking.

30. P0(x) ¼ 1, P1(x) ¼ x, P2ðxÞ ¼ 1
2
ð3x2 � 1Þ; P3ðxÞ ¼ 1

2
ð5x3 � 3xÞ:

Solutions 8

1. Yes, because AAT ¼ I.

2. Self-checking.

3. (a) Rotation with y ¼ 2
3
p (b) Rotation with y ¼ 3

4
p (c) Rotation with y ¼

�2
3
p (d) Rotation with y ¼ �1

4
p:

4. Proceed as in Example 8.7.

5. Proceed as in Example 8.7.

6. (a)

1 �1 3

2 1 �1

�1 �1 2

2
4

3
5 (b)

0 1 3 �1

1 �1 1 �1

0 0 1 1

1 �2 3 2

2
664

3
775:
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7. The linearity of the definite integral ensures that conditions (i) and (ii), suffi-

cient and necessary for a linear transformation, are satisfied, because

(i) ð1
�1

Kðs; tÞff ðtÞ þ gðtÞgdt ¼
ð1
�1

Kðs; tÞf ðtÞdtþ
ð1
�1

Kðs; tÞgðtÞdt;

(ii) ð1
�1

lKðs; tÞf ðtÞdt ¼ l
ð1
�1

Kðs; tÞf ðtÞdt:

8. Each satisfies the definition of a linear integral transformation that precedes

Exercise 7.

(a) The kernel of the Mellin transform is Kðp; tÞ ¼ 0; t<0

t
p�1

; t>0;

�
with f(t)

defined for 0 < t < 1.

(b) The kernel of the Fourier transform is Kðo; tÞ ¼ e�iot, with f(t) defined for
�1<t<1.

(c) The kernel of the Hankel transform of order n is Knðs; tÞ ¼
0; t< 0

tJnðs; tÞ; t> 0;

�
with f(t) defined for 0 < t < 1.

9.

Tðe1Þ ¼
1

�1

�1
2

2
4

3
5; Tðe2Þ ¼

1

0

0

2
4

3
5; Tðe3Þ ¼

�1

1

1

2
4

3
5 and so

A ¼
1 1 �1

�1 0 1

�1
2

0 1

2
4

3
5:

10.

Tðe1Þ ¼
�4

4

0

2
64

3
75; Tðe2Þ ¼

2

�3

1

2
64

3
75; Tðe3Þ ¼

�4

4

0

2
64

3
75;

Tðe4Þ ¼
0

�1

1

2
64

3
75 and so A ¼

�4 2 �4 0

4 �3 4 �1

0 1 0 1

2
64

3
75:

11. (a) det A ¼ 0, so there is linear dependence between the rows of A. Inspection

(or Gaussian elimination) shows the first two rows are linearly inde-

pendent so rank(A)¼ 2. When written out in full, the equation Ax ¼ y

becomes

2x1 þ x2 þ 3x3 ¼ y1;

�x1 þ x2 þ 2x3 ¼ y2;

�6x1 � 6x2 � 16x3 ¼ y3;
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but as rank(A)¼ 2, for consistency y3 must be determined in terms of y1 and y2
from the first two equations. Solving the first two equations for x1 to x3 gives

x1 ¼ k; x2 ¼ 7k � 2y1; x3 ¼ �3k þ y1;

where k is arbitrary. Substituting these results into the third equation

shows that y3 ¼ �4y1. So the vector y ¼ ½y1; y2 ; � 4y1�T is the image of all

vectors x of the form x ¼ ½k; 7k � 2y1;�3k þ y1�T, for arbitrary k. Thus a

vector y of the given form is the image of arbitrarily many vectors

x ¼ ½k; 7k � 2y1;�3k þ y1�T, where k is arbitrary. Any vector y that is not of

the form y ¼ ½y1; y2 ; � 4y1�T will not be the image of a vector x.

(b) det A 6¼ 0, so A�1exists and is unique. So from A�1Ax ¼ A�1y ;we have

x ¼ A�1y; showing the transformation to be one-to-one.

(c) Gaussian elimination shows rank (A) ¼ 3, so writing out in full the first

three equations gives

x1 � x2 þ x3 ¼ y1;

x1 þ x2 þ x3 ¼ y2;

x1 � x3 ¼ y3;

and solving these for x1 to x3 gives x1 ¼ 1
4
ðy1 þ y2 þ 2y3Þ; x2 ¼ 1

2
ð�y1 þ y2Þ;

x3 ¼ 1
4
ðy1 þ y2 � 2y3Þ: For the fourth equation x1 � 2x2 þ x3 ¼ y4 to be com-

patible with the first three equations, y4 must be found by substituting these

values into the fourth equation, when we find y4 ¼ 1
2
ð3y1 � y2Þ: Thus for any

given y1, y2, y3, the vector y ¼ ½y1; y2; y3; 1
2
ð3y1 � y2Þ�T will be the image of

the unique vector x ¼ ½1
4
ðy1 þ y2 þ 2y3Þ; 1

2
ð�y1 þ y2Þ; 1

4
ðy1 þ y2 � 2y3�T. Any

other vector y for which the fourth component is not y4 ¼ 1
2
ð3y1 � y2Þ will not

be the image of a vector x.

12. Writing out the scalar form ofAx¼ 0 and solving for x1 , x2 and x3 gives x1¼ k,
x2 ¼ �4k and x3 ¼ �3k, where k is arbitrary. Thus the vector x is proportional

to k, so setting k¼ 1 we find that the vector in the nullspace is x¼ ½1;�4;�3�T,
and so nA ¼ 1: As A is a 3 � 3 matrix n ¼ 3, but the form of x shows that rank

(A)¼ 2, so rank(A) + nA¼ 2 + 1¼ 3¼ n, confirming the result of Theorem 8.2.

13. det A 6¼ 0, so A�1 exists, and so A�1Ax ¼ Ix ¼ x ¼ 0; showing there is no

vector in the nullspace of A, with the result that nA ¼ 0. As A is a 3 � 3 matrix

n ¼ 3, so as rank(A) ¼ 3 we have rank (A) + nA¼ 3 + 0 ¼ 3, confirming the

result of Theorem 8.2.

14. Writing out the scalar form of Ax ¼ 0 and solving for x1, x2, x3 and x4 gives
x1 ¼ �2a� 5b; x2 ¼ aþ 2b; x3 ¼ a; x4 ¼ b; where a and b are arbitrary,

showing that rank(A) ¼ 2, because from the four variables x1 to x4, two may

be expressed in terms of the remaining two. Making the arbitrary assignment

a ¼ 1; b ¼ 0 shows one vector in the null space to be x ¼ ½�2; 1; 1; 0�T;
while making the assignment a ¼ 0; b ¼ 1 shows another vector in the null

space to be x ¼ ½�5; 2; 0; 1�T, so that nA ¼ 2:Different choices for a and bwill
give different vectors x in the nullspace, though any pair will span the nullspace.
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Inspection of A shows that n ¼ 4, so that rank (A) þ nA ¼ 2þ 2 ¼ 4 ¼ n;
confirming the result of Theorem 8.2.

15. Writing out the scalar form of Ax ¼ 0 and solving for the four variables x1,
x2, x3 and x4 gives x1 ¼ �a; x2 ¼ 0; x3 ¼ a; x4 ¼ a; where a is arbitrary, and
n ¼ 4. As the three variables x1 to x3 are expressible in terms of x4 shows that
rank(A) ¼ 3. Making the assignment a ¼ 1 shows a vector in the nullspace to

be x ¼ ½�1; 0; 0; 1�T, and so nA ¼ 1: Thus rank(A) þ nA ¼ 3þ 1 ¼ 4 ¼ n;
confirming the result of Theorem 8.2.

16. (a) A reflection in a line L through the origin inclined at an angle y ¼ p=6 to

the x1-axis.
(b) A counterclockwise rotation about the origin through an angle y ¼ p=3:

17. (a) A reflection in a line L through the origin inclined at an angle y ¼ p=4
to the x1-axis.

(b) A projection onto a line L inclined at an angle y ¼ p=4 to the x1-axis.
18. (a) A clockwise rotation about the origin through an angle y ¼ �p=4:

(b) A reflection in a line L through the origin inclined at an angle y ¼ �p=2
to the x1-axis.

19. (a) A projection onto a line L inclined at an angle y ¼ �p=4 to the x1-axis.
(b) A counterclockwise rotation about the origin through an angle y ¼ 3p=4:

20.
A0 ð�1:366;�0:366Þ; B0 ð�3:098; 0:634Þ; C0 ð�2:598; 1:5Þ; D0 ð�0:866; 0:500Þ:

21. The projection matrix A ¼
1
2

1
2

1
2

1
2

� �
: If P is the point (3, 5), the coordinates of

its orthogonal projection P0onto line L are given by
y1
y2

� �
¼

1
2

1
2

1
2

1
2

� �
3

5

� �
¼

4

4

� �
, so P0 is at the point (4, 4).

22. The projection matrix A ¼
3
4

ffiffi
3

p
4ffiffi

3
p
4

1
4

" #
. If P is the point (2, 6), the coordinates

of its orthogonal projection P0onto line L are given by
y1
y2

� �
¼

3
4

ffiffi
3

p
4ffiffi

3
p
4

1
4

" #
2

6

� �
¼ 4:098

2:366

� �
, so P0 is at the point (4.098, 2.366).

23. This involves a composite transformation, because repeated reflection is

described by the matrix product A 2. We have

A2 ¼ cos 2a sin 2a

sin 2a � cos 2a

� �2

¼ cos22aþ sin22a 0

0 cos22aþ sin22a

" #
¼ 1 0

0 1

� �
:

So A
2 ¼ I, which is the identity transformation, showing that whatever the

original geometrical shape, it is reconstructed after two repeated reflections.
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24. The first part of this exercise involves a reflection first in the x2- axis and

then in the x1-axis. The two reflection matrices involved are
�1 0

0 1

� �

and
1 0

0 �1

� �
so the composite effect is given by the product

�1 0

0 1

� �
1 0

0 �1

� �
¼ �1 0

0 �1

� �
:

The second part of this exercise involves a reflection first in a line inclined

to the x1-axis at an angle a ¼ p=4, and then a reflection in a line inclined

to the x1-axis at an angle a ¼ �p=4: The two reflection matrices involved are

0 1

1 0

� �
and

0 �1

�1 0

� �
so the composite effect is given by the product

0 1

1 0

� �
0 �1

�1 0

� �
¼ �1 0

0 �1

� �
:

As the composite transformation is identical in each case, each set of reflections

produces the same result.

25. This is a composite transformation with the first reflection described by the

matrix A ¼ cos 2a sin 2a
sin 2a � cos 2a

� �
, while the second reflection is described by

the matrix B ¼ cos 2b sin 2b
sin 2b � cos 2b

� �
: After simplification, it is found that the

product BA ¼ cos 2ðb� aÞ � sin 2ðb� aÞ
sin 2ðb� aÞ cos 2ðb� aÞ

� �
, which corresponds to a rota-

tion through the angle 2ðb� aÞ:
When a ¼ p=6 and b ¼ p=3; a point P at (1, 1) in the (x1, x2)-plane is

mapped to the point Q at ð�0:366; 1:336Þ: To interpret correctly the rotation

through the angle 2ðb� aÞ, it should be remembered that the first reflection of

the point P about the line L inclined at an angle p=6 to the x1-axis, is in

the clockwise direction, so a ¼ �p=6; whereas the second reflection is in the

counterclockwise direction, so b ¼ p=3; with the result that 2ðb� aÞ ¼ p=3:
This is in agreement with the result that after two reflections the point (1, 1) at

P is mapped to the point Q at ð�0:366; 1:336Þ. Because if the origin is O, the
vector OP to the original point P is expanded and rotated counterclockwise
through an angle p=3 to become the vector OQ. Check this on a sketch drawn
to scale.

26. The composite transformation comprising a uniform magnification, a rotation

and then a shear, in this order, takes the form

2 0

0 2

� �
cos p=6 � sin p=6
sin p=6 cos p=6

� �
1 1

0 1

� �
¼

ffiffiffi
3

p ffiffiffi
3

p � 1

1
ffiffiffi
3

p þ 1

� �
:
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Að1:5; 0Þ ! A0ð2:598; 1:5Þ; Bð1:5; 1Þ ! B0ð3:330; 4:232Þ

Cð0; 1Þ ! C0ð0; 732; 2:732Þ; Dð0; 0Þ ! D0ð0; 0Þ:

The matrix representing a uniform magnification is symmetric, so it may

appear in any position in the composite transformation without altering the

matrix product. However, the matrices representing the rotation and shear are

not symmetric, so interchanging their order in the composite transformation

will change the matrix product, and so change the effect of the composite

transformation.

27. Self-checking. Magnification factor is detAj j ¼ 4:
28. To produce a magnification factor of 3 the elements in A must be multiplied

by a factor
ffiffiffi
3

p
:

29. The matrix A is such that detAj j ¼ 1:
30. If

A ¼ a 0

0 b

� �
; and B ¼ 1 k

0 1

� �
; then AB ¼ a ka

0 b

� �
and BA ¼ a kb

0 b

� �
:

Thus the first effect of AB is to produce a shear, after which the result is scaled

differently in the x1 and x2 directions. The product BA reverses the order in

which these effects are produced.

31. IfA ¼ a b
c d

� �
; thenAwill be singular if ad � bc ¼ 0: In the trivial case when

A ¼ 0 the entire (x1, x2)-plane will be mapped to the origin. Suppose,

instead, that a 6¼ 0: Then d ¼ bc=a; so A ¼ a b
c bc=a

� �
with the result that

Ax ¼ ax1 þ bx2
ðc=aÞðax1 þ bx2Þ

� �
. This shows that every point in the (x1, x2)-plane is

mapped onto the line y2 ¼ ðc=aÞy1 in the ( y1, y2)-plane.
32. If A produces a stretch, changing the sign of an element in A simply reverses

the direction of stretch about the appropriate axis, resulting in a reflection about

that axis.

33. Pre-multiplication by P interchanges the rows of A , so it leaves a rectangle or

triangle in the (x1, x2)-plane unchanged, but it reverses the sense around the

rectangle or triangle.
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Index

A

Algebraic equations, linear system, 1–2

Algebraic multiplicity, 92–93, 106. See also
Geometric multiplicity

Alternant determinant, 24. See also
Determinants

Augmented matrix, 75–77

B

Back substitution, 47, 80

Banded matrices, 133

Binary operations, 208

Block matrices, 37, 54, 56, 58

C

Cartesian coordinates, 51, 258

Cauchy–Schwarz inequality, 221–222

Cayley, 13

Cayley�Hamilton theorem, 121–122

Characteristic polynomial

companion matrix, 95–96

matrix, 31, 92, 101

polynomial expression, 57

Column vector, 4, 9, 87, 92, 101, 128, 170, 250.

See also Row vector

Companion matrix, 95–96

Complex eigenvalues and eigenvector,

166–167

Complex elements, matrices

Hermitian matrices, 148–151

skew-Hermitian matrix, 151

unitary matrix, 151–152

Composite transformations, 266–267

Convolution theorem, Laplace transform, 199

Coordinate axes rotation

coordinate transformation, 239

3D rotation matrix, 243–244

geometrical reasoning, 240–241

linear property, rotation operation,

241–242

planar rotation, angles, 240

vector r, 242–243

x3-axis, 244–245

Coordinate transformation, 239, 240

Cramer’s rule, 15, 52–53

D

Determinants

eigenvalues

characteristic polynomial, 31

matrix multiplication, 30

polynomial, 31

Gaussian elimination

determinant evaluation, 25–26

vs. direct expansion, 25–26
generalized Cramer’s rule, 27–28

matrix algebra, 27

rows interchange, 26

upper triangular form, 26–27

Laplace expansion theorem

alternant determinant, 24

cofactors and minors, 18–19

det A properties, 17

expansion, det A, 19–25

inverse matrix, 21

nth order determinant, 17–18

third-order determinant, 18

linear independence test, 28–30

positive definiteness test, 116–117

systems of equations

Cramer’s rule, 15

functional determinants, 14
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Jacobians, 14

linear nonhomogeneous system, 13–14

second-order determinants, 14–15

square matrices, 13

Diagonalization of matrices

application, 169–172

general square matrix, 110–112

properties, 112–114

quadratic forms (see also Quadratic forms)

classification, 116

determinant test, 116–117

orthogonal diagonalizing matrix, 115

reduction, 115, 119–120

Routh�Hurwitz test, 118–119

sum of squares, 115

Dirichlet boundary-value problem, 64–65

Dominant and sub-dominant eigenvalues,

138–141

Dot product, 219, 223

E

Echelon form, 78–80. See also Reduced

echelon form

Eigenvalues

and determinants, 30–31

and eigenvectors, 91–95, 108–109

and transpose operation, 122

power method, 138, 139

region estimation, 141–144

similar matrices, 123–124

skew-Hermitian matrix, 152

symmetric matrices, 108–109

tridiagonal matrix, 136

unitary matrix, 152

Eigenvectors

algebraic and geometric multiplicity, 106

and eigenvalues, 101–106

characteristic equation, 101

left and right, 124–125

power method, 138–139

roots of polynomials, real coefficients,

106–110

symmetric matrices, 108–109

tridiagonal matrix, 136–137

Elementary row operations, 85–86

Elliptic equation, 65

Euclidean norm, 35, 211

Euler equations, 119

F

Fibonacci sequence, 145–146

Finite and infinite dimensional vector space,

214–215

Finite difference method, 54, 65

Frobenius norm. See Euclidean norm

G

Gaussian elimination, 25–28, 75–76

General space vectors, 207

Geometric multiplicity, 106. See also
Algebraic multiplicity

Geometry of the plane, linear transformations

area magnification and image orientation,

260–261

Cartesian coordinates, 258

composite transformations, 266–267

geometrical properties, 258–260

orthogonal projection (P onto L), origin,

263–264

reflection in line, origin, 262–263

rotation, origin, 262

scaling, x1 and x2 directions, 264–265

shear, 265–266

transformation of curves, 267

Gerschgorin circle theorem, 142–143

Golden ratio, 146

Gram–Schmidt orthogonalization, 224–227

Grid points, 65, 67, 146, 147

H

Hermitian matrices, 148–151

Homogeneous boundary conditions, 146

Homogeneous linear differential equations

complex eigenvalues and eigenvector,

166–167

fundamental matrix, 164–165

initial-value problem, 164

nonhomogeneous system, 169

nth-order to first-order equation, 167–169

I

Identity matrix, 7

Identity transformation, 240, 244, 264

Infinite-dimensional vector spaces, 215,

231–233

Infinity norm, 36

Inner product, vector

axioms, 218–220

Cauchy–Schwarz inequality, 221–222

definition, 35

length and metric properties, 220–221

Inverse matrix

elementary row operations, 85–86

expanding, determinant, 49–50

invertible matrix, 46–47

Laplace expansion, determinant, 46
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multiplicative inverse, 45

properties of, 48–49

Inverse transformation, 244, 251

Invertible matrix, 46–47

Iterative method. See Gaussian elimination

J

Jacobian determinants, 14

Jordan normal forms

2x2 matrix reduction, 56, 130–133

dynamical systems, 126

nonlinear pendulum equation, 126

phase-plane and trajectory, 126

types, 127–130

L

Laplace equation

augmented matrix, 64

Dirichlet boundary-value problem, 64–65

elliptic equation, 65

finite difference method, 65

Gaussian elimination, 68

grid points, 65

symmetric matrix, 67

Taylor series expansion, 66

weighting, discrete values, 66, 67

Laplace expansion theorem

alternant determinant, 24

cofactors and minors, 18–19

det A properties, 17

expansion, det A, 19–25

nth order determinant, 17–18

recurrence relation, 134

third-order determinant, 18

Laplace transform

and matrix methods

initial-value problems, 176–182

inversion process, 175

Laplace transform pair, 175

convolution theorem, 199

Laplace transform pairs table, 200

linearity, 199

matrix exponential, 197–198

of vector, 196

Least-squares curve fitting

arbitrary matrix, 62

data points, 59–61

polynomial, 60

quadratic approximation, 61

regression coefficient, 62

solid line, 63, 64

Left and right eigenvectors, 124–125. See also
Eigenvectors

Leibniz, 13

Leonardo of Pisa, 145

Linear algebraic equations

augmented matrix

elementary row operations, 76–77

Gaussian elimination, 75–76

pivots, 77

underdetermined system, 75

companion matrix and characteristic

polynomial, 95–96

echelon and reduced echelon forms, 78–80

eigenvalues and eigenvectors

algebraic multiplicity, 92–93

characteristic vector, 92

discriminant, 94

nontrivial solution vectors, 92

trace, 93–94

elementary row operations and inverse

matrix, 85–86

LU factorization

column vector, 86–87

Gaussian elimination process, 87–88

inverse matrices, 89–90

permutation matrix, 90–91

triangular matrices, 87

row rank of matrix

arbitrary parameter, 80

augmented matrix and solution, 84–85

definition, 80

linear independence, testing, 85

overdetermined system, 81–82

properly determined system, 81

unique solution set, 83

Linear combination vectors, 214, 217, 249

Linear first-order differential equations, 9–10,

198–199

Linear homogeneous system equation,

192–194

Linear independence

homogeneous systems of equations

determinant columns, linear

dependence, 30

determinant test, 28–29

equivalent coefficient matrix, 28

and linear dependence, 15–16

Linear nonhomogeneous system, 13

Linear transformations

and geometry of the plane

area magnification and image

orientation, 260–261

Cartesian coordinates, 258

composite transformations, 266–267

geometrical properties, 258–260
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orthogonal projection (P onto L), origin,

263–264

reflection in line, origin, 262–263

rotation, origin, 262

scaling, x1 and x2 directions,

264–265

shear, 265–266

transformation of curves, 267

definition, 245–246

mapping, vector spaces, 247, 248

matrix representation, 250

null space and range

definition, 255–256

rank nullity theorem, 256–257

one-one transformations, 250–251

projection operation, 246

rotation of coordinate axes

coordinate transformation, 239

3D rotation matrix, 243–244

geometrical reasoning, 240–241

linear property, rotation operation,

241–242

planar rotation, angles, 240

vector r, 242–243

x3-axis, 244–245

standard matrix representation, 250

vector transformation, 248–249

Linearly dependent equation, 15–16

Linearly dependent vectors, 214

Linearly independent equation, 15–16

LU factorization

column vector, 86–87

Gaussian elimination process, 87–88

inverse matrices, 89–90

permutation matrix, 90–91

triangular matrices, 87

M

Magnitude and strength, in vector, 209

Matrices and linear systems of equations

algebraic equations, 1–2

equality, addition and scaling of matrices

commutative, 6

conformable for addition/summation

matrix, 5–6

null/zero matrix, 5

special matrices and transpose operation

identity matrix, 7

linear first order differential equations,

9–10

skew symmetry matrix, 8

square matrix, 6–10

symmetric matrix, 7–8

transpose operation, 8–9

upper and lower triangular matrices, 8

suffix and matrix notation, 3–4

Matrices, diagonalization

general square matrix, 110–112

linear differential equations, 169–172

properties, 112–114

quadratic forms (see also Quadratic forms)

classification, 116

determinant test, 116–117

orthogonal diagonalizing matrix, 115

reduction, 115, 119–120

Routh�Hurwitz test, 118–119

sum of squares, 115

Matrix multiplication

block matrices, 37

conformable for, 37–38

digression on norms, 36–37

Euclidean norm, 35

identity matrix, 40

inner product/scalar product, 35

linear vector space, 35–36

matrix products, 38–40

noncommutative, 38

nonhomogeneous first-order algebraic

systems, 40

orthogonal and orthonormal vectors, 36

N

Nilpotent index, 183–185

Nilpotent matrix, 183

Nonhomogeneous linear first-order differential

equations, 195–196

Nonhomogeneous linear differential equations,

172–174

Nonlinear pendulum equation, 126, 127

Null vector. See Zero vector

O

One-one transformations, 250–251

Ordinary exponential function, 182, 190

Orthogonal diagonalization theorem. See
Principal axes theorem

Orthogonal diagonalizing matrix, 115, 119

Orthogonal matrices

counter-clockwise rotation, 51

geometrical properties, 50–52

linear transformation, 52

rectangular Cartesian coordinates, 51

Orthonormal vector set, 219–220

Overdetermined systems, algebraic

equations, 2
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P

p-norm, 37

Parallelogram rule, vector addition, 210, 211

Partitioned matrices

finite difference/finite element method,

54–55

inverse of, 57–59

Jordan normal form, 56

linear first-order differential equations, 54

linearity, scaling and summation, 55–56

matrix polynomial, 57

Power method

characteristic equation, 138

dominant eigenvalue, 139–141

eigenvalues, 138, 139

eigenvectors, 138–139

sub-dominant eigenvalue, 141

Principal axes theorem, 116–117

Projection matrix, 264

Properly determined systems, algebraic

equations, 2

Q

Quadratic forms

definition, 42

diagonalization

classification, 116

determinant test, 116–117

orthogonal diagonalizing matrix, 115

reduction, 115, 119–120

Routh�Hurwitz test, 118–119

sum of squares, 115

matrix diagonalization, 43

symmetric matrix, 43–44

R

Rank nullity theorem, 256–257

Real vector space, 212–216

Reduced echelon form, 78–80. See also
Echelon form

Reflection matrix, 262

Regression coefficient, 62

Regression line, 62

Rotation matrix, 240, 244, 262

Routh�Hurwitz test, 118–119

Row and column rank, 216–218

Row rank of matrix

arbitrary parameter, 80

augmented matrix and solution, 84–85

definition, 80

linear independence, testing, 85

overdetermined system, 81–82

properly determined system, 81

unique solution set, 83

Row vector, 4, 49, 210, 217. See also Column

vector

S

Scaling matrix, 264

Second-order determinant, 14, 18

Second-order linear difference equation, 134

Shear, 265–266

Similar matrices, 122–124

Skew symmetry matrix, 8

Skew-Hermitian matrix, 151, 152

Square matrix, 4, 13, 31, 110

Standard matrix representation, 250

Standard ordered basis, 215

Suffix notation, 3–4

Sylvester’s law of inertia, 115

Symmetric matrix, 7–8, 44

Systems of linear differential equations

diagonalization, 169–172

differentiation and integration, 159–162

first order system, 163

homogeneous system

complex eigenvalues and eigenvector,

166–167

fundamental matrix, 164–165

initial-value problem, 164

nonhomogeneous system, 169

nth-order to first-order equation,

167–169

Laplace transform (see Laplace transform)

Laplace transform pairs table, 200

linear first-order differential equation,

198–199

matrix exponential and differential

equations

eA and eB values, 189–192

etA values, 185–189

Laplace transform, 197–198

linear homogeneous system,

192–194

nilpotent index, 183–185

nilpotent matrix, 183

nonhomogeneous linear first-order

equations, 195–196

ordinary exponential function, 182

matrix methods and Laplace transform

initial-value problems, 176–182

inversion process, 175

Laplace transform pair, 175

n�n constant matrix, 163

nonhomogeneous system, 172–174

Index 313



T

Three-dimensional rotation matrix, 243, 244

Transpose operation

eigenvalues, 122

identity matrix, 7

matrix multiplication, 9–10

skew symmetric matrix, 8

sum of matrices, 8–9

symmetric matrix, 7

Triangle rule, vector addition, 210, 211

Tridiagonal matrix

banded matrices, 133

determinant value, 135–136

eigenvalues, 136

eigenvectors, 136–137

recurrence relation, 134

super-diagonal and sub-diagonal, 133

Trivial/null solution, 16

Two-point boundary-value problem,

146–148

U

Underdetermined system, algebraic equations,

1–2

Unit matrix. See Identity matrix

Unitary matrix, 151–152

Upper and lower triangular matrices, 8

V

Vandermonde determinant. See Alternant
determinant

Vector norm, 36–37, 149, 209–211, 220, 224

Vector spaces

angle between vectors, 222–223

axioms, 212

basis vectors, 216

examples, 212–213

Gram–Schmidt orthogonalization,

224–227

infinite-dimensional vector spaces,

231–233

inner product

axioms, 218–220

Cauchy–Schwarz Inequality, 221–222

length and metric properties, 220–221

orthogonal projection, vector direction,

223–224

projections, 227–231

row and column rank, 216–218

subspace, 213–216

vector generalization

binary operations, 208

Euclidean norm, 211

general space vector, 207

line of action, 208

linear algebra, 207

norm, Pythagoras’ theorem, 209

null vector, 210

vector translation, 210–211

Vector’s line of action, 207, 208, 211

W

Weight function, 232

Z

Zero solution. See Trivial/null solution
Zero transformation, 255

Zero vector, 5, 210
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