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Foreword

Several important problems arising in Physics, Differential Geometry and other
topics lead to consider semilinear variational elliptic equations on R™ and a great
deal of work has been devoted to their study. From the mathematical point of
view, the main interest relies on the fact that the tools of Nonlinear Functional
Analysis, based on compactness arguments, in general cannot be used, at least in
a straightforward way, and some new techniques have to be developed.

On the other hand, there are several elliptic problems on R™ which are per-
turbative in nature. In some cases there is a natural perturbation parameter, like
in the bifurcation from the essential spectrum or in singularly perturbed equations
or in the study of semiclassical standing waves for NLS. In some other circum-
stances, one studies perturbations either because this is the first step to obtain
global results or else because it often provides a correct perspective for further
global studies.

For these perturbation problems a specific approach, that takes advantage of
such a perturbative setting, seems the most appropriate. These abstract tools are
provided by perturbation methods in critical point theory. Actually, it turns out
that such a framework can be used to handle a large variety of equations, usually
considered different in nature.

The aim of this monograph is to discuss these abstract methods together with
their applications to several perturbation problems, whose common feature is to
involve semilinear Elliptic Partial Differential Equations on R™ with a variational
structure.

The results presented here are based on papers of the Authors carried out in
the last years. Many of them are works in collaboration with other people like D.
Arcoya, M. Badiale, M. Berti, S. Cingolani, V. Coti Zelati, J.L. Gamez, J. Garcia
Azorero, V. Felli, Y.Y. Li, W.M. Ni, I. Peral, S. Secchi. We would like to express
our warm gratitude to all of them.



Notation

e R” is the Euclidean n-dimensional space with points z = (21,...,zp).
e (z,y) denote the Euclidean scalar product of z,y € R"; we also set |z|? =

(x,x).

e B,(y) is the ball {z € R" : |x — y| < r}. We will write B, to shorten B,(0).
e S™ denotes the unit n-dimensional sphere: S™ = {x € R**! : |z| = 1}.
e If Q) is an open subset of R™ and u : {2 — R is smooth, we denote by D;u,

D?ju the partial derivatives of u with respect to x;, x; z;, etc.; we will also
use the notation 8%- or 0y, instead of D;, and 87:?;1]- or 892”% instead of ij.
Vu denotes the gradient of real-valued function u: Vu = (Dyu,..., Dyu);
sometime, for a real-valued function K, the notation K’ will also be used
instead of VK.

Vu - Vo will be also used to denote (Vu, Vv).

n 92

A denotes the Laplacian: Au =} | 7.

If u,v € H, a (real) Hilbert space, the scalar product will be denoted by (u|v)
and the norm |[ul|? = (u|u).

e [d denotes the identity map in R™ or H.
o LP(R™), LY (R™), LP(Q), etc. denote the usual Lebesgue spaces.
o W™P(R™), W™P(Q)), etc. denote the usual Sobolev spaces. If M is a smooth

manifold, H™ (M) denotes the Sobolev space H™?(M).
2* stands for nz_"Q if n>3,and 2* = 400 if n =1, 2.

e DL2(R™), n > 3, denotes the space {u € L¥ (R") : Vu € L*>(R")}.
e If X, Y are Banach spaces, L(X,Y") denotes the space of bounded linear maps

from X to Y.

If f e CHX,Y), k>1,df(u), df(u), denote the Fréchet derivatives of f
at u € X. They are, respectively, a linear bounded map from X to Y, and a
bilinear continuous map fro X x X to Y.

If I € C*(H,R), k > 1, is a functional, I’(u) denotes the gradient of I
at u € H, defined by means of the Riesz representation Theorem setting
(I'(uw)v) = dI(u)[v], Yv € H. Similarly, I”(u) is the linear operator defined
by setting (1" (u)v|w) = d?I(u)[v, w], Vv,w € H

If I € C'(H,R), Cr[I] denotes the set of critical points of I.

u = o(e¥) means that ue~" tends to zero as ¢ — 0.

u = O(e¥) means that |ue | < case — 0.

0:(1) denotes a function depending on € that tends to 0 as € — 0. Similarly,
or(1) denotes a function depending on R that tends to 0 as R — +o0.

The notation ~ denotes quantities which, in the limit are of the same order.



Chapter 1

Examples and Motivations

In this initial chapter we will give an account of the main nonlinear variational
problems that will be studied in more details in the rest of the monograph. A short
outline of the abstract setting will be also given.

1.1 Elliptic equations on R"

To prove existence of solutions of elliptic problems on R™ one of the main difficul-
ties is the lack of compactness. For example, let us take n > 3,1 <p < ng and

consider an equation of the form

{ —Au+u = b(z)u?,

u e V[/l,Z(IRn)7 u > O, (11)

whose solutions are the critical points in W12(R") of the corresponding Euler
functional

Iy(u) ::/ y [IVul + ] do — pil/}R b(x)|uP T de.

Since the embedding of W12(R™) into LPT1(R™) is not compact, even if p+1 < 2%,
then I, does not satisfy, in general, the Palais-Smale (PS, to be short) compactness
condition. For example, this is the case when b is constant. To overcome this
difficulty a usual strategy is to apply the P.L. Lions Concentration-Compactness
principle. Roughly, suppose that 1 < p < ng and that lim), o b(7) = boo. Let
us consider the limit functional

Io(u) := / Y [IVul® + ?] dx — pil boo/R lu[Pde,

which has a mountain-pass critical level ¢, the lowest nontrivial critical level of
I. In general, using the Concentration-Compactness principle, existence results
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are found by imposing conditions that permit to compare the critical levels (very
often the mountain-pass critical level) of I, with those of I,. For example, if
b(x) > beo for all z € R™, then it readily follows that the mountain-pass critical
level of I, is lower than the corresponding level ¢y, of I. Since it is possible to
prove that the P.S condition holds at levels lower than c., this yields the existence
of a solution to (1.1). See Chapter 2, Section 2.1.

It is natural to ask the question whether there are other approaches that give
rise to existence results for non-compact elliptic equations, which do not require
the preceding comparison procedure.

Motivated by this question we will deal in Chapters 4 and 5 with elliptic
problems on R™ whose model is the following one:

—Au+u = (1+ch(z))u?,
u € WH2R™), u > 0,

wheren >3 and 1 <p < Zi‘g Let us point out that in the sequel we will always
take n > 3. If n = 1,2 no restriction on p > 1 is required and most of the results
we will discuss can be extended to this case as well.

Our approach will provide, for the class of perturbation problems like the
preceding one, existence results which are, in some sense, complementary to those
that can be found using the Concentration-Compactness principle.

It is convenient to distinguish between the subcritical case 1 < p < Zi‘% and
the critical one, p = 2.
1.1.1 The subcritical case
Let us consider the problem
—Au+u = (1+ch(zx))uP, (1.2)
u € WHHR™), u > 0, ’

where h(z) is a bounded function and the exponent p > 1 is subcritical. The
preceding equation is just (1.1) with b = 1+¢eh and by = 1. Solutions of (1.2) are
critical points u € W12(R™) of the functional

<km):ﬂ/n%Uvm2+uﬂdw—pigéjl+€MwDMP+%w. (1.3)

Remark that W12(R") < L2 (R"), where 2* = 2n/(n — 2) and thus I. is well de-
fined on W12(R") and is smooth. When ¢ = 0 we have the unperturbed functional

Mw:/)HWW+fWWwL/IW“M

We remark that Iy is nothing but the limit functional I, with by, = 1. Plainly,
u = 0 is a local strict minimum of Iy and there exists e € W12(R™)\ {0} such that
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I.(e) < 0. Moreover, since the subspace W'2(R") = {u € W12(R") : u is radial}
is compactly embedded in LI(R™) when 1 < ¢ < 2%, see [135], then Iy has a
mountain-pass critical point U > 0 which is a solution of

~Au+u=uP, ueW *R"), u>0.

More precisely, setting Z = {U(- — £) : £ € R"}, one has that every z € Z is a
critical point of the unperturbed functional Iy and the question becomes whether
there exists Z € Z such that (1.2) has a solution u. ~ Z for € small enough.

In Chapter 4, where perturbation problems with subcritical growth like (1.2)
will be discussed, we will show, e.g., that a solution exists, provided

lim h(z) =0 (namely when by, = lim b(z) =1).

|| — o0 || — o0

It is worth pointing out that, in order to use the Concentration-Compactness
principle as sketched before, we should assume that, roughly, h is greater or equal
than 0, or h should tend to 0 in a suitable exponential way, see [34, 35] and
Theorem 2.7 later on. Moreover, in some cases, like, e.g., when h(z) <0V x € R",
our solutions are not mountain-pass critical points of I. and this would be another
difficulty to be overcome in order to use the Concentration-Compactness principle.
1.1.2 The critical case: the Scalar Curvature Problem

Elliptic equations on R™ with critical exponent will be discussed in Chapter 5. We
will be mainly concerned with problems as

—Au = (1 + EE(:B)) unc, we DM2(R™), u >0, (1.4)
which are critical points of the functional
I.(u) = ; /R |Vul?dz — 21* /R (1 —|—5%(x))|u\2*dx, u € DV (R™).
The new feature of the equation (1.4) is that the unperturbed problem

—Au = ufﬁf%’ u € DY(R™), u>0 (1.5)

is invariant not only by translation (like in the subcritical case) but it is also
invariant by dilations. Precisely, letting (up to a constant)

n—2

U(x):(Hl:c?) R

every function
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is a solution of (1.5) and their union forms an (n+1)-dimensional critical manifold
(with boundary) Z ~ R* x R"™. However, it is still possible to give conditions on
k such that (1.4) has a solution for € small enough. These topics will be discussed
in Chapter 5

The class of problems above arises in differential geometry. Let (M, g) be a
smooth compact Riemannian manifold. The Scalar Curvature Problem amounts
to finding a metric g conformal to g such that the scalar curvature of (M,g) is a
prescribed function K. If § = u*(™=2)g (n. > 3 1), u > 0, then one has to solve
(omitting some multiplicative constants)

—Agu—kRgu:Kuztg, we H (M), u>0 (1.6)

where Ay denotes the Laplace-Beltrami operator and R is the scalar curvature
of (M, g). When K = const., this is called the Yamabe problem.

The most delicate case is when (M, g) = (S™,go), the standard sphere. In
this case, using the stereographic projection 7 : S™ — R"™, equation (1.6) becomes

—Au=Kun:, weD2(R"), u>0, (1.7)

where A is the standard Laplacian and K =Kor L. If K is close to a positive
constant, (1.7) is exactly of the form (1.4). Finding a solution of this latter per-
turbation problem can be used as a first ingredient to solve the (global) Scalar
Curvature Problem with any K > 0. The argument is, roughly, the following. Let
us consider the family of problems

—Agu+ Rgyu=Kunz, ueH'(S"), u>0, (1.8)

where Ky = (1 —t) + tK. When t > 0 is sufficiently small, problem (1.8) is
equivalent, up to the stereographic projection, to a problem like (1.4). Once one is
able to solve the latter (with an appropriate counting degree formula), a solution
of the Scalar Curvature Problem can be found by a homotopy between K, ¢t small
and K7 = K. This procedure relies on a compactness result [55, 100] stating that,
under appropriate conditions on K, the set of solutions of (1.8) is bounded in the
C? topology, uniformly with respect to t € [0, 1].

A perturbation technique can also be used to find multiple solutions of the
Yamabe problem. In particular if n > 4k + 3 and k& > 2, one can show that there
exist C* metrics g. on S™, which converge to the standard one as € — 0, such that
the Yamabe equation

n+2
—Agu+Rju=ur-z2, uc HY(S™), u>0,
has, for every € small, infinitely many solutions u¢, i € N and moreover
|ull|poe(sny — +o0 as i — oo.

ILet us remark that the case n = 2 would require a different approach involving an exponential
conformal factor, see (6.6) in Section 6.1
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This should be compared with a well-known result by R. Schoen [131], see also
[104], which establishes that if g is any C'° metric on M such that (M, g) is not
conformally flat, then the solutions of the Yamabe problem

—Agu—&—Rgu:uZﬁ, we HY (M), u>0,

are bounded in the C? norm.

Multiplicity results for the Yamabe problem will be discussed in Chapter 6,
while the Scalar Curvature Problem as well as other problems arising in Conformal
Geometry will be studied in Chapter 7.

1.2 Bifurcation from the essential spectrum

Let ‘H be a Hilbert space, let F': R x H — H be a smooth function and suppose
that F'(A\,0) = 0 for all A € R. If there exists A\ with the property that the
equation F'(A,u) = 0 has a sequence of solutions (A, uy), with u, # 0 and such
that (An,un) — (Ao,0) as n — oo, we say that g is a bifurcation point (for
F=0).1If F(\ u) = Au— K'(u) and K'(u) is a compact operator, a theorem by
Krasnoselski [97] ensures that every eigenvalue of K”(0) is a bifurcation point.
Unlike the compact case, in the presence of the essential spectrum one tries to
show that the infimum of such a spectrum is still a bifurcation point. A typical
example is given by the problem

9N ()P =0, Tim () =0, (L.9)

where p > 1. If h is constant, say h(z) = 1, (1.9) can be studied in a straightforward
way by a phase plane analysis.

w/

Figure 1.1. Phase plane portrait of ¢ + A\ + [¢[P71¢ = 0

It follows that from A\ = 0, the bottom of the essential spectrum of ¥"” + A\ =
0, 1 € WH2(R), bifurcates a family of solutions (X, 1)), A < 0, of ¥ + \p +
[P~1ep = 0, with (X, 45) — (0,0) as A T 0.
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When h is not constant, an elementary approach as before cannot be carried
out anymore and one needs to use a functional approach. Let us show that a
suitable transformation brings (1.9) into a perturbation problem similar in nature
to the examples in Subsection 1.1.1. Setting

{ ulx) = (7)),
A = —£2,
equation (1.9) becomes
—u"+u=nh (:) lulP~ u, uwe WH(R). (1.10)
Suppose that h(z) — 1 as |z| — oo, and write (1.10) as
—u” +u=|ulPru+ [h (:) - 1} lulP~ u, uwe WH(R).

This form highlights that (1.10) can be viewed as a perturbation problem since
h (%) — 1 tends to zero (in an appropriate sense to be made precise) as ¢ — 0.
Here the unperturbed problem is

—u" +u=|uf Ty, ueWH3(R),

and, like in the problems of Section 1.1, the corresponding Euler functional has
a one-dimensional critical manifold. This bifurcation problem will be discussed in
Chapter 3. For example, we will show that if h—1 € L*(R) and [, (h(x)—1)dz # 0
then A = 0 is a bifurcation point for (1.9), with solutions branching off on the left
of A =0, like in the bifurcation diagram in Figure 1.2 below.

0 A

Figure 1.2. Bifurcation diagram of ¢" + A\ + [P~ ¢ = 0

1.3 Semiclassical standing waves of NLS

In Quantum Mechanics the behavior of a single particle is governed by the linear
Schrédinger equation
oY

ih
"ot

=~ Ay + Q)Y
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where i is the imaginary unit, % is the Planck constant, (¢,2) € R x R™, A denotes
the Laplace operator and ¢ = (¢, x) is a complex-valued function. Differently,
in the presence of many particles, one can try to simulate the mutual interaction
effect by introducing a nonlinear term. Expanding this nonlinearity in odd power
series

ag +arlYP Y+ (p23)

and keeping only the first nonlinear term, one is led to a nonlinear equation of the
form
oY

9t = —I A + (a0 + Q(2))¥ + ar [P~ 4. (1.11)

We will consider the case in which a1 < 0, say a3 = —1. Nonlinear Schrédinger
equations (in short NLS) of this sort are commonly used, for example, in Plasma
Physics but they also arise, via Maxwell’s equations, in Nonlinear Optics in the
presence of a self-focusing material. Let us recall that in other cases, like in the
Ginzburg-Landau theory, a nonlinearity of the form |2y — |)|*1) is introduced
and this gives rise to problems quite different in nature, see, e.g., [46].

A stationary wave of (1.11) is a solution of (1.11) of the form

ih

Y(t,z) =exp (iah ') u(z) u(z)ER, u>0.
Thus, looking for solitary waves of (1.11) is equivalent to finding a u > 0 satisfying
—h?Au+ (a4 ag + Q(x))u = uP. (1.12)

Such a u will be called a standing wave. A particular interest is given to the so-
called semiclassical states that are standing waves existing for i — 0. Setting
h=¢and V(z) = a+ap + Q(z), we are finally led to

{ —e2Au + V() =, (1.13)

u € WHHR™), u > 0,

where the condition u € W12(R") is added in order to obtain bound states, namely
solutions with finite energy.

To obtain a perturbation problem like the preceding ones, it is convenient to
make the change of variables x +— ex + xg, where xg € R™ will be chosen in an
appropriate way, that leads to

_ — P
{ Au+V(ex + zp)u = u?, (1.14)

u € WH(R"), u>0.
Above we assume that p is subcritical: 1 < p < "3 (if n > 3). The solutions of
(1.14) are the critical points u > 0 of the functional

I.(u) = / Y[IVul? + V(ex + zo)u?] da — p41-1 / lulPT dz, w e WH2(R™).
n R’IL
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This functional is perturbative in nature: the unperturbed functional is

Iy(u) = / 3 [IVul® + V(zo)u?] da — p_lﬂ / |u|PT dx

n

while the perturbation term is given by
5 / [V (ex + x0) — V(z0)] ud.

The unperturbed equation Ijj(u) = 0 becomes:

{ —Au+V(xg)u = u?,

u€ WH(R"), u>0. (1.15)

If V(xo) > 0, it is known that (1.15) possesses a unique radial solution Uy > 0,
depending on xg, such that VU (0) = 0. Since (1.15) is an autonomous equation,
then any Up(- — &), £ € R”, is also a solution of (1.15). In other words, the
unperturbed problem I} = 0 has an n-dimensional manifold of critical point Z =
{Up(-=&) : £ € R"}. Tt will be shown that if 2 is stationary point of the potential
V which is stable (in a suitable sense specified later on), then (NLS) has for € # 0

small a solution of the form
ue() ~ U (x —Eivo) ’

hence a solution that concentrates at zg. This kind of solutions are called spike
layers or simply spikes. From the physical point of view, spikes are important
because they show that (focusing) NLS of the type (1.15) are not dispersive but
the energy is localized in packets. These topics will be discussed in Chapter 8
together with more general results dealing with the case in which V' has a manifold
of stationary points.

We anticipate that for radial NLS it is possible to show that there exist
solutions concentrating at higher-dimensional manifolds. This latter problem will
studied in Chapter 10.

1.4 Other problems with concentration

There are several further problems whose main feature is that they possess solu-
tions concentrating at points or at manifolds.

1.4.1 Neumann singularly perturbed problems

An important example is given by elliptic singularly perturbed problems with
Neumann boundary conditions like

—2Au+u=uP, inQ
uw>0, in§, (1.16)

g’; =0, on 01,



1.4. Other problems with concentration 9

where €2 is a bounded domain in R™ with smooth boundary 92 and v denotes the
unit outer normal at 9. As before, we take 1 < p < "*2. Problems like (1.16)
arise in the study of some reaction-diffusion systems with chemical of biological
motivation. A basic example is the following system, due to Gierer and Meinhardt,
see [84], which models the densities of a chemical activator & and an inhibitor V,
and is used to describe experiments of regeneration of hydra

Uy =dAU-U+Y, inQx(0,+00),

Vi=d AV =V + 4 in Qx (0,+00), (GM)
= =0 on 08 x (0, +00),

Here dy,ds, p,q,r, s > 0, with the constraints

o<t T
q s+1

According to Turing’s instability, [142], systems with different diffusivities may
produce stable non-trivial patterns. If one considers steady states of (GM) in the
limit d; < 1 < da, see the survey [116], it turns out that V is almost constant in
2, and hence the significant equation in (GM) is the one for U, which is of the
form (1.16).

There is a great similarity between singular perturbation problems like (1.16)
and NLS. Again, the specific feature of (1.16) is to possess spike layer solutions:
in fact, dealing with spikes at 9€2, the role of the potential V' in the NLS is played
here by the curvature of the boundary, in the sense that there exist solutions
concentrating at stable stationary points of the mean curvature H.

The abstract setting appropriate to handle (1.16) is slightly different than the
one used in the preceding problems, although it is similar in nature. Solutions of
(1.16) are still critical points of a functional as I, but unlike the preceding cases,
there is not an unperturbed critical manifold. Rather, there is a manifold Z of
points where I/ is sufficiently small. However, the same ideas used for the previous
problems can be still carried out leading to show that spikes exist concentrating
at stable stationary points of the mean curvature H of the boundary 0€2. These
topics will be discussed in Chapter 9.

1.4.2 Concentration on spheres for radial problems

Recently, see [111, 112], it has been proved that there exist solutions of (1.16)
concentrating on all the boundary 99, a fact conjectured long ago, see [116]. Tt
is also natural to look for solutions concentrating on internal manifolds. Though
in such a generality this remains an open problem, in the radial case solutions of
this sort have been proved to exist, see [21, 22]. Similarly, one can also show that
radial NLS like

{ <A+ V([o)u = w, (1.17)

u € WH2(R"), u > 0,
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possess solutions concentrating on a sphere. A new feature of this case is that there
is an auxiliary weighted potential M that substitutes V. Roughly, one proves that
if (1.17) has a radial solution concentrating at the sphere {|z| = r}, r > 0, then
M’(r) = 0; conversely, if r satisfies M'(r) = 0 and is stable, then such a solution
exists. Here the exponent p in the nonlinearity can be any number greater than 1.

The results dealing with concentration on sphere for radial NLS and for radial
Neumann problems will be discussed in Chapter 10.

1.5 The abstract setting

The problems discussed above can be studied by means of a common abstract
setting. Letting H be a Hilbert space, we look for critical points of a smooth
functional I. : H — R depending a on a small parameter € € R, namely solutions
of equations in the form

I'(u)=0, ueH. (1.18)

Motivated by the preceding discussions, we will consider in Chapter 2 a class of
functionals like I.(u) = Ip(u) + eG(u) or, more in general, I (u) = Ip(u) + G(e, u)
(see, e.g., the bifurcation problem discussed in Section 1.2), where G(0,u) = 0. As
in the applications, we will suppose to know some specific features of the unper-
turbed functional Iy. Precisely, we assume that I possesses non-isolated critical
points which form a manifold Z, usually referred to as critical manifold:

Z ={z€eH:Ij(z) =0}

In this case the problem of finding solutions of (1.18) becomes a kind of bifurcation
problem in which z € Z is the bifurcation parameter and the set {0} x Z C Rx H
is the set of the trivial solutions: one looks for conditions on the perturbation G
that generate non-trivial solutions of (1.18) branching off from some z € Z. Here
by non-trivial solutions we mean a pair (g,u) € R x H, with € # 0, such that
I'(u) = 0.

More precisely, we will deal in the sequel with the case in which the critical
manifold Z is not compact, although the abstract setting applies to the compact
case as well (for some results in the compact case, see, e.g., [11]). The fact that
Z is not compact usually depends on the invariance of the unperturbed problem
If(u) = 0 under the action of a non-compact group of transformations. In our
setting, this is the counterpart of the fact that in the problems we will deal with,
the Palais-Smale condition may not hold. From this point of view, our abstract
results can be seen as an alternative way to overcome the lack of compactness in
critical point theory, in the specific case of problems perturbative in nature.

In order to solve (1.18) we use a finite-dimensional reduction procedure. This
is nothing but the classical Lyapunov-Schmidt method, with appropriate modifica-
tions which allow us to take advantage of the variational nature of our equations.
To have an idea of the sort of results we will prove, let us consider the case in
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which I. = Iy + €G. Roughly, under an appropriate non-degeneracy condition on
Z, always verified in our applications, we will show that the stable critical points
of the perturbation G constrained on Z give rise to critical points of I.

As anticipated before, in some applications we have to deal with the case
in which Z is substituted by a manifold Z which does not consists of critical
points of Iy but is such that I’(z) is sufficiently small for every z € Z and every
€ < 1. This more general situation is not substantially different in nature to the
preceding one. Actually, it turns out that the same finite-dimensional reduction
method can be used to obtain, as before, quite similar results on the existence of
critical points of I..

We conclude this chapter pointing out that the abstract approach we will
carry over, applies to several other equations as well, such as Hamiltonian Systems
with chaotic dynamics, Arnold diffusion, periodic solutions of the nonlinear wave
equations, surfaces with prescribed mean curvature (or related issues), and the list
could continue. The interested reader can see, e.g., the papers [7, 40, 41, 42, 43,
45, 51, 79, 130] where these problems are studied essentially by the same methods.
However, for the sake of brevity, we will not deal with these topics here but we
will focus on elliptic problems.

Remarks on the exposition

In order to limit the monograph to a reasonable length, we will only give the
outline of the proofs which are based on arguments already employed. This will
be mainly the case in the last chapters.



Chapter 2

Pertubation in
Critical Point Theory

In this chapter we will prove some abstract results on the existence of critical
points of perturbed functionals I. on a Hilbert space H !, whose norm and scalar
product will be denoted, respectively, by | - || and (:]-).

2.1 A review on critical point theory

In this section we will outline some topics in critical point theory. We will be
sketchy, referring to [52, 136, 147] for proofs and more complete results.

A critical point of a functional I € C*(H,R) is an element u € H such that
I'(u) = 0. Hereafter I’ denotes the gradient of I, defined through the relationship
dI(u)[v] = (I'(u)|v), Yv € H. Critical points give rise to solutions of differential
equation of variational type. For example, if H = W12(R") and

o) = 3l = 4y [ s Jull? = [ (Vul? +4%) o, (2)

where 0 < p < Zi‘% if n > 3 (otherwise any p is allowed), a critical point is a weak
solution of the elliptic equation

—Au+u = |ulP" u, u € WH2(R™). (2.2)

By elliptic regularity, u turns out to be indeed a classical solution. Moreover, it
is easy to check that u(z) — 0 as |z| — oo. Let us point out that in view of
the embedding W2(R") — L4(R") for every g € [2,2*], the functional I is well
defined whenever p + 1 < 2*, namely p < 712

n—2"

IMost of the results we will discuss could be carried out in a Banach space.
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Definition. A number ¢ € R is called a critical level of I if there exists a critical
point u of I such that I(u) = c.

In general, critical levels can be found by min-max procedures. This is the case of
the Mountain-Pass Theorem which applies to functionals which verify the following
geometric condition: Jug, u; € H and a,r > 0 such that

(MPI) ianu—uoH:r I(u) > o> [(Uo);
(MP.2)  |u1]| > r and I(u1) < I(uo).

If the above conditions hold, we can define a min-max level as follows. Letting
I'={y € C([0,1],H) : 7(0) = uo, ¥(1) = u1}, we set

— inf I(v(1)). 2.3
¢ = Inf max (v(#)) (2.3)

Let us remark that conditions (MP.1-2) imply that c is finite and different from
I(ug). Actually, for every v € T' the path () meets the sphere ||[u = ug| = 7.
Then maxy¢jo,1) 1(7(t)) > a.

In order to prove that c is a critical level of I a compactness condition is in
order. The following one is called Palais-Smale condition.

Definition. A sequence {u;}, u; € H, is a (PS). sequence if
I(uj) — ¢, and I'(u;)— 0.

We say that the (PS). condition holds if every (PS). sequence has a converging
sub-sequence.

The following result has been proved in [25].

Theorem 2.1. (Mountain-Pass) Let I € C'(H,R) satisfy (MP.1-2) and suppose
that (PS). holds, where c is defined in (2.3). Then c is a critical level of I.

Remark 2.2. It is possible to show that a M-P critical point of a C? functional has
Morse index at most equal to one. We recall that the Morse index if a critical point
u is the maximal dimension of a subspace on which I’ (u) is negative definite. O

As an application of the M-P Theorem, we can find a radial solution of (2.2),
following [135], see also [38]. Let let H = W,1:2(R™) be the space of the functions
u € WH2(R™) which are radial. The critical points of the functional Iy defined in
(2.1), restricted to W,12(R™), are the radial solutions of (2.2). It is easy to check
that (MP.1-2) hold provided we assume p > 1. Moreover, since the embedding
of WH2(R™) into LI(R™) is compact whenever g < 2*, it is possible to show that
(PS). is satisfied provided p < 2* —1 = (n + 2)/(n — 2). In conclusion, we can
infer that for every 1 < p < (n+ 2)/(n — 2) equation (2.2) has a radial solution
U. One can also easily show that U is positive. Finally one can also prove that U
has an exponential decay as |z| — 0.



2.1. A review on critical point theory 15

Remark 2.3. Of course, since the nonlinearity is homogeneous, the existence of U
can also be found by looking for the minimum of ||u||? constrained on the manifold
{u€e WHA(R") : [ |uPTdz = 1}. One then finds u* such that —Au*+u* = \(u*)P
for some Lagrange multiplier A € R. Setting U = A/®~Dy* one obtains that
-AU+U =UP. O

Let us explicitly point out that I does not satisfy the (P.S). condition if we
work in W12(R™). Actually, for any £ € R™ the set of functions Ug(z) = U(z — &)
satisfy I(Ug) = c and I'(U¢) = 0.

Below we will show that for the Euler functionals corresponding to prob-
lems like (2.2), we can recover the (PS). condition under appropriate comparison
assumptions. We will focus on the functional I, : W12(R") — R,

B = 3l = Ly [ v@ul s,

where p+1 < 2*, b € L°(R") and ||u| denotes the standard norm in W12(R").
We will follow closely the arguments carried out in Sections 1.6, 1.7 and 1.8 of
[147], to which we also refer for more details.

We shall assume:

lim b(z) = bso > 0. (2.4)

|z]|— o0

To simplify the notation we will take bo, = 1. It is natural to associate to I its
limit at infinity, obtained substituting b with b, = 1, namely

o) = 3l = 3y [ i,
Let ¢y denote the M-P critical level of Iy (one has ¢y = Ip(U)) and let us set

Syer = inf{|[ull? : ue WR2(RY), / Pz = 1)

n

It is well known that S,;1 > 0 and it is achieved at some u* such that |Ju*|* =
Sp+1. The reader should notice that Sp,41 is the best Sobolev constant for the
embedding W1H2(R") — LPTH(R™) and hence

[ullZoss < Syl [lull?, Vu e WH2(R™). (2.5)
Moreover, according to Remark 2.3, we have that U = S;_{_(f_l)u* satisfies —AU +
U = UP and hence
p+1

co=To(U) = (5 = I)IUIP = (4= ,1)S2iL
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The key lemma is the following:

Lemma 2.4. Suppose that b satisfies (2.4), with boo = 1. Then I satisfies (PS).
for any ¢ < ¢p.

Proof. Let u; be a (PS). sequence for I,. From

Iy(uy) = llul? = 4y /Rn bluj|PTlde = ¢+ o(1),
jointly with
(I} (), 5) = [l |? — / blutg [P+ = o(1)]uy]

we infer
(3 = pr)llwsll* = e+ o() [yl + o(1).

Thus there exists a; > 0 such that [|u;|| < a;. Passing if necessary to a subse-

quence, we can assume that u; — v, weakly in W12(R"), strongly in Llpjgl(R”)

and a.e. in R™. It is clear that (I}(v),$) = 0 for every ¢ € W2(R") and hence v
is a critical point of I and satisfies
I(v) = (5 = ,1)lvI* > 0.

Let us now recall the following result due to Brezis and Lieb, [48]:

Let hj € LY(R™) (1 < ¢ < 00) be bounded in L? and such that h; — h
a.e. in R™. Then one has

/ |hj|de—/ |hj—h|qu:/ h9dz +o(1).  (2.6)
R R™ R

Applying (2.6) withg=p+1, h; = ba uj and h = ba v we get

/ b|uj|p+1dx—/ b|uj—v|p+1dx:/ blv|PTda 4 o(1).
Rn Rn R

Using this equation and the fact that (u; — v,v) = o(1), it follows that

() =3l =) +0l = 1y [ e
:§||U,1—UH2+%H”Hg—pil/R b\uj—v\pﬂdx—p}rl/R blv[PTdr+o(1)
=Iy(v)+Ip(u; —v)+o(1).

Since Ip(u;) — ¢ and I(v) > 0, we deduce

Iy(u; —v) < c+o(l). (2.7)
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By a similar calculation we get
Jug = ol = [ bluy = oo = gl 4 ol = [ blugHido
R™ R™
- / blufP*lda + o(1) = (i (uj)luj) + (Iy(v)[v) + o(1).
Since (I} (uj)|u;) — 0 and (I} (v)|v) = 0, we deduce that there is § > 0 satisfying
lim |Ju; —v||* = lim/ blu; —vPdz = 3.
R”'L
Let us point out that in view of the assumption (2.4) we also have

/ luj — v|PTtde = B+ o(1).

This and (2.5) imply
8> Sp+152/(”+1).

p+1
If 3 =0 then ||u; —v||> — 0 and we are done. Otherwise we get 3 > Spp;l_ But
in such a case we find

p+1
co=(y— 1) <5 - ,1)8 (2.8)
From (2.7) we infer
(5 = pr)lluy = vll* = Ip(u; —v) < e+ o(1)
1

and hence (3 — 1,)f < c. Finally, this and (2.8) imply ¢y < ¢, in contradiction
with the assumption that ¢ < ¢g. O

It is now easy to check that the assumption
b(z) > b (=1) Vo € R" (2.9)

implies that the M-P level ¢ of I}, satisfies ¢, < ¢g, with strict inequality provided
b# b (=1) (if b = 1 one has that I, = Iy). Then Lemma 2.4 implies that I
satisfies (PS). at ¢ = ¢, and hence I, has a M-P critical point. Thus we can state
the following existence result

Theorem 2.5. If (2.4) and (2.9) hold, Iy has a Mountain Pass critical point and
hence the problem

{ —Au+u = b(x)uP, (2.10)

u € WhH2(R"),

has a (nontrivial) solution.
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Actually, it is possible to show that the Mountain Pass critical point gives
rise to a positive solution of (2.10).

This result can be seen as a particular case of the Concentration-Compactness
principle introduced by P.L. Lions [105, 106]. Limiting ourselves to a short discus-
sion of the so-called locally compact case, let us state the main ingredient of this
method, namely the following lemma

Lemma 2.6. [Concentration-Compactness Lemma|] Let p; € L'(R"™) be such that
pj >0 and [, pjde = X, where X > 0 is fized.

Then there exists a subsequence, still denoted by p;, satisfying one of the
following three alternatives:

(i) (compactness) Jy; € R™ such that

Ve>0, 3R >0 such that / pidr > X —¢;
Br(y;)

(ii) (vanishing) lim;_ . SUP,cpn fBR(y) pidr =0,V R>0;
(iii) (dichotomy) Fa €]0, A[ such that Ve > 0 there exist p1 j, p2,; > 0 such that

for 7> 1 one has:
/ p1dr —

/ p2,dr — (A —a)| <e,  lim dist(supp p1 ;,supp p2, ;) = +o0.
n .]_)w

<e

)

/ 19j — (prj + p2y)lde < &,

This Lemma can be used to find minima of some classes of functionals J con-
strained on a manifold M. Roughly, if uv; € M is a minimizing sequence, one
rules out vanishing and dichotomy. For example, dealing with solutions of (2.10),
one takes J(u) = [Jul|* and M = {u € WH*(R") : [ |u[PTdz = 1}. Vanishing is
readily excluded because u; € M, while dichotomy is ruled out by the assump-
tion (2.9). Then compactness holds and this implies that u; converges strongly in
W1H2(R™) up to translations.
We conclude this short review by stating the following existence result which is
proved by using the Concentration-Compactness method, proved in [35], see also
[34].
Theorem 2.7. Let 1 < p < Zi‘g and suppose that b € L>°(R™) satisfies

(a) b>0 and lim || b(2) = boo > 0;

(b) there exist R,C,6 > 0 such that

b(x) > boo — Cexp(—dz), for|z| > R.
Then (2.10) has a positive solution.

Let us point out that in the present case the critical level of I, can be greater
than ¢g. For this reason, more delicate topological arguments are required to prove
existence.
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2.2 Critical points for a class of
perturbed functionals, I

In this and in the subsequent section we will discuss the existence of critical points
for a class of functionals that do not satisfy the (PS) condition. The specific feature
of these functionals is that they are perturbative in nature. For this specific class
of functionals we will provide results that, in general, could not be obtained by
means of the Concentration-Compactness method.

In this section we deal with functionals of the form

I.(u) = Iy(u) + eG(u). (2.11)

where Iy € C?(H,R) plays the role of the unperturbed functional and G €
C?(H,R) is the perturbation.

We will always suppose that there exists a d-dimensional smooth, say CZ,
manifold Z, 0 < d = dim(Z) < oo, such that all z € Z is a critical point of Io.
The set Z will be called a critical manifold(of Iy).

Remark 2.8. In our discussion Z will always be non-compact. Roughly, this is why
I. does not satisfy, in general, the (PS) condition. We will investigate in which
circumstances the perturbation G makes it possible to recover the compactness
and allows us to find critical points of I. |

Let T, Z denote the tangent space to Z at z. If Z is a critical manifold then for
every z € Z one has that I)(z) = 0. Differentiating this identity, we get

Iy (z)[v]]p) =0, VveT.Z V¢eH,

and this shows that every v € T, Z is a solution of the linearized equation I (z)[v] =
0, namely that v € Ker[I[(2)]: T.Z C Ker[lj(z)]. In particular, I]/(z) has a
non-trivial Kernel (whose dimension is at least d) and hence all the z € Z are
degenerate critical points of Iy. We shall require that this degeneracy is minimal.
Precisely we will suppose that

(ND) T.Z =Ker[Il/(z)], Vz€Z

Remark 2.9. If, instead of a manifold, we consider an isolated critical point uy,
the condition (ND) corresponds to require that I/ (ug) is invertible, namely that
ug is non-degenerate critical point of Iy. Obviously, in such a case, a straight
application of the Implicit Function Theorem allows us to find, for |e| small, a
solution of (1.18). Differently, dealing with a critical manifold, proving that Z
satisfies (ND) is equivalent to show that Ker[I(z)] C T,Z, namely that every
solution of the linearized equation I)f(z)[v] = 0 belongs to T.Z. O

In addition to (ND) we will assume that
(Fr)  forall z € Z, I}/(2) is an index 0 Fredholm map. 2

2A linear map T € L(H,H) is Fredholm if the kernel is finite-dimensional and the image is
closed and has finite codimension. The index of T is dim(Ker[T]) — codim(Im[T])
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Definition. A critical manifold Z will be called non-degenerate, ND in short, if
(ND) and (Fr) hold.

2.2.1 A finite-dimensional reduction:
the Lyapunov-Schmidt method revisited

As anticipated in Chapter 1, Section 1.5, the equation I’ (u) = 0 can be seen as a
bifurcation problem and the method we will use is borrowed from the Theory of
Bifurcation. Actually, the finite-dimensional reduction we are going to discuss, is
nothing but the Lyapunov-Schmidt procedure, adapted to take advantage of the
variational setting.

First some notation is in order. Let us set W = (T, Z)* and let {q;}1<i<a be
an orthonormal basis such that T,Z = span{qi,...,qq}. In the sequel we always
assume (and understand) that Z has a (local) C? parametric representation z = z¢,
¢ € R% Furthermore, we also suppose that q; = O, z¢ /|| O¢, 2¢||. This will be verified
in all our applications.

We look for critical points of I. in the form v = z + w with z € Z and
we W.If P:H — W denotes the orthogonal projection onto W, the equation
I'(z + w) = 0 is equivalent to the following system

PIl(z+w) =0, (the auziliary equation) (2.12)
(Id — P)Il(z4+w) =0, (the bifurcation equation). '
Let first solve the auxiliary equation, namely
PI)(z + w) + ePG'(z + w) =0, (2.13)

by means of the Implicit Function Theorem, see, e.g., [24, Theorem 2.3]. Let F :
R x Z x W — W be defined by setting

F(g,z,w) = PI}(z + w) + ePG'(z + w).

F is of class C' and one has F(0,z,0) = 0, for every z € Z. Moreover, letting
D, F(0, z,0) denote the partial derivative with respect to w evaluated at (0, z,0),
one has:

Lemma 2.10. If (ND) and (Fr) hold, then D, F(0, z,0) is invertible as a map from
W into itself.

Proof. The map D,,F'(0, z,0) is given by
D, F(0,2,0) : v PI](2)[v].
Remark that, for any i = 1,2,...,d, there holds:

(L5 (2)[v] | @) = (Ig (2)[as] | v) = 0,
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because ¢; € T, Z. Hence PI}(z)[v] = I} (z)[v] and the equation D,,F (0, z,0)[v] =
0 becomes I)/(z)[v] = 0. Thus v € Ker[I§(z)] N W and from (ND) it follows that
v = 0, namely that D, F(0,z,0) is injective. Using (Fr) we then deduce that
D,F(0,z,0) : W — W is invertible. O

Lemma 2.11. Let (ND) and (Fr) hold. Given any compact subset Z. of Z there
exists g > 0 with the following property: for all |e| < e, for all z € Z., the
auziliary equation (2.13) has a unique solution w = w.(z) such that:

(i) w:(2) € W = (T, Z)* and is of class C* with respect to z € Z. and w.(z) — 0
as |e| — 0, uniformly with respect to z € Z., together with its derivative with
respect to z, wL;

(ii) more precisely one has that ||we(z)|| = O(e) as e — 0, for all z € Z,.

Proof. Lemma 2.10 allows us to apply the Implicit Function Theorem to
F(e,z,w) = 0 yielding a solution we. = we(z) € W, for all z € Z,, satisfying
(i) (for brevity, in the sequel the dependence on z will be understood). Let us
point out explicitly that w. for e = 0 is zero. Actually w’ satisfies

PIY(z + we)lg + wi] + e PG" (2 + we)lg + wl] = 0,

where ¢ = 25:1 w;q; € T,Z. Then for e = 0 we get PI[(z)[q + wjy] = 0. Since
q €T, Z C Ker[I[/(2)], then PI{(z)[g] = 0, and this implies w{ = 0.

Let us now prove (ii). Setting w. = ¢~ 'w.(z) we have to prove that |w.|| <
const. for |¢| small. Recall that w. satisfies PI.(z + w.) = 0; using a Taylor
expansion we find

I'(z4+we) = I\ (z +w:) + G (z + we)
= Iy (2) + 1§ (2)[we] + eG'(2) + G" (2)[we] + o([[wel])-

Since I)(z) = 0 we get
I(z 4 we) = Ig (2)[we] + €G'(2) + G (2) [we] + o[Jwe|]),

and the equation PI.(z + w.) = 0 becomes

PI{(2)[w:] + ePG'(2) + ePG" (2)[w:] + o(||we]]) = 0. (2.14)
Dividing by ¢ we infer that w, verifies

PIj (2)[te] + PG'(2) + PG" (2)[we] + e~ o([Jwe ) = 0.
Since e~ to(||we||) = o(||we||) we deduce

PIf(z)[we] = =PG'(2) = PG" (2)[we] + o[ @el]).
Recalling that w. — 0 as |g| — 0, we get
PI] (2)|w:] = —PG'(2), ase — 0,

and this implies that (ii) holds. O
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2.2.2 Existence of critical points

We shall now solve the bifurcation equation. In order to do this, let us define the
reduced functional ®. : Z — R by setting

D.(2) = I (2 + we(2)). (2.15)

Theorem 2.12. Let Iy,G € C?*(H,R) and suppose that Iy has a smooth critical
manifold Z which is non-degenerate, in the sense that (ND) and (Fr) hold. Given
a compact subset Z. of Z, let us assume that ®. has, for |e| sufficiently small, a
critical point ze € Z.. Then us = ze + we(2¢) is a critical point of I. = Iy + eG.

Proof. We use the preceding notation and, to be short, we write below D; for Dy,
etc. Let & be such that z. = z¢_, and set ¢§ = 0z/9¢;|¢.. Without loss of generality
we can assume that z. — z* € Z. as ¢ — 0. From Lemma 2.11 we infer that there
exists 9 > 0 such that the auxiliary equation (2.13) has a solution we (2. ), defined
for |e| < g¢. In particular, from (i) of that lemma and by continuity, one has that

lim (D;jwe(ze) |q5) =0, 4,j=1,...,d

le]—0

Let us consider the matrix B = (b5;)i;, where
bfj = (Diwe(zg) |q§) .
From the above arguments we can choose 0 < €1 < €g, such that
|det(B%)| <1, Vle| <eq. (2.16)
Fix € > 0 such that |¢|] < min{eg,e1}. Since z. is a critical point of ®. we get
(Il(ze + we(2e)) | ¢ + Diwe(2)) =0, i=1,...,d.

From (2.13), namely PI/(z + we(z:)) = 0, we deduce that I(ze + we(z:)) =
> A, .qF, where

A = (Il(ze +we(22)) 1 45)-
Then we find

> Ajedi g + Diwe(ze) | =0, i=1,....d,

J

namely

Aie + > Aje (¢ | Diwe(22)) = Aie + 3 Ajcbf; =0, i=1,...,d (217
J J

Equation (2.17) is a (d x d) linear system whose matrix Idrs + B® has entries
dij + bf;, where ;5 is the Kronecker symbol and bf; are defined above and satisfy
(2.16). Then, for |e| < e, the matrix Idgs + B° is invertible. Thus (2.17) has
the trivial solution only: A;. = 0 for all ¢ = 1,...,d. Since the A;.’s are the
components of ®.(z.), the conclusion follows. ]
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Let us point out explicitly that when Z is compact the preceding result
immediately implies

Corollary 2.13. If, in addition to the assumptions of Theorem 2.12, the critical
manifold Z is compact, then for |e| small enough, I. has at least Cat(Z) ® critical
points.

Proof. Tt suffices to apply the usual Lusternik-Schnierelman theory (see [136]) to
the functional ®. : Z7 — R. O

Remarks 2.14. (i) From the geometric point of view the preceding arguments can
be outlined as follows. Consider the manifold Z. = {z + w.(2)}. Since z. is a
critical point of ®., it follows that u. € Z. is a critical point of I. constrained on
Z. and thus u,. satisfies I’ (u.) L T,,_Z.. Moreover the definition of w,, see (2.13),
implies that I/ (z 4+ w.(z)) € T, Z. In particular, I’ (u.) € T,_Z. Since, for || small,
Tu.Ze and T,_Z are close, see (i) in Lemma 2.11, it follows that I/(us) = 0. A
manifold with these properties is called a natural constraint for I..

Figure 2.1. The manifold Z and the natural constraint Z.

(ii) In the proof of Theorem 2.12 we do not need to use that w’(z.) — 0, but only
that w_(zc) — 0. Actually, from (we(ze)|q5) =0, j=1,...,d, we get

(Diwe(2) | 65) + (we(ze) | Dig5) =0, 4,5 =1,...,d.

Since we(ze) — 0 as [e| — 0, we infer that (D;w.(2)|q;) — 0 as ¢ — 0 and this
suffices to show that (2.16) holds. The rest of the proof is unaffected.

(iii) In general, one can show the following perturbation result: suppose that f €
C?(H,R) has a compact non-degenerate critical manifold Z of critical points and
satisfies (Fr). Let N be a neighborhood of Z and let g € C2(N,R). If |f — gllc=
is sufficiently small, then g has at least Cat(Z) critical points in N. See [11]. The
result can be improved to cover the case in which g is close to f in the C' norm,
provided Cat(Z) is substituted by the cup-long of Z 4, see [54]. O

3Cat(Z) denotes the Lusternik-Schnierelman category of Z, namely the smallest integer k
such that Z C |J;<;<j Ci, where the sets C; are closed and contractible in Z.

4The cup long I(Z) of Z is defined by [(Z) =1+ sup{k € N:3aa,...,ar € H*(Z)\ 1, a1 U
---Uay # 0}. If no such class exists, we set 1(Z) = 1. Here H*(Z) is the Alexander cohomology
of Z with real coeflicients and U denotes the cup product. In many cases Cat(Z) = I(Z) but in
general one has that I(Z) < Cat(Z).
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2.2.3 Other existence results

In order to use Theorem 2.12 it is convenient to expand ®. in powers of ¢.

Lemma 2.15. One has:
O.(2) = co+eG(z) +o(e), where cog = Ip(z).
Proof. Recall that
D (2) = Ip(z 4+ we(2)) + eG(z + we(2)).

Let us evaluate separately the two terms above. First we have

Io(z + we(2)) = Io(2) + (1(2) | we(2)) + o([|we (2)]])-

Since I)(z) = 0 we get
Io(z + we(2)) = co + of[Jwe (2) ).
Similarly, one has

G(z +we(2)) = G(2) + (G'(2) |we(2)) + o([|we(2)]])
= G(2) + O([lw= (2)))-

Putting together (2.18) and (2.19) we infer that
D.(2) = co + ¢ |G(2) + O([[we(2)[) | + ol[lwe(2)]])-

Since ||w:(2)|| = O(e), see Lemma 2.11-(ii), the result follows.

The preceding lemma, jointly with Theorem 2.12 yields

(2.18)

(2.19)

(2.20)

Theorem 2.16. Let Iy,G € C%(H,R) and suppose that Iy has a smooth critical
manifold Z which is non-degenerate. Let Z € Z be a strict local mazimum or

minimum of I' := G| z.

Then for || small the functional I. has a critical point u. and if Z is isolated,

then u. — zZ as € — 0.

Proof. We will prove the theorem when Z is a minimum of I': the other case is

quite similar. Let v > 0 and let Us be a d-neighborhood of Z such that

I'(z) >T(2)+v, V=zedls.
Using Lemma 2.15 we find, for |¢| small

D.(2) = ®.(2) = £ (D(=) = T(2)) + ofc).
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Then, there exists €1 > 0 small such that for every z € dls one has

O.(2) — P (2) >0 if 0<e<en,
D.(2) —P(2) <0 if —e1<e<O.

In the former case ®. has a local minimum in Us, while in the latter it has a local
maximum. In any case, ®. has a critical point z. € Us and hence, by Theorem 2.12,
Ue = 2ze + we(2e) is a critical point of I.. If Z is an isolated minimum or maximum
of I we can take § arbitrarily small and hence z. — Z as well as u. — Z. O

Theorem 2.16 is a particular case of the following general result in which
Z € Z is a critical point of I' = G|z satisfying
(G"Y 3N C R? open bounded such that the topological degree d(I', A/, 0) # 0.

z € Z is called stable critical point if AB,.(Z) such that (G') holds with N' = B,.(2).
For the definition of the topological degree and its properties see for example [81].
Let us point out that if (G’) holds then T" has a critical point in /. Moreover, if
I" has either a strict local maximum (or minimum), or any non-degenerate critical
point z, we can take as N the ball B,(z) with r < 1, and (G’) holds true.

Theorem 2.17. Let Iy, G € C?(H,R). Suppose that Iy has a smooth critical mani-
fold Z which is non-degenerate and that (G') holds.

Then for |e| small the functional I. has a critical point u. and there exists
2eN,T'(2) =0, such that uc — % as € — 0. Therefore if, in addition, N contains
only an isolated critical point zZ of T, then u. — z as € — 0.

Proof. From the definition of ®. we infer that, for all v € T, Z,
(@L(2)|v) = (I)(z + we) v+ wl) + e(G(z + we) | v+ wl). (2.21)
Moreover, as ¢ — 0, one has
Iy(z + we) = Iy (2) + 1§ (2) [we] + o([we [l) = 1§ (2) [we] + o([[we)),  (2:22)
G'(z +w:) = G'(2) + G"(2)[we] + o(||we]]). (2.23)
From (2.22) it follows (as € — 0)
(Io(z +we) |v +wl) = (Ig (2)[we] | v +wZ) + o([|we )
= (Ig (2)[v] | we) + (Ig (2)[we] [ wZ) + o([|wel])
= (15 (2) [we] | wl) + o([|we ))-
Since ||we|| = O(g) and w. — 0 as e — 0, we deduce:
(IH(z + we) v+ wl) = o(e), (e —0). (2.24)
Similarly, from (2.23) we get:
(G'(z +we) v+ we) = (G'(2) v+ wg) + (G (2)[we] | v+ wl) + o([|we )
= (G'(2) [v) + (G'(2) |wl) + (G (2)[we] | v)
+ (G (2)[we] [ wz) + o(|[wel]).-
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Using again the fact that ||w.|| = O(¢) and w. — 0 as ¢ — 0, we find:
tim [(G/(2) ) + (G ()] | ) + (G (2)[we] )] =
and this yields
(G'(z+we) | v+wl) = (G'(2)|v) +0o(1), (£—0). (2.25)
Inserting (2.24) and (2.25) into (2.21) it follows that, for all v € T, Z,
(®L(2) [v) =€ (G'(2)|v) +o(e), (¢ —0),

namely
®.(z) =el'(2) +o(e), (e¢—0).

Then the continuity property of the topological degree and (G’) yield, for || small,
d((blew/\/’? O) = d(F/7N7 O) 7é 0.
This implies that, for || small, the equation ®.(z) = 0 has a solution in AV, proving

the theorem. O

2.2.4 A degenerate case

If G(z) =0, Theorem 2.17 is useless and we need to evaluate further terms in the
expansion of ®..
For z € Z we set L, = (PI}/(2))~'.

Lemma 2.18. If G(z) = 0 for every z € Z, then for the solution w(z) of the
auziliary equation PI.(z +w) = 0 one has:

we(z) = ew +o(e), where w=1w(z)=—-L,G(2).
Proof. From (2.14) and the fact that w. — 0 it follows that
PIj(z)[w.] = —e PG'(2) + o(¢).

Moreover, G(z) = 0 implies G'(z) L T, Z. Therefore, PG'(z) = G'(z) and we find
we = —e L,G'(2) + o(e). O

Let us now expand ®.. One has:
D (2) = S(If (2)[we] |we) + €G(2) + (G’ (2) |we) + o(€?).
Since G(z) = 0, using the preceding lemma, we infer

e (2) = 5 €2 (Ig (2)[w] | w) +*(G"(2) | w) + o(e?).
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Since w = —L,G'(2), we get
D.(2) = =3 %(G'(2) | L.G'(2)) + o(?). (2.26)

In the sequel, e.g., in the applications to the Yamabe problem, we will deal with
a C? functional of the form

I.(u) = Io(u) + eG1(u) + e2Go(u) + o(e), (¢ — 0).

In such a case the preceding arguments yield:

Lemma 2.19. If G1(z) = 0, then for every z € Z then one has
0o(2) = € [Ga(2) — 5 (G1(2) | LG1(2))] + o(e?).

At this point we can repeat the arguments carried out in the proofs of Theorems
2.16 and 2.17 with T replaced by

[(z) = Ga(2) = } (G1(2) | L.G) (2)), (2.27)

yielding

Theorem 2.20. Let Iy € C?*(H,R) and suppose that Iy has a smooth critical
manifold Z which is non-degenerate. Furthermore, let G1,Goy € C?*(H,R), with
G1(z) =0 for all z € Z. Let 2 € Z be a stationary point of I' and let N be a
neighborhood of z such that d(I'", N, 0) # 0.

Then for |e| small the functional I. = Iy + &Gy + %Gy +o(e), (¢ — 0) has a
critical point ue and if Z is isolated, then u. — Z as € — 0.

2.2.5 A further existence result

Another way to use Theorem 2.12 is to investigate the asymptotic behavior of
®.(z). For example, if
lim ®.(z) = const.,
€] —o00

uniformly with respect to e, then either ®.(z¢) = const., or it has a global maxi-
mum or minimum. In any case ®. possesses a critical point z. which will give rise,
through Theorem 2.12, to a solution w. of I’ (u) = 0. To carry over this procedure,
we need first of all a global version of Lemma 2.11 which, on the contrary, is local
in nature. The following lemma provides such a global tool.

Lemma 2.21. Suppose that:
(i) the operator PI{(z¢) is invertible on W = (T.,(Z))* uniformly with respect

to € € R?, in the sense that there exists C > 0 such that

I(PI§ (ze) MlLwwy <C - VE € R (2.28)
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(ii) the remainder Re(w) = Ij(z¢ + w) — I (z¢)[w] is such that Re(w) = o(||w]|)
as ||| — 0, uniformly with respect to & € RY.

(iii) There exists C1 > 0 such that |PG'(z¢ + w)|| < C1 V& € R?, Yw € W,
[w] < 1.

Then there exists € > 0 such that for every |e| < &, for every & € R?, the auziliary
equation (2.13) has a unique solution w = we(z¢) and we(ze) — 0 as € — 0,
uniformly with respect to € € R?.

Proof. Since I)(ze + w) + &G’ (ze +w) = I} (z¢)[w] + Re(w) + G’ (z¢ + w), equation
(2.13), namely PIj(ze +w) +ePG' (z¢ +w) = 0, becomes PI{/(z¢)[w] + PRe(w) +
ePG'(z¢ +w) = 0. Since PI{j(z¢) is invertible, then (2.13) is equivalent to

w = Ne¢(w) = (PI)(2¢)) 7' [ePG'(2¢ +w) — PRe(w)]. (2.29)

If (i)—(iii) hold there exists £ > 0 such that for every |¢| < & and every ¢ € R? the
nonlinear operator N, ¢ : W — W is a contraction. Furthermore, for |e| possibly
smaller, there exists p(e) > 0, lim._,op(¢) = 0, such that N, maps the ball
B,y C W into itself. Thus, for such ¢, the auxiliary equation (2.13) has a unique
solution we(z¢) € W, for all £ € R? such that |Jw(z¢)| < p(e). O

Remark 2.22. Since we can still apply the Implicit Function Theorem, the local
properties proved in Lemma 2.11 continue to hold: for each |e| small, w.(z¢) is of
class C'! with respect to €. O

From Lemma 2.21 and Remark 2.22 we readily infer

Theorem 2.23. Let Iy, G € C?(H,R) and assume that Iy has a smooth critical man-
ifold Z which is non-degenerate. Suppose also that the assumptions of Lemma 2.21
hold, and that there exists Cy such that

lim @E(Zg) = Co,

|€]—o0

uniformly with respect to || small. Then, for |e| small, I. = Iy + &G has a critical
point.

Proof. If ®. is identically equal to Cp, then any z € Z is a critical point of &,
for all || small, and z 4+ w,(z) is a critical point of I.. Otherwise, ®. achieves the
global maximum (or minimum) at z. = z¢_. Moreover, there exists R > 0 such that
|¢c] < R for all || small. At this point, taking also into account Lemma 2.21 and
Remark 2.22, we can repeat the arguments carried out in the proof of Theorem
2.12. In particular, as pointed out in Remark 2.14-(ii), in the proof of that Theorem
we only need that w.(z.) — 0 as € — 0, and this has been established in Lemma
2.21. Tt follows that u. = z. + w.(z.) is a critical point of I, as required. O
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2.2.6 Morse index of the critical points of I.

Under some further regularity assumptions, it is possible to evaluate the Morse
index of the critical points of I. found above. As before, we will suppose that
Z = {z¢ : £ € R} is a non-degenerate critical manifold of Iy, with tangent space
spanned by ¢; = O¢, z¢/||0¢, z¢||. Moreover, we will assume that

(Drgi|q) =0, Vijk=1,...,d. (2.30)

Let & be a sequence of critical points of I' = |z and suppose that { — £ as
e — 0.

Theorem 2.24. Suppose that Iy and G are of class C* and that (2.30) holds.
Furthermore, let £* be a non-degenerate mazimum (resp. minimum) of I' and let
mg denote the Morse index of 2* = limg__,¢ z¢. as critical point of the restriction
of Iy to T Z+. Then, for || small, u. = z. + w(z:) is a non-degenerate critical
point of I. and its Morse index is given by mgy + d, resp. myg.

For the proof we refer to Section 5 of [32].

2.3 Critical points for a class of
perturbed functionals, IT

Motivated by the bifurcation problem discussed in Chapter 3, see also Section 1.2,
we will consider in this section the case in which I has the form

I.(u) = Ip(u) + G(e, u),

where G : R x H — H satisfies

(G.0) G e C(R x H,H) and is such that G(0,u) = 0, for all u € H. Moreover
the map u — G(g,u) is of class C%, Ve € R and

RxH — H RxH — L(H,H)
as well as 9
(e,u) +— D,G(e,u) (e,u) +— D;,G(e,u)

are continuous.

Let us point out explicitly that one has D,,G(0,u) = 0 as well as D2 G(0,u) = 0.

We shall still suppose that I. has a ND critical manifold Z. Using (G.0), in
particular the regularity assumptions of the maps (¢, u) — D, G(e,u) and (¢, u) —
D2 G(e,u), we can again solve the auxiliary equation PI.(z +w) = 0 by means of
the Implicit Function Theorem getting, for || small, a solution w, () satisfying the
properties stated in Lemma 2.11-(i). Indeed, as pointed out in Remark 2.14-(ii),
in the proof of Theorem 2.12 we have merely used the first statement of Lemma
2.11. Hence we can conclude as before that the following result holds:
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Theorem 2.25. Suppose that Iy € C?(H,R) has a smooth critical manifold Z which
is non-degenerate and let (G.0) hold. Then any critical point z. € Z of ®. gives
rise to a critical point u. = z. + we(2e) of I. = Iy + G(e,u).

In order to prove the counterpart of Theorem 2.17 some lemmas are in order. The
first one provides the information contained in Lemma 2.11-(ii).

Lemma 2.26. Suppose that, in addition to (G.0), there exists 3 > 0 such that
(G-1)  [IDuG(e,2)] = o(e”), ase—0.
Then ||w-(2)|| = o(?) as e — 0, uniformly in any compact subset Z. of Z.

Proof. The proof follows the same lines of the proof of (ii) of Lemma 2.11. Let us
set w. = e Pw.(z) (again, for brevity, in the sequel the dependence on z will be
understood). We first prove that ||w.|| < const. for |¢| small. Precisely let us start
by showing

IDuG(e,2)ll = O(e”), as e =0, = Jwe(2)]| = O(”), ase — 0. (2.31)
By contradiction, assume

lim ||we| = +o0.
le]—0

From PI’(z + w.) = 0, namely
L(z+w) =Y Ajeqs, where 4, = (IL(z + w.(2)) | @),
using the Taylor expansion

I'(z+w) = I}(z + w) + D,G(e,z + w)
= I[/(2)[w] + D.G(g, 2) + D2,G(e, 2)[w] + o(||w])), (2.32)

and dividing by £°||w.||, we find

B 5| - -PCE D o e B | ol 5 b

el e || we|| lwell] ~ e”llwe]| eflae |~

Let us evaluate separately the above terms in the right-hand side.
First, from || D,G(e, 2)|| = O(¢®) we infer

IDGEAN _

B

and hence DG
tim P02

=0 &P|uc||

By continuity, one has that lim._ || DZ%,G(e, 2)| £(3,#) = 0 and then we get
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Moreover,
oflwl) _ ollol) _ ;)
fllwell [
Finally, let us show that
Ai €
li . =0 2.34
1 o) (239

Using (2.32) one has

Ai(e, 2) = Iy (2)[we(2)] | @) + (DuG(e, 2) | 4i)
+ (D, Gle, 2)[we(2)] | 4i) + o([[we (2)]])-

Since (Ig(2)[we(2)] | 1) = (1§ (2)[as] | we(2)) = 0, | DuG(e, 2) || = O(e”) yields
Ai(e,2) = O(7) + (D3, G (e, 2)[we (2)] | 45) + o [we (2)])- (2.35)

Moreover, ||D2,G(e,2)||L(#,7)— 0 as e — 0 implies that (D2,G(e,z)[we(2)]|q:) =
o(JJws(2)||) and hence (2.32) becomes

Ai(e,2) = O(EP) + o(Jwe(2)]), as || — 0, (2.36)

proving (2.34).
Inserting the above equations into (2.33) we deduce

lim 1§ (2 [ e } =0.

O
Since I{/(z) is an index zero Fredholm map, w.||w.|~! converges strongly in ‘H
to some w* satisfying ||w*|| = 1 and Ij(z)[w*] = 0. This means that w* €
Ker[I{/(z)] = T»Z. On the other hand we have

(we|qi)) =0 = (w"|q)=0,

namely w* 1 T,Z. Thus w* = 0, a contradiction that proves (2.31).
To complete the proof of the lemma let us show that [|w.| — 0. We will
follow arguments similar to the preceding ones. Instead of (2.33) we consider
_ D,G(e, 2) — o o([lwel) Ai,
O A R o W T C A R S
and claim that I} (z)[w:] — 0 as e — 0, provided that (G.1) holds. Actually, if
D,G(e, z) = o(c?), then instead of (2.36) one now gets

Ai(e, z) = 0(6’6) + o(Jlwe(2)]]), asle| — 0.

Since ||w.(2)|| = O(e?) we infer that A;(e, z) = o(¢?) as |e| — 0. This together with
(G.1) immediately implies that Ijj(z)[w.] — 0 as € — 0. As before we deduce that
W, converges to some w* € H which belongs both to W as well as to T,Z = W,
Hence ||w.|| — 0, completing the proof. O
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The next lemma is the counterpart of Lemma 2.15.

Lemma 2.27. Let (G.0) hold and suppose that there exist &« > 0 and G : Z — R
such that

(G.2) lime_o &% = gG(z).

e

Moreover, let us assume that (G.1) holds with § = %a. Then one has:
D.(2) =co+e%G(2) + 0(e%), ase—0.
Proof. As in Lemma 2.15 we get

O (2) = I (2 +w:) + G(e, 2 + we)
= co+ 5 (1§ (2)[we] | we) + Gle, 2)
+(DuGle, 2) | we) + 3 (D3, G(e, 2)[we] |we) + of[|we[[?). (2.37)

Applying Lemma 2.26 with § = ;a we find

(Ig (2)[we] [we) = O(|we|?) = o(e®), as e — 0. (2.38)
One also has
(D3 G (e, 2)[we] | we) = of|lwe)[|*) = o(e®), ase— 0. (2.39)
Moreover, since || D,G(g, 2)| = 0(¢*/?) and ||w.|| = o(¢*/?), we get
(D,G(g,2z) |we) = 0(e¥), ase— 0. (2.40)

Finally, from (G.2) we deduce
G(e,z) =e“G(z) +o(e”), ase—0. (2.41)

Inserting (2.38)—(2.41) into (2.37) we find that ®.(z) = co +e*G(z) + 0o(e*). O

At this point, we can repeat the arguments carried out in the preceding section to
prove the following result, which is the counterpart of Theorem 2.16.

Theorem 2.28. Suppose that Iy € C?(H,R) has a smooth critical manifold Z which
is non-degenerate. Let G satisfy (G.0), (G.1) and (G.2) and let Z € Z be a strict
local mazimum or minimum of G.

Then for |e| small the functional I. = Iy + G(g,-) has a critical point ue and
if Z is isolated, then u. — Z as € — 0.

Remark 2.29. (i) Clearly, the case I. = Iy + eG, discussed in Section 2.2, fits in
the preceding frame, with o« =1 and G =T.

(ii) It is possible to extend to the present case also the result of Theorem
2.24, dealing with the Morse index of wu.. ([l
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2.4 A more general case

Dealing with NLS and with singular perturbation problems, it is convenient to
modify the abstract setting. We will give here only an idea of these tools, referring
for more details to Chapters 8, 9 and 10.

Unlike the preceding cases when there was a critical unperturbed manifold,
one needs to consider functionals I. which possess a manifold Z¢ of pseudo-critical
points. By this we mean that the norm of I.(z) is small for all z € Z°, in an
appropriate uniform way. In the applications, the manifold Z° satisfies a sort of
non-degeneracy condition in the sense that, again, PI”(z) is uniformly invertible
on W = (T, Z%)* (for £ small). Furthermore, an inspection to the proof of Lemma
2.21 highlights that we can still solve the auxiliary equation PI.(z + w) = 0.
Actually, writing

Iz +w) = I(2) + I (2)[w] + R(z, w),

the auxiliary equation can be transformed into an equation which is the counter-
part of (2.29):

w = Ne(z,w) = —(PI'(2)) ' [PI.(2) + PR(z,w)] .

Using the fact that ||IZ(2)]] < 1, one shows that N, is still a contraction, which
maps a ball in W into itself. Thus, as in Lemma 2.21, one proves that there exists
w = we(2) solving PI/(z + w) = 0. At this point one can repeat the arguments
carried out in the preceding sections to find, in analogy with Theorem 2.12, that
any critical point of the reduced functional ®.(z) = I.(z + w:(z)) gives rise to
a critical point of I., namely that the manifold Z° = {z + w.(z)} is a natural
constraint for I.. Once that this general result is proved, one can obtain the other
existence theorems as well.

Bibliographical remarks

Existence of critical points for perturbed functionals in the presence of a compact
critical manifold, and applications to forced oscillations of Hamiltonian systems,
has been studied, e.g., in [62, 90, 127, 143] and in [11]. The latter contains, as
particular case, our Corollary 2.13.

The case of non-compact manifolds is handled in [7] and [8]. The topics
discussed in Sections 2.2 and 2.3 follow closely these two papers, where we also
refer for more details and further results.



Chapter 3

Bifurcation from the
Essential Spectrum

In this chapter we will apply the perturbation techniques, in particular those
discussed in Section 2.3, to study some problems concerning the bifurcation from
the infimum of the essential spectrum.

3.1 A first bifurcation result

Here we deal with the following equation on the whole real line R
—u"(x) +u(x) = h(z/o)|u(x) P u(z), ue WHA(R), (3.1)

where p > 1 and h satisfies
(h.1) 3£>0:h—(ec LY (R), and Jp(h = £)dz # 0.

As anticipated in Section 1.2 the change of variable

transforms (3.1) into

W BT =0, T d(@) =0, (32)

and if (3.1) has for all || small, a family of solutions u. # 0 then the corresponding
¥y is a family of non-trivial solutions of (3.2) branching off A = 0. Let us point
out that the spectrum of the linearized equation

W'+ X =0, e WH(R).
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is the half real line [0, +00). Hence A = 0 is the infimum of the essential spectrum?!
of the linearized equation. Actually, since A = —&2, the bifurcation arises on the
left of the essential spectrum.

In order to fit (3.1) into the abstract frame, we set H = WH?(R) endowed
with the norm |[u|* = [ (|u'|* + v?)dz and I.(u) = Io(u) + G(e,u) where

4
T _ 1 2 _ / P"rld
o) = 3l = Ly [l

and

— ] |u|Ptidr  ife
G(E,U)Z{ OP“fR[ (2) =]l iig_ (3.3)

Clearly, if u is a critical point of I, for e # 0, then u is a solution of (3.1).

3.1.1 The unperturbed problem

The unperturbed problem I} (u) = 0 is the equation
—u"(z) + u(z) = u(@) [P u(z), uveWH(R) (3.4)
which has a unique even positive solution zg(x) such that

25(0) =0, lim zo(z) =0.

‘m‘—)OO
Then Iy has a one-dimensional critical manifold given by

Z ={z¢(x) == 2z0(x + &) : £ € R}

Moreover, every z¢ is a Mountain-Pass critical point of Iy. In order to show that
Z is non-degenerate we will make use of the following elementary result, see, e.g.,
[39, Theorem 3.3]:

Lemma 3.1. Let y(z) be a solution of

—y"(x) + Qz)y(z) =0,

where Q(x) is continuous and there exist a, R > 0 such that Q(x) > a > 0, for
all |x| > R. Then either lim ;o0 y(x) = 0 or lim;| o y(x) = c0. Moreover, the
solutions y satisfying the first alternative are unique, up to a constant.

Lemma 3.2. Z is non-degenerate.

IThe essential spectrum is the set of all points of the spectrum that are not isolated jointly
with the eigenvalues of infinite multiplicity.
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Proof. Let v € Ker[I{(z¢)], namely a solution of the linearized equation
15/ (z¢)[v] = 0,
~1
—v"(x) +v(x) = Lp2{ (x)v(x), ©ve W (R). (3.5)

A solution of (3. 5) is given by 2¢(z) = z(z + &), spanning the tangent space T Z.
Set @ =1— fpz,\c . Since lim|,| o0 2¢(x) = 0 then lim|,_o Q(x) = 1 and we can
apply Lemma 3.1 yielding that all the solutions v € W12(R) of (3.5) are given

by cz¢, for some constant ¢ € R. This shows that Ker [y (2¢)] € T%,Z and implies
that Z is ND. 0

3.1.2 Study of G
First we prove the continuity of G and its derivatives.
Lemma 3.3. Ifh — ¢ € L'(R) then G satisfies (G.0).

Proof. For brevity, we will only prove the continuity of (e,u) — G(g,u) and

(e,u) — D,G(g,u) when (¢,u) — (0,ug). The other properties require some more

technicalities, but they follow from similar arguments. For details we refer to [8].
By the change of variable y = x/e we find

1
Gewl= [ i) - dluenr ] ap
Since WH2(R) C C(R) we infer that
Gl < el lull2 [ 1hw) = ey

and this shows that G(g,u) — 0 as (g,u) — (0,uo).
As for D,G(g,u) we find, for any ¢ € WH2(R),

[(DuG(e,u) [ @) =

) St uten) ey
As before, it follows that
[(DuG(e,u) [ )] < le] lullf @]l Lo / |h(y) — Lldy
R

and hence
IDuG(e,w)] < e Je] / Ih(y) — €ldy, (3.6)

for some ¢; > 0, proving that ||D,G(e,u)|| — 0 as (g,u) — (0, up). O
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Next, we set v = [p[h(zx) — £]dz and

_ 1 +1
G(§) = p+17% ().

Lemma 3.4. If (h.1) holds then G satisfies (G.1) with 8 = } and (G.2) with o = 1.
Precisely, one has

(i) [[DuG(e;u)|| = O(e) as |e| — 0;

(i) G(e,2ze) =eG(€) + o(e) as |e| — 0, uniformly for |§| bounded.

Proof. Property (i) follows immediately from (3.6). Moreover we have

g

G(E>Z5):_p+1

/R (h(y) — 128+ (ey + £)dy.

By the Dominated Convergence Theorem we infer

: G(€7 ZE)
tim 5 () - 1a) 70 = 966,
and this shows that (ii) holds. O

The preceding lemmas allow us to show:

Theorem 3.5. Let (h.1) hold. Then (3.2) has a family of solutions (X, 1)) such
that A\ — 0~ and ¥y — 0 as A — 0~ in the C(R) topology. Moreover, one has:

0 if 1<p<5
)\lirgli H7,/1>\||2LQ(R) =4q const. >0 if p=5 (3.7)
- 400 if p>5H

Finally, if p > 2, the family (X, 1)) is a curve.
Proof. From Lemmas 2.27 and 3.4 we deduce that

D, (&) = L (ze + we(2¢)) = co+eG(§) +o(e), ase—0.
The function G equals, up to a (negative) constant, the function zg'H and hence
it has a strict global minimum at & = 0. Then the abstract existence Theorem
2.28 applies yielding, for all |¢| > 0 small, a solution to the equation (3.1) of the
form w. = z¢g, + we (&), with . — 0. These u. correspond to a family (A, ¢y) of
solutions to (3.2) given by

A= —¢?, Ya(z) = (NP Dy (e z).

Moreover, one has

oAl = /@Y /Rui(W)dI = (=) 2Dy | T2 g,

which proves (3.7).
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If p > 2 it is possible to use the Morse theoretic results stated in Theorem
2.24, see also Remark 2.29-(ii). Actually, one has:

1) any z¢ is a Mountain-Pass critical point of Iy which is non-degenerate for the
restriction of Iy to T%, zZ+t

2) G is of class C3;
3) € =0 is a strict global non-degenerate minimum of G.

It follows that u. is a non-degenerate critical point of I. and this implies that the
family (), 1)) is a curve. O

3.2 A second bifurcation result

Here we deal with (3.1) in the case in which [;(h(z) — £)dz = 0. As before we
shall look for critical points of I, = Iy + G(e, ), where G is defined in (3.3). Let

B (@) = /0 “(h(s) — 0)ds.

Remark that h* € C(R) N L*°(R). Moreover, let £* € R be defined by setting

“+oo
= lim h*(z) :/0 (h(s) — £)ds.

r——+00

From [p(h(z) — £)dz = 0 it follows that

0
= —/ (h(s) = O)ds = lim h*(z),
namely that
lim A" (z) =¢%.
|z|—+o00
We will suppose
(h2) h—(e L*R) and [,(h(z) — €)dz = 0;
(h.3)  h*—¢* € L'(R) and v* := [, (h*(x) — £*)dx # 0.
Of course, since Lemma 3.3 relies only on the fact that h — ¢ € LY(R), we still
have that G satisfies (G.0). On the other hand, the definition of G and Lemma 3.4
need to be modified. Let
G (&) =" 25(8) 20(8)-

Lemma 3.6. If (h.2) and (h.3) hold then G satisfies (G.1) with 8 = 1 and (G.2)
with oo = 2. Precisely one has that

(i) | DuG(e,u)| = O(e*?) as |e| — 0;

(i) G(e, z¢) = €2G*(€) + o(e?) as |e| — 0, uniformly for |£| bounded.
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Proof. For all ¢ € W12(R) integrating by parts we find

(DuGez0)|0) = = [ [17) = (] t@(ao

€
=< [ [P -] L@y as
- E/R [h*(:) - E*} z¢ (2)¢' (x)da
+e /R [h*(j)—é*} (£ (x)) d(a)dz (3.8)

The first integral above can be estimated by means of the Holder inequality:

<[ Mgp@)dxf 1f |¢’<x>2]%
1

<aloll-| [ () - o]
1

<astol-| [ o) -ePal’. 6o

Remark that h* — ¢* € L?(R) because h* — £* € L'(R) N L*(R). Let us now
estimate the last integral in (3.8). Since ||(2{(x))'[| > (®) < c2, one infers

/R [ ()~ ] ) )

/R (%) = ] (2 (@) d()dz

g

< caelollimcey [ 10°(0) = £1ds
From this and (3.9) we get

(DuGle, 2¢) | 6)] < e2csl|8]l ey + £¥%ealll] < (cae® + ese?) ¢,

and this implies that (i) holds.
Similarly, one finds

G(e, z¢) = (pil) E/R [h*(i) - g*] (Z§+1(x))’dx

= 2 [0 - £1CE ey + )

Using the Dominated Convergence Theorem we get

. Gle, ) . )
lim (;Zf) = i () /R [h* (y) — £*]dy

=7"2(8) 2(£) = G7 (&)
This proves (ii). O
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From the preceding lemma we infer that
©.(§) = co +°G7(€) + o(e?).

Since G* has a maximum and a minimum, an application of Theorem 2.28 yields

Theorem 3.7. Let (h.2) and (h.3) hold. Then (3.2) has two distinct families of
solutions (A, ¥y) bifurcating from the left of X\ = 0, with the same properties listed
in Theorem 3.5.

Remark 3.8. Since the critical points of G* are different from 0, the solutions found
in the preceding theorem are non-symmetric in x. ]

3.3 A problem arising in nonlinear optics

In this section we will shortly show how the abstract setting can be used for a
bifurcation problem arising in nonlinear optics, dealing with the propagation of
light in a medium with dielectric function f(z,u). We will be sketchy, referring to
[6] for more details.

We consider a layered medium, such that the internal layer with thickness
€ > 0 has a linear response, while the eternal layer has a non-linear self-focusing
response. This model leads to study the following differential equation, see [5],

—u"(2) + wu(z) = fo(z,w)u(z), ue W (R), (3.10)
where w is the bifurcation parameter and

1 ifjz<e
felw,u) = { u? i x| > e

It is convenient to introduce the characteristic function y of the interval [—1,1].
With this notation we can write

T VENY
felww) =x(D)+ (1=x(D)) u
and (3.10) becomes
—u(x) + wiu(r) = u® + X(Z)(u —u?), ueWH(R).
Then the solutions of (3.10) are the critical points on H = WH2(R) of

I ,(u) = é/R\u’(x)Fdx + Jw? /R|u(x)|2dx -1 /Ru‘*(x)dx + G(g,u),

where

Gle,u) = { EIR [3u?(z) — j u'(2))] x(%)da ii - 8.
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It is easy to check that I, ., can be studied by means of the abstract set-up discussed
in Section 2.3. Specifically, one has that the critical manifold is given by Z, =

{zw(x + &) : £ € R} with
\/Qw

2(@) = cosh(wr)’

and the function G satisfies (G.0) as well as ||D,G(e, 2)|| = O(e) . Moreover, one
has (for £ > 0)

Gzl +€) == [ (D)L +€) - }eba+ ) de

R

:—/E [322(x+&) — ) z(x+&)] da

—€

1
= —E/ [; zi(ax—&—ﬁ) — }Lzﬁ(sx—i—g)] dx .
-1

Thus we find that (G.2) holds with o = 1 and

The behavior of G, depends on the value of w, see the figures below.

Figure 3.1. Graph of G, for w < wo

In particular, there exists wg > 0 such that, for ¢ small,

(i) for 0 < w < wyp, G, has a unique global minimum at ¢ = 0;
(ii) for w > wy, G, has a (local or global) maximum at £ = 0, while the global
minimum is achieved at some £¢&,, # 0.

As a consequence (3.10) has, for £ small, a solution u, ,, for all w > 0 branching
from the trivial solution at w = 0. In addition, at w = wg there is a secondary
bifurcation of solutions u. . of (3.10), corresponding to &,. See the bifurcation
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Figure 3.2. Graph of G, for w > wo

diagram below. The solutions . , are not symmetric because £, # 0. On the other
hand, it is possible to show that u. . are even functions. Actually one can prove
that in this case, fixing w, the solution w(e, &) of the auxiliary equation satisfies
w(e, &) (z) = w(e,—&)(—x) for every x and &, and that the reduced functional ®.
is even in £. These two properties imply that £ = 0 is a critical point of ®., and
that u. ., is symmetric.

Figure 3.3. Bifurcation diagram for (3.10).The curve in bold represents the asymmetric
solutions

Arguing as in the last part of the proof of Theorem 3.5, we can evaluate the
Morse index of the solutions u. ., and .. For w < wg (resp. for w > wp), Ue w
corresponds to a minimum (resp. a maximum) of G,. Moreover ., (w > wp)
correspond to a minimum of G,. It follows that the Morse index of w. is 1 or
2 provided that, respectively, w < wp and w > wg. Similarly, the Morse index of
e, is 1. Using the stability results of [86], see also Remark 8.4, one infers that
the stationary wave corresponding to the symmetric solution is (orbitally) stable
if w < wg. When w crosses wg there is a change of stability: the symmetric solution
becomes unstable while the a-symmetric one is stable.
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Bibliographical remarks

Bifurcation results for equations like (3.2) in the case that (h.1) holds, have been
given in [108] and in [138, 139]. The topics discussed in Sections 3.1 and 3.2,
that include the case in which (h.2) holds, are taken from [8] where we refer for
other bifurcation results under different assumptions on h. The extension to the
PDE analogue of (3.2) is addressed in [32]. In [8] and [32] the Morse index of the
critical points of I. is also discussed. The case in which h is periodic is studied in
[9]. The problem arising in nonlinear optic discussed in Section 3.3 is taken from
[6]. Further results on such a problem have been obtained in [26, 65], where the
general non-perturbative case (namely equation (3.10) with e = 1) is handled. The
physical backgrounds can be found in [5].



Chapter 4

Elliptic Problems on R"
with Subcritical Growth

In this chapter we will deal with the equation (1.2), in the case of a subcritical
growth. We will closely follow the work [13].

4.1 The abstract setting

We will consider the elliptic problem

—Au+u = (1+ch(z))u?, P.)
u € WH2(R™), u > 0, N
where n > 3 and p is a subcritical exponent, namely
n+2
l<p< . 4.1
P, (4.1)

Let H = WH2(R™) be the usual Sobolev space, endowed with the standard scalar
product, resp. norm,

(u|v):/ (Vu - Vo 4+ uv)de, HuHQ:/ (|IVul?® + u?)dz.
n R"L

Solutions of (P:), or even of a more general equation like

—Au+ u = b(x)uP,
{ u e V[/LZ(IRTL)7 u > O, (42)

with b € L*°(R™), are the critical points of the Euler functional I, : H — R

Iy(u) = é||u||2 — p_}_l /R b(m)uﬁ_“'ldx,
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where u denotes the positive part of u (the fact that critical points correspond to
positive solutions can be readily deduced in the following way: testing the equation
on the negative part of u, u_, one easily finds that u_ = 0, hence u > 0, and by the
strong maximum principle it follows that u > 0). Let us also remark that we use
the same notation introduced in Section 2.1 because we are dealing with positive
solutions. As seen in Section 2.1, even if I,(u) has the Mountain-Pass geometry,
the M-P theorem cannot be directly applied because the lack of compactness of the
embedding of H in LPT!(R™). We have also seen that to overcome this difficulty
one can use the P.L. Lions Concentration-Compactness method which leads to the
existence result stated in Theorem 2.7, Section 2.1.

Below we will show that the methods discussed in Chapter 2, Section 2.2
allow us to obtain existence results different from Theorem 2.7. Roughly, the idea
is the following. The lack of compactness in the Sobolev embedding is due to the
presence of the non-compact group of translations in R", x — x + £. In some
cases the function h(x) breaks this invariance and allows to recover the (PS)
condition. The drawback of this approach is that we must restrict ourselves to
the perturbative problem (P). On the other hand, we will be able to prove the
existence of solutions of (P;) for a class of coefficients b = 1 + eh which cannot be
handled by Theorem 2.7.

In order to use the techniques discussed in Chapter 2, Section 2.2, we set,

L(u) = Mul? = T / wPldy —e- 1 / h(z) ul ™ da.
=l [ o [ e

Above it is understood that hlu[P*! € L1(R™) provided u € H. This is the case if
2*

h e L*(R"), = .
(") T (pt1)

(4.3)

Plainly, I. € C?(H,R) and solutions of (P.) are critical points of I.. For e = 0 the
unperturbed functional Iy is given by

Io(w) = Yl ~ 1, / e,
n

which is nothing but the limit functional considered in Section 2.1 *. The pertur-
bation is given here by

Gu)=-1, /R h(z)ub de.
With this notation, we have that

I (u) = Io(u) + G (u),

! The fact that we have ui+1 instead of |u|PT! is not relevant to our purposes.
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The unperturbed problem Ijj(u) = 0 is equivalent to the elliptic equation
—Aut+u=uP, weH, u>0 (4.4)

which has a (positive) radial solution U, see the arguments following Theorem
2.1 in Section 2.1. It has been shown in [98] that such a solution is unique. Let
us recall that U and its radial derivative satisfy the following decay properties,
see [38]

U(r) ~ e IMlr|~ 2 Tlerolo U((:)) =1, r= |zl (4.5)

Since (4.4) is translation invariant, it follows that any
zg(x) :==Ulz = §)

is also a solution of (4.4). In other words, I has a (non-compact) critical manifold
given by
Z ={z(x) : £ € R"} ~R".

4.2 Study of the Ker[](z)]

The purpose of this section is to show:

Lemma 4.1. Z is non-degenerate, namely the following properties are true:
(ND) T., =Ker[lj(z)], V&eR™;
(Fr)  I[(z¢) is an index 0 Fredholm map, for all § € R™ .

Proof. We will prove the lemma by taking £ = 0, hence zg = U. The case of a
general ¢ will follow immediately. The proof will be carried out in several steps.

Step 1. In order to characterize Ker[I/(U)], let us introduce some notation. We
set -
r =z, 9= c st
||
and let A,., resp. Agn-1 denote the Laplace operator in radial coordinates, resp.
the Laplace-Beltrami operator:

0? n—120
Ar = or? r Or
1 0 0
Agn-1 = K .
s V9 2 dy; <\/gg 3%)

In the latter formula standard notation is used: ds* = g;;dy’dy’ denotes the stan-
dard metric on S"71, g = det(g;;) and [¢¥] = [gi;]7!. Consider the spherical
harmonics Y (¢) satisfying

—Agn-1Yy, = AV, (4.6)



48 Chapter 4. Subcritical Problems

and recall that this equation has a sequence of eigenvalues
A =k(k+n—2), k=0,1,2,...

whose multiplicity is given by Ny — N_o, where

(n+k—1)! B
T (k>0), Np=0,YFk<0,

Ni =
see [39]. In particular, one has that
Ao =0 has multiplicity 1,

and
A1 =n —1 has multiplicity n.

Every v € H can be written in the form
v(z) =D Yp(n)Ye(¥), where (1) = [g. s v(rd)Yi(¥)d9 € WH(R).
k=0

One has that
AWrYr) = Yi(9)Arthp(r) + 7,12 V(1) Agn—1Y3 (). (4.7)
Recall that v € H belongs to Ker[I{(U)] iff
—Av+v=pUP Yz, veEH. (4.8)

Substituting (4.7) and (4.6) into (4.8) we get the following equations for y:

1" n

-1 A _
Ak(ql)kt) = _ql)k - r 7/);C+1/Jk+ qul)k?_pUp 111)/6207 k:O71727"'

Step 2. Let us first consider the case k = 0. Since A\g = 0 we infer that 1)y satisfies

1" n

o) =~y "+ o — pUP i = 0.

It has been shown in [98] that all the solutions of Ag(u) = 0 are unbounded. Since
we are looking for solutions 19 € W12(R), it follows that 1) = 0.

Step 8. For k = 1, one has that Ay =n — 1 and we find
" n—1 n—1 —
Ai(1) = =1y — . Y1+ + 2 Y1 — pUP~ 1Py = 0.

Let ﬁ(r) denote the function such that U(z) = ﬁ(\x\) Since U (z) satisfies —AU +
U = UP, then U solves

0" o=
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Differentiating, we get

~ 1 ~ I DU
@y =" @y + " T+ = pUr T (4.9)
r
In other words, U'(r) satisfies A;(U’) = 0, and U’ € W2(R). Let us look for
a second solution of A;(11) = 0 in the form ¢ (r) = ¢(r)U’(r). By a straight
calculation, we find that ¢(r) solves

. N 1 o~
U 2l (@Y - T IT =0
T

If ¢(r) is not constant, it follows that

o fj-// n—1
+

and hence
cd(r) ~ i’ (r — 400).
This and (4.5) imply that ¢(r) ~ €2 and therefore ¢(r)U'(r) ~ —e"r(1=™)/2 ag
r — +o0o. From this we infer that c¢(r)U’(r) does not belong to W12(R) unless
c¢(r) is constant. In conclusion, the family of solutions of A (1) = 0, with ¢, €
WL2(R), is given by ¢ (r) = cU’(r), for some ¢ € R.
Step 4. Let us show that the equation Ay (x) = 0 has only the trivial solution
in WH2(R), provided that k > 2. To prove this fact, let us first remark that
the operator A; has the solution U’ which does not change sign in (0, 00) and
therefore is a non-negative operator. Actually, if w denotes its smallest eigenvalue,
any corresponding eigenfunction, ¢, does not change sign. If w < 0, then ¢, should
be be orthogonal to U’, a contradiciton. Thus w > 0 and A; is non-negative. Next,
from

Ae=n+k—2)k= X\ + 0, 6k:k(n+k—2)—(n—1),

we infer that 5
Av=A+ .
r

Since d; > 0 whenever k > 2, it follows that Ay is a positive operator for any
k > 2. Thus Ag(¥x) = 0 implies that ¢ = 0.

Conclusion. Putting together all the previous information, we deduce that any
v € Ker[I]/(U)] has to be a constant multiple of U’(r)Y1 (). Here Y; is such that

—Agn Y1 = \Yi = (n— 1)Y;,

namely it belongs to the kernel of the operator —Agn-1 — A1Id. Recalling that
such a kernel is n-dimensional and letting Y7 1,...,Y1,, denote a basis on it, we
finally find that

v E span{(?’Yu :1<i<n}=span{U,, : 1 <i<n}=TyZ
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This proves that (ND) holds. It is also easy to check that the operator I}/(U) is
a compact perturbation of the identity, showing that (Fr) holds true, too. This
completes the proof of Lemma 4.1. O

Remark 4.2. Since U is a Mountain-Pass solution satisfying —AU + U = U?P,
the spectrum of PI[(U) has exactly one negative simple eigenvalue, p — 1, with
eigenspace spanned by U itself. Moreover, we have shown in the preceding Lemma,
that A = 0 is an eigenvalue with multiplicity n and eigenspace spanned by D;U,

1=1,2,...,n. Moreover, there exists x > 0 such that
(PIJ(U)|v) > &|v||?, Vo L{U)e Ty Z, (4.10)
and hence the rest of the spectrum is positive. O

4.3 A first existence result
Here we will prove a first existence result by showing that (P.) has a solution

provided that h satisfies some integrability conditions.
According to the general procedure, Lemma 4.1 allows us to say that, for ||

small, one has that

D (z¢) i= I (2e + we (&) = co + eG(ze) +0(e), co = Io(ze) = LH(U).

Let I' : R™ — R be defined by setting

L&) = Glze) = — 1, /]R W) UP (@ — O)de, € €R™

Lemma 4.3. Suppose that (4.3) holds. Then

lim T'(¢) = 0.

|€]—o0

Proof. Taken p > 0 we set
r,(€) = / W)UPH (x — €)dz,  TH(E) = / W)U (& — €)de,
lz|<p |z|>p

in such a way that T'(§) splits as



4.3. A first existence result 51

Let s’ denote the conjugate exponent of s (> 1). Using the Holder inequality, we

get
1/s 1/s’
|Fp<£>s(/ h(z)%lx) (/ US’@“)(x—f)dx)
lz|<p lz|<p
1/s 1/s’
:( / h(::;)%) ( / US/(”H)(x)dx)
lz|<p lz+€|<p
1/s’
< ( / US/(”H)(x)dx) .
lz+&l<p

Since U decays exponentially to zero as |z| — oo, the last integral tends to zero
as || — oo and hence

lim T,(€) =0, Vp>0. (4.11)

|€]—o0

On the other hand we also have

T < (/m>p|h(9€)|sd$> " </m+él>p Us/(pH)(:ﬂ)dx)
< ( /Dp |h(x)|sdx> - ( / n US’(P+1)(x)dx> v

Thus, given any > 0 there exists p > 0 so large that [I'}(¢)| < n. This, together
with (4.11), proves the Lemma. O

1/s’

The previous lemma allows us to prove the existence of solutions of (P:), provided
L'(€) # 0. Actually, we can show

Theorem 4.4. Let (4.1) hold and let h satisfy (4.3). Moreover, suppose that either
(h1) fon h(x)UPT(2) # 0;

or
(he) h#0 and Ir € [1,2] such that h € L"(R™).
Then (P-) has a solution provided |e| is small enough.
Proof. Since h satisfies (4.3), then Lemma 4.3 applies and hence T'(§) tends to
zero as [¢] — oo.

If (h;) holds then I'(0) = _p-1+1 Jgn (x)UPT!(x) # 0. Then T is not iden-
tically zero and it follows that I" has a maximum or a minimum on R™, and the
existence of a solution follows from Theorem 2.16.
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If (ho) holds we need to use a different argument to show that I'(§) # 0. We

will be sketchy. Setting b(x) = UPT!(z) we can write ['(§) = —pil (h * b), where
% denotes the convolution. Taking the Fourier transform we get I' = —pil (ﬁ -A).

Using the Morera Theorem, see [4], it is easy to check that bis analytic in the strip
{¢ € C": Im(| < a} for some o > 0 and hence it has at most a countable number
of zeroes there. Moreover, since h € L"(R™) for some r € [1,2] we deduce, by the
Hausdorff-Young inequality , that helL” (R™), where r’ denotes the conjugate
exponent of r (if r = 1, b is continuous), and h % 0, since h # 0. Then T =
_pil(ﬁ Z) # 0, which implies that T'(§) # 0, and the conclusion follows as
before. O
Remarks 4.5. (i) A condition which implies [, h(z)UP!(x) # 0 is that h has
constant sign in R"”.

(ii) If A does not satisfy (ha) we do not know if, in general, I" is not identically
zero. The argument sketched before does not work because h could be merely a
tempered distribution which could have no L}, representation.

(iii) There are situations in which we can prove that (P-) has multiple solu-
tions. For example, if

/ h(x)UPT!(z) = 0, Dih(x)UPT () #0, for somei=1,2,...,n,
n R’IL

then I'(0) = 0 while D;I'(0) # 0. Thus I" possesses a positive maximum and a
negative minimum, which give rise to a pair of distinct solutions of (P;), for |¢|
small enough.

(iv) If T has a maximum (e.g., when [, h(z)UP™!(z) < 0), the Morse index
of the corresponding solution is greater or equal than 1+ n, see Theorem 2.24. In
particular, in such a case the solution cannot be found by means of the Mountain-
Pass Theorem. ]

4.4 Another existence result

The main purpose of this section is to prove

Theorem 4.6. Let (4.1) hold and suppose that h satisfies
(hz) h e L>®(R") and lim|; o h(z) = 0.
Then for all |e| small, problem (P:) has a solution.

The new feature of this result is that, unlike Theorem 4.4, we do not assume
any integrability condition on A, nor any hypothesis like (hy).

Although a simple modification of the arguments carried out in the proof of
Lemma 4.3 would lead to show that if (hs) holds then I'(§) — 0 as |[¢| — oo, we
cannot use this information because we do not know whether I' = 0 or not, see Re-
mark 4.5-(ii). We will overcome this problem by studying directly lim¢| o (&)
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and using Theorem 2.23. Having this goal in mind, we first show that Lemma 2.21
holds. Following the notation introduced in Chapter 2, P = P; : H — W; denotes
the orthogonal projection onto We = (T, Z)*, where z¢ = U(- — ). Moreover,

Re(w) = Iy(ze +w) — I (2¢) [w].
According to the statement of Lemma 2.21, we shall show

Lemma 4.7.

(i) there is C > 0 such that ||[(PIf (z¢)) ™ lowe,we) < C, VEeR?,
(i) Re(w) = o(||wl]), uniformly with respect to & € R™.

Proof. Since z¢ is a Mountain-Pass solution satisfying —Azg 4+ z¢ = zé’ , the argu-
ments of Remark 4.2 readily imply that it suffices to prove that there is kK > 0
such that

(PI) (z)]Jo) > ko], VEER™, VYol We:=(z)®(T2). (412

We already pointed out that for any fixed & € R", say £ = 0, the operator
PI(z) = PIj(U) is invertible and, see (4.10), there exists x > 0 such that

(PIJO)R]l) > &lol?, Yo LW = (U)& (Ty2).
Setting v¢(z) = v(z + £) we get by a straight calculation that
(PIg (z¢)[][v) = (PI5 (U)[v*]|v*).-
Moreover, v¢ L W whenever v L Wﬁ/ic Thus we deduce:
(PI§ (ze)[ellv) = (PI(U)[f][0f) = w[|of]* = k]lo])?, V&€ R™, Vo LW,
proving (4.12), and (i) follows.

To prove (ii) it suffices to remark that, in the present case, one has that
Re(w) = (2¢ +w)? — 2{ —ng_lw. O
The preceding statements (i)—(ii) allow us to use Lemma 2.21 yielding that there
exists g > 0 such that for all |e] < g¢ and all £ € R” the auxiliary equation

PI!(z¢ +w) = 0 has a unique solution w, ¢ := w.(z¢) with

lim o ¢]| = 0, (4.13)

uniformly with respect to £ € R™. In the sequel ¢ is fixed, with |¢| < 1, and for
brevity we will write we instead of w, ¢.
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We now prove

Lemma 4.8. There exists €1 > 0 such that for all |e| < e1, the following result
holds:
lim we =0,  strongly in H. (4.14)

|€]—o0

Proof. We begin with the following preliminary results:

(a) we weakly converges in H to some woo = We 00 € H, as [§| — co. Moreover,
the weak limit weo is a weak solution of

—AWoo + Woo = (1 + eh(z))wk,.
(b) One has that we, = 0.

Proof of (a). First, let us remark that, as a byproduct of (4.13), we weakly con-
verges in H t0 SOMeE Weo = We 00 € H, as [§] — o0.

Next, recall that the function we is a solution of the auxiliary equation
PI/(z¢ + we) = 0, namely

—Awg +wg = (1 +eh(x))(z¢ +we)? — 2{ — ZaiDizg,
i=1

where

a; = / {(1 +eh(x))(ze + we)? — zg} D;zedzx.
Let ¢ denote any test function. Then one finds
(wel@) = / (1 + eh(x))(z¢(x) + we(x))" ¢(z)dx
P _ .
- / z¢ (z)p(x)dx + Z a; / D;z¢(z)p(z)dx. (4.15)
n N R
In order to pass to limit in the above integrals, let us first show that

‘gl‘iinoo i 2 wfpde =0, Yk e0,p). (4.16)

The argument is similar to the one used in the proof of Lemma 4.3 and so we will
be sketchy. We split the integral in (4.16) as

Adz = / Adz + / Adz, (A= zé’_kwfqﬁ),
R~ lz|<p [z|>p )
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where p > 0 will be chosen later on. Using the Hélder inequality with a = 2*/(2* —
k—1), we get

1/a k/2" 1/2"
‘/ Adzx| < (/ zs(p_k)adx> (/ |w5|2*dx> (/ |¢|2*dgc>
|z|<p lz|<p lz|<p lz|<p
1/ 1/«
<a (/ Zép_k)ad$> =0 (/ U(p_k)a(x)dx> .
lel<p le+€l<p

Adz| — 0, too. Simi-

The last integral tends to zero as €| — oo and thus |flf6|<p

larly, one finds that
1/2*
/ Adz| < ¢y (/ |q§|2*daj>
|z|>p |z|>p

Adz| — 0 as p — oo, whence (4.16) follows.

and deduces that | f\x\>p

Furthermore, since h € L*°(R"), the same arguments yield

lim h(x)zf_kwfqbdz =0, Vkel0,p). (4.17)

|€]—o0 JRrn
Finally one trivially finds, as || — oo,
| wt@otas — [ wrod,

[ pat@oaas — [ o

Rn

/ a;Dizepdr — 0, (i=1,2,...,n).

By this, jointly with (4.16), (4.17) we can pass to the limit in (4.15) proving

(wnl) = [ (14 hla)utoda,

namely that (a) holds.

Proof of (b). As a consequence of (4.13) one has that lim|.|_o we,oc = 0. Since the
unique solution w € H of —Aw + w = (1 + eh)w? with small norm is w = 0 we
infer that w. - = 0, provided |e] < 1.

Proof of the Lemma completed. Let us recall that we satisfies equation (2.29),
which in the present case becomes

we = (PIy(2¢)) " [ePG' (2¢ + we) — PRe(we)), (4.18)
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where
G'(z¢ + w) = h (2¢ + w)P,
Re(w) = (2¢ + w)P — z{ — ng_lw.

From (4.18) and Lemma 4.7-(i) it follows that

[wel[* < C - [|e]|(G" (z¢ + we)|we)| + |(Re(we)|we)]] - (4.19)
We claim that
|£1|im |(G/(Z§ + w5)|w5)| =0. (4.20)

Actually, let us set
(@)= [ e + el
x|>r

Since (hs) holds, then, fixed any n > 0, there exists p > 0 such that |h(z)| < 5 for
all |z| > p and hence there exists ¢; > 0 such that

90(&) < V¢ eR™

Moreover, we find

| b@)ee + wepuelds < [l | (e + weuelds
z|<p

|z|<p

< ez / zg|w5\d3:—|—/ lwe [Pda|
lz|<p lz|<p

In the ball B, = {z € R" : |z| < p}, we have that W?(B,) is compactly
embedded into LY(B,) for all g € [1,2*). Hence we have that we — 0 strongly in
L%(B,) for all ¢ € [1,2*). Thus we infer that

/ |h(2)(ze + we)Pwe|dz — 0, as |&] — oo.
lz|<p

Since
(G (ee +wellue)| < [ [ho)(ee + wewelda + (),

lz|<p
then the claim (4.20) follows.
Next, we estimate |(Re(we)|we)|. For this, let us remark that, for a > 0 and
0 < b < 1 the elementary inequalities hold
[(a+b)P —a? — pa?~'b| < c3(a” 2 +bF), ifp>2,
|(a+b)p —a? —pap_1b| <eyb?, fl<p<.
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Then we readily find
-1
| (Re (we)lwe)| < /R |(ze +we)? — 2¢ — pzg we| [welda < eslwel|*H7,

for some 8 > 0. Inserting the above inequality into (4.19) and using (4.20) we get
lwel® < esllwel 7 +o(e),  as €] — oo

Passing to the limit as || — oo we find

hm Hw5||2<06 hm Hw5||2+5.

Finally, since wg = we ¢ is small (in H) as |e| — 0, we conclude that

. llun |lwel| =0 provided |e| < 1.

This completes the proof. (Il

We are now in the position to prove Theorem 4.6.

Proof of Theorem 4.6. Consider the functional ®.(§) = I.(z¢ + we). One has
B0 = Yl uelP = by [ (14 eh@) (sela) + we(a)) e (a2)

From Iy(z¢) =
that

(p+1 fR" 2P de and setting ¢o = Ip(z¢) = Io(U), we have

+1
1HZ§H2 =co+ (p+1) / 2P da.
Moreover, —Azg + z¢ = z{ implies
(ze|we) = /R ziwedz.

Substituting these equations into (4.21) we infer

‘I’E(ﬁ) —co+ ;”w§”2 _ (lerl) /]R (Zg +w§)p+1dx + (p}rl) / p+1dx

+ /n ziwedr — (pil) 6/Rn h(x)(z¢ + we)P T d.

Now, we estimate

/.

(Zg—l-wg)l"‘rl —Z§+ (p+1) zgwg‘dx <cl/’z5 wg _|_wp+1 de.
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Repeating the arguments employed in Lemma 4.8 and using (4.14), we infer that
the latter integral in the right-hand side tends to zero and hence

(pil) /W(Zg + we )P e — (pil) /Rn z?“dm - /" ziwgdr — 0, (€] — o0).
(4.22)
Similarly, taking also into account (hs), we get

/n h(@)(ze + we)"dz — 0, (€] — o). (4.23)

Finally, using (4.14), (4.22) and (4.23), we deduce that, for all |¢| < 1,

lim ®.(¢) = cp.

|€]—o0

As a consequence, @, has at least a maximum or a minimum (unless . = ¢p). In
any case @, has a critical point which, according to Theorem 2.23, gives rise to a
solution of (P.), proving Theorem 4.6. O

The same arguments, with obvious changes, can be used to find solutions of
—Au+ (1+eap(z))u=u?, u>0, uecWHR").

For example, one can show that if ag € L>(R"™) and ag(x) — 0 as |z| — oo then
the preceding equation has a solution for any |e| < 1.

Bibliographical remarks

There is an extensive bibliography dealing with elliptic equations on R", like
—Au+ a(z)u = f(z,u), u € WH2(R™),

in the case that f(-,u) ~ |u[P~lu as |u| — oo, with 1 < p < (n +2)/(n — 2),
and under various assumptions on a(x) > ag > 0. As anticipated in Section 4.1,
the problem is usually studied by using Critical Point Theory, the main difficulty
being the failure of the (PS) compactness condition. It has been shown in [126] that
when the potential a(x) diverges at infinity, the (PS) condition can be recovered.
On the other hand, when a is bounded, a general tool which has been used is the
Concentration-Compactness method. Various results dealing with these problems
are discussed in the books [52, 147], where we also refer for a more complete
bibliography.

Recently some result dealing with nonlinear elliptic subcritical problems
on R™ with potentials a(z) that decay to zero at infinity has been also obtained,
see [12].



Chapter 5

Elliptic Problems with
Critical Exponent

In this chapter we will deal with the equation in R™
—Au = a2 4 k() (5.1)

where 1 < ¢ < (n+ 2)/(n — 2). We mainly follow [14] where we refer for more
details and other results.

After a first section devoted to studying the unperturbed problem —Au =
u:fg7 we consider, in Section 5.2, the case in which ¢ is also critical, ¢ = (n +
2)/(n—2). As seen in the introduction, the corresponding equation is particularly
relevant for its relation with problems arising in differential geometry and will be
called Yamabe-like equation. The rest of the chapter deals with the case 1 < g <

(n+2)/(n—2).

5.1 The unperturbed problem

We will work in H := DY2?(R"), the space of u € L* (R") such that Vu € L?(R"),
endowed with scalar product and norm, respectively

(uv) = Vu - Vudz, |ul|? = / |Vu|*dz.
R'VL R’H,

The choice of this space is due to the specific form of the linear part of (5.1), which
is —Aw. Indeed this is the natural choice for the geometric applications. Hereafter,
k and q are such that k|u|?7"! € L}(R")Vu € ‘H. Positive solutions of

—Au=unts ek(x)ul, ueH,
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are the critical points of I : H — R,

I(u) = ;||u||2—2£/ u?:da:—eq}rl/R k(x)udt da,

where v denotes the positive part of u.

Remark 5.1. The arguments sketched in Section 4.1 can be repeated here to show
that critical points of I. are positive solutions of (5.1). Moreover, let us recall that
in the presence of the critical exponent, the regularity follows from a result by
Brezis and Kato, see [49]. Unfortunately, when ¢ = 1 the functional I. is not C?
but merely C1:!. For this reason, in such a case, it is convenient to define I. by
setting

I(u) = ul?* — 5 /R u? dx — éa/ k(x)u?da.
The fact that critical points of I. give rise to positive solutions will require an ad
hoc argument, see the proof of Theorem 5.10 in Section 5.3. O

Setting
Io(u) = Ljuf? - 2 / o2 de, (5.2)
and

Lk(@)utdr,  if 1< g< T2
G(u) :{ fR (z)ul 9=, 5 (5.3)

Jin k(x)uPde, if g=1,
we can write I.(u) = Ip(u) — qilaG(u).
In the rest of the section we will study the unperturbed problem

—Au=u"t2/=2) 50, weH.

It is well known that this problem possesses the following family of solutions,
depending on (n + 1) parameters £ € R™ and p € RT,

(n T —
Ze(@) = p~ AU < 1 5) ’

where
(n—2)/4 1 (n—2)/2
= —2)|\"~ .
U@ =t - 2027 (| )

Correspondingly, we have an (n + 1)-dimensional manifold of solutions given by
Z={z=z,¢:10>0, £€R"}.

With respect to the subcritical equations discussed in the preceding section, the
new feature here is that the unperturbed problem is invariant not only by trans-
lation but also by the dilation z — x/u, p > 0.

It is easy to see that I]/(z) is Fredholm index zero for all z € Z. Next we
prove that Z is non-degenerate.
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Zp,€

D e e it R

Figure 5.1

Lemma 5.2. For all z = z, ¢ € Z, every solution of the linearized problem

Ay = "+2 A/(n=2)y, veH, (5.4)

n—-2 *
has the form
v=aD,z+b-Vz, a€R, b=(by,...,b,) €R™.
Thus Ker[Ij(2)] = T.Z, for all z € Z and Z satisfies the non-degeneracy condi-
tion (ND).

Proof. The proof is similar to that carried out for the subcritical case, see Lemma
4.1, and thus we will indicate the new features, only. To simplify notation, we
carry over the arguments with z = U instead of a generic z,¢. Looking again
for solutions of (5.4) in the form v = Y, o, ¢w(r)Yr(¥), we find the following
equations for iy -

Ayn) = —v =" g O E TRy ey o0 k=02,

r
For k = 0 this equation becomes

1 n

-1
—to = W= 1 UV D,

A first solution is given by ¢ = D, 2, 0|u=1 € H. A second linearly independent
solution of the form ¢y = ¢(r)e(r) satisfies Ag(1pg) = 0 provided

—"p— (20" + ") = 0.
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It follows that

const. (1+r?)n=2

I
d(r)= L2 () ~ const. -1 ~7

n—3

Hence
n—2

(1 + ,,12)(71—2)/2 ’
and thus cyp € H implies that ¢(r) = 0. This shows that the solutions of the

equation Ag(1g) = 0, 1o € H, are of the form ayyy(r) = aD,U(r) with a € R.
Next, for kK = 1 the equation A;(1) = 0 becomes

e(r)o(r) ~ const. (r — o)

n 1

" -1 n — _
M) ==y = e+ T = UM

As in Lemma 4.1, one has that U’(r) is a solution of A1 (1) = 0. Moreover, one
shows that any linearly independent solution v(r) behaves at infinity like

,r,n—2

v(r) ~ 71" ~ T, (r — 00).

(1+r2)n/2

This shows that the solutions of A;(¢1) = 0, ¥y € H, are those spanned by
1 (r)U’ (r), which correspond to solution of (5.4) like b- VU with b € R™. Finally,
the equation Ay (¢) = 0, ¥, € H, has the trivial solution only. O

According to the general theory, we find

1
Po(p) = o~ | K@@t o), =),

and hence we are led to study the finite-dimensional functional

T(u, &) := /Rn k(m)zgzl(:ﬂ)dw

This will be done hereafter, distinguishing various ranges of q.

5.2 On the Yamabe-like equation

Here we deal with the case ¢ = (n + 2)/(n — 2), namely with the Yamabe-like
problem

“Au=(1+ sk(x))u(”+2)/("_2), u>0, ueH=D"}R"). (5.5)

Problems of this sort has been studied, e.g., in [47, 73, 115, 128] (actu-
ally these papers deal with more general equations with critical exponent like
—Au = K(z)u+t2/(=2)) Moreover, up to the stereographic projection, (5.5) is



5.2. On the Yamabe-like equation 63

the equation arising in the scalar curvature problem for the sphere S™ on which
there is a broad literature, see also Section 7.1.

In the main result of this section we will make the following assumptions on
k(x). Let Cr[k], denote the set of critical points of k.
(k.0) k€ L>®(R") NC?*R");
(k.1)  Cr[k] is finite and Ak(x) # 0, Vz € Crlk];
(k.2)  3Jp > 0 such that (¥'(z),z) <0, Y|z| > p;
(k.3)  (K'(x),z) € L*(R™), [gn (K (2),z)dz <O.
From (k.1) it follows that for every x € Cr[k] the index i(k’, z) (namely the local
degree) of k’ at = is well defined. The next theorem is essentially taken from [14],
Section 3, where one can find other results of the same sort.

Theorem 5.3. Let (k.1-3) hold and suppose that
Yoo ik ) £ (D)™ (5.6)
z€Crlk], Ak(z)<0
Then (5.5) has at least a solution, provided |e| < 1.

The proof of Theorem 5.3 will be carried out by showing that the finite-
dimensional functional I" defined in the previous section has a “stable” critical
point, in the sense that Theorem 2.17 proved in Section 2.2, Chapter 2, applies.
This will require some topological theoretic arguments carried out below.

5.2.1 Some auxiliary lemmas

First, let us point out that dealing with (5.5), the finite-dimensional functional T’

takes the form
09 = [ bZewie = [ 0w (7€) as

=/}kWy+OU?@My

n

By a straight calculation we find
(0 €) =a0k(©), o= [ U )y,
Moreover, from
D18 = | Wy +).9)U% ()
and since
/.wUT@Myzm

it follows
lim D, I"(p, &) = 0.
w10
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As a consequence, we can extend I' to all of R™ by setting ['(0,€) = agk(¢) and
T(p, &) = T(—u, &) if u < 0. The extended function is of class C! and satisfies

D,T(0,6) =0, VE&eR™ (5.7)

From (5.7) we infer
ceCrfk] <= (0,¢) € Crll), (5.8)

where Cr[T'] denotes the set of critical points of I' (on R™!). Next, we evaluate
the second derivatives of I'. We find

DEEGue) = [ 3 Dyt + iU (1)
Since [, yiy;U% (y)dy =0 <= i # j, we infer

DEF0.9 = mak©.  a= [ WPUT G (59)
Furthermore, differentiating (5.7) with respect to &; we deduce
D2.T(0,6) =0, i=1,...,n. (5.10)

Putting together (5.9) and (5.10) one finds that the Hessian matrix I/(0, &) at
any £ € R™ has the form

(0, ¢) e 0 (5.11)
o 0 w AKE) | '

In particular, (0,€) is an isolated critical point of I' and, by the multiplicative
property of the degree, we have i(IV,(0,¢)) = sgn(AK(&))i(k',£). Let us collect
the above results in the following Lemma.

Lemma 5.4. Let (k.0) and (k.1) hold. Then (0,€) is an isolated critical point of T
if and only if £ € Cr[k]. Moreover one has

i(k',€) if Ak(€) >0,
—i(k',€) if Ak(€) < 0.

Our next lemma takes into account the consequences of assumptions (k.2)
and (k.3). Let B4 = {z € R?: |z < R}.

Lemma 5.5. Let (k.2) and (k.3) hold. Then 3R > 0 such that
(C'(1.6), (. 6)) <0, V(&) R w2 4+ |¢°T = B2

Therefore, deg(I”, Bt 0) = (—1)+

i(I",(0,6) = {
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Proof. We set g(z) = (K'(z), z). From

Fut) = [ Ky + U (i

we infer
08,1, = [ s+ U @y = [ gla)U (@ = /e
Setting
Haw) = [ g@U (@~ €/,
|z|<R
Ton(n€) = [ g@U (- €)/uiz,
|z|>R
we find

(11,6, (1)) = TR (1 €) + T2, (1, €).
Assumption (k.2), namely g(x) < 0V |z| > p, implies that

Jor(11,€) <0, V(&) eR"™ VR>p. (5.12)

We claim that, taking R possibly larger, one has that J; r(p,€) < 0 provided
p? 4+ 1€]? > R%. Actually, for x € B} one has

Ll G Tt ) PR B e G PR

where g4, resp g_, denotes the positive, resp. negative, part of g.
As p+ |€] — oo, we get
2n

or (T —§ - 1% .
U ( " ) (12 + (R — |€)2)n

_ 2n
min U% <x 5) ~o, K o\
2€By, I (1 + (R+[E)>)"

This implies that for p + |£] — oo,

Dl ~ e 02 (U6 [ glona

rE€BY M n

Then, using (k.3), there exists R’ > 0 such that Ji r(u,&) < 0 provided that
R > R and p+ |£] > R’. This, jointly with (5.12), proves the lemma. O

We are now in the position to prove Theorem 5.3.
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5.2.2 Proof of Theorem 5.3

Let C, denote the set of points of Cr[[] with x > 0. Using (5.8) and the fact
that I is even in 4, it follows that Cr[I] = C, UCy U C_, where C_ = {(—pu, &) :
(u,€) € Cy} and Cy = {(0,€) : € € Cr[k]}. Remark that as a consequence of (k.2),
resp. Lemma 5.5, Cy and C'y. are compact.

In order to apply Theorem 2.17, discussed in the abstract setting, we will
show that for any open bounded set N C|0,00) x R™ with Cy C N one has that
deg(T”,N,0) # 0. As usual, deg(¢,2,0) denotes the topological degree of a map
¢ with respect to 2 and 0 and it is always understood that it is well defined, in
particular that 0 ¢ ¢(99).

Let us argue by contradiction. Let O CJ]0,00) x R™ be an open bounded set
with C; C O and such that deg(IV,0,0) = 0. Let us introduce the following
notation:

O- ={(-1,&): (m,§ €0}, O'=0UV0_.

Since I' = T in ]0, 00) x R™, using Lemma 5.5 we deduce
deg(T’, Bt \ O',0) = (—1)"+1. (5.13)

Since the only critical points of I’ in BIT;‘H \ O are those in Cj and taking into
account that Cy consists of isolated points, we get

deg(I", B\ 0',0) = Y i(T",(0,¢))

£€Cr[k]
= Yo+ Y il (0,9).
£eCr[k],Ak(£)>0 £eCrlk],Ak(£)<0

Using Lemma 5.4 we infer
deg(M,BEH\ O 00= > ik, —- Y. i(k,9).
£eCr[k],Ak(£)>0 £eCrlk],Ak(£)<0
This and (5.13) yield
Y KO- Y iR =(1rt (514)
£€Crlk],Ak(£)>0 £€Cr[k],Ak(£)<0

On the other hand, from (k.2) it immediately follows that deg(k’, B}%,0) = (—1)"
and hence

Yok, = > .o+ > ik = (-1
£€Cr[k] £eCr[k],Ak(£)>0 £eCrk],Ak(£)<0
This and (5.14) imply
Z Z(k/7§) = (_1)717

£€Crlk],Ak(£)<0
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a contradiction to (5.13). This proves that, for any open bounded set N C]0, 00) x
R™ such that Cy C N, one has

deg(I", N, 0) # 0.

Now we can apply Theorem 2.17 yielding a critical point of I. and hence a solution
of (5.5). This completes the proof of Theorem 5.3. O
Remarks 5.6. (i) If uw € H is any (positive) solution of (5.5), then the Pohozaev
identity yields that [p, (k(z), z)u("*?/("=2dz = 0 (a similar result indeed holds
for the more general non-perturbative equation Au+ K (z)u("*t2)/("=2) = ). Thus
(k' (x), ) has to change sign. For example, if k is radial, then k cannot be monotone
on RT. Notice also that, if the only critical point of k is a maximum, say 0 € R",
with Ak(0) < 0, then }° coyp an()<o iK', @) = i(K',0) = (=1)", in contrast to
assumption (5.6).

(ii) For future references (see Section 7.1 later on) let us point out that Theorem
5.3 can also be proved when (k.1) is substituted by the following conditions:

(k.1') Ve Crlk] 38 €]1,N[and a; € C(R"), with >, a;(y) # 0 and such that

k(y) = k(z) + Y a;ly; — 2|7 + o(ly — 2/7) as y — @; and
(k.1”) there holds

> (k' x) # (—1)™.

z€Cr[k], 3 a;(2)<0
The proof is similar to the previous one. Actually, one shows that

deg(T", N, 0) = > i(K,z) — (=1)" #0.

z€Crlk], > a;(x)<0

Notice that, when 3 = 2, we have }; a; = 5Ak(z) and we recover Theorem 5.3.
O

5.2.3 The radial case

Here we will briefly discuss the case in which k(x) is radial: k(z) = E(\z\), for
some k : Rt — R. In this case it is possible to prove some different result, as the
following one, in which no assumption like (5.6) is made.

Theorem 5.7. Let k € L>(R™) and there exists a < n such that E(r)r”_l €
LY([1,4+00). Moreover, suppose that either

(a) k € C2(RT) and k(0)k"(0) > 0;

or, letting v := [° E(r)(1 + r2) """ Ldr, that
(b) v # 0 and v k(0) < 0.

Then (5.5) has a radial solution, provided || < 1.



68 Chapter 5. Problems with Critical Exponent

Proof. We work in H, = D2, the space of radial D}'?(R"™) functions. Now the
critical manifold is Z, = {u==2/2U(-/u) : p > 0} ~ R+, which is still non-
degenerate in H,. The finite-dimensional functional I" here becomes

L) = [ RO /e = [ R0 o
0 0
There holds

IS o
L) = [ EOT 6/t [ RT (/e

= &(r)

/r(l

" Ldr.

1
< cl,u_"/ E(r)yr™tdr —|—02/ﬂ_"/
0 1

Since o < n and E(r)r"‘l € LY([1,+00), it follows that

lim T, (p) = 0.
p—o0
Moreover, as before, ', can be extended to p = 0 by continuity setting I'.(0) =
aok(O), with ag > 0.
Now, let (a) hold. Then one has

I'(0)=0  I7(0)=ak"(0), a1 >0,

and the condition k(0)&”(0) > 0 implies that T, has a maximum (if k(0) > 0),
or a minimum (if %(0) < 0), at some i > 0. This allows us to use the abstract
results, yielding a radial solution of (5.5), for |¢] < 1.

As for the case (b), it suffices to remark that T'.(1) = [n(n — 2)]27. If v > 0
(resp. v < 0) then k(0) < 0 (resp. k(0) > 0) and, once more, I', has a maximum
(resp. a minimum) at some g > 0. O

5.3 Further existence results
In this section we will study the problem

—Au=un:+ ek(x)ul, u>0, ueH, (5.15)

where 1 < ¢ < Zig

Throughout the section we will assume that k # 0 and satisfies
(k.4) ke LYR™) N L>®R").
It is worth mentioning that here we will not make the sharpest assumptions in
order to avoid technicalities, the main purpose being to highlight the ideas of the
approach we use. For (further and) more general results as well as for more details,
we still refer to [14].
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If (k.4) holds then k € L*(R™), where s denotes the conjugate exponent of
(n_22)7(lq+1), and hence k|ul?T! € L'(R™) so that the perturbation G(u) is well

defined on H, see (5.3). Let us recall that the Euler functional I, = Iy — ql eG,

+1
see (5.2), is of class C? on H, see Remark 5.1.
Using the finite-dimensional reduction, we have to study the functional

D) = [ K@) )ds
R’VL
which becomes

Pne)=p [ kU (‘”” - f) dr =10 [ k(uy + U (y)dy,
R 1% Rn

where 0 = ("_2)2(q+1). Let us remark that n —60 > 0 iff ¢+ 1 < 2*. This fact allows
us to obtain results where, differently from the Yamabe-like equations discussed
in the preceding section, no assumption involving Ak is made.

First, let us show a couple of lemmas.

Lemma 5.8. One has that lim,, 4 || oo T'(p1, &) = 0.

Proof. We distinguish between the case p — 0 and g — p* > 0. In the former,
we take ¢ such that ", < ¢ < 2" and denote by 7 the conjugate exponent of
t/(g+1). Since t > ™, then U* € L}(R"), the Holder inequality yields

n—27
—0 T T t il?—f qjl
o<’ ([ war) ([ o (7€) ar)
< Clﬂn(q;rl) e

Since t < 2* we have that n(q:rl) — 6 > 0, and the conclusion follows.

Next, if g — p* > 0 (and hence |{] — o), we use the dominated convergence
theorem to infer that

T(, &) = =0 / k(a) U9t (‘T ; 5) da — 0.

Finally, if 4 — +o00 then we write

I'(u,€) =u"‘9/ k(py + U (y)dy

R

< Ut / k(uy + €)dy < u U521k 1.

Thus I'(u, §) — 0 in this case, too. This completes the proof. O



70 Chapter 5. Problems with Critical Exponent

Lemma 5.9. Suppose that one of the two following conditions is satisfied:

(k.5) g>1orgq=1andn>4;
(k6) [y k(z) £0.
Then T" # 0.

Proof. If n > 4, taking advantage of the fact that U1 € L}(R") for ¢ € [, Ztg)
we get

lim | k(py + U (y)dy = c2k(§), 2 = / U™ (y)dy.

H— R™ n
This shows that pf~"T'(u, &) — cok(€) as u — 0 and implies that T’ # 0 provided
k # 0. When ¢ > 1 and n = 2,3 we can use the Fourier analysis arguments
employed in the second part of Theorem 4.4 in Section 4.3. This proves the lemma
when (k.5) holds.

Next, we take £ = 0 and evaluate

lim k(x)UeH! (az) dr = Uq+1(0)/ k(z)dz.
p—0o0 Jpn W n
This implies that pT'(u, &) — UTT(0) [g. k(z)dz as p — oo and shows that
I' # 0, provided (k.6) holds. O

We are now in position to prove the main result of this section.

Theorem 5.10. Let (k.4) holds and suppose that either (k.5) or (k.6) are satisfied.
Then (5.15) has a solution, provided |e| < 1.

Proof. ¥rom T'(p, &) = p™=? [0, k(uy + U (y)dy and since n — 6 > 0 it im-
mediately follows that I'(0,£) = 0. This, jointly with Lemmas 5.8 and 5.9, implies
that T’ has a maximum or a minimum at some (fi,£), with & > 0 and I. has a
critical point u. close to zj ¢, hence a solution of (5.15). As anticipated in Remark
5.1 we need here to prove that when ¢ = 1 we still have that u. > 0. We follow
the arguments carried out in [63], pp. 1172-1173. From the equation we infer that

el = [ fw)sP do e [ ko), (5.16)

Let us set
[ull?* — & [gn k(z)u?dx

S =
T ouerut0  ([fo, w2 da)?/?

One has that lim._,o S = S, where S denotes the best Sobolev constant

S—  wf ]|
wEH, u#0 (fRn u2 dx)2/2"’
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and hence S. > § > 0 for ¢ small. From (5.16) we get

[ e de = s~ ¢ [ ko)(uo2do > 5. (/ . |<u5>iz*dx> 2/2*.

(5.17)
Notice that (uc)+ # 0 because ue ~ 2, . > 0. If, by contradiction, also (uc)- # 0
then (5.17) implies

/ |(ue)£|* da > S2/2.

It follows that
L(us)= (5 — ) (/ (us)fdx +/ (u5)2_d3:> >2(5 - 21*)5'?/2. (5.18)
On the other hand, we know that uc — 2 ¢ as € — 0 and this implies

Is(us) - Is(zﬁ,é) = (; - 21* )S;L/Qv

a contradiction with (5.18). This shows that u. > 0 and, by the maximum princi-
ple, we get that ue. > 0. The proof of Theorem 5.10 is now complete. O

Remarks 5.11.

(i) One can consider problems of the type —Au = unts 4—614:(:5)112tg +eh(z)ul.
In such a case one can prove the existence of (positive) solutions assuming
that h satisfies conditions like those made in this section, and assuming on
k conditions like the ones made in the previous section.

(ii) Dealing with (5.15) we can prove multiplicity results. For example, if k sat-
isfies (k.4) and (k.5) and if k changes sign, the preceding arguments show
that I' has a positive maximum and a negative minimum, yielding a pair of
positive solutions of (5.15). O

Bibliographical remarks

As for the subcritical case, one can use the concentration-compactness principle to
find positive solutions for equations like —Au = ku s + hu?, see the references in
the aforementioned books [52, 147], see also [1], [140]. Roughly, letting S denote the
best Sobolev constant, one shows that I. satisfies (PS). at any level ¢ < }lS"/ 2,
This method is also used in [37] where is proved that (using our notation) —Awu =
un'z + h(z)u has a positive solution in H provided h satisfies: (a) h(z) < 0, and
h(z) < —v < 0 in some ball; (b) h € L® for all s € (n/2 —6,n/2+ ), 6 > 0if
n>3,s€(n/2-463)if n=3; (c) |||~/ is sufficiently small.

For a review on problems like those discussed in this chapter we also refer to
the survey paper [16].



Chapter 6

The Yamabe Problem

This chapter is devoted to the study of the Yamabe problem. After recalling some
basic notions and facts, we apply the perturbative method to find multiplicity
results.

6.1 Basic notions and facts

In this section we recall some well-known concepts in Riemannian geometry. In
the presentation we will be as concise as possible, in order to arrive soon to the
Yamabe equation. We refer for example to [29, 93], for detailed derivations of the
geometric quantities, their motivation and applications.

Given a Riemannian manifold (M,g) of dimension n, let (U,n), U C M,
n: U — R", be a local coordinate system and let g;; denote the components of
the metric g. We also denote with g% the elements of the inverse matrix (g7 1);;,
and with dV, the volume element, which is given by

dV, = \/det g dz. (6.1)
The Christoffel symbols are given by

1
[Digr; + Djgri — Drgislg™

1o
Fij—2

while the Riemann curvature tensor, the Ricci tensor and the scalar curvature are
given respectively by
Ry = DYy = DT + T4, I T, 1%

im* jk — 13
) 6.2
Ryj =Ry Ry = Rijg". ©2)

Hereafter, we use the standard convention that repeated (upper and lower) in-
dices are summed over all their range (usually between 1 and n). For n > 3, the
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Weyl tensor Wiji is then defined as

1
Wijki = Rijia — . (Rikgji — Ragjr + Rjigir — Rjkgal)

o gk~ gg)
('I”L _ 1)(1’L _ 2) gjlgzk gjkgzl .

2

For a smooth function u the components of V u are
(Vou)' = " 9,,u. (6.3)
The Laplace-Beltrami operator, applied to a C? function u : M — R, is given by

Agu=g" (92, u—T} 0, u) = av,) s, (|dVy|g™* Dyu) . (6.4)
g

We say that the metrics g and g are conformally equivalent if there is a smooth
function p(z) > 0 such that § = pg. If n > 3, using the (convenient) notation
g = wnta g, the scalar curvature Ry of (M, §) is related to R, by the following
formula

(n—1)

n+2
—2cnAgu+ Ryu = Rgun-2; = 2(71 -2)

(6.5)
The structure of equation (6.5) is variational, and the presence of the exponent
ng makes the study of (6.5) a non-compact variational problem. This implies in
particular that the associated Palais-Smale sequences do not converge in general,
so the analytic study of (6.5) is rather difficult.

For the case n = 2, setting § = e2* g, the corresponding equation is
—Agu+ Ky =Kj e, (6.6)
where K, = Ry is the Gauss curvature. We note that the nonlinearity u — e?*

can be seen as the two-dimensional analogue of the critical growth for the case
n > 3.

6.1.1 The Yamabe problem

We recall the classical Uniformization Theorem, which asserts that every com-
pact two-dimensional surface can be conformally deformed in such a way that its
curvature becomes constant.

The prescription of the full curvature tensor in higher dimensions is not
expectable, since for n large this has a number of components of order n*. Hence,
working in the same conformal class, one can try to obtain this result for the
complete trace of the curvature tensor, namely the scalar curvature. Finding a
conformal metric with constant scalar curvature Ry € R on a Riemannian manifold
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(M,g), n> 3, is known as the Yamabe problem. Taking into account (6.5), this is
equivalent to finding solutions to the equation

—2c,Agu + Ryu = Ry ufﬁf%; u>0 on M. (6.7)

Yamabe, [146], was the first to raise the question of finding such metrics and tried
to solve problem (6.7) by using an approximation of the equation as

—2cp,Agu + Rgu = Rou?;  u >0, on M, (6.8)

for ¢ < "*2. It is well known that equation (6.8) admits indeed a regular solution
uq for ¢ subcritical, and Yamabe tried to prove that, when ¢ — ng, uq converge
to some solution of (6.7). Unfortunately his proof was not correct, since he could

not exclude that the limit of the u,’s is the trivial solution u = 0.
A first rigorous answer to the problem was given by N. Trudinger, [141]. Setting

UM,g = inf [ (IVgul?> + Ry u?) dV,
9=

) (6.9)
uw€H(M),u#0 (fM |u 2*dvg) 2%

this number turns out to be a conformal invariant of g, and the manifold (M, g)
is called of negative (resp. null and positive) type if parg < 0 (resp. if ppg =0
and parg > 0). Trudinger proved the Yamabe conjecture in the negative and in
the null case.

In the positive case, which is more difficult, a first improvement was obtained
by T. Aubin, [28], who showed that for every manifold of positive type there
holds piarg < pisn g,, Where gq is the standard metric of S™. Moreover, when
pM,g < fiSn.g,, the infimum in (6.9) is achieved, so there exists a solution of (6.7).
Through an accurate expansion, he proved also that when n > 6 and (M, g) is
non-locally conformally flat (namely when the Weyl tensor is not identically zero),
it is indeed pipsg < fign g,. This is shown by using appropriate test functions
which are highly concentrated at a point where the Weyl tensor does not vanish.
The proof of the Yamabe conjecture in the remaining cases, namely for (M, g)
locally conformally flat and for n = 3,4,5, is due to R. Schoen, [131]. In these
cases the local geometry of the manifold does not give sufficient information, and
to prove that pary < pusn 4, some global test functions is employed. These are
similar to Aubin’s functions near the concentration point, but away from it they
are substituted with the Green’s function of the conformal Laplacian (the linear
operator in (6.7)). A crucial role in this proof is played by the so-called Positive
Mass Theorem, see [134], arising in general relativity.

Being the existence part settled, one can ask for compactness or multiplicity
results. Regarding the first question, in [132] R. Schoen stated the following result,
giving the proof just for the locally conformally flat case.

Theorem 6.1. Let n > 3 and let (M, g) be a smooth compact n-dimensional man-
ifold. Then the set of solutions of (6.7) is bounded in C** norm.
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The proof has been recently given in some other cases by O. Druet, Li-Zhang
and Marques, and in particular they treat the cases of dimension less or equal to
7 and the case in which W, never vanishes on M in higher dimensions.

Regarding multiplicity of solutions, some examples are given in [132], where
the case of S(T) x S™ is considered. Here S*(T') is the one-dimensional circle of
radius T'. Using ODE analysis, it is proved that when 7" — +o0, then there is an
increasing number of solutions with large energy and large Morse index. Other
multiplicity results in the same spirit are given in [94] for the case of manifolds
possessing some isometry group or some m-fold covering. More results were also
obtained by D. Pollack in [123], where he showed that starting from any compact
manifold of positive type, there are arbitrarily small perturbations of the metric
for which the Yamabe problem possesses an arbitrarily large number of solutions.

We are going to obtain here the same result starting from the sphere S™ in
high dimensions and then, by improving the technique, to obtain non-compactness
of solutions in the case of some metrics of class C* on S™. The results we want to
discuss here are the following.

Theorem 6.2. Let n > 6 and £ > 2. Then there exists a family of smooth metrics
g. on S™, converging (in C(S™)) to gy as € — 0 such that, for every ¢ small
enough, problem (6.7) on (S™,g.) possesses at least £ solutions.

Theorem 6.3. Let k > 2 and n > 4k + 3. Then there exists a family of C* metrics
ge on S™, with [|g.—gollcr(sn)y — 0 ase — 0, which has the following property. For
every & small enough, problem (6.7) on (S™,g.) possesses a sequence of solutions
0% with ||vL|| oo (gny) — +00 as i — oo.

6.2 Some geometric preliminaries

In order to study problem (6.7), it is useful to understand how the Sobolev spaces
are affected by a conformal change of the metric. Let g = @niz g, ¢ > 0, and for
u € HY(M), define the function @ : M — R by

w(r) = o(z) " u(x). (6.10)

It is easy to check that the following relations hold

/ wdV, = | a@*dV;,  Yue HY(M); (6.11)
M M
/ (2¢nVgu - Vgv + Ry uv) dVj,
M (6.12)
= / (2¢n,Vu - Vav + Ry uv) dVy, Yu,v € HY(M).
M
The first equation is an easy consequence of the relation |dV,/| = ¢? |dV,|, while

the second can be achieved using (6.5) and integrating by parts.
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The map 7 will denote the stereographic projection
m:S"={z eR"": |z| =1} - R"

through the north pole Py of S™, Py = (0,...,0,1), where we identify R"™ with
{x ER" g, = O}. Letting (2/,zp41) € S™, &' = x1,...,x,, the explicit
expression of 7 is given by

1+,
W(x/axn-‘rl) = (.’I},, e +1) ; (x/7xn+1) € Sn7

|22
while for the inverse map there holds

2 |
7 x) = ( z el ) ; x € R"™.

14 |2]27 1+ |2]2

Py

anrl

Figure 6.1. The stereographic projection (z = 7(z', Tsn+1))

The stereographic projection 7 is a conformal map, namely the pull-back
(7=1)*g, of the standard metric on S™ is conformal to the standard metric dz? in
R™. Tt follows that

(771 go = zo(x) n "2 da?, (6.13)

and one can check with straightforward computations that the explicit expression
of zp is the following

1 n—2

20(x) = K, (1t o) s K =4 4 . (6.14)
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Since the scalar curvature of (S™, gy) is n(n— 1), which is also the scalar curvature
of the pull-back (R",(7~1)*g,), by equation (6.5) the function z, satisfies the

equation
n+2

—2c,Azg =n(n —1)z§ % in R™. (6.15)

Even if (R™, go) is not compact, it is possible to reason as in (6.10), (6.11), and to
prove that the stereographic projection 7 induces an isomorphism ¢ : H*(S™) —
D12(R"™) defined by

() (z) = zo(x)u(nt(2)), ue€ HY(S™), z€R™ (6.16)

In particular the following relations hold for every u,v € H'(S™)

{ 20 Jgn Viu - Vo = [o, (2c,Vgou - Vv +n(n — Luw) dVy,, 6.17)
6.17

Jon () v = [, u¥ "o,

Let R : S™ — S™ be the reflection through the hyperplane {z,+1 = 0}. Namely,
given (2’,x,41) € S™, one has R(x', xp+1) = (¢', —xn+1). In stereographic coor-
dinates, this map corresponds to the Kelvin transform

x x € R™. (6.18)

T

Given a function v : R” — R, we define v* : R — R in the following way

vﬁ(g;):v< ¥ ) z €R",

|z[?

and for u € DM2(R™), the function u* € D2(R") is defined as

1 x
(x) = , e R™.
w(@) |x|n—2“<z2) g

One can check that the following relations hold

L(R*v) = (w)*, ve HY(S™); (6.19)

Ko o= [ K@) v, KeL®R"),uveD?RY. (6.20)
Rn R™

For every u € DV2(R™), € R and € € R™ we set e = pu~ 2 u (“3;5) For the

specific case of u = zg we use the notation

Zue=p""2 2 (x;§> pER,EER (6.21)
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One can check with simple computations that

1% 3

pre T el (6.22)

(2,8)" = 2, ¢ with =

Consider now the sphere S™ endowed with a Riemannian metric g (which is not
necessarily the standard one). Next we describe how problem (6.7) (and also prob-
lem (7.1) below) can be reduced, with the stereographic projection, to a problems
in R”. The Euler functional J, : H'(S™) — R associated to (6.7) for the present
case is

1 - 1 *
Jy(v) :/S (cnvgu2 + 239u2 - "("2* )W )dvg, ve HY(S™). (6.23)

Using stereographic coordinates on S™, we define the metric g on R™ as

0i5(2) = 29 " (2) - g1, () (6.24)

and, associated to g, the following functional I, : DV?(R") — R

1 -1 x
Iy(u) = /]R (cnvgu|2 + 2Rgu2 _ nin )|u\2 > dvy, u € DV2(R™).

2*
(6.25)
Jg is related to I; by the equation

Jy(u) = I, (), u e H'(S™). (6.26)

Hence it is equivalent to study either the functional I, or the functional J,. We
also describe how the metric g in R™ given by (6.24) changes when g is transformed
into R*g. Letting g denote the pull-back of g through R, its transposition on R"

is given by
_ 4

gii(@) ==z "2 (@) (gr)is(2),  zERT, (6.27)

where

1
Z o% (@) d; daj = Gyydeida + Y (g” ( ) - 5ij)

ij

i (doy = 20 2w T () 235 D midr) o
|z[? ’ ||
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6.3 First multiplicity results

In this section we prove Theorem 6.2. We consider a metric ¢ = g. = go+ch on R”
which is close to the standard one, where h = (h;;) is some symmetric bilinear form
with compact support. Working in stereographic coordinates and using (6.24), we
obtain the corresponding metric g on S™. Therefore we are reduced to find solutions
of the following problem

n+2
-2

—2cpAg.u+ Ry, u =n(n—1ur in R™. (6.29)

Solutions of (6.29) can be found as critical points of the functional I, = I,_ defined
in (6.25). We show that this case requires the specialized setting of Theorem 2.20,
since the first term in the expansion of I,_ in ¢ vanishes identically, see Proposition
6.6. Some computations here will be sketchy, hence we often refer to [19], or to
[109).

6.3.1 Expansions of the functionals

In this subsection we perform the expansion in ¢ of the functional I, : D12(R") —
R associated to the metric g = g. = go +ch. We recall that the bilinear form h has
compact support in R™. We have first the following expansion in ¢ of the scalar
curvature.

Lemma 6.4. If g. = go + €h, and if Ry, denotes the scalar curvature of g, then
one has

Ry(z) = e Ri(x) + €2 Ry(z) + o(€?),

where
Ry =Y D}hiy — Atr b (6.30)
,J
and
3
Ry = =2 kzl hijlehlj + kzl hijl%hkj + kZ:l hijJQ'/ghll + 4 kZ:l thﬂthﬂ
Js Js Js s

1 1
- ;; DihjiDihjr + kzl DihjiDjhgy, — A ;; DihuD,jhyy, — ) kzl DjhypDyihjy.
5Ty 5T 5Ty 5T

Proof. Writing g=' = I + A + €2 B, from the relation

(I4+eh)(I+eA+e?B) =1+ o(?),
we obtain immediately

(gs)ij = 62']' — €hij + 62 Z hishsj~ (631)
Then the conclusion follows from the expression of the Christoffel symbols and
(6.2). O

In the sequel all the integrals are understood to be on R™ unless specified.
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Lemma 6.5. If g. = go + ch, then one has
I.(u) = Io(u) + € Gy (u) + € Go(u) + o(e?), (6.32)

where

_ /|Vu|2dx _nin

1
Gl(u) = / ( — Cp, Z hijDﬂLDjU + 2R1u2

(2]

-1 A\ 1
+ <Cn|Vu|2 _nln . )\u|2 > 5 trh) dz, (6.34)

dx; (6.33)

2

:/ anhlhl]DuDu+ Rou?

1,5,1
-1 . 1 1
+ <Cn|Vu|2 "("2* ) 2 ) (S(tr h)? — 4tr(h2)>
1
2

trh Rlu —cn Z hijDiuDju | | dz. (6.35)

(2%}

Proof. First we expand in powers of & the term [V, ul?, which is given by [V, ul* =
5.:(9e)¥ DsuDju. Using (6.31) we obtain

Vy.ul? = |Vul]* —¢ Z hi;DiuDju + €* Z hihy; DiuDju + o(€?). (6.36)

0,5 1,5,

In order to evaluate the volume element dV, = |g.|'/?dz, let us expand first |g.|
in power series. Consider the determinant of the matrix

1+4+¢ehn ehiz
Eh21 1 +€h22

Its linear part in ¢ is tr &, while its quadratic part is } (Z#j hiihj; =2 i 4; hijhji),
which coincides with } ((tr h)? — tr(h?)). Then we obtain

1 1
gz =1+ ; trh 4 &2 (S(tr h)? — A tr(hQ)) + o(?). (6.37)
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Now, using (6.36) and (6.37), we can write
I(u) = / (cn (|Vu|2 —£Y hiDiuDju+e*y hﬂhljDiuDju)
ij 3,5,
1 -1 x
+ 2(5R1 + 52R2)u2 — n(nQ* )\u|2 >

X (1 + ; trh +e? @(tr h)? — itr(h2)>) dz + o(e?).

Taking the coefficients of ¢ and €2 the conclusion follows. O

6.3.2 The finite-dimensional functional
We start by studying the perturbation term Gj.

Proposition 6.6. The functional G1 given in (6.34) satisfies
Gi(z) =0, for every z € Z.
Proof. From the expression of z in (6.14) we deduce

_n_ Kn
Dizpg=(2—-n)u" 27" n (@i = &); (6.38)

L L —&—n(n—?),u_g_?’ﬁn(xi — &)z — &)
(1 ¥

2\ 2
y—§ 1
all (1]

25 .
K20

2 n—1
y—§
(1+\ ; \)

Using (6.30) and integrating by parts, we obtain

Dijzue = (2 —n)u

Therefore

—n

n
ZueDijzue = (2 —n)p + . _oDizueDizue.  (6.40)

/Rl(x)zig(x)dx = /Z hij(x) (2Dizu,eDjzpe + 22,6 D7 206 )
6,3

+ /tr h(x) (QZ#éAZ#f - Q\Vz%dz) dx.
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From the fact that zg solves (6.15), and from (6.40) we deduce the equality

/Rl(x)zi)g(x)dx
_ —n,2s
N /th‘(w) (2 (1 ol 2) DizueDjzue + PG Hn(;”)dx
— n —
i

2\ n—1
y—¢§
(1)
n(n—1) o 2
+/trh(a:) < . e —2|Vz,¢l” ) de,
which inserted in (6.34) yields
Gi(zue)

1 2 n—2 * 2(2—')74);‘4}%#_”
= 2/trh<n_2|v,zmg|2+ 9 |Zu,£|2 + dzx

2\ n—1
y—¢§
(1+175])
_ 2, —n _ 2
zl/trh(n 2)“"”2 n<2‘y ¢ ))daj:O.
? <1+‘y‘5‘> g
"

2
et =1 1+’y_f
I
This concludes the proof. (|

2n(n —1)

According to Proposition 6.6 we need to apply Theorem 2.20 with the functional
' given in (2.27). In this specific case we have

B €) = Galee) +

where w), ¢ = lime_0e 7 w, ¢, see Lemma 2.18.

(Gﬁ(zu7§)|w#,5), (6.41)

In order to find critical points of T it is convenient to study its behavior as
@ — 0 and as p+ [£] — oo.

Proposition 6.7. I:(,u7 &) — 0 as u— 0. Hence T can be extended continuously to
the hyperplane {(u,€) | u = 0} by setting

r'0,¢) = 0. (6.42)
In the sequel, this extension will be still denoted by L. Moreover there holds
(1, €) — 0, as pi+ [§] — +oo. (6.43)

Proof. We omit some of the details, for which we refer to [19]. First of all, by
a change of variables and some direct computation, one finds the limit of G5 as
i — 0T is given by

lim+ Go(zpe) = K2(n —1)*(n — 2) <tr(h2) - ;(tr h)Q) (5)/ 2 2y dz.

pu—0
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For the second term in T' we have (G (2,.¢), @) = ay + ag, where

1 *
o = / 9 trh (20n<Vzu7§, V,e) —n(n— 1)z, —1@%) dz:

g = / —2cp, Z hijDingDj’LDM)g + Rzw | dx.
ij

*

It is convenient to introduce w*(y) = wy, (y) by setting

w(y) = p"2 By ey + E).

Then, a change of variable yields

a = / ; trh(py + €) (20n<Vzo(y), Vw* (y)) — n(n — 1)\z0(y)\2*-1w*(y)) dy

ag = / ~2¢0 ) hij(py + &) Dizo(y)Djw*(y) | dy (6.45)

ij

+ 1’ / R(py + €)z0(y)w* (y)dy.

Using the fact that L., ,w,¢ = —G}(z.,¢), we obtain a linear elliptic partial
differential equation for w,, ¢, which is solved explicitly in [19], yielding

whe(y) = wo(y) as p— 07, (6.46)

. ;o (n—2)2

where, setting c,, = cpkn An—1)
DS (6.47)
wo(y) = — "o, hiky; Y- 6.47

(1 +[yP)? 9%

Then, from (6.46) and some elementary computations one finds

1 .
lim a; = 2trh(§)/ <2cn<Vzo,Vw*> —n(n—1)|z)? _1w*> dy = 0;

p—07F
ho ' : g (1 [2f2)

The last two equations, together with (6.44), imply I'(x, &) — 0 as p — 0.
We now prove (6.43). Let g? be the metric given by (6.28), and consider the
corresponding functional 1 gt Similarly, let us consider G? (u), i = 1,2, etc. Letting

) = laf = (5 )
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it is easy to check from (6.26) that I (u) = I,(u*), G%(u) = Gy(u*), and T*(2) =
I'(z*). This in terms of coordinates (u, &) becomes
= = I 3
T(p, &) =T* ( : > :
W) =00 e i el
Finally one finds

lim  T'(g,¢&) =T%0,0) =0,
i T, €) =T7(0,0)

proving (6.43). O

Given a metric g of the form g. = go+eh (h with compact support), let W, denote
the corresponding Weyl tensor. Expanding W, with respect to € one finds

W, =Wy, + o(e), (6.48)

where Wp,(z) is a tensor depending only on the second derivatives D?,h;;j(z). In
[19], see also [109], it is proved the following result.

Proposition 6.8. For n > 6, and for g. = go + €h there holds

or 82T T
0,¢) =0, 0,¢) =0, 0,€) =0, V¢ € R™; 6.49
0, 00 =0 L 0.0=0. (0.0 ; (6.49)
19T .
nou 09 =~ _Zklci,j,k,lwww<g)|2 v € R™, (6.50)
0,7,k
where ¢; j 1 > 0. Furthermore, for n =6 one has lim,,_o+ f([jf) = —oo whenever
W(E) # 0.
It is worth mentioning that the above equations (6.49), (6.50) are obtained eval-
uating limits of the form lim,_.¢ Fgﬁ,’f), for u =1,...,4. These do not require to

prove higher differentiability properties of w, ¢ with respect to u, but only the
property (6.46).

Remarks 6.9. (i) The condition W}, # 0 is generic.

(ii) Suppose n > 6 and that W, # 0. Then I achieves a minimum and hence
we recover existence of the Yamabe problem for & small.

(iii) The fact the I has a minimum when the Weyl tensor does not vanish
can be related to the existence result of Aubin, which relies on minimizing the
Sobolev quotient
_ fM en|Vgul? + ;Rgu2

[

Q(u)

2
2*
This can be done by testing the quotient on an appropriate function v € H*(M)
which is peaked near a point where the Weyl tensor does not vanish. (Il
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6.3.3 Proof of Theorem 6.2
We consider in R™ a metric of the form
ge = go + eh(x) + eh(x — x0),

where, as before, h is a symmetric bilinear form with compact support, and zy €
R™ is a vector with large modulus.

We denote by G7°,G5°, I'*0, the functionals obtained from the translated
perturbation h(- — x), and by G7%, etc., those obtained from the perturbation
h(-) + h(- — zo). It is clear that

G (2pe) = Gi(zpe—ao);  1=1,2; (6.51)

oo (:u7 5) = f(,lhf - :L‘o). (652)

If |zo| is large enough, the supports of h and h(- —xg) are disjoint, hence it follows
that
Gi(zne) = Gilzpe) + G (Bpg—ano); =12 (6.53)

the same is true for VG;. We need now the following result.

Lemma 6.10. If Gy and G7° are as above, then there holds (Cy,Cs >0)
IVG1()|, IVGT°(2)|| = 0 as u — +o0, uniformly in &. (6.54)

Proof. We denote by A the support of A(-). By (6.34) there holds
|(VG1(Z),’U)| = ‘—2Cn/ Zh”DZZDﬂ)—l-/ Rizv
AT A

1 *
+/ trh (2cn<Vz, Vo) — n(n — 1)|z? _1”>
42

SClllhllooHVZHoo/ \Vv|+||R1||oon||oo/ |v]
A A

+ Callllc (192l [ 1901+ 12027 [ )
A A

Using the Holder and the Sobolev inequalities we obtain
(VG1(2), )] < Cs (I92lloe + 12lloc + 12157 Tl

for some C5 > 0. Since [|Vz||co, [|2]|lcc — 0 when u — +o0, we find immediately
IVG1(z)|| — 0. The same holds for VG7°(z). O

In order to find a similar expression for f, the following lemma is in order.
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Lemma 6.11. Given M > 0, there holds
IVG1 ()| [[VGT* (2)]l = 0, as |xo] — oo, (6.55)

uniformly in (p, &), p < M.
Proof. We have the estimate

[(VGi(2),0)] SCthHoo/A\VzHWI+IIRlHoo/AIUHZ\+01Hh\|oo/A\VzHVv|

+Callhle [ 127l
A

Using again the Holder and the Sobolev inequalities, we find |[(VG1(z),v)| <
Co|lz|l ||v]| for some fixed Co > 0, so it is sufficient to show that

min {[|[VG1(2)[], [VGT(2)[I} — 0 as [zo| — oo, (6.56)

uniformly in (g, &), p < M. Looking at the expression of z, ¢ we deduce that for
every 1 > 0 there exists R > 0 such that

V@) 0@ <, for fa] = Ry < M. (6.57)

Using the change of variables y = z — £, we find

VG = 200 [ S (Do) Dy + )y

+ / Ri(y + €)z0(y)o(y + €)dy
A—-¢
1
) /A ) (260(2u0(1), To(v))

—n(n— 1)Izu,o(y)|2*_2zu,o(y)v(y))dy~

If dist(§, A) > R and if p < M then, using (6.57), the Holder and the Sobolev
inequalities we get
(VG1(2),0)] < Cs(n +n* ~H)]vll,

for some C3 > 0. Since the above estimate is uniform in v, it follows that
IVG1(2)|| < C3(n+n* 1), for dist(¢,A) > R, p < M,
as well as
VG (2)|] < Ca(n+n>" 1), for dist(€ —xp,A) > R, u < M.

When |z¢| is large enough, it is always dist(£, A) > R or dist({ — xg, A) > R, and
hence
min{[|VG1(2)|, [VGT*(2) [} < Ca(n +n* 7).

By the arbitrarity of 7, (6.56) follows. O
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Using the boundedness of L,, Lemma 6.10 and Lemma 6.11 we finally deduce the
decay
(L,VG1(2),VGT°(2)) = 0 as |xo| — o0, (6.58)

uniformly for z € Z. Finally, from (6.51), (6.53) and (6.58) we infer this charac-
terization of the finite-dimensional functional I'*.

Lemma 6.12. In the above notation there holds

I (1,€) = D1 €) + T, € = o) + (1),
where o(1) — 0 as |zg| — oo, uniformly in (u,§).

Proof of Theorem 6.2. From Remark 6.9 it follows that I achieves a minimum at
some point (p1,&1). On the other hand from (6.52) we know that I'*® achieves
a minimum at (u1,&1 + xp). From Lemma 6.12 we infer that for |zo| sufficiently
large there exists § > 0 such that the sublevel {f* < —4} is disconnected, namely
{f* < =0} = A1 U Ay with A1 N Ay = (). Applying the abstract result of Theorem
2.20, it follows that the two distinct minima of r* give rise to two distinct solutions
of (6.29). This concludes the proof. O

6.4 Existence of infinitely-many solutions

This section is devoted to the proof of Theorem 6.3, which involves several technical
lemmas. Therefore, for the reader’s convenience, we will indicate the main steps
of the arguments, postponing the technical details to an appendix.

We will consider metrics on R™ possessing infinitely many bumps. In order to
describe precisely such metrics we introduce some notation. Let 7 : R® — R be
a C*° symmetric bilinear form with compact support, satisfying W. # 0, see
formula (6.48). For A > 0, let H4 C S,, be defined by

Ha= {h(m) :ZUﬂ'(IL’—.’L‘i), |z — ;]| 24diam(supp7),i7éj,z |oi] 2 SA}.
i€N i
(6.59)

We will consider the following class of metrics on R™ with components

9ij = (9e)ij = 0ij + ehij, (6.60)

where ¢ is a small parameter and h = (h;;) € Ha.

As before, through the Lyapunov-Schmidt method, we will reduce problem
(6.7) to a finite-dimensional one. As in Lemma 2.21, we need to find results that
holds true uniformly for h € H 4. For the reader’s convenience, we restate that
lemma in the proposition below. For brevity, we denote by 2 € (D%?(R"))"+!
an orthonormal (n + 1)-tuple in T.Z = span{D,z, D¢, z, ..., D¢, z}. Precisely, we
have
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Proposition 6.13. Let n > 7. Given A > 0, there exist €9, C > 0, such that for
every h € Ha there is a Cl-function w(e, z) which satisfies the following properties
(i) w(e,2) is orthogonal to T.Z Nz € Z, i.e. (w,2)=0;
(i) IL(z+w(e, 2) €T.Z VzeZ;
(iii) |lw(e, 2)|| < Cle] Vze Z.
From (i)-(ii) it follows that
(iv) the manifold Z. = {z +w(e,z) | z € Z} is a natural constraint for I..

The proof of the above result can be found in Appendix 6.5. Although the idea
is quite similar to the proof of Lemma 2.21, we carry out the details because the
functional I, is not of the form Iy + €G, as in Section 2.2.5.

By Proposition 6.13-(iv) problem (6.29) is solved if one can find critical points
of I.|z.. This is done by expanding the finite-dimensional functional in powers of
¢ as stated in (6.62) below.

First, it is possible to show (see the appendix) that

w(e,2) = —eL:G(2) + O (|e] 5253) . (6.61)

The preceding equation is in the spirit of Lemma 2.18, but with a quantitative
estimate in € on the error term. Using (6.61) one can prove, see the appendix, that

I (26 + we(2pe)) = bo + Ezf(%g) + 0(52)7 (6.62)

where T' : Ry x R® — R is defined in (6.41). The new feature of this formula is
that it holds uniformly in 2, ¢ € Z and in h € H4.
We consider on R™ metrics g as in (6.60) with h of the form

h(z) = oir(z — ;). (6.63)

ieN

Since these metrics possess infinitely many bumps, from the analysis of the previous
section we expect that the function I.|z. inherits infinitely many local minima
when the points z; are sufficiently far away one from each other. On the other
hand, we also need to choose the o;’s appropriately in order that the metric g.,
transposed on S, has the desired regularity. This will be shown at the end of the
next subsection.

Let I! be the Euler functional corresponding to the metric g (x) = gi(z) =
d+eo; 7(x—x;). Since o; 7(- —x;) € Ha, the construction of Proposition 6.13 can
be performed for I? as well. We denote by Z = {z+w! | z € Z} the corresponding
natural constraint. We will often set for brevity

A; = supp 7(- — z;); 2l =z +wl.
Let I'™ be the function as in Lemma 2.19 associated to the metric 6(z) + € 7(z).
By Proposition 6.7, rm possesses some negative minimum and tends to zero at the
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boundary of Ry x R™. Hence we can find a compact set JC of Ry x R™ such that
~ 1 =~
yeRL XR": T7(y) < lenI‘T Cc K.

In the following this compact set I will be kept fixed.

Next, we need to estimate the difference between w. and w?; precisely one has

Lemma 6.14. There exist C > 0, €1 > 0 such that for |e| < 1 there holds
lwe — wl|| < CIIL(z + wl) — (1) (z + wi) . (6.64)

Furthermore, the right-hand side of (6.64) can be estimated in the following way:

Lemma 6.15. There exist C > 0, L1 > 0 such that, if |x;, — z;| > L1 for alli # iy,
then

g

1L (e + i) = (I2) (z0e + w)| < Clel i — (6.65)

)
T n—2
iio ‘o

for every (u, &) € (0,24,) + K.

We finally need to compare I.|z_ with the reduced functional I z;, corresponding
to the one-bump metrics.

Proposition 6.16. Define
Qio = Ic (2,6 +we) — I (zue + wl).

Then, if |xi, — x;| > Ly for all i # io, for all (1, &) € (0,24,) + K and for all
le| < &1 there holds

Qul=cr(> L) (6.66)

|y — @y |
i#£i0 to

6.4.1 Proof of Theorem 6.3 completed

Fix a € R" with |a] = 1, and let h be of the form (6.63) with o; = i~# and
z; = Di%a. We choose

CO a—(4/€+1)

D= |€|1/(n_2); a >4k +1; 2ak < B < 2ak + 9 , (6.67)

where Cj is a constant to be fixed later. With the above choice of (¢;); there holds
;:Of |04|"/? < +00, since 8> 1 > 2. Since also o > 1, we have inf;z; [z; —2;| > 4
diam(supp 7) for 4, j large enough. Hence, if we take o; = 0 for ¢ sufficiently small,

then h belongs to Ha.
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From the expansion (6.62) we know that

I0(2l0) = by + 27 TT0 7700 (0, €) + 0(e%07), 20 = 2 + W,

and so I°|zi, attains an absolute minimum at a point z2° = 2, tw? with
&

(71,€) € (0,23,) + K. Moreover there exists a smooth open set U C K such that
for o;, sufficiently small

(Mgie% I (2, +w) — I0(Z0) > d o2e%  dy =|minI7|. (6.68)

We assume 49 to be so large that min;,, |z, — ;| > L1, so (6.66) holds. Hence

we have that " )
C’ € "
|Q20‘ — (n—2) (Z |Za_@'004‘n> .

By elementary arguments, see the appendlx, one finds that

1 ,
Z i — zal" T a0’ o = +00. (6.69)
1o 0

Thus, for iy sufficiently large there holds

Cle] 1
Qiol < ) D=2 (6.70)
By our choice of o; and by (6.68), in order to find for £ small a minimum of I, |z,
near z%°, it is sufficient that

1.
1Qi,| < Sdeo 28)¢)2. (6.71)

Taking into account (6.70), inequality (6.71) is satisfied, for i¢ large enough, when
D= |€‘1/CZ?L,2) , Cy is sufficiently large, and

(a — 1)(n —2) > 26. (6.72)

We have proved that if (6.72) holds, then for every iy large enough and every e
small enough I (2, ¢ +w.) attains a minimum (f,, &,) € (0,2;,)+ K. Hence there
are infinitely many distinct solutions v} of (6.29). By the correspondence between
(R™, g) and (S™, g.), the existence of infinitely-many solutions of (6.7) follows.

Now we want to check the regularity of g, on S™. Clearly g, is of class C*°
on S™\ Pn. Moreover, the regularity of g, at Py is the same as that of (g.)r at
the south pole Ps and so, recalling formula (6.27), it is the same of g% at 0 € R™.

From equation (6.28), it follows that the functions g@.(x) are of the form

]

=S (5) () w) e
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where A;j; are smooth angular functions. Set N? = ||(g2)* — 6||c+. Since (g2)* — &
has support in A* := {.’L‘ eR™: f. € Ai}, and since diam(A?) ~ |x;|72, one can

easily check from (6.73) that N! can be estimated by
N? < Clelloiljs|?F < Ole|t w2 q20k=0,

Let 957 ; be the metric constituted by the first j bumps of g¢. Hence, since all the
bumps of gg have disjoint support, there holds

. _ 2k . _ .
||g£7j _gg7l||ck(Rn) < sup N.< C’|zs|1 n-z  gup 2ok 8, j<l. (6.74)
i=j 41,0 i=j 41,

So, if 2ak — 3 < 0, the sequence ggyj is Cauchy in C*(By), and hence g, is also of
class C*. The two inequalities we are requiring, namely (6.72) and

8 > 2ak,

are satisfied provided n > 4k + 3 by our choices in (6.67). This proves that g, is of
class C* on S™. Moreover, from n > 4k + 3 it also follows 1 — n2_k2 > 0, and hence
by (6.74) he have ||g. — gollcx — 0 when € — 0.

Since the solutions ul of (6.29) are close in DV?(R") to some z; = with

(7ii, &) € (0,2;)+K, the solutions v = ¢t~ u’ of (6.7) on S™ are close in H*(S™) to
L_lzﬁi)gi. From the fact that the functions L_lzﬁi@ blow-up at Py as i — +00, one
can deduce that [|v%]|pe(gn) — 400 as i — 40c0. Standard regularity arguments,
see [49], imply that the weak solutions v’ are indeed of class C* on S™. From the
fact that ||vi — L_lzﬁi,gi | 1 (s is small and from the maximum principle, it is also
easy to check that the solutions we find are positive (see the previous chapters).
This concludes the proof.

Remark 6.17. It is an open problem to determine the sharpness of the condition
n > 4k 4+ 3 to obtain non-compactness of solutions. O

6.5 Appendix

In this section we collect the proofs of several technical results stated throughout the
previous one. First we recall the following elementary inequalities.

Lemma 6.18. Let n > 3 and p > 0. There exists C' > 0 such that for all a,b € R
la+b" < C-(la]” +[b"); (6.75)

[la -+ —la”" = b

< (1l fol + lal - b ) 5 (6.76)

o+ 2@ +0) = 0l = ] < O a7+l B (677)
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where ¢ = 2(:(22_):) , and r = (";;2) . Note that r + q = 2* — 1. Moreover, forn > 6

la+0 2= ja 2| <P, VabeR. (6.78)

We also need the following estimates.

Lemma 6.19. Let n > 7, let u,w € DV2(R™), and let z € Z. Then, in the above notation,
there exists C > 0 such that the following inequalities hold

I.(w) = Io(u) = £G1 (u) — £*Ga(w) = o) ([jull® + lluf*") (6.79)
|72u) = To(w) = G )| < € (Jlul + ull +2 ) ; (6.80)
II2(2)|| < Clel; (6.81)

172/(w) = B ()] < Clel (1 + Jull "2 ) 5 (6.82)
e+ w) = L(@)]] < Clle]l (14 lull 72 + o] 772 ) (6.83)
172+ w) = BL )| < Cllwll (1 + llull =2 + [lwl| "2 ) ; (6.84)
|G (u+ w) = Gi(w)]| < Clle] (14 ull =2 + ] »=2 ) (6.85)
172 (w+w) = I ()| < Clw]| =2, (6.86)

uniformly in u,w and z.

Proof. We start proving (6.86). Given two functions v1,vs € D"?(R™), there holds
(I (u + w) = IZ (u)) oy, 2]

=n(n—1)(2" 1) |/(\u+ w|? 72 = [u ") viv2dV,

<n(n-12*=1)(1+0( ‘/H“"’w‘z 2y 2 _2‘\v1\|v2\dx

Using the Holder and the Sobolev inequalities we get

2
[t w2 = \mnmdmsc(/Hu+w|2“2—\u|2“2 ) Jon e

For n > 6, using the inequality (6.78) with a = u(z), b = w(x), we deduce that

2 2% -2
= ul

Hu—i—w|2*7 < C|w|

o (6.86) holds.
We now prove (6.82). Taking into account formulas (6.37) and (6.3), we have that

Ig(u) [Ul ) ’UQ}

- / (wl Vs (1 + O(€)) + Ryviva — n(n — 1)(2° — 1)\u|2**2m2) dz(1+ 0(e)).
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From the Holder and the Sobolev inequalities, and using the fact that the support of Ry
is compact, it follows that

(I (w) = I§ ()[or, va] = O(e) (14 O() + ull =2 ) fJun 2]

and (6.82) is proved.
Let us turn to (6.84). For every v € D"?(R™) there holds

(I (u + w) — I(u), v) (6.87)
= / (QCHng - Vgv + Rgwo + |u+ w|* "2 (u+ w)v — n(n — 1)|u\2*72uv) dVy.
This implies that
12 (u +w) = L(u)]| < O)[Jw]|(1 + O(e))

+ (/ ’|u+w|2*_2(u+w) — |u\2*_2u

n+2

"%) " (14 0()).

Since .

lu+w* "2(u+w) — |u\2*72u = (2" — 1)/ |u + sw\2*72w ds,
0

setting y(z) = (2°—1) fol lu+sw|?” ~2ds, we have |u+w[? ~2(u+w)—|u|*” ~2u = y(z)w(z).
Hence there holds

n+2 2
g « w n2n 2n n\ n
([l w2t w) = =2 ") <l (f112) "

n

N

Using again the Holder inequality, we have that |y| < (‘fol lu + sw|? ds) . So from the

Fubini Theorem we deduce
1
dr = / (/ lu + sw|? dx) ds < sup |lu+ sw||3«.
0 s€(0,1]

1
/|y|2dx§/‘/ lu + sw|* ds
0

By (6.75) it turns out that

2
: n\ " 4 4 4
( / W) < sup flu+tswl| @t < Ol @ + Juwl e 2).
s€(0,1]

In conclusion we obtain (6.84).
We now prove (6.80). Given v € E, we have

(IL(u),v) = / (2cnvgu - Vgv + Rguv — n(n — 1)\u|2*_2uv) dVy.
Taking into account formulas (6.3) and (6.37), we deduce

(IL(u),v) = / (ZCnVu - Vv — EZ hi; DiuDjv + O(e)|Vu||Vv| + eRiuv

ij

+ O |u||v] — n(n — 1)\u|2*72uv) X (1 + ;Etr h+ 0(52)) dz.
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Expanding the last expression in €, up to order 0(52), and using again the standard
inequalities (we recall that the support of Ry is compact), we obtain (6.80). Formulas
(6.79), (6.81), (6.83) and (6.85) can be obtained with similar procedures. O

Next we give the proof of Proposition 6.13.
Proof. The function w can be found as a zero of the map
H:ZxD"“?R") x R""" xR — D"?*(R™) x R"™*
defined by
H(z,w,a,e) = (
Since H(z,0,0,0) = 0 we have that

)

H(Z7wvav 6) =0 = 8(?0‘[:]&) |(z,0,0,0) [w7a} +R(Z,'I_U,Oz,6) = 07
where R(z,w, a,¢) = H(z,w, a,€)— a(iHa) |(2,0,0,0)[w, a]. Using Lemma 5.2, one can easily

check that a(iHa) |(2,0,0,0) is uniformly invertible, and hence
H(z,w,o,e) =0 & (w, ) = F. c(w,a),

where
oOH

—1

Fre(w,a) = — (8(10,(1) (2,0,0, 0)) R(z,w,a,¢€).
We will show that, for p and e sufficiently small, F, .(w, ) is a contraction in some set
B, = {(w, ) € D**(R™)xR"™* : |Jw|+|a| < p}. For this purpose, it is sufficient to show
that there exists C' > 0 such that for every (w, @), (w’,a’) with ||(w, )|, ||[(w’, &)|| < p
small enough there holds

|Fecw,)l] < C(Je] + pm 1),

inf1, 4 (6.88)
1Bz e, 0) = Frc(w, @)l] < C(Jel + 021 (w0, 0) = (o))
The system (6.88) is equivalent to the following two inequalities
Iz +w) = I () [wlll < C(Je] + o720 (6.89)

! ! / " / min{1, 4 /
(2 (zw) =I5 () [w]) = (L w) = I (D) DI < C(el+p™ "2 [(w, @)= (', )]
(6.90)
We now prove (6.89). Using formulas (6.81) and (6.82) we have, since ||z|| is bounded
Iz +w) = ()] = (IL(z 4+ w) = 1L(2) = I (2)[w]) + 1) + (1) = 16(2) ) ]
1
- / (12(2 + sw) = I2(2) ) wlds + O(e) + O(e) ]|
0
Hence, using (6.86), since ||z|| and ||w|| are uniformly bounded, we deduce that

/ " min{2, *1t2 min{2. "2
V2= + w) = I @l < Cllel + ™55 4 el wl) < O (Je] + pm 225,
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and (6.89) is proved. We turn now to (6.90). There holds
II2(2 +w) — IL(z +w') — I (2)[w — w']]|
1
/ <I!(z + w4+ s(w —w)) — I(')’(z)) [w — w]ds
0

sup 112 (2 + w + s(w’ = w)) = I (2) ]| — w].
s€|0,

IA

Using again formulas (6.82), (6.86) and (6.86) we have that
12z 4w+ s(w = w')) = ()] < O] + p" "> 5520),

. n+2 4

hence (6.90) is also satisfied. By (6.88), if C(|e|+ p™"{*n=2}) < p and if C(le|+pn-2) <
1, then F..(w,a) is a contraction in B,. These inequalities hold true, for example,
choosing p = 2Cle|, for |e| < go with ¢ sufficiently small. Hence we find a unique
solution ||(we, ac)|| < 2Ce]. O

We now prove (6.61).
Proof. We can write I (z +w.) = 81 + B2 + B + (I§(2)[we] + eG1(z)) where

B = Lo+ we) — To(z 4 we) — e (= + ),
B2 = I(/)(Z +we) — I(I)I(Z)[ws];
B3 = eGi(z + we) — eGi(2).

From (6.80), since ||z + we|| is uniformly bounded, we have |81 || = O(e?). Moreover we
can write

1
oo = [ UG+ sw0) ~ F()lwilds,
0
(n+2)
so (6.86) implies ||B2|| = O (\5|(“*2>). From (6.85), since ||w:|| < Clel, it follows that
(n+2)
also ||3s]| = O(£?). Hence we deduce that 81 + 32 + 35 = O (|a\ (n=2) ) . Thus the relation
(n+2)
I(2+w.) = a.Z can be written as I{ (2)[w:] +eG1(z) + O (|E\ (n=2) ) = a.2. Projecting
this equation onto (7,Z)* and applying the operator L, we obtain (6.61). O

The next one is the proof of (6.62).

Proof. We can write I.(z + we) as Ie(z + we) = 1 + 72 + v3, where
n=1I(2), m=LEw], = Ie(we +2) — I(2) = I(2)[we]-
By (6.79), since G1|z = 0, we deduce that
1 = Io(2) + eG1(2) + €2Ga(z) + 0(?) = by + £2Ga(2) + o(e?).

Turning to 2, from (6.80), (6.61) and from Ij(z) = 0 we obtain

12 = (I5(2), we) + 2(Gh(2), ) + 0(=?) = =2 (LG (2), GA (2) ) + o(c?).
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We now estimate 3. We have

1
= [ Ut ) - (), wo)ds.
0

Using (6.80) we find

o= [ (a4 5w = T3(2)) & (G + sw2) = GA) e ) s+ ofe?).

Using (6.85), (6.86) and [Jwe|| < Cle], then it follows that
Y3 :/(; (Io(z + swe) — IH(2), we)ds +o(52)
— /o (/0 (I (z + tswe) — I (z))[sws]dt> [we]ds
+f (/ I")'(Z”sws]dt) [welds + () = | I (2) e, we] + o).

From the above estimates for v1,y2,v3 we deduce the claim.
‘We are now in the position to prove Lemma 6.14.

Proof. Let us consider the function
H : ZxD"?R") xR"" - DV2(R™) x R"™ xR
with components H; € D"?(R") and H2 € R"™! given by
Hi(z,w,a,e) = I.(z + w!: +w) — (o + a) 2,
Hy(z,w,a,¢e) = (w, £).
We have

0H

H = H
(z,w,a,6) =0 & (Z’O’O’€)+8(w,oz)

l(z,0,0,6) W, @] + R(z,w, a, ) = 0,

where R(Zv w, &, 6) = H(Z7 w, &, 6) - H(Z7 07 07 6) - 3(?UHQ) |(z,0,0,5) [w7 a}'
It is easy to see that for |¢| small enough there holds

OH | -
8(w,a) (2,0,0,¢)

H(Z,'I_U,OZ,E) =0 A4 (w7a) = nyz(w7a)7

<, Vze Z.

Moreover we have

where

OH

—1
(w, ) \(2,070,5>) (H(z,(), 0,¢) + R(z,w, o, 6)) .

Festw,a) = - (
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We claim that the following two estimates hold. For every (w, ) and (w’,a’) such that
I(w,0)l, ll(w', a")]| < p small enough

. N i n+2
[Fe.z(w, a)|| < O (2 + we) — (I2) (2 + we) || + Cpr=2, (6.91)
|Fe s (w,@) = Feo(w,o)|| < Cpn=2 |lu — w. (6.92)
Let us prove (6.91). For every (w,a) € B, there holds
|Fe, - (w,a)|| < C||H(z,0,0,¢)|| + Cl|R(z,w, a,£)|. (6.93)
We have, using the same arguments in the proof of Proposition 6.13

||R(E7Zaw7a)|| = HH(Z7wvaa 6) - H(Z707075) - 8(?1}];{06) ‘(Z,0,0,E) [w7a]

y i i i nt2
= HIE(Z + we + w) - I;(Z + ws) - I.;,(Z +ws)[w]” < CHU}H no2.

Since H(z,0,0,¢e) = I.(z +w?) — (It) (z +wl), (6.91) follows from (6.93). Let us turn to
(6.92). For all (w,a), (w',a’) € B, it is

OH
(w, «

-1
”Fs,z(w7a) - FE,Z(U)I,O/)H = H (a ) ‘(Z,0,0,E)) (R(vavaa 5) - R(val7a/75))H

1
< C| / Iz +wi+w +s(w—w)) — IV (2 +wl)ds
0

2% —2

x w' —wl| < Cp* 7w’ —wl,

so (6.92) holds true. Now, arguing as before, we deduce that there exists a unique
(w?, ) such that

() (w?,2)=0; _

() Lz +wi+wl) = (al +al)z;

Gij) w2 < CIL(z +wk) — (I2) (2 + wl)]| for e sufficiently small.
The couple (wé +wl ol + aED) satisfies (i)—(iii) in Proposition 6.13, hence by unique-
ness it must be w. = w 4+ w?; by (jjj), inequality (6.64) follows. O

In order to prove Lemma 6.15 we need to show

“ Vi@ <, ©

|20 ()] < < T — x| > R, (6.94)

|5L‘_5L"io‘n727 33—33io|”’1

where (i, &) € (0,60) + K and C > 0.

Proof of (6.94). We can suppose without loss of generality that the support of 7 is con-
tained in B1 = {z € R™ : |z| < 1}. The function 2°, satisfies (I2°)'(2X°) = «°, hence
it solves the equation

—2e, A(220) — n(n — 1)]20]2 7220 = —al0Az, in R"\ Bi.

Performing the transformation

20(2) = ul (@) == po 2 (20)" (na),
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one easily verifies that the function ¢ solves

n+2

—Aul (@) = n(n — D * 2 (@)ul® (@) + 42 g (pa), in By, (6.95)
where q. = —a0(2)A(2*). Since (1, 1) belongs to the fixed compact set &, we have
lgzllcs(B,) is uniformly bounded for (u1,&1) € K. (6.96)

Moreover, since w.° is a continuous function of z, it turns out that

¢y = sup / |Vul*> -0, n,= sup / lul>” o0, as p— 0. (6.97)
(n,€)eK J By (n,8)ex

Under conditions (6.95), (6.96) and (6.97), the arguments in the proof of Proposition 1.1
in [99] imply that for some u = po sufficiently small it is ||ug’ ”Cl<31/2) < C uniformly in
for (p1,&1) € K. From this inequality one can easily deduce that

c 1 P
ZEO(SL‘) < n—2 |.II‘"727 for |‘T‘ > ; (Mlv‘sl) ex
Ho Ho

The second inequality in (6.94) also follows from the boundedness of |[uZ [|c1 (5, ) O
‘We are now in the position to prove Lemma 6.15.
Proof. Given any v € D2(R™), there holds
((IL(220) = (1) (22°), )]

Z/ 20,V gzl - Vv + Ryz0v — n(n — 1)|220 > ~2200 dV,
i#iQ Aj

- Z/ 2c, V220 - Vv —n(n — 1)\,2”)\ 2200 da
i#ig

<Clel > m/ V22 ||V + |20 |v] + 22> o] da.
1710

Using (6.94), with the Holder and the Sobolev inequalities we deduce that, if |z, — x| >
L, i # i, with L1 > R, there holds

) = ) <Ol e ).

i#io :Cio‘n_l |:C7;—:C¢0|”_2 ‘xi_mio‘n+2

This concludes the proof. O
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We next prove Proposition 6.16.
Proof. We have by (6.83), (6.64) and (6.65)
|Qiol = e (2 +we) — L0 (22°)]
< ez +we) — 15(220)\ + e (ze") — 1°(2°)]
< Cllwe — wif || + [L(22) — L2°(=2°))]
< CHE(=) ~ (I“)) (2 + e (220) = 122 (22°))]

<Clel Y a2 T I (220) — 12 (22°)]. (6.98)
1710 ‘

Arguing as in Lemma 6.15 we deduce

(=10 — 1io( ’°|—Z/ el V()2 4 Ry(zio)? = "D o gy,

9*
i#ig
-1
—Z/ cn| V(22 — (2* )\E| dz
i#ig
<Ol Y oo [ VG + 10 + 120
1710

Then, using the fact that |z; — x;,| > L1, we obtain
1) =2 EN <O Y 0 (L iy * o s & gy — o)
= |25 — @i |20 T @y — @i 20D T | — @i |20
The last inequality and (6.98) imply that |Qio| < Cle| 32, ‘Ii_z‘zé‘n,Q. Applying the
Holder inequality and taking into account that . |oi] > < A, (6.66) follows. O
Finally we prove the estimate (6.69).
Proof. For io large enough there holds
(i0—1) dx 1 o0 dx
Zua—zw’“/o G-y i 'ah”/( o i

i<io io+1) (T —ig)

Hence, we are reduced to estimate the above two integrals. Let us start with the first
one. Using the change of variables ioy = x, we deduce that

/("071) dx ; /1110 dy 1 /17 i dy
) =1 o = . R
0 (i§ — z>)" 0 ig (L—=y>)r 407 )y (1 —yo)

1=t
Since (1 — y<)” ~ C(1 —y)7, for y close to 1 it follows that [, *° a ‘;a)ﬂ, cig™t.
Hence we have f“‘rl) (ia fza)v ~C o l)ﬂ{ An analogous estimate holds for the other

integral f (io+1) (xadl . This concludes the proof. O



Chapter 7

Other Problems in
Conformal Geometry

In this chapter we will survey some other problems arising in Conformal Geometry.
First we will focus on the Scalar Curvature Problem for the standard sphere, see
Sections 7.1 and 7.2. Next, in Section 7.3, we will deal with some problem on
manifolds with boundary.

7.1 Prescribing the scalar curvature of the sphere

As a counterpart of the Yamabe problem one can ask whether, considering the
standard sphere (S™, gq), n > 3, (for which R, is constant), one can deform con-
formally the metric in such a way that the scalar curvature becomes a prescribed
function on S™. Denoting by K this function, the problem consists in solving the
following equation, see (6.5)

—ZCnAgou—FRgOu:IN(uZt;; u>0on S". (7.1)

In the case of n = 2, regarding the Gauss curvature, the problem was first raised
by Nirenberg, and the corresponding equation is

—Ag u+ Ry = K e*". (7.2)

Unlike the Yamabe problem, (7.1) does not always admit a solution. A first nec-

essary condition for the existence is that maxgn K > 0, but there are also some
obstructions, which are said of topological type. For example, Kazdan and Warner,
[95], proved that every solution u of (7.1) must satisfy the condition

/ > (K',d') =0, (7.3)
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where a is the restriction to S™ of any affine function in R"*!. Hence, since u is
positive, a necessary condition for the existence of solutions is that the function
(K’,a’) changes sign. Other counterexamples to the existence are given in [137].

A first answer to the Nirenberg problem was given by J. Moser, [114], who proved
that if K is an even function on 52, then the problem is solvable. Further results
in the presence of symmetries are discussed in the next section.

An existence result for the Nirenberg problem, without any symmetry as-
sumption, was obtained in [56, 57]. Here the following two conditions are required:

(i) it is supposed that
z € Cr[K] = Ay K(z)#0; (7.4)

(i) K possesses p local maxima and ¢ saddle points with negative Laplacian, and
that the following inequality holds

p#q+1 (7.5)

The Scalar Curvature Problem in dimension n = 3 was studied in [33] under
the assumption that K is a Morse function (namely its critical points are non-
degenerate) satisfying (7.4) and

> (~1)mEm) £ 1. (7.6)

z€Cr[K],Agy K (x)<0

Here m(K, ) denotes the Morse index of K at x. The result of [33], which is based
on a topological argument, has been extended in many directions.

An extension of condition (7.6), based on the Morse inequalities, was given
in [133], again for the case n = 3. Therein they suppose that K is a Morse function
satisfying (7.4) and, letting

D, = t{z € Cr[K] : m(K,z) =3 —q, Ay, K(z) <0},

it is required
Do — D1+ Dy 7é 1, or Dy — Dy > 1. (77)

Note that the first condition in (7.7) is equivalent to (7.6), and for n = 2 it is
analogous to (7.5).

The rest of the section is devoted to outline the main results dealing with the
general case n > 3. First, let us show how Theorem 5.3 can be used to derive an
existence result when K is close to a constant. For results of this sort, see also [58].
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Let us suppose that K satisfies the following conditions:

(K1) K > 0is a C? Morse function and Agof((x) + 0 for any z € Cr[K];
(K2) there results

3 (~1)mE®) £ (~1)m, (7.8)
2€Cr[K],Ay, K (2)<0
Let us remark that the above condition is obviously a generalization of (7.6).

Theorem 7.1. Let n > 3, and let (K1) and (K2) hold. Then (7.1) has a positive
solution provided K=1+¢k ande is sufficiently small.

Proof. Let yo € S™ denote the absolute minimum of K We use stereographlc
coordinates with north pole yo and, setting K = Korland k=kon !, we find
that (7.1) is equivalent (up to an uninfluent constant) to the following equation
on R™:

—Au = K(z) una, u>0, ue DL2(R™). (7.9)
This is exactly the equation studied in Section 5.2 with K = 1+ k. It is easy to
see that k satisfies the conditions (k.0)—(k.3) stated in Section 5.2. Furthermore,
condition (K2) immediately implies that (5.6) holds. Then we are in position to
apply Theorem 5.3 yielding a solution of (7.1) provided ¢ < 1. O

Theorem 7.1 can be used as a starting point to prove the following global result,
see [100].

Theorem 7.2. Let n > 3. In addition to (K1) let us suppose that K € C%*(S™)
and that the function K near any x € Cr[K] satisfies the flatness condition

K(y)=K@)+Y alyi—xil?; @i #0, Y a; #0, Be(n—2,n). (7.10)
=1 =1

Then (7.1) has a positive solution provided

S (ymED 2 () (7.11)
zeCr[K],Y a;(x)<0
Proof. (Sketch) Roughly, the proof is based on three main steps.

Step 1. Let us consider the family INQ = tK + (1 —t) depending on the parameter
t € [e0,1] and the corresponding equations

Lu= Kun'z, (Lu = =2¢, Ay u+ Ry u). (7.12)

Let X := {u € C?(S™) ; wu > 0} and consider the compact perturbation of the
~ n+2

Identity F} defined by setting Fi(u) = u — E‘l(K,guniQ)7 u € X. According to

Theorem 7.1, we know that for ¢t = ¢, 0 < ¢ < 1, the scalar curvature problem for
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K. has a solution. More precisely, using the assumption (7.10) with § > n — 2, it
is possible to show that for any > 0 all the solutions of

“Au=Kpun'i, we DYRY), u>0, (K=K orb),

with ¢ = g are in a d-neighborhood of the critical manifold Z (see Section 5.2)
for sufficiently small e. This fact and the degree arguments carried out in Section
5.2, see in particular Remark 5.6-(ii), readily imply that there exists a bounded
open set 0., C X such that
deg(Fzy, Oc,, 0) = Z (_1)m(K507Z) - (=™
xECr[lN{EO],Z a;(xz)<0

Such an equation and the assumption (7.11) imply

deg(Fzy, Og,,0) # 0. (7.13)

Step 2. Using the assumption (7.10) with 5 < n jointly with a fine blow-up analysis,
one proves that for all g < ¢ <1 the solutions of (7.12) stay in a compact subset
(depending on t) of X. This compactness result is the counterpart of Theorem 6.1
dealing with the Yamabe problem.

Step 3. From Step 2 and using the homotopy invariance of the Leray-Schauder de-
gree, it follows that there exists a bounded open set O; C X such that deg(F;,O,0)
is constant. In particular, taking ¢ = 1 and ¢ = ¢¢ and using (7.13) one infers that

deg(F1,01,0) = deg(F.,, O.,,0) # 0.

Thus there exists u € X such that F; (u) = 0, namely such that Lu = Ku 2.0

Remark 7.3. It is worth pointing out that the flatness condition (7.10) is not
necessary when K is close to a constant. On the other hand, counterexamples are
given in [100] showing that, for the non-perturbative Scalar Curvature Problem,
assumption (7.10) cannot be removed, in general. (]

We finally mention that in [36], [100], Part IT and in [60], the Scalar Curvature
Problem in dimension n > 3 without the flatness (7.10) has been discussed.

The non-perturbative problem for dimension greater than 3 requires different
approaches, which we do not discuss here. About this topic, see [47], [73], [115].
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7.2 Problems with symmetry

In this section we will shortly discuss the case in which K is invariant under a
group of isometries ¥ C O(n + 1), namely K (oz) = K(x), for all o € ¥ and all
x € 8™, n> 3. We will denote by Fy, = {x € S™ : ox = x, Vo € X} the fixed point
set of ¥ and by Ox(z) = {ox : 0 € B} the orbit of = through the action of X.

Extending Moser’s work cited above, an existence result in the presence of
symmetries was given in [78] for dimension n = 3 assuming that K is invariant
under some group ¥ such that Fy = ), and that K satisfies some suitable flatness
assumptions, like (7.10), at its maximal points. Other sufficient conditions for the
existence in the case of Y-invariant functions were given in [93], removing the
assumption that the action of ¥ is fixed-point free. B

Below we will first consider the perturbation case when K is close to a positive
constant. We will always assume that K is positive and of class C? on S™.

7.2.1 The perturbative case

When K is close to a positive constant, say K=1+ 575, it is possible to use the
abstract perturbation method to find solutions of the symmetric Scalar Curvature
Problem s

—2c,Ag u+ Ry u = (1 +ck)un-2; u>0on S". (7.14)

We will outline below some of these results taken from [20] where we also refer for
more details and further results.

Letting k = ko7~ !, we are willing to find, for e sufficiently small, a solution
of a problem like

—Au=(1+ek)ur?, u>0, ueD2(R"). (7.15)

According to the arguments carried out in Section 5.2, let us consider the reduced
functional ®. with its leading part given by

T(u, &) = . Euy + U (y)dy,  (1,€) € RT x R™.

The question that we have to address is which symmetry is induced to I' and ®. by
the Y-invariance of k. For this, we first extend any o € ¥ to R™*! by homogeneity
and then consider the group ¥ acting on S™+! through the isometries &

o(z1,x) = (x1,0(x)),
where the points of S"*1 are written in the form (z1, z) with z € R"*!. With this

notation, we define the action o* on R x R™ by the following diagram

. _
c*: RtxRrR» - gntl 7, Sntl I, Rt xR

(/"L7£) - (.’L’l,l') - (:Cl,J(ﬂ?)) - T(/J‘7€)
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Here we have used the same notation 7 to denote the stereographic projection
from S™t! to R"*2. Let ©* denote the group of all the o*’s.

To simplify the exposition, we will consider below three specific symmetry
groups, which are the prototype of the general case. For points x € S™ we write
x = (2, xpy1) with 2/ € R™

e ¥y, with elements Id and ¢ : © = (&', 2y 11) — (=2, Tpt1),

e Yo, with elements Id and ¢ : © = (', 2y 11) — (¢/, —Zpn41),

e Y3, with elements Id and o : @ = (', xpy1) — —x = (—2', —Zp41)-
Using the definition of m,one finds that the groups ¥} corresponding to 3;, i =
1,2, 3, are the following ones:

e X1, with elements Id and o* : (i, &) — (1, =§),
e 35, with elements Id and

. _ jZ 3
s t) (u2 + 16127 pu? + |£2> ’

e >3, with elements Id and

78 (o o)

w2+ €127 2+ €1
The role of ¥* is made clear by the fact that it is possible to show:

Lemma 7.4. IfE is X-invariant then I' and ®. are invariant with respect to ¥*.
As a consequence, I and ®, are tangent to the fized point set Fs«. In particular,
at any isolated point of (fi,&) € Fs«, one has that I (G, &) = 0 and ®L(a, &) = 0.

To apply this lemma we need to find the fixed point set of each of the groups
»7. One immediately obtains:

o ey ={(11,0)} >0,

o Foy ={(1n.€) : >0, p>+[¢> =1},

o Fyy ={(1,0)}.
According to Lemma 7.4 it suffices to study I' or ®. constrained on Fy: (i =
1,2,3) and this yields to find solutions of (7.14) by imposing conditions only

on k restricted to Fy,. For example, if k is invariant with respect to X, then
Fy, = (Pn,—Pn), where Py = (0,...,0,1) denotes the north pole on S™. In this
case we have:

Theorem 7.5. Let k be Y1 -invariant and suppose that one of the following condi-
tions holds

(a) k(Py) > k(—Py) and Agk(—Py) <0,

(b) k(Py) < k(—Px) and Az k(—Py) > 0.

Then for € sufficiently small, (7.14) has a solution.
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Proof. Using Lemma 7.4 we can consider I' restricted to Fy+, namely

L0 = [ k)0 ).

Letting y = 7(x), we find

Pu0) = [ RV,

Then one gets

lim T'(u,0) = wyk(Pn), lim I'(p, 0) = w,k(—Pn),
p—+o0 u—0

where wy, = [, dVy,, and (a) implies

I'0,0) := gli% I(p,0) < #Erfmf(pﬂ).

wnk(PN) ———————————————————————————————

Iz Iz
Figure 7.1. Graph of I'(u, 0)
Moreover, as in Section 5.2, we find that
D2,T(0,0) = a1 Ak(0) = as Ay (—Pn) <0 (a1, a3 > 0).

Hence T achieves the absolute minimum at some (fi,0) with 7 > 0 and the exis-
tence of a solution of (7.14) for ¢ sufficiently small, follows from Theorem 2.16.
The proof in the case (b) is similar. O
Remark 7.6. If k(Py) = k(—Py), the condition Ay, k(—Py) # 0 is not necessary.
Actually, it is possible to show that k(P,) = k(—Py) implies

lim ®.(p,0) = lim P.(y,0).
pn—0 pn——4o00

Hence ®.(u1,0) has a stationary point at some fi > 0 and the result follows from
Theorem 2.12. |
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Arguments quite similar to those carried out in Theorem 7.5 can be used
when k is invariant with respect 35, yielding

Theorem 7.7. Let k be Yo-invariant and suppose that there exists ¥ € Fx, such
that either k(z) = max{k(z) : x € Fx,} and Agz k(Z) > 0, or k(z) = min{k(z) :
x € Fx,} and Ag k(Z) < 0. Then for € sufficiently small, (7.14) has a solution.

Finally, if k is invariant with respect 33 then Fy, = § and Fyx = {(1,0)}.
Hence, using the last statement of Lemma 7.4 we immediately infer that the fixed
point (1,0) is stationary for ®. and gives rise to a solution of (7.14). More in
general, if the action of the group X is free, namely Fx. = (), then one has that Fx-
is the single point {(1,0)} which is a stationary point of ®.. This shows

Theorem 7.8. Let k be invariant with respect a group X such that Fs = (0. Then
for e sufficiently small, (7.14) has a solution.

We conclude this section dealing with a generalization of the ¥;-invariance.
Precisely, we consider the group ¥, 1 < ¢ < n, acting on S™ through

x=(T1, .., Tp+1) —  (—T1, .., —Tp, Tps1, -y Tntl)-
For ¢ = n this is nothing but ;. We introduce the notation
Se=Fs,,={zeS" 21 = =x,=0}.
One readily finds that for the corresponding ¥ , there results
_ R+ R S
FEI,Z =R" x {£ERn .51 —'“—f@—O}.

According to Lemma 7.4 we have to study I' constrained on Fy- . Repeating the
arguments used in Section 5.2 and in Theorem 7.1, we find '

Theorem 7.9. Let k be invariant with respect to 31 ¢, and suppose that the following
conditions holds

(El) Xy = CI[Z] NSy is finite, every x € X, is non-degenerate for k on Sy and
Ag k(x) # 0 for any x € Xy;
(k2) there results

DR VAEE I G Vi (7.16)

E€X¢,Agyk(z)<0

where mg(E, x) denotes the Morse index of x as critical point ofE on Sy.
Then for e sufficiently small, (7.14) has a solution.

Remark 7.10. Adding a flatness condition like (7.10), it is possible to extend the
preceding result proving the existence of a solution of the symmetric Scalar Cur-
vature Problem in the non-perturbative case. In this way we obtain the symmetric
version of Theorem 7.2. See [17]. O
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7.3 Prescribing Scalar and Mean Curvature
on manifolds with boundary

In this section we will deal with problems arising in conformal differential geometry
on manifolds with boundary. We will focus on a specific but interesting case:
when the manifold is the upper half-sphere S7 = {(z1,...,%p41) € R* : [z| =
1,2p4+1 > 0}, n > 3. More precisely, we consider the unit ball in R*, B = {z € R™:
|z| < 1} endowed with a smooth metric g. Let v, and h, denote, respectively, the
outward unit normal to 0B = S™~! with respect to g and the mean curvature of
(8"t g). Given two smooth functions K and h, we will look for positive solutions
u € HY(B) of

_QCnAgU —+ Rgu = Kustg’ in B (Cn — Q(n_l))
(7.17)

(n—2)
(ngz)aygu + hgu = hun~2,  on §" 1.

If u > 0 is a smooth solution of (7.17) then § = u*/("~?)g is a metric, conformally
equivalent to g, such that K is the scalar curvature of (B,g) and h is the mean
curvature of (S"~1,g). Up to a stereographic projection (through the south pole),
this is equivalent to finding a conformal metric on the upper half-sphere S such
that the scalar curvature of S7 and the mean curvature of 95} = Sn=1 are
prescribed functions.

Following [18], we will discuss in the sequel the perturbative case. For the sake
of brevity, we will state the main results but we will only outline the arguments,
avoiding the technicalities.

7.3.1 The Yamabe-like problem

When K and h are constant functions, say K =1 and h = ¢, (7.17) is the analogue
of the Yamabe problem. In such a case, (7.17) becomes

n+42 .
{—2 cnAgu+ Ryu = un-2, in B (7.18)

(nEQ)&,gu + hyu=cunr2, ondB=8"""1

This problem has been first studied in [61], where the regularity of solutions is
also proved. Further results can be found in, [76, 77]. More recently, some general
results were proven in [91, 92]. It is shown that a solution to (7.18) exists provided
that (B, g) is of positive type (for a definition see [91]) and satisfies one of the
following assumptions:

(i) (B,g) is locally conformally flat and OB is umbilic (a point of dB is said
umbilic if the differential of the Gauss map is diagonal, and 0B is said umbilic
if every point of 9B is umbilic. In particular this is the case for the standard
half-sphere S );

(ii) » > 5 and OB is not umbilic.

It is also proved that the set of solutions is compact in C%(B).
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We are going to show that in the perturbative case none of the above condi-
tions is required. Precisely, we will deal with a metric g close to the standard one
go- Our main result is:

Theorem 7.11. Given M > 0 there exists g > 0 such that (7.18) has a positive
solution provided ¢ > —M, 0 < € < €g, and g satisfies

lg — gollL=(B) < &; IVgllLnp) < IVgllpn-1(sn-1y <e. (7.19)

The proof relies on the abstract perturbation results discussed in Chapter 2,
see in particular Theorem 2.23. Here we take H = H'(B), endowed with scalar
product

(ulv) = 2cn/ Vu - Vudz +2(n — 1)/ uvdo
B Sn-1

and norm ||u|? = (u|u), and set

/|vu\dv+/ v, 2*/\u|2dV

+(n— 1)/ hgu*do, — c(n — 2)/ |u|?n- 2da
Sn—1 Sn—1

Plainly, the critical points of I, on H give rise to the solutions of (7.18). If g = g.
satisfies (7.19) the functional I. := I, has the perturbative form

I.(u) = In(u) + O(e),

where the unperturbed functional is given by

I§(u) = ||u||2 / \u|2 dx — e(n — 2)/ |u‘2Zi§dJ_
B gn—1

Above, we have emphasized the dependence on the constant ¢ because the result
stated in Theorem 7.11 is not uniform with respect to c. The critical points of I§
in H are the solutions of

2 ¢ Au = unss in B
{ chAu =1u , in (7.20)
(

nz2) dyu+u=cur>, ondB=8""1

In order to find the unperturbed critical manifold, we set

. (n—2)/2 .
U(I):<1+|x|2) , k= [4n(n — 1)]2

and

e x—
sela) =220 (T8
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n+2
Clearly, z = 2, ¢ solves the equation —2c¢,Az = z»-2 in B. Moreover, a direct
calculation shows that z, ¢ satisfies the boundary conditions whenever

PP —ckp=1,  pu>0.
Hence I, has an unperturbed critical manifold given by
Z=2={z=zu¢: (1,€) € R x R", p® +[¢> — crp = 1}.

Using arguments similar to those carried out in Lemma 5.2, it is possible to show
that Z satisfies (ND), see [91], namely it is a non-degenerate critical manifold.
Moreover, letting \;(c) denote the non-zero eigenvalues of D?I§(z)[v] = v, one
can prove that
e the first eigenvalue A (c) is negative;
e Let \2(c) denote the first positive eigenvalue of D2I§(z)[v] = Av. Then one
has that VM > 0, 3C}j; > 0 such that

1
Cum

This implies that the restriction of D2I§(2) to (T, Z)t is invertible and the inverse
L.(z) is uniformly bounded, in the sense that ¥V M > 0, 3C > 0 such that

L) <C, VzeZ, Ve>-M.

§|>\1(C)‘ SC]V[, VCZ—M, i:1,2.

Let us point out that there is a numerical evidence that As(c) — 0 as ¢ — —o0
and hence it does not seem possible to obtain a bound on L. uniform with respect
to c e R.

The preceding results allow us to find a solution w,, ¢ of the auxiliary equation
P(IS)(z+w) =0 (for all ¢ > —M and € < 1) is such a way that the stationary
points of the reduced functional ®¢(u,&) = IS(zu,¢e + wpe) give rise to critical
points of I¢, according to Theorem 2.23. Finally, as for the Yamabe problem in
Chapter 6, one proves that

lirrb D¢(u, &) = const. (depending on c),
n—

and hence ®¢ can be continuously extended to 0Z. Since the Z U 0Z is compact,
it follows that either ®¢ is identically constant, or it achieves the maximum or the
minimum at some point in Z. In any case ®¢ possesses a stationary point in Z,
which yields a solution of (7.18), proving Theorem 7.11.

7.3.2 The Scalar Curvature Problem with boundary conditions

Here we consider the case in which g is the standard metric on B while K =
1+ ek(z) and h = ¢+ ehg(x). The corresponding equations become

{_zanu+u = (1+ek(2)ur2, inB (7.21)

(nEQ) Ou+u=(c+eho(z))un-2, on S 1
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In this case the functional I. : H — R (here ¢ is fixed and so its dependence is
omitted to simplify notation) has the form

I.(u) = Iy(u) + eG(u),

where Ij is as in the preceding subsection and

G(u) = 5. /B k() |ul* do + (n - 2) /S ho()[ul?7=2 do.

2(n—1)
n—2

We point out that the exponent is critical for the (trace) embedding

W2(B) — LP(S"~!). Using the discussion made before, we are in position to
apply here Theorem 2.16. In the present framework we have that

* 2n71
I'(p, &) = 21* / k(x)zigdx +(n— 2)/ ho(c'f)zuzc’2 do.
B s

n—1 ’

As before, p and ¢ are related by the equation
p 4 1€]? = erp = 1.

As for the problems with critical exponent discussed in Section 5.2, we need to
study the behavior of I' on the boundary of Z. Taking into account that

07 = {ZIL,EO tp=0, |£0‘ = 1}7
computations similar to those carried out in Section 5.2 yield

Lemma 7.12. Let |{o| = 1 and let vy denote the outer normal direction to 0Z at

(0,&p). Then one has (a; below denote positive constants depending explicitly on
k, ho) N

(i) I'(0,&0) = a1k(&o) + azho(&o),
(ii) T, (0,&0) = as(k' (o), o)
For ¢ € S"~1 = 9B, let us put ¥(£) = a1k(€) + azho(€). With this notation
one has that I'jgz = .
Theorem 7.13. Suppose that one of the two following conditions holds:

(¥1) ¢ has an absolute mazimum (or minimum) & € S~ such that

(k'(£),€) <0 (resp. (K'(€),£));
(¥2) 4 is a Morse function such that

(K'(€),&) #0, V& e Crly], (7.22)
> (—)meO £ 1 (7.23)

§eCr[], (k/(£),€)<0

Then (7.21) has a positive solution provided e is sufficiently small.
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Proof. Let (11) hold. Since ZUJZ is compact, I' achieves the absolute maximum
(or minimum) at some = (fi,£) € Z U JZ. If such a point lies on 97, we get
that i = 0 and |¢| = 1. By Lemma 7.12-(i) we know that T'(0, &) = +(¢) and thus
¢ is an absolute maximum (or minimum) of ¢ on S"~!. Then assumption (1)
implies that (k'(£),£) < 0 (resp. (k'(£),€) > 0). According to Lemma 7.12-(ii) we
infer that I, (0,€) < 0 (resp. I, (0,£) > 0), which is in contradiction with the
fact that (0, &) is the absolute maximum (or minimum) of I" on Z U dZ. Therefore
I' achieves either the absolute maximum or the absolute minimum in the interior
of ZUJZ. Then an application of Theorem 2.16 yields the result.

Let (¢2) hold. We claim that
deg(T’, Z,0) # 0, (7.24)

where deg denotes, as usual, the topological degree. By Lemma 7.12-(ii) we have
that I', (x) # 0 at any x € Cr[¢)] = Cr[['|5z]. Moreover, the negative boundary of
07, defined by 0Z~ = {(0,&) € 0Z : T, (0,&) < 0} is given by

07z~ ={(0,&) : || = 1, (K'(€0),&)o < O}

In other words, the set {z € Cr[¢)] : (k'(z),z) < 0} coincides with the set Cr[y)] N
0Z~. Recalling a well-known result in the theory of the topological degree, see
[85] and taking into account that I'jgz = v, we get

deg(I",2,0)=1— > (=",
zeCr[y)NdZ—

Then the preceding arguments yield

deg(I", Z,0) =1 — > (1)),
zeCry], (k' (z),x)<0

and the claim follows from the second assumption in (¢2). Now, (7.24) allows us
to use Theorem 2.17 from which we infer the existence of a stationary point of I..
This completes the proof of Theorem 7.13. O

Remarks 7.14.

(i) Tt is possible to modify the preceding arguments to handle the case in which
K = ek, improving the results of [59]. It is also possible to prove some
existence result for (7.21) when (k'(z),z) = 0 at some x € Cr[¢}], as well as
when k, hg inherit some symmetry, like in Section 7.2. We do not carry over
this material, referring to Theorems 7 and 8 of [18].

(ii) Condition (2) is related to the assumptions (K1) and (K2) made in Theorem
7.1. On the contrary, the assumption (1) has no counterpart in the Scalar
Curvature Problem on S™, but is a specific feature of problems dealing with
manifolds with boundary.

(iii) Theorem 7.13 is the first step in proving the existence of solutions of (7.17)
with K and h not necessarily close to constants. For this topics we refer
to [74]. O



Chapter 8

Nonlinear Schrodinger
Equations

In this chapter we consider standing waves of the Nonlinear Schrodinger Equation,
namely solutions to the following problem

{ —&2Au+V(z)u=uP, inR"

u>0, ue W3R, (8.1)

where p > 1 is subcritical and V' is a smooth bounded potential. We will be mainly
interested in the behavior of the solutions as € — 0T, the so-called semiclassical
limit. Roughly we will show that there exist spikes, namely solutions concentrating
at single points of R™ (the precise meaning of concentration is given in (8.2) below).

The chapter is organized as follows. First we show that concentration of spikes
necessarily occurs at stationary points of V. In Section 8.2 we prove the existence
of solutions concentrating at non-degenerate critical points of V. The remaining
four sections of the chapter are devoted to deal with a more general situation,
when V' has a non-degenerate manifold of critical points and multiple spikes can
possibly occur, see Theorem 8.5. This case requires a modification of the abstract
setting. The interest of such a more general approach goes much beyond the proof
of Theorem 8.5 because it is more flexible then the one discussed so far. Actually,
this new tool can be used in other situations, in particular when one looks for
solutions concentrating at spheres, see Chapter 10.

8.1 Necessary conditions for existence of spikes

n+2

, and we make the
n—2

Here and throughout in the sequel we assume that 1 < p <
following assumptions on the potential V'

(V) Ve C2RM), and [V]can) < +oo

(V2) A3 =infgs V > 0.
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We say that a solution v, of (8.1) concentrates at zy (as € — 0) provided
Vé>0, Jeg>0, R>0 :v.(x) <4, V|r—xz0| >eR, € <eop. (8.2)

In this section we prove the following result:

Theorem 8.1. Let (V1) and (V2) hold, and suppose that ve are solutions of (8.1)
concentrating at xo, in the sense of the definition (8.2). Then V'(xzy) = 0.

Proof. We follow closely the arguments of [144]. First we prove that there exists
C > 0 such that for all £ small one has

[vel[ e < C. (8.3)

Otherwise, there is a sequence ¢, — 0 such that vy = ve, diverges in L*°(R"™). Let

my = max vy = vg(Tk), tk = (p D/2 and

1
or(x) = v (T + Ep ).
my

One has that ¢y verifies

{ —A¢y + ,u%V(a:k + epprr) PR = By,
ox(0) =1, 0 < dr(z) < 1.

Since ||kl = 1, up to subsequence ¢, — ¢ in C? (R™). Moreover, since
ur — 0 and V' is bounded, it follows that ¢ satisfies

—A¢0 = (1587 in Rn7 ¢0(0) =

But, according to a well-known result by Gidas and Spruck, [82], the only entire
non-negative solution of —A¢ = ¢P, with 1 < p < Ztg, is ¢ = 0 and so we reach
a contradiction, proving (8.3).

Next, let us set v () = vi(xo + €xx). The function vy satisfies

— AU, + V(2o + epx)vp = 04, in R™
As before, ), converges to some Uy in C7(R™) such that
— APy + V(l‘o)’ﬁo = :[),57 in R"™.

Indeed, see [144], one can prove that vy — vg in L?(R"), as well. Furthermore,
since v achieves its maximum at x, then Avg(zr) < 0. From —EiAvk(xk) +
V(zk)vk(xk) = vp(zg) it follows that my = vg(xy) satisfies V (zg)my, < mf. This,
(V2) and my, > 0 yield

my > )\(1)/(19—1)'
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In particular, this implies that vy # 0. Using a generalized Pohozaev identity, see
[125], we have that

é Ek/ V'(xg + epx)vs
Br

— / |:(5V($0 + 5;@5)5,% — p_}_lf)/i-i_l + é‘V5k|2)l/ — V1, gk:| do (8.4)
dBR v

where Bp is the ball centered in 0 with radius R and v denotes the outer unit
normal to Bg. Let us denote by £ the integral on the right-hand side of (8.4).
Since

el < [ (V0 4 V(oo + )i + 7 do
OBRr

we infer that, for each fixed k,
/ 0g|dR < 1 / dR/ [\Vm? + V(zo + e52) P2 + 5@“} ds < +00,
0 0 dBr

because v, € WH2(R™). Thus /g — 0 ar R — oo (up to a subsequence) and,
passing to the limit into (8.4), the Dominated Convergence Theorem (recall that
V is bounded) yields, for each fixed k:

Therefore, letting k — oo and recalling that v, — vp in L2(R"), we get

/ V7 ()72 = 0,

and this, since vy # 0, implies that V'(zo) = 0. |

Remark 8.2. In [144] it is also proved that if v, is a solution of (8.1) with minimal
energy concentrating at xo, then x( is a global minimum of V. Moreover, any
solution concentrating at some xy has a unique maximum which converges to .
This justifies the name spikes given to these solutions. O

8.2 Spikes at non-degenerate critical points of V'

The main purpose of this section is to prove the following theorem.

Theorem 8.3. Let (V1) and (V2) hold, and suppose xq is a non-degenerate critical
point of V', namely for which V"' (x¢) is non-singular. Then there exists a solution
U of (1.12) which concentrates at xo as € — 0.
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Actually, this theorem is a particular case of a more general result, see The-
orem 8.5 in Section 8.5 later on. For this reason, we will limit ourselves to outline
the arguments, referring for more details to [10].

To simplify notation (and without loss of generality) we will suppose that
2o = 0 and that V(0) = 1. To frame (8.1) in the abstract setting, we first make
the change of variable x — ez and rewrite equation (8.1) as

8.5
u>0, ueWbhH3R"). (8:5)

{ —Au+ V(ex)u = u?, in R™,
If ue(z) is a solution of (8.5) then v.(x) :

= uc(x/e) solves (1.14). We set H =
W12(R™) and consider the functional I. € C?(H,R),

1

I.(u) = 5 /n (IVul? + V(ez)u?) — pj- 1 /n ulPTL. (8.6)

Hereafter we endow H with the norm
e :/ (1Vul? + Vex)u?) de,
R’VL

and we denote by (-|-) the corresponding scalar product. With this notation, the
functional I, takes, for ¢ = 0, the form

1 1
) = gl =y [ e

Let us highlight that Iy plays the role of the unperturbed functional by writing
I (u) = Io(u) + 4 / (V(ex) — 1) u?dx = Ip(u) + G(e,u).

Obviously, for any fixed v € H, we have G(g,u) — 0 as ¢ — 0 and hence I,
has the form discussed in Section 2.3. As in Chapter 4, letting U denote the
radial positive solution of —Au +u = u?, u € W12(R"), the unperturbed critical
manifold is given by

Z = {ze() = Ulw—€) : § € R")

and is non-degenerate. Unfortunately, as anticipated in Section 2.4, we cannot
directly apply the results proven in Section 2.3 because, in general, G”(¢,u) does
not tend to zero € — 0. To see this, let us consider a sequence v; € ‘H with compact
support contained in {z € R™ : |z| > 1/j}. If, for example, the potential V is such
that V(z) —1 = ¢ > 0 for all |z| > 1, then evaluating G (¢, u)[v;]? for e = 1/
we find

G (e,u)[v;]? = /n (V(ex) — l)vjzdx = c||v;||*.
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However, the first part of the abstract procedure can be still carried over. Denoted
by P the orthogonal projection onto W = (T, Z)*, we look for solutions u = Zg+w,
with z¢ € Z and w € W, of the system

PI!(ze + w) =0,
(I-P)(ze+w) =0

which is clearly equivalent to IZ(z¢ + w) = 0. At this point the Implicit Function
Theorem was used to find a solution w. (z¢) of the auxiliary equation PI/(z¢+w) =
0, for all z¢ € Z. Instead, we argue as in the proof of Lemma 2.21. First we write
PI(3 + w) = PI(%¢) + PDL(z¢)fu] + R(ze,w), where R(z¢,w) = of[lw),
uniformly with respect to z¢ € Z for bounded |{|. Next, using arguments similar
to those carried out in Lemma 8.9 of the next section, one shows that there exists
C > 0 such that for € small enough one has

|PIY(z¢)]] > C, V ze € Z, for |¢| bounded.

Setting A. ¢ = —(PI”(2¢))™!, the equation PI’(z¢ +w) = 0 can be written in the
form
w= A, ¢ (PIL(2¢) + R(z¢,w)) := N ¢(w).

It is also possible to show that IV, ¢ is a contraction in some ball of W provided e
is sufficiently small. This allows us to solve the auxiliary equation finding w, (z¢)
which is of class C! with respect to &. Furthermore, since V/(0) = 0, one finds
that we(z¢) = O(¢?), uniformly with respect to bounded &. At this point we can
repeat the usual arguments that lead to look for stationary points of the (finite-
dimensional) reduced functional ®.(§) = I (z¢ + we(z¢)). One finds that

O(€) = co +e*T(§) +o(e?),

where ¢y = Iy(U) and

A straight calculation yields
M =4 [ VOw+ 8.+ Uy

- %/H<V”(0)y,y>U2(y)dy+ > /RHW"(O)&@UQ(?/)dy
=c + C2<V”(0)€7£>7

where
= %/ (V"0)y, U (y)dy, — c2= ;/ U (z)dz.
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Then £ = 0 is a non-degenerate critical point of I' and therefore, from the general
theory it follows that for ¢ < 1, I, has a critical point ue = z¢, + we(2¢, ), with
& — 0 as e — 0. In conclusion, coming back to the solutions v. of (8.1) , we find
that this equation has a solution o.(x) ~ U(w_ff) that concentrates at = 0,
proving Theorem 8.3.

Remarks 8.4.

(i) According to Theorem 2.24 we infer that the solution %. has Morse index
equal 1 + k£ where k is the index of ¢y = 0 as critical point of V on R". In
particular, the Morse index of @, is 1 whenever V has a minimum at x¢ = 0.
This fact has an important consequence concerning the orbital stability of
the standing waves found above. See below.

(ii) Simple modifications of the preceding arguments show that the same exis-
tence result holds if we suppose that V(z) = 1 + a|z|™ + o(|z|™) as |z| — 0,
where a # 0 and m > 0 is an even integer. (]

We end this section with a brief discussion on the orbital stability of the standing
wave . found in Theorem 8.3. Let us consider the solitary wave corresponding to
the solution u.

Ve(t,z) = exp (i i 't) 4 (). (8.7)
This function v is a solution of the evolutionary NLS introduced in Chapter 1,
Section 1.3

oY

ih 'y = —hA% + Q) — [V, (88)

where V(z) = a + ap + Q(x), see the notation used in Section 1.3.

We say that @, is orbitally stable if a solution (¢, z) of the equation (8.8)
exists for all ¢+ > 0 and remains W'2-close to the solitary wave (8.7) provided
(0, z) is sufficiently close . (x) in W12(R™). Since the orbital stability depends
on the frequency a, we will write below u. o instead of ..

Let m. o denote the Morse index of %, o as a critical point of I. and let

0 _
e, a) = e /Rn \u57a(a;)\2d:r.

According to Theorem 2 and Section 6.D of [86]-Part I, and to the Instability
Theorem discussed in [86]-Part II, we know that @, . is orbitally stable provided
Me,o = 1 and p(e, ) > 0. Furthermore, if either m., > 1 or m. o = 1 but
u(e, @) < 0, we have instability.

Therefore, taking also into account the Remark 8.4-(i), a necessary condition
for the standing wave @, to be orbitally stable is that x¢ is a minimum of V.
If this is the case, we do have orbital stability provided u(e,«) > 0. It has been
shown in [86] that in the one-dimensional case p(e, o) > 0 provided @ is constant
and 1 < p < 5. Recently, this result has been extended to a class of potentials
Q(z), depending on z, see [107].
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8.3 The general case: Preliminaries

The rest of the Chapter is devoted to consider the more general case in which V
has a non-degenerate manifold of critical points (see the precise definition later
on), which requires a different approach that is useful in other problems like those
discussed in Chapters 9 and 10. As sketched in Section 2.4, the idea is to find an
n-dimensional manifold Z¢ of pseudo-critical points, which can be perturbed to
obtain a natural constraint Z¢ for I.. Namely, a critical point of I. restricted to
Z¢ is also a critical point for I.. See Proposition 8.7 later on.

More precisely, we will suppose that V' has a smooth compact manifold of
critical points M, which is non-degenerate (for V) in the sense that for every
x € M one has that T, M = Ker[V"(z)]. Obviously, this definition coincides with
the non-degeneracy condition (ND) introduced in Chapter 2.

The main result of this second part is the following theorem:

Theorem 8.5. Let (V1) and (V2) hold and suppose V' has a non-degenerate smooth
compact manifold of critical points M. Then for e > 0 small, (8.1) has at least
I(M) ! solutions that concentrate near points of M.

The proof of this theorem will be given at the end of Section 8.5.

First, in this section, we recall the variational structure of the problem and
we collect some useful results. We consider again the equation(8.5) whose Euler
functional is defined in (8.6). Throughout this section, we use again the space
H = W2 with the norm

||| = /Rn (IVul]® + V(ex)u?) da.

Let us recall that the radial solution U of

—Au+u=uP inRY;

u(z) — 0 as |z| — +oo; (P)
u >0
satisfies -
I

for some positive constant «,, , depending only on n and p.
We also need to consider the following variant of problem (FP), namely

—Au+XNu=uP inR™
u(z) — 0 as |z| — +oo; (Py)

u > 0,

L](M) denotes the cup long of M, defined in Section 2.2.
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where A > 0. It is immediate to check from the arguments of Chapter 4 and some
scaling that the function Uy, and all its translates are solutions of (Py), where

Ux(z) = Ar21U (M) ; z€R™.
The function Uy, is a critical point of the functional I : W12(R") — R defined as

1 1
In(u) = 2/n (IVul + A%?) _p+1/w WPt we WR2RY),  (8.10)

and is natural here to endow the Sobolev space W12(R") with the scalar product
(u,v)x = / (IVul]® + X?u?); u,v € WH2(R™). (8.11)

The reason of considering the functional Iy is that, freezing the argument of the
potential V in I, as = z, and setting A = V(ex), we obtain exactly I. We will
find approximate solutions of the form Uy, for suitable values of A\, and therefore it
is fundamental to understand the properties of the linearization of (Py) at Ux. This
is the content of the next lemma, which proof is identical to that of Lemma 4.1.

Lemma 8.6. For every £ € R™, Ux(- — &) is a critical point of Ix. Moreover, the

kernel of I//\/(UA) 18 generated by ggi ey ggi . The operator has only one negative

eigenvalue, and therefore there exists 6y > 0,depending continuously on \ such that

ou ou
IK(U,\)[v,v} > G\[vll3 Yve WHEHRY), v Ly Uy v Ly 6:5/\,...70 L 33:)\.
1 n

Here the symbol Ly means orthogonality with respect to the scalar product (-,-)x
defined in (8.11).

We also recall the following elementary inequalities, which hold true for all
a,b,by,by € R, with |(l‘ <1.

C|bp for p < 2,

8.12
C (|b]* + [b?)  for p > 2; (8.12)

[(a+b)P —a? — pa~'b| < {
[(a+b1)" = (a+ b2)? — pa”" (by — b))

< C (lby [P~ + [bo[P~1) [b1 — by for p < 2, (8.13)
—|C (‘bl‘p_l + ‘bg‘p_l + |b1| + ‘bg‘) |b1 — b2| for p > 2;

C|b|P~1 for p <2,

8.14
C (|p] + [p|P~1)  for p > 2, (8.14)

[(a+b)P~! —aP!| < {

where the constant C' depends only on p.
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8.4 A modified abstract approach

We tackle the problem as follows. We find first a manifold Z¢ of pseudo-critical
points for I., namely a family of functions z¢, £ € R™, for which ||I.(z¢)|| is small.
Then the Contraction Mapping Theorem allows us to perform a local inversion
orthogonally to T'Z¢, uniformly for £ € R™. This will provide a natural constraint
Z¢ for I, see Proposition 8.7, which is homeomorphic and close to Z¢.

We set
zsg(x) = Ux(z) = a(e)U(B(c€)x); e R, (8.15)
where \? = V(&€), and
B(e€) = (V(£€))?; a(c€) = (B(=€)) >

Then we define
Ze={*(x—¢&): £ € R}

When there is no possible misunderstanding we will write z, resp. Z, instead of 25¢,
resp Z°. We will also use the symbol z¢ to denote the function z¢(z) 1= 25¢(z — €).
All the functions in z¢ € Z are solutions of (Py), A> = V(&£), or equivalently
critical points of I. Basically, in order to find approximate solutions, we freeze
the argument of V' at the maximum of z¢. Since V(&) varies slowly for € small and
since z¢ decays exponentially, z¢ represents a good approximate solution to (8.5).

For future reference, let us point out some estimates. First of all, we evaluate

2" (a — €) = O¢ [a(e€)U (B(e€) (z — €))]
= eVa(e)U(B(e€)(z - §))

+ea(e§) VAU (B(e€)(z —€))

— a(e§)B(E) VU (B(e€)(w — €))-

Recalling the definition of a, 8 and using the assumptions (V1) and (V2) one finds
ez (x — €) = =V (x — &) + O(e|V'(£€))), in WH2(R™). (8.16)

The main result of this section is the following proposition.

Proposition 8.7. Let V satisfy the assumptions (V1), (V2). Then for € > 0 small
there exists a unique w = w(e,§) € (T. Z)* such that I.(z¢ + w) € T..Z. The
function w(e, €) is of class C* with respect to & and there holds

Ocw| < C {(E|V’(E§)| + &%) + (e|V'(e9)] +52)p_1} . (8.17)
Moreover the functional ®.(&) = I.(z¢ + w(e,§)) is also of class C' in & and

satisfies
&) =0 = Il(zg Twle o)) =
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In order to prove this proposition, we need to show that |[I.(z¢)| is small, and
that I is invertible on the orthogonal complement of T%, Z°. These two facts are
proven respectively in Lemmas 8.8 and 8.9 below.

Lemma 8.8. Assume (V1), (V2) hold. Then there exists C > 0 such that for all
&€ R™ and all € > 0 small, one has

IZ(ze)ll < C (V' (€)] +€2) .
Proof. Since

I.(u) = Ix(u) + ; /n [V (ex) — V(e€)] uda; A =V (<€),

and since z¢ is a critical point of Iy, one has

n n

1ol = Gl + [ V) = V() zevda = [ V(er) = V() v

Using the Holder inequality, one finds
TG0 < ol [ IV(ea) = V(P23 (5.15)
From the assumption (V1), namely that |V"(x)| < C, one infers

[V (ex) — V()| < Ce|V'(€€)| |z — & + Ce?|z — &2, Ve, & € R".  (8.19)

This implies
/ [V(er) - V() Pods
< Ce? |V (8)? / | — §|2z§(x)dx + 064/ |z — §|4z§(z)dx. (8.20)
Rn ' Rn '

Recalling the exponential decay of U and the definition of z¢, see (8.15), a direct
calculation yields

| o=t = = a*ee) [ WPUABEey
= [ Pty < c.
From this (and a similar calculation for the last integral in (8.20)) one derives
/ V(ex) — V(e€)P22de < C2[V/(6)2 + C<™. (8.21)

Putting together (8.18) and (8.21), the lemma follows. O
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Lemma 8.9. Under the assumptions (V1) and (V2) there exists C > 0 such that
for & small enough one has

IV (z¢)[v,v] > C~Hvl?, VEER", Ve (2 ®T. 2°)" . (8.22)

Proof. From (8.16) it follows that every element ¢ € T, Z can be written in the
form ¢ = —V,25¢(x — &) +O(e). As a consequence it suffices to prove the following
property

IV (z¢)[v,v] > C~|v|?, VEER™, Vo e (span{ze, Op, ze, . - ., On, ze}) T
(8.23)
Let R > 1 and consider a radial smooth function ygr : R™ — R such that

xr(x) =1, in Bgr(0);
XR(:I?) =0 in R™ \BQR(O); (824)
IVxr| < % in Bag(0)\ Br(0),

and we set
vi(z) = xr(z — §v(2); v2 = (1= xgr)(z —&v().

A straight computation yields

n

[vlI> = lloa||* + J|va1? +2/ [V - Vg +vpvg] .

We write [, [Vor - Vg 4 v1 0] = 71 4 7o, where

n

7'1:/ XR(I—XR)(U2+\VU|2); 7'2:/ v2Vv-VXR—v1Vv~VXR—v2|VXR|2.

Since the integrand in 7 is supported in {R < |z| < 2R}, using the inequal-
ity in (8.24) and the Holder’s inequality we deduce that |72] = or(1)[|v|%. As a
consequence we have

[0 = llos|® + [[oa]|* + 271 + or (1)) (8.25)
After these preliminaries, let us evaluate I (z¢)[v, v] = 01 + 02 + 03, where
o1 = I7(z¢)[v1, v1; o = I (2¢)[v2, va; o3 = 21/ (2¢)[v1, v2].

There holds

o1 = I(z)[or, v1] = T (U)o, v1] + / V(ex) — V(e€)] v2. (8.26)

n

We introduce now the function vy = v; — v, where

1 - 1
Y= o (2 )rze + ) (V110z, 2 )2 Ou, 2¢
(A pel (%
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Then we have

I\ (ze) 1, v1] = Iy (ze)[vr, 1] + I3 (2) [0, ¥] + 214 (2¢) [vr, ). (8.27)

Let us explicitly point out that v1 Ly span{ze, Oz, 2¢, . . ., O, 2¢ } and hence Lemma
8.6 implies
"
Iy(z¢)[vr, va] = dx o 13- (8.28)

On the other hand, since (v|z¢) = 0 it follows that

(vilz)x = (v]ze)r = (val2e)n = —/ v(V(ex) = V(€€))ze — (v2]ze)a-

n

Since vy is supported in |z — ¢| > R and since z¢ tends exponentially to zero
at infinity, we infer (vi|z¢)x = or.(1)||v||. Similarly one shows (v1|0z,2¢)x =
or(1)|lv]|, and it follows that

[l = or,e(1)]v]. (8.29)
Putting together (8.28) and (8.29) we infer
1"
Iy(ze)[vr, v1] > o1} + ore(D[v]]* = [[o1]15 + or.(D)]o]]*.

The last equation and (8.26) imply

o1 > B3 + / V(ex) — V(E)]o? + omeo]]?

R’!‘L
> Gy llon||? — (1 + JA)/ [V (ex) — V(e€)|vf. (8.30)
R’!‘L
Using arguments already carried out before, the last integral can be estimated as
[ V) = veolids << [ o= hla - 9% )da
n Rﬂ.

<eC [ yxr)v’(y+&)dy < Cllv|?.
RTL

This and (8.30) yield
o1 = I/ (z¢)[v1, v1] = C7H|ur | — eCJv]]* + or.e (1)|v]”
> C7Hul* + ore (1)]v]|*. (8.31)

Let us now estimate o5. One finds

V(ex)v3 —p/ zf_lvg

n

o2 = I (2)[va, va) = / Vo2 +
R™ R

~ ol =p [ 7
n
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As before, va(x) = 0 for all x with |z — £| < R and the exponential decay of z at
infinity imply
a3 2 O vz + or(1)[|v]|*. (8.32)

In a similar way one shows that
o3 > C7lry +or(1)||v)% (8.33)
Finally, (8.31), (8.32), (8.33) yield
I (ze)[o,v] = 01 + 02 + 03 > C71 [|lon||? + [[v2|* + 71] + or(1) 0]
Recalling (8.25) we infer that
IZ (z¢)[v, 0] = C7H|v[|* + or(D)]0]|*.

Taking € small and R large, equation (8.22) follows. This completes the proof of
Lemma 8.9. (]

Lemma 8.10. Let P denote the projection onto (T., 2°)*. Then for e sufficiently
small the operator Lg = P o I'(z¢) o Pr is invertible for every & € R and there
exists C' > 0 such that

1L < C £ eR™

Proof. We decompose (T, 2°)* as (T, Z°)* = V1 & Va, where

Vi=(Peze); Vo= (2@T. 29" VilVa
We will prove the following two properties
ll2¢ — Pezel| = 0(1); I (2¢)[2¢] = —(p — D)z + 0:(1). (8.34)
These indeed imply
Le(z¢) = Pell (z¢) Peze = Pe(I7 (2¢)[2¢] + 0(1))
= Pe(=(p—1)2e + 0:(1)) = —(p — 1) Peze + 0=(1).

Hence the operator L¢, in matrix form with respect to the spaces V; and V3, can
be decomposed as

_ _(p - 1)Id + 05(1) 05(1)
Le= ( 0=(1) Ae ) 7

where Ag, according to (8.22), satisfies Ac > C~'Id, and the Lemma would follow.
It remains to prove (8.34). Given ¢ € {1,...,n}, by (8.16), (8.19) and the
exponential decay of z¢, there holds

(2¢|0¢, 2¢) = (2|0, 2¢) + 0(1)

= Geloszen+ [ (Vi) = V(E)zedi, 2 + of1) = o).

R
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This proves the first estimate in (8.34). To prove the second one, we notice that
for any v € WH2(R™) there holds

I (z¢)[v] = Iy (z¢)[v] + /n(V(Ex) —V(e§))zev = —(p — 1)(z¢v)x + o([|v])
= —(p = 1)(z¢|v) + o([[v])).
Hence the proof is concluded. (Il

Proof of Proposition 8.7. Our aim is to find a solution w € (T%, 2°)* of PI.(z¢ +
w) = 0. For every w € (T, 2°)* we can write

I;(Zf + w) = I;(Zf) + I;/(Zf)[w] + R(Z€7w)7
where R(z¢, w) is given by
R(zg,w) = IL(z¢ +w) — IL(z¢) — I (2¢)[w].

Taking the projection P¢ onto (T, Z#)L, by the invertibility of Lg = Peol! (2¢)o Pk,
see Lemma 8.10, the function w solves PI/(z¢ + w) = 0 if and only if

w= N;¢(w), where N¢(w)= —Lgl (PI.(2¢) + PR(z2¢,w)) .

The norm of I/(z) has been estimated in Lemma 8.8, so we focus on R(z¢, w).
Given v € H*(R™) there holds

Rizew)el = [

ze +w)P — 2P — p2P | v.
(z¢ ) ¢ — Dz

n

Using (8.12), the Hélder’s inequality and the Sobolev embeddings we obtain
[ Rz, w)lv]|| < C/R (lw? + [wP) o] < C(|lwl* + [w]”) [[v]]. (8.35)

Similarly, from (8.13) we get
[ R(z¢, w1)[v] — R(ze, w2)[]|
< C/Rn(|w1|2 +lwi P74 fwal? + Jwz [P o]
< O(llwill? + lwn[IP7 + Jlwa|* + w2 [P~ s — w2l [o]l. (8.36)
Then from Lemma 8.8, (8.35) and (8.36) we obtain the two relations

INe.c(w)ll < ClelV'(€€)] + &) + C(llwll + wlPHwl];  (8.37)

INe.g(wi) = Neg(wi)ll < Cllwr ]| + llwn [P~ + [lwa]| + wa| P~ [Jwn — w?||~ :
8.38
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For C' > 0, we now define the set
Wo ={we (T 29"« |lwll < CA(,9)},

where we have set
A(e, &) = |V’ (e€)| + & (8.39)

We show that N ¢ is a contraction in W, for C sufficiently large and for € small.
Clearly, by (8.37), if C' > 2C' the set W, is mapped into itself if ¢ is sufficiently
small. Then, if wy,wp € W, by (8.38) there holds

[Nz (w1) = Neg(wn)]| < C(C +C"71) [Ale, &) + Ale, )P [Jwn — wa.

Therefore, again if € is sufficiently small, the coefficient of ||w; — we|| in the last
formula is less than 1. Hence the Contraction Mapping Theorem applies, yielding
the existence of a solution w satisfying the condition

Jw|| < C (e|V'(e€)] + 7). (8.40)

This concludes the proof of the existence part.

We turn now to the C'-dependence of w on . This would follow from Remark
2.22, but in order to prove (8.17), we need to find quantitative estimates. Consider
the map H : R® x W12(R") x R® x R — W2 x R" defined by

(et w) = X ide, 2
H(€7’LU7OZ75) - < (’w‘aflzf)w”u(w‘afnzf) ’

where @ = {@;}i=1,... n. Let us remark that H is nothing but the map introduced
in the proof of Proposition 6.13.

Then w € (T, Z°)" is a solution of P¢I.(z¢ +w) if and only if H(§, w, a,e) =
0. Moreover, for v € W12(R™) and 3 = {8;}i=1,....n, there holds

o w,a,¢€)v, ] = I (ze +w)[v] = 307, Bk, 2
(w, ) (& w, ), B ( (0‘35125),...7(’[)@15“25) ) (8.41)

_ (X)) = D20 BiOk, % e el
_( (”\351Z5)7~--7(1}|85nz5) >+O(| ||+|| H 1)~

To prove the last estimate it is sufficient to use (8.14) and to use the Sobolev
embedding, similarly to the proof of (8.35) and (8.36).
By Lemma 8.10 it is easy to check that 8(‘20Ha) (£,0,0,¢) is uniformly invertible

in ¢ for € small. Hence, by (8.40) and (8.41), also a(?uHa) (&, w, v, €) is uniformly
invertible in £ for € small. As a consequence, by the Implicit Function Theorem, the
map & — (we, o) is of class C'. Note that by the contraction mapping argument

the vector «, similarly to w, satisfies the following estimate

la| < C (e|V/(€)| +€%) . (8.42)
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Now we are in position to provide the norm estimate of dzw. Differentiating the
equation
H(& we,ae,6) =0

with respect to £, we obtain

_ OH OH 8(105, Otg)
O - 85 (f,w,a,s) + a(w,a) (f,w,a,s) ag .
f OH

Hence, by the uniform invertibility of ;] (5 ,w, a, €) it follows that
?(zg + w)[0eze] — 207 00, 2¢
et < (R R
< C (| (2¢ + w)Oezell + \Oé\ + [lwl)-
By the estimate in (8.41), (8.16), and the fact that I;(U,\)[Vzg] = 0 we obtain
112 (2¢ + w)[Oe z] |

< |2 (2) [0 ze] | + C(llwll + [lw][P~1)

< I (z)[V= ]|| +Ce|VV ()] + C([lw] + [[w]P~)

< (I (2¢)) = IN(UN)[Vze]l| + Ce| TV (£€)] + C([lw] + [[ew]P~).

For any v € W12(R"), using (8.19) and reasoning as in the proof of Lemma 8.8,
one finds

(12(0) = LW, < [ Viea) = VTl
C (V' ()] +2) ol

The last three formulas imply (8.17).
The final assertion in Proposition 8.7 is proved as for Theorem 2.12, see also
Remark 2.14-(i). Roughly, from (8.17) it follows that

T..2° ~ T, jue, g)ZE for € small,

where Z° = {z¢ + w(e, &) | € € R™}. Suppose z¢, + w(e, &) is a critical point of
I.|5.. Then I (z¢, +w(e, &o)) is perpendicular to T250+w(5)£0)26, and hence almost
perpendicular to T, Z°. Since, by construction of 28 it is IL(z¢e, + w(e, &) €
T, 2%, it must be I (z¢, +w(e,&)) = 0. This concludes the proof.
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8.5 Study of the reduced functional

The main purpose of this section is to use the estimates on w established above to
find an expansion of ®.(¢) and ®.(§), where ®. was defined by ®.(§) = L. (z¢ +
w(g, £)). In the sequel, to simplify the notation, we will often write z instead of z¢
and w instead of w(e, ). It is always understood that ¢ is taken so small that all
the results discussed in the preceding sections hold true.

We have
B0 = yle+ul+, [ Veoerwi- L[ vyt
¢ 2 2 Jgn p+1 Jgn '

Since z satisfies —Az + V(g£)z = 2P we infer that

122 = —V(c8) / . +/nzp+1 (z|w)=—V(5£)/nzw+/nzpw.

Then we find
0.0 = (=, 0) [ [ e - Vi)
+/ [V(ex) — V(e€)] zw + % V (ex)w?

n R

+ 3 llw|* - lerl /]R [(z+w)PTh — 2P — (p+1)2Pw] .

Since z(z) = a(e)U(B(ef)x), where a = VV/@=1) and g = V1/2, see (8.15), it
follows that

/n Py = Cy(V(2€))?, Co = /n Urtl, 9= pi Z
Letting C; = Cy[1/2 — 1/(p + 1)] one has
©.(6) = V() + 1} [ [View) - V()2 (3.3

+/ [V(ex) = V(e€)] zw + ; V (ex)w?

n R

+ Jw|? - p}_l /R [(z +w)Pt! — 2Pt — (p+1)2Pw] .

We are now in the position to estimate the functions ®. and ®..
Lemma 8.11. Let a(e€) = 0C1(V (e€))?~ ! and let v = min{1,p — 1}. Then one has

(&) = Cl(v(é"ﬁ))e +pe(§), C1>0, 0= pi— i ;’

L&) = a(e€)eV'(e€) + TR (6), (8.45)
where |p: ()] < C (e|V'(e€)| +€?), and |R=(€)| < C.

(8.44)
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Proof. The first four error terms in (8.43) can be estimated as in Lemma 8.8, using
the Holder inequality and (8.40). Let us focus on the last term. Using the uniform
boundedness of z and (8.12) one finds

’(z +w)PTt — 2P (p 4 l)zpw‘ < C (Jw]* + Jw[P*t) .

Hence, from the Sobolev inequality we deduce

[ [+ wpt =7 = ]| < € ol + ol

Then, using (8.40), we obtain (8.44).
In order to prove (8.45) we compute first the expression O¢l.(z¢). Using a
Taylor’s expansion for V and (8.16) we obtain

Ol.(z¢) = CLoV?(c€) + y0c [ (Viea) = V()22

(Vo) = V() 2edize - 3eV'(e6) [ 22

n

= C10:VO(e€) + /

n

= C10:VO(e€) + EV’(sf)/ (x — &)2¢0e2¢ + O(e%) — ;EV,(ES)/ z?
R’IL

n

- Clang(af) — BeV'(g€) /Rn (x — &)2e0e2e + O(e%) — éEV,(Ef)/ zg

Writing z¢0¢2¢ = %85252 and integrating by parts we find
Bel-(z¢) = C10:V7(e€) + O(?).
Then we write
O¢®=(8) = IL(2 + w)[0¢ 2 + Oew]
= OcIe(z¢) + (IL(2 + w) — I.(2))[0ez] + IL(2 + w)[Ocw]
a(e€)eV' (e€) + I (2)[w, Oc z]
+ R(zg, ) [0 2] + IL(2)[0¢w] + R(z¢, w)[Oew].

Using (8.35), (8.17) and arguing as in the proof of Proposition 8.7 we obtain the
conclusion. 0

We are finally ready to prove Theorem 8.5.

Proof of Theorem 8.5. We will use the result of [54] cited in Remark 2.14-(iii),
that we report here for the reader convenience using the notation employed in this
chapter:

Let f € C%(R™,R) and suppose that M is a non-degenerate compact
manifold of critical points of f. Let N be a neighborhood of M and let
g- € C2(N,R). If ||f — g||c1 is sufficiently small, then g. has at least
[(M) (cup long of M) critical points in N.
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We take f = C1V? and M = M. M is obviously a non-degenerate critical manifold
of f. Fixed a neighborhood N of M we set g.(§) = ®.(£/e). From Lemma 8.11 it
follows that || f —g:||c1 < 1 provided ¢ < 1. Hence the result quoted above applies
and we can infer the existence of at least [(M) critical points of g., provided & > 0
is sufficiently small. Let & ; € A be any of those critical points. Then & ;/¢ is a
critical point of ®. and Proposition 8.7 implies that uc ¢, = 2% (z — & ;/e) +
w(e, & ;) is a critical point of I.. It follows that

T =&
esle) = e, afe) = 26 (175
is a solution of (8.1). Any &; converges to some & € N as ¢ — 0 and it is easy
to see that & is a stationary point of V. Then, taking N possibly smaller, it
follows that & € M. This shows that v, ;(x) concentrates near a point of M and
completes the proof. a

Remarks 8.12.

(i) It is possible to handle the more general equation —e2Au+V (z)u = K (x)uP.
In this case, to determine the location of the concentration points, V' must
be replaced by the auxiliary function VK~ =

(ii) If p > 2, then ®. is of class C% and we can apply Corollary 2.13. In this
case, [(M) can be substituted by cat(M). The same holds if p > 1 and M
is a compact set of local maxima or minima of V, without any smoothness
assumption on M, see [23].

(iii) Expanding ®. at higher order in £, it would be possible to localize, generically,
the concentration points on M, in the spirit of Theorem 8.1. O

Bibliographical remarks

The first rigorous proof of the existence of solutions in the semiclassical limit
has been given in [80]. Since then, a lot of works have appeared, see, e.g., [10,
72, 87, 121, 145]. In particular, [72] deals with a nonlinearity f(z,u) ~ K(z)u?,
see also [10]. Solutions with many peaks have been found in, e.g., [67, 88, 122].
The case in which V has a critical manifold of critical points is discussed in [23],
improving a preceding result of [66]. NLS with a magnetic potential have been
studied in [27, 68]. NLS with (more general) linear part in divergence form has
been considered in [31].



Chapter 9

Singularly Perturbed
Neumann Problems

In this chapter we study the following singular perturbation problem on a bounded
domain 2 C R™ with Neumann boundary conditions:

—?Au+u=uP, in

gjj =0 on 09; (Ne)
u >0 in €,

where p > 1 is subcritical and v denotes the outer unit normal at 0€2. For motiva-
tions we refer to Section 1.4. We will see that the abstract tools carried over in the
preceding chapter, see Sections 8.4 and following, can be also used to prove the exis-
tence of boundary spikes for (V. ). Precisely, our aim is to prove the following result.
Theorem 9.1. Suppose QQ C R™, n > 2, is a smooth bounded domain, and that 1 <
p< Zi‘g (1 <p< 400 ifn=2). Suppose Xog € 0 is a local strict mazximum or
minimum, or a non-degenerate critical point of the mean curvature H of 0Q2. Then
for e > 0 sufficiently small problem (N¢) admits a solution concentrating at X.

9.1 Preliminaries

In this section we introduce some preliminary material that will be used in the
sequel. For z € R™ we set z = (2/,7,) with 2/ = (21,...,7,-1) € R""!. Let
R = {z = (¢/,x,) € R" : 2, > 0} and consider the problem

—Au+u=uP inRY;
u(z) — 0 as |z| — +oo; (P)
gﬁ:OonaRi u > 0,

where n > 2 and p > 1.
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If p < ™2 (in the case n > 3), and if u € W12(R%), solutions of (Py") can be

found as critical points of the functional I : WH?(R7%) — R defined as

Iy (u) = ;/R

Note that, by the Sobolev embedding theorem, I is well defined (and is actually
of class C?) on WH2(R7).

Let us point out that, under the above restrictions on p, the function U
introduced before is also a solution of problem (P;).
It is essential to understand the spectral properties of the linearized equation at
U, or equivalently of the operator I l(U ), which is given by

1
(|Vul]® + u?) — / |ulPTL. (9.1)
p+1Jry

n
+

I;/_(U)[’Ul,’l)g] = (v1]va)+ —p/ UP™ Ly v1,v2 € WHE(RY), (9.2)
R%
where we have set
(7)1|’U2)+ = / (Vvl -V + 7)17)2) . (93)
RZ
We have the following result, which is the counterpart of Lemma 4.1 for the half-
space.

Proposition 9.2. Let U be as above and consider the functional Iy given in (9.1).

Then for every & € R*= U(- — (£,0)) is a critical point of Iy. Moreover, the

ou oUu
Bwl" t Bwn71
eigenvalue, and therefore there exists 6 > 0 such that

kernel of I;’_(U) is generated by . The operator has only one negative

ou ou

1 n
I (U)w,v] > 6| forall ve W' (R%),v Ly U, 0z Oy

where we have used the symbol L to denote orthogonality with respect to the
scalar product (-, )4+ .

Proof. Given any v € W?(R%), we define the function v € W?(R™) by an even
extension across OR'}, namely we set

(@, z) = v(a!, zy), for x,, > 0;
ST v(e, —my)  for x, <O.

We also recall the definition of the functional Iy : WH2(R") — R

1 1
=y [ (vaPrat) = L[t wewien),

see Chapter 4. We prove first the following claim.
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Claim. Suppose v € W!2(R") is an eigenfunction of I ’_:_(U ) with eigenvalue .
Then the function v is an eigenfunction of I](U) with eigenvalue .

In order to prove the claim, we notice that the function v satisfies the equation

{ —Av+v—pUP~tv =\N-Av+v), inRY;

ov __ n
o =0, on IR’} .

Similarly, by symmetry, there holds
—Av+v—pUP~ly = A\(~Av +v), in R";
v =, on OR",

ov

where we have set R” = {(2/,2,) : 2’ € R"! x, <0}
Then, considering any function w € W12(R"), integrating by parts and using
the Neumann boundary condition one finds

B0l = [

= (—AU—FU)U)-F)\/ (—Av+0)

R™ R™

1
(Vv - Vw) +vw — / UP~low

n

=) (Vo - Vw) +ow+ A VoVw +vw = A(v|w) w12 gn).
R R™
This proves the above claim.

We know that the functions d¢, U, ..., 0, ,U belong to the kernel of I:/r(U).
Suppose by contradiction that there exists another element v in the kernel of
I;/_(U)7 orthogonal to O¢, U, ..., 0¢, ,U. Then, by the above claim, its even exten-
sion v would belong to the kernel of I}J(U). But we know that the only element in
the kernel of I§ (U) which is orthogonal to d¢, U, ..., 0¢, ,U is 0¢, U. Since 9¢, U is
odd with respect to x,,, while v is even with respect to x,,, we get a contradiction.
This concludes the proof. O

By a change of variables, problem (N.) can be transformed into

—Au+u=uP in Qg

fu=0 on 9Q,; (N.)
u >0 in Q,,

where Q. = iQ
Solutions of (V) can be found as critical points of the Euler functional

Je(u) = ;/ (IVul? +u?) — pil /Q JulP*; ue Wh2(Q.). (9.4)

Q. e
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Let us describe the 0f). near a generic point X € 9€2.. Without loss of generality,
we can assume that X = 0 € R”, that {z,, = 0} is the tangent plane of 9. (or
00) at @, and that ¥(X) = (0,...,0,—1). In a neighborhood of X, let x,, = ¥(z’)
be a local parametrization of 2. Then one has

z, =P(2') = JAxa',2") + Cx (2') + O(|2'|*); |2'| < po, (9.5)
where Ay is the Hessian of ¢ at 0 and Cx is a cubic polynomial, which is given

precisely by
Z 0.l (9.6)

.5,k

We have clearly H(X) = n—l tr Ax. On the other hand, 0f). is parameterized by
= 1. (a') := l1p(ea’), for which the following expansion holds

Pe(2')
0ie (1‘/)
where Q% are quadratic forms in 2’ given by (see (9.6))
= ; Z@fjk\ox;x;.
3k
In particular, from the Schwartz’s Lemma, it follows that

(Qg()jk = (QZX)ICJ = (QJX)UC for every ia.j7 k. (98)

Concerning the outer normal v, we have also

(a2 + 205 + 0( |
e(Axa’); +2Q% (2) + 20(|]2"|?), (9.7

(gws v _1) )

1?7 Oxp_1’ / 2 / 2 712
V= =|e(Axx’) +e*Qx ("), -1+ _&°|Ax >
V14|V (( ) =) e

+30(2' ). (9.9)

9.2 Construction of approximate solutions

We first prove the following technical lemma.

Lemma 9.3. Let T = (a;5) be an (n—1) x (n — 1) symmetric matriz, and consider
the following problem

{ Lw==2(T2',VU) =2trT 0., U, inRY; (9.10)

82nw = (T2, V. U), on ORY,

where L s the operator

Lu=—Au+u—pUP tu.
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Then (9.10) admits a solution wr, even in the variables x', which satisfies the
following decay estimates

lwr ()| + [Vwr ()] + |V2wr(@)| < C|T|s(1 + |z]|)e™ !, (9.11)

where C is a constant depending only on n and p, and |T|sc = max;; |a;;|.

Proof. Problem (9.10) can be reformulated as

1"

I (U)w] =vr, (9.12)

where vy is an element of W1?(R") defined by duality as

(UT‘”)WL?(Ri) = /

RY

(—=2(T2',\ VU —tr T, U))v— / (T2 V. U)v.
oR™

By Proposition 9.2, equation (9.12) is solvable if and only if vp is orthogonal to

gU Y e 88U . But this is the case since
1 Tn—1
ou ou
<UT7 > = —/ (2(T2', Vo U) +trT0,,U)
Ox; W12(R?) " ox;
+/ <Tx’,Vm/U>aU, i=1,...,n—1.
oR™ Oz;

Indeed, all the integrals in the last formula vanish because gg is odd in &’ and

the other functions are even, by the symmetry of 7. The decaS/ in (9.11) follows
from (8.9) and standard elliptic estimates. ]

Given po as in (9.5), we introduce a new set of coordinates on Buo (X) N §2.. Let

Yy =3 Yn = Tn — 77[}6('1:/)' (913)

The advantage of these coordinates is that 9€). identifies with {y,, = 0}, but the
corresponding metric will not be flat anymore. Its coefficients (g;;) are given by

8¢E

Oy

Ox Oz 5. 4 Ove e :

I — = vy dy; O i :
=t o)) o )

OYn—1
o0 - o0 1
9y1 OYn—1
From the estimates in (9.7) it follows that
gij = Id+eA+e*B+O(E3y]*), (9.14)

and
By, (9i) = €0y, A+ €20, B+ O(|y'[*),
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where

(o ) o (Y o)

It is also easy to check that the inverse matrix (¢%) is of the form g% = Id—cA+
e2C + O(3|y'|?), where

_ 0 —Qx()
¢= ( ~(@xW)) |Axy'P )

and N
By, (97) = —e0y, A+ £28,,C + O’ |y'[*).

Furthermore, since the transformation (9.13) preserves the volume, there holds
detg = 1.

We also recall that the Laplace operator in a general system of coordinates is given
by the expression

_ 1
~ Jdetg

so in our situation we get

gl

9; (97 /det g) Oyu+ g0,

Agu = g7u;; + 9;(97)0;u.
In particular, by (9.14), for any smooth function u there holds
Aju=Au—ce(2(Axy,Vy 0y, u) + tr Ax 9y, u)
+e? (=2(Qx, Vy 0y, u) + |Axy'|*0;

YnYn

+ Oy P)[Vul + Oy ) [V2ul.

u— divQx 0y, u) (9.15)

Here Ay is the Hessian of ¢ at 2’ = 0, see Subsection 9.1. Now we choose a cut-off
function 1, with the following properties

Yo (z) =1 in Buo;
Yo (x) =0 in BZQO \ Buo;

Vol + V2| < C in Buo (X) \ B,
and for any X € 09 we define the following function, in the coordinates (y', y»)

Ze,x (Y) = Yo (ey)(U(y) + eway (y))- (9.16)

LIf the vector v has components (v;);, the notation v ® v denotes the square matrix with
entries (vjvj)4j-
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where w4, is given by Lemma 9.3 with 7' = Ax. We also give the expression of
the unit outer normal to 9€)., U, in the new coordinates y. Letting v;, resp. 7;,

be the components of v, resp. v, from v = Z?:l vt 32@' = Z?:l v 6?;“ we have

~ n i@yk P .
U= 4 V' %), . This implies

From (9.7) and the last formula in Subsection 9.1 we find
7= (Ax (W) +£Qx (), —1 4+ Ax () + 00y ). (9.17)
Finally the area-element of 02 can be estimated as
do = (1+O(2|y')?))dy’. (9.18)

Next, we estimate the gradient of J. at z. x showing that z. x constitute, as X
varies on 9., a manifold Z. of the pseudo-critical points of J..

Lemma 9.4. There exists C > 0 such that for € small there holds
172 (2, x)|| < Ce?; for all X € 09..

Proof. Let v € W12(Q.). Since the function z. x is supported in Bro (X), see
(9.16), we can use the coordinates y in this set, and we obtain

JL(ze x)[v] = / Oze,x vdo + / (—Agzsvx +2ex — ng) vdy. (9.19)

o0, OU .

Let us now evaluate af;;x . There holds
aze,X ~ -
ov = (U Teway )V’(/}MO (Ey) v+ ’(/}MO (Ey)V(U + Ewa) v

Since Vb, (e-) is supported in R™ \ Bzo, and both U, w4, have an exponential
decay, we have

(U + eway ) Vb, (ey) - 7| < C(1 + |y|©)e c=e ¥,

On the other hand, from the boundary condition in (9.10) and from (9.17), the
terms of order € in ¢, (ey)V(U + cwa ) - U cancel and we obtain

32’57)(
ov
‘8257)(

= 0|y IVul) + OE Iy P|VU); yl <Y

ov

’ < Ce W 4 Ce(1 + |y|%)e W < e Ceee; Zg <yl < gg
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The last two estimates, (9.18), and the trace Sobolev inequalities readily imply

ov

0
/ %X vda’ < Ce||v]. (9.20)
o0,
On the other hand, using (9.11), (9.15) and the decay of U, the volume integrand
can be estimated as
|~ Bgzex + 2ex = 2 x| < C (11T + Iy P[92U] + [Vl + Iy/|[V2w))
+ ||U + ewP~ (U + ew) — UP — peUP™'w

b

1 1
o 1] < (g payy) & o0

’_Agzs,x + 2e x — ZSX’ <C(l+ |y’|C)e—\y \
S C("f—c@_ 0}57

for ( e Suplx ! AXH) é < |yl < 52. We notice that the following inequality holds

true a
|(a +b)? — a” — pa?~'b| < Cb*; a>0,|b < o

In particular, by (9.11) we have

Uy 1 1
<"V < ) e
2 4eCsupy ||Ax]|/) C
Hence it follows that
1 1
—ANgze x +2ex — 27 ’<C’521—|— Ne vl <( > _
e +zex = x| < O+ 1yI°) < (yeomne ax))
Then, using the Holder inequality we easily find
/ (—Agz57x + 2 x — ZSX) vdy‘ < CE2 vl (9.21)
Qe
From (9.20) and (9.21) we obtain the conclusion. O

We also need to compute the expression of ag}x in the coordinates y in-

troduced in (9.13). We notice that in the definition of z. x, see (9.16), not only
the analytic expression of this function depends on X, but also the choice of the
coordinates y. Therefore, when we differentiate in X, we have to take also this
dependence into account. First we derive the variation in X of the coordinates z
(introduced after (9.4)) of a fixed point in . Using the dot to denote the differ-
entiation with respect to X, one can prove that

./ a / Y . 6

= oxtx ==X i = oy (n)x = — (2!, HX), 9.22)
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where H, = ¢Ax is the second fundamental form of Q.. The second equation in
(9.22) is obtained by computing the variation of the distance of a fixed point in
R™ from a moving tangent plane to ).. Similarly we get a dependence on X of
the coordinates y. To emphasize the dependence of z. x on X we write

zex = Ulyx) +eway (yx); yx = (@', (zn)x — Ye(2y)). (9.23)

Since the set (2. is a dilation of €2, the derivatives of Ax and 1. with respect to X
are of order ¢ (if X is of order 1). More precisely, if we set X = ¢X, then we have

0Ax  9Ag e O

ox ~ “oax’ X ~ “ox’
where 1) is given in (9.5). Differentiating (9.23) with respect to X and using (9.22)
it follows that, in the coordinates y

bex = —(X,VyU)+0(e) in WHA(RY). (9.24)

In this spirit, we also compute the variation of the matrix Ax, see (9.5), with
respect to X. Differentiating the equation x,, = .(x’) with respect to X and
using (9.22) we find

. 1.,,0A% . el
—(@ H.X) = _2( KXo 2)) —e(Axa’, X) — £ X
(o HoX) = )& Falsa!) —e(Axal, X) e;Q
Ife1,...,e,—1 are an orthonormal system of tangent vectors to 02 with e; = gi,
the last equation implies
0Aj ‘ , 9A -
(OOt o) = 2Qi (@), mamely (@) = ( . ) . (929)
i i/ ik
By the symmetries in (9.8), we have in particular
0A 5 0A5
< X) = ( X) for every i, j. (9.26)
aej ij 8ei §j

9.3 The abstract setting

The abstract method we use for studying problem (N.) is similar in spirit to the
one introduced in Chapter 8. We find first a manifold of pseudo-critical points for
1., and then we prove the counterpart of Proposition 8.7.

Since 9€), is almost flat for ¢ small and since the function U is radial, for
X € 99, we have J U(- — X) ~ 0. Thus U(- — X) is an approximate solution to

(N¢). Hence, a natural choice of the manifold Z. could be the following

(U(—X):=Ux : X €o0.}.
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Actually one needs more accurate approximate solutions like z. x, see Lemma 9.4.
Hence we define
Z.={zex : X €09Q.}. (9.27)

We then have the following result, which allows us to perform a finite-dimensional

reduction of problem (N.) on the manifold Z..

Proposition 9.5. Let J. be the functional defined in (9.4). Then for € > 0 small
there exists a unique w = w(e, X) € (T..  Ze)* such that J.(ze x +w) € T, Ze.
The function w(e, X) is of class C' with respect to X. Moreover, the functional
U (€) = Je(2e,x +w(e, X)) is also of class C1 in & and satisfies

U (Xo)=0 = J.(2cx,+w(e Xp))=0.

In order to prove this proposition, we need as usual the following preliminary
result.

Lemma 9.6. There exists 6 > 0 such that for ¢ small there holds

8257)(

J (ze x)[v, 0] > 6]|v]|? for every v L 2. x, 5%

Proof. First of all we notice that, arguing as in (8.41) we have
J(ze,x) = J/(Ux) + O(e) + O(P),

hence it is sufficient to prove the assertion for J!(Ux) instead of J!(z¢ x).
Let xg,v1,v2 and 71 be as in Chapter 8, with X replacing £. Then (8.25)
holds true with no change. In the same spirit we also define

a1 = JI (Ux)[vr, v1]; Gy = J/(Ux)[va,v2] 73 = 2J (Ux)[v1, 2],
and we can get immediately the counterparts of (8.32), (8.33), namely
G2 > C7Hwa|* +or()|[vl*; 3 > C™ '+ or(1)]|vf|. (9.28)

Hence it is sufficient to estimate the term 7.
By the exponential decay of z. x, the fact that (v|z. x) = (v 62})() =0 and
from (9.24) one easily finds

(v1]2e,x) = —(v2]2e,x) = or(1)||v]};

0z 0z
(001555 ) = = (15 ) = om0l (9.29)

Since both v1, ze x and ag}x are supported in B o (X), using the coordinates y

we can identify them with their transposition on R’. Using (9.14), the decay of
U, (9.16) and (9.29) one finds (recall the definition (9.3))

(1]U)4 = (01|U) + 0-(D)|v1]| = (012, x) + 0c () l[o1]| = 0c, (1) |v]].
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Similarly, from (9.24) we obtain

oU _ oU _ 8Z5,X _
(1m, ) = (g, ) + 0l = = (101557 )+ 0ol = el

Hence using Proposition 9.2 and reasoning as in the proof of Lemma 8.9 we obtain

"

L (U)[vr, 0] = 8llvr ][ + 0e,m (D)0l

Using again (9.14) we finally find

&1 = L (U)[or,v1] + 0= (1) |2
> 8l|ur |2 + e (1) 0]
> 8llv]|? + 02, r (1) 0] (9:30)

In conclusion, from (9.28) and (9.30) we deduce

5
T2 (22, x)[w, 0] 2 6[l0ll} + [[vall® + Lo + 0, p(DIIVI* > o],

provided R is taken large and ¢ is sufficiently small. This concludes the proof. [

Proof of Proposition 9.5. The argument is the same as Proposition 8.7. Letting
P denote the projection onto (T%_  Z.)*, we want to find a solution of the two
equations

Pw = 0; PJ.(z+w)=0.
As before we write
J;(Z&X +w) = J;(ZE,X) + Jé/(Z&X)[w] + Ge x(w),
where

1

Gexwll = |

/ {\Zs,x + wl” — [z x[? —ng}lw] v.
Qe

From the inequalities in (8.12) and (8.13) we obtain the following estimates

{ |G (w)[| = o[wl]), lwll < 1; (9.31)

1G= (w1 = w2)l| = o(lwi ]| + [[wa|)Jwr — w2, Jlwall, fJwa] <1

uniformly with respect to X. Then the function w is found as a fixed point in the
set

We = {w € (TzE,XZs)J' Cw|l £ 052}7

see Lemma 9.4. We omit the remaining details. (Il
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9.4 Proof of Theorem 9.1

In view of Proposition 9.5, we can obtain existence of solutions to (N.) by finding
critical points of the functional ¥, (X). The following lemma is devoted to the
expansions of this functional with respect to X.

Lemma 9.7. For € small the following expansion holds

JE(ZE7)() =Cy— Clé‘H(X) + 0(62),

1 1 >
Cp = < — )/ urtt. o) = </ r"der)/ ynly' |2 do.
2 ptl) Jre 0 s

Proof. To be short, we will often write z instead of z. x and w instead of w(e, X).
Since z is supported in B;o (X), we can use the coordinates y yielding

Je(z) = %/R (‘VQZ‘Q "‘22) dy — pil /]R” Hdy.

n
+ +

where

Integrating by parts, we get

0z
ngzl/ zN—&—l/
) 261&1 o ?Jg

Using the definition of z given in (9.16) as well as the expression of the Laplace
operator A, given in (9.15) we find

é/ z(—Agz%-z)—ml_l/ Fliaks
R R}
Ut 4 © / U(Axy',V,U)
2 Jorn ‘
i

=(-h)
e

Moreover, using (9.17), we get

;/ 07 2/ U(Axy/, YV, U) + O(2).
AR ov AR

z2(—Agz+z) — p_lH/R |2|PHL.

n n
+ +

n
+

U(Axy',Vy0,,U) + ; trAX/ Uay,LU+o(E2).
¥ Ry

Putting together the preceding formulas we have
1 1
Jo(2) = ( — ) / urtt 4 © / U(Axy,VyU)
2 p+1) Jen 2 Jorn

+€/
R

UlAxy', Vyd,,U) + ) tr Ax / Ud,,U +0(2).
n R}
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Integrating by parts (more than once if needed), we find that the three terms of
order ¢ are given by

1
A / (Axy',V, U?) + /
OR"Y R

:—1trAX/ U2—/ UlAxy',V,U) — 0, U(Axy', VYV, U)
2 oR? oR? R%

1
U(Axy/7vy/8ynU> + 4 trAX/ 8%[]2
1 1
"

Now we notice that, since U is radial, there holds

/

Yn Yy
0 71(] = Ur, Vy U= )
Y ly] Y ly]
and hence (A (). 1)
Yn y)y
0y, U(Ax(y'), VyU) = _/ B 2 dy.
R R? [yl

At this point it is sufficient to express the last integral in radial coordinates. This
concludes the proof. O

Proof of Theorem 9.1. First of all we have
Vo (X) = Je(z +w) = Jo(2) + JL(2)[w] + O(|w]]?).

Using Lemma 9.4 and the fact that ||w|]| < Ce? (see the end of the proof of
Proposition 9.5) we infer

U (X) = J.(2) +O(e).
Hence Lemma 9.7 yields
U (X)=Cy—eCH(X)+O(?).

Therefore, if Xo € 02 is a local strict maximum or minimum of the mean curvature
H the result follows at once by usual arguments.

The general case in which X is a non-degenerate critical point of H, requires a
further estimate, contained in the following lemma.

Lemma 9.8. For ¢ small the following expansion holds

0
0X

OH

Js(zsvx) = —0162 9xX

+ o(e?),

where Cy is the constant given in the preceding Lemma.
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Proof. There holds

JL(2)[0xz] = / (—Agz+ 2z —|2|P) Oxz + Oxz 6: zdo.
» AR o

We notice that, by our construction, the terms —Ayz + 2z — [2[P and z are of
order £2, hence it is sufficient to take the product only with the 0-th order term
of Ox z, see (9.24). So we get J.(2)[0x2] = (a1 + a2)e? + o(e?), where

ap = /n [2<Q7vy/aynU> |Apy | ynynU+diV QaynU+2<Axy,>vy/aynw>

1
+ tr Ax 0y, w — 2p(p - 1)U”_2w2} oxU,

and

(65 :/ <Q7V,,/U>8XU+/ (AXy',Vy/w>8XU.
8R1 aRi

Since the function w is even in y’ all the terms containing it vanish identically,
and so does the term |A4,y/[?97 | UdxU. Hence we get

oq :/ [2<Q,Vy/8ynU> —‘rleQaynU} oxU.
n
On the other hand, the boundary integral cs is given by
(%) :/ <Q7Vy/U>8XU,
oR™

again by the oddness of w.
In conclusion we have

on + as :/ 2(Q,V,0,,U) + divQd,, U] aXU+/ (Q,V, U)oxT,
"

OR™

which we rewrite as

22 Q 88%U8U+Z/ 0;Q;(x 8%U8U+Z aRn («)9;Ud,U.
If we integrate by parts in the variable y; we find
ar+as = Z/ Q;i(2")9;8,, UdU — Z )0, Ud;0,U
- Z ") 0;Ud;U.

6]R"
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Then, if we integrate by parts in the variable y,, and in the variable y; we obtain
; 0Ax
Z/ Oy, (Q&(?/)) aijaynU: Z < e ) / yjaijaynU
j R7 j J /a5 JRY
By the symmetry in (9.26) and using radial variables we finally get

0A OH
a1+a2:Z< ae)-() /nyjaijaynU: 50, C1-

P Jj /Y RY
which concludes the proof (recall that 9;U = —0x,2). O

Proof of Theorem 9.1 completed. Using a Taylor expansion for H, one can find a
small positive number §y such that

H' #0on 0Bs,(Xo)  and deg(H', Bs,(X0),0) = (—1)%ndet H"(Xo)
(9.32)
For ¢t € [0,1], consider the homotopy h.(t,X) = t¥.(X) + (1 — t)H(X). From
Lemma 9.8 and the first part of (9.32) one deduces that h is an admissible ho-
motopy, namely that hL(t,X) # 0 on 0Bs,(Xo) for all ¢ € [0,1]. Then, by the
homotopy property of the degree, it follows that

deg(\lﬂm B50(X0)7 0) = deg(Hl7 B50 (X0)>O) 7é 0.

As a consequence W, possesses a critical point in Bs,(Xo) and hence, by Propo-
sition 9.5, J. has a critical point of the form z. x, + o(1). Scaling back in the
variable x, we obtain the conclusion. O

Bibliographical remarks

There is a great deal of work on (N.) and it is not possible to make here an
exhaustive list of papers. We limit ourselves to cite a few papers only, referring to
their bibliography for further references. Boundary spikes have been found, e.g.,
in [69, 116, 118, 119] for subcritical nonlinearities. The critical exponent case has
been studied, e.g., in [2, 117]. Solutions concentrating at interior points have been
proved, e.g., in [120], see also [124]. There exist indeed solutions of (N.) which
have multiple peaks both the boundary and at the interior of ), see, e.g., [89].
Spike-layers have also been found for singularly perturbed elliptic problems with
Dirichlet boundary conditions, see, e.g., [103]. In [111, 112] it has been shown for
the first time that there are solutions of (N.) concentrating at all the boundary
0. Tt is worth pointing out that in such a case any power p > 1 is allowed.
Solutions concentrating on a curve contained in the boundary also exist, see [110].
In the radial case, namely when ) is a ball, one can show that (N.) possesses
solutions concentrating on internal spheres, as proved in [22]. These latter results
will be discussed in the next chapter.



Chapter 10

Concentration at Spheres
for Radial Problems

In this chapter we will discuss the results of the two recent papers [21, 22] deal-
ing with the existence of solutions of NLS and Singularly perturbed Neumann
problems concentrating at spheres, in the radial case. For the sake of brevity we
will mainly outline the main new features that arise in such a case. Many proofs
will be omitted, especially when they are merely technical or based on arguments
similar to those already carried out before. For complete arguments we refer to
the aforementioned papers.

10.1 Concentration at spheres for radial NLS

In this section we consider radial NLS like

2 R
{ eAu+V(|lz|)u=uvP, inR (10.1)

u>0, ue W 3R"),

where W12(R™) denotes the space of radial functions in W12(R™). We will denote
by H, such a space. We recall that the scalar product in H, is given, up to a
constant factor, by

(ulv) = / (u'v' + uv)r™tdr.
0

We will use the same notation V' to indicate both the function of one variable as
well as the function on R™ induced by V(r) As in Chapter 8, we will assume that
V satisfies (V1) and (V2) namely

(V1) Ve C?*(R"™), and ||V c2@n) < 400;

(V2) A3 =infgs V > 0.
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Moreover, we perform again the change of variable x +— ez to get the perturbation
problem

_ —uP. in R"

{ Au+Vielz))u =wP, inR (10.2)

u>0, ué€H,.

With this notation, the Euler functional of (10.2) I. has the form

1

I.(u) = 5 /000 ((u')? + V(er)u®) r" tdr — 1

o0
/ JulP Tt dr u € H,.
p+1Jo
(10.3)

Here we are assuming that 1 < p < Zi‘% It is easy to see that I. has a Mountain-
Pass critical point which gives rise to a solution u. € H, of (10.2), provided
l<p< Zf% It suffices to remark that H, is compactly embedded into L?(R"™)
provided 2 < g < 2%, see also the discussion in Section 2.1 after Remark 2.2.
Scaling back we find a solution v.(|z|/¢) of (10.1) and the arguments carried out
in the proof of Theorem 8.1 readily imply that such a v. is a spike concentrating
at the origin.

We now want to investigate whether (10.1) possesses a solution concentrating
at a sphere |z| = 7.

To give an idea why (10.1) might possess solutions concentrating on a sphere,
let us make the following heuristic considerations. A concentrated solution of (10.1)
carries a potential energy due to V and a volume energy. The former would lead the
region of concentration to approach the minima of V. On the other hand, unlike
for the case of spike-layer solutions where the volume energy does not depend on
the location, the volume energy of solutions concentrating on spheres tends to
shrink the sphere. In the region where V' is decreasing, there could possibly be a
balance, that gives rise to solutions concentrating on a sphere. This phenomenon is
quantitatively reflected by an auxiliary weighted potential M defined as follows. Let

0= p+1 _ 1
Cp—1 2
and define M by setting
M(r) = "=t VO (r), r > 0.

Our main result is the following.

Theorem 10.1. Let (V1) and (V2) hold, let p > 1 and suppose that M has a point
of local strict mazximum or minimum at v = r. Then, for € > 0 small enough,
(10.1) has a radial solution which concentrates near the sphere |z| = r.

Remarks 10.2.

(i) In the case n = 1, M and V have the same critical points. Otherwise, when
n > 1 the stationary points of V' do not determine the location of solutions
concentrating at spheres.
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Actually, one has
M'(r) = 2V0=Lr) [(n = D)V (r) + 0rV' ()]

and therefore critical points of M belong to the region V' < 0, as pointed
out before.

(ii) Since M(r) ~ r"~2 as r — 0 and as r — oo, then stationary points of M
arise generically in pairs.

M(r)

Vr)

Figure 10.1. Graph of V' versus M

(iii) Differently from the case of ordinary spikes, in Theorem 10.1 we do not
require any upper bound on the exponent p, namely we can deal with the
critical or supercritical case as well. This does not depend on the fact that
we are dealing with radial problems but rather it is a consequence of the
fact that the solutions concentrate on a sphere. Roughly, we will see that the
asymptotic profile of a radial concentrating function is a solution of a one-
dimensional problem, see (10.4) below, for which there is no restriction on p
to get existence of a solution. Actually, looking for solutions concentrating
on a k-dimensional sphere, with 1 < k < n — 1, one has to impose that
1<p< P32 if k <n—2,see Theorem 10.11. O

The next three sections are mainly devoted to prove Theorem 10.1. Hereafter,
until Subsection 10.3.1, we will assume that 1 < p < Zf%, when the functional I,

in (10.3) is well defined on H,. The general case will be handled by means of a
truncation procedure.

10.2 The finite-dimensional reduction

As in Section 8.4, Chapter 8, we will perform a finite-dimensional reduction near
a manifold of pseudo-critical points.

First of all, we consider for any A > 0 and any p > 1 the positive even solution
U of the one-dimensional equation

—UN+ MU, =US, Uy e WHAR). (10.4)
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Recall that one has )
Ua(r) = Ar=1U(Ar),

where U stands for Uy with A = 1. The function U has an exponential decay to
zero at infinity: indeed, there holds

1 1/(p—1) -1 -2/(p-1)
U(r) = <p—; > (cosh [p2 r]) .

Setting Cr[M] = {r > 0: M'(r) = 0}, let us fix pg > 0 with 8py < min Cr[M] and
let ¢ (r) denote a smooth non-decreasing function such that

0, if r<722, , 4e 16¢2
r)= )<, ()] < .
de(r) {17 — | ( )I_p0 |2 (r)] < e
For p > 4pp /e, set
2pe(r) = ¢e(r) Un(r —p); N =V(ep). (10.5)

Fixed £ > r, see Theorem 10.1, consider the compact interval 7, = [45_1;)0, 5_16]
and let
Z=2.={z2=2,.:pe T}

As usual, we set W = (T, Z)* and let P denote the orthogonal projection on W.
Given a positive constants v > 0 (to be fixed later), we define

C-={weW : ||wln, <velzpellr,, lw(r)| <veforr>0}.1 (10.6)

Remark 10.3. The reason for the introduction of the set C¢ is the following. The
norms of the function z,. and of the gradient I’(z,.) diverge as € goes to zero,
see the estimates (E1) and (E2) in the next Subsection 10.2.1. For this reason it
is not possible to perform the contraction argument using only norm estimates,
as in the proof of Proposition 8.7. By means of the set C. we keep the function w
small in L*° and the function z + w concentrated near |z| = p. ]

It is now convenient to collect some estimates we will need in the sequel.

10.2.1 Some preliminary estimates

For every p € 7, every w € C. and € < 1, the following estimates hold

(1) zpellne, ~ et/

(B2) [ Z2(zp.0) [ ~ € |2p.cll;

(E3) |1 (zpc +sw) = I (2p0)| ~ 7D (0 < 5 < 1);
(B4)  [[(zpe +w) = IL(zpe) = IZ (zp) [w]l| ~ €~V ]

Lthe reader should note that the set C. defined above is sligthly different from the one intro-
duced in [21]. However, this suffices for the proof of Theorem 10.1.
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Proof of (E1). By the definition of z, . we have

“+o0
el = / (|2 4 V(er)2)dr ~ o,
0

Since p € Tz, then p ~ e~ and hence ||z, |», ~ 1=/2.

Proof of (E2). For all v € H, one has
+oo
IL(2)[v] = / "L (2 + V(er)zv — 2Pv) dr
0
+oo +oo
= —/ v(r" ) dr +/ "L (V(er)zv — 2Pv) dr
0 0
+o0 +oo +oo
=—(n—1) / "2 vdr — / L dr 4 / " (V(er)zv — 2Pv) dr.
0 0 0

~ PN ~ -
Ap ('U) Aq (’U)

Using the Holder inequality we get

Lo 1/2
A0(0)] < C [[o]ln, ( / <r<”—3>/2z'>2dr) .
0

Since z decays exponentially away from r = p and since p € 7, it follows that

+o0 +oo
F A e A e B Y EIPE E
0 0

Then we find
sup{[Ao(v)| : [v]ln, <1} ~e 2] (10.7)

To estimate A (v) we write A;(v) = A2(v) + Az(v) where

“+o0
Aae) = [ [N =)+ 200N = )] v

and

+oo
As(v) = /o rnl {¢U,\(T —p)+V(er)pUx(r — p)
— ($UA(r = p))P — ¢UA(r — p)] vdr.

Since the support of ¢’ is the interval [pg/2¢, po/c] and U, decays exponentially
to zero as r — oo we get

sup{|A2(v)] : [[vl|p, <1} ~ e c-. (10.8)
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Finally, using the definition of U we infer
“+oo
As(v) = / = (V(er) — V{eo)) oUA(r — p)odr
0

+oo
- /0 L (V (er) — V(eo)) 2vdr,

As] < Cllollx, ( /
0

By (V1) one has (see also (8.19))

hence

Vier) —Viep) |2z2r"_1dr>

V(er) = V(ep)| < Celr — p| + C<*|r — pl?,
hence, arguing as for (8.21) we infer
sup{[As(v)] : [vll3, <1} ~e 2] (10.9)

Putting together (10.7), (10.8) and (10.9), we find (E1).

The proofs of (E3) and (E4) are based on similar arguments and are omitted.

10.2.2 Solving PI/(z 4+ w) =0

We will look for critical points of I. of the form
u=z4+w, z2=2p€4, weCl..
As usual we first solve the auxiliary equation PI’(z+w) = 0, which is equivalent to
PIl(z) + PR, + PI/(z)[w] = 0,

where
Ry = I[(z +w) — I[(z) = I/(2)[w].

As in the previous section, with only minor modifications, one can prove the
following result.

Lemma 10.4. There ezists a positive constant C' such that, for every p € Tc and
for e sufficiently small there holds

IV (zpe) v, 0] > C7 v, forallv L {tz} & T, Z.

In particular the operator L. = L, . := P o I!(z,.) o P is invertible.
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Setting

we deduce that

PIlz+w)=0 <= w=_5:(w).

In order to find the fixed points of S. we will prove that there is v > 0 such that
for € sufficiently small S, is a contraction that maps C. into itself, namely:

(S1) S:(Ce) C Ces
(S2) 3k € (0,1) : [|Se(wr) — Se(w2)]| < Kllwy — wall, YVwr,we € Ce.

Proof of (S1). First we show that there exists C7 > 0 such that
[Se(w)] < Crelzl,  VYwel.. (10.10)
Actually, using (E4) we get
IRull = I12(2 +w) = I(z) = I (2)[w]| < e P~ Vo]
Since w € C, then ||w|| ~ ¢||z| and hence
IRull < cze- D]z,

From this, the definition of S and (E2) we infer
ISl < e [I72(2) + |1 Rull] < cxe 14D ] |z

and (10.10) follows.
To complete the proof of (S1) it remains to show that, letting w = S.w, there
exists C' > 0 such that
lw(r)| < Ce.
First of all, let us recall once more that for all u € H, there holds
u(r)] < e P2 g, (2 1),

Using this estimate with © = w and taking into account the equation (10.10), we
get
@(r)| < er T2 @), < oo 2], (2 1),

Then, recalling (E1) and taking r > 4pg/e we find:
[W(r)] <ese,  (r > po/de). (10.11)

To prove a similar inequality for 0 < r < 4pg/e we argue as follows.
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The function w satisfies the equation

—AD + V(er)w — pzP M = — ((z + w)P — 2P — pzP~ w) + B(—=Az + V(er)?)
+ (—Az+V(er)z — 2P), in R",

where £ is a real number with |3| ~ &, and where 2 = gZ' Since for 0 < r < 4pg/e
we have that z = 0 and thus w satisfies

—AD+ V(er)w = —|wP " w, for || < po/e .
Since |w(x)| < csze on the sphere |z| = pg/e, the maximum principle implies that

|w(z)| < cse in the ball |z| < po/e. This, jointly with (10.11), proves that there
exists C' > 0 such that w € C. = |w(r)| < Ce, completing the proof of (S1).

Proof of (S2). From
Se(wi) = Se(wp) = LT [IL(z + wy) — I (2)[wi] — IL(2 + w2) + I (2)[we]
we infer
1Se(wr) = Se(w2)l| < er|lIi(z + w1) — I (2)[wn] = I(z + w2) + IZ (2)[wa]|].
One also has:
Iz +wi) = I/ (2)[wn] = IL(z + w2) + I (2) [we)]

1
= /0 (I (z + w1 + s(wy —wa) — IV (2)) [w1 — walds.

Putting together the preceding estimates and using (E3) we deduce
152 (wr) = Se(ws)|| < coe PV lwy — wa],

and (S2) follows. O

From (S1) and (S2) it follows that the equation Se(w) = w has a solution in C..
Repeating the arguments used in Section 8.4, we find the following result which
is the counterpart of Proposition 8.7.

Proposition 10.5. For ¢ sufficiently small there exists a positive constant v such
that for p € Tz, there exists and a function w = w(z,.) € W satisfying PI.(z +
w) = 0. Furthermore, setting

Pe(p) = L(2pe +wpe),

if, for some ¢ < 1, p. is stationary point of ., then e = z,_+w,,  is a critical
point of I..
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10.3 Proof of Theorem 10.1

Here we carry over the Proof of Theorem 10.1. First of all we expand the func-
tional ®..

Lemma 10.6. For ¢ > 0 small, there is a constant Cy > 0 such that:
"M (2 +wpe) = CoM(ep) + O(?), peT..
Proof. As usual, for brevity, we write z instead of z,. and w instead of w,..
One has .
L(z+w) =I1.(2) + I(2)[w] + / IV (2 + sw)[w]?ds.
0

Using (E1) and (E2) we infer that I’(z)[w] ~ e3=™)/2||w||. Moreover, from ||w]|| <

e|lz|| and (E1) we get ||w]|| ~ ©~™)/2 and hence I’(z)[w] ~ £3~". Using arguments

similar to those carried out in Subsection 10.2.1 we also find that I”(z + sw)[w]? ~

3= and thus we deduce
I(z +w) = I.(2) + O(g37™).

On the other hand, recall that by definition z,.(r) = ¢:(r)Ux(r — p). Then z
concentrates near p and one finds

o] 7|2 2 p+1
Ie(z):/ el <Z| TVer)z" _ 2 )dr
0

2 p+1
/ 2 p+1
n—1 UL +V(ep)Uy Uy
= — dr (1 1)).
. /( X o4 ) o)

We recall that
Ux(r) = P DU(r), A2 =V(ep).

It follows by a straightforward calculation that

/ 2 p+1
U2+ V(er)U U
/R<| | 2( ) _p+1>d’"zcove(€p)’

where Cy = lerl JU s Substituting into the preceding equations we find
I(z 4+ w) = Cop" 1V (ep) + O(>™).
Recalling the definition of M we get

Lz 4w) = 0 eV ep) + O = 0 M(ep) + O,

en gn—l

and the lemma follows. O
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We are now in the position to prove Theorem 10.1 in the case p € (1, Ztg} By
Lemma 10.6, if r is a maximum (resp. minimum) of M then ®.(p) = I.(2,,.c +
Wy, =) Will possess a maximum (resp. minimum) at some p. ~ r/e, with p. € 7Z;.
Using Proposition 10.5, such a stationary point of ®. gives rise to a critical point
Ue = 2p, e +Wp, =, which is a (radial) solution of (10.2). Since U (r) ~ Ux(r—ps) ~
Ux(r — r/e), then the scaled u.(r) = u.(r/e) is a solution of (10.1) such that
ue(r) ~ Ux ((r — r)/e), hence concentrating near the sphere |z| = r.

10.3.1 Proof of Theorem 10.1 completed

Let us now consider the case p > Zf% The proof is done using some truncation

for the nonlinear term, and then proving a priori L estimates on the solutions.
We list the modifications which are necessary to handle this case.
For K > 0, we define a smooth positive function F : R — R such that

F(t) = |t|P™ for |t| < K; Fr(t) = (K +1)P* for |[t| > K +1.

Let I. x : H, — R be the functional obtained substituting |u|P** with Fg(u) in
I., and let Ky = (sup V)Pil. Since the non-linear term in I, g is sub-critical, this
is a well-defined functional on H,..

We note that by the definition of Uy and z, ., it is ||z, || < Ko for all p € 72
and ¢ sufficiently small.

In the above notation, if &K > Ky, the operator PI” ;(z) remains invertible
and its inverse A. has uniformly bounded norm, independent of K. In fact, the
preceding arguments are based on local arguments and remain unchanged. More-
over, if K > Ky + « (see the definition of C.) and using the pointwise bounds
on |w(r)|, one readily checks that the estimates (E2)-(E4) involving I’(z) and
I (z+w) are also independent of K. Hence the above method produces a solution
ue of I, o = 0 for which [luc||oc < K. Hence u. also solves (10.2). This completes

€

the proof of Theorem 10.1. O

10.4 Other results

In this section we collect some further results on the existence of solutions of (10.1)
that concentrate at a sphere. We will not give the proofs, referring to [21].

First of all, let us state the following result which is the counterpart of The-
orem 8.1 dealing with necessary conditions for concentration at points.

Theorem 10.7. Suppose that, for all € > 0 small, (10.1) has a radial solution u.
concentrating on the sphere |x| =7, in the sense that V6 > 0, 3eg > 0 and R > 0
such that

ue(r) <4, fore <eo, and for |r—7|>cR.

Then ue has a unique maximum at v =71, re — 7 and M'(F) = 0.
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Our second result is concerned with the bifurcation of non-radial solutions from a
family of radial solutions concentrating on spheres. Let

Are={(e,us) : 0<e<e},

where u. denote the solutions of (10.1) obtained using Theorem 10.1 in correspon-
dence of r —r.

Theorem 10.8. In addition to the assumption of Theorem 10.1, suppose that the
potential V is smooth and that at a point r > 0 of strict local mazimum or mini-
mum of M there holds

M"(r) #0. (10.12)

Then for € sufficiently small A, . is a smooth curve. Moreover, there exist a se-
quence €5 | 0 such that from each (€, uc;) € Ay bifurcates a family of non-radial
solutions of (10.1).

Roughly, the proof of Theorem 10.8 is based on the following two propositions
which have an interest in itself.

Proposition 10.9. Let u. be the family of solutions radial solutions of (10.2) having
the form

- T
Ue = Zp. e T Wp, &5 for some pe ~ o

where w,_ . € Cc. Then the Morse index of u. in WH2(R™) tends to infinity as e
goes to zero.

Let us emphasize that it is the Morse index in W12(R") which tends to infinity,
while the Morse index of @, in H, is 1 (resp. 2) if r is a local minimum (resp.
maximum) of M.

Proposition 10.10. Suppose M"(r) # 0, and suppose u. is a solution of (10.2) as
above. Then, for e small, u. is non-degenerate in H,.

By Proposition 10.10 the solution @, of (10.2) is non-degenerate and locally unique
in the class of radial functions. This implies that the set A in Theorem 10.8 is
a smooth curve. By Proposition 10.9 the Morse index of I”(u.), in the space
W12(R"), diverges as ¢ — 0. To obtain the conclusion it is sufficient to apply a
bifurcation result of Kielhofer [96].

We complete this section with a short discussion about concentration at k-dimen-

sional spheres, 1 < k < n — 1. In such a case, the corresponding limit problem is
of the form

AUy + XUy = UY in R %,

{ MK Ak Ak (10.13)

Uxi>0,Uxi € Wl’Q(R"_k).
Here A2 = V(ery) is the potential at the concentration radius (to be found) and

. oy . —k _k+2 .
the exponent p is subcritical with respect to R"™%, namely 1 < p < "7 7% if
n—k>21<pifn—-Fk <2
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From a simple scaling argument one finds Uj x(z) = Ar Ur(Ar), z € R*F

as well as
1
2 | 142 2 p+1
+ 5 Us,. — U
2 /Rn—k )\7k p + 1 /Rnfk /\’k

1/ -
Rn k
- (21 P 1>)\ kH(JkHWran k)

where 6, = p+1 3(n—k) and Uy, is the solution of (10.13) with A = 1. Hence the
energy of an approximate solution z, which is concentrated near a k-dimensional
sphere of radius p can be estimated as

E(z,) ~ p*V% (ep).

As a consequence, solutions of (10.1) should concentrate at critical points of the
auxiliary functional My, (r) := r¥V%(r). When k = n — 1, M}, coincides with M
while for k£ = 0 the critical points of M}, coincide with those of V. Precisely, one
can prove the following theorem:

Theorem 10.11. Suppose that 1 < p < Z:’;*_‘g fn—k>2,1<pifn—k<2, that

(V1) and (V2) hold and let My,(r) := r*V%(r), where 0y, = p"'} 3(n—k). If (10.1)
has a (radial) solutions concentrating at a k-dimensional sphere of radius 7 > 0,
then MJ.(7) = 0. Conversely, if r > 0 is a local strict mazimum or minimum of
My, then there ezists a radial solution of (10.1) concentrating at the k-dimensional

sphere of radius r > 0.

As anticipated in Remark 10.2-(iii), in the singularly perturbed problems where
solutions concentrate on a k-dimensional manifold, the number "~*+2 (if n—k > 2)

n—k—2
which replaces the usual critical exponent Ztg

10.5 Concentration at spheres for (/V.)

In this section we study concentration at spheres for (N¢) in the case of the unit
ball @ = By = {z €R” : |z|] <1}, n > 2, highlighting that new phenomena
take place, due to the imposed boundary conditions. We give first some heuristic
description of the situation.

As already mentioned at the beginning of the chapter, a solution concentrat-
ing at a sphere carries a volume energy which tends to shrink its radius. On the
other hand, imposing Neumann conditions at the boundary of the domain corre-
spond naively to add some virtual spherical spike outside the domain, at the same
distance from 9. It is standard to see from energy expansions (see Subsection
10.5.2 for precise estimates) that spikes attract each-other. Therefore, any spheri-
cal spike with interior profile is attracted by the boundary. As for NLS it turns out
that the two competing forces balance each-other giving rise to a radial solution
concentrating at a sphere close to 92, preventing the collapsing to the origin. Our
main result is the following theorem.
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Theorem 10.12. Given n > 2 and p > 1, consider the problem

g&QAu +u=uP, in By, (N)
oy =00mndB1, u>0.

Then there exists a family of radial solutions u. of (N) concentrating at |z| = 7.,
where 1. is a local maximum point of u. satisfying 1 — r. ~ e|loge|.

As for the Schrodinger equation, it is convenient to scale (N) to the set B 1, namely
to consider the problem

{_AUﬂL:up’ n By, (10.14)

gZ:OonaBl, u > 0.

and to use the functional I. defined as

I (u) = § /Q (IVul® + V(e|z|)u?) dz — p}_l /Q lu[Pdz, u € Hrl(Bi).

=

In the sequel, it is understood that the norm || - || = || - || 71 (B, )-

Remark 10.13. As for (10.1), the phenomenon is peculiar of the higher-dimensional
case since for n = 1 it is possible to prove that there are no interior spikes ap-
proaching the boundary of an interval. The other comments in Remarks 10.2 hold
for this case with obvious changes. (Il

10.5.1 The finite-dimensional reduction

For any ro < }, let ¢-(r) be a smooth cut-off function such that

0 for r € [ , 85] ;
1 fi
e(r) = orr € ik (10.15)
oL(r)| < Ce forre [, 0]
0 (r)] < Ce*  forre [, 1]

Let a = limy_ 4o €'U(t), where the function U is given in (10.4), and z,(r) =
U(r — p). We define Z¥ to be the following manifold

N _ {qi)s (Zp +ae‘(i—ﬂ)e—(i—')>}p = {z) = ¢ (2 +vp)}p; Pz,

(10.16)
The range of p will be chosen appropriately later. The function zé\' has been defined
in such a way that it has a small normal derivative at 0€).. In fact, we have the
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following estimate

(z) (i) A (i) —ae(:70) (10.17)

() (E(0)- ) et),

As already mentioned at the beginning of the section, the correction term v, in
the definition of zé\' can be heuristically viewed as the contribution of a wvirtual
spikeoutside 2.

We collect first some preliminary estimates.
Lemma 10.14. Let ZV be as above, and let w € C., where
C. = {w € Hrl(Bi) : ||wHH;(Bl) < ’y5||zé\’||m(31)7 |w(r)| < e forr > O}.
Then there exists C' > 0 such that the following properties hold true
(BD) I/ +sw)][<C (0<s<1);
(B2) 22 + sw) = LI < Cmax {wllo, w270}, 0<s < 1)
(E3) IT2(z))|| < Ce'2" (E +o0 (e_(i_p))) for every 2l e ZN.
Proof. We prove (E3) only, since (E1) and (E2) can be proved as in Subsection

10.2.1. Since 2z, = U(- — p) and v, satisfy respectively the equations —z +z, = 25
and —v/ + v, = 0, we have, for an arbitrary u € H}(B1)

r

+e7"(z,) (1/e)u(l/e)

= Gy (1 /e)u(le) — (- 1) / !

o T

I'(zM)[u] = /0i (—(zév)” - 1(2’5)’ + V(Er)zév — (zf)v)p> ur™ Ldr

(zf,v)’ur”_ldr

B /OE (2(25/6('2‘]’\’)/ + ¢l€/(zlﬂv)) ur™tdr — /OE ((Zé\’)p - ¢EZ5) ur™ tdr.

In the sequel, for brevity, we will often omit the index p in z,, Z ;J)V and v, and we

will set )

/(-) = /0 (). (10.18)

From the Strauss Lemma, see [135], and (10.17) we find

Y (/eu(/e) = 2 o (7)) full, (10.19)
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Moreover, as in (E1) of Subsection 10.2.1, one has that [|(2)’|| < Ce'2". On the
other hand, since the function z% is supported in {r > }, one also has

[

From the exponential decay of z = z, and v = v,, from the fact that ¢., ¢” have

support in [52, 7°] and from p > 2, one deduces the estimates

3—n
< Cell M) [[lull < Ce =" Jull. (10.20)

< Ot el |ful;

’/(;S’E(z—kv)'u
] JET

o (10.21)
< Ce®T 2 e 2 |u.

Let us consider now the term [ ((2™)? — ¢.2P) u. We can write
(NP = e2P = G (2 + 0)P — 2P) + ¢ (¢82" — ¢:2P).
Since z is uniformly bounded, we have

|(z + v)P = 2P — pzP~o| < Cmax{|v]?, |v|"}.

gp] el

Again from the Holder inequality we obtain

\ JRa

1
We have also | [ 27~ o|u|| < ([ 22#~Dv?)? ||lu||. We divide the last integral in the

. —1 —1 -1 . _3(1_
two regions r < p+§ and r > p+; . When r < p+§ , v satisfies |v] < e 3(t-r)
and hence

1
2
/ 2=Dy2n=lgp ) < Ce3(:7r) / Z2P=Dpn=1g,
r< p;rs r< pgs

1—-n

< e 3ir)eh",

It follows that

/[(z+v)p —2Plu

+c\ [ ulmaxiof oy

< Cerom(20) [y < 00 ),

1
2

On the other hand when r > p+§717 z satisfies |z(r)| < e=2(:=P) 50 we obtain

/ 22— 2pn=1 gy
r> p;rs

2 1 2
<ce "2 (e7) ( vQT”‘ldr>

0

< Ce= (172 (E=p) 12"
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‘We have also
1

[z o so([@-o0") il < e

The above estimates yield

[ (@ =gy
Hence (10.19)—(10.22) imply

IIZ(z0)] < Ce 2" (5 +o (e_(;_p)) +e” 22) .

This concludes the proof of the (E3). O

< e (e—(g“’;*“)(i—p) + e—il“) ]| (10.22)

Similarly to Proposition 10.5 above, we obtain the following result, which reduces
(10.14) to a finite-dimensional problem.

Proposition 10.15. For ¢ sufficiently small there exists a positive constant p such
that for p € [0, 1 — ], there ezists a function w™ = wN(z,.) € W = (T,v ZN)*
satisfying PI.(z + w) = 0, where P is the projection onto W, and ||[w"]| <
CIL(zY)|. Furthermore, setting

U.(p ):IE(ZN—&—wN)

if, for some e < 1, p. is stationary point of V., then u. = z -+ wp . 15 a critical
point of I..

In order to use Proposition 10.15 we need a careful expansion of ¥., since we want
to consider values of p which are close to the exterior boundary of ..

10.5.2 Proof of Theorem 10.12

In this subsection we prove our main result finding a critical point of the reduced
functional ¥.. The first step is to expand Is(zf)v ) as a function of p and e. Inte-
grating by parts and using the equations satisfied by z and v (as in the equation
before (10.19)), we find (we use again the notation (10.18))

L) =[G+ ) - 4 [l
_ ;/(_(ZN)// _ n:l(ZN)/ _|_ZN) LN
3N WAEY /) -y [ 1P
= ;gl_nzN(l/a)( ) (1/e) + /¢szp pi1/|3N‘p+1

Ny N
_ngl/(z 2Z —/d)IEZN(Z—FU /¢// NZ+U (10'23)
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Let us estimate each of the seven terms in the last expression. From equations
(8.9) and (10.17) we deduce

e N (1/e) (Y)Y (1/e)| = €0 (6_2(;_”)) : (10.24)
To estimate the second and the third term, we can write
%/aﬁsz”zN— pil/\zN\p“ (10.25)
= (% _ pil) /¢§+1Zp+1 + 1 / (62 — ¢2*1) 22z + v) %/qslg-‘rlzpv
- pil /(;SE'H (Jz +v[Pt! — 2P — (p+1)zP0).
We have

’ [ormian ot [ UpHdr‘ S L Y U (I P
R 7‘21/6

1
+ / T = YU (e = p)dr|
0

Using a Taylor expansion for the function r"~! —p"~! and the fact that r < C(ro)p
(since p > ro/€), we obtain

1

/ St = UM (e = p)dr| < Clnyro)p / = ol U (= p)dr
0 0

S C,Dn_Q.
On the other hand, from the exponential decay of U, see (8.9), we get

pn—l/ Up+1(r . p)dr < Cel—n (e—(p-i-l)(;_p) + e—("t?’"") :
r>1/e

1
_(p+1)rg
4e .

/5 P11 — P HUPT < cel e
0
Hence from the last three equations we deduce
‘/qﬁﬁ“zm‘l —pn! / Up+1dr‘ < Celm (6_(1""1)(;_’)) + E) . (10.26)
R

The term [ ¢! (|2 4 v[PT! — 2PT1 — (p+1)zPv) in (10.25) can be estimated as
follows. From the inequality

|2 + 0P = 2P — (p+1)2Pv — p(p + 1)2P710?| < Cmax{[of?, [v/T},
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one finds
/Hz—l—v\p"’l — 2P — (p+1)2P0| < C/zp_lw2 —l—C/maLX{|v|37 lu|PT1}.

The first integral in the last expression can be estimated dividing the domain into

-1 -1
the two regions r < **5  and r > 5 | as before, while for the second it is
sufficient to use the explicit expression of v. In this way we find

‘/qsg—&-l (|z + ,U|p+1 _ 1 (p+ 1)va) (10.27)

< Celn (e—3(;_p)+e o) (1 p)+ —(BA+D)(L p))

The term [ ¢?T!zPv in (10.25) turns out to be of order '~ "e ~2(: =), We need to
have a rather precise expansion of this term, so we treat it in some detail. There
holds

/¢§+1z7’v:ap"_le_z(i_p)/Uperdr
R

Reasoning as above, we obtain

p"_le_z(i_p)/ Up(r—p)e(T_p)dr < Cel _(p+1)( p)
>1/e

1

/E (r"=t — p" ) 2Pudr
0

< CsQ_ne_Q(i_p);

(p+1)rq
4e .

/(1 — ¢ 2Py < Celtme
Hence the last three equations and the expression of U imply
/(bg“zpv = ap"_le_Q(i_p) / UPemdr + el=ne2(1=r)0 (5 + e_(p_l)(i_p))
R
= aal_”(ap)"_le_z(;_p) /RUperr
+elmme2(:=r)o (s + e @D P)) : (10.28)

for € small. The fourth term in (10.23) can be estimated as for (10.20), and gives

/ N
’/ ‘ ce? . (10.29)
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The fifth and the sixth terms in (10.23) can be estimated in the following way

’/qb (z +v)

From (10.24)—(10.30) we deduce the following result.

< Cet e, (10.30)

< O e 22 ‘/qb" N(z+v)

Lemma 10.16. Let 2 be defined in (10.16), and set

p+1 D
az(é—pi1>/[RU ; ﬂz%a/RUe. (10.31)

Then one has

L)) = (ep) ! o= g2 | 4 07) 4210 (72 0))

for all p € [45 E]

Proof of Theorem 10.12. For s € [0,1], using (E1) and (E2) in Lemma 10.14, we
have

HI’ 2V sl H
1

SIII;’(zN)[szHH / (12N + Csw) — (V) [w]ch
0

= O(w™]l) + O (max { w™ %, [[w™["}).

Hence, using the estimate of ||w” | in Proposition 10.15 and (E1), we deduce

LN +w™) = LENY) + I [ + /1 (I;(zN + sw™) — I;(zN)) [w]ds
0
= LEY)+ O (LY.

Using (E3) we infer that O (I[72(zM)|?) = O(*~™). Hence from Lemma 10.16 it
turns out that

Lz +w))=p"" [a — ﬂe‘Q(i_p)} +0(E*™™) +e' "0 (e‘Q(i_p)) . (10.32)

We are going to show that the function p — I, (zf)v —&—wé\' ) possesses a critical point
pe with |i — p5| ~ |loge|. We give first an heuristic argument, which justifies
the choice of the numbers pg ¢, p1, and p2 . below. The main term in (10.32) is

pn L [a — 56_2( : _p)]. Differentiating with respect to p we obtain

(n—1)p"~2 {a - ,66_2/\(2_'0)] - 25/)"_16_2(;_”).
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Since ’l — pg‘ ~ |loge|, the term 6_2(2_'0) converges to 0 as € goes to 0, hence to
get a critical point we must require, roughly

(n _ 1)pn—2 _ 26pn—1e—2(i—p).

Taking the logarithm, and using the fact that all the terms except € and e=2(:-r)
are uniformly bounded from above and from below by positive constants, we obtain

the condition
1 1 1
|loge] ~2< —p) P ( —p> . 1ogel. (10.33)
e € 2

We now begin our justification of the above arguments. Given Cy > 0 (to be fixed
later sufficiently large), consider the three numbers

11 11 1
poe=_— 2\logsl; Pe=_ " a |logel;  p2e= L Collogel|. (10.34)

By condition (10.33) we expect pg. to be almost critical for the function p —
V. (p) = I.(z) +w)). Using Lemma 10.16 and some elementary computations,
one finds

V. (po,) = '™ (1 + o(e|logel)) [0‘ _ pei=g )}
+ 0™ +el7"0 (5(1_ =higeel )) )

elloge|

We have ¢(1=7'%7) = c1+0(ellogel) — O(e) < ¢|loge|, and hence
U (poe) = "a(l+o(e|loge])).
On the other hand, there holds
U.(pre) =7 (1 + o(e|logel)) {a — 552(1_5‘ 10055)/00]
o) e (L0,
If Cy > 2, we use the estimate
52(1_5‘ 10055\)/00 = 2/CotOellogel) — :2/Co(1 4 o(1)) > ¢|loge],

to obtain ) )
U =10 o e 4o (4]

For the third term, we can write
U (p2e) =" (14 o(c|logel)) [a — Be2Co(1=Coe| logel)]

+ 0(62_n) + El_nO (6200(1—005\ logs\)) )
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If Cy > ;, we obtain

EQCO(l—Cos\logs\) — €2C’o+O(s\logs\) _ O(E2CO+O(5|loge|)) < E| 10g€‘7

and hence
\Pf(p&a) =" (1 + o(e| IOgED) )
for ¢ sufficiently small. If Cy is chosen sufficiently large, the last three equations
imply
sup Y. > \Ps(p&a) > max{qje(pl,s)y qje(p&a)}-
[p2,e:01,]

Hence it follows that the reduced functional ¥, possesses a critical point (maxi-
mum) p in the interval (p; ¢, p2,c). By Proposition 10.15, we obtain a critical point
of I. with the desired asymptotic profile. By construction, this solution is close in
L to a positive function. Then from the maximum principle it is easy to conclude
that u,. is strictly positive. This concludes the proof of the theorem. O

10.5.3 Further results

As for the Schrodinger equation, we collect some related results without giving
the proofs, since they are based on similar ideas. First of all, we can consider
a generalization of (N ), adding a radial potential V. Precisely, letting Q denote
either the unit ball By or the annulus

A={zeR" : a<|z| <1}, a € (0,1),

we consider the problem
—2Au+ V(|z))u =uP in Q; )
ggzoonaQ, u > 0in Q.

Theorem 10.12 admits the following extension.

Theorem 10.17. Let (V1) and (V2) hold, p > 1 and let Q@ C R™ be the unit ball
By (resp. the annulus A). Suppose that the function M(r) = r"~'VO(r) satisfies
the condition

M'(1) >0 (resp. M'(a) < 0). (10.35)
Then there exists a family of radial solutions u. of (N) concentrating on |z| = re,
where re s a local mazimum for ue such that 1 —r. ~ e|loge| (resp. re —a ~
e|logel).
Similarly to Theorem 10.1, we can also prove concentration in the interior of 2,
in correspondence of suitable critical points of the auxiliary potential M.

Theorem 10.18. Let (V1) and (V2) hold, p > 1 and suppose that M has a point
of strict local mazimum or minimum at r = r. Then, for ¢ > 0 small enough, (N)
has a radial solution which concentrates near the sphere |x| = r.
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If one is willing to sacrifice the information concerning the location of the concen-
tration set |z| = r., a more general existence result is in order.

Theorem 10.19. Suppose that Q = By (resp. @ = A), p> 1, and that V : By — R
(resp. V : A — R) satisfies assumptions (V1) and (V2). Then problem (N) admits
a family of solutions concentrating on a sphere.

Finally, we also consider the Dirichlet version of problem (IV), namely

—?Au+V(|z)u=uP in Q,
{ (I D)

u = 0 on 0N, u > 0in Q.

In this case, the effect of the boundary is the opposite with respect to the Neumann
case, and this will repel the functions concentrated at a sphere. The result for this
case is the following.

Theorem 10.20. Let 2 C R™ be the ball By (resp. the annulus A). Suppose that
the function M satisfies the condition

M'(1) <0 (resp. M'(a) > 0). (10.36)

Then there exists a family of radial solutions u. of (D) concentrating near |z| =1
(resp. near |x| = a). More precisely, u. possesses a local mazimum point r. < 1
(resp. a < re < 1) for which 1 —r. ~ ¢|loge| (resp. re —a ~ €|logel).

Remarks 10.21.

(i) Theorem 10.18 holds also for (D).

(ii) The counterpart of Theorem 10.19 for problem (D) holds only for annulus.
Indeed, in the case of problem (D) in the unit ball with V' = 1, the only
solution is the spike at the origin (for p subcritical) by the results in [83]
and [98]. O

Bibliographical remarks

There are at the moment only few papers dealing with concentration at spheres ir
manifolds. In addition to the aforementioned [21, 22, 110, 111, 112] we can mention
[70, 71, 113, 129].
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